Science.gov

Sample records for affinity agonist dysiherbaine

  1. Agonist-receptor-arrestin, an alternative ternary complex with high agonist affinity.

    PubMed

    Gurevich, V V; Pals-Rylaarsdam, R; Benovic, J L; Hosey, M M; Onorato, J J

    1997-11-14

    The rapid decrease of a response to a persistent stimulus, often termed desensitization, is a widespread biological phenomenon. Signal transduction by numerous G protein-coupled receptors appears to be terminated by a strikingly uniform two-step mechanism, most extensively characterized for the beta2-adrenergic receptor (beta2AR), m2 muscarinic cholinergic receptor (m2 mAChR), and rhodopsin. The model predicts that activated receptor is initially phosphorylated and then tightly binds an arrestin protein that effectively blocks further G protein interaction. Here we report that complexes of beta2AR-arrestin and m2 mAChR-arrestin have a higher affinity for agonists (but not antagonists) than do receptors not complexed with arrestin. The percentage of phosphorylated beta2AR in this high affinity state in the presence of full agonists varied with different arrestins and was enhanced by selective mutations in arrestins. The percentage of high affinity sites also was proportional to the intrinsic activity of an agonist, and the coefficient of proportionality varies for different arrestin proteins. Certain mutant arrestins can form these high affinity complexes with unphosphorylated receptors. Mutations that enhance formation of the agonist-receptor-arrestin complexes should provide useful tools for manipulating both the efficiency of signaling and rate and specificity of receptor internalization.

  2. Reconstitution of high-affinity opioid agonist binding in brain membranes

    SciTech Connect

    Remmers, A.E.; Medzihradsky, F. )

    1991-03-15

    In synaptosomal membranes from rat brain cortex, the {mu} selective agonist ({sup 3}H)dihydromorphine in the absence of sodium, and the nonselective antagonist ({sup 3}H)naltrexone in the presence of sodium, bound to two populations of opioid receptor sites with K{sub d} values of 0.69 and 8.7 nM for dihydromorphine, and 0.34 and 5.5 nM for naltrexone. The addition of 5 {mu}M guanosine 5{prime}-({gamma}-thio)triphosphate (GTP({gamma}S)) strongly reduced high-affinity agonist but not antagonist binding. Exposure of the membranes to high pH reduced the number of GTP({gamma}-{sup 35}S) binding sites by 90% and low K{sub m}, opioid-sensitive GTPase activity by 95%. In these membranes, high-affinity agonist binding was abolished and modulation of residual binding by GTP({gamma}S) was diminished. Alkali treatment of the glioma cell membranes prior to fusion inhibited most of the low K{sub m} GTPase activity and prevented the reconstitution of agonist binding. The results show that high-affinity opioid agonist binding reflects the ligand-occupied receptor - guanine nucleotide binding protein complex.

  3. Positron-labeled dopamine agonists for probing the high affinity states of dopamine subtype 2 receptors.

    PubMed

    Hwang, Dah-Ren; Narendran, Raj; Laruelle, Marc

    2005-01-01

    It is well documented that guanidine nucleotide-coupled dopamine subtype 2 receptors (D2) are configured in high and low affinity states for the dopamine agonist in vitro. However, it is still unclear whether these functional states exist in vivo. We hypothesized that positron-labeled D2 agonist and Positron Emission Tomography can be used to probe these functional states noninvasively. Recently, we demonstrated in nonhuman primates that N-[11C]propyl-norapomorphine (NPA), a full D2 agonist, is a suitable tracer for imaging the high affinity states of D2 receptors in vivo. We also developed kinetic modeling method to derive receptor parameters, such as binding potential (BP) and specific uptake ratios (V3''). When coupled with a dopamine releasing drug, amphetamine, NPA was found to be more sensitive than antagonist tracers, such as [11C]raclopride (RAC), to endogenous dopamine concentration changes (by about 42%). This finding suggests that NPA is a superior tracer for reporting endogenous DA concentration. In addition, the difference of the BP or V3'' of NPA and RAC under control and amphetamine challenge conditions could be used to estimate the functional states of D2 receptors in vivo. On the basis of our findings and the assumptions that NPA binds only to the high affinity states and RAC binds equally to both affinity states, we proposed that about 70% of the D2 receptors are configured in the high affinity states in vivo.

  4. [Cardioprotective effect of fluvoxamine, sigma-1 receptor high affinity agonist].

    PubMed

    Tagashira, Hideaki; Fukunaga, Kohji

    2012-01-01

    Selective serotonin reuptake inhibitors (SSRIs) are known to reduce post-myocardial infarction (MI)-induced morbidity and mortality. However, the molecular mechanism underlying SSRI-induced cardioprotection remains unclear. Here, we investigated the role of sigma-1 receptor (Sig-1R) stimulation with fluvoxamine on myocardial hypertrophy and cardioprotection. Male ICR mice were subjected to transverse aortic constriction (TAC) in the cardiac aortic arch. To confirm the cardioprotective role of Sig-1R stimulation by fluvoxamine, we treated mice with fluvoxamine (0.5 or 1 mg/kg) orally once a day for 4 weeks after onset of aortic banding. Interestingly, in untreated mice, Sig-1R expression in the left ventricle (LV) markedly decreased over 4 weeks with increased hypertrophy. By contrast, fluvoxamine administration significantly attenuated TAC-induced myocardial hypertrophy concomitant with recovery of Sig-1R expression in LV. Fluvoxamine also attenuated hypertrophy-induced impaired LV fractional shortening. The fluvoxamine cardioprotective effect was nullified by treatment with a Sig-1R antagonist, NE-100 (1 mg/kg). Importantly, another SSRI with very low affinity for Sig-1R, paroxetine, did not exhibit antihypertrophic effects in TAC mice and in cultured cardiomyocyte treated with angiotensin II. Fluvoxamine treatment significantly restored TAC-induced impaired Akt and eNOS phosphorylation in LV. Our findings suggest that fluvoxamine protects heart against TAC-induced cardiac dysfunction via upregulation of Sig-1R and stimulation of Sig-1R-mediated Akt-eNOS signaling in mice. This is the first report of a potential role of Sig-1R stimulation by fluvoxamine in preventing cardiac hypertrophy and myocardial injury in TAC mice.

  5. Short-term desensitization of muscarinic cholinergic receptors in mouse neuroblastoma cells: selective loss of agonist low-affinity and pirenzepine high-affinity binding sites

    SciTech Connect

    Cioffi, C.L.; el-Fakahany, E.E.

    1986-09-01

    The effects of brief incubation with carbamylcholine on subsequent binding of (/sup 3/H)N-methylscopolamine were investigated in mouse neuroblastoma cells (clone N1E-115). This treatment demonstrated that the muscarinic receptors in this neuronal clone can be divided into two types; one which is readily susceptible to regulation by receptor agonists, whereas the other is resistant in this regard. In control cells, both pirenzepine and carbamylcholine interacted with high- and low-affinity subsets of muscarinic receptors. Computer-assisted analysis of the competition between pirenzepine and carbamylcholine with (/sup 3/H)N-methylscopolamine showed that the receptor sites remaining upon desensitization are composed mainly of pirenzepine low-affinity and agonist high-affinity binding sites. Furthermore, there was an excellent correlation between the ability of various muscarinic receptor agonists to induce a decrease in consequent (/sup 3/H)N-methylscopolamine binding and their efficacy in stimulating cyclic GMP synthesis in these cells. Thus, only the agonists that are known to recognize the receptor's low-affinity conformation in order to elicit increases in cyclic GMP levels were capable of diminishing ligand binding. Taken together, our present results suggest that the receptor population that is sensitive to regulation by agonists includes both the pirenzepine high-affinity and the agonist low-affinity receptor binding states. In addition, the sensitivity of these receptor subsets to rapid regulation by agonists further implicates their involvement in desensitization of muscarinic receptor-mediated cyclic GMP formation.

  6. Guanine nucleotide regulation of dopamine receptor agonist affinity states in rat estradiol-induced pituitary tumors

    SciTech Connect

    Di Paolo, T.; Falardeau, P.

    1987-08-31

    The authors have investigated dopamine (DA) receptor agonist high- and low-affinity states in female rate estradiol-induced prolactin (PRL)-secreting pituitary tumors and intact pituitary tissue. Estradiol treatment increased the anterior pituitary weight 9-fold and plasma prolactin levels 74-fold and these measures are correlated (R = 0.745, n = 73, p < 0.001). Competition for (/sup 3/H)-spiperone binding to the DA receptor by apomorphine was compared in normal and adenomatous pituitary tissue. The inhibition constants (Ki) and the proportions of the two apomorphine sites are unchanged in tumors compared to intact pituitary tissue. Guanosine 5'-(..beta..-..gamma..-imino)triphosphate (Gpp(NH)p) causes complete conversion of the high into low affinity dopaminergic agonist site in normal pituitary and in tumors. These results suggest that rats with primary estradiol-induced pituitary tumors have normal and functional DA receptors. 9 references, 2 tables.

  7. Inhibitory GTP binding protein G/sub i/ regulates US -adrenoceptor affinity towards US -agonists

    SciTech Connect

    Marbach, I.; Levitzki, A.

    1987-05-01

    Treatment of S-49 lymphoma cell membranes with pertussis toxin (PT) causes a three-fold reduction of US -adrenoceptor (US AR) affinity towards isoproterenol. A similar treatment with cholera toxin (CT) does not cause such a modulation. The effects were studied by the detailed analysis of SVI-cyanopindolol (CYP) binding curves in the absence and presence of increasing agonist concentrations. Thus, the authors were able to compare in detail the effects of G/sub s/ and G/sub i/ on the agonist-associated state of the US AR. In contrast to these findings, PT treatment does not have any effect on the displacement of SVI-CYP by (-)isoproterenol. These results demonstrate that the inhibitory GTP protein G/sub i/ modulates the US AR affinity towards US -agonists. This might be due to the association of G/sub i/ with the agonist-bound US AR x G/sub s/ x C complex within the membrane. This hypothesis, as well as others, is under investigation.

  8. Point mutations affecting antagonist affinity and agonist dependent gating of GABAA receptor channels.

    PubMed Central

    Sigel, E; Baur, R; Kellenberger, S; Malherbe, P

    1992-01-01

    Two variant amino acid sequences, which differ in a single amino acid residue, have been reported for the alpha 1-subunit of the rat brain GABAA receptor. We separately co-expressed these two variants in Xenopus oocytes, in combination with beta 2 and gamma 2. This experiment showed that substitution of alpha 1-Phe64 by Leu strongly decreases the apparent affinity for GABA dependent channel gating from 6 microM to 1260 microM. Starting from this observation, we used in vitro mutagenesis to obtain information relevant for the localization of the agonist/antagonist binding site in the GABAA receptor. Homologous mutation in alpha 5 had similar consequences for alpha 5 beta 2 gamma 2. Homologous mutation in beta 2 and gamma 2 resulted in intermediate and small shifts in EC50, respectively. The apparent affinities of the competitive antagonists bicuculline methiodide and SR95531, the latter sharing close structural similarity with the agonist GABA, were decreased 60- to 200-fold by these mutations in alpha-subunits. Interestingly, these affinities remained nearly unaffected upon introduction of the homologous mutations in beta 2 and gamma 2, or upon mutation of the neighbouring amino acid in alpha 1, Phe65 to Leu. These results suggest close functional and structural association of alpha-subunits with the agonist/antagonist binding site, and involvement of N-terminal portions of the extracellular domains of all subunits in the gating of the channel. PMID:1376242

  9. Agonist high- and low-affinity states of dopamine D₂ receptors: methods of detection and clinical implications.

    PubMed

    van Wieringen, Jan-Peter; Booij, Jan; Shalgunov, Vladimir; Elsinga, Philip; Michel, Martin C

    2013-02-01

    Dopamine D(2) receptors, similar to other G-protein-coupled receptors, exist in a high- and low-affinity state for agonists. Based upon a review of the methods for detecting D(2) receptor agonist high-affinity states, we discuss alterations of such states in animal models of disease and the implications of such alterations for their labelling with positron emission tomography (PET) and single-photon emission computed tomography (SPECT) tracers. The classic approach of detecting agonist high-affinity states compares agonist competition for antagonist radioligands, in most cases using [(3)H]-spiperone as the radioligand; alternative approaches and radioligands have been proposed, but their claimed advantages have not been substantiated by other investigators. In view of the advantages and disadvantages of various techniques, we critically have reviewed reported findings on the detection of D(2) receptor agonist high-affinity states in a variety of animal models. These data are compared to the less numerous findings from human in vivo studies based on PET and SPECT tracers; they are interpreted in light of the finding that D(2) receptor agonist high-affinity states under control conditions may differ between rodent and human brain. The potential advantages of agonist ligands in studies of pathophysiology and as diagnostics are being discussed.

  10. Rat alpha6beta2delta GABAA receptors exhibit two distinct and separable agonist affinities.

    PubMed

    Hadley, Stephen H; Amin, Jahanshah

    2007-06-15

    The onset of motor learning in rats coincides with exclusive expression of GABAA receptors containing alpha6 and delta subunits in the granule neurons of the cerebellum. This development temporally correlates with the presence of a spontaneously active chloride current through alpha6-containing GABAA receptors, known as tonic inhibition. Here we report that the coexpression of alpha6, beta2, and delta subunits produced receptor-channels which possessed two distinct and separable states of agonist affinity, one exhibiting micromolar and the other nanomolar affinities for GABA. The high-affinity state was associated with a significant level of spontaneous channel activity. Increasing the level of expression or the ratio of beta2 to alpha6 and delta subunits increased the prevalence of the high-affinity state. Comparative studies of alpha6beta2delta, alpha1beta2delta, alpha6beta2gamma2, alpha1beta2gamma2 and alpha4beta2delta receptors under equivalent levels of expression demonstrated that the significant level of spontaneous channel activity is uniquely attributable to alpha6beta2delta receptors. The pharmacology of spontaneous channel activity arising from alpha6beta2delta receptor expression corresponded to that of tonic inhibition. For example, GABAA receptor antagonists, including furosemide, blocked the spontaneous current. Further, the neuroactive steroid 5alpha-THDOC and classical glycine receptor agonists beta-alanine and taurine directly activated alpha6beta2delta receptors with high potency. Specific mutation within the GABA-dependent activation domain (betaY157F) impaired both low- and high-affinity components of GABA agonist activity in alpha6betaY157Fdelta receptors, but did not attenuate the spontaneous current. In comparison, a mutation located between the second and third transmembrane segments of the delta subunit (deltaR287M) significantly diminished the nanomolar component and the spontaneous activity. The possibility that the high affinity state

  11. High-affinity σ1 protein agonist reduces clinical and pathological signs of experimental autoimmune encephalomyelitis

    PubMed Central

    Oxombre, B; Lee-Chang, C; Duhamel, A; Toussaint, M; Giroux, M; Donnier-Maréchal, M; Carato, P; Lefranc, D; Zéphir, H; Prin, L; Melnyk, P; Vermersch, P

    2015-01-01

    Background and Purpose Selective agonists of the sigma-1 receptor (σ1 protein) are generally reported to protect against neuronal damage and modulate oligodendrocyte differentiation. Human and rodent lymphocytes possess saturable, high-affinity binding sites for compounds binding to the σ1 protein and potential immunomodulatory properties have been described for σ1 protein ligands. Experimental autoimmune encephalomyelitis (EAE) is recognized as a valuable model of the inflammatory aspects of multiple sclerosis (MS). Here, we have assessed the role of a σ1 protein agonist, containing the tetrahydroisoquinoline-hydantoin structure, in EAE. Experimental Approach EAE was induced in SJL/J female mice by active immunization with myelin proteolipid protein (PLP)139–151 peptide. The σ1 protein agonist was injected i.p. at the time of immunization (day 0). Disease severity was assessed clinically and by histopathological evaluation of the CNS. Phenotyping of B-cell subsets and regulatory T-cells were performed by flow cytometry in spleen and cervical lymph nodes. Key Results Prophylactic treatment of EAE mice with the σ1 protein agonist prevented mononuclear cell accumulation and demyelination in brain and spinal cord and increased T2 B-cells and regulatory T-cells, resulting in an overall reduction in the clinical progression of EAE. Conclusions and Implications This σ1 protein agonist, containing the tetrahydroisoquinoline-hydantoin structure, decreased the magnitude of inflammation in EAE. This effect was associated with increased proportions of B-cell subsets and regulatory T-cells with potential immunoregulatory functions. Targeting of the σ1 protein might thus provide new therapeutic opportunities in MS. PMID:25521311

  12. Stereoselective synthesis and structure-affinity relationships of bicyclic kappa receptor agonists.

    PubMed

    Kracht, Daniel; Rack, Elisabeth; Schepmann, Dirk; Fröhlich, Roland; Wünsch, Bernhard

    2010-01-07

    Reductive amination of the bicyclic ketone 4 led diastereoselectively to endo-configured amines, which were transformed into the amides 7-10. The synthesis of the diastereomers 25 with an exo-configured amino moiety at position 6 was only successful after deactivation of both N-atoms of the 1,4-diazabicyclo[3.3.1]nonane system. The N-1-oxide 19 with an N-4-tosyl moiety was the crucial intermediate, which allows SN2 substitution with NaN3 under inversion of the configuration at position 6. Whereas the endo-configured pyrrolidine 7a (WMS-1302) revealed a kappa receptor affinity of 73 nM, the exo-configured diastereomer 25a was almost inactive at the kappa receptor (Ki > 1 microM). Replacement of the 3,4-dichlorophenylacetyl residue by other acyl and sulfonyl residues showed that it is essential for high kappa affinity. The kappa receptor affinities of the conformationally constrained pyrrolidines 7a and 25a were correlated with the dihedral angle N(pyrrolidine)-C-C-N(acetamide). A systematic conformational analysis of the potent but flexible kappa agonist 2 showed that a dihedral angle of 168 degrees (as in 25a) is energetically more disfavored than a dihedral angle of 58 degrees (7a). However, even the conformation with a dihedral angle of 58 degrees does not represent an energy minimum, which might explain the reduced kappa affinity of 7a.

  13. Decreased agonist affinity and chloride conductance of mutant glycine receptors associated with human hereditary hyperekplexia.

    PubMed Central

    Langosch, D; Laube, B; Rundström, N; Schmieden, V; Bormann, J; Betz, H

    1994-01-01

    Hereditary hyperekplexia is a dominant neurological disorder associated with point mutations at the channel-forming segment M2 of the glycine receptor alpha 1 subunit. Voltage-clamp recordings from the heterologously expressed mutants (alpha 1R271L or alpha 1R271Q) revealed 146- to 183-fold decreased potencies of glycine to activate the chloride channel, and significantly reduced maximal whole-cell currents as compared with wild-type receptors. In contrast, the ability of the competitive antagonist strychnine to block glycine-induced currents was similar in all cases. Radioligand binding assays showed a 90- to 1365-fold reduction in the ability of glycine to displace [3H]strychnine from its binding site on the mutant receptors. Paralleling the reductions in whole-cell current, the elementary main-state conductances of the mutants (alpha 1R271L, 64 pS; alpha 1R271Q, 14 pS) were lower than that of the wild-type receptor (86 pS). The decreased agonist affinities and chloride conductances of the mutants are likely to cause neural hyperexcitability of affected patients by impairing glycinergic inhibition. In addition, our data reveal that structural modifications of the ion-channel region can affect agonist binding to the glycine receptor. PMID:7925268

  14. Pyrido pyrimidinones as selective agonists of the high affinity niacin receptor GPR109A: optimization of in vitro activity.

    PubMed

    Peters, Jens-Uwe; Kühne, Holger; Dehmlow, Henrietta; Grether, Uwe; Conte, Aurelia; Hainzl, Dominik; Hertel, Cornelia; Kratochwil, Nicole A; Otteneder, Michael; Narquizian, Robert; Panousis, Constantinos G; Ricklin, Fabienne; Röver, Stephan

    2010-09-15

    Pyrido pyrimidinones are selective agonists of the human high affinity niacin receptor GPR109A (HM74A). They show no activity on the highly homologous low affinity receptor GPR109B (HM74). Starting from a high throughput screening hit the in vitro activity of the pyrido pyrimidinones was significantly improved providing lead compounds suitable for further optimization. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  15. The most effective influence of 17-(3-ethoxypropyl) substituent on the binding affinity and the agonistic activity in KNT-127 derivatives, δ opioid receptor agonists.

    PubMed

    Nemoto, Toru; Ida, Yoshihiro; Iihara, Yusuke; Nakajima, Ryo; Hirayama, Shigeto; Iwai, Takashi; Fujii, Hideaki; Nagase, Hiroshi

    2013-12-15

    We investigated the structure-activity relationship of KNT-127 (opioid δ agonist) derivatives with various 17-substituents which are different in length and size. The 17-substituent in KNT-127 derivatives exerted a great influence on the affinity and agonistic activity for the δ receptor. While the compounds with electron-donating 17-substituents showed higher affinities for the δ receptor than those with electron-withdrawing groups, KNT-127 derivatives with 17-fluoroalkyl groups (the high electron-withdrawing groups) showed high selectivities for the δ receptor among evaluated compounds. In addition, the basicity of nitrogen as well as the structure of the 17-N substituent such as the length and configuration at an asymmetric carbon atom contributed to agonist properties for the δ receptor. Thus, the analog with a 17-(3-ethoxypropyl) group showed the best selectively and potent agonistic activity for the δ receptor among KNT-127 derivatives. These findings should be useful for designing novel δ selective agonists.

  16. Structure-Based Understanding of Binding Affinity and Mode of Estrogen Receptor α Agonists and Antagonists

    PubMed Central

    Barron, Mace G.

    2017-01-01

    The flexible hydrophobic ligand binding pocket (LBP) of estrogen receptor α (ERα) allows the binding of a wide variety of endocrine disruptors. Upon ligand binding, the LBP reshapes around the contours of the ligand and stabilizes the complex by complementary hydrophobic interactions and specific hydrogen bonds with the ligand. Here we present a framework for quantitative analysis of the steric and electronic features of the human ERα-ligand complex using three dimensional (3D) protein-ligand interaction description combined with 3D-QSAR approach. An empirical hydrophobicity density field is applied to account for hydrophobic contacts of ligand within the LBP. The obtained 3D-QSAR model revealed that hydrophobic contacts primarily determine binding affinity and govern binding mode with hydrogen bonds. Several residues of the LBP appear to be quite flexible and adopt a spectrum of conformations in various ERα-ligand complexes, in particular His524. The 3D-QSAR was combined with molecular docking based on three receptor conformations to accommodate receptor flexibility. The model indicates that the dynamic character of the LBP allows accommodation and stable binding of structurally diverse ligands, and proper representation of the protein flexibility is critical for reasonable description of binding of the ligands. Our results provide a quantitative and mechanistic understanding of binding affinity and mode of ERα agonists and antagonists that may be applicable to other nuclear receptors. PMID:28061508

  17. Structural insights for the design of new PPARgamma partial agonists with high binding affinity and low transactivation activity

    NASA Astrophysics Data System (ADS)

    Guasch, Laura; Sala, Esther; Valls, Cristina; Blay, Mayte; Mulero, Miquel; Arola, Lluís; Pujadas, Gerard; Garcia-Vallvé, Santiago

    2011-08-01

    Peroxisome Proliferator-Activated Receptor γ (PPARγ) full agonists are molecules with powerful insulin-sensitizing action that are used as antidiabetic drugs. Unfortunately, these compounds also present various side effects. Recent results suggest that effective PPARγ agonists should show a low transactivation activity but a high binding affinity to inhibit phosphorylation at Ser273. We use several structure activity relationship studies of synthetic PPARγ agonists to explore the different binding features of full and partial PPARγ agonists with the aim of differentiating the features needed for binding and those needed for the transactivation activity of PPARγ. Our results suggest that effective partial agonists should have a hydrophobic moiety and an acceptor site with an appropriate conformation to interact with arm II and establish a hydrogen bond with Ser342 or an equivalent residue at arm III. Despite the fact that interactions with arm I increase the binding affinity, this region should be avoided in order to not increase the transactivation activity of potential PPARγ partial agonists.

  18. Galpha-subunits differentially alter the conformation and agonist affinity of kappa-opioid receptors.

    PubMed

    Yan, Feng; Mosier, Philip D; Westkaemper, Richard B; Roth, Bryan L

    2008-02-12

    Although ligand-induced conformational changes in G protein-coupled receptors (GPCRs) are well-documented, there is little direct evidence for G protein-induced changes in GPCR conformation. To investigate this possibility, the effects of overexpressing Galpha-subunits (Galpha16 or Galphai2) with the kappa-opioid receptor (KOR) were examined. The changes in KOR conformation were subequently examined via the substituted cysteine accessibility method (SCAM) in transmembrane domains 6 (TM6) and 7 (TM7) and extracellular loop 2 (EL2). Significant conformational changes were observed on TM7, the extracellular portion of TM6, and EL2. Seven SCAM-sensitive residues (S3107.33, F3147.37, and I3167.39 to Y3207.43) on TM7 presented a cluster pattern when the KOR was exposed to baseline amounts of G protein, and additional residues became sensitive upon overexpression of various G proteins. In TM7, S3117.34 and N3267.49 were found to be sensitive in Galpha16-overexpressed cells and Y3137.36, N3227.45, S3237.46, and L3297.52 in Galphai2-overexpressed cells. In addition, the degree of sensitivity for various TM7 residues was augmented, especially in Galphai2-overexpressed cells. A similar phenomenon was also observed for residues in TM6 and EL2. In addition to an enhanced sensitivity of certain residues, our findings also indicated that a slight rotation was predicted to occur in the upper part of TM7 upon G protein overexpression. These relatively modest conformational changes engendered by G protein overexpression had both profound and differential effects on the abilities of agonists to bind to KOR. These data are significant because they demonstrate that Galpha-subunits differentially modulate the conformation and agonist affinity of a prototypical GPCR.

  19. Synthesis and opioid receptor affinity of morphinan and benzomorphan derivatives: mixed kappa agonists and mu agonists/antagonists as potential pharmacotherapeutics for cocaine dependence.

    PubMed

    Neumeyer, J L; Bidlack, J M; Zong, R; Bakthavachalam, V; Gao, P; Cohen, D J; Negus, S S; Mello, N K

    2000-01-13

    This report concerns the synthesis and preliminary pharmacological evaluation of a novel series of kappa agonists related to the morphinan (-)-cyclorphan (3a) and the benzomorphan (-)-cyclazocine (2) as potential agents for the pharmacotherapy of cocaine abuse. Recent evidence suggests that agonists acting at kappa opioid receptors may modulate the activity of dopaminergic neurons and alter the neurochemical and behavioral effects of cocaine. We describe the synthesis and chemical characterization of a series of morphinans 3a-c, structural analogues of cyclorphan [(-)-3-hydroxy-N-cyclopropylmethylmorphinan S(+)-mandelate, 3a], the 10-ketomorphinans 4a,b, and the 8-ketobenzomorphan 1b. Binding experiments demonstrated that the cyclobutyl analogue 3b [(-)-3-hydroxy-N-cyclobutylmethylmorphinan S(+)-mandelate, 3b, MCL-101] of cyclorphan (3a) had a high affinity for mu, delta, and kappa opioid receptors in guinea pig brain membranes. Both 3a,b were approximately 2-fold more selective for the kappa receptor than for the mu receptor. However 3b (the cyclobutyl analogue) was 18-fold more selective for the kappa receptor in comparison to the delta receptor, while cyclorphan (3a) had only 4-fold greater affinity for the kappa receptor in comparison to the delta receptor. These findings were confirmed in the antinociceptive tests (tail-flick and acetic acid writhing) in mice, which demonstrated that cyclorphan (3a) produced antinociception that was mediated by the delta receptor while 3b did not produce agonist or antagonist effects at the delta receptor. Both 3a,b had comparable kappa agonist properties. 3a,b had opposing effects at the mu receptor: 3b was a mu agonist whereas 3a was a mu antagonist.

  20. Selective anxiolytics: are the actions related to partial "agonist" activity or a preferential affinity for benzodiazepine receptor subtypes?

    PubMed

    Gee, K W; Yamamura, H I

    1983-01-01

    Both pharmacological and biochemical evidence support the existence of BZ receptor subtypes. Determination of the molecular basis of BZ receptor heterogeneity requires additional research. The physiological significance of BZ receptor subtypes is not currently understood. One hypothesis presented to explain the unique pharmacological effects of CL 218872 suggests that CL 218872 has preferential affinity for a BZ receptor subtype (i.e., type I sites) that mediates the anxiolytic effects of the clinically active BZs. An alternative hypothesis has been proposed to account for these observations and is based upon the possibility that CL 218872 may act as a partial agonist at the BZ receptor. The partial agonist theory is supported by behavioral evidence and the relatively small differences in affinity of the BZ receptor subtypes discriminated by CL 218872 at physiological temperatures. In addition, in vivo binding studies suggest that occupancy of type II BZ receptor subtypes (i.e., those with low affinity for CL 218872) is necessary for CL 218872 to produce minimal anticonflict activity (4). Unlike certain other neurotransmitter systems, it is difficult to correlate the heterogeneous binding properties of BZ receptor ligands with their agonist/antagonist potential at BZ receptor. For example, CL 218872 discriminates BZ receptor subtypes and acts as an agonist at the BZ receptor. Beta-carbolines such as PCC also discriminate receptor subtypes, yet they act as antagonists at the BZ receptor. Compounding the complexity, neither the nature nor the existence of an endogenous ligand is known. So, the designation of agonist or antagonist effects is made on a purely functional basis.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Reconstitution of high affinity. cap alpha. /sub 2/ adrenergic agonist binding by fusion with a pertussis toxin substrate

    SciTech Connect

    Kim, M.H.; Neubig, R.R.

    1986-03-05

    High affinity ..cap alpha../sub 2/ adrenergic agonist binding is thought to occur via a coupling of the ..cap alpha../sub 2/ receptor with N/sub i/, the inhibitory guanyl nucleotide binding protein. Human platelet membranes pretreated at pH 11.5 exhibit a selective inactivation of agonist binding and N/sub i/. To further study the mechanism of agonist binding, alkali treated membranes (ATM) were mixed with membranes pretreated with 10 ..mu..M phenoxybenzamine to block ..cap alpha../sub 2/ receptors (POB-M). The combined membrane pellet was incubated in 50% polyethylene glycol (PEG) to promote membrane-membrane fusion and assayed for binding to the ..cap alpha../sub 2/ agonist (/sup 3/H)UK 14,304 (UK) and the antagonist (/sup 3/H) yohimbine. PEG treatment resulted in a 2-4 fold enhancement of UK binding whereas yohimbine binding was unchanged. No enhancement of UK binding was observed in the absence of PEG treatment. The reconstitution was dependent on the addition of POB-M. They found that a 1:1 ratio of POB-M:ATM was optimal. Reconstituted binding was inhibited by GppNHp. Fusion of rat C6 glioma cell membranes, which do not contain ..cap alpha../sub 2/ receptors, also enhanced agonist binding to ATM. Fusion of C6 membranes from cells treated with pertussis toxin did not enhance (/sup 3/H) UK binding. These data show that a pertussis toxin sensitive membrane component, possibly N/sub i/, can reconstitute high affinity ..cap alpha../sub 2/ agonist binding.

  2. A new therapeutic approach to erectile dysfunction: urotensin-II receptor high affinity agonist ligands.

    PubMed

    di Villa Bianca, Roberta d'Emmanuele; Mitidieri, Emma; Donnarumma, Erminia; Fusco, Ferdinando; Longo, Nicola; Rosa, Giuseppe De; Novellino, Ettore; Grieco, Paolo; Mirone, Vincenzo; Cirino, Giuseppe; Sorrentino, Raffaella

    2015-01-01

    Urotensin-II (U-II) is a cyclic peptide that acts through a G protein-coupled receptor (urotensin-II receptor [UTR]) mainly involved in cardiovascular function in humans. The urotensinergic system is also implicated in the urogenital tract. Indeed, U-II relaxes human corpus cavernosum strips and causes an increase in intracavernous pressure (ICP) in rats. In light of this, the U-II/UTR pathway can be considered a new target for the treatment of erectile dysfunction. On this hypothesis, herein we report on two new UTR high affinity-agonists, P5U (H-Asp-c[Pen-Phe-Trp-Lys-Tyr-Cys]-Val-OH) and UPG84(H-Asp-c[Pen-Phe-DTrp-Orn-(pNH 2 ) Phe-Cys]-Val-OH). The effects of P5U and UPG84 were each compared separately with U-II by monitoring the ICP in anesthetized rats. Intracavernous injection of U-II (0.03-1 nmol), P5U (0.03-1 nmol) or UPG84 (0.03-1 nmol) caused an increase in ICP. P5U, in particular, elicited a significant increase in ICP as compared to U-II. The observed effect by using P5U at a dose of 0.1 nmol per rat was comparable to the effect elicited by U-II at a dose of 0.3 nmol. Moreover, UPG84 at the lowest dose (0.03 nmol) showed an effect similar to the highest dose of U-II (1 nmol). Furthermore, UPG84 was found to be more effective than P5U. Indeed, while the lowest dose of P5U (0.03 nmol) did not affect the ICP, UPG84, at the same dose, induced a prominent penile erection in rat. These compounds did not modify the blood pressure, which indicates a good safety profile. In conclusion, UPG84 and P5U may open new perspectives for the management of erectile dysfunction.

  3. Assembly of high-affinity insulin receptor agonists and antagonists from peptide building blocks

    NASA Astrophysics Data System (ADS)

    Schäffer, Lauge; Brissette, Renee E.; Spetzler, Jane C.; Pillutla, Renuka C.; Østergaard, Søren; Lennick, Michael; Brandt, Jakob; Fletcher, Paul W.; Danielsen, Gillian M.; Hsiao, Ku-Chuan; Andersen, Asser S.; Dedova, Olga; Ribel, Ulla; Hoeg-Jensen, Thomas; Hertz Hansen, Per; Blume, Arthur J.; Markussen, Jan; Goldstein, Neil I.

    2003-04-01

    Insulin is thought to elicit its effects by crosslinking the two extracellular -subunits of its receptor, thereby inducing a conformational change in the receptor, which activates the intracellular tyrosine kinase signaling cascade. Previously we identified a series of peptides binding to two discrete hotspots on the insulin receptor. Here we show that covalent linkage of such peptides into homodimers or heterodimers results in insulin agonists or antagonists, depending on how the peptides are linked. An optimized agonist has been shown, both in vitro and in vivo, to have a potency close to that of insulin itself. The ability to construct such peptide derivatives may offer a path for developing agonists or antagonists for treatment of a wide variety of diseases.

  4. Nicotinic alpha5 subunit deletion locally reduces high-affinity agonist activation without altering nicotinic receptor numbers.

    PubMed

    Brown, Robert W B; Collins, Allan C; Lindstrom, Jon M; Whiteaker, Paul

    2007-10-01

    Neuronal nicotinic acetylcholine receptor subunit alpha5 mRNA is widely expressed in the CNS. An alpha5 gene polymorphism has been implicated in behavioral differences between mouse strains, and alpha5-null mutation induces profound changes in mouse acute responses to nicotine. In this study, we have examined the distribution and prevalence of alpha5* nicotinic acetylcholine receptor in mouse brain, and quantified the effects of alpha5-null mutation on pre-synaptic nicotinic acetylcholine receptor function (measured using synaptosomal (86)Rb(+) efflux) and overall [(125)I]epibatidine binding site expression. alpha5* nicotinic acetylcholine receptor expression was found in nine of fifteen regions examined, although < 20% of the total nicotinic acetylcholine receptor population in any region contained alpha5. Deletion of the alpha5 subunit gene resulted in localized loss of function (thalamus, striatum), which was itself confined to the DHbetaE-sensitive receptor population. No changes in receptor expression were seen. Consequently, functional changes must occur as a result of altered function per unit of receptor. The selective depletion of high agonist activation affinity sites results in overall nicotinic function being reduced, and increases the overall agonist activation affinity. Together, these results describe the receptor-level changes underlying altered behavioral responses to nicotine in nicotinic acetylcholine receptor alpha5 subunit-null mutants.

  5. Pharmacological characterization of F-180: a selective human V1a vasopressin receptor agonist of high affinity

    PubMed Central

    Andrés, Miriam; Trueba, Miguel; Guillon, Gilles

    2002-01-01

    The pharmacological properties of F-180, a vasopressin (VP) structural analogue, were determined on CHO cells expressing the different human vasopressin and oxytocin (OT) receptor subtypes. Binding experiments revealed that F-180 exhibited a high affinity for the human V1a receptor subtype (Ki=11 nM) and was selective for this receptor subtype. Functional studies performed on CHO cells expressing human V1a receptors indicate that similarly to AVP, F-180 can stimulate the accumulation of inositol phosphate. The activation constant (Kact) for both F-180 and AVP was 1.7 nM. F-180 was also an agonist for the human V2 and V1b receptor subtypes and an antagonist for the human OT receptor. Since marked species pharmacological differences for vasopressin receptors have been described, we studied the properties of F-180 on various mammalian species. F-180 showed high affinity and good selectivity for human and bovine V1a receptors, but weak affinity and non selective properties for rat V1a receptors. To assess the functional properties of F-180 on a native biological model, we performed studies on primary cultures of cells from bovine zona fasciculata (ZF). As AVP, F-180 stimulated inositol phosphate accumulation and cortisol secretion with similar efficiency. In conclusion, we demonstrate that F-180 is the first selective V1a agonist described for human and bovine vasopressin receptors. Therefore F-180 can be used as a powerful pharmacological tool to characterize the actions of vasopressin that are mediated by V1a receptor subtypes. PMID:11934825

  6. Identification of Eupatilin from Artemisia argyi as a Selective PPARα Agonist Using Affinity Selection Ultrafiltration LC-MS.

    PubMed

    Choi, Yongsoo; Jung, Yujung; Kim, Su-Nam

    2015-07-28

    Peroxisome proliferator-activated receptors (PPARs) are key nuclear receptors and therapeutic targets for the treatment of metabolic diseases through the regulation of insulin resistance, diabetes, and dyslipidemia. Although a few drugs that target PPARs have been approved, more diverse and novel PPAR ligands are necessary to improve the safety and efficacy of available drugs. To expedite the search for new natural agonists of PPARs, we developed a screening assay based on ultrafiltration liquid chromatography-mass spectrometry (LC-MS) that is compatible with complex samples such as dietary foods or botanical extracts. The known PPARα and/or PPARγ ligands resveratrol and rosiglitazone were used as positive controls to validate the developed method. When applied to the screening of an Artemisia argyi extract, eupatilin was identified as a selective PPARα ligand. A PPAR competitive binding assay based on FRET detection also confirmed eupatilin as a selective PPARα agonist exhibiting a binding affinity of 1.18 μM (IC50). Furthermore, eupatilin activation of the transcriptional activity of PPARα was confirmed using a cell-based transactivation assay. Thus, ultrafiltration LC-MS is a suitable assay for the identification of PPAR ligands in complex matrixes such as extracts of dietary foods and botanicals.

  7. Detection of multiple H3 receptor affinity states utilizing [3H]A-349821, a novel, selective, non-imidazole histamine H3 receptor inverse agonist radioligand.

    PubMed

    Witte, David G; Yao, Betty Bei; Miller, Thomas R; Carr, Tracy L; Cassar, Steven; Sharma, Rahul; Faghih, Ramin; Surber, Bruce W; Esbenshade, Timothy A; Hancock, Arthur A; Krueger, Kathleen M

    2006-07-01

    1. A-349821 is a selective histamine H3 receptor antagonist/inverse agonist. Herein, binding of the novel non-imidazole H3 receptor radioligand [3H]A-349821 to membranes expressing native or recombinant H3 receptors from rat or human sources was characterized and compared with the binding of the agonist [3H]N--methylhistamine ([3H]NMH). 2. [3H]A-349821 bound with high affinity and specificity to an apparent single class of saturable sites and recognized human H3 receptors with 10-fold higher affinity compared to rat H3 receptors. [3H]A-349821 detected larger populations of receptors compared to [3H]NMH. 3. Displacement of [3H]A-349821 binding by H3 receptor antagonists/inverse agonists was monophasic, suggesting recognition of a single binding site, while that of H3 receptor agonists was biphasic, suggesting recognition of both high- and low-affinity H3 receptor sites. 4. pKi values of high-affinity binding sites for H3 receptor competitors utilizing [3H]A-349821 were highly correlated with pKi values obtained with [3H]NalphaMH, consistent with labelling of H3 receptors by [3H]A-349821. 5. Unlike assays utilizing [3H]NMH, addition of GDP had no effect on saturation parameters measured with [3H]A-349821, while displacement of [3H]A-349821 binding by the H3 receptor agonist histamine was sensitive to GDP. 6. In conclusion, [3H]A-349821 labels interconvertible high- and low-affinity states of the H3 receptor, and displays improved selectivity over imidazole-containing H3 receptor antagonist radioligands. [3H]A-349821 competition studies showed significant differences in the proportions and potencies of high- and low-affinity sites across species, providing new information about the fundamental pharmacological nature of H3 receptors.

  8. CB2 cannabinoid receptor agonist enantiomers HU-433 and HU-308: An inverse relationship between binding affinity and biological potency

    PubMed Central

    Smoum, Reem; Baraghithy, Saja; Chourasia, Mukesh; Breuer, Aviva; Mussai, Naama; Attar-Namdar, Malka; Kogan, Natalya M.; Raphael, Bitya; Bolognini, Daniele; Cascio, Maria G.; Marini, Pietro; Pertwee, Roger G.; Shurki, Avital; Mechoulam, Raphael; Bab, Itai

    2015-01-01

    Activation of the CB2 receptor is apparently an endogenous protective mechanism. Thus, it restrains inflammation and protects the skeleton against age-related bone loss. However, the endogenous cannabinoids, as well as Δ9-tetrahydrocannabinol, the main plant psychoactive constituent, activate both cannabinoid receptors, CB1 and CB2. HU-308 was among the first synthetic, selective CB2 agonists. HU-308 is antiosteoporotic and antiinflammatory. Here we show that the HU-308 enantiomer, designated HU-433, is 3–4 orders of magnitude more potent in osteoblast proliferation and osteoclast differentiation culture systems, as well as in mouse models, for the rescue of ovariectomy-induced bone loss and ear inflammation. HU-433 retains the HU-308 specificity for CB2, as shown by its failure to bind to the CB1 cannabinoid receptor, and has no activity in CB2-deficient cells and animals. Surprisingly, the CB2 binding affinity of HU-433 in terms of [3H]CP55,940 displacement and its effect on [35S]GTPγS accumulation is substantially lower compared with HU-308. A molecular-modeling analysis suggests that HU-433 and -308 have two different binding conformations within CB2, with one of them possibly responsible for the affinity difference, involving [35S]GTPγS and cAMP synthesis. Hence, different ligands may have different orientations relative to the same binding site. This situation questions the usefulness of universal radioligands for comparative binding studies. Moreover, orientation-targeted ligands have promising potential for the pharmacological activation of distinct processes. PMID:26124120

  9. CB2 cannabinoid receptor agonist enantiomers HU-433 and HU-308: An inverse relationship between binding affinity and biological potency.

    PubMed

    Smoum, Reem; Baraghithy, Saja; Chourasia, Mukesh; Breuer, Aviva; Mussai, Naama; Attar-Namdar, Malka; Kogan, Natalya M; Raphael, Bitya; Bolognini, Daniele; Cascio, Maria G; Marini, Pietro; Pertwee, Roger G; Shurki, Avital; Mechoulam, Raphael; Bab, Itai

    2015-07-14

    Activation of the CB2 receptor is apparently an endogenous protective mechanism. Thus, it restrains inflammation and protects the skeleton against age-related bone loss. However, the endogenous cannabinoids, as well as Δ(9)-tetrahydrocannabinol, the main plant psychoactive constituent, activate both cannabinoid receptors, CB1 and CB2. HU-308 was among the first synthetic, selective CB2 agonists. HU-308 is antiosteoporotic and antiinflammatory. Here we show that the HU-308 enantiomer, designated HU-433, is 3-4 orders of magnitude more potent in osteoblast proliferation and osteoclast differentiation culture systems, as well as in mouse models, for the rescue of ovariectomy-induced bone loss and ear inflammation. HU-433 retains the HU-308 specificity for CB2, as shown by its failure to bind to the CB1 cannabinoid receptor, and has no activity in CB2-deficient cells and animals. Surprisingly, the CB2 binding affinity of HU-433 in terms of [(3)H]CP55,940 displacement and its effect on [(35)S]GTPγS accumulation is substantially lower compared with HU-308. A molecular-modeling analysis suggests that HU-433 and -308 have two different binding conformations within CB2, with one of them possibly responsible for the affinity difference, involving [(35)S]GTPγS and cAMP synthesis. Hence, different ligands may have different orientations relative to the same binding site. This situation questions the usefulness of universal radioligands for comparative binding studies. Moreover, orientation-targeted ligands have promising potential for the pharmacological activation of distinct processes.

  10. X-ray Crystal Structure of the Novel Enhanced-Affinity Glucocorticoid Agonist Fluticasone Furoate in the Glucocorticoid Receptor−Ligand Binding Domain

    SciTech Connect

    Biggadike, Keith; Bledsoe, Randy K.; Hassell, Anne M.; Kirk, Barrie E.; McLay, Iain M.; Shewchuk, Lisa M.; Stewart, Eugene L.

    2008-07-08

    An X-ray crystal structure is reported for the novel enhanced-affinity glucocorticoid agonist fluticasone furoate (FF) in the ligand binding domain of the glucocorticoid receptor. Comparison of this structure with those of dexamethasone and fluticasone propionate shows the 17{alpha} furoate ester to occupy more fully the lipophilic 17{alpha} pocket on the receptor, which may account for the enhanced glucocorticoid receptor binding of FF.

  11. Synthesis and characterization of a novel series of agonist compounds as potential radiopharmaceuticals for imaging dopamine D₂/₃ receptors in their high-affinity state.

    PubMed

    van Wieringen, Jan-Peter; Shalgunov, Vladimir; Janssen, Henk M; Fransen, P Michel; Janssen, Anton G M; Michel, Martin C; Booij, Jan; Elsinga, Philip H

    2014-01-23

    Imaging of dopamine D2/3 receptors (D2/3R) can shed light on the nature of several neuropsychiatric disorders in which dysregulation of D2/3R signaling is involved. Agonist D2/3 tracers for PET/SPECT imaging are considered to be superior to antagonists because they are more sensitive to dopamine concentrations and may selectively label the high-affinity receptor state. Carbon-11-labeled D2/3R agonists have been developed, but these short-lived tracers can be used only in centers with a cyclotron. Here, we report the development of a series of novel D2R agonist compounds based on the 2-aminomethylchromane (AMC) scaffold that provides ample opportunities for the introduction of longer-lived [(18)F] or [(123)I]. Binding experiments showed that several AMC compounds have a high affinity and selectivity for D2/3R and act as agonists. Two fluorine-containing compounds were [(18)F]-labeled, and both displayed specific binding to striatal D2/3R in rat brain slices in vitro. These findings encourage further in vivo evaluations.

  12. The predicted 3D structure of the human D2 dopamine receptor and the binding site and binding affinities for agonists and antagonists

    NASA Astrophysics Data System (ADS)

    Kalani, M. Yashar S.; Vaidehi, Nagarajan; Hall, Spencer E.; Trabanino, Rene J.; Freddolino, Peter L.; Kalani, Maziyar A.; Floriano, Wely B.; Tak Kam, Victor Wai; Goddard, William A., III

    2004-03-01

    Dopamine neurotransmitter and its receptors play a critical role in the cell signaling process responsible for information transfer in neurons functioning in the nervous system. Development of improved therapeutics for such disorders as Parkinson's disease and schizophrenia would be significantly enhanced with the availability of the 3D structure for the dopamine receptors and of the binding site for dopamine and other agonists and antagonists. We report here the 3D structure of the long isoform of the human D2 dopamine receptor, predicted from primary sequence using first-principles theoretical and computational techniques (i.e., we did not use bioinformatic or experimental 3D structural information in predicting structures). The predicted 3D structure is validated by comparison of the predicted binding site and the relative binding affinities of dopamine, three known dopamine agonists (antiparkinsonian), and seven known antagonists (antipsychotic) in the D2 receptor to experimentally determined values. These structures correctly predict the critical residues for binding dopamine and several antagonists, identified by mutation studies, and give relative binding affinities that correlate well with experiments. The predicted binding site for dopamine and agonists is located between transmembrane (TM) helices 3, 4, 5, and 6, whereas the best antagonists bind to a site involving TM helices 2, 3, 4, 6, and 7 with minimal contacts to TM helix 5. We identify characteristic differences between the binding sites of agonists and antagonists.

  13. GW0742, a high affinity PPAR-β/δ agonist reduces lung inflammation induced by bleomycin instillation in mice.

    PubMed

    Galuppo, M; Di Paola, R; Mazzon, E; Esposito, E; Paterniti, I; Kapoor, A; Thiemermann, C; Cuzzocrea, S

    2010-01-01

    Peroxisome Proliferator-Activated Receptor β/δ belongs to a family of ligand-activated transcription factors. Recent data have clarified its metabolic roles and enhanced the potential role of this receptor as a pharmacological target. Moreover, although its role in acute inflammation remains unclear, being the nuclear receptor PPAR β/δ widely expressed in many tissues, including the vascular endothelium, we assume that the infiltration of PMNs into tissues, a prominent feature in inflammation, may also be related to PPAR β/δ. Mice subjected to intratracheal instillation of bleomycin (BLEO, 1 mg/kg), a glycopeptide produced by the bacterium Streptomyces verticillus, develop lung inflammation and injury characterized by a significant neutrophil infiltration and tissue oedema. Therefore, the aim of this study is to investigate the effects of GW0742, a synthetic high affinity PPAR β/δ agonist, and its possible role in preventing the advance of inflammatory and apoptotic processes induced by bleomycin, that long-term leads to the appearance of pulmonary fibrosis. Our data showed that GW0742-treatment (0.3 mg/Kg, 10 percent DMSO, i.p.) has therapeutic effects on pulmonary damage, decreasing many inflammatory and apoptotic parameters detected by measurement of: 1) cytokine production; 2) leukocyte accumulation, indirectly measured as decrease of myeloperoxidase (MPO) activity; 3) IkBα degradation and NF-kB nuclear translocation; 4) ERK phosphorylation; 5) stress oxidative by NO formation due to iNOS expression; 6) nitrotyrosine and PAR localization; 7) the degree of apoptosis, evaluated by Bax and Bcl-2 balance, FAS ligand expression and TUNEL staining. Taken together, our results clearly show that GW0742 reduces the lung injury and inflammation due to the intratracheal BLEO--instillation in mice.

  14. Iodination of vasopressin analogues with agonistic and antagonistic properties: effects on biological properties and affinity for vascular and renal vasopressin receptors.

    PubMed

    Jard, S; Lombard, C; Seyer, R; Aumelas, A; Manning, M; Sawyer, W H

    1987-09-01

    Twelve L- and D-tyrosine-containing vasopressin analogues were prepared in their mono- and diiodinated forms. These include six arginine vasopressin (AVP) vascular (V1) type antagonists/antidiuretic (V2) agonists, four V1/V2 antagonists, and two V1/V2 agonists, one of which is AVP itself. Ten peptides were iodinated on the tyrosyl residue in position 2; two were iodinated on a tyrosyl amide residue replacing the glycyl amide residue at position 9. All peptides were tested both for their biological activities in vivo (rat vasopressor and antidiuretic tests) and for their ability to bind to vasopressin receptors of the V1 (vascular) and V2 (renal) types from rat liver and rat kidney membranes, respectively. It is shown that monoiodination of the tyrosyl residue in the vasopressin analogues that were tested either preserves or reduces to a highly variable extent the in vivo and in vitro biological activities of these analogues. In most cases diiodonitation resulted in a marked decrease in biological activity. The effects of iodination on the affinity of vasopressin analogues for hepatic V1 receptors and renal V2 receptors were more related to the affinity of the noniodinated peptide for these receptors than to the biological properties (antagonist versus agonist) of the tested analogues, the nature (L versus D) of the iodinated tyrosyl residue, or the position (2 versus 9) at which this residue was introduced. The loss of affinity due to iodination was usually more pronounced for peptides exhibiting high affinity for vasopressin receptors. However, we show that among the monoiodinated peptides some (especially monoiodinated [2-D-Tyrosine]-AVP) retained enough affinity for vasopressin binding sites to suggest that their radioiodinated conterparts would be promising labeled ligands for use in studies in vasopressin receptors.

  15. Axonal transport of muscarinic cholinergic receptors in rat vagus nerve: high and low affinity agonist receptors move in opposite directions and differ in nucleotide sensitivity

    SciTech Connect

    Zarbin, M.A.; Wamsley, J.K.; Kuhar, M.J.

    1982-07-01

    The presence and transport of muscarinic cholinergic binding sites have been detected in the rat vagus nerve. These binding sites accumulate both proximal and distal to ligatures in a time-dependent manner. The results of double ligature and colchicine experiments are compatible with the notion that the anterogradely transported binding sites move by fast transport. Most of the sites accumulating proximal to ligatures bind the agonist carbachol with high affinity, while most of the sites accumulating distally bind carbachol with a low affinity. Also, the receptors transported in the anterograde direction are affected by a guanine nucleotide analogue (GppNHp), while those transported in the retrograde direction are less, or not, affected. The bulk of the sites along the unligated nerve trunk bind carbachol with a low affinity and are less sensitive to GppNHp modulation than the anterogradely transported sites. These results suggest that some receptors in the vagus may undergo axonal transport in association with regulatory proteins and that receptor molecules undergo changes in their binding and regulatory properties during their life cycle. These data also support the notion that the high and low affinity agonist form of the muscarinic receptor represent different modulated forms of a single receptor molecule.

  16. Mixed kappa agonists and mu agonists/antagonists as potential pharmacotherapeutics for cocaine abuse: synthesis and opioid receptor binding affinity of N-substituted derivatives of morphinan.

    PubMed

    Neumeyer, J L; Gu, X H; van Vliet, L A; DeNunzio, N J; Rusovici, D E; Cohen, D J; Negus, S S; Mello, N K; Bidlack, J M

    2001-10-22

    A series of new N-substituted derivatives of morphinan was synthesized and their binding affinity for the three opioid receptors (mu, delta, and kappa) was determined. A paradoxical effect of N-propargyl (MCL-117) and N-(3-iodoprop-(2E)-enyl) (MCL-118) substituents on the binding affinities for the mu and kappa opioid receptors was observed. All of these novel derivatives showed a preference for the mu and kappa versus delta binding.

  17. Human metabolites of synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as potent agonists at cannabinoid type-2 receptors

    SciTech Connect

    Rajasekaran, Maheswari; Brents, Lisa K.; Franks, Lirit N.; Moran, Jeffery H.; Prather, Paul L.

    2013-06-01

    K2 or Spice is an emerging drug of abuse that contains synthetic cannabinoids, including JWH-018 and JWH-073. Recent reports indicate that monohydroxylated metabolites of JWH-018 and JWH-073 retain high affinity and activity at cannabinoid type-1 receptors (CB{sub 1}Rs), potentially contributing to the enhanced toxicity of K2 compared to marijuana. Since the parent compounds also bind to cannabinoid type-2 receptors (CB{sub 2}Rs), this study investigated the affinity and intrinsic activity of JWH-018, JWH-073 and several monohydroxylated metabolites at human CB{sub 2}Rs (hCB{sub 2}Rs). The affinity of cannabinoids for hCB{sub 2}Rs was determined by competition binding studies employing CHO-hCB{sub 2} membranes. Intrinsic activity of compounds was assessed by G-protein activation and adenylyl cyclase (AC)-inhibition in CHO-hCB{sub 2} cells. JWH-073, JWH-018 and several of their human metabolites exhibit nanomolar affinity and act as potent agonists at hCB{sub 2}Rs. Furthermore, a major omega hydroxyl metabolite of JWH-073 (JWH-073-M5) binds to CB{sub 2}Rs with 10-fold less affinity than the parent molecule, but unexpectedly, is equipotent in regulating AC-activity when compared to the parent molecule. Finally, when compared to CP-55,940 and Δ{sup 9}-tetrahydrocannabinol (Δ{sup 9}-THC), JWH-018, JWH-018-M5 and JWH-073-M5 require significantly less CB{sub 2}R occupancy to produce similar levels of AC-inhibition, indicating that these compounds may more efficiently couple CB{sub 2}Rs to AC than the well characterized cannabinoid agonists examined. These results indicate that JWH-018, JWH-073 and several major human metabolites of these compounds exhibit high affinity and demonstrate distinctive signaling properties at CB{sub 2}Rs. Therefore, future studies examining pharmacological and toxicological properties of synthetic cannabinoids present in K2 products should consider potential actions of these drugs at both CB{sub 1} and CB{sub 2}Rs. - Highlights: • JWH-018

  18. The dietary polyphenols trans-resveratrol and curcumin selectively bind human CB1 cannabinoid receptors with nanomolar affinities and function as antagonists/inverse agonists.

    PubMed

    Seely, Kathryn A; Levi, Mark S; Prather, Paul L

    2009-07-01

    The dietary polyphenols trans-resveratrol [5-[(1E)-2-(4-hydroxyphenyl)ethenyl]-1,3-benzenediol; found in red wine] and curcumin [1,7-bis(4-hydroxy-3-methoxyphenyl)-1E,6E-heptadiene-3,5-dione] (found in curry powders) exert anti-inflammatory and antioxidant effects via poorly defined mechanisms. It is interesting that cannabinoids, derived from the marijuana plant (Cannabis sativa), produce similar protective effects via CB1 and CB2 receptors. We examined whether trans-resveratrol, curcumin, and ASC-J9 [1,7-bis(3,4-dimethoxyphenyl)-5-hydroxy-1E,4E,6E-heptatriene-3-one] (a curcumin analog) act as ligands at cannabinoid receptors. All three bind to human (h) CB1 and mouse CB1 receptors with nanomolar affinities, displaying only micromolar affinities for hCB2 receptors. Characteristic of inverse agonists, the polyphenols inhibit basal G-protein activity in membranes prepared from Chinese hamster ovary (CHO)-hCB1 cells or mouse brain that is reversed by a neutral CB1 antagonist. Furthermore, they competitively antagonize G-protein activation produced by a CB1 agonist. In intact CHO-hCB1 cells, the polyphenols act as neutral antagonists, producing no effect when tested alone, whereas competitively antagonizing CB1 agonist mediated inhibition of adenylyl cyclase activity. Confirming their neutral antagonist profile in cells, the polyphenols similarly attenuate stimulation of adenylyl cyclase activity produced by a CB1 inverse agonist. In mice, the polyphenols dose-dependently reverse acute hypothermia produced by a CB1 agonist. Upon repeated administration, the polyphenols also reduce body weight in mice similar to that produced by a CB1 antagonist/inverse agonist. Finally, trans-resveratrol and curcumin share common structural motifs with other known cannabinoid receptor ligands. Collectively, we suggest that trans-resveratrol and curcumin act as antagonists/inverse agonists at CB1 receptors at dietary relevant concentrations. Therefore, these polyphenols and their

  19. Further Optimization and Evaluation of Bioavailable, Mixed-Efficacy µ-Opioid Receptor (MOR) Agonists/δ-Opioid Receptor (DOR) Antagonists: Balancing MOR and DOR Affinities

    PubMed Central

    Harland, Aubrie A.; Yeomans, Larisa; Griggs, Nicholas W.; Anand, Jessica P.; Pogozheva, Irina D.; Jutkiewicz, Emily M.; Traynor, John R.; Mosberg, Henry I.

    2016-01-01

    In a previously described peptidomimetic series, we reported the development of bifunctional µ-opioid receptor (MOR) agonist and δ-opioid receptor (DOR) antagonist ligands with a lead compound that produced antinociception for 1 h after intraperitoneal administration in mice. In this paper, we expand on our original series by presenting two modifications, both of which were designed with the following objectives: 1) probing bioavailability and improving metabolic stability, 2) balancing affinities between MOR and DOR while reducing affinity and efficacy at the Κ-opioid receptor (KOR), and 3) improving in vivo efficacy. Here we establish that through N-acetylation of our original peptidomimetic series, we are able to improve DOR affinity and increase selectivity relative to KOR while maintaining the desired MOR agonist/DOR antagonist profile. From initial in vivo studies, one compound (14a) was found to produce dose-dependent antinociception after peripheral administration with an improved duration of action of longer than 3 h. PMID:26524472

  20. Estimation of the receptor-state affinity constants of ligands in functional studies using wild type and constitutively active mutant receptors: Implications for estimation of agonist bias.

    PubMed

    Ehlert, Frederick J; Stein, Richard S L

    We describe a method for estimating the affinities of ligands for active and inactive states of a G protein-coupled receptor (GPCR). Our protocol involves measuring agonist-induced signaling responses of a wild type GPCR and a constitutively active mutant of it under control conditions and after partial receptor inactivation or reduced receptor expression. Our subsequent analysis is based on the assumption that the activating mutation increases receptor isomerization into the active state without affecting the affinities of ligands for receptor states. A means of confirming this assumption is provided. Global nonlinear regression analysis yields estimates of 1) the active (Kact) and inactive (Kinact) receptor-state affinity constants, 2) the isomerization constant of the unoccupied receptor (Kq-obs), and 3) the sensitivity constant of the signaling pathway (KE-obs). The latter two parameters define the output response of the receptor, and hence, their ratio (Kq-obs/KE) is a useful measure of system bias. If the cellular system is reasonably stable and the Kq-obs and KE-obs values of the signaling pathway are known, the Kact and Kinact values of additional agonists can be estimated in subsequent experiments on cells expressing the wild type receptor. We validated our method through computer simulation, an analytical proof, and analysis of previously published data. Our approach provides 1) a more meaningful analysis of structure-activity relationships, 2) a means of validating in silico docking experiments on active and inactive receptor structures and 3) an absolute, in contrast to relative, measure of agonist bias.

  1. Synthesis, Biodistribution and In vitro Evaluation of Brain Permeable High Affinity Type 2 Cannabinoid Receptor Agonists [11C]MA2 and [18F]MA3

    PubMed Central

    Ahamed, Muneer; van Veghel, Daisy; Ullmer, Christoph; Van Laere, Koen; Verbruggen, Alfons; Bormans, Guy M.

    2016-01-01

    The type 2 cannabinoid receptor (CB2) is a member of the endocannabinoid system and is known for its important role in (neuro)inflammation. A PET-imaging agent that allows in vivo visualization of CB2 expression may thus allow quantification of neuroinflammation. In this paper, we report the synthesis, radiosynthesis, biodistribution and in vitro evaluation of a carbon-11 ([11C]MA2) and a fluorine-18 ([18F]MA3) labeled analog of a highly potent N-arylamide oxadiazole CB2 agonist (EC50 = 0.015 nM). MA2 and MA3 behaved as potent CB2 agonist (EC50: 3 nM and 0.1 nM, respectively) and their in vitro binding affinity for hCB2 was found to be 87 nM and 0.8 nM, respectively. Also MA3 (substituted with a fluoro ethyl group) was found to have higher binding affinity and EC50 values when compared to the originally reported trifluoromethyl analog 12. [11C]MA2 and [18F]MA3 were successfully synthesized with good radiochemical yield, high radiochemical purity and high specific activity. In mice, both tracers were efficiently cleared from blood and all major organs by the hepatobiliary pathway and importantly these compounds showed high brain uptake. In conclusion, [11C]MA2 and [18F]MA3 are shown to be high potent CB2 agonists with good brain uptake, these favorable characteristics makes them potential PET probes for in vivo imaging of brain CB2 receptors. However, in view of its higher affinity and selectivity, further detailed evaluation of MA3 as a PET tracer for CB2 is warranted. PMID:27713686

  2. Human metabolites of synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as potent agonists at cannabinoid type-2 receptors.

    PubMed

    Rajasekaran, Maheswari; Brents, Lisa K; Franks, Lirit N; Moran, Jeffery H; Prather, Paul L

    2013-06-01

    K2 or Spice is an emerging drug of abuse that contains synthetic cannabinoids, including JWH-018 and JWH-073. Recent reports indicate that monohydroxylated metabolites of JWH-018 and JWH-073 retain high affinity and activity at cannabinoid type-1 receptors (CB1Rs), potentially contributing to the enhanced toxicity of K2 compared to marijuana. Since the parent compounds also bind to cannabinoid type-2 receptors (CB2Rs), this study investigated the affinity and intrinsic activity of JWH-018, JWH-073 and several monohydroxylated metabolites at human CB2Rs (hCB2Rs). The affinity of cannabinoids for hCB2Rs was determined by competition binding studies employing CHO-hCB2 membranes. Intrinsic activity of compounds was assessed by G-protein activation and adenylyl cyclase (AC)-inhibition in CHO-hCB2 cells. JWH-073, JWH-018 and several of their human metabolites exhibit nanomolar affinity and act as potent agonists at hCB2Rs. Furthermore, a major omega hydroxyl metabolite of JWH-073 (JWH-073-M5) binds to CB2Rs with 10-fold less affinity than the parent molecule, but unexpectedly, is equipotent in regulating AC-activity when compared to the parent molecule. Finally, when compared to CP-55,940 and Δ(9)-tetrahydrocannabinol (Δ(9)-THC), JWH-018, JWH-018-M5 and JWH-073-M5 require significantly less CB2R occupancy to produce similar levels of AC-inhibition, indicating that these compounds may more efficiently couple CB2Rs to AC than the well characterized cannabinoid agonists examined. These results indicate that JWH-018, JWH-073 and several major human metabolites of these compounds exhibit high affinity and demonstrate distinctive signaling properties at CB2Rs. Therefore, future studies examining pharmacological and toxicological properties of synthetic cannabinoids present in K2 products should consider potential actions of these drugs at both CB1 and CB2Rs. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Structure-affinity relationships and pharmacological characterization of new alkyl-resorcinol cannabinoid receptor ligands: Identification of a dual cannabinoid receptor/TRPA1 channel agonist.

    PubMed

    Brizzi, Antonella; Aiello, Francesca; Marini, Pietro; Cascio, Maria Grazia; Corelli, Federico; Brizzi, Vittorio; De Petrocellis, Luciano; Ligresti, Alessia; Luongo, Livio; Lamponi, Stefania; Maione, Sabatino; Pertwee, Roger G; Di Marzo, Vincenzo

    2014-09-01

    In our ongoing program aimed at deeply investigating the endocannabinoid system (ES), a set of new alkyl-resorcinol derivatives was prepared focusing on the nature and the importance of the carboxamide functionality. Binding studies on CB1 and CB2 receptors, monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH) showed that some of the newly developed compounds behaved as very potent cannabinoid receptor ligands (Ki in the nanomolar range) while, however, none of them was able to inhibit MAGL and/or FAAH. Derivative 11 was a potent CB1 and CB2 ligand, with Ki values similar to WIN 55,212, exhibiting a CB1 and CB2 agonist profile in vitro. In the formalin test of peripheral acute and inflammatory pain in mice, this compound showed a weak and delayed antinociceptive effect against the second phase of the nocifensive response, exhibiting, interestingly, a quite potent transient receptor potential ankyrin type-1 (TRPA1) channel agonist activity. Moreover, derivative 14, characterized by lower affinity but higher CB2 selectivity than 11, proved to behave as a weak CB2 competitive inverse agonist.

  4. Molecular cloning and pharmacological characterization of monkey MT1 and MT2 melatonin receptors showing high affinity for the agonist ramelteon.

    PubMed

    Nishiyama, Keiji; Shintani, Yasushi; Hirai, Keisuke; Yoshikubo, Shin-ichi

    2009-09-01

    Melatonin receptor agonists such as melatonin and ramelteon [(S)-N-[2-(1,6,7,8-tetrahydro-2H-indeno-[5,4-b]furan-8-yl)ethyl]-propionamide; TAK-375] have sleep-promoting effects in humans. In preclinical models, these effects are more similar to those observed in monkeys than in other species. However, in contrast to the human melatonin receptors, the pharmacological characteristics of the monkey melatonin receptors have yet to be elucidated. In this study, we cloned the cynomolgus monkey MT(1) and MT(2) melatonin receptors based on rhesus monkey genome sequences and then characterized the monkey melatonin receptors and compared their pharmacological properties with those of the human homologs. The overall amino acid sequences of the monkey MT(1) and MT(2) melatonin receptors showed high homology to the human MT(1) (95%) and MT(2) (96%) receptors, respectively. Saturation binding experiments with 2-[(125)I]iodomelatonin revealed that the dissociation constants (K(d)) for the monkey MT(1) and MT(2) melatonin receptors were 19.9 and 70.4 pM, respectively. In ligand competition assays using 2-[(125)I]iodomelatonin, ramelteon displayed approximately 3- to 7-fold higher affinities than melatonin for the recombinant monkey MT(1) and MT(2) melatonin receptors and monkey suprachiasmatic nucleus membranes. This higher affinity of ramelteon compared with melatonin has also been observed in human melatonin receptors. Furthermore, ramelteon inhibited pituitary adenylate cyclase-activating polypeptide-27-stimulated cAMP production with higher potency than melatonin. In conclusion, this information will help us to understand the pharmacological effects of melatonin receptor agonists in monkeys.

  5. Site-directed mutagenesis of human beta-adrenergic receptors: substitution of aspartic acid-130 by asparagine produces a receptor with high-affinity agonist binding that is uncoupled from adenylate cyclase.

    PubMed Central

    Fraser, C M; Chung, F Z; Wang, C D; Venter, J C

    1988-01-01

    By using oligonucleotide-directed mutagenesis, we have produced a point mutation (guanine to adenine) at nucleotide 388 of the gene for human beta-adrenergic receptor (beta AR) that results in a substitution of asparagine for the highly conserved aspartic acid at position 130 in the putative third transmembrane domain of the human beta AR ([Asn130]beta AR). We have examined the functional significance of this mutation in B-82 cells continuously expressing the mutant [Asn130]beta AR. The mutant [Asn130]beta AR displayed normal antagonist binding but unusually high-affinity agonist binding (5- to 10-fold higher than wild-type beta AR), consistent with a single class of high-affinity binding sites. The mutant beta AR displayed guanine nucleotide-sensitive changes in agonist affinity (3- to 5-fold shift) implying an interaction between the beta AR and the stimulatory guanine nucleotide-binding regulatory protein; however, the ability of guanine nucleotides to alter agonist affinity was attenuated. Addition of saturating concentrations of isoproterenol to cell cultures expressing mutant [Asn130]-beta ARs had no effect on intracellular levels of cAMP, indicating that the mutant beta AR is unable to affect stimulation of adenylate cyclase. These results indicate that substitution of the aspartic acid with asparagine at residue 130 of the human beta AR dissociates the well-characterized guanine nucleotide effects on agonist affinity from those on activation of the stimulatory guanine nucleotide-binding regulatory protein and adenylate cyclase and suggests the existence of two distinct counterions for the amine portion of catecholamines that are associated with high- and low-affinity agonist binding states of beta AR. Images PMID:2840663

  6. Engineered α4β2 nicotinic acetylcholine receptors as models for measuring agonist binding and effect at the orthosteric low-affinity α4-α4 interface.

    PubMed

    Ahring, Philip K; Olsen, Jeppe A; Nielsen, Elsebet Ø; Peters, Dan; Pedersen, Martin H F; Rohde, Line A; Kastrup, Jette S; Shahsavar, Azadeh; Indurthi, Dinesh C; Chebib, Mary; Gajhede, Michael; Balle, Thomas

    2015-05-01

    The nicotinic acetylcholine receptor α4β2 is important for normal mammalian brain function and is known to express in two different stoichiometries, (α4)2(β2)3 and (α4)3(β2)2. While these are similar in many aspects, the (α4)3(β2)2 stoichiometry differs by harboring a third orthosteric acetylcholine binding site located at the α4-α4 interface. Interestingly, the third binding site has, so far, only been documented using electrophysiological assays, actual binding affinities of nicotinic receptor ligands to this site are not known. The present study was therefore aimed at determining binding affinities of nicotinic ligands to the α4-α4 interface. Given that epibatidine shows large functional potency differences at α4-β2 vs. α4-α4 interfaces, biphasic binding properties would be expected at (α4)3(β2)2 receptors. However, standard saturation binding experiments with [(3)H]epibatidine did not reveal biphasic binding under the conditions utilized. Therefore, an engineered β2 construct (β2(HQT)), which converts the β(-) face to resemble that of an α4(-) face, was utilized to create (α4)3(β2(HQT))2 receptors harboring three α4-α4 interfaces. With this receptor, low affinity binding of epibatidine with a Kd of ∼5 nM was observed in sharp contrast to a Kd value of ∼10 pM observed for wild-type receptors. A strong correlation between binding affinities at the (α4)3(β2(HQT))2 receptor and functional potencies at the wild-type receptor of a range of nicotinic ligands highlighted the validity of using the mutational approach. Finally, large differences in activities at α4-β2 vs. α4-α4 interfaces were observed for structurally related agonists underscoring the need for establishing all binding parameters of compounds at α4β2 receptors.

  7. Pulmonary Administration of GW0742, a High-Affinity Peroxisome Proliferator-Activated Receptor Agonist, Repairs Collapsed Alveoli in an Elastase-Induced Mouse Model of Emphysema.

    PubMed

    Ozawa, Chihiro; Horiguchi, Michiko; Akita, Tomomi; Oiso, Yuki; Abe, Kaori; Motomura, Tomoki; Yamashita, Chikamasa

    2016-01-01

    Pulmonary emphysema is a disease in which lung alveoli are irreversibly damaged, thus compromising lung function. Our previous study revealed that all-trans-retinoic acid (ATRA) induces the differentiation of human lung alveolar epithelial type 2 progenitor cells and repairs the alveoli of emphysema model mice. ATRA also reportedly has the ability to activate peroxisome proliferator-activated receptor (PPAR) β/δ. A selective PPARβ/δ ligand has been reported to induce the differentiation of human keratinocytes during wound repair. Here, we demonstrate that treatment using a high-affinity PPARβ/δ agonist, GW0742, reverses the lung tissue damage induced by elastase in emphysema-model mice and improves respiratory function. Mice treated with elastase, which collapsed their alveoli, were then treated with either 10% dimethyl sulfoxide (DMSO) in saline (control group) or GW0742 (1.0 mg/kg twice a week) by pulmonary administration. Treatment with GW0742 for 2 weeks increased the in vivo expression of surfactant proteins A and D, which are known alveolar type II epithelial cell markers. GW0742 treatment also shortened the average distance between alveolar walls in the lungs of emphysema model mice, compared with a control group treated with 10% DMSO in saline. Treatment with GW0742 for 3 weeks also improved tissue elastance (cm H2O/mL), as well as the ratio of the forced expiratory volume in the first 0.05 s to the forced vital capacity (FEV 0.05/FVC). In each of these experiments, GW0742 treatment reversed the damage caused by elastase. In conclusion, PPARβ/δ agonists are potential therapeutic agents for pulmonary emphysema.

  8. Insertion of Argos sequences into the B-loop of epidermal growth factor results in a low-affinity ligand with strong agonistic activity.

    PubMed

    van de Poll, M L; van Vugt, M J; Lenferink, A E; van Zoelen, E J

    1997-06-17

    Recently, it has been shown that the activation of the Drosophila EGF receptor (DER) by its natural ligand Spitz is inhibited by Argos [Schweitzer, R., et al. (1995) Nature 376, 699-702]. Argos and Spitz both have an EGF-like domain which in the case of Argos differs from that of Spitz and other EGF receptor agonists in that it has an extended B-loop of 20 amino acids instead of 10 amino acids which in addition contains an unusual cluster of charged residues. To investigate whether B-loop sequences are an important determinant for receptor activation and play a causal role in the antagonistic activity of Argos, three human (h)EGF mutants were constructed in which amino acids derived from the Argos B-loop were introduced. In one mutant (E3A4E/B10), replacement of four amino acids in the B-loop of hEGF (123, E24, D27, and K28) by the corresponding Argos residues neither altered the binding affinity of the growth factor for the hEGF receptor nor did it change its ability to induce a mitogenic response. Insertion of 2 additional Argos residues (E3A4E/B12) or extension of the B-loop by 10 amino acids (E3A4E/B20) resulted, however, in a significant loss of binding affinity. In spite of this, both E3A4E/B12 and E3A4E/B20 appeared to be strong agonists for the hEGF receptor with similar dose-response curves for mitogenic activity and MAPK activation as wild-type hEGF. These data show that several nonconservative substitutions in the hEGF B-loop are tolerated without affecting receptor binding or activation. Furthermore, they show that receptor binding and receptor signaling efficiency can be uncoupled which is a prerequisite for the development of receptor antagonists.

  9. (/sup 3/H)dihydroergotamine as a high-affinity, slowly dissociating radioligand for 5-HT1B binding sites in rat brain membranes: evidence for guanine nucleotide regulation of agonist affinity states

    SciTech Connect

    Hamblin, M.W.; Ariani, K.; Adriaenssens, P.I.; Ciaranello, R.D.

    1987-12-01

    (/sup 3/H)Dihydroergotamine (DE) labels a population of binding sites in rat brain membranes with an affinity of approximately 70 pM in both hippocampus (maximal binding at saturation (Bmax) = 340 fmol/mg of protein) and cerebral cortex (Bmax = 250 fmol/mg of protein). Specific binding typically comprises about 97% of total binding at the Kd of the radioligand when nonspecific binding is determined in the presence of 100 nM unlabeled DE. Association kinetics at 37 degrees C are consistent with a uniform association rate constant for all sites labeled. Specific binding is completely reversible with addition of excess unlabeled DE, but dissociation does not proceed with simple first-order kinetics, suggesting the presence of more than one discrete binding site. Competition studies with selective drugs reveal alpha adrenergic, 5-HT1A and 5-HT1B components of (/sup 3/H)DE specific binding. When phentolamine (500 nM) is included to block alpha receptors and DPAT (100 nM) or spiroxatrine (500 nM) is included to block 5-HT1A receptors, specific binding is exclusively to sites with drug affinities characteristic of 5-HT1B receptors. Under these 5-HT1B-selective conditions, (/sup 3/H)DE binding is about 90% specific, with a Kd of about 50 to 60 pM and a Bmax of 96 fmol/mg of protein in hippocampus and 77 fmol/mg of protein in cortex. (/sup 3/H)DE binding to 5-HT1B sites is very slowly dissociable, with a T1/2 of greater than 2 h at 37 degrees C. 5-HT1B antagonists and DE itself yield competition curves at (/sup 3/H)DE-labeled 5-HT1B sites that are adequately fit assuming a single site in nonlinear regression analysis. Addition of 100 microM guanylyl 5'-imidodiphosphate appears to convert nearly all 5-HT1B sites to those having low affinity for agonists while having a much smaller effect on the binding of (/sup 3/H)DE.

  10. Generation, affinity maturation, and characterization of a human anti-human NKG2D monoclonal antibody with dual antagonistic and agonistic activity.

    PubMed

    Kwong, Ka Yin; Baskar, Sivasubramanian; Zhang, Hua; Mackall, Crystal L; Rader, Christoph

    2008-12-31

    In humans, NKG2D is an activating receptor on natural killer (NK) cells and a costimulatory receptor on certain T cells and plays a central role in mediating immune responses in autoimmune diseases, infectious diseases, and cancer. Monoclonal antibodies that antagonize or agonize immune responses mediated by human NKG2D are considered to be of broad and potent therapeutic utility. Nonetheless, monoclonal antibodies to NKG2D that are suitable for clinical investigations have not been published yet. Here, we describe the generation, affinity maturation, and characterization of a fully human monoclonal antibody to human NKG2D. Using phage display technology based on a newly generated naïve human Fab library in phage display vector pC3C followed by a tandem chain shuffling process designed for minimal deviation from natural human antibody sequences, we selected a human Fab, designated KYK-2.0, with high specificity and affinity to human NKG2D. KYK-2.0 Fab blocked the binding of the natural human NKG2D ligands MICA, MICB, and ULBP2 as potently as a commercially available mouse anti-human NKG2D monoclonal antibody in immunoglobulin G (IgG) format. Conversion of KYK-2.0 Fab to IgG1 resulted in subnanomolar avidity for human NKG2D. KYK-2.0 IgG1 was found to selectively recognize defined subpopulations of human lymphocytes known to express NKG2D, that is, the majority of human CD8+, CD16+, and CD56+ cells as well as a small fraction of human CD4+ cells. In solution, KYK-2.0 IgG1 interfered with the cytolytic activity of ex vivo expanded human NK cells. By contrast, immobilized KYK-2.0 IgG1 was found to strongly induce human NK cell activation. The dual antagonistic and agonistic activity promises a wide range of therapeutic applications for KYK-2.0 IgG1 and its derivatives.

  11. Agonists for the Chemokine Receptor CXCR4

    PubMed Central

    2011-01-01

    The development of agonists for the chemokine receptor CXCR4 could provide promising therapeutic candidates. On the basis of previously forwarded two site model of chemokine–receptor interactions, we hypothesized that linking the agonistic N-terminus of SDF-1 to the T140 backbone would yield new high-affinity agonists of CXCR4. We developed chimeras with the agonistic SDF-1 N-terminus grafted to a T140 side chain and tested their binding affinity and chemotactic agonist activity. While chimeras with the peptide grafted onto position 12 of T140 remained high-affinity antagonists, those bearing the peptide on position 14 were in part agonists. One chimera was a full CXCR4 agonist with 25 nM affinity, and several chimeras showed low nanomolar affinities with partial agonist activity. Our results confirmed that we have developed high-affinity agonists of CXCR4. PMID:21841963

  12. Monohydroxylated metabolites of the K2 synthetic cannabinoid JWH-073 retain intermediate to high cannabinoid 1 receptor (CB1R) affinity and exhibit neutral antagonist to partial agonist activity

    PubMed Central

    Brents, Lisa K.; Gallus-Zawada, Anna; Radominska-Pandya, Anna; Vasiljevik, Tamara; Prisinzano, Thomas E.; Fantegrossi, William E.; Moran, Jeffery H.; Prather, Paul L.

    2012-01-01

    K2 and several similar purported “incense products” spiked with synthetic cannabinoids are abused as cannabis substitutes. We hypothesized that metabolism of JWH-073, a prevalent cannabinoid found in K2, contributes to toxicity associated with K2 use. Competition receptor binding studies and G-protein activation assays, both performed by employing mouse brain homogenates, were used to determine the affinity and intrinsic activity, respectively, of potential monohydroxylated (M1, M3–M5) and monocarboxylated (M6) metabolites at cannabinoid 1 receptors (CB1Rs). Surprisingly, M1, M4 and M5 retain nanomolar affinity for CB1Rs, while M3 displays micromolar affinity and M6 does not bind to CB1Rs. JWH-073 displays equivalent efficacy to that of the CB1R full agonist CP-55,940, while M1, M3, and M5 act as CB1R partial agonists, and M4 shows little or no intrinsic activity. Further in vitro investigation by Schild analysis revealed that M4 acts as a competitive neutral CB1R antagonist (Kb~40nM). In agreement with in vitro studies, M4 also demonstrates CB1R antagonism in vivo by blunting cannabinoid-induced hypothermia in mice. Interestingly, M4 does not block agonist-mediated responses of other measures in the cannabinoid tetrad (e.g., locomotor suppression, catalepsy or analgesia). Finally, also as predicted by in vitro results, M1 exhibits agonist activity in vivo by inducing significant hypothermia and suppression of locomotor activity in mice. In conclusion, the present study indicates that further work examining the physiological effects of synthetic cannabinoid metabolism is warranted. Such a complex mix of metabolically produced CB1R ligands may contribute to the adverse effect profile of JWH-073-containing products. PMID:22266354

  13. Identification of the domains in RXFP4 (GPCR142) responsible for the high affinity binding and agonistic activity of INSL5 at RXFP4 compared to RXFP3 (GPCR135).

    PubMed

    Zhu, Jessica; Kuei, Chester; Sutton, Steven; Kamme, Fredrik; Yu, Jingxue; Bonaventure, Pascal; Atack, John; Lovenberg, Timothy W; Liu, Changlu

    2008-08-20

    Relaxin-3 is a potent agonist for both G-protein coupled receptors (GPCR) RXFP3 (also known as GPCR135) and RXFP4 (also known as GPCR142) while insulin-like peptides 5 (INSL5) is a selective RXFP4 agonist. INSL5 is also a weak (low affinity) RXFP3 antagonist. RXFP3 and RXFP4 share about 50% homology. We have used gain-of-function (RXFP3 --> RXFP4) and loss-of-function (RXFP4 --> RXFP3) chimeras to identify the domains critical for the binding and activation induced by INSL5. Replacing extracellular loop (EL) 1 or EL3 of RXFP3 with the corresponding domains from RXFP4 does not change the RXFP3 pharmacological profile. Exchanging the N-terminus and EL2 of RXFP3 with these of RXFP4 results in a chimeric receptor (CR5) with a high affinity for INSL5. However, in contrast to native RXFP4, INSL5 does not elicit an agonist response from CR5. Conversely, replacing the N-terminus and EL2 of RXFP4 with counterparts from RXFP3 (CR15) results in a chimeric receptor for which relaxin-3 and INSL5 are high and low affinity agonists, respectively. Further mutagenesis studies indicate that transmembrane (TM) domains 2, 3 and 5 of RXFP4 are critical determinants of functional receptor activation by INSL5. Replacement of TM2, 3, and 5 of RXFP3 with equivalent domains from RXFP4 results in a chimeric receptor that can be activated by INSL5. These results suggest that the N-terminus and EL2 domains of RXFP3 and RXFP4 are involved in ligand binding while TM2, 3, and 5 are critical for receptor activation.

  14. Monohydroxylated metabolites of the K2 synthetic cannabinoid JWH-073 retain intermediate to high cannabinoid 1 receptor (CB1R) affinity and exhibit neutral antagonist to partial agonist activity.

    PubMed

    Brents, Lisa K; Gallus-Zawada, Anna; Radominska-Pandya, Anna; Vasiljevik, Tamara; Prisinzano, Thomas E; Fantegrossi, William E; Moran, Jeffery H; Prather, Paul L

    2012-04-01

    K2 and several similar purported "incense products" spiked with synthetic cannabinoids are abused as cannabis substitutes. We hypothesized that metabolism of JWH-073, a prevalent cannabinoid found in K2, contributes to toxicity associated with K2 use. Competition receptor binding studies and G-protein activation assays, both performed by employing mouse brain homogenates, were used to determine the affinity and intrinsic activity, respectively, of potential monohydroxylated (M1, M3-M5) and monocarboxylated (M6) metabolites at cannabinoid 1 receptors (CB1Rs). Surprisingly, M1, M4 and M5 retain nanomolar affinity for CB1Rs, while M3 displays micromolar affinity and M6 does not bind to CB1Rs. JWH-073 displays equivalent efficacy to that of the CB1R full agonist CP-55,940, while M1, M3, and M5 act as CB1R partial agonists, and M4 shows little or no intrinsic activity. Further in vitro investigation by Schild analysis revealed that M4 acts as a competitive neutral CB1R antagonist (K(b)∼40nM). In agreement with in vitro studies, M4 also demonstrates CB1R antagonism in vivo by blunting cannabinoid-induced hypothermia in mice. Interestingly, M4 does not block agonist-mediated responses of other measures in the cannabinoid tetrad (e.g., locomotor suppression, catalepsy or analgesia). Finally, also as predicted by in vitro results, M1 exhibits agonist activity in vivo by inducing significant hypothermia and suppression of locomotor activity in mice. In conclusion, the present study indicates that further work examining the physiological effects of synthetic cannabinoid metabolism is warranted. Such a complex mix of metabolically produced CB1R ligands may contribute to the adverse effect profile of JWH-073-containing products. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Open tubular columns containing the immobilized ligand binding domain of peroxisome proliferator-activated receptors α and γ for dual agonists characterization by frontal affinity chromatography with mass spectrometry detection.

    PubMed

    Temporini, C; Pochetti, G; Fracchiolla, G; Piemontese, L; Montanari, R; Moaddel, R; Laghezza, A; Altieri, F; Cervoni, L; Ubiali, D; Prada, E; Loiodice, F; Massolini, G; Calleri, E

    2013-04-05

    The peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor superfamily. In the last years novel PPARs ligands have been identified and these include PPARα/γ dual agonists. To rapidly identify novel PPARs dual ligands, a robust binding assay amenable to high-throughput screening toward PPAR isoforms would be desirable. In this work we describe a parallel assay based on the principles of frontal affinity chromatography coupled to mass spectrometry (FAC-MS) that can be used to characterize dual agonists. For this purpose the ligand binding domain of PPARα receptor was immobilized onto the surface of open tubular capillaries to create new PPAR-alpha-OT columns to be used in parallel with PPAR-gamma-OT columns. The two biochromatographic systems were used in both ranking and Kd experiments toward new ureidofibrate-like dual agonists for subtype selectivity ratio determination. In order to validate the system, the Kd values determined by frontal analysis chromatography were compared to the affinity constants obtained by ITC experiments. The results of this study strongly demonstrate the specific nature of the interaction of the ligands with the two immobilized receptor subtypes. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Discovery of 4-(phenyl)thio-1H-pyrazole derivatives as agonists of GPR109A, a high affinity niacin receptor.

    PubMed

    Kim, Hyeon Young; Jadhav, Vithal B; Jeong, Dae Young; Park, Woo Kyu; Song, Jong-Hwan; Lee, Sunkyung; Cho, Heeyeong

    2015-06-01

    Even though nicotinic acid (niacin) appears to have beneficial effects on human lipid profiles, niacin-induced cutaneous vasodilatation called flushing limits its remedy to patient. GPR109A is activated by niacin and mediates the anti-lipolytic effects. Based on the hypothesis that β-arrestin signaling mediates niacin-induced flushing, but not its anti-lipolytic effect, we tried to find GPR109A agonists which selectively elicit Gi-protein-biased signaling devoid of β-arrestin internalization using a β-lactamase assay. We identified a 4-(phenyl)thio-1H-pyrazole as a novel scaffold for GPR109A agonist in a high throughput screen, which has no carboxylic acid moiety known to be important for binding. While 1-nicotinoyl derivatives (5a-g, 6a-e) induced β-arrestin recruitment, 1-(pyrazin-2-oyl) derivatives were found to play as G-protein-biased agonists without GPR109A receptor internalization. The activity of compound 5a (EC50 = 45 nM) was similar to niacin (EC50 = 52 nM) and MK-6892 (EC50 = 74 nM) on calcium mobilization assay, but its activity at 10 μM on β-arrestin recruitment were around two and five times weaker than niacin and MK-6892, respectively. The development of G-protein biased GPR109A ligands over β-arrestin pathway is attainable and might be important in differentiation of pharmacological efficacy.

  17. High Affinity Agonists of the Neuropeptide Y (NPY) Y4 Receptor Derived from the C-Terminal Pentapeptide of Human Pancreatic Polypeptide (hPP): Synthesis, Stereochemical Discrimination, and Radiolabeling.

    PubMed

    Kuhn, Kilian K; Ertl, Thomas; Dukorn, Stefanie; Keller, Max; Bernhardt, Günther; Reiser, Oliver; Buschauer, Armin

    2016-07-14

    The diastereomeric mixture of d/l-2,7-diaminooctanedioyl-bis(YRLRY-NH2) (BVD-74D, 2) was described in the literature as a high affinity Y4 receptor agonist. Here we report on the synthesis and pharmacological characterization of the pure diastereomers (2R,7R)- and (2S,7S)-2 and a series of homo- and heterodimeric analogues in which octanedioic acid was used as an achiral linker. To investigate the role of the Arg residues, one or two arginines were replaced by Ala. Moreover, N(ω)-(6-aminohexylaminocarbonyl)Arg was introduced as an arginine replacement (17). (2R,7R)-2 was superior to (2S,7S)-2 in binding and functional cellular assays and equipotent with 17. [(3)H]Propionylation of one amino group in the linker of (2R,7R)-2 or at the primary amino group in 17 resulted in high affinity Y4R radioligands ([(3)H]-(2R,7R)-10, [(3)H]18) with subnanomolar Kd values.

  18. Investigational melatonin receptor agonists.

    PubMed

    Hardeland, Rüdiger

    2010-06-01

    Melatonin is a major chronobiological regulator involved in circadian phasing, sleep, and numerous other functions including cyto-/neuroprotection, immune modulation, and energy metabolism. The suitability of melatonin as a drug is limited because of its short half-life. Therefore, various indolic and non-indolic melatonergic agonists have been developed. Frequent health problems such as sleep disturbances, neuropsychiatric disorders related to circadian dysphasing, and metabolic diseases associated with insulin resistance are targeted by melatonergic agonists. Various synthetic melatonergic drugs are compared with regard to receptor affinities, selectivity, effects on sleep, endogenous melatonin, circadian phase and insulin-related metabolism. The chemical design of melatonin receptor agonists is discussed in relation to consequences for receptor affinity, selectivity, metabolism, and spectrum of effects. Melatonergic agonists are suitable for phase-shifting circadian rhythms, and may be used for treating disorders related to circadian dysfunction including sleep difficulties. Facilitation of sleep onset is a general property, whereas promotion of sleep maintenance is demonstrable but not always fully sufficient. Details are especially available for tasimelteon. Support of insulin sensitivity may become a new area of application for compounds such as NEU-P11. Some drugs acting additionally as serotonergic antagonists display antidepressant properties.

  19. Negative cooperativity in binding of muscarinic receptor agonists and GDP as a measure of agonist efficacy

    PubMed Central

    Jakubík, J; Janíčková, H; El-Fakahany, EE; Doležal, V

    2011-01-01

    BACKGROUND AND PURPOSE Conventional determination of agonist efficacy at G-protein coupled receptors is measured by stimulation of guanosine-5′-γ−thiotriphosphate (GTPγS) binding. We analysed the role of guanosine diphosphate (GDP) in the process of activation of the M2 muscarinic acetylcholine receptor and provide evidence that negative cooperativity between agonist and GDP binding is an alternative measure of agonist efficacy. EXPERIMENTAL APPROACH Filtration and scintillation proximity assays measured equilibrium binding as well as binding kinetics of [35S]GTPγS and [3H]GDP to a mixture of G-proteins as well as individual classes of G-proteins upon binding of structurally different agonists to the M2 muscarinic acetylcholine receptor. KEY RESULTS Agonists displayed biphasic competition curves with the antagonist [3H]-N-methylscopolamine. GTPγS (1 µM) changed the competition curves to monophasic with low affinity and 50 µM GDP produced a similar effect. Depletion of membrane-bound GDP increased the proportion of agonist high-affinity sites. Carbachol accelerated the dissociation of [3H]GDP from membranes. The inverse agonist N-methylscopolamine slowed GDP dissociation and GTPγS binding without changing affinity for GDP. Carbachol affected both GDP association with and dissociation from Gi/o G-proteins but only its dissociation from Gs/olf G-proteins. CONCLUSIONS AND IMPLICATIONS These findings suggest the existence of a low-affinity agonist-receptor conformation complexed with GDP-liganded G-protein. Also the negative cooperativity between GDP and agonist binding at the receptor/G-protein complex determines agonist efficacy. GDP binding reveals differences in action of agonists versus inverse agonists as well as differences in activation of Gi/o versus Gs/olf G-proteins that are not identified by conventional GTPγS binding. PMID:20958290

  20. Negative cooperativity in binding of muscarinic receptor agonists and GDP as a measure of agonist efficacy.

    PubMed

    Jakubík, J; Janíčková, H; El-Fakahany, E E; Doležal, V

    2011-03-01

    Conventional determination of agonist efficacy at G-protein coupled receptors is measured by stimulation of guanosine-5'-γ-thiotriphosphate (GTPγS) binding. We analysed the role of guanosine diphosphate (GDP) in the process of activation of the M₂ muscarinic acetylcholine receptor and provide evidence that negative cooperativity between agonist and GDP binding is an alternative measure of agonist efficacy. Filtration and scintillation proximity assays measured equilibrium binding as well as binding kinetics of [³⁵S]GTPγS and [³H]GDP to a mixture of G-proteins as well as individual classes of G-proteins upon binding of structurally different agonists to the M₂ muscarinic acetylcholine receptor. Agonists displayed biphasic competition curves with the antagonist [³H]-N-methylscopolamine. GTPγS (1 µM) changed the competition curves to monophasic with low affinity and 50 µM GDP produced a similar effect. Depletion of membrane-bound GDP increased the proportion of agonist high-affinity sites. Carbachol accelerated the dissociation of [³H]GDP from membranes. The inverse agonist N-methylscopolamine slowed GDP dissociation and GTPγS binding without changing affinity for GDP. Carbachol affected both GDP association with and dissociation from G(i/o) G-proteins but only its dissociation from G(s/olf) G-proteins. These findings suggest the existence of a low-affinity agonist-receptor conformation complexed with GDP-liganded G-protein. Also the negative cooperativity between GDP and agonist binding at the receptor/G-protein complex determines agonist efficacy. GDP binding reveals differences in action of agonists versus inverse agonists as well as differences in activation of G(i/o) versus G(s/olf) G-proteins that are not identified by conventional GTPγS binding. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  1. Investigation of the mechanism of agonist and inverse agonist action at D2 dopamine receptors.

    PubMed

    Roberts, David J; Lin, Hong; Strange, Philip G

    2004-05-01

    This study investigated, for the D2 dopamine receptor, the relation between the ability of agonists and inverse agonists to stabilise different states of the receptor and their relative efficacies. Ki values for agonists were determined in competition versus the binding of the antagonist [3H]spiperone. Competition data were fitted best by a two-binding site model (with the exception of bromocriptine, for which a one-binding site model provided the best fit) and agonist affinities for the higher (Kh) (G protein-coupled) and lower affinity (Kl) (G protein-uncoupled) sites determined. Ki values for agonists were also determined in competition versus the binding of the agonist [3H]N-propylnorapomorphine (NPA) to provide a second estimate of Kh. Maximal agonist effects (Emax) and their potencies (EC50) were determined from concentration-response curves for agonist stimulation of guanosine-5'-O-(3-[32S]thiotriphosphate) ([35S]GTPgammaS) binding. The ability of agonists to stabilise the G protein-coupled state of the receptor (Kl/Kh determined from ligand-binding assays) did not correlate with either of two measures of relative efficacy (relative Emax, Kl/EC50) of agonists determined in [35S]GTPgammaS-binding assays, when the data for all of the compounds tested were analysed. For a subset of compounds, however, there was a relation between Kl/Kh and Emax. Competition-binding data versus [3H]spiperone and [3H]NPA for a range of inverse agonists were fitted best by a one-binding site model. Ki values for the inverse agonists tested were slightly lower in competition versus [3H]NPA compared to [3H]spiperone. These data do not provide support for the idea that inverse agonists act by binding preferentially to the ground state of the receptor.

  2. Novel diazabicycloalkane delta opioid agonists.

    PubMed

    Loriga, Giovanni; Lazzari, Paolo; Manca, Ilaria; Ruiu, Stefania; Falzoi, Matteo; Murineddu, Gabriele; Bottazzi, Mirko Emilio Heiner; Pinna, Giovanni; Pinna, Gérard Aimè

    2015-09-01

    Here we report the investigation of diazabicycloalkane cores as potential new scaffolds for the development of novel analogues of the previously reported diazatricyclodecane selective delta (δ) opioid agonists, as conformationally constrained homologues of the reference δ agonist (+)-4-[(αR)-α((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC80). In particular, we have simplified the diazatricyclodecane motif of δ opioid agonist prototype 1a with bridged bicyclic cores. 3,6-diazabicyclo[3.1.1]heptane, 3,8-diazabicyclo[3.2.1]octane, 3,9-diazabicyclo[3.3.1]nonane, 3,9-diazabicyclo[4.2.1]nonane, and 3,10-diazabicyclo[4.3.1]decane were adopted as core motifs of the novel derivatives. The compounds were synthesized and biologically assayed as racemic (3-5) or diastereoisomeric (6,7) mixtures. All the novel compounds 3-7 showed δ agonism behaviour and remarkable affinity to δ receptors. Amongst the novel derivatives, 3,8-diazabicyclo[3.2.1]octane based compound 4 evidenced improved δ affinity and selectivity relative to SNC80. Published by Elsevier Ltd.

  3. Thermodynamic analysis of antagonist and agonist interactions with dopamine receptors.

    PubMed

    Duarte, E P; Oliveira, C R; Carvalho, A P

    1988-03-01

    The binding of [3H]spiperone to dopamine D-2 receptors and its inhibition by antagonists and agonists were examined in microsomes derived from the sheep caudate nucleus, at temperatures between 37 and 1 degree C, and the thermodynamic parameters of the binding were evaluated. The affinity of the receptor for the antagonists, spiperone and (+)-butaclamol, decreased as the incubation temperature decreased; the affinity for haloperidol did not further decrease at temperatures below 15 degrees C. The binding of the antagonists was associated with very large increases in entropy, as expected for hydrophobic interactions. The enthalpy and entropy changes associated with haloperidol binding were dependent on temperature, in contrast to those associated with spiperone and (+)-butaclamol. The magnitude of the entropy increase associated with the specific binding of the antagonists did not correlate with the degree of lipophilicity of these drugs. The data suggest that, in addition to hydrophobic forces, other forces are also involved in the antagonist-dopamine receptor interactions, and that a conformational change of the receptor could occur when the antagonist binds. Agonist binding data are consistent with a two-state model of the receptor, a high-affinity state (RH) and a low-affinity state (RL). The affinity of dopamine binding to the RH decreased with decreasing temperatures below 20 degrees C, whereas the affinity for the RL increased at low temperatures. In contrast, the affinity of apomorphine for both states of receptor decreased as the temperature decreased from 30 to 8 degrees C. A clear distinction between the energetics of high-affinity and low-affinity agonist binding was observed. The formation of the high-affinity complex was associated with larger increases in enthalpy and entropy than the interaction with the low-affinity state was. The results suggest that the interaction of the receptor with the G-proteins, induced or stabilized by the binding of

  4. Design and Synthesis of Dopaminergic Agonists.

    PubMed

    Matute, Maria Soledad; Matute, Rosa; Merino, Pedro

    2016-01-01

    The use of dopaminergic agonists is key in the treatment of Parkinson's disease and related central nervous system (CNS) neurodegenerative disorders. Despite there are a number of commercialized dopaminergic agonists that are currently being used successfully in the first stages of the disease, they often fail to provide sustained clinical benefit for a long period due to the appearance of side-effects such as augmentation, sleepiness, nausea, hypothension, and compulsive behaviors among others. New dopaminergic agonists with less side effects are being developed. These novel compounds offer an alternative when the disease progresses and patients fail to respond to standard dopaminergic treatments or side-effects increased. Chemistry, and in particular chemical synthesis, has played a major role in bringing synthetic dopaminergic agonists to the clinic and continues to be crucial for the development of new and necessary drugs for long-term treatments with less undesired side effects. A number of structural modifications of parent compounds have led to enhanced agonism but also partial agonism or even antagonism of one or more dopamine receptors. In some cases, these activities are accompanied by agonist effect at serotonin receptors which suggests a potential clinical application in the treatment of schizophrenia In this review, chemical synthesis of dopaminergic agents, their affinity, and the corresponding agonist/antagonist effects will be highlighted.

  5. Serotonergic agonists behave as partial agonists at the dopamine D2 receptor.

    PubMed

    Rinken, A; Ferré, S; Terasmaa, A; Owman, C; Fuxe, K

    1999-02-25

    RAT dopamine D2short receptors expressed in CHO cells were characterized by activation of [35S]GTPgammaS binding. There were no significant differences between the maximal effects seen in activation of [35S]GTPgammaS binding caused by dopaminergic agonists, but the effects of 5-HT, 8OH-DPAT and 5-methoxytryptamine amounted to 47 +/- 7%, 43 +/- 5% and 70 +/- 7% of the dopamine effect, respectively. The dopaminergic antagonist (+)butaclamol inhibited activations of both types of ligands with equal potency (pA2 = 8.9 +/- 0.1), indicating that only one type of receptor is involved. In competition with [3H]raclopride binding, dopaminergic agonists showed 53 +/- 2% of the binding sites in the GTP-dependent high-affinity state, whereas 5-HT showed only 20 +/- 3%. Taken together, the results indicate that serotonergic agonists behave as typical partial agonists for D2 receptors with potential antiparkinsonian activity.

  6. Regulation of membrane cholecystokinin-2 receptor by agonists enables classification of partial agonists as biased agonists.

    PubMed

    Magnan, Rémi; Masri, Bernard; Escrieut, Chantal; Foucaud, Magali; Cordelier, Pierre; Fourmy, Daniel

    2011-02-25

    Given the importance of G-protein-coupled receptors as pharmacological targets in medicine, efforts directed at understanding the molecular mechanism by which pharmacological compounds regulate their presence at the cell surface is of paramount importance. In this context, using confocal microscopy and bioluminescence resonance energy transfer, we have investigated internalization and intracellular trafficking of the cholecystokinin-2 receptor (CCK2R) in response to both natural and synthetic ligands with different pharmacological features. We found that CCK and gastrin, which are full agonists on CCK2R-induced inositol phosphate production, rapidly and abundantly stimulate internalization. Internalized CCK2R did not rapidly recycle to plasma membrane but instead was directed to late endosomes/lysosomes. CCK2R endocytosis involves clathrin-coated pits and dynamin and high affinity and prolonged binding of β-arrestin1 or -2. Partial agonists and antagonists on CCK2R-induced inositol phosphate formation and ERK1/2 phosphorylation did not stimulate CCK2R internalization or β-arrestin recruitment to the CCK2R but blocked full agonist-induced internalization and β-arrestin recruitment. The extreme C-terminal region of the CCK2R (and more precisely phosphorylatable residues Ser(437)-Xaa(438)-Thr(439)-Thr(440)-Xaa(441)-Ser(442)-Thr(443)) were critical for β-arrestin recruitment. However, this region and β-arrestins were dispensable for CCK2R internalization. In conclusion, this study allowed us to classify the human CCK2R as a member of class B G-protein-coupled receptors with regard to its endocytosis features and identified biased agonists of the CCK2R. These new important insights will allow us to investigate the role of internalized CCK2R·β-arrestin complexes in cancers expressing this receptor and to develop new diagnosis and therapeutic strategies targeting this receptor.

  7. β2 Agonists.

    PubMed

    Billington, Charlotte K; Penn, Raymond B; Hall, Ian P

    2017-01-01

    History suggests β agonists, the cognate ligand of the β2 adrenoceptor, have been used as bronchodilators for around 5,000 years, and β agonists remain today the frontline treatment for asthma and chronic obstructive pulmonary disease (COPD). The β agonists used clinically today are the products of significant expenditure and over 100 year's intensive research aimed at minimizing side effects and enhancing therapeutic usefulness. The respiratory physician now has a therapeutic toolbox of long acting β agonists to prophylactically manage bronchoconstriction, and short acting β agonists to relieve acute exacerbations. Despite constituting the cornerstone of asthma and COPD therapy, these drugs are not perfect; significant safety issues have led to a black box warning advising that long acting β agonists should not be used alone in patients with asthma. In addition there are a significant proportion of patients whose asthma remains uncontrolled. In this chapter we discuss the evolution of β agonist use and how the understanding of β agonist actions on their principal target tissue, airway smooth muscle, has led to greater understanding of how these drugs can be further modified and improved in the future. Research into the genetics of the β2 adrenoceptor will also be discussed, as will the implications of individual DNA profiles on the clinical outcomes of β agonist use (pharmacogenetics). Finally we comment on what the future may hold for the use of β agonists in respiratory disease.

  8. Agonists at the δ-opioid receptor modify the binding of µ-receptor agonists to the µ–δ receptor hetero-oligomer

    PubMed Central

    Kabli, N; Martin, N; Fan, T; Nguyen, T; Hasbi, A; Balboni, G; O'Dowd, BF; George, SR

    2010-01-01

    BACKGROUND AND PURPOSE µ- and δ-opioid receptors form heteromeric complexes with unique ligand binding and G protein-coupling profiles linked to G protein α z-subunit (Gαz) activation. However, the mechanism of action of agonists and their regulation of the µ–δ receptor heteromer are not well understood. EXPERIMENTAL APPROACH Competition radioligand binding, cell surface receptor internalization in intact cells, confocal microscopy and receptor immunofluorescence techniques were employed to study the regulation of the µ–δ receptor heteromer in heterologous cells with and without agonist exposure. KEY RESULTS Gαz enhanced affinity of some agonists at µ–δ receptor heteromers, independent of agonist chemical structure. δ-Opioid agonists displaced µ-agonist binding with high affinity from µ–δ heteromers, but not µ receptor homomers, suggestive of δ-agonists occupying a novel µ-receptor ligand binding pocket within the heteromers. Also, δ-agonists induced internalization of µ-opioid receptors in cells co-expressing µ- and δ-receptors, but not those expressing µ-receptors alone, indicative of µ–δ heteromer internalization. This dose-dependent, Pertussis toxin-resistant and clathrin- and dynamin-dependent effect required agonist occupancy of both µ- and δ-opioid receptors. In contrast to µ-receptor homomers, agonist-induced internalization of µ–δ heteromers persisted following chronic morphine exposure. CONCLUSIONS AND IMPLICATIONS The µ–δ receptor heteromer may contain a novel δ-agonist-detected, high-affinity, µ-receptor ligand binding pocket and is regulated differently from the µ-receptor homomer following chronic morphine exposure. Occupancy of both µ- and δ-receptor binding pockets is required for δ-agonist-induced endocytosis of µ–δ receptor heteromers. δ-Opioid agonists target µ–δ receptor heteromers, and thus have a broader pharmacological specificity than previously identified. PMID:20977461

  9. Quantifying agonist activity at G protein-coupled receptors.

    PubMed

    Ehlert, Frederick J; Suga, Hinako; Griffin, Michael T

    2011-12-26

    When an agonist activates a population of G protein-coupled receptors (GPCRs), it elicits a signaling pathway that culminates in the response of the cell or tissue. This process can be analyzed at the level of a single receptor, a population of receptors, or a downstream response. Here we describe how to analyze the downstream response to obtain an estimate of the agonist affinity constant for the active state of single receptors. Receptors behave as quantal switches that alternate between active and inactive states (Figure 1). The active state interacts with specific G proteins or other signaling partners. In the absence of ligands, the inactive state predominates. The binding of agonist increases the probability that the receptor will switch into the active state because its affinity constant for the active state (K(b)) is much greater than that for the inactive state (K(a)). The summation of the random outputs of all of the receptors in the population yields a constant level of receptor activation in time. The reciprocal of the concentration of agonist eliciting half-maximal receptor activation is equivalent to the observed affinity constant (K(obs)), and the fraction of agonist-receptor complexes in the active state is defined as efficacy (ε) (Figure 2). Methods for analyzing the downstream responses of GPCRs have been developed that enable the estimation of the K(obs) and relative efficacy of an agonist. In this report, we show how to modify this analysis to estimate the agonist K(b) value relative to that of another agonist. For assays that exhibit constitutive activity, we show how to estimate K(b) in absolute units of M(-1). Our method of analyzing agonist concentration-response curves consists of global nonlinear regression using the operational model. We describe a procedure using the software application, Prism (GraphPad Software, Inc., San Diego, CA). The analysis yields an estimate of the product of K(obs) and a parameter proportional to efficacy (

  10. Affine projective Osserman structures

    NASA Astrophysics Data System (ADS)

    Gilkey, P.; Nikčević, S.

    2013-08-01

    By considering the projectivized spectrum of the Jacobi operator, we introduce the concept of projective Osserman manifold in both the affine and in the pseudo-Riemannian settings. If M is an affine projective Osserman manifold, then the deformed Riemannian extension metric on the cotangent bundle is both spacelike and timelike projective Osserman. Since any rank-1-symmetric space is affine projective Osserman, this provides additional information concerning the cotangent bundle of a rank-1 Riemannian symmetric space with the deformed Riemannian extension metric. We construct other examples of affine projective Osserman manifolds where the Ricci tensor is not symmetric and thus the connection in question is not the Levi-Civita connection of any metric. If the dimension is odd, we use methods of algebraic topology to show the Jacobi operator of an affine projective Osserman manifold has only one non-zero eigenvalue and that eigenvalue is real.

  11. Rate constants of agonist binding to muscarinic receptors in rat brain medulla. Evaluation by competition kinetics

    SciTech Connect

    Schreiber, G.; Henis, Y.I.; Sokolovsky, M.

    1985-07-25

    The method of competition kinetics, which measures the binding kinetics of an unlabeled ligand through its effect on the binding kinetics of a labeled ligand, was employed to investigate the kinetics of muscarinic agonist binding to rat brain medulla pons homogenates. The agonists studied were acetylcholine, carbamylcholine, and oxotremorine, with N-methyl-4-(TH)piperidyl benzilate employed as the radiolabeled ligand. Our results suggested that the binding of muscarinic agonists to the high affinity sites is characterized by dissociation rate constants higher by 2 orders of magnitude than those of antagonists, with rather similar association rate constants. Our findings also suggest that isomerization of the muscarinic receptors following ligand binding is significant in the case of antagonists, but not of agonists. Moreover, it is demonstrated that in the medulla pons preparation, agonist-induced interconversion between high and low affinity bindings sites does not occur to an appreciable extent.

  12. [Melatonin receptor agonist].

    PubMed

    Uchiyama, Makoto

    2015-06-01

    Melatonin is a hormone secreted by the pineal gland and is involved in the regulation of human sleep-wake cycle and circadian rhythms. The melatonin MT1 and MT2 receptors located in the suprachiasmatic nucleus in the hypothalamus play a pivotal role in the sleep-wake regulation. Based on the fact that MT1 receptors are involved in human sleep onset process, melatonin receptor agonists have been developed to treat insomnia. In this article, we first reviewed functions of melatonin receptors with special reference to MT1 and MT2, and properties and clinical application of melatonin receptor agonists as hypnotics.

  13. Affinity in electrophoresis.

    PubMed

    Heegaard, Niels H H

    2009-06-01

    The journal Electrophoresis has greatly influenced my approaches to biomolecular affinity studies. The methods that I have chosen as my main tools to study interacting biomolecules--native gel and later capillary zone electrophoresis--have been the topic of numerous articles in Electrophoresis. Below, the role of the journal in the development and dissemination of these techniques and applications reviewed. Many exhaustive reviews on affinity electrophoresis and affinity CE have been published in the last few years and are not in any way replaced by the present deliberations that are focused on papers published by the journal.

  14. A dielectric affinity microbiosensor

    NASA Astrophysics Data System (ADS)

    Huang, Xian; Li, Siqi; Schultz, Jerome S.; Wang, Qian; Lin, Qiao

    2010-01-01

    We present an affinity biosensing approach that exploits changes in dielectric properties of a polymer due to its specific, reversible binding with an analyte. The approach is demonstrated using a microsensor comprising a pair of thin-film capacitive electrodes sandwiching a solution of poly(acrylamide-ran-3-acrylamidophenylboronic acid), a synthetic polymer with specific affinity to glucose. Binding with glucose induces changes in the permittivity of the polymer, which can be measured capacitively for specific glucose detection, as confirmed by experimental results at physiologically relevant concentrations. The dielectric affinity biosensing approach holds the potential for practical applications such as long-term continuous glucose monitoring.

  15. Characterization of opiate receptor heterogeneity using affinity ligands and phospholipase A/sub 2/

    SciTech Connect

    Reichman, M.

    1985-01-01

    The primary aim of the dissertation was to study the heterogeneity of opiate receptors by utilizing affinity ligands, and by modification of the receptor lipid-microenvironment with phospholipase A/sub 2/ (PLA/sub 2/). The affinity ligands, 14-bromacetamidomorphine (BAM) and 14-chloroacetylnaltrexone (CAN), selectively inactivated high affinity dihydromorphine binding sites in an apparently irreversible manner (the inhibition was resistant to extensive washes of treated neural membrane homogenates). The inhibitory effect of PLA/sub 2/ (10 ng/ml) on opiate receptor subtypes was determined using (/sup 3/H)-dihydromorphine (..mu..-type agonist), (/sup 3/H)-enkephalin (delta agonist) and (/sup 3/H)-naloxone (..mu.. antagonist). PLA/sub 2/ abolished the high affinity antagonist binding site, whereas it inhibited high and low affinity agonist binding sites similarly. The results suggest that high affinity antagonist binding sites are different from high affinity agonist binding sites. Indirect binding assays demonstrated that the selectivities of ..mu..- and delta receptors are not affected significantly by PLA/sub 2/ treatment.

  16. Inverse agonist properties of atypical antipsychotic drugs.

    PubMed

    Akam, Elizabeth; Strange, Philip G

    2004-06-01

    Mechanisms of action of several atypical antipsychotic drugs have been examined at the D(2) dopamine receptor expressed in CHO cells. The drugs tested were found to exhibit inverse agonist activity at the D(2) dopamine receptor based on their effects to potentiate forskolin-stimulated cyclic AMP (cAMP) accumulation. Each of the antipsychotic drugs tested (clozapine, olanzapine, quetiapine and risperidone) increased cAMP accumulation to the same extent. The increase in cAMP was also similar to that seen with typical antipsychotic drugs. Inverse agonism at the D(2) dopamine receptor seems, therefore, to be a property common to all classes of antipsychotic drugs. The effect of sodium ions on the binding of the drugs to the receptor was also assessed. Each of the atypical antipsychotic drugs tested here bound with higher affinity in the absence of sodium ions. Previous studies have shown that some antipsychotic drugs are insensitive to sodium ions and some bind with higher affinity in the presence of sodium ions. Given that all of these antipsychotic drugs are inverse agonists, it may be concluded that this sodium ion sensitivity is unrelated to mechanisms of inverse agonism.

  17. Affine dynamics with torsion

    NASA Astrophysics Data System (ADS)

    Gültekin, Kemal

    2016-03-01

    In this study, we give a thorough analysis of a general affine gravity with torsion. After a brief exposition of the affine gravities considered by Eddington and Schrödinger, we construct and analyze different affine gravities based on the determinants of the Ricci tensor, the torsion tensor, the Riemann tensor, and their combinations. In each case we reduce equations of motion to their simplest forms and give a detailed analysis of their solutions. Our analyses lead to the construction of the affine connection in terms of the curvature and torsion tensors. Our solutions of the dynamical equations show that the curvature tensors at different points are correlated via non-local, exponential rescaling factors determined by the torsion tensor.

  18. Lectin affinity electrophoresis.

    PubMed

    Kobayashi, Yuka

    2014-01-01

    An interaction or a binding event typically changes the electrophoretic properties of a molecule. Affinity electrophoresis methods detect changes in the electrophoretic pattern of molecules (mainly macromolecules) that occur as a result of biospecific interactions or complex formation. Lectin affinity electrophoresis is a very effective method for the detection and analysis of trace amounts of glycobiological substances. It is particularly useful for isolating and separating the glycoisomers of target molecules. Here, we describe a sensitive technique for the detection of glycoproteins separated by agarose gel-lectin affinity electrophoresis that uses antibody-affinity blotting. The technique is tested using α-fetoprotein with lectin (Lens culinaris agglutinin and Phaseolus vulgaris agglutinin)-agarose gels.

  19. Molecular recognition of agonist ligands by RXRs.

    PubMed

    Egea, Pascal F; Mitschler, André; Moras, Dino

    2002-05-01

    The nuclear receptor RXR is an obligate partner in many signal transduction pathways. We report the high-resolution structures of two complexes of the human RXRalpha ligand-binding domain specifically bound to two different and chemically unrelated agonist compounds: docosa hexaenoic acid, a natural derivative of eicosanoic acid, present in mammalian cells and recently identified as a potential endogenous RXR ligand in the mouse brain, and the synthetic ligand BMS 649. In both structures the RXR-ligand-binding domain forms homodimers and exhibits the active conformation previously observed with 9-cis-RA. Analysis of the differences in ligand-protein contacts (predominantly van der Waals forces) and binding cavity geometries and volumes for the several agonist-bound RXR structures clarifies the structural features important for ligand recognition. The L-shaped ligand-binding pocket adapts to the diverse ligands, especially at the level of residue N306, which might thus constitute a new target for drug-design. Despite its highest affinity 9-cis-RA displays the lowest number of ligand-protein contacts. These structural results support the idea that docosa hexaenoic acid and related fatty acids could be natural agonists of RXRs and question the real nature of the endogenous ligand(s) in mammalian cells.

  20. Small-molecule AT2 receptor agonists.

    PubMed

    Hallberg, Mathias; Sumners, Colin; Steckelings, U Muscha; Hallberg, Anders

    2017-06-13

    The discovery of the first selective, small-molecule ATR receptor (AT2R) agonist compound 21 (C21) (8) that is now extensively studied in a large variety of in vitro and in vivo models is described. The sulfonylcarbamate derivative 8, encompassing a phenylthiofen scaffold is the drug-like agonist with the highest affinity for the AT2R reported to date (Ki = 0.4 nM). Structure-activity relationships (SAR), regarding different biaryl scaffolds and functional groups attached to these scaffolds and with a particular focus on the impact of various para substituents displacing the methylene imidazole group of 8, are discussed. Furthermore, the consequences of migration of the methylene imidazole group and presumed structural requirements for ligands that are aimed as AT2R agonists (e.g. 8) or AT2R antagonists (e.g. 9), respectively, are briefly addressed. A summary of the pharmacological actions of C21 (8) is also presented. © 2017 Wiley Periodicals, Inc.

  1. The Discovery of Novel Selective D1 Dopaminergic Agonists: A-68930, A-77636, A-86929, and ABT-413

    PubMed Central

    Martin, Yvonne Connolly

    2011-01-01

    The novel selective D1 dopaminergic full agonists A-68930, A-77636 were discovered by the synthesis of molecules to probe the bioactive conformation of the partial agonist SKF-38393, by the use of this information to add D1 affinity and selectivity to a screening hit, and by traditional medicinal chemistry exploration of structure-activity relationships. The subsequent design of A-86929 and ABT-413 capitalized on these results, recently disclosed agonists, and traditional medicinal chemistry. PMID:25954518

  2. Histamine H3-receptor inverse agonists as novel antipsychotics.

    PubMed

    Ito, Chihiro

    2009-06-01

    Schizophrenia (SZ) that is resistant to treatment with dopamine (DA) D2 antagonists may involve changes other than those in the dopaminergic system. Recently, histamine (HA), which regulates arousal and cognitive functions, has been suggested to act as a neurotransmitter in the central nervous system. Four HA receptors-H1, H2, H3, and H4-have been identified. Our recent basic and clinical studies revealed that brain HA improved the symptoms of SZ. The H3 receptor is primarily localized in the central nervous system, and it acts not only as a presynaptic autoreceptor that modulates the HA release but also as a presynaptic heteroreceptor that regulates the release of other neurotransmitters such as monoamines and amino acids. H3-receptor inverse agonists have been considered to improve cognitive functions. Many atypical antipsychotics are H3-receptor antagonists. Imidazole-containing H3-receptor inverse agonists inhibit not only cytochrome P450 but also hERG potassium channels (encoded by the human ether-a-go-go-related gene). Several imidazole H3-receptor inverse agonists also have high affinity for H4 receptors, which are expressed at high levels in mast cells and leukocytes. Clozapine is an H4-receptor agonist; this agonist activity may be related to the serious side effect of agranulocytosis caused by clozapine. Therefore, selective non-imidazole H3-receptor inverse agonists can be considered as novel antipsychotics that may improve refractory SZ.

  3. Beta-Adrenergic Agonists

    PubMed Central

    Barisione, Giovanni; Baroffio, Michele; Crimi, Emanuele; Brusasco, Vito

    2010-01-01

    Inhaled β2-adrenoceptor (β2-AR) agonists are considered essential bronchodilator drugs in the treatment of bronchial asthma, both as symptoms-relievers and, in combination with inhaled corticosteroids, as disease-controllers. In this article, we first review the basic mechanisms by which the β2-adrenergic system contributes to the control of airway smooth muscle tone. Then, we go on describing the structural characteristics of β2-AR and the molecular basis of G-protein-coupled receptor signaling and mechanisms of its desensitization/ dysfunction. In particular, phosphorylation mediated by protein kinase A and β-adrenergic receptor kinase are examined in detail. Finally, we discuss the pivotal role of inhaled β2-AR agonists in the treatment of asthma and the concerns about their safety that have been recently raised. PMID:27713285

  4. Melatonin agonists and insomnia.

    PubMed

    Ferguson, Sally A; Rajaratnam, Shantha M W; Dawson, Drew

    2010-02-01

    The ability of melatonin to shift biological rhythms is well known. As a result, melatonin has been used in the treatment of various circadian rhythm sleep disorders, such as advanced and delayed sleep phase disorders, jet lag and shiftwork disorder. The current evidence for melatonin being efficacious in the treatment of primary insomnia is less compelling. The development of agents that are selective for melatonin receptors provides opportunity to further elucidate the actions of melatonin and its receptors and to develop novel treatments for specific types of sleep disorders. The agonists reviewed here - ramelteon, tasimelteon and agomelatine - all appear to be efficacious in the treatment of circadian rhythm sleep disorders and some types of insomnia. However, further studies are required to understand the mechanisms of action, particularly for insomnia. Clinical application of the agonists requires a good understanding of their phase-dependent properties. Long-term effects of melatonin should be evaluated in large-scale, independent randomized controlled trials.

  5. Receptor crosstalk protein, calcyon, regulates affinity state of dopamine D1 receptors.

    PubMed

    Lidow, M S; Roberts, A; Zhang, L; Koh, P O; Lezcano, N; Bergson, C

    2001-09-21

    The recently cloned protein, calcyon, potentiates crosstalk between G(s)-coupled dopamine D1 receptors and heterologous G(q/11)-coupled receptors allowing dopamine D1 receptors to stimulate intracellular Ca(2+) release, in addition to cAMP production. This crosstalk also requires the participating G(q/11)-coupled receptors to be primed by their agonists. We examined the ability of calcyon and priming to regulate the affinity of dopamine D1 receptors for its ligands. Receptor binding assays were performed on HEK293 cell membrane preparations expressing dopamine D1 receptors either alone or in combination with calcyon. Co-expression of dopamine D1 receptor and calcyon affected neither the affinity of this receptor for antagonists nor the affinity of agonist binding to this receptor high and low-affinity states. However, the presence of calcyon dramatically decreased the proportion of the high-affinity dopamine D1 receptor agonist binding sites. This decrease was reversed by carbachol, which primes the receptor crosstalk by stimulating endogenous G(q/11)-coupled muscarinic receptors. Our findings suggest that calcyon regulates the ability of dopamine D1 receptors to achieve the high-affinity state for agonists, in a manner that depends on priming of receptor crosstalk.

  6. Use-dependent inhibition of P2X3 receptors by nanomolar agonist.

    PubMed

    Pratt, Emily B; Brink, Thaddeus S; Bergson, Pamela; Voigt, Mark M; Cook, Sean P

    2005-08-10

    P2X3 receptors desensitize within 100 ms of channel activation, yet recovery from desensitization requires several minutes. The molecular basis for this slow rate of recovery is unknown. We designed experiments to test the hypothesis that this slow recovery is attributable to the high affinity (< 1 nM) of desensitized P2X3 receptors for agonist. We found that agonist binding to the desensitized state provided a mechanism for potent inhibition of P2X3 current. Sustained applications of 0.5 nM ATP inhibited > 50% of current to repetitive applications of P2X3 agonist. Inhibition occurred at 1000-fold lower agonist concentrations than required for channel activation and showed strong use dependence. No inhibition occurred without previous activation and desensitization. Our data are consistent with a model whereby inhibition of P2X3 by nanomolar [agonist] occurs by the rebinding of agonist to desensitized channels before recovery from desensitization. For several ATP analogs, the concentration required to inhibit P2X3 current inversely correlated with the rate of recovery from desensitization. This indicates that the affinity of the desensitized state and recovery rate primarily depend on the rate of agonist unbinding. Consistent with this hypothesis, unbinding of [32P]ATP from desensitized P2X3 receptors mirrored the rate of recovery from desensitization. As expected, disruption of agonist binding by site-directed mutagenesis increased the IC50 for inhibition and increased the rate of recovery.

  7. Synthetic studies of neoclerodane diterpenoids from Salvia splendens and evaluation of Opioid Receptor affinity.

    PubMed

    Fontana, Gianfranco; Savona, Giuseppe; Rodríguez, Benjamín; Dersch, Christina M; Rothman, Richard B; Prisinzano, Thomas E

    2008-12-20

    Salvinorin A (1), a neoclerodane diterpene from the hallucinogenic mint Salvia divinorum, is the only known non-nitrogenous and specific kappa-opioid agonist. Several structural congeners of 1 isolated from Salvia splendens (2 - 8) together with a series of semisynthetic derivatives (9 - 24), some of which possess a pyrazoline structural moiety (9, 19 - 22), have been tested for affinity at human mu, delta, and kappa opioid receptors. None of these compounds showed high affinity binding to these receptors. However, 10 showed modest affinity for kappa receptors suggesting other naturally neoclerodanes from different Salvia species may possess opioid affinity.

  8. High-affinity carbamate analogues of morphinan at opioid receptors.

    PubMed

    Peng, Xuemei; Knapp, Brian I; Bidlack, Jean M; Neumeyer, John L

    2007-03-15

    A series of carbamate analogues were synthesized from levorphanol (1a), cyclorphan (2a) or butorphan (3a) and evaluated in vitro for their binding affinity at mu, delta, and kappa opioid receptors. Functional activities of these compounds were measured in the [(35)S]GTPgammaS binding assay. Phenyl carbamate derivatives 2d and 3d showed the highest binding affinity for kappa receptor (K(i)=0.046 and 0.051 nM) and for mu receptor (K(i)=0.11 and 0.12 nM). Compound 1c showed the highest mu selectivity. The preliminary assay for agonist and antagonist properties of these ligands in stimulating [(35)S]GTPgammaS binding mediated by the kappa opioid receptor illustrated that all of these ligands were kappa agonists. At the mu receptor, compounds 1b, 1c, 2b, and 3b were agonists, while compounds 2c-e and 3c-e were mu agonists/antagonists.

  9. Affine Sphere Relativity

    NASA Astrophysics Data System (ADS)

    Minguzzi, E.

    2017-03-01

    We investigate spacetimes whose light cones could be anisotropic. We prove the equivalence of the structures: (a) Lorentz-Finsler manifold for which the mean Cartan torsion vanishes, (b) Lorentz-Finsler manifold for which the indicatrix (observer space) at each point is a convex hyperbolic affine sphere centered on the zero section, and (c) pair given by a spacetime volume and a sharp convex cone distribution. The equivalence suggests to describe (affine sphere) spacetimes with this structure, so that no algebraic-metrical concept enters the definition. As a result, this work shows how the metric features of spacetime emerge from elementary concepts such as measure and order. Non-relativistic spacetimes are obtained replacing proper spheres with improper spheres, so the distinction does not call for group theoretical elements. In physical terms, in affine sphere spacetimes the light cone distribution and the spacetime measure determine the motion of massive and massless particles (hence the dispersion relation). Furthermore, it is shown that, more generally, for Lorentz-Finsler theories non-differentiable at the cone, the lightlike geodesics and the transport of the particle momentum over them are well defined, though the curve parametrization could be undefined. Causality theory is also well behaved. Several results for affine sphere spacetimes are presented. Some results in Finsler geometry, for instance in the characterization of Randers spaces, are also included.

  10. Analysis of full and partial agonists binding to beta2-adrenergic receptor suggests a role of transmembrane helix V in agonist-specific conformational changes.

    PubMed

    Katritch, Vsevolod; Reynolds, Kimberly A; Cherezov, Vadim; Hanson, Michael A; Roth, Christopher B; Yeager, Mark; Abagyan, Ruben

    2009-01-01

    The 2.4 A crystal structure of the beta(2)-adrenergic receptor (beta(2)AR) in complex with the high-affinity inverse agonist (-)-carazolol provides a detailed structural framework for the analysis of ligand recognition by adrenergic receptors. Insights into agonist binding and the corresponding conformational changes triggering G-protein coupled receptor (GPCR) activation mechanism are of special interest. Here we show that while the carazolol pocket captured in the beta(2)AR crystal structure accommodates (-)-isoproterenol and other agonists without steric clashes, a finite movement of the flexible extracellular part of TM-V helix (TM-Ve) obtained by receptor optimization in the presence of docked ligand can further improve the calculated binding affinities for agonist compounds. Tilting of TM-Ve towards the receptor axis provides a more complete description of polar receptor-ligand interactions for full and partial agonists, by enabling optimal engagement of agonists with two experimentally identified anchor sites, formed by Asp113/Asn312 and Ser203/Ser204/Ser207 side chains. Further, receptor models incorporating a flexible TM-V backbone allow reliable prediction of binding affinities for a set of diverse ligands, suggesting potential utility of this approach to design of effective and subtype-specific agonists for adrenergic receptors. Systematic differences in capacity of partial, full and inverse agonists to induce TM-V helix tilt in the beta(2)AR model suggest potential role of TM-V as a conformational "rheostat" involved in the whole spectrum of beta(2)AR responses to small molecule signals.

  11. Structure-Activity Relationship and Signaling of New Chimeric CXCR4 Agonists.

    PubMed

    Mona, Christine E; Besserer-Offroy, Élie; Cabana, Jérôme; Lefrançois, Marilou; Boulais, Philip E; Lefebvre, Marie-Reine; Leduc, Richard; Lavigne, Pierre; Heveker, Nikolaus; Marsault, Éric; Escher, Emanuel

    2016-08-25

    The CXCR4 receptor binds with meaningful affinities only CXCL12 and synthetic antagonists/inverse agonists. We recently described high affinity synthetic agonists for this chemokine receptor, obtained by grafting the CXCL12 N-terminus onto the inverse agonist T140. While those chimeric molecules behave as agonists for CXCR4, their binding and activation mode are unknown. The present SAR of those CXCL12-oligopeptide grafts reveals the key determinants involved in CXCR4 activation. Position 3 (Val) controls affinity, whereas position 7 (Tyr) acts as an efficacy switch. Chimeric molecules bearing aromatic residues in position 3 possess high binding affinities for CXCR4 and are Gαi full agonists with robust chemotactic properties. Fine-tuning of electron-poor aromatic rings in position 7 enhances receptor activation. To rationalize these results, a homology model of a receptor-ligand complex was built using the published crystal structures of CXCR4. Molecular dynamics simulations reveal further details accounting for the observed SAR for this series.

  12. Analysis of the agonist activity of fenoldopam (SKF 82526) at the vascular 5-HT2 receptor.

    PubMed Central

    Christie, M. I.; Harper, D.; Smith, G. W.

    1992-01-01

    1. The 5-HT2 receptor agonist activity of fenoldopam (SKF 82526) was characterized in the rabbit isolated aorta preparation. 2. Fenoldopam was an agonist at the vascular 5-HT2 receptor with lower affinity and efficacy than the naturally occurring agonist 5-hydroxytryptamine (5-HT). Fenoldopam had an affinity (pKA) of 5.84 +/- 0.04 and efficacy (tau) of 0.57 +/- 0.04, whereas 5-HT had a pKA of 6.65 +/- 0.12 and tau of 2.66 +/- 0.41. 3. The constrictor effects of fenoldopam and 5-HT were competitively antagonized by the 5-HT2 antagonist, ketanserin, with pKB values of 8.81 +/- 0.11 and 8.83 +/- 0.10 respectively. 4. Prior incubation with fenoldopam produced a concentration-related rightward shift of a subsequent 5-HT concentration-response curve. This inhibition was specific for 5-HT since constrictor responses to angiotensin II were unaffected. 5. This study indicates that the D1 receptor agonist, fenoldopam, acts as an agonist at the vascular 5-HT2 receptor, but with an affinity and efficacy less than that of the naturally occurring agonist, 5-HT. PMID:1361397

  13. Modification of opiate agonist binding by pertussis toxin

    SciTech Connect

    Abood, M.E.; Lee, N.M.; Loh, H.H.

    1986-03-05

    Opiate agonist binding is decreased by GTP, suggesting the possible involvement of GTP binding proteins in regulation of opiate receptor binding. This possibility was addressed by asking whether pertussis toxin treatment, which results in ADP-ribosylation and modification of G proteins, would alter opiate agonist binding. The striatum was chosen for the initial brain area to be studied, since regulation of opiate action in this area had been shown to be modified by pertussis toxin. Treatment of striatal membranes with pertussis toxin results in up to a 55% decrease in /sup 3/(H)-DADLE binding as compared with membranes treated identically without toxin. This corresponds to a near complete ADP-ribosylation of both G proteins in the striatal membrane. The decrease in agonist binding appears to be due to an altered affinity of the receptor for agonist as opposed to a decrease in the number of sites. This effect of pertussis toxin on opiate agonist binding demonstrates the actual involvement of G proteins in regulation of opiate receptor binding.

  14. Imaging the high-affinity state of the dopamine D2 receptor in vivo: Fact or fiction?

    PubMed Central

    Skinbjerg, Mette; Sibley, David R.; Javitch, Jonathan A.; Abi-Dargham, Anissa

    2013-01-01

    Positron Emission Tomography (PET) has been used for more than three decades to image and quantify dopamine D2 receptors (D2R) in vivo with antagonist radioligands but in the recent years agonist radioligands have also been employed. In vitro competition studies have demonstrated that agonists bind to both a high and a low-affinity state of the D2Rs, of which the high affinity state reflects receptors that are coupled to G-proteins and the low-affinity state reflects receptors uncoupled from G-proteins. In contrast, antagonists bind with uniform affinity to the total pool of receptors. Results of these studies led to the proposal that D2Rs exist in high and low-affinity states for agonists in vivo and sparked the development and use of agonist radioligands for PET imaging with the primary purpose of measuring the proportion of receptors in the high-affinity (activating) state. Although several lines of research support the presence of high and low-affinity states of D2Rs and their detection by in vivo imaging paradigms, a growing body of controversial data has now called this into question. These include both in vivo and ex vivo studies of anesthesia effects, rodent models with increased proportions of high-affinity state D2Rs as well as the molecular evidence for stable receptor–G-protein complexes. In this commentary we review these data and discuss the evidence for the in vivo existence of D2Rs configured in high and low-affinity states and whether or not the high-affinity state of the D2R can, in fact, be imaged in vivo with agonist radioligands. PMID:21945484

  15. Virtual screening of CB(2) receptor agonists from bayesian network and high-throughput docking: structural insights into agonist-modulated GPCR features.

    PubMed

    Renault, Nicolas; Laurent, Xavier; Farce, Amaury; El Bakali, Jamal; Mansouri, Roxane; Gervois, Philippe; Millet, Régis; Desreumaux, Pierre; Furman, Christophe; Chavatte, Philippe

    2013-04-01

    The relevance of CB(2)-mediated therapeutics is well established in the treatment of pain, neurodegenerative and gastrointestinal tract disorders. Recent works such as the crystallization of class-A G-protein-coupled receptors in a range of active states and the identification of specific anchoring sites for CB(2) agonists challenged us to design a reliable agonist-bound homology model of CB(2) receptor. Docking-scoring enrichment tests of a high-throughput virtual screening of 140 compounds led to 13 hits within the micromolar affinity range. Most of these hits behaved as CB(2) agonists, among which two novel full agonists emerged. Although the main challenge was a high-throughput docking run targeting an agonist-bound state of a CB(2) model, a prior 2D ligand-based Bayesian network was computed to enrich the input commercial library for 3D screening. The exclusive discovery of agonists illustrates the reliability of this agonist-bound state model for the identification of polar and aromatic amino acids as new agonist-modulated CB(2) features to be integrated in the wide activation pathway of G-protein-coupled receptors.

  16. Agonist actions of neonicotinoids on nicotinic acetylcholine receptors expressed by cockroach neurons.

    PubMed

    Tan, Jianguo; Galligan, James J; Hollingworth, Robert M

    2007-07-01

    The agonist actions of seven commercial neonicotinoid insecticides and nicotine were studied on nicotinic acetylcholine receptors (nAChRs) expressed by neurons isolated from the three thoracic ganglia of the American cockroach, Periplaneta americana. Single electrode voltage clamp recording was used to measure agonist-induced inward currents. Acetylcholine, nicotine and all neonicotinoids tested, except thiamethoxam, caused inward currents which were blocked reversibly by methyllycaconitine, a nAChR antagonist. Based on maximum inward currents, neonicotinoids could be divided into two subgroups: (1) those with a heterocyclic ring in their electronegative pharmacophore moiety (i.e. nicotine, imidacloprid and thiacloprid) were relatively weak partial agonists causing only 20-25% of the maximum ACh current and (2) open chain compounds (i.e. acetamiprid, dinotefuran, nitenpyram, and clothiandin) which were much more effective agonists producing 60-100% of the maximum ACh current. These compounds also elicited different symptoms of poisoning in American cockroaches with excitatory responses evident for the low efficacy agonists but depressive and paralytic responses predominating for the most efficacious agonists. No correlation was observed between agonist affinity and efficacy on these nAChRs. Thiamethoxam, even at 100 microM, failed to cause an inward current and showed no competitive interaction with other neonicotinoids on nAChRs, indicating that it is not a direct-acting agonist or antagonist. Despite the probable presence of multiple subtypes of nAChRs on cockroach neurons, competition studies between neonicotinoids did not reveal evidence that separate binding sites exist for the tested compounds. The size of inward currents induced by co-application of neonicotinoid pairs at equal concentration (100 microM) were predominantly determined by the one with higher binding affinity as indicated by EC(50) values, rather than by the one with higher binding efficacy as

  17. Agonist signalling properties of radiotracers used for imaging of dopamine D2/3 receptors

    PubMed Central

    2014-01-01

    Background Dopamine D2/3 receptor (D2/3R) agonist radiopharmaceuticals are considered superior to antagonists to detect dopamine release, e.g. induced by amphetamines. Agonists bind preferentially to the high-affinity state of the dopamine D2R, which has been proposed as the reason why agonists are more sensitive to detect dopamine release than antagonist radiopharmaceuticals, but this theory has been challenged. Interestingly, not all agonists similarly activate the classic cyclic adenosine mono phosphate (cAMP) and the ?-arrestin-2 pathway, some stimulate preferentially one of these pathways; a phenomenon called biased agonism. Because these pathways can be affected separately by pathologies or drugs (including dopamine releasers), it is important to know how agonist radiotracers act on these pathways. Therefore, we characterized the intracellular signalling of the well-known D2/3R agonist radiopharmaceuticals NPA and PHNO and of several novel D2/3R agonists. Methods cAMP accumulation and ?-arrestin-2 recruitment were measured on cells expressing human D2R. Results All tested agonists showed (almost) full agonism in both pathways. Conclusions The tested D2/3R agonist radiopharmaceuticals did not exhibit biased agonism in vitro. Consequently, it is likely that drugs (including psychostimulants like amphetamines) and/or pathologies that influence the cAMP and/or the ?-arrestin-2 pathway may influence the binding of these radiopharmaceuticals. PMID:25977878

  18. The pharmacology of epanolol (ICI 141292)--a new beta 1-selective adrenoceptor partial agonist.

    PubMed

    Bilski, A J; Hadfield, S E; Wale, J L

    1988-08-01

    The clinical benefit of beta-adrenoceptor partial agonists is still debated. To clarify the situation, epanolol, ICI 141,292 [N-[-2-(3-o-cyanophenoxy-2-hydroxypropylamino)ethyl]-4- hydroxyphenylactamide], has been developed to assess the role of modest beta-adrenoceptor partial agonist activity in humans. Animal studies have shown that epanolol is a potent beta-adrenoceptor partial agonist with a greater affinity for beta 1- than beta 2-adrenoceptors. In vitro, the PA2 values obtained for espanolol at atrial and tracheal beta-adrenoceptors were 8.42 and 6.33, respectively (isoproterenol as agonist), giving a selectivity ratio of 123. The potency was studied in vivo in the dog, where it was also shown that as an antagonist at the cardiac beta 1-adrenoceptor, it was 18 and 40 times more potent than atenolol and practolol, respectively. Espanolol has less partial agonist activity in the rat than pindolol, but more than practolol. In this species, it is also a classical partial agonist, exhibiting agonist activity at all beta-adrenoceptor blocking doses. This is in contrast to pindolol, which caused predominantly beta-adrenoceptor blockade at low doses and partial agonist activity at higher doses. These differences were confirmed in haemodynamic studies in the dog. In contrast to many other partial agonists, the partition coefficient, log P, of epanolol in octanol and water is low (0.92).

  19. Affinities of dihydrocodeine and its metabolites to opioid receptors.

    PubMed

    Schmidt, Helmut; Vormfelde, Stefan v; Klinder, Klaus; Gundert-Remy, Ursula; Gleiter, Christoph H; Skopp, Gisela; Aderjan, Rolf; Fuhr, Uwe

    2002-08-01

    Dihydrocodeine is metabolized to dihydromorphine, dihydrocodeine-6-O-, dihydromorphine-3-O- and dihydromorphine-6-O-glucuronide, and nordihydrocodeine. The current study was conducted to evaluate the affinities of dihydrocodeine and its metabolites to mu-, delta- and kappa-opioid receptors. Codeine, morphine, d,1-methadone and levomethadone were used as controls. Displacement binding experiments were carried out at the respective opioid receptor types using preparations of guinea pig cerebral cortex and the specific opioid agonists [5H]DAMGO (mu-opioid receptor), [3H]DPDPE (delta-opioid receptor) and [3H]U69,593 (K-opioid receptor) as radioactive ligands at concentrations of 0.5, 1.0 and 1.0 nmol/l, respectively. All substances had their greatest affinity to the mu-opioid receptor. The affinities of dihydromorphine and dihydromorphine-6-O-glucuronide were at least 70 times greater compared with dihydrocodeine (Ki 0.3 micromol/l), whereas the other metabolites yielded lower affinities. For the delta-opioid receptor, the order of affinities was similar with the exception that dihydrocodeine-6-O-glucuronide revealed a doubled affinity in relation to dihydrocodeine (Ki 5.9 micromol/l). In contrast, for the K-opioid receptor, dihydrocodeine-6-O- and dihydromorphine-6-O-glucuronide had clearly lower affinities compared to the respective parent compounds. The affinity of nordihydrocodeine was almost identical to that of dihydrocodeine (Ki 14 micromol/l), whereas dihydromorphine had a 60 times higher affinity. These results suggest that dihydromorphine and its 6-O-glucuronide may provide a relevant contribution to the pharmacological effects of dihydrocodeine. The O-demethylation of dihydrocodeine to dihydromorphine is mediated by the polymorphic cytochrome P-450 enzyme CYP2D6, resulting in different metabolic profiles in extensive and poor metabolizers. About 7% of the caucasian population which are CYP2D6 poor metabolizers thus may experience therapeutic failure after

  20. Studies Toward the Pharmacophore of Salvinorin A, a Potent Kappa Opioid Receptor Agonist

    PubMed Central

    Munro, Thomas A.; Rizzacasa, Mark A.; Roth, Bryan L.; Toth, Beth A.; Yan, Feng

    2009-01-01

    Salvinorin A (1), from the sage Salvia divinorum, is a potent and selective kappa opioid receptor (KOR) agonist. We screened other salvinorins and derivatives for binding affinity and functional activity at opioid receptors. Our results suggest that the methyl ester and furan ring are required for activity, but that the lactone and ketone functionalities are not. Other salvinorins showed negligible binding affinity at the KOR. None of the compounds bound to mu or delta opioid receptors. PMID:15658846

  1. Studies toward the pharmacophore of salvinorin A, a potent kappa opioid receptor agonist.

    PubMed

    Munro, Thomas A; Rizzacasa, Mark A; Roth, Bryan L; Toth, Beth A; Yan, Feng

    2005-01-27

    Salvinorin A (1), from the sage Salvia divinorum, is a potent and selective kappa opioid receptor (KOR) agonist. We screened other salvinorins and derivatives for binding affinity and functional activity at opioid receptors. Our results suggest that the methyl ester and furan ring are required for activity but that the lactone and ketone functionalities are not. Other salvinorins showed negligible binding affinity at the KOR. None of the compounds bound to mu or delta opioid receptors.

  2. Purification of L-( sup 3 H) Nicotine eliminates low affinity binding

    SciTech Connect

    Romm, E.; Marks, M.J.; Collins, A.C. ); Lippiello, P.M. )

    1990-01-01

    Some studies of L-({sup 3}H) nicotine binding to rodent and human brain tissue have detected two binding sites as evidenced by nonlinear Scatchard plots. Evidence presented here indicated that the low affinity binding site is not stereospecific, is not inhibited by low concentrations of cholinergic agonists and is probably due to breakdown products of nicotine since purification of the L-({sup 3}H)nicotine eliminates the low affinity site.

  3. Benzodiazepine agonist and inverse agonist actions on GABAA receptor-operated chloride channels. II. Chronic effects of ethanol

    SciTech Connect

    Buck, K.J.; Harris, R.A. )

    1990-05-01

    Mice were made tolerant to and dependent on ethanol by administration of a liquid diet. Gamma-aminobutyric acid (GABA) receptor-dependent uptake of 36Cl- by mouse cortical microsacs was used to study the actions of benzodiazepine (BZ) agonists and inverse agonists. Chronic exposure to ethanol attenuated the ability of a BZ agonist, flunitrazepam, to augment muscimol-stimulated uptake of 36Cl- and enhanced the actions of BZ inverse agonists, Ro15-4513 (ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo(1,4)-benzodiazepine - 3-carboxylate) and DMCM (methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate), to inhibit GABAA receptor-operated chloride channels. Augmentation of chloride flux by pentobarbital was not reduced by chronic ethanol exposure. Attenuation of flunitrazepam efficacy was transient and returned to control levels within 6 to 24 hr after withdrawal from ethanol, but increased sensitivity to Ro15-4513 was observed as long as 8 days after withdrawal. Chronic exposure to ethanol did not alter (3H)SR 95531 (2-(3'-carbethoxy-2'propyl)-3-amino-6-p-methoxyphenylpyridazinium bromide) binding to low-affinity GABAA receptors or muscimol stimulation of chloride flux; and did not alter (3H)Ro15-4513 or (3H)flunitrazepam binding to central BZ receptors or allosteric modulation of this binding by muscimol (i.e., muscimol-shift). These results suggest that chronic exposure to ethanol reduces coupling between BZ agonist sites and the chloride channel, and may be responsible for the development of cross-tolerance between ethanol and BZ agonists. In contrast, coupling between BZ inverse agonist sites and the chloride channel is increased.

  4. Correlation between myometrial receptor affinity, lipophilicity and antagonistic potency of oxytocin analogues in the rat.

    PubMed

    Atke, A; Vilhardt, H; Melin, P

    1988-08-01

    Purified myometrial plasma membrane fractions were prepared from rats treated with oestradiol to induce oestrus. The binding affinities of 11 antagonistic oxytocin analogues to the oxytocin receptor of the plasma membranes were measured. Furthermore, lipophilicity of the peptides was assessed by reversed-phase high pressure liquid chromatography. No significant correlation was found between lipophilicity of the analogues and values for antagonistic potencies or binding affinities. Also, receptor-binding affinity did not correlate with in-vitro antagonistic activity whereas a significant correlation was obtained between binding affinities and in-vivo antagonistic potency for analogues void of partial agonist properties. It is concluded that neither receptor affinity nor lipophilicity in the analogues can predict the potency of the antagonists in vitro. However, receptor affinity was found to be a relatively good predictor of the in-vivo potency, while the usefulness of measuring antagonistic potency in vitro is questioned.

  5. Activation of single heteromeric GABAA receptor ion channels by full and partial agonists

    PubMed Central

    Mortensen, Martin; Kristiansen, Uffe; Ebert, Bjarke; Frølund, Bente; Krogsgaard-Larsen, Povl; Smart, Trevor G

    2004-01-01

    The linkage between agonist binding and the activation of a GABAA receptor ion channel is yet to be resolved. This aspect was examined on human recombinant α1β2γ2S GABAA receptors expressed in human embryonic kidney cells using the following series of receptor agonists: GABA, isoguvacine, 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), isonipecotic acid, piperidine-4-sulphonic acid (P4S), imidazole-4-acetic acid (IAA), 5-(4-piperidyl)-3-isothiazolol (thio-4-PIOL) and 5-(4-piperidyl)-3-isoxazolol (4-PIOL). Whole-cell concentration–response curves enabled the agonists to be categorized into four classes based upon their maximum responses. Single channel analyses revealed that the channel conductance of 25–27 pS was unaffected by the agonists. However, two open states were resolved from the open period distributions with mean open times reduced 5-fold by the weakest partial agonists. Using saturating agonist concentrations, estimates of the channel shutting rate, α, ranged from 200 to 600 s−1. The shut period distributions were described by three or four components and for the weakest partial agonists, the interburst shut periods increased whilst the mean burst durations and longest burst lengths were reduced relative to the full agonists. From the burst analyses, the opening rates for channel activation, β, and the total dissociation rates, k−1, for the agonists leaving the receptor were estimated. The agonist efficacies were larger for the full agonists (E ∼7−9) compared to the weak partial agonists (∼0.4–0.6). Overall, changes in agonist efficacy largely determined the different agonist profiles with contributions from the agonist affinities and the degree of receptor desensitization. From this we conclude that GABAA receptor activation does not occur in a switch-like manner since the agonist recognition sites are flexible, accommodating diverse agonist structures which differentially influence the opening and shutting rates of the ion

  6. Agonist and antagonist protect sulfhydrals in the binding site of the D-1 dopamine receptor

    SciTech Connect

    Sidhu, A.; Kebabian, J.W.; Fishman, P.H.

    1986-05-01

    An iodinated compound (/sup 125/I)-SCH 23982 (8-iodo-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepine-7-ol) has been characterized as a specific, high affinity (Kd = 0.7 nM) ligand for the D-1 dopamine receptor. The ligand binding site of the D-1 receptor in rat striatum was inactivated by N-ethylmaleimide (NEM) in a time and concentration dependent manner. The inactivation was rapid and irreversible with a 70% net loss of binding sites. Scatchard analysis of binding to NEM-treated tissue showed a decrease both in receptor number and in radioligand affinity. The remaining receptors retained their selectivity for stereoisomers of both agonist and antagonist. Receptor occupancy by either a D-1 specific agonist or antagonist protected in a dose dependent manner the binding sites from inactivation by NEM; the agonist was more effective than the antagonist. The agonist high affinity site, however, was abolished in the absence or presence of protective compound, presumably because of inactivation of the GTP-binding component of adenylate cyclase. In this regard, there was a total loss of agonist- and forskolin-stimulated adenylate cyclase activity after NEM treatment. The authors conclude that the D-1 dopamine receptor contains NEM-sensitive sulfhydral group(s) at or near the vicinity of the ligand binding site.

  7. Retinoic acid receptor β2 agonists restore glycaemic control in diabetes and reduce steatosis.

    PubMed

    Trasino, S E; Tang, X-H; Jessurun, J; Gudas, L J

    2016-02-01

    To investigate the effects of specific retinoic acid receptor (RAR) agonists in diabetes and fatty liver disease. Synthetic agonists for RARβ2 were administered to wild-type (wt) mice in a model of high-fat-diet (HFD)-induced type 2 diabetes (T2D) and to ob/ob and db/db mice (genetic models of obesity-associated T2D). We show that administration of synthetic agonists for RARβ2 to either wt mice in a model of HFD-induced T2D or to ob/ob and db/db mice reduces hyperglycaemia, peripheral insulin resistance and body weight. Furthermore, RARβ2 agonists dramatically reduce steatosis, lipid peroxidation and oxidative stress in the liver, pancreas and kidneys of obese, diabetic mice. RARβ2 agonists also lower levels of mRNAs involved in lipogenesis, such as sterol regulatory element-binding transcription factor 1 (SREBP1) and fatty acid synthase, and increase mRNAs that mediate mitochondrial fatty acid β-oxidation, such as CPT1α, in these organs. RARβ2 agonists lower triglyceride levels in these organs, and in muscle. Collectively, our data show that orally active, rapid-acting, high-affinity pharmacological agonists for RARβ2 improve the diabetic phenotype while reducing lipid levels in key insulin target tissues. We suggest that RARβ2 agonists should be useful drugs for T2D therapy and for treatment of hepatic steatosis. © 2015 John Wiley & Sons Ltd.

  8. Classical and atypical agonists activate M1 muscarinic acetylcholine receptors through common mechanisms.

    PubMed

    Randáková, Alena; Dolejší, Eva; Rudajev, Vladimír; Zimčík, Pavel; Doležal, Vladimír; El-Fakahany, Esam E; Jakubík, Jan

    2015-07-01

    We mutated key amino acids of the human variant of the M1 muscarinic receptor that target ligand binding, receptor activation, and receptor-G protein interaction. We compared the effects of these mutations on the action of two atypical M1 functionally preferring agonists (N-desmethylclozapine and xanomeline) and two classical non-selective orthosteric agonists (carbachol and oxotremorine). Mutations of D105 in the orthosteric binding site and mutation of D99 located out of the orthosteric binding site decreased affinity of all tested agonists that was translated as a decrease in potency in accumulation of inositol phosphates and intracellular calcium mobilization. Mutation of D105 decreased the potency of the atypical agonist xanomeline more than that of the classical agonists carbachol and oxotremorine. Mutation of the residues involved in receptor activation (D71) and coupling to G-proteins (R123) completely abolished the functional responses to both classical and atypical agonists. Our data show that both classical and atypical agonists activate hM1 receptors by the same molecular switch that involves D71 in the second transmembrane helix. The principal difference among the studied agonists is rather in the way they interact with D105 in the orthosteric binding site. Furthermore, our data demonstrate a key role of D105 in xanomeline wash-resistant binding and persistent activation of hM1 by wash-resistant xanomeline. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. CB(1) receptor allosteric modulators display both agonist and signaling pathway specificity.

    PubMed

    Baillie, Gemma L; Horswill, James G; Anavi-Goffer, Sharon; Reggio, Patricia H; Bolognini, Daniele; Abood, Mary E; McAllister, Sean; Strange, Phillip G; Stephens, Gary J; Pertwee, Roger G; Ross, Ruth A

    2013-02-01

    We have previously identified allosteric modulators of the cannabinoid CB(1) receptor (Org 27569, PSNCBAM-1) that display a contradictory pharmacological profile: increasing the specific binding of the CB(1) receptor agonist [(3)H]CP55940 but producing a decrease in CB(1) receptor agonist efficacy. Here we investigated the effect one or both compounds in a broad range of signaling endpoints linked to CB(1) receptor activation. We assessed the effect of these compounds on CB(1) receptor agonist-induced [(35)S]GTPγS binding, inhibition, and stimulation of forskolin-stimulated cAMP production, phosphorylation of extracellular signal-regulated kinases (ERK), and β-arrestin recruitment. We also investigated the effect of these allosteric modulators on CB(1) agonist binding kinetics. Both compounds display ligand dependence, being significantly more potent as modulators of CP55940 signaling as compared with WIN55212 and having little effect on [(3)H]WIN55212 binding. Org 27569 displays biased antagonism whereby it inhibits: agonist-induced guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPγS) binding, simulation (Gα(s)-mediated), and inhibition (Gα(i)-mediated) of cAMP production and β-arrestin recruitment. In contrast, it acts as an enhancer of agonist-induced ERK phosphorylation. Alone, the compound can act also as an allosteric agonist, increasing cAMP production and ERK phosphorylation. We find that in both saturation and kinetic-binding experiments, the Org 27569 and PSNCBAM-1 appeared to influence only orthosteric ligand maximum occupancy rather than affinity. The data indicate that the allosteric modulators share a common mechanism whereby they increase available high-affinity CB(1) agonist binding sites. The receptor conformation stabilized by the allosterics appears to induce signaling and also selectively traffics orthosteric agonist signaling via the ERK phosphorylation pathway.

  10. Cariprazine:New dopamine biased agonist for neuropsychiatric disorders.

    PubMed

    De Deurwaerdère, P

    2016-02-01

    Cariprazine (RGH-188, MP-214, Vraylar[TM]) is a new dopamine receptor ligand developed for the treatment of several neuropsychiatric diseases including schizophrenia and bipolar disorders. Cariprazine displays higher affinity at dopamine D3 receptors and a similar affinity at D2 and 5-HT2B receptors. At variance with some atypical antipsychotics, its affinity at 5-HT1A, 5-HT2A and histamine H1 receptors is modest compared with its three main targets. Cariprazine could correspond to a biased agonist at dopamine receptors, displaying either antagonist or partial agonist properties depending on the signaling pathways linked to D2/D3 receptors. The compound crosses the blood-brain barrier, as revealed by positron emission tomography and pharmacokinetic studies in various species. Two main metabolites result mainly from the activity of CYP34A and display properties similar to those of the parent drug. Behavioral data report that cariprazine is efficacious in animal models addressing positive, negative and cognitive symptoms of schizophrenia with no extrapyramidal side effects. In September 2015, the FDA approved the use of cariprazine for the treatment of schizophrenia and type I bipolar disorder. The efficacy of cariprazine in other neuropsychiatric diseases is currently being evaluated in preclinical and clinical studies. Side effects have been observed in humans, including extrapyramidal side effects and akathisia of mild to moderate intensity. Copyright 2016 Prous Science, S.A.U. or its licensors. All rights reserved.

  11. High oxygen affinity hemoglobins.

    PubMed

    Mangin, O

    2017-02-01

    High oxygen affinity hemoglobins are responsible for rare and heterogeneous autosomic dominant genetic diseases. They cause pure erythrocytosis, sometimes accountable for hyperviscosity and thrombosis, or hemolysis. Differential diagnoses must be first ruled out. The diagnosis is based on the identification of a decreased P50, and their possible characterization by cation exchange-high performance liquid chromatography and capillary electrophoresis. Finally, genetic studies of the responsible globin chain gene will confirm the mutation. The prognosis mainly relies on the P50 decrease rate and on the hemoglobin cooperativity impairment. Disease management should be personalized, and it should primarily depend on smoking cessation and physical activity. Phlebotomy and platelet aggregation inhibitors' prescriptions can be discussed. There is no contraindication to flights, high-altitude conditions, or pregnancy. Nevertheless, blood donation must be prohibited. Copyright © 2016 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  12. Kernel Affine Projection Algorithms

    NASA Astrophysics Data System (ADS)

    Liu, Weifeng; Príncipe, José C.

    2008-12-01

    The combination of the famed kernel trick and affine projection algorithms (APAs) yields powerful nonlinear extensions, named collectively here, KAPA. This paper is a follow-up study of the recently introduced kernel least-mean-square algorithm (KLMS). KAPA inherits the simplicity and online nature of KLMS while reducing its gradient noise, boosting performance. More interestingly, it provides a unifying model for several neural network techniques, including kernel least-mean-square algorithms, kernel adaline, sliding-window kernel recursive-least squares (KRLS), and regularization networks. Therefore, many insights can be gained into the basic relations among them and the tradeoff between computation complexity and performance. Several simulations illustrate its wide applicability.

  13. Adjoint affine fusion and tadpoles

    SciTech Connect

    Urichuk, Andrew; Walton, Mark A.

    2016-06-15

    We study affine fusion with the adjoint representation. For simple Lie algebras, elementary and universal formulas determine the decomposition of a tensor product of an integrable highest-weight representation with the adjoint representation. Using the (refined) affine depth rule, we prove that equally striking results apply to adjoint affine fusion. For diagonal fusion, a coefficient equals the number of nonzero Dynkin labels of the relevant affine highest weight, minus 1. A nice lattice-polytope interpretation follows and allows the straightforward calculation of the genus-1 1-point adjoint Verlinde dimension, the adjoint affine fusion tadpole. Explicit formulas, (piecewise) polynomial in the level, are written for the adjoint tadpoles of all classical Lie algebras. We show that off-diagonal adjoint affine fusion is obtained from the corresponding tensor product by simply dropping non-dominant representations.

  14. Agonist-activated ion channels

    PubMed Central

    Colquhoun, David

    2006-01-01

    This paper looks at ion channels as an example of the pharmacologist's stock in trade, the action of an agonist on a receptor to produce a response. Looked at in this way, ion channels have been helpful because they are still the only system which is simple enough for quantitative investigation of transduction mechanisms. A short history is given of attempts to elucidate what happens between the time when agonist first binds, and the time when the channel opens. PMID:16402101

  15. β2-Adrenoceptor agonists in the regulation of mitochondrial biogenesis.

    PubMed

    Peterson, Yuri K; Cameron, Robert B; Wills, Lauren P; Trager, Richard E; Lindsey, Chris C; Beeson, Craig C; Schnellmann, Rick G

    2013-10-01

    The stimulation of mitochondrial biogenesis (MB) via cell surface G-protein coupled receptors is a promising strategy for cell repair and regeneration. Here we report the specificity and chemical rationale of a panel of β2-adrenoceptor agonists with regards to MB. Using primary cultures of renal cells, a diverse panel of β2-adrenoceptor agonists elicited three distinct phenotypes: full MB, partial MB, and non-MB. Full MB compounds had efficacy in the low nanomolar range and represent two chemical scaffolds containing three distinct chemical clusters. Interestingly, the MB phenotype did not correlate with reported receptor affinity or chemical similarity. Chemical clusters were then subjected to pharmacophore modeling creating two models with unique and distinct features, consisting of five conserved amongst full MB compounds were identified. The two discrete pharmacophore models were coalesced into a consensus pharmacophore with four unique features elucidating the spatial and chemical characteristics required to stimulate MB.

  16. Sodium ion modulates D2 receptor characteristics of dopamine agonist and antagonist binding sites in striatum and retina

    PubMed Central

    Makman, Maynard H.; Dvorkin, B.; Klein, Patrice N.

    1982-01-01

    Sodium ion (Na+) influences binding of both dopamine agonists and antagonists to D2 receptors in striatum and retina. Also, Na+ markedly potentiates the loss of high-affinity agonist binding due to the GTP analogue p[NH]ppG. 2-Amino-6, 7-dihydroxy-1,2,3,4-tetrahydro[5,8-3H]naphthalene ([3H]ADTN) binds exclusively to an agonist conformation of D2 receptor in both striatum and retina, distinct from the antagonist conformation labeled by [3H]spiroperidol or [3H]domperidone in striatum or by [3H]spiroperidol in retina. Na+ is not required for interaction of [3H]ADTN or antagonist radioligand sites with the selective D2 agonist LY-141865, the D2 antagonist domperidone, or nonselective dopamine agonists or antagonists; however, Na+ is necessary for high affinity interaction of those radioligand sites with the D2 antagonists molindone and metoclopramide. With Na+ present, striatal sites for [3H]ADTN, [3H]spiroperidol, and [3H]domperidone have similar affinities for antagonists but only [3H]ADTN sites have high affinity for agonists. Na+ further decreases the low affinity of dopamine agonists for [3H]spiroperidol binding sites. Also, Na+ enhances [3H]spiroperidol and decreases [3H]ADTN binding. Na+ alone causes bound [3H]ADTN to dissociate from at least 30% of striatal and 50% of retinal sites, and with Na+ present [3H]ADTN rapidly dissociates from the remaining sites upon addition of p[NH]ppG. It is proposed that D2 receptors in striatum and retina exist in distinct but interconvertible conformational states, with different properties depending on the presence or absence of Na+ and of guanine nucleotide. PMID:6213964

  17. CB1 Receptor Allosteric Modulators Display Both Agonist and Signaling Pathway Specificity

    PubMed Central

    Baillie, Gemma L.; Horswill, James G.; Anavi-Goffer, Sharon; Reggio, Patricia H.; Bolognini, Daniele; Abood, Mary E.; McAllister, Sean; Strange, Phillip G.; Stephens, Gary J.; Pertwee, Roger G.

    2013-01-01

    We have previously identified allosteric modulators of the cannabinoid CB1 receptor (Org 27569, PSNCBAM-1) that display a contradictory pharmacological profile: increasing the specific binding of the CB1 receptor agonist [3H]CP55940 but producing a decrease in CB1 receptor agonist efficacy. Here we investigated the effect one or both compounds in a broad range of signaling endpoints linked to CB1 receptor activation. We assessed the effect of these compounds on CB1 receptor agonist–induced [35S]GTPγS binding, inhibition, and stimulation of forskolin-stimulated cAMP production, phosphorylation of extracellular signal-regulated kinases (ERK), and β-arrestin recruitment. We also investigated the effect of these allosteric modulators on CB1 agonist binding kinetics. Both compounds display ligand dependence, being significantly more potent as modulators of CP55940 signaling as compared with WIN55212 and having little effect on [3H]WIN55212 binding. Org 27569 displays biased antagonism whereby it inhibits: agonist-induced guanosine 5′-O-(3-[35S]thio)triphosphate ([35S]GTPγS) binding, simulation (Gαs-mediated), and inhibition (Gαi-mediated) of cAMP production and β-arrestin recruitment. In contrast, it acts as an enhancer of agonist-induced ERK phosphorylation. Alone, the compound can act also as an allosteric agonist, increasing cAMP production and ERK phosphorylation. We find that in both saturation and kinetic-binding experiments, the Org 27569 and PSNCBAM-1 appeared to influence only orthosteric ligand maximum occupancy rather than affinity. The data indicate that the allosteric modulators share a common mechanism whereby they increase available high-affinity CB1 agonist binding sites. The receptor conformation stabilized by the allosterics appears to induce signaling and also selectively traffics orthosteric agonist signaling via the ERK phosphorylation pathway. PMID:23160940

  18. 1-Benzhydryl-3-phenylurea and 1-benzhydryl-3-phenylthiourea derivatives: new templates among the CB1 cannabinoid receptor inverse agonists.

    PubMed

    Muccioli, Giulio G; Wouters, Johan; Scriba, Gerhard K E; Poppitz, Wolfgang; Poupaert, Jacques H; Lambert, Didier M

    2005-11-17

    New 1-benzhydryl-3-phenylurea derivatives and their 1-benzhydryl-3-phenylthiourea isosteres were synthesized and evaluated for their human CB1 and CB2 cannabinoid receptor affinity. These compounds proved to be selective CB1 cannabinoid receptor ligands, acting as inverse agonists in a [35S]-GTPgammaS assay. The affinity of 3,5,5'-triphenylimidazolidine-2,4-dione and 3,5,5'-triphenyl-2-thioxoimidazolidin-4-one derivatives, possessing the 1-benzhydryl-3-phenylurea and 1-benzhydryl-3-phenylthiourea moiety, respectively, was also evaluated. In conclusion, the 1-benzhydryl-3-phenylurea scaffold seems to be a new interesting template of CB1 cannabinoid receptor inverse agonists.

  19. Electron Affinity Calculations for Thioethers

    NASA Technical Reports Server (NTRS)

    Sulton, Deley L.; Boothe, Michael; Ball, David W.; Morales, Wilfredo

    1997-01-01

    Previous work indicated that polyphenyl thioethers possessed chemical properties, related to their electron affinities, which could allow them to function as vapor phase lubricants (VPL). Indeed, preliminary tribological tests revealed that the thioethers could function as vapor phase lubricants but not over a wide temperature and hertzian pressure range. Increasing the electron affinity of the thioethers may improve their VPL properties over this range. Adding a substituent group to the thioether will alter its electron affinity in many cases. Molecular orbital calculations were undertaken to determine the effect of five different substituent groups on the electron affinity of polyphenyl thioethers. It was found that the NO2, F, and I groups increased the thioethers electron affinity by the greatest amount. Future work will involve the addition of these groups to the thioethers followed by tribological testing to assess their VPL properties.

  20. Agonist-trafficking and hallucinogens.

    PubMed

    González-Maeso, Javier; Sealfon, Stuart C

    2009-01-01

    Seven transmembrane domain receptors, also termed G protein-coupled receptors (GPCRs), represent the most common molecular target for therapeutic drugs. The generally accepted pharmacological model for GPCR activation is the ternary complex model, in which GPCRs exist in a dynamic equilibrium between the active and inactive conformational states. However, the demonstration that different agonists sometimes elicit a different relative activation of two signaling pathways downstream of the same receptor has led to a revision of the ternary complex model. According to this agonist- trafficking model, agonists stabilize distinct activated receptor conformations that preferentially activate specific signaling pathways. Hallucinogenic drugs and non-hallucinogenic drugs represent an attractive experimental system with which to study agonist-trafficking of receptor signaling. Thus many of the behavioral responses induced by hallucinogenic drugs, such as lysergic acid diethylamide (LSD), psilocybin or mescaline, depend on activation of serotonin 5-HT(2A) receptors (5-HT2ARs). In contrast, this neuropsychological state in humans is not induced by closely related chemicals, such as lisuride or ergotamine, despite their similar in vitro activity at the 5-HT2AR. In this review, we summarize the current knowledge, as well as unresolved questions, regarding agonist-trafficking and the mechanism of action of hallucinogenic drugs.

  1. Melatonin receptor agonists: new options for insomnia and depression treatment.

    PubMed

    Spadoni, Gilberto; Bedini, Annalida; Rivara, Silvia; Mor, Marco

    2011-12-01

    The circadian nature of melatonin (MLT) secretion, coupled with the localization of MLT receptors to the suprachiasmatic nucleus, has led to numerous studies of the role of MLT in modulation of the sleep-wake cycle and circadian rhythms in humans. Although much more needs to be understood about the various functions exerted by MLT and its mechanisms of action, three therapeutic agents (ramelteon, prolonged-release MLT, and agomelatine) are already in use, and MLT receptor agonists are now appearing as new promising treatment options for sleep and circadian-rhythm related disorders. In this review, emphasis has been placed on medicinal chemistry strategies leading to MLT receptor agonists, and on the evidence supporting therapeutic efficacy of compounds undergoing clinical evaluation. A wide range of clinical trials demonstrated that ramelteon, prolonged-release MLT and tasimelteon have sleep-promoting effects, providing an important treatment option for insomnia and transient insomnia, even if the improvements of sleep maintenance appear moderate. Well-documented effects of agomelatine suggest that this MLT agonist offers an attractive alternative for the treatment of depression, combining efficacy with a favorable side effect profile. Despite a large number of high affinity nonselective MLT receptor agonists, only limited data on MT₁ or MT₂ subtype-selective compounds are available up to now. Administration of the MT₂-selective agonist IIK7 to rats has proved to decrease NREM sleep onset latency, suggesting that MT₂ receptor subtype is involved in the acute sleep-promoting action of MLT; rigorous clinical studies are needed to demonstrate this hypothesis. Further clinical candidates based on selective activation of MT₁ or MT₂ receptors are expected in coming years. © 2010 Blackwell Publishing Ltd.

  2. Identification of Buctopamine and Mebuctopamine, a β2 Receptor Agonist and Its Metabolite, in Swine Hair and Feed Additives.

    PubMed

    Chen, Ying-Heng; Yang, Chia-Ying; Cheng, Chih Wen; Lin, Yi-Ying; Kuo, Su Lien; Hsin, Ling-Wei

    2017-05-17

    4-[2-(t-Butylamino)-1-hydroxyethyl]phenol (buctopamine, 4), a new β2 receptor agonist (β2-agonist), was found to be an adulterant in feed additives for swine in Taiwan, where using β2-agonists in food-production animals is prohibited. Buctopamine and its metabolite, 4-[2-(t-butylamino)-1-hydroxyethyl]-2-methoxyphenol (mebuctopamine, 2), were detected in swine hair specimens. Authentic compounds 2 and 4 were synthesized with 98.6% and 97.7% purity, respectively, as reference standards for analysis, and both compounds were more hydrophilic than ractopamine and clenbuterol. In a preliminary pharmacological evaluation, compounds 2 and 4 exhibited moderate human β2 receptor binding affinity and did not show significant affinities for the human α1, α2, β1, and β3 receptors. After addition of compounds 2-4 into the β2-agonist library, a multiresidue analysis of 26 β2-agonists by using triple quadrupole LC/MS/MS for routine screening conducted by regulatory authorities was established, in which the common limits of quantification for the 26 β2-agonists in swine feed and hair are 10 and 25 ng/g, respectively. In addition, the illegal use of buctopamine (4) has been effectively prevented. The results of this study are also useful for controlling the illegal use of new β2-agonists in food-production animals.

  3. Antiparkinson therapeutic potencies correlate with their affinities at dopamine D2(High) receptors.

    PubMed

    Seeman, Philip

    2007-12-01

    To determine whether antiparkinson dopamine agonists preferentially act on the high-affinity or the low-affinity states of dopamine D1 and D2 receptors, the agonist potencies were obtained by competition against [(3)H]SCH23390 for D1(High) and D1(Low), and against [(3)H]domperidone for D2(High) and D2(Low). N-propylnorapomorphine and cabergoline were the most potent at D2(High), with dissociation constants of 0.18 and 0.36 nM, respectively. Other agonists had D2(High)K(i) values of 0.52 nM for quinagolide, 0.6 nM for (+)PHNO, 0.9 for bromocriptine, 1.8 nM for apomorphine, 2.4 nM for pergolide, 3 nM for quinpirole, and 6.2 nM for lergotrile. There was a clear correlation between the K(i) values at D2(High) and their therapeutic concentrations in the plasma water, as derived from the known concentrations after correction for the fraction bound to the human plasma proteins. The data suggest that D2(High) is the primary and common target for the antiparkinson action of dopamine agonists. Bromocriptine, cabergoline, lergotrile, pergolide, and pramipexole had no affinity for D1(High), consistent with the clinical observations that the D2-selective bromocriptine and pramipexole elicit low levels of dyskinesia.

  4. Cardiovascular effects of melatonin receptor agonists.

    PubMed

    Paulis, Ludovit; Simko, Fedor; Laudon, Moshe

    2012-11-01

    Melatonin synchronizes circadian rhythms with light/dark period and it was demonstrated to correct chronodisruption. Several melatonin receptor agonists with improved pharmacokinetics or increased receptor affinity are being developed, three of them are already in clinical use. However, the actions of melatonin extend beyond chronobiology to cardiovascular and metabolic systems as well. Given the high prevalence of cardiovascular disease and their common occurrence with chronodisruption, it is of utmost importance to classify the cardiometabolic effects of the newly approved and putative melatoninergic drugs. In the present review, the available (although very sparse) data on such effects, in particular by the approved (circadin, ramelteon, agomelatine) or clinically advanced (tasimelteon, piromelatine = Neu-P11, TIK-301) compounds are summarized. The authors have searched for an association with blood pressure, vascular reactivity, ischemia, myocardial and vascular remodeling and metabolic syndrome. The data suggest that cardiovascular effects of melatonin are at least partly mediated via MT(1)/MT(2) receptors and associated with its chronobiotic action. Therefore, despite the sparse direct evidence, it is believed that these effects will be shared by melatonin analogs as well. With the expected approval of novel melatoninergic compounds, it is suggested that the investigation of their cardiovascular effects should no longer be neglected.

  5. Dopamine agonist therapy in hyperprolactinemia.

    PubMed

    Webster, J

    1999-12-01

    Introduction of the dopamine agonist bromocriptine heralded a major advance in the management of hyperprolactinemic disorders. Although its side effects of nausea, dizziness and headache and its short elimination half-life are limiting factors, its efficacy established it as a reference compound against the activity of which several dopamine agonists, like pergolide, lysuride, metergoline, terguride and dihydroergocristine, fell by the wayside. More recently, two new agents, cabergoline and quinagolide, have been introduced and appear to offer considerable advantages over bromocriptine. Cabergoline, an ergoline D2 agonist, has a long plasma half-life that enables once- or twice-weekly administration. Quinagolide, in contrast, is a nonergot D2 agonist with an elimination half-life intermediate between those of bromocriptine and cabergoline, allowing the drug to be administered once daily. Comparative studies indicate that cabergoline is clearly superior to bromocriptine in efficacy (prolactin suppression, restoration of gonadal function) and in tolerability. In similar studies, quinagolide appeared to have similar efficacy and superior tolerability to that of bromocriptine. Results of a small crossover study indicate that cabergoline is better tolerated, with a trend toward activity superior to that of quinagolide. In hyperprolactinemic men and in women not seeking to become pregnant, cabergoline may be regarded as the treatment of choice.

  6. Contractions of affine spherical varieties

    SciTech Connect

    Arzhantsev, I V

    1999-08-31

    The language of filtrations and contractions is used to describe the class of G-varieties obtainable as the total spaces of the construction of contraction applied to affine spherical varieties, which is well-known in invariant theory. These varieties are local models for arbitrary affine G-varieties of complexity 1 with a one-dimensional categorical quotient. As examples, reductive algebraic semigroups and three-dimensional SL{sub 2}-varieties are considered.

  7. Glucocorticoids: binding affinity and lipophilicity.

    PubMed

    Ponec, M; Kempenaar, J; Shroot, B; Caron, J C

    1986-10-01

    The relative binding affinity of 35 steroids for the glucocorticoid receptor was determined in experiments in which the competition of various unlabeled steroids with either [6,7-3H]dexamethasone or [1,2-3H]hydrocortisone for the cytosolic glucocorticoid receptor of cultured human keratinocytes was measured. The data obtained were correlated with steroid lipophilicity, measured as the partition coefficient of the steroid between 1-octanol and pH 7.4 aqueous buffer. The introduction of various substituents on the steroid molecule induced changes in the binding affinity and was associated in some cases with concomitant changes in steroid lipophilicity. The substitution by a 17 alpha-OH or 21-OH group leads in all cases to a decrease in steroid lipophilicity and to an increase in affinity. In contrast, 17 alpha-OAc and especially 21-OAc substitution on hydrocortisone and betamethasone causes a decrease in the steroid affinity for the receptor and an increase in steroid lipophilicity. The elongation of the ester chain from acetate to valerate in both position C-17 and C-21 leads to the increase in both the binding affinity for the receptor and the lipophilicity of steroids. However, all 21-esters showed lower binding affinity than the parent alcohol. The binding affinity of the highly lipophilic 17 alpha, 21-diester was found to be lower than that of the 17 alpha-ester but higher than that of the 21-ester or of the parent alcohol. Only in the series of 17 alpha- and 21-esters is there a correlation between the binding affinity of steroids for the glucocorticoid receptor and their lipophilicity.

  8. Novel nonsecosteroidal VDR agonists with phenyl-pyrrolyl pentane skeleton.

    PubMed

    Shen, Wei; Xue, Jingwei; Zhao, Zekai; Zhang, Can

    2013-11-01

    In order to find the vitamin D receptor (VDR) ligand whose VDR agonistic activity is separated from the calcemic activity sufficiently, novel nonsecosteroidal analogs with phenyl-pyrrolyl pentane skeleton were synthesized and evaluated for the VDR binding affinity, antiproliferative activity in vitro and serum calcium raising ability in vivo (tacalcitol used as control). Among them, several compounds showed varying degrees of VDR agonistic and growth inhibition activities of the tested cell lines. The most effective compound 2g (EC₅₀: 1.06 nM) exhibited stronger VDR agonistic activity than tacalcitol (EC₅₀: 7.05 nM), inhibited the proliferations of HaCaT and MCF-7 cells with IC₅₀ of 2.06 μM and 0.307 μM (tacalcitol: 2.07 μM and 0.057 μM) and showed no significant effect on serum calcium. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  9. Covalent agonists for studying G protein-coupled receptor activation

    PubMed Central

    Weichert, Dietmar; Kruse, Andrew C.; Manglik, Aashish; Hiller, Christine; Zhang, Cheng; Hübner, Harald; Kobilka, Brian K.; Gmeiner, Peter

    2014-01-01

    Structural studies on G protein-coupled receptors (GPCRs) provide important insights into the architecture and function of these important drug targets. However, the crystallization of GPCRs in active states is particularly challenging, requiring the formation of stable and conformationally homogeneous ligand-receptor complexes. Native hormones, neurotransmitters, and synthetic agonists that bind with low affinity are ineffective at stabilizing an active state for crystallogenesis. To promote structural studies on the pharmacologically highly relevant class of aminergic GPCRs, we here present the development of covalently binding molecular tools activating Gs-, Gi-, and Gq-coupled receptors. The covalent agonists are derived from the monoamine neurotransmitters noradrenaline, dopamine, serotonin, and histamine, and they were accessed using a general and versatile synthetic strategy. We demonstrate that the tool compounds presented herein display an efficient covalent binding mode and that the respective covalent ligand-receptor complexes activate G proteins comparable to the natural neurotransmitters. A crystal structure of the β2-adrenoreceptor in complex with a covalent noradrenaline analog and a conformationally selective antibody (nanobody) verified that these agonists can be used to facilitate crystallogenesis. PMID:25006259

  10. High-affinity binding of (/sup 3/H)acetylcholine to muscarinic cholinergic receptors

    SciTech Connect

    Kellar, K.J.; Martino, A.M.; Hall, D.P. Jr.; Schwartz, R.D.; Taylor, R.L.

    1985-06-01

    High-affinity binding of (/sup 3/H)acetylcholine to muscarinic cholinergic sites in rat CNS and peripheral tissues was measured in the presence of cytisin, which occupies nicotinic cholinergic receptors. The muscarinic sites were characterized with regard to binding kinetics, pharmacology, anatomical distribution, and regulation by guanyl nucleotides. These binding sites have characteristics of high-affinity muscarinic cholinergic receptors with a Kd of approximately 30 nM. Most of the muscarinic agonist and antagonist drugs tested have high affinity for the (/sup 3/H)acetylcholine binding site, but pirenzepine, an antagonist which is selective for M-1 receptors, has relatively low affinity. The ratio of high-affinity (/sup 3/H)acetylcholine binding sites to total muscarinic binding sites labeled by (/sup 3/H)quinuclidinyl benzilate varies from 9 to 90% in different tissues, with the highest ratios in the pons, medulla, and heart atrium. In the presence of guanyl nucleotides, (/sup 3/H) acetylcholine binding is decreased, but the extent of decrease varies from 40 to 90% in different tissues, with the largest decreases being found in the pons, medulla, cerebellum, and heart atrium. The results indicate that (/sup 3/H)acetylcholine binds to high-affinity M-1 and M-2 muscarinic receptors, and they suggest that most M-2 sites have high affinity for acetylcholine but that only a small fraction of M-1 sites have such high affinity.

  11. A locus of the gonadotropin-releasing hormone receptor that differentiates agonist and antagonist binding sites.

    PubMed

    Zhou, W; Rodic, V; Kitanovic, S; Flanagan, C A; Chi, L; Weinstein, H; Maayani, S; Millar, R P; Sealfon, S C

    1995-08-11

    The decapeptide gonadotropin-releasing hormone controls reproductive function via interaction with a heptahelical G protein-coupled receptor. Because of molecular model of the receptor predicts that Lys121 in the third transmembrane helix contributes to the binding pocket, the function of this side chain was studied by site-directed mutagenesis. Substitution of Arg at this position preserved high affinity agonist binding, whereas Gln at this position reduced binding below the limits of detection. Leu and Asp at this locus abolished both binding and detectable signal transduction. The EC50 of concentration-response curves for coupling to phosphatidyl inositol hydrolysis obtained with the Gln121 receptor was more than 3 orders of magnitude higher than that obtained for the wild-type receptor. In order to determine whether the increased EC50 obtained with this mutant reflects an altered receptor affinity, the effect of decreases in wild-type receptor density on concentration-response curves was determined by irreversible antagonism. Progressively decreasing the concentration of the wild-type receptor increased the EC50 values obtained to a maximal level of 2.4 +/- 0.2 nM. Comparison of this value with the EC50 of 282 +/- 52 nM observed with the Gln121 receptor mutant indicates that the agonist affinity for this mutant is reduced more than 100-fold. In contrast, antagonist had comparable high affinities for the wild-type, Arg121, and Gln121 mutants. The results indicate that a charge-strengthened hydrogen bond donor is required at this locus for high affinity agonist binding but not for high affinity antagonist binding.

  12. Pharmacological characterization of a highly selective and potent partial agonist of the MT₂ melatonin receptor.

    PubMed

    Sakurai, Taku; Koike, Tatsuki; Nakayama, Masaharu

    2014-01-01

    The MT₂ melatonin receptor is a potential target for treating circadian rhythm sleep disorders. This study aims to characterize the recently identified MT₂ melatonin receptor agonist. The pharmacological properties of the MT₂ melatonin receptor-selective agonist as exemplified by compound 1 [N-(2-[7-benzyl-1,6-dihydro-2H-indeno(5,4-b)furan-8-yl]ethyl)acetamide] were evaluated by use of cell-free binding and cell-based functional assays. Competition binding assays using 2-[(125)I]iodomelatonin revealed rapid, reversible, and high-affinity binding of compound 1 to human, mouse, and rat MT₂ melatonin receptors. cAMP, ERK1/2, and PathHunter β-arrestin recruitment assays revealed partial agonist activities. However, compound 1 induced a more intense internalization of human MT₂ melatonin receptor than melatonin. Based on studies using structurally related analogs of compound 1, we further demonstrated that the extent of internalization is independent of the intrinsic efficacy of agonists. These findings provide novel insights into the relationship between intrinsic agonist efficacy and agonist-induced internalization and demonstrate that compound 1 could serve as a pharmacological tool for future studies to elucidate the detailed molecular mechanism of MT₂ receptor internalization. © 2014 S. Karger AG, Basel.

  13. Fluorescence characteristics of hydrophobic partial agonist probes of the cholecystokinin receptor.

    PubMed

    Harikumar, Kaleeckal G; Pinon, Delia I; Miller, Laurence J

    2006-04-01

    Fluorescence spectroscopic studies are powerful tools for the evaluation of receptor structure and the dynamic changes associated with receptor activation. Here, we have developed two chemically distinct fluorescent probes of the cholecystokinin (CCK) receptor by attaching acrylodan or a nitrobenzoxadiazole moiety to the amino terminus of a partial agonist CCK analogue. These two probes were able to bind to the CCK receptor specifically and with high affinity, and were able to elicit only submaximal intracellular calcium responses typical of partial agonists. The fluorescence characteristics of these probes were compared with those previously reported for structurally-related full agonist and antagonist probes. Like the previous probes, the partial agonist probes exhibited longer fluorescence lifetimes and increased anisotropy when bound to the receptor than when free in solution. The receptor-bound probes were not easily quenched by potassium iodide, suggesting that the fluorophores were protected from the extracellular aqueous milieu. The fluorescence characteristics of the partial agonist probes were quite similar to those of the analogous full agonist probes and quite distinct from the analogous antagonist probes. These data suggest that the partially activated conformational state of this receptor is more closely related to its fully active state than to its inactive state.

  14. Identification of an N-oxide pyridine GW4064 analog as a potent FXR agonist.

    PubMed

    Feng, Song; Yang, Minmin; Zhang, Zhenshan; Wang, Zhanguo; Hong, Di; Richter, Hans; Benson, Gregory Martin; Bleicher, Konrad; Grether, Uwe; Martin, Rainer E; Plancher, Jean-Marc; Kuhn, Bernd; Rudolph, Markus Georg; Chen, Li

    2009-05-01

    According to the docking studies and the analysis of a co-crystal structure of GW4064 with FXR, a series of 3-aryl heterocyclic isoxazole analogs were designed and synthesized. N-Oxide pyridine analog (7b) was identified as a promising FXR agonist with potent binding affinity and good efficacy, supporting our hypothesis that through an additional hydrogen bond interaction between the pyridine substituent of isoxazole analogs and Tyr373 and Ser336 of FXR, binding affinity and functional activity could be improved.

  15. Synthesis and binding affinity of novel mono- and bivalent morphinan ligands for κ, μ, and δ opioid receptors.

    PubMed

    Zhang, Bin; Zhang, Tangzhi; Sromek, Anna W; Scrimale, Thomas; Bidlack, Jean M; Neumeyer, John L

    2011-05-01

    A novel series of homo- and heterodimeric ligands containing κ/μ agonist and μ agonist/antagonist pharmacophores joined by a 10-carbon ester linker chain were synthesized and evaluated for their in vitro binding affinity at κ, μ, and δ opioid receptors, and their functional activities were determined at κ and μ receptors in [(35)S]GTPγS functional assays. Most of these compounds had high binding affinity at μ and κ receptors (K(i) values less than 1nM). Compound 15b, which contains butorphan (1) at one end of linking chain and butorphanol (5) at the other end, was the most potent ligand in this series with binding affinity K(i) values of 0.089nM at the μ receptor and 0.073nM at the κ receptor. All of the morphinan-derived ligands were found to be partial κ and μ agonists; ATPM-derived ligands 12 and 11 were found to be full κ agonists and partial μ agonists.

  16. Nonlinear analysis of partial dopamine agonist effects on cAMP in C6 glioma cells.

    PubMed

    Avalos, M; Mak, C; Randall, P K; Trzeciakowski, J P; Abell, C; Kwan, S W; Wilcox, R E

    2001-01-01

    Most drugs have some efficacy so that improved methods to determine the relative intrinsic efficacy of partial agonists should be of benefit to preclinical and clinical investigators. We examined the effects of partial D(1) or partial D(2) dopamine agonists using a partial agonist interaction model. The dependent variable was the modulation of the dopamine-receptor-mediated cAMP response in C6 glioma cells selectively and stably expressing either D(1) or D(2) recombinant dopamine receptors. The dissociation constant (K(B)) and relative intrinsic efficacy (E(r)) for each partial agonist were calculated using a partial agonist interaction null model in which the effects of fixed concentrations of each partial agonist on the dopamine dose-response curve were evaluated. This model is an extension of the competitive antagonist null model to drugs with efficacy and assumes only that the log-dose--response curve is monotonic. Generally, the partial agonist interaction model fit the data, as well as fits of the independent logistic curves. Furthermore, the partial agonist K(B) values could be shared across partial agonist concentrations without worsening the model fit (by increasing the residual variance). K(B) values were also similar to drug affinities reported in the literature. The model was validated in three ways. First, we assumed a common tissue stimulus parameter (beta) and calculated the E(r) values. This provided a qualitative check on the interaction model results. Second, we calculated new relative efficacy values, E(r)(beta), using the beta estimate. Third, we calculated relative efficacy using relative maxima times midpoint shift ratios (J. Theor. Biol. 198 (1999) 347.). All three methods indicated that the present model yielded reasonable estimates of affinity and relative efficacy for the set of compounds studied. Our results provide a quick and convenient method of quantification of partial agonist efficacy. Special applications and limitations of the

  17. Recent progress in the development of agonists and antagonists for melatonin receptors.

    PubMed

    Zlotos, D P

    2012-01-01

    The various physiological actions of the neurohormone melatonin are mediated mainly by two G-protein-coupled MT(1) and MT(2) receptors. The melatoninergic drugs on the market, ramelteon and agomelatine, as well as the most advanced drug candidates under clinical evaluation, tasimelteon and PD-6735, are high-affinity nonselective MT(1) and MT(2) agonists. However, exploring the exact physiological role of the MT(1) and MT(2) melatonin receptors requires subtype selective MT(1) and MT(2) ligands. This review covers novel melatoninergic agonists and antagonists published since 2010, focusing on high-affinity and subtype selective agents. Additionally, compounds not mentioned in the previous review articles and ligands selective for the MT(3) binding site are included.

  18. Gremlin: vexing VEGF receptor agonist.

    PubMed

    Claesson-Welsh, Lena

    2010-11-04

    Gremlins are mischievous creatures in English folklore, believed to be the cause of otherwise unexplainable breakdowns (the word gremlins is derived from the Old English "gremian" or "gremman," "to vex"). Gremlin (or Gremlin-1) is also the designation of a secreted protein that is known to regulate bone formation during development. In this issue of Blood, Mitola et al report the novel role of Gremlin as a VEGFR2 agonist and the function of the Gremlin protein seems vexing indeed.

  19. Differentiation of δ, μ, and κ opioid receptor agonists based on pharmacophore development and computed physicochemical properties

    NASA Astrophysics Data System (ADS)

    Filizola, Marta; Villar, Hugo O.; Loew, Gilda H.

    2001-04-01

    Compounds that bind with significant affinity to the opioid receptor types, δ, μ, and κ, with different combinations of activation and inhibition at these three receptors could be promising behaviorally selective agents. Working on this hypothesis, the chemical moieties common to three different sets of opioid receptor agonists with significant affinity for each of the three receptor types δ, μ, or κ were identified. Using a distance analysis approach, common geometric arrangements of these chemical moieties were found for selected δ, μ, or κ opioid agonists. The chemical and geometric commonalities among agonists at each opioid receptor type were then compared with a non-specific opioid recognition pharmacophore recently developed. The comparison provided identification of the additional requirements for activation of δ, μ, and κ opioid receptors. The distance analysis approach was able to clearly discriminate κ-agonists, while global molecular properties for all compounds were calculated to identify additional requirements for activation of δ and μ receptors. Comparisons of the combined geometric and physicochemical properties calculated for each of the three sets of agonists allowed the determination of unique requirements for activation of each of the three opioid receptors. These results can be used to improve the activation selectivity of known opioid agonists and as a guide for the identification of novel selective opioid ligands with potential therapeutic usefulness.

  20. Human Erythrocyte as a Model for Investigating Muscarinic Agonists and Antagonists

    DTIC Science & Technology

    1991-01-01

    homogenates but not with the RBC structure and function of cholinergic agonists and membrane. We postulate that this compound may antagonists. have...membrane and applying pirenzepine or atropine Gaginella T. S.. Rimele T. J., O’Dorisio T. M. and Dorff to determine the specific binding affinities...protein phosphoryl- difficulties in acquiring a good source of pure muscar- ation and neuronal function . In Advances in CiycltcNucleotde Research

  1. The electron affinity of tungsten

    NASA Astrophysics Data System (ADS)

    Lindahl, A. O.; Andersson, P.; Diehl, C.; Forstner, O.; Klason, P.; Hanstorp, D.

    2010-11-01

    The electron affinity of tungsten has been measured using laser photodetachment threshold spectroscopy in a collinear geometry. The electron affinity was determined to 6583.6(6) cm-1 by observing the onset of the process when W- ions in the 5d^56s^2 6S5/2 ground state are photodetached producing neutral W atoms in the 5d^46s^2 5D0 ground state. The measured value is in agreement with previous measurements and improves the accuracy by almost two orders of magnitude. Further, a photodetachment signal below the ground state photodetachment threshold was found, which indicates the existence of a bound excited state in W-.

  2. Retinoic Acid Receptor β2 Agonists Restore Glycemic Control In Diabetes and Reduce Steatosis

    PubMed Central

    Trasino, Steven E.; Tang, Xiao-Han; Jessurun, Jose; Gudas, Lorraine J.

    2016-01-01

    Aims Retinoids (vitamin A (retinol), and structurally related molecules) possess metabolic modulating properties, prompting new interest in their role in the treatment of diabetes and fatty liver disease, but little is known about the effects of specific retinoic acid receptor (RAR) agonists in these diseases. Materials and Methods Synthetic agonists for retinoic acid receptor RARβ2 were administered to wild type (wt) mice in a model of high fat diet (HFD)-induced type 2 diabetes (T2D) and to ob/ob and db/db mice (genetic models of obesity-associated T2D). Results We demonstrate that administration of synthetic agonists for the retinoic acid receptor RARβ2 to either wild type (wt) mice in a model of high fat diet (HFD)-induced type 2 diabetes (T2D) or to ob/ob and db/db mice (genetic models of obesity-associated T2D) reduces hyperglycemia, peripheral insulin resistance, and body weight. Furthermore, RARβ2 agonists dramatically reduce steatosis, lipid peroxidation, and oxidative stress in the liver, pancreas, and kidneys of obese, diabetic mice. RARβ2 agonists also lower levels of mRNAs involved in lipogenesis, such as SREBP1 and FASN (fatty acid synthase), and increase mRNAs that mediate mitochondrial fatty acid β-oxidation, such as CPT1α, in these organs. RARβ2 agonists lower triglyceride levels in these organs, and in muscle. Conclusions Collectively, our data show that orally active, rapidly acting, high affinity pharmacological agonists for RARβ2 improve the diabetic phenotype while reducing lipid levels in key insulin target tissues. We suggest that RARβ2 agonists should be useful drugs for T2D therapy and for treatment of hepatic steatosis. PMID:26462866

  3. Differential agonist sensitivity of glycine receptor α2 subunit splice variants

    PubMed Central

    Miller, Paul S; Harvey, Robert J; Smart, Trevor G

    2004-01-01

    The glycine receptor (GlyR) α2A and α2B splice variants differ by a dual, adjacent amino acid substitution from α2AV58,T59 to α2BI58,A59 in the N-terminal extracellular domain. Comparing the effects of the GlyR agonists, glycine, β-alanine and taurine, on the GlyR α2 isoforms, revealed a significant increase in potency for all three agonists at the α2B variant. The sensitivities of the splice variants to the competitive antagonist, strychnine, and to the biphasic modulator Zn2+, were comparable. In contrast, the allosteric inhibitor picrotoxin was more potent on GlyR α2A compared to GlyR α2B receptors. Coexpression of α2A or α2B subunits with the GlyR β subunit revealed that the higher agonist potencies observed with the α2B homomer were retained for the α2Bβ heteromer. The identical sensitivity to strychnine combined with a reduction in the maximum current induced by the partial agonist taurine at the GlyR α2A homomer, suggested that the changed sensitivity to agonists is in accordance with a modulation of agonist efficacy rather than agonist affinity. An effect on agonist efficacy was also supported by using a structural model of the GlyR, localising the region of splice variation to the proposed docking region between GlyR loop 2 and the TM2-3 loop, an area associated with channel activation. The existence of a spasmodic mouse phenotype linked to a GlyR α1A52S mutation, the equivalent position to the source of the α2 splice variation, raises the possibility that the GlyR α2 splice variants may be responsible for distinct roles in neuronal function. PMID:15302677

  4. Differential agonist sensitivity of glycine receptor alpha2 subunit splice variants.

    PubMed

    Miller, Paul S; Harvey, Robert J; Smart, Trevor G

    2004-09-01

    1. The glycine receptor (GlyR) alpha2A and alpha2B splice variants differ by a dual, adjacent amino acid substitution from alpha2A(V58,T59) to alpha2B(I58,A59) in the N-terminal extracellular domain. 2. Comparing the effects of the GlyR agonists, glycine, beta-alanine and taurine, on the GlyR alpha2 isoforms, revealed a significant increase in potency for all three agonists at the alpha2B variant. 3. The sensitivities of the splice variants to the competitive antagonist, strychnine, and to the biphasic modulator Zn(2+), were comparable. In contrast, the allosteric inhibitor picrotoxin was more potent on GlyR alpha2A compared to GlyR alpha2B receptors. 4. Coexpression of alpha2A or alpha2B subunits with the GlyR beta subunit revealed that the higher agonist potencies observed with the alpha2B homomer were retained for the alpha2Bbeta heteromer. 5. The identical sensitivity to strychnine combined with a reduction in the maximum current induced by the partial agonist taurine at the GlyR alpha2A homomer, suggested that the changed sensitivity to agonists is in accordance with a modulation of agonist efficacy rather than agonist affinity. 6. An effect on agonist efficacy was also supported by using a structural model of the GlyR, localising the region of splice variation to the proposed docking region between GlyR loop 2 and the TM2-3 loop, an area associated with channel activation. 7. The existence of a spasmodic mouse phenotype linked to a GlyR alpha1(A52S) mutation, the equivalent position to the source of the alpha2 splice variation, raises the possibility that the GlyR alpha2 splice variants may be responsible for distinct roles in neuronal function.

  5. Systematic review: cardiovascular safety profile of 5-HT4 agonists developed for gastrointestinal disorders

    PubMed Central

    Tack, J; Camilleri, M; Chang, L; Chey, W D; Galligan, J J; Lacy, B E; Müller-Lissner, S; Quigley, E M M; Schuurkes, J; Maeyer, J H; Stanghellini, V

    2012-01-01

    Summary Background The nonselective 5-HT4 receptor agonists, cisapride and tegaserod have been associated with cardiovascular adverse events (AEs). Aim To perform a systematic review of the safety profile, particularly cardiovascular, of 5-HT4 agonists developed for gastrointestinal disorders, and a nonsystematic summary of their pharmacology and clinical efficacy. Methods Articles reporting data on cisapride, clebopride, prucalopride, mosapride, renzapride, tegaserod, TD-5108 (velusetrag) and ATI-7505 (naronapride) were identified through a systematic search of the Cochrane Library, Medline, Embase and Toxfile. Abstracts from UEGW 2006–2008 and DDW 2008–2010 were searched for these drug names, and pharmaceutical companies approached to provide unpublished data. Results Retrieved articles on pharmacokinetics, human pharmacodynamics and clinical data with these 5-HT4 agonists, are reviewed and summarised nonsystematically. Articles relating to cardiac safety and tolerability of these agents, including any relevant case reports, are reported systematically. Two nonselective 5-HT4 agonists had reports of cardiovascular AEs: cisapride (QT prolongation) and tegaserod (ischaemia). Interactions with, respectively, the hERG cardiac potassium channel and 5-HT1 receptor subtypes have been suggested to account for these effects. No cardiovascular safety concerns were reported for the newer, selective 5-HT4 agonists prucalopride, velusetrag, naronapride, or for nonselective 5-HT4 agonists with no hERG or 5-HT1 affinity (renzapride, clebopride, mosapride). Conclusions 5-HT4 agonists for GI disorders differ in chemical structure and selectivity for 5-HT4 receptors. Selectivity for 5-HT4 over non-5-HT4 receptors may influence the agent's safety and overall risk–benefit profile. Based on available evidence, highly selective 5-HT4 agonists may offer improved safety to treat patients with impaired GI motility. PMID:22356640

  6. 4-Oxo-1,4-dihydropyridines as selective CB2 cannabinoid receptor ligands: structural insights into the design of a novel inverse agonist series.

    PubMed

    El Bakali, Jamal; Muccioli, Giulio G; Renault, Nicolas; Pradal, Delphine; Body-Malapel, Mathilde; Djouina, Madjid; Hamtiaux, Laurie; Andrzejak, Virginie; Desreumaux, Pierre; Chavatte, Philippe; Lambert, Didier M; Millet, Régis

    2010-11-25

    Growing evidence shows that CB(2) receptor is an attractive therapeutic target. Starting from a series of 4-oxo-1,4-dihydroquinoline-3-carboxamide as selective CB(2) agonists, we describe here the medicinal chemistry approach leading to the development of CB(2) receptor inverse agonists with a 4-oxo-1,4-dihydropyridine scaffold. The compounds reported here show high affinity and potency at the CB(2) receptor while showing only modest affinity for the centrally expressed CB(1) cannabinoid receptor. Further, we found that the functionality of this series is controlled by its C-6 substituent because agonists bear a methyl or a tert-butyl group and inverse agonists, a phenyl or 4-chlorophenyl group, respectively. Finally, in silico studies suggest that the C-6 substituent could modulate the conformation of W6.48 known to be critical in GPCR activation.

  7. N-terminal galanin-(1-16) fragment is an agonist at the hippocampal galanin receptor

    SciTech Connect

    Fisone, G.; Berthold, M.; Bedecs, K.; Unden, A.; Bartfai, T.; Bertorelli, R.; Consolo, S.; Crawley, J.; Martin, B.; Nilsson, S.; )

    1989-12-01

    The galanin N-terminal fragment (galanin-(1-16)) has been prepared by solid-phase synthesis and by enzymic cleavage of galanin by endoproteinase Asp-N. This peptide fragment displaced {sup 125}I-labeled galanin in receptor autoradiography experiments on rat forebrain and spinal cord and in equilibrium binding experiments from high-affinity binding sites in the ventral hippocampus with an IC50 of approximately 3 nM. In tissue slices of the same brain area, galanin-(1-16), similarly to galanin, inhibited the muscarinic agonist-stimulated breakdown of inositol phospholipids. Upon intracerebroventricular administration, galanin-(1-16) (10 micrograms/15 microliters) also inhibited the scopolamine (0.3 mg/kg, s.c.)-evoked release of acetylcholine, as studied in vivo by microdialysis. Substitution of (L-Trp2) for (D-Trp2) resulted in a 500-fold loss in affinity as compared with galanin-(1-16). It is concluded that, in the ventral hippocampus, the N-terminal galanin fragment (galanin-(1-16)) is recognized by the galanin receptors controlling acetylcholine release and muscarinic agonist-stimulated inositol phospholipid breakdown as a high-affinity agonist and that amino acid residue (Trp2) plays an important role in the receptor-ligand interactions.

  8. γ-Hydroxybutyric acid (GHB) is not an agonist of extrasynaptic GABAA receptors.

    PubMed

    Connelly, William M; Errington, Adam C; Crunelli, Vincenzo

    2013-01-01

    γ-Hydroxybutyric acid (GHB) is an endogenous compound and a drug used clinically to treat the symptoms of narcolepsy. GHB is known to be an agonist of GABAB receptors with millimolar affinity, but also binds with much higher affinity to another site, known as the GHB receptor. While a body of evidence has shown that GHB does not bind to GABAA receptors widely, recent evidence has suggested that the GHB receptor is in fact on extrasynaptic α4β1δ GABAA receptors, where GHB acts as an agonist with an EC50 of 140 nM. We investigated three neuronal cell types that express a tonic GABAA receptor current mediated by extrasynaptic receptors: ventrobasal (VB) thalamic neurons, dentate gyrus granule cells and striatal medium spiny neurons. Using whole-cell voltage clamp in brain slices, we found no evidence that GHB (10 µM) induced any GABAA receptor mediated current in these cell types, nor that it modulated inhibitory synaptic currents. Furthermore, a high concentration of GHB (3 mM) was able to produce a GABAB receptor mediated current, but did not induce any other currents. These results suggest either that GHB is not a high affinity agonist at native α4β1δ receptors, or that these receptors do not exist in classical areas associated with extrasynaptic currents.

  9. Chemical binding affinity estimation using MSB

    NASA Astrophysics Data System (ADS)

    Weaver, John B.; Rauwerdink, Adam M.

    2011-03-01

    Binding affinity can be estimated in several ways in the laboratory but there is no viable way to estimate binding affinity in vivo without assumptions on the number of binding sites. Magnetic spectroscopy of nanoparticle Brownian motion, MSB, measures the rotational Brownian motion. The MSB signal is affected by nanoparticle binding affinity so it provides a mechanism to measure the chemical binding affinity. We present a possible mechanism to quantify the binding affinity and test that mechanism using viscous solutions.

  10. The specificity of some agonists and antagonists for nicotine-sensitive receptors in ganglia

    PubMed Central

    Barlow, R.B.; Bowman, Frances; Ison, R.R.; McQueen, D.S.

    1974-01-01

    1 The guinea-pig isolated ileum has been used to estimate the ability of substituted phenylalkylonium salts (related to nicotine) to stimulate or block receptors in ganglia. The effects of hexamethonium were used to indicate which were the most specific ganglion stimulants; these were tested on the blood-pressure of pithed rats and for neuromuscular blocking activity on the rat diaphragm preparation. 2 m-Hydroxyphenylpropyltrimethylammonium and 3,4-dihydroxyphenethyltrimethylammonium (coryneine, `quaternary dopamine') were the most active and specific ganglion stimulants but their usefulness in vivo may be limited by their neuromuscular blocking activity. The analogous tertiary compounds are being investigated. 3 The affinities of substances which were blocking agents at ganglionic receptors were measured on the isolated ileum with m-hydroxyphenylpropyltrimethylammonium as agonist. The affinities of selected compounds for postganglionic receptors were measured in experiments on the ileum in the presence of hexamethonium and with carbachol as agonist. Some of the compounds were tested for neuromuscular blocking activity on the rat diaphragm. 4 Phenylbutyldiethylamine had ganglion-blocking activity greater than pempidine and little postganglionic blocking or neuromuscular blocking activity. Its triethylammonium analogue had higher ganglion-blocking activity but had appreciable neuromuscular blocking activity. 5 The aromatic ring system is not essential either for activity or affinity and the effects of substituents are not related to their effects on electron distribution. Stimulant activity is enhanced only by hydroxyl or amino groups in suitable positions; it is not improved by the presence of rigid features (double or triple bonds or a cyclopropane ring) in the side chain. Affinity is slightly increased by chloro or bromo groups in suitable positions but the unsubstituted compounds are among those with the highest affinity. Substituents have similar effects on

  11. Purification of high affinity benzodiazepine receptor binding site fragments from rat brain

    SciTech Connect

    Klotz, K.L.

    1984-01-01

    In central nervous system benzodiazepine recognition sites occur on neuronal cell surfaces as one member of a multireceptor complex, including recognition sites for benzodiazepines, gamma aminobutyric acid (GABA), barbiturates and a chloride ionophore. During photoaffinity labelling, the benzodiazepine agonist, /sup 3/H-flunitrazepam, is irreversibly bound to central benzodiazepine high affinity recognition sites in the presence of ultraviolet light. In these studies a /sup 3/H-flunitrazepam radiolabel was used to track the isolation and purification of high affinity agonist binding site fragments from membrane-bound benzodiazepine receptor in rat brain. The authors present a method for limited proteolysis of /sup 3/H-flunitrazepam photoaffinity labeled rat brain membranes, generating photolabeled benzodiazepine receptor fragments containing the agonist binding site. Using trypsin chymotrypsin A/sub 4/, or a combination of these two proteases, they have demonstrated the extent and time course for partial digestion of benzodiazepine receptor, yielding photolabeled receptor binding site fragments. These photolabeled receptor fragments have been further purified on the basis of size, using ultrafiltration, gel permeation chromatography, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) as well as on the basis of hydrophobicity, using a high performance liquid chromatography (HPLC) precolumn, several HPLC elution schemes, and two different HPLC column types. Using these procedures, they have purified three photolabeled benzodiazepine receptor fragments containing the agonist binding site which appear to have a molecular weight of less than 2000 daltons each.

  12. Affine Contractions on the Plane

    ERIC Educational Resources Information Center

    Celik, D.; Ozdemir, Y.; Ureyen, M.

    2007-01-01

    Contractions play a considerable role in the theory of fractals. However, it is not easy to find contractions which are not similitudes. In this study, it is shown by counter examples that an affine transformation of the plane carrying a given triangle onto another triangle may not be a contraction even if it contracts edges, heights or medians.…

  13. Gravity theory through affine spheres

    NASA Astrophysics Data System (ADS)

    Minguzzi, E.

    2017-08-01

    In this work it is argued that in order to improve our understanding of gravity and spacetime our most successful theory, general relativity, must be destructured. That is, some geometrical assumptions must be dropped and recovered just under suitable limits. Along this line of thought we pursue the idea that the roundness of the light cone, and hence the isotropy of the speed of light, must be relaxed and that, in fact, the shape of light cones must be regarded as a dynamical variable. Mathematically, we apply some important results from affine differential geometry to this problem, the idea being that in the transition we should preserve the identification of the spacetime continuum with a manifold endowed with a cone structure and a spacetime volume form. To that end it is suggested that the cotangent indicatrix (dispersion relation) must be described by an equation of Monge-Ampère type determining a hyperbolic affine sphere, at least whenever the matter content is negligible. Non-relativistic spacetimes fall into this description as they are recovered whenever the center of the affine sphere is at infinity. In the more general context of Lorentz-Finsler theories it is shown that the lightlike unparametrized geodesic flow is completely determined by the distribution of light cones. Moreover, the transport of lightlike momenta is well defined though there could be no notion of affine parameter. Finally, we show how the perturbed indicatrix can be obtained from the perturbed light cone.

  14. Affinity-aware checkpoint restart

    DOE PAGES

    Saini, Ajay; Rezaei, Arash; Mueller, Frank; ...

    2014-12-08

    Current checkpointing techniques employed to overcome faults for HPC applications result in inferior application performance after restart from a checkpoint for a number of applications. This is due to a lack of page and core affinity awareness of the checkpoint/restart (C/R) mechanism, i.e., application tasks originally pinned to cores may be restarted on different cores, and in case of non-uniform memory architectures (NUMA), quite common today, memory pages associated with tasks on a NUMA node may be associated with a different NUMA node after restart. Here, this work contributes a novel design technique for C/R mechanisms to preserve task-to-core mapsmore » and NUMA node specific page affinities across restarts. Experimental results with BLCR, a C/R mechanism, enhanced with affinity awareness demonstrate significant performance benefits of 37%-73% for the NAS Parallel Benchmark codes and 6-12% for NAMD with negligible overheads instead of up to nearly four times longer an execution times without affinity-aware restarts on 16 cores.« less

  15. ELECTRON AFFINITIES OF INORGANIC RADICALS.

    DTIC Science & Technology

    energy in the latter compound is 110 kcals/mole, distinctly higher than in ammonia. Cyanogen (CN)2 and hydrocyanic acid (HCN) yield values for the...ions very readily, and the electron affinity is 49 kcals/mole. A comparison with the results from thiocyanic acid (HNCS) indicates that the H-N bond

  16. Affine Contractions on the Plane

    ERIC Educational Resources Information Center

    Celik, D.; Ozdemir, Y.; Ureyen, M.

    2007-01-01

    Contractions play a considerable role in the theory of fractals. However, it is not easy to find contractions which are not similitudes. In this study, it is shown by counter examples that an affine transformation of the plane carrying a given triangle onto another triangle may not be a contraction even if it contracts edges, heights or medians.…

  17. Quantifying Affinity among Chinese Dialects.

    ERIC Educational Resources Information Center

    Cheng, Chin-Chuan

    A study of the relationships between Chinese dialects based on a quantitative measure of dialect affinity is summarized. First, tone values in all the dialect localities available in the early 1970s were used to calculate the dialectal differences in terms of tone height with respect to the "yin and yang" split. In the late 1970s, calculations of…

  18. Affinity-aware checkpoint restart

    SciTech Connect

    Saini, Ajay; Rezaei, Arash; Mueller, Frank; Hargrove, Paul; Roman, Eric

    2014-12-08

    Current checkpointing techniques employed to overcome faults for HPC applications result in inferior application performance after restart from a checkpoint for a number of applications. This is due to a lack of page and core affinity awareness of the checkpoint/restart (C/R) mechanism, i.e., application tasks originally pinned to cores may be restarted on different cores, and in case of non-uniform memory architectures (NUMA), quite common today, memory pages associated with tasks on a NUMA node may be associated with a different NUMA node after restart. Here, this work contributes a novel design technique for C/R mechanisms to preserve task-to-core maps and NUMA node specific page affinities across restarts. Experimental results with BLCR, a C/R mechanism, enhanced with affinity awareness demonstrate significant performance benefits of 37%-73% for the NAS Parallel Benchmark codes and 6-12% for NAMD with negligible overheads instead of up to nearly four times longer an execution times without affinity-aware restarts on 16 cores.

  19. Characterization of the complex morphinan derivative BU72 as a high efficacy, long-lasting mu-opioid receptor agonist.

    PubMed

    Neilan, Claire L; Husbands, Stephen M; Breeden, Simon; Ko, M C Holden; Aceto, Mario D; Lewis, John W; Woods, James H; Traynor, John R

    2004-09-19

    The development of buprenorphine as a treatment for opiate abuse and dependence has drawn attention to opioid ligands that have agonist actions followed by long-lasting antagonist actions. In a search for alternatives to buprenorphine, we discovered a bridged pyrrolidinomorphinan (BU72). In vitro, BU72 displayed high affinity and efficacy for mu-opioid receptors, but was also a partial delta-opioid receptor agonist and a full kappa-opioid receptor agonist. BU72 was a highly potent and long-lasting antinociceptive agent against both thermal and chemical nociception in the mouse and against thermal nociception in the monkey. These effects were prevented by mu-, but not kappa- or delta-, opioid receptor antagonists. Once the agonist effects of BU72 had subsided, the compound acted to attenuate the antinociceptive action of morphine. BU72 is too efficacious for human use but manipulation to reduce efficacy could provide a lead to the development of a treatment for opioid dependence.

  20. Assessment of dopamine D1 receptor affinity and efficacy of three tetracyclic conformationally-restricted analogs of SKF38393

    PubMed Central

    Clark, Alia H.; McCorvy, John D.; Watts, Val J.; Nichols, David E.

    2011-01-01

    To assess the effect of conformational mobility on receptor activity, the β-phenyl substituent of dopamine D1 agonist ligands of the phenylbenzazepine class, (±)-6,6a,7,8,9,13b-hexahydro-5Hbenzo[d]naphtho[2,1-b]azepine-11,12-diol (8), and its oxygen and sulfur bioisosteres 9 and 10, respectively, were synthesized as conformationally-restricted analogues of SKF38393, a dopamine D1-selective partial agonist. Compounds trans-8b, 9, and 10 showed binding affinity comparable to that of SKF38393, but functionally, they displayed only very weak agonist activity. These results suggest that the conformationally-restricted structure of the analogues cannot adopt a binding orientation that is necessary for agonist activity. PMID:21862338

  1. Structure-Based Understanding of Binding Affinity and Mode of Estrogen Receptor α Agonists and Antagonists

    EPA Science Inventory

    The flexible hydrophobic ligand binding pocket (LBP) of estrogen receptor α (ERα) allows the binding of a wide variety of endocrine disruptors. Upon ligand binding, the LBP reshapes around the contours of the ligand and stabilizes the complex by complementary hydrophobic interact...

  2. Structure-based Understanding of Binding Affinity and Mode of Estrogen Receptor α Agonists and Antagonists.

    EPA Science Inventory

    The flexible hydrophobic ligand binding pocket (LBP) of estrogen receptor α (ERα) allows the binding of a wide variety of endocrine disruptors. Upon ligand binding, the LBP reshapes around the contours of the ligand and stabilizes the complex by complementary hydropho...

  3. Theoretical proton affinity and fluoride affinity of nerve agent VX.

    PubMed

    Bera, Narayan C; Maeda, Satoshi; Morokuma, Keiji; Viggiano, Al A

    2010-12-23

    Proton affinity and fluoride affinity of nerve agent VX at all of its possible sites were calculated at the RI-MP2/cc-pVTZ//B3LYP/6-31G* and RI-MP2/aug-cc-pVTZ//B3LYP/6-31+G* levels, respectively. The protonation leads to various unique structures, with H(+) attached to oxygen, nitrogen, and sulfur atoms; among which the nitrogen site possesses the highest proton affinity of -ΔE ∼ 251 kcal/mol, suggesting that this is likely to be the major product. In addition some H(2), CH(4) dissociation as well as destruction channels have been found, among which the CH(4) + [Et-O-P(═O)(Me)-S-(CH(2))(2)-N(+)(iPr)═CHMe] product and the destruction product forming Et-O-P(═O)(Me)-SMe + CH(2)═N(+)(iPr)(2) are only 9 kcal/mol less stable than the most stable N-protonated product. For fluoridization, the S-P destruction channel to give Et-O-P(═O)(Me)(F) + [S-(CH(2))(2)-N-(iPr)(2)](-) is energetically the most favorable, with a fluoride affinity of -ΔE ∼ 44 kcal. Various F(-) ion-molecule complexes are also found, with the one having F(-) interacting with two hydrogen atoms in different alkyl groups to be only 9 kcal/mol higher than the above destruction product. These results suggest VX behaves quite differently from surrogate systems.

  4. Kappa Opioid Receptor Agonist and Brain Ischemia

    PubMed Central

    Chunhua, Chen; Chunhua, Xi; Megumi, Sugita; Renyu, Liu

    2014-01-01

    Opioid receptors, especially Kappa opioid receptor (KOR) play an important role in the pathophysiological process of cerebral ischemia reperfusion injury. Previously accepted KOR agonists activity has included anti-nociception, cardiovascular, anti-pruritic, diuretic, and antitussive effects, while compelling evidence from various ischemic animal models indicate that KOR agonist have neuroprotective effects through various mechanisms. In this review, we aimed to demonstrate the property of KOR agonist and its role in global and focal cerebral ischemia. Based on current preclinical research, the KOR agonists may be useful as a neuroprotective agent. The recent discovery of salvinorin A, highly selective non-opioid KOR agonist, offers a new tool to study the role of KOR in brain HI injury and the protective effects of KOR agonist. The unique pharmacological profile of salvinorin A along with the long history of human usage provides its high candidacy as a potential alternative medication for brain HI injury. PMID:25574482

  5. Kappa Opioid Receptor Agonist and Brain Ischemia.

    PubMed

    Chunhua, Chen; Chunhua, Xi; Megumi, Sugita; Renyu, Liu

    2014-01-01

    Opioid receptors, especially Kappa opioid receptor (KOR) play an important role in the pathophysiological process of cerebral ischemia reperfusion injury. Previously accepted KOR agonists activity has included anti-nociception, cardiovascular, anti-pruritic, diuretic, and antitussive effects, while compelling evidence from various ischemic animal models indicate that KOR agonist have neuroprotective effects through various mechanisms. In this review, we aimed to demonstrate the property of KOR agonist and its role in global and focal cerebral ischemia. Based on current preclinical research, the KOR agonists may be useful as a neuroprotective agent. The recent discovery of salvinorin A, highly selective non-opioid KOR agonist, offers a new tool to study the role of KOR in brain HI injury and the protective effects of KOR agonist. The unique pharmacological profile of salvinorin A along with the long history of human usage provides its high candidacy as a potential alternative medication for brain HI injury.

  6. Alpha2-adrenergic receptor agonists as analgesics.

    PubMed

    Boyd, R E

    2001-08-01

    Alpha2-adrenergic receptor agonists are analgesic agents, and the alpha2-adrenergic agonist clonidine has been used in clinical studies for regional analgesia after intrathecal administration. We review here recent developments concerning the structure activity relationships of a new class of potent alpha2-adrenergic agonists and their use as analgesic agents. The effect of structure upon cardiovascular side-effects is also monitored, such as the prolongation of the QT portion of the cardiac action potential.

  7. Different binding and recognition modes of GL479, a dual agonist of Peroxisome Proliferator-Activated Receptor α/γ.

    PubMed

    dos Santos, Jademilson Celestino; Bernardes, Amanda; Giampietro, Letizia; Ammazzalorso, Alessandra; De Filippis, Barbara; Amoroso, Rosa; Polikarpov, Igor

    2015-09-01

    Peroxisome Proliferator-Activated Receptors (PPARs) are ligand-dependent transcription factors that control various functions in human organism, including the control of glucose and lipid metabolism. PPARγ is a target of TZD agonists, clinically used to improve insulin sensitivity whereas fibrates, PPARα ligands, lower serum triglyceride levels. We report here the structural studies of GL479, a synthetic dual PPARα/γ agonist, designed by a combination of clofibric acid skeleton and a phenyldiazenyl moiety, as bioisosteric replacement of stilbene group, in complex with both PPARα and PPARγ receptors. GL479 was previously reported as a partial agonist of PPARγ and a full agonist of PPARα with high affinity for both PPARs. Our structural studies reveal different binding modes of GL479 to PPARα and PPARγ, which may explain the distinct activation behaviors observed for each receptor. In both cases the ligand interacts with a Tyr located at helix 12 (H12), resulting in the receptor active conformation. In the complex with PPARα, GL479 occupies the same region of the ligand-binding pocket (LBP) observed for other full agonists, whereas GL479 bound to PPARγ displays a new binding mode. Our results indicate a novel region of PPARs LBP that may be explored for the design of partial agonists as well dual PPARα/γ agonists that combine, simultaneously, the therapeutic effects of the treatment of insulin resistance and dyslipidemia. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Use of microdoses for induction of buprenorphine treatment with overlapping full opioid agonist use: the Bernese method.

    PubMed

    Hämmig, Robert; Kemter, Antje; Strasser, Johannes; von Bardeleben, Ulrich; Gugger, Barbara; Walter, Marc; Dürsteler, Kenneth M; Vogel, Marc

    2016-01-01

    Buprenorphine is a partial µ-opioid receptor agonist used for maintenance treatment of opioid dependence. Because of the partial agonism and high receptor affinity, it may precipitate withdrawal symptoms during induction in persons on full µ-opioid receptor agonists. Therefore, current guidelines and drug labels recommend leaving a sufficient time period since the last full agonist use, waiting for clear and objective withdrawal symptoms, and reducing pre-existing full agonist therapies before administering buprenorphine. However, even with these precautions, for many patients the induction of buprenorphine is a difficult experience, due to withdrawal symptoms. Furthermore, tapering of the full agonist bears the risk of relapse to illicit opioid use. We present two cases of successful initiation of buprenorphine treatment with the Bernese method, ie, gradual induction overlapping with full agonist use. The first patient began buprenorphine with overlapping street heroin use after repeatedly experiencing relapse, withdrawal, and trauma reactivation symptoms during conventional induction. The second patient was maintained on high doses of diacetylmorphine (ie, pharmaceutical heroin) and methadone during induction. Both patients tolerated the induction procedure well and reported only mild withdrawal symptoms. Overlapping induction of buprenorphine maintenance treatment with full µ-opioid receptor agonist use is feasible and may be associated with better tolerability and acceptability in some patients compared to the conventional method of induction.

  9. Use of microdoses for induction of buprenorphine treatment with overlapping full opioid agonist use: the Bernese method

    PubMed Central

    Hämmig, Robert; Kemter, Antje; Strasser, Johannes; von Bardeleben, Ulrich; Gugger, Barbara; Walter, Marc; Dürsteler, Kenneth M; Vogel, Marc

    2016-01-01

    Background Buprenorphine is a partial µ-opioid receptor agonist used for maintenance treatment of opioid dependence. Because of the partial agonism and high receptor affinity, it may precipitate withdrawal symptoms during induction in persons on full µ-opioid receptor agonists. Therefore, current guidelines and drug labels recommend leaving a sufficient time period since the last full agonist use, waiting for clear and objective withdrawal symptoms, and reducing pre-existing full agonist therapies before administering buprenorphine. However, even with these precautions, for many patients the induction of buprenorphine is a difficult experience, due to withdrawal symptoms. Furthermore, tapering of the full agonist bears the risk of relapse to illicit opioid use. Cases We present two cases of successful initiation of buprenorphine treatment with the Bernese method, ie, gradual induction overlapping with full agonist use. The first patient began buprenorphine with overlapping street heroin use after repeatedly experiencing relapse, withdrawal, and trauma reactivation symptoms during conventional induction. The second patient was maintained on high doses of diacetylmorphine (ie, pharmaceutical heroin) and methadone during induction. Both patients tolerated the induction procedure well and reported only mild withdrawal symptoms. Discussion Overlapping induction of buprenorphine maintenance treatment with full µ-opioid receptor agonist use is feasible and may be associated with better tolerability and acceptability in some patients compared to the conventional method of induction. PMID:27499655

  10. Instructive roles for agonist binding parameters in determining the functional bandwidth of cytokine receptor signaling

    PubMed Central

    Moraga, Ignacio; Richter, David; Wilmes, Stephan; Winkelmann, Hauke; Jude, Kevin; Thomas, Christoph; Suhoski, Megan M.; Engleman, Edgar G.; Piehler, Jacob; Garcia, K. Christopher

    2017-01-01

    The affinity of cytokine-receptor complexes on the cell surface is often poorly predictive of functional potency. To address this conundrum, we explored the inter-relationships of receptor binding to a wide range of downstream functional metrics for a prototypical cytokine, Interleukin-13 (IL-13), through structure-based engineering of agonists covering a spectrum of binding strengths for IL-13Rα1. Surprisingly, engineered IL-13 agonists spanning a broad affinity range exhibited similar potencies of STAT6 phosphorylation, while delays in STAT6 activation and nuclear translocation were only apparent for ligands with dramatically lower affinities. From this data, we developed a mechanistic model that quantitatively reproduced the kinetics of STAT6 phosphorylation for the entire spectrum of binding affinities. Receptor endocytosis plays a key role in buffering STAT6 phosphorylation potencies, while the lifetime of signaling complexes at the plasma membrane determines the long-term functional potency. The surprisingly complex inter-relationships between extracellular ligand binding and function highlight the importance of feedback mechanisms in modulating receptor responsiveness, and suggest new mechanism-based strategies to enhance the therapeutic efficacy of cytokine therapy. PMID:26554818

  11. The agonists of TLR4 and 9 are sufficient to activate memory B cells to differentiate into plasma cells in vitro but not in vivo.

    PubMed

    Richard, Katharina; Pierce, Susan K; Song, Wenxia

    2008-08-01

    Memory B cells can persist for a lifetime and be reactivated to yield high affinity, isotype switched plasma cells. The generation of memory B cells by Ag immunization requires adjuvants that generally contain TLR agonists. However, requirements for memory B cell activation and the role of TLRs in this activation are not well understood. In this study, we analyzed the response of memory B cells from immunized mice to TLR9 and 4 agonists CpG oligodeoxynucleotides (ODN) and LPS. Mouse memory B cells express both TLR9 and 4, and respond to both CpG ODN and LPS in vitro by differentiating into high affinity IgG secreting plasma cells. In contrast, neither CpG ODN nor LPS alone is sufficient to activate memory B cells in vivo. Ag is required for the clonal expansion of Ag-specific memory B cells, the differentiation of memory B cells to high affinity IgG secreting plasma cells, and the recall of high affinity Ab responses. The Ag-specific B cells that have not yet undergone isotype switching showed a relatively higher expression of TLR4 than memory B cells, which was reflected in a heightened response to LPS, but in both cases yielded mostly low affinity IgM secreting plasma cells. Thus, although memory B cells are sensitive to TLR agonists in vitro, TLR agonists alone appear to have little affect on B cell memory in vivo.

  12. Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors.

    PubMed

    Koshimizu, Taka-Aki; Kashiwazaki, Aki; Taniguchi, Junichi

    2016-05-03

    Reducing Na(+) in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na(+)-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na(+) sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na(+) increased cell surface [(3)H]AVP binding and decreased receptor internalization. Substitution of Na(+) by Cs(+) or NH4(+) inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na(+) over Cs(+). Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations.

  13. 2-Dialkynyl derivatives of (N)-methanocarba nucleosides: 'Clickable' A(3) adenosine receptor-selective agonists.

    PubMed

    Tosh, Dilip K; Chinn, Moshe; Yoo, Lena S; Kang, Dong Wook; Luecke, Hans; Gao, Zhan-Guo; Jacobson, Kenneth A

    2010-01-15

    We modified a series of (N)-methanocarba nucleoside 5'-uronamides to contain dialkyne groups on an extended adenine C2 substituent, as synthetic intermediates leading to potent and selective A(3) adenosine receptor (AR) agonists. The proximal alkyne was intended to promote receptor recognition, and the distal alkyne reacted with azides to form triazole derivatives (click cycloaddition). Click chemistry was utilized to couple an octadiynyl A(3)AR agonist to azido-containing fluorescent, chemically reactive, biotinylated, and other moieties with retention of selective binding to the A(3)AR. A bifunctional thiol-reactive crosslinking reagent was introduced. The most potent and selective novel compound was a 1-adamantyl derivative (K(i) 6.5nM), although some of the click products had K(i) values in the range of 200-400nM. Other potent, selective derivatives (K(i) at A(3)AR innM) were intended as possible receptor affinity labels: 3-nitro-4-fluorophenyl (10.6), alpha-bromophenacyl (9.6), thiol-reactive isothiazolone (102), and arylisothiocyanate (37.5) derivatives. The maximal functional effects in inhibition of forskolin-stimulated cAMP were measured, indicating that this class of click adducts varied from partial to full A(3)AR agonist compared to other widely used agonists. Thus, this strategy provides a general chemical approach to linking potent and selective A(3)AR agonists to reporter groups of diverse structure and to carrier moieties.

  14. Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors

    PubMed Central

    Koshimizu, Taka-aki; Kashiwazaki, Aki; Taniguchi, Junichi

    2016-01-01

    Reducing Na+ in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na+-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na+ sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na+ increased cell surface [3H]AVP binding and decreased receptor internalization. Substitution of Na+ by Cs+ or NH4+ inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na+ over Cs+. Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations. PMID:27138239

  15. The long-acting β2 -adrenoceptor agonist, indacaterol, enhances glucocorticoid receptor-mediated transcription in human airway epithelial cells in a gene- and agonist-dependent manner.

    PubMed

    Joshi, T; Johnson, M; Newton, R; Giembycz, M A

    2015-05-01

    Inhaled glucocorticoid (ICS)/long-acting β2 -adrenoceptor agonist (LABA) combination therapy is a recommended treatment option for patients with moderate/severe asthma in whom adequate control cannot be achieved by an ICS alone. Previously, we discovered that LABAs can augment dexamethasone-inducible gene expression and proposed that this effect may explain how these two drugs interact to deliver superior clinical benefit. Herein, we extended that observation by analysing, pharmacodynamically, the effect of the LABA, indacaterol, on glucocorticoid receptor (GR)-mediated gene transcription induced by seven ligands with intrinsic activity values that span the spectrum of full agonism to antagonism. BEAS-2B human airway epithelial cells stably transfected with a 2× glucocorticoid response element luciferase reporter were used to model gene transcription together with an analysis of several glucocorticoid-inducible genes. Indacaterol augmented glucocorticoid-induced reporter activation in a manner that was positively related to the intrinsic activity of the GR agonist. This effect was demonstrated by an increase in response maxima without a change in GR agonist affinity or efficacy. Indacaterol also enhanced glucocorticoid-inducible gene expression. However, the magnitude of this effect was dependent on both the GR agonist and the gene of interest. These data suggest that indacaterol activates a molecular rheostat, which increases the transcriptional competency of GR in an agonist- and gene-dependent manner without apparently changing the relationship between fractional GR occupancy and response. These findings provide a platform to rationally design ICS/LABA combination therapy that is based on the generation of agonist-dependent gene expression profiles in target and off-target tissues. © 2015 The British Pharmacological Society.

  16. The long-acting β2-adrenoceptor agonist, indacaterol, enhances glucocorticoid receptor-mediated transcription in human airway epithelial cells in a gene- and agonist-dependent manner

    PubMed Central

    Joshi, T; Johnson, M; Newton, R; Giembycz, M A

    2015-01-01

    Background and Purpose Inhaled glucocorticoid (ICS)/long-acting β2-adrenoceptor agonist (LABA) combination therapy is a recommended treatment option for patients with moderate/severe asthma in whom adequate control cannot be achieved by an ICS alone. Previously, we discovered that LABAs can augment dexamethasone-inducible gene expression and proposed that this effect may explain how these two drugs interact to deliver superior clinical benefit. Herein, we extended that observation by analysing, pharmacodynamically, the effect of the LABA, indacaterol, on glucocorticoid receptor (GR)-mediated gene transcription induced by seven ligands with intrinsic activity values that span the spectrum of full agonism to antagonism. Experimental Approach BEAS-2B human airway epithelial cells stably transfected with a 2× glucocorticoid response element luciferase reporter were used to model gene transcription together with an analysis of several glucocorticoid-inducible genes. Key Results Indacaterol augmented glucocorticoid-induced reporter activation in a manner that was positively related to the intrinsic activity of the GR agonist. This effect was demonstrated by an increase in response maxima without a change in GR agonist affinity or efficacy. Indacaterol also enhanced glucocorticoid-inducible gene expression. However, the magnitude of this effect was dependent on both the GR agonist and the gene of interest. Conclusions and Implications These data suggest that indacaterol activates a molecular rheostat, which increases the transcriptional competency of GR in an agonist- and gene-dependent manner without apparently changing the relationship between fractional GR occupancy and response. These findings provide a platform to rationally design ICS/LABA combination therapy that is based on the generation of agonist-dependent gene expression profiles in target and off-target tissues. PMID:25598440

  17. Allosteric interactions between agonists and antagonists within the adenosine A2A receptor-dopamine D2 receptor heterotetramer.

    PubMed

    Bonaventura, Jordi; Navarro, Gemma; Casadó-Anguera, Verònica; Azdad, Karima; Rea, William; Moreno, Estefanía; Brugarolas, Marc; Mallol, Josefa; Canela, Enric I; Lluís, Carme; Cortés, Antoni; Volkow, Nora D; Schiffmann, Serge N; Ferré, Sergi; Casadó, Vicent

    2015-07-07

    Adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromers are key modulators of striatal neuronal function. It has been suggested that the psychostimulant effects of caffeine depend on its ability to block an allosteric modulation within the A2AR-D2R heteromer, by which adenosine decreases the affinity and intrinsic efficacy of dopamine at the D2R. We describe novel unsuspected allosteric mechanisms within the heteromer by which not only A2AR agonists, but also A2AR antagonists, decrease the affinity and intrinsic efficacy of D2R agonists and the affinity of D2R antagonists. Strikingly, these allosteric modulations disappear on agonist and antagonist coadministration. This can be explained by a model that considers A2AR-D2R heteromers as heterotetramers, constituted by A2AR and D2R homodimers, as demonstrated by experiments with bioluminescence resonance energy transfer and bimolecular fluorescence and bioluminescence complementation. As predicted by the model, high concentrations of A2AR antagonists behaved as A2AR agonists and decreased D2R function in the brain.

  18. 2-(2-Piperidyl)- and 2-(2-pyrrolidyl)chromans as nicotine agonists: synthesis and preliminary pharmacological characterization.

    PubMed

    Efange, S M; Tu, Z; von Hohenberg, K; Francesconi, L; Howell, R C; Rampersad, M V; Todaro, L J; Papke, R L; Kung, M P

    2001-12-20

    As part of an effort to develop a new class of subtype selective nicotine agonists, we have synthesized and tested a group of 12 hydroxylated 2-(2-piperidyl)- and 2-(2-pyrrolidyl)chromans. In rat brain membranes, all 12 compounds displayed poor affinity for [(125)I]-alpha-bunagarotoxin binding sites. In contrast, three compounds, 17c, 24, and 26, displayed moderate to high affinity for [(3)H]cytisine binding sites, while three (17b, 18b,c) and six (17a,d,e and 18a,d,e) compounds showed weak and poor affinity, respectively, for these same sites. In subsequent studies, compounds 17a and 17c were found to stimulate the efflux of (86)Rb(+) from rat cortical synaptosomes, an indication of agonist activity. Further, both 17c and 26 displayed high intrinsic activity in stimulating the release of [(3)H]dopamine from striatal synaptosomes; however, only 17c was effective at stimulating the release of [(3)H]acetylcholine from cortical synaptosomes, suggesting differential selectivity. In cloned human nicotinic acetylcholine receptors (nAChR) expressed in Xenopus oocytes, both 17c and 26 activated alpha7 and alpha3beta2 receptor subtypes in a dose-dependent manner, but 26 was clearly the more potent agonist. Last, neither compound displayed dose-dependent activation of alpha4beta2 nAChRs. We conclude that 2-(2-azacyclic)chromans appear to be a promising new class of nicotine agonists.

  19. Design, synthesis, and biological evaluation of new 5-HT4 receptor agonists: application as amyloid cascade modulators and potential therapeutic utility in Alzheimer's disease.

    PubMed

    Russo, Olivier; Cachard-Chastel, Marthe; Rivière, Céline; Giner, Mireille; Soulier, Jean-Louis; Berthouze, Magali; Richard, Tristan; Monti, Jean-Pierre; Sicsic, Sames; Lezoualc'h, Frank; Berque-Bestel, Isabelle

    2009-04-23

    Serotonin 5-HT(4) receptor (5-HT(4)R) agonists are of particular interest for the treatment of Alzheimer's disease because of their ability to ameliorate cognitive deficits and to modulate production of amyloid beta-protein (Abeta). However, despite the range of 5-HT(4)R agonists synthesized to date, potent and selective 5-HT(4)R agonists are still lacking. In the present study, two libraries of molecules based on the scaffold of ML10302, a highly specific and partial 5-HT(4)R agonist, were efficiently prepared by parallel supported synthesis and their binding affinities and agonist activities evaluated. Furthermore, we showed that, in vivo, the two best candidates exhibited neuroprotective activity by increasing the level of the soluble form of the amyloid precursor protein (sAPPalpha) in the cortex and hippocampus of mice. Interestingly, one of these compounds could also inhibit Abeta fibril formation in vitro.

  20. Functional correlation between subclasses of brain receptor affinities and ethanol-induced motor incoordination (EIMI) in mice

    SciTech Connect

    Dar, M.S. )

    1991-03-11

    To further study if the modulation of EIMI is by brain adenosine A{sub 1} and/or A{sub 2} receptor, adenosine analogs with wide variability in their affinity for A{sub 1} and A{sub 2} subtypes were administered icv and their effect on E(ip)-IMI was evaluated by rotorod. A dose-dependent marked accentuation of EIMI by adenosine agonists (CHA, NECA, CPA, DCCA) tested, with nearly no effect on normal motor coordination in the absence of ethanol, was observed. There was a positive correlation between A{sub 2} affinity, A{sub 2}/A{sub 1} affinity ratio but a negative correlation between A{sub 1} affinity and the potency (ED50) of adenosine agonists to accentuate EIMI. However, with the high potency of CHA and NECA, both having significant affinity for A{sub 1} and A{sub 2} receptors, together with the well known membrane perturbation by ethanol, it seems difficult to rule out, until more information becomes available, the contribution of A{sub 1} receptor activation to adenosine modulation of EIMI. The high density of high affinity A{sub 2} (A{sub 2a}) in the striatum and of A{sub 1} in the cerebellum and several brain areas and the known importance of these two brain areas in the motor control, indirectly supports or at least provides circumstantial evidence for a functional correlation between EIMI and brain adenosine receptors.

  1. Desensitization of functional µ-opioid receptors increases agonist off-rate.

    PubMed

    Williams, John T

    2014-07-01

    Desensitization of µ-opioid receptors (MORs) develops over 5-15 minutes after the application of some, but not all, opioid agonists and lasts for tens of minutes after agonist removal. The decrease in function is receptor selective (homologous) and could result from 1) a reduction in receptor number or 2) a decrease in receptor coupling. The present investigation used photolysis of two caged opioid ligands to examine the kinetics of MOR-induced potassium conductance before and after MOR desensitization. Photolysis of a caged antagonist, carboxynitroveratryl-naloxone (caged naloxone), blocked the current induced by a series of agonists, and the time constant of decline was significantly decreased after desensitization. The increase in the rate of current decay was not observed after partial blockade of receptors with the irreversible antagonist, β-chlornaltrexamine (β-CNA). The time constant of current decay after desensitization was never more rapid than 1 second, suggesting an increased agonist off-rate rather than an increase in the rate of channel closure downstream of the receptor. The rate of G protein-coupled K(+) channel (GIRK) current activation was examined using photolysis of a caged agonist, carboxynitrobenzyl-tyrosine-[Leu(5)]-enkephalin. After acute desensitization or partial irreversible block of MORs with β-CNA, there was an increase in the time it took to reach a peak current. The decrease in the rate of agonist-induced GIRK conductance was receptor selective and dependent on receptor number. The results indicate that opioid receptor desensitization reduced the number of functional receptor and that the remaining active receptors have a reduced agonist affinity.

  2. Occurrence of aryl hydrocarbon receptor agonists and genotoxic compounds in the river systems in Southern Taiwan.

    PubMed

    Chou, Pei-Hsin; Liu, Tong-Cun; Ko, Fung-Chi; Liao, Mong-Wei; Yeh, Hsiao-Mei; Yang, Tse-Han; Wu, Chun-Ting; Chen, Chien-Hsun; Tsai, Tsung-Ya

    2014-07-01

    Water and sediment samples from river systems located in Southern Taiwan were investigated for the presence of aryl hydrocarbon receptor (AhR) agonists and genotoxicants by a combination of recombinant cell assays and gas chromatography-mass spectrometry analysis. AhR agonist activity and genotoxic response were frequently detected in samples collected during different seasons. In particular, dry-season water and sediment samples from Erren River showed strong AhR agonist activity (201-1423 ng L(-1) and 1374-5631 ng g(-1) β-naphthoflavone equivalents) and high genotoxic potential. Although no significant correlation was found between AhR agonist activity and genotoxicity, potential genotoxicants in sample extracts were suggested to be causative agents for yeast growth inhibition in the AhR-responsive reporter gene assay. After high performance liquid chromatography fractionation, AhR agonist candidates were detected in several fractions of Erren River water and sediment extracts, while possible genotoxicants were only found in water extracts. In addition, polycyclic aromatic hydrocarbons, the typical contaminants showing high AhR binding affinity, were only minor contributors to the AhR agonist activity detected in Erren River sediment extracts. Our findings displayed the usefulness of bioassays in evaluating the extent of environmental contamination, which may be helpful in reducing the chances of false-negative results obtained from chemical analysis of conventional contaminants. Further research will be undertaken to identify major candidates for xenobiotic AhR agonists and genotoxicants to better protect the aquatic environments in Taiwan.

  3. Dopamine receptor agonists, partial agonists and psychostimulant addiction.

    PubMed

    Pulvirenti, L; Koob, G F

    1994-10-01

    Despite the epidemic growth of psychostimulant addiction over the past years, few pharmacological means of intervention are available to date for clinical treatment. This is of importance since the withdrawal syndrome that follows abstinence from drugs such as cocaine and the amphetamines is characterized, among other symptoms, by intense craving for the abused drug, and this is considered a critical factor leading into relapse of drug use. In this article, Luigi Pulvirenti and George Koob focus on the modulatory role shown by drugs acting at the dopamine receptor on the various phases of psychostimulant dependence in preclinical models and in human studies, and suggest that a class of compounds with partial agonist properties at the dopamine receptor may have therapeutic potential.

  4. Functional efficacy of adenosine A2A receptor agonists is positively correlated to their receptor residence time

    PubMed Central

    Guo, Dong; Mulder-Krieger, Thea; IJzerman, Adriaan P; Heitman, Laura H

    2012-01-01

    BACKGROUND AND PURPOSE The adenosine A2A receptor belongs to the superfamily of GPCRs and is a promising therapeutic target. Traditionally, the discovery of novel agents for the A2A receptor has been guided by their affinity for the receptor. This parameter is determined under equilibrium conditions, largely ignoring the kinetic aspects of the ligand-receptor interaction. The aim of this study was to assess the binding kinetics of A2A receptor agonists and explore a possible relationship with their functional efficacy. EXPERIMENTAL APPROACH We set up, validated and optimized a kinetic radioligand binding assay (a so-called competition association assay) at the A2A receptor from which the binding kinetics of unlabelled ligands were determined. Subsequently, functional efficacies of A2A receptor agonists were determined in two different assays: a novel label-free impedance-based assay and a more traditional cAMP determination. KEY RESULTS A simplified competition association assay yielded an accurate determination of the association and dissociation rates of unlabelled A2A receptor ligands at their receptor. A correlation was observed between the receptor residence time of A2A receptor agonists and their intrinsic efficacies in both functional assays. The affinity of A2A receptor agonists was not correlated to their functional efficacy. CONCLUSIONS AND IMPLICATIONS This study indicates that the molecular basis of different agonist efficacies at the A2A receptor lies within their different residence times at this receptor. PMID:22324512

  5. The gall bladder cholecystokinin receptor exists in two guanine nucleotide-binding protein-regulated affinity states

    SciTech Connect

    Molero, X.; Miller, L.J. )

    1991-02-01

    To study proximal events in cholecystokinin (CCK) action on bovine gall bladder smooth muscle, we used the hormone analogue D-Tyr-Gly-((N1e28,31)CCK-26-32)-phenethyl ester (OPE), which has unique biological properties. This fully efficacious agonist differs from native CCK by not expressing supramaximal inhibition of cell shortening, yet it clearly interacts with the same receptor molecule. This was demonstrated in binding and affinity labeling studies, where both peptides label the same Mr 70,000-85,000 protein and both fully compete for binding of the other ligand. Further, its relatively high affinity for the low affinity CCK receptor permits the clear demonstration of two affinity states of a CCK receptor on a membrane preparation and makes possible evaluation of the molecular basis of these affinity states and their regulation. Analysis of homologous and heterologous binding curves performed with both CCK and OPE peptides and radioligands demonstrated the presence of two affinity states, with CCK being able to distinguish them (Kd1 = 0.48 +/- 0.04 nM and Kd2 = 56.5 +/- 7.4 nM) and OPE recognizing them equally (Kd1 = 0.94 +/- 0.31 nM and Kd2 = 0.96 +/- 0.23 nM). In the presence of nonhydrolyzable GTP analogues, there was a shift in distribution of receptors toward the low affinity state, with the total number of receptors and their absolute affinities for each peptide remaining constant. Thus, the gall bladder CCK receptor is a single molecule capable of assuming two interconvertible affinity states, regulated by a guanine nucleotide-binding protein. Two full agonists are capable of interacting with this molecule to yield different biological responses via different molecular events.

  6. Dopamine agonists for cocaine dependence.

    PubMed

    Soares, B G; Lima, M S; Reisser, A A; Farrell, M

    2001-01-01

    Cocaine is a major drug of abuse. Cocaine dependence is a common and serious condition, which has become nowadays a substantial public health problem. There is a wide and well documented range of consequences associated to chronic use of this drug, such as medical, psychological and social problems, including the spread of infectious diseases (e.g. AIDS, hepatitis and tuberculosis), crime, violence and neonatal drug exposure. Therapeutic management of the cocaine addicts includes an initial period of abstinence from the drug. During this phase the subjects may experience, besides the intense craving for cocaine, symptoms such as depression, fatigue, irritability, anorexia, and sleep disturbances. It was demonstrated that the acute use of cocaine may enhance dopamine transmission and chronically it decreases dopamine concentrations in the brain. Pharmacological treatment that affects dopamine could theoretically reduce these symptoms and contribute to a more successful therapeutic approach. To evaluate the efficacy and acceptability of dopamine agonists for treating cocaine dependence. We searched: The Cochrane Controlled Trials Register (Cochrane Library, issue 4, 2000), MEDLINE (from 1966 - 2000), EMBASE (from 1980 - 2000), LILACS (from 1982 - 2000), PsycLIT (from 1974 - 2000), Biological Abstracts (1982 to 2000). Reference searching; personal communication; conference abstracts; unpublished trials from pharmaceutical industry; book chapters on treatment of cocaine dependence. The inclusion criteria for all randomised controlled trials were that they should focus on the use of dopamine agonists on the treatment of cocaine dependence. Trials including patients with additional diagnosis such as opiate dependence were also eligible. The reviewers extracted the data independently and Relative Risks, weighted mean difference and number needed to treat were estimated. The reviewers assumed that people who died or dropped out had no improvement and tested the sensitivity

  7. Dopamine agonists for cocaine dependence.

    PubMed

    Soares, B G O; Lima, M S; Reisser, A A P; Farrell, M

    2003-01-01

    Cocaine dependence is a common and serious condition, which has become nowadays a substantial public health problem. There is a wide and well documented range of consequences associated to chronic use of this drug, such as medical, psychological and social problems, including the spread of infectious diseases (e.g. AIDS, hepatitis and tuberculosis), crime, violence and neonatal drug exposure. Therapeutic management of the cocaine addicts includes an initial period of abstinence from the drug. During this phase the subjects may experience, besides the intense craving for cocaine, symptoms such as depression, fatigue, irritability, anorexia, and sleep disturbances. It was demonstrated that the acute use of cocaine may enhance dopamine transmission and chronically it decreases dopamine concentrations in the brain. Pharmacological treatment that affects dopamine could theoretically reduce these symptoms and contribute to a more successful therapeutic approach. To evaluate the efficacy and acceptability of dopamine agonists for treating cocaine dependence. Electronic searches of Cochrane Library, EMBASE, MEDLINE, PsycLIT, Biological Abstracts and LILACS; reference searching; personal communication; conference abstracts; unpublished trials from pharmaceutical industry; book chapters on treatment of cocaine dependence, was performed for the primary version of this review in 2001. Another search of the electronic databases was done in December of 2002 for this update. The specialised register of trials of the Cochrane Group on Drugs and Alcohol was searched until February 2003. The inclusion criteria for all randomised controlled trials were that they should focus on the use of dopamine agonists on the treatment of cocaine dependence. The reviewers extracted the data independently and Relative Risks, weighted mean difference and number needed to treat were estimated. The reviewers assumed that people who died or dropped out had no improvement and tested the sensitivity of

  8. Benzodiazepine agonist and inverse agonist actions on GABAA receptor-operated chloride channels. I. Acute effects of ethanol

    SciTech Connect

    Buck, K.J.; Harris, R.A. )

    1990-05-01

    Acute exposure to ethanol was found to enhance the ability of a benzodiazepine (BZ) inverse agonist, methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM), to reduce muscimol-activated 36Cl- uptake by membranes isolated from mouse cerebral cortex. Pretreatment in vivo with a hypnotic dose of ethanol (but not a subhypnotic dose), or exposure to a corresponding concentration in vitro, was effective. This increase in sensitivity of gamma-aminobutyric acid receptor-operated chloride channels to the actions of DMCM was due to an increase in both the potency and efficacy of DMCM. Sensitization to DMCM was reversible and was not observed 24 hr after a single injection of ethanol. Pretreatment with ethanol (10, 50 and 100 mM) in vitro produced sensitization to DMCM in a concentration-dependent manner, similar to that produced by in vivo exposure; this increase in sensitivity did not develop if the membranes were pretreated with ethanol at 0 degrees C. Similarly, in vitro exposure to pentobarbital (200 microM) or flunitrazepam (1 microM) enhanced the actions of the inverse agonist Ro15-4513 (ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo(1,5a)(1,4)BZ-3- carboxylate). Acute ethanol exposure did not alter low-affinity gamma-aminobutyric acidA receptor binding or muscimol action, or the ability of a BZ agonist, flunitrazepam, to augment muscimol-activated chloride flux. Ethanol exposure did not alter (3H)flumazenil (Ro15-1788) binding to central BZ receptors, its displacement by DMCM or allosteric modulation of DMCM binding by muscimol (muscimol-shift).

  9. Novel chiral-diazepines function as specific, selective receptor agonists with variable coupling and species variability in human, mouse and rat BRS-3 receptor cells.

    PubMed

    Ramos-Álvarez, Irene; Nakamura, Taichi; Mantey, Samuel A; Moreno, Paola; Nuche-Berenguer, Bernardo; Jensen, Robert T

    2016-01-01

    Bombesin receptor subtype-3 (BRS-3) is an orphan G-protein coupled receptor which is classified in the bombesin receptor (BnR) family with which it shares high homology. It is present widely in the central nervous system and peripheral tissues and primarily receptor-knockout studies suggest it is involved in metabolic-glucose-insulin homeostasis, feeding and other CNS behaviors, gastrointestinal motility and cancer growth. However, the role of BRS-3 physiologically or in pathologic disorders has been not well defined because the natural ligand is unknown. Until recently, no selective agonists/antagonists were available; however, recently synthetic high-affinity agonists, chiral-diazepines nonpeptide-analogs (3F, 9D, 9F, 9G) with low CNS penetrance, were described, but are not well-categorized pharmacologically or in different labarotory species. The present study characterizes the affinities, potencies, selectivities of the chiral-diazepine BRS-3 agonists in human and rodents (mice,rat). In human BRS-3 receptors, the relative affinities of the chiral-diazepines was 9G>9D>9F>3F; each was selective for BRS-3. For stimulating PLC activity, in h-BRS-3 each of the four chiral diazepine analogs was fully efficacious and their relative potencies were: 9G (EC50: 9 nM)>9D (EC50: 9.4 nM)>9F (EC50: 39 nM)>3F (EC50: 48 nM). None of the four chiral diazepine analogs activated r,m,h-GRPR/NMBR. The nonpeptide agonists showed marked differences from each other and a peptide agonist in receptor-coupling-stiochiometry and in affinities/potencies in different species. These results demonstrate that chiral diazepine analogs (9G, 9D, 9F, 3F) have high/affinity/potency for the BRS-3 receptor in human and rodent cells, but different coupling-relationships and species differences from a peptide agonist.

  10. Importance of phenylalanine 107 in agonist recognition by the 5-hydroxytryptamine(3A) receptor.

    PubMed

    Steward, L J; Boess, F G; Steele, J A; Liu, D; Wong, N; Martin, I L

    2000-06-01

    The 5-hydroxytryptamine (5-HT)(3) receptor is a member of the ligand-gated ion channel receptor family with significant homology to the nicotinic acetylcholine, gamma-aminobutyric acid(A), and glycine receptors. In this receptor class, the agonist binding site is formed by parts of the extracellular amino-terminal region. This study examines the effects of altering phenylalanine 107 (F107) of the 5-HT(3AL) subunit, obtained from NG108-15 cells, using site-directed mutagenesis. The wild-type (WT) and mutant receptors were expressed in HEK 293 cells and characterized using both whole-cell patch-clamp and radioligand binding. The tyrosine mutant F107Y exhibits a significantly lower affinity for the agonist 5-HT (K(i) = 203 versus 15.6 nM) and an increase of similar magnitude in the EC(50) value (10.6 versus 1.2 microM) compared with WT. The activation kinetics of the maximal currents generated by 5-HT with this mutant were markedly slower than those of the WT receptor, but application of supramaximal concentrations of the agonist markedly decreased the time to half-peak. The asparagine mutant F107N displayed a significantly higher affinity for 5-HT than the WT receptor (1.62 versus 15.6 nM), which was mirrored in direction and magnitude by changes in the EC(50) value for this agonist (0.2 versus 1.2 microM). In contrast to the WT receptor, the mutant F107N was activated by acetylcholine (EC(50) = 260 microM). The response to acetylcholine was blocked by the 5-HT(3) receptor antagonist renzapride with a similar IC(50) value as that determined against currents generated by 5-HT in the WT receptor. These data suggest that F107 is an important determinant of agonist recognition at the 5-HT(3) receptor.

  11. An Accessory Agonist Binding Site Promotes Activation of α4β2* Nicotinic Acetylcholine Receptors*

    PubMed Central

    Wang, Jingyi; Kuryatov, Alexander; Sriram, Aarati; Jin, Zhuang; Kamenecka, Theodore M.; Kenny, Paul J.; Lindstrom, Jon

    2015-01-01

    Neuronal nicotinic acetylcholine receptors containing α4, β2, and sometimes other subunits (α4β2* nAChRs) regulate addictive and other behavioral effects of nicotine. These nAChRs exist in several stoichiometries, typically with two high affinity acetylcholine (ACh) binding sites at the interface of α4 and β2 subunits and a fifth accessory subunit. A third low affinity ACh binding site is formed when this accessory subunit is α4 but not if it is β2. Agonists selective for the accessory ACh site, such as 3-[3-(3-pyridyl)-1,2,4-oxadiazol-5-yl]benzonitrile (NS9283), cannot alone activate a nAChR but can facilitate more efficient activation in combination with agonists at the canonical α4β2 sites. We therefore suggest categorizing agonists according to their site selectivity. NS9283 binds to the accessory ACh binding site; thus it is termed an accessory site-selective agonist. We expressed (α4β2)2 concatamers in Xenopus oocytes with free accessory subunits to obtain defined nAChR stoichiometries and α4/accessory subunit interfaces. We show that α2, α3, α4, and α6 accessory subunits can form binding sites for ACh and NS9283 at interfaces with α4 subunits, but β2 and β4 accessory subunits cannot. To permit selective blockage of the accessory site, α4 threonine 126 located on the minus side of α4 that contributes to the accessory site, but not the α4β2 sites, was mutated to cysteine. Alkylation of this cysteine with a thioreactive reagent blocked activity of ACh and NS9283 at the accessory site. Accessory agonist binding sites are promising drug targets. PMID:25869137

  12. Methanocarba Analogues of Purine Nucleosides as Potent and Selective Adenosine Receptor Agonists

    PubMed Central

    Jacobson, Kenneth A.; Ji, Xiao-duo; Li, An-Hu; Melman, Neli; Siddiqui, Maqbool A.; Shin, Kye-Jung; Marquez, Victor E.; Ravi, R. Gnana

    2012-01-01

    Adenosine receptor agonists have cardioprotective, cerebroprotective, and antiinflammatory properties. We report that a carbocyclic modification of the ribose moiety incorporating ring constraints is a general approach for the design of A1 and A3 receptor agonists having favorable pharmacodynamic properties. While simple carbocyclic substitution of adenosine agonists greatly diminishes potency, methanocarba-adenosine analogues have now defined the role of sugar puckering in stabilizing the active adenosine receptor-bound conformation and thereby have allowed identification of a favored isomer. In such analogues a fused cyclopropane moiety constrains the pseudosugar ring of the nucleoside to either a Northern (N) or Southern (S) conformation, as defined in the pseudorotational cycle. In binding assays at A1, A2A, and A3 receptors, (N)-methanocarba-adenosine was of higher affinity than the (S)-analogue, particularly at the human A3 receptor (N/S affinity ratio of 150). (N)-Methanocarba analogues of various N6-substituted adenosine derivatives, including cyclopentyl and 3-iodobenzyl, in which the parent compounds are potent agonists at either A1 or A3 receptors, respectively, were synthesized. The N6-cyclopentyl derivatives were A1 receptor-selective and maintained high efficacy at recombinant human but not rat brain A1 receptors, as indicated by stimulation of binding of [35S]GTP-γ-S. The (N)-methanocarba-N6-(3-iodobenzyl)adenosine and its 2-chloro derivative had Ki values of 4.1 and 2.2 nM at A3 receptors, respectively, and were highly selective partial agonists. Partial agonism combined with high functional potency at A3 receptors (EC50 < 1 nM) may produce tissue selectivity. In conclusion, as for P2Y1 receptors, at least three adenosine receptors favor the ribose (N)-conformation. PMID:10841798

  13. Rotigotine is a potent agonist at dopamine D1 receptors as well as at dopamine D2 and D3 receptors

    PubMed Central

    Wood, Martyn; Dubois, Vanessa; Scheller, Dieter; Gillard, Michel

    2015-01-01

    Background and Purpose Rotigotine acts as a dopamine receptor agonist with high affinity for the dopamine D2, D3, D4 and D5 receptors but with a low affinity for the dopamine D1 receptor. We have investigated this further in radioligand binding and functional studies and compared the profile of rotigotine with that of other drugs used in the treatment of Parkinson's disease (PD). Experimental Approach The binding of rotigotine to human dopamine D1, D2, D3, D4 and D5 receptors was determined in radioligand binding studies using [3H]rotigotine and compared with that of standard antagonist radioligands. Functional interactions of rotigotine with human dopamine receptors was also determined. Key Results [3H]rotigotine can be used as an agonist radioligand to label all dopamine receptor subtypes and this can be important to derive agonist affinity estimates. Rotigotine maintains this high affinity in functional studies at all dopamine receptors especially D1, D2 and D3 receptors and, to a lesser extent, D4 and D5 receptors. Rotigotine, like apomorphine but unlike ropinirole and pramipexole, was a potent agonist at all dopamine receptors. Conclusions and Implications Rotigotine is a high-potency agonist at human dopamine D1, D2 and D3 receptors with a lower potency at D4 and D5 receptors. These studies differentiate rotigotine from conventional dopamine D2 agonists, used in the treatment of PD, such as ropinirole and pramipexole which lack activity at the D1 and D5 receptors, but resembles that of apomorphine which has greater efficacy in PD than other dopamine agonists but has suboptimal pharmacokinetic properties. PMID:25339241

  14. Beta-agonists and animal welfare

    USDA-ARS?s Scientific Manuscript database

    The use of beta-agonists in animal feed is a high profile topic within the U.S. as consumers and activist groups continue to question its safety. The only beta-agonist currently available for use in swine is ractopamine hydrochloride (RAC). This is available as Paylean™ (Elanco Animal Health – FDA a...

  15. Affinity Spaces and 21st Century Learning

    ERIC Educational Resources Information Center

    Gee, James Paul

    2017-01-01

    This article discusses video games as "attractors" to "affinity spaces." It argues that affinity spaces are key sites today where people teach and learn 21st Century skills. While affinity spaces are proliferating on the Internet as interest-and-passion-driven sites devoted to a common set of endeavors, they are not new, just…

  16. Small Molecule Fluoride Toxicity Agonists

    PubMed Central

    Nelson1, James W.; Plummer, Mark S.; Blount, Kenneth F.; Ames, Tyler D.; Breaker, Ronald R.

    2015-01-01

    SUMMARY Fluoride is a ubiquitous anion that inhibits a wide variety of metabolic processes. Here we report the identification of a series of compounds that enhance fluoride toxicity in Escherichia coli and Streptococcus mutans. These molecules were isolated by using a high-throughput screen (HTS) for compounds that increase intracellular fluoride levels as determined via a fluoride riboswitch-reporter fusion construct. A series of derivatives were synthesized to examine structure-activity relationships, leading to the identification of compounds with improved activity. Thus, we demonstrate that small molecule fluoride toxicity agonists can be identified by HTS from existing chemical libraries by exploiting a natural fluoride riboswitch. In addition, our findings suggest that some molecules might be further optimized to function as binary antibacterial agents when combined with fluoride. PMID:25910244

  17. Small molecule fluoride toxicity agonists.

    PubMed

    Nelson, James W; Plummer, Mark S; Blount, Kenneth F; Ames, Tyler D; Breaker, Ronald R

    2015-04-23

    Fluoride is a ubiquitous anion that inhibits a wide variety of metabolic processes. Here, we report the identification of a series of compounds that enhance fluoride toxicity in Escherichia coli and Streptococcus mutans. These molecules were isolated by using a high-throughput screen (HTS) for compounds that increase intracellular fluoride levels as determined via a fluoride riboswitch reporter fusion construct. A series of derivatives were synthesized to examine structure-activity relationships, leading to the identification of compounds with improved activity. Thus, we demonstrate that small molecule fluoride toxicity agonists can be identified by HTS from existing chemical libraries by exploiting a natural fluoride riboswitch. In addition, our findings suggest that some molecules might be further optimized to function as binary antibacterial agents when combined with fluoride.

  18. Salvinorin A, an active component of the hallucinogenic sage salvia divinorum is a highly efficacious kappa-opioid receptor agonist: structural and functional considerations.

    PubMed

    Chavkin, Charles; Sud, Sumit; Jin, Wenzhen; Stewart, Jeremy; Zjawiony, Jordan K; Siebert, Daniel J; Toth, Beth Ann; Hufeisen, Sandra J; Roth, Bryan L

    2004-03-01

    The diterpene salvinorin A from Salvia divinorum has recently been reported to be a high-affinity and selective kappa-opioid receptor agonist (Roth et al., 2002). Salvinorin A and selected derivatives were found to be potent and efficacious agonists in several measures of agonist activity using cloned human kappa-opioid receptors expressed in human embryonic kidney-293 cells. Thus, salvinorin A, salvinorinyl-2-propionate, and salvinorinyl-2-heptanoate were found to be either full (salvinorin A) or partial (2-propionate, 2-heptanoate) agonists for inhibition of forskolin-stimulated cAMP production. Additional studies of agonist potency and efficacy of salvinorin A, performed by cotransfecting either the chimeric G proteins Gaq-i5 or the universal G protein Ga16 and quantification of agonist-evoked intracellular calcium mobilization, affirmed that salvinorin A was a potent and effective kappa-opioid agonist. Results from structure-function studies suggested that the nature of the substituent at the 2-position of salvinorin A was critical for kappa-opioid receptor binding and activation. Because issues of receptor reserve complicate estimates of agonist efficacy and potency, we also examined the agonist actions of salvinorin A by measuring potassium conductance through G protein-gated K(+) channels coexpressed in Xenopus oocytes, a system in which receptor reserve is minimal. Salvinorin A was found to be a full agonist, being significantly more efficacious than (trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl] benzeneacetamide methane-sulfonate hydrate (U50488) or (trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl] benzeneacetamide methane-sulfonate hydrate (U69593) (two standard kappa-opioid agonists) and similar in efficacy to dynorphin A (the naturally occurring peptide ligand for kappa-opioid receptors). Salvinorin A thus represents the first known naturally occurring non-nitrogenous full agonist at kappa-opioid receptors.

  19. Agonist Derived Molecular Probes for A2A Adenosine Receptors

    PubMed Central

    Jacobson, Kenneth A.; Pannell, Lewis K.; Ji, Xiao-duo; Jarvis, Michael F.; Williams, Michael; Hutchison, Alan J.; Barrington, William W.; Stiles, Gary L.

    2011-01-01

    The adenosine agonist 2-(4-(2-carboxyethyl)phenylethylamino)-5′-N-ethylcarboxamidoadenosine (CGS21680) was recently reported to be selective for the A2A adenosine receptor subtype, which mediates its hypotensive action. To investigate structurelactivity relationships at a distal site, CGS21680 was derivatized using a functionalized congener approach. The carboxylic group of CGS21680 has been esterified to form a methyl ester, which was then treated with ethylenediamine to produce an amine congener. The amine congener was an intermediate for acylation reactions, in which the reactive acyl species contained a reported group, or the precursor for such. For radioiodination, derivatives of p-hydroxyphenylpropionic, 2-thiophenylacetic, and p-aminophenylacetic acids were prepared. The latter derivative (PAPA-APEC) was iodinated electrophilically using [125I]iodide resulting in a radioligand which was used for studies of competition of binding to striatal A, adenosine receptors in bovine brain. A biotin conjugate and an aryl sulfonate were at least 350-fold selective for A, receptors. For spectroscopic detection, a derivative of the stable free radical tetramethyl-1-piperidinyloxy (TEMPO) was prepared. For irreversible inhibition of receptors, meta- and para-phenylenediisothiocyanate groups were incorporated in the analogs. We have demonstrated that binding at A2A receptors is relatively insensitive to distal structural changes at the 2-position, and we report high affinity molecular probes for receptor characterization by radioactive, spectroscopic and affinity labelling methodology. PMID:2561548

  20. Molecular basis for agonist selectivity and activation of the orphan BRS-3-receptor

    PubMed Central

    Gonzalez, Nieves; Hocart, Simon J.; Portal-Nuñez, Sergio; Mantey, Samuel A.; Nakagawa, Tomoo; Zudaire, Enrique; Coy, David H.; Jensen, Robert T.

    2008-01-01

    Bombesin receptor subtype-3(BRS-3), a G protein-coupled orphan receptor, shares 51% identity with the mammalian bombesin(Bn) receptor for gastrin-releasing peptide(GRPR). There is increasing interest in BRS-3 because it is important in energy metabolism, glucose control,motility and tumor-growth. BRS-3 has low affinity for all Bn-related peptides, however, recently synthetic high-affinity agonists[D-Tyr6/D-Phe6,βAla11,Phe13,Nle14]Bn-(6–14) were described, but they are nonselective for BRS-3 over other Bn-receptors. Based on these peptides, three BRS-3 selective-ligands were developed: peptide#2,[D-Tyr6(R)-Apa11,Phe13,Nle14]Bn(6–14); peptide#3,[D-Tyr6,(R)-Apa11,4Cl-Phe13,Nle14]Bn(6–14); peptide #4,Ac-Phe-Trp-Ala-His(tBzl)-Nip-Gly-Arg-NH2. Their molecular determinants of selectivity/high affinity for BRS-3 are unknown. To address this we used a chimeric/site-mutagenesis approach. Substitution of extracellular domain2(EC2) of BRS-3 by the comparable GRPR domain decreased 26-,4,0-fold affinity for peptides#4,3,2. Substitution of EC3 decreased affinity 4-,11-,0-fold affinity for peptides#2,3,4. Ten point mutations in the EC2 and adjacent transmembrane regions (TM2) 2 and 3 of BRS-3 were made. His107(EC2-BRS-3) for lysine(H107K)(EC2-GRPR), decreased affinity(25-,0-fold) for peptide#4,1; however it could not be activated by either peptide. Its combination with Val101(TM2),Gly112(EC2),Arg127(TM3) resulted in complete loss-of-affinity of peptide#4. Receptor-modeling showed that each of these residues face inward and are within 4Å of the binding-pocket. These results demonstrate [Val101,His107,Gly112,Arg127] in the EC2/adjacent upper TMs of BRS-3 are critical for the high BRS3-selectivity of peptide#4. His107 in EC2 is essential for BRS-3 activation, suggesting amino-aromatic ligand/receptor interactions with peptide#4 are critical for both binding/ activation. Furthermore, these result demonstrate that even though these three BRS-3 selective agonists were developed

  1. Structure-based Understanding of Binding Affinity and Mode ...

    EPA Pesticide Factsheets

    The flexible hydrophobic ligand binding pocket (LBP) of estrogen receptor α (ERα) allows the binding of a wide variety of endocrine disruptors. Upon ligand binding, the LBP reshapes around the contours of the ligand and stabilizes the complex by complementary hydrophobic interactions and specific hydrogen bonds with the ligand. Here we present a framework for quantitative analysis of the steric and electronic features of the human ERα-ligand complex using three dimensional (3D) protein-ligand interaction description combined with 3D-QSAR approach. An empirical hydrophobicity density field is applied to account for hydrophobic contacts of ligand within the LBP. The obtained 3D-QSAR model revealed that hydrophobic contacts primarily determine binding affinity and govern binding mode with hydrogen bonds. Several residues of the LBP appear to be quite flexible and adopt a spectrum of conformations in various ERα-ligand complexes, in particular His524. The 3D-QSAR was combined with molecular docking based on three receptor conformations to accommodate receptor flexibility. The model indicates that the dynamic character of the LBP allows accommodation and stable binding of structurally diverse ligands, and proper representation of the protein flexibility is critical for reasonable description of binding of the ligands. Our results provide a quantitative and mechanistic understanding of binding affinity and mode of ERα agonists and antagonists that may be applicab

  2. Lanthanide labeling of a potent protease activated receptor-2 agonist for time-resolved fluorescence analysis

    PubMed Central

    Hoffman, Justin; Flynn, Andrea N.; Tillu, Dipti V.; Zhang, Zhenyu; Patek, Renata; Price, Theodore J.; Vagner, Josef; Boitano, Scott

    2012-01-01

    Protease activated receptor-2 (PAR2) is one of four G-protein coupled receptors (GPCRs) that can be activated by exogenous or endogenous proteases, which cleave the extracellular amino-terminus to expose a tethered ligand and subsequent G-protein signaling. Alternatively, PAR2 can be activated by peptide or peptidomimetic ligands derived from the sequence of the natural tethered ligand. Screening of novel ligands that directly bind to PAR2 to agonize or antagonize the receptor has been hindered by the lack of a sensitive, high-throughput, affinity binding assay. In this report we describe the synthesis and use of a modified PAR2 peptidomimetic agonist, 2-furoyl-LIGRLO-(diethylenetriaminepentaacetic acid)-NH2 (2-f-LIGRLO-dtpa), designed for lanthanide-based time resolved fluorescence screening. We first demonstrate that 2-f-LIGRLO-dtpa is a potent and specific PAR2 agonist across a full spectrum of in vitro assays. We then show that 2-f-LIGRLO-dtpa can be utilized in an affinity binding assay to evaluate the ligand-receptor interactions between known high potency peptidomimetic agonists (2-furoyl-LIGRLO-NH2, 2-f-LIGRLO; 2-aminothiazol-4-yl-LIGRL-NH2, 2-at-LIGRL and; 6-aminonicotinyl-LIGRL-NH2, 6-an-LIGRL) and PAR2. A separate N-terminal peptidomimetic modification (3-indoleacetyl-LIGRL-NH2, 3-ia-LIGRL) that does not activate PAR2 signaling was used as a negative control. All three peptidomimetic agonists demonstrated sigmoidal competitive binding curves, with the more potent agonists (2-f-LIGRLO and 2-at-LIGRL) displaying increased competition. In contrast, the control peptide (3-ia-LIGRL) displayed limited competition for PAR2 binding. In summary, we have developed a Europium-containing PAR2 agonist that can be used in a highly sensitive affinity binding assay to screen novel PAR2 ligands in a high-throughput format. This ligand can serve as a critical tool in the screening and development of PAR2 ligands. PMID:22994402

  3. Indian Craniometric Variability and Affinities

    PubMed Central

    Raghavan, Pathmanathan; Bulbeck, David; Pathmanathan, Gayathiri; Rathee, Suresh Kanta

    2013-01-01

    Recently published craniometric and genetic studies indicate a predominantly indigenous ancestry of Indian populations. We address this issue with a fuller coverage of Indian craniometrics than any done before. We analyse metrical variability within Indian series, Indians' sexual dimorphism, differences between northern and southern Indians, index-based differences of Indian males from other series, and Indians' multivariate affinities. The relationship between a variable's magnitude and its variability is log-linear. This relationship is strengthened by excluding cranial fractions and series with a sample size less than 30. Male crania are typically larger than female crania, but there are also shape differences. Northern Indians differ from southern Indians in various features including narrower orbits and less pronounced medial protrusion of the orbits. Indians resemble Veddas in having small crania and similar cranial shape. Indians' wider geographic affinities lie with “Caucasoid” populations to the northwest, particularly affecting northern Indians. The latter finding is confirmed from shape-based Mahalanobis-D distances calculated for the best sampled male and female series. Demonstration of a distinctive South Asian craniometric profile and the intermediate status of northern Indians between southern Indians and populations northwest of India confirm the predominantly indigenous ancestry of northern and especially southern Indians. PMID:24455409

  4. Pharmacology of the selective 5-HT(1B/1D) agonist frovatriptan.

    PubMed

    Comer, M B

    2002-04-01

    To determine the pharmacological profile of frovatriptan. Frovatriptan is a new 5-HT(1B/1D) agonist developed for the treatment of migraine. Pharmacological studies were performed using in vitro and in vivo techniques. Radioligand-binding studies showed that frovatriptan has a high affinity for 5-HT(1B) and 5-HT(1D) receptors, and moderate affinity for 5-HT(1A), 5-HT(1F), and 5-HT(7) receptors. In vitro, frovatriptan acts as a potent full agonist at human cloned 5-HT(1B) and 5-HT(1D) receptors, and as a moderately potent full agonist at 5-HT(7) receptors. Studies of frovatriptan in isolated human arteries demonstrated a lower threshold for constriction of cerebral than coronary vasculature and a bell-shaped dose-response curve was apparent in the coronary arteries. In anesthetized dogs, frovatriptan administration produced no measurable effect on cardiac function or on blood pressure. Frovatriptan had no effects on coronary blood flow following transient coronary artery occlusion, whereas sumatriptan produced a prolonged and significant decrease in coronary blood flow. The pharmacology of frovatriptan suggests that it should be an effective agent for the acute treatment of migraine, with a low potential for undesirable peripheral effects.

  5. Selective Estrogen Receptor Modulators: Cannabinoid Receptor Inverse Agonists with Differential CB1 and CB2 Selectivity

    PubMed Central

    Franks, Lirit N.; Ford, Benjamin M.; Prather, Paul L.

    2016-01-01

    Selective estrogen receptor modulators (SERMs) are used to treat estrogen receptor (ER)-positive breast cancer and osteoporosis. Interestingly, tamoxifen and newer classes of SERMs also exhibit cytotoxic effects in cancers devoid of ERs, indicating a non-estrogenic mechanism of action. Indicative of a potential ER-independent target, reports demonstrate that tamoxifen binds to cannabinoid receptors (CBRs) with affinity in the low μM range and acts as an inverse agonist. To identify cannabinoids with improved pharmacological properties relative to tamoxifen, and further investigate the use of different SERM scaffolds for future cannabinoid drug development, this study characterized the affinity and activity of SERMs in newer structural classes at CBRs. Fourteen SERMs from five structurally distinct classes were screened for binding to human CBRs. Compounds from four of five SERM classes examined bound to CBRs. Subsequent studies fully characterized CBR affinity and activity of one compound from each class. Ospemifine (a triphenylethylene) selectively bound to CB1Rs, while bazedoxifine (an indole) bound to CB2Rs with highest affinity. Nafoxidine (a tetrahydronaphthalene) and raloxifene (RAL; a benzothiaphene) bound to CB1 and CB2Rs non-selectively. All four compounds acted as inverse agonists at CB1 and CB2Rs, reducing basal G-protein activity with IC50 values in the nM to low μM range. Ospemifine, bazedoxifene and RAL also acted as inverse agonists to elevate basal intracellular cAMP levels in intact CHO-hCB2 cells. The four SERMs examined also acted as CB1 and CB2R antagonists in the cAMP assay, producing rightward shifts in the concentration-effect curve of the CBR agonist CP-55,940. In conclusion, newer classes of SERMs exhibit improved pharmacological characteristics (e.g., in CBR affinity and selectivity) relative to initial studies with tamoxifen, and thus suggest that different SERM scaffolds may be useful for development of safe and selective drugs acting

  6. Switching agonist/antagonist properties of opiate alkaloids at the delta opioid receptor using mutations based on the structure of the orphanin FQ receptor.

    PubMed

    Meng, F; Wei, Q; Hoversten, M T; Taylor, L P; Akil, H

    2000-07-21

    In an earlier study, we have demonstrated that by mutating five amino acid residues to those conserved in the opioid receptors, the OFQ receptor could be converted to a functional receptor that bound many opioid alkaloids with nanomolar affinities. Surprisingly, when the reciprocal mutations, Lys-214 --> Ala (TM5), Ile-277 --> Val/His-278 --> Gln/Ile-279 --> Val (TM6), and Ile-304 --> Thr (TM7), are introduced in the delta receptor, neither the individual mutations nor their various combinations significantly reduce the binding affinities of opioid alkaloids tested. However, these mutations cause profound alterations in the functional characteristics of the mutant receptors as measured in guanosine 5'-3-O-(thio)triphosphate binding assays. Some agonists become antagonists at some constructs as they lose their ability to activate them. Some alkaloid antagonists are transformed into agonists at other constructs, but their agonistic effects can still be blocked by the peptide antagonist TIPP. Even the delta inverse agonist 7-benzylidenenaltrexone becomes an agonist at the mutant containing both the Ile-277 --> Val/His-278 --> Gln/Ile-279 --> Val and Ile-304 --> Thr mutations. Thus, although the mutated residues are thought to be part of the binding pocket, they are critically involved in the control of the delta receptor activation process. These findings shed light on some of the structural bases of ligand efficacy. They are also compatible with the hypothesis that a ligand may achieve high affinity binding in several different ways, each having different effects on receptor activation.

  7. Modification of kappa-opioid receptor agonist-induced antinociception by diabetes in the mouse brain and spinal cord.

    PubMed

    Ohsawa, Masahiro; Kamei, Junzo

    2005-05-01

    The supraspinal and spinal antinociceptive effects of several kappa-opioid receptor agonists were examined in diabetic and non-diabetic mice using the tail-flick assay. The antinociception induced by intrathecal (i.t.), but not intracerebroventricular (i.c.v.), CI-977, a highly selective kappa(1)-opioid receptor agonist, in diabetic mice was less than that in non-diabetic mice. The antinociceptive effects of ICI-199,441 and R-84760, high potency kappa(1)-opioid receptor agonists, given i.c.v., but not i.t., were attenuated in diabetic mice compared to those in non-diabetic mice. On the other hand, the antinociceptive effects of the new kappa-opioid receptor agonist TRK-820, which has high affinity for kappa(2)- and/or kappa(3)-opioid receptors, injected both i.c.v. and i.t. in diabetic mice were markedly less than those in non-diabetic mice. These results indicate that the antinociceptive effects of those kappa-opioid receptor agonists in diabetic mice are altered in a region-specific manner in the central nervous system (CNS). The dysfunction of kappa-opioid receptor subtypes in diabetic mice may underlie this CNS region-specific variation in the effects of these kappa-opioid receptor agonists.

  8. Glucocorticoid hedgehog agonists in neurogenesis.

    PubMed

    Wang, Jiangbo; Barak, Larry S; Mook, Robert A; Chen, Wei

    2011-01-01

    The process of neurogenesis in mammals, which is prolific and widespread at birth, gradually slows with aging and in humans becomes restricted to areas including the cerebellum and hippocampus. It has been reported that exposure to glucocorticoids can impair neurogenesis in both adults and children. Glucocorticoids are known to bind with high affinity to intracellular receptors. Glucocorticoid blood levels are normally regulated by environmental stresses, but because of their clinical utility, exogenous glucocorticoids are frequently administered in drug formulations. Consequently, concerns have arisen about the consequences of glucocorticoid use on neurogenesis and health, especially in the pediatric population. In this article, we will review recent findings that a select number of related glucocorticoids, halcinonide, fluticasone propionate, clobetasol propionate, and fluocinonide, also bind the hedgehog pathway receptor Smoothened. We will discuss their pharmacology and also a most surprising result; that this select group of compounds, which includes FDA approved drugs, unlike typical glucocorticoids such as dexamethasone, stimulate stem cell growth, and thus enhance neurogenesis.

  9. Dopamine agonists, anti-progestins, anti-androgens, long-term-release GnRH agonists and anti-estrogens in canine reproduction: a review.

    PubMed

    Gobello, C

    2006-10-01

    Over the last 10 years, new drugs have been applied to canine reproduction, widening the spectrum of therapeutic possibilities for diseases that were previously surgically treated, and facilitating better control of the estrous cycle and fertility. Some are not approved for use in dogs; their use is experimental and further clinical trials are necessary. Dopamine agonists such as cabergoline, bromocriptine or metergoline are ergoderivative alkaloids that exert an anti-prolactinergic effect via stimulation of D2 pituitary receptors or inhibition of central serotoninergic ones. Their main indication is suppression of lactation. Anti-prolactinergic compounds have also been successfully used for pregnancy termination and shortening of interestrous intervals. Anti-progestins, (e.g. mifepristone and aglepristone) are synthetic steroids that bind with high affinity to progesterone (P4) receptors, preventing P4 from exerting its biological effects. Anti-progestins have been indicated in P4-dependent conditions, such as pregnancy termination, induction of parturition and the medical treatment of pyometra. Several groups of drugs have been described to have anti-androgenic properties through different mechanisms of action: progestins, receptor binding anti-androgens (e.g. flutamide), competitive enzyme inhibitors (e.g. finasteride), aromatase inhibitors, and GnRH agonists. Their main application is medical treatment of benign prostatic hyperplasia. Long-term release formulations of GnRH agonists (e.g. leuprolide or deslorelin acetate) postponed puberty and reversibly suppressed reproductive function in male and female dogs for periods exceeding 1 year. Anti-estrogens (e.g. clomiphene and tamoxifen citrate) are synthetic non-steroidal type I anti-estrogenic compounds that competitively block estrogen receptors with a combined antagonist-agonistic effect. In dogs, their action is more agonistic than antagonistic.

  10. Tyrphostin analogs are GPR35 agonists.

    PubMed

    Deng, Huayun; Hu, Haibei; Fang, Ye

    2011-06-23

    GPR35 is an orphan G protein-coupled receptor that is not well-characterized. Here we employ dynamic mass redistribution (DMR) assays to discover new GPR35 agonists. DMR assays identified tyrphostin analogs as GPR35 agonists, which were confirmed with receptor internalization, Tango β-arrestin translocation, and extracellular-signal-regulated kinase phosphorylation assays. These agonists provide pharmacological tools to study the biology and function of GPR35. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. Aspirin metabolites are GPR35 agonists.

    PubMed

    Deng, Huayun; Fang, Ye

    2012-07-01

    Aspirin is widely used as an anti-inflammatory, anti-platelet, anti-pyretic, and cancer-preventive agent; however, the molecular mode of action is unlikely due entirely to the inhibition of cyclooxygenases. Here, we report the agonist activity of several aspirin metabolites at GPR35, a poorly characterized orphan G protein-coupled receptor. 2,3,5-Trihydroxybenzoic acid, an aspirin catabolite, was found to be the most potent GPR35 agonist among aspirin metabolites. Salicyluric acid, the main metabolite of aspirin, was also active. These results suggest that the GPR35 agonist activity of certain aspirin metabolites may contribute to the clinical features of aspirin.

  12. Opioid agonists binding and responses in SH-SY5Y cells

    NASA Technical Reports Server (NTRS)

    Costa, E. M.; Hoffmann, B. B.; Loew, G. H.

    1992-01-01

    SH-SY5Y (human neuroblastoma) cultured cells, known to have mu-opioid receptors, have been used to assess and compare the ability of eight representative mu-selective compounds from diverse opioid families to recognize and activate these receptors. A wide range of receptor affinities spanning a factor of 10,000 was found between the highest affinity fentanyl analogs (Ki = 0.1nM) and the lowest affinity analog, meperidine (Ki = 1 microM). A similar range was found for inhibition of PGE1-stimulated cAMP accumulation with a rank order of activities that closely paralleled binding affinities. Maximum inhibition of cAMP accumulation by each compound was about 80%. Maximum stimulation of GTPase activity (approximately 50%) was also similar for all compounds except the lowest affinity meperidine. Both effects were naloxone reversible. These results provide further evidence that mu-receptors are coupled to inhibition of adenylate cyclase and that the SH-SY5Y cell line is a good system for assessment of mu-agonists functional responses.

  13. Synthesis and structure-activity relationships of N-aryl-piperidine derivatives as potent (partial) agonists for human histamine H3 receptor.

    PubMed

    Ishikawa, Makoto; Furuuchi, Takeshi; Yamauchi, Miki; Yokoyama, Fumikazu; Kakui, Nobukazu; Sato, Yasuo

    2010-07-15

    4-((1H-imidazol-4-yl)methyl)-1-aryl-piperazine and piperidine derivatives were designed and synthesized as candidate human histamine type 3 agonists. The piperazine derivatives were found to have low (or no) affinity for human histamine H3 receptor, whereas the piperidine derivatives showed moderate to high affinity, and their agonistic activity was greatly influenced by substituents on the aromatic ring. Among the piperidine-containing compounds, 17d and 17h were potent human histamine H3 receptor agonists with high selectivity over the closely related human H4 receptor. Our results indicate that appropriate conformational restriction, that is, by the piperidine spacer moiety, favors specific binding to the human histamine H3 receptor.

  14. Affinity membrane introduction mass spectrometry

    SciTech Connect

    Xu, C.; Patrick, J.S.; Cooks, R.G. )

    1995-02-15

    A new technique, affinity membrane introduction mass spectrometry, is described. In this method, a chemically modified membrane is used to selectively adsorb analytes bearing a particular functional group and concentrate them from solution. Release of the bound analyte results in its transfer across the membrane and allows it to be monitored mass spectrometrically, using, in the present case, a benchtop ion trap instrument. Alkylamine-modified cellulose membranes are used to bind substituted benzaldehydes through imine formation at high pH. Release of the bound aldehyde is achieved by acid hydrolysis of the surface-bound imine. Benzaldehyde is detected with excellent specificity at 10 ppm in a complex mixture using this method. Using the enrichment capability of the membrane, a full mass spectrum of benzaldehyde can be measured at a concentration of 10 ppb. The behavior of a variety of other aldehydes is also discussed to illustrate the capabilities of the method. 21 refs., 5 figs., 2 tabs.

  15. Agonistic aptamer to the insulin receptor leads to biased signaling and functional selectivity through allosteric modulation

    PubMed Central

    Yunn, Na-Oh; Koh, Ara; Han, Seungmin; Lim, Jong Hun; Park, Sehoon; Lee, Jiyoun; Kim, Eui; Jang, Sung Key; Berggren, Per-Olof; Ryu, Sung Ho

    2015-01-01

    Due to their high affinity and specificity, aptamers have been widely used as effective inhibitors in clinical applications. However, the ability to activate protein function through aptamer-protein interaction has not been well-elucidated. To investigate their potential as target-specific agonists, we used SELEX to generate aptamers to the insulin receptor (IR) and identified an agonistic aptamer named IR-A48 that specifically binds to IR, but not to IGF-1 receptor. Despite its capacity to stimulate IR autophosphorylation, similar to insulin, we found that IR-A48 not only binds to an allosteric site distinct from the insulin binding site, but also preferentially induces Y1150 phosphorylation in the IR kinase domain. Moreover, Y1150-biased phosphorylation induced by IR-A48 selectively activates specific signaling pathways downstream of IR. In contrast to insulin-mediated activation of IR, IR-A48 binding has little effect on the MAPK pathway and proliferation of cancer cells. Instead, AKT S473 phosphorylation is highly stimulated by IR-A48, resulting in increased glucose uptake both in vitro and in vivo. Here, we present IR-A48 as a biased agonist able to selectively induce the metabolic activity of IR through allosteric binding. Furthermore, our study also suggests that aptamers can be a promising tool for developing artificial biased agonists to targeted receptors. PMID:26245346

  16. Preclinical evaluation of SMM-189, a cannabinoid receptor 2-specific inverse agonist.

    PubMed

    Presley, Chaela; Abidi, Ammaar; Suryawanshi, Satyendra; Mustafa, Suni; Meibohm, Bernd; Moore, Bob M

    2015-08-01

    Cannabinoid receptor 2 agonists and inverse agonists are emerging as new therapeutic options for a spectrum of autoimmune-related disease. Of particular interest, is the ability of CB2 ligands to regulate microglia function in neurodegenerative diseases and traumatic brain injury. We have previously reported the receptor affinity of 3',5'-dichloro-2,6-dihydroxy-biphenyl-4-yl)-phenyl-methanone (SMM-189) and the characterization of the beneficial effects of SMM-189 in the mouse model of mild traumatic brain injury. Herein, we report the further characterization of SMM-189 as a potent and selective CB2 inverse agonist, which acts as a noncompetitive inhibitor of CP 55,940. The ability of SMM-189 to regulate microglial activation, in terms of chemokine expression and cell morphology, has been determined. Finally, we have determined that SMM-189 possesses acceptable biopharmaceutical properties indicating that the triaryl class of CB2 inverse agonists are viable compounds for continued preclinical development for the treatment of neurodegenerative disorders and traumatic brain injury.

  17. Preclinical evaluation of SMM-189, a cannabinoid receptor 2-specific inverse agonist

    PubMed Central

    Presley, Chaela; Abidi, Ammaar; Suryawanshi, Satyendra; Mustafa, Suni; Meibohm, Bernd; Moore, Bob M

    2015-01-01

    Cannabinoid receptor 2 agonists and inverse agonists are emerging as new therapeutic options for a spectrum of autoimmune-related disease. Of particular interest, is the ability of CB2 ligands to regulate microglia function in neurodegenerative diseases and traumatic brain injury. We have previously reported the receptor affinity of 3′,5′-dichloro-2,6-dihydroxy-biphenyl-4-yl)-phenyl-methanone (SMM-189) and the characterization of the beneficial effects of SMM-189 in the mouse model of mild traumatic brain injury. Herein, we report the further characterization of SMM-189 as a potent and selective CB2 inverse agonist, which acts as a noncompetitive inhibitor of CP 55,940. The ability of SMM-189 to regulate microglial activation, in terms of chemokine expression and cell morphology, has been determined. Finally, we have determined that SMM-189 possesses acceptable biopharmaceutical properties indicating that the triaryl class of CB2 inverse agonists are viable compounds for continued preclinical development for the treatment of neurodegenerative disorders and traumatic brain injury. PMID:26196013

  18. [Safety of beta-agonists in asthma].

    PubMed

    Oscanoa, Teodoro J

    2014-01-01

    Beta 2 agonist bronchodilators (β2A) are very important part in the pharmacotherapy of bronchial asthma, a disease that progresses in the world in an epidemic way. The β2A are prescribed to millions of people around the world, therefore the safety aspects is of public interest. Short-Acting β2 Agonists (SABAs), such as albuterol inhaler, according to current evidence, confirming its safety when used as a quick-relief or rescue medication. The long-acting β2 agonists (LABAs) The long-acting bronchodilators β2A (Long acting β2 Agonists or LABAs) are used associated with inhaled corticosteroids as controller drugs for asthma exacerbationsaccess, for safety reasons LABAs are not recommended for use as monotherapy.

  19. Conformal field theory on affine Lie groups

    SciTech Connect

    Clubok, Kenneth Sherman

    1996-04-01

    Working directly on affine Lie groups, we construct several new formulations of the WZW model, the gauged WZW model, and the generic affine-Virasoro action. In one formulation each of these conformal field theories (CFTs) is expressed as a one-dimensional mechanical system whose variables are coordinates on the affine Lie group. When written in terms of the affine group element, this formulation exhibits a two-dimensional WZW term. In another formulation each CFT is written as a two-dimensional field theory, with a three- dimensional WZW term, whose fields are coordinates on the affine group. On the basis of these equivalent formulations, we develop a translation dictionary in which the new formulations on the affine Lie group are understood as mode formulations of the conventional formulations on the Lie group. Using this dictionary, we also express each CFT as a three-dimensional field theory on the Lie group with a four-dimensional WZW term. 36 refs.

  20. Antisymmetric tensor generalizations of affine vector fields

    PubMed Central

    Morisawa, Yoshiyuki; Tomoda, Kentaro

    2016-01-01

    Tensor generalizations of affine vector fields called symmetric and antisymmetric affine tensor fields are discussed as symmetry of spacetimes. We review the properties of the symmetric ones, which have been studied in earlier works, and investigate the properties of the antisymmetric ones, which are the main theme in this paper. It is shown that antisymmetric affine tensor fields are closely related to one-lower-rank antisymmetric tensor fields which are parallelly transported along geodesics. It is also shown that the number of linear independent rank-p antisymmetric affine tensor fields in n-dimensions is bounded by (n + 1)!/p!(n − p)!. We also derive the integrability conditions for antisymmetric affine tensor fields. Using the integrability conditions, we discuss the existence of antisymmetric affine tensor fields on various spacetimes. PMID:26858463

  1. Design and synthesis of novel δ opioid receptor agonists with an azatricyclodecane skeleton for improving blood-brain barrier penetration.

    PubMed

    Watanabe, Yoshikazu; Hayashida, Kohei; Saito, Daisuke; Takahashi, Toshihiro; Sakai, Junichi; Nakata, Eriko; Kanda, Takashi; Iwai, Takashi; Hirayama, Shigeto; Fujii, Hideaki; Yamakawa, Tomio; Nagase, Hiroshi

    2017-08-01

    We designed and synthesized novel δ opioid receptor (DOR) agonists 3a-i with an azatricyclodecane skeleton, which was a novel structural class of DOR agonists. Among them, 3b exhibited high values of binding affinity and potent agonistic activity for the DOR that were approximately equivalent to those of 2 which bore an oxazatricyclodecane skeleton. In vitro assays using the blood-brain barrier (BBB) permeability test kit supported the idea that 3b achieved an excellent BBB permeability by converting an oxygen atom of 2 to a carbon atom (methylene group) in the core skeleton. As a result, 3b showed potent antinociceptive effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A novel treatment of global cerebral ischaemia with a glycine partial agonist.

    PubMed

    Von Lubitz, D K; Lin, R C; McKenzie, R J; Devlin, T M; McCabe, R T; Skolnick, P

    1992-08-14

    Chronic treatment of gerbils with 1-aminocyclopropanecarboxylic acid (a high affinity, partial agonist at strychnine-insensitive glycine receptors) resulted in a 3-fold increase in survival, a significant improvement in neurological status, and an extensive protection of vulnerable brain regions following severe forebrain ischaemia. A bolus of 1-aminocyclopropanecarboxylic acid 30 min prior to ischaemia did not further improve outcome compared to gerbils receiving their last injection 24 h prior to ischaemia. These findings are consistent with the hypothesis that chronic treatment with a glycine partial agonist desensitizes the N-methyl-D-aspartate receptor complex. Pharmacological intervention at the strychnine-insensitive glycine receptor may be an effective means of ameliorating the consequences of neuronal degeneration caused by excitotoxic phenomena.

  3. A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone

    PubMed Central

    Jang, Sung-Wuk; Liu, Xia; Yepes, Manuel; Shepherd, Kennie R.; Miller, Gary W.; Liu, Yang; Wilson, W. David; Xiao, Ge; Blanchi, Bruno; Sun, Yi E.; Ye, Keqiang

    2010-01-01

    Brain-derived neurotrophic factor (BDNF), a cognate ligand for the tyrosine kinase receptor B (TrkB) receptor, mediates neuronal survival, differentiation, synaptic plasticity, and neurogenesis. However, BDNF has a poor pharmacokinetic profile that limits its therapeutic potential. Here we report the identification of 7,8-dihydroxyflavone as a bioactive high-affinity TrkB agonist that provokes receptor dimerization and autophosphorylation and activation of downstream signaling. 7,8-Dihydroxyflavone protected wild-type, but not TrkB-deficient, neurons from apoptosis. Administration of 7,8-dihydroxyflavone to mice activated TrkB in the brain, inhibited kainic acid-induced toxicity, decreased infarct volumes in stroke in a TrkB-dependent manner, and was neuroprotective in an animal model of Parkinson disease. Thus, 7,8-dihydroxyflavone imitates BDNF and acts as a robust TrkB agonist, providing a powerful therapeutic tool for the treatment of various neurological diseases. PMID:20133810

  4. Highly Selective Salicylketoxime-Based Estrogen Receptor β Agonists Display Antiproliferative Activities in a Glioma Model

    PubMed Central

    2016-01-01

    Estrogen receptor β (ERβ) selective agonists are considered potential therapeutic agents for a variety of pathological conditions, including several types of cancer. Their development is particularly challenging, since differences in the ligand binding cavities of the two ER subtypes α and β are minimal. We have carried out a rational design of new salicylketoxime derivatives which display unprecedentedly high levels of ERβ selectivity for this class of compounds, both in binding affinity and in cell-based functional assays. An endogenous gene expression assay was used to further characterize the pharmacological action of these compounds. Finally, these ERβ-selective agonists were found to inhibit proliferation of a glioma cell line in vitro. Most importantly, one of these compounds also proved to be active in an in vivo xenograft model of human glioma, thus demonstrating the high potential of this type of compounds against this devastating disease. PMID:25559213

  5. Pramipexole Derivatives as Potent and Selective Dopamine D3 Receptor Agonists with Improved Human Microsomal Stability

    PubMed Central

    Jiang, Cheng; Levant, Beth; Li, Xiaoqin; Zhao, Ting; Wen, Bo; Luo, Ruijuan; Sun, Duxin

    2014-01-01

    We report herein the synthesis and evaluation of a series of new pramipexole derivatives as highly potent and selective dopamine-3 (D3) receptor agonists. A number of these new compounds bind to the D3 receptor with subnanomolar affinities and show excellent selectivity (>10,000) for the D3 receptor over the D1 and D2 receptors. Compound 23 for example, binds to the D3 receptor with a Ki value of 0.53 nM and shows a selectivity of >20,000 over the D2 receptor and the D1 receptor in the binding assays using a rat brain preparation. It has excellent stability in human liver microsomes and in vitro functional assays showed it to be a full agonist for the human D3 receptor. PMID:25338762

  6. Dopaminergic agonists in Parkinson's disease.

    PubMed

    Alonso Cánovas, A; Luquin Piudo, R; García Ruiz-Espiga, P; Burguera, J A; Campos Arillo, V; Castro, A; Linazasoro, G; López Del Val, J; Vela, L; Martínez Castrillo, J C

    2014-05-01

    Non-ergoline dopamine agonists (DA) are effective treatments for Parkinson's disease (PD). This review presents the pharmacology, evidence of efficacy and safety profile of pramipexole, ropinirole, and rotigotine, and practical recommendations are given regarding their use in clinical practice. Extended-release formulations of pramipexole and ropinirole and transdermal continuous delivery rotigotine patches are currently available; these may contribute to stabilising of plasma levels. In early PD, the three drugs significantly improve disability scales, delay time to dyskinesia and allow a later introduction of levodopa. In late PD they reduced total 'off'-time, improved Unified Parkinson's Disease Rating Scale (UPDRS) in both 'on' and 'off' state and allowed a reduction in total levodopa dosage. A significant improvement in quality of life scales has also been demonstrated. Extended-release formulations have proved to be non-inferior to the immediate release formulations and are better tolerated (ropinirole). Despite a generally good safety profile, serious adverse events, such as impulse control disorder and sleep attacks, need to be routinely monitored. Although combination therapy has not been addressed in scientific literature, certain combinations, such as apomorphine and another DA, may be helpful. Switching from one DA to another is feasible and safe, although in the first days an overlap of dopaminergic side effects may occur. When treatment with DA is stopped abruptly, dopamine withdrawal syndrome may present. Suspending any DA, especially pramipexole, has been linked to onset of apathy, which may be severe. New non-ergotine DAs are a valuable option for the treatment of both early and late PD. Despite their good safety profile, serious adverse effects may appear; these effects may have a pathoplastic effect on the course of PD and need to be monitored. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  7. PPAR Agonists and Cardiovascular Disease in Diabetes

    PubMed Central

    Calkin, Anna C.; Thomas, Merlin C.

    2008-01-01

    Peroxisome proliferators activated receptors (PPARs) are ligand-activated nuclear transcription factors that play important roles in lipid and glucose homeostasis. To the extent that PPAR agonists improve diabetic dyslipidaemia and insulin resistance, these agents have been considered to reduce cardiovascular risk. However, data from murine models suggests that PPAR agonists also have independent anti-atherosclerotic actions, including the suppression of vascular inflammation, oxidative stress, and activation of the renin angiotensin system. Many of these potentially anti-atherosclerotic effects are thought to be mediated by transrepression of nuclear factor-kB, STAT, and activator protein-1 dependent pathways. In recent clinical trials, PPARα agonists have been shown to be effective in the primary prevention of cardiovascular events, while their cardiovascular benefit in patients with established cardiovascular disease remains equivocal. However, the use of PPARγ agonists, and more recently dual PPARα/γ coagonists, has been associated with an excess in cardiovascular events, possibly reflecting unrecognised fluid retention with potent agonists of the PPARγ receptor. Newer pan agonists, which retain their anti-atherosclerotic activity without weight gain, may provide one solution to this problem. However, the complex biologic effects of the PPARs may mean that only vascular targeted agents or pure transrepressors will realise the goal of preventing atherosclerotic vascular disease. PMID:18288280

  8. Long-term studies of dopamine agonists.

    PubMed

    Hubble, Jean P

    2002-02-26

    Dopamine agonists have long been used as adjunctive therapy for the treatment of Parkinson's disease (PD). In more recent years these drugs have also been proved safe and effective as initial therapy in lieu of levodopa in the treatment of PD. Long-term levodopa therapy is associated with motor complications, including fluctuating response patterns and dyskinesia. By initially introducing a dopamine agonist as symptomatic drug therapy, it may be possible to postpone the use of levodopa and delay or prevent the development of motor complications. Recently, four clinical trials have explored this hypothesis by comparing the long-term response and side effects of levodopa with dopamine agonist therapy. The drugs studied have included ropinirole, pramipexole, cabergoline, and pergolide. In each of these projects, the occurrence of motor complications, such as wearing off and dyskinesia, was significantly less in the subjects assigned to initiation of therapy with a dopamine agonist. The addition of levodopa could be postponed by many months or even several years. Therefore, these long-term studies of dopamine agonists support the initiation of a dopamine agonist instead of levodopa in an effort to postpone levodopa-related motor complications. This therapeutic approach may be particularly appropriate in PD patients with a long treatment horizon on the basis of age and general good health. The extension phase of the long-term study comparing pramipexole with levodopa is ongoing, and follow-up information may help to establish the value of this treatment strategy.

  9. Structural determinants of sigma receptor affinity

    SciTech Connect

    Largent, B.L.; Wikstroem, H.G.; Gundlach, A.L.; Snyder, S.H.

    1987-12-01

    The structural determinants of sigma receptor affinity have been evaluated by examining a wide range of compounds related to opioids, neuroleptics, and phenylpiperidine dopaminergic structures for affinity at sigma receptor-binding sites labeled with (+)-(/sup 3/H)3-PPP. Among opioid compounds, requirements for sigma receptor affinity differ strikingly from the determinants of affinity for conventional opiate receptors. Sigma sites display reverse stereoselectivity to classical opiate receptors. Multi-ringed opiate-related compounds such as morphine and naloxone have negligible affinity for sigma sites, with the highest sigma receptor affinity apparent for benzomorphans which lack the C ring of opioids. Highest affinity among opioids and other compounds occurs with more lipophilic N-substituents. This feature is particularly striking among the 3-PPP derivatives as well as the opioids. The butyrophenone haloperidol is the most potent drug at sigma receptors we have detected. Among the series of butyrophenones, receptor affinity is primarily associated with the 4-phenylpiperidine moiety. Conformational calculations for various compounds indicate a fairly wide range of tolerance for distances between the aromatic ring and the amine nitrogen, which may account for the potency at sigma receptors of structures of considerable diversity. Among the wide range of structures that bind to sigma receptor-binding sites, the common pharmacophore associated with high receptor affinity is a phenylpiperidine with a lipophilic N-substituent.

  10. Vertex representations of quantum affine algebras.

    PubMed

    Frenkel, I B; Jing, N

    1988-12-01

    We construct vertex representations of quantum affine algebras of ADE type, which were first introduced in greater generality by Drinfeld and Jimbo. The limiting special case of our construction is the untwisted vertex representation of affine Lie algebras of Frenkel-Kac and Segal. Our representation is given by means of a new type of vertex operator corresponding to the simple roots and satisfying the defining relations. In the case of the quantum affine algebra of type A, we introduce vertex operators corresponding to all the roots and determine their commutation relations. This provides an analogue of a Chevalley basis of the affine Lie algebra [unk](n) in the basic representation.

  11. A Novel Vertex Affinity for Community Detection

    SciTech Connect

    Yoo, Andy; Sanders, Geoffrey; Henson, Van; Vassilevski, Panayot

    2015-10-05

    We propose a novel vertex affinity measure in this paper. The new vertex affinity quantifies the proximity between two vertices in terms of their clustering strength and is ideal for such graph analytics applications as community detection. We also developed a framework that combines simple graph searches and resistance circuit formulas to compute the vertex affinity efficiently. We study the properties of the new affinity measure empirically in comparison to those of other popular vertex proximity metrics. Our results show that the existing metrics are ill-suited for community detection due to their lack of fundamental properties that are essential for correctly capturing inter- and intra-cluster vertex proximity.

  12. Long-term modulation by postnatal oxytocin of the alpha 2-adrenoceptor agonist binding sites in central autonomic regions and the role of prenatal stress.

    PubMed

    Díaz-Cabiale, Z; Olausson, H; Sohlström, A; Agnati, L F; Narváez, J A; Uvnäs-Moberg, K; Fuxe, K

    2004-03-01

    The aim of this work was to evaluate whether oxytocin administered in male rats subcutaneously early in life in the absence or presence of food restriction during pregnancy has life-long effects on the alpha(2)-agonist binding sites in the nucleus of the solitarii tract (NTS), in the hypothalamus and the amygdala, as evaluated by quantitative receptor autoradiography. Maternal food restriction alone increased the affinity of the alpha(2)-agonist [(3)H]UK14.304 binding sites exclusively in the NTS. In offspring from ad libitum fed dams, oxytocin treatment significantly increased the density of alpha(2)-agonist binding sites in the NTS and in the hypothalamus. The K(d) value of the alpha(2)-agonist binding sites in the hypothalamus of these rats, but not in the other regions studied, was also significantly increased. In offspring from food-restricted dams, oxytocin treatment produced a significant increase of the B(max) values in the hypothalamus and the amygdala and the K(d) value of the alpha(2)-agonist binding sites in the NTS of these rats also was selectively and significantly increased. These results suggest that a postnatal, oxytocin-induced increase of regional alpha(2)-adrenoceptor function can be seen in adulthood by a persistent, regionally selective increase in the density of central alpha(2)-adrenoceptor agonist binding sites, in the absence of an affinity change in the NTS. Such a regional increase of alpha(2)-adrenoceptor signalling in adulthood may contribute to the anti-stress action of postnatal oxytocin. By contrast, after prenatal stress, the potential increase in alpha(2)-adrenoceptor signalling takes place via selective increases of density with no changes of affinity of the alpha(2)-agonist binding sites in the hypothalamus and the amygdala.

  13. 4-amino-6-alkyloxy-2-alkylthiopyrimidine derivatives as novel non-nucleoside agonists for the adenosine A1 receptor.

    PubMed

    Cosimelli, Barbara; Greco, Giovanni; Laneri, Sonia; Novellino, Ettore; Sacchi, Antonia; Trincavelli, Maria Letizia; Giacomelli, Chiara; Taliani, Sabrina; Da Settimo, Federico; Martini, Claudia

    2016-11-01

    Three 4-amino-6-alkyloxy-2-alkylthiopyrimidine derivatives (4-6) were investigated as potential non-nucleoside agonists at human adenosine receptors (ARs). When tested in competition binding experiments, these compounds exhibited low micromolar affinity (Ki values comprised between 1.2 and 1.9 μm) for the A1 AR and no appreciable affinity for the A2A and A3 ARs. Evaluation of their efficacy profiles by measurement of intracellular cAMP levels revealed that 4 and 5 behave as non-nucleoside agonists of the A1 AR with EC50 values of 0.47 and 0.87 μm, respectively. No clear concentration-response curves could be instead obtained for 6, probably because this compound modulates one or more additional targets, thus masking the putative effects exerted by its activation of A1 AR. The three compounds were not able to modulate A2B AR-mediated cAMP accumulation induced by the non-selective AR agonist NECA, thus demonstrating no affinity toward this receptor. © 2016 John Wiley & Sons A/S.

  14. Characterization of 12 GnRH peptide agonists – a kinetic perspective

    PubMed Central

    Nederpelt, Indira; Georgi, Victoria; Schiele, Felix; Nowak‐Reppel, Katrin; Fernández‐Montalván, Amaury E.; IJzerman, Adriaan P.

    2015-01-01

    Background and Purpose Drug‐target residence time is an important, yet often overlooked, parameter in drug discovery. Multiple studies have proposed an increased residence time to be beneficial for improved drug efficacy and/or longer duration of action. Currently, there are many drugs on the market targeting the gonadotropin‐releasing hormone (GnRH) receptor for the treatment of hormone‐dependent diseases. Surprisingly, the kinetic receptor‐binding parameters of these analogues have not yet been reported. Therefore, this project focused on determining the receptor‐binding kinetics of 12 GnRH peptide agonists, including many marketed drugs. Experimental Approach A novel radioligand‐binding competition association assay was developed and optimized for the human GnRH receptor with the use of a radiolabelled peptide agonist, [125I]‐triptorelin. In addition to radioligand‐binding studies, a homogeneous time‐resolved FRET Tag‐lite™ method was developed as an alternative assay for the same purpose. Key Results Two novel competition association assays were successfully developed and applied to determine the kinetic receptor‐binding characteristics of 12 high‐affinity GnRH peptide agonists. Results obtained from both methods were highly correlated. Interestingly, the binding kinetics of the peptide agonists were more divergent than their affinities with residence times ranging from 5.6 min (goserelin) to 125 min (deslorelin). Conclusions and Implications Our research provides new insights by incorporating kinetic, next to equilibrium, binding parameters in current research and development that can potentially improve future drug discovery targeting the GnRH receptor. PMID:26398856

  15. Synthesis and characterization of bradykinin B(2) receptor agonists containing constrained dipeptide mimics.

    PubMed

    Amblard, M; Daffix, I; Bergé, G; Calmès, M; Dodey, P; Pruneau, D; Paquet, J L; Luccarini, J M; Bélichard, P; Martinez, J

    1999-10-07

    We have previously shown that substitution of the D-Tic-Oic dipeptide by a (3S)-[amino]-5-(carbonylmethyl)-2,3-dihydro-1, 5-benzothiazepin-4(5H)-one (D-BT) moiety in the bradykinin B(2) receptor antagonist HOE 140 resulted in a full potent and selective bradykinin B(2) receptor agonist (H-DArg-Arg-Pro-Hyp-Gly-Thi-Ser-D-BT-Arg-OH, JMV1116) exhibiting a high affinity for the human receptor (K(i) 0.7 nM). In the present study, we have investigated the effects of replacement of the D-Tic-Oic moiety by various constrained dipeptide mimetics. The resulting compounds were tested for their binding affinity toward the cloned human B(2) receptor and for their functional interaction with the bradykinin-induced contraction of isolated human umbilical vein. Subsequently, we have designed novel bradykinin B(2) receptor agonists which are likely to be resistant to enzymatic cleavage by endopeptidases and which might represent interesting new pharmacological tools. In an attempt to increase the potency of compound JMV1116, both its N-terminal part and the D-BT moiety were modified. Substitution of the D-arginine residue by a L-lysine residue led to a 10-fold more potent bradykinin B(2) ligand [compound 22 (JMV1465) (K(i) 0.07 nM)], retaining full agonist activity on human umbilical vein. Substitution of the D-BT moiety by a (3S)-[amino]-5-(carbonylmethyl)-2,3-dihydro-8-methyl-1, 5-benzothiazepin-4(5H)-one [D-BT(Me)] moiety led to compound 23 (JMV1609) which exhibited a higher agonist activity (pD(2) = 7.4) than JMV1116 (pD(2) = 6.8).

  16. A Gpr120-selective agonist improves insulin resistance and chronic inflammation in obese mice.

    PubMed

    Oh, Da Young; Walenta, Evelyn; Akiyama, Taro E; Lagakos, William S; Lackey, Denise; Pessentheiner, Ariane R; Sasik, Roman; Hah, Nasun; Chi, Tyler J; Cox, Jason M; Powels, Mary Ann; Di Salvo, Jerry; Sinz, Christopher; Watkins, Steven M; Armando, Aaron M; Chung, Heekyung; Evans, Ronald M; Quehenberger, Oswald; McNelis, Joanne; Bogner-Strauss, Juliane G; Olefsky, Jerrold M

    2014-08-01

    It is well known that the ω-3 fatty acids (ω-3-FAs; also known as n-3 fatty acids) can exert potent anti-inflammatory effects. Commonly consumed as fish products, dietary supplements and pharmaceuticals, ω-3-FAs have a number of health benefits ascribed to them, including reduced plasma triglyceride levels, amelioration of atherosclerosis and increased insulin sensitivity. We reported that Gpr120 is the functional receptor for these fatty acids and that ω-3-FAs produce robust anti-inflammatory, insulin-sensitizing effects, both in vivo and in vitro, in a Gpr120-dependent manner. Indeed, genetic variants that predispose to obesity and diabetes have been described in the gene encoding GPR120 in humans (FFAR4). However, the amount of fish oils that would have to be consumed to sustain chronic agonism of Gpr120 is too high to be practical, and, thus, a high-affinity small-molecule Gpr120 agonist would be of potential clinical benefit. Accordingly, Gpr120 is a widely studied drug discovery target within the pharmaceutical industry. Gpr40 is another lipid-sensing G protein-coupled receptor, and it has been difficult to identify compounds with a high degree of selectivity for Gpr120 over Gpr40 (ref. 11). Here we report that a selective high-affinity, orally available, small-molecule Gpr120 agonist (cpdA) exerts potent anti-inflammatory effects on macrophages in vitro and in obese mice in vivo. Gpr120 agonist treatment of high-fat diet-fed obese mice causes improved glucose tolerance, decreased hyperinsulinemia, increased insulin sensitivity and decreased hepatic steatosis. This suggests that Gpr120 agonists could become new insulin-sensitizing drugs for the treatment of type 2 diabetes and other human insulin-resistant states in the future.

  17. Quantitative phosphoproteomics unravels biased phosphorylation of serotonin 2A receptor at Ser280 by hallucinogenic versus nonhallucinogenic agonists.

    PubMed

    Karaki, Samah; Becamel, Carine; Murat, Samy; Mannoury la Cour, Clotilde; Millan, Mark J; Prézeau, Laurent; Bockaert, Joël; Marin, Philippe; Vandermoere, Franck

    2014-05-01

    The serotonin 5-HT(2A) receptor is a primary target of psychedelic hallucinogens such as lysergic acid diethylamine, mescaline, and psilocybin, which reproduce some of the core symptoms of schizophrenia. An incompletely resolved paradox is that only some 5-HT(2A) receptor agonists exhibit hallucinogenic activity, whereas structurally related agonists with comparable affinity and activity lack such a psychoactive activity. Using a strategy combining stable isotope labeling by amino acids in cell culture with enrichment in phosphorylated peptides by means of hydrophilic interaction liquid chromatography followed by immobilized metal affinity chromatography, we compared the phosphoproteome in HEK-293 cells transiently expressing the 5-HT(2A) receptor and exposed to either vehicle or the synthetic hallucinogen 1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane (DOI) or the nonhallucinogenic 5-HT(2A) agonist lisuride. Among the 5995 identified phosphorylated peptides, 16 sites were differentially phosphorylated upon exposure of cells to DOI versus lisuride. These include a serine (Ser(280)) located in the third intracellular loop of the 5-HT(2A) receptor, a region important for its desensitization. The specific phosphorylation of Ser(280) by hallucinogens was further validated by quantitative mass spectrometry analysis of immunopurified receptor digests and by Western blotting using a phosphosite specific antibody. The administration of DOI, but not of lisuride, to mice, enhanced the phosphorylation of 5-HT(2A) receptors at Ser(280) in the prefrontal cortex. Moreover, hallucinogens induced a less pronounced desensitization of receptor-operated signaling in HEK-293 cells and neurons than did nonhallucinogenic agonists. The mutation of Ser(280) to aspartic acid (to mimic phosphorylation) reduced receptor desensitization by nonhallucinogenic agonists, whereas its mutation to alanine increased the ability of hallucinogens to desensitize the receptor. This study reveals a biased

  18. Effects of structural modifications of N-CPM-normorphine derivatives on agonist and antagonist activities in isolated organs.

    PubMed

    Riba, P; Tóth, Z; Hosztafi, S; Friedmann, T; Fürst, S

    2003-01-01

    The agonistic and antagonistic properties of N-cyclopropylmethyl (N-CPM) morphine derivatives were observed in mouse vas deferens (MVD), longitudinal muscle of guinea pig ileum (GPI) and rabbit vas deferens (LVD). In MVD the K(e) values of the titled compounds (N-CPM-morphine, N-CPM-isomorphine, N-CPM-dihydromorphine, N-CPM-dihydroisomorpPhine, N-CPM-dihydromorphone and naltrexone) were measured for mu-, kappa- and delta-receptors using normorphine, ethylketocyclazocine (EKC) and D-Pen2-D-Pen5-enkephaline (DPDPE) as selective agonists on the receptors, respectively. For mu-receptors of MVD the tested compounds showed similar affinity. For kappa-receptors the non-iso-6-OH derivatives possessed much less affinity than the iso-derivatives. Similar difference could be observed for delta-receptors. The agonistic activities of these compounds in MVD were observed to be between 0-20% of the inhibition of muscle contractions. In GPI the compounds except naltrexone possessed strong agonistic activities effectively antagonized by nor-binaltorphimine (nor-BNI) (K(e) of nor-BNI was 0.23 nM) suggesting that they were strong kappa-receptor agonists. We investigated these agents in LVD too, which contains kappa-receptors, but they did not produce any agonist potencies. It raises the possibility that the kappa-receptor subtypes of LVD and MVD are different from the kappa-receptor subtype of GPI or the vasa deferentia contain much fewer kappa-receptors than GPI and the intrinsic activities of these compounds are too small to reach the 50% inhibition of the contractions.

  19. Quantitative Phosphoproteomics Unravels Biased Phosphorylation of Serotonin 2A Receptor at Ser280 by Hallucinogenic versus Nonhallucinogenic Agonists*

    PubMed Central

    Karaki, Samah; Becamel, Carine; Murat, Samy; Mannoury la Cour, Clotilde; Millan, Mark J.; Prézeau, Laurent; Bockaert, Joël; Marin, Philippe; Vandermoere, Franck

    2014-01-01

    The serotonin 5-HT2A receptor is a primary target of psychedelic hallucinogens such as lysergic acid diethylamine, mescaline, and psilocybin, which reproduce some of the core symptoms of schizophrenia. An incompletely resolved paradox is that only some 5-HT2A receptor agonists exhibit hallucinogenic activity, whereas structurally related agonists with comparable affinity and activity lack such a psychoactive activity. Using a strategy combining stable isotope labeling by amino acids in cell culture with enrichment in phosphorylated peptides by means of hydrophilic interaction liquid chromatography followed by immobilized metal affinity chromatography, we compared the phosphoproteome in HEK-293 cells transiently expressing the 5-HT2A receptor and exposed to either vehicle or the synthetic hallucinogen 1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane (DOI) or the nonhallucinogenic 5-HT2A agonist lisuride. Among the 5995 identified phosphorylated peptides, 16 sites were differentially phosphorylated upon exposure of cells to DOI versus lisuride. These include a serine (Ser280) located in the third intracellular loop of the 5-HT2A receptor, a region important for its desensitization. The specific phosphorylation of Ser280 by hallucinogens was further validated by quantitative mass spectrometry analysis of immunopurified receptor digests and by Western blotting using a phosphosite specific antibody. The administration of DOI, but not of lisuride, to mice, enhanced the phosphorylation of 5-HT2A receptors at Ser280 in the prefrontal cortex. Moreover, hallucinogens induced a less pronounced desensitization of receptor-operated signaling in HEK-293 cells and neurons than did nonhallucinogenic agonists. The mutation of Ser280 to aspartic acid (to mimic phosphorylation) reduced receptor desensitization by nonhallucinogenic agonists, whereas its mutation to alanine increased the ability of hallucinogens to desensitize the receptor. This study reveals a biased phosphorylation of

  20. Agonist and antagonist binding to rat brain muscarinic receptors: influence of aging

    SciTech Connect

    Gurwitz, D.; Egozi, Y.; Henis, Y.I.; Kloog, Y.; Sokolovsky, M.

    1987-03-01

    The objective of the present study was to determine the binding properties of muscarinic receptors in six brain regions in mature and old rats of both sexes by employing direct binding of (/sup 3/H)-antagonist as well as of the labeled natural neurotransmitter, (/sup 3/H)-acetylcholine (( /sup 3/H)-AcCh). In addition, age-related factors were evaluated in the modulation processes involved in agonist binding. The results indicate that as the rat ages the density of the muscarinic receptors is altered differently in the various brain regions: it is decreased in the cerebral cortex, hippocampus, striatum and olfactory bulb of both male and female rats, but is increased (58%) in the brain stem of senescent males while no significant change is observed for females. The use of the highly sensitive technique measuring direct binding of (/sup 3/H)-AcCh facilitated the separate detection of age-related changes in the two classes (high- and low-affinity) of muscarinic agonist binding sites. In old female rats the density of high-affinity (/sup 3/H)-AcCh binding sites was preserved in all tissues studied, indicating that the decreases in muscarinic receptor density observed with (/sup 3/H)-antagonist represent a loss of low-affinity agonist binding sites. In contrast, (/sup 3/H)-AcCh binding is decreased in the hypothalamus and increased in the brain stem of old male rats. These data imply sexual dimorphism of the aging process in central cholinergic mechanisms.

  1. SB 202026: a novel muscarinic partial agonist with functional selectivity for M1 receptors.

    PubMed

    Loudon, J M; Bromidge, S M; Brown, F; Clark, M S; Hatcher, J P; Hawkins, J; Riley, G J; Noy, G; Orlek, B S

    1997-12-01

    The finding that ascending cholinergic systems are severely degenerated in Alzheimer's disease has driven the search for a cholinomimetic therapy. Adverse effects observed with cholinesterase inhibitors and high-efficacy muscarinic agonists led us to design compounds with an improved profile. SB 202026 (R-(Z)-(+)-alpha-(methoxyimino)-1-azabicyclo[2.2.2] octane-3-acetonitrile) displaced [3H]-oxotremorine-M from muscarinic receptors in the rat brain with high affinity (IC50 = 14 nM), a potency similar to that of oxotremorine-M itself (IC50 = 13 nM), but exhibited low affinity for cholinergic nicotinic receptors and other neuroreceptors. In studies using cloned human muscarinic receptors, SB 202026 possessed approximately equal affinity in displacing [3H]-quinuclidinyl benzilate from all muscarinic receptor subtypes. In functional models in vitro, SB 202026 caused maximal depolarization of the rat superior cervical ganglion at low concentrations (300 nM) (M1-mediated effect), while producing a lower maximal effect than the high-efficacy agonists oxotremorine-M and carbachol on M2-mediated release of ACh and M3-mediated smooth muscle contraction (guinea pig ileum), respectively. The functional selectivity and partial agonist profile seen in vitro were reflected in vivo through potent cognition-related activity (M1-induced increase in hippocampal EEG power) combined with low efficacy, compared with arecoline or oxotremorine, on induction of bradycardia (M2-mediated response), hypotension (via M3-mediated vasorelaxation) and tremor (thought to be mediated by M3 receptors). The foregoing profile of SB 202026 predicted that cognition-enhancing activity would be achieved at doses below those that initiate undesirable side effects, and this has subsequently been demonstrated in rodents, marmosets and humans.

  2. Irreversible blockade of the high and low affinity ( sup 3 H) naloxone binding sites by C-6 derivatives of morphinane-6-ones

    SciTech Connect

    Krizsan, D. ); Varga, E.; Benyhe, S.; Szucs, M.; Borsodi, A. ); Hosztafi, S. )

    1991-01-01

    C-6 derivatives-hydrazones, phenylhydrazones, dinitrophenylhydrazones, oximes and semicarbazones - of morphinane-6-ones were synthesized and their binding characteristics were studied on rat brain membranes. The dihydromorphinone and oxymorphone derivatives compete for the ({sup 3}H)naloxone binding sites with high affinity, while the dihydrocodeinone and oxycodone derivatives are less potent. The affinity of the new compounds is decreased for the delta sites as compared to the parent ligands. The ligands bearing bulky substituents also bind with low affinity to the kappa sites. The modification decreased the Na{sup +}-index of compounds indicating their mixed agonist-antagonist character. The dihydromorphinone derivatives are all capable to block irreversibly the high affinity binding site of ({sup 3}H)naloxone, whereas the dihydrocodeinone derivatives block irreversibly the low affinity site. A possible mechanism for the inhibition is suggested.

  3. Class II-restricted T cell receptor engineered in vitro for higher affinity retains peptide specificity and function

    PubMed Central

    Weber, K. Scott; Donermeyer, David L.; Allen, Paul M.; Kranz, David M.

    2005-01-01

    The T cell receptor (TCR) αβ heterodimer determines the peptide and MHC specificity of a T cell. It has been proposed that in vivo selection processes maintain low TCR affinities because T cells with higher-affinity TCRs would (i) have reduced functional capacity or (ii) cross-react with self-peptides resulting in clonal deletion. We used the class II-restricted T cell clone 3.L2, specific for murine hemoglobin (Hb/I-Ek), to explore these possibilities by engineering higher-affinity TCR mutants. A 3.L2 single-chain TCR (Vβ-linker-Vα) was mutagenized and selected for thermal stability and surface expression in a yeast display system. Stabilized mutants were used to generate a library with CDR3 mutations that were selected with Hb/I-Ek to isolate a panel of affinity mutants with KD values as low as 25 nM. Kinetic analysis of soluble single-chain TCRs showed that increased affinities were the result of both faster on-rates and slower off-rates. T cells transfected with the mutant TCRs and wild-type TCR responded to similar concentrations of peptide, indicating that the increased affinity was not detrimental to T cell activation. T cell transfectants maintained exquisite hemoglobin peptide specificity, but an altered peptide ligand that acted as an antagonist for the wild-type TCR was converted to a strong agonist with higher-affinity TCRs. These results show that T cells with high-affinity class II reactive TCRs are functional, but there is an affinity threshold above which an increase in affinity does not result in significant enhancement of T cell activation. PMID:16365315

  4. Adverse Effects of GLP-1 Receptor Agonists

    PubMed Central

    Filippatos, Theodosios D.; Panagiotopoulou, Thalia V.; Elisaf, Moses S.

    2014-01-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists are a class of injective anti-diabetic drugs that improve glycemic control and many other atherosclerosis-related parameters in patients with type 2 diabetes (T2D). However, the use of this relatively new class of drugs may be associated with certain adverse effects. Concerns have been expressed regarding the effects of these drugs on pancreatic and thyroid tissue, since animal studies and analyses of drug databases indicate an association of GLP-1 receptor agonists with pancreatitis, pancreatic cancer, and thyroid cancer. However, several meta-analyses failed to confirm a cause-effect relation between GLP-1 receptor agonists and the development of these adverse effects. One benefit of GLP-1 receptor agonists is that they do not cause hypoglycemia when combined with metformin or thiazolidinediones, but the dose of concomitant sulphonylurea or insulin may have to be decreased to reduce the risk of hypoglycemic episodes. On the other hand, several case reports have linked the use of these drugs, mainly exenatide, with the occurrence of acute kidney injury, primarily through hemodynamic derangement due to nausea, vomiting, and diarrhea. The most common symptoms associated with the use of GLP-1 receptor agonists are gastrointestinal symptoms, mainly nausea. Other common adverse effects include injection site reactions, headache, and nasopharyngitis, but these effects do not usually result in discontinuation of the drug. Current evidence shows that GLP-1 receptor agonists have no negative effects on the cardiovascular risk of patients with T2D. Thus, GLP-1 receptor agonists appear to have a favorable safety profile, but ongoing trials will further assess their cardiovascular effects. The aim of this review is to analyze critically the available data regarding adverse events of GLP-1 receptor agonists in different anatomic systems published in Pubmed and Scopus. Whenever possible, certain differences between GLP-1

  5. Thiamethoxam, a poor agonist of nicotinic acetylcholine receptors expressed on isolated cell bodies, acts as a full agonist at cockroach cercal afferent/giant interneuron synapses.

    PubMed

    Thany, Steeve H

    2011-03-01

    Thiamethoxam (TMX) is a second-generation neonicotinoid which is known to induce toxic effects on insects and mammalians. Recently, it has been proposed that TMX is a poor agonist of insect nicotinic acetylcholine receptors (nAChRs) on isolated cell bodies. Here, we have studied its effect on synaptic transmission. Our results demonstrate that TMX acts as an agonist of nAChRs expressed on cockroach cercal afferent giant/interneuron synapses as bath applications of TMX induce a strong reversible depolarization of the sixth abdominal ganglion. This response was reduced by the nicotinic antagonists mecamylamine and methyllicaconitine, but was insensitive to d-tubocurarine. Interestingly, TMX-induced depolarization was partially reduced by the muscarinic antagonist atropine, suggesting that TMX could bind to a 'mixed nicotinic/muscarinic' receptor. Compared to previous studies, we proposed that TMX is able to act as agonist of insect nAChRs expressed at cercal afferent/giant interneuron synapses. Moreover, our results suggest that nAChRs expressed on synaptic ganglion are distinct to nAChRs expressed on isolated cell bodies and that synaptic receptors have higher affinity to TMX resulting to a depolarization of postsynaptic nicotinic receptors. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Interaction of a radiolabeled agonist with cardiac muscarinic cholinergic receptors

    SciTech Connect

    Harden, T.K.; Meeker, R.B.; Martin, M.W.

    1983-12-01

    The interaction of a radiolabeled muscarinic cholinergic receptor agonist, (methyl-/sup 3/H)oxotremorine acetate ((/sup 3/H)OXO), with a washed membrane preparation derived from rat heart, has been studied. In binding assays at 4 degrees C, the rate constants for association and dissociation of (/sup 3/H)OXO were 2 X 10(7) M-1 min-1 and 5 X 10(-3) min-1, respectively, Saturation binding isotherms indicated that binding was to a single population of sites with a Kd of approximately 300 pM. The density of (/sup 3/H)OXO binding sites (90-100 fmol/mg of protein) was approximately 75% of that determined for the radiolabeled receptor antagonist (/sup 3/H)quinuclidinyl benzilate. Both muscarinic receptor agonists and antagonists inhibited the binding of (/sup 3/H)OXO with high affinity and Hill slopes of approximately one. Guanine nucleotides completely inhibited the binding of (/sup 3/H)OXO. This effect was on the maximum binding (Bmax) of (/sup 3/H)OXO with no change occurring in the Kd; the order of potency for five nucleotides was guanosine 5'-O-(3-thio-triphosphate) greater than 5'-guanylylimidodiphosphate greater than GTP greater than or equal to guanosine/diphosphate greater than GMP. The (/sup 3/H)OXO-induced interaction of muscarinic receptors with a guanine nucleotide binding protein was stable to solubilization. That is, membrane receptors that were prelabeled with (/sup 3/H)OXO could be solubilized with digitonin, and the addition of guanine nucleotides to the soluble, (/sup 3/H)OXO-labeled complex resulted in dissociation of (/sup 3/H)OXO from the receptor. Pretreatment of membranes with relatively low concentrations of N-ethylmaleimide inhibited (/sup 3/H)OXO binding by 85% with no change in the Kd of (/sup 3/H)OXO, and with no effect on (/sup 3/H)quinuclidinyl benzilate binding.

  7. Differential opioid agonist regulation of the mouse mu opioid receptor.

    PubMed

    Blake, A D; Bot, G; Freeman, J C; Reisine, T

    1997-01-10

    Mu opioid receptors mediate the analgesia induced by morphine. Prolonged use of morphine causes tolerance development and dependence. To investigate the molecular basis of tolerance and dependence, the cloned mouse mu opioid receptor with an amino-terminal epitope tag was stably expressed in human embryonic kidney (HEK) 293 cells, and the effects of prolonged opioid agonist treatment on receptor regulation were examined. In HEK 293 cells the expressed mu receptor showed high affinity, specific, saturable binding of radioligands and a pertussis toxin-sensitive inhibition of adenylyl cyclase. Pretreatment (1 h, 3 h, or overnight) of cells with 1 microM morphine or [D-Ala2MePhe4,Gly(ol)5]enkephalin (DAMGO) resulted in no apparent receptor desensitization, as assessed by opioid inhibition of forskolin-stimulated cAMP levels. In contrast, the morphine and DAMGO pretreatments (3 h) resulted in a 3-4-fold compensatory increase in forskolin-stimulated cAMP accumulation. The opioid agonists methadone and buprenorphine are used in the treatment of addiction because of a markedly lower abuse potential. Pretreatment of mu receptor-expressing HEK 293 cells with methadone or buprenorphine abolished the ability of opioids to inhibit adenylyl cyclase. No compensatory increase in forskolin-stimulated cAMP accumulation was found with methadone or buprenorphine; these opioids blocked the compensatory effects observed with morphine and DAMGO. Taken together, these results indicate that methadone and buprenorphine interact differently with the mouse mu receptor than either morphine or DAMGO. The ability of methadone and buprenorphine to desensitize the mu receptor and block the compensatory rise in forskolin-stimulated cAMP accumulation may be an underlying mechanism by which these agents are effective in the treatment of morphine addiction.

  8. SAR of α7 nicotinic receptor agonists derived from tilorone: exploration of a novel nicotinic pharmacophore.

    PubMed

    Schrimpf, Michael R; Sippy, Kevin B; Briggs, Clark A; Anderson, David J; Li, Tao; Ji, Jianguo; Frost, Jennifer M; Surowy, Carol S; Bunnelle, William H; Gopalakrishnan, Murali; Meyer, Michael D

    2012-02-15

    The well-known interferon-inducer tilorone was found to possess potent affinity for the agonist site of the α7 neuronal nicotinic receptor (K(i)=56 nM). SAR investigations determined that both basic sidechains are essential for potent activity, however active monosubstituted derivatives can also be prepared if the flexible sidechains are replaced with conformationally rigidified cyclic amines. Analogs in which the fluorenone core is replaced with either dibenzothiophene-5,5-dioxide or xanthenone also retain potent activity.

  9. Structure of classical affine and classical affine fractional W-algebras

    SciTech Connect

    Suh, Uhi Rinn

    2015-01-15

    We introduce a classical BRST complex (See Definition 3.2.) and show that one can construct a classical affine W-algebra via the complex. This definition clarifies that classical affine W-algebras can be considered as quasi-classical limits of quantum affine W-algebras. We also give a definition of a classical affine fractional W-algebra as a Poisson vertex algebra. As in the classical affine case, a classical affine fractional W-algebra has two compatible λ-brackets and is isomorphic to an algebra of differential polynomials as a differential algebra. When a classical affine fractional W-algebra is associated to a minimal nilpotent, we describe explicit forms of free generators and compute λ-brackets between them. Provided some assumptions on a classical affine fractional W-algebra, we find an infinite sequence of integrable systems related to the algebra, using the generalized Drinfel’d and Sokolov reduction.

  10. Reports of pathological gambling, hypersexuality, and compulsive shopping associated with dopamine receptor agonist drugs.

    PubMed

    Moore, Thomas J; Glenmullen, Joseph; Mattison, Donald R

    2014-12-01

    Severe impulse control disorders involving pathological gambling, hypersexuality, and compulsive shopping have been reported in association with the use of dopamine receptor agonist drugs in case series and retrospective patient surveys. These agents are used to treat Parkinson disease, restless leg syndrome, and hyperprolactinemia. To analyze serious adverse drug event reports about these impulse control disorders received by the US Food and Drug Administration (FDA) and to assess the relationship of these case reports with the 6 FDA-approved dopamine receptor agonist drugs. We conducted a retrospective disproportionality analysis based on the 2.7 million serious domestic and foreign adverse drug event reports from 2003 to 2012 extracted from the FDA Adverse Event Reporting System. Cases were selected if they contained any of 10 preferred terms in the Medical Dictionary for Regulatory Activities (MedDRA) that described the abnormal behaviors. We used the proportional reporting ratio (PRR) to compare the proportion of target events to all serious events for the study drugs with a similar proportion for all other drugs. We identified 1580 events indicating impulse control disorders from the United States and 21 other countries:710 fordopamine receptor agonist drugs and 870 for other drugs. The dopamine receptor agonist drugs had a strong signal associated with these impulse control disorders (n = 710; PRR = 277.6, P < .001). The association was strongest for the dopamine agonists pramipexole (n = 410; PRR = 455.9, P < .001) and ropinirole (n = 188; PRR = 152.5, P < .001), with preferential affinity for the dopamine D3 receptor. A signal was also seen for aripiprazole, an antipsychotic classified as a partial agonist of the D3 receptor (n = 37; PRR = 8.6, P < .001). Our findings confirm and extend the evidence that dopamine receptor agonist drugs are associated with these specific impulse control disorders. At present

  11. Scaling analysis of affinity propagation.

    PubMed

    Furtlehner, Cyril; Sebag, Michèle; Zhang, Xiangliang

    2010-06-01

    We analyze and exploit some scaling properties of the affinity propagation (AP) clustering algorithm proposed by Frey and Dueck [Science 315, 972 (2007)]. Following a divide and conquer strategy we setup an exact renormalization-based approach to address the question of clustering consistency, in particular, how many cluster are present in a given data set. We first observe that the divide and conquer strategy, used on a large data set hierarchically reduces the complexity O(N2) to O(N((h+2)/(h+1))) , for a data set of size N and a depth h of the hierarchical strategy. For a data set embedded in a d -dimensional space, we show that this is obtained without notably damaging the precision except in dimension d=2 . In fact, for d larger than 2 the relative loss in precision scales such as N((2-d)/(h+1)d). Finally, under some conditions we observe that there is a value s* of the penalty coefficient, a free parameter used to fix the number of clusters, which separates a fragmentation phase (for ss*) of the underlying hidden cluster structure. At this precise point holds a self-similarity property which can be exploited by the hierarchical strategy to actually locate its position, as a result of an exact decimation procedure. From this observation, a strategy based on AP can be defined to find out how many clusters are present in a given data set.

  12. Studies on the pharmacology of the novel histamine H3 receptor agonist Sch 50971.

    PubMed

    Hey, J A; Aslanian, R; Bolser, D C; Chapman, R W; Egan, R W; Rizzo, C A; Shih, N Y; Fernandez, X; McLeod, R L; West, R; Kreutner, W

    1998-09-01

    Experiments were performed to characterize the pharmacology of Sch 50971 ((+)-trans-4-(4(R)-methyl-3(R)-pyrolidinyl)-1H-imidazole dihydrochloride, CAS 167610-28-8), a novel histamine H3 receptor agonist. The activity of Sch 50971 was compared with that of (R)-alpha-methylhistamine (CAS 75614-87-8), a potent and moderately selective agonist of histamine H3 receptors, in a series of in vitro and in vivo assays. Sch 50971 is a high affinity, selective H3 receptor agonist in vitro and in vivo. Sch 50971 inhibits [3H]-N-alpha-methylhistamine (CAS 673-50-7) binding to the histamine H3 receptor in human brain (Ki = 5.0 nmol/l) and guinea pig brain (Ki = 2.5 nmol/l). Sch 50971 also inhibits electric field stimulated guinea pig ileum contractions (pD2 = 7.47) and decreases [3H]-norepinephrine (CAS 51-41-2) release (pD2 = 7.48) from guinea pig pulmonary artery by activation of presynaptic inhibitory H3 receptors. The in vitro effects of Sch 50971 are antagonized by low concentrations of a selective H3 antagonist, thioperamide (CAS 106243-16-7). Sch 50971 has low affinity (IC50's > 10 mumol/l) for histamine H1, dopamine D1 and D2, serotonin 5-HT2 and muscarinic cholinergic receptors. It also does not exhibit histamine H2-antagonist activity. In guinea pigs and cats, Sch 50971 exhibits in vivo H3 agonist activity. Sch 50971 inhibits sympathetic hypertension evoked by stimulation of the medulla oblongata in anesthetized guinea pigs (ED30 = 0.3 mg/kg i.v., ED30 = 1.0 mg/kg i.d.). Sch 50971 also inhibits the effects of sympathetic nerve stimulation on nasal resistance in cats. In these assays, Sch 50971 exhibits an efficacy and potency comparable to H3-agonist (R)-alpha-methylhistamine. However, under in vivo conditions, Sch 50971 does not exhibit histamine H1-mediated responses that are seen with (R)-alpha-methylhistamine at doses close to those that produce H3 effects. Therefore, Sch 50971 is a novel, potent and selective agonist of histamine H3 receptors with an improved in

  13. Hallucinogenic 5-HT2AR agonists LSD and DOI enhance dopamine D2R protomer recognition and signaling of D2-5-HT2A heteroreceptor complexes.

    PubMed

    Borroto-Escuela, Dasiel O; Romero-Fernandez, Wilber; Narvaez, Manuel; Oflijan, Julia; Agnati, Luigi F; Fuxe, Kjell

    2014-01-03

    Dopamine D2LR-serotonin 5-HT2AR heteromers were demonstrated in HEK293 cells after cotransfection of the two receptors and shown to have bidirectional receptor-receptor interactions. In the current study the existence of D2L-5-HT2A heteroreceptor complexes was demonstrated also in discrete regions of the ventral and dorsal striatum with in situ proximity ligation assays (PLA). The hallucinogenic 5-HT2AR agonists LSD and DOI but not the standard 5-HT2AR agonist TCB2 and 5-HT significantly increased the density of D2like antagonist (3)H-raclopride binding sites and significantly reduced the pKiH values of the high affinity D2R agonist binding sites in (3)H-raclopride/DA competition experiments. Similar results were obtained in HEK293 cells and in ventral striatum. The effects of the hallucinogenic 5-HT2AR agonists on D2R density and affinity were blocked by the 5-HT2A antagonist ketanserin. In a forskolin-induced CRE-luciferase reporter gene assay using cotransfected but not D2R singly transfected HEK293 cells DOI and LSD but not TCB2 significantly enhanced the D2LR agonist quinpirole induced inhibition of CRE-luciferase activity. Haloperidol blocked the effects of both quinpirole alone and the enhancing actions of DOI and LSD while ketanserin only blocked the enhancing actions of DOI and LSD. The mechanism for the allosteric enhancement of the D2R protomer recognition and signalling observed is likely mediated by a biased agonist action of the hallucinogenic 5-HT2AR agonists at the orthosteric site of the 5-HT2AR protomer. This mechanism may contribute to the psychotic actions of LSD and DOI and the D2-5-HT2A heteroreceptor complex may thus be a target for the psychotic actions of hallunicogenic 5-HT2A agonists. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. The structural basis for agonist and partial agonist action on a β(1)-adrenergic receptor.

    PubMed

    Warne, Tony; Moukhametzianov, Rouslan; Baker, Jillian G; Nehmé, Rony; Edwards, Patricia C; Leslie, Andrew G W; Schertler, Gebhard F X; Tate, Christopher G

    2011-01-13

    β-adrenergic receptors (βARs) are G-protein-coupled receptors (GPCRs) that activate intracellular G proteins upon binding catecholamine agonist ligands such as adrenaline and noradrenaline. Synthetic ligands have been developed that either activate or inhibit βARs for the treatment of asthma, hypertension or cardiac dysfunction. These ligands are classified as either full agonists, partial agonists or antagonists, depending on whether the cellular response is similar to that of the native ligand, reduced or inhibited, respectively. However, the structural basis for these different ligand efficacies is unknown. Here we present four crystal structures of the thermostabilized turkey (Meleagris gallopavo) β(1)-adrenergic receptor (β(1)AR-m23) bound to the full agonists carmoterol and isoprenaline and the partial agonists salbutamol and dobutamine. In each case, agonist binding induces a 1 Å contraction of the catecholamine-binding pocket relative to the antagonist bound receptor. Full agonists can form hydrogen bonds with two conserved serine residues in transmembrane helix 5 (Ser(5.42) and Ser(5.46)), but partial agonists only interact with Ser(5.42) (superscripts refer to Ballesteros-Weinstein numbering). The structures provide an understanding of the pharmacological differences between different ligand classes, illuminating how GPCRs function and providing a solid foundation for the structure-based design of novel ligands with predictable efficacies.

  15. Improving image segmentation by learning region affinities

    SciTech Connect

    Prasad, Lakshman; Yang, Xingwei; Latecki, Longin J

    2010-11-03

    We utilize the context information of other regions in hierarchical image segmentation to learn new regions affinities. It is well known that a single choice of quantization of an image space is highly unlikely to be a common optimal quantization level for all categories. Each level of quantization has its own benefits. Therefore, we utilize the hierarchical information among different quantizations as well as spatial proximity of their regions. The proposed affinity learning takes into account higher order relations among image regions, both local and long range relations, making it robust to instabilities and errors of the original, pairwise region affinities. Once the learnt affinities are obtained, we use a standard image segmentation algorithm to get the final segmentation. Moreover, the learnt affinities can be naturally unutilized in interactive segmentation. Experimental results on Berkeley Segmentation Dataset and MSRC Object Recognition Dataset are comparable and in some aspects better than the state-of-art methods.

  16. Low affinity purinergic receptor modulates the response of rat submandibular glands to carbachol and substance P.

    PubMed

    Métioui, M; Amsallem, H; Alzola, E; Chaib, N; Elyamani, A; Moran, A; Marino, A; Dehaye, J P

    1996-08-01

    The effect of extracellular ATP on the intracellular calcium concentration ([Ca2+]i) in rat submandibular glands was tested. The dose-response curve for ATP was biphasic with a first increase in the 1-30 microM concentration range and a further increase at concentrations higher than 100 microM. Among ATP analogs, only benzoyl-ATP stimulated the low affinity component. ATP tau S blocked this response. All the other analogs tested reproduced the high-affinity low capacity response. Magnesium and Coomassie blue selectively blocked the low affinity component. High concentrations of ATP blocked the increase of the intracellular calcium concentration [Ca2+]i in response to 100 microM carbachol. By itself, substance P (100 pM-1 microM) increased the [Ca2+]i. One mM ATP potentiated the response to concentrations of substance P higher than 10 nM. This potentiation was reversed by extracellular magnesium. Carbachol 100 microM and substance P (100 pM-1 microM) increased the release of inositol trisphosphate (IP3) from polyphosphoinositides (polyPI). Activation of the low affinity ATP receptors did not activate the polyPI-specific phospholipase C but inhibited its activation by 100 microM carbachol (-50%) and by 100 nM substance P (-60% at 1 nM substance P and -40% at 100 nM substance P). Substance P induced a strong homologous desensitization: a preincubation with 1 nM substance P nearly completely abolished the response to 1 microM substance P. When the cells were exposed to ATP before the second addition of substance P, the purinergic agonist partially restored the response to the tachykinin without totally reversing the desensitization. It is concluded that two types of purinergic receptors coexist in rat submandibular glands; a high-affinity, low capacity receptor which remains pharmacologically and functionally undefined and a low affinity site, high capacity receptor of the P2z type coupled to a non-selective cation channel. The occupancy of these low affinity sites

  17. Synthesis and biological evaluation of (3',5'-dichloro-2,6-dihydroxy-biphenyl-4-yl)-aryl/alkyl-methanone selective CB2 inverse agonist.

    PubMed

    Presley, Chaela S; Mustafa, Suni M; Abidi, Ammaar H; Moore, Bob M

    2015-09-01

    Cannabinoid receptor 2 (CB2) selective agonists and inverse agonists possess significant potential as therapeutic agents for regulating inflammation and immune function. Although CB2 agonists have received the greatest attention, it is emerging that inverse agonists also manifest anti-inflammatory activity. In process of designing new cannabinoid ligands we discovered that the 2,6-dihydroxy-biphenyl-aryl methanone scaffold imparts inverse agonist activity at CB2 receptor without functional activity at CB1. To further explore the scaffold we synthesized a series of (3',5'-dichloro-2,6-dihydroxy-biphenyl-4-yl)-aryl/alkyl-methanone analogs and evaluated the CB1 and CB2 affinity, potency, and efficacy. The studies reveal that an aromatic C ring is required for inverse agonist activity and that substitution at the 4 position is optimum. The resorcinol moiety is required for optimum CB2 inverse agonist activity and selectivity. Antagonist studies against CP 55,940 demonstrate that the compounds 41 and 45 are noncompetitive antagonists at CB2.

  18. Effects of agonist efficacy on desensitization of phosphoinositide hydrolysis mediated by m1 and m3 muscarinic receptors expressed in Chinese hamster ovary cells

    SciTech Connect

    Hu, J.; Wang, S.Z.; el-Fakahany, E.E. )

    1991-06-01

    Muscarinic receptor agonist-induced desensitization of phosphoinositide (PI) hydrolysis and loss of receptors were studied in Chinese hamster ovary (CHO) cells transfected with the m1 and m3 muscarinic receptor genes. Long-term exposure to the full agonist carbamylcholine (CBC) resulted in a time-dependent attenuation of the maximal PI response and a decrease in agonist potency. This desensitization was accompanied by a parallel loss of maximal ligand binding without an alteration of the binding affinity. The time course of both receptor desensitization and down-regulation was similar in m1 and m3 CHO cells. The PI response to the partial agonist McN-A-343 (McN) in m1 cells was more sensitive to desensitization by CBC than the response to the latter agonist, and this desensitization was faster than receptor down-regulation. Desensitization of the PI response to McN was reflected as a decrease in the maximal response without a marked change in potency. McN induced slow desensitization of the PI response to CBC but a much faster desensitization of its own response. Our data provide evidence that although muscarinic agonist-induced desensitization of PI hydrolysis in CHO cells is due mainly to loss of receptors, there are other important factors which play a role in this process, e.g., receptor-effector uncoupling. The relative contribution of these different mechanisms depends on the efficacy of the agonists used for the receptor desensitization and activation steps.

  19. Integrin affinity modulation in angiogenesis

    PubMed Central

    Mahabeleshwar, Ganapati H.; Chen, Juhua; Feng, Weiyi; Somanath, Payaningal R.; Razorenova, Olga V.; Byzova, Tatiana V.

    2008-01-01

    Integrins, transmembrane glycoprotein receptors, play vital roles in pathological angiogenesis, but their precise regulatory functions are not completely understood and remain controversial. This study aims to assess the regulatory functions of individual beta subunits of endothelial integrins in angiogenic responses induced by vascular endothelial growth factor (VEGF). Inhibition of expression of β1, β3 or β5 integrins in endothelial cells resulted in down regulation of EC adhesion and migration on the primary ligand for the corresponding integrin receptor, while no effects on the recognition of other ligands were detected. Although inhibition of expression of each subunit substantially affected capillary growth stimulated by VEGF, the loss of β3 integrin was the most inhibitory. EC stimulation by VEGF induced formation of the high affinity (activated) state of αvβ3 in a monolayer and activated αvβ3 was co-localized with VEGF receptor-2 (VEGFR-2). Inhibition of expression of β1, β3 or β5 did not affect expression levels of VEGFR-2 in EC. However, inhibition of β3, but not β1 or β5, resulted in substantial inhibition of VEGFR-2 phosphorylation stimulated by VEGF. Exogenous stimulation of αvβ3 integrin with activating antibodies augmented VEGF-dependent phosphorylation of VEGFR-2, whereas integrin blockade suppressed this response. Most importantly, activated αvβ3 was detected on endothelial cells of tumor vasculature. Activation of αvβ3 was substantially increased in highly-vascularized tumors as compared to normal tissues. Moreover, activated αvβ3 was co-localized with VEGFR-2 on endothelial cells of proliferating blood vessels. Together, these results show the unique role of αvβ3 integrin in cross-talk with VEGFR-2 in the context of pathological angiogenesis. PMID:18287811

  20. Sigma-1 receptor agonists as therapeutic drugs for cognitive impairment in neuropsychiatric diseases.

    PubMed

    Niitsu, Tomihisa; Iyo, Masaomi; Hashimoto, Kenji

    2012-01-01

    Cognitive impairment is a core feature of patients with neuropsychiatric diseases such as schizophrenia and psychotic depression. The drugs currently used to treat cognitive impairment have significant limitations, ensuring that the search for more effective therapies remains active. Endoplasmic reticulum protein sigma-1 receptors are unique binding sites in the brain that exert a potent effect on multiple neurotransmitter systems. Accumulating evidence suggests that sigma-1 receptors play a role in both the pathophysiology of neuropsychiatric diseases, and the mechanistic action of some therapeutic drugs, such as the selective serotonin reuptake inhibitors (SSRIs), donepezil and neurosteroids. Among SSRIs, fluvoxamine, a potent sigma-1 receptor agonist, has the highest affinity at sigma-1 receptors. Sigma-1 receptor agonists greatly potentiate nerve-growth factor (NGF)-induced neurite outgrowth in PC12 cells, an effect that is antagonized by treatment with the selective sigma-1 receptor antagonist NE-100. Furthermore, phencyclidine (PCP)-induced cognitive impairment, associated with animal models of schizophrenia is significantly improved by sub-chronic administration of sigma-1 receptor agonists such as fluvoxamine, SA4503 (cutamesine) and donepezil. This effect is antagonized by co-administration of NE-100. A positron emission tomography (PET) study using the specific sigma-1 receptor ligand [11C]SA4503 demonstrates that fluvoxamine and donepezil bind to sigma-1 receptors in the healthy human brain. In clinical studies, some sigma-1 receptor agonists, including fluvoxamine, donepezil and neurosteroids, improve cognitive impairment and clinical symptoms in neuropsychiatric diseases. In this article, we review the recent findings on sigma-1 receptor agonists as potential therapeutic drugs for the treatment of cognitive impairment in schizophrenia and psychotic depression.

  1. Effects of halothane on GABA(A) receptor kinetics: evidence for slowed agonist unbinding.

    PubMed

    Li, X; Pearce, R A

    2000-02-01

    Many anesthetics, including the volatile agent halothane, prolong the decay of GABA(A) receptor-mediated IPSCs at central synapses. This effect is thought to be a major factor in the production of anesthesia. A variety of different kinetic mechanisms have been proposed for several intravenous agents, but for volatile agents the kinetic mechanisms underlying this change remain unknown. To address this question, we used rapid solution exchange techniques to apply GABA to recombinant GABA(A) receptors (alpha(1)beta(2)gamma(2s)) expressed in HEK 293 cells, in the absence and presence of halothane. To differentiate between different microscopic kinetic steps that may be altered by the anesthetic, we studied a variety of measures, including peak concentration-response characteristics, macroscopic desensitization, recovery from desensitization, maximal current activation rates, and responses to the low-affinity agonist taurine. Experimentally observed alterations were compared with predictions based on a kinetic scheme that incorporated two agonist binding steps, and open and desensitized states. We found that, in addition to slowing deactivation after a brief pulse of GABA, halothane increased agonist sensitivity and slowed recovery from desensitization but did not alter macroscopic desensitization or maximal activation rate and only slightly slowed rapid deactivation after taurine application. This pattern of responses was found to be consistent with a reduction in the microscopic agonist unbinding rate (k(off)) but not with changes in channel gating steps, such as the channel opening rate (beta), closing rate (alpha), or microscopic desensitization. We conclude that halothane slows IPSC decay by slowing dissociation of agonist from the receptor.

  2. MDA7: a novel selective agonist for CB2 receptors that prevents allodynia in rat neuropathic pain models

    PubMed Central

    Naguib, M; Diaz, P; Xu, J J; Astruc-Diaz, F; Craig, S; Vivas-Mejia, P; Brown, D L

    2008-01-01

    Background and purpose: There is growing interest in using cannabinoid type 2 (CB2) receptor agonists for the treatment of neuropathic pain. In this report, we describe the pharmacological characteristics of MDA7 (1-[(3-benzyl-3-methyl-2,3-dihydro-1-benzofuran-6-yl)carbonyl]piperidine), a novel CB2 receptor agonist. Experimental approach: We characterized the pharmacological profile of MDA7 by using radioligand-binding assays and in vitro functional assays at human cannabinoid type 1 (CB1) and CB2 receptors. In vitro functional assays were performed at rat CB1 and CB2 receptors. The effects of MDA7 in reversing neuropathic pain were assessed in spinal nerve ligation and paclitaxel-induced neuropathy models in rats. Key results: MDA7 exhibited selectivity and agonist affinity at human and rat CB2 receptors. MDA7 treatment attenuated tactile allodynia produced by spinal nerve ligation or by paclitaxel in a dose-related manner. These effects were selectively antagonized by a CB2 receptor antagonist but not by CB1 or opioid receptor antagonists. MDA7 did not affect rat locomotor activity. Conclusion and implications: MDA7, a novel selective CB2 agonist, was effective in suppressing neuropathic nociception in two rat models without affecting locomotor behaviour. These results confirm the potential for CB2 agonists in the treatment of neuropathic pain. PMID:18846037

  3. Purification to homogeneity of an active opioid receptor from rat brain by affinity chromatography.

    PubMed

    Loukas, S; Mercouris, M; Panetsos, F; Zioudrou, C

    1994-05-10

    Active opioid binding proteins were solubilized from rat brain membranes in high yield with sodium deoxycholate in the presence of NaCl. Purification of opioid binding proteins was accomplished by opioid antagonist affinity chromatography. Chromatography using the delta-opioid antagonist N,N-diallyl-Tyr-D-Leu-Gly-Tyr-Leu attached to omega-aminododecyl-agarose (Affi-G) (procedure A) yielded a partially purified protein that binds selectively the delta-opioid agonist [3H]Tyr-D-Ser-Gly-Phe-Leu-Thr ([3H]DSLET), with a Kd of 19 +/- 3 nM and a Bmax of 5.1 +/- 0.4 nmol/mg of protein. Subsequently, Lens culinaris agglutinin-Sepharose 4B chromatography of the Affi-G eluate resulted in isolation of an electrophoretically homogeneous protein of 58 kDa that binds selectively [3H]DSLET with a Kd of 21 +/- 3 nM and a Bmax of 16.5 +/- 1.0 nmol/mg of protein. Chromatography using the nonselective antagonist 6-aminonaloxone coupled to 6-aminohexanoic acid-Sepharose 4B (Affi-NAL) (procedure B) resulted in isolation of a protein that binds selectively [3H]DSLET with a Kd of 32 +/- 2 nM and a Bmax of 12.4 +/- 0.5 nmol/mg of protein, and NaDodSO4/PAGE revealed a major band of apparent molecular mass 58 kDa. Polyclonal antibodies (Anti-R IgG) raised against the Affi-NAL protein inhibit the specific [3H]DSLET binding to the Affi-NAL eluate and to the solubilized membranes. Moreover, the Anti-R IgG inhibits the specific binding of radiolabeled Tyr-D-Ala-Gly-N-methyl-Phe-Gly-ol (DAMGO; mu-agonist), DSLET (delta-agonist), and naloxone to homogenates of rat brain membranes with equal potency. Furthermore, immunoaffinity chromatography of solubilized membranes resulted in the retention of a major protein of apparent molecular mass 58 kDa. In addition, immunoblotting of solubilized membranes and purified proteins from the Affi-G and Affi-NAL matrices revealed that the Anti-R IgG interacts with a protein of 58 kDa.

  4. Purification to homogeneity of an active opioid receptor from rat brain by affinity chromatography.

    PubMed Central

    Loukas, S; Mercouris, M; Panetsos, F; Zioudrou, C

    1994-01-01

    Active opioid binding proteins were solubilized from rat brain membranes in high yield with sodium deoxycholate in the presence of NaCl. Purification of opioid binding proteins was accomplished by opioid antagonist affinity chromatography. Chromatography using the delta-opioid antagonist N,N-diallyl-Tyr-D-Leu-Gly-Tyr-Leu attached to omega-aminododecyl-agarose (Affi-G) (procedure A) yielded a partially purified protein that binds selectively the delta-opioid agonist [3H]Tyr-D-Ser-Gly-Phe-Leu-Thr ([3H]DSLET), with a Kd of 19 +/- 3 nM and a Bmax of 5.1 +/- 0.4 nmol/mg of protein. Subsequently, Lens culinaris agglutinin-Sepharose 4B chromatography of the Affi-G eluate resulted in isolation of an electrophoretically homogeneous protein of 58 kDa that binds selectively [3H]DSLET with a Kd of 21 +/- 3 nM and a Bmax of 16.5 +/- 1.0 nmol/mg of protein. Chromatography using the nonselective antagonist 6-aminonaloxone coupled to 6-aminohexanoic acid-Sepharose 4B (Affi-NAL) (procedure B) resulted in isolation of a protein that binds selectively [3H]DSLET with a Kd of 32 +/- 2 nM and a Bmax of 12.4 +/- 0.5 nmol/mg of protein, and NaDodSO4/PAGE revealed a major band of apparent molecular mass 58 kDa. Polyclonal antibodies (Anti-R IgG) raised against the Affi-NAL protein inhibit the specific [3H]DSLET binding to the Affi-NAL eluate and to the solubilized membranes. Moreover, the Anti-R IgG inhibits the specific binding of radiolabeled Tyr-D-Ala-Gly-N-methyl-Phe-Gly-ol (DAMGO; mu-agonist), DSLET (delta-agonist), and naloxone to homogenates of rat brain membranes with equal potency. Furthermore, immunoaffinity chromatography of solubilized membranes resulted in the retention of a major protein of apparent molecular mass 58 kDa. In addition, immunoblotting of solubilized membranes and purified proteins from the Affi-G and Affi-NAL matrices revealed that the Anti-R IgG interacts with a protein of 58 kDa. Images PMID:8183950

  5. Prediction of ligand binding affinity using a multiple-conformations-multiple-protonation scheme: application to estrogen receptor α.

    PubMed

    Mizutani, Miho Y; Takamatsu, Yoshihiro; Ichinose, Tazuko; Itai, Akiko

    2012-01-01

    A fast method that can predict the binding affinities of chemicals to a target protein with a high degree of accuracy will be very useful in drug design and regulatory science. We have been developing a scoring function for affinity prediction, which can be applied to extensive protein systems, and also trying to generate a prediction scheme that specializes in each target protein, with as high a predictive power as possible. In this study, we have constructed a prediction scheme with target-specific scores for estimating ligand-binding affinities to human estrogen receptor α (ERα), considering the major conformational change between agonist- and antagonist-bound forms and the change in protonation states of histidine at the ligand-binding site. The generated scheme calibrated with fewer training compounds (23 for the agonist-bound form, 17 for the antagonist-bound form) demonstrated good predictive power (a predictive r(2) of 0.83 for 154 validation compounds); this was also true for compounds with frameworks that were quite different from those of the training compounds. Our prediction scheme will be useful in drug development targeting ERα and in primary screening of endocrine disruptors, and provides a successful method of affinity prediction considering the major conformational changes in a protein.

  6. Receptor regulation of the glutamate, GABA and taurine high-affinity uptake into astrocytes in primary culture.

    PubMed

    Hansson, E; Rönnbäck, L

    1991-05-10

    From experiments using dissociated primary astroglial cultures from newborn rat cerebral cortex, the stimulation of monoamine receptors (alpha, beta and 5HT) was shown to affect the high-affinity uptake kinetics of glutamate, GABA and taurine. In the presence of the alpha 1 agonist phenylephrine, there was an increased uptake (Vmax) of glutamate, while beta adrenoceptor activation slightly inhibited the glutamate uptake and stimulated the GABA and taurine uptakes. 5HT2 receptor stimulation caused a slight inhibition of the taurine uptake. The uptake rate of GABA was not affected by 5HT, alpha 1 or alpha 2 receptor agonists and the glutamate uptake was not affected by 5HT or alpha 2 receptor agonists. Nor was the taurine uptake affected by alpha 1 or alpha 2 receptor agonists. The active uptake of aspartate was unaffected by the presence of any of the monoamine receptor agonists used in this study. When the mechanisms behind these effects were studied, the GABA uptake seemed to be mediated via the G protein-adenylate cyclase complex in the receptor domain. Moreover, the K+ channels seemed to be involved. The taurine uptake, however, did not seem to be regulated by the same mechanism. It seems more probable that there is a direct interaction between the receptor and carrier of taurine at the membrane level. The mechanism underlying the receptor-regulated glutamate uptake is at present unclear, although it does not seem to involve protein kinase C.

  7. In vitro functional characterization of novel nociceptin/orphanin FQ receptor agonists in recombinant and native preparations.

    PubMed

    Ferrari, Federica; Cerlesi, Maria Camilla; Malfacini, Davide; Asth, Laila; Gavioli, Elaine C; Journigan, Blair V; Kamakolanu, Uma Gayathri; Meyer, Michael E; Yasuda, Dennis; Polgar, Willma E; Rizzi, Anna; Guerrini, Remo; Ruzza, Chiara; Zaveri, Nurulain T; Calo, Girolamo

    2016-12-15

    Nociceptin/Orphanin FQ (N/OFQ) regulates several biological functions via selective activation of the N/OFQ receptor (NOP). In this study novel nonpeptide NOP ligands were characterized in vitro in receptor binding and [(35)S]GTPγS stimulated binding in membranes of cells expressing human NOP and classical opioid receptors, calcium mobilization assay in cells coexpressing the receptors and chimeric G proteins, bioluminescence resonance energy transfer (BRET) based assay for studying NOP receptor interaction with G protein and arrestin, the electrically stimulated mouse vas deferens and the mouse colon bioassays. The action of the AT compounds were compared with standard NOP agonists (N/OFQ and Ro 65-6570) and the NOP selective antagonist SB-612111. AT compounds displayed high NOP affinity and behaved as NOP agonists in all the functional assays consistently showing the following rank order of potency AT-127≥AT-090≥AT-035>AT-004= AT-001. AT compounds behaved as NOP full agonists in the calcium mobilization and mouse colon assays and as partial agonists in the [(35)S]GTPγS and BRET assays. Interestingly AT-090 and AT-127, contrary to standard nonpeptide agonists that display G protein biased agonism, behaved as an unbiased agonists. AT-090 and AT-127 displayed higher NOP selectivity than Ro 65-6570 at native mouse receptors. AT-090 and AT-127 might be useful pharmacological tools for investigating the therapeutic potential of NOP partial agonists. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Structural correlates of affinity in fetal versus adult endplate nicotinic receptors

    NASA Astrophysics Data System (ADS)

    Nayak, Tapan Kumar; Chakraborty, Srirupa; Zheng, Wenjun; Auerbach, Anthony

    2016-04-01

    Adult-type nicotinic acetylcholine receptors (AChRs) mediate signalling at mature neuromuscular junctions and fetal-type AChRs are necessary for proper synapse development. Each AChR has two neurotransmitter binding sites located at the interface of a principal and a complementary subunit. Although all agonist binding sites have the same core of five aromatic amino acids, the fetal site has ~30-fold higher affinity for the neurotransmitter ACh. Here we use molecular dynamics simulations of adult versus fetal homology models to identify complementary-subunit residues near the core that influence affinity, and use single-channel electrophysiology to corroborate the results. Four residues in combination determine adult versus fetal affinity. Simulations suggest that at lower-affinity sites, one of these unsettles the core directly and the others (in loop E) increase backbone flexibility to unlock a key, complementary tryptophan from the core. Swapping only four amino acids is necessary and sufficient to exchange function between adult and fetal AChRs.

  9. The Cutting Edge of Affinity Electrophoresis Technology

    PubMed Central

    Kinoshita, Eiji; Kinoshita-Kikuta, Emiko; Koike, Tohru

    2015-01-01

    Affinity electrophoresis is an important technique that is widely used to separate and analyze biomolecules in the fields of biology and medicine. Both quantitative and qualitative information can be gained through affinity electrophoresis. Affinity electrophoresis can be applied through a variety of strategies, such as mobility shift electrophoresis, charge shift electrophoresis or capillary affinity electrophoresis. These strategies are based on changes in the electrophoretic patterns of biological macromolecules that result from interactions or complex-formation processes that induce changes in the size or total charge of the molecules. Nucleic acid fragments can be characterized through their affinity to other molecules, for example transcriptional factor proteins. Hydrophobic membrane proteins can be identified by means of a shift in the mobility induced by a charged detergent. The various strategies have also been used in the estimation of association/disassociation constants. Some of these strategies have similarities to affinity chromatography, in that they use a probe or ligand immobilized on a supported matrix for electrophoresis. Such methods have recently contributed to profiling of major posttranslational modifications of proteins, such as glycosylation or phosphorylation. Here, we describe advances in analytical techniques involving affinity electrophoresis that have appeared during the last five years. PMID:28248262

  10. Muscimol as an ionotropic GABA receptor agonist.

    PubMed

    Johnston, Graham A R

    2014-10-01

    Muscimol, a psychoactive isoxazole from Amanita muscaria and related mushrooms, has proved to be a remarkably selective agonist at ionotropic receptors for the inhibitory neurotransmitter GABA. This historic overview highlights the discovery and development of muscimol and related compounds as a GABA agonist by Danish and Australian neurochemists. Muscimol is widely used as a ligand to probe GABA receptors and was the lead compound in the development of a range of GABAergic agents including nipecotic acid, tiagabine, 4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol, (Gaboxadol(®)) and 4-PIOL.

  11. Agonist Binding and Desensitization of the μ-Opioid Receptor Is Modulated by Phosphorylation of the C-Terminal Tail Domain

    PubMed Central

    Arttamangkul, Seksiri; Bunzow, James R.; Williams, John T.

    2015-01-01

    Sustained activation of G protein–coupled receptors can lead to a rapid decline in signaling through acute receptor desensitization. In the case of the μ-opioid receptor (MOPr), this desensitization may play a role in the development of analgesic tolerance. It is understood that phosphorylation of MOPr promotes association with β-arrestin proteins, which then facilitates desensitization and receptor internalization. Agonists that induce acute desensitization have been shown to induce a noncanonical high-affinity agonist binding state in MOPr, conferring a persistent memory of prior receptor activation. In the current study, live-cell confocal imaging was used to investigate the role of receptor phosphorylation in agonist binding to MOPr. A phosphorylation cluster in the C-terminal tail of MOPr was identified as a mediator of agonist-induced affinity changes in MOPr. This site is unique from the primary phosphorylation cluster responsible for β-arrestin binding and internalization. Electrophysiologic measurements of receptor function suggest that both phosphorylation clusters may play a parallel role during acute receptor desensitization. Desensitization was unaffected by alanine mutation of either phosphorylation cluster, but was largely eliminated when both clusters were mutated. Overall, this work suggests that there are multiple effects of MOPr phosphorylation that appear to regulate MOPr function: one affecting β-arrestin binding and a second affecting agonist binding. PMID:25934731

  12. Mapping of the acetylcholine binding site of the nicotinic acetylcholine receptor: ( sup 3 H)nicotine as an agonist photoaffinity label

    SciTech Connect

    Middleton, R.E.; Cohen, J.B. )

    1991-07-16

    The agonist ({sup 3}H)nicotine was used as a photoaffinity label for the acetylcholine binding sties on the Torpedo nicotinic acetylcholine receptor (AChR). ({sup 3}H)Nicotine binds at equilibrium with K{sub eq} = 0.6 {mu}M to the agonist binding sites. Irradiation with 254-nm light of AChR-rich membranes equilibrated with ({sup 3}H)nicotine resulted in covalent incorporation into the {alpha}- and {gamma}-subunits, which was inhibited by agonists and competitive antagonists but not by noncompetitive antagonists. Inhibition of labeling by d-tubocurarine demonstrated that the {alpha}-subunit was labeled via both agonist sites but the {gamma}-subunit was labeled only via the site that binds d-tubocurarine with high affinity. Chymotryptic digestion of the {alpha}-subunit confirmed that Try-198 was the principal amino acid labeled by ({sup 3}H)nicotine. This confirmation required a novel radiosequencing strategy employing o-phthalaldehyde ({sup 3}H)Nicotine, which is the first photoaffinity agonist used, labels primarily Tyr-198 in contrast to competitive antagonist affinity labels, which label primarily Tyr-190 and Cys-192/Cys-193.

  13. Immune Response Modulation of Conjugated Agonists with Changing Linker Length.

    PubMed

    Ryu, Keun Ah; Slowinska, Katarzyna; Moore, Troy; Esser-Kahn, Aaron

    2016-12-16

    We report immune response modulation with linked Toll-like receptor (TLR) agonists. Conjugating two agonists of synergistic TLRs induce an increase in immune activity compared to equal molarity of soluble agonists. Additionally, varying the distance between the agonists by changing the linker length alters the level of macrophage NF-κB activity as well as primary bone marrow derived dendritic cell IL-6 production. This modulation is effected by the size of the agonists and the pairing of the stimulated TLRs. The sensitivity of linker-length-dependent immune activity of conjugated agonists provides the potential for developing application specific therapeutics.

  14. Agonist photoaffinity label for the. beta. -adrenergic receptor

    SciTech Connect

    Resek, J.F.; Ruoho, A.E.

    1987-05-01

    An iodinated photosensitive derivative of norepinephrine, N-(p-azido-m-iodophenethylamidoisobutyryl)norepinephrine (NAIN), has been synthesized and characterized. Carrier-free radioiodinated NAIN ((/sup 125/I)-NAIN) was used at 1-2 x 10/sup -9/ M to photoaffinity label the ..beta..-adrenergic receptor in guinea pig lung membranes. SDS-PAGE analysis of (-)-alprenolol (10/sup -5/M) protectable (/sup 125/I)-NAIN labeling showed the same molecular weight polypeptide (65 kDa) that was specifically derivatized with the antagonist photolabel, (/sup 125/I)-IABP. Specific labeling of the ..beta..-adrenergic receptor with (/sup 125/I)-NAIN was dependent on the presence of MgCl/sub 2/ and the absence of guanyl nucleotide. GTP..gamma..S (10/sup -4/ M) abolished specific receptor labeling by (/sup 125/I)-NAIN. N-ethylmaleimide (2 mm) in the presence of (/sup 125/I)-NAIN protected against the guanyl nucleotide effect. These data are consistent with photolabeling by (/sup 125/I)-NAIN while the agonist, receptor, and GTP binding protein are in a high affinity complex.

  15. Can the sigma-1 receptor agonist fluvoxamine prevent schizophrenia?

    PubMed

    Hashimoto, Kenji

    2009-12-01

    In the past decade there has been increasing interest in the potential benefit of early pharmacological intervention in schizophrenia. Patients with schizophrenia show nonpsychotic and nonspecific prodromal symptoms (e.g., depression and cognitive deficits) for several years preceding the onset of frank psychosis. Several studies have demonstrated that medication with atypical antipsychotic drugs in people with prodromal symptoms may reduce the risk of subsequent transition to schizophrenia. Furthermore, a naturalistic treatment study in young people with prodromal symptoms demonstrated that medication with antidepressants could prevent the development of psychosis. Although the sample in this study was small, the results were striking. Some antidepressants, including selective serotonin reuptake inhibitors (SSRIs), had high to moderate affinities at the endoplasmic reticulum protein sigma-1 receptors, which are implicated in neuroprotection and neuronal plasticity. Among all antidepressants, fluvoxamine was the most potent sigma-1 receptor agonist. Since the effects of fluroxaming were antagonized by the selective sigma-1 receptor antagonist NE-100. Based on the role of sigma-1 receptors in the pathophysiology of cognition and depression, the author would like to propose a hypothesis that SSRIs (e.g., fluvoxamine) with sigma-1 receptor agonism may reduce the risk of subsequent transition to schizophrenia.

  16. FRET-Based Detection of M1 Muscarinic Acetylcholine Receptor Activation by Orthosteric and Allosteric Agonists

    PubMed Central

    Markovic, Danijela; Holdich, Jonathan; Al-Sabah, Suleiman; Mistry, Rajendra; Krasel, Cornelius; Mahaut-Smith, Martyn P.; Challiss, R. A. John

    2012-01-01

    Background and Objective Muscarinic acetylcholine receptors (mAChRs) are 7-transmembrane, G protein-coupled receptors that regulate a variety of physiological processes and represent potentially important targets for therapeutic intervention. mAChRs can be stimulated by full and partial orthosteric and allosteric agonists, however the relative abilities of such ligands to induce conformational changes in the receptor remain unclear. To gain further insight into the actions of mAChR agonists, we have developed a fluorescently tagged M1 mAChR that reports ligand-induced conformational changes in real-time by changes in Förster resonance energy transfer (FRET). Methods Variants of CFP and YFP were inserted into the third intracellular loop and at the end of the C-terminus of the mouse M1 mAChR, respectively. The optimized FRET receptor construct (M1-cam5) was expressed stably in HEK293 cells. Results The variant CFP/YFP-receptor chimera expressed predominantly at the plasma membrane of HEK293 cells and displayed ligand-binding affinities comparable with those of the wild-type receptor. It also retained an ability to interact with Gαq/11 proteins and to stimulate phosphoinositide turnover, ERK1/2 phosphorylation and undergo agonist-dependent internalization. Addition of the full agonist methacholine caused a reversible decrease in M1 FRET (FEYFP/FECFP) that was prevented by atropine pre-addition and showed concentration-dependent amplitude and kinetics. Partial orthosteric agonists, arecoline and pilocarpine, as well as allosteric agonists, AC-42 and 77-LH-28-1, also caused atropine-sensitive decreases in the FRET signal, which were smaller in amplitude and significantly slower in onset compared to those evoked by methacholine. Conclusion The M1 FRET-based receptor chimera reports that allosteric and orthosteric agonists induce similar conformational changes in the third intracellular loop and/or C-terminus, and should prove to be a valuable molecular reagent for

  17. Limited proteolysis for assaying ligand binding affinities of nuclear receptors.

    PubMed

    Benkoussa, M; Nominé, B; Mouchon, A; Lefebvre, B; Bernardon, J M; Formstecher, P; Lefebvre, P

    1997-01-01

    The binding of natural or synthetic ligands to nuclear receptors is the triggering event leading to gene transcription activation or repression. Ligand binding to the ligand binding domain of these receptors induces conformational changes that are evidenced by an increased resistance of this domain to proteases. In vitro labeled receptors were incubated with various synthetic or natural agonists or antagonists and submitted to trypsin digestion. Proteolysis products were separated by SDS-PAGE and quantified. The amount of trypsin-resistant fragments was proportional to receptor occupancy by the ligand, and allowed the determination of dissociation constants (kDa). Using the wild-type or mutated human retinoic acid receptor alpha as a model, kDa values determined by classical competition binding assays using tritiated ligands are in agreement with those measured by the proteolytic assay. This method was successfully extended to human retinoic X receptor alpha, glucocorticoid receptor, and progesterone receptor, thus providing a basis for a new, faster assay to determine simultaneously the affinity and conformation of receptors when bound to a given ligand.

  18. Discovery of novel tricyclic full agonists for the G-protein-coupled niacin receptor 109A with minimized flushing in rats.

    PubMed

    Shen, Hong C; Ding, Fa-Xiang; Deng, Qiaolin; Wilsie, Larissa C; Krsmanovic, Mihajlo L; Taggart, Andrew K; Carballo-Jane, Ester; Ren, Ning; Cai, Tian-Quan; Wu, Tsuei-Ju; Wu, Kenneth K; Cheng, Kang; Chen, Qing; Wolff, Michael S; Tong, Xinchun; Holt, Tom G; Waters, M Gerard; Hammond, Milton L; Tata, James R; Colletti, Steven L

    2009-04-23

    Tricyclic analogues were rationally designed as the high affinity niacin receptor G-protein-coupled receptor 109A (GPR109A) agonists by overlapping three lead structures. Various tricyclic anthranilide and cycloalkene carboxylic acid full agonists were discovered with excellent in vitro activity. Compound 2g displayed a good therapeutic index regarding free fatty acids (FFA) reduction and vasodilation effects in rats, with very weak cytochrome P450 2C8 (CYP2C8) and cytochrome P450 2C9 (CYP2C9) inhibition, and a good mouse pharmacokinetics (PK) profile.

  19. PRINCIPLES OF AFFINITY-BASED BIOSENSORS

    EPA Science Inventory

    Despite the amount of resources that have been invested by national and international academic, government, and commercial sectors to develop affinity-based biosensor products, little obvious success has been realized through commercialization of these devices for specific applic...

  20. Universality of affine formulation in general relativity

    NASA Astrophysics Data System (ADS)

    Kijowski, Jerzy; Werpachowski, Roman

    2007-02-01

    The affine variational principle for general relativity, proposed in 1978 by one of us, is a good remedy for the nonuniversal properties of the standard, metric formulation, arising when the matter Lagrangian depends upon the metric derivatives. The affine version of the theory cures the standard drawback of the metric version, where the leading (second-order) term of the field equations depends upon the matter fields and its causal structure violates the light cone structure of the metric. Choosing the affine connection (and not the metric one) as the gravitational configuration, simplifies considerably the canonical structure of the theory and is more suitable for the purposes of its quantization along the lines of Ashtekar and Lewandowski. We show how the affine formulation provides a simple method to handle boundary integrals in general relativity theory.

  1. Visualizing Antibody Affinity Maturation in Germinal Centers

    PubMed Central

    Tas, Jeroen M.J.; Mesin, Luka; Pasqual, Giulia; Targ, Sasha; Jacobsen, Johanne T.; Mano, Yasuko M.; Chen, Casie S.; Weill, Jean-Claude; Reynaud, Claude-Agnès; Browne, Edward P.; Meyer-Hermann, Michael; Victora, Gabriel D.

    2016-01-01

    Antibodies somatically mutate to attain high affinity in germinal centers (GCs). There, competition between B cell clones and among somatic mutants of each clone drives an increase in average affinity across the population. The extent to which higher-affinity cells eliminating competitors restricts clonal diversity is unknown. By combining multiphoton microscopy and sequencing, we show that tens to hundreds of distinct B cell clones seed each GC, and that GCs lose clonal diversity at widely disparate rates. Furthermore, efficient affinity maturation can occur in the absence of homogenizing selection, ensuring that many clones can mature in parallel within the same GC. Our findings have implications for development of vaccines in which antibodies with non-immunodominant specificities must be elicited, as is the case for HIV-1 and influenza. PMID:26912368

  2. PRINCIPLES OF AFFINITY-BASED BIOSENSORS

    EPA Science Inventory

    Despite the amount of resources that have been invested by national and international academic, government, and commercial sectors to develop affinity-based biosensor products, little obvious success has been realized through commercialization of these devices for specific applic...

  3. Protein purification using PDZ affinity chromatography.

    PubMed

    Walkup, Ward G; Kennedy, Mary B

    2015-04-01

    PDZ domains function in nature as protein-binding domains within scaffold and membrane-associated proteins. They comprise approximately 90 residues and undergo specific, high-affinity interactions with complementary C-terminal peptide sequences, other PDZ domains, and/or phospholipids. We have previously shown that the specific, strong interactions of PDZ domains with their ligands make them well suited for use in affinity chromatography. This unit provides protocols for the PDZ affinity chromatography procedure that are applicable for the purification of proteins that contain PDZ domains or PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We detail the preparation of affinity resins composed of PDZ domains or PDZ domain peptide ligands coupled to solid supports. These resins can be used to purify proteins containing endogenous or genetically introduced PDZ domains or ligands, eluting the proteins with free PDZ domain peptide ligands.

  4. Identification of opioid ligands possessing mixed micro agonist/delta antagonist activity among pyridomorphinans derived from naloxone, oxymorphone, and hydromorphone [correction of hydropmorphone].

    PubMed

    Ananthan, Subramaniam; Khare, Naveen K; Saini, Surendra K; Seitz, Lainne E; Bartlett, Jeffrey L; Davis, Peg; Dersch, Christina M; Porreca, Frank; Rothman, Richard B; Bilsky, Edward J

    2004-03-11

    A series of pyridomorphinans derived from naloxone, oxymorphone, and hydromorphone (7a-k) were synthesized and evaluated for binding affinity at the opioid delta, micro, and kappa receptors in brain membranes using radioligand binding assays and for functional activity in vitro using [(35)S]GTP-gamma-S binding assays in brain tissues and bioassays using guinea pig ileum (GPI) and mouse vas deferens (MVD) smooth muscle preparations. The pyridine ring unsubstituted pyridomorphinans possessing the oxymorphone and hydromorphone framework displayed nearly equal binding affinity at the micro and delta receptors. Their affinities at the kappa site were nearly 10-fold less than their binding affinities at the micro and delta sites. Introduction of aryl substituents at the 5'-position on the pyridine ring improved the binding affinity at the delta site while decreasing the binding affinity at the micro site. Nearly all of the ligands possessing an N-methyl group at the17-position with or without a hydroxyl group at the 14-position of the morphinan moiety displayed agonist activity at the micro receptor with varying potencies and efficacies. In the [(35)S]GTP-gamma-S binding assays, most of these pyridomorphinans were devoid of any significant agonist activity at the delta and kappa receptors but displayed moderate to potent antagonist activity at the delta receptors. In antinociceptive evaluations using the warm-water tail-withdrawal assay in mice, the pyridomorphinans produced analgesic effects with varying potencies and efficacies when administered by the intracerebroventricular route. Among the ligands studied, the hydromorphone-derived 4-chlorophenylpyridomorphinan 7h was identified as a ligand possessing a promising profile of mixed micro agonist/delta antagonist activity in vitro and in vivo. In a repeated administration paradigm in which the standard micro agonist morphine produces significant tolerance, repeated administration of the micro agonist/delta antagonist

  5. Classification of platelet and vascular prostaglandin D2 (DP) receptors: estimation of affinities and relative efficacies for a series of novel bicyclic ligands. With an appendix on goodness-of-fit analyses.

    PubMed Central

    Leff, P.; Giles, H.

    1992-01-01

    1. The DP receptors located on platelets and vasculature were examined in a human washed platelet preparation and in isolated rings of rabbit external jugular vein. 2. A series of eight novel bicyclic compounds were studied for their effects in the two assays. Seven produced agonism, inhibition of aggregation or vascular relaxation, and one compound was 'silent' in both assays. 3. The operational model of agonism (Black & Leff, 1983) was fitted simultaneously to concentration-effect curve data for the seven agonist compounds. The affinity and efficacy estimates so obtained were tested for similarity between the two tissues by analysis of variance, showing that the model could be fitted to both sets of data by assuming the same relative affinity and efficacy values. However, absolute affinity estimates were consistently lower in the vascular preparation. 4. Analysis of two of the seven agonists as antagonists was also possible. This provided pKB estimates which supported the agonist affinity estimates. The eighth compound was also analysed as an antagonist. It, like the other seven, demonstrated a difference in affinity between the two tissues. 5. The results of this study support the view that platelet and vascular DP receptors are similar, assuming that the systematic difference in affinity estimates for the series of compounds between the two tissues is the consequence of receptor micro-environment and/or accessory binding site differences. PMID:1393297

  6. Guanyl nucleotide interactions with dopaminergic binding sites labeled by (/sup 3/H)spiroperidol in human caudate and putamen: guanyl nucleotides enhance ascorbate-induced lipid peroxidation and cause an apparent loss of high affinity binding sites

    SciTech Connect

    Andorn, A.C.; Bacon, B.R.; Nguyen-Hunh, A.T.; Parlato, S.J.; Stitts, J.A.

    1988-02-01

    The human caudate and putamen contain two high affinity binding sites for (/sup 3/H)spiroperidol. Both of these affinity states exhibit dopaminergic selectivity. Ascorbic acid, at 0.1 mM, induces a slow loss of the low affinity component of (/sup 3/H)spiroperidol binding in these tissues. The addition of guanyl nucleotides to the ascorbate produces a more rapid loss of (/sup 3/H)spiroperidol binding which includes a loss of the highest affinity state for (/sup 3/H)spiroperidol. Ascorbate induces lipid peroxidation in human caudate and putamen, an effect that is further enhanced by guanyl and inosine nucleotides. In the absence of ascorbate, guanyl nucleotides have no effect on (/sup 3/H)spiroperidol binding but do decrease the affinity of dopamine at each affinity state greater than 60-fold. In the absence of ascorbate, guanyl nucleotides apparently decrease agonist affinity at human brain dopamine2-binding sites without causing an interconversion of agonist affinity states.

  7. Affinity Electrophoresis Using Ligands Attached To Polymers

    NASA Technical Reports Server (NTRS)

    Van Alstine, James M.; Snyder, Robert S.; Harris, J. M.; Brooks, D. E.

    1990-01-01

    In new technique, reduction of electrophoretic mobilities by addition of polyethylene glycol to ligands increases electrophoretic separabilities. In immuno-affinity electrophoresis, modification of ligands extends specificity of electrophoretic separation to particles having surface electric-charge structures otherwise making them electrophoretically inseparable. Modification of antibodies by polyethylene glycol greatly reduces ability to aggregate while enhancing ability to affect electrophoretic mobilities of cells. In hydrophobic-affinity electrophoresis, addition of polyethylene glycol reduces tendency toward aggregation of cells or macromolecules.

  8. Melatonin and its agonists: an update.

    PubMed

    Arendt, Josephine; Rajaratnam, Shantha M W

    2008-10-01

    The pineal hormone melatonin is able to shift the timing of circadian rhythms, including the sleep-wake cycle, and to promote sleep. Melatonin agonists with similar properties have therapeutic potential for the treatment of circadian rhythm sleep disorders. Depression is specifically targeted by agomelatine, which is also a serotonin-2C (5-HT(2C)) antagonist.

  9. Multiple tyrosine metabolites are GPR35 agonists.

    PubMed

    Deng, Huayun; Hu, Haibei; Fang, Ye

    2012-01-01

    Both kynurenic acid and 2-acyl lysophosphatidic acid have been postulated to be the endogenous agonists of GPR35. However, controversy remains whether alternative endogenous agonists exist. The molecular targets accounted for many nongenomic actions of thyroid hormones are mostly unknown. Here we report the agonist activity of multiple tyrosine metabolites at the GPR35. Tyrosine metabolism intermediates that contain carboxylic acid and/or catechol functional groups were first selected. Whole cell dynamic mass redistribution (DMR) assays enabled by label-free optical biosensor were then used to characterize their agonist activity in native HT-29. Molecular assays including β-arrestin translocation, ERK phosphorylation and receptor internalization confirmed that GPR35 functions as a receptor for 5,6-dihydroxyindole-2-carboxylic acid, 3,3',5'-triiodothyronine, 3,3',5-triiodothyronine, gentisate, rosmarinate, and 3-nitrotyrosine. These results suggest that multiple tyrosine metabolites are alternative endogenous ligands of GPR35, and GPR35 may represent a druggable target for treating certain diseases associated with abnormality of tyrosine metabolism.

  10. Corepressors of agonist-bound nuclear receptors

    SciTech Connect

    Gurevich, Igor; Aneskievich, Brian J.

    2007-09-15

    Nuclear receptors (NRs) rely on coregulator proteins to modulate transcription of target genes. NR coregulators can be broadly subdivided into coactivators which potentiate transcription and corepressors which silence gene expression. The prevailing view of coregulator action holds that in the absence of agonist the receptor interacts with a corepressor via the corepressor nuclear receptor (CoRNR, 'corner') box motifs within the corepressor. Upon agonist binding, a conformational change in the receptor causes the shedding of corepressor and the binding of a coactivator which interacts with the receptor via NR boxes within the coregulator. This view was challenged with the discovery of RIP140 which acts as a NR corepressor in the presence of agonist and utilizes NR boxes. Since then a number of other corepressors of agonist-bound NRs have been discovered. Among them are LCoR, PRAME, REA, MTA1, NSD1, and COPR1 Although they exhibit a great diversity of structure, mechanism of repression and pathophysiological function, these corepressors frequently have one or more NR boxes and often recruit histone deacetylases to exert their repressive effects. This review highlights these more recently discovered corepressors and addresses their potential functions in transcription regulation, disease pharmacologic responses and xenobiotic metabolism.

  11. Direct antiatherosclerotic effects of PPAR agonists.

    PubMed

    Jandeleit-Dahm, Karin A M; Calkin, Anna; Tikellis, Chris; Thomas, Merlin

    2009-02-01

    Peroxisome proliferator activated receptors (PPARs) are ligand-dependent transcription factors that mediate a range of important metabolic functions by transactivation, transrepression or corepression of various gene targets. PPAR agonists also have direct antiatherosclerotic effects, independent of their metabolic effects on glucose and lipid homeostasis. The purpose of this review is to evaluate the currently available evidence for a direct vasculoprotective effect of PPAR agonists. Current studies have emphasized PPAR-mediated effects on inflammatory and immune responses, oxidative stress, the renin-angiotensin system and modulation of plaque composition. Furthermore, it has become evident that the relative activation of the different PPAR isoforms and the contribution of transactivation of target genes against transrepression of transcription factors need to be considered when assessing the vasculoprotective effects of PPAR agonists. It is anticipated that the antiatherosclerotic effects of PPAR agonists observed in experimental studies will translate into reduced cardiovascular events. This promise is yet to be realized in short-to-medium term studies. Given the central role of the PPAR in gene regulation, particularly in metabolic states, it is possible that more targeted modulation of PPAR signalling may hold many rewards for the prevention of atherosclerosis.

  12. Reciprocity of agonistic support in ravens.

    PubMed

    Fraser, Orlaith N; Bugnyar, Thomas

    2012-01-01

    Cooperative behaviour through reciprocation or interchange of valuable services in primates has received considerable attention, especially regarding the timeframe of reciprocation and its ensuing cognitive implications. Much less, however, is known about reciprocity in other animals, particularly birds. We investigated patterns of agonistic support (defined as a third party intervening in an ongoing conflict to attack one of the conflict participants, thus supporting the other) in a group of 13 captive ravens, Corvus corax. We found support for long-term, but not short-term, reciprocation of agonistic support. Ravens were more likely to support individuals who preened them, kin and dominant group members. These results suggest that ravens do not reciprocate on a calculated tit-for-tat basis, but aid individuals from whom reciprocated support would be most useful and those with whom they share a good relationship. Additionally, dyadic levels of agonistic support and consolation (postconflict affiliation from a bystander to the victim) correlated strongly with each other, but we found no evidence to suggest that receiving agonistic support influences the victim's likelihood of receiving support (consolation) after the conflict ends. Our findings are consistent with an emotionally mediated form of reciprocity in ravens and provide additional support for convergent cognitive evolution in birds and mammals.

  13. Reciprocity of agonistic support in ravens

    PubMed Central

    Fraser, Orlaith N.; Bugnyar, Thomas

    2012-01-01

    Cooperative behaviour through reciprocation or interchange of valuable services in primates has received considerable attention, especially regarding the timeframe of reciprocation and its ensuing cognitive implications. Much less, however, is known about reciprocity in other animals, particularly birds. We investigated patterns of agonistic support (defined as a third party intervening in an ongoing conflict to attack one of the conflict participants, thus supporting the other) in a group of 13 captive ravens, Corvus corax. We found support for long-term, but not short-term, reciprocation of agonistic support. Ravens were more likely to support individuals who preened them, kin and dominant group members. These results suggest that ravens do not reciprocate on a calculated tit-for-tat basis, but aid individuals from whom reciprocated support would be most useful and those with whom they share a good relationship. Additionally, dyadic levels of agonistic support and consolation (postconflict affiliation from a bystander to the victim) correlated strongly with each other, but we found no evidence to suggest that receiving agonistic support influences the victim’s likelihood of receiving support (consolation) after the conflict ends. Our findings are consistent with an emotionally mediated form of reciprocity in ravens and provide additional support for convergent cognitive evolution in birds and mammals. PMID:22298910

  14. Multiple tyrosine metabolites are GPR35 agonists

    PubMed Central

    Deng, Huayun; Hu, Haibei; Fang, Ye

    2012-01-01

    Both kynurenic acid and 2-acyl lysophosphatidic acid have been postulated to be the endogenous agonists of GPR35. However, controversy remains whether alternative endogenous agonists exist. The molecular targets accounted for many nongenomic actions of thyroid hormones are mostly unknown. Here we report the agonist activity of multiple tyrosine metabolites at the GPR35. Tyrosine metabolism intermediates that contain carboxylic acid and/or catechol functional groups were first selected. Whole cell dynamic mass redistribution (DMR) assays enabled by label-free optical biosensor were then used to characterize their agonist activity in native HT-29. Molecular assays including β-arrestin translocation, ERK phosphorylation and receptor internalization confirmed that GPR35 functions as a receptor for 5,6-dihydroxyindole-2-carboxylic acid, 3,3′,5′-triiodothyronine, 3,3′,5-triiodothyronine, gentisate, rosmarinate, and 3-nitrotyrosine. These results suggest that multiple tyrosine metabolites are alternative endogenous ligands of GPR35, and GPR35 may represent a druggable target for treating certain diseases associated with abnormality of tyrosine metabolism. PMID:22523636

  15. Pharmacological characterization of a high-affinity p-tyramine transporter in rat brain synaptosomes

    PubMed Central

    Berry, Mark D.; Hart, Shannon; Pryor, Anthony R.; Hunter, Samantha; Gardiner, Danielle

    2016-01-01

    p-Tyramine is an archetypal member of the endogenous family of monoamines known as trace amines, and is one of the endogenous agonists for trace amine-associated receptor (TAAR)1. While much work has focused on the function of TAAR1, very little is known about the regulation of the endogenous agonists. We have previously reported that p-tyramine readily crosses lipid bilayers and that its release from synaptosomes is non-exocytotic. Such release, however, showed characteristics of modification by one or more transporters. Here we provide the first characterization of such a transporter. Using frontal cortical and striatal synaptosomes we show that p-tyramine passage across synaptosome membranes is not modified by selective inhibition of either the dopamine, noradrenaline or 5-HT transporters. In contrast, inhibition of uptake-2 transporters significantly slowed p-tyramine re-uptake. Using inhibitors of varying selectivity, we identify Organic Cation Transporter 2 (OCT2; SLC22A2) as mediating high affinity uptake of p-tyramine at physiologically relevant concentrations. Further, we confirm the presence of OCT2 protein in synaptosomes. These results provide the first identification of a high affinity neuronal transporter for p-tyramine, and also confirm the recently described localization of OCT2 in pre-synaptic terminals. PMID:27901065

  16. Zinc is a transmembrane agonist that induces platelet activation in a tyrosine phosphorylation-dependent manner.

    PubMed

    Watson, Ben R; White, Nathan A; Taylor, Kirk A; Howes, Joanna-Marie; Malcor, Jean-Daniel M; Bihan, Dominique; Sage, Stewart O; Farndale, Richard W; Pugh, Nicholas

    2016-01-01

    Following platelet adhesion and primary activation at sites of vascular injury, secondary platelet activation is induced by soluble platelet agonists, such as ADP, ATP, thrombin and thromboxane. Zinc ions are also released from platelets and damaged cells and have been shown to act as a platelet agonist. However, the mechanism of zinc-induced platelet activation is not well understood. Here we show that exogenous zinc gains access to the platelet cytosol and induces full platelet aggregation that is dependent on platelet protein tyrosine phosphorylation, PKC and integrin αIIbβ3 activity and is mediated by granule release and secondary signalling. ZnSO4 increased the binding affinity of GpVI, but not integrin α2β1. Low concentrations of ZnSO4 potentiated platelet aggregation by collagen-related peptide (CRP-XL), thrombin and adrenaline. Chelation of intracellular zinc reduced platelet aggregation induced by a number of different agonists, inhibited zinc-induced tyrosine phosphorylation and inhibited platelet activation in whole blood under physiologically relevant flow conditions. Our data are consistent with a transmembrane signalling role for zinc in platelet activation during thrombus formation.

  17. The neurotensin agonist PD149163 increases Fos expression in the prefrontal cortex of the rat.

    PubMed

    Petrie, Kimberly A; Bubser, Michael; Casey, Cheryl D; Davis, M Duff; Roth, Bryan L; Deutch, Ariel Y

    2004-10-01

    Dopaminergic axons innervating the prefrontal cortex (PFC) target both pyramidal cells and GABAergic interneurons. Many of these dopamine (DA) axons in the rat coexpress the peptide neurotransmitter neurotensin. Previous electrophysiological data have suggested that neurotensin activates GABAergic interneurons in the PFC. Activation of D2-like DA receptors increases extracellular GABA levels in the PFC, as opposed to the striatum, where D2 receptor activation inhibits GABAergic neurons. Because activation of presynaptic D2 release-modulating autoreceptors in the PFC suppresses DA release but increases release of the cotransmitter neurotensin, D2 agonists may enhance the activity of GABAergic interneurons via release of neurotensin. In order to determine if neurotensin can activate GABAergic interneurons, we treated rats with the peptide neurotensin agonist, PD149163, and examined Fos expression in PFC neurons. Systemic administration of PD149163 increased overall Fos expression in the PFC, but not in the dorsal striatum. PD149163 induced Fos in PFC interneurons, as defined by the presence of calcium-binding proteins, and in pyramidal cells. Pretreatment with the high-affinity neurotensin antagonist, SR48692, blocked neurotensin agonist-induced Fos expression. These data suggest that neurotensin activates interneurons in the PFC of the rat.

  18. Adenosine Receptor Prodrugs: Synthesis and Biological Activity of Derivatives of Potent, A1-Selective Agonists

    PubMed Central

    Maillrad, Michel C.; Nikodijević, Olga; LaNoue, Kathryn F.; Berkich, Deborah; Xiao-duo, JI; Bartus, Raymond

    2012-01-01

    5′-Ester derivatives of the potent adenosine agonists N6-[4-[[[[4-[[[(2-acetylaminoethyl)amino] carbonyl] methyl] anilino] carbonyl] methyl] phenyl] adenosine (N-AcADAC; 1) and N6-cyclopentyladenosine (CPA; 2) were prepared as prodrugs. Both alkyl esters or carbonates (designed to enter the brain by virtue of increased lipophilicity) and 1,4-dihydro-1-methyl-3- [(pyridinylcarbonyl)oxy] esters designed to concentrate in the brain by virtue of a redox delivery system were synthesized. In the 5′-blocked form, the adenosine agonists displayed highly diminished affinity for rat brain A1-adenosine receptors in binding assays. The dihydropyridine prodrug 29 was active in an assay of locomotor depression in mice, in which adenosine agonists are highly depressant. The behavior depression was not reversible by peripheral administration of a non-central nervous system active adenosine antagonist. In an assay of the peripheral action of adenosine (i.e., the inhibition of lipolysis in rats), the parent compounds were highly potent and the dihydropyridine prodrug was much less potent. PMID:8138909

  19. FXR agonist activity of conformationally constrained analogs of GW 4064

    SciTech Connect

    Akwabi-Ameyaw, Adwoa; Bass, Jonathan Y.; Caldwell, Richard D.; Caravella, Justin A.; Chen, Lihong; Creech, Katrina L.; Deaton, David N.; Madauss, Kevin P.; Marr, Harry B.; McFadyen, Robert B.; Miller, Aaron B.; Navas, III, Frank; Parks, Derek J.; Spearing, Paul K.; Todd, Dan; Williams, Shawn P.; Wisely, G. Bruce

    2010-09-27

    Two series of conformationally constrained analogs of the FXR agonist GW 4064 1 were prepared. Replacement of the metabolically labile stilbene with either benzothiophene or naphthalene rings led to the identification of potent full agonists 2a and 2g.

  20. Chromenopyrazoles: non-psychoactive and selective CB₁ cannabinoid agonists with peripheral antinociceptive properties.

    PubMed

    Cumella, Jose; Hernández-Folgado, Laura; Girón, Rocio; Sánchez, Eva; Morales, Paula; Hurst, Dow P; Gómez-Cañas, Maria; Gómez-Ruiz, Maria; Pinto, Diana C G A; Goya, Pilar; Reggio, Patricia H; Martin, María Isabel; Fernández-Ruiz, Javier; Silva, Artur M S; Jagerovic, Nadine

    2012-03-05

    The unwanted psychoactive effects of cannabinoid receptor agonists have limited their development as medicines. These CB₁-mediated side effects are due to the fact that CB₁ receptors are largely expressed in the central nervous system (CNS). As it is known that CB₁ receptors are also located peripherally, there is growing interest in targeting cannabinoid receptors located outside the brain. A library of chromenopyrazoles designed analogously to the classical cannabinoid cannabinol were synthesized, characterized, and tested for cannabinoid activity. Radioligand binding assays were used to determine their affinities at CB₁ and CB₂ receptors. Structural features required for CB₁/CB₂ affinity and selectivity were explored by molecular modeling. Some compounds in the chromenopyrazole series were observed to be selective CB₁ ligands. These modeling studies suggest that full CB₁ selectivity over CB₂ can be explained by the presence of a pyrazole ring in the structure. The functional activities of selected chromenopyrazoles were evaluated in isolated tissues. In vivo behavioral tests were then carried out on the most effective CB₁ cannabinoid agonist, 13 a. Chromenopyrazole 13 a did not induce modifications in any of the tested parameters on the mouse cannabinoid tetrad, thus discounting CNS-mediated effects. This lack of agonistic activity in the CNS suggests that this compound does not readily cross the blood-brain barrier. Moreover, 13 a can induce antinociception in a rat peripheral model of orofacial pain. Taking into account the negative results obtained with the hot-plate test, the antinociception induced by 13 a in the orofacial test could be mediated through peripheral mechanisms.

  1. Synthesis of Mixed Opioid Affinity Cyclic Endomorphin-2 Analogues with Fluorinated Phenylalanines

    PubMed Central

    2015-01-01

    As part of our continuing studies on the structure–activity relationships of cyclic pentapeptides based on the structure of endomorphin-2 (EM-2), we report here the synthesis and biological activities of a new series of analogues of a general sequence Tyr/Dmt-c[d-Lys-Phe-Phe-Asp]NH2 (where Dmt = 2′,6′-dimethyltyrosine), incorporating fluorinated amino acids: 4-fluorophenylalanine (4-F-Phe), 2,4-difluorophenylalanine (2,4-F-Phe), or 4-trifluoromethylphenylalanine (4-CF3-Phe) instead of the Phe residue in position 3 or 4. Depending on the fluorinated amino acid residue and its position in the sequence, analogues were mixed, high affinity MOP/KOP receptor agonists, MOP/DOP/KOP agonists, or selective KOP agonists. The in vitro potencies and efficacies of all novel analogues were assessed in calcium mobilization assay. The most potent analogues, Dmt-c[d-Lys-Phe-4-F-Phe-Asp]NH2 and Dmt-c[d-Lys-Phe-2,4-F-Phe-Asp]NH2, were tested in vivo in the mouse hot-plate test. They produced strong antinociceptive effect not only after intracerebroventricular but also after intraperitoneal injection, indicating that they were able to cross the blood–brain barrier. PMID:26005537

  2. Molecular dynamics study-guided identification of cyclic amine structures as novel hydrophobic tail components of hPPARγ agonists.

    PubMed

    Tanaka, Yuta; Gamo, Kanae; Oyama, Takuji; Ohashi, Masao; Waki, Minoru; Matsuno, Kenji; Matsuura, Nobuyasu; Tokiwa, Hiroaki; Miyachi, Hiroyuki

    2014-08-15

    We previously reported that a α-benzylphenylpropanoic acid-type hPPARγ-selective agonist with a piperidine ring as the hydrophobic tail part (3) exhibited sub-micromolar-order hPPARγ agonistic activity. In order to enhance the activity, we planned to carry out structural development based on information obtained from the X-ray crystal structure of hPPARγ ligand binding domain (LBD) complexed with 3. However, the shape and/or nature of the binding pocket surrounding the piperidine ring of 3 could not be precisely delineated because the structure of the omega loop of the LBD was poorly defined. Therefore, we constructed and inserted a plausible omega loop by means of molecular dynamics simulation. We then used the reconstructed LBD structure to design new mono-, bi- and tricyclic amine-bearing compounds that might be expected to show greater binding affinity for the LBD. Here, we describe synthesis and evaluation of α-benzylphenylpropanoic acid derivatives 8. As expected, most of the newly synthesized compounds exhibited more potent hPPARγ agonistic activity and greater hPPARγ binding affinity than 3. Some of these compounds also showed comparable aqueous solubility to 3. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Treatment of cocaine craving with as-needed nalmefene, a partial κ opioid receptor agonist: first clinical experience.

    PubMed

    Grosshans, Martin; Mutschler, Jochen; Kiefer, Falk

    2015-07-01

    The treatment of cocaine dependence is difficult as no approved pharmacotherapy is available as yet. However, in preclinical and clinical trials, a variety of compounds were tested for suitability as inhibitors of craving for and relapse into the use of cocaine, among these antidepressants, antiepileptics, dopamine agonists, disulfiram, and naltrexone. Nalmefene, a structural derivative of naltrexone, shares with its parent compound approval (granted by the European Medical Agency in 2013) as a medication for the treatment of alcohol addiction in the European Union. It differs from naltrexone by a higher affinity for the δ opioid-receptors and a partial agonistic affinity to the κ opioid-receptors. It should be noted that patients addicted to cocaine show a considerable increase in κ receptors in the nucleus accumbens. This report describes the case of an abstinent cocaine-addicted patient regularly afflicted with cravings for cocaine. The patient took as-needed nalmefene for 5 months whenever she developed a craving for cocaine. For most of these interventions, the patient reported an abatement of craving and could avoid relapsing into cocaine consumption. This effect may be accounted for by nalmefene acting, other than naltrexone, as a partial agonist of the κ opioid-receptors. Therefore, nalmefene might be a promising new option in the pharmacological repertoire for the treatment of cocaine addiction.

  4. Design, synthesis, and biological evaluation of novel investigational nonapeptide KISS1R agonists with testosterone-suppressive activity.

    PubMed

    Asami, Taiji; Nishizawa, Naoki; Matsui, Hisanori; Nishibori, Kimiko; Ishibashi, Yoshihiro; Horikoshi, Yasuko; Nakayama, Masaharu; Matsumoto, Shin-ichi; Tarui, Naoki; Yamaguchi, Masashi; Matsumoto, Hirokazu; Ohtaki, Tetsuya; Kitada, Chieko

    2013-11-14

    Metastin/kisspeptin is a 54 amino acid peptide ligand of the KISS1R receptor and is a critical regulator of GnRH secretion. The N-terminally truncated peptide, metastin(45-54), possesses a 10-fold higher receptor-binding affinity than full-length metastin and agonistic KISS1R activity but is rapidly inactivated in rodent plasma. We have developed a decapeptide analog [D-Tyr(45),D-Trp(47),azaGly(51),Arg(Me)(53)]metastin(45-54) with improved serum stability compared with metastin(45-54) but with decreased KISS1R agonistic activity. Amino acid replacements at positions 45-47 led to an enhancement of KISS1R agonistic activity and metabolic stability. N-terminal truncation resulted in a stable nonapeptide, [D-Tyr(46),D-Pya(4)(47),azaGly(51),Arg(Me)(53)]metastin(46-54), compound 26, which displayed KISS1R binding affinities comparable to metastin(45-54) and had improved serum stability. Compound 26 reduced plasma testosterone in male rats and is the first short-length metastin analog to possess testosterone suppressive activities. Compound 26 has led to the elucidation of investigational analogs TAK-683 and TAK-448, both of which have undergone clinical evaluation for hormone-dependent diseases such as prostate cancer.

  5. Gas-phase nitronium ion affinities.

    PubMed Central

    Cacace, F; de Petris, G; Pepi, F; Angelelli, F

    1995-01-01

    Evaluation of nitronium ion-transfer equilibria, L1NO2+ + L2 = L2NO2+ + L1 (where L1 and L2 are ligands 1 and 2, respectively) by Fourier-transform ion cyclotron resonance mass spectrometry and application of the kinetic method, based on the metastable fragmentation of L1(NO2+)L2 nitronium ion-bound dimers led to a scale of relative gas-phase nitronium ion affinities. This scale, calibrated to a recent literature value for the NO2+ affinity of water, led for 18 ligands, including methanol, ammonia, representative ketones, nitriles, and nitroalkanes, to absolute NO2+ affinities, that fit a reasonably linear general correlation when plotted vs. the corresponding proton affinities (PAs). The slope of the plot depends to a certain extent on the specific nature of the ligands and, hence, the correlations between the NO2+ affinities, and the PAs of a given class of compounds display a better linearity than the general correlation and may afford a useful tool for predicting the NO2+ affinity of a molecule based on its PA. The NO2+ binding energies are considerably lower than the corresponding PAs and well below the binding energies of related polyatomic cations, such as NO+, a trend consistent with the available theoretical results on the structure and the stability of simple NO2+ complexes. The present study reports an example of extension of the kinetic method to dimers, such as L1(NO2+)L2, bound by polyatomic ions, which may considerably widen its scope. Finally, measurement of the NO2+ affinity of ammonia allowed evaluation of the otherwise inaccessible PA of the amino group of nitramide and, hence, direct experimental verification of previous theoretical estimates. PMID:11607578

  6. Characterization of structurally novel G protein biased CB1 agonists: Implications for drug development.

    PubMed

    Ford, Benjamin M; Franks, Lirit N; Tai, Sherrica; Fantegrossi, William E; Stahl, Edward L; Berquist, Michael D; Cabanlong, Christian V; Wilson, Catheryn D; Penthala, Narsimha R; Crooks, Peter A; Prather, Paul L

    2017-08-23

    The human cannabinoid subtype 1 receptor (hCB1R) is highly expressed in the CNS and serves as a therapeutic target for endogenous ligands as well as plant-derived and synthetic cannabinoids. Unfortunately, acute use of hCB1R agonists produces unwanted psychotropic effects and chronic administration results in development of tolerance and dependence, limiting the potential clinical use of these ligands. Studies in β-arrestin knockout mice suggest that interaction of certain GPCRs, including μ-, δ-, κ-opioid and hCB1Rs, with β-arrestins might be responsible for several adverse effects produced by agonists acting at these receptors. Indeed, agonists that bias opioid receptor activation toward G-protein, relative to β-arrestin signaling, produce less severe adverse effects. These observations indicate that therapeutic utility of agonists acting at hCB1Rs might be improved by development of G-protein biased hCB1R agonists. Our laboratory recently reported a novel class of indole quinulidinone (IQD) compounds that bind cannabinoid receptors with relatively high affinity and act with varying efficacy. The purpose of this study was to determine whether agonists in this novel cannabinoid class exhibit ligand bias at hCB1 receptors. Our studies found that a novel IQD-derived hCB1 receptor agonist PNR-4-20 elicits robust G protein-dependent signaling, with transduction ratios similar to the non-biased hCB1R agonist CP-55,940. In marked contrast to CP-55,940, PNR-4-20 produces little to no β-arrestin 2 recruitment. Quantitative calculation of bias factors indicates that PNR-4-20 exhibits from 5.4-fold to 29.5-fold bias for G protein, relative to β-arrestin 2 signaling (when compared to G protein activation or inhibition of forskolin-stimulated cAMP accumulation, respectively). Importantly, as expected due to reduced β-arrestin 2 recruitment, chronic exposure of cells to PNR-4-20 results in significantly less desensitization and down-regulation of hCB1Rs compared to

  7. Novel neonicotinoid-agarose affinity column for Drosophila and Musca nicotinic acetylcholine receptors.

    PubMed

    Tomizawa, M; Latli, B; Casida, J E

    1996-10-01

    Neonicotinoids such as the insecticide imidacloprid (IMI) act as agonists at the insect nicotinic acetylcholine receptor (nAChR). Head membranes of Drosophila melanogaster and Musca domestica have a single high-affinity binding site for [3H]IMI with KD values of 1-2 nM and Bmax values of 560-850 fmol/mg of protein. Locusta and Periplaneta nAChRs isolated with an alpha-bungarotoxin (alpha-BGT)-agarose affinity column are known to be alpha-subunit homooligomers. This study uses 1-[N-(6-chloro-3-pyridylmethyl)-N-ethyl]amino-1-amino-2-nitroethene++ + (which inhibits [3H]IMI binding to Drosophila and Musca head membranes at 2-3 nM) to develop a neonicotinoid-agarose affinity column. The procedure-introduction of Triton-solubilized Drosophila or Musca head membranes into this neonicotinoid-based column, elution with IMI, and analysis by lithium dodecyl sulfate-polyacrylamicle gel electrophoresis-gives only three proteins (69, 66, and 61 kDa) tentatively assigned as putative subunits of the nAChR; the same three proteins are obtained with Musca using the alpha-BGT-agarose affinity column. Photoaffinity labeling of the Drosophila and Musca putative subunits from the neonicotinoid column with 125I-alpha-BGT-4-azidosalicylic acid gives a labeled derivative of 66-69 kDa. The yield is 2-5 micrograms of receptor protein from 1 g of Drosophila or Musca heads. Neonicotinoid affinity chromatography to isolate native Drosophila and Musca receptors will facilitate studies on the structure and function of insect nAChRs.

  8. Stability of flavin semiquinones in the gas phase: the electron affinity, proton affinity, and hydrogen atom affinity of lumiflavin.

    PubMed

    Zhang, Tianlan; Papson, Kaitlin; Ochran, Richard; Ridge, Douglas P

    2013-11-07

    Examination of electron transfer and proton transfer reactions of lumiflavin and proton transfer reactions of the lumiflavin radical anion by Fourier transform ion cyclotron resonance mass spectrometry is described. From the equilibrium constant determined for electron transfer between 1,4-naphthoquinone and lumiflavin the electron affinity of lumiflavin is deduced to be 1.86 ± 0.1 eV. Measurements of the rate constants and efficiencies for proton transfer reactions indicate that the proton affinity of the lumiflavin radical anion is between that of difluoroacetate (331.0 kcal/mol) and p-formyl-phenoxide (333.0 kcal/mol). Combining the electron affinity of lumiflavin with the proton affinity of the lumiflavin radical anion gives a lumiflavin hydrogen atom affinity of 59.7 ± 2.2 kcal/mol. The ΔG298 deduced from these results for adding an H atom to gas phase lumiflavin, 52.1 ± 2.2 kcal/mol, is in good agreement with ΔG298 for adding an H atom to aqueous lumiflavin from electrochemical measurements in the literature, 51.0 kcal/mol, and that from M06-L density functional calculations in the literature, 51.2 kcal/mol, suggesting little, if any, solvent effect on the H atom addition. The proton affinity of lumiflavin deduced from the equilibrium constant for the proton transfer reaction between lumiflavin and 2-picoline is 227.3 ± 2.0 kcal mol(-1). Density functional theory calculations on isomers of protonated lumiflavin provide a basis for assigning the most probable site of protonation as position 1 on the isoalloxazine ring and for estimating the ionization potentials of lumiflavin neutral radicals.

  9. 1-Alkyl-benzotriazole-5-carboxylic acids are highly selective agonists of the human orphan G-protein-coupled receptor GPR109b.

    PubMed

    Semple, Graeme; Skinner, Philip J; Cherrier, Martin C; Webb, Peter J; Sage, Carleton R; Tamura, Susan Y; Chen, Ruoping; Richman, Jeremy G; Connolly, Daniel T

    2006-02-23

    1-Substituted benzotriazole carboxylic acids have been identified as the first reported examples of selective small-molecule agonists of the human orphan G-protein-coupled receptor GPR109b (HM74), a low-affinity receptor for the HDL-raising drug niacin. No activity was observed at the highly homologous high-affinity niacin receptor GPR109a (HM74A). The high degree of selectivity was attributed to a difference in the amino acid sequence adjacent to a key arginine-ligand interaction allowing somewhat larger ligands to be tolerated by GPR109b.

  10. Potent μ-Opioid Receptor Agonists from Cyclic Peptides Tyr-c[D-Lys-Xxx-Tyr-Gly]: Synthesis, Biological, and Structural Evaluation.

    PubMed

    Li, Yangmei; Cazares, Margret; Wu, Jinhua; Houghten, Richard A; Toll, Laurence; Dooley, Colette

    2016-02-11

    To optimize the structure of a μ-opioid receptor ligand, analogs H-Tyr-c[D-Lys-Xxx-Tyr-Gly] were synthesized and their biological activity was tested. The analog containing a Phe(3) was identified as not only exhibiting binding affinity 14-fold higher than the original hit but also producing agonist activity 3-fold more potent than morphine. NMR study suggested that a trans conformation at D-Lys(2)-Xxx(3) is crucial for these cyclic peptides to maintain high affinity, selectivity, and functional activity toward the μ-opioid receptor.

  11. Evolution of peroxisome proliferator-activated receptor agonists.

    PubMed

    Chang, Feng; Jaber, Linda A; Berlie, Helen D; O'Connell, Mary Beth

    2007-06-01

    To discuss the evolution of peroxisome proliferator-activated receptor (PPAR) agonists from single site to multiple subtype or partial agonists for the treatment of type 2 diabetes, dyslipidemia, obesity, and the metabolic syndrome. Information was obtained from MEDLINE (1966-March 2007) using search terms peroxisome proliferator-activated receptor agonist, PPAR dual agonist, PPAR alpha/gamma agonist, PPAR pan agonist, partial PPAR, and the specific compound names. Other sources included pharmaceutical companies, the Internet, and the American Diabetes Association 64th-66th Scientific Sessions abstract books. Animal data, abstracts, clinical trials, and review articles were reviewed and summarized. PPAR alpha, gamma, and delta receptors play an important role in lipid metabolism, regulation of adipocyte proliferation and differentiation, and insulin sensitivity. The PPAR dual agonists were developed to combine the triglyceride lowering and high-density lipoprotein cholesterol elevation from the PPAR-alpha agonists (fibrates) with the insulin sensitivity improvement from the PPAR-gamma agonists (thiazolidinediones). Although the dual agonists reduced hemoglobin A(1C) (A1C) and improved the lipid profile, adverse effects led to discontinued development. Currently, PPAR-delta agonists (GW501516 in Phase I trials), partial PPAR-gamma agonists (metaglidasen in Phase II and III trials), and pan agonists (alpha, gamma, delta; netoglitazone in Phase II and III trials) with improved cell and tissue selectivity are undergoing investigation to address multiple aspects of the metabolic syndrome with a single medication. By decreasing both A1C and triglycerides, metaglidasen did improve multiple aspects of the metabolic syndrome with fewer adverse effects than compared with placebo. Metaglidasen is now being compared with pioglitazone. Influencing the various PPARs results in improved glucose, lipid, and weight management, with effects dependent on full or partial agonist

  12. Development of selective agonists and antagonists of P2Y receptors

    PubMed Central

    Ivanov, Andrei A.; de Castro, Sonia; Harden, T. Kendall; Ko, Hyojin

    2008-01-01

    Although elucidation of the medicinal chemistry of agonists and antagonists of the P2Y receptors has lagged behind that of many other members of group A G protein-coupled receptors, detailed qualitative and quantitative structure–activity relationships (SARs) were recently constructed for several of the subtypes. Agonists selective for P2Y1, P2Y2, and P2Y6 receptors and nucleotide antagonists selective for P2Y1 and P2Y12 receptors are now known. Selective nonnucleotide antagonists were reported for P2Y1, P2Y2, P2Y6, P2Y11, P2Y12, and P2Y13 receptors. At the P2Y1 and P2Y12 receptors, nucleotide agonists (5′-diphosphate derivatives) were converted into antagonists of nanomolar affinity by altering the phosphate moieties, with a focus particularly on the ribose conformation and substitution pattern. Nucleotide analogues with conformationally constrained ribose-like rings were introduced as selective receptor probes for P2Y1 and P2Y6 receptors. Screening chemically diverse compound libraries has begun to yield new lead compounds for the development of P2Y receptor antagonists, such as competitive P2Y12 receptor antagonists with antithrombotic activity. Selective agonists for the P2Y4, P2Y11, and P2Y13 receptors and selective antagonists for P2Y4 and P2Y14 receptors have not yet been identified. The P2Y14 receptor appears to be the most restrictive of the class with respect to modification of the nucleobase, ribose, and phosphate moieties. The continuing process of ligand design for the P2Y receptors will aid in the identification of new clinical targets. PMID:18600475

  13. Melatonin and Synthetic Melatoninergic Agonists in Psychiatric and Age-associated Disorders: Successful and Unsuccessful Approaches.

    PubMed

    Hardeland, Rüdiger

    2016-01-01

    Melatonin and the following approved or investigational synthetic melatoninergic agonists are compared with regard to half-life, receptor affinity, metabolism and additional properties: TIK-301, piromelatine, GG-012, AH-001, AH-017, agomelatine, ramelteon, GR 196429, MA-2, tasimelteon, UCM765, and UCM924. Apart from restrictions from the respective approvals, theoretical limits of treatment are outlined as they result from chronobiological, genetic, epigenetic, degenerative or toxicological considerations. Melatoninergic agonists have been shown to reliably entrain circadian rhythms, if chronobiological phase response rules are followed. This allows the treatment of dysphased rhythms, circadian rhythm sleep disorders, and forms of depression with an etiology of circadian dysfunction, such as bipolar disorder and seasonal affective disorders. Entrainment and induction of sleep onset requires only short actions, with low doses of immediate-release melatonin likely to be sufficient. However, sleep maintenance is poorly supported by any of the agonists, despite statistically demonstrable effects. The combinations of melatoninergic properties with the inhibition of 5-HT2C receptors, as in agomelatine and TIK-30, may result in moderate direct antidepressive actions. Other limits of a successful treatment can arise from genetic or epigenetic silencing of melatonin receptor genes, perhaps also from imbalances between parallel signaling pathways in receptor mutants, and from neurodegeneration, especially in the suprachiasmatic nucleus. Variants of circadian clock genes cause rhythm deviations that may be corrected by melatoninergic treatment, provided that the spontaneous oscillation period is not beyond the entrainment range. Caveats concerning melatonin's roles as an immune modulator and in certain pathologies, such as Parkinson's disease, as well as toxicological considerations for agonists and their metabolites are also addressed.

  14. Airway Peroxidases Catalyze Nitration of the β2-Agonist Salbutamol and Decrease Its Pharmacological Activity

    PubMed Central

    Sallans, Larry; Macha, Stephen; Brown, Kari; McGraw, Dennis W.; Kovacic, Melinda Butsch; Britigan, Bradley E.

    2011-01-01

    β2-Agonists are the most effective bronchodilators for the rapid relief of asthma symptoms, but for unclear reasons, their effectiveness may be decreased during severe exacerbations. Because peroxidase activity and nitrogen oxides are increased in the asthmatic airway, we examined whether salbutamol, a clinically important β2-agonist, is subject to potentially inactivating nitration. When salbutamol was exposed to myeloperoxidase, eosinophil peroxidase or lactoperoxidase in the presence of hydrogen peroxide (H2O2) and nitrite (NO2−), both absorption spectroscopy and mass spectrometry indicated formation of a new metabolite with features expected for the nitrated drug. The new metabolites showed an absorption maximum at 410 nm and pKa of 6.6 of the phenolic hydroxyl group. In addition to nitrosalbutamol (m/z 285.14), a salbutamol-derived nitrophenol, formed by elimination of the formaldehyde group, was detected (m/z 255.13) by mass spectrometry. It is noteworthy that the latter metabolite was detected in exhaled breath condensates of asthma patients receiving salbutamol but not in unexposed control subjects, indicating the potential for β2-agonist nitration to occur in the inflamed airway in vivo. Salbutamol nitration was inhibited in vitro by ascorbate, thiocyanate, and the pharmacological agents methimazole and dapsone. The efficacy of inhibition depended on the nitrating system, with the lactoperoxidase/H2O2/NO2− being the most affected. Functionally, nitrated salbutamol showed decreased affinity for β2-adrenergic receptors and impaired cAMP synthesis in airway smooth muscle cells compared with the native drug. These results suggest that under inflammatory conditions associated with asthma, phenolic β2-agonists may be subject to peroxidase-catalyzed nitration that could potentially diminish their therapeutic efficacy. PMID:20974700

  15. Embryonic cardiotoxicity of weak aryl hydrocarbon receptor agonists and CYP1A inhibitor fluoranthene in the Atlantic killifish (Fundulus heteroclitus).

    PubMed

    Brown, D R; Clark, B W; Garner, L V T; Di Giulio, R T

    2016-10-01

    High affinity aryl hydrocarbon receptor (AHR) ligands, such as certain polychlorinated biphenyls and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), cause severe cardiac teratogenesis in fish embryos. Moderately strong AHR agonists, for example benzo[a]pyrene and β-naphthoflavone, are capable of causing similar cardiotoxic effects, particularly when coupled with cytochrome P450 1A (CYP1A) inhibitors (e.g., fluoranthene (FL). Additionally, some weaker AHR agonists (carbaryl, 2-methylindole, 3-methylindole, and phenanthrene) are known to also cause cardiotoxicity in zebrafish (Danio rerio) embryos when coupled with FL; however, the cardiotoxic effects were not mediated specifically by AHR stimulation. This study was performed to determine if binary exposure to weak AHR agonists and FL were also capable of causing cardiotoxicity in Atlantic killifish Fundulus heteroclitus embryos. Binary exposures were performed in both naïve and PAH-adapted killifish embryos to examine resistance to weak agonists and FL binary exposures. Weak agonists used in this study included the following: carbaryl, phenanthrene, 2-methylindole, 3-methylindole, indigo, and indirubin. Carbaryl, indigo, and indirubin induced the highest CYP1 activity levels in naïve killifish embryos, but no significant CYP1 induction was observed in the PAH-adapted killifish. Embryos were coexposed to subteratogenic levels of each agonist and 500μg/L FL to assess if binary administration could cause cardiotoxicity. Indigo and indirubin coupled with FL caused cardiac teratogenesis in naïve killifish, but coexposures did not produce cardiac chamber abnormalities in the PAH-adapted population. Knockdown of AHR2 in naïve killifish embryos did not prevent cardiac teratogenesis. The data suggest a unique mechanism of cardiotoxicity that is not driven by AHR2 activation.

  16. Proton Affinity Calculations with High Level Methods.

    PubMed

    Kolboe, Stein

    2014-08-12

    Proton affinities, stretching from small reference compounds, up to the methylbenzenes and naphthalene and anthracene, have been calculated with high accuracy computational methods, viz. W1BD, G4, G3B3, CBS-QB3, and M06-2X. Computed and the currently accepted reference proton affinities are generally in excellent accord, but there are deviations. The literature value for propene appears to be 6-7 kJ/mol too high. Reported proton affinities for the methylbenzenes seem 4-5 kJ/mol too high. G4 and G3 computations generally give results in good accord with the high level W1BD. Proton affinity values computed with the CBS-QB3 scheme are too low, and the error increases with increasing molecule size, reaching nearly 10 kJ/mol for the xylenes. The functional M06-2X fails markedly for some of the small reference compounds, in particular, for CO and ketene, but calculates methylbenzene proton affinities with high accuracy.

  17. Classification of neocortical interneurons using affinity propagation.

    PubMed

    Santana, Roberto; McGarry, Laura M; Bielza, Concha; Larrañaga, Pedro; Yuste, Rafael

    2013-01-01

    In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. In fact, neuronal classification is a difficult problem because it is unclear how to designate a neuronal cell class and what are the best characteristics to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological, or molecular characteristics, have provided quantitative and unbiased identification of distinct neuronal subtypes, when applied to selected datasets. However, better and more robust classification methods are needed for increasingly complex and larger datasets. Here, we explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. Affinity propagation outperformed Ward's method, a current standard clustering approach, in classifying the neurons into 4 subtypes. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits.

  18. Classification of neocortical interneurons using affinity propagation

    PubMed Central

    Santana, Roberto; McGarry, Laura M.; Bielza, Concha; Larrañaga, Pedro; Yuste, Rafael

    2013-01-01

    In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. In fact, neuronal classification is a difficult problem because it is unclear how to designate a neuronal cell class and what are the best characteristics to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological, or molecular characteristics, have provided quantitative and unbiased identification of distinct neuronal subtypes, when applied to selected datasets. However, better and more robust classification methods are needed for increasingly complex and larger datasets. Here, we explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. Affinity propagation outperformed Ward's method, a current standard clustering approach, in classifying the neurons into 4 subtypes. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits. PMID:24348339

  19. Agonists block currents through acetylcholine receptor channels.

    PubMed Central

    Sine, S M; Steinbach, J H

    1984-01-01

    We have examined the effects of high concentrations of cholinergic agonists on currents through single acetylcholine receptor (AChR) channels on clonal BC3H1 cells. We find that raised concentrations of acetylcholine (ACh; above 300 microM) or carbamylcholine (Carb; above 1,000 microM) produce a voltage- and concentration-dependent reduction in the mean single-channel current. Raised concentrations of suberyldicholine (Sub; above 3 microM) produce a voltage- and concentration-dependent increase in the number of brief duration low-conductance interruptions of open-channel currents. These observations can be quantitatively described by a model in which agonist molecules enter and transiently occlude the ion-channel of the AChR. PMID:6478036

  20. Agonistic and reproductive interactions in Betta splendens.

    PubMed

    Bronstein, P M

    1984-12-01

    Reproductive and agonistic behaviors in Siamese fighting fish were investigated in eight experiments, and some consequences and determinants of these sequences were isolated. First, fights and the formation of dominance-subordinancy relations were studied. Second, it was determined that large body size as well as males' prior residency in a tank produced an agonistic advantage; the magnitude of this advantage was positively related to the duration of residency. Third, the prior-residency effect in Bettas was determined by males' familiarity with visual and/or tactile cues in their home tanks. Fourth, dominant males had greater access to living space and were more likely to display at a mirror, build nests, and approach females than were subordinates. Finally, it was discovered that chemical cues associated with presumedly inert plastic tank dividers influence Bettas' social behavior.

  1. Ropinirole, a non-ergoline dopamine agonist.

    PubMed

    Jost, Wolfgang H; Angersbach, Dieter

    2005-01-01

    Dopamine agonists have become indispensable in the treatment of Parkinson's disease. In every-day practice, however, the decision to select the best compound for an individual patient is rendered difficult because of the large number of substances available on the market. This review article provides a closer look at the experimental and clinical studies with ropinirole published so far. Ropinirole is a non-ergoline dopamine agonist which has been proven to be effective in both, monotherapy and combination therapy of idiopathic Parkinson's disease. In addition to ameliorating bradykinesia, rigor, and tremor, ropinirole facilitates the daily life and improves depressive moods of patients with Parkinson's disease. The long-term complications of levodopa are avoided, and problems commonly associated with levodopa treatment are reduced. Ropinirole appears to have a neuroprotective effect. In addition to Parkinson's disease, ropinirole has also been used successfully in the treatment of restless legs syndrome.

  2. Imaging progesterone receptor in breast tumors: Synthesis and receptor binding affinity of fluoroalkyl-substituted analogs of Tanaproget

    PubMed Central

    Zhou, Hai-Bing; Lee, Jae Hak; Mayne, Christopher G.; Carlson, Kathryn E.; Katzenellenbogen, John A.

    2010-01-01

    The progesterone receptor (PR) is estrogen regulated, and PR levels in breast tumors can be used to predict the success of endocrine therapies targeting the estrogen receptor (ER). Tanaproget is a non-steroidal progestin agonist with very high PR binding affinity and excellent in vivo potency. When appropriately radiolabeled, it might be used to image PR-positive breast tumors non-invasively, by positron emission tomography (PET). We describe the synthesis and PR binding affinities of a series of fluoroalkyl-substituted 6-aryl-1,4-dihydrobenzo[d][1,3]oxazine-2-thiones, analogs of Tanaproget. Some of these compounds have subnanomolar binding affinities, higher than that of either Tanaproget itself or the high affinity PR ligand R5020. Structure-binding affinity relationships can be rationalized by molecular modeling of ligand complexes with PR, and the enantioselectivity of binding has been predicted. These compounds are being further evaluated as potential diagnostic PET imaging agents for breast cancer, and enantiomerically pure materials of defined stereochemistry are being prepared. PMID:20355713

  3. N-Aralkyl substitution increases the affinity of adrenergic drugs for the alpha-adrenoceptor in rat liver.

    PubMed Central

    Aggerbeck, M; Guellaën, G; Hanoune, J

    1979-01-01

    1 The alpha-adrenoceptor of rat liver plasma membranes was studied by use of the specific alpha-antagonist [3H]-dihydroergocryptine ([3H]-DHEC). Catecholamines and adrenergic compounds displayed an order of affinity that is typical of an alpha-receptor. Nevertheless, protokylol, a potent beta-adrenoceptor agonist, exhibited a higher affinity than that of adrenaline for alpha-sites. This result might be due to its bulky substituent on the amino group. 2 Further displacement experiments between [3H]-DHEC and four pairs of drugs differently substituted on the amino group (isoprenaline vs Cc-25, orciprenaline vs fenoterol, AH 3474 vs labetalol, pindolol vs hydroxybenzylpindolol) provided evidence that N-alkyl substitution decreased the affinity for alpha-sites (20 micromolar less than KD less than 200 micromolar), whereas an N-aralkyl one increased the affinity (0.17 micromloar less than KD less than 4.6 micromolar). 3 It is concluded that a substitution on the amino group by a bulky, hydrophobic moiety enhances the affinity of drugs for the alpha-adrenoceptors. PMID:216448

  4. Identity, Affinity, Reality: Making the Case for Affinity Groups in Elementary School

    ERIC Educational Resources Information Center

    Parsons, Julie; Ridley, Kimberly

    2012-01-01

    Affinity groups are places where students build connections and process "ouch" moments from their classes. Children talk about the isolation they sometimes feel. The relationships students gain through race-based affinity groups enable them to feel less alone with their emotions and help them build a stronger sense of self. At the same…

  5. Stepparents' Affinity-Seeking and Affinity-Maintaining Strategies with Stepchildren.

    ERIC Educational Resources Information Center

    Ganong, Lawrence; Coleman, Marilyn; Fine, Mark; Martin, Patricia

    1999-01-01

    Examines the strategies that stepparents use to develop and maintain affinity with stepchildren and the effects that these strategies have on the development of stepparent-stepchildren relationships. Thirty-one affinity-seeking strategies are identified. Results show that dyadic activities worked best, but it is important that stepchildren…

  6. Identity, Affinity, Reality: Making the Case for Affinity Groups in Elementary School

    ERIC Educational Resources Information Center

    Parsons, Julie; Ridley, Kimberly

    2012-01-01

    Affinity groups are places where students build connections and process "ouch" moments from their classes. Children talk about the isolation they sometimes feel. The relationships students gain through race-based affinity groups enable them to feel less alone with their emotions and help them build a stronger sense of self. At the same…

  7. Stepparents' Affinity-Seeking and Affinity-Maintaining Strategies with Stepchildren.

    ERIC Educational Resources Information Center

    Ganong, Lawrence; Coleman, Marilyn; Fine, Mark; Martin, Patricia

    1999-01-01

    Examines the strategies that stepparents use to develop and maintain affinity with stepchildren and the effects that these strategies have on the development of stepparent-stepchildren relationships. Thirty-one affinity-seeking strategies are identified. Results show that dyadic activities worked best, but it is important that stepchildren…

  8. The identification of orally bioavailable thrombopoietin agonists.

    PubMed

    Munchhof, Michael J; Antipas, Amy S; Blumberg, Laura C; Brissette, William H; Brown, Matthew F; Casavant, Jeffrey M; Doty, Jonathan L; Driscoll, James; Harris, Thomas M; Wolf-Gouveia, Lilli A; Jones, Christopher S; Li, Qifang; Linde, Robert G; Lira, Paul D; Marfat, Anthony; McElroy, Eric; Mitton-Fry, Mark; McCurdy, Sandra P; Reiter, Lawrence A; Ripp, Sharon L; Shavnya, Andrei; Thomasco, Lisa M; Trevena, Kristen A

    2009-03-01

    Recently, we disclosed a series of potent pyrimidine benzamide-based thrombopoietin receptor agonists. Unfortunately, the structural features required for the desired activity conferred physicochemical properties that were not favorable for the development of an oral agent. The physical properties of the series were improved by replacing the aminopyrimidinyl group with a piperidine-4-carboxylic acid moiety. The resulting compounds possessed favorable in vivo pharmacokinetic properties, including good bioavailability.

  9. A Cyclic Tetrapeptide ("Cyclodal") and Its Mirror-Image Isomer Are Both High-Affinity μ Opioid Receptor Antagonists.

    PubMed

    Weltrowska, Grazyna; Nguyen, Thi M-D; Chung, Nga N; Wood, JodiAnne; Ma, Xiaoyu; Guo, Jason; Wilkes, Brian C; Ge, Yang; Laferrière, André; Coderre, Terence J; Schiller, Peter W

    2016-10-13

    Head-to-tail cyclization of the μ opioid receptor (MOR) agonist [Dmt(1)]DALDA (H-Dmt-d-Arg-Phe-Lys-NH2 (9; Dmt = 2',6'-dimethyltyrosine) resulted in a highly active, selective MOR antagonist, c[-d-Arg-Phe-Lys-Dmt-] (1) ("cyclodal"), with subnanomolar binding affinity. A docking study of cyclodal using the crystal structure of MOR in the inactive form showed a unique binding mode with the two basic residues of the ligand forming salt bridges with the Asp(127) and Glu(229) receptor residues. Cyclodal showed high plasma stability and was able to cross the blood-brain barrier to reverse morphine-induced, centrally mediated analgesia when given intravenously. Surprisingly, the mirror-image isomer (optical antipode) of cyclodal, c[-Arg-d-Phe-d-Lys-d-Dmt-] (2), also turned out to be a selective MOR antagonist with 1 nM binding affinity, and thus, these two compounds represent the first example of mirror image opioid receptor ligands with both optical antipodes having high binding affinity. Reduction of the Lys-Dmt peptide bond in cyclodal resulted in an analogue, c[-d-Arg-Phe-LysΨ[CH2NH]Dmt-] (8), with MOR agonist activity.

  10. Non-affine elasticity in jammed systems

    NASA Astrophysics Data System (ADS)

    Maloney, Craig

    2006-03-01

    Symmetry dictates that perfect crystals should deform homogeneously, or affinely, under external load, and computing the elastic moduli from the underlying interaction potential is then straightforward. For disordered materials no such simple procedure exists, and recent numerical works have demonstrated that non-affine corrections can dramatically reduce the naive expectation for the shear modulus in a broad class of disordered systems and may control rigidity loss in the zero pressure limit in purely repulsive systems, i.e. the unjamming transition (c.f. [O'Hern et. al. PRE 68, 011306 (2003)]). We present numerical results and an analytical framework for the study of these non-affine corrections to the elastic response of disordered packings.

  11. Biomimetic affinity ligands for protein purification.

    PubMed

    Sousa, Isabel T; Taipa, M Angela

    2014-01-01

    The development of sophisticated molecular modeling software and new bioinformatic tools, as well as the emergence of data banks containing detailed information about a huge number of proteins, enabled the de novo intelligent design of synthetic affinity ligands. Such synthetic compounds can be tailored to mimic natural biological recognition motifs or to interact with key surface-exposed residues on target proteins and are designated as "biomimetic ligands." A well-established methodology for generating biomimetic or synthetic affinity ligands integrates rational design with combinatorial solid-phase synthesis and screening, using the triazine scaffold and analogues of amino acids side chains to create molecular diversity.Triazine-based synthetic ligands are nontoxic, low-cost, highly stable compounds that can replace advantageously natural biological ligands in the purification of proteins by affinity-based methodologies.

  12. Affine coherent states and Toeplitz operators

    NASA Astrophysics Data System (ADS)

    Hutníková, Mária; Hutník, Ondrej

    2012-06-01

    We study a parameterized family of Toeplitz operators in the context of affine coherent states based on the Calderón reproducing formula (= resolution of unity on L_2( {R})) and the specific admissible wavelets (= affine coherent states in L_2( {R})) related to Laguerre functions. Symbols of such Calderón-Toeplitz operators as individual coordinates of the affine group (= upper half-plane with the hyperbolic geometry) are considered. In this case, a certain class of pseudo-differential operators, their properties and their operator algebras are investigated. As a result of this study, the Fredholm symbol algebras of the Calderón-Toeplitz operator algebras for these particular cases of symbols are described. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’.

  13. Discovery of Potent and Selective Agonists of δ Opioid Receptor by Revisiting the "Message-Address" Concept.

    PubMed

    Shen, Qing; Qian, Yuanyuan; Huang, Xiaoqin; Xu, Xuejun; Li, Wei; Liu, Jinggen; Fu, Wei

    2016-04-14

    The classic "message-address" concept was proposed to address the binding of endogenous peptides to the opioid receptors and was later successfully applied in the discovery of the first nonpeptide δ opioid receptor (DOR) antagonist naltrindole. By revisiting this concept, and based on the structure of tramadol, we designed a series of novel compounds that act as highly potent and selective agonists of DOR among which (-)-6j showed the highest affinity (K i = 2.7 nM), best agonistic activity (EC50 = 2.6 nM), and DOR selectivity (more than 1000-fold over the other two subtype opioid receptors). Molecular docking studies suggest that the "message" part of (-)-6j interacts with residue Asp128(3.32) and a neighboring water molecule, and the "address" part of (-)-6j packs with hydrophobic residues Leu300(7.35), Val281(6.55), and Trp284(6.58), rendering DOR selectivity. The discovery of novel compound (-)-6j, and the obtained insights into DOR-agonist binding will help us design more potent and selective DOR agonists.

  14. 14-Alkoxy- and 14-acyloxypyridomorphinans: μ agonist/δ antagonist opioid analgesics with diminished tolerance and dependence side effects.

    PubMed

    Ananthan, Subramaniam; Saini, Surendra K; Dersch, Christina M; Xu, Heng; McGlinchey, Nicholas; Giuvelis, Denise; Bilsky, Edward J; Rothman, Richard B

    2012-10-11

    In the search for opioid ligands with mixed functional activity, a series of 5'-(4-chlorophenyl)-4,5α-epoxypyridomorphinans possessing alkoxy or acyloxy groups at C-14 was synthesized and evaluated. In this series, the affinity and functional activity of the ligands were found to be influenced by the nature of the substituent at C-14 as well as by the substituent at N-17. Whereas the incorporation of a 3-phenylpropoxy group at C-14 on N-methylpyridomorhinan gave a dual MOR agonist/DOR agonist 17h, its incorporation on N-cyclopropylmethylpyridomorphinan gave a MOR agonist/DOR antagonist 17d. Interestingly, 17d, in contrast to 17h, did not produce tolerance or dependence effects upon prolonged treatment in cells expressing MOR and DOR. Moreover, 17d displayed greatly diminished analgesic tolerance as compared to morphine upon repeated administration, thus supporting the hypothesis that ligands with MOR agonist/DOR antagonist functional activity could emerge as novel analgesics devoid of tolerance, dependence, and related side effects.

  15. 14-Alkoxy- and 14-Acyloxypyridomorphinans: Mu Agonist/Delta Antagonist Opioid Analgesics with Diminished Tolerance and Dependence Side Effects

    PubMed Central

    Ananthan, Subramaniam; Saini, Surendra K.; Dersch, Christina M.; Xu, Heng; McGlinchey, Nicholas; Giuvelis, Denise; Bilsky, Edward J.; Rothman, Richard B.

    2012-01-01

    In the search for opioid ligands with mixed functional activity, a series of 5′-(4-chlorophenyl)-4,5α-epoxypyridomorphinans possessing alkoxy or acyloxy groups at C-14 was synthesized and evaluated. In this series, the affinity and functional activity of the ligands were found to be influenced by the nature of the substituent at C-14 as well as by the substituent at N-17. Whereas the incorporation of a 3-phenylpropoxy group at C-14 on N-methylpyridomorhinan gave a dual MOR agonist/DOR agonist 17h its incorporation on N-cyclopropylmethylpyridomorphinan gave a MOR agonist/DOR antagonist 17d. Interestingly, 17d, in contrast to 17h, did not produce tolerance or dependence effects on prolonged treatment in cells expressing MOR and DOR. Moreover, 17d displayed greatly diminished analgesic tolerance as compared to morphine on repeated administration, thus supporting the hypothesis that ligands with MOR agonist/DOR antagonist functional activity could emerge as novel analgesics devoid of tolerance, dependence and related side effects. PMID:23016952

  16. The Constitutively Active V2 Receptor Mutants Conferring NSIAD Are Weakly Sensitive to Agonist and Antagonist Regulation

    PubMed Central

    Perkovska, Sanja; Adra-Delenne, Anne-Laure; Mendre, Christiane; Ranchin, Bruno; Bricca, Giamperro; Geelen, Ghislaine; Mouillac, Bernard; Durroux, Thierry; Morin, Denis

    2009-01-01

    Patients having the nephrogenic syndrome of inappropriate antidiuresis present either the R137C or R137L V2 mutated receptor. While the clinical features have been characterized, the molecular mechanisms of functioning of these two mutants remain elusive. In the present study, we compare the pharmacological properties of R137C and R137L mutants with the wild-type and the V2 D136A receptor, the latter being reported as a highly constitutively active receptor. We have performed binding studies, second messenger measurements and BRET experiments in order to evaluate the affinities of the ligands, their agonist and antagonist properties and the ability of the receptors to recruit β-arrestins, respectively. The R137C and R137L receptors exhibit small constitutive activities regarding the Gs protein activation. In addition, these two mutants induce a constitutive β-arrestin recruitment. Of interest, they also exhibit weak sensitivities to agonist and to inverse agonist in term of Gs protein coupling and β-arrestin recruitment. The small constitutive activities of the mutants and the weak regulation of their functioning by agonist suggest a poor ability of the antidiuretic function to be adapted to the external stimuli, giving to the environmental factors an importance which can explain some of the phenotypic variability in patients having NSIAD. PMID:20027297

  17. Signal Use by Octopuses in Agonistic Interactions.

    PubMed

    Scheel, David; Godfrey-Smith, Peter; Lawrence, Matthew

    2016-02-08

    Cephalopods show behavioral parallels to birds and mammals despite considerable evolutionary distance [1, 2]. Many cephalopods produce complex body patterns and visual signals, documented especially in cuttlefish and squid, where they are used both in camouflage and a range of interspecific interactions [1, 3-5]. Octopuses, in contrast, are usually seen as solitary and asocial [6, 7]; their body patterns and color changes have primarily been interpreted as camouflage and anti-predator tactics [8-12], though the familiar view of the solitary octopus faces a growing list of exceptions. Here, we show by field observation that in a shallow-water octopus, Octopus tetricus, a range of visible displays are produced during agonistic interactions, and these displays correlate with the outcome of those interactions. Interactions in which dark body color by an approaching octopus was matched by similar color in the reacting octopus were more likely to escalate to grappling. Darkness in an approaching octopus met by paler color in the reacting octopus accompanied retreat of the paler octopus. Octopuses also displayed on high ground and stood with spread web and elevated mantle, often producing these behaviors in combinations. This study is the first to document the systematic use of signals during agonistic interactions among octopuses. We show prima facie conformity of our results to an influential model of agonistic signaling [13]. These results suggest that interactions have a greater influence on octopus evolution than has been recognized and show the importance of convergent evolution in behavioral traits.

  18. Transdermal delivery of dopamine receptor agonists.

    PubMed

    Reichmann, Heinz

    2009-12-01

    Conceptually, continuous dopaminergic stimulation is universally accepted to be the preferred therapeutic strategy to prevent or postpone dyskinesia in Parkinson's disease (PD). L-dopa has a short half-life of 2 hours and causes dyskinesia, whereas dopamine receptor agonists usually have a much longer half-life. Of the latter agents, cabergoline has the longest half-life of 68 hours and is ideal for the prevention of dyskinesia; but this is also true for other dopamine receptor agonists such as ropinirole or pramipexole, which have a shorter half-life of about 6-8 hours. Due to the possible development of valvular fibrosis, cabergoline is, however, only approved as a second-line treatment in PD, and patch technology has therefore gained major interest. So far, rotigotine is the only dopamine receptor agonist available as a patch. There is good evidence that once-daily patch usage provides patients with constant dopaminergic stimulation, and that patches are of equal potency to other oral non-ergot derivatives such as ropinirole and pramipexole. The disadvantages of patches are skin irritation and crystallization of the drug if not kept in the refrigerator. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. An efficient synthesis of 3-OBn-6β,14-epoxy-bridged opiates from naltrexone and identification of a related dual MOR inverse agonist/KOR agonist.

    PubMed

    Martin, David J; FitzMorris, Paul E; Li, Bo; Ayestas, Mario; Sally, Ellicott J; Dersch, Christina M; Rothman, Richard B; Deveau, Amy M

    2012-11-15

    In an effort to better understand the conformational preferences that inform the biological activity of naltrexone and related naltrexol derivatives, a new synthesis of the restricted analog 3-OBn-6β,14-epoxymorphinan 4 is described. 4 was synthesized starting from naltrexone in 50% overall yield, proceeding through the OBn-6α-triflate intermediate 8. Key steps to the synthesis include benzylation (96% yield), reduction (90% yield, α:β:3:2), followed by a one-pot triflation/displacement sequence (96% yield) to yield the desired bridged epoxy derivative 4. X-ray crystallographic analysis of intermediate 3-OBn-6α-naltrexol 7a supports population of the key boat conformation required for the epoxy ring closure. We also report that the 6β-mesylate 10-a high affinity opioid receptor ligand, the epimeric derivative of 11, and an analog of 12-functions as an inverse agonist at the mu opioid receptor using herkinorin pre-conditioned cells and an agonist at the kappa opioid receptor when evaluated in independent in vitro [(35)S]-GTP-γ-S assays.

  20. Relative affinity of angiotensin peptides and novel ligands at AT1 and AT2 receptors.

    PubMed

    Bosnyak, Sanja; Jones, Emma S; Christopoulos, Arthur; Aguilar, Marie-Isabel; Thomas, Walter G; Widdop, Robert E

    2011-10-01

    AT1R (angiotensin type 1 receptor) and AT2R (angiotensin type 2 receptor) are well known to be involved in the complex cardiovascular actions of AngII (angiotensin II). However, shorter peptide fragments of AngII are thought to have biological activity in their own right and elicit effects that oppose those mediated by AngII. In the present study, we have used HEK (human embryonic kidney)-293 cells stably transfected with either AT1R or AT2R to perform a systematic analysis of binding affinities of all the major angiotensin peptides. Additionally, we tested the novel AT2R agonist Compound 21, as well as the MasR (Mas receptor) agonist and antagonist AVE0991 and A-779 respectively, for their ability to bind to AT1R or AT2R. Candesartan, CGP42214 and PD123319 were used as reference compounds. Binding studies using 125I-[Sar1Ile8]AngII on the AT1R-transfected HEK-293 cells revealed only AngII, AngIII [angiotensin III; angiotensin-(2-8)] and candesartan to have high affinity for AT1R. In the AT2R-transfected HEK-293 cells, competition for 125I-[Sar1Ile8]AngII binding was observed for all ligands except candesartan, AVE0991 and A-779, the latter two compounds having negligible affinity at either AT1R or AT2R. The rank order of affinity of ligands at AT2R was CGP42112>AngII≥AngIII>Compound 21≥PD123319≫AngIV [angiotensin IV; angiotensin-(3-8)]>Ang-(1-7) [angiotensin-(1-7)]. Of note, although AngIV and Ang-(1-7) exhibited only modest affinity at AT2R compared with AngII, these two angiotensin peptides, together with AngIII, had substantial AT2R selectivity over AT1R. Collectively, our results suggest that shorter angiotensin peptides can act as endogenous ligands at AT2R.

  1. Use of Affinity Diagrams as Instructional Tools in Inclusive Classrooms.

    ERIC Educational Resources Information Center

    Haselden, Polly G.

    2003-01-01

    This article describes how the affinity diagram, a tool for gathering information and organizing it into natural groupings, can be used in inclusive classrooms. It discusses how students can be taught to use an affinity diagram, how affinity diagrams can be used to reflect many voices, and how affinity diagrams can be used to plan class projects.…

  2. On the electron affinity of B2

    SciTech Connect

    Glezakou, Vanda A.; Taylor, Peter

    2009-02-02

    We present the results of high-level ab initio calculations on the electron affinity of B2. Our new best estimate of 1.93±0.03 eV is in agreement with previous calculations as well as the sole existing experimental estimate of 1.8 eV, as derived from quantities with an uncertainty of 0.4 eV. The electron affinity of atomic boron, which is much smaller, is also calculated for comparison, and again found to be in good agreement with experiment. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  3. Negative Electron Affinity Mechanism for Diamond Surfaces

    NASA Technical Reports Server (NTRS)

    Krainsky, I. L.; Asnin, V. M.

    1998-01-01

    The energy distribution of the secondary electrons for chemical vacuum deposited diamond films with Negative Electron Affinity (NEA) was investigated. It was found that while for completely hydrogenated diamond surfaces the negative electron affinity peak in the energy spectrum of the secondary electrons is present for any energy of the primary electrons, for partially hydrogenated diamond surfaces there is a critical energy above which the peak is present in the spectrum. This critical energy increases sharply when hydrogen coverage of the diamond surface diminishes. This effect was explained by the change of the NEA from the true type for the completely hydrogenated surface to the effective type for the partially hydrogenated surfaces.

  4. Affine Invariant Character Recognition by Progressive Removing

    NASA Astrophysics Data System (ADS)

    Iwamura, Masakazu; Horimatsu, Akira; Niwa, Ryo; Kise, Koichi; Uchida, Seiichi; Omachi, Shinichiro

    Recognizing characters in scene images suffering from perspective distortion is a challenge. Although there are some methods to overcome this difficulty, they are time-consuming. In this paper, we propose a set of affine invariant features and a new recognition scheme called “progressive removing” that can help reduce the processing time. Progressive removing gradually removes less feasible categories and skew angles by using multiple classifiers. We observed that progressive removing and the use of the affine invariant features reduced the processing time by about 60% in comparison to a trivial one without decreasing the recognition rate.

  5. New unitary affine-Virasoro constructions

    SciTech Connect

    Halpern, M.B.; Kiritsis, E.; Obers, N.A.; Poratti, M. ); Yamron, J.P. )

    1990-06-20

    This paper reports on a quasi-systematic investigation of the Virasoro master equation. The space of all affine-Virasoro constructions is organized by K-conjugation into affine-Virasoro nests, and an estimate of the dimension of the space shows that most solutions await discovery. With consistent ansatze for the master equation, large classes of new unitary nests are constructed, including quadratic deformation nests with continuous conformal weights, and unitary irrational central charge nests, which may dominate unitary rational central charge on compact g.

  6. Cation affinity numbers of Lewis bases.

    PubMed

    Lindner, Christoph; Tandon, Raman; Maryasin, Boris; Larionov, Evgeny; Zipse, Hendrik

    2012-01-01

    Using selected theoretical methods the affinity of a large range of Lewis bases towards model cations has been quantified. The range of model cations includes the methyl cation as the smallest carbon-centered electrophile, the benzhydryl and trityl cations as models for electrophilic substrates encountered in Lewis base-catalyzed synthetic procedures, and the acetyl cation as a substrate model for acyl-transfer reactions. Affinities towards these cationic electrophiles are complemented by data for Lewis-base addition to Michael acceptors as prototypical neutral electrophiles.

  7. Asymptotic Representations of Quantum Affine Superalgebras

    NASA Astrophysics Data System (ADS)

    Zhang, Huafeng

    2017-08-01

    We study representations of the quantum affine superalgebra associated with a general linear Lie superalgebra. In the spirit of Hernandez-Jimbo, we construct inductive systems of Kirillov-Reshetikhin modules based on a cyclicity result that we established previously on tensor products of these modules, and realize their inductive limits as modules over its Borel subalgebra, the so-called q-Yangian. A new generic asymptotic limit of the same inductive systems is proposed, resulting in modules over the full quantum affine superalgebra. We derive generalized Baxter's relations in the sense of Frenkel-Hernandez for representations of the full quantum group.

  8. Molecular docking of opiates and opioid peptides, a tool for the design of selective agonists and antagonists, and for the investigation of atypical ligand-receptor interactions.

    PubMed

    Gentilucci, L; Tolomelli, A; De Marco, R; Artali, R

    2012-01-01

    In the last years, molecular docking emerged as a powerful tool to investigate the interactions between opioid ligands and their receptors, thus driving the design and development of new selective agonists or antagonists of therapeutic interest. This review especially covers the most representative and recent comparative molecular docking analyses of structurally related compounds, as well as of agonists and antagonists within the active and inactive states of the receptors. The comparative analyses gave important information on the structural determinants responsible for the affinity and selectivity of the ligands, and defined the features responsible for the activation of the receptors. A special section is dedicated to the analyses of recently discovered, unusual agonists lacking of the tyramine pharmacophore, such as Salvinorin A, and the cyclopeptides which comprise the D-Trp-Phe pharmacophoric motif. For the atypical structure of these compounds, the docking proved to be essential to disclose how they interact with and activate the receptors.

  9. Evidence of multi-affinity in the Japanese stock market

    NASA Astrophysics Data System (ADS)

    Katsuragi, Hiroaki

    2000-04-01

    Fluctuations of the Japanese stock market (Tokyo Stock Price Index: TOPIX) are analyzed using a multi-affine analysis method. In the research to date, only some simulated self-affine models have shown multi-affinity. In most experiments using observations of self-affine fractal profiles, multi-affinity has not been found. However, we find evidence of multi-affinity in fluctuations of the Japanese stock market (TOPIX). The qth-order Hurst exponent Hq varies with changes in q. This multi-affinity indicates that there are plural mechanisms that affect the same time scale as stock market price fluctuation dynamics.

  10. Metabolic mapping of A3 adenosine receptor agonist MRS5980.

    PubMed

    Fang, Zhong-Ze; Tosh, Dilip K; Tanaka, Naoki; Wang, Haina; Krausz, Kristopher W; O'Connor, Robert; Jacobson, Kenneth A; Gonzalez, Frank J

    2015-09-15

    (1S,2R,3S,4R,5S)-4-(2-((5-Chlorothiophen-2-yl)ethynyl)-6-(methylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo[3.1.0]hexane-1-carboxamide (MRS5980) is an A3AR selective agonist containing multiple receptor affinity- and selectivity-enhancing modifications and a therapeutic candidate drug for many inflammatory diseases. Metabolism-related poor pharmacokinetic behavior and toxicities are a major reason for drug R&D failure. Metabolomics with UPLC-MS was employed to profile the metabolism of MRS5980 and MRS5980-induced disruption of endogenous compounds. Recombinant drug-metabolizing enzymes screening experiment were used to determine the enzymes involved in MRS5980 metabolism. Analysis of lipid metabolism-related genes was performed to investigate the reason for MRS5980-induced lipid metabolic disorders. Unsupervised principal components analysis separated the control and MRS5980 treatment groups in feces, urine, and liver samples, but not in bile and serum. The major ions mainly contributing to the separation of feces and urine were oxidized MRS5980, glutathione (GSH) conjugates and cysteine conjugate (degradation product of the GSH conjugates) of MRS5980. The major ions contributing to the group separation of liver samples were phosphatidylcholines. In vitro incubation experiments showed the involvement of CYP3A enzymes in the oxidative metabolism of MRS5980 and direct GSH reactivity of MRS5980. The electrophilic attack by MRS5980 is a minor pathway and did not alter GSH levels in liver or liver histology, and thus may be of minor clinical consequence. Gene expression analysis further showed decreased expression of PC biosynthetic genes choline kinase a and b, which further accelerated conversion of lysophosphatidylcholine to phosphatidylcholines through increasing the expression of lysophosphatidylcholine acyltransferase 3. These data will be useful to guide rational design of drugs targeting A3AR, considering efficacy, metabolic elimination, and

  11. Metabolic mapping of A3 adenosine receptor agonist MRS5980

    PubMed Central

    Fang, Zhong-Ze; Tosh, Dilip K.; Tanaka, Naoki; Wang, Haina; Krausz, Kristopher W.; O'Connor, Robert; Jacobson, Kenneth A.; Gonzalez, Frank J.

    2015-01-01

    (1S,2R,3S,4R,5S)-4-(2-((5-Chlorothiophen-2-yl)ethynyl)-6-(methylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo[3.1.0]hexane-1-carboxamide (MRS5980) is an A3AR selective agonist containing multiple receptor affinity- and selectivity-enhancing modifications and a therapeutic candidate drug for many inflammatory diseases. Metabolism-related poor pharmacokinetic behavior and toxicities are a major reason of drug R&D failure. Metabolomics with UPLC-MS was employed to profile the metabolism of MRS5980 and MRS5980-induced disruption of endogenous compounds. Recombinant drug-metabolizing enzymes screening experiment were used to determine the enzymes involved in MRS5980 metabolism. Analysis of lipid metabolism-related genes was performed to investigate the reason for MRS5980-induced lipid metabolic disorders. Unsupervised principal components analysis separated the control and MRS5980 treatment group in feces, urine, and liver samples, but not in bile and serum. The major ions mainly contributing to the separation for feces and urine were oxidized MRS5980, glutathione (GSH) conjugates and cysteine conjugate (degradation product of the GSH conjugates) of MRS5980. The major ions contributing to the group separation of liver samples were phosphatidylcholines. In vitro incubation experiments showed the major involvement of CYP3A enzymes in the oxidative metabolism of MRS5980 and direct GSH reactivity of MRS5980. The electrophilic attack by MRS5980 is a minor pathway and did not alter GSH levels in liver or liver histology, and thus may be of minor clinical consequence. Gene expression analysis further showed decreased expression of PC biosynthetic genes choline kinase a and b, which further accelerated conversion of lysophosphatidylcholine to phosphatidylcholines through increasing the expression of lysophosphatidylcholine acyltransferase 3. These data will be useful to guide rational design of drugs targeting A3AR, considering efficacy, metabolic elimination, and

  12. Partial agonist and antagonist activities of a mutant scorpion beta-toxin on sodium channels.

    PubMed

    Karbat, Izhar; Ilan, Nitza; Zhang, Joel Z; Cohen, Lior; Kahn, Roy; Benveniste, Morris; Scheuer, Todd; Catterall, William A; Gordon, Dalia; Gurevitz, Michael

    2010-10-01

    Scorpion β-toxin 4 from Centruroides suffusus suffusus (Css4) enhances the activation of voltage-gated sodium channels through a voltage sensor trapping mechanism by binding the activated state of the voltage sensor in domain II and stabilizing it in its activated conformation. Here we describe the antagonist and partial agonist properties of a mutant derivative of this toxin. Substitution of seven different amino acid residues for Glu(15) in Css4 yielded toxin derivatives with both increased and decreased affinities for binding to neurotoxin receptor site 4 on sodium channels. Css4(E15R) is unique among this set of mutants in that it retained nearly normal binding affinity but lost its functional activity for modification of sodium channel gating in our standard electrophysiological assay for voltage sensor trapping. More detailed analysis of the functional effects of Css4(E15R) revealed weak voltage sensor trapping activity, which was very rapidly reversed upon repolarization and therefore was not observed in our standard assay of toxin effects. This partial agonist activity of Css4(E15R) is observed clearly in voltage sensor trapping assays with brief (5 ms) repolarization between the conditioning prepulse and the test pulse. The effects of Css4(E15R) are fit well by a three-step model of toxin action involving concentration-dependent toxin binding to its receptor site followed by depolarization-dependent activation of the voltage sensor and subsequent voltage sensor trapping. Because it is a partial agonist with much reduced efficacy for voltage sensor trapping, Css4(E15R) can antagonize the effects of wild-type Css4 on sodium channel activation and can prevent paralysis by Css4 when injected into mice. Our results define the first partial agonist and antagonist activities for scorpion toxins and open new avenues of research toward better understanding of the structure-function relationships for toxin action on sodium channel voltage sensors and toward

  13. Partial Agonist and Antagonist Activities of a Mutant Scorpion β-Toxin on Sodium Channels*

    PubMed Central

    Karbat, Izhar; Ilan, Nitza; Zhang, Joel Z.; Cohen, Lior; Kahn, Roy; Benveniste, Morris; Scheuer, Todd; Catterall, William A.; Gordon, Dalia; Gurevitz, Michael

    2010-01-01

    Scorpion β-toxin 4 from Centruroides suffusus suffusus (Css4) enhances the activation of voltage-gated sodium channels through a voltage sensor trapping mechanism by binding the activated state of the voltage sensor in domain II and stabilizing it in its activated conformation. Here we describe the antagonist and partial agonist properties of a mutant derivative of this toxin. Substitution of seven different amino acid residues for Glu15 in Css4 yielded toxin derivatives with both increased and decreased affinities for binding to neurotoxin receptor site 4 on sodium channels. Css4E15R is unique among this set of mutants in that it retained nearly normal binding affinity but lost its functional activity for modification of sodium channel gating in our standard electrophysiological assay for voltage sensor trapping. More detailed analysis of the functional effects of Css4E15R revealed weak voltage sensor trapping activity, which was very rapidly reversed upon repolarization and therefore was not observed in our standard assay of toxin effects. This partial agonist activity of Css4E15R is observed clearly in voltage sensor trapping assays with brief (5 ms) repolarization between the conditioning prepulse and the test pulse. The effects of Css4E15R are fit well by a three-step model of toxin action involving concentration-dependent toxin binding to its receptor site followed by depolarization-dependent activation of the voltage sensor and subsequent voltage sensor trapping. Because it is a partial agonist with much reduced efficacy for voltage sensor trapping, Css4E15R can antagonize the effects of wild-type Css4 on sodium channel activation and can prevent paralysis by Css4 when injected into mice. Our results define the first partial agonist and antagonist activities for scorpion toxins and open new avenues of research toward better understanding of the structure-function relationships for toxin action on sodium channel voltage sensors and toward potential toxin

  14. Upregulation of high affinity GABAA receptors in cultured rat dorsal root ganglion neurons

    PubMed Central

    Lee, Kwan Yeop; Charbonnet, Marcel; Gold, Michael S.

    2012-01-01

    Despite evidence that high-affinity GABAA receptor subunit mRNA and protein are present in dorsal root ganglia (DRG), low affinity currents dominate those detected in acutely dissociated DRG neurons in vitro. This observation raises the possibility that high affinity receptors are normally trafficked out of the DRG toward central and peripheral terminals. We therefore hypothesized that with time in culture, there would be an increase in high-affinity GABAA currents in DRG neurons. To test this hypothesis, we studied dissociated DRG neurons 2 hrs (acute) and 24 hrs (cultured) after plating with whole cell patch clamp techniques, western blot and qRT-PCR analysis. GABAA current density increases dramatically with time in culture in association with the emergence of two persistent currents with EC50’s of 0.25 ± 0.01 μM and 3.2 ± 0.02 μM for GABA activation. In a subpopulation of neurons, there was also an increase in the potency of GABA activation of the transient current from an EC50 of 78.16 ± 10.1 μM to 9.56 ± 1.3 μM with time in culture. A fraction of the high affinity current was potentiated by δ-subunit agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridine-3-ol (THIP). δ-subunit immunoreactivity was largely restricted to the cytosolic fraction in acute but the membrane fraction in cultured DRG neurons with no detectable change in δ-subunit mRNA. However, the emergence of a high affinity current blocked by THIP and insensitive to bicuculline was detected in a subpopulation of cultured neurons as well in association with an increase in ρ2 and 3-subunit mRNA in cultured DRG neurons. Our results suggest that high-affinity δ-subunit containing GABAA receptors are normally trafficked out of the DRG where they are targeted to peripheral and central processes. They also highlight that the interpretation of data obtained from cultured DRG neurons should be made with caution. PMID:22366297

  15. Streamlining the Pipeline for Generation of Recombinant Affinity Reagents by Integrating the Affinity Maturation Step

    PubMed Central

    Huang, Renhua; Gorman, Kevin T.; Vinci, Chris R.; Dobrovetsky, Elena; Gräslund, Susanne; Kay, Brian K.

    2015-01-01

    Often when generating recombinant affinity reagents to a target, one singles out an individual binder, constructs a secondary library of variants, and affinity selects a tighter or more specific binder. To enhance the throughput of this general approach, we have developed a more integrated strategy where the “affinity maturation” step is part of the phage-display pipeline, rather than a follow-on process. In our new schema, we perform two rounds of affinity selection, followed by error-prone PCR on the pools of recovered clones, generation of secondary libraries, and three additional rounds of affinity selection, under conditions of off-rate competition. We demonstrate the utility of this approach by generating low nanomolar fibronectin type III (FN3) monobodies to five human proteins: ubiquitin-conjugating enzyme E2 R1 (CDC34), COP9 signalosome complex subunit 5 (COPS5), mitogen-activated protein kinase kinase 5 (MAP2K5), Splicing factor 3A subunit 1 (SF3A1) and ubiquitin carboxyl-terminal hydrolase 11 (USP11). The affinities of the resulting monobodies are typically in the single-digit nanomolar range. We demonstrate the utility of two binders by pulling down the targets from a spiked lysate of HeLa cells. This integrated approach should be applicable to directed evolution of any phage-displayed affinity reagent scaffold. PMID:26437402

  16. Dopamine inhibition of anterior pituitary adenylate cyclase is mediated through the high-affinity state of the D/sub 2/ receptor

    SciTech Connect

    Borgundvaag, B.; George, S.R.

    1985-07-29

    The diterpinoid forskolin stimulated adenylate cyclase activity (measured by conversion of (/sup 3/H)-ATP to (/sup 3/H)-cAMP) in anterior pituitary from male and female rats. Inhibition of stimulated adenylate cyclase activity by potent dopaminergic agonists was demonstrable only in female anterior pituitary. The inhibition of adenylate cyclase activity displayed a typically dopaminergic rank order of agonist potencies and could be completely reversed by a specific dopamine receptor antagonist. The IC/sub 50/ values of dopamine agonist inhibition of adenylate cyclase activity correlated with equal molarity with the dissociation constant of the high-affinity dopamine agonist-detected receptor binding site and with the IC/sub 50/ values for inhibition of prolactin secretion. These findings support the hypothesis that it is the high-affinity form of the D/sub 2/ dopamine receptor in anterior pituitary which is responsible for mediating the dopaminergic function of attenuating adenylate cyclase activity. 12 references, 4 figures, 1 table.

  17. On modality and complexity of affine embeddings

    SciTech Connect

    Arzhantsev, I V

    2001-08-31

    Let G be a reductive algebraic group and let H be a reductive subgroup of G. The modality of a G-variety X is the largest number of the parameters in a continuous family of G-orbits in X. A precise formula for the maximum value of the modality over all affine embeddings of the homogeneous space G/H is obtained.

  18. Vygotsky's and Buber's Pedagogical Perspectives: Some Affinities

    ERIC Educational Resources Information Center

    Bartholo, Roberto; Tunes, Elizabeth; Tacca, Maria Carmen Villela Rosa

    2010-01-01

    The purpose of this paper is to examine the dialogical and creative character of pedagogic work by analyzing the affinities between Martin Buber's "I-Thou relation" and Lev Semenovich Vygotsky's "Zone of Proximal Development". Backed up by empirical studies on the teacher-student relation, we understand that education can only result in students'…

  19. Fan Affinity Laws from a Collision Model

    ERIC Educational Resources Information Center

    Bhattacharjee, Shayak

    2012-01-01

    The performance of a fan is usually estimated using hydrodynamical considerations. The calculations are long and involved and the results are expressed in terms of three affinity laws. In this paper we use kinetic theory to attack this problem. A hard sphere collision model is used, and subsequently a correction to account for the flow behaviour…

  20. Modern affinity reagents: Recombinant antibodies and aptamers.

    PubMed

    Groff, Katherine; Brown, Jeffrey; Clippinger, Amy J

    2015-12-01

    Affinity reagents are essential tools in both basic and applied research; however, there is a growing concern about the reproducibility of animal-derived monoclonal antibodies. The need for higher quality affinity reagents has prompted the development of methods that provide scientific, economic, and time-saving advantages and do not require the use of animals. This review describes two types of affinity reagents, recombinant antibodies and aptamers, which are non-animal technologies that can replace the use of animal-derived monoclonal antibodies. Recombinant antibodies are protein-based reagents, while aptamers are nucleic-acid-based. In light of the scientific advantages of these technologies, this review also discusses ways to gain momentum in the use of modern affinity reagents, including an update to the 1999 National Academy of Sciences monoclonal antibody production report and federal incentives for recombinant antibody and aptamer efforts. In the long-term, these efforts have the potential to improve the overall quality and decrease the cost of scientific research. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Validation of affinity reagents using antigen microarrays.

    PubMed

    Sjöberg, Ronald; Sundberg, Mårten; Gundberg, Anna; Sivertsson, Asa; Schwenk, Jochen M; Uhlén, Mathias; Nilsson, Peter

    2012-06-15

    There is a need for standardised validation of affinity reagents to determine their binding selectivity and specificity. This is of particular importance for systematic efforts that aim to cover the human proteome with different types of binding reagents. One such international program is the SH2-consortium, which was formed to generate a complete set of renewable affinity reagents to the SH2-domain containing human proteins. Here, we describe a microarray strategy to validate various affinity reagents, such as recombinant single-chain antibodies, mouse monoclonal antibodies and antigen-purified polyclonal antibodies using a highly multiplexed approach. An SH2-specific antigen microarray was designed and generated, containing more than 6000 spots displayed by 14 identical subarrays each with 406 antigens, where 105 of them represented SH2-domain containing proteins. Approximately 400 different affinity reagents of various types were analysed on these antigen microarrays carrying antigens of different types. The microarrays revealed not only very detailed specificity profiles for all the binders, but also showed that overlapping target sequences of spotted antigens were detected by off-target interactions. The presented study illustrates the feasibility of using antigen microarrays for integrative, high-throughput validation of various types of binders and antigens.

  2. Fan Affinity Laws from a Collision Model

    ERIC Educational Resources Information Center

    Bhattacharjee, Shayak

    2012-01-01

    The performance of a fan is usually estimated using hydrodynamical considerations. The calculations are long and involved and the results are expressed in terms of three affinity laws. In this paper we use kinetic theory to attack this problem. A hard sphere collision model is used, and subsequently a correction to account for the flow behaviour…

  3. Vygotsky's and Buber's Pedagogical Perspectives: Some Affinities

    ERIC Educational Resources Information Center

    Bartholo, Roberto; Tunes, Elizabeth; Tacca, Maria Carmen Villela Rosa

    2010-01-01

    The purpose of this paper is to examine the dialogical and creative character of pedagogic work by analyzing the affinities between Martin Buber's "I-Thou relation" and Lev Semenovich Vygotsky's "Zone of Proximal Development". Backed up by empirical studies on the teacher-student relation, we understand that education can only result in students'…

  4. Stabilization of the Motion of Affine Systems

    NASA Astrophysics Data System (ADS)

    Babenko, E. A.; Martynyuk, A. A.

    2016-07-01

    Sufficient conditions for the stability of a nonlinear affine system subject to interval initial conditions are established. These conditions are based on new estimates of the norms of the solutions of the systems of perturbed equations of motion. This stabilization method is used to analyze an electromechanical system with permanent magnet

  5. Nonuniform speaker normalization using affine transformation.

    PubMed

    Bharath Kumar, S V; Umesh, S

    2008-09-01

    In this paper, a well-motivated nonuniform speaker normalization model that affinely relates the formant frequencies of speakers enunciating the same sound is proposed. Using the proposed affine model, the corresponding universal-warping function that is required for normalization is shown to have the same parametric form as the mel scale formula. The parameters of this universal-warping function are estimated from the vowel formant data and are shown to be close to the commonly used formula for the mel scale. This shows an interesting connection between nonuniform speaker normalization and the psychoacoustics based mel scale. In addition, the affine model fits the vowel formant data better than commonly used ad hoc normalization models. This work is motivated by a desire to improve the performance of speaker-independent speech recognition systems, where speaker normalization is conventionally done by assuming a linear-scaling relationship between spectra of speakers. The proposed affine relation is extended to describe the relationship between spectra of speakers enunciating the same sound. On a telephone-based connected digit recognition task, the proposed model provides improved recognition performance over the linear-scaling model.

  6. Cariprazine (RGH-188), a dopamine D(3) receptor-preferring, D(3)/D(2) dopamine receptor antagonist-partial agonist antipsychotic candidate: in vitro and neurochemical profile.

    PubMed

    Kiss, Béla; Horváth, Attila; Némethy, Zsolt; Schmidt, Eva; Laszlovszky, István; Bugovics, Gyula; Fazekas, Károly; Hornok, Katalin; Orosz, Szabolcs; Gyertyán, István; Agai-Csongor, Eva; Domány, György; Tihanyi, Károly; Adham, Nika; Szombathelyi, Zsolt

    2010-04-01

    Cariprazine {RGH-188; trans-N-[4-[2-[4-(2,3-dichlorophenyl)piperazin-1-yl]ethyl]cyclohexyl]-N',N'-dimethylurea hydrochloride}, a novel candidate antipsychotic, demonstrated approximately 10-fold higher affinity for human D(3) versus human D(2L) and human D(2S) receptors (pKi 10.07, 9.16, and 9.31, respectively). It displayed high affinity at human serotonin (5-HT) type 2B receptors (pK(i) 9.24) with pure antagonism. Cariprazine had lower affinity at human and rat hippocampal 5-HT(1A) receptors (pK(i) 8.59 and 8.34, respectively) and demonstrated low intrinsic efficacy. Cariprazine displayed low affinity at human 5-HT(2A) receptors (pK(i) 7.73). Moderate or low affinity for histamine H(1) and 5-HT(2C) receptors (pK(i) 7.63 and 6.87, respectively) suggest cariprazine's reduced propensity for adverse events related to these receptors. Cariprazine demonstrated different functional profiles at dopamine receptors depending on the assay system. It displayed D(2) and D(3) antagonism in [(35)S]GTPgammaS binding assays, but stimulated inositol phosphate (IP) production (pEC(50) 8.50, E(max) 30%) and antagonized (+/-)-quinpirole-induced IP accumulation (pK(b) 9.22) in murine cells expressing human D(2L) receptors. It had partial agonist activity (pEC(50) 8.58, E(max) 71%) by inhibiting cAMP accumulation in Chinese hamster ovary cells expressing human D(3) receptors and potently antagonized R(+)-2-dipropylamino-7-hydroxy-1,2,3,4-tetrahydronaphtalene HBr (7-OH-DPAT)-induced suppression of cAMP formation (pK(b) 9.57). In these functional assays, cariprazine showed similar (D(2)) or higher (D(3)) antagonist-partial agonist affinity and greater (3- to 10-fold) D(3) versus D(2) selectivity compared with aripiprazole. In in vivo turnover and biosynthesis experiments, cariprazine demonstrated D(2)-related partial agonist and antagonist properties, depending on actual dopaminergic tone. The antagonist-partial agonist properties of cariprazine at D(3) and D(2) receptors, with very high

  7. Prediction of binding affinity and efficacy of thyroid hormone receptor ligands using QSAR and structure based modeling methods

    PubMed Central

    Politi, Regina; Rusyn, Ivan; Tropsha, Alexander

    2016-01-01

    The thyroid hormone receptor (THR) is an important member of the nuclear receptor family that can be activated by endocrine disrupting chemicals (EDC). Quantitative Structure-Activity Relationship (QSAR) models have been developed to facilitate the prioritization of THR-mediated EDC for the experimental validation. The largest database of binding affinities available at the time of the study for ligand binding domain (LBD) of THRβ was assembled to generate both continuous and classification QSAR models with an external accuracy of R2=0.55 and CCR=0.76, respectively. In addition, for the first time a QSAR model was developed to predict binding affinities of antagonists inhibiting the interaction of coactivators with the AF-2 domain of THRβ (R2=0.70). Furthermore, molecular docking studies were performed for a set of THRβ ligands (57 agonists and 15 antagonists of LBD, 210 antagonists of the AF-2 domain, supplemented by putative decoys/non-binders) using several THRβ structures retrieved from the Protein Data Bank. We found that two agonist-bound THRβ conformations could effectively discriminate their corresponding ligands from presumed non-binders. Moreover, one of the agonist conformations could discriminate agonists from antagonists. Finally, we have conducted virtual screening of a chemical library compiled by the EPA as part of the Tox21 program to identify potential THRβ-mediated EDCs using both QSAR models and docking. We concluded that the library is unlikely to have any EDC that would bind to the THRβ. Models developed in this study can be employed either to identify environmental chemicals interacting with the THR or, conversely, to eliminate the THR-mediated mechanism of action for chemicals of concern. PMID:25058446

  8. Discovery of oxazole and triazole derivatives as potent and selective S1P(1) agonists through pharmacophore-guided design.

    PubMed

    Tian, Yulin; Jin, Jing; Wang, Xiaojian; Hu, Jinping; Xiao, Qiong; Zhou, Wanqi; Chen, Xiaoguang; Yin, Dali

    2014-10-06

    We have discovered a series of triazole/oxazole-containing 2-substituted 2-aminopropane-1,3-diol derivatives as potent and selective S1P1 agonists (prodrugs) based on pharmacophore-guided rational design. Most compounds showed high affinity and selectivity for S1P1 receptor. Compounds 19b, 19d and 19p displayed clear dose responsiveness in the lymphocyte reduction model when administered orally at doses of 0.3, 1.0, 3.0 mg/kg with reduced effect on heart rate. These three compounds were also identified to have favorable pharmacokinetic properties.

  9. The black agonist-receptor model of high potency sweeteners, and its implication to sweetness taste and sweetener design.

    PubMed

    Farkas, Attila; Híd, János

    2011-10-01

    The dose responses of the most commonly used high potency sweeteners (HPSs) have been measured by a more precise sensory procedure. The data were analyzed by Black's pharmacological model that takes into account not only agonist binding affinity but transduction efficiency as well. HPSs are clearly segregated into 2 groups depending on whether they bind to T1R2 or T1R3 of the receptor heterodimer. Surprisingly, the more potent sweeteners have lower transduction efficiencies. The implications of these on consumer product development and HPS design are discussed.

  10. Determination of Adenosine A1 Receptor Agonist and Antagonist Pharmacology Using Saccharomyces cerevisiae: Implications for Ligand Screening and Functional Selectivity

    PubMed Central

    Stewart, Gregory D.; Valant, Celine; Dowell, Simon J.; Mijaljica, Dalibor; Devenish, Rodney J.; Scammells, Peter J.; Sexton, Patrick M.

    2009-01-01

    The budding yeast, Saccharomyces cerevisiae, is a convenient system for coupling heterologous G protein-coupled receptors (GPCRs) to the pheromone response pathway to facilitate empirical ligand screening and/or GPCR mutagenesis studies. However, few studies have applied this system to define GPCR-G protein-coupling preferences and furnish information on ligand affinities, efficacies, and functional selectivity. We thus used different S. cerevisiae strains, each expressing a specific human Gα/yeast Gpa1 protein chimera, and determined the pharmacology of various ligands of the coexpressed human adenosine A1 receptor. These assays, in conjunction with the application of quantitative models of agonism and antagonism, revealed that (−)-N6-(2-phenylisopropyl)adenosine was a high-efficacy agonist that selectively coupled to Gpa/1Gαo, Gpa1/Gαi1/2, and Gpa1/Gαi3, whereas the novel compound, 5′-deoxy-N6-(endo-norborn-2-yl)-5′-(2-fluorophenylthio)adenosine (VCP-189), was a lower-efficacy agonist that selectively coupled to Gpa1/Gαi proteins; the latter finding suggested that VCP-189 might be functionally selective. The affinity of the antagonist, 8-cyclopentyl-1,3-dipropylxanthine, was also determined at the various strains. Subsequent experiments performed in mammalian Chinese hamster ovary cells monitoring cAMP formation/inhibition, intracellular calcium mobilization, phosphorylation of extracellular signal-regulated kinase 1 and 2 or 35S-labeled guanosine 5′-(γ-thio)triphosphate binding, were in general agreement with the yeast data regarding agonist efficacy estimation and antagonist affinity estimation, but revealed that the apparent functional selectivity of VCP-189 could be explained by differences in stimulus-response coupling between yeast and mammalian cells. Our results suggest that this yeast system is a useful tool for quantifying ligand affinity and relative efficacy, but it may lack the sensitivity required to detect functional selectivity of

  11. The GABA agonist THIP a muscimol analogue, does not interfere with the benzodiazepine binding site on rats cortical membranes.

    PubMed

    Maurer, R

    1979-04-01

    THIP, a cyclic analogue of muscimol, is a powerful GABA agonist. It is as active as GABA in displacing [3H]muscimol from its binding site to cerebellar membranes (IC50 = 31.5 +/- 2.5 mM). However, unlike muscimol or GABA, it is devoid of any modulatory interaction with the benzodiazepine binding site on rat's cortical membranes. Homotaurine, isoguvacine and imidazole acetic acid are less active than muscimol and GABA for increasing the affinity of [3H]diazepam to cortical membrane preparations.

  12. IN VITRO EFFECTS OF ORGANOPHOSPHORUS ANTICHOLINESTERASES AND MUSCARINIC AGONISTS ON RAT BRAIN SYNAPTOSOMAL HIGH AFFINITY CHOLINE UPTAKE. (R825811)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  13. Synthetic studies of neoclerodane diterpenes from Salvia divinorum: role of the furan in affinity for opioid receptors.

    PubMed

    Simpson, Denise S; Lovell, Kimberly M; Lozama, Anthony; Han, Nina; Day, Victor W; Dersch, Christina M; Rothman, Richard B; Prisinzano, Thomas E

    2009-09-21

    Further synthetic modification of the furan ring of salvinorin A (1), the major active component of Salvia divinorum, has resulted in novel neoclerodane diterpenes with opioid receptor affinity and activity. A computational study has predicted 1 to be a reproductive toxicant in mammals and is suggestive that use of 1 may be associated with adverse effects. We report in this study that piperidine 21 and thiomorpholine 23 have been identified as selective partial agonists at kappa opioid receptors. This indicates that additional structural modifications of 1 may provide ligands with good selectivity for opioid receptors but with reduced potential for toxicity.

  14. Diversity-Oriented Synthesis of Cyclic Azapeptides by A(3) -Macrocyclization Provides High-Affinity CD36-Modulating Peptidomimetics.

    PubMed

    Zhang, Jinqiang; Mulumba, Mukandila; Ong, Huy; Lubell, William D

    2017-01-16

    Macrocyclization has enabled the use of peptides in drug discovery creating a need for methods to synthesize diverse peptide macrocycles. Azapeptides have advanced to clinically used drugs, however, few cyclic azapeptides have been studied. A multiple component "A(3) -macrocyclization" strategy is described for the preparation of diverse cyclic azapeptides and is demonstrated by the synthesis of 15 growth hormone releasing hormone-6 (GHRP-6) analogs. Certain cyclic aza-GHRP-6 analogs exhibited unprecedented affinity for the CD36 receptor, and capacity to modulate Toll-like receptor agonist-induced overproduction of nitric oxide, and reduce pro-inflammatory cytokine and chemokine production in macrophages.

  15. Beta2-adrenoceptor agonists for dysmenorrhoea.

    PubMed

    Fedorowicz, Zbys; Nasser, Mona; Jagannath, Vanitha A; Beaman, Jessica H; Ejaz, Kiran; van Zuuren, Esther J

    2012-05-16

    Dysmenorrhoea is a common gynaecological complaint that can affect as many as 50% of premenopausal women, 10% of whom suffer severely enough to be rendered incapacitated for one to three days during each menstrual cycle. Primary dysmenorrhoea is where women suffer from menstrual pain but lack any pathology in their pelvic anatomy. Beta2-adrenoceptor agonists have been used in the treatment of women with primary dysmenorrhoea but their effects are unclear. To determine the effectiveness and safety of beta2-adrenoceptor agonists in the treatment of primary dysmenorrhoea. We searched the Cochrane Menstrual Disorders and Subfertility Group Specialised Register; CENTRAL (The Cochrane Library 2011, Issue 8); MEDLINE; EMBASE; PsycINFO and the EBM Reviews databases. The last search was on 22 August 2011. Randomised controlled trials comparing beta2-adrenoceptor agonists with placebo or no treatment, each other or any other conventional treatment in women of reproductive age with primary dysmenorrhoea. Two review authors independently assessed trial quality and extracted the data. Five trials involving 187 women with an age range of 15 to 40 years were included. Oral isoxsuprine was compared with placebo in two trials; terbutaline oral spray, ritodrine chloride and oral hydroxyphenyl-orciprenalin were compared with placebo in a further three trials. Clinical diversity in the studies in terms of the interventions being evaluated, assessments at different time points and the use of different assessment tools mitigated against pooling of outcome data across studies in order to provide a summary estimate of effect for any of the comparisons. Only one study, with unclear risk of bias, reported pain relief with a combination of isoxsuprine, acetaminophen and caffeine. None of the other studies reported any significant clinical difference in effectiveness between the intervention and placebo. Adverse effects were reported with all of these medications in up to a quarter of the

  16. Agonist-directed desensitization of the β2-adrenergic receptor.

    PubMed

    Goral, Vasiliy; Jin, Yan; Sun, Haiyan; Ferrie, Ann M; Wu, Qi; Fang, Ye

    2011-04-26

    The β(2)-adrenergic receptor (β(2)AR) agonists with reduced tachyphylaxis may offer new therapeutic agents with improved tolerance profile. However, receptor desensitization assays are often inferred at the single signaling molecule level, thus ligand-directed desensitization is poorly understood. Here we report a label-free biosensor whole cell assay with microfluidics to determine ligand-directed desensitization of the β(2)AR. Together with mechanistic deconvolution using small molecule inhibitors, the receptor desensitization and resensitization patterns under the short-term agonist exposure manifested the long-acting agonism of salmeterol, and differentiated the mechanisms of agonist-directed desensitization between a full agonist epinephrine and a partial agonist pindolol. This study reveals the cellular mechanisms of agonist-selective β(2)AR desensitization at the whole cell level.

  17. Agonist-Directed Desensitization of the β2-Adrenergic Receptor

    PubMed Central

    Goral, Vasiliy; Jin, Yan; Sun, Haiyan; Ferrie, Ann M.; Wu, Qi; Fang, Ye

    2011-01-01

    The β2-adrenergic receptor (β2AR) agonists with reduced tachyphylaxis may offer new therapeutic agents with improved tolerance profile. However, receptor desensitization assays are often inferred at the single signaling molecule level, thus ligand-directed desensitization is poorly understood. Here we report a label-free biosensor whole cell assay with microfluidics to determine ligand-directed desensitization of the β2AR. Together with mechanistic deconvolution using small molecule inhibitors, the receptor desensitization and resensitization patterns under the short-term agonist exposure manifested the long-acting agonism of salmeterol, and differentiated the mechanisms of agonist-directed desensitization between a full agonist epinephrine and a partial agonist pindolol. This study reveals the cellular mechanisms of agonist-selective β2AR desensitization at the whole cell level. PMID:21541288

  18. Discovery of G Protein-Biased EP2 Receptor Agonists

    PubMed Central

    2016-01-01

    To identify G protein-biased and highly subtype-selective EP2 receptor agonists, a series of bicyclic prostaglandin analogues were designed and synthesized. Structural hybridization of EP2/4 dual agonist 5 and prostacyclin analogue 6, followed by simplification of the ω chain enabled us to discover novel EP2 agonists with a unique prostacyclin-like scaffold. Further optimization of the ω chain was performed to improve EP2 agonist activity and subtype selectivity. Phenoxy derivative 18a showed potent agonist activity and excellent subtype selectivity. Furthermore, a series of compounds were identified as G protein-biased EP2 receptor agonists. These are the first examples of biased ligands of prostanoid receptors. PMID:26985320

  19. Sports doping: emerging designer and therapeutic β2-agonists.

    PubMed

    Fragkaki, A G; Georgakopoulos, C; Sterk, S; Nielen, M W F

    2013-10-21

    Beta2-adrenergic agonists, or β2-agonists, are considered essential bronchodilator drugs in the treatment of bronchial asthma, both as symptom-relievers and, in combination with inhaled corticosteroids, as disease-controllers. The use of β2-agonists is prohibited in sports by the World Anti-Doping Agency (WADA) due to claimed anabolic effects, and also, is prohibited as growth promoters in cattle fattening in the European Union. This paper reviews the last seven-year (2006-2012) literature concerning the development of novel β2-agonists molecules either by modifying the molecule of known β2-agonists or by introducing moieties producing indole-, adamantyl- or phenyl urea derivatives. New emerging β2-agonists molecules for future therapeutic use are also presented, intending to emphasize their potential use for doping purposes or as growth promoters in the near future.

  20. High affinity binding of [3H]-tyramine in the central nervous system.

    PubMed Central

    Vaccari, A.

    1986-01-01

    Optimum assay conditions for the association of [3H]-para-tyramine [( 3H]-pTA) with rat brain membranes were characterized, and a saturable, reversible, drug-specific, and high affinity binding mechanism for this trace amine was revealed. The binding capacity (Bmax) for [3H]-pTA in the corpus striatum was approximately 30 times higher than that in the cerebellum, with similar dissociation constants (KD). The binding process of [3H]-pTA involved the dopamine system, inasmuch as (a) highest binding capacity was associated with dopamine-rich regions; (b) dopamine and pTA equally displaced specifically bound [3H]-pTA; (c) there was a severe loss in striatal binding capacity for [3H]-pTA and, reportedly, for [3H]-dopamine, following unilateral nigrostriatal lesion; (d) acute in vivo reserpine treatment markedly decreased the density of [3H]-pTA and, reportedly, of [3H]-dopamine binding sites. In competition experiments [3H]-pTA binding sites, though displaying nanomolar affinity for dopamine, revealed micromolar affinities for the dopamine agonists apomorphine and pergolide, and for several dopamine antagonists, while having very high affinity for reserpine, a marker for the catecholamine transporter in synaptic vesicles. The binding process of [3H]-pTA was both energy-dependent (ouabain-sensitive), and ATP-Mg2+-insensitive; furthermore, the potencies of various drugs in competing for [3H]-pTA binding to rat striatal membranes correlated well (r = 0.96) with their reported potencies in inhibiting [3H]-dopamine uptake into striatal synaptosomes. It is concluded that [3H]-pTA binds at a site located on/within synaptic vesicles where it is involved in the transport mechanism of dopamine. PMID:3801770

  1. Inverse agonist activity of pirenzepine at M2 muscarinic acetylcholine receptors.

    PubMed

    Daeffler, L; Schmidlin, F; Gies, J P; Landry, Y

    1999-03-01

    1. The intrinsic properties of muscarinic ligands were studied through their binding properties and their abilities to modulate the GTPase activity of G proteins coupled to muscarinic M2 receptors in pig atrial sarcolemma. 2. Competition binding experiments were performed with [3H]-oxotremorine-M to assess the affinity of receptors coupled to G proteins (R*), with [3H]-N-methylscopolamine ([3H]-NMS) to estimate the affinities of coupled and uncoupled receptors (R*+R) and with [3H]-NMS in the presence of GppNHp to assess the affinity of uncoupled receptors (R). 3. The ranking of Ki values for the agonist carbachol was R*R*+R>R (174, 155, 115 nM), suggesting inverse agonism. 4. The Vmax of the basal high affinity GTPase activity of pig atrial sarcolemma was increased by mastoparan and decreased by GPAnt-2 indicating the relevance of this activity to G proteins coupled to receptors (R*). The K(M) value (0.26-0.33 microM) was not modified by mastoparan or GPAnt-2. 5. Carbachol increased the Vmax of GTP hydrolysis (EC50 8.1+/-0.3 microM), whereas atropine and AF-DX 116, up to 1 mM, did not modify it. Pirenzepine decreased the Vmax of GTP hydrolysis (EC50 77.5+/-10.3 microM). This effect was enhanced when KCI was substituted for NaCl (EC50 11.0+/-0.8 microM) and was antagonized by atropine and AF-DX 116 (IC50 0.91+/-0.71 and 197+/-85 nM). 6. Pirenzepine is proposed as an inverse agonist and atropine and AF-DX 116 as neutral antagonists at the muscarinic M2 receptor.

  2. Inverse agonist activity of pirenzepine at M2 muscarinic acetylcholine receptors

    PubMed Central

    Daeffler, Laurent; Schmidlin, Fabien; Gies, Jean-Pierre; Landry, Yves

    1999-01-01

    The intrinsic properties of muscarinic ligands were studied through their binding properties and their abilities to modulate the GTPase activity of G proteins coupled to muscarinic M2 receptors in pig atrial sarcolemma. Competition binding experiments were performed with [3H]-oxotremorine-M to assess the affinity of receptors coupled to G proteins (R*), with [3H]-N-methylscopolamine ([3H]-NMS) to estimate the affinities of coupled and uncoupled receptors (R*+R) and with [3H]-NMS in the presence of GppNHp to assess the affinity of uncoupled receptors (R). The ranking of Ki values for the agonist carbachol was R*<R*+R>R (174, 155, 115 nM), suggesting inverse agonism. The Vmax of the basal high affinity GTPase activity of pig atrial sarcolemma was increased by mastoparan and decreased by GPAnt-2 indicating the relevance of this activity to G proteins coupled to receptors (R*). The KM value (0.26–0.33 μM) was not modified by mastoparan or GPAnt-2. Carbachol increased the Vmax of GTP hydrolysis (EC50 8.1±0.3 μM), whereas atropine and AF-DX 116, up to 1 mM, did not modify it. Pirenzepine decreased the Vmax of GTP hydrolysis (EC50 77.5±10.3 μM). This effect was enhanced when KCl was substituted for NaCl (EC50 11.0±0.8 μM) and was antagonized by atropine and AF-DX 116 (IC50 0.91±0.71 and 197±85 nM). Pirenzepine is proposed as an inverse agonist and atropine and AF-DX 116 as neutral antagonists at the muscarinic M2 receptor. PMID:10205015

  3. Univalent and bivalent ligands of butorphan: characteristics of the linking chain determine the affinity and potency of such opioid ligands.

    PubMed

    Decker, Michael; Fulton, Brian S; Zhang, Bin; Knapp, Brian I; Bidlack, Jean M; Neumeyer, John L

    2009-12-10

    Bivalent morphinan compounds containing ester linkers were synthesized and their binding affinities at the mu, delta, and kappa opioid receptors determined. Addition of methyl groups adjacent to the hydrolytically labile ester linkage increased stability while only partially affecting binding affinity. The resulting bivalent ligands with optimized spacer length and structure show potent binding profiles with the most potent compound (4b), having K(i) values of 0.47 nM for both the mu and kappa opioid receptors, and 4a, having K(i) values of 0.95 and 0.62 nM for the mu and kappa receptors, respectively. Both 4a and 4b were partial agonists at the kappa and micro receptors in the [(35)S]GTPgammaS binding assay.

  4. Synthesis and molecular modeling of new 1-aryl-3-[4-arylpiperazin-1-yl]-1-propane derivatives with high affinity at the serotonin transporter and at 5-HT(1A) receptors.

    PubMed

    Orús, Lara; Pérez-Silanes, Silvia; Oficialdegui, Ana-M; Martínez-Esparza, Javier; Del Castillo, Juan-C; Mourelle, Marisa; Langer, Thierry; Guccione, Salvatore; Donzella, Giuseppina; Krovat, Eva M; Poptodorov, Konstantin; Lasheras, Berta; Ballaz, Santiago; Hervías, Isabel; Tordera, Rosa; Del Río, Joaquín; Monge, Antonio

    2002-09-12

    It has been proposed that 5-HT(1A) receptor antagonists augment the antidepressant efficacy of selective serotonin (5-HT) reuptake inhibitors. In a search toward new and efficient antidepressants, 1-(aryl)-3-[4-arylpiperazin-1-yl]-1-propane molecular hybrids were designed, synthesized, and evaluated for 5-HT reuptake inhibition and 5-HT(1A) receptor affinity. The design was based in coupling structural moieties related to inhibition of serotonin reuptake, such as benzo[b]thiophene derivatives to arylpiperazines, typical 5-HT(1A) receptor ligands. In binding studies, several compounds showed affinity at the 5-HT transporter and at 5-HT(1A) receptors. Molecular modeling studies predicted the pharmacophore elements required for high affinity binding and the features that enable to discriminate between agonist, partial agonist, or antagonist action at 5-HT(1A) receptors and 5-HT transporter inhibition. Solvent interactions in desolvation prior to the binding step along with enthalpy and enthropy compensations might be responsible to explain agonist, partial agonist, and antagonist character. Hydrogen-bonding capability seems to be important to break hydrogen interhelical hydrogen bonds or alternatively to form other bonds upon ligand binding. Partial agonists and antagonists are unable to do this as the full agonist, which interacts closely by long-range forces or directly. The compounds showing the higher affinity at both the 5-HT transporter (K(i) < 50 nM) and the 5-HT(1A) receptors (K(i) < 20 nM) were further explored for their ability to stimulate [(35)S]GTPgammaS binding or to antagonize 8-hydroxy-2-di-n-propylamino-tetralin (8-OH-DPAT)-stimulated [(35)]GTPgammaS binding to rat hippocampal membranes, an index of agonist/antagonist action at 5-HT(1A) receptors, respectively. Compound 8g exhibited agonist activity (EC(50) = 30 nM) in this assay, whereas compounds 7g and 8h,i behaved as weak partial agonists and 7h-j and 8j,l antagonized the R(+)-8-OH

  5. In vitro assays of rod and cone opsin activity: retinoid analogs as agonists and inverse agonists.

    PubMed

    Kono, Masahiro; Crouch, Rosalie K

    2010-01-01

    Upon absorption of a photon, the bound 11-cis-retinoid isomerizes to the all-trans form resulting in a protein conformational change that enables it to activate its G protein, transducin, to begin the visual signal transduction cascade. The native ligand, 11-cis-retinal, acts as an inverse agonist to both the apoproteins of rod and cone visual pigments (opsins); all-trans-retinal is an agonist. Truncated analogs of retinal have been used to characterize structure-function relationships with rod opsins, but little has been done with cone opsins. Activation of transducin by an opsin is one method to characterize the conformational state of the opsin. This chapter describes an in vitro transducin activation assay that can be used with cone opsins to determine the degree to which different ligands can act as an agonist or an inverse agonist to gain insight into the ligand-binding pocket of cone opsins and differences between the different classes of opsins. The understanding of the effects of ligands on cone opsin activity can potentially be applied to future therapeutic agents targeting opsins.

  6. The sigma receptor agonist SA4503 both attenuates and enhances the effects of methamphetamine

    PubMed Central

    Rodvelt, Kelli R.; Oelrichs, Clark E.; Blount, Lucas R.; Fan, Kuo-Hsien; Lever, Susan Z.; Lever, John R.; Miller, Dennis K.

    2011-01-01

    Background Methamphetamine’s behavioral effects have been attributed to its interaction with monoamine transporters; however, methamphetamine also has affinity for sigma receptors. Method The present study investigated the effect of the sigma receptor agonist SA 4503 and the sigma receptor antagonists BD-1047 and BD-1063 on methamphetamine-evoked [3H] dopamine release from preloaded rat striatal slices. The effect of SA 4503 on methamphetamine-induced hyperactivity and on the discriminative stimulus properties of methamphetamine also was determined. Results SA 4503 attenuated methamphetamine-evoked [3H]dopamine release in a concentration-dependent manner. BD-1047 and BD-1063 did not affect release. SA 4503 dose-dependently potentiated and attenuated methamphetamine-induced hyperactivity. SA 4503 pretreatment augmented the stimulus properties of methamphetamine. Conclusions Our findings indicate that SA 4503 both enhances and inhibits methamphetamine’s effects and that sigma receptors are involved in the neurochemical, locomotor stimulatory and discriminative stimulus properties of methamphetamine. PMID:21277708

  7. Non-vanillyl resiniferatoxin analogues as potent and metabolically stable transient receptor potential vanilloid 1 agonists

    PubMed Central

    Choi, Hyun-Kyung; Choi, Sun; Lee, Yoonji; Kang, Dong Wook; Ryu, HyungChul; Maeng, Han-Joo; Chung, Suk-Jae; Pavlyukovets, Vladimir A.; Pearce, Larry V.; Toth, Attila; Tran, Richard; Wang, Yun; Morgan, Matthew A.; Blumberg, Peter M.; Lee, Jeewoo

    2009-01-01

    A series of non-vanillyl resiniferatoxin analogues, having 4-methylsulfonylaminophenyl and fluorophenyl moieties as vanillyl surrogates, have been investigated as ligands for rat TRPV1 heterologously expressed in Chinese hamster ovary cells. Although lacking the metabolically problematic 4-hydroxy substituent on the A-region phenyl ring, the compounds retained substantial agonist potency. Indeed, the 3-methoxy-4-methylsulfonylaminophenyl analog (1) was modestly (2.5-fold) more potent than RTX, with an EC50 = 0.106 nM. Further, it resembled RTX in its kinetics and pattern of stimulation of the levels of intracellular calcium in individual cells, as revealed by imaging. Compound 1 displayed modestly enhanced in vitro stability in rat liver microsomes and in plasma, suggesting that it might be a pharmacokinetically more favorable surrogate of resiniferatoxin. Molecular modeling analyses with selected analogues provide evidence that the conformational differences could affect their binding affinities, especially for the ester versus amide at the B-region. PMID:19135377

  8. Dual Alleviation of Acute and Neuropathic Pain by Fused Opioid Agonist-Neurokinin 1 Antagonist Peptidomimetics.

    PubMed

    Betti, Cecilia; Starnowska, Joanna; Mika, Joanna; Dyniewicz, Jolanta; Frankiewicz, Lukasz; Novoa, Alexandre; Bochynska, Marta; Keresztes, Attila; Kosson, Piotr; Makuch, Wioletta; Van Duppen, Joost; Chung, Nga N; Vanden Broeck, Jozef; Lipkowski, Andrzej W; Schiller, Peter W; Janssens, Frans; Ceusters, Marc; Sommen, François; Meert, Theo; Przewlocka, Barbara; Tourwé, Dirk; Ballet, Steven

    2015-12-10

    Herein, the synthesis and biological evaluation of dual opioid agonists-neurokinin 1 receptor (NK1R) antagonists is described. In these multitarget ligands, the two pharmacophores do not overlap, and this allowed maintaining high NK1R affinity and antagonist potency in compounds 12 and 13. Although the fusion of the two ligands resulted in slightly diminished opioid agonism at the μ- and δ-opioid receptors (MOR and DOR, respectively), as compared to the opioid parent peptide, balanced MOR/DOR activities were obtained. Compared to morphine, compounds 12 and 13 produced more potent antinociceptive effects in both acute (tail-flick) and neuropathic pain models (von Frey and cold plate). Similarly to morphine, analgesic tolerance developed after repetitive administration of these compounds. To our delight, compound 12 did not produce cross-tolerance with morphine and high antihyperalgesic and antiallodynic effects could be reinstated after chronic administration of each of the two compounds.

  9. Intrinsic Relative Activities of Opioid Agonists in Activating Gα proteins and Internalizing Receptor: Differences between Human and Mouse Receptors

    PubMed Central

    DiMattio, Kelly M.; Ehlert, Frederick J.; Liu-Chen, Lee-Yuan

    2015-01-01

    Several investigators recently identified biased opioid receptor (KOP receptor) agonists. However, no comprehensive study of the functional selectivity of available KOP receptor agonists at the human and mouse KOP receptors (hKOP receptor and mKOP receptor, respectively) has been published. Here we examined the ability of over 20 KOP receptor agonists to activate G proteins and to internalize the receptor. Clonal neuro-2a mouse neuroblastoma (N2a) cells stably transfected with the hKOP receptor or mKOP receptor were used. We employed agonist-induced [35S]GTPγS binding and KOP receptor internalization as measures of activation of G protein and β-arrestin pathways, respectively. The method of Ehlert and colleagues was used to quantify intrinsic relative activities at G protein activation (RAi−G) and receptor internalization (RAi−I) and the degree of functional selectivity between the two [Log RAi−G − Log RAi−I, RAi−G/RAi−I and bias factor]. The parameter, RAi, represents a relative estimate of agonist affinity for the active receptor state that elicits a given response. The endogenous ligand dynorphin A (1–17) was designated as the balanced ligand with a bias factor of 1. Interestingly, we found that there were species differences in functional selectivity. The most striking differences were for 12-epi-salvinorin A, U69,593, and ICI-199,441. 12-Epi-salvinorin A was highly internalization-biased at the mKOP receptor, but apparently G protein-biased at hKOP receptor. U69,593 was much more internalization-biased at mKOP receptor than hKOP receptor. ICI199,441 showed internalization-biased at the mKOP receptor and G protein-biased at the hKOP receptor. Possible mechanisms for the observed species differences are discussed. PMID:26057692

  10. p-( sup 125 I)iodoclonidine, a novel radiolabeled agonist for studying central alpha 2-adrenergic receptors

    SciTech Connect

    Baron, B.M.; Siegel, B.W. )

    1990-09-01

    Unlabeled p-iodoclonidine was efficacious in attenuating forskolin-stimulated cAMP accumulation in SK-N-SH neuroblastoma cells. Maximal attenuation was 76 +/- 3%, with an EC50 of 347 +/- 60 nM. Comparable values of epinephrine were 72 +/- 3% and 122 +/- 22 nM. Responses to both agonists were abolished by 10 microM phentolamine. Therefore, p-iodoclonidine is an agonist in a cell culture model system of the neuronal alpha 2-adrenergic receptor. p-(125I)Iodoclonidine binding to membranes were measured using various regions of the rat brain. The agonist labeled a single population of sites present on cerebral cortical membranes, which was saturable (Bmax = 230 fmol/mg of protein) and possessed high affinity for the ligand (Kd = 0.6 nM). Binding was largely specific (93% at 0.6 nM). A variety of alpha 2-adrenergic agonists and antagonists were shown to compete for the binding of the radioligand. The binding of p-(125I)iodoclonidine was much less sensitive to agents that interact with alpha 1-adrenergic, serotonergic, and dopaminergic receptors. Approximately 65% of the binding was sensitive to guanine nucleotides. Association kinetics using 0.4 nM radioligand were biphasic (37% associate rapidly, with kobs = 0.96 min-1, with the remainder binding more slowly, with kobs = 0.031 min-1) and reached a plateau by 90 min at 25 degrees. Dissociation kinetics were also biphasic, with 30% of the binding dissociating rapidly (k1 = 0.32 min-1) and the remainder dissociating 50-fold more slowly (k2 = 0.006 min-1). Agonist binding is, therefore, uniquely complex and probably reflects the conformational changes that accompany receptor activation.

  11. Agonistic behavior in food animals: review of research and techniques.

    PubMed

    McGlone, J J

    1986-04-01

    One type of social behavior--agonistic behavior--is commonly observed among food animals. Agonistic behaviors are those behaviors which cause, threaten to cause or seek to reduce physical damage. Agonistic behavior is comprised of threats, aggression and submission. While any one of these divisions of agonistic behavior may be observed alone, they usually are found, in sequence, from the start to the end of an interaction. Food animals may show interspecific or intraspecific agonistic behaviors. Interspecific agonistic behavior has not been extensively studied but it is agriculturally important because farm workers may become injured or killed by aggressive food animals. Types of intraspecific agonistic behavior are: when animals are brought together, intermale fighting, resource defense, inter-gender fighting and aberrant aggression. Common pitfalls in research on agonistic behavior among food animals include too few replicates to detect a biological difference, the assumptions of the analysis are not met, only aggression and not submission or other agonistic behavior components are measured, incomplete description of the behaviors are reported and a complete, quantitive ethogram did not form the basis for selecting behavioral measures.

  12. Computational modeling toward understanding agonist binding on dopamine 3.

    PubMed

    Zhao, Yaxue; Lu, Xuefeng; Yang, Chao-Yie; Huang, Zhimin; Fu, Wei; Hou, Tingjun; Zhang, Jian

    2010-09-27

    The dopamine 3 (D3) receptor is a promising therapeutic target for the treatment of nervous system disorders, such as Parkinson's disease, and current research interests primarily focus on the discovery/design of potent D3 agonists. Herein, a well-designed computational protocol, which combines pharmacophore identification, homology modeling, molecular docking, and molecular dynamics (MD) simulations, was employed to understand the agonist binding on D3 aiming to provide insights into the development of novel potent D3 agonists. We (1) identified the chemical features required in effective D3 agonists by pharmacophore modeling based upon 18 known diverse D3 agonists; (2) constructed the three-dimensional (3D) structure of D3 based on homology modeling and the pharmacophore hypothesis; (3) identified the binding modes of the agonists to D3 by the correlation between the predicted binding free energies and the experimental values; and (4) investigated the induced fit of D3 upon agonist binding through MD simulations. The pharmacophore models of the D3 agonists and the 3D structure of D3 can be used for either ligand- or receptor-based drug design. Furthermore, the MD simulations further give the insight that the long and flexible EL2 acts as a "door" for agonist binding, and the "ionic lock" at the bottom of TM3 and TM6 is essential to transduce the activation signal.

  13. Tamoxifen Isomers and Metabolites Exhibit Distinct Affinity and Activity at Cannabinoid Receptors: Potential Scaffold for Drug Development

    PubMed Central

    Ford, Benjamin M.; Franks, Lirit N.; Radominska-Pandya, Anna; Prather, Paul L.

    2016-01-01

    Tamoxifen (Tam) is a selective estrogen receptor (ER) modulator (SERM) that is an essential drug to treat ER-positive breast cancer. Aside from known actions at ERs, recent studies have suggested that some SERMs like Tam also exhibit novel activity at cannabinoid subtype 1 and 2 receptors (CB1R and CB2Rs). Interestingly, cis- (E-Tam) and trans- (Z-Tam) isomers of Tam exhibit over a 100-fold difference in affinity for ERs. Therefore, the current study assessed individual isomers of Tam and subsequent cytochrome P450 metabolic products, 4-hydroxytamoxifen (4OHT) and 4-hydroxy-N-desmethyl tamoxifen (End) for affinity and activity at CBRs. Results showed that Z-4OHT, but not Z-Tam or Z-End, exhibits higher affinity for both CB1 and CB2Rs relative to the E-isomer. Furthermore, Z- and E-isomers of Tam and 4OHT show slightly higher affinity for CB2Rs, while both End isomers are relatively CB1R-selective. When functional activity was assessed by G-protein activation and regulation of the downstream effector adenylyl cyclase, all isomers examined act as full CB1 and CB2R inverse agonists. Interestingly, Z-Tam appears to be more efficacious than the full inverse agonist AM630 at CB2Rs, while both Z-Tam and Z-End exhibit characteristics of insurmountable antagonism at CB1 and CB2Rs, respectively. Collectively, these results suggest that the SERMs Tam, 4OHT and End elicit ER-independent actions via CBRs in an isomer-specific manner. As such, this novel structural scaffold might be used to develop therapeutically useful drugs for treatment of a variety of diseases mediated via CBRs. PMID:27936172

  14. The Use of the LanthaScreen TR-FRET CAR Coactivator Assay in the Characterization of Constitutive Androstane Receptor (CAR) Inverse Agonists

    PubMed Central

    Carazo, Alejandro; Pávek, Petr

    2015-01-01

    The constitutive androstane receptor (CAR) is a critical nuclear receptor in the gene regulation of xenobiotic and endobiotic metabolism. The LanthaScreenTM TR-FRET CAR coactivator assay provides a simple and reliable method to analyze the affinity of a ligand to the human CAR ligand-binding domain (LBD) with no need to use cellular models. This in silico assay thus enables the study of direct CAR ligands and the ability to distinguish them from the indirect CAR activators that affect the receptor via the cell signaling-dependent phosphorylation of CAR in cells. For the current paper we characterized the pharmacodynamic interactions of three known CAR inverse agonists/antagonists—PK11195, clotrimazole and androstenol—with the prototype agonist CITCO (6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime) using the TR-FRET LanthaScreenTM assay. We have confirmed that all three compounds are inverse agonists of human CAR, with IC50 0.51, 0.005, and 0.35 μM, respectively. All the compounds also antagonize the CITCO-mediated activation of CAR, but only clotrimazole was capable to completely reverse the effect of CITCO in the tested concentrations. Thus this method allows identifying not only agonists, but also antagonists and inverse agonists for human CAR as well as to investigate the nature of the pharmacodynamic interactions of CAR ligands. PMID:25905697

  15. Chimpanzees Extract Social Information from Agonistic Screams

    PubMed Central

    Slocombe, Katie E.; Kaller, Tanja; Call, Josep; Zuberbühler, Klaus

    2010-01-01

    Chimpanzee (Pan troglodytes) agonistic screams are graded vocal signals that are produced in a context-specific manner. Screams given by aggressors and victims can be discriminated based on their acoustic structure but the mechanisms of listener comprehension of these calls are currently unknown. In this study, we show that chimpanzees extract social information from these vocal signals that, combined with their more general social knowledge, enables them to understand the nature of out-of-sight social interactions. In playback experiments, we broadcast congruent and incongruent sequences of agonistic calls and monitored the response of bystanders. Congruent sequences were in accordance with existing social dominance relations; incongruent ones violated them. Subjects looked significantly longer at incongruent sequences, despite them being acoustically less salient (fewer call types from fewer individuals) than congruent ones. We concluded that chimpanzees categorised an apparently simple acoustic signal into victim and aggressor screams and used pragmatics to form inferences about third-party interactions they could not see. PMID:20644722

  16. D-Cycloserine: Agonist turned antagonist.

    PubMed

    Lanthorn, T H

    1994-10-01

    D-Cycloserine can enhance activation of the NMDA receptor complex and could enhance the induction of long-term potentiation (LTP). In animals and humans, D-cycloserine can enhance performance in learning and memory tasks. This enhancing effect can disappear during repeated administration. The enhancing effects are also lost when higher doses are used, and replaced by behavioral and biochemical effects like those produced by NMDA antagonists. It has been reported that NMDA agonists, applied before or after tetanic stimulation, can block the induction of LTP. This may be the result of feedback inhibition of second messenger pathways stimulated by receptor activation. This may explain the antagonist-like effects of glycine partial agonists like D-cycloserine. In clinical trials of D-cycloserine in age-associated memory impairment (AAMI) and Alzheimer's disease, chronic treatment provided few positive effects on learning and memory. This may be due to inhibition of second messenger pathways following chronic stimulation of the receptor complex.

  17. Beta-2-agonists of third generation.

    PubMed

    Palma-Carlos, A G; Palma-Carlos, G S

    1986-04-01

    Beta-adrenergic agents have been used for a long time in the treatment of asthma. For the purpose of bronchodilation the better results would be attained with the increase in Beta-2-selectivity. From the newer Beta-agonists the mot currently used are TERBUTALINE, FENOTEROL, SALBUTAMOL, CLEMBUTEROL, TOLBUTEROL, CARBUTEROL, PROCATEROL, RIMITEROL and REPROTEROL, this last combining in its molecule the structure of a beta-agonist with a Xanthine group. These agents could be used in different ways, by mouth, injection and inhalation (with a exception of Clembuterol which is effective only by oral route). The authors have, some years ago, comparatively studied the bronchodilating effect of Salbutamol and Fenoterol including 18 patients. The main increase of PFR was slightly higher after FENOTEROL but this difference was not significant. The authors have studied REPROTEROL by inhalation and oral routes in 11 asthmatic patients. After inhalation of 400 mcg of REPROTEROL the bronchodilator effect was comparable to others inhaled bronchodilators. However they could not confirm that REPROTEROL acts also as a Xanthine and only traces of Theophylline have been detected in blood of subjects taking it. These data seem to indicate that REPROTEROL do not release Theophylline in the body or only release a Xanthine like compound not detected by "EMIT" of high pressure liquid chromatography.

  18. Optimal Affine-Invariant Point Matching

    NASA Astrophysics Data System (ADS)

    Costa, Mauro S.; Haralick, Robert M.; Phillips, Tsaiyun I.; Shapiro, Linda G.

    1989-03-01

    The affine-transformation matching scheme proposed by Hummel and Wolfson (1988) is very efficient in a model-based matching system, not only in terms of the computational complexity involved, but also in terms of the simplicity of the method. This paper addresses the implementation of the affine-invariant point matching, applied to the problem of recognizing and determining the pose of sheet metal parts. It points out errors that can occur with this method due to quantization, stability, symmetry, and noise problems. By beginning with an explicit noise model which the Hummel and Wolfson technique lacks, we can derive an optimal approach which overcomes these problems. We show that results obtained with the new algorithm are clearly better than the results from the original method.

  19. Weight Representations of Admissible Affine Vertex Algebras

    NASA Astrophysics Data System (ADS)

    Arakawa, Tomoyuki; Futorny, Vyacheslav; Ramirez, Luis Enrique

    2017-08-01

    For an admissible affine vertex algebra {V_k{(\\mathfrak{g})}} of type A, we describe a new family of relaxed highest weight representations of {V_k{(\\mathfrak{g})}}. They are simple quotients of representations of the affine Kac-Moody algebra {\\widehat{\\mathfrak{g}}} induced from the following {\\mathfrak{g}}-modules: (1) generic Gelfand-Tsetlin modules in the principal nilpotent orbit, in particular all such modules induced from {\\mathfrak{sl}_2}; (2) all Gelfand-Tsetlin modules in the principal nilpotent orbit that are induced from {\\mathfrak{sl}_3}; (3) all simple Gelfand-Tsetlin modules over {\\mathfrak{sl}_3}. This in particular gives the classification of all simple positive energy weight representations of {V_k{(\\mathfrak{g})}} with finite dimensional weight spaces for {\\mathfrak{g}=\\mathfrak{sl}_3}.

  20. Affinity Chromatography in Nonionic Detergent Solutions

    NASA Astrophysics Data System (ADS)

    Robinson, Jack B.; Strottmann, James M.; Wick, Donald G.; Stellwagen, Earle

    1980-10-01

    Anionic dye affinity chromatography is commonly unproductive in the presence of nonionic detergents used to extract particulate proteins. Using lactate dehydrogenase as a model protein, Cibacron blue F3GA as a model dye, and Triton X-100 as a model detergent, we find that the dye is encapsulated in nonionic detergent micelles, rendering the dye incapable of ligation with the enzyme. However, the dye can be liberated from the micelles without altering the nonionic detergent concentration by addition of an anionic detergent, such as deoxycholate or sodium dodecyl sulfate, forming mixed anionic/nonionic micelles that displace the anionic dye. Encapsulation of the anionic detergents prevents their activity as protein denaturants. These observations have been successfully translated to the dye affinity chromatography of a detergent extract of brain particulate cyclic nucleotide phosphodiesterase.

  1. Affinity chromatography in nonionic detergent solutions.

    PubMed Central

    Robinson, J B; Strottmann, J M; Wick, D G; Stellwagen, E

    1980-01-01

    Anionic dye affinity chromatography is commonly unproductive in the presence of nonionic detergents used to extract particulate proteins. Using lactate dehydrogenase as a model protein, Cibacron blue F3GA as a model dye, and Triton X-100 as a model detergent, we find that the dye is encapsulated in nonionic detergent micelles, rendering the dye incapable of ligation with the enzyme. However, the dye can be liberatd from the micelles without altering the nonionic detergent concentration by addition of an anionic detergent, such as deoxycholate or sodium dodecyl sulfate, forming mixed anionic/nonionic micelles that displace the anionic dye. Encapsulation of the anionic detergents prevents their activity as protein denaturants. These observations have been successfuly translated to the dye affinity chromatography of a detergent extract of brain particulate cyclic nucleotide phosphodiesterase. PMID:6934517

  2. Affine Non-Local Means Image Denoising.

    PubMed

    Fedorov, Vadim; Ballester, Coloma

    2017-05-01

    This paper presents an extension of the Non-Local Means denoising method, that effectively exploits the affine invariant self-similarities present in the images of real scenes. Our method provides a better image denoising result by grounding on the fact that in many occasions similar patches exist in the image but have undergone a transformation. The proposal uses an affine invariant patch similarity measure that performs an appropriate patch comparison by automatically and intrinsically adapting the size and shape of the patches. As a result, more similar patches are found and appropriately used. We show that this image denoising method achieves top-tier performance in terms of PSNR, outperforming consistently the results of the regular Non-Local Means, and that it provides state-of-the-art qualitative results.

  3. Purification of swine haptoglobin by affinity chromatography.

    PubMed Central

    Eurell, T E; Hall, W F; Bane, D P

    1990-01-01

    A globin-agarose affinity chromatography technique was used to purify swine haptoglobin. This technique provides a highly specific, single-step purification method without the contamination of extraneous serum proteins reported by previous studies. Complex formation between the haptoglobin isolate and swine hemoglobin confirmed that biological activity was maintained during the purification process. Immunoelectrophoretic and Ouchterlony immunodiffusion methods revealed that the swine haptoglobin isolate cross-reacted with polyvalent antisera against human haptoglobin. Images Fig. 2. Fig. 3. PMID:2123414

  4. Negative affinity X-ray photocathodes

    NASA Technical Reports Server (NTRS)

    Vanspeybroeck, L.; Kellogg, E.; Murray, S.; Duckett, S.

    1974-01-01

    A new X-ray image intensifier is described. The device should eventually have a quantum efficiency which is an order of magnitude greater than that of presently available high spatial resolution X-ray detectors, such as microchannel plates. The new intesifier is based upon a GaAs crystal photocathode which is activated to achieve negative electron affinity. Details concerning the detector concept are discussed together with the theoretical relations involved, X-ray data, and optical data.

  5. Affine algebraic groups with periodic components

    SciTech Connect

    Fedotov, Stanislav N

    2009-08-31

    A connected component of an affine algebraic group is called periodic if all its elements have finite order. We give a characterization of periodic components in terms of automorphisms with finitely many fixed points. Also discussed is which connected groups have finite extensions with periodic components. The results are applied to the study of the normalizer of a maximal torus in a simple algebraic group. Bibliography: 10 titles.

  6. A generalized model and high throughput data analysis system for functional modulation of receptor-agonist systems suitable for use in drug discovery.

    PubMed

    Pawlyk, Aaron C; Palmer, R Kyle; Sprous, Dennis; Allee, Chip

    2013-03-01

    Positive allosteric modulators (PAMs) of receptors represent a class of pharmacologic agents having the desirable property of acting only in the presence of cognate ligands. Discovery and optimization of the structure activity relationships of PAMs is complicated by the requirement of a second ligand to manifest their action, and by the need to quantify both affinity and intrinsic efficacy. Multivariate regression analysis is a statistical method capable of simultaneously obtaining affinity and intrinsic efficacy parameters from curve fits of multiple agonist dose-response functions generated in the presence of varying concentrations of PAMs. Capitalizing on the advantages of multivariate regression analysis for PAM optimization requires a theoretical framework and a system that facilitates efficient flow of information from data generation through data analysis, storage, and retrieval. We describe here the experimental design, mathematical model and informatics workflow enabling a multivariate regression approach for rapidly obtaining affinity and intrinsic efficacy values for PAMs in a drug discovery setting.

  7. Have many estimates of efficacy and affinity been misled? Revisiting the operational model of agonism.

    PubMed

    Roche, David; van der Graaf, Piet H; Giraldo, Jesús

    2016-11-01

    The operational model of agonism offers a general equation to account for steep or flat functional curves by including a slope parameter different from 1. However, because this equation is not a Hill equation, those steep or flat experimental curves that follow the Hill model are excluded from the operational framework. This conceptual omission could have significant consequences in the estimation of affinity and efficacy - the operational model tends to overestimate agonist-receptor dissociation constants and operational efficacy parameters to accommodate the shape of theoretical curves to steep or flat experimental Hill curves. To avoid misled parameter estimates for an ample space of pharmacological data a new version of the operational model has been developed.

  8. Thermodynamic analysis of agonist and antagonist binding to the chicken brain melatonin receptor.

    PubMed Central

    Chong, N. W.; Sugden, D.

    1994-01-01

    1. The binding of 2-[125I]-iodomelatonin to chicken brain membranes, and the inhibition of binding by melatonin, N-acetyltryptamine and luzindole, were examined at temperatures between 4 degrees C and 37 degrees C. 2. At all temperatures studied, the binding affinity (Kd or Ki) for 2-[125I]-iodomelatonin, melatonin (both agonists) and, to a lesser extent, N-acetyltryptamine (a partial agonist) was reduced by inclusion of guanosine triphosphate (GTP, 1 mM) in the assay. GTP did not affect the Ki for luzindole, a melatonin receptor antagonist. 3. The maximal density of binding sites (Bmax) was not affected by temperature but the Kd showed a peak at 21 degrees C with lower values at both higher and lower temperatures giving curvilinear van't Hoff plots (lnKA vs l/temperature). 4. Derived changes in entropy (delta S degree) and enthalpy (delta H degree) of binding for all of the melatonin ligands decreased as temperature increased. 5. The affinity, and thus the free energy of binding, delta G degree, of these ligands at the melatonin receptor have identical values at several temperatures yet at these temperatures delta S degree and delta H degree were very different, implying that more than one intermolecular force must be involved in the binding of ligand and receptor. 6. Conceivably, the large positive delta S degree observed at low temperatures, perhaps as a result of hydrophobic interactions, is compensated by a corresponding, but opposite, change in enthalpy at higher temperatures. However, it is not clear what type of binding force(s) would show such a temperature-dependence. 7. These studies suggest that caution must be exercised in the molecular interpretation of derived measures of delta S degree and delta H degree obtained from direct measurements of delta G degree. PMID:8012710

  9. Novel Analogues of (R)-5-(Methylamino)-5,6-dihydro-4H-imidazo[4,5,1-ij]quinolin-2(1H)-one (Sumanirole) Provide Clues to Dopamine D2/D3 Receptor Agonist Selectivity

    PubMed Central

    2016-01-01

    Novel 1-, 5-, and 8-substituted analogues of sumanirole (1), a dopamine D2/D3 receptor (D2R/D3R) agonist, were synthesized. Binding affinities at both D2R and D3R were higher when determined in competition with the agonist radioligand [3H]7-hydroxy-N,N-dipropyl-2-aminotetralin (7-OH-DPAT) than with the antagonist radioligand [3H]N-methylspiperone. Although 1 was confirmed as a D2R-preferential agonist, its selectivity in binding and functional studies was lower than previously reported. All analogues were determined to be D2R/D3R agonists in both GoBRET and mitogenesis functional assays. Loss of efficacy was detected for the N-1-substituted analogues at D3R. In contrast, the N-5-alkyl-substituted analogues, and notably the n-butyl-arylamides (22b and 22c), all showed improved affinity at D2R over 1 with neither a loss of efficacy nor an increase in selectivity. Computational modeling provided a structural basis for the D2R selectivity of 1, illustrating how subtle differences in the highly homologous orthosteric binding site (OBS) differentially affect D2R/D3R affinity and functional efficacy. PMID:27035329

  10. Excited state electron affinity calculations for aluminum

    NASA Astrophysics Data System (ADS)

    Hussein, Adnan Yousif

    2017-08-01

    Excited states of negative aluminum ion are reviewed, and calculations of electron affinities of the states (3s^23p^2)^1D and (3s3p^3){^5}{S}° relative to the (3s^23p)^2P° and (3s3p^2)^4P respectively of the neutral aluminum atom are reported in the framework of nonrelativistic configuration interaction (CI) method. A priori selected CI (SCI) with truncation energy error (Bunge in J Chem Phys 125:014107, 2006) and CI by parts (Bunge and Carbó-Dorca in J Chem Phys 125:014108, 2006) are used to approximate the valence nonrelativistic energy. Systematic studies of convergence of electron affinity with respect to the CI excitation level are reported. The calculated value of the electron affinity for ^1D state is 78.675(3) meV. Detailed Calculations on the ^5S°c state reveals that is 1216.8166(3) meV below the ^4P state.

  11. Overview of affinity biosensors in food analysis.

    PubMed

    Patel, Pradip D

    2006-01-01

    The 4 major driving forces that are expected to lead to increased use of affinity biosensors that meet crucial industrial test specifications, e.g., fast, reliable, cost-effective, and use of low-skilled personnel, are (1) strict legislative framework, e.g., recent changes proposed to the European food safety and hygiene legislation, EC No. 178/2002; (2) industrial shift from quality control to quality assurance procedures, e.g., Hazard Analysis Critical Control Point, ensuring effective positioning in the global competitive trade; (3) just-in-time production resulting in 'right' product every time; and (4) consumer demand for safe and wholesome products. The affinity biosensors field has expanded significantly over the past decade, with a projected global biosensors market growth from $6.1 billion in 2004 to $8.2 billion in 2009, representing major industrial sectors (e.g., Pharma, Medicare, and Food). This brief review is targeted to affinity biosensors developed for the food industry and includes research and development leading to biosensors for microbiological and chemical analytes of industrial concern, commercial biosensors products on the market, and examples of future prospects in this diagnostic field.

  12. On constructing purely affine theories with matter

    NASA Astrophysics Data System (ADS)

    Cervantes-Cota, Jorge L.; Liebscher, D.-E.

    2016-08-01

    We explore ways to obtain the very existence of a space-time metric from an action principle that does not refer to it a priori. Although there are reasons to believe that only a non-local theory can viably achieve this goal, we investigate here local theories that start with Schrödinger's purely affine theory (Schrödinger in Space-time structure. Cambridge UP, Cambridge, 1950), where he gave reasons to set the metric proportional to the Ricci curvature aposteriori. When we leave the context of unified field theory, and we couple the non-gravitational matter using some weak equivalence principle, we can show that the propagation of shock waves does not define a lightcone when the purely affine theory is local and avoids the explicit use of the Ricci tensor in realizing the weak equivalence principle. When the Ricci tensor is substituted for the metric, the equations seem to have only a very limited set of solutions. This backs the conviction that viable purely affine theories have to be non-local.

  13. Phosphopeptide Enrichment by Immobilized Metal Affinity Chromatography.

    PubMed

    Thingholm, Tine E; Larsen, Martin R

    2016-01-01

    Immobilized metal affinity chromatography (IMAC) has been the method of choice for phosphopeptide enrichment prior to mass spectrometric analysis for many years and it is still used extensively in many laboratories. Using the affinity of negatively charged phosphate groups towards positively charged metal ions such as Fe(3+), Ga(3+), Al(3+), Zr(4+), and Ti(4+) has made it possible to enrich phosphorylated peptides from peptide samples. However, the selectivity of most of the metal ions is limited, when working with highly complex samples, e.g., whole-cell extracts, resulting in contamination from nonspecific binding of non-phosphorylated peptides. This problem is mainly caused by highly acidic peptides that also share high binding affinity towards these metal ions. By lowering the pH of the loading buffer nonspecific binding can be reduced significantly, however with the risk of reducing specific binding capacity. After binding, the enriched phosphopeptides are released from the metal ions using alkaline buffers of pH 10-11, EDTA, or phosphate-containing buffers. Here we describe a protocol for IMAC using Fe(3+) for phosphopeptide enrichment. The principles are illustrated on a semi-complex peptide mixture.

  14. N-Benzyl-5-methoxytryptamines as Potent Serotonin 5-HT2 Receptor Family Agonists and Comparison with a Series of Phenethylamine Analogues

    PubMed Central

    2015-01-01

    A series of N-benzylated-5-methoxytryptamine analogues was prepared and investigated, with special emphasis on substituents in the meta position of the benzyl group. A parallel series of several N-benzylated analogues of 2,5-dimethoxy-4-iodophenethylamine (2C-I) also was included for comparison of the two major templates (i.e., tryptamine and phenethylamine). A broad affinity screen at serotonin receptors showed that most of the compounds had the highest affinity at the 5-HT2 family receptors. Substitution at the para position of the benzyl group resulted in reduced affinity, whereas substitution in either the ortho or the meta position enhanced affinity. In general, introduction of a large lipophilic group improved affinity, whereas functional activity often followed the opposite trend. Tests of the compounds for functional activity utilized intracellular Ca2+ mobilization. Function was measured at the human 5-HT2A, 5-HT2B, and 5-HT2C receptors, as well as at the rat 5-HT2A and 5-HT2C receptors. There was no general correlation between affinity and function. Several of the tryptamine congeners were very potent functionally (EC50 values from 7.6 to 63 nM), but most were partial agonists. Tests in the mouse head twitch assay revealed that many of the compounds induced the head twitch and that there was a significant correlation between this behavior and functional potency at the rat 5-HT2A receptor. PMID:25547199

  15. Effect of sulphation on the oestrogen agonist activity of the phytoestrogens genistein and daidzein in MCF-7 human breast cancer cells.

    PubMed

    Pugazhendhi, D; Watson, K A; Mills, S; Botting, N; Pope, G S; Darbre, P D

    2008-06-01

    The phytoestrogens genistein, daidzein and the daidzein metabolite equol have been shown previously to possess oestrogen agonist activity. However, following consumption of soya diets, they are found in the body not only as aglycones but also as metabolites conjugated at their 4'- and 7-hydroxyl groups with sulphate. This paper describes the effects of monosulphation on the oestrogen agonist properties of these three phytoestrogens in MCF-7 human breast cancer cells in terms of their relative ability to compete with [(3)H]oestradiol for binding to oestrogen receptor (ER), to induce a stably transfected oestrogen-responsive reporter gene (ERE-CAT) and to stimulate cell growth. In no case did sulphation abolish activity. The 4'-sulphation of genistein reduced oestrogen agonist activity to a small extent in whole-cell assays but increased the relative binding affinity to ER. The 7-sulphation of genistein, and also of equol, reduced oestrogen agonist activity substantially in all assays. By contrast, the position of monosulphation of daidzein acted in an opposing manner on oestrogen agonist activity. Sulphation at the 4'-position of daidzein resulted in a modest reduction in oestrogen agonist activity but sulphation of daidzein at the 7-position resulted in an increase in oestrogen agonist activity. Molecular modelling and docking studies suggested that the inverse effects of sulphation could be explained by the binding of daidzein into the ligand-binding domain of the ER in the opposite orientation compared with genistein and equol. This is the first report of sulphation enhancing activity of an isoflavone and inverse effects of sulphation between individual phytoestrogens.

  16. Studies with [11C]alprazolam: an agonist for the benzodiazepine receptor.

    PubMed

    Dobbs, F R; Banks, W; Fleishaker, J C; Valentine, A D; Kinsey, B M; Franceschini, M P; Digenis, G A; Tewson, T J

    1995-05-01

    We have built a system for the synthesis of high specific activity carbon-11 alprazolam (Xanax), a high affinity agonist for the benzodiazepine receptor. The system produces 30-40 mCi of the compound with a specific activity of > 12,000 Ci per millimole. Using this compound we have performed PET studies on 6 normal subjects and studied the cerebral influx and efflux of the compound. The uptake in the brain was low, approx. 1% of the administered dose. However, the levels of the compound in the circulation at early time points are heavily affected by the specific activity of the tracer, i.e. when pharmacologically active doses are used as blocking doses the concentration of radioactive material is higher in the circulation and more material enters the brain. We attribute this to a depot effect where the compound is trapped in saturatable sites in an organ, probably the lungs, and is slowly released over time. In the presence of blocking doses of agonist, the compound washes out of the brain more quickly suggesting that some blockade of the receptors is occurring. However, the pharmacological activity of the compound does not permit the administration of enough material to ensure complete receptor blockade. The compound shows definite signs of acting as a receptor binding ligand but the unusual pharmacokinetics complicate the interpretation of the data.

  17. Novel Retinoic Acid Receptor Alpha Agonists for Treatment of Kidney Disease

    PubMed Central

    Liu, Ruijie; Li, Zhengzhe; Chen, Yibang; Evans, Todd; Chuang, Peter; Das, Bhaskar; He, John Cijiang

    2011-01-01

    Development of pharmacologic agents that protect podocytes from injury is a critical strategy for the treatment of kidney glomerular diseases. Retinoic acid reduces proteinuria and glomerulosclerosis in multiple animal models of kidney diseases. However, clinical studies are limited because of significant side effects of retinoic acid. Animal studies suggest that all trans retinoic acid (ATRA) attenuates proteinuria by protecting podocytes from injury. The physiological actions of ATRA are mediated by binding to all three isoforms of the nuclear retinoic acid receptors (RARs): RARα, RARβ, and RARγ. We have previously shown that ATRA exerts its renal protective effects mainly through the agonism of RARα. Here, we designed and synthesized a novel boron-containing derivative of the RARα-specific agonist Am580. This new derivative, BD4, binds to RARα receptor specifically and is predicted to have less toxicity based on its structure. We confirmed experimentally that BD4 binds to RARα with a higher affinity and exhibits less cellular toxicity than Am580 and ATRA. BD4 induces the expression of podocyte differentiation markers (synaptopodin, nephrin, and WT-1) in cultured podocytes. Finally, we confirmed that BD4 reduces proteinuria and improves kidney injury in HIV-1 transgenic mice, a model for HIV-associated nephropathy (HIVAN). Mice treated with BD4 did not develop any obvious toxicity or side effect. Our data suggest that BD4 is a novel RARα agonist, which could be used as a potential therapy for patients with kidney disease such as HIVAN. PMID:22125642

  18. Selective opioid agonist and antagonist competition for [3H]-naloxone binding in amphibian spinal cord.

    PubMed

    Newman, L C; Wallace, D R; Stevens, C W

    2000-11-24

    Opioids elicit antinociception in mammals through three distinct types of receptors designated as mu, kappa and delta. However, it is not clear what type of opioid receptor mediates antinociception in non-mammalian vertebrates. Radioligand binding techniques were employed to characterize the site(s) of opioid action in the amphibian, Rana pipiens. Naloxone is a general opioid antagonist that has not been characterized in Rana pipiens. Using the non-selective opioid antagonist, [3H]-naloxone, opioid binding sites were characterized in amphibian spinal cord. Competitive binding assays were done using selective opioid agonists and highly-selective opioid antagonists. Naloxone bound to a single-site with an affinity of 11.3 nM and 18.7 nM for kinetic and saturation studies, respectively. A B(max) value of 2725 fmol/mg protein in spinal cord was observed. The competition constants (K(i)) of unlabeled mu, kappa and delta ranged from 2.58 nM to 84 microM. The highly-selective opioid antagonists yielded similar K(i) values ranging from 5.37 to 31.1 nM. These studies are the first to examine opioid binding in amphibian spinal cord. In conjunction with previous behavioral data, these results suggest that non-mammalian vertebrates express a unique opioid receptor which mediates the action of selective mu, kappa and delta opioid agonists.

  19. Small-molecule nociceptin receptor agonist ameliorates mast cell activation and pain in sickle mice

    PubMed Central

    Vang, Derek; Paul, Jinny A.; Nguyen, Julia; Tran, Huy; Vincent, Lucile; Yasuda, Dennis; Zaveri, Nurulain T.; Gupta, Kalpna

    2015-01-01

    Treatment of pain with morphine and its congeners in sickle cell anemia is suboptimal, warranting the need for analgesics devoid of side effects, addiction and tolerance liability. Small-molecule nociceptin opioid receptor ligands show analgesic efficacy in acute and chronic pain models. We show that AT-200, a high affinity nociceptin opioid receptor agonist with low efficacy at the mu opioid receptor, ameliorated chronic and hypoxia/reoxygenation-induced mechanical, thermal and deep tissue/musculoskeletal hyperalgesia in HbSS-BERK sickle mice. The antinociceptive effect of AT-200 was antagonized by SB-612111, a nociceptin opioid receptor antagonist, but not naloxone, a non-selective mu opioid receptor antagonist. Daily 7-day treatment with AT-200 did not develop tolerance and showed a sustained anti-nociceptive effect, which improved over time and led to reduced plasma serum amyloid protein, neuropeptides, inflammatory cytokines and mast cell activation in the periphery. These data suggest that AT-200 ameliorates pain in sickle mice via the nociceptin opioid receptor by reducing inflammation and mast cell activation without causing tolerance. Thus, nociceptin opioid receptor agonists are promising drugs for treating pain in sickle cell anemia. PMID:26294734

  20. Small-molecule nociceptin receptor agonist ameliorates mast cell activation and pain in sickle mice.

    PubMed

    Vang, Derek; Paul, Jinny A; Nguyen, Julia; Tran, Huy; Vincent, Lucile; Yasuda, Dennis; Zaveri, Nurulain T; Gupta, Kalpna

    2015-12-01

    Treatment of pain with morphine and its congeners in sickle cell anemia is suboptimal, warranting the need for analgesics devoid of side effects, addiction and tolerance liability. Small-molecule nociceptin opioid receptor ligands show analgesic efficacy in acute and chronic pain models. We show that AT-200, a high affinity nociceptin opioid receptor agonist with low efficacy at the mu opioid receptor, ameliorated chronic and hypoxia/reoxygenation-induced mechanical, thermal and deep tissue/musculoskeletal hyperalgesia in HbSS-BERK sickle mice. The antinociceptive effect of AT-200 was antagonized by SB-612111, a nociceptin opioid receptor antagonist, but not naloxone, a non-selective mu opioid receptor antagonist. Daily 7-day treatment with AT-200 did not develop tolerance and showed a sustained anti-nociceptive effect, which improved over time and led to reduced plasma serum amyloid protein, neuropeptides, inflammatory cytokines and mast cell activation in the periphery. These data suggest that AT-200 ameliorates pain in sickle mice via the nociceptin opioid receptor by reducing inflammation and mast cell activation without causing tolerance. Thus, nociceptin opioid receptor agonists are promising drugs for treating pain in sickle cell anemia. Copyright© Ferrata Storti Foundation.

  1. Trypsin resistance of a decapeptide KISS1R agonist containing an Nω-methylarginine substitution.

    PubMed

    Asami, Taiji; Nishizawa, Naoki; Ishibashi, Yoshihiro; Nishibori, Kimiko; Horikoshi, Yasuko; Matsumoto, Hirokazu; Ohtaki, Tetsuya; Kitada, Chieko

    2012-10-15

    Metastin/kisspeptin is an amidated peptide with 54 amino acid residues isolated from human placental tissues as a ligand of the orphan G-protein-coupled receptor KISS1R that is expressed throughout the central nervous system and in a variety of endocrine and gonadal tissues. Compared to the full-length metastin protein, the N-terminal truncated peptide metastin(45-54) has 3-10 times higher receptor affinity and enhanced ability to increase intracellular calcium concentration which is essential for activation of protein kinases involved in intracellular signaling in a number of pathways that affect reproduction and cell migration. However, metastin(45-54) is rapidly inactivated in serum. In this study, we designed and synthesized a number of metastin(45-54) analogs and evaluated their agonistic activity and trypsin resistance. Among analogs with substitutions of arginine at position 53, N(ω)(-)methylarginine analog 8 showed 3-fold more potent agonistic activity compared with metastin(45-54). Furthermore, analog 8 was shown to resist trypsin cleavage between positions 53 and 54. This substitution may be useful in the development of other Arg-containing peptides for which the avoidance of cleavage is desired.

  2. Frovatriptan succinate, a 5-HT1B/1D receptor agonist for migraine.

    PubMed

    Balbisi, E A

    2004-07-01

    Frovatriptan succinate is one of the most recent serotonin receptor agonists to receive FDA, approved labelling for use in the acute management of migraine with or without aura in adults. The mechanism of action of frovatriptan is thought to be similar to that of a serotonin agonist. However, frovatriptan has distinctive pharmacokinetic and pharmacologic properties, chiefly, a high affinity for serotonin receptors 1B and 1D and a long elimination half-life; frovatriptan was shown to be more selective for cerebral than coronary arteries, a property which makes frovatriptan more favourable in patients at risk of coronary artery disease. Additionally, frovatriptan has a half-life of approximately 25 h, substantially longer than that of any other agent within its class. This property makes frovatriptan suitable for patients who typically suffer migraines of long duration and/or those who suffer migraine recurrence. The efficacy of frovatriptan in the treatment of acute migraine was demonstrated in five double-blind, randomised, placebo-controlled trials. At 2h, headache response rates for frovatriptan 2.5 mg ranged from 38 to 40% compared to 22-35% for placebo. Headache recurrence for frovatriptan 2.5 mg at 24h ranged from 9 to 14% compared with 18% in placebo subjects. Frovatriptan has no clinically significant pharmacokinetic interactions with drugs used for migraine prophylaxis or with commonly prescribed medications. Adverse effects of frovatriptan including dizziness, paresthesia, dry mouth, fatigue and flushing were generally mild and well tolerated. Given the fact that patient response to serotonin agonists is individualised, and selecting an effective agent may involve trial and error, frovatriptan is a welcome alternative in the acute management of migraine.

  3. Apoptotic effect of the selective PPARβ/δ agonist GW501516 in invasive bladder cancer cells.

    PubMed

    Péchery, Adeline; Fauconnet, Sylvie; Bittard, Hugues; Lascombe, Isabelle

    2016-11-01

    GW501516 is a selective and high-affinity synthetic agonist of peroxisome proliferator-activated receptor β/δ (PPARβ/δ). This molecule promoted the inhibition of proliferation and apoptosis in few cancer cell lines, but its anticancer action has never been investigated in bladder tumor cells. Thus, this study was undertaken to determine whether GW501516 had antiproliferative and/or apoptotic effects on RT4 and T24 urothelial cancer cells and to explore the molecular mechanisms involved. Our results indicated that, in RT4 cells (derived from a low-grade papillary tumor), GW501516 did not induce cell death. On the other hand, in T24 cells (derived from an undifferentiated high-grade carcinoma), this PPARβ/δ agonist induced cytotoxic effects including cell morphological changes, a decrease of cell viability, a G2/M cell cycle arrest, and the cell death as evidenced by the increase of the sub-G1 cell population. Furthermore, GW501516 triggered T24 cell apoptosis in a caspase-dependent manner including both extrinsic and intrinsic apoptotic pathways through Bid cleavage. In addition, the drug led to an increase of the Bax/Bcl-2 ratio, a mitochondrial dysfunction associated with the dissipation of ΔΨm, and the release of cytochrome c from the mitochondria to the cytosol. GW501516 induced also ROS generation which was not responsible for T24 cell death since NAC did not rescue cells upon PPARβ/δ agonist exposure. For the first time, our data highlight the capacity of GW501516 to induce apoptosis in invasive bladder cancer cells. This molecule could be relevant as a therapeutic drug for high-grade urothelial cancers.

  4. Engineering of Bispecific Affinity Proteins with High Affinity for ERBB2 and Adaptable Binding to Albumin

    PubMed Central

    Nilvebrant, Johan; Åstrand, Mikael; Georgieva-Kotseva, Maria; Björnmalm, Mattias; Löfblom, John; Hober, Sophia

    2014-01-01

    The epidermal growth factor receptor 2, ERBB2, is a well-validated target for cancer diagnostics and therapy. Recent studies suggest that the over-expression of this receptor in various cancers might also be exploited for antibody-based payload delivery, e.g. antibody drug conjugates. In such strategies, the full-length antibody format is probably not required for therapeutic effect and smaller tumor-specific affinity proteins might be an alternative. However, small proteins and peptides generally suffer from fast excretion through the kidneys, and thereby require frequent administration in order to maintain a therapeutic concentration. In an attempt aimed at combining ERBB2-targeting with antibody-like pharmacokinetic properties in a small protein format, we have engineered bispecific ERBB2-binding proteins that are based on a small albumin-binding domain. Phage display selection against ERBB2 was used for identification of a lead candidate, followed by affinity maturation using second-generation libraries. Cell surface display and flow-cytometric sorting allowed stringent selection of top candidates from pools pre-enriched by phage display. Several affinity-matured molecules were shown to bind human ERBB2 with sub-nanomolar affinity while retaining the interaction with human serum albumin. Moreover, parallel selections against ERBB2 in the presence of human serum albumin identified several amino acid substitutions that dramatically modulate the albumin affinity, which could provide a convenient means to control the pharmacokinetics. The new affinity proteins competed for ERBB2-binding with the monoclonal antibody trastuzumab and recognized the native receptor on a human cancer cell line. Hence, high affinity tumor targeting and tunable albumin binding were combined in one small adaptable protein. PMID:25089830

  5. Fates of endocytosed somatostatin sst2 receptors and associated agonists.

    PubMed Central

    Koenig, J A; Kaur, R; Dodgeon, I; Edwardson, J M; Humphrey, P P

    1998-01-01

    Somatostatin agonists are rapidly and efficiently internalized with the somatostatin sst2 receptor. The fate of internalized agonists and receptors is of critical importance because the rate of ligand recycling back to the cell surface can limit the amount of radioligand accumulated inside the cells, whereas receptor recycling might be of vital importance in providing the cell surface with dephosphorylated, resensitized receptors. Furthermore the accumulation of radioisotope-conjugated somatostatin agonists inside cancer cells resulting from receptor-mediated internalization has been used as a treatment for cancers that overexpress somatostatin receptors. In the present study, radio-iodinated agonists at the sst2 somatostatin receptor were employed to allow quantitative analysis of the fate of endocytosed agonist. After endocytosis, recycling back to the cell surface was the main pathway for both 125I-labelled somatostatin-14 (SRIF-14) and the more stable agonist 125I-labelled cyclo(N-Me-Ala-Tyr-d-Trp-Lys-Abu-Phe) (BIM-23027; Abu stands for aminobutyric acid), accounting for 75-85% of internalized ligand when re-endocytosis of radioligand was prevented. We have shown that there is a dynamic cycling of both somatostatin agonist ligands and receptors between the cell surface and internal compartments both during agonist treatment and after surface-bound agonist has been removed, unless steps are taken to prevent the re-activation of receptors by recycled agonist. Internalization leads to increased degradation of 125I-labelled SRIF-14 but not 125I-labelled BIM-23027. The concentration of recycled agonist accumulating in the extracellular medium was sufficient to re-activate the receptor, as measured both by the inhibition of forskolin-stimulated adenylate cyclase and the recovery of surface receptor number after internalization. PMID:9820803

  6. Conserved aromatic residues in the transmembrane region VI of the V1a vasopressin receptor differentiate agonist vs. antagonist ligand binding.

    PubMed

    Cotte, N; Balestre, M N; Aumelas, A; Mahé, E; Phalipou, S; Morin, D; Hibert, M; Manning, M; Durroux, T; Barberis, C; Mouillac, B

    2000-07-01

    Despite their opposite effects on signal transduction, the nonapeptide hormone arginine-vasopressin (AVP) and its V1a receptor-selective cyclic peptide antagonist d(CH2)5[Tyr(Me)2]AVP display homologous primary structures, differing only at residues 1 and 2. These structural similarities led us to hypothesize that both ligands could interact with the same binding pocket in the V1a receptor. To determine receptor residues responsible for discriminating binding of agonist and antagonist ligands, we performed site-directed mutagenesis of conserved aromatic and hydrophilic residues as well as nonconserved residues, all located in the transmembrane binding pocket of the V1a receptor. Mutation of aromatic residues of transmembrane region VI (W304, F307, F308) reduced affinity for the d(CH2)5[Tyr(Me)2]AVP and markedly decreased affinity for the unrelated strongly hydrophobic V1a-selective nonpeptide antagonist SR 49059. Replacement of these aromatic residues had no effect on AVP binding, but increased AVP-induced coupling efficacy of the receptor for its G protein. Mutating hydrophilic residues Q108, K128 and Q185 in transmembrane regions II, III and IV, respectively, led to a decrease in affinity for both agonists and antagonists. Finally, the nonconserved residues T333 and A334 in transmembrane region VII, controlled the V1a/V2 binding selectivity for both nonpeptide and cyclic peptide antagonists. Thus, because conserved aromatic residues of the V1a receptor binding pocket seem essential for antagonists and do not contribute at all to the binding of agonists, we propose that these residues differentiate agonist vs. antagonist ligand binding.

  7. Soluble low affinity adenosine A/sub 2/ binding site from human placenta: reconstitution and characteristics

    SciTech Connect

    Hutchison, K.; Prasad, M.; Fox, I.H.

    1987-05-01

    The authors have developed a vesicle reconstitution technique that allows for rapid vacuum filtration assay, and have characterized the soluble A/sub 2/ site from placental membranes. The overall yield of reconstituted binding is 60%. Competition analysis of membranes and reconstituted vesicles yields identical agonist potency orders and affinities: N-ethylcarboxamidoadenosine (NECA) (Kd-330 nM)>2-chloroadenosine (Kd=1.7 ..mu..M) > L-phenylisopropyladenosine (Kd > 1 mM). Equilibrium binding to membranes and reconstituted vesicles of (/sup 3/H)-NECA, an adenosine agonist, was not reduced by guanine nulceotides. HPLC gel permeation chromatography of extracts from membranes preincubated with 5 mM MgCl/sub 2/ and 100 ..mu..M NECA revealed a peak of binding with kD of 0.07. Extracts prepared with either an antagonist or NECA and 100 ..mu..M guanylyl 5'-imidodiphosphate revealed a peak of binding with a kD of 0.09. These data suggest that the adenosine A/sub 2/ receptor retains its binding properties upon reconstitution and may couple to a guanine nucleotide regulatory protein.

  8. High-Affinity Functional Fluorescent Ligands for Human β-Adrenoceptors.

    PubMed

    Mitronova, Gyuzel Y; Lukinavičius, Gražvydas; Butkevich, Alexey N; Kohl, Tobias; Belov, Vladimir N; Lehnart, Stephan E; Hell, Stefan W

    2017-09-26

    Visualization of the G-protein coupled receptor (GPCR) is of great importance for studying its function in a native cell. We have synthesized a series of red-emitting fluorescent probes targeting β-adrenergic receptor (βAR) that are compatible with confocal and Stimulated Emission Depletion (STED) microscopy as well as with Time-Resolved Fluorescence Resonance Energy Transfer (TR-FRET) binding assay in living cells. The probe based on the agonist BI-167107 and fluorescent dye KK114 demonstrates nanomolar binding affinity and up to nine-fold β2AR selectivity over β1AR. Carazolol-derived probes are fluorogenic and allow no-wash imaging experiments. STED microscopy of β2ARs stained at the native expression level on pancreatic CAPAN cells provides two-fold improvement in lateral optical resolution over confocal mode and reveals the formation of receptor microdomains. These probes retain their functional (agonist or antagonist) properties, allowing simultaneous modulation of cyclic adenosine monophosphate (cAMP) levels and receptor internalization as well as imaging receptor localization.

  9. Topological and affine classification of complete noncompact flat 4-manifolds

    NASA Astrophysics Data System (ADS)

    Sadowski, Michał

    2008-11-01

    In this paper we give topological and affine classification of complete noncompact flat 4-manifolds. In particular, we show that the number of diffeomorphism classes of them is equal to 44. The affine classification uses the results of [M. Sadowski, Affinely equivalent complete flat manifolds, Cent. Eur. J. Math. 2 (2) (2004) 332-338]. The affine and the topological equivalence classes are the same for flat manifolds not homotopy equivalent to S1,T2 or the Klein bottle.

  10. Solution assembly of the pseudo-high affinity and intermediate affinity interleukin-2 receptor complexes.

    PubMed Central

    Wu, Z.; Goldstein, B.; Laue, T. M.; Liparoto, S. F.; Nemeth, M. J.; Ciardelli, T. L.

    1999-01-01

    The high affinity interleukin-2 receptor is composed of three cell surface subunits, IL-2Ralpha, IL-2Rbeta, and IL-2Rgamma. Functional forms of the IL-2 receptor exist, however, that enlist only two of the three subunits. On activated T-cells, the alpha- and beta-subunits combine as a preformed heterodimer (the pseudo-high affinity receptor) that serves to capture IL-2. On a subpopulation of natural killer cells, the beta- and gamma-subunits interact in a ligand-dependent manner to form the intermediate affinity receptor site. Previously, we have demonstrated the feasibility of employing coiled-coil molecular recognition for the solution assembly of a heteromeric IL-2 receptor complex. In that study, although the receptor was functional, the coiled-coil complex was a trimer rather than the desired heterodimer. We have now redesigned the hydrophobic heptad sequences of the coiled-coils to generate soluble forms of both the pseudo-high affinity and the intermediate affinity heterodimeric IL-2 receptors. The properties of these complexes were examined and their relevance to the physiological IL-2 receptor mechanism is discussed. PMID:10091650

  11. Integrin avidity regulation: are changes in affinity and conformation underemphasized?

    PubMed

    Carman, Christopher V; Springer, Timothy A

    2003-10-01

    Integrins play critical roles in development, wound healing, immunity and cancer. Central to their function is their unique ability to modulate dynamically their adhesiveness through both affinity- and valency-based mechanisms. Recent advances have shed light on the structural basis for affinity regulation and on the signaling mechanisms responsible for both affinity and valency modes of regulation.

  12. Imaging Agonist-Induced D2/D3 Receptor Desensitization and Internalization In Vivo with PET/fMRI.

    PubMed

    Sander, Christin Y; Hooker, Jacob M; Catana, Ciprian; Rosen, Bruce R; Mandeville, Joseph B

    2016-04-01

    This study investigated the dynamics of dopamine receptor desensitization and internalization, thereby proposing a new technique for non-invasive, in vivo measurements of receptor adaptations. The D2/D3 agonist quinpirole, which induces receptor internalization in vitro, was administered at graded doses in non-human primates while imaging with simultaneous positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). A pronounced temporal divergence between receptor occupancy and fMRI signal was observed: occupancy remained elevated while fMRI responded transiently. Analogous experiments with an antagonist (prochlorperazine) and a lower-affinity agonist (ropinirole) exhibited reduced temporal dissociation between occupancy and function, consistent with a mechanism of desensitization and internalization that depends upon drug efficacy and affinity. We postulated a model that incorporates internalization into a neurovascular-coupling relationship. This model yielded in vivo desensitization/internalization rates (0.2/min for quinpirole) consistent with published in vitro measurements. Overall, these results suggest that simultaneous PET/fMRI enables characterization of dynamic neuroreceptor adaptations in vivo, and may offer a first non-invasive method for assessing receptor desensitization and internalization.

  13. Antipsychotic-like effect of the muscarinic acetylcholine receptor agonist BuTAC in non-human primates.

    PubMed

    Andersen, Maibritt B; Croy, Carrie Hughes; Dencker, Ditte; Werge, Thomas; Bymaster, Frank P; Felder, Christian C; Fink-Jensen, Anders

    2015-01-01

    Cholinergic, muscarinic receptor agonists exhibit functional dopamine antagonism and muscarinic receptors have been suggested as possible future targets for the treatment of schizophrenia and drug abuse. The muscarinic ligand (5R,6R)-6-(3-butylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3.2.1]octane (BuTAC) exhibits high affinity for muscarinic receptors with no or substantially less affinity for a large number of other receptors and binding sites, including the dopamine receptors and the dopamine transporter. In the present study, we wanted to examine the possible antipsychotic-like effects of BuTAC in primates. To this end, we investigated the effects of BuTAC on d-amphetamine-induced behaviour in antipsychotic-naive Cebus paella monkeys. Possible adverse events of BuTAC, were evaluated in the same monkeys as well as in monkeys sensitized to antipsychotic-induced extrapyramidal side effects. The present data suggests that, the muscarinic receptor ligand BuTAC exhibits antipsychotic-like behaviour in primates. The behavioural data of BuTAC as well as the new biochemical data further substantiate the rationale for the use of muscarinic M1/M2/M4-preferring receptor agonists as novel pharmacological tools in the treatment of schizophrenia.

  14. New diarylmethylpiperazines as potent and selective nonpeptidic delta opioid receptor agonists with increased In vitro metabolic stability.

    PubMed

    Plobeck, N; Delorme, D; Wei, Z Y; Yang, H; Zhou, F; Schwarz, P; Gawell, L; Gagnon, H; Pelcman, B; Schmidt, R; Yue, S Y; Walpole, C; Brown, W; Zhou, E; Labarre, M; Payza, K; St-Onge, S; Kamassah, A; Morin, P E; Projean, D; Ducharme, J; Roberts, E

    2000-10-19

    Nonpeptide delta opioid agonists are analgesics with a potentially improved side-effect and abuse liability profile, compared to classical opioids. Andrews analysis of the NIH nonpeptide lead SNC-80 suggested the removal of substituents not predicted to contribute to binding. This approach led to a simplified lead, N, N-diethyl-4-[phenyl(1-piperazinyl)methyl]benzamide (1), which retained potent binding affinity and selectivity to the human delta receptor (IC(50) = 11 nM, mu/delta = 740, kappa/delta > 900) and potency as a full agonist (EC(50) = 36 nM) but had a markedly reduced molecular weight, only one chiral center, and increased in vitro metabolic stability. From this lead, the key pharmacophore groups for delta receptor affinity and activation were more clearly defined by SAR and mutagenesis studies. Further structural modifications on the basis of 1 confirmed the importance of the N, N-diethylbenzamide group and the piperazine lower basic nitrogen for delta binding, in agreement with mutagenesis data. A number of piperazine N-alkyl substituents were tolerated. In contrast, modifications of the phenyl group led to the discovery of a series of diarylmethylpiperazines exemplified by N, N-diethyl-4-[1-piperazinyl(8-quinolinyl)methyl]benzamide (56) which had an improved in vitro binding profile (IC(50) = 0.5 nM, mu/delta = 1239, EC(50) = 3.6 nM) and increased in vitro metabolic stability compared to SNC-80.

  15. Physical Chemistry to the Rescue: Differentiating Nicotinic and Cholinergic Agonists

    ERIC Educational Resources Information Center

    King, Angela G.

    2005-01-01

    Researches suggest that two agonists can bind to the same binding site of an important transmembrane protein and elicit a biological response through strikingly different binding interactions. Evidence is provided which suggests two possible types of nicotinic acetylcholine receptor agonist binding like acetlycholine (cholinergic) or like nicotine…

  16. Physical Chemistry to the Rescue: Differentiating Nicotinic and Cholinergic Agonists

    ERIC Educational Resources Information Center

    King, Angela G.

    2005-01-01

    Researches suggest that two agonists can bind to the same binding site of an important transmembrane protein and elicit a biological response through strikingly different binding interactions. Evidence is provided which suggests two possible types of nicotinic acetylcholine receptor agonist binding like acetlycholine (cholinergic) or like nicotine…

  17. TOXICITY OF AHR AGONISTS TO FISH EARLY LIFE STAGES

    EPA Science Inventory

    Fish early life stages are exceptionally sensitive to the lethal toxicity of chemicals that act as arylhydrocarbon receptor (AhR) agonists. Toxicity characterizations based on 2,3,7,8-tetrachlorodibenzo-p-dioxin, generally the most potent AhR agonist, support the toxicity equiva...

  18. TOXICITY OF AHR AGONISTS TO FISH EARLY LIFE STAGES

    EPA Science Inventory

    Fish early life stages are exceptionally sensitive to the lethal toxicity of chemicals that act as arylhydrocarbon receptor (AhR) agonists. Toxicity characterizations based on 2,3,7,8-tetrachlorodibenzo-p-dioxin, generally the most potent AhR agonist, support the toxicity equiva...

  19. Estrogen receptor agonists for attenuation of neuroinflammation and neurodegeneration

    PubMed Central

    Chakrabarti, Mrinmay; Haque, Azizul; Banik, Naren L.; Nagarkatti, Prakash; Nagarkatti, Mitzi; Ray, Swapan K.

    2014-01-01

    Recent results from laboratory investigations and clinical trials indicate important roles for estrogen receptor (ER) agonists in protecting the central nervous system (CNS) from noxious consequences of neuroinflammation and neurodegeneration. Neurodegenerative processes in several CNS disorders including spinal cord injury (SCI), multiple sclerosis (MS), Parkinson's disease (PD), and Alzheimer's disease (AD) are associated with activation of microglia and astrocytes, which drive the resident neuroinflammatory response. During neurodegenerative processes, activated microglia and astrocytes cause deleterious effects on surrounding neurons. The inhibitory activity of ER agonists on microglia activation might be a beneficial therapeutic option for delaying the onset or progression of neurodegenerative injuries and diseases. Recent studies suggest that ER agonists can provide neuroprotection by modulation of cell survival mechanisms, synaptic reorganization, regenerative responses to axonal injury, and neurogenesis process. The anti-inflammatory and neuroprotective actions of ER agonists are mediated mainly via two ERs known as ERα and ERβ. Although some studies have suggested that ER agonists may be deleterious to some neuronal populations, the potential clinical benefits of ER agonists for augmenting cognitive function may triumph over the associated side effects. Also, understanding the modulatory activities of ER agonists on inflammatory pathways will possibly lead to the development of selective anti-inflammatory molecules with neuroprotective roles in different CNS disorders such as SCI, MS, PD, and AD in humans. Future studies should be concentrated on finding the most plausible molecular pathways for enhancing protective functions of ER agonists in treating neuroinflammatory and neurodegenerative injuries and diseases in the CNS. PMID:25245209

  20. Dopamine agonist withdrawal syndrome in Parkinson disease.

    PubMed

    Rabinak, Christina A; Nirenberg, Melissa J

    2010-01-01

    To report and characterize a dopamine agonist (DA) withdrawal syndrome (DAWS) in Parkinson disease. Retrospective cohort study. Outpatient tertiary movement disorders clinic. Patients A cohort of 93 nondemented patients with Parkinson disease enrolled in a prospective study of nonmotor and motor disease manifestations. Main Outcome Measure The presence of DAWS, defined as a severe, stereotyped cluster of physical and psychological symptoms that correlate with DA withdrawal in a dose-dependent manner, cause clinically significant distress or social/occupational dysfunction, are refractory to levodopa and other Parkinson disease medications, and cannot be accounted for by other clinical factors. Of 40 subjects treated with a DA, 26 underwent subsequent DA taper. Of these 26 subjects, 5 (19%) developed DAWS and 21 (81%) did not. All subjects with DAWS had baseline DA-related impulse control disorders. Symptoms of DAWS resembled those of other drug withdrawal syndromes and included anxiety, panic attacks, agoraphobia, depression, dysphoria, diaphoresis, fatigue, pain, orthostatic hypotension, and drug cravings. Subjects with DAWS as compared with those without DAWS had higher baseline DA use (mean [SD], 420 [170] vs 230 [180] DA levodopa equivalent daily doses [DA-LEDD], respectively; P = .04) and higher cumulative DA exposure (mean [SD], 1800 [1200] vs 700 [900] DA-LEDD-years, respectively; P = .03). Subjects with DAWS also had considerably lower Unified Parkinson's Disease Rating Scale motor scores than those without DAWS (mean [SD], 21 [5] vs 31 [10], respectively; P = .007), despite comparable disease duration (mean [SD], 7.3 [7] vs 6.3 [4] years, respectively; P = .77) and similar total dopaminergic medication use (mean [SD], 830 [450] vs 640 [610] total LEDD, respectively; P = .52) in the 2 groups. Dopamine agonists have a stereotyped withdrawal syndrome that can lead to profound disability in a subset of patients. Physicians should monitor patients closely when

  1. In vivo binding of [11C]SKF 75670 and [11C]SKF 82957 in rat brain: two dopamine D-1 receptor agonist ligands.

    PubMed

    DaSilva, J N; Wilson, A A; Valente, C M; Hussey, D; Wilson, D; Houle, S

    1996-01-01

    The high affinity benzazepine D1 agonists SKF 75670 and SKF 82957 labeled with C-11 were evaluated in vivo in rats as potential radioligands for imaging dopamine D1 receptors with positron emission tomography (PET). Their in vivo pharmacological profile revealed selective binding for both tracers in rat brain regions rich in D1 receptors such as the caudate-putamen. The more lipophilic [11C]SKF 82957 (6-chloro-[11C]SKF 75670) showed a higher brain uptake (more than 2-fold up to 30 min), higher specific uptake in the striatum and higher signal-to-noise ratio (striatum-to-cerebellum = 3.2 +/- 0.4 for [11C]SKF 75670 and 9.7 +/- 2.5 for [11C]SKF 82957 at 60 min post-injection) as compared to [11C]SKF 75670. Both radiotracers exhibited high specificity and selectivity for D1 receptors, since only D1 competitors but not the D2 antagonist sulpiride or the 5-HT2 antagonist ritanserin reduced significantly their binding the striatum with [11C]SKF 75670 or the striatum and olfactory tubercles with [11C]SKF 82957. Previous reports have shown that only D1 agonists can recognize the functional high-affinity state from the low-affinity state of D1 receptors. [11C]SKF 75670 and especially [11C]SKF 82957 are D1 agonist radioligands that can potentially be used to study in vivo the functional high-affinity state of D1 receptors using PET.

  2. p-( sup 125 I)iodoclonidine is a partial agonist at the alpha 2-adrenergic receptor

    SciTech Connect

    Gerhardt, M.A.; Wade, S.M.; Neubig, R.R. )

    1990-08-01

    The binding properties of p-(125I)iodoclonidine (( 125I)PIC) to human platelet membranes and the functional characteristics of PIC are reported. (125I)PIC bound rapidly and reversibly to platelet membranes, with a first-order association rate constant (kon) at room temperature of 8.0 +/- 2.7 x 10(6) M-1 sec-1 and a dissociation rate constant (koff) of 2.0 +/- 0.8 x 10(-3) sec-1. Scatchard plots of specific (125I)PIC binding (0.1-5 nM) were linear, with a Kd of 1.2 +/- 0.1 nM. (125I)PIC bound to the same number of high affinity sites as the alpha 2-adrenergic receptor (alpha 2-AR) full agonist (3H) bromoxidine (UK14,304), which represented approximately 40% of the sites bound by the antagonist (3H)yohimbine. Guanosine 5'-(beta, gamma-imido)triphosphate greatly reduced the amount of (125I)PIC bound (greater than 80%), without changing the Kd of the residual binding. In competition experiments, the alpha 2-AR-selective ligands yohimbine, bromoxidine, oxymetazoline, clonidine, p-aminoclonidine, (-)-epinephrine, and idazoxan all had Ki values in the low nanomolar range, whereas prazosin, propranolol, and serotonin yielded Ki values in the micromolar range. Epinephrine competition for (125I)PIC binding was stereoselective. Competition for (3H)bromoxidine binding by PIC gave a Ki of 1.0 nM (nH = 1.0), whereas competition for (3H)yohimbine could be resolved into high and low affinity components, with Ki values of 3.7 and 84 nM, respectively. PIC had minimal agonist activity in inhibiting adenylate cyclase in platelet membranes, but it potentiated platelet aggregation induced by ADP with an EC50 of 1.5 microM. PIC also inhibited epinephrine-induced aggregation, with an IC50 of 5.1 microM. Thus, PIC behaves as a partial agonist in a human platelet aggregation assay. (125I)PIC binds to the alpha 2B-AR in NG-10815 cell membranes with a Kd of 0.5 +/- 0.1 nM.

  3. Pharmacological, neurochemical, and behavioral profile of JB-788, a new 5-HT1A agonist.

    PubMed

    Picard, M; Morisset, S; Cloix, J F; Bizot, J C; Guerin, M; Beneteau, V; Guillaumet, G; Hevor, T K

    2010-09-01

    A novel pyridine derivative, 8-{4-[(6-methoxy-2,3-dihydro-[1,4]dioxino[2,3-b]pyridine-3-ylmethyl)-amino]-butyl}-8-aza-spiro[4.5]decane-7,9-dione hydrochloride, termed JB-788, was designed to selectively target 5-HT(1A) receptors. In the present study, the pharmacological profile of JB-788 was characterized in vitro using radioligands binding tests and in vivo using neurochemical and behavioural experiments. JB-788 bound tightly to human 5-HT(1A) receptor expressed in human embryonic kidney 293 (HEK-293) cells with a K(i) value of 0.8 nM. Its binding affinity is in the same range as that observed for the (+/-)8-OH-DPAT, a reference 5HT(1A) agonist compound. Notably, JB-788 only bound weakly to 5-HT(1B) or 5-HT(2A) receptors and moreover the drug displayed only weak or indetectable binding to muscarinic, alpha(2), beta(1) and beta(2) adrenergic receptors, or dopaminergic D(1) receptors. JB-788 was found to display substantial binding affinity for dopaminergic D(2) receptors and, to a lesser extend to alpha(1) adrenoreceptors. JB-788 dose-dependently decreased forskolin-induced cAMP accumulation in HEK cells expressing human 5-HT(1A), thus acting as a potent 5-HT(1A) receptor agonist (E(max.) 75%, EC(50) 3.5 nM). JB-788 did not exhibit any D(2) receptor agonism but progressively inhibited the effects of quinpirole, a D(2) receptor agonist, in the cAMP accumulation test with a K(i) value of 250 nM. JB-788 induced a weak change in cAMP levels in mouse brain but, like some antipsychotics, transiently increased glycogen contents in various brain regions. Behavioral effects were investigated in mice using the elevated plus-maze. JB-788 was found to increase the time duration spent by animals in anxiogenic situations. Locomotor hyperactivity induced by methamphetamine in mouse, a model of antipsychotic activity, was dose-dependently inhibited by JB-788. Altogether, these results suggest that JB-788 displays pharmacological properties, which could be of interest in the area

  4. Neuroprotection by Alpha 2-Adrenergic Agonists in Cerebral Ischemia

    PubMed Central

    Zhang, Yonghua; Kimelberg, Harold K.

    2005-01-01

    Ischemic brain injury is implicated in the pathophysiology of stroke and brain trauma, which are among the top killers worldwide, and intensive studies have been performed to reduce neural cell death after cerebral ischemia. Alpha 2-adrenergic agonists have been shown to improve the histomorphological and neurological outcome after cerebral ischemic injury when administered during ischemia, and recent studies have provided considerable evidence that alpha 2-adrenergic agonists can protect the brain from ischemia/reperfusion injury. Thus, alpha 2-adrenergic agonists are promising potential drugs in preventing cerebral ischemic injury, but the mechanisms by which alpha 2-adrenergic agonists exert their neuroprotective effect are unclear. Activation of both the alpha 2-adrenergic receptor and imidazoline receptor may be involved. This mini review examines the recent progress in alpha 2-adrenergic agonists - induced neuroprotection and its proposed mechanisms in cerebral ischemic injury. PMID:18369397

  5. Discovery of Highly Potent Liver X Receptor β Agonists.

    PubMed

    Kick, Ellen K; Busch, Brett B; Martin, Richard; Stevens, William C; Bollu, Venkataiah; Xie, Yinong; Boren, Brant C; Nyman, Michael C; Nanao, Max H; Nguyen, Lam; Plonowski, Artur; Schulman, Ira G; Yan, Grace; Zhang, Huiping; Hou, Xiaoping; Valente, Meriah N; Narayanan, Rangaraj; Behnia, Kamelia; Rodrigues, A David; Brock, Barry; Smalley, James; Cantor, Glenn H; Lupisella, John; Sleph, Paul; Grimm, Denise; Ostrowski, Jacek; Wexler, Ruth R; Kirchgessner, Todd; Mohan, Raju

    2016-12-08

    Introducing a uniquely substituted phenyl sulfone into a series of biphenyl imidazole liver X receptor (LXR) agonists afforded a dramatic potency improvement for induction of ATP binding cassette transporters, ABCA1 and ABCG1, in human whole blood. The agonist series demonstrated robust LXRβ activity (>70%) with low partial LXRα agonist activity (<25%) in cell assays, providing a window between desired blood cell ABCG1 gene induction in cynomolgus monkeys and modest elevation of plasma triglycerides for agonist 15. The addition of polarity to the phenyl sulfone also reduced binding to the plasma protein, human α-1-acid glycoprotein. Agonist 15 was selected for clinical development based on the favorable combination of in vitro properties, excellent pharmacokinetic parameters, and a favorable lipid profile.

  6. Novel Bivalent Ligands for D2/D3 Dopamine Receptors: Significant Cooperative Gain in D2 Affinity and Potency

    PubMed Central

    2012-01-01

    This report describes development of a series of novel bivalent molecules with a pharmacophore derived from the D2/D3 agonist 5-OH-DPAT. The spacer length in the bivalent compounds had a pronounced influence on affinity for D2 receptors. A 23-fold increase of D2 affinity was observed at a spacer length of 9 or 10 (compounds 11d and 14b) as compared to monovalent 5-OH-DPAT (Ki; 2.5 and 2.0 vs 59 nM for 11d and 14b vs 5-OH-DPAT, respectively). The functional potency of 11d and 14b indicated a 24- and 94-fold increase in potency at the D2 receptor as compared to 5-OH-DPAT (EC50; 1.7 and 0.44 vs 41 nM for 11d and 14b vs 5-OH-DPAT, respectively). These are the most potent bivalent agonists for the D2 receptor known to date. This synergism is consonant with cooperative interaction at the two orthosteric binding sites in the homodimeric receptor. PMID:23275802

  7. New bifunctional antioxidant/σ1 agonist ligands: Preliminary chemico-physical and biological evaluation.

    PubMed

    Arena, Emanuela; Cacciatore, Ivana; Cerasa, Laura S; Turkez, Hasan; Pittalà, Valeria; Pasquinucci, Lorella; Marrazzo, Agostino; Parenti, Carmela; Di Stefano, Antonio; Prezzavento, Orazio

    2016-07-15

    We previously reported bifunctional sigma-1 (σ1) ligands endowed with antioxidant activity (1 and 2). In the present paper, pure enantiomers (R)-1 and (R)-2 along with the corresponding p-methoxy (6, 11), p-fluoro derivatives (7, 12) were synthesized. σ1 and σ2 affinities, antioxidant properties, and chemico-physical profiles were evaluated. Para derivatives, while maintaining strong σ1 affinity, displayed improved σ1 selectivity compared to the parent compounds 1 and 2. In vivo evaluation of compounds 1, 2, (R)-1, 7, and 12 showed σ1 agonist pharmacological profile. Chemico-physical studies revealed that amides 2, 11 and 12 were more stable than corresponding esters 1, 6 and 7 under our experimental conditions. Antioxidant properties were exhibited by fluoro derivatives 7 and 12 being able to increase total antioxidant capacity (TAC). Our results underline that p-substituents have an important role on σ1 selectivity, TAC, chemical and enzymatic stabilities. In particular, our data suggest that new very selective compounds 7 and 12 could be promising tools to investigate the disorders in which σ1 receptor dysfunction and oxidative stress are contemporarily involved.

  8. SA4503, a novel cognitive enhancer, with sigma 1 receptor agonistic properties.

    PubMed

    Matsuno, K; Senda, T; Kobayashi, T; Okamoto, K; Nakata, K; Mita, S

    1997-02-01

    We found a potent and selective sigma 1 (sigma 1) receptor ligand, SA4503 (1-(3,4-dimethoxyphenethyl)-4-(3-phenylpropyl)piperazine dihydrochloride). This compound had a high affinity for sigma 1 receptor subtype (IC50 = 17 +/- 1.9 nM), but a low affinity for sigma 2 receptor subtype (IC50 = 1800 +/- 310 nM). The present study examines the effect of this compound on the central cholinergic functions, since sigma receptor has been reported to interact with the central cholinergic neurons. SA4503 elicited the increase in extracellular acetylcholine level in rat frontal cortex, while it did not affect the striatal acetylcholine level. On the other hand, tetrahydroaminoacridine (THA), an acetylcholinesterase (AChE) inhibitor, increased the extracellular acetylcholine level in both regions. Although both compounds had anti-amnesic effect against scopolamine-induced memory impairment, THA also induced catalepsy in rats. These results suggest that SA4503 may be a novel cognitive enhancer, with sigma 1 receptor agonistic properties. In addition, SA4503 does not cause striatal cholinomimetic side-effects, which is different from THA.

  9. An Opioid Agonist that Does Not Induce μ-Opioid Receptor—Arrestin Interactions or Receptor Internalization

    PubMed Central

    Groer, C. E.; Tidgewell, K.; Moyer, R. A.; Harding, W. W.; Rothman, R. B.; Prisinzano, T. E.; Bohn, L. M.

    2013-01-01

    G protein-coupled receptor desensitization and trafficking are important regulators of opioid receptor signaling that can dictate overall drug responsiveness in vivo. Furthermore, different μ-opioid receptor (μOR) ligands can lead to varying degrees of receptor regulation, presumably because of distinct structural conformations conferred by agonist binding. For example, morphine binding produces a μOR with low affinity for β-arrestin proteins and limited receptor internalization, whereas enkephalin analogs promote robust trafficking of both β-arrestins and the receptors. Here, we evaluate μOR trafficking in response to activation by a novel μ-selective agonist derived from the naturally occurring plant product, salvinorin A. It is interesting that this compound, termed herkinorin, does not promote the recruitment of β-arrestin-2 to the μOR and does not lead to receptor internalization. Moreover, whereas G protein-coupled receptor kinase overexpression can promote morphine-induced β-arrestin interactions and μOR internalization, such manipulations do not promote herkinorin-induced trafficking. Studies in mice have shown that β-arrestin-2 plays an important role in the development of morphine-induced tolerance, constipation, and respiratory depression. Therefore, drugs that can activate the receptor without recruiting the arrestins may be a promising step in the development of opiate analgesics that distinguish between agonist activity and receptor regulation and may ultimately lead to therapeutics designed to provide pain relief without the adverse side effects normally associated with the opiate narcotics. PMID:17090705

  10. Conformational Restriction and Enantioseparation Increase Potency and Selectivity of Cyanoguanidine-Type Histamine H4 Receptor Agonists.

    PubMed

    Geyer, Roland; Nordemann, Uwe; Strasser, Andrea; Wittmann, Hans-Joachim; Buschauer, Armin

    2016-04-14

    2-Cyano-1-[4-(1H-imidazol-4-yl)butyl]-3-[2-(phenylsulfanyl)ethyl]guanidine (UR-PI376, 1) is a potent and selective agonist of the human histamine H4 receptor (hH4R). To gain information on the active conformation, we synthesized analogues of 1 with a cyclopentane-1,3-diyl linker. Affinities and functional activities were determined at recombinant hHxR (x: 1-4) subtypes on Sf9 cell membranes (radioligand binding, [(35)S]GTPγS, or GTPase assays) and in part in luciferase assays on human or mouse H4R (HEK-293 cells). The most potent H4R agonists among 14 racemates were separated by chiral HPLC, yielding eight enantiomerically pure compounds. Configurations were assigned based on X-ray structures of intermediates and a stereocontrolled synthetic pathway. (+)-2-Cyano-1-{[trans-(1S,3S)-3-(1H-imidazol-4-yl)cyclopentyl]methyl}-3-[2-(phenylsulfanyl)ethyl]guanidine ((1S,3S)-UR-RG98, 39a) was the most potent H4R agonist in this series (EC50 11 nM; H4R vs H3R, >100-fold selectivity; H1R, H2R, negligible activities), whereas the optical antipode proved to be an H4R antagonist ([(35)S]GTPγS assay). MD simulations confirmed differential stabilization of the active and inactive H4R state by the enantiomers.

  11. PPAR modulators and PPAR pan agonists for metabolic diseases: the next generation of drugs targeting peroxisome proliferator-activated receptors?

    PubMed

    Feldman, P L; Lambert, M H; Henke, B R

    2008-01-01

    The Peroxisome Proliferator-Activated Receptors-PPAR alpha, PPAR gamma, and PPAR delta--are members of the nuclear receptor gene family that have emerged as therapeutic targets for the development of drugs to treat human metabolic diseases. The discovery of high affinity, subtype-selective agonists for each of the three PPAR subtypes has allowed elucidation of the pharmacology of these receptors and development of first-generation therapeutic agents for the treatment of diabetes and dyslipidemia. However, despite proven therapeutic benefits of selective PPAR agonists, safety concerns and dose-limiting side effects have been observed, and a number of late-stage development failures have been reported. Scientists have continued to explore ligand-based activation of PPARs in hopes of developing safer and more effective drugs. This review highlights recent efforts on two newer approaches, the simultaneous activation of all three PPAR receptors with a single ligand (PPAR pan agonists) and the selective modulation of a single PPAR receptor in a cell or tissue specific manner (selective PPAR modulator or SPPARM) in order to induce a subset of target genes and affect a restricted number of metabolic pathways.

  12. Prediction of binding affinity and efficacy of thyroid hormone receptor ligands using QSAR and structure-based modeling methods

    SciTech Connect

    Politi, Regina; Rusyn, Ivan; Tropsha, Alexander

    2014-10-01

    The thyroid hormone receptor (THR) is an important member of the nuclear receptor family that can be activated by endocrine disrupting chemicals (EDC). Quantitative Structure–Activity Relationship (QSAR) models have been developed to facilitate the prioritization of THR-mediated EDC for the experimental validation. The largest database of binding affinities available at the time of the study for ligand binding domain (LBD) of THRβ was assembled to generate both continuous and classification QSAR models with an external accuracy of R{sup 2} = 0.55 and CCR = 0.76, respectively. In addition, for the first time a QSAR model was developed to predict binding affinities of antagonists inhibiting the interaction of coactivators with the AF-2 domain of THRβ (R{sup 2} = 0.70). Furthermore, molecular docking studies were performed for a set of THRβ ligands (57 agonists and 15 antagonists of LBD, 210 antagonists of the AF-2 domain, supplemented by putative decoys/non-binders) using several THRβ structures retrieved from the Protein Data Bank. We found that two agonist-bound THRβ conformations could effectively discriminate their corresponding ligands from presumed non-binders. Moreover, one of the agonist conformations could discriminate agonists from antagonists. Finally, we have conducted virtual screening of a chemical library compiled by the EPA as part of the Tox21 program to identify potential THRβ-mediated EDCs using both QSAR models and docking. We concluded that the library is unlikely to have any EDC that would bind to the THRβ. Models developed in this study can be employed either to identify environmental chemicals interacting with the THR or, conversely, to eliminate the THR-mediated mechanism of action for chemicals of concern. - Highlights: • This is the largest curated dataset for ligand binding domain (LBD) of the THRβ. • We report the first QSAR model for antagonists of AF-2 domain of THRβ. • A combination of QSAR and docking enables

  13. Regular subalgebras of affine Kac Moody algebras

    NASA Astrophysics Data System (ADS)

    Felikson, Anna; Retakh, Alexander; Tumarkin, Pavel

    2008-09-01

    We classify regular subalgebras of Kac-Moody algebras in terms of their root systems. In the process, we establish that a root system of a subalgebra is always an intersection of the root system of the algebra with a sublattice of its root lattice. We also discuss applications to investigations of regular subalgebras of hyperbolic Kac-Moody algebras and conformally invariant subalgebras of affine Kac-Moody algebras. In particular, we provide explicit formulae for determining all Virasoro charges in coset constructions that involve regular subalgebras.

  14. On the electron affinity of Be2

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Partridge, H.

    1984-01-01

    Calculations of the electron affinity (EA) of Be2 using a large Slater-type orbital basis set and extensive correlation based upon a CASSCF reference are reported. The adiabatic EAs are estimated to be 0.44 eV for the 2Sigma sub g(+) state and 0.56 eV for the 2Pi sub u state. The extra electron attaches into an empty bonding orbital, causing a shortening of the bond length and an increase in omega(e). The D(e) of the 2Pi sub u state of Be2 is six times as large as the D(e) of Be2.

  15. Latest European coelacanth shows Gondwanan affinities.

    PubMed

    Cavin, Lionel; Forey, Peter L; Buffetaut, Eric; Tong, Haiyan

    2005-06-22

    The last European fossil occurrence of a coelacanth is from the Mid-Cretaceous of the English Chalk (Turonian, 90 million years ago). Here, we report the discovery of a coelacanth from Late Cretaceous non-marine rocks in southern France. It consists of a left angular bone showing structures that imply close phylogenetic affinities with some extinct Mawsoniidae. The closest relatives are otherwise known from Cretaceous continental deposits of southern continents and suggest that the dispersal of freshwater organisms from Africa to Europe occurred in the Late Cretaceous.

  16. On the structure of self-affine convex bodies

    SciTech Connect

    Voynov, A S

    2013-08-31

    We study the structure of convex bodies in R{sup d} that can be represented as a union of their affine images with no common interior points. Such bodies are called self-affine. Vallet's conjecture on the structure of self-affine bodies was proved for d = 2 by Richter in 2011. In the present paper we disprove the conjecture for all d≥3 and derive a detailed description of self-affine bodies in R{sup 3}. Also we consider the relation between properties of self-affine bodies and functional equations with a contraction of an argument. Bibliography: 10 titles.

  17. Affinity filtration coupled with capillary-based affinity purification for the isolation of protein complexes.

    PubMed

    Qureshi, M S; Sheikh, Q I; Hill, R; Brown, P E; Dickman, M J; Tzokov, S B; Rice, D W; Gjerde, D T; Hornby, D P

    2013-08-01

    The isolation of complex macromolecular assemblies at the concentrations required for structural analysis represents a major experimental challenge. Here we present a method that combines the genetic power of site-specific recombination in order to selectively "tag" one or more components of a protein complex with affinity-based rapid filtration and a final step of capillary-based enrichment. This modified form of tandem affinity purification produces highly purified protein complexes at high concentrations in a highly efficient manner. The application of the method is demonstrated for the yeast Arp2/3 heptameric protein complex involved in mediating reorganization of the actin cytoskeleton.

  18. Design of angiotensin II derivatives suitable for indirect affinity techniques: potential applications to receptor studies.

    PubMed

    Bonnafous, J C; Seyer, R; Tence, M; Marie, J; Kabbaj, M; Aumelas, A

    1988-01-01

    The design of angiotensin II (A II)-derived probes suitable for indirect affinity techniques is presented. Biotin or dinitrophenyl moieties have been added at the N-terminus of A II, through aminohexanoic acid as spacer arm, to generate (6-biotinylamido)-hexanoyl-AII (Bio-Ahx-AII) and dinitrophenyl- aminohexanoyl-AII (Dnp-Ahx-AII). Monoiodinated and highly labeled radioiodinated forms of these probes have been prepared. The two bifunctional ligands displayed high affinities for rat liver A II receptors (Kd values in the nanomolar range) and their secondary acceptors: streptavidin and monoclonal anti-Dnp antibodies respectively. Bio-Ahx-AII and Dnp-Ahx-AII behaved as agonists on several AII-sensitive systems. Based on these structural assessments, the parent photoactivable azido probe: Bio-Ahx-(Ala1,Phe(4N3)8)A II. A II was synthesized and proved to possess similar biological properties than the non-azido compound. The hepatic A II receptor could be covalently labeled by the radioiodinated probe, with a particularly high yield (15-20%); SDS-polyacrylamide gel electrophoresis of solubilized complexes revealed specific labeling of a 65 Kdaltons binding unit, in agreement with previous data obtained with other azido AII-derived compounds. The potential applications of these probes are: i) receptor purification by combination of its photoaffinity labeling and adsorption of biotin-tagged solubilized hormone-receptor complexes on avidin gels. ii) cell labeling and sorting. iii) histochemical receptor visualization.

  19. Cannabinoid CB(1) receptor expression and affinity in the rat hippocampus following bilateral vestibular deafferentation.

    PubMed

    Baek, Jean Ha; Zheng, Yiwen; Darlington, Cynthia L; Smith, Paul F

    2011-01-10

    Numerous studies have shown that bilateral vestibular deafferentation (BVD) results in spatial memory deficits and hippocampal dysfunction in rats and humans. Since cannabinoid CB(1) receptors are well known to regulate synaptic plasticity in the hippocampus, we investigated whether BVD resulted in changes in CB(1) receptor expression and affinity in the rat hippocampus at 1, 3 and 7 days post-surgery, using a combination of Western blotting and radioligand binding. Using Western blotting, we found that CB(1) receptor expression was significantly lower in BVD animals compared to sham controls only in the CA3 area across the 3 time points (P=0.03). CB(1) receptor expression decreased significantly over time for both the BVD and sham animals (P=0.000). The radioligand binding assays showed no significant change in the IC(50) of the CB(1) receptor for the cannabinoid CB(1)/CB(2) receptor agonist, WIN55,212-2. These results suggest that the CB(1) receptor down-regulates in the CA3 region of the hippocampus following BVD, but with no changes in the affinity of the CB(1) receptor for WIN55,212-2.

  20. A structure-function study of PACAP using conformationally restricted analogs: Identification of PAC1 receptor-selective PACAP agonists.

    PubMed

    Ramos-Álvarez, Irene; Mantey, Samuel A; Nakamura, Taichi; Nuche-Berenguer, Bernardo; Moreno, Paola; Moody, Terry W; Maderdrut, Jerome L; Coy, David H; Jensen, Robert T

    2015-04-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) has widespread physiological/pathophysiological actions and there is increased interest for its use therapeutically, especially in the CNS (neuroprotection). Unfortunately, no selective PACAP-analogs exist for PACAP-preferring PAC1-receptors, primarily because of its high sequence identity to VIP and particularly, because of the inability of structure-function studies to separate the pharmacophore of PAC1-R from VPAC1-R, which has high affinity for PACAP and VIP. The present study attempted to develop PAC1-R-selective agonists primarily by making conformationally restricted PACAP-analogs in positions important for receptor-selectivity/affinity. Forty-six PACAP-related-analogs were synthesized with substitutions in positions 1-4, 14-17, 20-22, 28, 34, 38 and receptor-selectivity determined in PAC1-R,VPAC1-R,VPAC2-R-transfected or native cells from binding or cAMP-generation experiments. Fifteen PACAP-analogs had 6-78-fold higher affinities for PAC1-R than VPAC1-R and 13 were agonists. Although binding-affinities correlated significantly with agonist potency, the degree of receptor-spareness varied markedly for the different PACAP-analogs, resulting in selective potencies for activating the PAC1 receptor over the VPAC1 receptor from 0- to 103-fold. In addition, a number of PACAP-analogs were identified that had high selectivity for PAC1-R over VPAC2-R as well as PACAP-analogs that could prove more useful therapeutically because of substitutions known to extend their half-lives (substitutions at potential sites of proteolysis and attachment of long-chain fatty acids). This study provides for the first time a separation of the pharmacophores for PAC1-R and VPAC1-R, resulting in PACAP-related analogs that are PAC1-R-preferring. Some of these analogs, or their modifications, could prove useful as therapeutic agents for various diseases. Published by Elsevier Inc.

  1. Sleep-promoting action of IIK7, a selective MT2 melatonin receptor agonist in the rat

    PubMed Central

    Fisher, Simon P.; Sugden, David

    2009-01-01

    Several novel melatonin receptor agonists, in addition to various formulations of melatonin itself, are either available or in development for the treatment of insomnia. Melatonin is thought to exert its effects principally through two high affinity, G-protein coupled receptors, MT1 and MT2, though it is not known which subtype is responsible for the sleep-promoting action. The present study used radiotelemetry to record EEG and EMG in un-restrained freely moving rats to monitor the sleep-wake behaviour and examined the acute sleep-promoting activity of an MT2 receptor subtype selective melatonin analog, IIK7. IIK7 is a full agonist at the MT2 receptor subtype but a partial agonist at the MT1 receptor and has ∼90-fold higher affinity for MT2 than MT1. Like melatonin, IIK7 (10 mg/kg i.p.) significantly reduced NREM sleep onset latency and transiently increased the time spent in NREM sleep, but did not alter REM sleep latency or the amount of REM sleep. An analysis of the EEG power spectrum showed no change in delta (1–4 Hz) or theta activity (5–8 Hz) following IIK7 administration. Core body temperature was slightly decreased (∼0.3 °C) by IIK7 compared to vehicle-treated rats. The acute and transient changes in the sleep-wake cycle mimic the changes seen with melatonin and suggest that its sleep-promoting activity is mediated by activation of the MT2 receptor subtype. PMID:19429170

  2. Sleep-promoting action of IIK7, a selective MT2 melatonin receptor agonist in the rat.

    PubMed

    Fisher, Simon P; Sugden, David

    2009-06-26

    Several novel melatonin receptor agonists, in addition to various formulations of melatonin itself, are either available or in development for the treatment of insomnia. Melatonin is thought to exert its effects principally through two high affinity, G-protein coupled receptors, MT1 and MT2, though it is not known which subtype is responsible for the sleep-promoting action. The present study used radiotelemetry to record EEG and EMG in un-restrained freely moving rats to monitor the sleep-wake behaviour and examined the acute sleep-promoting activity of an MT2 receptor subtype selective melatonin analog, IIK7. IIK7 is a full agonist at the MT2 receptor subtype but a partial agonist at the MT1 receptor and has approximately 90-fold higher affinity for MT2 than MT1. Like melatonin, IIK7 (10mg/kg i.p.) significantly reduced NREM sleep onset latency and transiently increased the time spent in NREM sleep, but did not alter REM sleep latency or the amount of REM sleep. An analysis of the EEG power spectrum showed no change in delta (1-4 Hz) or theta activity (5-8 Hz) following IIK7 administration. Core body temperature was slightly decreased ( approximately 0.3 degrees C) by IIK7 compared to vehicle-treated rats. The acute and transient changes in the sleep-wake cycle mimic the changes seen with melatonin and suggest that its sleep-promoting activity is mediated by activation of the MT2 receptor subtype.

  3. Subtype-selective nicotinic acetylcholine receptor agonists enhance the responsiveness to citalopram and reboxetine in the mouse forced swim test.

    PubMed

    Andreasen, Jesper T; Nielsen, Elsebet Ø; Christensen, Jeppe K; Olsen, Gunnar M; Peters, Dan; Mirza, Naheed R; Redrobe, John P

    2011-10-01

    Nicotine increases serotonergic and noradrenergic neuronal activity and facilitates serotonin and noradrenaline release. Accordingly, nicotine enhances antidepressant-like actions of reuptake inhibitors selective for serotonin or noradrenaline in the mouse forced swim test and the mouse tail suspension test. Both high-affinity α4β2 and low-affinity α7 nicotinic acetylcholine receptor subtypes are implicated in nicotine-mediated release of serotonin and noradrenaline. The present study therefore investigated whether selective agonism of α4β2 or α7 nicotinic acetylcholine receptors would affect the mouse forced swim test activity of two antidepressants with distinct mechanisms of action, namely the selective serotonin reuptake inhibitor citalopram and the noradrenaline reuptake inhibitor reboxetine. Subthreshold and threshold doses of citalopram (3 and 10 mg/kg) or reboxetine (10 and 20 mg/kg) were tested alone and in combination with the novel α4β2-selective partial nicotinic acetylcholine receptor agonist, NS3956 (0.3 and 1.0 mg/kg) or the α7-selective nicotinic acetylcholine receptor agonist, PNU-282987 (10 and 30 mg/kg). Alone, NS3956 and PNU-282987 were devoid of activity in the mouse forced swim test, but both 1.0 mg/kg NS3956 and 30 mg/kg PNU-282987 enhanced the effect of citalopram and also reboxetine. The data suggest that the activity of citalopram and reboxetine in the mouse forced swim test can be enhanced by agonists at either α4β2 or α7 nicotinic acetylcholine receptors, suggesting that both nicotinic acetylcholine receptor subtypes may be involved in the nicotine-enhanced action of antidepressants.

  4. Two affinities for a single antagonist at the neuronal NK1 tachykinin receptor: evidence from quantitation of receptor endocytosis

    PubMed Central

    Jenkinson, Karl M; Southwell, Bridget R; Furness, John B

    1999-01-01

    In smooth muscle contractility assays, many NK1 receptor (NK1r) antagonists inhibit responses to the neurotransmitter, substance P (SP), and its analogue, septide, with markedly different potency, leading to the proposal that there is a septide-preferring receptor related to the NK1r.We used fluorescence immunohistochemistry and confocal microscopy to visualize agonist-induced NK1r endocytosis and analyse agonist/antagonist interactions at native NK1r in neurons of the myenteric plexus of guinea-pig ileum.SP and septide gave sigmoid log concentration-response curves and were equipotent in inducing NK1r endocytosis.The NK1r antagonists, CP-99994 (2S,3S)-3-(2-methoxybenzyl)amino-2-phenylpiperidine dihydrochloride and MEN-10581, cyclo(Leuψ[CH2NH]Lys(benzyloxycarbonyl)-Gln-Trp-Phe-βAla) were both more potent in inhibiting endocytosis (50× and 8× greater respectively) against septide than against SP.The results suggest that SP and septide interact differently with the NK1r, and that a single antagonist can exhibit different affinities at a single NK1r population, depending on the agonist with which it competes. Thus it may not be necessary to posit a separate septide-preferring tachykinin receptor. PMID:10051129

  5. Avoiding degenerate coframes in an affine gauge approach to quantum gravity

    SciTech Connect

    Mielke, E.W.; McCrea, J.D.; Ne`eman, Y.; Hehl, F.W.

    1993-04-01

    This report discusses the following concepts on quantum gravity: The affine gauge approach; affine gauge transformations versus active differomorphisms; affine gauge approach to quantum gravity with topology change.

  6. In vitro activation of rat cardiac glucocorticoid antagonist- versus agonist-receptor complexes.

    PubMed

    Schmidt, T J; Diehl, E E

    1988-06-30

    The synthetic antiglucocorticoid RU 38486 interacts with cardiac cytoplasmic glucocorticoid receptors and competes for in vitro binding with the potent agonist triamcinolone acetonide. In addition to binding to receptors with high affinity, RU 38486 also facilitates the in vitro conformational change in the receptor which is a consequence of the physiologically relevant activation step during which the receptor is converted from a non DNA- to a DNA-binding form. This ability of RU 38486 to promote receptor activation is reflected by both the appropriate shift in the elution profile of [3H]RU 38486-receptor complexes from DEAE-cellulose as well as by an increased binding of these complexes to DNA-cellulose. Although less effective than triamcinolone acetonide, RU 38486 promotes in vitro receptor activation under a variety of experimental conditions, including incubation of labeled cardiac cytosols at 25 degrees C for 30 min or at 15 degrees C for 30 min in the presence of 5 mM pyridoxal 5'-phosphate. Once thermally activated, the cardiac [3H]triamcinolone acetonide and [3H]RU 38486-receptor complexes bind to nonspecific DNA-cellulose with the same relative affinities, as evidenced by the fact that 50% of both activated complexes are eluted at approx. 215-250 mM NaCl. Thus, this pure antiglucocorticoid does promote, at least to some extent, many of the crucial in vitro events including high-affinity binding, activation, and DNA binding which have been shown to be required to elicit a physiological response in vivo.

  7. Extraction of haemoglobin from human blood by affinity precipitation using a haptoglobin-based stimuli-responsive affinity macroligand.

    PubMed

    Stocker-Majd, Gisela; Hilbrig, Frank; Freitag, Ruth

    2008-06-13

    Affinity precipitation was compared to affinity chromatography and batch adsorption as the final purification step in a protocol for the isolation of haemoglobin from human blood. Haptoglobin was the affinity ligand. The first steps on the process were realized by traditional methods (lyses of red blood cells followed by ammonium sulphate precipitation). For affinity chromatography (and batch adsorption) the ligand was linked to Sepharose, for affinity precipitation to a thermoresponsive polymer, namely poly(N-isopropylacrylamide). Five haptoglobin-poly(N-isopropylacrylamide) bioconjugates (affinity macroligands) were constructed with different polymer: haptoglobin-coupling ratios. Conjugation of haptoglobin to the soluble poly(N-isopropylacrylamide) apparently does not change the interaction thermodynamics with haemoglobin, as the haemoglobin binding constants calculated by a Scatchard analysis for the affinity macroligand were of the same order of magnitude as those described in the literature for the haemoglobin-haptoglobin complex in solution. Two elution protocols were used for haemoglobin release from the various affinity materials, one at pH 2, the other with 5 M urea at pH 11. Both affinity chromatography and affinity precipitation yielded a pure haemoglobin of high quality. Compared to the affinity chromatography, affinity precipitation showed a significantly higher ligand efficiency (ratio of the experimental capacity to the theoretical one). The method thus makes better use of the expensive affinity ligands. As affinity precipitation only requires small temperature changes to bring about precipitation/redissolution of the affinity complexes and a centrifugation step for recovery of the precipitate, the method in addition has advantages in term of scalability and simplicity.

  8. 3-Substituted pyrazole analogs of the cannabinoid type 1 (CB₁) receptor antagonist rimonabant: cannabinoid agonist-like effects in mice via non-CB₁, non-CB₂ mechanism.

    PubMed

    Wiley, Jenny L; Selley, Dana E; Wang, Pinglang; Kottani, Rudresha; Gadthula, Srinivas; Mahadeven, Anu

    2012-02-01

    The prototypic cannabinoid type 1 (CB₁) receptor antagonist/inverse agonist, rimonabant, is comprised of a pyrazole core surrounded by a carboxyamide with terminal piperidine group (3-substituent), a 2,4-dichlorophenyl group (1-substituent), a 4-chlorophenyl group (5-substituent), and a methyl group (4-substituent). Previous structure-activity relationship (SAR) analysis has suggested that the 3-position may be involved in receptor recognition and agonist activity. The goal of the present study was to develop CB₁-selective compounds and explore further the SAR of 3-substitution on the rimonabant template. 3-Substituted analogs with benzyl and alkyl amino, dihydrooxazole, and oxazole moieties were synthesized and evaluated in vitro and in vivo. Several notable patterns emerged. First, most of the analogs exhibited CB₁ selectivity, with many lacking affinity for the CB₂ receptor. Affinity tended to be better when [³H]5-(4-chlorophenyl)-1-(2,4-dichloro-phenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide (SR141716), rather than [³H](-)-cis-3-[2-hydroxy-4(1,1-dimethyl-heptyl)phenyl]-trans-4-(3-hydroxy-propyl)cyclohexanol (CP55,940), was used as the binding radioligand. Second, many of the analogs produced an agonist-like profile of effects in mice (i.e., suppression of activity, antinociception, hypothermia, and immobility); however, their potencies were not well correlated with their CB₁ binding affinities. Further assessment of selected analogs showed that none were effective antagonists of the effects of Δ⁹-tetrahydrocannabinol in mice, their agonist-like effects were not blocked by rimonabant, they were active in vivo in CB₁⁻/⁻ mice, and they failed to stimulate guanosine-5'-O-(3-[³⁵S]thio)-triphosphate binding. Several analogs were inverse agonists in the latter assay. Together, these results suggest that this series of 3-substituted pyrazole analogs represent a novel class of CB₁-selective cannabinoids that produce agonist

  9. Gravitational Goldstone fields from affine gauge theory

    NASA Astrophysics Data System (ADS)

    Tresguerres, Romualdo; Mielke, Eckehard W.

    2000-08-01

    In order to facilitate the application of standard renormalization techniques, gravitation should be described, in the pure connection formalism, as a Yang-Mills theory of a certain spacetime group, say the Poincaré or the affine group. This embodies the translational as well as the linear connection. However, the coframe is not the standard Yang-Mills-type gauge field of the translations, since it lacks the inhomogeneous gradient term in the gauge transformations. By explicitly restoring this ``hidden'' piece within the framework of nonlinear realizations, the usual geometrical interpretation of the dynamical theory becomes possible, and in addition one can avoid the metric or coframe degeneracy which would otherwise interfere with the integrations within the path integral. We claim that nonlinear realizations provide the general mathematical scheme for the foundation of gauge theories of spacetime symmetries. When applied to construct the Yang-Mills theory of the affine group, tetrads become identified with nonlinear translational connections; the anholonomic metric no longer constitutes an independent gravitational potential, since its degrees of freedom reveal a correspondence to eliminateable Goldstone bosons. This may be an important advantage for quantization.

  10. Fatigue damage prognosis using affine arithmetic

    NASA Astrophysics Data System (ADS)

    Gbaguidi, Audrey; Kim, Daewon

    2014-02-01

    Among the essential steps to be taken in structural health monitoring systems, damage prognosis would be the field that is least investigated due to the complexity of the uncertainties. This paper presents the possibility of using Affine Arithmetic for uncertainty propagation of crack damage in damage prognosis. The structures examined are thin rectangular plates made of titanium alloys with central mode I cracks and a composite plate with an internal delamination caused by mixed mode I and II fracture modes, under a harmonic uniaxial loading condition. The model-based method for crack growth rates are considered using the Paris Erdogan law model for the isotropic plates and the delamination growth law model proposed by Kardomateas for the composite plate. The parameters for both models are randomly taken and their uncertainties are considered as defined by an interval instead of a probability distribution. A Monte Carlo method is also applied to check whether Affine Arithmetic (AA) leads to tight bounds on the lifetime of the structure.

  11. Affinity-based target deconvolution of safranal

    PubMed Central

    2013-01-01

    Background and the purpose of the study Affinity-based target deconvolution is an emerging method for the identification of interactions between drugs/drug candidates and cellular proteins, and helps to predict potential activities and side effects of a given compound. In the present study, we hypothesized that a part of safranal pharmacological effects, one of the major constituent of Crocus sativus L., relies on its physical interaction with target proteins. Methods Affinity chromatography solid support was prepared by covalent attachment of safranal to agarose beads. After passing tissue lysate through the column, safranal-bound proteins were isolated and separated on SDS-PAGE or two-dimensional gel electrophoresis. Proteins were identified using MALDI-TOF/TOF mass spectrometry and Mascot software. Results and major conclusion Data showed that safranal physically binds to beta actin, cytochrome b-c1 complex sub-unit 1, trifunctional enzyme sub-unit beta and ATP synthase sub-unit alpha and beta. These interactions may explain part of safranal’s pharmacological effects. However, phenotypic and/or biological relevance of these interactions remains to be elucidated by future pharmacological studies. PMID:23514587

  12. Quantification of hydrophobic interaction affinity of colloids

    NASA Astrophysics Data System (ADS)

    Saini, G.; Nasholm, N.; Wood, B. D.

    2009-12-01

    Colloids play an important role in a wide variety of disciplines, including water and wastewater treatment, subsurface transport of metals and organic contaminants, migration of fines in oil reservoirs, biocolloid (virus and bacteria) transport in subsurface, and are integral to laboratory transport studies. Although the role of hydrophobicity in adhesion and transport of colloids, particularly bacteria, is well known; there is scarcity of literature regarding hydrophobicity measurement of non-bacterial colloids and other micron-sized particles. Here we detail an experimental approach based on differential partitioning of colloids between two liquid phases (hydrocarbon and buffer) as a measure of the hydrophobic interaction affinity of colloids. This assay, known as Microbial adhesion to hydrocarbons or MATH, is frequently used in microbiology and bacteriology for quantifying the hydrophobicity of microbes. Monodispersed colloids and particles, with sizes ranging from 1 micron to 33 micron, were used for the experiments. A range of hydrophobicity values were observed for different particles. The hydrophobicity results are also verified against water contact angle measurements of these particles. This liquid-liquid partitioning assay is quick, easy-to-perform and requires minimal instrumentation. Estimation of the hydrophobic interaction affinity of colloids would lead to a better understanding of their adhesion to different surfaces and subsequent transport in porous media.

  13. Functional gold nanoparticles for optical affinity biosensing.

    PubMed

    Špringer, Tomáš; Chadtová Song, Xue; Ermini, Maria Laura; Lamačová, Josefína; Homola, Jiří

    2017-06-01

    Functional gold nanoparticles (AuNPs) are commonly used to enhance the response of optical affinity biosensors. In this work, we investigated the effect of preparation conditions on functional properties of AuNPs functionalized with antibody (Ab-AuNPs), specifically AuNPs with antibody against carcinoembryonic antigen (CEA) covalently attached via carboxy-terminated oligo-ethylene thiolate linker layer. The following parameters of preparation of Ab-AuNP have been found to have a significant effect on Ab-AuNP performance in affinity biosensors: the time of reaction of activated AuNPs with antibody, concentrations of antibody and amino-coupling reagents, and composition of immobilization buffer (molarity and salt content). In contrast, pH of immobilization buffer has been demonstrated to have only a minor influence. Our experiments showed that the Ab-AuNPs prepared under optimum conditions offered a binding efficiency of Ab-AuNPs to CEA as high as 63%, which is more than 4 times better than the best efficiencies reported for similar functional AuNPs so far. We employed these Ab-AuNPs with a surface plasmon resonance (SPR) biosensor for the detection of CEA and showed that the Ab-AuNPs enhanced the sensor response to CEA by a factor of 1000. We also demonstrated that the Ab-AuNPs allow the biosensor to detect CEA at concentrations as low as 12 and 40 pg/mL in buffer and 50% blood plasma, respectively.

  14. Improvement of Aptamer Affinity by Dimerization

    PubMed Central

    Hasegawa, Hijiri; Taira, Ken-ichi; Sode, Koji; Ikebukuro, Kazunori

    2008-01-01

    To increase the affinities of aptamers for their targets, we designed an aptamer dimer for thrombin and VEGF. This design is based on the avidity of the antibody, which enables the aptamer to connect easily since it is a single-strand nucleic acid. In this study, we connected a 15-mer thrombin-binding aptamer with a 29-mer thrombin-binding aptamer. Each aptamer recognizes a different part of the thrombin molecule, and the aptamer dimer has a Kd value which is 1/10 of that of the monomers from which it is composed. Also, the designed aptamer dimer has higher inhibitory activity than the reported (15-mer) thrombin-inhibiting aptamer. Additionally, we connected together two identical aptamers against vascular endothelial growth factor (VEGF165), which is a homodimeric protein. As in the case of the anti-thrombin aptamer, the dimeric anti-VEGF aptamer had a much lower Kd value than that of the monomer. This study demonstrated that the dimerization of aptamers effectively improves the affinities of those aptamers for their targets. PMID:27879754

  15. Affine conformal vectors in space-time

    NASA Astrophysics Data System (ADS)

    Coley, A. A.; Tupper, B. O. J.

    1992-05-01

    All space-times admitting a proper affine conformal vector (ACV) are found. By using a theorem of Hall and da Costa, it is shown that such space-times either (i) admit a covariantly constant vector (timelike, spacelike, or null) and the ACV is the sum of a proper affine vector and a conformal Killing vector or (ii) the space-time is 2+2 decomposable, in which case it is shown that no ACV can exist (unless the space-time decomposes further). Furthermore, it is proved that all space-times admitting an ACV and a null covariantly constant vector (which are necessarily generalized pp-wave space-times) must have Ricci tensor of Segré type {2,(1,1)}. It follows that, among space-times admitting proper ACV, the Einstein static universe is the only perfect fluid space-time, there are no non-null Einstein-Maxwell space-times, and only the pp-wave space-times are representative of null Einstein-Maxwell solutions. Otherwise, the space-times can represent anisotropic fluids and viscous heat-conducting fluids, but only with restricted equations of state in each case.

  16. Agonistic behavior in males and females: effects of an estrogen receptor beta agonist in gonadectomized and gonadally intact mice

    PubMed Central

    Allen, Amy E. Clipperton; Cragg, Cheryl L.; Wood, Alexis J.; Pfaff, Donald W.; Choleris, Elena

    2010-01-01

    Summary Affiliative and agonistic social interactions are mediated by gonadal hormones. Research with estrogen receptor alpha (ERα) or beta (ERβ) knockout (KO) mice show that long-term inactivation of ERα decreases, while inactivation of ERβ increases, male aggression. Opposite effects were found in female αERKO and βERKO mice. The role of acute activation of ERα or ERβ in the agonistic responses of adult non-KO mice is unknown. We report here the effects of the ERβ selective agonist WAY-200070 on agonistic and social behavior in gonadally intact and gonadectomized (gonadex) male and female CD-1 mice towards a gonadex, same-sex intruder. All 15 min resident-intruder tests were videotaped for comprehensive behavioral analysis. Separate analyses assessed: 1) effects of WAY-200070 on each sex and gonadal condition; 2) differences between sexes, and between gonadally intact and gonadex mice, in untreated animals. Results show that in gonadally intact male and female mice WAY-200070 increased agonistic behaviors such as pushing down and aggressive grooming, while leaving attacks unaffected. In untreated mice, males attacked more than females, and gonadex animals showed less agonistic behavior than same-sex, gonadally intact mice. Overall, our detailed behavioral analysis suggested that in gonadally intact male and female mice, ERβ mediates patterns of agonistic behavior that are not directly involved in attacks. This suggests that specific aspects of aggressive behavior are acutely mediated by ERβ in adult mice. Our results also showed that, in resident-intruder tests, female mice spend as much time in intrasexual agonistic interactions as males, but use agonistic behaviors that involve extremely low levels of direct attacks. This non-attack aggression in females is increased by acute activation of ERβ. Thus, acute activation of ERβ similarly mediates agonistic behavior in adult male and female CD-1 mice. PMID:20129736

  17. In Vivo Phenotypic Screening for Treating Chronic Neuropathic Pain: Modification of C2-Arylethynyl Group of Conformationally Constrained A3 Adenosine Receptor Agonists

    PubMed Central

    2015-01-01

    (N)-Methanocarba adenosine 5′-methyluronamides containing 2-arylethynyl groups were synthesized as A3 adenosine receptor (AR) agonists and screened in vivo (po) for reduction of neuropathic pain. A small N6-methyl group maintained binding affinity, with human > mouse A3AR and MW < 500 and other favorable physicochemical properties. Emax (maximal efficacy in a mouse chronic constriction injury pain model) of previously characterized A3AR agonist, 2-(3,4-difluorophenylethynyl)-N6-(3-chlorobenzyl) derivative 6a, MRS5698, was surpassed. More efficacious analogues (in vivo) contained the following C2-arylethynyl groups: pyrazin-2-yl 23 (binding Ki, hA3AR, nM 1.8), fur-2-yl 27 (0.6), thien-2-yl 32 (0.6) and its 5-chloro 33, MRS5980 (0.7) and 5-bromo 34 (0.4) equivalents, and physiologically unstable ferrocene 36, MRS5979 (2.7). 33 and 36 displayed particularly long in vivo duration (>3 h). Selected analogues were docked to an A3AR homology model to explore the environment of receptor-bound C2 and N6 groups. Various analogues bound with μM affinity at off-target biogenic amine (M2, 5HT2A, β3, 5HT2B, 5HT2C, and α2C) or other receptors. Thus, we have expanded the structural range of orally active A3AR agonists for chronic pain treatment. PMID:25422861