Sample records for affinity chromatography analysis

  1. PHARMACEUTICAL AND BIOMEDICAL APPLICATIONS OF AFFINITY CHROMATOGRAPHY: RECENT TRENDS AND DEVELOPMENTS

    PubMed Central

    Hage, David S.; Anguizola, Jeanethe A.; Bi, Cong; Li, Rong; Matsuda, Ryan; Papastavros, Efthimia; Pfaunmiller, Erika; Vargas, John; Zheng, Xiwei

    2012-01-01

    Affinity chromatography is a separation technique that has become increasingly important in work with biological samples and pharmaceutical agents. This method is based on the use of a biologically-related agent as a stationary phase to selectively retain analytes or to study biological interactions. This review discusses the basic principles behind affinity chromatography and examines recent developments that have occurred in the use of this method for biomedical and pharmaceutical analysis. Techniques based on traditional affinity supports are discussed, but an emphasis is placed on methods in which affinity columns are used as part of HPLC systems or in combination with other analytical methods. General formats for affinity chromatography that are considered include step elution schemes, weak affinity chromatography, affinity extraction and affinity depletion. Specific separation techniques that are examined include lectin affinity chromatography, boronate affinity chromatography, immunoaffinity chromatography, and immobilized metal ion affinity chromatography. Approaches for the study of biological interactions by affinity chromatography are also presented, such as the measurement of equilibrium constants, rate constants, or competition and displacement effects. In addition, related developments in the use of immobilized enzyme reactors, molecularly imprinted polymers, dye ligands and aptamers are briefly considered. PMID:22305083

  2. Isolation and purification of wheat germ agglutinin and analysis of its properties

    NASA Astrophysics Data System (ADS)

    Wang, Han

    2017-12-01

    In this paper, the wheat germ agglutinin was isolated and purified by affinity chromatography of chicken ovomucoid as ligand. The physicochemical properties were analyzed. The chicken ovomucoid was isolated from egg white and conjugated to affinity chromatography column agarose gel to prepare affinity adsorbent. The crude extract of wheat germ was freezedried by affinity chromatography. The physicochemical properties were analyzed by SDSpolyacrylamide gel electrophoresis and isoelectric focusing electrophoresis. And the relative molecular mass and isoelectric point of wheat germ agglutinin were obtained, and the high efficiency of purification of wheat germ agglutinin was proved by affinity chromatography.

  3. Mathematical analysis of frontal affinity chromatography in particle and membrane configurations.

    PubMed

    Tejeda-Mansir, A; Montesinos, R M; Guzmán, R

    2001-10-30

    The scaleup and optimization of large-scale affinity-chromatographic operations in the recovery, separation and purification of biochemical components is of major industrial importance. The development of mathematical models to describe affinity-chromatographic processes, and the use of these models in computer programs to predict column performance is an engineering approach that can help to attain these bioprocess engineering tasks successfully. Most affinity-chromatographic separations are operated in the frontal mode, using fixed-bed columns. Purely diffusive and perfusion particles and membrane-based affinity chromatography are among the main commercially available technologies for these separations. For a particular application, a basic understanding of the main similarities and differences between particle and membrane frontal affinity chromatography and how these characteristics are reflected in the transport models is of fundamental relevance. This review presents the basic theoretical considerations used in the development of particle and membrane affinity chromatography models that can be applied in the design and operation of large-scale affinity separations in fixed-bed columns. A transport model for column affinity chromatography that considers column dispersion, particle internal convection, external film resistance, finite kinetic rate, plus macropore and micropore resistances is analyzed as a framework for exploring further the mathematical analysis. Such models provide a general realistic description of almost all practical systems. Specific mathematical models that take into account geometric considerations and transport effects have been developed for both particle and membrane affinity chromatography systems. Some of the most common simplified models, based on linear driving-force (LDF) and equilibrium assumptions, are emphasized. Analytical solutions of the corresponding simplified dimensionless affinity models are presented. Particular methods for estimating the parameters that characterize the mass-transfer and adsorption mechanisms in affinity systems are described.

  4. Frontal affinity chromatography: A unique research tool for biospecific interaction that promotes glycobiology

    PubMed Central

    KASAI, Kenichi

    2014-01-01

    Combination of bioaffinity and chromatography gave birth to affinity chromatography. A further combination with frontal analysis resulted in creation of frontal affinity chromatography (FAC). This new versatile research tool enabled detailed analysis of weak interactions that play essential roles in living systems, especially those between complex saccharides and saccharide-binding proteins. FAC now becomes the best method for the investigation of saccharide-binding proteins (lectins) from viewpoints of sensitivity, accuracy, and efficiency, and is contributing greatly to the development of glycobiology. It opened a door leading to deeper understanding of the significance of saccharide recognition in life. The theory is also concisely described. PMID:25169774

  5. Analysis of solute-protein interactions and solute-solute competition by zonal elution affinity chromatography.

    PubMed

    Tao, Pingyang; Poddar, Saumen; Sun, Zuchen; Hage, David S; Chen, Jianzhong

    2018-02-02

    Many biological processes involve solute-protein interactions and solute-solute competition for protein binding. One method that has been developed to examine these interactions is zonal elution affinity chromatography. This review discusses the theory and principles of zonal elution affinity chromatography, along with its general applications. Examples of applications that are examined include the use of this method to estimate the relative extent of solute-protein binding, to examine solute-solute competition and displacement from proteins, and to measure the strength of these interactions. It is also shown how zonal elution affinity chromatography can be used in solvent and temperature studies and to characterize the binding sites for solutes on proteins. In addition, several alternative applications of zonal elution affinity chromatography are discussed, which include the analysis of binding by a solute with a soluble binding agent and studies of allosteric effects. Other recent applications that are considered are the combined use of immunoextraction and zonal elution for drug-protein binding studies, and binding studies that are based on immobilized receptors or small targets. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Characterization of Extracellular Proteins in Tomato Fruit using Lectin Affinity Chromatography and LC-MALDI-MS/MS analysis

    USDA-ARS?s Scientific Manuscript database

    The large-scale isolation and analysis of glycoproteins by lectin affinity chromatography coupled with mass spectrometry has become a powerful tool to monitor changes in the “glycoproteome” of mammalian cells. Thus far, however, this approach has not been used extensively for the analysis of plant g...

  7. Affinity monolith chromatography: A review of principles and recent analytical applications

    PubMed Central

    Pfaunmiller, Erika L.; Paulemond, Marie Laura; Dupper, Courtney M.; Hage, David S.

    2012-01-01

    Affinity monolith chromatography (AMC) is a type of liquid chromatography that uses a monolithic support and a biologically-related binding agent as a stationary phase. AMC is a powerful method for the selective separation, analysis or studies of specific target compounds in a sample. This review discusses the basic principles of AMC and recent developments or applications of this method, with particular emphasis being given to work that has appeared in the last five years. Various materials that have been used to prepare columns for AMC are examined, including organic monoliths, silica monoliths, agarose monoliths and cryogels. These supports have been used in AMC for formats that have ranged from traditional columns to disks, microcolumns and capillaries. Many binding agents have also been employed in AMC, such as antibodies, enzymes, proteins, lectins, immobilized metal-ions and dyes. Some applications that have been reported with these binding agents in AMC are bioaffinity chromatography, immunoaffinity chromatography or immunoextraction, immobilized metal-ion affinity chromatography, dye-ligand affinity chromatography, chiral separations and biointeraction studies. Examples are presented from fields that include analytical chemistry, pharmaceutical analysis, clinical testing and biotechnology. Current trends and possible future directions in AMC are also discussed. PMID:23187827

  8. Cholera Toxin Inhibitors Studied with High-Performance Liquid Affinity Chromatography: A Robust Method to Evaluate Receptor–Ligand Interactions

    PubMed Central

    Bergström, Maria; Liu, Shuang; Kiick, Kristi L.; Ohlson, Sten

    2009-01-01

    Anti-adhesion drugs may be an alternative to antibiotics to control infection of micro-organisms. The well-characterized interaction between cholera toxin and the cellular glycolipid GM1 makes it an attractive model for inhibition studies in general. In this report, we demonstrate a high-performance liquid affinity chromatography approach called weak affinity chromatography to evaluate cholera toxin inhibitors. The cholera toxin B-subunit was covalently coupled to porous silica and a (weak) affinity column was produced. The KD values of galactose and meta-nitrophenyl α-D-galactoside were determined with weak affinity chromatography to be 52 and 1 mM, respectively, which agree well with IC50 values previously reported. To increase inhibition potency multivalent inhibitors have been developed and the interaction with multivalent glycopolypeptides was also evaluated. The affinity of these compounds was found to correlate with the galactoside content but KD values were not obtained because of the inhomogeneous response and slow off-rate from multivalent interactions. Despite the limitations in obtaining direct KD values of the multivalent galactopolypeptides, weak affinity chromatography represents an additional and valuable tool in the evaluation of monovalent as well as multivalent cholera toxin inhibitors. It offers multiple advantages, such as a low sample consumption, high reproducibility and short analysis time, which are often not observed in other methods of analysis. PMID:19152642

  9. Selective retention of basic compounds by metal aquo-ion affinity chromatography.

    PubMed

    Asakawa, Yoshiki; Yamamoto, Eiichi; Asakawa, Naoki

    2014-10-01

    A novel metal aquo-ion affinity chromatography has been developed for the analysis of basic compounds using heat-treated silica gel containing hydrated metal cations (metal aquo-ions) as the packing material. The packing materials of the metal aquo-ion affinity chromatography were prepared by the immobilization of a single metal component such as Fe(III), Al(III), Ag(I), and Ni(II) on silica gel followed by extensive heat treatment. The immobilized metals form aquo-ions to present cation-exchange ability for basic analytes and the cation-exchange ability for basic analytes depends on pKa of the immobilized metal species. In the present study, to evaluate the retention characteristics of metal aquo-ion affinity chromatography, the on-line solid-phase extraction of drugs was investigated. Obtained data clearly evidence the selective retention capability of metal aquo-ion affinity chromatography for basic analytes with sufficient capacity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. [Comparison of acetonitrile, ethanol and chromatographic column to eliminate high-abundance proteins in human serum].

    PubMed

    Li, Yin; Liao, Ming; He, Xiao; Zhou, Yi; Luo, Rong; Li, Hongtao; Wang, Yun; He, Min

    2012-11-01

    To compare the effects of acetonitrile precipitation, ethanol precipitation and multiple affinity chromatography column Human 14 removal to eliminate high-abundance proteins in human serum. Elimination of serum high-abundance proteins performed with acetonitrile precipitation, ethanol precipitation and multiple affinity chromatography column Human 14 removal. Bis-Tris Mini Gels electrophoresis and two-dimensional gel electrophoresis to detect the effect. Grey value analysis from 1-DE figure showed that after serum processed by acetonitrile method, multiple affinity chromatography column Human 14 removal method and ethanol method, the grey value of albumin changed into 157.2, 40.8 and 8.2 respectively from the original value of 19. 2-DE analysis results indicated that using multiple affinity chromatography column Human 14 method, the protein points noticeable increased by 137 compared to the original serum. After processed by acetonitrile method and ethanol method, the protein point reduced, but the low abundance protein point emerged. The acetonitrile precipitation could eliminate the vast majority of high abundance proteins in serum and gain more proteins of low molecular weight, ethanol precipitation could eliminate part of high abundance proteins in serum, but low abundance proteins less harvested, and multiple affinity chromatography column Human 14 method could effectively removed the high abundance proteins, and keep a large number of low abundance proteins.

  11. [Progresses in screening active compounds from herbal medicine by affinity chromatography].

    PubMed

    Feng, Ying-shu; Tong, Shan-shan; Xu, Xi-ming; Yu, Jiang-nan

    2015-03-01

    Affinity chromatography is a chromatographic method for separating molecules using the binding characteristics of the stationary phase with potential drug molecules. This method can be performed as a high throughput screening method and a chromatographic separation method to screen a variety of active drugs. This paper summarizes the history of affinity chromatography, screening technology of affinity chromatography, and application of affinity chromatography in screening bio-active compounds in herbal medicines, and then discusses its application prospects, in order to broaden applications of the affinity chromatography in drug screening.

  12. Analysis of Biological Interactions by Affinity Chromatography: Clinical and Pharmaceutical Applications

    PubMed Central

    Hage, David S.

    2017-01-01

    BACKGROUND The interactions between biochemical and chemical agents in the body are important in many clinical processes. Affinity chromatography and high-performance affinity chromatography (HPAC), in which a column contains an immobilized biologically-related binding agent, are two methods that can be used to study these interactions. CONTENT This review looks at various approaches that can be used in affinity chromatography and HPAC to characterize the strength or rate of a biological interaction, the number and types of sites that are involved in this process, and the interactions between multiple solutes for the same binding agent. A number of applications for these methods are examined, with an emphasis on recent developments and high-performance affinity methods. These applications include the use of these techniques for fundamental studies of biological interactions, high-throughput screening of drugs, work with modified proteins, tools for personalized medicine, and studies of drug-drug competition for a common binding agent. SUMMARY The wide range of formats and detection methods that can be used with affinity chromatography and HPAC for examining biological interactions makes these tools attractive for various clinical and pharmaceutical applications. Future directions in the development of small-scale columns and the coupling of these methods with other techniques, such as mass spectrometry or other separation methods, should continue to increase the flexibility and ease with which these approaches can be used in work involving clinical or pharmaceutical samples. PMID:28396561

  13. Compound immobilization and drug-affinity chromatography.

    PubMed

    Rix, Uwe; Gridling, Manuela; Superti-Furga, Giulio

    2012-01-01

    Bioactive small molecules act through modulating a yet unpredictable number of targets. It is therefore of critical importance to define the cellular target proteins of a compound as an entry point to understanding its mechanism of action. Often, this can be achieved in a direct fashion by chemical proteomics. As with any affinity chromatography, immobilization of the bait to a solid support is one of the earliest and most crucial steps in the process. Interfering with structural features that are important for identification of a target protein will be detrimental to binding affinity. Also, many molecules are sensitive to heat or to certain chemicals, such as acid or base, and might be destroyed during the process of immobilization, which therefore needs to be not only efficient, but also mild. The subsequent affinity chromatography step needs to preserve molecular and conformational integrity of both bait compound and proteins in order to result in the desired specific enrichment while ensuring a high level of compatibility with downstream analysis by mass spectrometry. Thus, the right choice of detergent, buffer, and protease inhibitors is also essential. This chapter describes a widely applicable procedure for the immobilization of small molecule drugs and for drug-affinity chromatography with subsequent protein identification by mass spectrometry.

  14. Two-dimensional turbulent flow chromatography coupled on-line to liquid chromatography-mass spectrometry for solution-based ligand screening against multiple proteins.

    PubMed

    Zhou, Jian-Liang; An, Jing-Jing; Li, Ping; Li, Hui-Jun; Jiang, Yan; Cheng, Jie-Fei

    2009-03-20

    We present herein a novel bioseparation/chemical analysis strategy for protein-ligand screening and affinity ranking in compound mixtures, designed to increase screening rates and improve sensitivity and ruggedness in performance. The strategy is carried out by combining on-line two-dimensional turbulent flow chromatography (2D-TFC) with liquid chromatography-mass spectrometry (LC-MS), and accomplished through the following steps: (1) a reversed-phase TFC stage to separate the protein/ligand complex from the unbound free molecules, (2) an on-line dissociation process to release the bound ligands from the complexes, and (3) a second mixed-mode cation-exchange/reversed-phase TFC stage to trap the bound ligands and to remove the proteins and salts, followed by LC-MS analysis for identification and determination of the binding affinities. The technique can implement an ultra-fast isolation of protein/ligand complex with the retention time of a complex peak in about 5s, and on-line prepare the "clean" sample to be directly compatible with the LC-MS analysis. The improvement in performance of this 2D-TFC/LC-MS approach over the conventional approach has been demonstrated by determining affinity-selected ligands of the target proteins acetylcholinesterase and butyrylcholinesterase from a small library with known binding affinities and a steroidal alkaloid library composed of structurally similar compounds. Our results show that 2D-TFC/LC-MS is a generic and efficient tool for high-throughput screening of ligands with low-to-high binding affinities, and structure-activity relationship evaluation.

  15. Selection of imprinted nanoparticles by affinity chromatography.

    PubMed

    Guerreiro, António R; Chianella, Iva; Piletska, Elena; Whitcombe, Michael J; Piletsky, Sergey A

    2009-04-15

    Soluble molecularly imprinted nanoparticles were synthesised via iniferter initiated polymerisation and separated by size via gel permeation chromatography. Subsequent fractionation of these particles by affinity chromatography allowed the separation of high affinity fractions from the mixture of nanoparticles. Fractions selected this way possess affinity similar to that of natural antibodies (K(d) 6.6x10(-8)) M and were also able to discriminate between related functional analogues of the template.

  16. Identification of AOSC-binding proteins in neurons

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Nie, Qin; Xin, Xianliang; Geng, Meiyu

    2008-11-01

    Acidic oligosaccharide sugar chain (AOSC), a D-mannuronic acid oligosaccharide, derived from brown algae polysaccharide, has been completed Phase I clinical trial in China as an anti-Alzheimer’s Disease (AD) drug candidate. The identification of AOSC-binding protein(s) in neurons is very important for understanding its action mechanism. To determine the binding protein(s) of AOSC in neurons mediating its anti-AD activities, confocal microscopy, affinity chromatography, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis were used. Confocal microscopy analysis shows that AOSC binds to SH-SY5Y cells in concentration-, time-, and temperature-dependent fashions. The AOSC binding proteins were purified by affinity chromatography and identified by LC-MS/MS analysis. The results showed that there are 349 proteins binding AOSC, including clathrin, adaptor protein-2 (AP-2) and amyloid precursor protein (APP). These results suggest that the binding/entrance of AOSC to neurons is probably responsible for anti-AD activities.

  17. Method of identity analyte-binding peptides

    DOEpatents

    Kauvar, Lawrence M.

    1990-01-01

    A method for affinity chromatography or adsorption of a designated analyte utilizes a paralog as the affinity partner. The immobilized paralog can be used in purification or analysis of the analyte; the paralog can also be used as a substitute for antibody in an immunoassay. The paralog is identified by screening candidate peptide sequences of 4-20 amino acids for specific affinity to the analyte.

  18. Enrichment and Analysis of Non-enzymatically Glycated Peptides: Boronate Affinity Chromatography Coupled with Electron Transfer Dissociation Mass Spectrometry

    PubMed Central

    Zhang, Qibin; Tang, Ning; Brock, Jonathan W. C.; Mottaz, Heather M.; Ames, Jennifer M.; Baynes, John W.; Smith, Richard D.; Metz, Thomas O.

    2008-01-01

    Non-enzymatic glycation of peptides and proteins by D-glucose has important implications in the pathogenesis of diabetes mellitus, particularly in the development of diabetic complications. However, no effective high-throughput methods exist for identifying proteins containing this low abundance post-translational modification in bottom-up proteomic studies. In this report, phenylboronate affinity chromatography was used in a two-step enrichment scheme to selectively isolate first glycated proteins and then glycated, tryptic peptides from human serum glycated in vitro. Enriched peptides were subsequently analyzed by alternating electron transfer dissociation (ETD) and collision induced dissociation (CID) tandem mass spectrometry. ETD fragmentation mode permitted identification of a significantly higher number of glycated peptides (87.6% of all identified peptides) versus CID mode (17.0% of all identified peptides), when utilizing enrichment on first the protein and then the peptide level. This study illustrates that phenylboronate affinity chromatography coupled with LC-MS/MS and using ETD as the fragmentation mode is an efficient approach for analysis of glycated proteins and may have broad application in studies of diabetes mellitus. PMID:17488106

  19. Method of identity analyte-binding peptides

    DOEpatents

    Kauvar, L.M.

    1990-10-16

    A method for affinity chromatography or adsorption of a designated analyte utilizes a paralog as the affinity partner. The immobilized paralog can be used in purification or analysis of the analyte; the paralog can also be used as a substitute for antibody in an immunoassay. The paralog is identified by screening candidate peptide sequences of 4--20 amino acids for specific affinity to the analyte. 5 figs.

  20. New exopolysaccharides produced by Aureobasidium pullulans grown on glucosamine.

    PubMed

    Cescutti, Paola; Pupulin, Raffaella; Delben, Franco; Abbate, Maria; Dentini, Mariella; Sparapano, Lorenzo; Rizzo, Roberto; Crescenzi, Vittorio

    2002-07-16

    The polysaccharides produced by Aureobasidium pullulans, grown using glucosamine as the carbon source, were investigated by means of methylation analysis, affinity chromatography and NMR spectroscopy. The results indicated that, besides a small amount of pullulan, this micro-organism was capable of producing-in low yields-mixtures of at least two different complex polysaccharides containing mainly mannose and galactose. (1)H NMR spectra of two fractions obtained by lectin affinity chromatography indicated that one polymer was constituted exclusively of mannose residues while the other contained both galactofuranosyl and mannopyranosyl residues.

  1. Determine equilibrium dissociation constant of drug-membrane receptor affinity using the cell membrane chromatography relative standard method.

    PubMed

    Ma, Weina; Yang, Liu; Lv, Yanni; Fu, Jia; Zhang, Yanmin; He, Langchong

    2017-06-23

    The equilibrium dissociation constant (K D ) of drug-membrane receptor affinity is the basic parameter that reflects the strength of interaction. The cell membrane chromatography (CMC) method is an effective technique to study the characteristics of drug-membrane receptor affinity. In this study, the K D value of CMC relative standard method for the determination of drug-membrane receptor affinity was established to analyze the relative K D values of drugs binding to the membrane receptors (Epidermal growth factor receptor and angiotensin II receptor). The K D values obtained by the CMC relative standard method had a strong correlation with those obtained by the frontal analysis method. Additionally, the K D values obtained by CMC relative standard method correlated with pharmacological activity of the drug being evaluated. The CMC relative standard method is a convenient and effective method to evaluate drug-membrane receptor affinity. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Analytical FcRn affinity chromatography for functional characterization of monoclonal antibodies

    PubMed Central

    Schlothauer, Tilman; Rueger, Petra; Stracke, Jan Olaf; Hertenberger, Hubert; Fingas, Felix; Kling, Lothar; Emrich, Thomas; Drabner, Georg; Seeber, Stefan; Auer, Johannes; Koch, Stefan; Papadimitriou, Apollon

    2013-01-01

    The neonatal Fc receptor (FcRn) is important for the metabolic fate of IgG antibodies in vivo. Analysis of the interaction between FcRn and IgG in vitro might provide insight into the structural and functional integrity of therapeutic IgG that may affect pharmacokinetics (PK) in vivo. We developed a standardized pH gradient FcRn affinity liquid chromatography method with conditions closely resembling the physiological mechanism of interaction between IgG and FcRn. This method allows the separation of molecular IgG isoforms, degradation products and engineered molecules based on their affinity to FcRn. Human FcRn was immobilized on the column and a linear pH gradient from pH 5.5 to 8.8 was applied. FcRn chromatography was used in comparison to surface plasmon resonance to characterize different monoclonal IgG preparations, e.g., oxidized or aggregated species. Wild-type and engineered IgGs were compared in vitro by FcRn chromatography and in vivo by PK studies in huFcRn transgenic mice. Analytical FcRn chromatography allows differentiation of IgG samples and variants by peak pattern and retention time profile. The method can distinguish: 1) IgGs with different Fabs, 2) oxidized from native IgG, 3) aggregates from monomer and 4) antibodies with mutations in the Fc part from wild-type IgGs. Changes in the FcRn chromatographic behavior of mutant IgGs relative to the wild-type IgG correlate to changes in the PK profile in the FcRn transgenic mice. These results demonstrate that FcRn affinity chromatography is a useful new method for the assessment of IgG integrity. PMID:23765230

  3. Optimising the design and operation of semi-continuous affinity chromatography for clinical and commercial manufacture.

    PubMed

    Pollock, James; Bolton, Glen; Coffman, Jon; Ho, Sa V; Bracewell, Daniel G; Farid, Suzanne S

    2013-04-05

    This paper presents an integrated experimental and modelling approach to evaluate the potential of semi-continuous chromatography for the capture of monoclonal antibodies (mAb) in clinical and commercial manufacture. Small-scale single-column experimental breakthrough studies were used to derive design equations for the semi-continuous affinity chromatography system. Verification runs with the semi-continuous 3-column and 4-column periodic counter current (PCC) chromatography system indicated the robustness of the design approach. The product quality profiles and step yields (after wash step optimisation) achieved were comparable to the standard batch process. The experimentally-derived design equations were incorporated into a decisional tool comprising dynamic simulation, process economics and sizing optimisation. The decisional tool was used to evaluate the economic and operational feasibility of whole mAb bioprocesses employing PCC affinity capture chromatography versus standard batch chromatography across a product's lifecycle from clinical to commercial manufacture. The tool predicted that PCC capture chromatography would offer more significant savings in direct costs for early-stage clinical manufacture (proof-of-concept) (∼30%) than for late-stage clinical (∼10-15%) or commercial (∼5%) manufacture. The evaluation also highlighted the potential facility fit issues that could arise with a capture resin (MabSelect) that experiences losses in binding capacity when operated in continuous mode over lengthy commercial campaigns. Consequently, the analysis explored the scenario of adopting the PCC system for clinical manufacture and switching to the standard batch process following product launch. The tool determined the PCC system design required to operate at commercial scale without facility fit issues and with similar costs to the standard batch process whilst pursuing a process change application. A retrofitting analysis established that the direct cost savings obtained by 8 proof-of-concept batches would be sufficient to pay back the investment cost of the pilot-scale semi-continuous chromatography system. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Some parameters relevant to affinity chromatography on immobilized nucleotides

    PubMed Central

    Lowe, C. R.; Harvey, M. J.; Craven, D. B.; Dean, P. D. G.

    1973-01-01

    1. The suitability of cellulose and Sepharose as supports for affinity chromatography of two groups of cofactor-linked enzymes, dehydrogenases and kinases, was examined. Sepharose was found to be superior. 2. The selective capacities of the columns were measured by frontal analysis and are discussed in relation to the nucleotide contents. 3. The effect of various concentrations of enzyme and of non-specific protein on the performance of the affinity columns, and the effects of equilibration time, flow rate, sample volume and dilution of the nucleotide were examined. 4. The effect of interposing polymethylene and polyglycine extension arms between the matrix backbone and the nucleotide was investigated for several cofactor-dependent enzymes. Maximum binding was observed with an extension arm 0.8–1nm long. PMID:4354739

  5. High-throughput SISCAPA quantitation of peptides from human plasma digests by ultrafast, liquid chromatography-free mass spectrometry.

    PubMed

    Razavi, Morteza; Frick, Lauren E; LaMarr, William A; Pope, Matthew E; Miller, Christine A; Anderson, N Leigh; Pearson, Terry W

    2012-12-07

    We investigated the utility of an SPE-MS/MS platform in combination with a modified SISCAPA workflow for chromatography-free MRM analysis of proteotypic peptides in digested human plasma. This combination of SISCAPA and SPE-MS/MS technology allows sensitive, MRM-based quantification of peptides from plasma digests with a sample cycle time of ∼7 s, a 300-fold improvement over typical MRM analyses with analysis times of 30-40 min that use liquid chromatography upstream of MS. The optimized system includes capture and enrichment to near purity of target proteotypic peptides using rigorously selected, high affinity, antipeptide monoclonal antibodies and reduction of background peptides using a novel treatment of magnetic bead immunoadsorbents. Using this method, we have successfully quantitated LPS-binding protein and mesothelin (concentrations of ∼5000 ng/mL and ∼10 ng/mL, respectively) in human plasma. The method eliminates the need for upstream liquid-chromatography and can be multiplexed, thus facilitating quantitative analysis of proteins, including biomarkers, in large sample sets. The method is ideal for high-throughput biomarker validation after affinity enrichment and has the potential for applications in clinical laboratories.

  6. Affinity monolith chromatography: A review of general principles and applications.

    PubMed

    Li, Zhao; Rodriguez, Elliott; Azaria, Shiden; Pekarek, Allegra; Hage, David S

    2017-11-01

    Affinity monolith chromatography, or AMC, is a liquid chromatographic method in which the support is a monolith and the stationary phase is a biological-binding agent or related mimic. AMC has become popular for the isolation of biochemicals, for the measurement of various analytes, and for studying biological interactions. This review will examine the principles and applications of AMC. The materials that have been used to prepare AMC columns will be discussed, which have included various organic polymers, silica, agarose, and cryogels. Immobilization schemes that have been used in AMC will also be considered. Various binding agents and applications that have been reported for AMC will then be described. These applications will include the use of AMC for bioaffinity chromatography, immunoaffinity chromatography, dye-ligand affinity chromatography, and immobilized metal-ion affinity chromatography. The use of AMC with chiral stationary phases and as a tool to characterize biological interactions will also be examined. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Statistical theory of chromatography: new outlooks for affinity chromatography.

    PubMed Central

    Denizot, F C; Delaage, M A

    1975-01-01

    We have developed further the statistical approach to chromatography initiated by Giddings and Eyring, and applied it to affinity chromatography. By means of a convenient expression of moments the convergence towards the Laplace-Gauss distribution has been established. The Gaussian character is not preserved if other causes of dispersion are taken into account, but expressions of moments can be obtained in a generalized form. A simple procedure is deduced for expressing the fundamental constants of the model in terms of purely experimental quantities. Thus, affinity chromatography can be used to determine rate constants of association and dissociation in a range considered as the domain of the stopped-flow methods. PMID:1061072

  8. Using cell membrane chromatography and HPLC-TOF/MS method for in vivo study of active components from roots of Aconitum carmichaeli

    PubMed Central

    Cao, Yan; Chen, Xiao-Fei; Lü, Di-Ya; Dong, Xin; Zhang, Guo-Qing; Chai, Yi-Feng

    2012-01-01

    An offline two-dimensional system combining a rat cardiac muscle cell membrane chromatography time-of-flight mass spectrometry (CMC-TOF/MS) with a high Performance liquid chromatography time-of-flight mass spectrometry (HPLC-TOF/MS) was established for investigating the parent components and metabolites in rat urine samples after administration of the roots of Aconitum carmichaeli. On the basis ofthe analysis of the first dimension, retention components of the urine sample were collected into 30 fractions (one fraction per minute). Then offline analysis of the second dimension was carried out. 34 compounds including 24 parent alkaloids and 10 potential metabolites were identified from the dosed rat urine, and then binding affinities of different compounds on cell membranes were compared and influences of some functional groups on activity were estimated with the semi-quantification and curve fitting method. As a result, binding affinities decreased along with the process of deacylation, debenzoylation and demethylation, which may be related to the alleviation of toxicity in the procedure of herb processing or metabolism. Moreover, some minor components in rat urine (Songorine, 14-benzoylneoline, Deoxyaconitine, etc.) exerted relatively strong affinity on cell membranes are worth exploring. The results delivered by the System suggest that the CMC can be applied to in vivo study. PMID:29403691

  9. Weak affinity chromatography for evaluation of stereoisomers in early drug discovery.

    PubMed

    Duong-Thi, Minh-Dao; Bergström, Maria; Fex, Tomas; Svensson, Susanne; Ohlson, Sten; Isaksson, Roland

    2013-07-01

    In early drug discovery (e.g., in fragment screening), recognition of stereoisomeric structures is valuable and guides medicinal chemists to focus only on useful configurations. In this work, we concurrently screened mixtures of stereoisomers and estimated their affinities to a protein target (thrombin) using weak affinity chromatography-mass spectrometry (WAC-MS). Affinity determinations by WAC showed that minor changes in stereoisomeric configuration could have a major impact on affinity. The ability of WAC-MS to provide instant information about stereoselectivity and binding affinities directly from analyte mixtures is a great advantage in fragment library screening and drug lead development.

  10. Camelid VHH affinity ligands enable separation of closely related biopharmaceuticals

    PubMed Central

    Pabst, Timothy M.; Wendeler, Michaela; Wang, Xiangyang; Bezemer, Sandra; Hermans, Pim

    2016-01-01

    Abstract Interest in new and diverse classes of molecules such as recombinant toxins, enzymes, and blood factors continues to grow for use a biotherapeutics. Compared to monoclonal antibodies, these novel drugs typically lack a commercially available affinity chromatography option, which leads to greater process complexity, longer development timelines, and poor platformability. To date, for both monoclonal antibodies and novel molecules, affinity chromatography has been mostly reserved for separation of process‐related impurities such as host cell proteins and DNA. Reports of affinity purification of closely related product variants and modified forms are much rarer. In this work we describe custom affinity chromatography development using camelid VHH antibody fragments as "tunable" immunoaffinity ligands for separation of product‐related impurities. One example demonstrates high selectivity for a recombinant immunotoxin where no binding was observed for an undesired deamidated species. Also discussed is affinity purification of a coagulation factor through specific recognition of the gamma‐carboxylglutamic acid domain. PMID:27677057

  11. Purification of phage display-modified bacteriophage T4 by affinity chromatography

    PubMed Central

    2011-01-01

    Background Affinity chromatography is one of the most efficient protein purification strategies. This technique comprises a one-step procedure with a purification level in the order of several thousand-fold, adaptable for various proteins, differentiated in their size, shape, charge, and other properties. The aim of this work was to verify the possibility of applying affinity chromatography in bacteriophage purification, with the perspective of therapeutic purposes. T4 is a large, icosahedral phage that may serve as an efficient display platform for foreign peptides or proteins. Here we propose a new method of T4 phage purification by affinity chromatography after its modification with affinity tags (GST and Histag) by in vivo phage display. As any permanent introduction of extraneous DNA into a phage genome is strongly unfavourable for medical purposes, integration of foreign motifs with the phage genome was not applied. The phage was propagated in bacteria expressing fusions of the phage protein Hoc with affinity tags from bacterial plasmids, independently from the phage expression system. Results Elution profiles of phages modified with the specific affinity motifs (compared to non-specific phages) document their binding to the affinity resins and effective elution with standard competitive agents. Non-specific binding was also observed, but was 102-105 times weaker than the specific one. GST-modified bacteriophages were also effectively released from glutathione Sepharose by proteolytic cleavage. The possibility of proteolytic release was designed at the stage of expression vector construction. Decrease in LPS content in phage preparations was dependent on the washing intensity; intensive washing resulted in preparations of 11-40 EU/ml. Conclusions Affinity tags can be successfully incorporated into the T4 phage capsid by the in vivo phage display technique and they strongly elevate bacteriophage affinity to a specific resin. Affinity chromatography can be considered as a new phage purification method, appropriate for further investigations and development. PMID:21627821

  12. Detection and Identification of Heme c-Modified Peptides by Histidine Affinity Chromatography, High-Performance Liquid Chromatography-Mass Spectrometry, and Database Searching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merkley, Eric D.; Anderson, Brian J.; Park, Jea H.

    2012-12-07

    Multiheme c-type cytochromes (proteins with covalently attached heme c moieties) play important roles in extracellular metal respiration in dissimilatory metal-reducing bacteria. Liquid chromatography-tandem mass spectrometry-(LC-MS/MS) characterization of c-type cytochromes is hindered by the presence of multiple heme groups, since the heme c modified peptides are typically not observed, or if observed, not identified. Using a recently reported histidine affinity chromatography (HAC) procedure, we enriched heme c tryptic peptides from purified bovine heart cytochrome c, a bacterial decaheme cytochrome, and subjected these samples to LC-MS/MS analysis. Enriched bovine cytochrome c samples yielded three- to six-fold more confident peptide-spectrum matches to heme-cmore » containing peptides than unenriched digests. In unenriched digests of the decaheme cytochrome MtoA from Sideroxydans lithotrophicus ES-1, heme c peptides for four of the ten expected sites were observed by LC-MS/MS; following HAC fractionation, peptides covering nine out of ten sites were obtained. Heme c peptide spiked into E. coli lysates at mass ratios as low as 10-4 was detected with good signal-to-noise after HAC and LC-MS/MS analysis. In addition to HAC, we have developed a proteomics database search strategy that takes into account the unique physicochemical properties of heme c peptides. The results suggest that accounting for the double thioether link between heme c and peptide, and the use of the labile heme fragment as a reporter ion, can improve database searching results. The combination of affinity chromatography and heme-specific informatics yielded increases in the number of peptide-spectrum matches of 20-100-fold for bovine cytochrome c.« less

  13. Comparative Normal/Failing Rat Myocardium Cell Membrane Chromatographic Analysis System for Screening Specific Components That Counteract Doxorubicin-Induced Heart Failure from Acontium carmichaeli

    PubMed Central

    2015-01-01

    Cell membrane chromatography (CMC) derived from pathological tissues is ideal for screening specific components acting on specific diseases from complex medicines owing to the maximum simulation of in vivo drug-receptor interactions. However, there are no pathological tissue-derived CMC models that have ever been developed, as well as no visualized affinity comparison of potential active components between normal and pathological CMC columns. In this study, a novel comparative normal/failing rat myocardium CMC analysis system based on online column selection and comprehensive two-dimensional (2D) chromatography/monolithic column/time-of-flight mass spectrometry was developed for parallel comparison of the chromatographic behaviors on both normal and pathological CMC columns, as well as rapid screening of the specific therapeutic agents that counteract doxorubicin (DOX)-induced heart failure from Acontium carmichaeli (Fuzi). In total, 16 potential active alkaloid components with similar structures in Fuzi were retained on both normal and failing myocardium CMC models. Most of them had obvious decreases of affinities on failing myocardium CMC compared with normal CMC model except for four components, talatizamine (TALA), 14-acetyl-TALA, hetisine, and 14-benzoylneoline. One compound TALA with the highest affinity was isolated for further in vitro pharmacodynamic validation and target identification to validate the screen results. Voltage-dependent K+ channel was confirmed as a binding target of TALA and 14-acetyl-TALA with high affinities. The online high throughput comparative CMC analysis method is suitable for screening specific active components from herbal medicines by increasing the specificity of screened results and can also be applied to other biological chromatography models. PMID:24731167

  14. The Binding of Biotin to Sepharose-Avidin Column: Demonstration of the Affinity Chromatography Technique

    ERIC Educational Resources Information Center

    Landman, A. D.; Landman, N. N.

    1976-01-01

    Describes a biochemistry experiment that illustrates the methodology of affinity chromatography by attaching avidin, a glycoprotein in egg white, to a Sepharose matrix in order to bind biotin-containing proteins. (MLH)

  15. Characterization of the human submandibular/sublingual saliva glycoproteome using lectin affinity chromatography coupled to Multidimensional Protein Identification Technology

    PubMed Central

    Gonzalez-Begne, Mireya; Lu, Bingwen; Liao, Lujian; Xu, Tao; Bedi, Gurrinder; Melvin, James E.; Yates, John R.

    2011-01-01

    In-depth analysis of the salivary proteome is fundamental to understanding the functions of salivary proteins in the oral cavity and to reveal disease biomarkers involved in different pathophysiological conditions, with the ultimate goal of improving patient diagnosis and prognosis. Submandibular and sublingual glands contribute saliva rich in glycoproteins to the total saliva output, making them valuable sources for glycoproteomic analysis. Lectin-affinity chromatography coupled to mass spectrometry-based shotgun proteomics was used to explore the submandibular/sublingual (SM/SL) saliva glycoproteome. A total of 262 N- and O-linked glycoproteins were identified by multidimensional protein identification technology (MudPIT). Only 38 were previously described in SM and SL salivas from the human salivary N-linked glycoproteome, while 224 were unique. Further comparison analysis with SM/SL saliva of the human saliva proteome, revealed 125 glycoproteins not formerly reported in this secretion. KEGG pathway analyses demonstrated that many of these glycoproteins are involved in processes such as complement and coagulation cascades, cell communication, glycosphingolipid biosynthesis neo-lactoseries, O-glycan biosynthesis, glycan structures-biosynthesis 2, starch and sucrose metabolism, peptidoglycan biosynthesis or others pathways. In summary, lectin-affinity chromatography coupled to MudPIT mass spectrometry identified many novel glycoproteins in SM/SL saliva. These new additions to the salivary proteome may prove to be a critical step for providing reliable biomarkers in the diagnosis of a myriad of oral and systemic diseases. PMID:21936497

  16. Affinity chromatographic purification of tetrodotoxin by use of tetrodotoxin-binding high molecular weight substances in the body fluid of shore crab (Hemigrapsus sanguineus) as ligands.

    PubMed

    Shiomi, K; Yamaguchi, S; Shimakura, K; Nagashima, Y; Yamamori, K; Matsui, T

    1993-12-01

    A purification method for tetrodotoxin (TTX), based on affinity chromatography using the TTX-binding high mol. wt substances in the body fluid of shore crab (Hemigrapsus sanguineus) as ligands, was developed. This method was particularly useful for analysis of TTX in biological samples with low concentrations of TTX. The affinity gel prepared was highly specific for TTX, having no ability to bind 4-epi-TTX and anhydro-TTX as well as saxitoxin.

  17. Affinity chromatography: A versatile technique for antibody purification.

    PubMed

    Arora, Sushrut; Saxena, Vikas; Ayyar, B Vijayalakshmi

    2017-03-01

    Antibodies continue to be extremely utilized entities in myriad applications including basic research, imaging, targeted delivery, chromatography, diagnostics, and therapeutics. At production stage, antibodies are generally present in complex matrices and most of their intended applications necessitate purification. Antibody purification has always been a major bottleneck in downstream processing of antibodies, due to the need of high quality products and associated high costs. Over the years, extensive research has focused on finding better purification methodologies to overcome this holdup. Among a plethora of different techniques, affinity chromatography is one of the most selective, rapid and easy method for antibody purification. This review aims to provide a detailed overview on affinity chromatography and the components involved in purification. An array of support matrices along with various classes of affinity ligands detailing their underlying working principles, together with the advantages and limitations of each system in purifying different types of antibodies, accompanying recent developments and important practical methodological considerations to optimize purification procedure are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Solubilization and purification of melatonin receptors from lizard brain.

    PubMed

    Rivkees, S A; Conron, R W; Reppert, S M

    1990-09-01

    Melatonin receptors in lizard brain were identified and characterized using 125I-labeled melatonin ([125I]MEL) after solubilization with the detergent digitonin. Saturation studies of solubilized material revealed a high affinity binding site, with an apparent equilibrium dissociation constant of 181 +/- 45 pM. Binding was reversible and inhibited by melatonin and closely related analogs, but not by serotonin or norepinephrine. Treatment of solubilized material with the non-hydrolyzable GTP analog, guanosine 5'-(3-O-thiotriphosphate) (GTP-gamma-S), significantly reduced receptor affinity. Gel filtration chromatography of solubilized melatonin receptors revealed a high affinity, large (Mr 400,000) peak of specific binding. Pretreatment with GTP-gamma-S before solubilization resulted in elution of a lower affinity, smaller (Mr 150,000) peak of specific binding. To purify solubilized receptors, a novel affinity chromatography resin was developed by coupling 6-hydroxymelatonin with Epoxy-activated Sepharose 6B. Using this resin, melatonin receptors were purified approximately 10,000-fold. Purified material retained the pharmacologic specificity of melatonin receptors. These results show that melatonin receptors that bind ligand after detergent treatment can be solubilized and substantially purified by affinity chromatography.

  19. Bacillus Collagen Like Protein of Anthracis: Immunological and Functional Analyses

    DTIC Science & Technology

    2007-09-21

    heated at 65°C for 30 minutes, diluted, and plated on trypticase soy agar (TSA) to obtain viable counts. Since heat treatment kills the vegetative...purification of that protein by nickel-affinity chromatography are also described in detail elsewhere (Brahmbhatt T.N, lK. Janes, E.S. Stibitz, S.C...Trap Nickel affinity column chromatography with the Fast Phase Liquid Chromatography (FPLC) AKTA system (GE Healthcare, Piscataway, NJ). Rabbit anti

  20. Evaluation of Quantitative Performance of Sequential Immobilized Metal Affinity Chromatographic Enrichment for Phosphopeptides

    PubMed Central

    Sun, Zeyu; Hamilton, Karyn L.; Reardon, Kenneth F.

    2014-01-01

    We evaluated a sequential elution protocol from immobilized metal affinity chromatography (SIMAC) employing gallium-based immobilized metal affinity chromatography (IMAC) in conjunction with titanium-dioxide-based metal oxide affinity chromatography (MOAC). The quantitative performance of this SIMAC enrichment approach, assessed in terms of repeatability, dynamic range, and linearity, was evaluated using a mixture composed of tryptic peptides from caseins, bovine serum albumin, and phosphopeptide standards. While our data demonstrate the overall consistent performance of the SIMAC approach under various loading conditions, the results also revealed that the method had limited repeatability and linearity for most phosphopeptides tested, and different phosphopeptides were found to have different linear ranges. These data suggest that, unless additional strategies are used, SIMAC should be regarded as a semi-quantitative method when used in large-scale phosphoproteomics studies in complex backgrounds. PMID:24096195

  1. Applications of alginate in bioseparation of proteins.

    PubMed

    Jain, Sulakshana; Mondal, Kalyani; Gupta, Munishwar N

    2006-01-01

    Alginate is a polysaccharide that is a block polymer consisting of block units of guluronic acid and mannuronic acid. It shows inherent biological affinity for a variety of enzymes such as pectinase, lipase, phospholipase D, a and ss amylases and glucoamylase. Taking advantage of its precipitation with Ca2+ and the above-mentioned property, alginate has been used for purification of these enzymes by affinity precipitation, aqueous two phase separation, macroaffinity ligand facilitated three phase partitioning, immobilized metal affinity chromatography and expanded bed affinity chromatography. Thus, this versatile marine resource has tremendous potential in bioseparation of proteins.

  2. Purification of bacteriophage lambda repressor

    PubMed Central

    Gao, Ning; Shearwin, Keith; Mack, John; Finzi, Laura; Dunlap, David

    2013-01-01

    Bacteriophage lambda repressor controls the lysogeny/lytic growth switch after infection of E. coli by lambda phage. In order to study in detail the looping of DNA mediated by the protein, tag-free repressor and a loss-of-cooperativity mutant were expressed in E.coli and purified by (1) ammonium sulfate fractionation, (2) anion-exchange chromatography and (3) heparin affinity chromatography. This method employs more recently developed and readily available chromatography resins to produce highly pure protein in good yield. In tethered particle motion looping assays and atomic force microscopy “footprinting” assays, both the wild-type protein and a C-terminal His-tagged variant, purified using immobilized metal affinity chromatography, bound specifically to high affinity sites to mediate loop formation. In contrast the G147D loss-of-cooperativity mutant bound specifically but did not secure loops. PMID:23831434

  3. Purification, Characterization, and Sensitivity to Pesticides of Carboxylesterase From Dendrolimus superans (Lepidoptera: Lasiocampidae)

    PubMed Central

    Zou, Chuan-shan; Cao, Chuan-wang; Zhang, Guo-cai; Wang, Zhi-ying

    2014-01-01

    Abstract Through a combination of steps including centrifugation, ammonium sulfate gradient precipitation, sephadex G-25 gel chromatography, diethylaminoethyl cellulose 52 ion-exchange chromatography and hydroxyapatite affinity chromatography, carboxylesterase (CarE, EC3.1.1.1) from sixth instar larch caterpillar moth, Dendrolimus superans (Lepidoptera: Lasiocampidae) larvae was purified and its biochemical properties were compared between crude homogenate and purified CarE. The final purified CarE after hydroxyapatite chromatography had a specific activity of 52.019 μmol/(min·mg protein), 138.348-fold of crude homogenate, and the yield of 2.782%. The molecular weight of the purified CarE was approximately 84.78 kDa by SDS-PAGE. Three pesticides (dichlorvos, lambda-cyhalothrin, and avermectins) showed different inhibition to crude CarE and purified CarE, respectively. In vitro median inhibitory concentration indicated that the sensitivity of CarE (both crude homogenate and final purified CarE) to pesticides was in decreasing order of dichlorvos > avermectins > lambda-cyhalothrin. By the kinetic analysis, the substrates alpha-naphthyl acetate (α-NA) and beta-naphthyl acetate (β-NA) showed lesser affinity to crude extract than purified CarE. The results also indicated that both crude homogenate and purified CarE had more affinity to α-NA than to β-NA, and the Kcat and Vmax values of crude extract were lower than purified CarE using α-NA or β-NA as substrate. PMID:25525114

  4. Application of coupled affinity-sizing chromatography for the detection of proteolyzed HSA-tagged proteins.

    PubMed

    London, Anne Serdakowski; Patel, Kunal; Quinn, Lisa; Lemmerer, Martin

    2015-04-01

    Coupled affinity liquid chromatography and size exclusion chromatography (ALC-SEC) is a technique that has been shown to successfully report product quality of proteins during cell expression and prior to the commencement of downstream processing chromatography steps. This method was applied to monitoring the degradation and subsequent partial remediation of a HSA-tagged protein which showed proteolysis, allowing for rapid cell line development to address this product quality dilemma. This paper outlines the novel application of this method for measuring and addressing protease-induced proteolysis. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. A Lectin Purified from Blood Red Bracket Mushroom, Pycnoporus sanguineus (Agaricomycetidae), Mycelium Displayed Affinity Toward Bovine Transferrin.

    PubMed

    Albores, Silvana; Moros, Maria; Cerdeiras, Maria Pia; de la Fuente, Jesus Martinez; Grazu, Valeria; Fraguas, Laura Franco

    2016-01-01

    Fungal lectins constitute excellent ligands for development of affinity adsorbents useful in affinity chromatography. In this work, a lectin was purified from Pycnoporus sanguineus (PSL) mycelium using 3 procedures: by affinity chromatography, using magnetic galactosyl-nanoparticles or galactose coupled to Sepharose, and by ionic exchange chromatography (IEC). The highest lectin yield was achieved by IEC (55%); SDS-PAGE of PSL showed 2 bands with molecular mass of 68.7 and 55.2 kDa and IEC displayed 2 bands at pi 5.5 and 5.2. The lectin agglutinates rat erythrocytes, exhibiting broad specificity toward several monosaccharides, including galactose. The agglutination was also inhibited by the glycoproteins fetal calf fetuin, bovine lactoferrin, bovine transferrin, and horseradish peroxidase. The lectin was then used to synthesize an affinity adsorbent (PSL-Sepharose) and the interaction with glycoproteins was evaluated by analyzing their chromatographic behaviors. The strongest interaction with the PSL-derivative was observed with transferrin, although lower interactions were also displayed toward fetuin and lactoferrin. These results indicate that the purified PSL constitutes an interesting ligand for the design of affinity adsorbents to be used (i.e., in glycoprotein purification).

  6. Solubilization and purification of melatonin receptors from lizard brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivkees, S.A.; Conron, R.W. Jr.; Reppert, S.M.

    Melatonin receptors in lizard brain were identified and characterized using {sup 125}I-labeled melatonin (({sup 125}I)MEL) after solubilization with the detergent digitonin. Saturation studies of solubilized material revealed a high affinity binding site, with an apparent equilibrium dissociation constant of 181 +/- 45 pM. Binding was reversible and inhibited by melatonin and closely related analogs, but not by serotonin or norepinephrine. Treatment of solubilized material with the non-hydrolyzable GTP analog, guanosine 5'-(3-O-thiotriphosphate) (GTP-gamma-S), significantly reduced receptor affinity. Gel filtration chromatography of solubilized melatonin receptors revealed a high affinity, large (Mr 400,000) peak of specific binding. Pretreatment with GTP-gamma-S before solubilization resultedmore » in elution of a lower affinity, smaller (Mr 150,000) peak of specific binding. To purify solubilized receptors, a novel affinity chromatography resin was developed by coupling 6-hydroxymelatonin with Epoxy-activated Sepharose 6B. Using this resin, melatonin receptors were purified approximately 10,000-fold. Purified material retained the pharmacologic specificity of melatonin receptors. These results show that melatonin receptors that bind ligand after detergent treatment can be solubilized and substantially purified by affinity chromatography.« less

  7. Protein purification by aminosquarylium cyanine dye-affinity chromatography.

    PubMed

    Silva, M S; Graça, V C; Reis, L V; Santos, P F; Almeida, P; Queiroz, J A; Sousa, F

    2013-12-01

    The most selective purification method for proteins and other biomolecules is affinity chromatography. This method is based on the unique biological-based specificity of the biomolecule-ligand interaction and commonly uses biological ligands. However, these ligands may present some drawbacks, mainly because of their cost and lability. Dye-affinity chromatography overcomes the limitations of biological ligands and is widely used owing to the low cost of synthetic dyes and to their resistance to biological and chemical degradation. In this work, immobilized aminosquarylium cyanine dyes are used in order to exploit affinity interactions with standard proteins such as lysozyme, α-chymotrypsin and trypsin. These studies evaluate the affinity interactions occurring between the immobilized ligand and the different proteins, as a reflection of the sum of several molecular interactions, namely ionic, hydrophobic and van der Waals, spread throughout the structure, in a defined spatial manner. The results show the possibility of using an aminosquarylium cyanine dye bearing a N-hexyl pendant chain, with a ligand density of 1.8 × 10(-2) mmol of dye/g of chromatographic support, to isolate lysozyme, α-chymotrypsin and trypsin from a mixture. The application of a decreasing ammonium sulfate gradient resulted in the recovery of lysozyme in the flowthrough. On the other hand, α-chymotrypsin and trypsin were retained, involving different interactions with the ligand. In conclusion, this study demonstrates the potential applicability of ligands such as aminosquarylium cyanine dyes for the separation and purification of proteins by affinity chromatography. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Determination of soluble immunoglobulin G in bovine colostrum products by Protein G affinity chromatography-turbidity correction and method validation.

    PubMed

    Holland, Patrick T; Cargill, Anne; Selwood, Andrew I; Arnold, Kate; Krammer, Jacqueline L; Pearce, Kevin N

    2011-05-25

    Immunoglobulin-containing food products and nutraceuticals such as bovine colostrum are of interest to consumers as they may provide health benefits. Commercial scale colostrum products are valued for their immunoglobulin G (IgG) content and therefore require accurate analysis. One of the most commonly used methods for determining total soluble IgG in colostrum products is based on affinity chromatography using a Protein G column and UV detection. This paper documents improvements to the accuracy of the Protein G analysis of IgG in colostrum products, especially those containing aggregated forms of IgG. Capillary electrophoresis-sodium dodecyl sulfate (CE-SDS) analysis confirmed that aggregated IgG measured by Protein G does not contain significant amounts of casein or other milk proteins. Size exclusion chromatography identified the content of soluble IgG as mainly monomeric IgG and aggregated material MW > 450 kDa with small amounts of dimer and trimer. The turbidity of the eluting IgG, mainly associated with aggregated IgG, had a significant effect on the quantitative results. Practical techniques were developed to correct affinity LC data for turbidity on an accurate, consistent, and efficient basis. The method was validated in two laboratories using a variety of colostrum powders. Precision for IgG was 2-3% (RSD(r)) and 3-12% (RSD(R)). Recovery was 100.2 ± 2.4% (mean ± RSD, n = 10). Greater amounts of aggregated IgG were solubilized by a higher solution:sample ratio and extended times of mixing or sonication, especially for freeze-dried material. It is concluded that the method without acid precipitation and with turbidity correction provides accurate, precise, and robust data for total soluble IgG and is suitable for product specification and quality control of colostrum products.

  9. Affinity Chromatography in Nonionic Detergent Solutions

    NASA Astrophysics Data System (ADS)

    Robinson, Jack B.; Strottmann, James M.; Wick, Donald G.; Stellwagen, Earle

    1980-10-01

    Anionic dye affinity chromatography is commonly unproductive in the presence of nonionic detergents used to extract particulate proteins. Using lactate dehydrogenase as a model protein, Cibacron blue F3GA as a model dye, and Triton X-100 as a model detergent, we find that the dye is encapsulated in nonionic detergent micelles, rendering the dye incapable of ligation with the enzyme. However, the dye can be liberated from the micelles without altering the nonionic detergent concentration by addition of an anionic detergent, such as deoxycholate or sodium dodecyl sulfate, forming mixed anionic/nonionic micelles that displace the anionic dye. Encapsulation of the anionic detergents prevents their activity as protein denaturants. These observations have been successfully translated to the dye affinity chromatography of a detergent extract of brain particulate cyclic nucleotide phosphodiesterase.

  10. Phospholipid bilayer affinities and solvation characteristics by electrokinetic chromatography with a nanodisc pseudostationary phase.

    PubMed

    Penny, William M; Steele, Harmen B; Ross, J B Alexander; Palmer, Christopher P

    2017-03-01

    Phospholipid bilayer nanodiscs composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine and synthetic maleic acid-styrene copolymer belts have been introduced as a pseudostationary phase (PSP) in electrokinetic chromatography and demonstrated good performance. The nanodiscs provide a suitable migration range and high theoretical plate counts. Using this nanodisc pseudostationary phase, the affinity of the bilayer structure for probe solutes was determined and characterized. Good correlation is observed between retention factors and octanol water partition coefficients for particular categories of solutes, but the general correlation is weak primarily because the nanodiscs show stronger affinity than octanol for hydrogen bond donors. This suggests that a more appropriate application of this technology is to measure and characterize interactions between solutes and lipid bilayers directly. Linear solvation energy relationship analysis of the nanodisc-solute interactions in this study demonstrates that the nanodiscs provide a solvation environment with low cohesivity and weak hydrogen bond donating ability, and provide relatively strong hydrogen bond acceptor strength. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Chitin-coated Celite as an affinity adsorbent for high-performance liquid chromatography of lysozyme.

    PubMed

    Yamada, H; Fukumura, T; Ito, Y; Imoto, T

    1985-04-01

    Preparation of chitin-coated Celite as an affinity adsorbent for high-performance liquid chromatography of lysozymes and its application to separation of N-bromosuccinimide-oxidized lysozymes are described. By pH gradient elution, two diastereomers of oxindolealanine-62-lysozyme, delta 1-acetoxytryptophan-62-lysozyme (intermediate product in the reaction in acetate buffer), and native lysozyme were all separated within 40 min.

  12. Lactosylamidine-based affinity purification for cellulolytic enzymes EG I and CBH I from Hypocrea jecorina and their properties.

    PubMed

    Ogata, Makoto; Kameshima, Yumiko; Hattori, Takeshi; Michishita, Kousuke; Suzuki, Tomohiro; Kawagishi, Hirokazu; Totani, Kazuhide; Hiratake, Jun; Usui, Taichi

    2010-12-10

    Selective adsorption and separation of β-glucosidase, endo-acting endo-β-(1→4)-glucanase I (EG I), and exo-acting cellobiohydrolase I (CBH I) were achieved by affinity chromatography with β-lactosylamidine as ligand. A crude cellulase preparation from Hypocrea jecorina served as the source of enzyme. When crude cellulase was applied to the lactosylamidine-based affinity column, β-glucosidase appeared in the unbound fraction. By contrast, EG I and CBH I were retained on the column and then separated from each other by appropriately adjusting the elution conditions. The relative affinities of the enzymes, based on their column elution conditions, were strongly dependent on the ligand. The highly purified EG I and CBH I, obtained by affinity chromatography, were further purified by Mono P and DEAE chromatography, respectively. EG I and CBH I cleave only at the phenolic bond in p-nitrophenyl glycosides with lactose and N-acetyllactosamine (LacNAc). By contrast, both scissile bonds in p-nitrophenyl glycosides with cellobiose were subject to hydrolysis although with important differences in their kinetic parameters. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Supramolecular Affinity Chromatography for Methylation-Targeted Proteomics.

    PubMed

    Garnett, Graham A E; Starke, Melissa J; Shaurya, Alok; Li, Janessa; Hof, Fraser

    2016-04-05

    Proteome-wide studies of post-translationally methylated species using mass spectrometry are complicated by high sample diversity, competition for ionization among peptides, and mass redundancies. Antibody-based enrichment has powered methylation proteomics until now, but the reliability, pan-specificity, polyclonal nature, and stability of the available pan-specific antibodies are problematic and do not provide a standard, reliable platform for investigators. We have invented an anionic supramolecular host that can form host-guest complexes selectively with methyllysine-containing peptides and used it to create a methylysine-affinity column. The column resolves peptides on the basis of methylation-a feat impossible with a comparable commercial cation-exchange column. A proteolyzed nuclear extract was separated on the methyl-affinity column prior to standard proteomics analysis. This experiment demonstrates that such chemical methyl-affinity columns are capable of enriching and improving the analysis of methyllysine residues from complex protein mixtures. We discuss the importance of this advance in the context of biomolecule-driven enrichment methods.

  14. A novel approach for separating bacteriophages from other bacteriophages using affinity chromatography and phage display.

    PubMed

    Ceglarek, Izabela; Piotrowicz, Agnieszka; Lecion, Dorota; Miernikiewicz, Paulina; Owczarek, Barbara; Hodyra, Katarzyna; Harhala, Marek; Górski, Andrzej; Dąbrowska, Krystyna

    2013-11-14

    Practical applications of bacteriophages in medicine and biotechnology induce a great need for technologies of phage purification. None of the popular methods offer solutions for separation of a phage from another similar phage. We used affinity chromatography combined with competitive phage display (i) to purify T4 bacteriophage from bacterial debris and (ii) to separate T4 from other contaminating bacteriophages. In 'competitive phage display' bacterial cells produced both wild types of the proteins (expression from the phage genome) and the protein fusions with affinity tags (expression from the expression vectors). Fusion proteins were competitively incorporated into the phage capsid. It allowed effective separation of T4 from a contaminating phage on standard affinity resins.

  15. A novel approach for separating bacteriophages from other bacteriophages using affinity chromatography and phage display

    PubMed Central

    Ceglarek, Izabela; Piotrowicz, Agnieszka; Lecion, Dorota; Miernikiewicz, Paulina; Owczarek, Barbara; Hodyra, Katarzyna; Harhala, Marek; Górski, Andrzej; Dąbrowska, Krystyna

    2013-01-01

    Practical applications of bacteriophages in medicine and biotechnology induce a great need for technologies of phage purification. None of the popular methods offer solutions for separation of a phage from another similar phage. We used affinity chromatography combined with competitive phage display (i) to purify T4 bacteriophage from bacterial debris and (ii) to separate T4 from other contaminating bacteriophages. In ‘competitive phage display’ bacterial cells produced both wild types of the proteins (expression from the phage genome) and the protein fusions with affinity tags (expression from the expression vectors). Fusion proteins were competitively incorporated into the phage capsid. It allowed effective separation of T4 from a contaminating phage on standard affinity resins. PMID:24225840

  16. Covalent cross-linking of insulin-like growth factor-1 to a specific inhibitor from human serum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ooi, G.T.; Herington, A.C.

    1986-05-29

    Previous studies have shown that a specific inhibitor of insulin-like growth factor (IGF) action in vitro can be isolated from normal human serum and subsequently partially purified on an IGF-affinity column. The ability of the inhibitor to bind the IGFs has now been confirmed directly using covalent cross-linking techniques. When /sup 125/I-IGF-1 was cross-linked to inhibitor using disuccinimidyl suberate, five specifically labelled bands were seen on SDS-PAGE and autoradiography. Two bands (MW 21.5 K and 25.5 K) were intensely labelled, while the remaining three (MW 37 K, 34 K and 18 K) appeared as minor bands only. Inhibitor bioactivity, followingmore » further analysis by hydrophobic interaction chromatography or Con A-Sepharose affinity chromatography, was always associated with the presence of the 21.5 K and/or 25.5 K bands.« less

  17. Studies on gonadotropin receptor of rat ovary and testis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Q.

    1989-01-01

    The subunit structure of the testicular LH/hCG receptor was studied by a chemical cross-linking technique. Leydig cells isolated from rat testis were incubated with {sup 125}I-hCG, following which the bound {sup 125}I-hCG was covalently cross-linked to the receptor on the cell surface with a cleavable or a non-cleavable cross-linking reagent. The hormone-receptor complex was extracted and then either subjected to gel permeation chromatography under nondenaturing conditions, or resolved by SDS-polyacrylamide gel electrophoresis, followed by autoradiographic analysis. The ovarian LH/hCG receptor was studied with luteal cells from pseudopregnant rats. Purification of the receptor was achieved by ligand affinity chromatography following detergentmore » solubilization of the plasma membrane. The purified hCG receptor displayed properties identical to the membrane bound receptor with regard to binding specificity and affinity, and exhibited a molecular weight of approximately 130,000 dalton.« less

  18. Purification and characterization of a new type lactose-binding Ulex europaeus lectin by affinity chromatography.

    PubMed

    Konami, Y; Yamamoto, K; Osawa, T

    1991-02-01

    A new type lactose-binding lectin was purified from extracts of Ulex europaeus seeds by affinity chromatography on a column of galactose-Sepharose 4B, followed by gel filtration on Sephacryl S-300. This lectin, designated as Ulex europaeus lectin III (UEA-III), was found to be inhibited by lactose. The dimeric lectin is a glycoprotein with a molecular mass of 70,000 Da; it consists of two apparently identical subunits of a molecular mass of 34,000 Da. Compositional analysis showed that this lectin contains 30% carbohydrate and a large amount of aspartic acid, serine and valine, but no sulfur-containing amino acids. The N-terminal amino-acid sequences of L-fucose-binding Ulex europaeus lectin I (UEA-I) and di-N-acetylchitobiose-binding Ulex europaeus lectin II (UEA-II), both of which we have already purified and characterized, and that of UEA-III were determined and compared.

  19. PDZ affinity chromatography: a general method for affinity purification of proteins based on PDZ domains and their ligands.

    PubMed

    Walkup, Ward G; Kennedy, Mary B

    2014-06-01

    PDZ (PSD-95, DiscsLarge, ZO1) domains function in nature as protein binding domains within scaffold and membrane-associated proteins. They comprise ∼90 residues and make specific, high affinity interactions with complementary C-terminal peptide sequences, with other PDZ domains, and with phospholipids. We hypothesized that the specific, strong interactions of PDZ domains with their ligands would make them well suited for use in affinity chromatography. Here we describe a novel affinity chromatography method applicable for the purification of proteins that contain PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We created a series of affinity resins comprised of PDZ domains from the scaffold protein PSD-95, or from neuronal nitric oxide synthase (nNOS), coupled to solid supports. We used them to purify heterologously expressed neuronal proteins or protein domains containing endogenous PDZ domain ligands, eluting the proteins with free PDZ domain peptide ligands. We show that Proteins of Interest (POIs) lacking endogenous PDZ domain ligands can be engineered as fusion products containing C-terminal PDZ domain ligand peptides or internal, N- or C-terminal PDZ domains and then can be purified by the same method. Using this method, we recovered recombinant GFP fused to a PDZ domain ligand in active form as verified by fluorescence yield. Similarly, chloramphenicol acetyltransferase (CAT) and β-Galactosidase (LacZ) fused to a C-terminal PDZ domain ligand or an N-terminal PDZ domain were purified in active form as assessed by enzymatic assay. In general, PDZ domains and ligands derived from PSD-95 were superior to those from nNOS for this method. PDZ Domain Affinity Chromatography promises to be a versatile and effective method for purification of a wide variety of natural and recombinant proteins. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Alternative Affinity Ligands for Immunoglobulins.

    PubMed

    Kruljec, Nika; Bratkovič, Tomaž

    2017-08-16

    The demand for recombinant therapeutic antibodies and Fc-fusion proteins is expected to increase in the years to come. Hence, extensive efforts are concentrated on improving the downstream processing. In particular, the development of better-affinity chromatography matrices, supporting robust time- and cost-effective antibody purification, is warranted. With the advances in molecular design and high-throughput screening approaches from chemical and biological combinatorial libraries, novel affinity ligands representing alternatives to bacterial immunoglobulin (Ig)-binding proteins have entered the scene. Here, we review the design, development, and properties of diverse classes of alternative antibody-binding ligands, ranging from engineered versions of Ig-binding proteins, to artificial binding proteins, peptides, aptamers, and synthetic small-molecular-weight compounds. We also provide examples of applications for the novel affinity matrices in chromatography and beyond.

  1. Targeting Anti-Cancer Active Compounds: Affinity-Based Chromatographic Assays

    PubMed Central

    de Moraes, Marcela Cristina; Cardoso, Carmen Lucia; Seidl, Claudia; Moaddel, Ruin; Cass, Quezia Bezerra

    2016-01-01

    Affinity-based chromatography assays encompass the use of solid supports containing immobilized biological targets to monitor binding events in the isolation , identification and/or characterization of bioactive compounds. This powerful bioanalytical technique allows the screening of potential binders through fast analyses that can be directly performed using isolated substances or complex matrices. An overview of the recent researches in frontal and zonal affinity-based chromatography screening assays, which has been used as a tool in the identification and characterization of new anti-cancer agents, is discussed. In addition, a critical evaluation of the recently emerged ligands fishing assays in complex mixtures is also discussed. PMID:27306095

  2. Purification and Analysis of Colorful Hypothetical Open Reading Frames: An Inexpensive Gateway Laboratory

    ERIC Educational Resources Information Center

    DeSantis, Kara A.; Reinking, Jeffrey L.

    2011-01-01

    This laboratory exercise is an inquiry-based investigation developed around the core experiment where students, working alone or in groups, each purify and analyze their own prescreened colored proteins using immobilized metal affinity chromatography (IMAC). Here, we present reagents and protocols that allow 12 different proteins to be purified in…

  3. Affinity purification and mass spectrometry: an attractive choice to investigate protein-protein interactions in plant immunity

    USDA-ARS?s Scientific Manuscript database

    Affinity purification of protein complexes from biological tissues, followed by liquid chromatography- tandem mass spectrometry (AP-MS/MS), has ballooned in recent years due to sizeable increases in nucleic acid sequence data essential for interpreting mass spectra, improvements in affinity purifica...

  4. Purification of swine haptoglobin by affinity chromatography.

    PubMed Central

    Eurell, T E; Hall, W F; Bane, D P

    1990-01-01

    A globin-agarose affinity chromatography technique was used to purify swine haptoglobin. This technique provides a highly specific, single-step purification method without the contamination of extraneous serum proteins reported by previous studies. Complex formation between the haptoglobin isolate and swine hemoglobin confirmed that biological activity was maintained during the purification process. Immunoelectrophoretic and Ouchterlony immunodiffusion methods revealed that the swine haptoglobin isolate cross-reacted with polyvalent antisera against human haptoglobin. Images Fig. 2. Fig. 3. PMID:2123414

  5. Immobilized Metal Affinity Chromatography Coupled to Multiple Reaction Monitoring Enables Reproducible Quantification of Phospho-signaling*

    PubMed Central

    Kennedy, Jacob J.; Yan, Ping; Zhao, Lei; Ivey, Richard G.; Voytovich, Uliana J.; Moore, Heather D.; Lin, Chenwei; Pogosova-Agadjanyan, Era L.; Stirewalt, Derek L.; Reding, Kerryn W.; Whiteaker, Jeffrey R.; Paulovich, Amanda G.

    2016-01-01

    A major goal in cell signaling research is the quantification of phosphorylation pharmacodynamics following perturbations. Traditional methods of studying cellular phospho-signaling measure one analyte at a time with poor standardization, rendering them inadequate for interrogating network biology and contributing to the irreproducibility of preclinical research. In this study, we test the feasibility of circumventing these issues by coupling immobilized metal affinity chromatography (IMAC)-based enrichment of phosphopeptides with targeted, multiple reaction monitoring (MRM) mass spectrometry to achieve precise, specific, standardized, multiplex quantification of phospho-signaling responses. A multiplex immobilized metal affinity chromatography- multiple reaction monitoring assay targeting phospho-analytes responsive to DNA damage was configured, analytically characterized, and deployed to generate phospho-pharmacodynamic curves from primary and immortalized human cells experiencing genotoxic stress. The multiplexed assays demonstrated linear ranges of ≥3 orders of magnitude, median lower limit of quantification of 0.64 fmol on column, median intra-assay variability of 9.3%, median inter-assay variability of 12.7%, and median total CV of 16.0%. The multiplex immobilized metal affinity chromatography- multiple reaction monitoring assay enabled robust quantification of 107 DNA damage-responsive phosphosites from human cells following DNA damage. The assays have been made publicly available as a resource to the community. The approach is generally applicable, enabling wide interrogation of signaling networks. PMID:26621847

  6. Effect of the conditions of isolation on the physicochemical properties of human serum albumin in the norm and with pathology

    NASA Astrophysics Data System (ADS)

    Ivanov, A. I.; Zhbankov, R. G.; Korolenko, E. A.; Korolik, E. V.; Meleshchenko, L. A.; Sarnatskaya, V. V.; Nikolaev, V. G.; Nikolaichik, V. V.; Yushko, L. A.

    1997-01-01

    Differential scanning calorimetry and IR spectrosocopy were used to investigate the effect of the procedure of isolation of human serum albumin on its physicochemical characteristics. It is shown that fractionation of blood plasma with ethylene glycol followed by ion exchange chromatography can be used to obtain albumin of normal donors that is similar to the albumin in the nonfractionated plasma according to melting thermograms. Endotherms of human serum albumin samples that were obtained by affinity chromatography and preparative electrophoresis are bimodal, unlike the monophasic for albumin obtained by polyethylene glycol precipitation. These changes result from a higher content of nonetherified fatty acids in the albumin samples obtained by affinity chromatography and from modification of the secondary protein structure in the samples obtained by electrophoresis. Analysis of melting thermograms of serum albumin from patients with uremia, chronic hepatitis, and peritonitis shows that fractionation of blood with polyethylene glycol preserves the thermodynamic characteristics of the various pathological serum albumins to the greatest extent. The present results demonstrate the advantage of polyethylene glycol fractionation for isolation of native preparations of normal and “pathological” human serum albumin.

  7. Simple method to assess stability of immobilized peptide ligands against proteases.

    PubMed

    Giudicessi, Silvana L; Salum, María L; Saavedra, Soledad L; Martínez-Ceron, María C; Cascone, Osvaldo; Erra-Balsells, Rosa; Camperi, Silvia A

    2017-09-01

    Although peptides are used as affinity chromatography ligands, they could be digested by proteases. Usually, peptide stability is evaluated in solution, which differs from the resin-bounded peptide behavior. Furthermore, the study of the degradation products requires purification steps before analysis. Here, we describe an easy method to assess immobilized peptide stability. Sample peptides were synthesized on hydroxymethylbenzamide-ChemMatrix resin. Peptidyl-resin beads were then incubated with solutions containing proteases. Peptides were detached from the solid support with ammonia vapor and analyzed by matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry, allowing the detection of the whole peptides as well as their C-terminal degradation products. The method allowed a fast evaluation of peptide ligand stability in solid phase towards proteases that may be present in the crude sample before their use as ligands in affinity chromatography. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  8. A Major Binding Protein for Leukemia Inhibitory Factor in Normal Mouse Serum: Identification as a Soluble Form of the Cellular Receptor

    NASA Astrophysics Data System (ADS)

    Layton, Meredith J.; Cross, Bronwyn A.; Metcalf, Donald; Ward, Larry D.; Simpson, Richard J.; Nicola, Nicos A.

    1992-09-01

    A protein that specifically binds leukemia inhibitory factor (LIF) has been isolated from normal mouse serum by using four successive fractionation steps: chromatography on a LIF affinity matrix, anion-exchange chromatography, size-exclusion chromatography, and preparative native gel electrophoresis. The purified LIF-binding protein (LBP) is a glycoprotein with an apparent molecular mass of 90 kDa that specifically binds 125I-labeled murine LIF with an affinity comparable to that of the low-affinity cellular LIF receptor (K_d = 600 pM). N-terminal sequencing has identified this protein as a soluble truncated form of the α chain of the cellular LIF receptor. LBP is present in normal mouse serum at high levels (1 μg/ml) and these levels are elevated in pregnant mice and reduced in neonatal mice. Since normal serum concentrations of LBP can block the biological actions of LIF in culture, LBP may serve as an inhibitor of the systemic effects of locally produced LIF.

  9. Evaluation of IDA-PEVA hollow fiber membrane metal ion affinity chromatography for purification of a histidine-tagged human proinsulin.

    PubMed

    de Aquino, Luciana Cristina Lins; de Sousa, Heloisa Ribeiro Tunes; Miranda, Everson Alves; Vilela, Luciano; Bueno, Sônia Maria Alves

    2006-04-13

    Inabilities to process particulate material and to allow the use of high flow rates are limitations of conventional chromatography. Membranes have been suggested as matrix for affinity separation due to advantages such as allowing high flow rates and low-pressure drops. This work evaluated the feasibility of using an iminodiacetic acid linked poly(ethylenevinyl alcohol) membrane in the immobilized metal ion affinity chromatography (IMAC) purification of a human proinsulin(His)(6) of an industrial insulin production process. The screening of metal ions showed Ni(2+) as metal with higher selectivity and capacity among the Cu(2+), Ni(2+), Zn(2+) and Co(2+). The membrane showed to be equivalent to conventional chelating beads in terms of selectivity and had a lower capacity (3.68 mg/g versus 12.26 mg/g). The dynamic adsorption capacity for human proinsulin(His)(6) was unaffected by the mode of operation (dead-end and cross-flow filtration).

  10. Methods for Purifying Enzymes for Mycoremediation

    NASA Technical Reports Server (NTRS)

    Cullings, Kenneth W. (Inventor); DeSimone, Julia C. (Inventor); Paavola, Chad D. (Inventor)

    2014-01-01

    A process for purifying laccase from an ectomycorrhizal fruiting body is disclosed. The process includes steps of homogenization, sonication, centrifugation, filtration, affinity chromatography, ion exchange chromatography, and gel filtration. Purified laccase can also be separated into isomers.

  11. A simplified methylcoenzyme M methylreductase assay with artificial electron donors and different preparations of component C from Methanobacterium thermoautotrophicum delta H.

    PubMed Central

    Hartzell, P L; Escalante-Semerena, J C; Bobik, T A; Wolfe, R S

    1988-01-01

    Different preparations of the methylreductase were tested in a simplified methylcoenzyme M methylreductase assay with artificial electron donors under a nitrogen atmosphere. ATP and Mg2+ stimulated the reaction. Tris(2,2'-bipyridine)ruthenium (II), chromous chloride, chromous acetate, titanium III citrate, 2,8-diaminoacridine, formamidinesulfinic acid, cob(I)alamin (B12s), and dithiothreitol were tested as electron donors; the most effective donor was titanium III citrate. Methylreductase (component C) was prepared by 80% ammonium sulfate precipitation, 70% ammonium sulfate precipitation, phenyl-Sepharose chromatography, Mono Q column chromatography, DEAE-cellulose column chromatography, or tetrahydromethanopterin affinity column chromatography. Methylreductase preparations which were able to catalyze methanogenesis in the simplified reaction mixture contained contaminating proteins. Homogeneous component C obtained from a tetrahydromethanopterin affinity column was not active in the simplified assay but was active in a methylreductase assay that contained additional protein components. Images PMID:3372480

  12. Purification of human alpha uterine protein.

    PubMed

    Sutcliffe, R G; Bolton, A E; Sharp, F; Nicholson, L V; MacKinnon, R

    1980-03-01

    Human alpha uterine protein (AUP) has been prepared from extracts of decudua by antibody affinity chromatography, DEAE Sepharose chromatography and by filtration through Sephadex G-150. This procedure yielded a protein fraction containing AUP, which was labelled with 125I by chloramine T. When analysed by SDS gel electrophoresis this radioiodinated protein fraction was found to contain predominantly a single species of protein which was precipitated by antibodies against AUP in antibody-antigen crossed electrophoresis. Rabbit anti-AUP precipitated 55-65% of the tracer in a double-antibody system. Sephadex G150 gel filtration of AUP obtained before and after affinity chromatography provided a molecular weight estimate of 50000. Since SDS gel electrophoresis revealed a polypeptide molecular weight of 23000-25000, it is suggested that AUP is a dimer.

  13. Evaluation of galectin binding by frontal affinity chromatography (FAC).

    PubMed

    Iwaki, Jun; Hirabayashi, Jun

    2015-01-01

    Frontal affinity chromatography (FAC) is a simple and versatile procedure enabling quantitative determination of diverse biological interactions in terms of dissociation constants (K d), even though these interactions are relatively weak. The method is best applied to glycans and their binding proteins, with the analytical system operating on the basis of highly reproducible isocratic elution by liquid chromatography. Its application to galectins has been successfully developed to characterize their binding specificities in detail. As a result, their minimal requirements for recognition of disaccharides, i.e., β-galactosides, as well as characteristic features of individual galectins, have been elucidated. In this chapter, we describe standard procedures to determine the K d's for interactions between a series of standard glycans and various galectins.

  14. Affinity-reversed-phase liquid chromatography assay to quantitate recombinant antibodies and antibody fragments in fermentation broth.

    PubMed

    Battersby, J E; Snedecor, B; Chen, C; Champion, K M; Riddle, L; Vanderlaan, M

    2001-08-24

    An automated dual-column liquid chromatography assay comprised of affinity and reversed-phase separations that quantifies the majority of antibody-related protein species found in crude cell extracts of recombinant origin is described. Although potentially applicable to any antibody preparation, we here use samples of anti-CD18 (Fab'2LZ) and a full-length antibody, anti-tissue factor (anti-TF), from various stages throughout a biopharmaceutical production process to describe the assay details. The targeted proteins were captured on an affinity column containing an anti-light-chain (kappa) Fab antibody (AME5) immobilized on controlled pore glass. The affinity column was placed in-line with a reversed-phase column and the captured components were transferred by elution with dilute acid and subsequently resolved by eluting the reversed-phase column with a shallow acetonitrile gradient. Characterization of the resolved components showed that most antibody fragment preparations contained a light-chain fragment, free light chain, light-chain dimer and multiple forms of Fab'. Analysis of full-length antibody preparations also resolved these fragments as well as a completely assembled form. Co-eluting with the full-length antibody were high-molecular-mass variants that were missing one or both light chains. Resolved components were quantified by comparison with peak areas of similarly treated standards. By comparing the two-dimensional polyacrylamide gel electrophoresis patterns of an Escherichia coli blank run, a production run and the material affinity captured (AME5) from a production run, it was determined that the AME5 antibody captured isoforms of light chain, light chain covalently attached to heavy chain, and truncated light chain isoforms. These forms comprise the bulk of the soluble product-related fragments found in E. coli cell extracts of recombinantly produced antibody fragments.

  15. Cellular Targets of Dietary Polyphenol Resveratrol

    DTIC Science & Technology

    2005-03-01

    attempts to generate affinity columns tagged with other polyphenols, e.g., epigallocatechin gallate ( EGCG ). Conceivably such columns, if generated, would...Similar affinity chromatography with the related polyphenol Epigallocatechin gallate does not produce similar results.” Answer: We did not make...addition, the PI does not provid expression. If there is “increased ex many bind the resveratrol affinity co related polyphenol Epigallocatechin Response

  16. [Purification of human goose-type lysozyme 2 (HLysG2) from human seminal plasma and analysis of its enzymatic properties].

    PubMed

    Huang, Peng; Yang, Zhifang; Bao, Jianying; Zhang, Ning; Li, Wenshu

    2017-03-01

    Objective To purify human goose-type lysozyme 2 (HLysG2) from human seminal plasma by chromatography and analyze its enzymatic properties. Methods The distribution of HLysG2 in semen was analyzed by Western blot analysis. Seminal plasma was subjected to the separation of target protein using cation-exchange chromatography, chitin affinity chromatography and size-exclusion chromatography. The purified product was identified by Western blot analysis and mass spectrometry (MS).The purity was analyzed by high performance liquid chromatography (HPLC). Then, the optimum pH, ion concentration and temperature of HLysG2 and its standard activity were determined by the turbidimetric assay. The bactericidal activity of HLysG2 was assessed by the colony-forming assay. Results The existence of HLysG2 in seminal plasma was confirmed by Western blot analysis. A protein of about 21.5 kDa was purified from seminal plasma by the three kinds of chromatography and identified as HLysG2 by Western blot analysis and MS. The final purity of the purified product was above 99.0% and the peak enzymatic activity reached 13 800 U/mg under the condition of pH 6.4, 0.09 mol/L Na + , 30DegreesCelsius. In vitro assay indicated that HLysG2 had a significant killing effect on Micrococcus lysodeikticus, Bacillus subtilis and Staphylococcus aureus, but not on Pseudomonas aeruginosa and Escherichia coli. Conclusion Native HLysG2 can be obtained from seminal plasma by chromatography. It has in vitro bactericidal activity against Gram-positive bacteria, suggesting that it might play a role in innate immunity of the male reproductive system.

  17. Estimation of biological variation and reference change value of glycated hemoglobin (HbA(1c)) when two analytical methods are used.

    PubMed

    Ucar, Fatma; Erden, Gonul; Ginis, Zeynep; Ozturk, Gulfer; Sezer, Sevilay; Gurler, Mukaddes; Guneyk, Ahmet

    2013-10-01

    Available data on biological variation of HbA1c revealed marked heterogeneity. We therefore investigated and estimated the components of biological variation for HbA1c in a group of healthy individuals by applying a recommended and strictly designed study protocol using two different assay methods. Each month, samples were derived on the same day, for three months. Four EDTA whole blood samples were collected from each individual (20 women, 9 men; 20-45 years of age) and stored at -80°C until analysis. HbA1c values were measured by both high performance liquid chromatography (HPLC) (Shimadzu, Prominence, Japan) and boronate affinity chromatography methods (Trinity Biotech, Premier Hb9210, Ireland). All samples were assayed in duplicate in a single batch for each assay method. Estimations were calculated according to the formulas described by Fraser and Harris. The within subject (CV(I))-between subject (CV(G)) biological variations were 1.17% and 5.58%, respectively for HPLC. The calculated CV(I) and CV(G) were 2.15% and 4.03%, respectively for boronate affinity chromatography. Reference change value (RCV) for HPLC and boronate affinity chromatography was 5.4% and 10.4% respectively and individuality index of HbA(1c) was 0.35 and 0.93 respectively. This study for the first time described the components of biological variation for HbA1c in healthy individuals by two different assay methods. Obtained findings showed that the difference between CV(A) values of the methods might considerably affect RCV. These data regarding biological variation of HbA(1c) could be useful for a better evaluation of HbA(1c) test results in clinical interpretation. Copyright © 2013 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  18. DNA aptamer affinity ligands for highly selective purification of human plasma-related proteins from multiple sources.

    PubMed

    Forier, Cynthia; Boschetti, Egisto; Ouhammouch, Mohamed; Cibiel, Agnès; Ducongé, Frédéric; Nogré, Michel; Tellier, Michel; Bataille, Damien; Bihoreau, Nicolas; Santambien, Patrick; Chtourou, Sami; Perret, Gérald

    2017-03-17

    Nucleic acid aptamers are promising ligands for analytical and preparative-scale affinity chromatography applications. However, a full industrial exploitation requires that aptamer-grafted chromatography media provide a number of high technical standards that remained largely untested. Ideally, they should exhibit relatively high binding capacity associated to a very high degree of specificity. In addition, they must be highly resistant to harsh cleaning/sanitization conditions, as well as to prolonged and repeated exposure to biological environment. Here, we present practical examples of aptamer affinity chromatography for the purification of three human therapeutic proteins from various sources: Factor VII, Factor H and Factor IX. In a single chromatographic step, three DNA aptamer ligands enabled the efficient purification of their target protein, with an unprecedented degree of selectivity (from 0.5% to 98% of purity in one step). Furthermore, these aptamers demonstrated a high stability under harsh sanitization conditions (100h soaking in 1M NaOH). These results pave the way toward a wider adoption of aptamer-based affinity ligands in the industrial-scale purification of not only plasma-derived proteins but also of any other protein in general. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Aflatoxin metabolism in humans: detection of metabolites and nucleic acid adducts in urine by affinity chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groopman, J.D.; Donahue, P.R.; Zhu, J.Q.

    A high-affinity IgM monoclonal antibody specific for aflatoxins was covalently bound to Sepharose 4B and used as a preparative column to isolate aflatoxin derivatives from the urine of people and experimental animals who had been exposed to the carcinogen environmentally or under laboratory conditions. Aflatoxin levels were quantified by radioimmunoassay and high-performance liquid chromatography after elution from the affinity column. In studies on rats injected with ( UC)aflatoxin B1, the authors identified the major aflatoxin-DNA adduct, 2,3-dihydro-2-(N7-guanyl)-3-hydroxy-aflatoxin B1 (AFB1-N7-Gua), and the oxidative metabolites M1 and P1 as the major aflatoxin species present in the urine. When this methodology was appliedmore » to human urine samples obtained from people from the Guangxi Province of China exposed to aflatoxin B1 through dietary contamination, the aflatoxin metabolites detected were also AFB1-N7-Gua and aflatoxins M1 and P1. Therefore, affinity chromatography using a monoclonal antibody represents a useful and rapid technique with which to isolate this carcinogen and its metabolites in biochemical epidemiology and for subsequent quantitative measurements, providing exposure information that can be used for risk assessment.« less

  20. Human thyrotropin receptor subunits characterized by thyrotropin affinity purification and western blotting.

    PubMed

    Leedman, P J; Newman, J D; Harrison, L C

    1989-07-01

    We studied the subunit structure of the human TSH receptor in thyroid tissue from patients with Graves' disease and multinodular goiter by TSH affinity chromatography, immunoprecipitation with Graves' immunoglobulins (Igs), and a modified technique of Western blotting. Human TSH receptor-binding activity was purified about 1,270-fold by sequential affinity chromatography on wheat germ lectin-agarose and TSH-agarose. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of nonreduced affinity-purified receptors eluted in sodium dodecyl sulfate sample buffer revealed three noncovalently linked subunits of 70,000, 50,000, and 35,000 mol wt. When reduced, a major subunit of 25,000 mol wt was identified. When 3 mol/L NaCl was used to elute affinity-purified receptors only the 50,000 mol wt nonreduced subunit was detected. This subunit bound [125I]bovine TSH and was precipitated by Graves' Igs. Modifications to the conventional Western blotting technique enabled thyroglobulin components (approximately 220,000 mol wt), thyroid microsomal antigen (a doublet of approximately 110,000 mol wt), and putative TSH receptor subunits of 70,000 and 50,000 mol wt to be identified in thyroid particulate membranes by Graves' Igs. Blotting of affinity-purified receptors eluted in sodium dodecyl sulfate sample buffer revealed subunits of either 70,000 or 50,000 mol wt, with a minority of Graves' serum samples. We conclude that the nonreduced human TSH receptor is an oligomeric complex comprising three different subunits of 70,000, 50,000, and 35,000 mol wt. The reduced receptor exists as a single subunit of 25,000 mol wt, which may be disulfide linked to form the higher mol wt forms. The 70,000 and 50,000 mol wt subunits contain epitopes that bind Graves' Igs in modified Western blots, thus directly confirming that the human TSH receptor is a target for Graves' Igs.

  1. Isolation of a new ssDNA aptamer against staphylococcal enterotoxin B based on CNBr-activated sepharose-4B affinity chromatography.

    PubMed

    Hedayati Ch, Mojtaba; Amani, Jafar; Sedighian, Hamid; Amin, Mohsen; Salimian, Jafar; Halabian, Raheleh; Imani Fooladi, Abbas Ali

    2016-09-01

    Staphylococcus aureus are potent human pathogens possessing arsenal of virulence factors. Staphylococcal food poisoning (SFP) and respiratory infections mediated by staphylococcal enterotoxin B (SEB) are common clinical manifestations. Many diagnostic techniques are based on serological detection and quantification of SEB in different food and clinical samples. Aptamers are known as new therapeutic and detection tools which are available in different ssDNA, dsDNA and protein structures. In this study, we used a new set of ssDNA aptamers against SEB. The methods used included preparation of a dsDNA library using standard SEB protein as the target analyte, affinity chromatography matrix in microfuge tubes, SELEX procedures to isolate specific ssDNA-aptamer as an affinity ligand, aptamer purification using ethanol precipitation method, affinity binding assay using ELISA, aptamer cloning and specificity test. Among 12 readable sequences, three of them were selected as the most appropriate aptamer because of their affinity and specificity to SEB. This study presents a new set of ssDNA aptamer with favorable selectivity to SEB through 12 rounds of SELEX. Selected aptamers were used to detect SEB in infected serum samples. Results showed that SEB c1 aptamer (2 µg SEB/100 nM aptamer) had favorable specificity to SEB (kd  = 2.3 × 10(-11) ). In conclusion, aptamers can be considered as useful tools for detecting and evaluating SEB. The results showed that affinity chromatography was an affordable assay with acceptable accuracy to isolate sensitive and selective novel aptamers. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Preparative SDS PAGE as an Alternative to His-Tag Purification of Recombinant Amelogenin

    PubMed Central

    Gabe, Claire M.; Brookes, Steven J.; Kirkham, Jennifer

    2017-01-01

    Recombinant protein technology provides an invaluable source of proteins for use in structure-function studies, as immunogens, and in the development of therapeutics. Recombinant proteins are typically engineered with “tags” that allow the protein to be purified from crude host cell extracts using affinity based chromatography techniques. Amelogenin is the principal component of the developing enamel matrix and a frequent focus for biomineralization researchers. Several groups have reported the successful production of recombinant amelogenins but the production of recombinant amelogenin free of any tags, and at single band purity on silver stained SDS PAGE is technically challenging. This is important, as rigorous structure-function research frequently demands a high degree of protein purity and fidelity of protein sequence. Our aim was to generate His-tagged recombinant amelogenin at single band purity on silver stained SDS PAGE for use in functionality studies after His-tag cleavage. An acetic acid extraction technique (previously reported to produce recombinant amelogenin at 95% purity directly from E. coli) followed by repeated rounds of nickel column affinity chromatography, failed to generate recombinant amelogenin at single band purity. This was because following an initial round of nickel column affinity chromatography, subsequent cleavage of the His-tag was not 100% efficient. A second round of nickel column affinity chromatography, used in attempts to separate the cleaved His-tag free recombinant from uncleaved His-tagged contaminants, was still unsatisfactory as cleaved recombinant amelogenin exhibited significant affinity for the nickel column. To solve this problem, we used preparative SDS PAGE to successfully purify cleaved recombinant amelogenins to single band purity on silver stained SDS PAGE. The resolving power of preparative SDS PAGE was such that His-tag based purification of recombinant amelogenin becomes redundant. We suggest that acetic acid extraction of recombinant amelogenin and subsequent purification using preparative SDS PAGE provides a simple route to highly purified His-tag free amelogenin for use in structure-function experiments and beyond. PMID:28670287

  3. Liquid-phase-based separation systems for depletion, prefractionation and enrichment of proteins in biological fluids and matrices for in-depth proteomics analysis – An update covering the period 2011-2014

    PubMed Central

    Puangpila, Chanida; Mayadunne, Erandi; Rassi, Ziad El

    2015-01-01

    This review article expands on the previous one (S. Selvaraju and Z. El Rassi, Electrophoresis 2012, 33, 74-88) by reviewing pertinent literature in the period extending from early 2011 to present. As the previous review article, the present one is concerned with proteomic sample preparation (e.g., depletion of high abundance proteins, reduction of the protein dynamic concentration range, enrichment of a particular sub-proteome), and the subsequent chromatographic and/or electrophoretic pre-fractionation prior to peptide separation and identification by LC-MS/MS. This review article is distinguished from its second version published in Electrophoresis 2012, 33, 74-88 by expanding on capturing/enriching sub-phosphoproteomes by immobilized metal affinity chromatography and metal oxide affinity chromatography. Seventy-seven papers published in the period extending from mid 2011 to the present have been reviewed. By no means this review article is exhaustive, given the fact that its aim is to give a concise treatment of the latest developments in the field. PMID:25287967

  4. Characterization of mouse natural killer cell activating factor (NKAF) induced by OK-432: evidence for interferon- and interleukin 2-independent NK cell activation.

    PubMed Central

    Ichimura, O.; Suzuki, S.; Sugawara, Y.; Osawa, T.

    1984-01-01

    The bacterial immunopotentiator OK-432 induced natural killer cell activating factor (NKAF) from mouse spleen cells. OK-432-induced NKAF showed a single peak with an apparent mol. wt of 70 Kd by Sephadex G-100 chromatography and OK-432-induced interleukin 2 (IL-2) had the same mol. wt as NKAF. However, OK-432-induced interferon (IFN) showed molecular heterogeneity with two peaks at 90 Kd and 45 Kd. Further purification was achieved by Blue Sepharose affinity chromatography which copurified NKAF and IFN. The affinity-purified NKAF, however, was stable to heat (56 degrees C) and acid (pH 2) treatments. Moreover, anti-IFN failed to abolish NKAF activity and this activity was not absorbed by IL-2 dependent T cells. From isoelectric focusing analysis, a dissociation of NKAF and IFN was observed over the range of pI 6.5 to 8.0. Based on these results, KNAF appears to be a new kind of cytokine distinguishable from IFN and IL-2. PMID:6204667

  5. Copper(II)-based metal affinity chromatography for the isolation of the anticancer agent bleomycin from Streptomyces verticillus culture.

    PubMed

    Gu, Jiesi; Codd, Rachel

    2012-10-01

    The glycopeptide-based bleomycins are structurally complex natural products produced by Streptomyces verticillus used in combination therapy against testicular and other cancers. Bleomycin has a high affinity towards a range of transition metal ions with the 1:1 Fe(II) complex relevant to its mechanism of action in vivo and the 1:1 Cu(II) complex relevant to its production from culture. The affinity between Cu(II) and bleomycin was the underlying principle for using Cu(II)-based metal affinity chromatography in this work to selectively capture bleomycin from crude S. verticillus culture. A solution of standard bleomycin was retained at a binding capacity of 300 nmol mL(-1) on a 1-mL bed volume of Cu(II)-loaded iminodiacetate (IDA) resin at pH 9 via the formation of the heteroleptic immobilized complex [Cu(IDA)(bleomycin)]. Bleomycin was eluted from the resin at pH 5 as the metal-free ligand under conditions where pK(a) (IDA)

  6. Affinity approaches in RNAi-based therapeutics purification.

    PubMed

    Pereira, Patrícia; Queiroz, João A; Figueiras, Ana; Sousa, Fani

    2016-05-15

    The recent investigation on RNA interference (RNAi) related mechanisms and applications led to an increased awareness of the importance of RNA in biology. Nowadays, RNAi-based technology has emerged as a potentially powerful tool for silencing gene expression, being exploited to develop new therapeutics for treating a vast number of human disease conditions, as it is expected that this technology can be translated onto clinical applications in a near future. This approach makes use of a large number of small (namely short interfering RNAs, microRNAs and PIWI-interacting RNAs) and long non-coding RNAs (ncRNAs), which are likely to have a crucial role as the next generation therapeutics. The commercial and biomedical interest in these RNAi-based therapy applications have fostered the need to develop innovative procedures to easily and efficiently purify RNA, aiming to obtain the final product with high purity degree, good quality and biological activity. Recently, affinity chromatography has been applied to ncRNAs purification, in view of the high specificity. Therefore, this article intends to review the biogenesis pathways of regulatory ncRNAs and also to discuss the most significant and recent developments as well as applications of affinity chromatography in the challenging task of purifying ncRNAs. In addition, the importance of affinity chromatography in ncRNAs purification is addressed and prospects for what is forthcoming are presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Characterization of recombinant monoclonal antibody variants detected by hydrophobic interaction chromatography and imaged capillary isoelectric focusing electrophoresis.

    PubMed

    King, Cory; Patel, Rekha; Ponniah, Gomathinayagam; Nowak, Christine; Neill, Alyssa; Gu, Zhenyu; Liu, Hongcheng

    2018-05-15

    In-depth characterization of the commonly observed variants is critical to the successful development of recombinant monoclonal antibody therapeutics. Multiple peaks of a recombinant monoclonal antibody were observed when analyzed by hydrophobic interaction chromatography and imaged capillary isoelectric focusing. The potential modification causing the heterogeneity was localized to F(ab')2 region by analyzing the antibody after IdeS digestion using hydrophobic interaction chromatography. LC-MS analysis identified asparagine deamidation as the root cause of the observed multiple variants. While the isoelectric focusing method is expected to separate deamidated species, the similar profile observed in hydrophobic interaction chromatography indicates that the single site deamidation caused differences in hydrophobicity. Forced degradation demonstrated that the susceptible asparagine residue is highly exposed, which is expected as it is located in the light chain complementarity determining region. Deamidation of this single site decreased the mAb binding affinity to its specific antigen. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Studies on lectins. XXXII. Application of affinity electrophoresis to the study of the interaction of lectins and their derivatives with sugars.

    PubMed

    Horejsí, V; Tichá, M; Kocourek, J

    1977-09-29

    Affinity electrophoresis was used to study the sugar binding heterogeneity of lectins or their derivatives. Commercial and demetallized preparations of concanavalin A could be resolved by affinity electrophoresis into three components with different affinity to immobilized sugar. Similarly the Vicia cracca lectin obtained by affinity chromatography behaved on affinity gels as a mixture of active and inactive molecular species. Affinity electrophoresis has shown that the nonhemagglutinating acetylated lentil lectin and photo-oxidized or sulfenylated pea lectin retain their sugar binding properties; dissociation constants of saccharide complexes of these derivatives are similar to those of native lectins. The presence of specific immobilized sugar in the affinity gel improved the resolution of isolectins from Dolichos biflorus and Ricinus communis seeds.

  9. On the molecular interaction between lactoferrin and the dye Red HE-3B. A novel approach for docking a charged and highly flexible molecule to protein surfaces

    NASA Astrophysics Data System (ADS)

    Grasselli, Mariano; Cascone, Osvaldo; Anspach, F. Birger; Delfino, Jose M.

    2002-12-01

    Lactoferrin (Lf) is a non-heme, iron binding protein present in many physiological fluids of vertebrates where its main role is the microbicidal activity. It has been isolated by different methods, including dye-affinity chromatography. Red HE-3B is one of the most common triazinic dyes applied in protein purification, but scant knowledge is available on structural details and on the energetics of its interaction with proteins. In this work we present a computational approach useful for identifying possible binding sites for Red HE-3B in apo and holo forms of Lfs from human and bovine source. A new geometrical description of Red HE-3B is introduced which greatly simplifies the conformational analysis. This approach proved to be of particular advantage for addressing conformational ensembles of highly flexible molecules. Predictions from this analysis were correlated with experimentally observed dye-binding sites, as mapped by protection from proteolysis in Red HE-3B/Lf complexes. This method could bear relevance for the screening of possible dye-binding sites in proteins whose structure is known and as a potential tool for the design of engineered protein variants which could be purified by dye-affinity chromatography.

  10. On the molecular interaction between lactoferrin and the dye Red HE-3b. A novel approach for docking a charged and highly flexible molecule to protein surfaces.

    PubMed

    Grasselli, Mariano; Cascone, Osvaldo; Birger Anspach, F; Delfino, Jose M

    2002-12-01

    Lactoferrin (Lf) is a non-heme, iron binding protein present in many physiological fluids of vertebrates where its main role is the microbicidal activity. It has been isolated by different methods, including dye-affinity chromatography. Red HE-3B is one of the most common triazinic dyes applied in protein purification, but scant knowledge is available on structural details and on the energetics of its interaction with proteins. In this work we present a computational approach useful for identifying possible binding sites for Red HE-3B in apo and holo forms of Lfs from human and bovine source. A new geometrical description of Red HE-3B is introduced which greatly simplifies the conformational analysis. This approach proved to be of particular advantage for addressing conformational ensembles of highly flexible molecules. Predictions from this analysis were correlated with experimentally observed dye-binding sites, as mapped by protection from proteolysis in Red HE-3B/Lf complexes. This method could bear relevance for the screening of possible dye-binding sites in proteins whose structure is known and as a potential tool for the design of engineered protein variants which could be purified by dye-affinity chromatography.

  11. An affinity chromatography-gel filtration device for preparing thyroid microsomal antigen.

    PubMed

    Wang, L; Zheng, W F

    1987-09-24

    On the basis of conventional differential centrifugation for preparing crude thyroid microsomal antigen (TMAg), we have employed Sepharose 4B gel filtration and affinity chromatography separately to study the elution pattern in terms of absorbance and antigenic activity. The result indicates that thyroglobulin (TG) exists in two forms in crude TMAg, i.e., 'free TG' and 'membrane-bound TG'. TMAg is present in two forms in the eluate: (1) the TM fragment or TMAg polymer, which is produced at a higher rate and has greater antigenic activity, but which is less pure; (2) soluble TMAg, which is produced at a lower rate and has less antigenic activity, but which is more pure. We have developed an affinity chromatography-gel filtration (AC-GF) device which is a combination of affinity chromatography and a Sepharose 4B column. Sephadex G-50 is placed between the rubber stopper and Sepharose 4B in the GF column to ensure intactness of the entire system. With such a device, the AC removes the contaminated TG from TM homogenate, and allows the latter to pass directly from AC to GF for rechromatography. This device extracts the full advantages of both methods and each compensates for any deficiency of the other. Using this one-step procedure, one has the greatest chance of removing TG and obtaining TM fragments of TMAg polymers of higher antigenic activity, as well as separating small amounts of more purified soluble TMAg. Thus, the newly developed method meets the need of large quantities of TMAg for practical application, and at the same time the more purified preparations can be used for analytical purposes.

  12. Isolation of anticancer drug TAXOL from Pestalotiopsis breviseta with apoptosis and B-Cell lymphoma protein docking studies.

    PubMed

    Kathiravan, G; Sureban, Sripathi M; Sree, Harsha N; Bhuvaneshwari, V; Kramony, Evelin

    2012-12-01

    Extraction and investigation of TAXOL from Pestalotiopsis breviseta (Sacc.) using protein docking, which is a computational technique that samples conformations of small molecules in protein-binding sites. Scoring functions are used to assess which of these conformations best complements the protein binding site and active site prediction. Coelomycetous fungi P. breviseta (Sacc.) Steyaert was screened for the production of TAXOL, an anticancer drug. TAXOL PRODUCTION WAS CONFIRMED BY THE FOLLOWING METHODS: Ultraviolet (UV) spectroscopic analysis, Infrared analysis, High performance liquid chromatography analysis (HPLC), and Liquid chromatography mass spectrum (LC-MASS). TAXOL produced by the fungi was compared with authentic TAXOL, and protein docking studies were performed. The BCL2 protein of human origin showed a higher affinity toward the compound paclitaxel. It has the binding energy value of -13.0061 (KJ/Mol) with four hydrogen bonds.

  13. Isolation of anticancer drug TAXOL from Pestalotiopsis breviseta with apoptosis and B-Cell lymphoma protein docking studies

    PubMed Central

    Kathiravan, G.; Sureban, Sripathi M.; Sree, Harsha N.; Bhuvaneshwari, V.; Kramony, Evelin

    2012-01-01

    Background: Extraction and investigation of TAXOL from Pestalotiopsis breviseta (Sacc.) using protein docking, which is a computational technique that samples conformations of small molecules in protein-binding sites. Scoring functions are used to assess which of these conformations best complements the protein binding site and active site prediction. Materials and Methods: Coelomycetous fungi P. breviseta (Sacc.) Steyaert was screened for the production of TAXOL, an anticancer drug. Results: TAXOL production was confirmed by the following methods: Ultraviolet (UV) spectroscopic analysis, Infrared analysis, High performance liquid chromatography analysis (HPLC), and Liquid chromatography mass spectrum (LC-MASS). TAXOL produced by the fungi was compared with authentic TAXOL, and protein docking studies were performed. Conclusion: The BCL2 protein of human origin showed a higher affinity toward the compound paclitaxel. It has the binding energy value of −13.0061 (KJ/Mol) with four hydrogen bonds. PMID:24808664

  14. A highly selective dispersive liquid-liquid microextraction approach based on the unique fluorous affinity for the extraction and detection of per- and polyfluoroalkyl substances coupled with high performance liquid chromatography tandem-mass spectrometry.

    PubMed

    Wang, Juan; Shi, Yali; Cai, Yaqi

    2018-04-06

    In the present study, a highly selective fluorous affinity-based dispersive liquid-liquid microextraction (DLLME) technique was developed for the extraction and analysis of per- and polyfluoroalkyl substances (PFASs) followed by high performance liquid chromatography tandem-mass spectrometry. Perfluoro-tert-butanol with multiple C-F bonds was chosen as the extraction solvent, which was injected into the aqueous samples with a dispersive solvent (acetonitrile) in a 120:800 (μL, v/v) mixture for PFASs enrichment. The fluorous affinity-based extraction mechanism was confirmed by the significantly higher extraction recoveries for PFASs containing multiple fluorine atoms than those for compounds with fewer or no fluorine atoms. The extraction recoveries of medium and long-chain PFASs (CF 2  > 5) exceeded 70%, except perfluoroheptanoic acid, while those of short-chain PFASs were lower than 50%, implying that the proposed DLLME may not be suitable for their extraction due to weak fluorous affinity. This highly fluoroselective DLLME technique can greatly decrease the matrix effect that occurs in mass spectrometry detection when applied to the analysis of urine samples. Under the optimum conditions, the relative recoveries of PFASs with CF 2  > 5 ranged from 80.6-121.4% for tap water, river water and urine samples spiked with concentrations of 10, 50 and 100 ng/L. The method limits of quantification for PFASs in water and urine samples were in the range of 0.6-8.7 ng/L. Furthermore, comparable concentrations of PFASs were obtained via DLLME and solid-phase extraction, confirming that the developed DLLME technique is a promising method for the extraction of PFASs in real samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Evaluation of protein adsorption and preferred binding regions in multimodal chromatography using NMR

    PubMed Central

    Chung, Wai Keen; Freed, Alexander S.; Holstein, Melissa A.; McCallum, Scott A.; Cramer, Steven M.

    2010-01-01

    NMR titration experiments with labeled human ubiquitin were employed in concert with chromatographic data obtained with a library of ubiquitin mutants to study the nature of protein adsorption in multimodal (MM) chromatography. The elution order of the mutants on the MM resin was significantly different from that obtained by ion-exchange chromatography. Further, the chromatographic results with the protein library indicated that mutations in a defined region induced greater changes in protein affinity to the solid support. Chemical shift mapping and determination of dissociation constants from NMR titration experiments with the MM ligand and isotopically enriched ubiquitin were used to determine and rank the relative binding affinities of interaction sites on the protein surface. The results with NMR confirmed that the protein possessed a distinct preferred binding region for the MM ligand in agreement with the chromatographic results. Finally, coarse-grained ligand docking simulations were employed to study the modes of interaction between the MM ligand and ubiquitin. The use of NMR titration experiments in concert with chromatographic data obtained with protein libraries represents a previously undescribed approach for elucidating the structural basis of protein binding affinity in MM chromatographic systems. PMID:20837551

  16. Direct capture of His₆-tagged proteins using megaporous cryogels developed for metal-ion affinity chromatography.

    PubMed

    Singh, Naveen Kumar; DSouza, Roy N; Bibi, Noor Shad; Fernández-Lahore, Marcelo

    2015-01-01

    Immobilized metal-ion affinity chromatography (IMAC) has been developed for the rapid isolation and purification of recombinant proteins. In this chapter, megaporous cryogels were synthesized having metal-ion affinity functionality, and their adsorptive properties were investigated. These cryogels have large pore sizes ranging from 10 to 100 μm with corresponding porosities between 80 and 90%. The synthesized IMAC-cryogel had a total ligand density of 770 μmol/g. Twelve milligram of a His6-tagged protein (NAD(P)H-dependent 2-cyclohexen-1-one-reductase) can be purified from a crude cell extract per gram of IMAC-cryogels. The protein binding capacity is increased with higher degrees of grafting, although a slight decrease in column efficiency may result. This chapter provides methodologies for a rapid single-step purification of recombinant His6-tagged proteins from crude cell extracts using IMAC-cryogels.

  17. A comparative study of lectin affinity based plant n-glycoproteome profiling using tomato fruit as a model

    USDA-ARS?s Scientific Manuscript database

    Lectin affinity chromatography (LAC) can provide a valuable front-end enrichment strategy for the study of N-glycoproteins and has been used to characterize a broad range eukaryotic N-glycoproteomes. Moreover, studies with mammalian systems have suggested that the use of multiple lectins with differ...

  18. Evaluation of immobilized metal membrane affinity chromatography for purification of an immunoglobulin G1 monoclonal antibody.

    PubMed

    Serpa, Gisele; Augusto, Elisabeth Fátima Pires; Tamashiro, Wirla Maria Silva Cunha; Ribeiro, Mariana Borçoe; Miranda, Everson Alves; Bueno, Sônia Maria Alves

    2005-02-25

    The large scale production of monoclonal antibodies (McAbs) has gaining increased relevance with the development of the hybridoma cell culture in bioreactors creating a need for specific efficient bioseparation techniques. Conventional fixed bead affinity adsorption commonly applied for McAbs purification has the drawback of low flow rates and colmatage. We developed and evaluated a immobilized metal affinity chromatographies (IMAC) affinity membrane for the purification of anti-TNP IgG(1) mouse McAbs. We immobilized metal ions on a poly(ethylene vinyl alcohol) hollow fiber membrane (Me(2+)-IDA-PEVA) and applied it for the purification of this McAbs from cell culture supernatant after precipitation with 50% saturation of ammonium sulphate. The purity of IgG(1) in the eluate fractions was high when eluted from Zn(2+) complex. The anti-TNP antibody could be eluted under conditions causing no loss of antigen binding capacity. The purification procedure can be considered as an alternative to the biospecific adsorbent commonly applied for mouse IgG(1) purification, the protein G-Sepharose.

  19. A rapid solution-based method for determining the affinity of heroin hapten-induced antibodies to heroin, its metabolites, and other opioids.

    PubMed

    Torres, Oscar B; Duval, Alexander J; Sulima, Agnieszka; Antoline, Joshua F G; Jacobson, Arthur E; Rice, Kenner C; Alving, Carl R; Matyas, Gary R

    2018-06-01

    We describe for the first time a method that utilizes microscale thermophoresis (MST) technology to determine polyclonal antibody affinities to small molecules. Using a novel type of heterologous MST, we have accurately measured a solution-based binding affinity of serum antibodies to heroin which was previously impossible with other currently available methods. Moreover, this mismatch approach (i.e., using a cross-reactive hapten tracer) has never been reported in the literature. When compared with equilibrium dialysis combined with ultra-performance liquid chromatography/tandem mass spectrometry (ED-UPLC/MS/MS), this novel MST method yields similar binding affinity values for polyclonal antibodies to the major heroin metabolites 6-AM and morphine. Additionally, we herein report the method of synthesis of this novel cross-reactive hapten, MorHap-acetamide-a useful analog for the study of heroin hapten-antibody interactions. Using heterologous MST, we were able to determine the affinities, down to nanomolar accuracies, of polyclonal antibodies to various abused opioids. While optimizing this method, we further discovered that heroin is protected from serum esterase degradation by the presence of these antibodies in a concentration-dependent manner. Lastly, using affinity data for a number of structurally different opioids, we were able to dissect the moieties that are crucial to antibody binding. The novel MST method that is presented herein can be extended to the analysis of any ligand that is prone to degradation and can be applied not only to the development of vaccines to substances of abuse but also to the analysis of small molecule/protein interactions in the presence of serum. Graphical abstract Strategy for the determination of hapten-induced antibody affinities using Microscale thermophoresis.

  20. Development and validation of an affinity chromatography step using a peptide ligand for cGMP production of factor VIII.

    PubMed

    Kelley, Brian D; Tannatt, Molly; Magnusson, Robert; Hagelberg, Sigrid; Booth, James

    2004-08-05

    An affinity chromatography step was developed for purification of recombinant B-Domain Deleted Factor VIII (BDDrFVIII) using a peptide ligand selected from a phage display library. The peptide library had variegated residues, contained both within a disulfide bond-constrained ring and flanking the ring. The peptide ligand binds to BDDrFVIII with a dissociation constant of approximately 1 microM both in free solution and when immobilized on a chromatographic resin. The peptide is chemically synthesized and the affinity resin is produced by coupling the peptide to an agarose matrix preactivated with N-hydroxysuccinimide. Coupling conditions were optimized to give consistent and complete ligand incorporation and validated with a robustness study that tested various combinations of processing limits. The peptide affinity chromatographic operation employs conditions very similar to an immunoaffinity chromatography step currently in use for BDDrFVIII manufacture. The process step provides excellent recovery of BDDrFVIII from a complex feed stream and reduces host cell protein and DNA by 3-4 logs. Process validation studies established resin reuse over 26 cycles without changes in product recovery or purity. A robustness study using a factorial design was performed and showed that the step was insensitive to small changes in process conditions that represent normal variation in commercial manufacturing. A scaled-down model of the process step was qualified and used for virus removal studies. A validation package addressing the safety of the leached peptide included leaching rate measurements under process conditions, testing of peptide levels in product pools, demonstration of robust removal downstream by spiking studies, end product testing, and toxicological profiling of the ligand. The peptide ligand affinity step was scaled up for cGMP production of BDDrFVIII for clinical trials.

  1. Improved method for the on-line metal chelate affinity chromatography-high-performance liquid chromatographic determination of tetracycline antibiotics in animal products.

    PubMed

    Cooper, A D; Stubbings, G W; Kelly, M; Tarbin, J A; Farrington, W H; Shearer, G

    1998-07-03

    An improved on-line metal chelate affinity chromatography-high-performance liquid chromatography (MCAC-HPLC) method for the determination of tetracycline antibiotics in animal tissues and egg has been developed. Extraction was carried out with ethyl acetate. The extract was then evaporated to dryness and reconstituted in methanol prior to on-line MCAC clean-up and HPLC-UV determination. Recoveries of tetracycline, oxytetracycline, demeclocycline and chlortetracycline in the range 42% to 101% were obtained from egg, poultry, fish and venison tissues spiked at 25 micrograms kg-1. Limits of detection less than 10 microgram kg-1 were estimated for all four analytes. This method has higher throughput, higher recovery and lower limits of detection than a previously reported on-line MCAC-HPLC method which involved aqueous extraction and solid-phase extraction clean-up.

  2. Adsorption of endotoxins on Ca2+ -iminodiacetic acid by metal ion affinity chromatography.

    PubMed

    Lopes, André Moreni; Romeu, Jorge Sánchez; Meireles, Rolando Páez; Perera, Gabriel Marquez; Morales, Rolando Perdomo; Pessoa, Adalberto; Cárdenas, Lourdes Zumalacárregui

    2012-11-01

    Endotoxins (also known as lipopolysaccharides (LPS)) are undesirable by-products of recombinant proteins, purified from Escherichia coli. LPS can be considered stable under a wide range of temperature and pH, making their removal one of the most difficult tasks in downstream processes during protein purification. The inherent toxicity of LPS makes their removal an important step for the application of these proteins in several biological assays and for a safe parenteral administration. Immobilized metal affinity chromatography (IMAC) enables the affinity interactions between the metal ions (immobilized on the support through the chelating compound) and the target molecules, thus enabling high-efficiency separation of the target molecules from other components present in a mixture. Affinity chromatography is applied with Ca2+ -iminodiacetic acid (IDA) to remove most of the LPS contaminants from the end product (more than 90%). In this study, the adsorption of LPS on an IDA-Ca2+ was investigated. The adsorption Freundlich isotherm of LPS-IDA-Ca2+ provides a theoretical basis for LPS removal. It was found that LPS is bound mainly by interactions between the phosphate group in LPS and Ca2+ ligands on the beads. The factors such as pH (4.0 or 5.5) and ionic strength (1.0 mol/L) are essential to obtain effective removal of LPS for contaminant levels between endotoxin' concentration values less than 100 EU/mL and 100 000 EU/mL. This new protocol represents a substantial advantage in time, effort, and production costs.

  3. Effects of salts on protein-surface interactions: applications for column chromatography.

    PubMed

    Tsumoto, Kouhei; Ejima, Daisuke; Senczuk, Anna M; Kita, Yoshiko; Arakawa, Tsutomu

    2007-07-01

    Development of protein pharmaceuticals depends on the availability of high quality proteins. Various column chromatographies are used to purify proteins and characterize the purity and properties of the proteins. Most column chromatographies require salts, whether inorganic or organic, for binding, elution or simply better recovery and resolution. The salts modulate affinity of the proteins for particular columns and nonspecific protein-protein or protein-surface interactions, depending on the type and concentration of the salts, in both specific and nonspecific manners. Salts also affect the binding capacity of the column, which determines the size of the column to be used. Binding capacity, whether equilibrium or dynamic (under an approximation of a slow flow rate), depends on the binding constant, protein concentration and the number of the binding site on the column as well as nonspecific binding. This review attempts to summarize the mechanism of the salt effects on binding affinity and capacity for various column chromatographies and on nonspecific protein-protein or protein-surface interactions. Understanding such salt effects should also be useful in preventing nonspecific protein binding to various containers. Copyright 2007 Wiley-Liss, Inc.

  4. Enrichment of Glycoproteins using Nano-scale Chelating Con A Monolithic Capillary Chromatography

    PubMed Central

    Feng, Shun; Yang, Na; Pennathur, Subramaniam; Goodison, Steve; Lubman, David M.

    2009-01-01

    Immobilized lectin chromatography can be employed for glycoprotein enrichment, but commonly used columns have limitations of yield and resolution. In order to improve efficiency and to make the technique applicable to minimal sample material, we have developed a nano-scale chelating Concanavalin A (Con A) monolithic capillary prepared using GMA-EDMA (glycidyl methacrylate–co-ethylene dimethacrylate) as polymeric support. Con A was immobilized on Cu(II)-charged iminodiacetic acid (IDA) regenerable sorbents by forming a IDA:Cu(II):Con A sandwich affinity structure that has high column capacity as well as stability. When compared with conventional Con A lectin chromatography, the monolithic capillary enabled the better reproducible detection of over double the number of unique N-glycoproteins in human urine samples. Utility for analysis of minimal biological samples was confirmed by the successful elucidation of glycoprotein profiles in mouse urine samples at the microliter scale. The improved efficiency of the nano-scale monolithic capillary will impact the analysis of glycoproteins in complex biological samples, especially where only limited material may be available. PMID:19366252

  5. The development of a purification procedure for saxitoxin-induced protein.

    PubMed

    Smith, D S; Kitts, D D; Fenske, B; Owen, T G; Shyng, S

    1995-02-01

    A simple economical procedure for purifying saxitoxin-induced protein (SIP) from crude extracts of the small shore crab, Hemigrapsus oregenesis, was developed. (NH4)2SO4 precipitation, chymotrypsin digestion, heat treatment, gel filtration and ion-exchange-chromatography procedures were evaluated in purifying SIP. An enzyme immunoassay was used to determine the SIP yield and relative purity at each step of three procedures, thus permitting an assessment of the conditions required for maximum recovery. Response surface analysis was used in an attempt to determine the optimum temperature and exposure time for the heat treatment. A 20 min incubation at 65 degrees C was confirmed by electrophoretic analysis to be the best combination of time and temperature for achieving both an acceptable yield and purity of SIP. SIP in desalted concentrate was shown to be resistant to chymotrypsin proteolysis; however, this enzyme had deleterious effects on SIP purification at later stages of the procedure. The omission of the chymotrypsin digestion, and the inclusion of gel-filtration chromatography in the final clean-up step, resulted in the purification of SIP comparable with that achieved with affinity chromatography.

  6. Pretargeting of carcinoembryonic antigen-expressing cancers with a trivalent bispecific fusion protein produced in myeloma cells.

    PubMed

    Rossi, Edmund A; Chang, Chien-Hsing; Losman, Michele J; Sharkey, Robert M; Karacay, Habibe; McBride, William; Cardillo, Thomas M; Hansen, Hans J; Qu, Zhengxing; Horak, Ivan D; Goldenberg, David M

    2005-10-01

    To characterize a novel trivalent bispecific fusion protein and evaluate its potential utility for pretargeted delivery of radionuclides to tumors. hBS14, a recombinant fusion protein that binds bispecifically to carcinoembryonic antigen (CEA) and the hapten, histamine-succinyl-glycine (HSG), was produced by transgenic myeloma cells and purified to near homogeneity in a single step using a novel HSG-based affinity chromatography system. Biochemical characterization included size-exclusion high-performance liquid chromatography (SE-HPLC), SDS-PAGE, and isoelectric focusing. Functional characterization was provided by BIAcore and SE-HPLC. The efficacy of hBS14 for tumor pretargeting was evaluated in CEA-expressing GW-39 human colon tumor-bearing nude mice using a bivalent HSG hapten (IMP-241) labeled with (111)In. Biochemical analysis showed that single-step affinity chromatography provided highly purified material. SE-HPLC shows a single protein peak consistent with the predicted molecular size of hBS14. SDS-PAGE analysis shows only two polypeptide bands, which are consistent with the calculated molecular weights of the hBS14 polypeptides. BIAcore showed the bispecific binding properties and suggested that hBS14 possesses two functional CEA-binding sites. This was supported by SE-HPLC immunoreactivity experiments. All of the data suggest that the structure of hBS14 is an 80 kDa heterodimer with one HSG and two CEA binding sites. Pretargeting experiments in the mouse model showed high uptake of radiopeptide in the tumor, with favorable tumor-to-nontumor ratios as early as 3 hours postinjection. The results indicate that hBS14 is an attractive candidate for use in a variety of pretargeting applications, particularly tumor therapy with radionuclides and drugs.

  7. The antigenicity in guinea pigs and monkeys of three mycobacterial polysaccharides purified by affinity chromatography with concanavalin A.

    PubMed

    Daniel, T M

    1975-06-01

    The antigenicity of 3 polysaccharides purified from culture filtrates of Mycobacterim tuberculosis by affinity chromatography using a concanavalin A-agarose absorbent was studied. All 3 purified polysaccharides were found to be potent elicitors of delayed skin test reactions in sensitized guinea pigs and in a tuberculos monkey. This antigenicity could not be attributed to contaminating protein. Small dermal reactions were also observed in control guinea pigs. All 3 polysaccharides reacted with precipitating antibody in guinea pig sera, the antigenic specificity observed with the guinea pig sera differing from that demonstrated with reference goat antiserum. The 3 polysaccharides were also demonstrated to contain hemagglutination antigenic sites.

  8. Crystallization and X-ray analysis of the salmon-egg lectin SEL24K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murata, Kenji; Fisher, Andrew J.; Hedrick, Jerry L., E-mail: jlhedrick@ucdavis.edu

    2007-05-01

    The 24 kDa egg lectin of Chinook salmon (Oncorhynchus tshawytscha) was purified by affinity chromatography from salmon eggs and crystallized by the hanging-drop vapor-diffusion method using 15/4 EO/OH (pentaerythritol ethoxylate) as a precipitant. The 24 kDa egg lectin of Chinook salmon (Oncorhynchus tshawytscha) is released from the egg during the cortical reaction. The lectin functions in blocking polyspermy during the fertilization process. The egg lectin was purified by affinity chromatography from salmon eggs and crystallized by the hanging-drop vapor-diffusion method using 15/4 EO/OH (pentaerythritol ethoxylate) as a precipitant. The crystal diffracted synchrotron-radiation X-rays to 1.63 Å resolution. The crystal belongsmore » to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 93.0, b = 73.6, c = 113.6 Å, α = 90, β = 92.82, γ = 90°. The crystal is likely to contain eight molecules in the asymmetric unit (V{sub M} = 2.3 Å{sup 3} Da{sup −1}), corresponding to a solvent content of 45.5%. A self-rotation function suggests an arrangement with 222 point symmetry within the asymmetric unit.« less

  9. Binding characteristics of anti-atrazine monoclonal antibodies and their fragments synthesised in bacteria and plants.

    PubMed

    Strachan, G; Grant, S D; Learmonth, D; Longstaff, M; Porter, A J; Harris, W J

    1998-09-15

    Single-chain antibody fragments (scAb), specific for the herbicide atrazine, have been expressed in the bacterium Escherichia coli and in transgenic tobacco plants. The scAb could be purified as a monomer (monovalent) via a hexa-histidine tail or as a dimer (divalent) by antibody affinity chromatography. In competition ELISA, the bacterial scAb showed the same specificity for atrazine and related triazine herbicides as the parental mAb cell line, but both plant and bacterial monomeric scAbs showed increased sensitivity to free atrazine. Surface plasmon resonance (BIAcore 2000) analysis confirmed that purified scAb, derived from plant or bacteria, retained similar association rates as the mAb. However, the monomeric plant and bacterial scAbs showed a lower affinity for immobilised antigen, than the equivalent dimeric scAbs or mAb. This decrease in affinity was due to a 10 fold slower dissociation rate and is likely due to loss of the avidity contribution of dimeric molecules.

  10. Molecular Structure-Affinity Relationship of Flavonoids in Lotus Leaf (Nelumbo nucifera Gaertn.) on Binding to Human Serum Albumin and Bovine Serum Albumin by Spectroscopic Method.

    PubMed

    Tang, Xiaosheng; Tang, Ping; Liu, Liangliang

    2017-06-23

    Lotus leaf has gained growing popularity as an ingredient in herbal formulations due to its various activities. As main functional components of lotus leaf, the difference in structure of flavonoids affected their binding properties and activities. In this paper, the existence of 11 flavonoids in lotus leaf extract was confirmed by High Performance Liquid Chromatography (HPLC) analysis and 11 flavonoids showed various contents in lotus leaf. The interactions between lotus leaf extract and two kinds of serum albumins (human serum albumin (HSA) and bovine serum albumin (BSA)) were investigated by spectroscopic methods. Based on the fluorescence quenching, the interactions between these flavonoids and serum albumins were further checked in detail. The relationship between the molecular properties of flavonoids and their affinities for serum albumins were analyzed and compared. The hydroxylation on 3 and 3' position increased the affinities for serum albumins. Moreover, both of the methylation on 3' position of quercetin and the C₂=C₃ double bond of apigenin and quercetin decreased the affinities for HSA and BSA. The glycosylation lowered the affinities for HSA and BSA depending on the type of sugar moiety. It revealed that the hydrogen bond force played an important role in binding flavonoids to HSA and BSA.

  11. UPTAKE OF RADIONUCLIDE METALS BY SPME FIBERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duff, M; S Crump, S; Robert02 Ray, R

    2006-08-28

    The Federal Bureau of Investigation (FBI) Laboratory currently does not have on site facilities for handling radioactive evidentiary materials and there are no established FBI methods or procedures for decontaminating high explosive (HE) and fire debris (FD) evidence while maintaining evidentiary value. One experimental method for the isolation of HE and FD residue involves using solid phase microextraction or SPME fibers to remove residue of interest. Due to their high affinity for organics, SPME fibers should have little affinity for most metals. However, no studies have measured the affinity of radionuclides for SPME fibers. The focus of this research wasmore » to examine the affinity of dissolved radionuclide ({sup 239/240}Pu, {sup 238}U, {sup 237}Np, {sup 85}Sr, {sup 133}Ba, {sup 137}Cs, {sup 60}Co and {sup 226}Ra) and stable radionuclide surrogate metals (Sr, Co, Ir, Re, Ni, Ba, Cs, Nb, Zr, Ru, and Nd) for SPME fibers at the exposure conditions that favor the uptake of HE and FD residues. Our results from radiochemical and mass spectrometric analyses indicate these metals have little measurable affinity for these SPME fibers during conditions that are conducive to HE and FD residue uptake with subsequent analysis by liquid or gas phase chromatography with mass spectrometric detection.« less

  12. SOLID PHASE MICROEXTRACTION SAMPLING OF HIGH EXPLOSIVE RESIDUES IN THE PRESENCE OF RADIONUCLIDES AND RADIONUCLIDE SURROGATE METALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duff, M; S Crump, S; Robert02 Ray, R

    2007-04-13

    The Federal Bureau of Investigation (FBI) Laboratory currently does not have on site facilities for handling radioactive evidentiary materials and there are no established FBI methods or procedures for decontaminating high explosive (HE) evidence while maintaining evidentiary value. One experimental method for the isolation of HE residue involves using solid phase microextraction or SPME fibers to remove residue of interest. Due to their high affinity for organics, SPME fibers should have little affinity for most metals. However, no studies have measured the affinity of radionuclides for SPME fibers. The focus of this research was to examine the affinity of dissolvedmore » radionuclide ({sup 239/240}Pu, {sup 238}U, {sup 237}Np, {sup 85}Sr, {sup 133}Ba, {sup 137}Cs, {sup 60}Co and {sup 226}Ra) and stable radionuclide surrogate metals (Sr, Co, Ir, Re, Ni, Ba, Cs, Nb, Zr, Ru, and Nd) for SPME fibers at the exposure conditions that favor the uptake of HE residues. Our results from radiochemical and mass spectrometric analyses indicate these metals have little measurable affinity for these SPME fibers during conditions that are conducive to HE residue uptake with subsequent analysis by liquid or gas phase chromatography with mass spectrometric detection.« less

  13. European Science Notes (ESN) Information Bulletin. Reports on Current European/Middle Eastern Science,

    DTIC Science & Technology

    1987-12-01

    mRNA), lular viruses within a few hours in dif- and Sl-analysis showed that anti-IgM and ferent body fluids and may be used for phorbol esters...suppressed mRNA coding for general virus diagnosis. the secreted form of IgM, showing that Thiophilic adsorption for the puri- these additives affect...constructs were and can be an alternative method to pro- utilized containing the prokaryotic CAT - tein A affinity chromatography, especial- gene

  14. Targeting Human Serum Fucome by an Integrated Liquid-phase Multi Column Platform Operating in “Cascade” to Facilitate Comparative Mass Spectrometric Analysis of Disease-Free and Breast Cancer Sera

    PubMed Central

    Selvaraju, Subhashini; Rassi, Ziad El

    2013-01-01

    A fully integrated platform was developed for capturing/fractionating human fucome from disease-free and breast cancer sera. It comprised multicolumn operated by HPLC pumps and switching valves for the simultaneous depletion of high abundance proteins via affinity-based subtraction and the capturing of fucosylated glycoproteins via lectin affinity chromatography followed by the fractionation of the captured glycoproteins by reversed phase chromatography (RPC). Two lectin columns specific to fucose, namely Aleuria aurantia lectin (AAL) and Lotus tetragonolobus agglutinin (LTA) were utilized. The platform allowed the “cascading” of the serum sample from column-to-column in the liquid phase with no sample manipulation between the various steps. This guaranteed no sample loss and no propagation of experimental biases between the various columns. Finally, the fucome was fractionated by RPC yielding desalted fractions in volatile acetonitrile-rich mobile phase, which after vacuum evaporation were subjected to trypsinolysis for LC-MS/MS analysis. This permitted the identification of the differentially expressed proteins (DEP) in breast cancer serum yielding a broad panel of 35 DEP from the combined LTA and AAL captured proteins and a narrower panel of 8 DEP that were commonly differentially expressed in both LTA and AAL fractions, which are considered as more representative of cancer altered fucome. PMID:23533108

  15. Tetanus toxoid purification: chromatographic procedures as an alternative to ammonium-sulphate precipitation.

    PubMed

    Stojićević, Ivana; Dimitrijević, Ljiljana; Dovezenski, Nebojša; Živković, Irena; Petrušić, Vladimir; Marinković, Emilija; Inić-Kanada, Aleksandra; Stojanović, Marijana

    2011-08-01

    Given an existing demand to establish a process of tetanus vaccine production in a way that allows its complete validation and standardization, this paper focuses on tetanus toxoid purification step. More precisely, we were looking at a possibility to replace the widely used ammonium-sulphate precipitation by a chromatographic method. Based on the tetanus toxin's biochemical characteristics, we have decided to examine the possibility of tetanus toxoid purification by hydrophobic chromatography, and by chromatographic techniques based on interaction with immobilized metal ions, i.e. chelating chromatography and immobilized metal affinity chromatography. We used samples obtained from differently fragmented crude tetanus toxins by formaldehyde treatment (assigned as TTd-A and TTd-B) as starting material for tetanus toxoid purification. Obtained results imply that purification of tetanus toxoid by hydrophobic chromatography represents a good alternative to ammonium-sulphate precipitation. Tetanus toxoid preparations obtained by hydrophobic chromatography were similar to those obtained by ammonium-sulphate precipitation in respect to yield, purity and immunogenicity. In addition, their immunogenicity was similar to standard tetanus toxoid preparation (NIBSC, Potters Bar, UK). Furthermore, the characteristics of crude tetanus toxin preparations had the lowest impact on the final purification product when hydrophobic chromatography was the applied method of tetanus toxoid purification. On the other hand, purifications of tetanus toxoid by chelating chromatography or immobilized metal affinity chromatography generally resulted in a very low yield due to not satisfactory tetanus toxoid binding to the column, and immunogenicity of the obtained tetanus toxoid-containing preparations was poor. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. The versatility of heart-cutting and comprehensive two-dimensional liquid chromatography in monoclonal antibody clone selection.

    PubMed

    Sandra, Koen; Steenbeke, Mieke; Vandenheede, Isabel; Vanhoenacker, Gerd; Sandra, Pat

    2017-11-10

    In recent years, two-dimensional liquid chromatography (2D-LC) has seen an enormous evolution and one of the fields where it is being widely adopted is in the analysis of therapeutic monoclonal antibodies (mAbs). We here further add to the many flavours of this powerful technology. Workflows based on heart-cutting (LC-LC) and comprehensive (LC×LC) 2D-LC are described that allow to guide the clone selection process in mAb and biosimilar development. Combining Protein A affinity chromatography in the first dimension with size exclusion (SEC), cation exchange (CEX) or reversed-phase liquid chromatography-mass spectrometry (RPLC-MS) in the second dimension simultaneously allows to assess mAb titer and critical structural aspects such as aggregation, fragmentation, charge heterogeneity, molecular weight (MW), amino acid sequence and glycosylation. Complementing the LC-LC measurements at intact protein level with LC×LC based peptide mapping provides the necessary information to make clear decisions on which clones to take further into development. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies

    NASA Astrophysics Data System (ADS)

    Boulet-Audet, Maxime; Kazarian, Sergei G.; Byrne, Bernadette

    2016-07-01

    In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan.

  18. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies

    PubMed Central

    Boulet-Audet, Maxime; Kazarian, Sergei G.; Byrne, Bernadette

    2016-01-01

    In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan. PMID:27470880

  19. Hollow fiber based affinity selection combined with high performance liquid chromatography-mass spectroscopy for rapid screening lipase inhibitors from lotus leaf.

    PubMed

    Tao, Yi; Zhang, Yufeng; Wang, Yi; Cheng, Yiyu

    2013-06-27

    A novel kind of immobilized enzyme affinity selection strategy based on hollow fibers has been developed for screening inhibitors from extracts of medicinal plants. Lipases from porcine pancreas were adsorbed onto the surface of polypropylene hollow fibers to form a stable matrix for ligand fishing, which was called hollow fibers based affinity selection (HF-AS). A variety of factors related to binding capability, including enzyme concentration, incubation time, temperature, buffer pH and ion strength, were optimized using a known lipase inhibitor hesperidin. The proposed approach was applied in screening potential lipase bound ligands from extracts of lotus leaf, followed by rapid characterization of active compounds using high performance liquid chromatography-mass spectrometry. Three flavonoids including quercetin-3-O-β-D-arabinopyranosyl-(1→2)-β-D-galactopyranoside, quercetin-3-O-β-D-glucuronide and kaempferol-3-O-β-d-glucuronide were identified as lipase inhibitors by the proposed HF-AS approach. Our findings suggested that the hollow fiber-based affinity selection could be a rapid and convenient approach for drug discovery from natural products resources. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Fragment screening of cyclin G-associated kinase by weak affinity chromatography.

    PubMed

    Meiby, Elinor; Knapp, Stefan; Elkins, Jonathan M; Ohlson, Sten

    2012-11-01

    Fragment-based drug discovery (FBDD) has become a new strategy for drug discovery where lead compounds are evolved from small molecules. These fragments form low affinity interactions (dissociation constant (K(D)) = mM - μM) with protein targets, which require fragment screening methods of sufficient sensitivity. Weak affinity chromatography (WAC) is a promising new technology for fragment screening based on selective retention of fragments by a drug target. Kinases are a major pharmaceutical target, and FBDD has been successfully applied to several of these targets. In this work, we have demonstrated the potential to use WAC in combination with mass spectrometry (MS) detection for fragment screening of a kinase target-cyclin G-associated kinase (GAK). One hundred seventy fragments were selected for WAC screening by virtual screening of a commercial fragment library against the ATP-binding site of five different proteins. GAK protein was immobilized on a capillary HPLC column, and compound binding was characterized by frontal affinity chromatography. Compounds were screened in sets of 13 or 14, in combination with MS detection for enhanced throughput. Seventy-eight fragments (46 %) with K(D) < 200 μM were detected, including a few highly efficient GAK binders (K(D) of 2 μM; ligand efficiency = 0.51). Of special interest is that chiral screening by WAC may be possible, as two stereoisomeric fragments, which both contained one chiral center, demonstrated twin peaks. This ability, in combination with the robustness, sensitivity, and simplicity of WAC makes it a new method for fragment screening of considerable potential.

  1. Fragment screening for drug leads by weak affinity chromatography (WAC-MS).

    PubMed

    Ohlson, Sten; Duong-Thi, Minh-Dao

    2018-02-23

    Fragment-based drug discovery is an important tool for design of small molecule hit-to-lead compounds against various biological targets. Several approved drugs have been derived from an initial fragment screen and many such candidates are in various stages of clinical trials. Finding fragment hits, that are suitable for optimisation by medicinal chemists, is still a challenge as the binding between the small fragment and its target is weak in the range of mM to µM of K d and irrelevant non-specific interactions are abundant in this area of transient interactions. Fortunately, there are methods that can study weak interactions quite efficiently of which NMR, surface plasmon resonance (SPR) and X-ray crystallography are the most prominent. Now, a new technology based on zonal affinity chromatography, weak affinity chromatography (WAC), has been introduced which has remedied many of the problems with other technologies. By combining WAC with mass spectrometry (WAC-MS), it is a powerful tool to identify binders quantitatively in terms of affinity and kinetics either from fragment libraries or from complex mixtures of biological extracts. As WAC-MS can be multiplexed by analysing mixtures of fragments (20-100 fragments) in one sample, this approach yields high throughput, where a whole library of e.g. >2000 fragments can be analysed quantitatively within a day. WAC-MS is easy to perform, where the robustness and quality of HPLC is fully utilized. This review will highlight the rationale behind the application of WAC-MS for fragment screening in drug discovery. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Quantitative Detection of Trace Explosive Vapors by Programmed Temperature Desorption Gas Chromatography-Electron Capture Detector

    PubMed Central

    Field, Christopher R.; Lubrano, Adam; Woytowitz, Morgan; Giordano, Braden C.; Rose-Pehrsson, Susan L.

    2014-01-01

    The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples. PMID:25145416

  3. Quantitative detection of trace explosive vapors by programmed temperature desorption gas chromatography-electron capture detector.

    PubMed

    Field, Christopher R; Lubrano, Adam; Woytowitz, Morgan; Giordano, Braden C; Rose-Pehrsson, Susan L

    2014-07-25

    The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples.

  4. An inorganic boronate affinity in-needle monolithic device for specific capture of cis-diol containing compounds.

    PubMed

    Jin, Shanxia; Zhang, Wei; Yang, Qin; Dai, Lili; Zhou, Ping

    2018-02-01

    In this work, inorganic boronate affinity monolith was prepared by in situ synthesis in 0.33mm i.d. stainless steel needle through sol-gel process using tetraethoxysilane and tetrabutyl orthotitanate as the co-precursors. The morphology, structure and composition of the monolith were characterized. In contrast to conventional boronate affinity materials, inorganic boric acid was used as affinity ligand. Different compounds were used for the evaluation of the boronate affinity of this inorganic monolithic material. The monolith exhibited good selectivity towards cis-diol containing compounds. Recovery of greater than 90% was achieved for in-needle extraction of catechol under neutral conditions. Owing to the hydrophilic property of the monolith, the procedure of affinity chromatography could be performed in aqueous solution. This monolithic in-needle device will be useful for boronate affinity extraction of small-volume samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Generation of Nanobodies against SlyD and development of tools to eliminate this bacterial contaminant from recombinant proteins.

    PubMed

    Hu, Yaozhong; Romão, Ema; Vertommen, Didier; Vincke, Cécile; Morales-Yánez, Francisco; Gutiérrez, Carlos; Liu, Changxiao; Muyldermans, Serge

    2017-09-01

    The gene for a protein domain, derived from a tumor marker, fused to His tag codons and under control of a T7 promotor was expressed in E. coli strain BL21 (DE3). The recombinant protein was purified from cell lysates through immobilized metal affinity chromatography and size-exclusion chromatography. A contaminating bacterial protein was consistently co-purified, even using stringent washing solutions containing 50 or 100 mM imidazole. Immunization of a dromedary with this contaminated protein preparation, and the subsequent generation and panning of the immune Nanobody library yielded several Nanobodies of which 2/3 were directed against the bacterial contaminant, reflecting the immunodominance of this protein to steer the dromedary immune response. Affinity adsorption of this contaminant using one of our specific Nanobodies followed by mass spectrometry identified the bacterial contaminant as FKBP-type peptidyl-prolyl cis-trans isomerase (SlyD) from E. coli. This SlyD protein contains in its C-terminal region 14 histidines in a stretch of 31 amino acids, which explains its co-purification on Ni-NTA resin. This protein is most likely present to varying extents in all recombinant protein preparations after immobilized metal affinity chromatography. Using our SlyD-specific Nb 5 we generated an immune-complex that could be removed either by immunocapturing or by size exclusion chromatography. Both methods allow us to prepare a recombinant protein sample where the SlyD contaminant was quantitatively eliminated. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Characterization of Gly-D-Phe, Gly-L-Leu, and D-Phe as affinity ligands to thermolysin.

    PubMed

    Yasukawa, Kiyoshi; Kusano, Masayuki; Nakamura, Koji; Inouye, Kuniyo

    2006-04-01

    In this study, glycyl-D-phenylalanine (Gly-D-Phe), glycyl-L-leucine (Gly-L-Leu), and D-phenylalanine (D-Phe) were characterized for their abilities as affinity ligands to thermolysin. Each of the ligands was immobilized to the resin. The optimum pH for adsorption of thermolysin is 5.0-6.0 for each of the ligands. By the affinity column chromatography in which 2mg thermolysin was applied onto 4 ml volume of the resins at pH 5.5, the adsorption ratios based on casein hydrolysis activity were 100% for each of the ligands. However, the adsorption ratios of the resins containing Gly-L-Leu and D-Phe, unlike that of Gly-D-Phe, were progressively decreased with increasing the amounts of thermolysin applied to the column. Measurement of adsorption isotherms showed that the association constant to thermolysin at pH 5.5 of the resins containing Gly-D-Phe was (3.3+/-0.8)x10(5)M(-1), while those of Gly-L-Leu and D-Phe were approximately ten times less. This result is coincident with the observations of performances in affinity column chromatography. On the other hand, maximum thermolysin binding capacities were almost the same among the resins examined. These results indicate that Gly-D-Phe is more suitable than Gly-L-Leu and D-Phe as an affinity ligand for purification of thermolysin.

  7. Purification of HBsAg produced by the human hepatoma cell line PLC/PRE/5 by affinity chromatography using monoclonal antibodies and application for ELISA diagnostic.

    PubMed

    Merten, O W; Reiter, S; Scheirer, W; Katinger, H

    1983-01-01

    The human cell line PLC/PRF/5 (5) was used for the production of hepatitis B surface antigen subtype ad (HBsAg ad) and purified by affinity chromatography (AC) with monoclonal antibodies (mAb). mAb to HBsAg from mouse ascites have been purified by Protein A - AC prior coupling to AH-Sepharose 4B (Pharmacia). The combined procedure of ammonium-sulphate-precipitation of HBsAg from culture supernatants and immunosorbent-AC leads to approx. 700-fold purification. ELISA results using the mAb and the HBsAg for diagnostics of human serum, positive for anti-HBsAg-antibodies correlate with the RIA (AUSAB, Abbott).

  8. Methacrylate gels with epoxide groups as supports for immobilization of enzymes in pH range 3-12.

    PubMed

    Turková, J; Bláha, K; Malaníková, M; Vancurová, D; Svec, F; Kálal, J

    1978-05-11

    Glycidyl methacrylate gels are carriers suitable for attachment of enzymes and for use in affinity chromatography. Experiments on the coupling of glycyl-L-leucine and acetyl-L-leucine to these gels have shown a high pH-dependence of the bond formation between the support and the alpha-amino group (pH optimum 9.7); the coupling reaction between the epoxide group and the carboxyl group is practically pH-independent. Serum albumin and trypsin were attached to a greater extent in acidic than in alkaline media. The effects of time and temperature were also studied. The catalytic action of immobilized trypsin, as well as its use for affinity chromatography of trypsin inhibitor, were studied.

  9. SwellGel: an affinity chromatography technology for high-capacity and high-throughput purification of recombinant-tagged proteins.

    PubMed

    Draveling, C; Ren, L; Haney, P; Zeisse, D; Qoronfleh, M W

    2001-07-01

    The revolution in genomics and proteomics is having a profound impact on drug discovery. Today's protein scientist demands a faster, easier, more reliable way to purify proteins. A high capacity, high-throughput new technology has been developed in Perbio Sciences for affinity protein purification. This technology utilizes selected chromatography media that are dehydrated to form uniform aggregates. The SwellGel aggregates will instantly rehydrate upon addition of the protein sample, allowing purification and direct performance of multiple assays in a variety of formats. SwellGel technology has greater stability and is easier to handle than standard wet chromatography resins. The microplate format of this technology provides high-capacity, high-throughput features, recovering milligram quantities of protein suitable for high-throughput screening or biophysical/structural studies. Data will be presented applying SwellGel technology to recombinant 6x His-tagged protein and glutathione-S-transferase (GST) fusion protein purification. Copyright 2001 Academic Press.

  10. Sample displacement chromatography as a method for purification of proteins and peptides from complex mixtures

    PubMed Central

    Gajdosik, Martina Srajer; Clifton, James; Josic, Djuro

    2012-01-01

    Sample displacement chromatography (SDC) in reversed-phase and ion-exchange modes was introduced approximately twenty years ago. This method takes advantage of relative binding affinities of components in a sample mixture. During loading, there is a competition among different sample components for the sorption on the surface of the stationary phase. SDC was first used for the preparative purification of proteins. Later, it was demonstrated that this kind of chromatography can also be performed in ion-exchange, affinity and hydrophobic-interaction mode. It has also been shown that SDC can be performed on monoliths and membrane-based supports in both analytical and preparative scale. Recently, SDC in ion-exchange and hydrophobic interaction mode was also employed successfully for the removal of trace proteins from monoclonal antibody preparations and for the enrichment of low abundance proteins from human plasma. In this review, the principals of SDC are introduced, and the potential for separation of proteins and peptides in micro-analytical, analytical and preparative scale is discussed. PMID:22520159

  11. Automated Hydrophobic Interaction Chromatography Column Selection for Use in Protein Purification

    PubMed Central

    Murphy, Patrick J. M.; Stone, Orrin J.; Anderson, Michelle E.

    2011-01-01

    In contrast to other chromatographic methods for purifying proteins (e.g. gel filtration, affinity, and ion exchange), hydrophobic interaction chromatography (HIC) commonly requires experimental determination (referred to as screening or "scouting") in order to select the most suitable chromatographic medium for purifying a given protein 1. The method presented here describes an automated approach to scouting for an optimal HIC media to be used in protein purification. HIC separates proteins and other biomolecules from a crude lysate based on differences in hydrophobicity. Similar to affinity chromatography (AC) and ion exchange chromatography (IEX), HIC is capable of concentrating the protein of interest as it progresses through the chromatographic process. Proteins best suited for purification by HIC include those with hydrophobic surface regions and able to withstand exposure to salt concentrations in excess of 2 M ammonium sulfate ((NH4)2SO4). HIC is often chosen as a purification method for proteins lacking an affinity tag, and thus unsuitable for AC, and when IEX fails to provide adequate purification. Hydrophobic moieties on the protein surface temporarily bind to a nonpolar ligand coupled to an inert, immobile matrix. The interaction between protein and ligand are highly dependent on the salt concentration of the buffer flowing through the chromatography column, with high ionic concentrations strengthening the protein-ligand interaction and making the protein immobile (i.e. bound inside the column) 2. As salt concentrations decrease, the protein-ligand interaction dissipates, the protein again becomes mobile and elutes from the column. Several HIC media are commercially available in pre-packed columns, each containing one of several hydrophobic ligands (e.g. S-butyl, butyl, octyl, and phenyl) cross-linked at varying densities to agarose beads of a specific diameter 3. Automated column scouting allows for an efficient approach for determining which HIC media should be employed for future, more exhaustive optimization experiments and protein purification runs 4. The specific protein being purified here is recombinant green fluorescent protein (GFP); however, the approach may be adapted for purifying other proteins with one or more hydrophobic surface regions. GFP serves as a useful model protein, due to its stability, unique light absorbance peak at 397 nm, and fluorescence when exposed to UV light 5. Bacterial lysate containing wild type GFP was prepared in a high-salt buffer, loaded into a Bio-Rad DuoFlow medium pressure liquid chromatography system, and adsorbed to HiTrap HIC columns containing different HIC media. The protein was eluted from the columns and analyzed by in-line and post-run detection methods. Buffer blending, dynamic sample loop injection, sequential column selection, multi-wavelength analysis, and split fraction eluate collection increased the functionality of the system and reproducibility of the experimental approach. PMID:21968976

  12. Integrated Method for Purification and Single-Particle Characterization of Lentiviral Vector Systems by Size Exclusion Chromatography and Tunable Resistive Pulse Sensing.

    PubMed

    Heider, Susanne; Muzard, Julien; Zaruba, Marianne; Metzner, Christoph

    2017-07-01

    Elements derived from lentiviral particles such as viral vectors or virus-like particles are commonly used for biotechnological and biomedical applications, for example in mammalian protein expression, gene delivery or therapy, and vaccine development. Preparations of high purity are necessary in most cases, especially for clinical applications. For purification, a wide range of methods are available, from density gradient centrifugation to affinity chromatography. In this study we have employed size exclusion columns specifically designed for the easy purification of extracellular vesicles including exosomes. In addition to viral marker protein and total protein analysis, a well-established single-particle characterization technology, termed tunable resistive pulse sensing, was employed to analyze fractions of highest particle load and purity and characterize the preparations by size and surface charge/electrophoretic mobility. With this study, we propose an integrated platform combining size exclusion chromatography and tunable resistive pulse sensing for monitoring production and purification of viral particles.

  13. Production of capsular polysaccharide of Streptococcus pneumoniae type 14 and its purification by affinity chromatography.

    PubMed

    Suárez, N; Fraguas, L F; Texeira, E; Massaldi, H; Batista-Viera, F; Ferreira, F

    2001-02-01

    We describe a rapid and efficient method for producing the capsular polysaccharide of Streptococcus pneumoniae by fermentation on tryptic soy broth and purification of this compound by using immobilized soybean lectin as an affinity adsorbent. In principle, the same strategy can be used to produce purified capsular polysaccharides from other streptococcal serotypes by selecting the appropriate lectin adsorbents.

  14. Production of Capsular Polysaccharide of Streptococcus pneumoniae Type 14 and Its Purification by Affinity Chromatography

    PubMed Central

    Suárez, Norma; Fraguas, Laura Franco; Texeira, Esther; Massaldi, Hugo; Batista-Viera, Francisco; Ferreira, Fernando

    2001-01-01

    We describe a rapid and efficient method for producing the capsular polysaccharide of Streptococcus pneumoniae by fermentation on tryptic soy broth and purification of this compound by using immobilized soybean lectin as an affinity adsorbent. In principle, the same strategy can be used to produce purified capsular polysaccharides from other streptococcal serotypes by selecting the appropriate lectin adsorbents. PMID:11157270

  15. A single-step purification and molecular characterization of functional Shiga toxin 2 variants from pathogenic Escherichia coli

    USDA-ARS?s Scientific Manuscript database

    Shiga toxin (Stx) 2 variants, Stx2a, Stx2c, Stx2d and Stx2g were purified to homogeneity from bacterial culture supernatants by a one-step monoclonal anti-Stx affinity chromatography method. The method was based on the binding affinity of these Stxs for a monoclonal antibody against the Stx2 A-subun...

  16. Interferon Induced Transfer of Viral Resistance

    DTIC Science & Technology

    1982-02-01

    released from the cell membrane. We have also shown that CM’s activity is removed by a gelatin /sepharose affinity column which selectively binds...interferon preparation adsorbing to the WISH cells, interferon was subjected to gelatin /sepharose affinity chromatography to remove endogenous...caused an increase in the amount of H-.amnino acids incorporated into a gelatin binding protein, presumably fibronectin. This suggests that in addition to

  17. One-step selection of Vaccinia virus-binding DNA aptamers by MonoLEX

    PubMed Central

    Nitsche, Andreas; Kurth, Andreas; Dunkhorst, Anna; Pänke, Oliver; Sielaff, Hendrik; Junge, Wolfgang; Muth, Doreen; Scheller, Frieder; Stöcklein, Walter; Dahmen, Claudia; Pauli, Georg; Kage, Andreas

    2007-01-01

    Background As a new class of therapeutic and diagnostic reagents, more than fifteen years ago RNA and DNA aptamers were identified as binding molecules to numerous small compounds, proteins and rarely even to complete pathogen particles. Most aptamers were isolated from complex libraries of synthetic nucleic acids by a process termed SELEX based on several selection and amplification steps. Here we report the application of a new one-step selection method (MonoLEX) to acquire high-affinity DNA aptamers binding Vaccinia virus used as a model organism for complex target structures. Results The selection against complete Vaccinia virus particles resulted in a 64-base DNA aptamer specifically binding to orthopoxviruses as validated by dot blot analysis, Surface Plasmon Resonance, Fluorescence Correlation Spectroscopy and real-time PCR, following an aptamer blotting assay. The same oligonucleotide showed the ability to inhibit in vitro infection of Vaccinia virus and other orthopoxviruses in a concentration-dependent manner. Conclusion The MonoLEX method is a straightforward procedure as demonstrated here for the identification of a high-affinity DNA aptamer binding Vaccinia virus. MonoLEX comprises a single affinity chromatography step, followed by subsequent physical segmentation of the affinity resin and a single final PCR amplification step of bound aptamers. Therefore, this procedure improves the selection of high affinity aptamers by reducing the competition between aptamers of different affinities during the PCR step, indicating an advantage for the single-round MonoLEX method. PMID:17697378

  18. Selection of a high-affinity and in vivo bioactive ssDNA aptamer against angiotensin II peptide.

    PubMed

    Heiat, Mohammad; Ranjbar, Reza; Latifi, Ali Mohammad; Rasaee, Mohammad Javad

    2016-08-01

    Unique features of aptamers have attracted interests for a broad range of applications. Aptamers are able to specifically bind to targets and inhibit their functions. This study, aimed to isolate the high affinity ssDNA aptamers against bio-regulator peptide angiotensin II (Ang II) and investigate their bioactivity in cellular and animal models. To isolate ssDNA aptamers, 12 rounds of affinity chromatography SELEX (Systematic Evolution of Ligands by EXponential enrichment) procedure were carried out. The SPR (surface plasmon resonance) and ELONA (enzyme linked oligonucleotide assay) analysis were used to determine the affinity and specificity of aptamers. The ability of selected aptamers to inhibit the proliferative effect of Ang II on human aortic vascular smooth muscle cells (HA-VSMCs) and their performance on Wistar rat urinary system and serum electrolyte levels were investigated. Two full-length aptamers (FLC112 and FLC125) with high affinity of respectively 7.52±2.44E-10 and 5.87±1.3E-9M were isolated against Ang II. The core regions of these aptamers (CRC112 and CRC125) also showed affinity of 5.33±1.15E-9 and 4.11±1.09E-9M. In vitro analysis revealed that FLC112 and FLC125 can inhibit the proliferative effect of Ang II on HA-VSMCs (P<0.05). They also significantly reduced the serum sodium level and increased the urine volume (P<0.05). The core regions of aptamers did not show high inhibitory potential against Ang II. It can be a spotlight that ssDNA aptamers have high potential for blocking Ang II. In conclusion, it appears that the researches focusing on high affinity and bioactive aptamers may lead to excellent results in blocking Ang II activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Evaluation of Multi-tRNA Synthetase Complex by Multiple Reaction Monitoring Mass Spectrometry Coupled with Size Exclusion Chromatography

    PubMed Central

    Kim, Jun Seok; Lee, Cheolju

    2015-01-01

    Eight aminoacyl-tRNA synthetases (M, K, Q, D, R, I, EP and LARS) and three auxiliary proteins (AIMP1, 2 and 3) are known to form a multi-tRNA synthetase complex (MSC) in mammalian cells. We combined size exclusion chromatography (SEC) with reversed-phase liquid chromatography multiple reaction monitoring mass spectrometry (RPLC-MRM-MS) to characterize MSC components and free ARS proteins in human embryonic kidney (HEK 293T) cells. Crude cell extract and affinity-purified proteins were fractionated by SEC in non-denaturing state and ARSs were monitored in each fraction by MRM-MS. The eleven MSC components appeared mostly in earlier SEC fractions demonstrating their participation in complex formation. TARSL2 and AIMP2-DX2, despite their low abundance, were co-purified with KARS and detected in the SEC fractions, where MSC appeared. Moreover, other large complex-forming ARS proteins, such as VARS and FARS, were detected in earlier fractions. The MRM-MS results were further confirmed by western blot analysis. Our study demonstrates usefulness of combined SEC-MRM analysis for the characterization of protein complexes and in understanding the behavior of minor isoforms or variant proteins. PMID:26544075

  20. A thermostable lectin from the rhizomes of Kaempferia parviflora.

    PubMed

    Konkumnerd, Wichchulada; Karnchanatat, Aphichart; Sangvanich, Polkit

    2010-08-30

    Kaempferia parviflora, or black galingale (Kra-Chai-Dam), belongs to the Zingiberaceae family and is used as both a food ingredient and a medicinal plant. There are diverse reports on the biological activities of compounds extracted from the plant, such as antimalarial, antifungal and an effective sexual-enhancing role, but not on the lectins. A lectin was isolated from the rhizomes of Kaempferia parviflora using affinity chromatography on Concanavalin A followed by gel filtration chromatography on Sephacryl S-100. The molecular weight of the purified lectin was about 41.7 kDa. This lectin showed haemagglutinating activity against erythrocytes from several sources, with the highest level being against those from rabbits. Moreover, the lectin was thermostable, with significant haemagglutinating activity detectable up to 75 degrees C. The results of trypsin digestion and liquid chromatography/tandem mass spectrometry analysis suggested that this protein could be a member of the lectin/endochitnase1 family. A lectin that showed thermotolerant haemagglutinating activity against erythrocytes from several sources was successfully purified from K. paviflora rhizomes. Peptide sequence analysis indicated that this lectin is similar to lectin/endochitinase 1 (Urtica dioica) or Hevein-like protein (Hevea brasiliensis). Copyright (c) 2010 Society of Chemical Industry.

  1. Evaluation of Multi-tRNA Synthetase Complex by Multiple Reaction Monitoring Mass Spectrometry Coupled with Size Exclusion Chromatography.

    PubMed

    Park, Seong-Jun; Ahn, Hee-Sung; Kim, Jun Seok; Lee, Cheolju

    2015-01-01

    Eight aminoacyl-tRNA synthetases (M, K, Q, D, R, I, EP and LARS) and three auxiliary proteins (AIMP1, 2 and 3) are known to form a multi-tRNA synthetase complex (MSC) in mammalian cells. We combined size exclusion chromatography (SEC) with reversed-phase liquid chromatography multiple reaction monitoring mass spectrometry (RPLC-MRM-MS) to characterize MSC components and free ARS proteins in human embryonic kidney (HEK 293T) cells. Crude cell extract and affinity-purified proteins were fractionated by SEC in non-denaturing state and ARSs were monitored in each fraction by MRM-MS. The eleven MSC components appeared mostly in earlier SEC fractions demonstrating their participation in complex formation. TARSL2 and AIMP2-DX2, despite their low abundance, were co-purified with KARS and detected in the SEC fractions, where MSC appeared. Moreover, other large complex-forming ARS proteins, such as VARS and FARS, were detected in earlier fractions. The MRM-MS results were further confirmed by western blot analysis. Our study demonstrates usefulness of combined SEC-MRM analysis for the characterization of protein complexes and in understanding the behavior of minor isoforms or variant proteins.

  2. Multiparameter cell affinity chromatography: separation and analysis in a single microfluidic channel.

    PubMed

    Li, Peng; Gao, Yan; Pappas, Dimitri

    2012-10-02

    The ability to sort and capture more than one cell type from a complex sample will enable a wide variety of studies of cell proliferation and death and the analysis of disease states. In this work, we integrated a pneumatic actuated control layer to an affinity separation layer to create different antibody-coating regions on the same fluidic channel. The comparison of different antibody capture capabilities to the same cell line was demonstrated by flowing Ramos cells through anti-CD19- and anti-CD71-coated regions in the same channel. It was determined that the cell capture density on the anti-CD19 region was 2.44 ± 0.13 times higher than that on the anti-CD71-coated region. This approach can be used to test different affinity molecules for selectivity and capture efficiency using a single cell line in one separation. Selective capture of Ramos and HuT 78 cells from a mixture was also demonstrated using two antibody regions in the same channel. Greater than 90% purity was obtained on both capture areas in both continuous flow and stop flow separation modes. A four-region antibody-coated device was then fabricated to study the simultaneous, serial capture of three different cell lines. In this case the device showed effective capture of cells in a single separation channel, opening up the possibility of multiple cell sorting. Multiparameter sequential blood sample analysis was also demonstrated with high capture specificity (>97% for both CD19+ and CD4+ leukocytes). The chip can also be used to selectively treat cells after affinity separation.

  3. Protein profile of Lupinus texensis phloem sap exudates: searching for Fe- and Zn-containing proteins.

    PubMed

    Lattanzio, Giuseppe; Andaluz, Sofía; Matros, Andrea; Calvete, Juan José; Kehr, Julia; Abadía, Anunciación; Abadía, Javier; López-Millán, Ana-Flor

    2013-08-01

    The aim of this study was to obtain a comprehensive overview of the phloem sap protein profile of Lupinus texensis, with a special focus on proteins binding Fe and Zn. L. texensis was chosen as model plant given the simplicity to obtain exudates from sieve elements. Protein profiling by 2DE revealed 249 spots, and 54 of them were unambiguously identified by MALDI-MS and ESI-MS/MS. The largest number of identified protein species belongs to protein modification/turnover and general metabolism (19-21%), followed by redox homeostasis (9%) and defense and cell structural components (7%). This protein profile is similar to that reported in other plant species, suggesting that the phloem sap proteome is quite conserved. Staining of 2DE gels for Fe-containing proteins and affinity chromatography experiments revealed the presence of two low molecular weight Fe-binding proteins in phloem sap: a metallothionein-like protein type 2B identified in the Fe-affinity chromatography, and a second protein identified with both Fe staining methods. This protein species had a molecular weight of 13.5 kDa, a pI of 5.6 and 51% homology to a phloem-specific protein from Medicago truncatula. Zinc affinity chromatography revealed four Zn-binding proteins in phloem sap, one belonging to the dehydrin family and three Zn finger proteins. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Electrochemical affinity biosensors for detection of mycotoxins: A review.

    PubMed

    Vidal, Juan C; Bonel, Laura; Ezquerra, Alba; Hernández, Susana; Bertolín, Juan R; Cubel, Carlota; Castillo, Juan R

    2013-11-15

    This review discusses the current state of electrochemical biosensors in the determination of mycotoxins in foods. Mycotoxins are highly toxic secondary metabolites produced by molds. The acute toxicity of these results in serious human and animal health problems, although it has been only since early 1960s when the first studied aflatoxins were found to be carcinogenic. Mycotoxins affect a broad range of agricultural products, most important cereals and cereal-based foods. A majority of countries, mentioning especially the European Union, have established preventive programs to control contamination and strict laws of the permitted levels in foods. Official methods of analysis of mycotoxins normally requires sophisticated instrumentation, e.g. liquid chromatography with fluorescence or mass detectors, combined with extraction procedures for sample preparation. For about sixteen years, the use of simpler and faster analytical procedures based on affinity biosensors has emerged in scientific literature as a very promising alternative, particularly electrochemical (i.e., amperometric, impedance, potentiometric or conductimetric) affinity biosensors due to their simplicity and sensitivity. Typically, electrochemical biosensors for mycotoxins use specific antibodies or aptamers as affinity ligands, although recombinant antibodies, artificial receptors and molecular imprinted polymers show potential utility. This article deals with recent advances in electrochemical affinity biosensors for mycotoxins and covers complete literature from the first reports about sixteen years ago. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. High-throughput screening of dye-ligands for chromatography.

    PubMed

    Kumar, Sunil; Punekar, Narayan S

    2014-01-01

    Dye-ligand-based chromatography has become popular after Cibacron Blue, the first reactive textile dye, found application for protein purification. Many other textile dyes have since been successfully used to purify a number of proteins and enzymes. While the exact nature of their interaction with target proteins is often unclear, dye-ligands are thought to mimic the structural features of their corresponding substrates, cofactors, etc. The dye-ligand affinity matrices are therefore considered pseudo-affinity matrices. In addition, dye-ligands may simply bind with proteins due to electrostatic, hydrophobic, and hydrogen-bonding interactions. Because of their low cost, ready availability, and structural stability, dye-ligand affinity matrices have gained much popularity. Choice of a large number of dye structures offers a range of matrices to be prepared and tested. When presented in the high-throughput screening mode, these dye-ligand matrices provide a formidable tool for protein purification. One could pick from the list of dye-ligands already available or build a systematic library of such structures for use. A high-throughput screen may be set up to choose best dye-ligand matrix as well as ideal conditions for binding and elution, for a given protein. The mode of operation could be either manual or automated. The technology is available to test the performance of dye-ligand matrices in small volumes in an automated liquid-handling workstation. Screening a systematic library of dye-ligand structures can help establish a structure-activity relationship. While the origins of dye-ligand chromatography lay in exploiting pseudo-affinity, it is now possible to design very specific biomimetic dye structures. High-throughput screening will be of value in this endeavor as well.

  6. The application of new software tools to quantitative protein profiling via isotope-coded affinity tag (ICAT) and tandem mass spectrometry: I. Statistically annotated datasets for peptide sequences and proteins identified via the application of ICAT and tandem mass spectrometry to proteins copurifying with T cell lipid rafts.

    PubMed

    von Haller, Priska D; Yi, Eugene; Donohoe, Samuel; Vaughn, Kelly; Keller, Andrew; Nesvizhskii, Alexey I; Eng, Jimmy; Li, Xiao-jun; Goodlett, David R; Aebersold, Ruedi; Watts, Julian D

    2003-07-01

    Lipid rafts were prepared according to standard protocols from Jurkat T cells stimulated via T cell receptor/CD28 cross-linking and from control (unstimulated) cells. Co-isolating proteins from the control and stimulated cell preparations were labeled with isotopically normal (d0) and heavy (d8) versions of the same isotope-coded affinity tag (ICAT) reagent, respectively. Samples were combined, proteolyzed, and resultant peptides fractionated via cation exchange chromatography. Cysteine-containing (ICAT-labeled) peptides were recovered via the biotin tag component of the ICAT reagents by avidin-affinity chromatography. On-line micro-capillary liquid chromatography tandem mass spectrometry was performed on both avidin-affinity (ICAT-labeled) and flow-through (unlabeled) fractions. Initial peptide sequence identification was by searching recorded tandem mass spectrometry spectra against a human sequence data base using SEQUEST software. New statistical data modeling algorithms were then applied to the SEQUEST search results. These allowed for discrimination between likely "correct" and "incorrect" peptide assignments, and from these the inferred proteins that they collectively represented, by calculating estimated probabilities that each peptide assignment and subsequent protein identification was a member of the "correct" population. For convenience, the resultant lists of peptide sequences assigned and the proteins to which they corresponded were filtered at an arbitrarily set cut-off of 0.5 (i.e. 50% likely to be "correct") and above and compiled into two separate datasets. In total, these data sets contained 7667 individual peptide identifications, which represented 2669 unique peptide sequences, corresponding to 685 proteins and related protein groups.

  7. A Chlorogenic Acid Esterase with a Unique Substrate Specificity from Ustilago maydis

    PubMed Central

    Haase-Aschoff, Paul; Kelle, Sebastian; Linke, Diana; Krings, Ulrich; Popper, Lutz; Berger, Ralf G.

    2014-01-01

    An extracellular chlorogenic acid esterase from Ustilago maydis (UmChlE) was purified to homogeneity by using three separation steps, including anion-exchange chromatography on a Q Sepharose FF column, preparative isoelectric focusing (IEF), and, finally, a combination of affinity chromatography and hydrophobic interaction chromatography on polyamide. SDS-PAGE analysis suggested a monomeric protein of ∼71 kDa. The purified enzyme showed maximal activity at pH 7.5 and at 37°C and was active over a wide pH range (3.5 to 9.5). Previously described chlorogenic acid esterases exhibited a comparable affinity for chlorogenic acid, but the enzyme from Ustilago was also active on typical feruloyl esterase substrates. Kinetic constants for chlorogenic acid, methyl p-coumarate, methyl caffeate, and methyl ferulate were as follows: Km values of 19.6 μM, 64.1 μM, 72.5 μM, and 101.8 μM, respectively, and kcat/Km values of 25.83 mM−1 s−1, 7.63 mM−1 s−1, 3.83 mM−1 s−1 and 3.75 mM−1 s−1, respectively. UmChlE released ferulic, p-coumaric, and caffeic acids from natural substrates such as destarched wheat bran (DSWB) and coffee pulp (CP), confirming activity on complex plant biomass. The full-length gene encoding UmChlE consisted of 1,758 bp, corresponding to a protein of 585 amino acids, and was functionally produced in Pichia pastoris GS115. Sequence alignments with annotated chlorogenic acid and feruloyl esterases underlined the uniqueness of this enzyme. PMID:25548041

  8. A New Ligand-Based Method for Purifying Active Human Plasma-Derived Ficolin-3 Complexes Supports the Phenomenon of Crosstalk between Pattern-Recognition Molecules and Immunoglobulins

    PubMed Central

    Man-Kupisinska, Aleksandra; Michalski, Mateusz; Maciejewska, Anna; Swierzko, Anna S.; Cedzynski, Maciej; Lugowski, Czeslaw; Lukasiewicz, Jolanta

    2016-01-01

    Despite recombinant protein technology development, proteins isolated from natural sources remain important for structure and activity determination. Ficolins represent a class of proteins that are difficult to isolate. To date, three methods for purifying ficolin-3 from plasma/serum have been proposed, defined by most critical step: (i) hydroxyapatite absorption chromatography (ii) N-acetylated human serum albumin affinity chromatography and (iii) anti-ficolin-3 monoclonal antibody-based affinity chromatography. We present a new protocol for purifying ficolin-3 complexes from human plasma that is based on an exclusive ligand: the O-specific polysaccharide of Hafnia alvei PCM 1200 LPS (O-PS 1200). The protocol includes (i) poly(ethylene glycol) precipitation; (ii) yeast and l-fucose incubation, for depletion of mannose-binding lectin; (iii) affinity chromatography using O-PS 1200-Sepharose; (iv) size-exclusion chromatography. Application of this protocol yielded average 2.2 mg of ficolin-3 preparation free of mannose-binding lectin (MBL), ficolin-1 and -2 from 500 ml of plasma. The protein was complexed with MBL-associated serine proteases (MASPs) and was able to activate the complement in vitro. In-process monitoring of MBL, ficolins, and total protein content revealed the presence of difficult-to-remove immunoglobulin G, M and A, in some extent in agreement with recent findings suggesting crosstalk between IgG and ficolin-3. We demonstrated that recombinant ficolin-3 interacts with IgG and IgM in a concentration-dependent manner. Although this association does not appear to influence ficolin-3-ligand interactions in vitro, it may have numerous consequences in vivo. Thus our purification procedure provides Ig-ficolin-3/MASP complexes that might be useful for gaining further insight into the crosstalk and biological activity of ficolin-3. PMID:27232184

  9. A comparative evaluation of software for the analysis of liquid chromatography-tandem mass spectrometry data from isotope coded affinity tag experiments.

    PubMed

    Moulder, Robert; Filén, Jan-Jonas; Salmi, Jussi; Katajamaa, Mikko; Nevalainen, Olli S; Oresic, Matej; Aittokallio, Tero; Lahesmaa, Riitta; Nyman, Tuula A

    2005-07-01

    The options available for processing quantitative data from isotope coded affinity tag (ICAT) experiments have mostly been confined to software specific to the instrument of acquisition. However, recent developments with data format conversion have subsequently increased such processing opportunities. In the present study, data sets from ICAT experiments, analysed with liquid chromatography/tandem mass spectrometry (MS/MS), using an Applied Biosystems QSTAR Pulsar quadrupole-TOF mass spectrometer, were processed in triplicate using separate mass spectrometry software packages. The programs Pro ICAT, Spectrum Mill and SEQUEST with XPRESS were employed. Attention was paid towards the extent of common identification and agreement of quantitative results, with additional interest in the flexibility and productivity of these programs. The comparisons were made with data from the analysis of a specifically prepared test mixture, nine proteins at a range of relative concentration ratios from 0.1 to 10 (light to heavy labelled forms), as a known control, and data selected from an ICAT study involving the measurement of cytokine induced protein expression in human lymphoblasts, as an applied example. Dissimilarities were detected in peptide identification that reflected how the associated scoring parameters favoured information from the MS/MS data sets. Accordingly, there were differences in the numbers of peptides and protein identifications, although from these it was apparent that both confirmatory and complementary information was present. In the quantitative results from the three programs, no statistically significant differences were observed.

  10. Method development of enantiomer separations by affinity capillary electrophoresis, cyclodextrin electrokinetic chromatography and capillary electrophoresis-mass spectrometry.

    PubMed

    Tanaka, Yoshihide

    2002-07-01

    Capillary electrophoresis (CE) has become a powerful tool for enantiomer separations during the last decade. Since 1993, the author has investigated enantiomer separations by affinity capillary electrophoresis (affinity CE) with some proteins and by cyclodextrin electrokinetic chromatography (CDEKC) with some charged cyclodextrins (CDs). Many successful enantiomer separations are demonstrated from our study in this review article. In the enantiomer separations by affinity CE, the deterioration of detection sensitivity was observed under high concentration of the protein in running solutions. The partial filling technique was practically useful to solve the serious problem. It allowed operation at high protein concentrations, such as 500 mumol/L, without the detection problem. Charged CDs had several advantages for the enantiomer separations over neutral ones. Strong electrostatic interactions between a charged CD and oppositely charged analytes should be effective for the formation of the complex. A large difference in electrophoretic mobility between the free analyte and the inclusion complex should also enhance the enantiomeric resolution. In CE-mass spectrometry (CE-MS), the partial filling technique was applied to avoid the introduction of nonvolatile chiral selectors into the CE-MS interface. By replacing the nonvolatile electrolytes in the running buffer by volatile ones, the separation conditions employed in CE with the UV detection method could be transferred to CE-MS.

  11. Affinity chromatography on monolithic supports for simultaneous and high-throughput isolation of immunoglobulins from human serum.

    PubMed

    Martinović, Tamara; Andjelković, Uroš; Klobučar, Marko; Černigoj, Urh; Vidič, Jana; Lučić, Marina; Pavelić, Krešimir; Josić, Djuro

    2017-11-01

    Posttranslational modifications of immunoglobulins have been a topic of great interest and have been repeatedly reported as a major factor in disease pathology. Cost-effective, reproducible, and high-throughput (HTP) isolation of immunoglobulins from human serum is vital for studying the changes in protein structure and the following understanding of disease development. Although there are many methods for the isolation of specific immunoglobulin classes, only a few of them are applicable for isolation of all subtypes and variants. Here, we present the development of a scheme for fast and simultaneous affinity purification of α (A), γ (G), and μ (M) immunoglobulins from human serum through affinity monolith chromatography. Affinity-based monolithic columns with immobilized protein A, G, or L were used for antibody isolation. Monolithic stationary phases have a high surface accessibility of binding sites, large flow-through channels, and can be operated at high flow rates, making them the ideal supports for HTP isolation of biopolymers. The presented method can be used for HTP screening of human serum in order to simultaneously isolate all three above-mentioned immunoglobulins and determine their concentration and changes in their glycosylation pattern as potential prognostic and diagnostic disease biomarkers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Depletion of highly abundant proteins in blood plasma by ammonium sulfate precipitation for 2D-PAGE analysis.

    PubMed

    Mahn, Andrea; Ismail, Maritza

    2011-11-15

    Ammonium sulfate precipitation (ASP) was explored as a method for depleting some highly abundant proteins from blood plasma, in order to reduce the dynamic range of protein concentration and to improve the detection of low abundance proteins by 2D-PAGE. 40% ammonium sulfate saturation was chosen since it allowed depleting 39% albumin and 82% α-1-antitrypsin. ASP-depletion showed high reproducibility in 2D-PAGE analysis (4.2% variation in relative abundance of albumin), similar to that offered by commercial affinity-depletion columns. Besides, it allowed detecting 59 spots per gel, very close to the number of spots detected in immuno-affinity-depleted plasma. Thus, ASP at 40% saturation is a reliable depletion method that may help in proteomic analysis of blood plasma. Finally, ASP-depletion seems to be complementary to hydrophobic interaction chromatography (HIC)-depletion, and therefore an ASP-step followed by a HIC-step could probably deplete the most highly abundant plasma proteins, thus improving the detection of low abundance proteins by 2D-PAGE. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Characterization of hyaluronate binding proteins isolated from 3T3 and murine sarcoma virus transformed 3T3 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turley, E.A.; Moore, D.; Hayden, L.J.

    1987-06-02

    A hyaluronic acid binding fraction was purified from the supernatant media of both 3T3 and murine sarcoma virus (MSV) transformed 3T3 cultures by hyaluronate and immunoaffinity chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis resolved the hyaluronate affinity-purified fraction into three major protein bands of estimated molecular weight (M/sub r,e/) 70K, 66K, and 56K which contained hyaluronate binding activity and which were termed hyaluronate binding proteins (HABP). Hyaluronate affinity chromatography combined with immunoaffinity chromatography, using antibody directed against the larger HABP, allowed a 20-fold purification of HABP. Fractions isolated from 3T3 supernatant medium also contained additional binding molecules in the molecular weightmore » range of 20K. This material was present in vanishingly small amounts and was not detected with a silver stain or with (/sup 35/S)methionine label. The three protein species isolated by hyaluronate affinity chromatography (M/sub r,e/ 70K, 66K, and 56K) were related to one another since they shared antigenic determinants and exhibited similar pI values. In isocratic conditions, HABP occurred as aggregates of up to 580 kilodaltons. Their glycoprotein nature was indicated by their incorporation of /sup 3/H-sugars. Enzyme-linked immunoadsorbent assay showed they were antigenically distinct from other hyaluronate binding proteins such as fibronectin, cartilage link protein, and the hyaluronate binding region of chondroitin sulfate proteoglycan. The results are discussed with regard both to the functional significance of hyaluronate-cell surface interactions in transformed as well as normal cells and to the relationship of HABP to other reported hyaluronate binding proteins.« less

  14. Preliminary Crystallographic Study of Hemoglobin from Buffalo (Bubalus bubalis): A Low Oxygen Affinity Species.

    PubMed

    Balasubramanian, Moovarkumudalvan; Moorthy, Ponnuraj Sathya; Neelagandan, Kamariah; Ponnuswamy, Mondikalipudur Nanjappa Gounder

    2009-01-01

    Hemoglobin is a tetrameric, iron-containing metalloprotein, which plays a vital role in the transportation of oxygen from lungs to tissues and carbon dioxide back to lungs. Though good amount of work has already been done on hemoglobins, the scarcity of data on three dimensional structures pertaining to low oxygen affinity hemoglobins from mammalian species, motivated our group to work on this problem specifically. Herein, we report the preliminary crystallographic analysis of buffalo hemoglobin, which belongs to low oxygen affinity species. The buffalo blood was collected, purified by anion exchange chromatography and crystallized with PEG 3350 using 50mM phosphate buffer at pH 6.7 as a precipitant by hanging drop vapor diffusion method. Data collection was carried out using mar345dtb image plate detector system. Buffalo hemoglobin crystallizes in orthorhombic space group P2(1)2(1)2(1) with one whole biological molecule (alpha2beta2) in the asymmetric unit with cell dimensions a=63.064A, b=74.677A, c=110.224A.

  15. Recombinant human antibody fragment against tetanus toxoid produced by phage display.

    PubMed

    Neelakantam, B; Sridevi, N V; Shukra, A M; Sugumar, P; Samuel, S; Rajendra, L

    2014-03-01

    Phage display technology is a powerful in vitro method for the identification of specific monoclonal antibodies (antibody fragments) to an antigenic target and allows the rapid generation and selection of high affinity, fully human antibodies directed toward any disease target appropriate for antibody therapy. In the present study, we exploited the phage display technology for the selection of an antigen binding fragment (Fabs) toward tetanus toxoid using human naïve phage antibody library constructed from peripheral blood lymphocytes of naïve human donors. The phages displaying Fab were subjected to three rounds of bio-panning with tetanus toxoid as antigen on a solid phase. The high affinity antibody fragments were expressed in HB2151 strain of Escherichia coli and purified by immobilized metal affinity chromatography. The binding activity and specificity of the antibody fragment was established by its reactivity toward tetanus toxoid and non-reactivity toward other related toxins as determined by enzyme-linked immunosorbent assay and immunoblot analysis. The selected Fab fragment forming the antigen-binding complexes with the toxoid in flocculation assay indicates that the Fab may have a potential neutralizing ability toward antigen.

  16. Challenges and opportunities in the purification of recombinant tagged proteins.

    PubMed

    Pina, Ana Sofia; Lowe, Christopher R; Roque, Ana Cecília A

    2014-01-01

    The purification of recombinant proteins by affinity chromatography is one of the most efficient strategies due to the high recovery yields and purity achieved. However, this is dependent on the availability of specific affinity adsorbents for each particular target protein. The diversity of proteins to be purified augments the complexity and number of specific affinity adsorbents needed, and therefore generic platforms for the purification of recombinant proteins are appealing strategies. This justifies why genetically encoded affinity tags became so popular for recombinant protein purification, as these systems only require specific ligands for the capture of the fusion protein through a pre-defined affinity tag tail. There is a wide range of available affinity pairs "tag-ligand" combining biological or structural affinity ligands with the respective binding tags. This review gives a general overview of the well-established "tag-ligand" systems available for fusion protein purification and also explores current unconventional strategies under development. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Barley as a green factory for the production of functional Flt3 ligand.

    PubMed

    Erlendsson, Lýdur S; Muench, Marcus O; Hellman, Ulf; Hrafnkelsdóttir, Soffía M; Jonsson, Anders; Balmer, Yves; Mäntylä, Einar; Orvar, Björn L

    2010-02-01

    Biologically active recombinant human Flt3 ligand was expressed and isolated from transgenic barley seeds. Its expression is controlled by a tissue specific promoter that confines accumulation of the recombinant protein to the endosperm tissue of the seed. The recombinant Flt3 ligand variant expressed in the seeds contains an HQ-tag for affinity purification on immobilized metal ion affinity chromatography (IMAC) resin. The tagged protein was purified from seed extracts to near homogeneity using sequential chromatography on IMAC affinity resin and cation exchange resin. We also show that the recombinant Flt3 ligand protein undergoes posttranslational modifications: it is a glycoprotein containing alpha-1,3-fucose and alpha-1,2-xylose. The HQ-tagged Flt3 ligand variant exhibits comparable biological activity to commercial Flt3 ligand. This is the first report showing expression and accumulation of recombinant human growth factor in barley seeds with a yield of active protein similar to a bacterial expression system. The present results demonstrate that plant molecular farming is a viable approach for the bioproduction of human-derived growth factors.

  18. Two-step purification of His-tagged Nef protein in native condition using heparin and immobilized metal ion affinity chromatographies.

    PubMed

    Finzi, Andrés; Cloutier, Jonathan; Cohen, Eric A

    2003-07-01

    The Nef protein encoded by human immunodeficiency virus type 1 (HIV-1) has been shown to be an important factor of progression of viral growth and pathogenesis in both in vitro and in vivo. The lack of a simple procedure to purify Nef in its native conformation has limited molecular studies on Nef function. A two-step procedure that includes heparin and immobilized metal ion affinity chromatographies (IMACs) was developed to purify His-tagged Nef (His(6)-Nef) expressed in bacteria in native condition. During the elaboration of this purification procedure, we identified two closely SDS-PAGE-migrating contaminating bacterial proteins, SlyD and GCHI, that co-eluted with His(6)-Nef in IMAC in denaturing condition and developed purification steps to eliminate these contaminants in native condition. Overall, this study describes a protocol that allows rapid purification of His(6)-Nef protein expressed in bacteria in native condition and that removes metal affinity resin-binding bacterial proteins that can contaminate recombinant His-tagged protein preparation.

  19. Comprehensive two-dimensional HPLC to study the interaction of multiple components in Rheum palmatum L. with HSA by coupling a silica-bonded HSA column to a silica monolithic ODS column.

    PubMed

    Hu, Lianghai; Li, Xin; Feng, Shun; Kong, Liang; Su, Xingye; Chen, Xueguo; Qin, Feng; Ye, Mingliang; Zou, Hanfa

    2006-04-01

    A mode of comprehensive 2-D LC was developed by coupling a silica-bonded HSA column to a silica monolithic ODS column. This system combined the affinity property of the HSA column and the high-speed separation ability of the monolithic ODS column. The affinity chromatography with HSA-immobilized stationary phase was applied to study the interaction of multiple components in traditional Chinese medicines (TCMs) with HSA according to their affinity to protein in the first dimension. Then the unresolved components retained on the HSA column were further separated on the silica monolithic ODS column in the second dimension. By hyphenating the 2-D separation system to diode array detector and MS detectors, the UV and molecular weight information of the separated compounds can also be obtained. The developed separation system was applied to analysis of the extract of Rheum palmatum L., a number of low-abundant components can be separated on a single peak from the HSA column after normalization of peak heights. Six compounds were preliminarily identified according to their UV and MS spectra. It showed that this system was very useful for biological fingerprinting analysis of the components in TCMs and natural products.

  20. Comprehensive proteomic analysis of the human spliceosome

    NASA Astrophysics Data System (ADS)

    Zhou, Zhaolan; Licklider, Lawrence J.; Gygi, Steven P.; Reed, Robin

    2002-09-01

    The precise excision of introns from pre-messenger RNA is performed by the spliceosome, a macromolecular machine containing five small nuclear RNAs and numerous proteins. Much has been learned about the protein components of the spliceosome from analysis of individual purified small nuclear ribonucleoproteins and salt-stable spliceosome `core' particles. However, the complete set of proteins that constitutes intact functional spliceosomes has yet to be identified. Here we use maltose-binding protein affinity chromatography to isolate spliceosomes in highly purified and functional form. Using nanoscale microcapillary liquid chromatography tandem mass spectrometry, we identify ~145 distinct spliceosomal proteins, making the spliceosome the most complex cellular machine so far characterized. Our spliceosomes comprise all previously known splicing factors and 58 newly identified components. The spliceosome contains at least 30 proteins with known or putative roles in gene expression steps other than splicing. This complexity may be required not only for splicing multi-intronic metazoan pre-messenger RNAs, but also for mediating the extensive coupling between splicing and other steps in gene expression.

  1. Odorant Screening and Quantitation of Thiols in Carmenere Red Wine by Gas Chromatography-Olfactometry and Stable Isotope Dilution Assays.

    PubMed

    Pavez, Carolina; Agosin, Eduardo; Steinhaus, Martin

    2016-05-04

    The sensory impact of thiols in Vitis vinifera 'Carmenere' red wines was evaluated. For this purpose, aroma extract dilution analysis was applied to the thiols isolated from a Carmenere red wine by affinity chromatography with a mercurated agarose gel. Results revealed the presence of four odorants, identified as 2-furanylmethanethiol, 3-sulfanylhexyl acetate, 3-sulfanyl-1-hexanol, and 2-methyl-3-sulfanyl-1-butanol, with the latter being described here for the first time in Carmenere red wines. Quantitation of the four thiols in the Carmenere wine screened by aroma extract dilution analysis and in three additional Carmenere wines by stable isotope dilution assays resulted in concentrations above the respective orthonasal odor detection threshold values. Triangle tests applied to wine model solutions with and without the addition of the four thiols showed significant differences, thus suggesting that the compounds do have the potential to influence the overall aroma of red wine.

  2. What reaches the antenna? How to calibrate odor flux and ligand-receptor affinities.

    PubMed

    Andersson, Martin N; Schlyter, Fredrik; Hill, Sharon Rose; Dekker, Teun

    2012-06-01

    Physiological studies on olfaction frequently ignore the airborne quantities of stimuli reaching the sensory organ. We used a gas chromatography-calibrated photoionization detector to estimate quantities released from standard Pasteur pipette stimulus cartridges during repeated puffing of 27 compounds and verified how lack of quantification could obscure olfactory sensory neuron (OSN) affinities. Chemical structure of the stimulus, solvent, dose, storage condition, puff interval, and puff number all influenced airborne quantities. A model including boiling point and lipophilicity, but excluding vapor pressure, predicted airborne quantities from stimuli in paraffin oil on filter paper. We recorded OSN responses of Drosophila melanogaster, Ips typographus, and Culex quinquefasciatus, to known quantities of airborne stimuli. These demonstrate that inferred OSN tuning width, ligand affinity, and classification can be confounded and require stimulus quantification. Additionally, proper dose-response analysis shows that Drosophila AB3A OSNs are not promiscuous, but highly specific for ethyl hexanoate, with other earlier proposed ligands 10- to 10 000-fold less potent. Finally, we reanalyzed published Drosophila OSN data (DoOR) and demonstrate substantial shifts in affinities after compensation for quantity and puff number. We conclude that consistent experimental protocols are necessary for correct OSN classification and present some simple rules that make calibration, even retroactively, readily possible.

  3. Purification and characterization of rat liver nuclear thyroid hormone receptors.

    PubMed Central

    Ichikawa, K; DeGroot, L J

    1987-01-01

    Nuclear thyroid hormone receptor was purified to 904 pmol of L-3,5,3'-triiodothyronine (T3) binding capacity per mg of protein with 2.5-5.2% recovery by sequentially using hydroxylapatite column chromatography, ammonium sulfate precipitation, Sephadex G-150 gel filtration, DNA-cellulose column chromatography, DEAE-Sephadex column chromatography, and heparin-Sepharose column chromatography. Assuming that one T3 molecule binds to the 49,000-Da unit of the receptor, we reproducibly obtained 6.4-14.7 micrograms of receptor protein with 4.2-4.9% purity from 4-5 kg of rat liver. Elution of receptor from the heparin-Sepharose column was performed using 10 mM pyridoxal 5'-phosphate, which was observed to diminish binding of receptor to heparin-Sepharose or DNA-cellulose. This effect was specific for pyridoxal 5'-phosphate, since related compounds were not effective. Purified receptor bound T3 with high affinity (6.0 X 10(9) liter/mol), and the order of affinity of iodothyronine analogues to purified receptor was identical to that observed with crude receptor preparations [3,5,3'-triiodothyroacetic acid greater than L-T3 greater than D-3,5,3'-triiodothyronine (D-T3) greater than L-thyroxine greater than D-thyroxine]. Purified receptor had a sedimentation coefficient of 3.4 S, Stokes radius of 34 A, and calculated molecular mass of 49,000. Among several bands identified by silver staining after electrophoresis in NaDodSO4/polyacrylamide gels, one 49,000-Da protein showed photoaffinity labeling with [125I]thyroxine that was displaceable with excess unlabeled T3. The tryptic fragment and endogenous proteinase-digested fragment of the affinity-labeled receptor showed saturable binding in 27,000-Da and 36,000-Da peptides, respectively. These molecular masses are in agreement with estimates from gel filtration and gradient sedimentation, indicating that affinity labeling occurred at the hormone binding domain of nuclear thyroid hormone receptor. This procedure reproducibly provides classical native rat liver T3 nuclear receptor in useful quantity and purity and of the highest specific activity so far reported. Images PMID:3472213

  4. Enhanced production and immunological characterization of recombinant West Nile virus envelope domain III protein.

    PubMed

    Tripathi, Nagesh K; Karothia, Divyanshi; Shrivastava, Ambuj; Banger, Swati; Kumar, Jyoti S

    2018-05-13

    West Nile virus (WNV) is an emerging mosquito-borne virus which is responsible for severe and fatal encephalitis in humans and for which there is no licensed vaccine or therapeutic available to prevent infection. The envelope domain III protein (EDIII) of WNV was over-expressed in Escherichia coli and purified using a two-step chromatography process which included immobilized metal affinity chromatography and ion exchange chromatography. E. coli cells were grown in a bioreactor to high density using batch and fed-batch cultivation. Wet biomass obtained after batch and fed-batch cultivation processes was 11.2 g and 84 g/L of culture respectively. Protein yield after affinity purification was 5.76 mg and 5.81 mg/g wet cell weight after batch and fed-batch processes respectively. The purified WNV EDIII elicited specific antibodies in rabbits, confirming its immunogenicity. Moreover, the antibodies were able to neutralize WNV in vitro. These results established that the refolded and purified WNV EDIII could be a potential vaccine candidate. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. A comprehensive proteomics and genomics analysis reveals novel transmembrane proteins in human platelets and mouse megakaryocytes including G6b-B, a novel ITIM protein

    PubMed Central

    Senis, Yotis A.; Tomlinson, Michael G.; García, Ángel; Dumon, Stephanie; Heath, Victoria L.; Herbert, John; Cobbold, Stephen P.; Spalton, Jennifer C.; Ayman, Sinem; Antrobus, Robin; Zitzmann, Nicole; Bicknell, Roy; Frampton, Jon; Authi, Kalwant; Martin, Ashley; Wakelam, Michael J.O.; Watson, Stephen P.

    2007-01-01

    Summary The platelet surface is poorly characterized due to the low abundance of many membrane proteins and the lack of specialist tools for their investigation. In this study we have identified novel human platelet and mouse megakaryocyte membrane proteins using specialist proteomic and genomic approaches. Three separate methods were used to enrich platelet surface proteins prior to identification by liquid chromatography and tandem mass spectrometry: lectin affinity chromatography; biotin/NeutrAvidin affinity chromatography; and free flow electrophoresis. Many known, abundant platelet surface transmembrane proteins and several novel proteins were identified using each receptor enrichment strategy. In total, two or more unique peptides were identified for 46, 68 and 22 surface membrane, intracellular membrane and membrane proteins of unknown sub-cellular localization, respectively. The majority of these were single transmembrane proteins. To complement the proteomic studies, we analysed the transcriptome of a highly purified preparation of mature primary mouse megakaryocytes using serial analysis of gene expression in view of the increasing importance of mutant mouse models in establishing protein function in platelets. This approach identified all of the major classes of platelet transmembrane receptors, including multi-transmembrane proteins. Strikingly, 17 of the 25 most megakaryocyte-specific genes (relative to 30 other SAGE libraries) were transmembrane proteins, illustrating the unique nature of the megakaryocyte/platelet surface. The list of novel plasma membrane proteins identified using proteomics includes the immunoglobulin superfamily member G6b, which undergoes extensive alternate splicing. Specific antibodies were used to demonstrate expression of the G6b-B isoform, which contains an immunoreceptor tyrosine-based inhibition motif. G6b-B undergoes tyrosine phosphorylation and association with the SH2-containing phosphatase, SHP-1, in stimulated platelets suggesting that it may play a novel role in limiting platelet activation. PMID:17186946

  6. Proteomic Analysis to Identify Functional Molecules in Drug Resistance Caused by E-Cadherin Knockdown in 3D-Cultured Colorectal Cancer Models

    DTIC Science & Technology

    2013-09-01

    REFERENCES (1) Harsha, H. C.; Pandey, A. Phosphoproteomics in cancer. Mol. Oncol. 2010, 4 (6), 482−95. (2) Iliuk , A.; Liu, X. S.; Xue, L.; Liu, X...based proteomics and peptidomics for biomarker discovery in neurodegenerative diseases. Int. J. Clin. Exp. Pathol. 2009, 2 (2), 132−48. (4) Iliuk , A...phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal. Biochem. 1986, 154 (1), 250−4. (6) Iliuk , A. B.; Martin, V. A.; Alicie, B. M

  7. Recent advances in methods for the analysis of protein o-glycosylation at proteome level.

    PubMed

    You, Xin; Qin, Hongqiang; Ye, Mingliang

    2018-01-01

    O-Glycosylation, which refers to the glycosylation of the hydroxyl group of side chains of Serine/Threonine/Tyrosine residues, is one of the most common post-translational modifications. Compared with N-linked glycosylation, O-glycosylation is less explored because of its complex structure and relatively low abundance. Recently, O-glycosylation has drawn more and more attention for its various functions in many sophisticated biological processes. To obtain a deep understanding of O-glycosylation, many efforts have been devoted to develop effective strategies to analyze the two most abundant types of O-glycosylation, i.e. O-N-acetylgalactosamine and O-N-acetylglucosamine glycosylation. In this review, we summarize the proteomics workflows to analyze these two types of O-glycosylation. For the large-scale analysis of mucin-type glycosylation, the glycan simplification strategies including the ''SimpleCell'' technology were introduced. A variety of enrichment methods including lectin affinity chromatography, hydrophilic interaction chromatography, hydrazide chemistry, and chemoenzymatic method were introduced for the proteomics analysis of O-N-acetylgalactosamine and O-N-acetylglucosamine glycosylation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Analysis of agalacto-IgG in rheumatoid arthritis using surface plasmon resonance.

    PubMed

    Liljeblad, M; Lundblad, A; Påhlsson, P

    2000-05-01

    It is well established that IgG from rheumatoid arthritis (RA) patients are less galactosylated than IgG from normal individuals. Determination of agalacto-IgG may therefore aid in diagnosis and treatment of RA. The decrease in galactosylation of IgG leads to an increase in terminal N-acetylglucosamine residues, which can be detected using a specific lectin from Psathyrella velutina. In the present study IgG from RA and control serum was purified using affinity chromatography. The samples were then, after reduction, analyzed on a BIOCORE 2000 system with immobilized Psathyrella velutina lectin. Using this technique it was possible to discriminate between IgG from RA patients and IgG from control individuals with respect to its content of IgG with terminal N-acetylglucosamine. The affinity biosensor technique makes it possible to detect binding without labeling or using secondary antibodies.

  9. Analyses of Interactions Between Heparin and the Apical Surface Proteins of Plasmodium falciparum

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kyousuke; Takano, Ryo; Takemae, Hitoshi; Sugi, Tatsuki; Ishiwa, Akiko; Gong, Haiyan; Recuenco, Frances C.; Iwanaga, Tatsuya; Horimoto, Taisuke; Akashi, Hiroomi; Kato, Kentaro

    2013-11-01

    Heparin, a sulfated glycoconjugate, reportedly inhibits the blood-stage growth of the malaria parasite Plasmodium falciparum. Elucidation of the inhibitory mechanism is valuable for developing novel invasion-blocking treatments based on heparin. Merozoite surface protein 1 has been reported as a candidate target of heparin; however, to better understand the molecular mechanisms involved, we characterized the molecules that bind to heparin during merozoite invasion. Here, we show that heparin binds only at the apical tip of the merozoite surface and that multiple heparin-binding proteins localize preferentially in the apical organelles. To identify heparin-binding proteins, parasite proteins were fractionated by means of heparin affinity chromatography and subjected to immunoblot analysis with ligand-specific antibodies. All tested members of the Duffy and reticulocyte binding-like families bound to heparin with diverse affinities. These findings suggest that heparin masks the apical surface of merozoites and blocks interaction with the erythrocyte membrane after initial attachment.

  10. Properties of thymidylate synthetase from Ehrlich ascites carcinoma cells. Effect of Mg2/ and MgATP2-.

    PubMed

    Jastreboff, M; Kedzierska, B; Rode, W

    1982-01-15

    Ehrlich ascites carcinoma thymidylate synthetase was purified to electrophoretic homogeneity by affinity chromatography on 10-formyl-5,8-dideazofolate-ethyl-Sepharose. Electrophoretic analysis of the formation of the enzyme-5-fluorodeoxyuridylate-5,10-methylenetetrahydrofolate complexes showed the presence of two binding sites for 5-fluorodeoxyuridylate on the enzyme molecule. Molecular weight of the native enzyme was found to be 78,5000, whereas that of its monomer was 38, 500. The apparent Michaelis constants for dUMP and (+/-)-L-5,10-methylenetetrahydrofolate were 1.3 +/- 0.4 and 32.2 +/- 0.7 micrometers respectively. Phosphate acted as a weak inhibitor, competitive toward dUMP. The enzyme reaction exhibited a temperature-dependent change of activation energy, reflected in the binding affinity of dUMP, with a transitional temperature of 35.8 degrees. Both Mg2+ and MgATP2- were strong activators of the enzyme, MgATP2- being more effective.

  11. Fibulin-1 purification from human plasma using affinity chromatography on Factor H-Sepharose

    PubMed Central

    DiScipio, Richard G.; Liddington, Robert C.; Schraufstatter, Ingrid U.

    2016-01-01

    A method is reported to purify Fibulin-1 from human plasma resulting in a 36% recovery. The steps involve removal of the cryoglobulin and the vitamin K dependent proteins followed by polyethylene glycol and ammonium sulfate precipitations, DEAE-Sephadex column chromatography and finally Factor H-Sepharose affinity purification. The procedure is designed to be integrated into an overall scheme for the isolation of over 30 plasma proteins from a single batch of human plasma. Results from mass spectroscopy, SDS-PAGE, and Western blotting indicate that human plasma Fibulin-1 is a single chain of the largest isotype. Functional binding assays demonstrated calcium ion dependent interaction of Fibulin-1 for fibrinogen, fibronectin, and Factor H. The procedure described is the first to our knowledge that enables a large scale purification of Fibulin-1 from human plasma. PMID:26826315

  12. Temperature effect on affinity chromatography of two lectins from the seeds of Ricinus communis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, H.W.; Davis, D.S.; Wei, C.H.

    1976-06-01

    Specific adsorption capacity of Sepharose 4B in affinity chromatography for two purified galactose-binding lectins, designated as III/sub L/ and III/sub H/, from the seed of Ricinus communis (castor bean) was measured from 7 to 24/sup 0/C. The adsorption coefficients for these two protein fractions as a function of temperature were also obtained. It was found that there is a characteristic transition of adsorption coefficient at 18/sup 0/C for both lectins. Adsorption coefficients between Sepharose 4B and these two lectins were also expressed in terms of ..delta..G, ..delta..H, and ..delta..S. It is suggested that the difference in the temperature dependence ofmore » the binding energy of these two lectins may be used for their separation at selected temperature.« less

  13. Affinity Interaction between Hexamer Peptide Ligand HWRGWV and Immunoglobulin G Studied by Quartz Crystal Microbalance and Surface Plasmon Resonance

    NASA Astrophysics Data System (ADS)

    Shen, Fei

    Immunoglobulins (Ig), also referred to as antibodies, act as protective agents against pathogens trying to invade an organism. Human immunoglobulin G (hIgG), as the most prominent immunoglobulin presented in serum and other human fluids, has broad applications in fields like immunotherapy and clinical diagnostics. Staphylococcus aureus Protein A and Streptococcus Protein G are the most common affinity ligands for IgG purifaction and detection. However, drawbacks associated with these two protein ligands have motivated searches for alternative affinity ligands. The hexamer peptide ligand HWRGWV identified from a one-bead-one-peptide combinatorial library synthesized on chromatography resins has demonstrated high affinity and specificity to the Fc fragment of hIgG. A chromatography resin with HWRGWV can purify human IgG (hIgG) from complete minimum essential medium (cMEM) with purities and yields as high as 95%, which are comparable to using Protein A as affinity ligand (4). As a short peptide ligand, HWRGWV can be produced at relatively low costs under good manufacturing practices (GMP) conditions, it is highly robust, less immunogenic and allows for milder elution conditions for the bound antibody (3, 5). Although this short peptide ligand has exhibited promising properties for IgG capture and purification, limited information is available on the intrinsic mechanisms of affinity interaction between the peptide ligand and target protein. In this study, the affinity interaction between hIgG and peptide ligand immobilized on solid surfaces was studied by quartz crystal microbalance (QCM) and surface plasmon resonance (SPR). Compared with previous methods employed for the peptide characterization, QCM and SPR can provide direct measurements of equilibrium adsorption isotherms and rates of adsorption, allowing a complete kinetic and thermodynamics analyses of the ligand-target interactions. New methods were developed to modify gold and silica surfaces of QCM and SPR sensors for the immobilization of peptide ligands with low nonspecific binding. The silica surface was first modified by the formation of self-assembling monolayer (SAM) of 3-amino-propyl triethoxy silane as an anchor layer. Short chains of poly(ethylene glycol) (PEG) with Fmoc-protected amino groups at one end and carboxyl groups at the other end were then coupled through the carboxyl terminal to the amino groups on the silane. The short PEG chains served as spacer arms to reduce nonspecific binding to the substrate. The gold surface was modified by a two-component SAM using mixtures of HS(CH 2)11(CH2CH2O)6NH2 and HS(CH2)11(CH2CH2O)3OH. The advantage of using a modified silica surface is its relatively higher stability than the SAM on gold during the peptide functionalization step, however the SPR sensors do not work on silica surfaces. In addition, the modification process of the gold surface is relatively simple compared with that of the silica surface. The peptide immobilization process was optimized with silica surfaces and the best conditions were applied for the immobilization on gold surfaces. The results of surface modifications and peptide immobilizations were characterized by various surface analysis techniques including, ellipsometry, contact angle goniometer, chemical force microscopy (CFM), x-ray photoelectron spectroscopy (XPS) and time of flight secondary ion mass spectroscopy (ToF-SIMS). QCM and SPR results indicated that this peptide ligand HWRGWV immobilized on modified silica or gold surfaces has high affinity and specificity to hIgG binding even in a complex medium such as cMEM. Both thermodynamic and kinetic parameters of affinity interaction were obtained by the analysis of QCM and SPR data. Compared with QCM, SPR is more suitable for quantitative analysis of the protein binding, which is essential for the investigation of thermodynamics and kinetics parameters. The maximum binding capacity (4.15 mg m-2 ) and the dissociation constant (1.83 muM) derived from SPR data are both close to those obtained with chromatography techniques. The association and dissociation rate constants (0.68 m3 mol-1 s-1 and 1.24 s-1 respectively) were acquired for the first time for the affinity binding of IgG on peptide ligand HWRGWV functionalized surface. Although QCM is not as quantitative as SPR, it provides additional information on the status of the adsorbed layers. For instance, the dissipation measurement of QCM indicated that no significant denaturation of adsorbed hIgG occurred during the adsorption process. In addition, it was shown that the peptide ligand immobilized on modified silica surfaces has similar affinity and binding characteristics for IgG adsorption as on modified gold surfaces. In summary, new surface modification strategies were developed to study the affinity interaction between peptide ligands and target biomolecules. The use of Fc-specific binding peptides on QCM and SPR sensors could result in new devices for IgG concentration determination and also have promise as platforms for the development of immunosensors.

  14. Chromatographic analysis of toxic phosphylated oximes (POX): a brief overview.

    PubMed

    Becker, Christian; Worek, Franz; John, Harald

    2010-10-01

    Poisoning with organophosphorus compounds (OP), e.g. pesticides and nerve agents, causes inhibition of acetylcholinesterase (AChE) by phosphylation of the active site serine residue. Consequently, accumulation of stimulating acetylcholine in the synaptic cleft induces cholinergic crisis which ultimately may lead to death. For standard causal therapy, enzyme reactivators are administered representing oxime derivatives of quarternary pyridinium compounds, e.g. pralidoxime (2-PAM), obidoxime and HI 6. The mechanism of action includes removal of the phosphyl moiety by a nucleophilic attack of the oximate molecule substituting the enzyme and forming a phosphylated oxime (POX). POX is produced in stoichiometric amounts of reactivated enzyme and exhibits a significantly enhanced toxicity (inhibition rate constant) when compared to the parent OP. However, stability of POX under physiological conditions appears to be highly limited. Nevertheless, the presence of POX reveals a potential critical issue for both therapeutic efficacy in vivo and pharmacokinetic and pharmacodynamic (PK-PD) modelling based on cholinesterase activity data. Detailed characterization represents an important need for elaboration of the entire oxime pharmacology.Nevertheless, reports on POX toxicity and analysis are quite rare and may therefore be indicative of the challenge of POX analysis. This review provides a concise overview of chromatographic approaches applied to POX separation. Chromatography represents the key technology for POX purification and quantification in kinetic in vitro studies using buffers and biological fluids. Applications based on reversed-phase chromatography (RPC), ion pair chromatography (IPC) and an affinity approach as well as thin layer chromatography (TLC) are discussed and novel applications and data are presented. Copyright © 2010 John Wiley & Sons, Ltd.

  15. Acylhydrazone bond dynamic covalent polymer gel monolithic column online coupling to high-performance liquid chromatography for analysis of sulfonamides and fluorescent whitening agents in food.

    PubMed

    Zhang, Chengjiang; Luo, Xialin; Wei, Tianfu; Hu, Yufei; Li, Gongke; Zhang, Zhuomin

    2017-10-13

    A new dynamic covalent polymer (DCP) gel was well designed and constructed based on imine chemistry. Polycondensation of 4,4'-biphenyldicarboxaldehyde and 1,3,5-benzenetricarbohydrazide via Schiff-base reaction resulted in an acylhydrazone bond gel (AB-gel) DCP. AB-gel DCP had three-dimensional network of interconnected nanoparticles with hierarchically porous structure. AB-gel DCP was successfully fabricated as a monolithic column by an in-situ chemical bonding method for online enrichment and separation purpose with excellent permeability. AB-gel DCP based monolithic column showed remarkable adsorption affinity towards target analytes including sulfonamides (SAs) and fluorescent whitening agents (FWAs) due to its strong π-π affinity, hydrophobic effect and hydrogen bonding interaction. Then, AB-gel DCP based monolithic column was applied for online separation and analysis of trace SAs and FWAs in food samples coupled with high-performance liquid chromatography (HPLC). Sulfathiazole (ST) and sulfadimidine (SM2) in one positive weever sample were actually found and determined with concentrations of 273.8 and 286.3μg/kg, respectively. 2,5-Bis(5-tert-butyl-2-benzoxazolyl) thiophene (FWA184) was actually quantified in one tea infusion sample with the concentration of 268.5ng/L. The spiked experiments suggested the good recoveries in range of 74.5-110% for SAs in weever and shrimp samples with relative standard deviations (RSDs) less than 9.7% and in range of 74.0-113% for FWAs in milk and tea infusion samples with RSDs less than 9.0%. AB-gel DCP monolithic column was proved to be a promising sample preparation medium for online separation and analysis of trace analytes in food samples with complex matrices. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Approaches to High-Performance Preparative Chromatography of Proteins

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Liu, Fu-Feng; Shi, Qing-Hong

    Preparative liquid chromatography is widely used for the purification of chemical and biological substances. Different from high-performance liquid chromatography for the analysis of many different components at minimized sample loading, high-performance preparative chromatography is of much larger scale and should be of high resolution and high capacity at high operation speed and low to moderate pressure drop. There are various approaches to this end. For biochemical engineers, the traditional way is to model and optimize a purification process to make it exert its maximum capability. For high-performance separations, however, we need to improve chromatographic technology itself. We herein discuss four approaches in this review, mainly based on the recent studies in our group. The first is the development of high-performance matrices, because packing material is the central component of chromatography. Progress in the fabrication of superporous materials in both beaded and monolithic forms are reviewed. The second topic is the discovery and design of affinity ligands for proteins. In most chromatographic methods, proteins are separated based on their interactions with the ligands attached to the surface of porous media. A target-specific ligand can offer selective purification of desired proteins. Third, electrochromatography is discussed. An electric field applied to a chromatographic column can induce additional separation mechanisms besides chromatography, and result in electrokinetic transport of protein molecules and/or the fluid inside pores, thus leading to high-performance separations. Finally, expanded-bed adsorption is described for process integration to reduce separation steps and process time.

  17. Heparin-binding peptide as a novel affinity tag for purification of recombinant proteins.

    PubMed

    Morris, Jacqueline; Jayanthi, Srinivas; Langston, Rebekah; Daily, Anna; Kight, Alicia; McNabb, David S; Henry, Ralph; Kumar, Thallapuranam Krishnaswamy Suresh

    2016-10-01

    Purification of recombinant proteins constitutes a significant part of the downstream processing in biopharmaceutical industries. Major costs involved in the production of bio-therapeutics mainly depend on the number of purification steps used during the downstream process. Affinity chromatography is a widely used method for the purification of recombinant proteins expressed in different expression host platforms. Recombinant protein purification is achieved by fusing appropriate affinity tags to either N- or C- terminus of the target recombinant proteins. Currently available protein/peptide affinity tags have proved quite useful in the purification of recombinant proteins. However, these affinity tags suffer from specific limitations in their use under different conditions of purification. In this study, we have designed a novel 34-amino acid heparin-binding affinity tag (HB-tag) for the purification of recombinant proteins expressed in Escherichia coli (E. coli) cells. HB-tag fused recombinant proteins were overexpressed in E. coli in high yields. A one-step heparin-Sepharose-based affinity chromatography protocol was developed to purify HB-fused recombinant proteins to homogeneity using a simple sodium chloride step gradient elution. The HB-tag has also been shown to facilitate the purification of target recombinant proteins from their 8 M urea denatured state(s). The HB-tag has been demonstrated to be successfully released from the fusion protein by an appropriate protease treatment to obtain the recombinant target protein(s) in high yields. Results of the two-dimensional NMR spectroscopy experiments indicate that the purified recombinant target protein(s) exist in the native conformation. Polyclonal antibodies raised against the HB-peptide sequence, exhibited high binding specificity and sensitivity to the HB-fused recombinant proteins (∼10 ng) in different crude cell extracts obtained from diverse expression hosts. In our opinion, the HB-tag provides a cost-effective, rapid, and reliable avenue for the purification of recombinant proteins in heterologous hosts. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Purification of a PHA-like chitin-binding protein from Acacia farnesiana seeds: a time-dependent oligomerization protein.

    PubMed

    Santi-Gadelha, T; Rocha, B A M; Oliveira, C C; Aragão, K S; Marinho, E S; Gadelha, C A A; Toyama, M H; Pinto, V P T; Nagano, C S; Delatorre, P; Martins, J L; Galvani, F R; Sampaio, A H; Debray, H; Cavada, B S

    2008-07-01

    A lectin-like protein from the seeds of Acacia farnesiana was isolated from the albumin fraction, characterized, and sequenced by tandem mass spectrometry. The albumin fraction was extracted with 0.5 M NaCl, and the lectin-like protein of A. farnesiana (AFAL) was purified by ion-exchange chromatography (Mono-Q) followed by chromatofocusing. AFAL agglutinated rabbit erythrocytes and did not agglutinate human ABO erythrocytes either native or treated with proteolytic enzymes. In sodium dodecyl sulfate gel electrophoresis under reducing and nonreducing conditions, AFAL separated into two bands with a subunit molecular mass of 35 and 50 kDa. The homogeneity of purified protein was confirmed by chromatofocusing with a pI = 4.0 +/- 0.5. Molecular exclusion chromatography confirmed time-dependent oligomerization in AFAL, in accordance with mass spectrometry analysis, which confers an alteration in AFAL affinity for chitin. The protein sequence was obtained by a liquid chromatography quadrupole time-of-flight experiment and showed that AFAL has 68% and 63% sequence similarity with lectins of Phaseolus vulgaris and Dolichos biflorus, respectively.

  19. Rapid characterization of a novel taspine derivative-HMQ1611 binding to EGFR by a cell membrane chromatography method.

    PubMed

    Du, Hui; Lv, Nan; Wang, Sicen; He, Langchong

    2013-05-01

    A new high-expression endothelial growth factor receptor (EGFR) cell membrane chromatography (CMC) method was applied to recognize the ligands acting on EGFR specifically, and investigate the affinity of gefitinib/HMQ1611 to EGFR. In the self and direct competitive assay, gefitinib/HMQ1611 was used as a competitor in the mobile phase to evaluate the effect of the competitor's concentrations on the retention of the ligands, respectively, and the competition between gefitinib and HMQ1611 binding to EGFR was also been examined. The retention behavior indicated that gefitinib had one type of binding sites on the EGFR, and the equilibrium dissociation constant (K(D)) was (9.11 ± 1.89) × 10(-6) M; HMQ1611 had two major binding regions on the EGFR, and the K(D) values obtained from the model were (2.39 ± 0.33) × 10(-7) and (3.87 ± 0.93) × 10(-5) M for HMQ1611 at the high- and low-affinity sites, respectively. The competition between gefitinib and HMQ1611 occurred at the low-affinity sites on the EGFR. The low-affinity sites were of higher concentrations and contributed to a much larger part of retention of HMQ1611. The results suggested that gefitinib and HMQ1611 competed for the common binding sites on the EGFR, no matter the ligand was used as an analyte or a competitor.

  20. A chlorogenic acid esterase with a unique substrate specificity from Ustilago maydis.

    PubMed

    Nieter, Annabel; Haase-Aschoff, Paul; Kelle, Sebastian; Linke, Diana; Krings, Ulrich; Popper, Lutz; Berger, Ralf G

    2015-03-01

    An extracellular chlorogenic acid esterase from Ustilago maydis (UmChlE) was purified to homogeneity by using three separation steps, including anion-exchange chromatography on a Q Sepharose FF column, preparative isoelectric focusing (IEF), and, finally, a combination of affinity chromatography and hydrophobic interaction chromatography on polyamide. SDS-PAGE analysis suggested a monomeric protein of ∼71 kDa. The purified enzyme showed maximal activity at pH 7.5 and at 37°C and was active over a wide pH range (3.5 to 9.5). Previously described chlorogenic acid esterases exhibited a comparable affinity for chlorogenic acid, but the enzyme from Ustilago was also active on typical feruloyl esterase substrates. Kinetic constants for chlorogenic acid, methyl p-coumarate, methyl caffeate, and methyl ferulate were as follows: Km values of 19.6 μM, 64.1 μM, 72.5 μM, and 101.8 μM, respectively, and kcat/Km values of 25.83 mM(-1) s(-1), 7.63 mM(-1) s(-1), 3.83 mM(-1) s(-1) and 3.75 mM(-1) s(-1), respectively. UmChlE released ferulic, p-coumaric, and caffeic acids from natural substrates such as destarched wheat bran (DSWB) and coffee pulp (CP), confirming activity on complex plant biomass. The full-length gene encoding UmChlE consisted of 1,758 bp, corresponding to a protein of 585 amino acids, and was functionally produced in Pichia pastoris GS115. Sequence alignments with annotated chlorogenic acid and feruloyl esterases underlined the uniqueness of this enzyme. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Endoprotease profiling with double-tagged peptide substrates: a new diagnostic approach in oncology.

    PubMed

    Peccerella, Teresa; Lukan, Nadine; Hofheinz, Ralf; Schadendorf, Dirk; Kostrezewa, Markus; Neumaier, Michael; Findeisen, Peter

    2010-02-01

    The measurement of disease-related proteolytic activity in complex biological matrices like serum is of emerging interest to improve the diagnosis of malignant diseases. We developed a mass spectrometry (MS)-based functional proteomic profiling approach that tracks degradation of artificial endoprotease substrates in serum specimens. The synthetic reporter peptides that are cleaved by tumor-associated endopeptidases were systematically optimized with regard to flanking affinity tags, linkers, and stabilizing elements. Serum specimens were incubated with reporter peptides under standardized conditions and the peptides subsequently extracted with affinity chromatography before MS. In a pilot study an optimized reporter peptide with the cleavage motif WKPYDAADL was added to serum specimens from colorectal tumor patients (n = 50) and healthy controls (n = 50). This reporter peptide comprised a known cleavage site for the cysteine-endopeptidase "cancer procoagulant." Serial affinity chromatography using biotin- and 6xHis tags was superior to the single affinity enrichment using only 6xHis tags. Furthermore, protease-resistant stop elements ensured signal accumulation after prolonged incubation. In contrast, signals from reporter peptides without stop elements vanished completely after prolonged incubation owing to their total degradation. Reporter-peptide spiking showed good reproducibility, and the difference in proteolytic activity between serum specimens from cancer patients and controls was highly significant (P < 0.001). The introduction of a few structural key elements (affinity tags, linkers, d-amino acids) into synthetic reporter peptides increases the diagnostic sensitivity for MS-based protease profiling of serum specimens. This new approach might lead to functional MS-based protease profiling for improved disease classification.

  2. High expression and purification of the recombinant camelid anti-MUC1 single domain antibodies in Escherichia coli.

    PubMed

    Rahbarizadeh, Fatemeh; Rasaee, Mohammad Javad; Forouzandeh-Moghadam, Mehdi; Allameh, Abdol-Amir

    2005-11-01

    In contrast to the murine and human VHs, camels' single domain antibodies (sdAb) have sufficient solubility. These antigen-specific fragments are expressed well in Escherichia coli. Here, we report high expression and purification of sdAbs against MUC1 mucin. MUC1 is a high molecular weight glycoprotein with an aberrant expression profile in various malignancies. The sdAb genes were sub-cloned into a pET32a(+) vector to overexpress the protein coupled with fusion tags in E. coli BL21(DE3). The expressed single domain antibodies were purified by immobilized metal affinity chromatography and antigen affinity chromatography. Analysis by SDS-PAGE and Western blotting demonstrated the integrity of the sdAbs-tags, while ELISA results confirm that the activity of these molecules compare favorably with that of the parent recombinant antibodies. Enterokinase treated sdAb showed a band at the molecular weight around 12 kDa which demonstrated the naked protein in its natural structure with activities comparable to that of native protein. The high binding activity to MUC1 antigen purified from ascitic fluid (of patients with small-cell lung aggressive carcinoma and metastasis to peritoneum) and the very close similarity of these molecules to human VHs illustrated the potential application of these novel products as an immunodiagnostic and immunotherapeutic reagent.

  3. The Cutting Edge of Affinity Electrophoresis Technology

    PubMed Central

    Kinoshita, Eiji; Kinoshita-Kikuta, Emiko; Koike, Tohru

    2015-01-01

    Affinity electrophoresis is an important technique that is widely used to separate and analyze biomolecules in the fields of biology and medicine. Both quantitative and qualitative information can be gained through affinity electrophoresis. Affinity electrophoresis can be applied through a variety of strategies, such as mobility shift electrophoresis, charge shift electrophoresis or capillary affinity electrophoresis. These strategies are based on changes in the electrophoretic patterns of biological macromolecules that result from interactions or complex-formation processes that induce changes in the size or total charge of the molecules. Nucleic acid fragments can be characterized through their affinity to other molecules, for example transcriptional factor proteins. Hydrophobic membrane proteins can be identified by means of a shift in the mobility induced by a charged detergent. The various strategies have also been used in the estimation of association/disassociation constants. Some of these strategies have similarities to affinity chromatography, in that they use a probe or ligand immobilized on a supported matrix for electrophoresis. Such methods have recently contributed to profiling of major posttranslational modifications of proteins, such as glycosylation or phosphorylation. Here, we describe advances in analytical techniques involving affinity electrophoresis that have appeared during the last five years. PMID:28248262

  4. Modular microfluidics for point-of-care protein purifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millet, L. J.; Lucheon, J. D.; Standaert, R. F.

    Biochemical separations are the heart of diagnostic assays and purification methods for biologics. On-chip miniaturization and modularization of separation procedures will enable the development of customized, portable devices for personalized health-care diagnostics and point-of-use production of treatments. In this report, we describe the design and fabrication of miniature ion exchange, size exclusion and affinity chromatography modules for on-chip clean-up of recombinantly-produced proteins. Our results demonstrate that these common separations techniques can be implemented in microfluidic modules with performance comparable to conventional approaches. We introduce embedded 3-D microfluidic interconnects for integrating micro-scale separation modules that can be arranged and reconfigured tomore » suit a variety of fluidic operations or biochemical processes. In conclusion, we demonstrate the utility of the modular approach with a platform for the enrichment of enhanced green fluorescent protein (eGFP) from Escherichia coli lysate through integrated affinity and size-exclusion chromatography modules.« less

  5. Detection of glycoproteins in the Acanthamoeba plasma membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paatero, G.I.L.; Gahmberg, C.G.

    1988-11-01

    In the present study the authors have shown that glycoproteins are present in the plasma membrane of Acanthamoeba castellanii by utilizing different radioactive labeling techniques. Plasma membrane proteins in the amoeba were iodinated by {sup 125}I-lactoperoxidase labeling and the solubilized radiolabeled glycoproteins were separated by lectin-Sepharose affinity chromatography followed by polyacrylamide gel electrophoresis. The periodate/NaB{sup 3}H{sub 4} and galactose oxidase/NaB{sup 3}H{sub 4} labeling techniques were used for labeling of surface carbohydrates in the amoeba. Several surface-labeled glycoproteins were observed in addition to a diffusely labeled region with M{sub r} of 55,000-75,000 seen on electrophoresis, which could represent glycolipids. The presencemore » of glycoproteins in the plasma membrane of Acanthamoeba castellanii was confirmed by metabolic labeling with ({sup 35}S)methionine followed by lectin-Sepharose affinity chromatography and polyacrylamide gel electrophoresis.« less

  6. Modular microfluidics for point-of-care protein purifications.

    PubMed

    Millet, L J; Lucheon, J D; Standaert, R F; Retterer, S T; Doktycz, M J

    2015-04-21

    Biochemical separations are the heart of diagnostic assays and purification methods for biologics. On-chip miniaturization and modularization of separation procedures will enable the development of customized, portable devices for personalized health-care diagnostics and point-of-use production of treatments. In this report, we describe the design and fabrication of miniature ion exchange, size exclusion and affinity chromatography modules for on-chip clean-up of recombinantly-produced proteins. Our results demonstrate that these common separations techniques can be implemented in microfluidic modules with performance comparable to conventional approaches. We introduce embedded 3-D microfluidic interconnects for integrating micro-scale separation modules that can be arranged and reconfigured to suit a variety of fluidic operations or biochemical processes. We demonstrate the utility of the modular approach with a platform for the enrichment of enhanced green fluorescent protein (eGFP) from Escherichia coli lysate through integrated affinity and size-exclusion chromatography modules.

  7. A Research Module for the Organic Chemistry Laboratory: Multistep Synthesis of a Fluorous Dye Molecule

    PubMed Central

    2014-01-01

    A multi-session research-like module has been developed for use in the undergraduate organic teaching laboratory curriculum. Students are tasked with planning and executing the synthesis of a novel fluorous dye molecule and using it to explore a fluorous affinity chromatography separation technique, which is the first implementation of this technique in a teaching laboratory. Key elements of the project include gradually introducing students to the use of the chemical literature to facilitate their searching, as well as deliberate constraints designed to force them to think critically about reaction design and optimization in organic chemistry. The project also introduces students to some advanced laboratory practices such as Schlenk techniques, degassing of reaction mixtures, affinity chromatography, and microwave-assisted chemistry. This provides students a teaching laboratory experience that closely mirrors authentic synthetic organic chemistry practice in laboratories throughout the world. PMID:24501431

  8. Modular microfluidics for point-of-care protein purifications

    DOE PAGES

    Millet, L. J.; Lucheon, J. D.; Standaert, R. F.; ...

    2015-01-01

    Biochemical separations are the heart of diagnostic assays and purification methods for biologics. On-chip miniaturization and modularization of separation procedures will enable the development of customized, portable devices for personalized health-care diagnostics and point-of-use production of treatments. In this report, we describe the design and fabrication of miniature ion exchange, size exclusion and affinity chromatography modules for on-chip clean-up of recombinantly-produced proteins. Our results demonstrate that these common separations techniques can be implemented in microfluidic modules with performance comparable to conventional approaches. We introduce embedded 3-D microfluidic interconnects for integrating micro-scale separation modules that can be arranged and reconfigured tomore » suit a variety of fluidic operations or biochemical processes. In conclusion, we demonstrate the utility of the modular approach with a platform for the enrichment of enhanced green fluorescent protein (eGFP) from Escherichia coli lysate through integrated affinity and size-exclusion chromatography modules.« less

  9. A Research Module for the Organic Chemistry Laboratory: Multistep Synthesis of a Fluorous Dye Molecule.

    PubMed

    Slade, Michael C; Raker, Jeffrey R; Kobilka, Brandon; Pohl, Nicola L B

    2014-01-14

    A multi-session research-like module has been developed for use in the undergraduate organic teaching laboratory curriculum. Students are tasked with planning and executing the synthesis of a novel fluorous dye molecule and using it to explore a fluorous affinity chromatography separation technique, which is the first implementation of this technique in a teaching laboratory. Key elements of the project include gradually introducing students to the use of the chemical literature to facilitate their searching, as well as deliberate constraints designed to force them to think critically about reaction design and optimization in organic chemistry. The project also introduces students to some advanced laboratory practices such as Schlenk techniques, degassing of reaction mixtures, affinity chromatography, and microwave-assisted chemistry. This provides students a teaching laboratory experience that closely mirrors authentic synthetic organic chemistry practice in laboratories throughout the world.

  10. Virus elimination during the recycling of chromatographic columns used during the manufacture of coagulation factors.

    PubMed

    Roberts, Peter L

    2014-07-01

    Various chromatographic procedures are used during the purification and manufacture of plasma products such as coagulation factors. These steps contribute to the overall safety of such products by removing potential virus contamination. Virus removal by two affinity chromatography procedures, i.e. monoclonal antibody chromatography and metal chelate chromatography (immobilised metal ion affinity chromatography), used during the manufacture of the high purity factor VIII (Replenate®) and factor IX (Replenine®-VF), respectively, has been investigated. In addition, as these columns are recycled after use, the effectiveness of the sanitisation procedures for preventing possible cross-contamination, has also been investigated. Both chromatographic steps proved effective for eliminating a range of model enveloped and non-enveloped viruses by 4 to >6 and 5 to >8 log for the monoclonal and metal chelate columns, respectively. The effectiveness of the relatively mild column sanitisation conditions used, i.e. ethanol for factor IX and acetic acid for factor VIII, was confirmed using non-spiked column runs. The chemicals used contributed to virus elimination by inactivation and/or by physical removal of the virus. In summary, these studies demonstrate that potential virus contamination between chromatographic runs can be prevented when an effective column recycling and sanitisation procedure is included. Copyright © 2014 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  11. Magnetite-doped polydimethylsiloxane (PDMS) for phosphopeptide enrichment.

    PubMed

    Sandison, Mairi E; Jensen, K Tveen; Gesellchen, F; Cooper, J M; Pitt, A R

    2014-10-07

    Reversible phosphorylation plays a key role in numerous biological processes. Mass spectrometry-based approaches are commonly used to analyze protein phosphorylation, but such analysis is challenging, largely due to the low phosphorylation stoichiometry. Hence, a number of phosphopeptide enrichment strategies have been developed, including metal oxide affinity chromatography (MOAC). Here, we describe a new material for performing MOAC that employs a magnetite-doped polydimethylsiloxane (PDMS), that is suitable for the creation of microwell array and microfluidic systems to enable low volume, high throughput analysis. Incubation time and sample loading were explored and optimized and demonstrate that the embedded magnetite is able to enrich phosphopeptides. This substrate-based approach is rapid, straightforward and suitable for simultaneously performing multiple, low volume enrichments.

  12. Recombinant human antibody fragment against tetanus toxoid produced by phage display

    PubMed Central

    Neelakantam, B.; Sridevi, N. V.; Shukra, A. M.; Sugumar, P.; Samuel, S.

    2014-01-01

    Phage display technology is a powerful in vitro method for the identification of specific monoclonal antibodies (antibody fragments) to an antigenic target and allows the rapid generation and selection of high affinity, fully human antibodies directed toward any disease target appropriate for antibody therapy. In the present study, we exploited the phage display technology for the selection of an antigen binding fragment (Fabs) toward tetanus toxoid using human naïve phage antibody library constructed from peripheral blood lymphocytes of naïve human donors. The phages displaying Fab were subjected to three rounds of bio-panning with tetanus toxoid as antigen on a solid phase. The high affinity antibody fragments were expressed in HB2151 strain of Escherichia coli and purified by immobilized metal affinity chromatography. The binding activity and specificity of the antibody fragment was established by its reactivity toward tetanus toxoid and non-reactivity toward other related toxins as determined by enzyme-linked immunosorbent assay and immunoblot analysis. The selected Fab fragment forming the antigen-binding complexes with the toxoid in flocculation assay indicates that the Fab may have a potential neutralizing ability toward antigen. PMID:24678405

  13. Advances in identification and validation of protein targets of natural products without chemical modification.

    PubMed

    Chang, J; Kim, Y; Kwon, H J

    2016-05-04

    Covering: up to February 2016Identification of the target proteins of natural products is pivotal to understanding the mechanisms of action to develop natural products for use as molecular probes and potential therapeutic drugs. Affinity chromatography of immobilized natural products has been conventionally used to identify target proteins, and has yielded good results. However, this method has limitations, in that labeling or tagging for immobilization and affinity purification often result in reduced or altered activity of the natural product. New strategies have recently been developed and applied to identify the target proteins of natural products and synthetic small molecules without chemical modification of the natural product. These direct and indirect methods for target identification of label-free natural products include drug affinity responsive target stability (DARTS), stability of proteins from rates of oxidation (SPROX), cellular thermal shift assay (CETSA), thermal proteome profiling (TPP), and bioinformatics-based analysis of connectivity. This review focuses on and reports case studies of the latest advances in target protein identification methods for label-free natural products. The integration of newly developed technologies will provide new insights and highlight the value of natural products for use as biological probes and new drug candidates.

  14. Identification and In-vivo Characterization of a Novel OhrR Transcriptional Regulator in Burkholderia xenovorans LB400

    DOE PAGES

    Nguyen, Tinh T.; Martí-Arbona, Ricardo; Hall, Richard S.; ...

    2013-05-21

    Transcriptional regulators (TRs) are an important and versatile group of proteins, yet very little progress has been achieved towards the discovery and annotation of their biological functions. We have characterized a previously unknown organic hydroperoxide resistance regulator from Burkholderia xenovoransLB400, Bxe_B2842, which is homologous to E. coli’s OhrR. Bxe_B2842 regulates the expression of an organic hydroperoxide resistance protein (OsmC). We utilized frontal affinity chromatography coupled with mass spectrometry (FAC-MS) and electrophoretic mobility gel shift assays (EMSA) to identify and characterize the possible effectors of the regulation by Bxe_B2842. Without an effector, Bxe_B2842 binds a DNA operator sequence (DOS) upstream ofmore » osmC. FAC-MS results suggest that 2-aminophenol binds to the protein and is potentially an effector molecule. EMSA analysis shows that 2-aminophenol also attenuates the Bxe_B2842’s affinity for its DOS. EMSA analysis also shows that organic peroxides attenuate Bxe_B2842/DOS affinity, suggesting that binding of the TR to its DOS is regulated by the two-cysteine mechanism, common to TRs in this family. Bxe_B2842 is the first OhrR TR to have both oxidative and effector-binding mechanisms of regulation. Our paper reveals further mechanistic diversity TR mediated gene regulation and provides insights into methods for function discovery of TRs.« less

  15. Identification and measurement of chlorinated organic pesticides in water by electron-capture gas chromatography

    USGS Publications Warehouse

    Lamar, William L.; Goerlitz, Donald F.; Law, LeRoy M.

    1965-01-01

    Pesticides, in minute quantities, may affect the regimen of streams, and because they may concentrate in sediments, aquatic organisms, and edible aquatic foods, their detection and their measurement in the parts-per-trillion range are considered essential. In 1964 the U.S. Geological Survey at Menlo Park, Calif., began research on methods for monitoring pesticides in water. Two systems were selected--electron-capture gas chromatography and microcoulometric-titration gas chromatography. Studies on these systems are now in progress. This report provides current information on the development and application of an electron-capture gas chromatographic procedure. This method is a convenient and extremely sensitive procedure for the detection and measurement of organic pesticides having high electron affinities, notably the chlorinated organic pesticides. The electron-affinity detector is extremely sensitive to these substances but it is not as sensitive to many other compounds. By this method, the chlorinated organic pesticide may be determined on a sample of convenient size in concentrations as low as the parts-per-trillion range. To insure greater accuracy in the identifications, the pesticides reported were separated and identified by their retention times on two different types of gas chromatographic columns.

  16. Hb Potomac (101 Glu replaced by Asp): speculations on placental oxygen transport in carriers of high-affinity hemoglobins.

    PubMed

    Charache, S; Jacobson, R; Brimhall, B; Murphy, E A; Hathaway, P; Winslow, R; Jones, R; Rath, C; Simkovich, J

    1978-02-01

    Blood from a woman with unexplained erythrocytosis had increased oxygen affinity, but no abnormality could be detected by electrophoresis or chromatography of her hemolysate. Separation of the tryptic peptides of her beta chains disclosed two half-sized peaks in the regions of beta T-11. The faster of these was abnormal, with the structure beta 101 Glu replaced by Asp. The new hemoglobin was called "Potomac." Three of the proband's four surviving siblings and both of her children were carriers. Differences in the ratio of carrier: normal children born to male of female carriers of 23 other high-affinity hemoglobins were not significant. The high proportion of carriers in this kindred was probably due to chance alone, and not because high maternal oxygen affinity interfered with oxygen transport to fetuses with normal hemoglobin.

  17. Stability of the neurotensin receptor NTS1 free in detergent solution and immobilized to affinity resin.

    PubMed

    White, Jim F; Grisshammer, Reinhard

    2010-09-07

    Purification of recombinant membrane receptors is commonly achieved by use of an affinity tag followed by an additional chromatography step if required. This second step may exploit specific receptor properties such as ligand binding. However, the effects of multiple purification steps on protein yield and integrity are often poorly documented. We have previously reported a robust two-step purification procedure for the recombinant rat neurotensin receptor NTS1 to give milligram quantities of functional receptor protein. First, histidine-tagged receptors are enriched by immobilized metal affinity chromatography using Ni-NTA resin. Second, remaining contaminants in the Ni-NTA column eluate are removed by use of a subsequent neurotensin column yielding pure NTS1. Whilst the neurotensin column eluate contained functional receptor protein, we observed in the neurotensin column flow-through misfolded NTS1. To investigate the origin of the misfolded receptors, we estimated the amount of functional and misfolded NTS1 at each purification step by radio-ligand binding, densitometry of Coomassie stained SDS-gels, and protein content determination. First, we observed that correctly folded NTS1 suffers damage by exposure to detergent and various buffer compositions as seen by the loss of [(3)H]neurotensin binding over time. Second, exposure to the neurotensin affinity resin generated additional misfolded receptor protein. Our data point towards two ways by which misfolded NTS1 may be generated: Damage by exposure to buffer components and by close contact of the receptor to the neurotensin affinity resin. Because NTS1 in detergent solution is stabilized by neurotensin, we speculate that the occurrence of aggregated receptor after contact with the neurotensin resin is the consequence of perturbations in the detergent belt surrounding the NTS1 transmembrane core. Both effects reduce the yield of functional receptor protein.

  18. Use of entrapment and high-performance affinity chromatography to compare the binding of drugs and site-specific probes with normal and glycated human serum albumin

    PubMed Central

    Jackson, Abby J.; Anguizola, Jeanethe; Pfaunmiller, Erika L.; Hage, David S.

    2013-01-01

    Protein entrapment and high-performance affinity chromatography were used with zonal elution to examine the changes in binding that occurred for site-specific probes and various sulfonylurea drugs with normal and glycated forms of human serum albumin (HSA). Samples of this protein in a soluble form were physically entrapped within porous silica particles by using glycogen-capped hydrazide-activated silica; these supports were then placed into 1.0 cm × 2.1 mm inner diameter columns. Initial zonal elution studies were performed using (R)-warfarin and L-tryptophan as probes for Sudlow sites I and II (i.e., the major drug binding sites of HSA), giving quantitative measures of binding affinities in good agreement with literature values. It was also found for solutes with multisite binding to the same proteins, such as many sulfonylurea drugs, that this method could be used to estimate the global affinity of the solute for the entrapped protein. This entrapment and zonal approach provided retention information with precisions of ±0.1–3.3% (± one standard deviation) and elution within 0.50–3.00 min for solutes with binding affinities of 1 × 104–3 × 105 M−1. Each entrapped-protein column was used for many binding studies, which decreased the cost and amount of protein needed per injection (e.g., the equivalent of only 125–145 pmol of immobilized HSA or glycated HSA per injection over 60 sample application cycles). This method can be adapted for use with other proteins and solutes and should be valuable in high-throughput screening or quantitative studies of drug–protein binding or related biointeractions. PMID:23657448

  19. Isolation and purification of recombinant human plasminogen Kringle 5 by liquid chromatography and ammonium sulfate salting-out.

    PubMed

    Bian, Liujiao; Ji, Xu; Hu, Wei

    2014-07-01

    In this work, a novel method was established to isolate and purify Human plasminogen Kringle 5 (HPK5) as a histidine-tagged fusion protein expressed in Escherichia coli BL21 (DE3). This method consisted of sample extraction using a Ni-chelated Sepharose Fast-Flow affinity column, ammonium sulfate salting-out and Sephadex G-75 size-exclusion column in turn. The purity analysis by SDS-PAGE, high-performance size-exclusion and reversed-phase chromatographies showed that the obtained recombinant fusion HPK5 was homogeneous and its purity was higher than 96%; the activity analysis by chorioallantoic membrane model of chicken embryos revealed that the purified recombinant HPK5 exhibited an obvious anti-angiogenic activity under the effective range of 5.0-25.0 µg/mL. Through this procedure, about 19 mg purified recombinant fusion HPK5 can be obtained from 1 L of original fermentation solution. Approximate 32% of the total recombinant fusion HPK5 can be captured and the total yield was approximately 11%. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Induction of calcite precipitation through heightened production of extracellular carbonic anhydrase by CO2 sequestering bacteria.

    PubMed

    Sundaram, Smita; Thakur, Indu Shekhar

    2018-04-01

    The thermo-alkalotolerant bacterium exhibiting heightened extracellular carbonic anhydrase (CA) activity, survived at 100 mM sodium bicarbonateand 5% gaseous CO 2 was identified as Bacillus sp. by 16S rRNA sequencing. Extracellular carbonic anhydrase was purified by ammonium sulfate precipitation, gel filtration chromatography and affinity chromatography with a yield of 46.61% and specific activity of 481.66 U/mg. The size of purified carbonic anhydrase was approximately 28 kDa in SDS-PAGE gel filtration and further their role in calcium carbonate production was correlated. The purified enzyme was stable with half-life of 25.36 min at 90 °C and pH 8. K M and Vmax values of the enzyme were 1.77 mg/mL and 385.69 U/mg respectively. The production of calcite was confirmed by Scanning Electron Microscopy (SEM) analysis, FTIR, and Energy-Dispersive X-ray (EDX) analysis. Carbonic anhydrase and calcite deposition coupled with CO 2 fixingbacteria is a significant approach for CO 2 sequestration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Prostate cell membrane chromatography-liquid chromatography-mass spectrometry for screening of active constituents from Uncaria rhynchophylla.

    PubMed

    He, Jianyu; Han, Shengli; Yang, Fangfang; Zhou, Nan; Wang, Sicen

    2013-01-01

    Uncaria rhynchophylla is a traditional Chinese medicinal herb used to treat hypertension and convulsive disorders such as epilepsy. Rat prostate cell membrane chromatography combined with liquid chromatography-mass spectrometry (LC-MS) was used to identify active constituents from U. rhynchophylla extracts. Four compounds (corynoxeine, isorhynchophylline, isocorynoxeine and rhynchophylline) were discovered. Competitive binding assay results indicated that the four compounds were in direct competition at a single common binding site and interacted with α1A adrenergic receptors (α1A-AR) in a manner similar to tamsulosin. Affinity constant values of the four compounds binding with α1A-AR were also measured using rat prostate cell membrane chromatography (CMC). Finally, their pharmacodynamic effects were tested on rat caudal arteries. This CMC combined LC-MS system offers a means of drug discovery by screening natural medicinal herbs for new pharmacologically active molecules targeting specific receptors.

  2. Thiacarbocyanine as ligand in dye-affinity chromatography for protein purification. II. Dynamic binding capacity using lysozyme as a model.

    PubMed

    Boto, R E F; Anyanwu, U; Sousa, F; Almeida, P; Queiroz, J A

    2009-09-01

    A constant development of dye-affinity chromatography to replace more traditional techniques is verified, with the aim of increasing specificity in the purification of biomolecules. The establishment of a new dye-affinity chromatographic support imposes their complete characterization, namely with relation to the binding capacity for proteins, in order to evaluate its applicability on global purification processes. Following previous studies, the adsorption of lysozyme onto a thiacarbocyanine dye immobilized on beaded cellulose was investigated. The effect of different parameters, such as temperature, ionic strength, pH, protein concentration and flow rate, on the dynamic binding capacity of the support to retain lysozyme was also studied. Increasing the temperature and the lysozyme concentration had a positive effect on the dynamic binding capacity (DBC), whereas increasing the ionic strength and the flow rate resulted in the opposite. It was also discovered that the pH used had an important impact on the lysozyme binding onto the immobilized dye. The maximum DBC value obtained for lysozyme was 8.6 mg/mL, which was achieved at 30 degrees C and pH 9 with a protein concentration of 0.5 mg/mL and a flow rate of 0.05 mL/min. The dissociation constant (K(d)) obtained was 2.61 +/- 0.36 x 10(-5 )m, proving the affinity interaction between the thiacarbocyanine dye ligand and the lysozyme. Copyright (c) 2009 John Wiley & Sons, Ltd.

  3. Artefactually low glycated haemoglobin in a patient with severe hypertriglyceridaemia

    PubMed Central

    Garrib, A; Griffiths, W; Eldridge, P; Hatton, R; Worsley, A; Crook, M

    2003-01-01

    This report describes a case of artefactually low glycated haemoglobin (Hb) in a patient with type II diabetes and severe hypertriglyceridaemia. The effect of hypertriglyceridaemia on glycated Hb determination using the Abbott Vision method was investigated in a series of patients with diabetes. The interference of triglycerides in glycated Hb assays was also investigated by two other methods, the Beckman Synchron CX4 delta immunoturbidimetric method, and the Primus affinity chromatography high performance liquid chromatography assay. PMID:12719463

  4. Utilizing a library of synthetic affinity ligands for the enrichment, depletion and one-step purification of leech proteins.

    PubMed

    Dong, Dexian; Gui, Yanli; Chen, Dezhao; Li, Rongxiu

    2008-01-01

    Although the concept of affinity purification using synthetic ligands had been utilized for many years, there are few articles related to this research area, and they focus only on the affinity purification of specific protein by a defined library of synthetic ligands. This study presents the design and construction of a 700-member library of synthetic ligands in detail. We selected 297 ligand columns from a 700-member library of synthetic ligands to screen leech protein extract. Of the 297, 154 columns had an enrichment effect, 83 columns had a depletion effect, 36 columns had a one-step purification effect, and 58 columns had a one-step purification via flowthrough effect. The experimental results achieved by this large library of affinity ligands provide solid convincing data for the theory that affinity chromatography could be used for the enrichment of proteins that are present in low abundance, the depletion of high abundance proteins, and one-step purification of special proteins. 2008 John Wiley & Sons, Ltd

  5. A thermostable cyclodextrin glycosyltransferase from Thermoanaerobacter sp. 5K

    USDA-ARS?s Scientific Manuscript database

    Cyclodextrin glycosyltransferase (CGTase) from the thermophilic anaerobe Thermoanaerobacter sp. 5K was purified and characterized. The enzyme was purified with ammonium sulfate precipitation followed by a-CD-bound, epoxy-activated Sepharose 6B affinity chromatography. Molecular weight of the purifie...

  6. Lipid vesicle-mediated affinity chromatography using magnetic activated cell sorting (LIMACS): a novel method to analyze protein-lipid interaction.

    PubMed

    Bieberich, Erhard

    2011-04-26

    The analysis of lipid protein interaction is difficult because lipids are embedded in cell membranes and therefore, inaccessible to most purification procedures. As an alternative, lipids can be coated on flat surfaces as used for lipid ELISA and Plasmon resonance spectroscopy. However, surface coating lipids do not form microdomain structures, which may be important for the lipid binding properties. Further, these methods do not allow for the purification of larger amounts of proteins binding to their target lipids. To overcome these limitations of testing lipid protein interaction and to purify lipid binding proteins we developed a novel method termed lipid vesicle-mediated affinity chromatography using magnetic-activated cell sorting (LIMACS). In this method, lipid vesicles are prepared with the target lipid and phosphatidylserine as the anchor lipid for Annexin V MACS. Phosphatidylserine is a ubiquitous cell membrane phospholipid that shows high affinity to the protein Annexin V. Using magnetic beads conjugated to Annexin V the phosphatidylserine-containing lipid vesicles will bind to the magnetic beads. When the lipid vesicles are incubated with a cell lysate the protein binding to the target lipid will also be bound to the beads and can be co-purified using MACS. This method can also be used to test if recombinant proteins reconstitute a protein complex binding to the target lipid. We have used this method to show the interaction of atypical PKC (aPKC) with the sphingolipid ceramide and to co-purify prostate apoptosis response 4 (PAR-4), a protein binding to ceramide-associated aPKC. We have also used this method for the reconstitution of a ceramide-associated complex of recombinant aPKC with the cell polarity-related proteins Par6 and Cdc42. Since lipid vesicles can be prepared with a variety of sphingo- or phospholipids, LIMACS offers a versatile test for lipid-protein interaction in a lipid environment that resembles closely that of the cell membrane. Additional lipid protein complexes can be identified using proteomics analysis of lipid binding protein co-purified with the lipid vesicles.

  7. Global Sensitivity Analysis for the determination of parameter importance in bio-manufacturing processes.

    PubMed

    Chhatre, Sunil; Francis, Richard; Newcombe, Anthony R; Zhou, Yuhong; Titchener-Hooker, Nigel; King, Josh; Keshavarz-Moore, Eli

    2008-10-01

    The present paper describes the application of GSA (Global Sensitivity Analysis) techniques to mathematical models of bioprocesses in order to rank inputs such as feed titres, flow rates and matrix capacities for the relative influence that each exerts upon outputs such as yield or throughput. GSA enables quantification of both the impact of individual variables on process outputs, as well as their interactions. These data highlight those attributes of a bioprocess which offer the greatest potential for achieving manufacturing improvements. Whereas previous GSA studies have been limited to individual unit operations, this paper extends the treatment to an entire downstream process and illustrates its utility by application to the production of a Fab-based rattlesnake antivenom called CroFab [(Crotalidae Polyvalent Immune Fab (Ovine); Protherics U.K. Limited]. Initially, hyperimmunized ovine serum containing rattlesnake antivenom IgG (product), other antibodies and albumin is applied to a synthetic affinity ligand adsorbent column to separate the antibodies from the albumin. The antibodies are papain-digested into Fab and Fc fragments, before concentration by ultrafiltration. Fc, residual IgG and albumin are eliminated by an ion-exchanger and then CroFab-specific affinity chromatography is used to produce purified antivenom. Application of GSA to the model of this process showed that product yield was controlled by IgG feed concentration and the synthetic-material affinity column's capacity and flow rate, whereas product throughput was predominantly influenced by the synthetic material's capacity, the ultrafiltration concentration factor and the CroFab affinity flow rate. Such information provides a rational basis for identifying the most promising strategies for delivering improvements to commercial-scale biomanufacturing processes.

  8. Non-targeted evaluation of selectivity of water-compatible class selective adsorbents for the analysis of steroids in wastewater.

    PubMed

    Kopperi, Matias; Riekkola, Marja-Liisa

    2016-05-12

    Selective adsorbents for solid-phase extraction are needed to meet the low concentration requirements of new environmental quality standard directives, especially for the analysis of estrogens in wastewater. In this work, bulk polymerization procedures were first optimized for the synthesis of non-imprinted polymers (NIP) with low non-specific adsorption of nonpolar compounds in aqueous environments. Water-compatible molecularly imprinted polymers (MIP) were then synthetized by increasing the selectivity of the polymer towards steroids with a testosterone template (average imprinting factor > 10). In addition, the affinity of synthetized entrapped β-cyclodextrin-epichlorohydrin polymers (ECD) towards steroids was clarified. The polymers were applied to the extraction of spiked wastewater effluent samples and their performance compared to commercially available adsorbents. The selectivity of the studied adsorbents was evaluated utilizing liquid chromatography ‒ mass spectrometry as well as comprehensive two-dimensional gas chromatography ‒ time-of-flight mass spectrometry. Affinity between adsorbents and steroids as well as matrix removal potential were measured with targeted methodologies, and two novel non-targeted methodologies were proposed to quantitatively measure adsorbent selectivity by utilizing chemometrics. Semi-quantitative selectivity was measured from the ratio of peak areas between steroidal and other compounds. Semi-qualitative selectivity was calculated from the ratio between the number of tentatively identified steroidal and other compounds. The synthetized polymers provided good matrix removal potential (ion suppression 15-30%) and semi-qualitative selectivity (∼4 units) compared to the commercial adsorbents (ion suppression 45-80%, selectivity < 3 units). Simple non-targeted approaches provided a novel method of quantifying the selectivity of extraction. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Expression, purification, characterization and subcellular localization of the goose parvovirus rep1 protein.

    PubMed

    Chen, Zongyan; Li, Chuanfeng; Peng, Gaojing; Liu, Guangqing

    2013-07-01

    The goose parvovirus (GPV) Rep1 protein is both essential for viral replication and a potential target for GPV diagnosis, but its protein characterization and intracellular localization is not clear. We constructed a recombinant plasmid, pET28a/GPV-Rep1, and expressed the Rep1 gene in BL21 (DE3) Escherichia coli. A protein approximately 75 kDa in size was obtained from lysates of E. coli cells expressing the recombinant plasmid. SDS-PAGE analysis showed that after induction with 0.6 mM isopropyl β-D-thiogalactosidase (IPTG) at 30°C for 5 h, the Rep1 protein was highly overexpressed. Two methods used to purify proteins, a salinity-gradient elution and Ni-NTA affinity chromatography, were performed. The amount of Rep1 protein obtained by Ni-NTA affinity chromatography was 41.23 mg, while 119.9 mg of Rep1 protein was obtained by a salinity-gradient elution from a 1 L E. coli BL21 (DE3) culture. An immunogenicity analysis showed that the protein could significantly elicit a specific antibody response in immunized goslings compared to control groups. Antibody titers peaked to 1:5120 (optical density (OD) 450 = 3.9) on day 28 after immunization but had mean titers of 1:10,240 (OD450 = 4.2) in gosling groups immunized with a commercially available GPV-attenuated vaccine strain. Experiments examining subcellular localization showed that the Rep1 protein appeared to associate predominantly with the nuclear membrane, especially during later times of infection. This work provides a basis for biochemical and structural studies on the GPV Rep1 protein.

  10. A non-chromatographic protein purification strategy using Src 3 homology domains as generalized capture domains.

    PubMed

    Kim, Heejae; Chen, Wilfred

    2016-09-20

    Protein purification using inverse phase transition of elastin-like polypeptide (ELP) domains is a useful alternative to chromatography. Genetic fusions of ELP domains to various proteins have the ability to reversibly transition between soluble monomers and micron-sized aggregates and this has been used to selectively purify many ELP fusions. Affinity domains can enhance this technology by using specific protein binding domains to enable ELP mediated affinity capture (EMAC) of proteins of interest (POI) that have been fused to corresponding affinity ligands. In this paper, we highlight the use of Src homology 3 (SH3) domains and corresponding peptide ligands in EMAC that have differential binding affinities towards SH3 for efficient capture and elution of proteins. Furthermore, differences between capture and elution of a monomeric and a multimeric protein were also studied. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Interactions between grape skin cell wall material and commercial enological tannins. Practical implications.

    PubMed

    Bautista-Ortín, Ana Belén; Cano-Lechuga, Mario; Ruiz-García, Yolanda; Gómez-Plaza, Encarna

    2014-01-01

    Commercial enological tannins were used to investigate the role that cell wall material plays in proanthocyanidin adsorption. Insoluble cell wall material, prepared from the skin of Vitis vinifera L. cv. Monastrell berries, was combined with solutions containing six different commercial enological tannins (proanthocyanidin-type tannins). Analysis of the proanthocyanidins in the solution, after fining with cell wall material, using phloroglucinolysis and size exclusion chromatography, provided quantitative and qualitative information on the non-adsorbed compounds. Cell wall material showed strong affinity for the proanthocyanidins, one of the commercial tannins being bound up to 61% in the experiment. Comparison of the molecular mass distribution of the commercial enological tannins in solution, before and after fining, suggested that cell walls affinity for proanthocyanidins was more related with the proanthocyanidin molecular mass than with their percentage of galloylation. These interactions may have some enological implications, especially as regards the time of commercial tannins addition to the must/wine. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. An internal affinity-tag for purification and crystallization of the siderophore receptor FhuA, integral outer membrane protein from Escherichia coli K-12.

    PubMed

    Ferguson, A D; Breed, J; Diederichs, K; Welte, W; Coulton, J W

    1998-07-01

    FhuA (Mr 78,992, 714 amino acids), siderophore receptor for ferrichrome-iron in the outer membrane of Escherichia coli, was affinity tagged, rapidly purified, and crystallized. To obtain FhuA in quantities sufficient for crystallization, a hexahistidine tag was genetically inserted into the fhuA gene after amino acid 405, which resides in a known surface-exposed loop. Recombinant FhuA405.H6 was overexpressed in an E. coli strain that is devoid of several major porins and using metal-chelate chromatography was purified in large amounts to homogeneity. FhuA crystals were grown using the hanging drop vapor diffusion technique and were suitable for X-ray diffraction analysis. On a rotating anode X-ray source, diffraction was observed to 3.0 A resolution. The crystals belong to space group P6(1) or P6(5) with unit cell dimensions of a=b=174 A, c=88 A (alpha=beta=90 degrees, gamma=120 degrees).

  13. Aptamer-based downstream processing of his-tagged proteins utilizing magnetic beads.

    PubMed

    Kökpinar, Öznur; Walter, Johanna-Gabriela; Shoham, Yuval; Stahl, Frank; Scheper, Thomas

    2011-10-01

    Aptamers are synthetic nucleic acid-based high affinity ligands that are able to capture their corresponding target via molecular recognition. Here, aptamer-based affinity purification for His-tagged proteins was developed. Two different aptamers directed against the His-tag were immobilized on magnetic beads covalently. The resulting aptamer-modified magnetic beads were characterized and successfully applied for purification of different His-tagged proteins from complex E. coli cell lysates. Purification effects comparable to conventional immobilized metal affinity chromatography were achieved in one single purification step. Moreover, we have investigated the possibility to regenerate and reuse the aptamer-modified magnetic beads and have shown their long-term stability over a period of 6 months. Copyright © 2011 Wiley Periodicals, Inc.

  14. Sequence-Specific Affinity Chromatography of Bacterial Small Regulatory RNA-Binding Proteins from Bacterial Cells.

    PubMed

    Gans, Jonathan; Osborne, Jonathan; Cheng, Juliet; Djapgne, Louise; Oglesby-Sherrouse, Amanda G

    2018-01-01

    Bacterial small RNA molecules (sRNAs) are increasingly recognized as central regulators of bacterial stress responses and pathogenesis. In many cases, RNA-binding proteins are critical for the stability and function of sRNAs. Previous studies have adopted strategies to genetically tag an sRNA of interest, allowing isolation of RNA-protein complexes from cells. Here we present a sequence-specific affinity purification protocol that requires no prior genetic manipulation of bacterial cells, allowing isolation of RNA-binding proteins bound to native RNA molecules.

  15. Remarkable alkaline stability of an engineered protein A as immunoglobulin affinity ligand: C domain having only one amino acid substitution

    PubMed Central

    Minakuchi, Kazunobu; Murata, Dai; Okubo, Yuji; Nakano, Yoshiyuki; Yoshida, Shinichi

    2013-01-01

    Protein A affinity chromatography is the standard purification process for the capture of therapeutic antibodies. The individual IgG-binding domains of protein A (E, D, A, B, C) have highly homologous amino acid sequences. From a previous report, it has been assumed that the C domain has superior resistance to alkaline conditions compared to the other domains. We investigated several properties of the C domain as an IgG-Fc capture ligand. Based on cleavage site analysis of a recombinant protein A using a protein sequencer, the C domain was found to be the only domain to have neither of the potential alkaline cleavage sites. Circular dichroism (CD) analysis also indicated that the C domain has good physicochemical stability. Additionally, we evaluated the amino acid substitutions at the Gly-29 position of the C domain, as the Z domain (an artificial B domain) acquired alkaline resistance through a G29A mutation. The G29A mutation proved to increase the alkaline resistance of the C domain, based on BIACORE analysis, although the improvement was significantly smaller than that observed for the B domain. Interestingly, a number of other amino acid mutations at the same position increased alkaline resistance more than did the G29A mutation. This result supports the notion that even a single mutation on the originally alkali-stable C domain would improve its alkaline stability. An engineered protein A based on this C domain is expected to show remarkable performance as an affinity ligand for immunoglobulin. PMID:23868198

  16. Immunomodulatory response of mice splenocytes induced by RcaL, a lectin isolated from cobia fish (Rachycentron canadum) serum.

    PubMed

    Coriolano, Marília Cavalcanti; Silva, Cynarha Daysy Cardoso da; Melo, Cristiane Moutinho Lagos de; Bezerra, Ranilson de Souza; Santos, Athiê Jorge Guerra; Pereira, Valéria Rêgo Alves; Coelho, Luana Cassandra Breitenbach Barroso

    2012-11-01

    This work reports the isolation of a serum lectin from cobia fish (Rachycentron canadum) named RcaL. Immunomodulatory activity on mice splenocyte experimental cultures through cytotoxic assays and cytokine production were also performed. RcaL was obtained through precipitation with ammonium sulphate and affinity chromatography on a Concanavalin A-Sepharose 4B column. The ammonium sulphate fraction F3 showed the highest specific hemagglutinating activity and was applied to affinity chromatography. The lectin was eluted with methyl-α-D-mannopyranoside. RcaL showed highest affinity for methyl-α-D-mannopyranoside and D-mannose; eluted fractions of RcaL agglutinated rabbit erythrocytes (titre, 128(-1)) retained 66 % of chromatographed lectin activity, and the obtained purification factor was 1.14. Under reducing conditions, a polypeptide band of 19.2 kDa was revealed in sodium dodecyl sulphate polyacrylamide gel electrophoresis (PAGE). PAGE confirmed RcaL as an acidic protein revealed in a single band. Cytotoxic and immunomodulatory assays with RcaL in mice splenocyte cultures showed that the lectin was not cytotoxic and induced higher interferon gamma and nitric oxide production in splenocyte cultures. Purified RcaL induced preferential Th1 response, suggesting that it acts as an immunomodulatory compound.

  17. Biotinylated probes of artemisinin with labeling affinity toward Trypanosoma brucei brucei target proteins.

    PubMed

    Konziase, Benetode

    2015-08-01

    We studied the target proteins of artemisinin in Trypanosoma brucei brucei using the affinity-labeling method. We designed and synthesized four biotinylated probes of artemisinin for use as molecular tools. Their in vitro trypanocidal activities (data not shown) proved that they mimicked the biological action of artemisinin. We assessed the chemical stability for all of the probes in the parasite culture medium and lysate using reversed-phase high-performance liquid chromatography (HPLC). After 3-h incubations, the probes remained undecomposed in a range of 40 to 65% in the parasite culture medium, whereas approximately 80% of the probes remained stable in the parasite lysate. Using liquid chromatography mass spectrometry (LC-MS), we demonstrated that, with respect to all of the probes, uptakes into the parasite ranging from 81 to 96% occurred after 30-min incubations. In a competitive binding assay between artemisinin and the four biotinylated probes, we searched for the trypanosomal target protein of artemisinin. Consequently, we observed that only the diazirine-free probe 5 could provide the desired result with high affinity-labeling efficiency. Using the horseradish peroxidase-tagged streptavidin-biotin method, we showed that artemisinin could specifically bind to candidate target proteins of approximately 60, 40, and 39 kDa. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Affinity Purification of Proteins in Tag-Free Form: Split Intein-Mediated Ultrarapid Purification (SIRP).

    PubMed

    Guan, Dongli; Chen, Zhilei

    2017-01-01

    Proteins purified using affinity-based chromatography often exploit a recombinant affinity tag. Existing methods for the removal of the extraneous tag, needed for many applications, suffer from poor efficiency and/or high cost. Here we describe a simple, efficient, and potentially low-cost approach-split intein-mediated ultrarapid purification (SIRP)-for both the purification of the desired tagged protein from Escherichia coli lysate and removal of the tag in less than 1 h. The N- and C-fragment of a self-cleaving variant of a naturally split DnaE intein from Nostoc punctiforme are genetically fused to the N-terminus of an affinity tag and a protein of interest (POI), respectively. The N-intein/affinity tag is used to functionalize an affinity resin. The high affinity between the N- and C-fragment of DnaE intein enables the POI to be purified from the lysate via affinity to the resin, and the intein-mediated C-terminal cleavage reaction causes tagless POI to be released into the flow-through. The intein cleavage reaction is strongly inhibited by divalent ions (e.g., Zn 2+ ) under non-reducing conditions and is significantly enhanced by reducing conditions. The POI is cleaved efficiently regardless of the identity of the N-terminal amino acid except in the cases of threonine and proline, and the N-intein-functionalized affinity resin can be regenerated for multiple cycles of use.

  19. Monocarboxylate and alpha-ketoglutarate carriers from bovine heart mitochondria. Purification by affinity chromatography on immobilized 2-cyano-4-hydroxycinnamate.

    PubMed

    Bolli, R; Nałecz, K A; Azzi, A

    1989-10-25

    2-Cyano-4-hydroxycinnamate was covalently linked, through a diazo bond, to Sepharose 4B, which had been elongated with a hydrophobic spacer. A Triton X-100 extract from bovine heart mitochondria was pre-purified by hydroxylapatite chromatography and passed through the 2-cyano-4-hydroxycinnamate affinity resin in the presence of 0.7% deoxycholate. At pH 6 and in the presence of 0.2 M sodium chloride, a single polypeptide with an Mr of 34,000 was eluted. Subsequently, at pH 8 and in the presence of 2-cyano-4-hydroxycinnamate, another single protein with an Mr of 31,500 was released. Both proteins were reconstituted into phospholipid vesicles and their transport activities were measured. High, delta pH-dependent, 2-cyanocinnamate-sensitive pyruvate uptake was measured in vesicles containing only the 34-kDa protein. alpha-Ketobutyrate and other alpha-ketomonocarboxylic acids were competitive inhibitors of the pyruvate uptake, whereas di- and tricarboxylates had only small effects. alpha-Ketoglutarate-alpha-ketoglutarate exchange could only be measured in vesicles containing the 31.5-kDa protein. The molecular weight of this protein and its functional properties were similar to those of the alpha-ketoglutarate carrier isolated by a different method (Bisaccia, Indiveri, C., and Palmieri, F. (1985) Biochim. Biophys. Acta 810, 362-369). 2-Cyano-4-hydroxycinnamate inhibited the alpha-ketoglutarate exchange in a noncompetitive manner with an apparent Ki of 0.7 mM. It is concluded that by the described affinity chromatography procedure, two mitochondrial carriers transporting alpha-ketoacids, i.e. the monocarboxylate and the alpha-ketoglutarate carrier, could be purified in a functionally active state.

  20. Preparation of a silica stationary phase co-functionalized with Wulff-type phenylboronate and C12 for mixed-mode liquid chromatography.

    PubMed

    Li, Hengye; Zhang, Xuemeng; Zhang, Lin; Wang, Xiaojin; Kong, Fenying; Fan, Dahe; Li, Lei; Wang, Wei

    2017-04-15

    A silica stationary phase was designed and synthesized through the co-functionalization of silica with Wulff-type phenylboronate and C12 for mixed-mode liquid chromatography applications. The as-synthesized stationary phase was characterized by elemental analysis and Fourier Transform-InfraRed Spectroscopy (FT-IR). Retention mechanisms, including boronate affinity (BA), reversed-phase (RP) and anion-exchange (AE), were involved. Retention mechanism switching was easily realized by adjustment of the mobile phase constitution. Cis-diol compounds could be selectively captured under neutral conditions in BA mode and off-line separated in RP mode. Neutral, basic, acidic and amphiprotic compounds were chromatographed on the column in RP chromatography, while inorganic anions were chromatographed in AE chromatography to characterize the mixed-mode nature of the prepared stationary phase. In addition, the RP performance was compared with an octadecyl silica column in terms of column efficiency (N/m), asymmetry factor (A f ), retention factor (k) and resolution (Rs). The prepared stationary phase offered multiple interactions with analytes in addition to hydrophobic interactions under RP elution conditions. Based on the mixed-mode properties, off-line 2D-LC, for selective capture and separation of urinary nucleosides, was successfully realized on a single column, demonstrating its powerful application potential for complex samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Monitoring binding affinity between drug and α1-acid glycoprotein in real time by Venturi easy ambient sonic-spray ionization mass spectrometry.

    PubMed

    Liu, Ning; Lu, Xin; Yang, YuHan; Yao, Chen Xi; Ning, BaoMing; He, Dacheng; He, Lan; Ouyang, Jin

    2015-10-01

    A new approach for monitoring the binding affinity between drugs and alpha 1-acid glycoprotein in real time was developed based on a combination of drug-protein reaction followed by Venturi easy ambient sonic-spray ionization mass spectrometry determination of the free drug concentrations. A known basic drug, propranolol was used to validate the new built method. Binding constant values calculated by venturi easy ambient sonic-spray ionization mass spectrometry was in good accordance with a traditional ultrafiltration combined with high performance liquid chromatography method. Then six types of basic drugs were used as the samples to conduct the real time analysis. Upon injection of alpha 1-acid glycoprotein to the drug mixture, the ion chromatograms were extracted to show the changes in the free drug concentrations in real time. By observing the drop-out of six types of drugs during the whole binding reaction, the binding affinities of different drugs were distinguished. A volume shift validating experiment and an injection delay correcting experiment were also performed to eliminate extraneous factors and verify the reliability of our experiment. Therefore, the features of Venturi easy ambient sonic-spray ionization mass spectrometry (V-EASI-MS) and the experimental results indicate that our technique is likely to become a powerful tool for monitoring drug-AGP binding affinity in real time. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Plasmid Vectors for Proteomic Analyses in Giardia: Purification of Virulence Factors and Analysis of the Proteasome

    PubMed Central

    Stadelmann, Britta; Birkestedt, Sandra; Hellman, Ulf; Svärd, Staffan G.

    2012-01-01

    In recent years, proteomics has come of age with the development of efficient tools for purification, identification, and characterization of gene products predicted by genome projects. The intestinal protozoan Giardia intestinalis can be transfected, but there is only a limited set of vectors available, and most of them are not user friendly. This work delineates the construction of a suite of cassette-based expression vectors for use in Giardia. Expression is provided by the strong constitutive ornithine carbamoyltransferase (OCT) promoter, and tagging is possible in both N- and C-terminal configurations. Taken together, the vectors are capable of providing protein localization and production of recombinant proteins, followed by efficient purification by a novel affinity tag combination, streptavidin binding peptide–glutathione S-transferase (SBP-GST). The option of removing the tags from purified proteins was provided by the inclusion of a PreScission protease site. The efficiency and feasibility of producing and purifying endogenous recombinant Giardia proteins with the developed vectors was demonstrated by the purification of active recombinant arginine deiminase (ADI) and OCT from stably transfected trophozoites. Moreover, we describe the tagging, purification by StrepTactin affinity chromatography, and compositional analysis by mass spectrometry of the G. intestinalis 26S proteasome by employing the Strep II-FLAG–tandem affinity purification (SF-TAP) tag. This is the first report of efficient production and purification of recombinant proteins in and from Giardia, which will allow the study of specific parasite proteins and protein complexes. PMID:22611020

  3. Purification, molecular cloning and heterologous expression of a glutathione S-transferase involved in insecticide resistance from the rice brown planthopper, Nilaparvata lugens.

    PubMed Central

    Vontas, John G; Small, Graham J; Nikou, Dimitra C; Ranson, Hilary; Hemingway, Janet

    2002-01-01

    A novel glutathione S-transferase (GST)-based pyrethroid resistance mechanism was recently identified in Nilaparvata lugens [Vontas, Small and Hemingway (2001) Biochem. J. 357, 65-72]. To determine the nature of GSTs involved in conferring this resistance, the GSTs from resistant and susceptible strains of N. lugens were partially purified by anion exchange and affinity chromatography. The majority of peroxidase activity, previously correlated with resistance, was confined to the fraction that bound to the affinity column, which was considerably elevated in the resistant insects. A cDNA clone encoding a GST (nlgst1-1) - the first reported GST sequence from Hemiptera with up to 54% deduced amino-acid identity with other insect class I GSTs - was isolated from a pyrethroid-resistant strain. Northern analysis showed that nlgst1-1 was overexpressed in resistant insects. nlgst1-1 was expressed in Escherichia coli, purified and characterized. The ability of the recombinant protein to bind to the S-hexylglutathione affinity matrix, its substrate specificities and its immunological properties confirmed that this GST was one from the elevated subset of N. lugens GSTs. Peroxidase activity of the recombinant nlgst1-1 indicated that it had a role in resistance, through detoxification of lipid peroxidation products induced by pyrethroids. Southern analysis of genomic DNA from the resistant and susceptible strains indicated that GST-based insecticide resistance may be associated with gene amplification in N. lugens. PMID:11853540

  4. Hb San Cataldo [β144(HC1)Lys→Thr; HBB: C.434A > C]: A New Hemoglobin Variant with Increased Affinity for Oxygen.

    PubMed

    Vinciguerra, Margherita; Passarello, Cristina; Cassarà, Filippo; Leto, Filippo; Cannata, Monica; Crivello, Anna; Di Salvo, Veronica; Maggio, Aurelio; Giambona, Antonino

    2016-08-01

    A 59-year-old Italian woman came to our center for revaluation of a previous diagnosis of polycythemia vera. The patient presented with a lifelong history of polycythemia, no increase in white blood cells (WBCs) and platelets, and a negative bone marrow biopsy. Analysis of hemoglobin (Hb) fractions showed an abnormal fast moving Hb component. We aimed to determine if this variant was the cause of polycythemia in this patient. A complete blood count (CBC) was performed by an automated cell counter and Hb fractions were determined by high performance liquid chromatography (HPLC). Standard stability tests and oxygen affinity evaluation were also performed. Genomic DNA was extracted from peripheral blood leukocytes using the phenol chloroform method and the entire β-globin gene was analyzed by direct sequencing. At the hematological level, no anemia or hemolysis was observed but an abnormal Hb fraction was detected using cation exchange HPLC. Molecular analysis of the β-globin gene showed heterozygosity for an AAG > ACG substitution at codon 144, resulting in a Lys→Thr amino acid replacement. We demonstrated that this is a new Hb variant with increased oxygen affinity. Its altered physiology is caused by the reduction of 2,3-diphosphoglycerate (2,3-DPG) effects, due to an amino acid substitution in the central pocket near the C-terminal of the β chain. We called this new variant Hb San Cataldo for the native city of proband.

  5. ANALYSIS OF DRUG-PROTEIN BINDING BY ULTRAFAST AFFINITY CHROMATOGRAPHY USING IMMOBILIZED HUMAN SERUM ALBUMIN

    PubMed Central

    Mallik, Rangan; Yoo, Michelle J.; Briscoe, Chad J.; Hage, David S.

    2010-01-01

    Human serum albumin (HSA) was explored for use as a stationary phase and ligand in affinity microcolumns for the ultrafast extraction of free drug fractions and the use of this information for the analysis of drug-protein binding. Warfarin, imipramine, and ibuprofen were used as model analytes in this study. It was found that greater than 95% extraction of all these drugs could be achieved in as little as 250 ms on HSA microcolumns. The retained drug fraction was then eluted from the same column under isocratic conditions, giving elution in less than 40 s when working at 4.5 mL/min. The chromatographic behavior of this system gave a good fit with that predicted by computer simulations based on a reversible, saturable model for the binding of an injected drug with immobilized HSA. The free fractions measured by this method were found to be comparable to those determined by ultrafiltration, and equilibrium constants estimated by this approach gave good agreement with literature values. Advantages of this method include its speed and the relatively low cost of microcolumns that contain HSA. The ability of HSA to bind many types of drugs also creates the possibility of using the same affinity microcolumn to study and measure the free fractions for a variety of pharmaceutical agents. These properties make this technique appealing for use in drug binding studies and in the high-throughput screening of new drug candidates. PMID:20227701

  6. Purification, molecular cloning and heterologous expression of a glutathione S-transferase involved in insecticide resistance from the rice brown planthopper, Nilaparvata lugens.

    PubMed

    Vontas, John G; Small, Graham J; Nikou, Dimitra C; Ranson, Hilary; Hemingway, Janet

    2002-03-01

    A novel glutathione S-transferase (GST)-based pyrethroid resistance mechanism was recently identified in Nilaparvata lugens [Vontas, Small and Hemingway (2001) Biochem. J. 357, 65-72]. To determine the nature of GSTs involved in conferring this resistance, the GSTs from resistant and susceptible strains of N. lugens were partially purified by anion exchange and affinity chromatography. The majority of peroxidase activity, previously correlated with resistance, was confined to the fraction that bound to the affinity column, which was considerably elevated in the resistant insects. A cDNA clone encoding a GST (nlgst1-1) - the first reported GST sequence from Hemiptera with up to 54% deduced amino-acid identity with other insect class I GSTs - was isolated from a pyrethroid-resistant strain. Northern analysis showed that nlgst1-1 was overexpressed in resistant insects. nlgst1-1 was expressed in Escherichia coli, purified and characterized. The ability of the recombinant protein to bind to the S-hexylglutathione affinity matrix, its substrate specificities and its immunological properties confirmed that this GST was one from the elevated subset of N. lugens GSTs. Peroxidase activity of the recombinant nlgst1-1 indicated that it had a role in resistance, through detoxification of lipid peroxidation products induced by pyrethroids. Southern analysis of genomic DNA from the resistant and susceptible strains indicated that GST-based insecticide resistance may be associated with gene amplification in N. lugens.

  7. Systemic lupus erythematosus: molecular cloning and analysis of 22 individual recombinant monoclonal kappa light chains specifically hydrolyzing human myelin basic protein.

    PubMed

    Timofeeva, Anna M; Buneva, Valentina N; Nevinsky, Georgy A

    2015-10-01

    Antibodies hydrolyzing myelin basic protein (MBP) can play an important role in the pathogenesis of multiple sclerosis (MS) and systemic lupus erythematosus (SLE). An immunoglobulin light chain phagemid library derived from peripheral blood lymphocytes of patients with SLE was used. Small pools of phage particles displaying light chains with different affinities for MBP were isolated by affinity chromatography on MBP-Sepharose, and the fraction eluted with 0.5 M NaCl was used for preparation of individual monoclonal light chains (MLChs, 26-27 kDa). Seventy-two of 440 individual colonies were randomly chosen, expressed in Escherichia coli in a soluble form, and MLChs were purified by metal chelating chromatography. Twenty-two of 72 MLChs have high affinity and efficiently hydrolyze only MBP (not other control proteins) demonstrating various pH optima in a 5.7-9.0 range and different substrate specificity in the hydrolysis of four different MBP oligopeptides. Four MLChs demonstrated serine protease-like and three thiol protease-like activities, while 11 MLChs were metalloproteases. The activity of three MLChs was inhibited by both phenylmethylsulfonyl fluoride (PMSF) and Ethylenediaminetetraacetic acid (EDTA), two other by EDTA and iodoacetamide, and one by PMSF, EDTA, and iodoacetamide. The ratio of relative activity in the presence of Ca(2+), Mg(2+), Mn(2+), Ni(2+), Zn(2+), Cu(2+), and Co(2+) was individual for each of 22 MLCh preparations. It is the first examples of human MLChs, which probably can possess two or even three different proteolytic activities. These observations suggest an extreme diversity of anti-MBP abzymes in SLE patients. The immune systems of individual SLE patients can generate a variety of anti-MBP abzymes, which can attack MBP of myelin-proteolipid sheath of axons and play an important role in MS and SLE pathogenesis. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Identification of Escherichia coli F4ac-binding proteins in porcine milk fat globule membrane

    PubMed Central

    Novakovic, Predrag; Huang, Yanyun Y.; Lockerbie, Betty; Shahriar, Farshid; Kelly, John; Gordon, John R.; Middleton, Dorothy M.; Loewen, Matthew E.; Kidney, Beverly A.; Simko, Elemir

    2015-01-01

    F4ac-positive enterotoxigenic Escherichia coli (ETEC) must attach to the intestinal mucosa to cause diarrhea in piglets. Prevention of bacterial attachment to the intestinal mucosa is the most effective defense against ETEC-induced diarrhea. Porcine milk fat globule membranes (MFGM) were shown to be able to inhibit attachment of ETEC to the intestinal brush border; however, the specific components of porcine MFGM that inhibited attachment of ETEC to enterocytes were not identified. Accordingly, the purpose of this study was to identify F4ac-binding MFGM proteins by overlay Western blot and affinity chromatography. The proteome of porcine MFGM was characterized and the following F4ac-binding proteins were detected by overlay Western blot and affinity chromatography: lactadherin, butyrophilin, adipophilin, acyl-CoA synthetase 3, and fatty acid-binding protein 3. The biological function of these proteins was not investigated but it is possible that their interaction with F4ac fimbria interferes with bacterial attachment and colonization. PMID:25852227

  9. Identification of pregnancy-associated glycoproteins and alpha-fetoprotein in fallow deer (Dama dama) placenta

    PubMed Central

    2014-01-01

    Background This paper describes the isolation and characterization of pregnancy-associated glycoproteins (PAG) from fetal cotyledonary tissue (FCT) and maternal caruncular tissue (MCT) collected from fallow deer (Dama dama) pregnant females. Proteins issued from FCT and MCT were submitted to affinity chromatographies by using Vicia villosa agarose (VVA) or anti-bovine PAG-2 (R#438) coupled to Sepharose 4B gel. Finally, they were characterized by SDS-PAGE and N-terminal microsequencing. Results Four distinct fallow deer PAG (fdPAG) sequences were identified and submitted to Swiss-Prot database. Comparison of fdPAG with PAG sequences identified in other ruminant species exhibited 64 to 83% identity. Additionally, alpha-fetoprotein was identified in fetal and maternal tissues. Conclusion Our results demonstrate the efficacy of VVA and bovine PAG-2 affinity chromatographies for the isolation of PAG molecules expressed in deer placenta. This is the first report giving four specific amino acid sequences of PAG isolated from feto-maternal junction (FCT and MCT) in the Cervidae family. PMID:24410890

  10. Determination of residual fluoroquinolones in honey by liquid chromatography using metal chelate affinity chromatography.

    PubMed

    Yatsukawa, Yoh-Ichi; Ito, Hironobu; Matsuda, Takahiro; Nakamura, Munetomo; Watai, Masatoshi; Fujita, Kazuhiro

    2011-01-01

    A new analytical method for the simultaneous determination of seven fluoroquinolones, namely, norfloxacin, ciprofloxacin, danofloxacin, enrofloxacin, orbifloxacin, sarafloxacin, and difloxacin, especially in dark-colored honey, has been developed. Fluoroquinolone antibiotics were extracted from samples with MacIlvaine buffer solution (pH 4.0) containing EDTA disodium salt dihydrate. The extracts were treated with both a polymeric cartridge and a metal chelate affinity column preloaded with ferric ion (Fe3+). LC separation with fluorescence detection was performed at 40 degrees C using an Inertsil ODS-4 analytical column (150 x 4.6 mm, 3 microm). The mobile phase was composed of 20 mM/L citrate buffer solution (pH 3.1)-acetonitrile mixture (70 + 30, v/v) containing 1 mM/L sodium dodecyl sulfate. Lomefloxacin was used as an internal standard. The developed method was validated according to the criteria of European Commission Decision 2002/657/EC. Decision limits and detection capabilities were below 2.9 and 4.4 microg/kg, respectively.

  11. Protein Affinity Chromatography with Purified Yeast DNA Polymerase α Detects Proteins that Bind to DNA Polymerase

    NASA Astrophysics Data System (ADS)

    Miles, Jeff; Formosa, Tim

    1992-02-01

    We have overexpressed the POL1 gene of the yeast Saccharomyces cerevisiae and purified the resulting DNA polymerase α polypeptide in an apparently intact form. We attached the purified DNA polymerase covalently to an agarose matrix and used this matrix to chromatograph extracts prepared from yeast cells. At least six proteins bound to the yeast DNA polymerase α matrix that did not bind to a control matrix. We speculate that these proteins might be DNA polymerase α accessory proteins. Consistent with this interpretation, one of the binding proteins, which we have named POB1 (polymerase one binding), is required for normal chromosome transmission. Mutations in this gene cause increased chromosome loss and an abnormal cell morphology, phenotypes that also occur in the presence of mutations in the yeast α or δ polymerase genes. These results suggest that the interactions detected by polymerase affinity chromatography are biologically relevant and may help to illuminate the architecture of the eukaryotic DNA replication machinery.

  12. [Separation of osteoclasts by lectin affinity chromatography].

    PubMed

    Itokazu, M; Tan, A; Tanaka, S

    1991-09-01

    Newborn rat calvaria bone cells obtained by digestion were fractionated on columns of wheat-germ agglutinin (WGA) sepharose 6MB for osteoclast isolation. The initial nonspecific binding cells which were passed through the WGA sepharose column by a buffer acquired a high enzyme activity of alkaline phosphatase, but not that of acid phosphatase. However, elution of cells using a buffer with the addition of N-acetyl-D-glucosamine resulted in a high acid phosphatase activity but no alkaline phosphatase activity. The former WGA binding negative fraction enriched osteoblasts averaging 30 microns in size. The latter WGA binding positive fraction enriched osteoclasts ranging from 20 microns to 60 microns in size. The electron-microscope clearly demonstrated the cellular details of osteoclasts. Isolated cell counts showed a ratio of six to four. These results indicate that our method of osteoclast isolation is simple and useful in lectin affinity chromatography because all cells have sugar moieties on their surface and the binding of osteoclasts can be reversed by the addition of specific lectin-binding sugars to the eluting buffer.

  13. Purification of PRL receptors from toad kidney: Comparisons with rabbit mammary PRL receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunand, M.; Kraehenbuhl, J.P.; Rossier, B.C.

    1988-03-01

    The binding characteristics of the prolactin (PRL) receptors present in toad (Bufo marinus) kidneys were investigated and compared to those of PRL receptors present in rabbit mammary glands. The molecular characteristics of the Triton X-100 solubilized renal and mammary PRL receptors were assessed by gel filtration and by migration analysis on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) after affinity labeling of the binding sites with {sup 125}I-human growth hormone. Similar results were obtained for both receptors. Partial purification of the toad PRL receptor could be achieved by affinity chromatography. The molecular weight of this purified receptor could be determined bymore » analysis of SDS-PAGE. With the use of a polyclonal antiserum raised against a purified preparation of rabbit mammary PRL receptor, one or several antigenic epitope(s) could be identified on the core of the toad renal PRL receptor. In conclusion, although the structure and the biological role(s) of PRL have substantially changed during evolution, the receptor for this hormone has retained many of its structural features as could be assessed between an amphibian and a mammalian species on functionally different target tissues.« less

  14. Preparation of high affinity antibody for ribavirin with new haptens and residue analysis in chicken muscle, eggs and duck muscle.

    PubMed

    Wang, Zhaopeng; Yu, Xuezhi; Ma, Licai; Liu, Hebing; Ding, Shuangyang; Wang, Zhanhui; Zhang, Xiya; Shen, Jianzhong; Wen, Kai

    2018-05-23

    In this work, high affinity polyclonal antibodies for ribavirin (RBV) from new haptens were prepared and were used to analyse RBV residues in chicken muscle, eggs and duck muscle. The new haptens were synthesised with different spacers, and the best antibody was obtained with an IC 50 value as low as 0.61 ng/mL in indirect competitive enzyme-linked immunosorbent assay (ELISA). The cross-reactivities with another five antiviral drugs including amantadine, rimantadine, moroxydine, zanamivir and oseltamivir were less than 0.1%, which indicated the good specificity of the antibody. An ELISA was developed based on the antibody and applied to detect RBV in multi-food matrices. The sample preparation prior to detection only needed simple dilution after trichloroacetic acid extraction. The limits of detection were 1.07, 1.18 and 1.03 μg/kg in chicken muscle, eggs and duck muscle, respectively. Recoveries ranged from 89.0% to 112.7% with coefficients of variation below 13.0%. Ten blind samples of chicken muscle were analysed simultaneously by ELISA and liquid chromatography-tandem mass spectrometry, and a good correlation between the methods was observed. The results indicated that the high affinity antibody could be applied for the simple and fast detection of RBV in multi-food matrices.

  15. Binding of perlecan to transthyretin in vitro.

    PubMed Central

    Smeland, S; Kolset, S O; Lyon, M; Norum, K R; Blomhoff, R

    1997-01-01

    Transthyretin is one of two specific proteins involved in the transport of thyroid hormones in plasma; it possesses two binding sites for serum retinol-binding protein. In the present study we demonstrate that transthyretin also interacts in vitro with [35S]sulphate-labelled material from the medium of HepG2 cells. By using the same strategy as for purifying serum retinol-binding protein, [35S]sulphate-labelled medium was specifically eluted from a transthyretin-affinity column. Ion-exchange chromatography showed that the material was highly polyanionic, and its size and alkali susceptibility suggested that it was a proteoglycan. Structural analyses with chondroitinase ABC lyase and nitrous acid revealed that approx. 20% was chondroitin sulphate and 80% heparan sulphate. Immunoprecipitation showed that the [35S]sulphate-labelled material contained perlecan. Further analysis by binding studies revealed specific and saturable binding of 125I-transthyretin to perlecan-enriched Matrigel. Because inhibition of sulphation by treating HepG2 cells with sodium chlorate increased the affinity of the perlecan for transthyretin, and [3H]heparin was not retained by the transthyretin affinity column, the binding is probably mediated by the core protein and is not a protein-glycosaminoglycan interaction. Because perlecan is released from transthyretin in water, the binding might be due to hydrophobic interactions. PMID:9307034

  16. Improved purification, crystallization and primary structure of pyruvate:ferredoxin oxidoreductase from Halobacterium halobium.

    PubMed

    Plaga, W; Lottspeich, F; Oesterhelt, D

    1992-04-01

    An improved purification procedure, including nickel chelate affinity chromatography, is reported which resulted in a crystallizable pyruvate:ferredoxin oxidoreductase preparation from Halobacterium halobium. Crystals of the enzyme were obtained using potassium citrate as the precipitant. The genes coding for pyruvate:ferredoxin oxidoreductase were cloned and their nucleotide sequences determined. The genes of both subunits were adjacent to one another on the halobacterial genome. The derived amino acid sequences were confirmed by partial primary structure analysis of the purified protein. The structural motif of thiamin-diphosphate-binding enzymes was unequivocally located in the deduced amino acid sequence of the small subunit.

  17. N-Glycopeptide Profiling in Arabidopsis Inflorescence

    DOE PAGES

    Xu, Shou-Ling; Medzihradszky, Katalin F.; Wang, Zhi-Yong; ...

    2016-04-11

    This study presents the first large scale analysis of plant intact glycopeptides. Using wheat germ agglutinin lectin weak affinity chromatography to enrich modified peptides, followed by ETD fragmentation tandem mass spectrometry, glycan compositions on over 1100 glycopeptides from 270 proteins found in Arabidopsis inflorescence tissue were characterized. While some sites were only detected with a single glycan attached, others displayed up to 16 different glycoforms. Among the identified glycopeptides were four modified in non-consensus glycosylation motifs. Finally, while most of the modified proteins are secreted, membrane, ER or Golgi localized proteins, surprisingly N-linked sugars were detected on a protein predictedmore » to be cytosolic or nuclear.« less

  18. Distributions of the Stereoisomers of β-Mercaptoheptanones and β-Mercaptoheptanols in Cooked Bell Pepper (Capsicum annuum).

    PubMed

    Nörenberg, Svenja; Kiske, Christiane; Burmann, Andrea; Poplacean, Iulia; Engel, Karl-Heinz

    2017-11-29

    2-Mercapto-4-heptanone, 4-mercapto-2-heptanone, and the corresponding mercaptoalcohols, previously identified in cooked red bell pepper (Capsicum annuum), were used as examples to determine the distributions of stereoisomers of naturally occurring polyfunctional thiols. The thiols were isolated using simultaneous distillation-extraction and enriched by affinity chromatography. Enantioselective analysis was performed via multidimensional gas chromatography. For the studied cultivar California Wonder, the investigation of different batches of cooked red bell pepper revealed consistent ratios of the stereoisomers independent of origin and date of purchase. Quantitative estimations showed that the stereoisomers were present in cooked red bell peppers at concentrations in the range of 0.04-10.2 μg/kg. Lower concentrations were observed in cooked green bell peppers. The change from green to red color was also accompanied by shifts in the proportions of stereoisomers in favor of the (S)-enantiomers of the mercaptoheptanones and of the (4S)-configured stereoisomers of 4-mercapto-2-heptanol.

  19. Identification and quantification of the rat hepatocyte asialoglycoprotein receptor.

    PubMed Central

    Schwartz, A L; Marshak-Rothstein, A; Rup, D; Lodish, H F

    1981-01-01

    The asialoglycoprotein receptor from rat liver was purified by solubilization and affinity chromatography on asialoorosomucoid-Sepharose. The preparation yielded four distinct polypeptides of Mr 40,000-120,000. We prepared a monoclonal antibody that both immunoprecipitates solubilized receptor activity and blocks the binding of galactose-terminal glycoproteins to immobilized receptor. The monoclonal antibody and a rabbit antireceptor antiserum immunoprecipitated all four polypeptide species. Peptide analysis by two-dimensional chromatography of the individual 125I-labeled species showed nearly identical patterns, which also suggested that the four polypeptides have a similar primary structure. To identify and quantitate the asialoglycoprotein receptor on the hepatocyte cell surface, intact cells were iodinated with lactoperoxidase, and the solubilized membranes were treated with antireceptor antibody. The Mr 55,000 and Mr 65,000 species were the major species found. Our results suggest that the Mr of the surface receptor is at least 55,000 and that it comprises between 1-2% of the iodinated hepatocyte surface protein. Images PMID:6267585

  20. Recovery and purification process development for monoclonal antibody production

    PubMed Central

    Ma, Junfen; Winter, Charles; Bayer, Robert

    2010-01-01

    Hundreds of therapeutic monoclonal antibodies (mAbs) are currently in development, and many companies have multiple antibodies in their pipelines. Current methodology used in recovery processes for these molecules are reviewed here. Basic unit operations such as harvest, Protein A affinity chromatography and additional polishing steps are surveyed. Alternative processes such as flocculation, precipitation and membrane chromatography are discussed. We also cover platform approaches to purification methods development, use of high throughput screening methods, and offer a view on future developments in purification methodology as applied to mAbs. PMID:20647768

  1. Structural and functional characterization of a new recombinant histidine-tagged acyl coenzyme A binding protein (ACBP) from mouse

    PubMed Central

    Petrescu, Anca D.; Huang, Huan; Hostetler, Heather A.; Schroeder, Friedhelm; Kier, Ann B.

    2008-01-01

    Acyl-coenzyme A binding protein (ACBP) has been proposed to transport fatty acyl-CoAs intracellularly, facilitating their metabolism. In this study, a new mouse recombinant ACBP was produced by insertion of a histidine (his) tag at the C-terminus to allow efficient purification by Ni-affinity chromatography. The his-tag was inserted at the C-terminus since ACBP is a small molecular size (10 kDa) protein whose structure and activity are sensitive to amino acid substitutions in the N-terminus. The his tag had no or little effect on ACBP structure or ligand binding affinity and specificity. His-ACBP bound the naturally-occurring fluorescent cis-parinaroyl-CoA with very high affinity (Kd=2.15 nM), but exhibited no affinity for non-esterified cis-parinaric acid. To determine if the presence of the C-terminal his tag altered ACBP interactions with other proteins, direct binding to hepatocyte nuclear factor 4α (HNF-4α), a nuclear receptor regulating transcription of genes involved in lipid metabolism, was examined. His-ACBP and HNF-4α were labeled with Cy5 and Cy3, respectively, and direct interaction was determined by a novel fluorescence resonance energy transfer (FRET) binding assay. FRET analysis showed that his-ACBP directly interacted with HNF-4α (intermolecular distance of 73 Å) at high affinity (Kd=64-111 nM) similar to native ACBP. The his-tag also had no effect on ACBPs ability to interact with and stimulate microsomal enzymes utilizing or forming fatty acyl CoA. Thus, C-terminal his-tagged-ACBP maintained very similar structural and functional features of the untagged native protein and can be used in further in vitro experiments that require pure recombinant ACBP. PMID:18178100

  2. Directed evolution of glutathione transferases towards a selective glutathione-binding site and improved oxidative stability.

    PubMed

    Axarli, Irine; Muleta, Abdi W; Chronopoulou, Evangelia G; Papageorgiou, Anastassios C; Labrou, Nikolaos E

    2017-01-01

    Glutathione transferases (GSTs) are a family of detoxification enzymes that catalyze the conjugation of glutathione (GSH) to electrophilic compounds. A library of alpha class GSTs was constructed by DNA shuffling using the DNA encoding the human glutathione transferase A1-1 (hGSTA1-1) and the rat glutathione transferase A1-1 (rGSTA1-1). Activity screening of the library allowed the selection of a chimeric enzyme variant (GSTD4) that displayed high affinity towards GSH and GSH-Sepharose affinity adsorbent, higher k cat /K m and improved thermal stability, compared to the parent enzymes. The crystal structures of the GSTD4 enzyme in free form and in complex with GSH were determined to 1.6Šand 2.3Šresolution, respectively. Analysis of the GSTD4 structure showed subtle conformational changes in the GSH-binding site and in electron-sharing network that may contribute to the increased GSH affinity. The shuffled variant GSTD4 was further optimized for improved oxidative stability employing site-saturation mutagenesis. The Cys112Ser mutation confers optimal oxidative stability and kinetic properties in the GSTD4 enzyme. DNA shuffling allowed the creation of a chimeric enzyme variant with improved properties, compared to the parent enzymes. X-ray crystallography shed light on how recombination of a specific segment from homologous GSTA1-1 together with point mutations gives rise to a new functionally competent enzyme with improved binding, catalytic properties and stability. Such an engineered GST would be useful in biotechnology as affinity tool in affinity chromatography as well as a biocatalytic matrix for the construction of biochips or enzyme biosensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Enrichment of high affinity subclasses and glycoforms from serum-derived IgG using FcγRs as affinity ligands.

    PubMed

    Boesch, Austin W; Kappel, James H; Mahan, Alison E; Chu, Thach H; Crowley, Andrew R; Osei-Owusu, Nana Y; Alter, Galit; Ackerman, Margaret E

    2018-05-01

    As antibodies continue to gain predominance in drug discovery and development pipelines, efforts to control and optimize their activity in vivo have matured to incorporate sophisticated abilities to manipulate engagement of specific Fc binding partners. Such efforts to promote diverse functional outcomes include modulating IgG-Fc affinity for FcγRs to alternatively potentiate or reduce effector functions, such as antibody-dependent cellular cytotoxicity and phagocytosis. While a number of natural and engineered Fc features capable of eliciting variable effector functions have been demonstrated in vitro and in vivo, elucidation of these important functional relationships has taken significant effort through use of diverse genetic, cellular and enzymatic techniques. As an orthogonal approach, we demonstrate use of FcγR as chromatographic affinity ligands to enrich and therefore simultaneously identify favored binding species from a complex mixture of serum-derived pooled polycloncal human IgG, a load material that contains the natural repertoire of Fc variants and post-translational modifications. The FcγR-enriched IgG was characterized for subclass and glycoform composition and the impact of this bioseparation step on antibody activity was measured in cell-based effector function assays including Natural Killer cell activation and monocyte phagocytosis. This work demonstrates a tractable means to rapidly distinguish complex functional relationships between two or more interacting biological agents by leveraging affinity chromatography followed by secondary analysis with high-resolution biophysical and functional assays and emphasizes a platform capable of surveying diverse natural post-translational modifications that may not be easily produced with high purity or easily accessible with recombinant expression techniques. © 2018 Wiley Periodicals, Inc.

  4. Analysis of free drug fractions in serum by ultrafast affinity extraction and two-dimensional affinity chromatography using α1-acid glycoprotein microcolumns.

    PubMed

    Bi, Cong; Zheng, Xiwei; Hage, David S

    2016-02-05

    In the circulatory system, many drugs are reversibly bound to serum proteins such as human serum albumin (HSA) and alpha1-acid glycoprotein (AGP), resulting in both free and protein-bound fractions for these drugs. This report examined the use of microcolumns containing immobilized AGP for the measurement of free drug fractions by ultrafast affinity extraction and a two-dimensional affinity system. Several drugs known to bind AGP were used as models to develop and evaluate this approach. Factors considered during the creation of this method included the retention of the drugs on the microcolumns, the injection flow rate, the microcolumn size, and the times at which a second AGP column was placed on-line with the microcolumn. The final system had residence times of only 110-830ms during sample passage through the AGP microcolumns and allowed free drug fractions to be determined within 10-20min when using only 3-10μL of sample per injection. This method was used to measure the free fractions of the model drugs at typical therapeutic levels in serum, giving good agreement with the results obtained by ultrafiltration. This approach was also used to estimate the binding constants for each drug with AGP in serum, even for drugs that had significant interactions with both AGP and HSA in such samples. These results indicated that AGP microcolumns could be used with ultrafast affinity extraction to measure free drug fractions in a label-free manner and to study the binding of drugs with AGP in complex samples such as serum. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Isolation and characterization of an IgNAR variable domain specific for the human mitochondrial translocase receptor Tom70.

    PubMed

    Nuttall, Stewart D; Krishnan, Usha V; Doughty, Larissa; Pearson, Kylie; Ryan, Michael T; Hoogenraad, Nicholas J; Hattarki, Meghan; Carmichael, Jennifer A; Irving, Robert A; Hudson, Peter J

    2003-09-01

    The new antigen receptor (IgNAR) from sharks is a disulphide bonded dimer of two protein chains, each containing one variable and five constant domains, and functions as an antibody. In order to assess the antigen-binding capabilities of isolated IgNAR variable domains (VNAR), we have constructed an in vitro library incorporating synthetic CDR3 regions of 15-18 residues in length. Screening of this library against the 60 kDa cytosolic domain of the 70 kDa outer membrane translocase receptor from human mitochondria (Tom70) resulted in one dominant antigen-specific clone (VNAR 12F-11) after four rounds of in vitro selection. VNAR 12F-11 was expressed into the Escherichia coli periplasm and purified by anti-FLAG affinity chromatography at yields of 3 mg x L(-1). Purified protein eluted from gel filtration columns as a single monomeric protein and CD spectrum analysis indicated correct folding into the expected beta-sheet conformation. Specific binding to Tom70 was demonstrated by ELISA and BIAcore (Kd = 2.2 +/- 0.31 x 10(-9) m-1) indicating that these VNAR domains can be efficiently displayed as bacteriophage libraries, and selected against target antigens with an affinity and stability equivalent to that obtained for other single domain antibodies. As an initial step in producing 'intrabody' variants of 12F-11, the impact of modifying or removing the conserved immunoglobulin intradomain disulphide bond was assessed. High affinity binding was only retained in the wild-type protein, which combined with our inability to affinity mature 12F-11, suggests that this particular VNAR is critically dependent upon precise CDR loop conformations for its binding affinity.

  6. Sugar-Binding Profiles of Chitin-Binding Lectins from the Hevein Family: A Comprehensive Study

    PubMed Central

    Itakura, Yoko; Nakamura-Tsuruta, Sachiko; Kominami, Junko; Tateno, Hiroaki; Hirabayashi, Jun

    2017-01-01

    Chitin-binding lectins form the hevein family in plants, which are defined by the presence of single or multiple structurally conserved GlcNAc (N-acetylglucosamine)-binding domains. Although they have been used as probes for chito-oligosaccharides, their detailed specificities remain to be investigated. In this study, we analyzed six chitin-binding lectins, DSA, LEL, PWM, STL, UDA, and WGA, by quantitative frontal affinity chromatography. Some novel features were evident: WGA showed almost comparable affinity for pyridylaminated chitotriose and chitotetraose, while LEL and UDA showed much weaker affinity, and DSA, PWM, and STL had no substantial affinity for the former. WGA showed selective affinity for hybrid-type N-glycans harboring a bisecting GlcNAc residue. UDA showed extensive binding to high-mannose type N-glycans, with affinity increasing with the number of Man residues. DSA showed the highest affinity for highly branched N-glycans consisting of type II LacNAc (N-acetyllactosamine). Further, multivalent features of these lectins were investigated by using glycoconjugate and lectin microarrays. The lectins showed substantial binding to immobilized LacNAc as well as chito-oligosaccharides, although the extents to which they bound varied among them. WGA showed strong binding to heavily sialylated glycoproteins. The above observations will help interpret lectin-glycoprotein interactions in histochemical studies and glyco-biomarker investigations. PMID:28556796

  7. Gel compression considerations for chromatography scale-up for protein C purification.

    PubMed

    He, W; Bruley, D F; Drohan, W N

    1998-01-01

    This work is to establish theoretical and experimental relationships for the scale-up of Immobilized Metal Affinity Chromatography (IMAC) and Immuno Affinity Chromatography for the low cost production of large quantities of Protein C. The external customer requirements for this project have been established for Protein C deficient people with the goal of providing prophylactic patient treatment. Deep vein thrombosis is the major symptom for protein C deficiency creating the potential problem of embolism transport to important organs, such as, lung and brain. Gel matrices for protein C separation are being analyzed to determine the relationship between the material properties of the gel and the column collapse characteristics. The fluid flow rate and pressure drop is being examined to see how they influence column stability. Gel packing analysis includes two considerations; one is bulk compression due to flow rate, and the second is gel particle deformation due to fluid flow and pressure drop. Based on the assumption of creeping flow, Darcy's law is being applied to characterize the flow through the gel particles. Biot's mathematical description of three-dimensional consolidation in porous media is being used to develop a set of system equations. Finite difference methods are being utilized to obtain the equation solutions. In addition, special programs such as finite element approaches, ABAQUS, will be studied to determine their application to this particular problem. Experimental studies are being performed to determine flow rate and pressure drop correlation for the chromatographic columns with appropriate gels. Void fraction is being measured using pulse testing to allow Reynolds number calculations. Experimental yield stress is being measured to compare with the theoretical calculations. Total Quality Management (TQM) tools have been utilized to optimize this work. For instance, the "Scatter Diagram" has been used to evaluate and select the appropriate gels and operating conditions via Taguchi techniques. Targeting customer requirements under the structure of TQM represents a novel approach to graduate student research in an academic institution which is designed to simulate an industrial environment.

  8. Simultaneous Glycan-Peptide Characterization Using Hydrophilic Interaction Chromatography and Parallel Fragmentation by CID, Higher Energy Collisional Dissociation, and Electron Transfer Dissociation MS Applied to the N-Linked Glycoproteome of Campylobacter jejuni*

    PubMed Central

    Scott, Nichollas E.; Parker, Benjamin L.; Connolly, Angela M.; Paulech, Jana; Edwards, Alistair V. G.; Crossett, Ben; Falconer, Linda; Kolarich, Daniel; Djordjevic, Steven P.; Højrup, Peter; Packer, Nicolle H.; Larsen, Martin R.; Cordwell, Stuart J.

    2011-01-01

    Campylobacter jejuni is a gastrointestinal pathogen that is able to modify membrane and periplasmic proteins by the N-linked addition of a 7-residue glycan at the strict attachment motif (D/E)XNX(S/T). Strategies for a comprehensive analysis of the targets of glycosylation, however, are hampered by the resistance of the glycan-peptide bond to enzymatic digestion or β-elimination and have previously concentrated on soluble glycoproteins compatible with lectin affinity and gel-based approaches. We developed strategies for enriching C. jejuni HB93-13 glycopeptides using zwitterionic hydrophilic interaction chromatography and examined novel fragmentation, including collision-induced dissociation (CID) and higher energy collisional (C-trap) dissociation (HCD) as well as CID/electron transfer dissociation (ETD) mass spectrometry. CID/HCD enabled the identification of glycan structure and peptide backbone, allowing glycopeptide identification, whereas CID/ETD enabled the elucidation of glycosylation sites by maintaining the glycan-peptide linkage. A total of 130 glycopeptides, representing 75 glycosylation sites, were identified from LC-MS/MS using zwitterionic hydrophilic interaction chromatography coupled to CID/HCD and CID/ETD. CID/HCD provided the majority of the identifications (73 sites) compared with ETD (26 sites). We also examined soluble glycoproteins by soybean agglutinin affinity and two-dimensional electrophoresis and identified a further six glycosylation sites. This study more than doubles the number of confirmed N-linked glycosylation sites in C. jejuni and is the first to utilize HCD fragmentation for glycopeptide identification with intact glycan. We also show that hydrophobic integral membrane proteins are significant targets of glycosylation in this organism. Our data demonstrate that peptide-centric approaches coupled to novel mass spectrometric fragmentation techniques may be suitable for application to eukaryotic glycoproteins for simultaneous elucidation of glycan structures and peptide sequence. PMID:20360033

  9. Simultaneous glycan-peptide characterization using hydrophilic interaction chromatography and parallel fragmentation by CID, higher energy collisional dissociation, and electron transfer dissociation MS applied to the N-linked glycoproteome of Campylobacter jejuni.

    PubMed

    Scott, Nichollas E; Parker, Benjamin L; Connolly, Angela M; Paulech, Jana; Edwards, Alistair V G; Crossett, Ben; Falconer, Linda; Kolarich, Daniel; Djordjevic, Steven P; Højrup, Peter; Packer, Nicolle H; Larsen, Martin R; Cordwell, Stuart J

    2011-02-01

    Campylobacter jejuni is a gastrointestinal pathogen that is able to modify membrane and periplasmic proteins by the N-linked addition of a 7-residue glycan at the strict attachment motif (D/E)XNX(S/T). Strategies for a comprehensive analysis of the targets of glycosylation, however, are hampered by the resistance of the glycan-peptide bond to enzymatic digestion or β-elimination and have previously concentrated on soluble glycoproteins compatible with lectin affinity and gel-based approaches. We developed strategies for enriching C. jejuni HB93-13 glycopeptides using zwitterionic hydrophilic interaction chromatography and examined novel fragmentation, including collision-induced dissociation (CID) and higher energy collisional (C-trap) dissociation (HCD) as well as CID/electron transfer dissociation (ETD) mass spectrometry. CID/HCD enabled the identification of glycan structure and peptide backbone, allowing glycopeptide identification, whereas CID/ETD enabled the elucidation of glycosylation sites by maintaining the glycan-peptide linkage. A total of 130 glycopeptides, representing 75 glycosylation sites, were identified from LC-MS/MS using zwitterionic hydrophilic interaction chromatography coupled to CID/HCD and CID/ETD. CID/HCD provided the majority of the identifications (73 sites) compared with ETD (26 sites). We also examined soluble glycoproteins by soybean agglutinin affinity and two-dimensional electrophoresis and identified a further six glycosylation sites. This study more than doubles the number of confirmed N-linked glycosylation sites in C. jejuni and is the first to utilize HCD fragmentation for glycopeptide identification with intact glycan. We also show that hydrophobic integral membrane proteins are significant targets of glycosylation in this organism. Our data demonstrate that peptide-centric approaches coupled to novel mass spectrometric fragmentation techniques may be suitable for application to eukaryotic glycoproteins for simultaneous elucidation of glycan structures and peptide sequence.

  10. Can we beat the biotin-avidin pair?: cucurbit[7]uril-based ultrahigh affinity host-guest complexes and their applications.

    PubMed

    Shetty, Dinesh; Khedkar, Jayshree K; Park, Kyeng Min; Kim, Kimoon

    2015-12-07

    The design of synthetic, monovalent host-guest molecular recognition pairs is still challenging and of particular interest to inquire into the limits of the affinity that can be achieved with designed systems. In this regard, cucurbit[7]uril (CB[7]), an important member of the host family cucurbit[n]uril (CB[n], n = 5-8, 10, 14), has attracted much attention because of its ability to form ultra-stable complexes with multiple guests. The strong hydrophobic effect between the host cavity and guests, ion-dipole and dipole-dipole interactions of guests with CB portals helps in cooperative and multiple noncovalent interactions that are essential for realizing such strong complexations. These highly selective, strong yet dynamic interactions can be exploited in many applications including affinity chromatography, biomolecule immobilization, protein isolation, biological catalysis, and sensor technologies. In this review, we summarize the progress in the development of high affinity guests for CB[7], factors affecting the stability of complexes, theoretical insights, and the utility of these high affinity pairs in different challenging applications.

  11. Use of T-2 toxin-immobilized amine-activated beads as an efficient affinity purification matrix for the isolation of specific IgY.

    PubMed

    Edupuganti, Soujanya Ratna; Edupuganti, Om Prakash; O'Kennedy, Richard; Defrancq, Eric; Boullanger, Stéphanie

    2013-04-01

    An affinity purification method that isolates T-2 toxin-specific IgY utilizing a T-2-toxin-immobilized column was developed. The T-2 toxin was covalently coupled via a carbonyldiimidazole-activated hydroxyl functional group to amine-activated sepharose beads. The affinity-purified IgY was characterized by gel electrophoresis, fast protein liquid chromatography, enzyme-linked immunosorbant assay, surface plasmon resonance and mass spectrometry. A competitive inhibition ELISA (CI-ELISA) was performed using affinity-purified IgY with a T-2 toxin detection sensitivity of 30 ng/mL, which falls within the maximum permissible limit of 100 ng/mL. The cross reactivity of IgY towards deoxynivalenol, zearalenone, fumonisin B1 and HT-2 was significantly reduced after affinity purification. A surface plasmon resonance (SPR)-based inhibition assay was also applied for quantitative determination of T-2 toxin in spiked wheat samples. The results obtained indicate the feasibility of utilizing this IgY-based assay for the detection of T-2 toxin in food samples.

  12. Improved Thermal Modulator for Gas Chromatography

    NASA Technical Reports Server (NTRS)

    Hasselbrink, Ernest Frederick, Jr.; Hunt, Patrick J.; Sacks, Richard D.

    2008-01-01

    An improved thermal modulator has been invented for use in a variant of gas chromatography (GC). The variant in question denoted as two-dimensional gas chromatography (2DGC) or GC-GC involves the use of three series-connected chromatographic columns, in the form of capillary tubes coated interiorly with suitable stationary phases (compounds for which different analytes exhibit different degrees of affinity). The two end columns are relatively long and are used as standard GC columns. The thermal modulator includes the middle column, which is relatively short and is not used as a standard GC column: instead, its temperature is modulated to affect timed adsorption and desorption of analyte gases between the two end columns in accordance with a 2DGC protocol.

  13. A newly-detected reductase from Rauvolfia closes a gap in the biosynthesis of the antiarrhythmic alkaloid ajmaline.

    PubMed

    Gao, Shujuan; von Schumann, Gerald; Stöckigt, Joachim

    2002-10-01

    A new enzyme, 1,2-dihydrovomilenine reductase (E.C. 1.3.1), has been detected in Rauvolfia cell suspension cultures. The enzyme specifically converts 2beta( R)-1,2-dihydrovomilenine through an NADPH-dependent reaction into 17-O-acetylnorajmaline, a close biosynthetic precursor of the antiarrhythmic alkaloid ajmaline from Rauvolfia. A five-step purification procedure using SOURCE 30Q chromatography, hydroxyapatite chromatography, 2',5'-ADP Sepharose 4B affinity chromatography and ion exchange chromatography on DEAE Sepharose and Mono Q delivered an approximately 200-fold enriched enzyme in a yield of approximately 6%. SDS-PAGE showed an M r for the enzyme of approximately 48 kDa. Optimum pH and optimum temperature of the reductase were at pH 6.0 and 37 degrees C. The enzyme shows a limited distribution in cell cultures expressing ajmaline biosynthesis, and is obviously highly specific for the ajmaline pathway.

  14. Segregation of human peripheral blood lymphocytes according to their affinity for insolubilized histamine. Principal differences between males and females.

    PubMed Central

    Tartakovsky, B; Segal, S; Shani, A; Hellerstein, S; Weinstein, Y; Bentwich, Z

    1979-01-01

    An attempt was made to investigate the possible existence of differences in the composition of peripheral blood lymphocytes between males and females. Using affinity chromatography of human peripheral mononuclear cells on insolubilized histamine together with staining by fluoresceinated histamine-rabbit serum albumin (HRSA) we revealed that males possess a significantly higher proportion of mononuclear cells which bind to HRSA. These results are also reflected in sex-related differences in proliferative responses of the HRSA-non-adherent mononuclear cell population to T cell-dependent mitogens antigens and allogeneic mononuclear cells. PMID:160849

  15. Development and characterization of methacrylate-based hydrazide monoliths for oriented immobilization of antibodies.

    PubMed

    Brne, P; Lim, Y-P; Podgornik, A; Barut, M; Pihlar, B; Strancar, A

    2009-03-27

    Convective interaction media (CIM; BIA Separations) monoliths are attractive stationary phases for use in affinity chromatography because they enable fast affinity binding, which is a consequence of convectively enhanced mass transport. This work focuses on the development of novel CIM hydrazide (HZ) monoliths for the oriented immobilization of antibodies. Adipic acid dihydrazide (AADH) was covalently bound to CIM epoxy monoliths to gain hydrazide groups on the monolith surface. Two different antibodies were afterwards immobilized to hydrazide functionalized monolithic columns and prepared columns were tested for their selectivity. One column was further tested for the dynamic binding capacity.

  16. Evidence of land plant affinity for the Devonian fossil Protosalvinia (Foerstia)

    USGS Publications Warehouse

    Romankiw, L.A.; Hatcher, P.G.; Roen, J.B.

    1988-01-01

    The Devonian plant fossil Protosalvinia (Foerstia) has been examined by solid-state 13C nuclear magnetic resonance spectroscopy (NMR) and pyrolysis-gas chromatography-mass spectrometry (PY-GC-MS). Results of these studies reveal that the chemical structure of Protosalvinia is remarkably similar to that of coalified wood. A well-defined phenolic carbon peak in the NMR spectra and the appearance of phenol and alkylated phenols in pyrolysis products are clearly indicative of lignin-like compounds. These data represent significant new information on the chemical nature of Protosalvinia and provide the first substantial organic geochemical evidence for land plant affinity. -Authors

  17. Tetracycline residues in royal jelly and honey by liquid chromatography tandem mass spectrometry: validation study according to Commission Decision 2002/657/EC.

    PubMed

    Giannetti, L; Longo, F; Buiarelli, F; Russo, M V; Neri, B

    2010-09-01

    A specific, sensitive and robust liquid chromatography tandem mass spectrometry method for determining oxytetracycline, tetracycline, chlortetracycline and doxycycline in royal jelly and honey samples is presented. Extraction of drug residues was performed by ammonium acetate buffer as extractant followed by a clean-up with metal chelate affinity chromatography and solid-phase extraction. Tetracycline analysis was performed using liquid chromatography-electrospray ionisation-tandem mass spectrometry. The presented method is the first validated for royal jelly and in accordance with the requirements set by Commission Decision 2002/657/EC. Recoveries of the methods, calculated spiking the samples at 5.0, 10.0, 20.0 and 30.0 μg kg(-1), were 79% to 90% for honey and 77% to 90% for royal jelly. The intra-day precision (RSD) ranged between 8.1% and 15.0% for honey and from 9.1% to 16.3% for royal jelly, while inter-day precision values were from 10.2% to 17.6% and from 10.6% to 18.4% respectively for honey and royal jelly. Linearity for the four analytes was calculated from 5.0 to 50.0 μg kg(-1). The decision limits (CCα) ranged from 6.2 to 6.4 μg kg(-1) and from 6.1 to 6.5 μg kg(-1) for honey and royal jelly, respectively. Detection capabilities values (CCβ) ranged between 7.2 and 7.7 μg kg(-1) and from 7.3 to 7.9 μg kg(-1) respectively for honey and royal jelly. The developed method is currently in use for confirmation of the official control analysis of honey and royal jelly samples.

  18. Chemical and technical challenges in the analysis of central carbon metabolites by liquid-chromatography mass spectrometry.

    PubMed

    Siegel, David; Permentier, Hjalmar; Reijngoud, Dirk-Jan; Bischoff, Rainer

    2014-09-01

    This review deals with chemical and technical challenges in the analysis of small-molecule metabolites involved in central carbon and energy metabolism via liquid-chromatography mass-spectrometry (LC-MS). The covered analytes belong to the prominent pathways in biochemical carbon oxidation such as glycolysis or the tricarboxylic acid cycle and, for the most part, share unfavorable properties such as a high polarity, chemical instability or metal-affinity. The topic is introduced by selected examples on successful applications of metabolomics in the clinic. In the core part of the paper, the structural features of important analyte classes such as nucleotides, coenzyme A thioesters or carboxylic acids are linked to "problematic hotspots" along the analytical chain (sample preparation and-storage, separation and detection). We discuss these hotspots from a chemical point of view, covering issues such as analyte degradation or interactions with metals and other matrix components. Based on this understanding we propose solutions wherever available. A major notion derived from these considerations is that comprehensive carbon metabolomics inevitably requires multiple, complementary analytical approaches covering different chemical classes of metabolites. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Lanthanide-IMAC enrichment of carbohydrates and polyols.

    PubMed

    Schemeth, Dieter; Rainer, Matthias; Messner, Christoph B; Rode, Bernd M; Bonn, Günther K

    2014-03-01

    In this study a new type of immobilized metal ion affinity chromatography resin for the enrichment of carbohydrates and polyols was synthesized by radical polymerization reaction of vinyl phosphonic acid and 1,4-butandiole dimethacrylate using azo-bis-isobutyronitrile as radical initiator. Interaction between the chelated trivalent lanthanide ions and negatively charged hydroxyl groups of carbohydrates and polyols was observed by applying high pH values. The new method was evaluated by single standard solutions, mixtures of standards, honey and a more complex extract of Cynara scolymus. The washing step was accomplished by acetonitrile in excess volumes. Elution of enriched carbohydrates was successfully performed with deionized water. The subsequent analysis was carried out with matrix-free laser desorption/ionization-time of flight mass spectrometry involving a TiO2 -coated steel target, especially suitable for the measurement of low-molecular-weight substances. Quantitative analysis of the sugar alcohol xylitol as well as the determination of the maximal loading capacity was performed by gas chromatography in conjunction with mass spectrometric detection after chemical derivatization. In a parallel approach quantum mechanical geometry optimizations were performed in order to compare the coordination behavior of various trivalent lanthanide ions. Copyright © 2013 John Wiley & Sons, Ltd.

  20. HPTLC-aptastaining - Innovative protein detection system for high-performance thin-layer chromatography

    NASA Astrophysics Data System (ADS)

    Morschheuser, Lena; Wessels, Hauke; Pille, Christina; Fischer, Judith; Hünniger, Tim; Fischer, Markus; Paschke-Kratzin, Angelika; Rohn, Sascha

    2016-05-01

    Protein analysis using high-performance thin-layer chromatography (HPTLC) is not commonly used but can complement traditional electrophoretic and mass spectrometric approaches in a unique way. Due to various detection protocols and possibilities for hyphenation, HPTLC protein analysis is a promising alternative for e.g., investigating posttranslational modifications. This study exemplarily focused on the investigation of lysozyme, an enzyme which is occurring in eggs and technologically added to foods and beverages such as wine. The detection of lysozyme is mandatory, as it might trigger allergenic reactions in sensitive individuals. To underline the advantages of HPTLC in protein analysis, the development of innovative, highly specific staining protocols leads to improved sensitivity for protein detection on HPTLC plates in comparison to universal protein derivatization reagents. This study aimed at developing a detection methodology for HPTLC separated proteins using aptamers. Due to their affinity and specificity towards a wide range of targets, an aptamer based staining procedure on HPTLC (HPTLC-aptastaining) will enable manifold analytical possibilities. Besides the proof of its applicability for the very first time, (i) aptamer-based staining of proteins is applicable on different stationary phase materials and (ii) furthermore, it can be used as an approach for a semi-quantitative estimation of protein concentrations.

  1. Rapid quantitative analysis of 8-iso-prostaglandin-F(2alpha) using liquid chromatography-tandem mass spectrometry and comparison with an enzyme immunoassay method.

    PubMed

    Dahl, Jeffrey H; van Breemen, Richard B

    2010-09-15

    A rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay was developed for the measurement of urinary 8-iso-prostaglandin F(2alpha) (8-iso-PGF(2alpha)), a biomarker of lipid peroxidation. Because urine contains numerous F(2) prostaglandin isomers, each with identical mass and similar mass spectrometric fragmentation patterns, chromatographic separation of 8-iso-PGF(2alpha) from its isomers is necessary for its quantitative analysis using MS/MS. We were able to achieve this separation using an isocratic LC method with a run time of less than 9min, which is at least threefold faster than previous methods, while maintaining sensitivity, accuracy, precision, and reliability. The limits of detection and quantitation were 53 and 178pg/ml urine, respectively. We compared our method with a commercially available affinity purification and enzyme immunoassay kit and found both assays to be in agreement. Despite the high sensitivity of the enzyme immunoassay method, it is more expensive and has a narrower dynamic range than LC-MS/MS. Our method was optimized for rapid measurement of 8-iso-PGF(2alpha) in urine, and it is ideally suited for clinical sample analysis. 2010 Elsevier Inc. All rights reserved.

  2. Separation of Albumin, Ceruloplasmin, and Transferrin from Human Plasma.

    ERIC Educational Resources Information Center

    Barnes, Grady; Frieden, Earl

    1982-01-01

    Procedures are provided for separating the principal metalloproteins (albumin, ceruloplasmin, and transferrin) from plasma using column chromatographic techniques. The experiment can be completed in two separate three-hour laboratory periods during which column chromatography is illustrated and the effect of pH on charge and affinity of a protein…

  3. Impact of an N-terminal Poly Histidine Tag on Protein Thermal Stability

    USDA-ARS?s Scientific Manuscript database

    For years, the use of polyhistidine tags (His-tags) have been a staple in the isolation of recombinant proteins in immobilized metal affinity chromatography experiments. Their usage has been widely beneficial in increasing protein purity from crude cell lysates. For some recombinant proteins, a cons...

  4. Purification and characterization pecan (Carya Illinoinensis) vicilin, a putative food allergen (abstract)

    USDA-ARS?s Scientific Manuscript database

    The pecan seed storage protein vicilin, a putative food allergen, was recombinantly expressed for and purified by a combination of metal affinity and gel filtration chromatography. The protein was crystallized and studied by crystallography. The obtained crystals belonged to space group P212121 with...

  5. SCREENING PROCESSED MILK FOR VOLATILE ORGANIC COMPOUNDS USING VACUUM DISTILLATION/GAS CHROMATOGRAPHY/MASS SPECTROMETRY

    EPA Science Inventory

    An adaptation of Office of Solid Waste and Emergency Response' Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW-846) method 8261 to analyze milk for an expanded list of volatile organic compounds is presented. The milk matriz exhibits a strong affinity for o...

  6. PURIFICATION AND PARTIAL CHARACTERIZATION OF AN ACID PHOSPHATASE FROM SPIRODELA OLIGORRHIZA AND ITS AFFINITY FOR SELECTED ORGANOPHOSPHATE PESTICIDES

    EPA Science Inventory

    An acid phosphatase from the aquatic plant Spirodela oligorrhiza (duckweed) was isolated by fast protein liquid chromatography (FPLC) and partially characterized. The enzyme was purified 1871-fold with a total yield of 40%. SDS-PAGE electrophoresis of the pure acid phosphatase ...

  7. A protein with anion exchange properties found in the kidney proximal tubule.

    PubMed

    Soleimani, M; Bizal, G L; Anderson, C C

    1993-09-01

    One important mechanism for reabsorption of chloride in the kidney proximal tubule involves anion exchange of chloride for a base. Anion exchange transport systems in general demonstrate sensitivity to inhibition by disulfonic stilbenes, probenecid, furosemide, and the arginyl amino group modifier phenylglyoxal. Using disulfonic stilbene affinity chromatography, we have identified and partially purified a protein with anion exchanger properties in luminal membrane vesicles isolated from rabbit kidney cortex. This protein has a molecular weight of 162 kD. The binding of the 162 kD protein to the stilbene affinity matrix is inhibited by disulfonic stilbenes, probenecid, furosemide, and phenylglyoxal. Reconstitution of the proteins eluted from the affinity matrix into liposomes demonstrates anion exchange activity as assayed by radiolabeled chloride influx. Deletion of the 162 kD protein from the eluted mixture by probenecid diminishes the anion exchanger activity in the reconstituted liposomes. Further purification of the disulfonic stilbene column eluant by Econo-Pac Q ion exchange chromatography resulted in significant enrichment in 162 kD protein abundance and also anion exchange activity in reconstituted liposomes. The results of the above experiments strongly suggest that the 162 kD protein is an anion exchanger. Insight into the functional and molecular characteristics of this protein should provide important information about the mechanism(s) of chloride reabsorption in the kidney proximal tubule.

  8. Peroxisome proliferator-binding protein: identification and partial characterization of nafenopin-, clofibric acid-, and ciprofibrate-binding proteins from rat liver.

    PubMed Central

    Lalwani, N D; Alvares, K; Reddy, M K; Reddy, M N; Parikh, I; Reddy, J K

    1987-01-01

    Peroxisome proliferators (PP) induce a highly predictable pleiotropic response in rat and mouse liver that is characterized by hepatomegaly, increase in peroxisome number in hepatocytes, and induction of certain peroxisomal enzymes. The PP-binding protein (PPbP) was purified from rat liver cytosol by a two-step procedure involving affinity chromatography and ion-exchange chromatography. Three PP, nafenopin and its structural analogs clofibric acid and ciprofibrate, were used as affinity ligands and eluting agents. This procedure yields a major protein with an apparent Mr of 70,000 on NaDodSO4/PAGE in the presence of reducing agent and Mr 140,000 (Mr 140,000-160,000) on gel filtration and polyacrylamide gradient gel electrophoresis under nondenaturing conditions, indicating that the active protein is a dimer. This protein has an acidic pI of 4.2 under nondenaturing conditions, which rises to 5.6 under denaturing conditions. The isolation of the same Mr 70,000 protein with three different, but structurally related, agents as affinity ligands and the immunological identity of the isolated proteins constitute strong evidence that this protein is the PPbP capable of recognizing PP that are structurally related to clofibrate. The PPbP probably plays an important role in the regulation of PP-induced pleiotropic response. Images PMID:3474650

  9. Selective affinity chromatography of DNA polymerases with associated 3' to 5' exonuclease activities.

    PubMed

    Lee, M Y; Whyte, W A

    1984-05-01

    The use of 5'-AMP as a ligand for the affinity chromatography of DNA polymerases with intrinsic 3' to 5' exonuclease activities was investigated. The basis for this is that 5'-AMP would be expected to act as a ligand for the associated 3' to 5' exonuclease. The requirements for binding of Escherichia coli DNA polymerase I, T4 DNA polymerase, and calf thymus DNA polymerase delta, all of which have associated 3' to 5' exonuclease activities, to several commercially available 5'-AMP supports with different linkages of 5'-AMP to either agarose or cellulose were examined. The DNA polymerases which possessed 3' to 5' exonuclease activities were bound to agarose types in which the 5'-phosphoryl group and the 3'-hydroxyl group of the AMP were unsubstituted. Bound enzyme could be eluted by either an increase in ionic strength or competitive binding of nucleoside 5'-monophosphates. Magnesium was found to reinforce the binding of the enzyme to these affinity supports. DNA polymerase alpha, which does not have an associated 3' to 5' exonuclease activity, did not bind to any of these columns. These differences can be used to advantage for the purification of DNA polymerases that have associated 3' to 5' exonuclease activities, as well as a means for establishing the association of 3' to 5' exonuclease activities with DNA polymerases.

  10. Revealing multi-binding sites for taspine to VEGFR-2 by cell membrane chromatography zonal elution.

    PubMed

    Du, Hui; Wang, Sicen; Ren, Jing; Lv, Nan; He, Langchong

    2012-03-01

    A new high-expression vascular endothelial growth factor receptor-2 (VEGFR-2) cell membrane chromatography (CMC) method was developed to investigate the affinity of ligands for VEGFR-2. An HEK293 VEGFR-2/CMC system was applied to specifically recognize ligands acting on VEGFR-2. Sorafenib was used as a mobile phase additive to evaluate the effect of the marker's concentration on the retention of sorafenib and taspine, respectively. The relationship among the retention, the types of binding sites and the affinity of taspine binding to VEGFR-2 has also been concerned. The retention behavior indicated that sorafenib had two major binding regions on VEGFR-2, and that taspine might act as a multi-target VEGFR-2 inhibitor with similar biological activity to sorafenib. The equilibrium dissociation constants (K(D)) obtained from the model are (5.25 ± 0.31) × 10⁻⁷ and (9.88 ± 0.54) × 10⁻⁵ mol L⁻¹ for sorafenib at the high- and low-affinity sites, respectively, and the corresponding values for taspine are (3.88 ± 0.31) × 10⁻⁶ and (7.04 ± 0.49)×10⁻⁵ mol L⁻¹. The two types of binding sites contributed about a 1:2 ratio on the retention of taspine. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Toxic isolectins from the mushroom Boletus venenatus.

    PubMed

    Horibe, Masashi; Kobayashi, Yuka; Dohra, Hideo; Morita, Tatsuya; Murata, Takeomi; Usui, Taichi; Nakamura-Tsuruta, Sachiko; Kamei, Masugu; Hirabayashi, Jun; Matsuura, Masanori; Yamada, Mina; Saikawa, Yoko; Hashimoto, Kimiko; Nakata, Masaya; Kawagishi, Hirokazu

    2010-04-01

    Ingestion of the toxic mushroom Boletus venenatus causes a severe gastrointestinal syndrome, such as nausea, repetitive vomiting, diarrhea, and stomachache. A family of isolectins (B. venenatus lectins, BVLs) was isolated as the toxic principles from the mushroom by successive 80% ammonium sulfate-precipitation, Super Q anion-exchange chromatography, and TSK-gel G3000SW gel filtration. Although BVLs showed a single band on SDS-PAGE, they were further divided into eight isolectins (BVL-1 to -8) by BioAssist Q anion-exchange chromatography. All the isolectins showed lectin activity and had very similar molecular weights as detected by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis. Among them, BVL-1 and -3 were further characterized with their complete amino acid sequences of 99 amino acids determined and found to be identical to each other. In the hemagglutination inhibition assay, both proteins failed to bind to any mono- or oligo-saccharides tested and showed the same sugar-binding specificity to glycoproteins. Among the glycoproteins examined, asialo-fetuin was the strongest inhibitor. The sugar-binding specificity of each isolectin was also analyzed by using frontal affinity chromatography and surface plasmon resonance analysis, indicating that they recognized N-linked sugar chains, especially Galbeta1-->4GlcNAcbeta1-->4Manbeta1-->4GlcNAcbeta1-->4GlcNAc (Type II) residues in N-linked sugar chains. BVLs ingestion resulted in fatal toxicity in mice upon intraperitoneal administration and caused diarrhea upon oral administration in rats. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. Economics of recombinant antibody production processes at various scales: Industry-standard compared to continuous precipitation.

    PubMed

    Hammerschmidt, Nikolaus; Tscheliessnig, Anne; Sommer, Ralf; Helk, Bernhard; Jungbauer, Alois

    2014-06-01

    Standard industry processes for recombinant antibody production employ protein A affinity chromatography in combination with other chromatography steps and ultra-/diafiltration. This study compares a generic antibody production process with a recently developed purification process based on a series of selective precipitation steps. The new process makes two of the usual three chromatographic steps obsolete and can be performed in a continuous fashion. Cost of Goods (CoGs) analyses were done for: (i) a generic chromatography-based antibody standard purification; (ii) the continuous precipitation-based purification process coupled to a continuous perfusion production system; and (iii) a hybrid process, coupling the continuous purification process to an upstream batch process. The results of this economic analysis show that the precipitation-based process offers cost reductions at all stages of the life cycle of a therapeutic antibody, (i.e. clinical phase I, II and III, as well as full commercial production). The savings in clinical phase production are largely attributed to the fact that expensive chromatographic resins are omitted. These economic analyses will help to determine the strategies that are best suited for small-scale production in parallel fashion, which is of importance for antibody production in non-privileged countries and for personalized medicine. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Development of an enrichment method for endogenous phosphopeptide characterization in human serum.

    PubMed

    La Barbera, Giorgia; Capriotti, Anna Laura; Cavaliere, Chiara; Ferraris, Francesca; Laus, Michele; Piovesana, Susy; Sparnacci, Katia; Laganà, Aldo

    2018-01-01

    The work describes the development of an enrichment method for the analysis of endogenous phosphopeptides in serum. Endogenous peptides can play significant biological roles, and some of them could be exploited as future biomarkers. In this context, blood is one of the most useful biofluids for screening, but a systematic investigation of the endogenous peptides, especially phosphorylated ones, is still lacking, mainly due to the lack of suitable analytical methods. Thus, in this paper, different phosphopeptide enrichment strategies were pursued, based either on metal oxide affinity chromatography (MOAC, in the form of commercial TiO 2 spin columns or magnetic graphitized carbon black-TiO 2 composite), or on immobilized metal ion affinity chromatography (IMAC, in the form of Ti 4+ -IMAC magnetic material or commercial Fe 3+ -IMAC spin columns). While MOAC strategies proved completely unsuccessful, probably due to interfering phospholipids displacing phosphopeptides, the IMAC materials performed very well. Different sample preparation strategies were tested, comprising direct dilution with the loading buffer, organic solvent precipitation, and lipid removal from the matrix, as well as the addition of phosphatase inhibitors during sample handling for maximized endogenous phosphopeptide enrichment. All data were acquired by a shotgun peptidomics approach, in which peptide samples were separated by reversed-phase nanoHPLC hyphenated with high-resolution tandem mass spectrometry. The devised method allowed the identification of 176 endogenous phosphopeptides in fresh serum added with inhibitors by the direct dilution protocol and the Ti 4+ -IMAC magnetic material enrichment, but good results could also be obtained from the commercial Fe 3+ -IMAC spin column adapted to the batch enrichment protocol.

  14. Endogenous diadenosine tetraphosphate, diadenosine pentaphosphate, and diadenosine hexaphosphate in human myocardial tissue.

    PubMed

    Luo, Jiankai; Jankowski, Vera; Güngär, Nihayrt; Neumann, Joachim; Schmitz, Wilhelm; Zidek, Walter; Schlüter, Hartmut; Jankowski, Joachim

    2004-05-01

    Diadenosine polyphosphates have been characterized as extracellular mediators controlling numerous physiological effects. In this study, diadenosine tetraphosphate, diadenosine pentaphosphate, and diadenosine hexaphosphate were isolated and identified in human myocardial tissue. Human myocardial tissue was homogenized and fractionated by affinity chromatography, displacement chromatography, anion-exchange chromatography, and reversed-phase chromatography. In fractions purified to homogeneity, diadenosine tetraphosphate, diadenosine pentaphosphate, and diadenosine hexaphosphate were revealed by matrix-assisted laser desorption/ionization mass spectrometry and ultraviolet spectroscopy. These diadenosine polyphosphates were further identified by enzymatic analysis, which demonstrated an interconnection of the phosphate groups with the adenosines in the 5' positions of the riboses. Furthermore, diadenosine tetraphosphate, diadenosine pentaphosphate, and diadenosine hexaphosphate were found in human cardiac-specific granules, and the amount of diadenosine tetraphosphate, diadenosine pentaphosphate, and diadenosine hexaphosphate was estimated in the range of approximately 500 micromol/L. In conclusion, the experiments show that the diadenosine polyphosphates with 2 and 3 phosphate groups occur in human myocardial tissue, and so do the diadenosine polyphosphates with 4 to 6 phosphate groups. After being released by cholinergic stimulation, which is known to affect diadenosine polyphosphate release from secretory granules, diadenosine tetraphosphate, diadenosine pentaphosphate, and diadenosine hexaphosphate activate P2X purinoceptors in vascular smooth muscle; hence, they can act as vasoconstrictors. It may be inferred that the differential action of both predominantly vasodilator and vasoconstrictor diadenosine polyphosphates allow a fine-tuning of myocardial blood flow by locally released diadenosine polyphosphates.

  15. Purification of CD47-streptavidin fusion protein from bacterial lysate using biotin-agarose affinity chromatography.

    PubMed

    Salehi, Nasrin; Peng, Ching-An

    2016-07-08

    CD47 is a widely expressed transmembrane glycoprotein that modulates the activity of a plethora of immune cells via its extracellular domain. Therefore, CD47 plays important roles in the regulation of immune responses and may serve as targets for the development of immunotherapeutic agents. To make sure CD47 functionality is intact under the process of protein conjugation, CD47-streptavidin fusion protein was expressed and purified because it can easily bind to biotin-tagged materials via the unique biotin-streptavidin affinity. In this study, gene sequences of CD47 extracellular domain (CD47ECD) and core streptavidin (coreSA) with a total 834 bp were inserted into pET20b plasmid to construct recombinant plasmid encoding CD47-SA fusion gene. After bacteria transformation, the CD47-SA fusion protein was expressed by isopropyl-β-d-thiogalactopyranoside (IPTG) induction. The collected bacteria lysate was loaded on biotinylated agarose to proceed the purification of CD47-SA fusion protein. Due to the unexpected high affinity between biotin and coreSA, standard washing and elution approaches (e.g., varying pH, using biotin, and applying guanidine hydrochloride) reported for biotin-streptavidin affinity chromatography were not able to separate the target fusion protein. Instead, using low concentration of the non-ionic detergent Triton X-100 followed with alkaline buffer could efficiently weaken the binding between biotin and coreSA, thereby eluting out CD47-SA fusion protein from the biotin agarose column. The purified CD47-SA fusion protein was further characterized by molecular biology methods and its antiphagocytic functionality was confirmed by the phagocytosis assay. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:949-958, 2016. © 2016 American Institute of Chemical Engineers.

  16. Affinity extraction of emerging contaminants from water based on bovine serum albumin as a binding agent.

    PubMed

    Papastavros, Efthimia; Remmers, Rachael A; Snow, Daniel D; Cassada, David A; Hage, David S

    2018-03-01

    Affinity sorbents using bovine serum albumin as a binding agent were developed and tested for the extraction of environmental contaminants from water. Computer simulations based on a countercurrent distribution model were also used to study the behavior of these sorbents. Several model drugs, pesticides, and hormones of interest as emerging contaminants were considered in this work, with carbamazepine being used as a representative analyte when coupling the albumin column on-line with liquid chromatography and tandem mass spectrometry. The albumin column was found to be capable of extracting carbamazepine from aqueous solutions that contained trace levels of this analyte. Further studies of the bovine serum albumin sorbent indicated that it had higher retention under aqueous conditions than a traditional C 18 support for most of the tested emerging contaminants. Potential advantages of using these protein-based sorbents included the low cost of bovine serum albumin and its ability to bind to a relatively wide range of drugs and related compounds. It was also shown how simulations could be used to describe the elution behavior of the model compounds on the bovine serum albumin sorbents as an aid in optimizing the retention and selectivity of these supports for use with liquid chromatography or methods such as liquid chromatography with tandem mass spectrometry. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Purification and Characterization of Two Distinct NAD(P)H Dehydrogenases from Onion (Allium cepa L.) Root Plasma Membrane.

    PubMed Central

    Serrano, A.; Cordoba, F.; Gonzalez-Reyes, J. A.; Navas, P.; Villalba, J. M.

    1994-01-01

    Highly purified plasma membrane fractions were obtained from onion (Allium cepa L.) roots and used as a source for purification of redox proteins. Plasma membranes solubilized with Triton X-100 contained two distinct polypeptides showing NAD(P)H-dependent dehydrogenase activities. Dehydrogenase I was purified by gel filtration in Sephacryl S-300 HR, ion-exchange chromatography in DEAE-Sepharose CL-6B, and dye-ligand affinity chromatography in Blue-Sepharose CL-6B after biospecific elution with NADH. Dehydrogenase I consisted of a single polypeptide of about 27 kD and an isoelectric point of about 6. Dehydrogenase II was purified from the DEAE-unbound fraction by chromatography in Blue-Sepharose CL-6B and affinity elution with NADH. Dehydrogenase II consisted of a single polypeptide of about 31 kD and an isoelectric point of about 8. Purified dehydrogenase I oxidized both NADPH and NADH, although higher rates of electron transfer were obtained with NADPH. Maximal activity was achieved with NADPH as donor and juglone or coenzyme Q as acceptor. Dehydrogenase II was specific for NADH and exhibited maximal activity with ferricyanide. Optimal pH for both dehydrogenases was about 6. Dehydrogenase I was moderately inhibited by dicumarol, thenoyltrifluoroacetone, and the thiol reagent N-ethyl-maleimide. A strong inhibition of dehydrogenase II was obtained with dicumarol, thenoyltrifluoroacetone, and the thiol reagent p-hydroxymercuribenzoate. PMID:12232306

  18. Identification of paraoxonase 3 in rat liver microsomes: purification and biochemical properties.

    PubMed Central

    Rodrigo, Lourdes; Gil, Fernando; Hernandez, Antonio F; Lopez, Olga; Pla, Antonio

    2003-01-01

    Three paraoxonase genes (PON1, PON2 and PON3) have been described so far in mammals. Although considerable information is available regarding PON1, little is known about PON2 and PON3. PON3 has been isolated recently from rabbit serum [Draganov, Stetson, Watson, Billecke and La Du (2000) J. Biol. Chem. 275, 33435-33442] and liver [Ozols (1999) Biochem. J. 338, 265-275]. In the present study, we have identified the presence of PON3 in rat liver microsomes and a method for the purification to homogeneity is presented. PON3 has been purified 177-fold to apparent homogeneity with a final specific activity of 461 units/mg using a method consisting of seven steps: solubilization of the microsomal fraction, hydroxyapatite adsorption, chromatography on DEAE-Sepharose CL-6B, non-specific affinity chromatography on Cibacron Blue 3GA, two DEAE-cellulose steps and a final affinity chromatography on concanavalin A-Sepharose. SDS/PAGE of the final preparation indicated a single protein-staining band with an apparent molecular mass of 43 kDa. The isolated protein was identified by nanoelectrospray MS. Internal amino acid sequences of several peptides were determined and compared with those of human, rabbit and mouse PON3, showing a high similarity. Some biochemical properties of PON3 were also studied, including optimum pH, K(m) and heat and pH stability. PMID:12946270

  19. Single-step affinity purification of enzyme biotherapeutics: a platform methodology for accelerated process development.

    PubMed

    Brower, Kevin P; Ryakala, Venkat K; Bird, Ryan; Godawat, Rahul; Riske, Frank J; Konstantinov, Konstantin; Warikoo, Veena; Gamble, Jean

    2014-01-01

    Downstream sample purification for quality attribute analysis is a significant bottleneck in process development for non-antibody biologics. Multi-step chromatography process train purifications are typically required prior to many critical analytical tests. This prerequisite leads to limited throughput, long lead times to obtain purified product, and significant resource requirements. In this work, immunoaffinity purification technology has been leveraged to achieve single-step affinity purification of two different enzyme biotherapeutics (Fabrazyme® [agalsidase beta] and Enzyme 2) with polyclonal and monoclonal antibodies, respectively, as ligands. Target molecules were rapidly isolated from cell culture harvest in sufficient purity to enable analysis of critical quality attributes (CQAs). Most importantly, this is the first study that demonstrates the application of predictive analytics techniques to predict critical quality attributes of a commercial biologic. The data obtained using the affinity columns were used to generate appropriate models to predict quality attributes that would be obtained after traditional multi-step purification trains. These models empower process development decision-making with drug substance-equivalent product quality information without generation of actual drug substance. Optimization was performed to ensure maximum target recovery and minimal target protein degradation. The methodologies developed for Fabrazyme were successfully reapplied for Enzyme 2, indicating platform opportunities. The impact of the technology is significant, including reductions in time and personnel requirements, rapid product purification, and substantially increased throughput. Applications are discussed, including upstream and downstream process development support to achieve the principles of Quality by Design (QbD) as well as integration with bioprocesses as a process analytical technology (PAT). © 2014 American Institute of Chemical Engineers.

  20. Employing immuno-affinity for the analysis of various microbial metabolites of the mycotoxin deoxynivalenol.

    PubMed

    Zhu, Yan; Hassan, Yousef I; Shao, Suqin; Zhou, Ting

    2018-06-29

    Deoxynivalenol (DON) is a type B trichothecene mycotoxin that is commonly detected in grains infested with Fusarium species. The maximum tolerated levels of DON in the majority of world's countries are restricted to 0.75 mg kg -1 within the human food chain and to less than 1-5 mg kg -1 in animal feed depending on the feed material and/or animal species due to DON's short and long-term adverse effects on human health and animal productivity. The ability to accurately analyze DON and some of its fungal/bacterial metabolites is increasingly gaining a paramount importance in food/feed analysis and research. In this study, we used the immuno-affinity approach to enrich and detect DON and three of its bacterial metabolites, namely 3-epi-DON, 3-keto-DON, and deepoxy-DON (DOM-1). The optimized enrichment step coupled with high performance liquid chromatography can accurately and reproducibly quantify the aforementioned metabolites in feed matrixes (silage extract as an example in this case). It minimizes any background interface and provides a fast and easy-to-operate protocol for the analytical determination of such metabolites. More importantly, the presented data demonstrates the ability of the utilized monoclonal antibody, generated originally to capture DON in Enzyme-Linked Immunosorbent Assays (ELISA), to cross react with three less/non-toxic DON metabolites. This raises the concerns about the genuine need to account for such cross-reactivity when DON contamination is assessed through an immuno-affinity based analyses using the investigated antibody. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  1. Isolation and characterization of the CNBr peptides from the proteolytically derived N-terminal fragment of ovine opsin.

    PubMed Central

    Brett, M; Findlay, J B

    1983-01-01

    Ovine rhodopsin may be cleaved in situ by Staphylococcus aureus V8 proteinase into two membrane-bound fragments designated V8-L (27 000 mol.wt.) and V8-S (12 000 mol.wt.). After purification of the proteolysed complex by affinity chromatography in detergent using concanavalin A immobilized on Sepharose 4B, the two polypeptide fragments may be separated by gel-permeation chromatography on Sephadex LH-60. Digestion of the N-terminal-derived V8-L fragment with CNBr in 70% (v/v) trifluoroacetic acid resulted in a peptide mixture that could be fractionated by procedures involving gel-permeation chromatography in organic and aqueous solvents and the use of differential solubility. The complete or partial sequences of all ten peptides are reported. PMID:6224479

  2. Guanine nucleotide regulatory protein co-purifies with the D/sub 2/-dopamine receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senogles, S.E.; Caron, M.G.

    1986-05-01

    The D/sub 2/-dopamine receptor from bovine anterior pituitary was purified approx.1000 fold by affinity chromatography on CMOS-Sepharose. Reconstitution of the affinity-purified receptor into phospholipid vesicles revealed the presence of high and low affinity agonist sites as detected by N-n-propylnorapomorphine (NPA) competition experiments with /sup 3/H-spiperone. High affinity agonist binding could be converted to the low affinity form by guanine nucleotides, indicating the presence of an endogenous guanine nucleotide binding protein (N protein) in the affinity-purified D/sub 2/ receptor preparations. Furthermore, this preparation contained an agonist-sensitive GTPase activity which was stimulated 2-3 fold over basal by 10 ..mu..M NPA. /sup 35/S-GTP..gamma..Smore » binding to these preparations revealed a stoichiometry of 0.4-0.7 mole N protein/mole receptor, suggesting the N protein may be specifically coupled with the purified D/sub 2/-dopamine receptor and not present as a contaminant. Pertussis toxin treatment of the affinity purified receptor preparations prevented high affinity agonist binding, as well as agonist stimulation of the GTPase activity, presumably by inactivating the associated N protein. Pertussis toxin lead to the ADP-ribosylation of a protein of 39-40K on SDS-PAGE. These findings indicate that an endogenous N protein, N/sub i/ or N/sub o/, co-purifies with the D/sub 2/-dopamine receptor which may reflect a precoupling of this receptor with an N protein within the membranes.« less

  3. A simple procedure for the isolation of L-fucose-binding lectins from Ulex europaeus and Lotus tetragonolobus.

    PubMed

    Allen, H J; Johnson, E A

    1977-10-01

    L-Fucose-binding lectins from Ulex europeaus and Lotus tetragonolobus were isolated by affinity chromatography on columns of L-fucose-Sepharose 6B. L-Fucose was coupled to Sepharose 6B after divinyl sulfone-activation of the gel to give an affinity adsorbent capable of binding more than 1.2 mg of Ulex lextin/ml of gel, which could then be eluted with 0.1M or 0.05M L-fucose. Analysis of the isolated lectins by hemagglutination assay, by gel filtration, and polyacrylamide disc-electrophoresis revealed the presence of isolectins, or aggregated species, or both. The apparent mol. wt. of the major lectin fraction from Lotus was 35000 when determined on Sephadex G-200 or Ultrogel AcA 34. In contrast, the apparent mol. wt. of the major lectin fraction from Ulex was 68 000 when chromatographed on Sephadex G-200 and 45 000 when chromatographed on Ultrogel AcA 34. The yields of lectins were 4.5 mg/100 g of Ulex seeds and 394 mg/100 g of Lotus seeds.

  4. Metalloproteomics: Forward and Reverse Approaches in Metalloprotein Structural and Functional Characterization

    PubMed Central

    Shi, Wuxian; Chance, Mark R.

    2010-01-01

    About one-third of all proteins are associated with a metal. Metalloproteomics is defined as the structural and functional characterization of metalloproteins on a genome-wide scale. The methodologies utilized in metalloproteomics, including both forward (bottom-up) and reverse (top-down) technologies, to provide information on the identity, quantity and function of metalloproteins are discussed. Important techniques frequently employed in metalloproteomics include classical proteomics tools such as mass spectrometry and 2-D gels, immobilized-metal affinity chromatography, bioinformatics sequence analysis and homology modeling, X-ray absorption spectroscopy and other synchrotron radiation based tools. Combinative applications of these techniques provide a powerful approach to understand the function of metalloproteins. PMID:21130021

  5. Dye-ligand affinity systems.

    PubMed

    Denizli, A; Pişkin, E

    2001-10-30

    Dye-ligands have been considered as one of the important alternatives to natural counterparts for specific affinity chromatography. Dye-ligands are able to bind most types of proteins, in some cases in a remarkably specific manner. They are commercially available, inexpensive, and can easily be immobilized, especially on matrices bearing hydroxyl groups. Although dyes are all synthetic in nature, they are still classified as affinity ligands because they interact with the active sites of many proteins mimicking the structure of the substrates, cofactors, or binding agents for those proteins. A number of textile dyes, known as reactive dyes, have been used for protein purification. Most of these reactive dyes consist of a chromophore (either azo dyes, anthraquinone, or phathalocyanine), linked to a reactive group (often a mono- or dichlorotriazine ring). The interaction between the dye ligand and proteins can be by complex combination of electrostatic, hydrophobic, hydrogen bonding. Selection of the supporting matrix is the first important consideration in dye-affinity systems. There are several methods for immobilization of dye molecules onto the support matrix, in which usually several intermediate steps are followed. Both the adsorption and elution steps should carefully be optimized/designed for a successful separation. Dye-affinity systems in the form of spherical sorbents or as affinity membranes have been used in protein separation.

  6. Preparation of a novel antiserum to aromatase with high affinity and specificity: Its clinicopathological significance on breast cancer tissue.

    PubMed

    Kanomata, Naoki; Matsuura, Shiro; Nomura, Tsunehisa; Kurebayashi, Junichi; Mori, Taisuke; Kitawaki, Jo; Moriya, Takuya

    2017-01-01

    Aromatase inhibitors have been widely used for the endocrine treatment of estrogen-dependent breast cancer in postmenopausal patients. However, clinicopathological studies of aromatase have been limited due to unsatisfactory specificity and/or restricted availability of anti-aromatase antibodies. Here, we have generated a polyclonal antiserum with high affinity and specificity for human aromatase using a monoclonal antibody tagged immunoaffinity chromatography on an industrial production scale. Our preliminary immunohistochemical analysis of 221 invasive breast cancer cases indicated that 87.3% (193/221) had at least 5% aromatase positive cells. The histoscore for aromatase was inversely correlated with pT (p = 0.019), pN (p = 0.001), stage (p < 0.001), histologic grade (p = 0.003), lymphatic infiltration (p < 0.001), venous infiltration (p < 0.001), and Ki-67 index (p < 0.001). However, cancer aromatase expression was independent of estrogen receptor (ER), progesterone receptor (PgR), and human epidermal growth factor receptor 2 statuses. This antiserum will be applicable to clinicopathological examination of aromatase in addition to ER and PgR for an appropriate use of aromatase inhibitor on the treatment of breast cancer. Further studies on the relationship between Aromatase inhibitors have been widely used for the endocrine treatment of estrogen-dependent breast cancer in postmenopausal patients. However, clinicopathological studies of aromatase have been limited due to unsatisfactory specificity and/or restricted availability of anti-aromatase antibodies. Here, we have generated a polyclonal antiserum with high affinity and specificity for human aromatase using a monoclonal antibody tagged immunoaffinity chromatography on an industrial production scale. Our preliminary immunohistochemical analysis of 221 invasive breast cancer cases indicated that 87.3% (193/221) had at least 5% aromatase positive cells. The histoscore for aromatase was inversely correlated with pT (p = 0.019), pN (p = 0.001), stage (p < 0.001), histologic grade (p = 0.003), lymphatic infiltration (p < 0.001), venous infiltration (p < 0.001), and Ki-67 index (p < 0.001). However, cancer aromatase expression was independent of estrogen receptor (ER), progesterone receptor (PgR), and human epidermal growth factor receptor 2 statuses. This antiserum will be applicable to clinicopathological examination of aromatase in addition to ER and PgR for an appropriate use of aromatase inhibitor on the treatment of breast cancer. Further studies on the relationship between aromatase expression and aromatase inhibitors are warranted.

  7. Bioengineering of Bacteria To Assemble Custom-Made Polyester Affinity Resins

    PubMed Central

    Hay, Iain D.; Du, Jinping; Burr, Natalie

    2014-01-01

    Proof of concept for the in vivo bacterial production of a polyester resin displaying various customizable affinity protein binding domains is provided. This was achieved by engineering various protein binding domains into a bacterial polyester-synthesizing enzyme. Affinity binding domains based on various structural folds and derived from molecular libraries were used to demonstrate the potential of this technique. Designed ankyrin repeat proteins (DARPins), engineered OB-fold domains (OBodies), and VHH domains from camelid antibodies (nanobodies) were employed. The respective resins were produced in a single bacterial fermentation step, and a simple purification protocol was developed. Purified resins were suitable for most lab-scale affinity chromatography purposes. All of the affinity domains tested produced polyester beads with specific affinity for the target protein. The binding capacity of these affinity resins ranged from 90 to 600 nmol of protein per wet gram of polyester affinity resin, enabling purification of a recombinant protein target from a complex bacterial cell lysate up to a purity level of 96% in one step. The polyester resin was efficiently produced by conventional lab-scale shake flask fermentation, resulting in bacteria accumulating up to 55% of their cellular dry weight as polyester. A further proof of concept demonstrating the practicality of this technique was obtained through the intracellular coproduction of a specific affinity resin and its target. This enables in vivo binding and purification of the coproduced “target protein.” Overall, this study provides evidence for the use of molecular engineering of polyester synthases toward the microbial production of specific bioseparation resins implementing previously selected binding domains. PMID:25344238

  8. Immunoregulation.

    DTIC Science & Technology

    1981-05-01

    variety of antigens, KLH, GAT, TGAL and antigens from pathogenic bacteria such as Streptococcus mutans . Furthermore, we now have these systems...histocompatibility complex; PBL, peripheral blood lymphocytes; SAI/II, Streptococcus mutans antigen I/II complex; MHFSAI/II, monkey helper factor specific...from Streptococcus mutans . Helper activity was removed from supernatants of monkey cells by affinity chromatography on Sepharose 4B insolubilized

  9. A Versatile and Inexpensive Enzyme Purification Experiment for Undergraduate Biochemistry Labs.

    ERIC Educational Resources Information Center

    Farrell, Shawn O.; Choo, Darryl

    1989-01-01

    Develops an experiment that could be done in two- to three-hour blocks and does not rely on cold room procedures for most of the purification. Describes the materials, methods, and results of the purification of bovine heart lactate dehydrogenase using ammonium sulfate fractionation, dialysis, and separation using affinity chromatography and…

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qibin; Tang, Ning; Brock, Jonathan W.

    Non-enzymatic glycation of peptides and proteins by D-glucose has important implications in the pathogenesis of diabetes mellitus, particularly in the development of diabetic complications. However, no effective high-throughput methods exist for identifying proteins containing this low abundance post-translational modification in bottom-up proteomic studies. In this report, phenylboronate affinity chromatography was used in a two-step enrichment scheme to selectively isolate first glycated proteins and then glycated, tryptic peptides from human serum glycated in vitro. Enriched peptides were subsequently analyzed by alternating electron transfer dissociation (ETD) and collision induced dissociation (CID) tandem mass spectrometry. It was observed that ETD fragmentation mode resultedmore » in a significantly higher number of glycated peptide identifications (87.6% of all identified peptides) versus CID mode (17.0% of all identified peptides), when utilizing dual glycation enrichment on both the protein and peptide level. This study illustrates that phenylboronate affinity chromatography coupled with LC-MS/MS with ETD as the fragmentation mode is an efficient approach for analyses of glycated proteins and can have broad applications in studies of diabetes mellitus.« less

  11. Watermelon profilin: characterization of a major allergen as a model for plant-derived food profilins.

    PubMed

    Cases, Bárbara; Pastor-Vargas, Carlos; Dones, Félix Gil; Perez-Gordo, Marina; Maroto, Aroa S; de las Heras, Manuel; Vivanco, Fernando; Cuesta-Herranz, Javier

    2010-01-01

    Plant profilins have been reported as minor allergens. They are a well-known pan-allergen family responsible for cross-reactivity between plant-derived foods and pollens. Watermelon profilin has been reported to be a major allergen in watermelon (Citrullus lanatus).The aim of this study was to characterize recombinant watermelon profilin, confirming its reactivity for diagnostic purposes and the development of immunotherapy. Native profilin was purified from watermelon extract by affinity chromatography using poly-L-proline. Recombinant His-tagged profilin was produced in Pichia pastoris yeast using pPICZαA vector and purified by metal chelate affinity chromatography. ELISA and immunoblot were carried out with sera from 17 watermelon-allergic patients. Biological activity was tested by the basophil activation test. Native profilin and recombinant profilin were purified and identified by mass spectrometry. Both show similar IgE reactivity in vitro and are biologically active. Similarities were found in the IgE-binding patterns and biological activity of recombinant profilin and native profilin. Recombinant profilin may be a powerful tool for specific diagnosis. Copyright © 2010 S. Karger AG, Basel.

  12. Natural hidden antibodies reacting with DNA or cardiolipin bind to thymocytes and evoke their death.

    PubMed

    Zamulaeva, I A; Lekakh, I V; Kiseleva, V I; Gabai, V L; Saenko, A S; Shevchenko, A S; Poverenny, A M

    1997-08-18

    Both free and hidden natural antibodies to DNA or cardiolipin were obtained from immunoglobulins of a normal donor. The free antibodies reacting with DNA or cardiolipin were isolated by means of affinity chromatography. Antibodies occurring in an hidden state were disengaged from the depleted immunoglobulins by ion-exchange chromatography and were then affinity-isolated on DNA or cardiolipin sorbents. We used flow cytometry to study the ability of free and hidden antibodies to bind to rat thymocytes. Simultaneously, plasma membrane integrity was tested by propidium iodide (PI) exclusion. The hidden antibodies reacted with 65.2 +/- 10.9% of the thymocytes and caused a fast plasma membrane disruption. Cells (28.7 +/- 7.1%) were stained with PI after incubation with the hidden antibodies for 1 h. The free antibodies bound to a very small fraction of the thymocytes and did not evoke death as compared to control without antibodies. The possible reason for the observed effects is difference in reactivity of the free and hidden antibodies to phospholipids. While free antibodies reacted preferentially with phosphotidylcholine, hidden antibodies reacted with cardiolipin and phosphotidylserine.

  13. Chromatographic removal combined with heat, acid and chaotropic inactivation of four model viruses.

    PubMed

    Valdés, R; Ibarra, Neysi; Ruibal, I; Beldarraín, A; Noa, E; Herrera, N; Alemán, R; Padilla, S; Garcia, J; Pérez, M; Morales, R; Chong, E; Reyes, B; Quiñones, Y; Agraz, A; Herrera, L

    2002-07-03

    The virus removal of protein A affinity chromatography, inactivation capacity, acid pH and a combination of high temperature with a chaotropic agent was determined in this work. The model viruses studied were sendaivirus, human immunodeficency virus (HIV-IIIb), human poliovirus type-II, human herpesvirus I and canine parvovirus. The protein A affinity chromatography showed a maximum reduction factor of 8 logs in the case of viruses larger than 120 nm size, while for small viruses (18-30 nm) the maximum reduction factor was about 5 logs. Non viral inactivation was observed during the monoclonal antibody elution step. Low pH treatment showed a maximum inactivation factor of 7.1 logs for enveloped viruses. However, a weak inactivation factor (3.4 logs) was obtained for DNA nonenveloped viruses. The combination of high temperature with 3 M KSCN showed a high inactivation factor for all of the viruses studied. The total clearance factor was 23.1, 15.1, 13.6, 20.0 and 16.0 logs for sendaivirus, HIV-IIIb, human poliovirus type-II, human herpesvirus I and canine parvovirus, respectively.

  14. Optimization of the purification methods for recovery of recombinant growth hormone from Paralichthys olivaceus

    NASA Astrophysics Data System (ADS)

    Zang, Xiaonan; Zhang, Xuecheng; Mu, Xiaosheng; Liu, Bin

    2013-03-01

    This study aimed to optimize the purification of recombinant growth hormone from Paralichthys olivaceus. Recombinant flounder growth hormone (r-fGH) was expressed by Escherichia coli in form of inclusion body or as soluble protein under different inducing conditions. The inclusion body was renatured using two recovery methods, i.e., dilution and dialysis. Thereafter, the refolded protein was purified by Glutathione Sepharase 4B affinity chromatography and r-fGH was obtained by cleavage of thrombin. For soluble products, r-fGH was directly purified from the lysates by Glutathione Sepharase 4B affinity chromatography. ELISA-receptor assay demonstrated that despite its low receptor binding activity, the r-fGH purified from refolded inclusion body had a higher yield (2.605 mg L-1) than that from soluble protein (1.964 mg L-1). Of the tested recovery methods, addition of renaturing buffer (pH 8.5) into denatured inclusion body yielded the best recovery rate (17.9%). This work provided an optimized purification method for high recovery of r-fGH, thus contributing to the application of r-fGH to aquaculture.

  15. Analysis of the Heterogeneity of the 40,000 Molecular Weight Tuber Glycoprotein of Potatoes by Immunological Methods and by NH2-Terminal Sequence Analysis 1

    PubMed Central

    Park, William D.; Blackwood, Cheri; Mignery, Greg A.; Hermodson, Mark A.; Lister, Richard M.

    1983-01-01

    Among the major soluble tuber proteins of potato (Solanum tuberosum L.) is a group of glycoproteins having apparent molecular weights of approximately 40,000. This group of proteins as purified by ion-exchange and affinity chromatography has been given the trivial name `patatin.' Patatin exists in a number of charge forms which differ between potato cultivars and in some cases can also be resolved into a number of bands by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. However, by immunodiffusion and immunoelectrophoresis, it was found that the isoforms of patatin are immunologically identical both within a cultivar as well as between cultivars. A high degree of homology between the isoforms of patatin is also indicated by NH2-terminal amino acid sequence analysis. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:16662777

  16. Binding of RNA by the Nucleoproteins of Influenza Viruses A and B

    PubMed Central

    Labaronne, Alice; Swale, Christopher; Monod, Alexandre; Schoehn, Guy; Crépin, Thibaut; Ruigrok, Rob W. H.

    2016-01-01

    This paper describes a biochemical study for making complexes between the nucleoprotein of influenza viruses A and B (A/NP and B/NP) and small RNAs (polyUC RNAs from 5 to 24 nucleotides (nt)), starting from monomeric proteins. We used negative stain electron microscopy, size exclusion chromatography-multi-angle laser light scattering (SEC-MALLS) analysis, and fluorescence anisotropy measurements to show how the NP-RNA complexes evolve. Both proteins make small oligomers with 24-nt RNAs, trimers for A/NP, and dimers, tetramers, and larger complexes for B/NP. With shorter RNAs, the affinities of NP are all in the same range at 50 mM NaCl, showing that the RNAs bind on the same site. The affinity of B/NP for a 24-nt RNA does not change with salt. However, the affinity of A/NP for a 24-nt RNA is lower at 150 and 300 mM NaCl, suggesting that the RNA binds to another site, either on the same protomer or on a neighbour protomer. For our fluorescence anisotropy experiments, we used 6-fluorescein amidite (FAM)-labelled RNAs. By using a (UC)6-FAM3′ RNA with 150 mM NaCl, we observed an interesting phenomenon that gives macromolecular complexes similar to the ribonucleoprotein particles purified from the viruses. PMID:27649229

  17. Affinity Purification of Tumor Necrosis Factor-α Expressed in Raji Cells by Produced scFv Antibody Coupled CNBr-Activated Sepharose

    PubMed Central

    Abdolalizadeh, Jalal; Majidi Zolbanin, Jafar; Nouri, Mohammad; Baradaran, Behzad; Movassaghpour, AliAkbar; Farajnia, Safar; Omidi, Yadollah

    2013-01-01

    Purpose: Recombinant tumor necrosis factor-alpha (TNF-α) has been utilized as an antineoplastic agent for the treatment of patients with melanoma and sarcoma. It targets tumor cell antigens by impressing tumor-associated vessels. Protein purification with affinity chromatography has been widely used in the downstream processing of pharmaceutical-grade proteins. Methods:In this study, we examined the potential of our produced anti-TNF-α scFv fragments for purification of TNF-α produced by Raji cells. The Raji cells were induced by lipopolysaccharides (LPS) to express TNF-α. Western blotting and Fluorescence-activated cell sorting (FACS) flow cytometry analyses were used to evaluate the TNF-α expression. The anti-TNF-α scFv selected from antibody phage display library was coupled to CNBr-activated sepharose 4B beads used for affinity purification of expressed TNF-α and the purity of the protein was assessed by SDS-PAGE. Results: Western blot and FACS flow cytometry analyses showed the successful expression of TNF-α with Raji cells. SDS-PAGE analysis showed the performance of scFv for purification of TNF-α protein with purity over 95%. Conclusion: These findings confirm not only the potential of the produced scFv antibody fragments but also this highly pure recombinant TNF-α protein can be applied for various in vitro and in vivo applications. PMID:24312807

  18. N-terminal processing of affinity-tagged recombinant proteins purified by IMAC procedures.

    PubMed

    Mooney, Jane T; Fredericks, Dale P; Christensen, Thorkild; Bruun Schiødt, Christine; Hearn, Milton T W

    2015-07-01

    The ability of a new class of metal binding tags to facilitate the purification of recombinant proteins, exemplified by the tagged glutathione S-transferase and human growth hormone, from Escherichia coli fermentation broths and lysates has been further investigated. These histidine-containing tags exhibit high affinity for borderline metal ions chelated to the immobilised ligand, 1,4,7-triazacyclononane (tacn). The use of this tag-tacn immobilised metal ion affinity chromatography (IMAC) system engenders high selectivity with regard to host cell protein removal and permits facile tag removal from the E. coli-expressed recombinant protein. In particular, these tags were specifically designed to enable their efficient removal by the dipeptidyl aminopeptidase 1 (DAP-1), thus capturing the advantages of high substrate specificity and rates of cleavage. MALDI-TOF MS analysis of the cleaved products from the DAP-1 digestion of the recombinant N-terminally tagged proteins confirmed the complete removal of the tag within 4-12 h under mild experimental conditions. Overall, this study demonstrates that the use of tags specifically designed to target tacn-based IMAC resins offers a comprehensive and flexible approach for the purification of E. coli-expressed recombinant proteins, where complete removal of the tag is an essential prerequisite for subsequent application of the purified native proteins in studies aimed at delineating the molecular and cellular basis of specific biological processes. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Probes for narcotic receptor mediated phenomena. 43. Synthesis of the ortho-a and para-a, and improved synthesis and optical resolution of the ortho-b and para–b oxide-bridged phenylmorphans: Compounds with moderate to low opioid-receptor affinity

    PubMed Central

    Li, Feng; Folk, John E.; Cheng, Kejun; Kurimura, Muneaki; Deck, Jason A.; Deschamps, Jeffrey R.; Rothman, Richard B.; Dersch, Christina M.; Jacobson, Arthur E.; Rice, Kenner C.

    2011-01-01

    N-Phenethyl-substituted ortho-a and para-a oxide-bridged phenylmorphans have been obtained through an improved synthesis and their binding affinity examined at the various opioid receptors. Although the N-phenethyl substituent showed much greater affinity for μ- and κ-opioid receptors than their N-methyl relatives (e.g., Ki = 167 nM and 171 nM at μ- and κ-receptors vs >2800 and 7500 nM for the N-methyl ortho-a oxide-bridged phenylmorphan), the a-isomers were not examined further because of their relatively low affinity. The N-phenethyl substituted ortho-b and para-b oxide-bridged phenylmorphans were also synthesized and their enantiomers were obtained using supercritical fluid chromatography. Of the four enantiomers, only the (+)-ortho-b isomer had moderate affinity for μ- and κ-receptors (Ki = 49 and 42 nM, respectively, and it was found to also have moderate μ- and κ-opioid antagonist activity in the [35S]GTP-γ-S assay (Ke = 31 and 26 nM). PMID:21684752

  20. Adsorption of ethoxylated styrene oxide and polyacrylic acid and mixtures there of on organic pigment.

    PubMed

    Wijting, W K; Laven, J; van Benthem, R A T M; de With, G

    2008-11-01

    The adsorption of two polymeric surfactants on an organic pigment was investigated. As surfactants the anionic polyacrylic acid sodium salt (PANa, M(W)=15,000) and a non-ionic block copolymer surfactant based on styrene oxide (SO) and ethylene oxide (EO) (M(W)=1500) were used. The adsorption behavior was analyzed by size exclusion chromatography of the supernatant after centrifugation of the pigment dispersions. It was found that PANa has no affinity to the pigment, whereas SO-EO has a strong affinity to the pigment surface. Competitive adsorption of PANa and SO-EO was not observed. Addition of SO-EO yields stable dispersions.

  1. Atrazine Molecular Imprinted Polymers: Comparative Analysis by Far-Infrared and Ultraviolet Induced Polymerization

    PubMed Central

    Chen, Jun; Bai, Lian-Yang; Liu, Kun-Feng; Liu, Run-Qiang; Zhang, Yu-Ping

    2014-01-01

    Atrazine molecular imprinted polymers (MIPs) were comparatively synthesized using identical polymer formulation by far-infrared (FIR) radiation and ultraviolet (UV)-induced polymerization, respectively. Equilibrium binding experiments were carried out with the prepared MIPs; the results showed that MIPuv possessed specific binding to atrazine compared with their MIPFIR radiation counterparts. Scatchard plot’s of both MIPs indicated that the affinities of the binding sites in MIPs are heterogeneous and can be approximated by two dissociation-constants corresponding to the high-and low-affinity binding sites. Moreover, several common pesticides including atrazine, cyromazine, metamitron, simazine, ametryn, terbutryn were tested to determine their specificity, similar imprinting factor (IF) and different selectivity index (SI) for both MIPs. Physical characterization of the polymers revealed that the different polymerization methods led to slight differences in polymer structures and performance by scanning electron microscope (SEM), Fourier transform infrared absorption (FT-IR), and mercury analyzer (MA). Finally, both MIPs were used as selective sorbents for solid phase extraction (SPE) of atrazine from lake water, followed by high performance liquid chromatography (HPLC) analysis. Compared with commercial C18 SPE sorbent (86.4%–94.8%), higher recoveries of atrazine in spiked lake water were obtained in the range of 90.1%–97.1% and 94.4%–101.9%, for both MIPs, respectively. PMID:24398982

  2. Nano-structured support materials, their characterisation and serum protein profiling through MALDI/TOF-MS.

    PubMed

    Najam-Ul-Haq, M; Rainer, M; Heigl, N; Szabo, Z; Vallant, R; Huck, C W; Engelhardt, H; Bischoff, K-D; Bonn, G K

    2008-02-01

    In the bioanalytical era, novel nano-materials for the selective extraction, pre-concentration and purification of biomolecules prior to analysis are vital. Their application as affinity binding in this regard is needed to be authentic. We report here the comparative application of derivatised materials and surfaces on the basis of nano-crystalline diamond, carbon nanotubes and fullerenes for the analysis of marker peptides and proteins by material enhanced laser desorption ionisation mass spectrometry MELDI-MS. In this particular work, the emphasis is placed on the derivatization, termed as immobilised metal affinity chromatography (IMAC), with three different support materials, to show the effectiveness of MELDI technique. For the physicochemical characterisation of the phases, near infrared reflectance spectroscopy (NIRS) is used, which is a well-established method within the analytical chemistry, covering a wide range of applications. NIRS enables differentiation between silica materials and different fullerenes derivatives, in a 3-dimensional factor-plot, depending on their derivatizations and physical characteristics. The method offers a physicochemical quantitative description in the nano-scale level of particle size, specific surface area, pore diameter, pore porosity, pore volume and total porosity with high linearity and improved precision. The measurement takes only a few seconds while high sample throughput is guaranteed.

  3. Quantitative protein expression analysis of CLL B cells from mutated and unmutated IgV(H) subgroups using acid-cleavable isotope-coded affinity tag reagents.

    PubMed

    Barnidge, David R; Jelinek, Diane F; Muddiman, David C; Kay, Neil E

    2005-01-01

    Relative protein expression levels were compared in leukemic B cells from two patients with chronic lymphocytic leukemia (CLL) having either mutated (M-CLL) or unmutated (UM-CLL) immunoglobulin variable heavy chain genes (IgV(H)). Cells were separated into cytosol and membrane protein fractions then labeled with acid-cleavable ICAT reagents (cICAT). Labeled proteins were digested with trypsin then subjected to SCX and affinity chromatography followed by LC-ESI-MS/MS analysis on a linear ion trap mass spectrometer. A total of 9 proteins from the cytosol fraction and 4 from the membrane fraction showed a 3-fold or greater difference between M-CLL and UM-CLL and a subset of these were examined by Western blot where results concurred with cICAT abundance ratios. The abundance of one of the proteins in particular, the mitochondrial membrane protein cytochrome c oxidase subunit COX G was examined in 6 M-CLL and 6 UM-CLL patients using western blot and results showed significantly greater levels (P < 0.001) in M-CLL patients vs UM-CLL patients. These results demonstrate that stable isotope labeling and mass spectrometry can complement 2D gel electrophoresis and gene microarray technologies for identifying putative and perhaps unique prognostic markers in CLL.

  4. Nanocellulose-Zeolite Composite Films for Odor Elimination.

    PubMed

    Keshavarzi, Neda; Mashayekhy Rad, Farshid; Mace, Amber; Ansari, Farhan; Akhtar, Farid; Nilsson, Ulrika; Berglund, Lars; Bergström, Lennart

    2015-07-08

    Free standing and strong odor-removing composite films of cellulose nanofibrils (CNF) with a high content of nanoporous zeolite adsorbents have been colloidally processed. Thermogravimetric desorption analysis (TGA) and infrared spectroscopy combined with computational simulations showed that commercially available silicalite-1 and ZSM-5 have a high affinity and uptake of volatile odors like ethanethiol and propanethiol, also in the presence of water. The simulations showed that propanethiol has a higher affinity, up to 16%, to the two zeolites compared with ethanethiol. Highly flexible and strong free-standing zeolite-CNF films with an adsorbent loading of 89 w/w% have been produced by Ca-induced gelation and vacuum filtration. The CNF-network controls the strength of the composite films and 100 μm thick zeolite-CNF films with a CNF content of less than 10 vol % displayed a tensile strength approaching 10 MPa. Headspace solid phase microextraction (SPME) coupled to gas chromatography-mass spectroscopy (GC/MS) analysis showed that the CNF-zeolite films can eliminate the volatile thiol-based odors to concentrations below the detection ability of the human olfactory system. Odor removing zeolite-cellulose nanofibril films could enable improved transport and storage of fruits and vegetables rich in odors, for example, onion and the tasty but foul-smelling South-East Asian Durian fruit.

  5. Purification of bone morphogenetic protein-2 from refolding mixtures using mixed-mode membrane chromatography.

    PubMed

    Gieseler, Gesa; Pepelanova, Iliyana; Stuckenberg, Lena; Villain, Louis; Nölle, Volker; Odenthal, Uwe; Beutel, Sascha; Rinas, Ursula; Scheper, Thomas

    2017-01-01

    In this study, we present the development of a process for the purification of recombinant human bone morphogenetic protein-2 (rhBMP-2) using mixed-mode membrane chromatography. RhBMP-2 was produced as inclusion bodies in Escherichia coli. In vitro refolding using rapid dilution was carried out according to a previously established protocol. Different membrane chromatography phases were analyzed for their ability to purify BMP-2. A membrane phase with salt-tolerant properties resulting from mixed-mode ligand chemistry was able to selectively purify BMP-2 dimer from refolding mixtures. No further purification or polishing steps were necessary and high product purity was obtained. The produced BMP-2 exhibited a biological activity of 7.4 × 10 5  U/mg, comparable to commercial preparations. Mixed-mode membrane chromatography can be a valuable tool for the direct purification of proteins from solutions with high-conductivity, for example refolding buffers. In addition, in this particular case, it allowed us to circumvent the use of heparin-affinity chromatography, thus allowing the design of an animal-component-free process.

  6. Production of a pokeweed antiviral protein (PAP)-containing immunotoxin, B43-PAP, directed against the CD19 human B lineage lymphoid differentiation antigen in highly purified form for human clinical trials.

    PubMed

    Myers, D E; Irvin, J D; Smith, R S; Kuebelbeck, V M; Uckun, F M

    1991-02-15

    We describe a standardized method for the preparation and purification of a potent immunotoxin against B-lineage leukemia/lymphoma cells, constructed with the ribosome inhibitory single chain plant toxin pokeweed antiviral protein (PAP) and a murine IgG1 monoclonal antibody (MoAb) specific for the human B lineage differentiation antigen CD19 for human clinical trials. PAP was prepared from spring leaves of Phytolacca americana plants by ammonium sulfate precipitation and purified to homogeneity by successive steps of ion exchange chromatography. B43 MoAb was produced in vitro by hollow fiber technology and purified to homogeneity by affinity chromatography. PAP toxin and B43 MoAb were modified via their free amino groups prior to their intermolecular conjugation. 2-iminothiolane was used to introduce reactive sulfhydryl groups into PAP and N-succinimidyl 3-(2-pyridyldithio) propionate was used to introduce 2-pyridyl disulfide bonds into B43 MoAb. Modified PAP was reacted with modified B43 MoAb resulting in a sulfhydryl-disulfide exchange reaction and yielding disulfide linked PAP-B43 MoAb conjugates, which we refer to as B43-PAP immunotoxin. B43-PAP immunotoxin was subjected to preparative gel filtration chromatography and cation exchange chromatography to obtain a highly purified, sterile, and pyrogen-free immunotoxin preparation with less than 5% free antibody contamination and less than 0.5% free PAP contamination. The final product displayed a high affinity for and a very potent anti-leukemic activity against B lineage leukemia cells. With slight modifications, the procedures detailed in this report should be generally applicable to preparation of other PAP-MoAb conjugates for treatment of cancer or AIDS.

  7. Expression and purification of mouse peptide ESP4 in Escherichia coli.

    PubMed

    Hirakane, Makoto; Taniguchi, Masahiro; Yoshinaga, Sosuke; Misumi, Shogo; Terasawa, Hiroaki

    2014-04-01

    Pheromones are species-specific chemical signals that regulate a wide range of social and sexual behaviors in many animals. In mice, the male-specific peptide ESP1 (exocrine gland-secreting peptide 1) is secreted into tear fluids and enhances female sexual receptive behavior. ESP1 belongs to the ESP family, a multigene family with 38 genes in mice. ESP1 shares the highest homology with ESP4. ESP1 is expressed in the extraorbital lacrimal gland, whereas ESP4 is expressed in some exocrine glands. Thus, ESP4 is expected to have a function that has not been elucidated yet. Large amounts of the purified ESP4 protein are required for structural and biochemical studies. Here we present an expression and purification scheme for the recombinant ESP4 protein. The N-terminally histidine-tagged ESP4 fusion protein was expressed in Escherichia coli as inclusion bodies, which were solubilized and purified by nickel affinity chromatography. The histidine tag was cleaved with thrombin and removed by a second nickel affinity chromatography step. The ESP4 protein was isolated with high purity by reversed-phase chromatography. For NMR analyses, we prepared a stable isotope-labeled ESP4 protein. Three repeated freeze-drying steps after the reversed-phase chromatography were required, to remove a volatile contaminating compound and to obtain an NMR spectrum with a homogeneous line shape. AMS-modification and far-UV CD spectroscopic analyses suggested that ESP4 has an intramolecular disulfide bridge and a helical structure, respectively. The present study provides a powerful tool for structural and biochemical studies of ESP4, leading toward the elucidation of the roles of the ESP family members. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Purification and properties of insulin receptor ectodomain from large-scale mammalian cell culture.

    PubMed

    Cosgrove, L; Lovrecz, G O; Verkuylen, A; Cavaleri, L; Black, L A; Bentley, J D; Howlett, G J; Gray, P P; Ward, C W; McKern, N M

    1995-12-01

    Ectodomain of the exon 11+ form of the human insulin receptor (hIR) was expressed in the mammalian cell secretion vector pEE6.HCMV-GS, containing the glutamine synthetase gene. Following transfection of the hIR ectodomain gene into Chinese hamster ovary (CHO-K1) cells, clones were isolated by selecting for glutamine synthetase expression with methionine sulphoximine. The expression levels of ectodomain were subsequently increased by gene amplification. Production was scaled up using a 40-liter airlift fermenter in which the transfected CHO-K1 cells were cultured on microcarrier beads, initially in medium containing 10% fetal calf serum (FCS). By continuous perfusion of serum-free medium into the bioreactor, cell viability was maintained during reduction of FCS, which enabled soluble hIR ectodomain to be harvested for at least 22 days. Harvests were concentrated 20-fold by anion-exchange chromatography. Optimal recovery of ectodomain from early harvests containing large quantities of serum proteins was achieved by insulin-affinity chromatography, whereas in later harvests purification was achieved by multistep chromatography. Analysis of the purified hIR ectodomain showed that it had a molecular weight by sedimentation equilibrium analysis of 269,500. Amino-terminal amino acid sequence analysis showed that the ectodomain was correctly processed to alpha and beta chains and that glycosylation characteristics were similar to those of native hIR. The integrity of the ectodomain was demonstrated by the recognition of conformation-dependent anti-hIR antibodies and by its binding of insulin (Kd approximately 2 x 10(-9) M). These results demonstrate the successful production and purification of hIR ectodomain by processes amenable to scale-up and in a form appropriate for structure/function studies of the ligand-binding domain of the receptor.

  9. Comparison of an enzyme-linked immunosorbent assay (ELISA) to gas chromatography (GC) - measurement of polychlorinated biphenyls (PCBs) in selected US fish extracts

    USGS Publications Warehouse

    Zajicek, J.L.; Tillitt, D.E.; Schwartz, T.R.; Schmitt, C.J.; Harrison, R.O.

    2000-01-01

    The analysis of PCBs in fish tissues by immunoassay methods was evaluated using fish collected from a US monitoring program, the National Contaminant Biomonitoring Program of the US Department of Interior, Fish and Wildlife Service. Selected composite whole fish samples, which represented widely varying concentrations and sources of PCBs, were extracted and subjected to congener PCB analysis by gas chromatography (GC) and total PCB analysis using an ELISA (ePCBs) calibrated against technical Aroclor 1248. PCB congener patterns in these fishes were different from the patterns found in commercial Aroclors or their combinations as demonstrated by principal component analysis of normalized GC congener data. The sum of the PCB congeners measured by GC (total-PCBs) ranged from 37 to 4600 ng/g (wet weight). Concentrations of PCBs as determined by the ELISA method were positively correlated with total-PCBs and the ePCBs/total-PCBs ratios for individual samples ranged from 1 to 6. Ratios of ePCBs/total-PCBs for dilutions of Aroclors 1242, 1254, and 1260 and for matrix spikes range from 0.6 for 1242 to 2.5 for 1254 and 1260. These results suggest that higher chlorinated PCB congeners have higher affinity for the anti-PCB antibodies. Partial least squares with latent variable analysis of GC and ELISA data of selected Aroclors and fish samples also support the conclusion that ELISA derived PCB concentrations are dependent on the degree on chlorination.

  10. Molecularly Imprinted Polymers for Ochratoxin A Extraction and Analysis

    PubMed Central

    Yu, Jorn C. C.; Lai, Edward P. C.

    2010-01-01

    Molecularly imprinted polymers (MIPs) are considered as polymeric materials that mimic the functionality of antibodies. MIPs have been utilized for a wide variety of applications in chromatography, solid phase extraction, immunoassays, and sensor recognition. In this article, recent advances of MIPs for the extraction and analysis of ochratoxins are discussed. Selection of functional monomers to bind ochratoxin A (OTA) with high affinities, optimization of extraction procedures, and limitations of MIPs are compared from different reports. The most relevant examples in the literature are described to clearly show how useful these materials are. Strategies on MIP preparation and schemes of analytical methods are also reviewed in order to suggest the next step that would make better use of MIPs in the field of ochratoxin research. The review ends by outlining the remaining issues and impediments. PMID:22069649

  11. Expression, purification, and functional analysis of the C-terminal domain of Herbaspirillum seropedicae NifA protein.

    PubMed

    Monteiro, Rose A; Souza, Emanuel M; Geoffrey Yates, M; Steffens, M Berenice R; Pedrosa, Fábio O; Chubatsu, Leda S

    2003-02-01

    The Herbaspirillum seropedicae NifA protein is responsible for nif gene expression. The C-terminal domain of the H. seropedicae NifA protein, fused to a His-Tag sequence (His-Tag-C-terminal), was over-expressed and purified by metal-affinity chromatography to yield a highly purified and active protein. Band-shift assays showed that the NifA His-Tag-C-terminal bound specifically to the H. seropedicae nifB promoter region in vitro. In vivo analysis showed that this protein inhibited the Central + C-terminal domains of NifA protein from activating the nifH promoter of K. pneumoniae in Escherichia coli, indicating that the protein must be bound to the NifA-binding site (UAS site) at the nifH promoter region to activate transcription. Copyright 2002 Elsevier Science (USA)

  12. Preparation of on-plate immobilized metal ion affinity chromatography platform via dopamine chemistry for highly selective isolation of phosphopeptides with matrix assisted laser desorption/ionization mass spectrometry analysis.

    PubMed

    Shi, Chenyi; Lin, Qinrui; Deng, Chunhui

    2015-04-01

    In this study, a novel on-plate IMAC technique was developed for highly selective enrichment and isolation of phosphopeptides with high-throughput MALDI-TOF-MS analysis. At first, a MALDI plate was coated with polydopamine (PDA), and then Ti(4+) was immobilized on the PDA-coated plate. The obtained IMAC plate was successfully applied to the highly selective enrichment and isolation of phosphopeptides in protein digests and human serum. Because of no loss of samples, the on-plate IMAC platform exhibits excellent selectivity and sensitivity in the selective enrichment and isolation of phosphopeptides, which provides a potential technique for high selectivity in the detection of low-abundance phosphopeptides in biological samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Lea blood group antigen on human platelets.

    PubMed

    Dunstan, R A; Simpson, M B; Rosse, W F

    1985-01-01

    One- and two-stage radioligand assays were used to determine if human platelets possess the Lea antigen. Goat IgG anti-Lea antibody was purified by multiple adsorptions with Le(a-b-) human red blood cells, followed by affinity chromatography with synthetic Lea substance and labeling with 125I. Human IgG anti-Lea antibody was used either in a two stage radioassay with 125I-labeled mouse monoclonal IgG anti-human IgG as the second antibody or, alternatively, purified by Staph protein A chromatography, labeled with 125I, and used in a one-stage radioassay. Platelets from donors of appropriate red blood cell phenotypes were incubated with the antisera, centrifuged through phthalate esters, and assayed in a gamma scintillation counter. Dose response and saturation curve analysis demonstrate the presence of Lewis a antigen on platelets from Lea+ donors. Furthermore, platelets from an Le(a-b-) donor incubated in Le (a+b-) plasma adsorb Lea antigen in a similar manner to red blood cells. The clinical significance of these antigens in platelet transfusion remains undefined.

  14. Purification, characterization, and sequencing of novel antimicrobial peptides, Tu-AMP 1 and Tu-AMP 2, from bulbs of tulip (Tulipa gesneriana L.).

    PubMed

    Fujimura, Masatoshi; Ideguchi, Mineo; Minami, Yuji; Watanabe, Keiichi; Tadera, Kenjiro

    2004-03-01

    Novel antimicrobial peptides (AMP), designated Tu-AMP 1 and Tu-AMP 2, were purified from the bulbs of tulip (Tulipa gesneriana L.) by chitin affinity chromatography and reverse-phase high-performance liquid chromatography (HPLC). They bind to chitin in a reversible way. They were basic peptides having isoelectric points of over 12. Tu-AMP 1 and Tu-AMP 2 had molecular masses of 4,988 Da and 5,006 Da on MALDI-TOF MS analysis, and their extinction coefficients of 1% aqueous solutions at 280 nm were 3.3 and 3.4, respectively. Half of all amino acid residues of Tu-AMP 1 and Tu-AMP 2 were occupied by cysteine, arginine, lysine, and proline. The concentrations of peptides required for 50% inhibition (IC(50)) of the growth of plant pathogenic bacteria and fungi were 2 to 20 microg/ml. The structural characteristics of Tu-AMP 1 and Tu-AMP 2 indicated that they were novel thionin-like antimicrobial peptides, though Tu-AMP 2 was a heterodimer composes of two short peptides joined with disulfide bonds.

  15. Combination of solvent extractants for dispersive liquid-liquid microextraction of fungicides from water and fruit samples by liquid chromatography with tandem mass spectrometry.

    PubMed

    Pastor-Belda, Marta; Garrido, Isabel; Campillo, Natalia; Viñas, Pilar; Hellín, Pilar; Flores, Pilar; Fenoll, José

    2017-10-15

    A multiresidue method was developed to determine twenty-five fungicides belonging to three different chemical families, oxazoles, strobilurins and triazoles, in water and fruit samples, using dispersive liquid-liquid microextraction (DLLME) and liquid chromatography/tandem mass spectrometry (LC-MS 2 ). Solid-liquid extraction with acetonitrile was used for the analysis in fruits, the extract being used as dispersant solvent in DLLME. Since some of the analytes showed high affinity for chloroform and the others were more efficiently extracted with undecanol, a mixture of both solvents was used as extractant in DLLME. After evaporation of CHCl 3 , the enriched phase was analyzed. Enrichment factors in the 23-119 and 12-60 ranges were obtained for waters and fruits, respectively. The approach was most sensitive for metominostrobin with limits of quantification of 1ngL -1 and 5ngkg -1 in waters and fruits, respectively, while a similar sensitivity was attained for tebuconazole in fruits. Recoveries of the fungicides varied between 86 and 116%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. A novel expression system for intracellular production and purification of recombinant affinity-tagged proteins in Aspergillus niger.

    PubMed

    Roth, Andreas H F J; Dersch, Petra

    2010-03-01

    A set of different integrative expression vectors for the intracellular production of recombinant proteins with or without affinity tag in Aspergillus niger was developed. Target genes can be expressed under the control of the highly efficient, constitutive pkiA promoter or the novel sucrose-inducible promoter of the beta-fructofuranosidase (sucA) gene of A. niger in the presence or absence of alternative carbon sources. All expression plasmids contain an identical multiple cloning sequence that allows parallel construction of N- or C-terminally His6- and StrepII-tagged versions of the target proteins. Production of two heterologous model proteins, the green fluorescence protein and the Thermobifida fusca hydrolase, proved the functionality of the vector system. Efficient production and easy detection of the target proteins as well as their fast purification by a one-step affinity chromatography, using the His6- or StrepII-tag sequence, was demonstrated.

  17. Monolith-based immobilized metal affinity chromatography increases production efficiency for plasmid DNA purification.

    PubMed

    Shin, Min Jae; Tan, Lihan; Jeong, Min Ho; Kim, Ji-Heung; Choe, Woo-Seok

    2011-08-05

    Immobilized metal affinity monolith column as a new class of chromatographic support is shown to be superior to conventional particle-based column as plasmid DNA (pDNA) purification platform. By harnessing the affinity of endotoxin to copper ions in the solution, a majority of endotoxin (90%) was removed from the alkaline cell lysate using CuCl(2)-induced precipitation. RNA and remaining endotoxin were subsequently removed to below detection limit with minimal loss of pDNA using either monolith or particle-based column. Monolith column has the additional advantage of feed concentration and flowrate-independent dynamic binding capacity for RNA molecules, enabling purification process to be conducted at high feed RNA concentration and flowrate. The use of monolith column gives three fold increased productivity of pDNA as compared to particle-based column, providing a more rapid and economical platform for pDNA purification. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Purification of foot-and-mouth disease virus by heparin as ligand for certain strains.

    PubMed

    Du, Ping; Sun, Shiqi; Dong, Jinjie; Zhi, Xiaoying; Chang, Yanyan; Teng, Zhidong; Guo, Huichen; Liu, Zaixin

    2017-04-01

    The goal of this project was to develop an easily operable and scalable process for the recovery and purification of foot-and-mouth disease virus (FMDV) from cell culture. Heparin resins HipTrap Heparin HP and AF-Heparin HC-650 were utilized to purify FMDV O/HN/CHA/93. Results showed that the purity of AF-Heparin HC-650 was ideal. Then, the O/HN/CHA/93, O/Tibet/CHA/99, Asia I/HN/06, and A/CHA/HB/2009 strains were purified by AF-Heparin HC-650. Their affinity/virus recoveries were approximately 51.2%/45.8%, 71.5%/70.9%, 96.4%/73.5, and 59.5%/42.1%, respectively. During a stepwise elution strategy, the viral particles were mainly eluted at 300mM ionic strength peaks. The heparin affinity chromatography process removed more than 94% of cellular and medium proteins. Anion exchange resin Capto Q captured four FMD virus particles; 40% of binding proteins and 80%-90% of viral particles were eluted at 450mM NaCl. Moreover, ionic strength varied from 30 to 450mM had no effect on the immunity to FMDV. The results revealed that heparin sulfate may be the main receptor for CHA/99 strain attachment-susceptible cells. Heparin affinity chromatography can reach perfect results, especially when used as a ligand of the virus. Anion exchange is useful only as previous step for further purification. Copyright © 2016. Published by Elsevier B.V.

  19. Immobilized palladium(II) ion affinity chromatography for recovery of recombinant proteins with peptide tags containing histidine and cysteine.

    PubMed

    Kikot, Pamela; Polat, Aise; Achilli, Estefania; Fernandez Lahore, Marcelo; Grasselli, Mariano

    2014-11-01

    Fusion of peptide-based tags to recombinant proteins is currently one of the most used tools for protein production. Also, immobilized metal ion affinity chromatography (IMAC) has a huge application in protein purification, especially in research labs. The combination of expression systems of recombinant tagged proteins with this robust chromatographic system has become an efficient and rapid tool to produce milligram-range amounts of proteins. IMAC-Ni(II) columns have become the natural partners of 6xHis-tagged proteins. The Ni(II) ion is considered as the best compromise of selectivity and affinity for purification of a recombinant His-tagged protein. The palladium(II) ion is also able to bind to side chains of amino acids and form ternary complexes with iminodiacetic acid and free amino acids and other sulfur-containing molecules. In this work, we evaluated two different cysteine- and histidine-containing six amino acid tags linked to the N-terminal group of green fluorescent protein (GFP) and studied the adsorption and elution conditions using novel eluents. Both cysteine-containing tagged GFPs were able to bind to IMAC-Pd(II) matrices and eluted successfully using a low concentration of thiourea solution. The IMAC-Ni(II) system reaches less than 20% recovery of the cysteine-containing tagged GFP from a crude homogenate of recombinant Escherichia coli, meanwhile the IMAC-Pd(II) yields a recovery of 45% with a purification factor of 13. Copyright © 2014 John Wiley & Sons, Ltd.

  20. [Identification of the interacting proteins with S100A8 or S100A9 by affinity purification and mass spectrometry].

    PubMed

    Wang, Jing; Zhang, Xuemei; Li, Zheng; Li, Xiayu; Ma, Jian; Shen, Shourong

    2017-04-28

    To identify the interacting proteins with S100A8 or S100A9 in HEK293 cell line by flag-tag affinity purification and liquid chromatography mass spectrometry/mass spectrometry (LC-MS/MS).
 Methods: The p3×Flag-CMV-S100A8 and p3×Flag-CMV-S100A9 expression vectors were constructed by inserting S100A8 or S100A9 coding sequence. The recombinant plasmids were then transfected into HEK293 cells. Affinity purification and LC-MS/MS were applied to identify the proteins interacting with S100A8 or S100A9. Bioinformatics analysis was used to seek the gene ontology of the interacting proteins. Co-immunoprecipitation (Co-IP) was applied to confirm the proteins interacted with S100A8 or S100A9.
 Results: Fourteen proteins including pyruvate kinase, muscle (PKM), nucleophosmin (NPM1) and eukaryotic translation initiation factor 5A (EIF5A), which potentially interacted with S100A8, were successfully identified by Flag-tag affinity purification followed by LC-MS/MS analysis. Six proteins, such as tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon (14-3-3ε) and PKM, which potentially interacted with S100A9, were successfully identified. Gene ontology analysis of the identified proteins suggested that proteins interacted with S100A8 or S100A9 were involved in several biological pathways, including canonical glycolysis, positive regulation of NF-κB transcription factor activity, negative regulation of apoptotic process, cell-cell adhesion, etc. Co-IP experiment confirmed that PKM2 can interact with both S100A8 and S100A9, and 14-3-3ε can interact with S100A8.
 Conclusion: PKM2 is identified to interact with both S100A8 and S100A9, while 14-3-3ε can interact with S100A9. These results may provide a new clue for the role of S100A8 or S100A9 in the progression of colitis-associated colorectal cancer.

  1. Characterization of adsorption on the stationary phase using high-performance immunoaffinity chromatography.

    PubMed

    Nielsen, R G; Wilson, G S

    1987-12-25

    Low-level adsorption on the stationary phase has been studied using immunochemical reagents. An immunoaffinity column has been evaluated using affinity-purified radioisotope-labeled monoclonal antibodies. Recovery experiments including continuous immunosorbent monitoring have been performed. Proper characterization of an immunoaffinity separation can result in the recovery of immunologically active material in high yield.

  2. Glycation of antibodies: Modification, methods and potential effects on biological functions.

    PubMed

    Wei, Bingchuan; Berning, Kelsey; Quan, Cynthia; Zhang, Yonghua Taylor

    Glycation is an important protein modification that could potentially affect bioactivity and molecular stability, and glycation of therapeutic proteins such as monoclonal antibodies should be well characterized. Glycated protein could undergo further degradation into advance glycation end (AGE) products. Here, we review the root cause of glycation during the manufacturing, storage and in vivo circulation of therapeutic antibodies, and the current analytical methods used to detect and characterize glycation and AGEs, including boronate affinity chromatography, charge-based methods, liquid chromatography-mass spectrometry and colorimetric assay. The biological effects of therapeutic protein glycation and AGEs, which ranged from no affect to loss of activity, are also discussed.

  3. Purification of proteins from baculovirus-infected insect cells.

    PubMed

    O'Shaughnessy, Luke; Doyle, Sean

    2011-01-01

    Expression of recombinant proteins in the baculovirus/insect cell expression system is employed because it enables post-translational protein modification and high yields of recombinant protein. The system is capable of facilitating the functional expression of many proteins - either secreted or intracellularly located within infected insect cells. Strategies for the isolation and extraction of soluble proteins are presented in this chapter and involve selective cell lysis, precipitation and chromatography. Protein insolubility, following recombinant expression in insect cells, can occur. However, using the methods described herein, it is possible to extract and purify insoluble protein using affinity, ion-exchange and gel filtration chromatography. Indeed, protein insolubility often aids protein purification.

  4. Analytical Glycobiology at High Sensitivity: Current Approaches and Directions

    PubMed Central

    Novotny, Milos V.; Alley, William R.; Mann, Benjamin F.

    2013-01-01

    This review summarizes the analytical advances made during the last several years in the structural and quantitative determinations of glycoproteins in complex biological mixtures. The main analytical techniques used in the fields of glycomics and glycoproteomics involve different modes of mass spectrometry and their combinations with capillary separation methods such as microcolumn liquid chromatography and capillary electrophoresis. The needs for high-sensitivity measurements have been emphasized in the oligosaccharide profiling used in the field of biomarker discovery through MALDI mass spectrometry. High-sensitivity profiling of both glycans and glycopeptides from biological fluids and tissue extracts has been aided significantly through lectin preconcentration and the uses of affinity chromatography. PMID:22945852

  5. Parallel Comparison of N-Linked Glycopeptide Enrichment Techniques Reveals Extensive Glycoproteomic Analysis of Plasma Enabled by SAX-ERLIC.

    PubMed

    Totten, Sarah M; Feasley, Christa L; Bermudez, Abel; Pitteri, Sharon J

    2017-03-03

    Protein glycosylation is of increasing interest due to its important roles in protein function and aberrant expression with disease. Characterizing protein glycosylation remains analytically challenging due to its low abundance, ion suppression issues, and microheterogeneity at glycosylation sites, especially in complex samples such as human plasma. In this study, the utility of three common N-linked glycopeptide enrichment techniques is compared using human plasma. By analysis on an LTQ-Orbitrap Elite mass spectrometer, electrostatic repulsion hydrophilic interaction liquid chromatography using strong anion exchange solid-phase extraction (SAX-ERLIC) provided the most extensive N-linked glycopeptide enrichment when compared with multilectin affinity chromatography (M-LAC) and Sepharose-HILIC enrichments. SAX-ERLIC enrichment yielded 191 unique glycoforms across 72 glycosylation sites from 48 glycoproteins, which is more than double that detected using other enrichment techniques. The greatest glycoform diversity was observed in SAX-ERLIC enrichment, with no apparent bias toward specific glycan types. SAX-ERLIC enrichments were additionally analyzed by an Orbitrap Fusion Lumos mass spectrometer to maximize glycopeptide identifications for a more comprehensive assessment of protein glycosylation. In these experiments, 829 unique glycoforms were identified across 208 glycosylation sites from 95 plasma glycoproteins, a significant improvement from the initial method comparison and one of the most extensive site-specific glycosylation analysis in immunodepleted human plasma to date. Data are available via ProteomeXchange with identifier PXD005655.

  6. Speciation of inorganic and organolead compounds by gas chromatography-atomic absorption spectrometry and the determination of lead species after pre-concentration onto diphenylthiocarbazone-anchored polymeric microbeads

    NASA Astrophysics Data System (ADS)

    Salih, Bekir

    2000-07-01

    Poly(EGDMA-HEMA) microbeads were prepared by suspension copolymerization of ethyleneglycol dimethacrylate (EGDMA) and hydroxyethylmethacrylate (HEMA) using poly(vinylalcohol), benzoyl peroxide and toluene as the stabilizer, the initiator, and the diluent, respectively. A chelating ligand, diphenylthiocarbazone (dithizone), was then attached. The microbeads were characterized by FT-IR and elemental analysis. The affinity microbeads containing 118.9 μmol dithizone g -1 polymer were used in the adsorption/desorption of some selected lead species, Pb(II), (CH 3) 2PbCl 2, (C 2H 5) 2PbCl 2, (CH 3) 3PbCl, and (C 2H 5) 3PbCl from aqueous media containing different amounts of these species (5-200 mg l -1) at different pH values, 2.0-8.0. Adsorption rates were high, and adsorption equilibrium was reached in approximately 45 min. The detection limits of the lead species onto the dithizone-anchored affinity microbeads from solutions containing a single species was 0.28 ng ml -1 for Pb(II), 0.12 ng ml -1 for (CH 3) 3PbCl, 0.24 ng ml -1 for (C 2H 5) 3PbCl, 0.18 ng ml -1 for (CH 3) 2PbCl 2 and 0.30 ng ml -1 for (C 2H 5) 2PbCl 2 on a weight basis for lead. The same behavior was observed during competitive adsorption that is adsorption from a mixture. The affinity order of the lead species was Pb(II)>(CH 3) 2PbCl 2>(CH 3) 3PbCl>(C 2H 5) 3PbCl>(C 2H 5) 2PbCl 2 for competitive adsorption. Dithizone-anchored microbeads were found to be suitable for repeated use of more than five cycles, without noticeable loss of adsorption capacity. For the speciation of organolead compounds, ionic alkyllead compounds were derivatized by n-butyl Grignard reagent and the speciation was performed using a gas chromatography-atomic absorption spectrometry coupled system. Detection limits were improved at least 180-fold with this preconcentration approach using the dithizone-anchored microbeads.

  7. Simple and Efficient Purification of Recombinant Proteins Using the Heparin-Binding Affinity Tag.

    PubMed

    Jayanthi, Srinivas; Gundampati, Ravi Kumar; Kumar, Thallapuranam Krishnaswamy Suresh

    2017-11-01

    Heparin, a member of the glycosaminoglycan family, is known to interact with more than 400 different types of proteins. For the past few decades, significant progress has been made to understand the molecular details involved in heparin-protein interactions. Based on the structural knowledge available from the FGF1-heparin interaction studies, we have designed a novel heparin-binding peptide (HBP) affinity tag that can be used for the simple, efficient, and cost-effective purification of recombinant proteins of interest. HBP-tagged fusion proteins can be purified by heparin Sepharose affinity chromatography using a simple sodium chloride gradient to elute the bound fusion protein. In addition, owing to the high density of positive charges on the HBP tag, recombinant target proteins are preferably expressed in their soluble forms. The purification of HBP-fusion proteins can also be achieved in the presence of chemical denaturants, including urea. Additionally, polyclonal antibodies raised against the affinity tag can be used to detect HBP-fused target proteins with high sensitivity. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  8. Identification of new ligands for the methionine biosynthesis transcriptional regulator (MetJ) by FAC-MS.

    PubMed

    Martí-Arbona, Ricardo; Teshima, Munehiro; Anderson, Penelope S; Nowak-Lovato, Kristy L; Hong-Geller, Elizabeth; Unkefer, Clifford J; Unkefer, Pat J

    2012-01-01

    We have developed a high-throughput approach using frontal affinity chromatography coupled to mass spectrometry (FAC-MS) for the identification and characterization of the small molecules that modulate transcriptional regulator (TR) binding to TR targets. We tested this approach using the methionine biosynthesis regulator (MetJ). We used effector mixtures containing S-adenosyl-L-methionine (SAM) and S-adenosyl derivatives as potential ligands for MetJ binding. The differences in the elution time of different compounds allowed us to rank the binding affinity of each compound. Consistent with previous results, FAC-MS showed that SAM binds to MetJ with the highest affinity. In addition, adenine and 5'-deoxy-5'-(methylthio)adenosine bind to the effector binding site on MetJ. Our experiments with MetJ demonstrate that FAC-MS is capable of screening complex mixtures of molecules and identifying high-affinity binders to TRs. In addition, FAC-MS experiments can be used to discriminate between specific and nonspecific binding of the effectors as well as to estimate the dissociation constant (K(d)) for effector-TR binding. Copyright © 2012 S. Karger AG, Basel.

  9. Substrate binding ability of chemically inactivated pectinase for the substrate pectic acid.

    PubMed

    Chiba, Y; Kobayashi, M

    1995-07-01

    Pectinase (polygalacturonase) was purified from a commercial pectinase preparation from a mold. Substrate binding of pectinase was measured by centrifugal affinity chromatography using an immobilized substrate, pectic acid. Desorption of pectinase from the affinity matrix with the substrate pectin and pectic acid gave Kd values of 5.3 and 8.5 mg/ml, respectively. Chemical modification of pectinase by 1-ethyl-3-(3-dimethyl-aminopropyl)carbodiimide (EDC) and diethyl pyrocarbonate (DEP) caused a loss of most of the enzyme activity, but the substrate binding ability was not impaired. Thus, the pectinase preparation was digested with lysyl endopeptidase and the resulting peptides were treated with pectic acid-affinity gel. Three peptide fragments, which were recovered from the affinity column and sequenced, were identical to sequences in the second pectinase gene from Aspergillus niger. The first peptide contained 17 amino acids, Asp101-Ser117, and the second and third peptides corresponded to 18 amino acids of Asn152-Asp169. These results indicate that the inactivated pectinase retained substrate binding ability and would function as an acidic polysaccharide recognizing protein.

  10. Combinatorial modification of human histone H4 quantitated by two-dimensional liquid chromatography coupled with top down mass spectrometry.

    PubMed

    Pesavento, James J; Bullock, Courtney R; LeDuc, Richard D; Mizzen, Craig A; Kelleher, Neil L

    2008-05-30

    Quantitative proteomics has focused heavily on correlating protein abundances, ratios, and dynamics by developing methods that are protein expression-centric (e.g. isotope coded affinity tag, isobaric tag for relative and absolute quantification, etc.). These methods effectively detect changes in protein abundance but fail to provide a comprehensive perspective of the diversity of proteins such as histones, which are regulated by post-translational modifications. Here, we report the characterization of modified forms of HeLa cell histone H4 with a dynamic range >10(4) using a strictly Top Down mass spectrometric approach coupled with two dimensions of liquid chromatography. This enhanced dynamic range enabled the precise characterization and quantitation of 42 forms uniquely modified by combinations of methylation and acetylation, including those with trimethylated Lys-20, monomethylated Arg-3, and the novel dimethylated Arg-3 (each <1% of all H4 forms). Quantitative analyses revealed distinct trends in acetylation site occupancy depending on Lys-20 methylation state. Because both modifications are dynamically regulated through the cell cycle, we simultaneously investigated acetylation and methylation kinetics through three cell cycle phases and used these data to statistically assess the robustness of our quantitative analysis. This work represents the most comprehensive analysis of histone H4 forms present in human cells reported to date.

  11. Characterization of little skate (Leucoraja erinacea) recombinant transthyretin: Zinc-dependent 3,3',5-triiodo-l-thyronine binding.

    PubMed

    Suzuki, Shunsuke; Kasai, Kentaro; Yamauchi, Kiyoshi

    2015-01-01

    Transthyretin (TTR) diverged from an ancestral 5-hydroxyisourate hydrolase (HIUHase) by gene duplication at some early stage of chordate evolution. To clarify how TTR had participated in the thyroid system as an extracellular thyroid hormone (TH) binding protein, TH binding properties of recombinant little skate Leucoraja erinacea TTR was investigated. At the amino acid level, skate TTR showed 37-46% identities with the other vertebrate TTRs. Because the skate TTR had a unique histidine-rich segment in the N-terminal region, it could be purified by Ni-affinity chromatography. The skate TTR was a 46-kDa homotetramer of 14.5kDa subunits, and had one order of magnitude higher affinity for 3,3',5-triiodo-l-thyronine (T3) and some halogenated phenols than for l-thyroxine. However, the skate TTR had no HIUHase activity. Ethylenediaminetetraacetic acid (EDTA) treatment inhibited [(125)I]T3 binding activity whereas the addition of Zn(2+) to the EDTA-treated TTR recovered [(125)I]T3 binding activity in a Zn(2+) concentration-dependent manner. Scatchard analysis revealed the presence of two classes of binding site for T3, with dissociation constants of 0.24 and 17nM. However, the high-affinity sites were completely abolished with 1mM EDTA, whereas the remaining low-affinity sites decreased binding capacity. The number of zinc per TTR was quantified to be 4.5-6.3. Our results suggest that skate TTR has tight Zn(2+)-binding sites, which are essential for T3 binding to at least the high-affinity sites. Zn(2+) binding to the N-terminal histidine-rich segment may play an important role in acquisition or reinforcement of TH binding ability during early evolution of TTR. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Isolation and identification of calcium-chelating peptides from Pacific cod skin gelatin and their binding properties with calcium.

    PubMed

    Wu, Wenfei; Li, Bafang; Hou, Hu; Zhang, Hongwei; Zhao, Xue

    2017-12-13

    A calcium-chelating peptide is considered to have the ability to improve calcium absorption. In this study, Pacific cod skin gelatin hydrolysates treated with trypsin for 120 min exhibited higher calcium-chelating activity. Sequential chromatography, involving hydroxyapatite affinity chromatography and reversed phase high performance liquid chromatography, was used for the purification of calcium-chelating peptides. Two novel peptides with the typical characteristics of collagen were sequenced as GDKGESGEAGER and GEKGEGGHR based on LC-HRMS/MS, which showed a high affinity to calcium. Calcium-peptide complexation was further characterized by ESI-MS (MS and MS/MS) and FTIR spectroscopy. The results showed that the complexation of the two peptides with calcium was conducted mainly at the ratio of 1 : 1. The amino terminal group and the peptide bond of the peptide backbone as well as the amino group of the lysine side chain and the carboxylate of the glutamate side chain were the possible calcium binding sites for the two peptides. Meanwhile, several amino acid side chain groups, including the hydroxyl (Ser) and carboxylate (Asp) of GDKGESGEAGER and the imine (His) of GEKGEGGHR, were crucial in the complexation. The arginine residue in GEKGEGGHR also participated in the calcium coordination. Additionally, several active fragments with calcium-chelating activity were obtained using MS/MS spectra, including GDKGESGEAGE, GEAGER, GEK, EKG and KGE. This study suggests that gelatin-derived peptides have the potential to be used as a calcium-chelating ingredient to combat calcium deficiency.

  13. Heterologous expression and purification of active L-asparaginase I of Saccharomyces cerevisiae in Escherichia coli host.

    PubMed

    Santos, João H P M; Costa, Iris M; Molino, João V D; Leite, Mariana S M; Pimenta, Marcela V; Coutinho, João A P; Pessoa, Adalberto; Ventura, Sónia P M; Lopes, André M; Monteiro, Gisele

    2017-03-01

    l-asparaginase (ASNase) is a biopharmaceutical widely used to treat child leukemia. However, it presents some side effects, and in order to provide an alternative biopharmaceutical, in this work, the genes encoding ASNase from Saccharomyces cerevisiae (Sc_ASNaseI and Sc_ASNaseII) were cloned in the prokaryotic expression system Escherichia coli. In the 93 different expression conditions tested, the Sc_ASNaseII protein was always obtained as an insoluble and inactive form. However, the Sc_ASNaseI (His) 6 -tagged recombinant protein was produced in large amounts in the soluble fraction of the protein extract. Affinity chromatography was performed on a Fast Protein Liquid Chromatography (FPLC) system using Ni 2+ -charged, HiTrap Immobilized Metal ion Affinity Chromatography (IMAC) FF in order to purify active Sc_ASNaseI recombinant protein. The results suggest that the strategy for the expression and purification of this potential new biopharmaceutical protein with lower side effects was efficient since high amounts of soluble Sc_ASNaseI with high specific activity (110.1 ± 0.3 IU mg -1 ) were obtained. In addition, the use of FPLC-IMAC proved to be an efficient tool in the purification of this enzyme, since a good recovery (40.50 ± 0.01%) was achieved with a purification factor of 17-fold. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:416-424, 2017. © 2016 American Institute of Chemical Engineers.

  14. Rational design of peptide affinity ligands for the purification of therapeutic enzymes.

    PubMed

    Trasatti, John P; Woo, James; Ladiwala, Asif; Cramer, Steven; Karande, Pankaj

    2018-04-25

    Non-mAb biologics represent a growing class of therapeutics under clinical development. Although affinity chromatography is a potentially attractive approach for purification, the development of platform technologies, such as Protein A for mAbs, has been challenging due to the inherent chemical and structural diversity of these molecules. Here, we present our studies on the rapid development of peptide affinity ligands for the purification of biologics using a prototypical enzyme therapeutic in clinical use. Employing a suite of de novo rational and combinatorial design strategies we designed and screened a library of peptides on microarray platforms for their ability to bind to the target with high affinity and selectivity in cell culture fluid. Lead peptides were evaluated on resin in batch conditions and compared with a commercially available resin to evaluate their efficacy. Two lead candidates identified from microarray studies provided high binding capacity to the target while demonstrating high selectivity against culture contaminants and product variants compared to a commercial resin system. These findings provide a proof-of-concept for developing affinity peptide-based bioseparations processes for a target biologic. Peptide affinity ligand design and screening approaches presented in this work can also be easily translated to other biologics of interest. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  15. Biochemical quality of the pharmaceutically licensed plasma OctaplasLG after implementation of a novel prion protein (PrPSc) removal technology and reduction of the solvent/detergent (S/D) process time.

    PubMed

    Heger, A; Svae, T-E; Neisser-Svae, A; Jordan, S; Behizad, M; Römisch, J

    2009-10-01

    A new chromatographic step for the selective binding of pathological prion proteins (PrP(Sc)) to an affinity ligand, developed and optimized for PrP(Sc) capture and attached to synthetic resin particles (PRDT, USA; ProMetic BioSciences Ltd, Isle of Man, UK) was implemented into the manufacturing process of the solvent/detergent (S/D) treated biopharmaceutical quality plasma Octaplas. Pilot batches of Octaplas with the implemented chromatographic step [labelled as OctaplasLG (ligand gel)] were manufactured by Octapharma PPGmbH, Vienna, Austria. The biochemical quality was compared directly after manufacturing as well as after 18 months storage. All samples were tested on global coagulation parameters, fibrinogen levels, activities of coagulation factors and protease inhibitors, ADAMTS13 levels, as well as markers of activated coagulation and fibrinolysis. In addition, von Willebrand factor multimeric analysis was performed. The incorporation of this novel chromatography into the large-scale routine manufacturing process was shown to be technically feasible and the performance of the column was assessed to be excellent. The biochemical studies showed that Octaplas and OctaplasLG produced without and with the new column, respectively, demonstrate an identical biochemical quality. OctaplasLG remained stable over a period of 18 months stored frozen. A parallel reduction of the S/D virus inactivation step from 4-4.5 to 1-1.5 h led to significantly higher activities of plasmin inhibitor. The studies confirmed that the affinity ligand chromatography under the developed conditions can be introduced into the Octaplas manufacturing process, as a mean to reduce potentially present PrP(Sc), without hampering the proven quality of this product.

  16. Nitric oxide modulates Lycopersicon esculentum C-repeat binding factor 1 (LeCBF1) transcriptionally as well as post-translationally by nitrosylation.

    PubMed

    Kashyap, Prakriti; Sehrawat, Ankita; Deswal, Renu

    2015-11-01

    Nitric oxide (NO) production increases in the cold stress. This cold enhanced NO manifests its effect either by regulating the gene expression or by modulating proteins by NO based post-translational modifications (PTMs) including S-nitrosylation. CBF (C-repeat binding factor) dependent cold stress signaling is most studied cold stress-signaling pathway in plants. SNP (sodium nitroprusside, a NO donor) treatment to tomato seedlings showed four fold induction of LeCBF1 (a cold inducible CBF) transcript in cold stress. S-nitrosylation as PTM of CBF has not been analyzed till date. In silico analysis using GPS-SNO 1.0 software predicted Cys 68 as the probable site for nitrosylation in LeCBF1. The 3D structure and motif prediction showed it to be present in the beta hairpin loop and hence available for S-nitrosylation. LeCBF1 was cloned and expressed in Escherichia coli. LeCBF1 accumulated in the inclusion bodies, which were solubilized under denaturing conditions and purified after on column refolding by Ni-NTA His tag affinity chromatography. Purified LeCBF1 resolved as a 34 kDa spot with a slightly basic pI (8.3) on a 2-D gel. MALDI-TOF mass spectrometry identified it as LeCBF1 and western blotting using anti-LeCBF1 antibodies confirmed its purification. Biotin switch assay and neutravidin affinity chromatography showed LeCBF1 to be S-nitrosylated in presence of GSNO (NO donor) as well as endogenously (without donor) in cold stress treated tomato seedlings. Dual regulation of LeCBF1 by NO at both transcriptional as well as post-translational level (by S-nitrosylation) is shown for the first time. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  17. Determination of a highly selective mixed-affinity sigma receptor ligand, in rat plasma by ultra performance liquid chromatography mass spectrometry and its application to a pharmacokinetic study

    PubMed Central

    Jamalapuram, Seshulatha; Vuppala, Pradeep K.; Mesangeau, Christophe; McCurdy, Christopher R.; Avery, Bonnie A.

    2014-01-01

    A selective, rapid and sensitive ultra performance liquid chromatography mass spectrometry (UPLC/MS) method was developed and validated to quantitate a highly selective mixed-affinity sigma receptor ligand, CM156 (3-(4-(4-cyclohexylpiperazin-1-yl)butyl)benzo[d] thiazole-2(3H)-thione), in rat plasma. CM156 and the internal standard (aripiprazole) were extracted from plasma samples by a single step liquid–liquid extraction using chloroform. The analysis was carried out on an ACQUITY UPLCTM BEH HILIC column (1.7 µm, 2.1 mm × 50 mm) with isocratic elution at flow rate of 0.2 mL/min using 10 mM ammonium formate in 0.1% formic acid and acetonitrile (10:90) as the mobile phase. The detection of the analyte was performed on a mass spectrometer operated in selected ion recording (SIR) mode with positive electrospray ionization (ESI). The validated analytical method resulted in a run time of 4 min and the retention times observed were 2.6 ± 0.1 and 2.1 ± 0.1 min for CM156 and the IS, respectively. The calibration curve exhibited excellent linearity over a concentration range of 5–4000 ng/mL with the lower limit of quantification of 5 ng/mL. The intra- and inter-day precision values were below 15% and accuracy ranged from −6.5% to 5.0%. The mean recovery of CM156 from plasma was 96.8%. The validated method was applied to a pilot intravenous pharmacokinetic study in rats. PMID:22406103

  18. High performance liquid chromatography of substituted aromatics with the metal-organic framework MIL-100(Fe): Mechanism analysis and model-based prediction.

    PubMed

    Qin, Weiwei; Silvestre, Martin Eduardo; Li, Yongli; Franzreb, Matthias

    2016-02-05

    Metal-organic framework (MOF) MIL-100(Fe) with well-defined thickness was homogenously coated onto the outer surface of magnetic microparticles via a liquid-phase epitaxy method. The as-synthesized MIL-100(Fe) was used as stationary phase for high-performance liquid chromatography (HPLC) and separations of two groups of mixed aromatic hydrocarbons (toluene, styrene and p-xylene; acetanilide, 2-nirtoaniline and 1-naphthylamine) using methanol/water as mobile phase were performed to evaluate its performance. Increasing water content of the mobile phase composition can greatly improve the separations on the expense of a longer elution time. Stepwise elution significantly shortens the elution time of acetanilide, 2-nirtoaniline and 1-naphthylamine mixtures, while still achieving a baseline separation. Combining the experimental results and in-depth modeling using a recently developed chromatographic software (ChromX), adsorption equilibrium parameters, including the affinities and maximum capacities, for each analyte toward the MIL-100(Fe) are obtained. In addition, the pore diffusivity of aromatic hydrocarbons within MIL-100(Fe) was determined to be 5×10(-12)m(2)s(-1). While the affinities of MIL-100(Fe) toward the analyte molecules differs much, the maximum capacities of the analytes are in a narrow range with q*MOFmax,toluene=3.55molL(-1), q*MOFmax,styrene or p-xylene=3.53molL(-1), and q*MOFmax,anilines=3.12molL(-1) corresponding to approximately 842 toluene and 838 styrene or p-xylene, and 740 aniline molecules per MIL-100(Fe) unit cell, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Immobilized Metal Affinity Chromatography Co-Purifies TGF-β1 with Histidine-Tagged Recombinant Extracellular Proteins

    PubMed Central

    Kaur, Jasvir; Reinhardt, Dieter P.

    2012-01-01

    Extracellular recombinant proteins are commonly produced using HEK293 cells as histidine-tagged proteins facilitating purification by immobilized metal affinity chromatography (IMAC). Based on gel analyses, this one-step purification typically produces proteins of high purity. Here, we analyzed the presence of TGF-β1 in such IMAC purifications using recombinant extracellular fibrillin-1 fragments as examples. Analysis of various purified recombinant fibrillin-1 fragments by ELISA consistently revealed the presence of picomolar concentrations of active and latent TGF-β1, but not of BMP-2. These quantities of TGF-β1 were not detectable by Western blotting and mass spectrometry. However, the amounts of TGF-β1 were sufficient to consistently trigger Smad2 phosphorylation in fibroblasts. The purification mechanism was analyzed to determine whether the presence of TGF-β1 in these protein preparations represents a specific or non-specific co-purification of TGF-β1 with fibrillin-1 fragments. Control purifications using conditioned medium from non-transfected 293 cells yielded similar amounts of TGF-β1 after IMAC. IMAC of purified TGF-β1 and the latency associated peptide showed that these proteins bound to the immobilized nickel ions. These data clearly demonstrate that TGF-β1 was co-purified by specific interactions with nickel, and not by specific interactions with fibrillin-1 fragments. Among various chromatographic methods tested for their ability to eliminate TGF-β1 from fibrillin-1 preparations, gel filtration under high salt conditions was highly effective. As various recombinant extracellular proteins purified in this fashion are frequently used for experiments that can be influenced by the presence of TGF-β1, these findings have far-reaching implications for the required chromatographic schemes and quality controls. PMID:23119075

  20. Using Affinity Chromatography to Investigate Novel Protein–Protein Interactions in an Undergraduate Cell and Molecular Biology Lab Course

    PubMed Central

    2009-01-01

    Inquiry-driven lab exercises require students to think carefully about a question, carry out an investigation of that question, and critically analyze the results of their investigation. Here, we describe the implementation and assessment of an inquiry-based laboratory exercise in which students obtain and analyze novel data that contribute to our understanding of macromolecular trafficking between the nucleus and cytoplasm in eukaryotic cells. Although many of the proteins involved in nucleocytoplasmic transport are known, the physical interactions between some of these polypeptides remain uncharacterized. In this cell and molecular biology lab exercise, students investigate novel protein–protein interactions between factors involved in nuclear RNA export. Using recombinant protein expression, protein extraction, affinity chromatography, SDS-polyacrylamide gel electrophoresis, and Western blotting, undergraduates in a sophomore-level lab course identified a previously unreported association between the soluble mRNA transport factor Mex67 and the C-terminal region of the yeast nuclear pore complex protein Nup1. This exercise immersed students in the process of investigative science, from proposing and performing experiments through analyzing data and reporting outcomes. On completion of this investigative lab sequence, students reported enhanced understanding of the scientific process, increased proficiency with cellular and molecular methods and content, greater understanding of data analysis and the importance of appropriate controls, an enhanced ability to communicate science effectively, and an increased enthusiasm for scientific research and for the lab component of the course. The modular nature of this exercise and its focus on asking novel questions about protein–protein interactions make it easily transferable to undergraduate lab courses performed in a wide variety of contexts. PMID:19723816

  1. Molecular basis of interactions between mitochondrial proteins and hydroxyapatite in the presence of Triton X-100, as revealed by proteomic and recombinant techniques.

    PubMed

    Yamamoto, Takenori; Tamaki, Haruna; Katsuda, Chie; Nakatani, Kiwami; Terauchi, Satsuki; Terada, Hiroshi; Shinohara, Yasuo

    2013-08-02

    Hydroxyapatite chromatography is a very important step in the purification of voltage-dependent anion channels (VDACs) and several members of solute carrier family 25 (Slc25) from isolated mitochondria. In the presence of Triton X-100, VDACs and Slc25 members present a peculiar property, i.e., a lack of interaction with hydroxyapatite, resulting in their presence in the flow-through fraction of hydroxyapatite chromatography. This property has allowed selective isolation of VDACs and Slc25 members from a mixture of total mitochondrial proteins. However, the reason why only these few proteins are selectively obtained in the presence of Triton X-100 from the flow-though fraction of hydroxyapatite chromatography has not yet been adequately understood. In this study, when we examined the protein species in the flow-through fractions by proteomic analysis, VDAC isoforms, Slc25 members, and some other membrane proteins were identified. All the mitochondrial proteins had in common high hydrophobicity over their entire protein sequences. When the proteins were fused to soluble proteins, the fused proteins showed affinity for hydroxyapatite even in the presence of Triton X-100. Based on these results, we discussed the molecular basis of the interactions between proteins and hydroxyapatite in the presence of Triton X-100. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Maintenance of biological activity of pertussis toxin radioiodinated while bound to fetuin-agarose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, G.D.; Peppler, M.S.

    1987-05-01

    We developed a method to produce radioiodinated pertussis toxin (PT) which was active in the goose erythrocyte agglutination and CHO cell assay systems. The procedure used fetuin coupled to agarose to prevent inactivation of the toxin during the iodination reaction. Analysis of the labeled PT by affinity chromatography on fetuin-agarose and wheat germ agglutinin-agarose and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that there were minimal amounts of labeled fetuin or other contaminants in the labeled PT preparations. All five of the subunits of the toxin appeared to be labeled by the procedure. The labeling method will facilitate further investigationsmore » into the nature of the interaction and activity of PT in host tissues.« less

  3. Separation and preconcentration of actinides from concentrated nitric acid by extraction chromatography in microsystems.

    PubMed

    Losno, Marion; Pellé, Julien; Marie, Mylène; Ferrante, Ivan; Brennetot, René; Descroix, Stéphanie; Mariet, Clarisse

    2018-08-01

    An original method of monolith impregnation in microsystem for the analysis of radionuclides in nitric acid is reported. Three microcolumns made of monolith poly(AMA-co-EDMA) were impregnated in COC microsystems. The robustness of the microsystems in nitric acid media until 8 M was demonstrated. High exchange capacity and affinity for tetravalent and hexavalent actinides in concentrated nitric media were obtained. The retention characteristics of the microcolumns impregnated by TBP, TBP-CMPO and DAAP were compared with those of the equivalent commercial particulate resins TBP™, TRU™ and UTEVA™ respectively. The separation of U, Th and Eu was validated in a classical microsystem and a procedure is proposed in a centrifugal microsystem. Copyright © 2018. Published by Elsevier B.V.

  4. Quantitative mass spectrometric analysis of glycoproteins combined with enrichment methods.

    PubMed

    Ahn, Yeong Hee; Kim, Jin Young; Yoo, Jong Shin

    2015-01-01

    Mass spectrometry (MS) has been a core technology for high sensitive and high-throughput analysis of the enriched glycoproteome in aspects of quantitative assays as well as qualitative profiling of glycoproteins. Because it has been widely recognized that aberrant glycosylation in a glycoprotein may involve in progression of a certain disease, the development of efficient analysis tool for the aberrant glycoproteins is very important for deep understanding about pathological function of the glycoprotein and new biomarker development. This review first describes the protein glycosylation-targeting enrichment technologies mainly employing solid-phase extraction methods such as hydrizide-capturing, lectin-specific capturing, and affinity separation techniques based on porous graphitized carbon, hydrophilic interaction chromatography, or immobilized boronic acid. Second, MS-based quantitative analysis strategies coupled with the protein glycosylation-targeting enrichment technologies, by using a label-free MS, stable isotope-labeling, or targeted multiple reaction monitoring (MRM) MS, are summarized with recent published studies. © 2014 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc.

  5. The search for and identification of amino acids, nucleobases and nucleosides in samples returned from Mars

    NASA Technical Reports Server (NTRS)

    Gehrke, Charles W.; Ponnamperuma, Cyril; Kuo, Kenneth C.; Stalling, David L.; Zumwalt, Robert W.

    1989-01-01

    An investigation of the returned Mars samples for biologically important organic compounds, with emphasis on amino acid, the puring and pyrimidine bases, and nucleosides is proposed. These studies would be conducted on subsurface samples obtained by drilling past the surface oxidizing layer with emphasis on samples containing the larges quantities of organic carbon as determined by the rover gas chromatographic mass spectrometer (GCMS). Extraction of these molecules from the returned samples will be performed using the hydrothermal extraction technique described by Cheng and Ponnamperuma. More rigorous extraction methods will be developed and evaluated. For analysis of the extract for free amino acids or amino acids present in a bound or peptidic form, aliquots will be analyzed by capillary GCMS both before and after hydrolysis with 6N hydrochloric acid. Establishment of the presence of amino acids would then lead to the next logical step which would be the use of chiral stationary gas chromatography phases to determine the enatiomeic composition of the amino acids present, and thus potentially establish their biotic or abiotic origin. Confirmational analyses for amino acids would include ion-exchange and reversed-phase liquid chromatographic analysis. For analyses of the returned Mars samples for nucleobases and nucleosides, affinity and reversed-phase liquid chromatography would be utilized. This technology coupled with scanning UV detection for identification, presents a powerful tool for nucleobase and nucleoside analysis. Mass spectrometric analysis of these compounds would confirm their presence in samples returned form Mars.

  6. The Monitoring and Affinity Purification of Proteins Using Dual Tags with Tetracysteine Motifs

    NASA Astrophysics Data System (ADS)

    Giannone, Richard J.; Liu, Yie; Wang, Yisong

    Identification and characterization of protein-protein interaction networks is essential for the elucidation of biochemical mechanisms and cellular function. Affinity purification in combination with liquid chromatography-tandem mass spectrometry (LC-MS/MS) has emerged as a very powerful tactic for the identification of specific protein-protein interactions. In this chapter, we describe a comprehensive methodology that uses our recently developed dual-tag affinity purification system for the enrichment and identification of mammalian protein complexes. The protocol covers a series of separate but sequentially related techniques focused on the facile monitoring and purification of a dual-tagged protein of interest and its interacting partners via a system built with tetracysteine motifs and various combinations of affinity tags. Using human telomeric repeat binding factor 2 (TRF2) as an example, we demonstrate the power of the system in terms of bait protein recovery after dual-tag affinity purification, detection of bait protein subcellular localization and expression, and successful identification of known and potentially novel TRF2 interacting proteins. Although the protocol described here has been optimized for the identification and characterization of TRF2-associated proteins, it is, in principle, applicable to the study of any other mammalian protein complexes that may be of interest to the research community.

  7. The Functions of BRCA2 in Homologous Recombinational Repair

    DTIC Science & Technology

    2004-07-01

    chromatography with hydroxyapatite , Q-Sepharose, heparin affinity and MonoQ column (Fig. 4.). We have been able to obtain about 10 mg of the purified Rad51...and DNA- PKcs (the XR -1, xrs5/6, and V3 cell lines, respectively) are highly sensitive to IR in G1 and early S phases, compared to the wild-type, but

  8. Actin Immobilization on Chitin for Purifying Myosin II: A Laboratory Exercise That Integrates Concepts of Molecular Cell Biology and Protein Chemistry

    ERIC Educational Resources Information Center

    de Souza, Marcelle Gomes; Grossi, Andre Luiz; Pereira, Elisangela Lima Bastos; da Cruz, Carolina Oliveira; Mendes, Fernanda Machado; Cameron, Luiz Claudio; Paiva, Carmen Lucia Antao

    2008-01-01

    This article presents our experience on teaching biochemical sciences through an innovative approach that integrates concepts of molecular cell biology and protein chemistry. This original laboratory exercise is based on the preparation of an affinity chromatography column containing F-actin molecules immobilized on chitin particles for purifying…

  9. Using Affinity Chromatography to Investigate Novel Protein-Protein Interactions in an Undergraduate Cell and Molecular Biology Lab Course

    ERIC Educational Resources Information Center

    Belanger, Kenneth D.

    2009-01-01

    Inquiry-driven lab exercises require students to think carefully about a question, carry out an investigation of that question, and critically analyze the results of their investigation. Here, we describe the implementation and assessment of an inquiry-based laboratory exercise in which students obtain and analyze novel data that contribute to our…

  10. MODEL FOR NON-EQUILIBRIUM BINDING AND AFFINITY CHROMATOGRAPHY WITH CHARACTERIZATION OF 8-HYDROXYQUINOLINE IMMOBILIZED ON CONTROLLED PORE GLASS USING A FLOW INJECTION SYSTEM WITH A PACKED MICRO-COLUMN. (R826694C651)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  11. Purification of aflatoxin B1 antibody for the development of aflatoxin biosensor

    NASA Astrophysics Data System (ADS)

    Prihantoro, E. A. B.; Saepudin, E.; Ivandini, T. A.

    2017-07-01

    Aflatoxin B1 (AFB1) is produced from agricultural products especially peanuts overgrown with aspergillus flavus during the post-harvest process. Aflatoxin is classified as a highly toxic and carcinogenic substance to humans by the International Agency for Research on Cancer (IARC), WHO. This research was conducted to develop the AFB1 biosensor using antibody that specifically binds to aflatoxin B1. This antibody was produced by injecting an AFB1 hapten-protein (immunogen) to a rabbit. Antibody was obtained from rabbit's blood serum and purified using Protein A affinity chromatography and precipitation at the isoelectric point. The result showed that purification using protein A contains antibody of 4.0 mg/mL, whereas purification using precipitation at isoelectric pH contains antibody of 0.3 mg/mL. The pure antibody was tested for its specificity against AFB1, tetrahydrofuran (THF), dimethyl formamide (DMF), bovine serum albumin (BSA), and ethanol. The result revealed that THF, BSA, and ethanol were bound to antibody, while DMF showed no interaction. It was concluded that the polyclonal antibody which have been successfully purified from rabbit's blood serum using protein A affinity chromatography and precipitation methods showed an unspecific identification.

  12. High-level expression and purification of heparin-binding epidermal growth factor (HB-EGF) with SUMO fusion.

    PubMed

    Lu, Wuguang; Cao, Peng; Lei, Huangzong; Zhang, Shuangquan

    2010-03-01

    Heparin-binding epidermal growth factor (HB-EGF) can stimulate the division of various cell types and has potential clinical applications that stimulate growth and differentiation. HB-EGF has an EGF-like domain typical of all members of the EGF family. The high expression of active HB-EGF in Escherichia coli has not been successful as the protein contains three intra-molecular disulfide bonds, the same as other members of the EGF super family that are difficult to form correctly in the bacterial intracellular environment. This work fused the non-glycosylated HB-EGF gene with a small ubiquitin-related modifier gene (SUMO) by over-lap PCR. The resulting fusion gene SUMO-HBEGF was highly expressed in BL21(DE3) that the soluble SUMO-HBEGF was up to 30% of the total cellular protein. The fusion protein was purified by Ni-NTA affinity chromatography and cleaved by a SUMO-specific protease Ulp1 to obtain the native HB-EGF, which was further purified by Ni-NTA affinity chromatography. MTT assays indicated the purified HB-EGF, as well as SUMO-HBEGF, had mitogenic activity in a dose-dependent manner.

  13. A macro-enzyme cause of an isolated increase of alkaline phosphatase.

    PubMed

    Cervinski, Mark A; Lee, Hong Kee; Martin, Isabella W; Gavrilov, Dimitar K

    2015-02-02

    Macroenzyme complexes of serum enzymes and antibody can increase the circulating enzymatic activity and may lead to unnecessary additional testing and procedures. Laboratory physicians and scientists need to be aware of techniques to identify macroenzyme complexes when suspected. To investigate the possibility of a macro-alkaline phosphatase in the serum of a 74 year old male with persistently increased alkaline phosphatase we coupled a protein A/G agarose affinity chromatography technique with isoenzyme electrophoresis to look for the presence of macro-alkaline phosphatase. The majority of the alkaline phosphatase activity in the patient's serum sample was bound to the column and only a minor fraction (25%) of alkaline phosphatase activity was present in the column flow-through. The alkaline phosphatase activity was also found to co-elute with the immunoglobulins in the patient sample. The alkaline phosphatase activity in a control serum sample concurrently treated in the same manner did not bind to the column and was found in the column flow-through. The use of protein A/G agarose affinity chromatography is a rapid and simple method that can be applied to the investigation of other macro-enzyme complexes. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Evaluation of immobilized metal-ion affinity chromatography (IMAC) as a technique for IgG(1) monoclonal antibodies purification: the effect of chelating ligand and support.

    PubMed

    Bresolin, I T L; Borsoi-Ribeiro, M; Tamashiro, W M S C; Augusto, E F P; Vijayalakshmi, M A; Bueno, S M A

    2010-04-01

    Monoclonal antibodies (MAbs) have been used for therapies and some analytical procedures as highly purified molecules. Many techniques have been applied and studied, focusing on monoclonal antibodies purification. In this study, an immobilized metal affinity chromatography membrane was developed and evaluated for the purification of anti-TNP IgG(1) mouse MAbs from cell culture supernatant after precipitation with a 50% saturated ammonium sulfate solution. The chelating ligands iminodiacetic acid, carboxymethylated aspartic acid (CM-Asp), nitrilotriacetic acid, and tris (carboxymethyl) ethylenediamine in agarose gels with immobilized Ni(II) and Zn(II) ions were compared for the adsorption and desorption of MAbs. The most promising chelating ligand--CM-Asp--was then coupled to poly(ethylene vinyl alcohol) (PEVA) hollow fiber membranes. According to SDS-PAGE and ELISA analyses, a higher selectivity and a purification factor of 85.9 (fraction eluted at 500 mM Tris) were obtained for IgG(1) using PEVA-CM-Asp-Zn(II). The anti-TNP MAb could be eluted under mild pH conditions causing no loss of antigen binding capacity.

  15. Expression, purification, and DNA-binding activity of the solubilized NtrC protein of Herbaspirillum seropedicae.

    PubMed

    Twerdochlib, Adriana L; Chubatsu, Leda S; Souza, Emanuel M; Pedrosa, Fábio O; Steffens, M Berenice R; Yates, M Geoffrey; Rigo, Liu U

    2003-07-01

    NtrC is a bacterial enhancer-binding protein (EBP) that activates transcription by the sigma54 RNA polymerase holoenzyme. NtrC has a three domain structure typical of EBP family. In Herbaspirillum seropedicae, an endophytic diazotroph, NtrC regulates several operons involved in nitrogen assimilation, including glnAntrBC. In order to over-express and purify the NtrC protein, DNA fragments containing the complete structural gene for the whole protein, and for the N-terminal+Central and Central+C-terminal domains were cloned into expression vectors. The NtrC and NtrC(N-terminal+Central) proteins were over-expressed as His-tag fusion proteins upon IPTG addition, solubilized using N-lauryl-sarcosyl and purified by metal affinity chromatography. The over-expressed His-tag-NtrC(Central+C-terminal) fusion protein was partially soluble and was also purified by affinity chromatography. DNA band-shift assays showed that the NtrC protein and the Central+C-terminal domains bound specifically to the H. seropedicae glnA promoter region. The C-terminal domain is presumably necessary for DNA-protein interaction and DNA-binding does not require a phosphorylated protein.

  16. A novel lectin from Agrocybe aegerita shows high binding selectivity for terminal N-acetylglucosamine

    PubMed Central

    Jiang, Shuai; Chen, Yijie; Wang, Man; Yin, Yalin; Pan, Yongfu; Gu, Bianli; Yu, Guojun; Li, Yamu; Wong, Barry Hon Cheung; Liang, Yi; Sun, Hui

    2012-01-01

    A novel lectin was isolated from the mushroom Agrocybe aegerita (designated AAL-2) by affinity chromatography with GlcNAc (N-acetylglucosamine)-coupled Sepharose 6B after ammonium sulfate precipitation. The AAL-2 coding sequence (1224 bp) was identified by performing a homologous search of the five tryptic peptides identified by MS against the translated transcriptome of A. aegerita. The molecular mass of AAL-2 was calculated to be 43.175 kDa from MS, which was consistent with the data calculated from the amino acid sequence. To analyse the carbohydrate-binding properties of AAL-2, a glycan array composed of 465 glycan candidates was employed, and the result showed that AAL-2 bound with high selectivity to terminal non-reducing GlcNAc residues, and further analysis revealed that AAL-2 bound to terminal non-reducing GlcNAc residues with higher affinity than previously well-known GlcNAc-binding lectins such as WGA (wheatgerm agglutinin) and GSL-II (Griffonia simplicifolia lectin-II). ITC (isothermal titration calorimetry) showed further that GlcNAc bound to AAL-2 in a sequential manner with moderate affinity. In the present study, we also evaluated the anti-tumour activity of AAL-2. The results showed that AAL-2 could bind to the surface of hepatoma cells, leading to induced cell apoptosis in vitro. Furthermore, AAL-2 exerted an anti-hepatoma effect via inhibition of tumour growth and prolongation of survival time of tumour-bearing mice in vivo. PMID:22268569

  17. SOLID PHASE MICROEXTRACTION SAMPLING OF FIRE DEBRIS RESIDUES IN THE PRESENCE OF RADIONUCLIDE SURROGATE METALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duff, M; Keisha Martin, K; S Crump, S

    2007-03-23

    The Federal Bureau of Investigation (FBI) Laboratory currently does not have on site facilities for handling radioactive evidentiary materials and there are no established FBI methods or procedures for decontaminating highly radioactive fire debris (FD) evidence while maintaining evidentiary value. One experimental method for the isolation of FD residue from radionuclide metals involves using solid phase microextraction (SPME) fibers to remove the residues of interest. Due to their high affinity for organics, SPME fibers should have little affinity for most (radioactive) metals. The focus of this research was to develop an examination protocol that was applicable to safe work inmore » facilities where high radiation doses are shielded from the workers (as in radioactive shielded cells or ''hot cells''). We also examined the affinity of stable radionuclide surrogate metals (Co, Ir, Re, Ni, Ba, Cs, Nb, Zr and Nd) for sorption by the SPME fibers. This was done under exposure conditions that favor the uptake of FD residues under conditions that will provide little contact between the SPME and the FD material (such as charred carpet or wood that contains commonly-used accelerants). Our results from mass spectrometric analyses indicate that SPME fibers show promise for use in the room temperature head space uptake of organic FD residue (namely, diesel fuel oil, kerosene, gasoline and paint thinner) with subsequent analysis by gas chromatography (GC) with mass spectrometric (MS) detection. No inorganic forms of ignitable fluids were included in this study.« less

  18. Application of enhanced electronegative multimodal chromatography as the primary capture step for immunoglobulin G purification.

    PubMed

    Wang, Yanli; Chen, Quan; Xian, Mo; Nian, Rui; Xu, Fei

    2018-06-01

    In recent studies, electronegative multimodal chromatography with Eshmuno HCX was demonstrated to be a highly promising recovery step for direct immunoglobulin G (IgG) capture from undiluted cell culture fluid. In this study, the binding properties of HCX to IgG at different pH/salt combinations were systematically studied, and its purification performance was significantly enhanced by lowering the washing pH and conductivity after high capacity binding of IgG under its optimal conditions. A single polishing step gave an end-product with non-histone host cell protein (nh-HCP) below 1 ppm, DNA less than 1 ppb, which aggregates less than 0.5% and an overall IgG recovery of 86.2%. The whole non-affinity chromatography based two-column-step process supports direct feed loading without buffer adjustment, thus extraordinarily boosting the overall productivity and cost-savings.

  19. Pathogenesis-Related Proteins of Tomato 1

    PubMed Central

    Vera, Pablo; Conejero, Vicente

    1988-01-01

    An endoproteinase induced by citrus exocortis viroid has been purified from tomato (Lycopersicon esculentum Mill, cv “Rutgers”) leaves. The proteinase corresponds to one of the major pathogenesis-related proteins of tomato plants and was designated proteinase P-69 as it has a molecular weight of 69,000 to 70,000. The proteinase was purified in four steps: (NH4)2SO4 fractionation, chromatography on Bio-Gel P-60, DEAE-Sepharose chromatography, and casein-Sepharose affinity chromatography. The proteinase had a pH optimum of 8.5 to 9.0 when assayed with either fluorescein thiocarbamoyl derivative (FTC)-casein or FTC-ribulose 1,5-bisphosphate carboxylase/oxygenase as substrates. The proteinase activity was inhibited by pCMB and strongly activated by calcium and magnesium ions as well as by DTT. When analyzed by electrofocusing, the activity showed a pI around 9.0. Images Fig. 4 Fig. 8 PMID:16666127

  20. Two competing ionization processes in ESI-MS analysis of N-(1,3-diphenylallyl)benzenamines: formation of the unusual [M-H]+ ion versus the regular [M+H]+ ion.

    PubMed

    Fang, Liwen; Dong, Cheng; Guo, Cheng; Xu, Jianxing; Liu, Qiaoling; Qu, Zhirong; Jiang, Kezhi

    2018-06-01

    A series of N-(1,3-diphenylallyl)benzenamine derivatives (M) were investigated by electrospray ionization mass spectrometry in the positive-ion mode. Both the anomalous [M-H] + and the regular [M+H] + were observed in the ESI mass spectra. The occurrence of [M-H] + has been supported by accurate mass spectrometry, liquid chromatography mass spectrometry, and tandem mass spectrometry analysis. Calculation results indicated that formation of [M-H] + is attributed to the ion-molecule reaction of M with the protonated ESI solvent molecule (e.g. CH 3 OH 2 + ) via hydride abstraction from a tertiary C sp3 -H. The competing ionization processes leading to [M-H] + or [M+H] + were significantly affected by the concentration of formic acid in the electrospray ionization solvent and the proton affinity of the N atom.

  1. Argonaute pull-down and RISC analysis using 2'-O-methylated oligonucleotides affinity matrices.

    PubMed

    Jannot, Guillaume; Vasquez-Rifo, Alejandro; Simard, Martin J

    2011-01-01

    During the last decade, several novel small non-coding RNA pathways have been unveiled, which reach out to many biological processes. Common to all these pathways is the binding of a small RNA molecule to a protein member of the Argonaute family, which forms a minimal core complex called the RNA-induced silencing complex or RISC. The RISC targets mRNAs in a sequence-specific manner, either to induce mRNA cleavage through the intrinsic activity of the Argonaute protein or to abrogate protein synthesis by a mechanism that is still under investigation. We describe here, in details, a method for the affinity chromatography of the let-7 RISC starting from extracts of the nematode Caenorhabditis elegans. Our method exploits the sequence specificity of the RISC and makes use of biotinylated and 2'-O-methylated oligonucleotides to trap and pull-down small RNAs and their associated proteins. Importantly, this technique may easily be adapted to target other small RNAs expressed in different cell types or model organisms. This method provides a useful strategy to identify the proteins associated with the RISC, and hence gain insight in the functions of small RNAs.

  2. Derivatized graphitic nanofibres (GNF) as a new support material for mass spectrometric analysis of peptides and proteins.

    PubMed

    Greiderer, Andreas; Rainer, Matthias; Najam-ul-Haq, Muhammad; Vallant, Rainer M; Huck, Christian W; Bonn, Günther K

    2009-07-01

    Graphitic nanofibres (GNFs), 100-200 nm in diameter and 5-20 microm in length have been modified in order to yield different affinities (Cu2+ and Fe3+ loaded immobilized metal affinity chromatography (IMAC) as well as cation and anion exchange materials) for the extraction of a range of biomolecules by their inherited hydrophobicity and the hydrophilic chemical functionalities, obtained by derivatization. Modified GNFs have for the first time been employed as carrier materials for protein profiling in material-enhanced laser desorption/ionization (MELDI) for the enrichment and screening of biofluids. For that purpose, the derivatized GNF materials have comprehensively been characterized regarding surface area, structural changes during derivatization, IMAC, as well as ion exchange and protein-loading capacity and recovery. GNF derivatives revealed high protein-binding capacity (2,000 microg ml(-1) for insulin) and ideal sensitivities, resulting in a detection limit of 50 fmol microl(-1) (for insulin), which is crucial for the detection of low abundant species in biological samples. Compared to other MELDI carrier materials, sensitivity was enhanced on GNF derivatives, which might be ascribed to the fact that GNFs support desorption and ionization mechanisms and by absorbing laser energy in addition to matrix.

  3. Characterization of autoantibodies to vasoactive intestinal peptide in asthma.

    PubMed

    Paul, S; Said, S I; Thompson, A B; Volle, D J; Agrawal, D K; Foda, H; de la Rocha, S

    1989-07-01

    Vasoactive intestinal peptide (VIP) is a potent relaxant of the airway smooth muscle. In this study, VIP-binding autoantibodies were observed in the plasma of 18% asthma patients and 16% healthy subjects. Immunoprecipitation studies and chromatography on DEAE-cellulose and immobilized protein G indicated that the plasma VIP-binding activity was largely due to IgG antibodies. Saturation analysis of VIP binding by the plasmas suggested the presence of one or two classes of autoantibodies, distinguished by their apparent equilibrium affinity constants (Ka). The autoantibodies from asthma patients exhibited a larger VIP-binding affinity compared to those from healthy subjects (Ka 7.8 x 10(9) M-1 and 0.13 x 10(9) M-1, respectively; P less than 0.005). The antibodies were specific for VIP, judged by their poor reaction with peptides bearing partial sequence homology with VIP (peptide histidine isoleucine, growth hormone releasing factor and secretin). IgG prepared from the plasma of an antibody-positive asthma patient inhibited the saturable binding of 125I-VIP by receptors in guinea pig lung membranes (by 39-59%; P less than 0.001). These observations are consistent with a role for the VIP autoantibodies in the airway hyperresponsiveness of asthma.

  4. Purification of native M. vogae and H. contortus tubulin by TOG affinity chromatography.

    PubMed

    Munguía, Beatriz; Teixeira, Ramiro; Veroli, Victoria; Melian, Elisa; Saldaña, Jenny; Minteguiaga, Mahia; Señorale, Mario; Marín, Mónica; Domínguez, Laura

    2017-11-01

    Microtubules are non-covalent cylindrical polymers formed by alpha- and beta-tubulin heterodimer units, crucial for cell division, intracellular transport, motility and differentiation. This makes them very attractive pharmacological targets exploited to develop different drugs such as anthelmintics, antifungals, and antineoplastics. In this work, in order to establish an in vitro target-based screen to integrate to the search for new anthelmintics, we explored the extraction of native assembly-competent tubulin from two helminth parasites: Mesocestoides vogae tetrathyridia (syn. corti, Cestoda: Cyclophyllidea), a useful cestode biological model, and Haemonchus contortus, a sheep gastrointestinal nematode of interest in livestock production. For this purpose, a novel tubulin affinity chromatography procedure was employed, based on the binding capacity of TOG (Tumor Overexpressed Gene) domain from MAPs (microtubule-associated proteins). The TOG domain of the protein Stu2 from Saccharomyces cerevisiae fused to GST (glutathione S- transferase) were produced in E. coli, and the immobilized recombinant proteins allowed for native tubulin extraction from parasites. The binding capacity of TOG1 affinity column (3.6%) was estimated using commercial porcine brain tubulin. A total amount of up to 126 μg of M. vogae tubulin was purified, whereas H. contortus tubulin co-eluted with glutamate dehydrogenase enzyme. The identity of tubulins was confirmed by western blotting and mass spectrometry. The abundance of tubulin estimated in M. vogae was 10% soluble extract, which probably could explain differences observed between tubulin purification results of both helminth parasites. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Design and scaleup of downstream processing of monoclonal antibodies for cancer therapy: from research to clinical proof of principle.

    PubMed

    Horenstein, Alberto L; Crivellin, Federico; Funaro, Ada; Said, Marcela; Malavasi, Fabio

    2003-04-01

    Murine monoclonal antibodies (mAb) from cell culture supernatants have been purified in order to acquire clinical grade for in vivo cancer treatment. The starting material was purified by high performance liquid chromatography (HPLC) systems ranging from the analytical scale process to a scaleup to 1 g per batch. Three columns (Protein A affinity chromatography with single-step elution, hydroxyapatite (HA) chromatography followed by linear gradient elution and endotoxin removing-gel chromatography), exploiting different properties of the mAb were applied. The final batches of antibody were subjected to a large panel of tests for the purpose of evaluating the efficacy of the downstream processing. The resulting data have allowed us to determine the maximum number of times the column can be used and to precisely and thoroughly characterize antibody integrity, specificity, and potency according to in-house reference standards. The optimized bioprocessing is rapid, efficient, and reproducible. Not less importantly, all the techniques applied are characterized by costs which are affordable to medium-sized laboratories. They represent the basis for implementing immunotherapeutic protocols transferable to clinical medicine.

  6. Characterization of EDTA-soluble polysaccharides from the scape of Musa paradisiaca (banana).

    PubMed

    Raju, T S; Jagadish, R L; Anjaneyalu, Y V

    2001-02-01

    The polysaccharide components present in the scape of Musa paradisiaca (banana) were fractionated into water-soluble (WSP), EDTA-soluble (EDTA-SP), alkali-soluble (ASP) and alkali-insoluble (AISP) polysaccharide fractions [Anjaneyalu, Jagadish and Raju (1997) Glycoconj. J. 14, 507-512]. The EDTA-SP was further fractionated by iso-amyl alcohol into EDTA-SP-A and EDTA-SP-B. The homogeneity of these two polysaccharides was established by repeated precipitation with iso-amyl alcohol, gel-filtration chromatography and sedimentation analysis. The polysaccharides were characterized by monosaccharide composition analysis, methylation linkage analysis, iodine affinity, ferricyanide number, blue value, hydrolysis with alpha-amylase, gold-electron microscopy and X-ray diffraction spectroscopy. Data from all of these studies suggest that EDTA-SP-A is a branched amylose-type alpha-D-glucan and that EDTA-SP-B is a highly branched amylopectin-type polymer. The nature of the branching patterns of these polysaccharides suggests that they are unique to M. paradisiaca.

  7. Kinetics and inhibition of cyclomaltodextrinase from alkalophilic Bacillus sp. I-5.

    PubMed

    Kim, M J; Park, W S; Lee, H S; Kim, T J; Shin, J H; Yoo, S H; Cheong, T K; Ryu, S; Kim, J C; Kim, J W; Moon, T W; Robyt, J F; Park, K H

    2000-01-01

    The cyclomaltodextrinase from alkalophilic Bacillus sp. I-5 (CDase I-5) was expressed in Escherichia coli and the purified enzyme was used for characterization of the enzyme action. The hydrolysis products were monitored by both HPLC and high-performance ion chromatography analysis that enable the kinetic analysis of the cyclomaltodextrin (CD)-degrading reaction. Analysis of the kinetics of cyclomaltodextrin hydrolysis by CDase I-5 indicated that ring-opening of the cyclomaltodextrin was the major limiting step and that CDase I-5 preferentially degraded the linear maltodextrin chain by removing the maltose unit. The substrate binding affinity of the enzyme was almost same for those of cyclomaltodextrins while the rate of ring-opening was the fastest for cyclomaltoheptaose. Acarbose and methyl 6-amino-6-deoxy-alpha-d-glucopyranoside were relatively strong competitive inhibitors with K(i) values of 1.24 x 10(-3) and 8.44 x 10(-1) mM, respectively. Both inhibitors are likely to inhibit the ring-opening step of the CD degradation reaction. Copyright 2000 Academic Press.

  8. Isolation, subunit composition and interaction of the NDH-1 complexes from Thermosynechococcus elongatus BP-1.

    PubMed

    Zhang, Pengpeng; Battchikova, Natalia; Paakkarinen, Virpi; Katoh, Hirokazu; Iwai, Masako; Ikeuchi, Masahiko; Pakrasi, Himadri B; Ogawa, Teruo; Aro, Eva-Mari

    2005-09-01

    NDH (NADH-quinone oxidoreductase)-1 complexes in cyanobacteria have specific functions in respiration and cyclic electron flow as well as in active CO2 uptake. In order to isolate NDH-1 complexes and to study complex-complex interactions, several strains of Thermosynechococcus elongatus were constructed by adding a His-tag (histidine tag) to different subunits of NDH-1. Two strains with His-tag on CupA and NdhL were successfully used to isolate NDH-1 complexes by one-step Ni2+ column chromatography. BN (blue-native)/SDS/PAGE analysis of the proteins eluted from the Ni2+ column revealed the presence of three complexes with molecular masses of about 450, 300 and 190 kDa, which were identified by MS to be NDH-1L, NDH-1M and NDH-1S respectively, previously found in Synechocystis sp. PCC 6803. A larger complex of about 490 kDa was also isolated from the NdhL-His strain. This complex, designated 'NDH-1MS', was composed of NDH-1M and NDH-1S. NDH-1L complex was recovered from WT (wild-type) cells of T. elongatus by Ni2+ column chromatography. NdhF1 subunit present only in NDH-1L has a sequence of -HHDHHSHH- internally, which appears to have an affinity for the Ni2+ column. NDH-1S or NDH-1M was not recovered from WT cells by chromatography of this kind. The BN/SDS/PAGE analysis of membranes solubilized by a low concentration of detergent indicated the presence of abundant NDH-1MS, but not NDH-1M or NDH-1S. These results clearly demonstrated that NDH-1S is associated with NDH-1M in vivo.

  9. Properties of bovine erythrocyte acetylcholinesterase solubilized by phosphatidylinositol-specific phospholipase C1.

    PubMed

    Taguchi, R; Ikezawa, H

    1987-10-01

    The properties of acetylcholinesterase solubilized from bovine erythrocyte membrane by phosphatidylinositol (PI)-specific phospholipase C of Bacillus thuringiensis or with a detergent, Lubrol-PX, were studied. The activity of Lubrol-PX-solubilized acetylcholinesterase was broadly distributed in the fractions having Ve/Vo = 1.0-2.0 in gel filtration on a Sepharose 6B column. The intermediary fractions (Ve/Vo = 1.3-1.7) were collected as "the middle active Sepharose 6B eluate" and characterized on the basis of enzymology and protein chemistry. When this eluate was treated with PI-specific phospholipase C, the major activity peak was obtained in the later fractions with Ve/Vo = 1.75-2.0 on the same column chromatography. Lubrol-solubilized and phospholipase C-treated acetylcholinesterase preparations were different in the thermostability, the elution profiles of chromatography on Mono Q, butyl-Toyopearl and phenyl-Sepharose columns, and the affinity to phospholipid micelles. On treatment with PI-specific phospholipase C, Lubrol-solubilized acetylcholinesterase became more thermostable. The phospholipase C-treated enzyme was eluted at lower NaCl concentration from the Mono Q column than the Lubrol-solubilized enzyme. The most important difference was observed in the hydrophobicity of these two enzyme preparations. The Lubrol-solubilized enzyme shows high affinity to phospholipid micelles and hydrophobic adsorbents such as butyl-Toyopearl and phenyl-Sepharose. However, this hydrophobicity was lost when acetylcholinesterase was solubilized from bovine erythrocyte membrane by PI-specific phospholipase C. The presence of myo-inositol was confirmed in the purified preparation of acetylcholinesterase by gas chromatography (GC)-mass spectrometry (MS).(ABSTRACT TRUNCATED AT 250 WORDS)

  10. A novel expression vector for the improved solubility of recombinant scorpion venom in Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Tianqing; Ming, Hongyan; Deng, Lili

    Recombinant scorpion anti-excitation peptide (rANEP) has previously been expressed using the pET32a system and purified via affinity chromatography. However, rANEP is expressed in BL21(DE3) cells as an inclusion body, and the affinity tag can not be removed. To overcome this problem, we used a variety of protein, DsbA, MBP, TrxA, intein, and affinity tags in fusion and co-expression to achieve soluble and functional rANEP without any affinity tag. In the pCIT-ANEP expression vector, the highest soluble expression level was approximately 90% of the total cellular proteins in E. coli, and the rANEP was cleaved by the intein protein and subsequently purifiedmore » to obtain rANEP, which had the same activity as the natural ANEP. The purity of rANEP obtained using this method was over 95%, with a quantity of 5.1 mg from of purified rANEP from 1 L of culture. This method could expand the application of the soluble expression of disulfide-rich peptides in E. coli.« less

  11. A Dual Protease Approach for Expression and Affinity Purification of Recombinant Proteins

    PubMed Central

    Raran-Kurussi, Sreejith; Waugh, David S.

    2016-01-01

    We describe a new method for affinity purification of recombinant proteins using a dual protease protocol. Escherichia coli maltose binding protein (MBP) is employed as an N-terminal tag to increase the yield and solubility of its fusion partners. The MBP moiety is then removed by rhinovirus 3C protease, prior to purification, to yield an N-terminally His6-tagged protein. Proteins that are only temporarily rendered soluble by fusing them to MBP are readily identified at this stage because they will precipitate after the MBP tag is removed by 3C protease. The remaining soluble His6-tagged protein, if any, is subsequently purified by immobilized metal affinity chromatography (IMAC). Finally, the N-terminal His6 tag is removed by His6-tagged tobacco etch virus (TEV) protease to yield the native recombinant protein, and the His6-tagged contaminants are removed by adsorption during a second round of IMAC, leaving only the untagged recombinant protein in the column effluent. The generic strategy described here saves time and effort by removing insoluble aggregates at an early stage in the process while also reducing the tendency of MBP to “stick” to its fusion partners during affinity purification. PMID:27105777

  12. A dual protease approach for expression and affinity purification of recombinant proteins.

    PubMed

    Raran-Kurussi, Sreejith; Waugh, David S

    2016-07-01

    We describe a new method for affinity purification of recombinant proteins using a dual protease protocol. Escherichia coli maltose binding protein (MBP) is employed as an N-terminal tag to increase the yield and solubility of its fusion partners. The MBP moiety is then removed by rhinovirus 3C protease, prior to purification, to yield an N-terminally His6-tagged protein. Proteins that are only temporarily rendered soluble by fusing them to MBP are readily identified at this stage because they will precipitate after the MBP tag is removed by 3C protease. The remaining soluble His6-tagged protein, if any, is subsequently purified by immobilized metal affinity chromatography (IMAC). Finally, the N-terminal His6 tag is removed by His6-tagged tobacco etch virus (TEV) protease to yield the native recombinant protein, and the His6-tagged contaminants are removed by adsorption during a second round of IMAC, leaving only the untagged recombinant protein in the column effluent. The generic strategy described here saves time and effort by removing insoluble aggregates at an early stage in the process while also reducing the tendency of MBP to "stick" to its fusion partners during affinity purification. Published by Elsevier Inc.

  13. Purification, crystallization and preliminary crystallographic studies of haemoglobin from mongoose (Helogale parvula) in two different crystal forms induced by pH variation.

    PubMed

    Mohamed Abubakkar, M; Saraboji, K; Ponnuswamy, M N

    2013-02-01

    Haemoglobin (Hb) is a respiratory pigment; it is a tetrameric protein that ferries oxygen from the lungs to tissues and transports carbon dioxide on the return journey. The oxygen affinity of haemoglobin is regulated by the concentration of oxygen surrounding it and several efforts have revealed the shapes of Hb in different states and with different functions. However, study of the molecular basis of Hbs from low-oxygen-affinity species is critically needed in order to increase the understanding of the mechanism behind oxygen adaptation. The present study reports the preliminary crystallographic study of low-oxygen-affinity haemoglobin from mongoose, a burrowing mammal. Haemoglobin from mongoose was purified by anion-exchange chromatography, crystallized using the hanging-drop vapour-diffusion method and diffraction data sets were collected from monoclinic (2.3 Å resolution) and orthorhombic (2.9 Å resolution) crystal forms obtained by pH variation. The monoclinic and orthorhombic asymmetric units contained half and a whole biological molecule, respectively.

  14. Decorin is a Zn(2+) Metalloprotein

    NASA Technical Reports Server (NTRS)

    Yang, Vivian W.-C.; LaBrenz, Steven R.; Rosenberg, Lawrence C.; McQuillan, David; Hoeoek, Magnus

    1998-01-01

    Decorin is ubiquitously distributed in the extracellular matrix of mammals and a member of the proteoglycan family characterized by a core protein dominated by Leucine Rich Repeat motifs. We here demonstrate that decorin extracted from bovine tissues under denaturing conditions or produced in recombinant "native" form by cultured mammalian cells, has a high affinity for Zn(2+). Binding of Zn(2+) to decorin is demonstrated by Zn(2+) chelating chromatography and equilibrium dialyses. The Zn(2+) binding sites are localized to the N-terminal domain of the core protein that contains 4 Cys residues in the spacing reminiscent of a Zn finger. A recombinant 41 amino acid long peptide representing the N-terminal domain of decorin has full Zn(2+) binding activity and binds two Zn(2+) ions with an average K(D) of 3 x 10(exp -7) M. Biglycan, a proteoglycan that is structurally closely related to decorin contains a similar high affinity Zn(2+) binding segment, whereas the structurally more distantly related proteoglycans, epiphycan and osteoglycin, did not bind Zn(2+) with high affinity.

  15. Introduction of structural affinity handles as a tool in selective nucleic acid separations

    NASA Technical Reports Server (NTRS)

    Willson, III, Richard Coale (Inventor); Cano, Luis Antonio (Inventor)

    2011-01-01

    The method is used for separating nucleic acids and other similar constructs. It involves selective introduction, enhancement, or stabilization of affinity handles such as single-strandedness in the undesired (or desired) nucleic acids as compared to the usual structure (e.g., double-strandedness) of the desired (or undesired) nucleic acids. The undesired (or desired) nucleic acids are separated from the desired (or undesired) nucleic acids due to capture by methods including but not limited to immobilized metal affinity chromatography, immobilized single-stranded DNA binding (SSB) protein, and immobilized oligonucleotides. The invention is useful to: remove contaminating genomic DNA from plasmid DNA; remove genomic DNA from plasmids, BACs, and similar constructs; selectively separate oligonucleotides and similar DNA fragments from their partner strands; purification of aptamers, (deoxy)-ribozymes and other highly structured nucleic acids; Separation of restriction fragments without using agarose gels; manufacture recombinant Taq polymerase or similar products that are sensitive to host genomic DNA contamination; and other applications.

  16. Separation and purification of enzymes by continuous pH-parametric pumping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, S.Y.; Lin, C.K.; Juang, L.Y.

    1985-10-01

    Trypsin and chymotrypsin were separated from porcine pancreas extract by continuous pH-parametric pumping. CHOM (chicken ovomucoid) was convalently bound to laboratory-prepared crab chitin with glutaraldehyde to form an affinity adsorbent of trypsin. The pH levels of top and bottom feeds were 8.0 and 2.5, respectively. Similar inhibitor, DKOM (duck ovomucoid), and pH levels 8.0 and 2.0 for top and bottom feeds, respectively, were used for separation and purification of chymotrypsin. e-Amino caproyl-D-tryptophan methyl ester was coupled to chitosan to form an affinity adsorbent for stem bromelain. The pH levels were 8.7 and 3.0. Separation continued fairly well with high yield,more » e.g., 95% recovery of trypsin after continuous pumping of 10 cycles. Optimum operational conditions for concentration and purification of these enzymes were investigated. The results showed that the continuous pH-parametric pumping coupled with affinity chromatography is effective for concentration and purification of enzymes. 19 references.« less

  17. Variable pressure ionization detector for gas chromatography

    DOEpatents

    Buchanan, Michelle V.; Wise, Marcus B.

    1988-01-01

    Method and apparatus for differentiating organic compounds based on their electron affinity. An electron capture detector cell (ECD) is operated at pressures ranging from atmospheric to less than 1 torr. Through variation of the pressure within the ECD cell, the organic compounds are induced to either capture or emit electrons. Differentiation of isomeric compounds can be obtianed when, at a given pressure, one isomer is in the emission mode and the other is in the capture mode. Output of the ECD is recorded by chromatogram. The invention also includes a method for obtaining the zero-crossing pressure of a compound, defined as the pressure at which the competing emission and capture reactions are balanced and which may be correlated to the electron affinity of a compound.

  18. One-step purification of assembly-competent tubulin from diverse eukaryotic sources

    PubMed Central

    Widlund, Per O.; Podolski, Marija; Reber, Simone; Alper, Joshua; Storch, Marko; Hyman, Anthony A.; Howard, Jonathon; Drechsel, David N.

    2012-01-01

    We have developed a protocol that allows rapid and efficient purification of native, active tubulin from a variety of species and tissue sources by affinity chromatography. The affinity matrix comprises a bacterially expressed, recombinant protein, the TOG1/2 domains from Saccharomyces cerevisiae Stu2, covalently coupled to a Sepharose support. The resin has a high capacity to specifically bind tubulin from clarified crude cell extracts, and, after washing, highly purified tubulin can be eluted under mild conditions. The eluted tubulin is fully functional and can be efficiently assembled into microtubules. The method eliminates the need to use heterologous systems for the study of microtubule-associated proteins and motor proteins, which has been a major issue in microtubule-related research. PMID:22993214

  19. Targeting of Prostate Cancer with Hyaluronan-Binding Proteins

    DTIC Science & Technology

    2005-06-01

    16). Briefly, bovine nasal cartilage (Pel-Freez, Rogers, AR) was shredded with a Sure-Form blade (Stanley). extracted overnight with 4 M guanidine... nasal cartilage by affinity chromatography on hyaluronan- E Sepharose. As shown in Fig. 1, Metastatin consisted of two molecular C 40 factions as...biotinylated 490 pg/ml.) was isolated from the medium of rat fibrosarcoma cells grown tachvplesin (Fig. IB). However, this interaction was

  20. Application of thin-layer chromatography/infrared matrix-assisted laser desorption/ionization orthogonal time-of-flight mass spectrometry to structural analysis of bacteria-binding glycosphingolipids selected by affinity detection.

    PubMed

    Müsken, Anne; Souady, Jamal; Dreisewerd, Klaus; Zhang, Wenlan; Distler, Ute; Peter-Katalinić, Jasna; Miller-Podraza, Halina; Karch, Helge; Müthing, Johannes

    2010-04-15

    Glycosphingolipids (GSLs) play key roles in the manifestation of infectious diseases as attachment sites for pathogens. The thin-layer chromatography (TLC) overlay assay represents one of the most powerful approaches for the detection of GSL receptors of microorganisms. Here we report on the direct structural characterization of microbial GSL receptors by employment of the TLC overlay assay combined with infrared matrix-assisted laser desorption/ionization orthogonal time-of-flight mass spectrometry (IR-MALDI-o-TOF-MS). The procedure includes TLC separation of GSL mixtures, overlay of the chromatogram with GSL-specific bacteria, detection of bound microbes with primary antibodies against bacterial surface proteins and appropriate alkaline phosphatase labeled secondary antibodies, and in situ MS analysis of bacteria-specific GSL receptors. The combined method works on microgram scale of GSL mixtures and is advantageous in that it omits laborious and time-consuming GSL extraction from the silica gel layer. This technique was successfully applied to the compositional analysis of globo-series neutral GSLs recognized by P-fimbriated Escherichia coli bacteria, which were used as model microorganisms for infection of the human urinary tract. Thus, direct TLC/IR-MALDI-o-TOF-MS adds a novel facet to this fast and sensitive method offering a wide range of applications for the investigation of carbohydrate-specific pathogens involved in human infectious diseases. 2010 John Wiley & Sons, Ltd.

  1. Simultaneous determination of four plant hormones in bananas by molecularly imprinted solid-phase extraction coupled with high performance liquid chromatography.

    PubMed

    Yan, Hongyuan; Wang, Fang; Han, Dandan; Yang, Gengliang

    2012-06-21

    A highly selective molecularly imprinted solid-phase extraction (MISPE) combined with liquid chromatography-ultraviolet detection was developed for the simultaneous isolation and determination of four plant hormones including indole-3-acetic acid (IAA), indole-3-propionic acid (IPA), indole-3-butyric acid (IBA) and 1-naphthaleneacetic acid (NAA) in banana samples. The new molecularly imprinted microspheres (MIMs) prepared by aqueous suspension polymerization using 3-hydroxy-2-naphthoic acid and 1-methylpiperazine as mimic templates performed with high selectivity and affinity for the four plant hormones, and applied as selective sorbents of solid-phase extraction could effectively eliminate the interferences of the banana matrix. Good linearity was obtained in a range of 0.04-4.00 μg g(-1) and the recoveries of the four plant hormones at three spiked levels ranged from 78.5 to 107.7% with the relative standard deviations (RSD) of less than 4.6%. The developed MISPE-HPLC protocol obviously improved the selectivity and eliminated the effect of template leakage on quantitative analysis, and could be applied for the determination of plant hormones in complicated biological samples.

  2. Rapid and selective screening of melamine in bovine milk using molecularly imprinted matrix solid-phase dispersion coupled with liquid chromatography-ultraviolet detection.

    PubMed

    Yan, Hongyuan; Cheng, Xiaoling; Sun, Ning; Cai, Tianyu; Wu, Ruijun; Han, Kun

    2012-11-01

    A simple, convenient and high selective molecularly imprinted matrix solid-phase dispersion (MI-MSPD) using water-compatible cyromazine-imprinted polymer as adsorbent was proposed for the rapid screening of melamine from bovine milk coupled with liquid chromatography-ultraviolet detection. The molecularly imprinted polymers (MIPs) synthesized by cyromazine as dummy template and reformative methanol-water system as reaction medium showed higher affinity and selectivity to melamine, and so they were applied as the specific dispersant of MSPD to extraction of melamine and simultaneously eliminate the effect of template leakage on quantitative analysis. Under the optimized conditions, good linearity was obtained in a range of 0.24-60.0μgg(-1) with the correlation coefficient of 0.9994. The recoveries of melamine at three spiked levels were ranged from 86.0 to 96.2% with the relative standard deviation (RSD)≤4.0%. This proposed MI-MSPD method combined the advantages of MSPD and MIPs, and could be used as an alternative tool for analyzing the residues of melamine in complex milk samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. High level expression, purification and physico- and immunochemical characterisation of recombinant Pen a 1: a major allergen of shrimp.

    PubMed

    Albrecht, Melanie; Alessandri, Stefano; Conti, Amedeo; Reuter, Andreas; Lauer, Iris; Vieths, Stefan; Reese, Gerald

    2008-11-01

    Well-characterised and immunologically active recombinant allergens are of eminent importance for improvement of diagnostic tools and immunotherapy of allergic diseases. The use of recombinant allergens has several advantages such as the more precise quantification of the active substance compared to allergen extracts and the reduced risk of contamination with other allergenic proteins compared to purified natural allergens. Optimised standard protocols for expression and purification and a detailed physico-chemical characterisation of such recombinant allergens are necessary to ensure consistent quality and comparability of results obtained with recombinant material. In this study the major allergen Pen a 1 of brown shrimp (Penaeus aztecus) was expressed in E. coli and purified in two steps by immobilised metal chelate-affinity chromatography (IMAC) and size-exclusion chromatography. Identity and purity were verified with N-terminal sequencing and peptide mass fingerprinting. Circular dichroism and NMR-spectroscopy indicated an alpha-helical flexible structure of rPen a 1 which is in accordance with the known structure of tropomyosins. Finally, the recombinant allergen proved to be immunologically reactive in IgE Western blot analysis and ELISA. This study provides a protocol for the preparation of recombinant shrimp tropomyosin in standardised quality.

  4. Purification and Characterization of a Thermostable Lipase from Geobacillus thermodenitrificans IBRL-nra

    PubMed Central

    Balan, Anuradha; Ibrahim, Darah; Abdul Rahim, Rashidah; Ahmad Rashid, Fatimah Azzahra

    2012-01-01

    Thermostable lipase from Geobacillus thermodenitrificans IBRL-nra was purified and characterized. The production of thermostable lipase from Geobacillus thermodenitrificans IBRL-nra was carried out in a shake-flask system at 65°C in cultivation medium containing; glucose 1.0% (w/v); yeast extract 1.25% (w/v); NaCl 0.45% (w/v) olive oil 0.1% (v/v) with agitation of 200 rpm for 24 hours. The extracted extracellular crude thermostable lipase was purified to homogeneity by using ultrafiltration, Heparin-affinity chromatography, and Sephadex G-100 gel-filtration chromatography by 34 times with a final yield of 9%. The molecular weight of the purified enzyme was estimated to be 30 kDa after SDS-PAGE analysis. The optimal temperature for thermostable lipase was 65°C and it retained its initial activity for 3 hours. Thermostable lipase activity was highest at pH 7.0 and stable for 16 hours at this pH at 65°C. Thermostable lipase showed elevated activity when pretreated with BaCl2, CaCl2, and KCl with 112%, 108%, and 106%, respectively. Lipase hydrolyzed tripalmitin (C16) and olive oil with optimal activity (100%) compared to other substrates. PMID:23198138

  5. Identification of haemoglobin New York by haemoglobin A1c measurement using the Sebia Capillarys 2 Flex Piercing system.

    PubMed

    Chao, Yan; Wan, Zemin; Wu, Xiaobin; Qiu, Feng; Wu, Xinzhong; Wang, Yunxiu; Ke, Peifeng; Xu, Jianhua; Zhuang, Junhua; Huang, Xianzhang

    2017-01-01

    Haemoglobinopathies may interfere with the haemoglobin A 1c (HbA 1c ) measurement, leading to incorrect diagnosis and inappropriate treatment. It is essential that HbA 1c assays are capable of identifying haemoglobinopathies. We report two cases of haemoglobin New York (HbNY) discovered through HbA 1c analysis using capillary electrophoresis (Capillarys 2 Flex Piercing [C2FP], Sebia). We used these samples to evaluate the ability of three other HbA 1c assays to identify this variant: ion-exchange high-performance liquid chromatography (Variant II Turbo [VII-T], Bio-Rad); boronate affinity high-performance liquid chromatography (Ultra 2 , Trinity Biotech) and immunoassay (Cobas c501 Tina-quant Generation 3, Roche Diagnostics). Each method was used for HbA 1c assay of in samples from two cases of heterozygous haemoglobinopathy: β 0 -thalassemia/HbNY (Case 1) and HbA/NY (Case 2). Only the C2FP system detected HbNY (an additional peak appeared between HbA 1c and HbA 0 ). Clinical laboratories should be aware of the limitations of their HbA 1c assay methods especially in geographic areas, where haemoglobinopathy prevalence is high.

  6. Purification and partial characterization of a lectin protein complex, the clathrilectin, from the calcareous sponge Clathrina clathrus.

    PubMed

    Gardères, Johan; Domart-Coulon, Isabelle; Marie, Arul; Hamer, Bojan; Batel, Renato; Müller, Werner E G; Bourguet-Kondracki, Marie-Lise

    2016-10-01

    Carbohydrate-binding proteins were purified from the marine calcareous sponge Clathrina clathrus via affinity chromatography on lactose and N-acetyl glucosamine-agarose resins. Proteomic analysis of acrylamide gel separated protein subunits obtained in reducing conditions pointed out several candidates for lectins. Based on amino-acid sequence similarity, two peptides displayed homology with the jack bean lectin Concanavalin A, including a conserved domain shared by proteins in the L-type lectin superfamily. An N-acetyl glucosamine - binding protein complex, named clathrilectin, was further purified via gel filtration chromatography, bioguided with a diagnostic rabbit erythrocyte haemagglutination assay, and its activity was found to be calcium dependent. Clathrilectin, a protein complex of 3200kDa estimated by gel filtration, is composed of monomers with apparent molecular masses of 208 and 180kDa estimated on 10% SDS-PAGE. Nine internal peptides were identified using proteomic analyses, and compared to protein libraries from the demosponge Amphimedon queenslandica and a calcareous sponge Sycon sp. from the Adriatic Sea. The clathrilectin is the first lectin isolated from a calcareous sponge and displays homologies with predicted sponge proteins potentially involved in cell aggregation and interaction with bacteria. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Purification of angiotensin I-converting enzyme (ACE) inhibitory peptides from casein hydrolysate by IMAC-Ni2.

    PubMed

    Wu, Shanguang; Feng, Xuezhen; Lu, Yuan; Lu, Yuting; Liu, Saisai; Tian, Yuhong

    2017-10-01

    Casein proteins were hydrolyzed by papain to identify inhibitory peptides of angiotensin I-converting enzyme (ACE). The hydrolysate was fractionized by immobilized metal affinity chromatography (IMAC-Ni 2+ ). The fraction with high ACE inhibitory activity was enriched and further chromatographed on a reverse-phase column to yield four fractions. Among the fractions, the L4 fraction exhibited the highest ACE inhibitory activity and was identified by sequence analysis as Trp-Tyr-Leu-His-Tyr-Ala (WYLHYA), with IC 50 value of 16.22 ± 0.83 µM in vitro. This peptide was expected to be applied as an ingredient for preventing hypertension and IMAC-Ni 2+ may provide a simple method for purification of ACE inhibitory peptides.

  8. [Expression, purification and antibody preparation of recombinat SARS-CoV X5 protein].

    PubMed

    Wang, Li-Na; Kong, Jian-Qiang; Zhu, Ping; Du, Guan-Hua; Wang, Wei; Cheng, Ke-Di

    2008-11-01

    X5 protein is one of the putative unknown proteins of SARS-CoV. The recombinant protein has been successfully expressed in E. coli in the form of insoluble inclusion body. The inclusion body was dissolved in high concentration of urea. Affinity Chromatography was preformed to purify the denatured protein, and then the product was refolded in a series of gradient solutions of urea. The purified protein was obtained with the purity of > 95% and the yield of 93.3 mg x L(-1). Polyclonal antibody of this protein was obtained, and Western blotting assay indicated that the X5 protein has the strong property of antigen. Sixty-eight percent of the recombinant protein sequence was confirmed by LC-ESI-MS/MS analysis.

  9. A42867, a novel glycopeptide antibiotic.

    PubMed

    Riva, E; Gastaldo, L; Beretta, M G; Ferrari, P; Zerilli, L F; Cassani, G; Selva, E; Goldstein, B P; Berti, M; Parenti, F

    1989-04-01

    A42867 is a new glycopeptide antibiotic of the ristocetin-vancomycin class active against aerobic and anaerobic Gram-positive bacteria. A42867 is produced by a strain of Nocardia nov. sp. ATCC 53492. A42867 was isolated during a screening program aimed at the discovery of new members of this glycopeptide class of antibiotics, by affinity chromatography based on an acyl-D-alanyl-D-alanine probe. The structure of A42867 was elucidated by fast atom bombardment MS, high field 2D 1H NMR spectroscopy, and HPLC analysis of the hydrolyzed carbohydrates. A42867 differs from vancomycin in the sugar portion and in the presence of only one chlorine atom in the peptide core. Its biological activity on Gram-positive aerobic and anaerobic bacteria is similar to that of other antibiotics of this group.

  10. Quantitative proteomic analysis for high-throughput screening of differential glycoproteins in hepatocellular carcinoma serum

    PubMed Central

    Gao, Hua-Jun; Chen, Ya-Jing; Zuo, Duo; Xiao, Ming-Ming; Li, Ying; Guo, Hua; Zhang, Ning; Chen, Rui-Bing

    2015-01-01

    Objective Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths. Novel serum biomarkers are required to increase the sensitivity and specificity of serum screening for early HCC diagnosis. This study employed a quantitative proteomic strategy to analyze the differential expression of serum glycoproteins between HCC and normal control serum samples. Methods Lectin affinity chromatography (LAC) was used to enrich glycoproteins from the serum samples. Quantitative mass spectrometric analysis combined with stable isotope dimethyl labeling and 2D liquid chromatography (LC) separations were performed to examine the differential levels of the detected proteins between HCC and control serum samples. Western blot was used to analyze the differential expression levels of the three serum proteins. Results A total of 2,280 protein groups were identified in the serum samples from HCC patients by using the 2D LC-MS/MS method. Up to 36 proteins were up-regulated in the HCC serum, whereas 19 proteins were down-regulated. Three differential glycoproteins, namely, fibrinogen gamma chain (FGG), FOS-like antigen 2 (FOSL2), and α-1,6-mannosylglycoprotein 6-β-N-acetylglucosaminyltransferase B (MGAT5B) were validated by Western blot. All these three proteins were up-regulated in the HCC serum samples. Conclusion A quantitative glycoproteomic method was established and proven useful to determine potential novel biomarkers for HCC. PMID:26487969

  11. Can neutral analytes be concentrated by transient isotachophoresis in micellar electrokinetic chromatography and how much?

    PubMed

    Matczuk, Magdalena; Foteeva, Lidia S; Jarosz, Maciej; Galanski, Markus; Keppler, Bernhard K; Hirokawa, Takeshi; Timerbaev, Andrei R

    2014-06-06

    Transient isotachophoresis (tITP) is a versatile sample preconcentration technique that uses ITP to focus electrically charged analytes at the initial stage of CE analysis. However, according to the ruling principle of tITP, uncharged analytes are beyond its capacity while being separated and detected by micellar electrokinetic chromatography (MEKC). On the other hand, when these are charged micelles that undergo the tITP focusing, one can anticipate the concentration effect, resulting from the formation of transient micellar stack at moving sample/background electrolyte (BGE) boundary, which increasingly accumulates the analytes. This work expands the enrichment potential of tITP for MEKC by demonstrating the quantitative analysis of uncharged metal-based drugs from highly saline samples and introducing to the BGE solution anionic surfactants and buffer (terminating) co-ions of different mobility and concentration to optimize performance. Metallodrugs of assorted lipophilicity were chosen so as to explore whether their varying affinity toward micelles plays the role. In addition to altering the sample and BGE composition, optimization of the detection capability was achieved due to fine-tuning operational variables such as sample volume, separation voltage and pressure, etc. The results of optimization trials shed light on the mechanism of micellar tITP and render effective determination of selected drugs in human urine, with practical limits of detection using conventional UV detector. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Determination of lipid bilayer affinities and solvation characteristics by electrokinetic chromatography using polymer-bound lipid bilayer nanodiscs.

    PubMed

    Penny, William M; Palmer, Christopher P

    2018-03-01

    Styrene-maleic acid polymer-bound lipid bilayer nanodiscs have been investigated and characterized by electrokinetic chromatography. Linear solvation energy relationship analysis was employed to characterize the changes in solvation environment of nanodiscs of varied belt to lipid ratio, belt polymer chemistry and molecular weight, and lipid composition. Increases in the lipid to belt polymer ratio resulted in smaller, more cohesive nanodiscs with greater electrophoretic mobility. Nanodisc structures with belt polymers of different chemistry and molecular weight were compared and showed only minor changes in solvent characteristics and selectivity consistent with changes in structure of the lipid bilayer. Seven phospholipid and sphingomyelin nanodiscs of different lipid composition were characterized. Changes in lipid head group structure had a significant effect on bilayer-solute interactions. In most cases, changes in alkyl tail structure had no discernible effect on solvation environment aside from those explained by changes in the gel-liquid transition temperature. Comparison to vesicles of similar lipid composition show only minor differences in solvation environment, likely due to differences in lipid composition and bilayer curvature. Together these results provide evidence that the dominant solute-nanodisc interactions are with the lipid bilayer and that head group chemistry has a greater impact on bilayer-solute interactions than alkyl tail or belt polymer structure. Nanodisc electrokinetic chromatography is demonstrated to allow characterization of solute interactions with lipid bilayers of varied composition. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Characterization of the Igf-II Binding Site of the IGF-II/MAN-6-P Receptor Extracellular Domain.

    NASA Astrophysics Data System (ADS)

    Garmroudi, Farideh

    1995-01-01

    In mammals, insulin-like growth factor II (IGF -II) and glycoproteins bearing the mannose 6-phosphate (Man -6-P) recognition marker bind with high affinity to the same receptor. The functional consequences of IGF-II binding to the receptor at the cell surface are not clear. In these studies, we sought to broaden our understanding of the functional regions of the receptor regarding its IGF -II binding site. The IGF-II binding/cross-linking domain of the IGF-II/Man-6-P receptor was mapped by sequencing receptor fragments covalently attached to IGF-II. Purified rat placental or bovine liver receptors were affinity-labeled, with ^{125}I-IGF-II and digested with endoproteinase Glu-C. Analysis of digests by gel electrophoresis revealed a major radiolabeled band of 18 kDa, which was purified by gel filtration chromatography followed by reverse-phase HPLC and electroblotting. Sequence analysis revealed that, the peptide S(H)VNSXPMF, located within extracellular repeat 10 and beginning with serine 1488 of the bovine receptor, was the best candidate for the IGF-II cross-linked peptide. These data indicated that residues within repeats 10-11 were important for IGF -II binding. To define the location of the IGF-II binding site further, a nested set of six human receptor cDNA constructs was designed to produce epitope-tagged fusion proteins encompassing the region between repeats 8 and 11 of the human IGF-II/Man-6-P receptor extracellular domain. These truncated receptors were transiently expressed in COS-7 cells, immunoprecipitated and analyzed for their abilities to bind and cross-link to IGF-II. All of the constructs were capable of binding/cross-linking to IGF-II, except for the 9.0-11 construct. Displacement curve analysis indicated that the truncated receptors were approximately equivalent in IGF-II binding affinity, but were of 5- to 10-fold lower affinity than full-length receptors. Sequencing of the 9.0-11 construct indicated the presence of a point mutation substituting threonine for isoleucine at position 1621, which is located in the N-terminal half of repeat 11, and was found to abrogate IGF-II binding. Collectively, our work indicates that repeat 11 of the IGF-II/Man-6-P receptor's extracellular domain encompasses the elements both for binding and cross-linking to IGF-II.

  14. Interaction of Ochratoxin A and Its Thermal Degradation Product 2'R-Ochratoxin A with Human Serum Albumin.

    PubMed

    Sueck, Franziska; Poór, Miklós; Faisal, Zelma; Gertzen, Christoph G W; Cramer, Benedikt; Lemli, Beáta; Kunsági-Máté, Sándor; Gohlke, Holger; Humpf, Hans-Ulrich

    2018-06-22

    Ochratoxin A (OTA) is a toxic secondary metabolite produced by several fungal species of the genus Penicillium and Aspergillus . 2′ R -Ochratoxin A (2′ R -OTA) is a thermal isomerization product of OTA formed during food processing at high temperatures. Both compounds are detectable in human blood in concentrations between 0.02 and 0.41 µg/L with 2′ R -OTA being only detectable in the blood of coffee drinkers. Humans have approximately a fifty-fold higher exposure through food consumption to OTA than to 2′ R -OTA. In human blood, however, the differences between the concentrations of the two compounds is, on average, only a factor of two. To understand these unexpectedly high 2′ R -OTA concentrations found in human blood, the affinity of this compound to the most abundant protein in human blood the human serum albumin (HSA) was studied and compared to that of OTA, which has a well-known high binding affinity. Using fluorescence spectroscopy, equilibrium dialysis, circular dichroism (CD), high performance affinity chromatography (HPAC), and molecular modelling experiments, the affinities of OTA and 2′ R -OTA to HSA were determined and compared with each other. For the affinity of HSA towards OTA, a log K of 7.0⁻7.6 was calculated, while for its thermally produced isomer 2′ R -OTA, a lower, but still high, log K of 6.2⁻6.4 was determined. The data of all experiments showed consistently that OTA has a higher affinity to HSA than 2′ R -OTA. Thus, differences in the affinity to HSA cannot explain the relatively high levels of 2′ R -OTA found in human blood samples.

  15. Functional expression and purification of recombinant Tx1, a sodium channel blocker neurotoxin from the venom of the Brazilian "armed" spider, Phoneutria nigriventer.

    PubMed

    Diniz, Marcelo R V; Theakston, R David G; Crampton, Julian M; Nascimento Cordeiro, Marta do; Pimenta, Adriano M C; De Lima, Maria Elena; Diniz, Carlos R

    2006-11-01

    Tx1 from the venom of the Brazilian spider, Phoneutria nigriventer, is a lethal neurotoxic polypeptide of M(r) 8600 Da with 14 cysteine residues. It is a novel sodium channel blocker which reversibly inhibits sodium currents in CHO cells expressing recombinant sodium (Nav1.2) channels. We cloned and expressed the Tx1 toxin as a thioredoxin fusion product in the cytoplasm of Escherichia coli. After semipurification by immobilized Ni-ion affinity chromatography, the recombinant Tx1 was purified by reverse phase chromatography and characterized. It displayed similar biochemical and pharmacological properties to the native toxin, and it should be useful for further investigation of structure-function relationship of Na channels.

  16. SPR Biosensors in Direct Molecular Fishing: Implications for Protein Interactomics.

    PubMed

    Florinskaya, Anna; Ershov, Pavel; Mezentsev, Yuri; Kaluzhskiy, Leonid; Yablokov, Evgeniy; Medvedev, Alexei; Ivanov, Alexis

    2018-05-18

    We have developed an original experimental approach based on the use of surface plasmon resonance (SPR) biosensors, applicable for investigation of potential partners involved in protein⁻protein interactions (PPI) as well as protein⁻peptide or protein⁻small molecule interactions. It is based on combining a SPR biosensor, size exclusion chromatography (SEC), mass spectrometric identification of proteins (LC-MS/MS) and direct molecular fishing employing principles of affinity chromatography for isolation of potential partner proteins from the total lysate of biological samples using immobilized target proteins (or small non-peptide compounds) as ligands. Applicability of this approach has been demonstrated within the frame of the Human Proteome Project (HPP) and PPI regulation by a small non-peptide biologically active compound, isatin.

  17. The integrated simulation and assessment of the impacts of process change in biotherapeutic antibody production.

    PubMed

    Chhatre, Sunil; Jones, Carl; Francis, Richard; O'Donovan, Kieran; Titchener-Hooker, Nigel; Newcombe, Anthony; Keshavarz-Moore, Eli

    2006-01-01

    Growing commercial pressures in the pharmaceutical industry are establishing a need for robust computer simulations of whole bioprocesses to allow rapid prediction of the effects of changes made to manufacturing operations. This paper presents an integrated process simulation that models the cGMP manufacture of the FDA-approved biotherapeutic CroFab, an IgG fragment used to treat rattlesnake envenomation (Protherics U.K. Limited, Blaenwaun, Ffostrasol, Llandysul, Wales, U.K.). Initially, the product is isolated from ovine serum by precipitation and centrifugation, before enzymatic digestion of the IgG to produce FAB and FC fragments. These are purified by ion exchange and affinity chromatography to remove the FC and non-specific FAB fragments from the final venom-specific FAB product. The model was constructed in a discrete event simulation environment and used to determine the potential impact of a series of changes to the process, such as increasing the step efficiencies or volumes of chromatographic matrices, upon product yields and process times. The study indicated that the overall FAB yield was particularly sensitive to changes in the digestive and affinity chromatographic step efficiencies, which have a predicted 30% greater impact on process FAB yield than do the precipitation or centrifugation stages. The study showed that increasing the volume of affinity matrix has a negligible impact upon total process time. Although results such as these would require experimental verification within the physical constraints of the process and the facility, the model predictions are still useful in allowing rapid "what-if" scenario analysis of the likely impacts of process changes within such an integrated production process.

  18. High Structural Resolution Hydroxyl Radical Protein Footprinting Reveals an Extended Robo1-Heparin Binding Interface*

    PubMed Central

    Li, Zixuan; Moniz, Heather; Wang, Shuo; Ramiah, Annapoorani; Zhang, Fuming; Moremen, Kelley W.; Linhardt, Robert J.; Sharp, Joshua S.

    2015-01-01

    Interaction of transmembrane receptors of the Robo family and the secreted protein Slit provides important signals in the development of the central nervous system and regulation of axonal midline crossing. Heparan sulfate, a sulfated linear polysaccharide modified in a complex variety of ways, serves as an essential co-receptor in Slit-Robo signaling. Previous studies have shown that closely related heparin octasaccharides bind to Drosophila Robo directly, and surface plasmon resonance analysis revealed that Robo1 binds more tightly to full-length unfractionated heparin. For the first time, we utilized electron transfer dissociation-based high spatial resolution hydroxyl radical protein footprinting to identify two separate binding sites for heparin interaction with Robo1: one binding site at the previously identified site for heparin dp8 and a second binding site at the N terminus of Robo1 that is disordered in the x-ray crystal structure. Mutagenesis of the identified N-terminal binding site exhibited a decrease in binding affinity as measured by surface plasmon resonance and heparin affinity chromatography. Footprinting also indicated that heparin binding induces a minor change in the conformation and/or dynamics of the Ig2 domain, but no major conformational changes were detected. These results indicate a second low affinity binding site in the Robo-Slit complex as well as suggesting the role of the Ig2 domain of Robo1 in heparin-mediated signal transduction. This study also marks the first use of electron transfer dissociation-based high spatial resolution hydroxyl radical protein footprinting, which shows great utility for the characterization of protein-carbohydrate complexes. PMID:25752613

  19. Identification and properties of an alpha-amylase from a strain of Eubacterium sp. isolated from the rat intestinal tract.

    PubMed

    Delahaye, E P; Foglietti, M J; Andrieux, C; Chardon-Loriaux, I; Szylit, O; Raibaud, P

    1991-01-01

    1. A bacterial amylase was isolated from the intestinal content of monoxenic rats inoculated with Eubacterium sp. B86. 2. Affinity chromatography on cross-linked starch allowed its separation from rat endogenous amylases. 3. The bacterial enzyme was characterized by its pI, molecular weight and action pattern. It behaves as a typical endo-amylase (alpha-amylase).

  20. Production of recombinant proteins in Escherichia coli tagged with the fusion protein CusF3H.

    PubMed

    Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Zarate, Xristo

    2017-04-01

    Recombinant protein expression in the bacterium Escherichia coli still is the number one choice for large-scale protein production. Nevertheless, many complications can arise using this microorganism, such as low yields, the formation of inclusion bodies, and the requirement for difficult purification steps. Most of these problems can be solved with the use of fusion proteins. Here, the use of the metal-binding protein CusF3H+ is described as a new fusion protein for recombinant protein expression and purification in E. coli. We have previously shown that CusF produces large amounts of soluble protein, with low levels of formation of inclusion bodies, and that proteins can be purified using IMAC resins charged with Cu(II) ions. CusF3H+ is an enhanced variant of CusF, formed by the addition of three histidine residues at the N-terminus. These residues then can bind Ni(II) ions allowing improved purity after affinity chromatography. Expression and purification of Green Fluorescent Protein tagged with CusF3H+ showed that the mutation did not alter the capacity of the fusion protein to increase protein expression, and purity improved considerably after affinity chromatography with immobilized nickel ions; high yields are obtained after tag-removal since CusF3H+ is a small protein of just 10 kDa. Furthermore, the results of experiments involving expression of tagged proteins having medium to large molecular weights indicate that the presence of the CusF3H+ tag improves protein solubility, as compared to a His-tag. We therefore endorse CusF3H+ as a useful alternative fusion protein/affinity tag for production of recombinant proteins in E. coli. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Characterization of plasma membrane domains of mouse EL4 lymphoma cells obtained by affinity chromatography on concanavalin A-Sepharose.

    PubMed

    Szamel, M; Goppelt, M; Resch, K

    1985-12-19

    Purified plasma membranes of mouse EL4 lymphoma cells were fractionated by means of affinity chromatography on concanavalin A-Sepharose into two subfractions; one (MF1) eluted freely from the affinity column, the second (MF2) adhered specifically to Con A-Sepharose. Both membrane subfractions proved to be of plasma membrane origin, as evidenced by the following criteria. (i) The ratio of cholesterol to phospholipid was nearly identical in plasma membrane and both subfractions. (ii) When isolated plasma membranes were labelled with tritiated NaBH4, both subfractions exhibited identical specific radioactivities. (iii) After enzymatic radioiodination of the cells, the total content of labelled proteins was very similar in isolated plasma membranes and in both subfractions. (iv) Some plasma membrane marker enzymes exhibited nearly identical specific activities in plasma membranes, MF1 or MF2 including gamma-glutamyl transpeptidase, 5'-nucleotidase and Mg2+-ATPase. Both subfractions exhibited characteristic differences. Thus the specific activities of (Na+ + K+)-ATPase, Ca2+-ATPase and lysophosphatidylcholine acyltransferase were several-fold enriched in MF2 compared to MF1. SDS-polyacrylamide gel electrophoresis revealed a different polypeptide composition of the two subfractions. Polypeptides of apparent molecular mass of 116, 95, 42, 39, 30 and 28 kDa were highly enriched in MF2, whereas MF1 contained another set of proteins, of apparent molecular mass of 70, 55 and 24 kDa. The phospholipid fatty acid composition of the subfractions proved to be different, as well, MF2 contained more saturated fatty acids than MF1. The data suggest the existence of plasma membrane domains in the plasma membranes of the mouse EL4 lymphoma cells, containing a set of polypeptides, among others membrane bound enzymes, embedded in a different phospholipid milieu.

  2. LC–MS/MS Quantitation of Esophagus Disease Blood Serum Glycoproteins by Enrichment with Hydrazide Chemistry and Lectin Affinity Chromatography

    PubMed Central

    2015-01-01

    Changes in glycosylation have been shown to have a profound correlation with development/malignancy in many cancer types. Currently, two major enrichment techniques have been widely applied in glycoproteomics, namely, lectin affinity chromatography (LAC)-based and hydrazide chemistry (HC)-based enrichments. Here we report the LC–MS/MS quantitative analyses of human blood serum glycoproteins and glycopeptides associated with esophageal diseases by LAC- and HC-based enrichment. The separate and complementary qualitative and quantitative data analyses of protein glycosylation were performed using both enrichment techniques. Chemometric and statistical evaluations, PCA plots, or ANOVA test, respectively, were employed to determine and confirm candidate cancer-associated glycoprotein/glycopeptide biomarkers. Out of 139, 59 common glycoproteins (42% overlap) were observed in both enrichment techniques. This overlap is very similar to previously published studies. The quantitation and evaluation of significantly changed glycoproteins/glycopeptides are complementary between LAC and HC enrichments. LC–ESI–MS/MS analyses indicated that 7 glycoproteins enriched by LAC and 11 glycoproteins enriched by HC showed significantly different abundances between disease-free and disease cohorts. Multiple reaction monitoring quantitation resulted in 13 glycopeptides by LAC enrichment and 10 glycosylation sites by HC enrichment to be statistically different among disease cohorts. PMID:25134008

  3. Preparation of His-tagged armored RNA phage particles as a control for real-time reverse transcription-PCR detection of severe acute respiratory syndrome coronavirus.

    PubMed

    Cheng, Yangjian; Niu, Jianjun; Zhang, Yongyou; Huang, Jianwei; Li, Qingge

    2006-10-01

    Armored RNA has been increasingly used as both an external and internal positive control in nucleic acid-based assays for RNA virus. In order to facilitate armored RNA purification, a His6 tag was introduced into the loop region of the MS2 coat protein, which allows the exposure of multiple His tags on the surface during armored RNA assembly. The His-tagged armored RNA particles were purified to homogeneity and verified to be free of DNA contamination in a single run of affinity chromatography. A fragment of severe acute respiratory syndrome coronavirus (SARS-CoV) genome targeted for SARS-CoV detection was chosen for an external positive control preparation. A plant-specific gene sequence was chosen for a universal noncompetitive internal positive control preparation. Both controls were purified by Co2+ affinity chromatography and were included in a real-time reverse transcription-PCR assay for SARS-CoV. The noncompetitive internal positive control can be added to clinical samples before RNA extraction and enables the identification of potential inhibitive effects without interfering with target amplification. The external control could be used for the quantification of viral loads in clinical samples.

  4. Optimization of pore structure and particle morphology of mesoporous silica for antibody adsorption for use in affinity chromatography

    NASA Astrophysics Data System (ADS)

    Hikosaka, Ryouichi; Nagata, Fukue; Tomita, Masahiro; Kato, Katsuya

    2016-10-01

    Antibodies have received significant attention for use as antibody drugs, because they bind the objective protein (antigen) via antigen-antibody reactions. Recently, many reports have appeared on various monoclonal antibodies that recognize a single antigen. In this study, monoclonal antibodies are used as adsorbates on mesoporous silica (MPS) for affinity chromatography. MPS has high surface area and large pore volume; moreover, pore diameter, pore structure, and particle morphology are relatively easy to tune by adjusting the conditions of synthesis. The pore structure (two-dimensional (2D) hexagonal and three-dimensional cubic) and particle morphology (spherical and polyhedral) of MPS are optimized for use in a monoclonal antibody/MPS composite. When anti-IgG (one of the monoclonal antibodies) adsorbs on the MPS material and IgG (antigen) binds to anti-IgG/MPS composites, MCM-41p with a 2D-hexagonal pore structure and polyhedral particle morphology has the highest IgG binding efficiency. In addition, the antibody/MPS composites remain stable in chaotropic and low-pH solutions and can be cycled at least five times without decreasing IgG elution. In purification and removal tests, the use of the antibody/MPS composites allows only the objective protein from protein mixtures to be bound and eluted.

  5. Optimization of Immobilized Gallium (III) Ion Affinity Chromatography for Selective Binding and Recovery of Phosphopeptides from Protein Digests

    PubMed Central

    Aryal, Uma K.; Olson, Douglas J.H.; Ross, Andrew R.S.

    2008-01-01

    Although widely used in proteomics research for the selective enrichment of phosphopeptides from protein digests, immobilized metal-ion affinity chromatography (IMAC) often suffers from low specificity and differential recovery of peptides carrying different numbers of phosphate groups. By systematically evaluating and optimizing different loading, washing, and elution conditions, we have developed an efficient and highly selective procedure for the enrichment of phosphopeptides using a commercially available gallium(III)-IMAC column (PhosphoProfile, Sigma). Phosphopeptide enrichment using the reagents supplied with the column is incomplete and biased toward the recovery and/or detection of smaller, singly phosphorylated peptides. In contrast, elution with base (0.4 M ammonium hydroxide) gives efficient and balanced recovery of both singly and multiply phosphorylated peptides, while loading peptides in a strong acidic solution (1% trifluoracetic acid) further increases selectivity toward phosphopeptides, with minimal carryover of nonphosphorylated peptides. 2,5-Dihydroxybenzoic acid, a matrix commonly used when analyzing phosphopeptides by matrix-assisted laser desorption/ionization mass spectrometry was also evaluated as an additive in loading and eluting solvents. Elution with 50% acetonitrile containing 20 mg/mL dihydroxybenzoic acid and 1% phosphoric acid gave results similar to those obtained using ammonium hydroxide as the eluent, although the latter showed the highest specificity for phosphorylated peptides. PMID:19183793

  6. Optimizing purification process of MIM-I-BAR domain by introducing atomic force microscope and dynamics simulations.

    PubMed

    Zhang, Yue; Lou, Zhichao; Lin, Xubo; Wang, Qiwei; Cao, Meng; Gu, Ning

    2017-09-01

    MIM (missing in metastasis) is a member of I-BAR (inverse BAR) domain protein family, which functions as a putative metastasis suppressor. However, methods of gaining high purity MIM-I-BAR protein are barely reported. Here, by optimizing the purification process including changing the conditions of cell lysate and protein elution, we successfully purified MIM protein. The purity of the obtained protein was up to ∼90%. High-resolution atomic force microscope (AFM) provides more visual images, ensuring that we can observe the microenvironment around the target protein, as well as the conformations of the purification products following each purification process. MIM protein with two different sizes were observed on mica surface with AFM. Combining with molecular dynamics simulations, these molecules were revealed as MIM monomer and dimer. Furthermore, our study attaches importance to the usage of imidazole with suitable concentrations during the affinity chromatography process, as well as the removal of excessive imidazole after the affinity chromatography process. All these results indicate that the method described here was successful in purifying MIM protein and maintaining their natural properties, and is supposed to be used to purify other proteins with low solubility. Copyright © 2017. Published by Elsevier B.V.

  7. Determination of 16 polycyclic aromatic hydrocarbons in seawater using molecularly imprinted solid-phase extraction coupled with gas chromatography-mass spectrometry.

    PubMed

    Song, Xingliang; Li, Jinhua; Xu, Shoufang; Ying, Rongjian; Ma, Jiping; Liao, Chunyang; Liu, Dongyan; Yu, Junbao; Chen, Lingxin

    2012-09-15

    A method of solid-phase extraction (SPE) using molecularly imprinted polymers (MIPs) as adsorbent coupled with gas chromatography-mass spectrometry (GC-MS) was developed for the determination of 16 types of polycyclic aromatic hydrocarbons (PAHs) in seawater samples. The MIPs were prepared through non-covalent polymerization by using the 16 PAHs mixture as a template based on sol-gel surface imprinting. Compared with the non-imprinted polymers (NIPs), the MIPs exhibited excellent affinity towards 16 PAHs with binding capacity of 111.0-195.0 μg g(-1), and imprinting factor of 1.50-3.12. The significant binding specificity towards PAHs even in the presence of environmental parameters such as dissolved organic matter and various metal ions, suggested that this new imprinting material was capable of removing 93.2% PAHs in natural seawater. High sensitivity was attained, with the low limits of detection for 16 PAHs in natural seawater ranging from 5.2-12.6 ng L(-1). The application of MIPs with high affinity and excellent stereo-selectivity toward PAHs in SPE might offer a more attractive alternative to conventional sorbents for extraction and abatement of PAH-contaminated seawater. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Expression and purification of recombinant proteins in Escherichia coli tagged with a small metal-binding protein from Nitrosomonas europaea.

    PubMed

    Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Zarate, Xristo

    2016-02-01

    Escherichia coli is still the preferred organism for large-scale production of recombinant proteins. The use of fusion proteins has helped considerably in enhancing the solubility of heterologous proteins and their purification with affinity chromatography. Here, the use of a small metal-binding protein (SmbP) from Nitrosomonas europaea is described as a new fusion protein for protein expression and purification in E. coli. Fluorescent proteins tagged at the N-terminal with SmbP showed high levels of solubility, compared with those of maltose-binding protein and glutathione S-transferase, and low formation of inclusion bodies. Using commercially available IMAC resins charged with Ni(II), highly pure recombinant proteins were obtained after just one chromatography step. Proteins may be purified from the periplasm of E. coli if SmbP contains the signal sequence at the N-terminal. After removal of the SmbP tag from the protein of interest, high-yields are obtained since SmbP is a protein of just 9.9 kDa. The results here obtained suggest that SmbP is a good alternative as a fusion protein/affinity tag for the production of soluble recombinant proteins in E. coli. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Use of proteomics for validation of the isolation process of clotting factor IX from human plasma.

    PubMed

    Clifton, James; Huang, Feilei; Gaso-Sokac, Dajana; Brilliant, Kate; Hixson, Douglas; Josic, Djuro

    2010-01-03

    The use of proteomic techniques in the monitoring of different production steps of plasma-derived clotting factor IX (pd F IX) was demonstrated. The first step, solid-phase extraction with a weak anion-exchange resin, fractionates the bulk of human serum albumin (HSA), immunoglobulin G, and other non-binding proteins from F IX. The proteins that strongly bind to the anion-exchange resin are eluted by higher salt concentrations. In the second step, anion-exchange chromatography, residual HSA, some proteases and other contaminating proteins are separated. In the last chromatographic step, affinity chromatography with immobilized heparin, the majority of the residual impurities are removed. However, some contaminating proteins still remain in the eluate from the affinity column. The next step in the production process, virus filtration, is also an efficient step for the removal of residual impurities, mainly high molecular weight proteins, such as vitronectin and inter-alpha inhibitor proteins. In each production step, the active component, pd F IX and contaminating proteins are monitored by biochemical and immunochemical methods and by LC-MS/MS and their removal documented. Our methodology is very helpful for further process optimization, rapid identification of target proteins with relatively low abundance, and for the design of subsequent steps for their removal or purification.

  10. Inhibition of initial adhesion of oral bacteria through a lectin from Bauhinia variegata L. var. variegata expressed in Escherichia coli.

    PubMed

    Klafke, G B; Borsuk, S; Gonçales, R A; Arruda, F V S; Carneiro, V A; Teixeira, E H; Coelho da Silva, A L; Cavada, B S; Dellagostin, O A; Pinto, L S

    2013-11-01

    The aim of the present work was to study the in vitro effect of native and recombinant Bauhinia variegata var. variegata lectins in inhibiting early adhesion of Streptococcus mutans, Streptococcus sanguis and Streptococcus sobrinus to experimentally acquired pellicle. Native lectin from B. variegata (BVL) was purified by affinity chromatography of extract of seeds. The recombinant lectin (rBVL-I) was expressed in E. coli strain BL21 (DE3) from a genomic clone encoding the mature B. variegata lectin gene using the vector pAE-bvlI. Recombinant protein deposited in inclusion bodies was solubilized and subsequently purified by affinity chromatography. The rBVL-I was compared to BVL for agglutination of erythrocytes and initial adherence of oral bacteria on a saliva-coated surface. The results revealed that rBVL-I acts similarly to BVL for agglutination of erythrocytes. Both lectins showed adhesion inhibition effect on Step. sanguis, Step. mutans and Step. sobrinus. We report, for the first time, the inhibition of early adhesion of oral bacteria by a recombinant lectin. Our results support the proposed biotechnological application of lectins in a strategy to reduce development of dental caries by inhibiting the initial adhesion and biofilm formation. © 2013 The Society for Applied Microbiology.

  11. DEVELOPMENT OF SULFHYDRYL-REACTIVE SILICA FOR PROTEIN IMMOBILIZATION IN HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY

    PubMed Central

    Mallik, Rangan; Wa, Chunling; Hage, David S.

    2008-01-01

    Two techniques were developed for the immobilization of proteins and other ligands to silica through sulfhydryl groups. These methods made use of maleimide-activated silica (the SMCC method) or iodoacetyl-activated silica (the SIA method). The resulting supports were tested for use in high-performance affinity chromatography by employing human serum albumin (HSA) as a model protein. Studies with normal and iodoacetamide-modified HSA indicated that these methods had a high selectivity for sulfhydryl groups on this protein, which accounted for the coupling of 77–81% of this protein to maleimide- or iodacetyl-activated silica. These supports were also evaluated in terms of their total protein content, binding capacity, specific activity, non-specific binding, stability and chiral selectivity for several test solutes. HSA columns prepared using maleimide-activated silica gave the best overall results for these properties when compared to HSA that had been immobilized to silica through the Schiff base method (i.e., an amine-based coupling technique). A key advantage of the supports developed in this work is that they offer the potential of giving greater site-selective immobilization and ligand activity than amine-based coupling methods. These features make these supports attractive in the development of protein columns for such applications as the study of biological interactions and chiral separations. PMID:17297940

  12. Confirmation of a new conserved linear epitope of Lyssavirus nucleoprotein.

    PubMed

    Xinjun, Lv; Xuejun, Ma; Lihua, Wang; Hao, Li; Xinxin, Shen; Pengcheng, Yu; Qing, Tang; Guodong, Liang

    2012-05-01

    Bioinformatics analysis was used to predict potential epitopes of Lyssavirus nucleoprotein and highlighted some distinct differences in the quantity and localization of the epitopes disclosed by epitope analysis of monoclonal antibodies against Lyssavirus nucleoprotein. Bioinformatics analysis showed that the domain containing residues 152-164 of Lyssavirus nucleoprotein was a conserved linear epitope that had not been reported previously. Immunization of two rabbits with the corresponding synthetic peptide conjugated to the Keyhole Limpe hemocyanin (KLH) macromolecule resulted in a titer of anti-peptide antibody above 1:200,000 in rabbit sera as detected by indirect enzyme-linked immunosorbent assay (ELISA). Western blot analysis demonstrated that the anti-peptide antibody recognized denatured Lyssavirus nucleoprotein in sodium dodecylsulfonate-polyacrylate gel electrophoresis (SDS-PAGE). Affinity chromatography purification and FITC-labeling of the anti-peptide antibody in rabbit sera was performed. FITC-labeled anti-peptide antibody could recognize Lyssavirus nucleoprotein in BSR cells and canine brain tissues even at a 1:200 dilution. Residues 152-164 of Lyssavirus nucleoprotein were verified as a conserved linear epitope in Lyssavirus. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. QUANTITATIVE MASS SPECTROMETRIC ANALYSIS OF GLYCOPROTEINS COMBINED WITH ENRICHMENT METHODS

    PubMed Central

    Ahn, Yeong Hee; Kim, Jin Young; Yoo, Jong Shin

    2015-01-01

    Mass spectrometry (MS) has been a core technology for high sensitive and high-throughput analysis of the enriched glycoproteome in aspects of quantitative assays as well as qualitative profiling of glycoproteins. Because it has been widely recognized that aberrant glycosylation in a glycoprotein may involve in progression of a certain disease, the development of efficient analysis tool for the aberrant glycoproteins is very important for deep understanding about pathological function of the glycoprotein and new biomarker development. This review first describes the protein glycosylation-targeting enrichment technologies mainly employing solid-phase extraction methods such as hydrizide-capturing, lectin-specific capturing, and affinity separation techniques based on porous graphitized carbon, hydrophilic interaction chromatography, or immobilized boronic acid. Second, MS-based quantitative analysis strategies coupled with the protein glycosylation-targeting enrichment technologies, by using a label-free MS, stable isotope-labeling, or targeted multiple reaction monitoring (MRM) MS, are summarized with recent published studies. © 2014 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc. Rapid Commun. Mass Spec Rev 34:148–165, 2015. PMID:24889823

  14. Hippophae rhamnoides N-glycoproteome analysis: a small step towards sea buckthorn proteome mining.

    PubMed

    Sougrakpam, Yaiphabi; Deswal, Renu

    2016-10-01

    Hippophae rhamnoides is a hardy shrub capable of growing under extreme environmental conditions namely, high salt, drought and cold. Its ability to grow under extreme conditions and its wide application in pharmaceutical and nutraceutical industry calls for its in-depth analysis. N-glycoproteome mining by con A affinity chromatography from seedling was attempted. The glycoproteome was resolved on first and second dimension gel electrophoresis. A total of 48 spots were detected and 10 non-redundant proteins were identified by MALDI-TOF/TOF. Arabidopsis thaliana protein disulfide isomerase-like 1-4 (ATPDIL1-4) electron transporter, protein disulphide isomerase, calreticulin 1 (CRT1), glycosyl hydrolase family 38 (GH 38) protein, phantastica, maturase k, Arabidopsis trithorax related protein 6 (ATXR 6), cysteine protease inhibitor were identified out of which ATXR 6, phantastica and putative ATPDIL1-4 electron transporter are novel glycoproteins. Calcium binding protein CRT1 was validated for its calcium binding by stains all staining. GO analysis showed involvement of GH 38 and ATXR 6 in glycan and lysine degradation pathways. This is to our knowledge the first report of glycoproteome analysis for any Elaeagnaceae member.

  15. Bio-inorganic synthesis of ZnO powders using recombinant His-tagged ZnO binding peptide as a promoter.

    PubMed

    Song, Lei; Liu, Yingying; Zhang, Zhifang; Wang, Xi; Chen, Jinchun

    2010-10-01

    Inorganic-binding peptides termed as genetically engineered polypeptides for inorganics (GEPIs), are small peptide sequences selected via combinatorial biology-based protocols of phage or cell surface display technologies. Recent advances in nanotechnology and molecular biology allow the engineering of these peptides with specific affinity to inorganics, often used as molecular linkers or assemblers, to facilitate materials synthesis, which provides a new insight into the material science and engineering field. As a case study on this biomimetic application, here we report a novel biosynthetic ZnO binding protein and its application in promoting bio-inorganic materials synthesis. In brief, the gene encoding a ZnO binding peptide(ZBP) was genetically fused with His(6)-tag and GST-tag using E.coli expression vector pET-28a (+) and pGEX-4T-3. The recombinant protein GST-His-ZBP was expressed, purified with Ni-NTA system, identified by SDS-PAGE electrophoresis and Western blot analysis and confirmed by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) analysis. Affinity adsorption test demonstrated that the fusion protein had a specific avidity for ZnO nanoparticles (NPs). Results from the bio-inorganic synthesis experiment indicated that the new protein played a promoting part in grain refinement and accelerated precipitation during the formation of the ultra-fine precursor powders in the Zn(OH)(2) sol. X-ray diffraction (XRD) analysis on the final products after calcining the precursor powders showed that hexagonal wurtzite ZnO crystals were obtained. Our work suggested a novel approach to the application about the organic-inorganic interactions.

  16. Identification of Small RNA-Protein Partners in Plant Symbiotic Bacteria.

    PubMed

    Robledo, Marta; Matia-González, Ana M; García-Tomsig, Natalia I; Jiménez-Zurdo, José I

    2018-01-01

    The identification of the protein partners of bacterial small noncoding RNAs (sRNAs) is essential to understand the mechanistic principles and functions of riboregulation in prokaryotic cells. Here, we describe an optimized affinity chromatography protocol that enables purification of in vivo formed sRNA-protein complexes in Sinorhizobium meliloti, a genetically tractable nitrogen-fixing plant symbiotic bacterium. The procedure requires the tagging of the desired sRNA with the MS2 aptamer, which is affinity-captured by the MS2-MBP protein conjugated to an amylose resin. As proof of principle, we show recovery of the RNA chaperone Hfq associated to the strictly Hfq-dependent AbcR2 trans-sRNA. This method can be applied for the investigation of sRNA-protein interactions on a broad range of genetically tractable α-proteobacteria.

  17. Expression, purification, and DNA-binding activity of the Herbaspirillum seropedicae RecX protein.

    PubMed

    Galvão, Carolina W; Pedrosa, Fábio O; Souza, Emanuel M; Yates, M Geoffrey; Chubatsu, Leda S; Steffens, Maria Berenice R

    2004-06-01

    The Herbaspirillum seropedicae RecX protein participates in the SOS response: a process in which the RecA protein plays a central role. The RecX protein of the H. seropedicae, fused to a His-tag sequence (RecX His-tagged), was over-expressed in Escherichia coli and purified by metal-affinity chromatography to yield a highly purified and active protein. DNA band-shift assays showed that the RecX His-tagged protein bound to both circular and linear double-stranded DNA and also to circular single-stranded DNA. The apparent affinity of RecX for DNA decreased in the presence of Mg(2+) ions. The ability of RecX to bind DNA may be relevant to its function in the SOS response.

  18. Development of a 3-step straight-through purification strategy combining membrane adsorbers and resins.

    PubMed

    Hughson, Michael D; Cruz, Thayana A; Carvalho, Rimenys J; Castilho, Leda R

    2017-07-01

    The pressures to efficiently produce complex biopharmaceuticals at reduced costs are driving the development of novel techniques, such as in downstream processing with straight-through processing (STP). This method involves directly and sequentially purifying a particular target with minimal holding steps. This work developed and compared six different 3-step STP strategies, combining membrane adsorbers, monoliths, and resins, to purify a large, complex, and labile glycoprotein from Chinese hamster ovary cell culture supernatant. The best performing pathway was cation exchange chromatography to hydrophobic interaction chromatography to affinity chromatography with an overall product recovery of up to 88% across the process and significant clearance of DNA and protein impurities. This work establishes a platform and considerations for the development of STP of biopharmaceutical products and highlights its suitability for integration with single-use technologies and continuous production methods. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:931-940, 2017. © 2017 American Institute of Chemical Engineers.

  19. Bromelain: from production to commercialisation.

    PubMed

    Ramli, Aizi Nor Mazila; Aznan, Tuan Norsyalieza Tuan; Illias, Rosli Md

    2017-03-01

    Bromelain is a mixture of proteolytic enzymes found in pineapple (Ananas comosus) plants. It can be found in several parts of the pineapple plant, including the stem, fruit, leaves and peel. High demand for bromelain has resulted in gradual increases in bromelain production. These increases have led to the need for a bromelain production strategy that yields more purified bromelain at a lower cost and with fewer production steps. Previously, bromelain was purified by conventional centrifugation, ultrafiltration and lyophilisation. Recently, the development of more modern purification techniques such as gel filtration, ion exchange chromatography, affinity chromatography, aqueous two-phase extraction and reverse micelle chromatography has resulted in increased industrial bromelain production worldwide. In addition, recombinant DNA technology has emerged as an alternative strategy for producing large amounts of ultrapure bromelain. An up-to-date compilation of data regarding the commercialisation of bromelain in the clinical, pharmaceutical and industrial fields is provided in this review. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Purification of nitrate reductase from Nicotiana plumbaginifolia by affinity chromatography using 5'AMP-sepharose and monoclonal antibodies.

    PubMed

    Moureaux, T; Leydecker, M T; Meyer, C

    1989-02-15

    Nitrate reductase was purified from leaves of Nicotiana plumbaginifolia using either 5'AMP-Sepharose chromatography or two steps of immunoaffinity chromatography involving monoclonal antibodies directed against nitrate reductase from maize and against ribulose-1,5-bisphosphate carboxylase from N. plumbaginifolia. Nitrate reductase obtained by the first method was purified 1000-fold to a specific activity of 9 units/mg protein. The second method produced an homogenous enzyme, purified 21,000-fold to a specific activity of 80 units/mg protein. SDS/PAGE of nitrate reductase always resulted in two bands of 107 and 99.5 kDa. The 107-kDa band was the nitrate reductase subunit of N. plumbaginifolia; the smaller one of 99.5 kDa is thought, as commonly reported, to result from proteolysis of the larger protein. The molecular mass of 107 kDa is close to the values calculated from the coding sequences of the two nitrate reductase genes recently cloned from tobacco (Nicotiana tabacum cv Xanthi).

  1. Liquid chromatography/tandem mass spectrometry with fluorous derivatization method for selective analysis of sialyl oligosaccharides.

    PubMed

    Sakaguchi, Yohei; Hayama, Tadashi; Yoshida, Hideyuki; Itoyama, Miki; Todoroki, Kenichiro; Yamaguchi, Masatoshi; Nohta, Hitoshi

    2014-12-15

    A separation-oriented derivatization method using a specific fluorous affinity between perfluoroalkyl-containing compounds was applied to selective liquid chromatography/tandem mass spectrometric (LC/MS/MS) analysis of sialyl oligosaccharides. The perfluoroalkyl-labeled sialyl oligosaccharides could be selectively retained on an LC column with the perfluoroalkyl-modified stationary phase and effectively distinguished from non-derivatized species. Sialyl oligosaccharides (3'-sialyllactose, 6'-sialyllactose, sialyllacto-N-tetraose a, sialyllacto-N-tetraose b, sialyllacto-N-tetraose c, and disialyllacto-N-tetraose) were derivatized with 4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoroundecylamine via amidation in the presence of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (condensation reagent). The obtained derivatives were directly injected onto the fluorous LC column without any pretreatments and then detected by positive electrospray ionization MS/MS. The method enabled accurate determination of the sialyl oligosaccharides in biological samples such as human urine and human milk, because there was no interference with matrix-induced effects during LC/MS/MS analysis. The limits of detection of the examined sialyl oligosaccharides, defined as signal-to-noise (S/N) = 3, were in the range 0.033-0.13 nM. Accuracy in the range 95.6-108% was achieved, and the precision (relative standard deviation) was within 9.4%. This method enabled highly selective and sensitive analysis of sialyl oligosaccharides, enabling accurate measurement of even their trace amounts in biological matrices. The proposed method may prove to be a powerful tool for the analysis of various sialyl oligosaccharides. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Comparative study of glycated hemoglobin by ion exchange chromatography and affinity binding nycocard reader in type 2 diabetes mellitus.

    PubMed

    Gautam, N; Dubey, R K; Jayan, A; Nepaune, Y; Padmavathi, P; Chaudhary, S; Jha, S K; Sinha, A K

    2014-12-01

    The aim of this study was to compare the level of glycated hemoglobin (HbA1c) in type 2 Diabetes Mellitus (DM) patients by two different methods namely Ion Exchange Chromatography and Affinity Binding Nycocard Reader. This is a cross-sectional study conducted on confirmed type 2 diabetes mellitus patients (n = 100) who visited Out Patients Department of the Universal College of Medical Sciences Teaching hospital, Bhairahawa, Nepal from November 2012 to March 2013. The diagnosis of diabetes mellitus was done on the basis of their fasting (164.46 ± 45.33 mg/dl) and random (187.93 ± 78.02 mg/dl) serum glucose level along with clinical history highly suggestive of type 2 DM. The HbA1c values of (7.8 ± 1.9%) and (8.0 ± 2.2%) were found in DM patients as estimated by those two different methods respectively. The highest frequency was observed in HbA1c > 8.0% indicating maximum cases were under very poor glycemic control. However, there were no significant differences observed in HbA1c value showing both methods are comparable in nature and can be used in lab for ease of estimation. The significant raised in HbA1c indicates complications associated with DM and monitoring of therapy become hard for those patients. Despite having standard reference method for HbA1c determination, the availability of report at the time of the patient visit can be made easy by using Nycocard Reader and Ion Exchange Chromatography techniques without any delay in communicating glycemic control, clinical decision-making and changes in treatment regimen.

  3. Improved strategy for recombinant production and purification of antimicrobial peptide tachyplesin I and its analogs with high cell selectivity.

    PubMed

    Panteleev, Pavel V; Ovchinnikova, Tatiana V

    2017-01-01

    Here, we report an efficient procedure for recombinant production and purification of tachyplesin I (THI) with a final yield of 17 mg/L of the culture medium. The peptide was expressed in Escherichia coli as a part of the thioredoxin fusion protein. With the use of soluble expression followed by immobilized metal-ion affinity chromatography, the recombinant protein cleavage and reversed-phase high-performance liquid chromatography, a yield of THI did not exceed 6.5 mg/L of the culture medium. Further optimization studies were carried out to improve the protein expression level and simplify purification procedure of the target peptide. To achieve better yield of the peptide, we used high-cell-density bacterial expression. The formed inclusion bodies were highly enriched with the fusion protein, which allowed us to perform direct chemical cleavage of the inclusion bodies solubilized in 6 M guanidine-HCl with subsequent selective precipitation of proteins with trifluoroacetic acid. This enabled us to avoid an extra step of purification by immobilized metal-ion affinity chromatography. The developed procedure has made it possible to obtain biologically active THI and was used for screening a number of its mutant analogs. As a result, several selective and nonhemolytic analogs were developed. Significant reduction in hemolytic activity without losing antimicrobial activity was achieved by substitution of tyrosine or isoleucine residue in the β-turn region of the molecule with hydrophilic serine. The present study affords further insight into molecular mechanism of antimicrobial action of tachyplesin and gains a better understanding of structure-activity relationships in its analogs. This is aimed at searching for novel antibiotics on the basis of antimicrobial peptides with reduced cytotoxicity. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  4. Recombinant Passenger Proteins Can Be Conveniently Purified by One-Step Affinity Chromatography.

    PubMed

    Wang, Hua-zhen; Chu, Zhi-zhan; Chen, Chang-chao; Cao, Ao-cheng; Tong, Xin; Ouyang, Can-bin; Yuan, Qi-hang; Wang, Mi-nan; Wu, Zhong-kun; Wang, Hai-hong; Wang, Sheng-bin

    2015-01-01

    Fusion tag is one of the best available tools to date for enhancement of the solubility or improvement of the expression level of recombinant proteins in Escherichia coli. Typically, two consecutive affinity purification steps are often necessitated for the purification of passenger proteins. As a fusion tag, acyl carrier protein (ACP) could greatly increase the soluble expression level of Glucokinase (GlcK), α-Amylase (Amy) and GFP. When fusion protein ACP-G2-GlcK-Histag and ACP-G2-Amy-Histag, in which a protease TEV recognition site was inserted between the fusion tag and passenger protein, were coexpressed with protease TEV respectively in E. coli, the efficient intracellular processing of fusion proteins was achieved. The resulting passenger protein GlcK-Histag and Amy-Histag accumulated predominantly in a soluble form, and could be conveniently purified by one-step Ni-chelating chromatography. However, the fusion protein ACP-GFP-Histag was processed incompletely by the protease TEV coexpressed in vivo, and a large portion of the resulting target protein GFP-Histag aggregated in insoluble form, indicating that the intracellular processing may affect the solubility of cleaved passenger protein. In this context, the soluble fusion protein ACP-GFP-Histag, contained in the supernatant of E. coli cell lysate, was directly subjected to cleavage in vitro by mixing it with the clarified cell lysate of E. coli overexpressing protease TEV. Consequently, the resulting target protein GFP-Histag could accumulate predominantly in a soluble form, and be purified conveniently by one-step Ni-chelating chromatography. The approaches presented here greatly simplify the purification process of passenger proteins, and eliminate the use of large amounts of pure site-specific proteases.

  5. Recombinant Passenger Proteins Can Be Conveniently Purified by One-Step Affinity Chromatography

    PubMed Central

    Wang, Hua-zhen; Chu, Zhi-zhan; Chen, Chang-chao; Cao, Ao-cheng; Tong, Xin; Ouyang, Can-bin; Yuan, Qi-hang; Wang, Mi-nan; Wu, Zhong-kun; Wang, Hai-hong; Wang, Sheng-bin

    2015-01-01

    Fusion tag is one of the best available tools to date for enhancement of the solubility or improvement of the expression level of recombinant proteins in Escherichia coli. Typically, two consecutive affinity purification steps are often necessitated for the purification of passenger proteins. As a fusion tag, acyl carrier protein (ACP) could greatly increase the soluble expression level of Glucokinase (GlcK), α-Amylase (Amy) and GFP. When fusion protein ACP-G2-GlcK-Histag and ACP-G2-Amy-Histag, in which a protease TEV recognition site was inserted between the fusion tag and passenger protein, were coexpressed with protease TEV respectively in E. coli, the efficient intracellular processing of fusion proteins was achieved. The resulting passenger protein GlcK-Histag and Amy-Histag accumulated predominantly in a soluble form, and could be conveniently purified by one-step Ni-chelating chromatography. However, the fusion protein ACP-GFP-Histag was processed incompletely by the protease TEV coexpressed in vivo, and a large portion of the resulting target protein GFP-Histag aggregated in insoluble form, indicating that the intracellular processing may affect the solubility of cleaved passenger protein. In this context, the soluble fusion protein ACP-GFP-Histag, contained in the supernatant of E. coli cell lysate, was directly subjected to cleavage in vitro by mixing it with the clarified cell lysate of E. coli overexpressing protease TEV. Consequently, the resulting target protein GFP-Histag could accumulate predominantly in a soluble form, and be purified conveniently by one-step Ni-chelating chromatography. The approaches presented here greatly simplify the purification process of passenger proteins, and eliminate the use of large amounts of pure site-specific proteases. PMID:26641240

  6. Hyaluronate-binding proteins of murine brain.

    PubMed

    Marks, M S; Chi-Rosso, G; Toole, B P

    1990-01-01

    The distribution of hyaluronate-binding activity was determined in the soluble and membrane fractions derived from adult mouse brain by sonication in low-ionic-strength buffer. Approximately 60% of the total activity was recovered in the soluble fraction and 33% in membrane fractions. In both cases, the hyaluronate-binding activities were found to be of high affinity (KD = 10(-9) M), specific for hyaluronate, and glycoprotein in nature. Most of the hyaluronate-binding activity from the soluble fraction chromatographed in the void volume of Sepharose CL-4B and CL-6B. Approximately 50% of this activity was highly negatively charged, eluting from diethylaminoethyl (DEAE)-cellulose in 0.5 M NaCl, and contained chondroitin sulfate chains. This latter material also reacted with antibodies raised against cartilage link protein and the core protein of cartilage proteoglycan. Thus, the binding and physical characteristics of this hyaluronate-binding activity are consistent with those of a chondroitin sulfate proteoglycan aggregate similar to that found in cartilage. A 500-fold purification of this proteoglycan-like, hyaluronate-binding material was achieved by wheat germ agglutinin affinity chromatography, molecular sieve chromatography on Sepharose CL-6B, and ion exchange chromatography on DEAE-cellulose. Another class of hyaluronate-binding material (25-50% of that recovered) eluted from DEAE with 0.24 M NaCl; this material had the properties of a complex glycoprotein, did not contain chondroitin sulfate, and did not react with the antibodies against cartilage link protein and proteoglycan. Thus, adult mouse brain contains at least three different forms of hyaluronate-binding macromolecules. Two of these have properties similar to the link protein and proteoglycan of cartilage proteoglycan aggregates; the third is distinguishable from these entities.

  7. Evidence against the involvement of ionically bound cell wall proteins in pea epicotyl growth

    NASA Technical Reports Server (NTRS)

    Melan, M. A.; Cosgrove, D. J.

    1988-01-01

    Ionically bound cell wall proteins were extracted from 7 day old etiolated pea (Pisum sativum L. cv Alaska) epicotyls with 3 molar LiCl. Polyclonal antiserum was raised in rabbits against the cell wall proteins. Growth assays showed that treatment of growing region segments (5-7 millimeters) of peas with either dialyzed serum, serum globulin fraction, affinity purified immunoglobulin, or papain-cleaved antibody fragments had no effect on growth. Immunofluorescence microscopy confirmed antibody binding to cell walls and penetration of the antibodies into the tissues. Western blot analysis, immunoassay results, and affinity chromatography utilizing Sepharose-bound antibodies confirmed recognition of the protein preparation by the antibodies. Experiments employing in vitro extension as a screening measure indicated no effect upon extension by antibodies, by 50 millimolar LiCl perfusion of the apoplast or by 3 molar LiCl extraction. Addition of cell wall protein to protease pretreated segments did not restore extension nor did addition of cell wall protein to untreated segments increase extension. It is concluded that, although evidence suggests that protein is responsible for the process of extension, the class(es) of proteins which are extracted from pea cell walls with 3 molar LiCl are probably not involved in this process.

  8. Development of anti-bovine IgA single chain variable fragment and its application in diagnosis of foot-and-mouth disease

    PubMed Central

    Sridevi, N. V.; Shukra, A. M.; Neelakantam, B.; Anilkumar, J.; Madhanmohan, M.; Rajan, S.; Dev Chandran

    2014-01-01

    Recombinant antibody fragments like single chain variable fragments (scFvs) represent an attractive yet powerful alternative to immunoglobulins and hold great potential in the development of clinical diagnostic/therapeutic reagents. Structurally, scFvs are the smallest antibody fragments capable of retaining the antigen-binding capacity of whole antibodies and are composed of an immunoglobulin (Ig) variable light (VL) and variable heavy (VH) chain joined by a flexible polypeptide linker. In the present study, we constructed a scFv against bovine IgA from a hybridoma cell line IL-A71 that secretes a monoclonal antibody against bovine IgA using recombinant DNA technology. The scFv was expressed in Escherichia coli and purified using immobilized metal affinity chromatography (IMAC). The binding activity and specificity of the scFv was established by its non-reactivity toward other classes of immunoglobulins as determined by enzyme-linked immunosorbent assay (ELISA) and immunoblot analysis. Kinetic measurement of the scFv indicated that the recombinant antibody fragment had an affinity in picomolar range toward purified IgA. Furthermore, the scFv was used to develop a sensitive ELISA for the detection of foot and mouth disease virus (FMDV) carrier animals. PMID:24678404

  9. Label-Free, LC-MS-Based Assays to Quantitate Small-Molecule Antagonist Binding to the Mammalian BLT1 Receptor.

    PubMed

    Chen, Xun; Stout, Steven; Mueller, Uwe; Boykow, George; Visconti, Richard; Siliphaivanh, Phieng; Spencer, Kerrie; Presland, Jeremy; Kavana, Michael; Basso, Andrea D; McLaren, David G; Myers, Robert W

    2017-08-01

    We have developed and validated label-free, liquid chromatography-mass spectrometry (LC-MS)-based equilibrium direct and competition binding assays to quantitate small-molecule antagonist binding to recombinant human and mouse BLT1 receptors expressed in HEK 293 cell membranes. Procedurally, these binding assays involve (1) equilibration of the BLT1 receptor and probe ligand, with or without a competitor; (2) vacuum filtration through cationic glass fiber filters to separate receptor-bound from free probe ligand; and (3) LC-MS analysis in selected reaction monitoring mode for bound probe ligand quantitation. Two novel, optimized probe ligands, compounds 1 and 2, were identified by screening 20 unlabeled BLT1 antagonists for direct binding. Saturation direct binding studies confirmed the high affinity, and dissociation studies established the rapid binding kinetics of probe ligands 1 and 2. Competition binding assays were established using both probe ligands, and the affinities of structurally diverse BLT1 antagonists were measured. Both binding assay formats can be executed with high specificity and sensitivity and moderate throughput (96-well plate format) using these approaches. This highly versatile, label-free method for studying ligand binding to membrane-associated receptors should find broad application as an alternative to traditional methods using labeled ligands.

  10. High-level expression of soluble recombinant proteins in Escherichia coli using an HE-maltotriose-binding protein fusion tag.

    PubMed

    Han, Yingqian; Guo, Wanying; Su, Bingqian; Guo, Yujie; Wang, Jiang; Chu, Beibei; Yang, Guoyu

    2018-02-01

    Recombinant proteins are commonly expressed in prokaryotic expression systems for large-scale production. The use of genetically engineered affinity and solubility enhancing fusion proteins has increased greatly in recent years, and there now exists a considerable repertoire of these that can be used to enhance the expression, stability, solubility, folding, and purification of their fusion partner. Here, a modified histidine tag (HE) used as an affinity tag was employed together with a truncated maltotriose-binding protein (MBP; consisting of residues 59-433) from Pyrococcus furiosus as a solubility enhancing tag accompanying a tobacco etch virus protease-recognition site for protein expression and purification in Escherichia coli. Various proteins tagged at the N-terminus with HE-MBP(Pyr) were expressed in E. coli BL21(DE3) cells to determine expression and solubility relative to those tagged with His6-MBP or His6-MBP(Pyr). Furthermore, four HE-MBP(Pyr)-fused proteins were purified by immobilized metal affinity chromatography to assess the affinity of HE with immobilized Ni 2+ . Our results showed that HE-MBP(Pyr) represents an attractive fusion protein allowing high levels of soluble expression and purification of recombinant protein in E. coli. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Affinity-based precipitation via a bivalent peptidic hapten for the purification of monoclonal antibodies.

    PubMed

    Handlogten, Michael W; Stefanick, Jared F; Deak, Peter E; Bilgicer, Basar

    2014-09-07

    In a previous study, we demonstrated a non-chromatographic affinity-based precipitation method, using trivalent haptens, for the purification of mAbs. In this study, we significantly improved this process by using a simplified bivalent peptidic hapten (BPH) design, which enables facile and rapid purification of mAbs while overcoming the limitations of the previous trivalent design. The improved affinity-based precipitation method (ABP(BPH)) combines the simplicity of salt-induced precipitation with the selectivity of affinity chromatography for the purification of mAbs. The ABP(BPH) method involves 3 steps: (i) precipitation and separation of protein contaminants larger than immunoglobulins with ammonium sulfate; (ii) selective precipitation of the target-antibody via BPH by inducing antibody-complex formation; (iii) solubilization of the antibody pellet and removal of BPH with membrane filtration resulting in the pure antibody. The ABP(BPH) method was evaluated by purifying the pharmaceutical antibody trastuzumab from common contaminants including CHO cell conditioned media, DNA, ascites fluid, other antibodies, and denatured antibody with >85% yield and >97% purity. Importantly, the purified antibody demonstrated native binding activity to cell lines expressing the target protein, HER2. Combined, the ABP(BPH) method is a rapid and scalable process for the purification of antibodies with the potential to improve product quality while decreasing purification costs.

  12. Cytotoxicity of seven bisphenol analogues compared to bisphenol A and relationships with membrane affinity data.

    PubMed

    Russo, Giacomo; Capuozzo, Antonella; Barbato, Francesco; Irace, Carlo; Santamaria, Rita; Grumetto, Lucia

    2018-06-01

    Bisphenol A (BPA) is a chemical used in numerous industrial applications. Due to its well ascertained toxicity as endocrine disruptor, industries have started to replace it with other bisphenols whose alleged greater safety is scarcely supported by literature studies. In this study, the toxicity of seven BPA analogues was evaluated using both in silico and in vitro techniques, as compared to BPA toxicity. Furthermore, their affinity indexes for phospholipids (i.e. phospholipophilicity) were determined by immobilized artificial membrane liquid chromatography (IAM-LC) and possible relationships with in vitro toxic activity were also investigated. The results on four different cell cultures yielded similar ranking of toxicity for the bisphenols considered, with IC 50 values confirming their poor acute toxicity. As compared to BPA, bisphenol AF, bisphenol B, bisphenol M, and bisphenol A diglycidyl ether resulted more toxic, while bisphenol S, bisphenol F and bisphenol E were found as the less toxic congeners. These results are partly consistent with the scale of phospholipid affinity showing that toxicity increases at increasing membrane affinity. Therefore, phospholipophilicity determination can be assumed as a useful preliminary tool to select less toxic congeners to surrogate BPA in industrial applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Identification of a new peptide deformylase gene from enterococcus faecium and establishment of a new screening model targeted on PDF for novel antibiotics.

    PubMed

    Tang, Xian-Bing; Si, Shu-Yi; Zhang, Yue-Qin

    2004-09-01

    To identify a new peptide deformylase (PDF) gene (Genebank Accession AY238515) from Enterococcus faecium and to establish a new screening model targeted on PDF. A new PDF gene was identified by BLAST analysis and PCR and was subsequently over-expressed in the prokaryotic expression host E. coli B121(DE3). Over-expressed protein was purified for enzymatic assay by metal affinity chromatography and a new screening model was established for novel antibiotics. A new PDF gene of Enterococcus faecium was identified successfully. Ten positive samples were picked up from 8000 compound library and the microbial fermentation broth samples. A new PDF of gene Enterococcus faecium was first identified and the model had a high efficacy. Positive samples screened may be antibacterial agents of broad spectrum.

  14. In vivo phosphorylation of a peptide tag for protein purification.

    PubMed

    Goux, Marine; Fateh, Amina; Defontaine, Alain; Cinier, Mathieu; Tellier, Charles

    2016-05-01

    To design a new system for the in vivo phosphorylation of proteins in Escherichia coli using the co-expression of the α-subunit of casein kinase II (CKIIα) and a target protein, (Nanofitin) fused with a phosphorylatable tag. The level of the co-expressed CKIIα was controlled by the arabinose promoter and optimal phosphorylation was obtained with 2 % (w/v) arabinose as inductor. The effectiveness of the phosphorylation system was demonstrated by electrophoretic mobility shift assay (NUT-PAGE) and staining with a specific phosphoprotein-staining gel. The resulting phosphorylated tag was also used to purify the phosphoprotein by immobilized metal affinity chromatography, which relies on the specific interaction of phosphate moieties with Fe(III). The use of a single tag for both the purification and protein array anchoring provides a simple and straightforward system for protein analysis.

  15. Affinity Proteomics for Fast, Sensitive, Quantitative Analysis of Proteins in Plasma.

    PubMed

    O'Grady, John P; Meyer, Kevin W; Poe, Derrick N

    2017-01-01

    The improving efficacy of many biological therapeutics and identification of low-level biomarkers are driving the analytical proteomics community to deal with extremely high levels of sample complexity relative to their analytes. Many protein quantitation and biomarker validation procedures utilize an immunoaffinity enrichment step to purify the sample and maximize the sensitivity of the corresponding liquid chromatography tandem mass spectrometry measurements. In order to generate surrogate peptides with better mass spectrometric properties, protein enrichment is followed by a proteolytic cleavage step. This is often a time-consuming multistep process. Presented here is a workflow which enables rapid protein enrichment and proteolytic cleavage to be performed in a single, easy-to-use reactor. Using this strategy Klotho, a low-abundance biomarker found in plasma, can be accurately quantitated using a protocol that takes under 5 h from start to finish.

  16. Problem-solving test: Southwestern blotting.

    PubMed

    Szeberényi, József

    2014-01-01

    Terms to be familiar with before you start to solve the test: Southern blotting, Western blotting, restriction endonucleases, agarose gel electrophoresis, nitrocellulose filter, molecular hybridization, polyacrylamide gel electrophoresis, proto-oncogene, c-abl, Src-homology domains, tyrosine protein kinase, nuclear localization signal, cDNA, deletion mutants, expression plasmid, transfection, RNA polymerase II, promoter, Shine-Dalgarno sequence, polyadenylation element, affinity chromatography, Northern blotting, immunoprecipitation, sodium dodecylsulfate, autoradiography, tandem repeats. Copyright © 2014 The International Union of Biochemistry and Molecular Biology.

  17. Myogenic Growth Factor Present in Skeletal Muscle is Purified by Heparin-Affinity Chromatography

    NASA Astrophysics Data System (ADS)

    Kardami, Elissavet; Spector, Dennis; Strohman, Richard C.

    1985-12-01

    A myogenic growth factor has been purified from a skeletal muscle, the anterior latissimus dorsi, of adult chickens. In the range of 1-10 ng, this factor stimulates DNA synthesis as well as protein and muscle-specific myosin accumulation in myogenic cell cultures. Purification is achieved through binding of the factor to heparin. The factor is distinct from transferrin and works synergistically with transferrin in stimulating myogenesis in vitro.

  18. Adult T-cell leukemia-associated antigen (ATLA): detection of a glycoprotein in cell- and virus-free supernatant.

    PubMed

    Yamamoto, N; Schneider, J; Hinuma, Y; Hunsmann, G

    1982-01-01

    A glycoprotein of an apparent molecular mass of 46,000, gp 46, was enriched by affinity chromatography from the virus- and cell-free culture medium of adult T-cell leukemia virus (ATLV) infected cells. gp 46 was specifically precipitated with sera from patients with adult T-cell leukemia associated antigen (ATLA). Thus, gp 46 is a novel component of the ATLA antigen complex.

  19. A safe, effective, and facility compatible cleaning in place procedure for affinity resin in large-scale monoclonal antibody purification.

    PubMed

    Wang, Lu; Dembecki, Jill; Jaffe, Neil E; O'Mara, Brian W; Cai, Hui; Sparks, Colleen N; Zhang, Jian; Laino, Sarah G; Russell, Reb J; Wang, Michelle

    2013-09-20

    Cleaning-in-place (CIP) for column chromatography plays an important role in therapeutic protein production. A robust and efficient CIP procedure ensures product quality, improves column life time and reduces the cost of the purification processes, particularly for those using expensive affinity resins, such as MabSelect protein A resin. Cleaning efficiency, resin compatibility, and facility compatibility are the three major aspects to consider in CIP process design. Cleaning MabSelect resin with 50mM sodium hydroxide (NaOH) along with 1M sodium chloride is one of the most popular cleaning procedures used in biopharmaceutical industries. However, high concentration sodium chloride is a leading cause of corrosion in the stainless steel containers used in large scale manufacture. Corroded containers may potentially introduce metal contaminants into purified drug products. Therefore, it is challenging to apply this cleaning procedure into commercial manufacturing due to facility compatibility and drug safety concerns. This paper reports a safe, effective and environmental and facility-friendly cleaning procedure that is suitable for large scale affinity chromatography. An alternative salt (sodium sulfate) is used to prevent the stainless steel corrosion caused by sodium chloride. Sodium hydroxide and salt concentrations were optimized using a high throughput screening approach to achieve the best combination of facility compatibility, cleaning efficiency and resin stability. Additionally, benzyl alcohol is applied to achieve more effective microbial control. Based on the findings, the recommended optimum cleaning strategy is cleaning MabSelect resin with 25 mM NaOH, 0.25 M Na2SO4 and 1% benzyl alcohol solution every cycle, followed by a more stringent cleaning using 50 mM NaOH with 0.25 M Na2SO4 and 1% benzyl alcohol at the end of each manufacturing campaign. A resin life cycle study using the MabSelect affinity resin demonstrates that the new cleaning strategy prolongs resin life time and consistently delivers high purity drug products. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Current advances in screening for bioactive components from medicinal plants by affinity ultrafiltration mass spectrometry.

    PubMed

    Chen, Guilin; Huang, Bill X; Guo, Mingquan

    2018-05-21

    Medicinal plants have played an important role in maintaining human health for thousands of years. However, the interactions between the active components in medicinal plants and some certain biological targets during a disease are still unclear in most cases. To conduct the high-throughput screening for small active molecules that can interact with biological targets, which is of great theoretical significance and practical value. The ultrafiltration mass spectrometry (UF-LC/MS) is a powerful bio-analytical method by combining affinity ultrafiltration and liquid chromatography-mass spectrometry (LC/MS), which could rapidly screen and identify small active molecules that bind to biological targets of interest at the same time. Compared with other analytical methods, affinity UF-LC/MS has the characteristics of fast, sensitive and high throughput, and is especially suitable for the complicated extracts of medicinal plants. In this review, the basic principle, characteristics and some most recent challenges in UF-LC/MS have been demonstrated. Meanwhile, the progress and applications of affinity UF-LC/MS in the discovery of the active components from natural medicinal plants and the interactions between small molecules and biological target proteins are also briefly summarised. In addition, the future directions for UF-LC/MS are also prospected. Affinity UF-LC/MS is a powerful tool in studies on the interactions between small active molecules and biological protein targets, especially in the high-throughput screening of active components from the natural medicinal plants. Copyright © 2018 John Wiley & Sons, Ltd.

  1. TRIM28 and β-Actin Identified via Nanobody-Based Reverse Proteomics Approach as Possible Human Glioblastoma Biomarkers

    PubMed Central

    Jovčevska, Ivana; Zupanec, Neja; Kočevar, Nina; Cesselli, Daniela; Podergajs, Neža; Stokin, Clara Limbaeck; Myers, Michael P.; Muyldermans, Serge; Ghassabeh, Gholamreza Hassanzadeh; Motaln, Helena; Ruaro, Maria Elisabetta; Bourkoula, Evgenia; Turnšek, Tamara Lah; Komel, Radovan

    2014-01-01

    Malignant gliomas are among the rarest brain tumours, and they have the worst prognosis. Grade IV astrocytoma, known as glioblastoma multiforme (GBM), is a highly lethal disease where the standard therapies of surgery, followed by radiation and chemotherapy, cannot significantly prolong the life expectancy of the patients. Tumour recurrence shows more aggressive form compared to the primary tumour, and results in patient survival from 12 to 15 months only. Although still controversial, the cancer stem cell hypothesis postulates that cancer stem cells are responsible for early relapse of the disease after surgical intervention due to their high resistance to therapy. Alternative strategies for GBM therapy are thus urgently needed. Nanobodies are single-domain antigen-binding fragments of heavy-chain antibodies, and together with classical antibodies, they are part of the camelid immune system. Nanobodies are small and stable, and they share a high degree of sequence identity to the human heavy chain variable domain, and these characteristics offer them advantages over classical antibodies or antibody fragments. We first immunised an alpaca with a human GBM stem-like cell line prepared from primary GBM cultures. Next, a nanobody library was constructed in a phage-display vector. Using nanobody phage-display technology, we selected specific GBM stem-like cell binders through a number of affinity selections, using whole cell protein extracts and membrane protein-enriched extracts from eight different GBM patients, and membrane protein-enriched extracts from two established GBM stem-like cell lines (NCH644 and NCH421K cells). After the enrichment, periplasmic extract ELISA was used to screen for specific clones. These nanobody clones were recloned into the pHEN6 vector, expressed in Escherichia coli WK6, and purified using immobilised metal affinity chromatography and size-exclusion chromatography. Specific nanobody:antigen pairs were obtained and mass spectrometry analysis revealed two proteins, TRIM28 and β-actin, that were up-regulated in the GBM stem-like cells compared to the controls. PMID:25419715

  2. Quantitative Phosphoproteomics Unravels Biased Phosphorylation of Serotonin 2A Receptor at Ser280 by Hallucinogenic versus Nonhallucinogenic Agonists*

    PubMed Central

    Karaki, Samah; Becamel, Carine; Murat, Samy; Mannoury la Cour, Clotilde; Millan, Mark J.; Prézeau, Laurent; Bockaert, Joël; Marin, Philippe; Vandermoere, Franck

    2014-01-01

    The serotonin 5-HT2A receptor is a primary target of psychedelic hallucinogens such as lysergic acid diethylamine, mescaline, and psilocybin, which reproduce some of the core symptoms of schizophrenia. An incompletely resolved paradox is that only some 5-HT2A receptor agonists exhibit hallucinogenic activity, whereas structurally related agonists with comparable affinity and activity lack such a psychoactive activity. Using a strategy combining stable isotope labeling by amino acids in cell culture with enrichment in phosphorylated peptides by means of hydrophilic interaction liquid chromatography followed by immobilized metal affinity chromatography, we compared the phosphoproteome in HEK-293 cells transiently expressing the 5-HT2A receptor and exposed to either vehicle or the synthetic hallucinogen 1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane (DOI) or the nonhallucinogenic 5-HT2A agonist lisuride. Among the 5995 identified phosphorylated peptides, 16 sites were differentially phosphorylated upon exposure of cells to DOI versus lisuride. These include a serine (Ser280) located in the third intracellular loop of the 5-HT2A receptor, a region important for its desensitization. The specific phosphorylation of Ser280 by hallucinogens was further validated by quantitative mass spectrometry analysis of immunopurified receptor digests and by Western blotting using a phosphosite specific antibody. The administration of DOI, but not of lisuride, to mice, enhanced the phosphorylation of 5-HT2A receptors at Ser280 in the prefrontal cortex. Moreover, hallucinogens induced a less pronounced desensitization of receptor-operated signaling in HEK-293 cells and neurons than did nonhallucinogenic agonists. The mutation of Ser280 to aspartic acid (to mimic phosphorylation) reduced receptor desensitization by nonhallucinogenic agonists, whereas its mutation to alanine increased the ability of hallucinogens to desensitize the receptor. This study reveals a biased phosphorylation of the 5-HT2A receptor in response to hallucinogenic versus nonhallucinogenic agonists, which underlies their distinct capacity to desensitize the receptor. PMID:24637012

  3. M/sub r/ 25,000 heparin-binding protein from guinea pig brain is a high molecular weight form of basic fibroblast growth factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moscatelli, D.; Joseph-Silverstein, J.; Manejias, R.

    1987-08-01

    A M/sub r/ 25,000 form of basic fibroblast growth factor (bFGF) has been isolated from guinea pig grain along with the typical M/sub r/ 18,000 form. Both forms were purified to homogeneity by a combination of heparin-affinity chromatography and ion-exchange chromatography on an FPLC Mono S column. The M/sub r/ 25,000 form, like the M/sub r/ 18,000 form was not eluted from the heparin-affinity column with 0.95 M NaCl, but was eluted with 2 M NaCl. The M/sub r/ 25,000 guinea pig protein stimulated plasminogen activator production by cultured bovine capillary endothelial cells in a dose-dependent manner at concentration ofmore » 0.1-10 ngml, the same range that was effective for guinea pig and human M/sub r/ 18,000 bFGFs. The binding of human /sup 125/I-labeled bFGF to baby hamster kidney cells is inhibited equally by the M/sub r/ 25,000 guinea pig protein and the M/sub r/ 18,000 guinea pig and human bFGFs. Polyclonal antibodies raised against human bFGF recognize both the M/sub r/ 25,000 and 18,000 guinea pig proteins in an immunoblot analysis. In a radioimmunoassay, both the M/sub r/ 25,000 and M/sub r/ 18,000 guinea pig proteins compete equally well with iodinated human bFGF for binding to the anti-human bFGF antibodies. When treated with low concentrations of trypsin, the M/sub r/ 25,000 guinea pig bFGF was converted to a M/sub r/ 18,000 protein. These results show that the two molecules are closely related and suggest that the M/sub r/ 25,000 protein shares substantial homology with the M/sub r/ 18,000 bFGF« less

  4. STUDIES OF VERAPAMIL BINDING TO HUMAN SERUM ALBUMIN BY HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY

    PubMed Central

    Mallik, Rangan; Yoo, Michelle J.; Chen, Sike; Hage, David S.

    2008-01-01

    The binding of verapamil to the protein human serum albumin (HSA) was examined by using high-performance affinity chromatography. Many previous reports have investigated the binding of verapamil with HSA, but the exact strength and nature of this interaction (e.g., the number and location of binding sites) is still unclear. In this study, frontal analysis indicated that at least one major binding site was present for R- and S-verapamil on HSA, with estimated association equilibrium constants on the order of 104 M−1 and a 1.4-fold difference in these values for the verapamil enantiomers at pH 7.4 and 37°C. The presence of a second, weaker group of binding sites on HSA was also suggested by these results. Competitive binding studies using zonal elution were carried out between verapamil and various probe compounds that have known interactions with several major and minor sites on HSA. R/S-Verapamil was found to have direct competition with S-warfarin, indicating that verapamil was binding to Sudlow site I (i.e., the warfarin-azapropazone site of HSA). The average association equilibrium constant for R- and S-verapamil at this site was 1.4 (±0.1) × 104 M−1. Verapamil did not have any notable binding to Sudlow site II of HSA but did appear to have some weak allosteric interactions with L-tryptophan, a probe for this site. An allosteric interaction between verapamil and tamoxifen (a probe for the tamoxifen site) was also noted, which was consistent with the binding of verapamil at Sudlow site I. No interaction was seen between verapamil and digitoxin, a probe for the digitoxin site of HSA. These results gave good agreement with previous observations made in the literature and help provide a more detailed description of how verapamil is transported in blood and of how it may interact with other drugs in the body. PMID:18980867

  5. Purification and Characterization of a Mucin Specific Mycelial Lectin from Aspergillus gorakhpurensis: Application for Mitogenic and Antimicrobial Activity

    PubMed Central

    Singh, Ram Sarup; Kaur, Hemant Preet; Singh, Jatinder

    2014-01-01

    Background Lectins are carbohydrate binding proteins or glycoproteins that bind reversibly to specific carbohydrates present on the apposing cells, which are responsible for their ability to agglutinate red blood cells, lymphocytes, fibroblasts, etc. Interest in lectins has been intensified due to their carbohydrate specificity as they can be valuable reagents for the investigation of cell surface sugars, purification and characterization of glycoproteins. The present study reports the purification, characterization and evaluation of mitogenic and antimicrobial potential of a mycelial lectin from Aspergillus gorakhpurensis. Methods Affinity chromatography on mucin-sepharose column was carried out for purification of Aspergillus gorakhpurensis lectin. The lectin was characterized for physico-chemical parameters. Mitogenic potential of the lectin was evaluated against splenocytes of Swiss albino mice by MTT assay. Antimicrobial activity of the purified lectin has also been evaluated by disc diffusion assay. Results Single-step affinity purification resulted in 18.6-fold purification of the mycelial lectin. The molecular mass of the lectin was found to be 70 kDa and it was composed of two subunits of 34.8 kDa as determined by gel filtration chromatography, SDS-PAGE and MALDI-TOF analysis. pH optima of the lectin was found to be 6.5–9.5, while optimum temperature for lectin activity was 20–30°C. Lectin was stable within a pH range of 7.0–10.5 and showed fair thermostability. EDTA did not affect lectin activity whereas it was found susceptible to the denaturants tested. MTT assay revealed strong mitogenic potential of A. gorakhpurensis lectin at a concentration upto 150 µg/mL. Antimicrobial activity assay showed its potent antibacterial activity against Bacillus cereus, Staphylococcous aureus and Escherichia coli and marginal antifungal activity against Saccharomyces cerevisiae. Conclusion This is the first report on the mitogenic and antimicrobial potential of Aspergillus gorakhpurensis lectin. The results will provide useful guidelines for further research in clinical applications of this lectin. PMID:25286160

  6. Purification and characterization of a mucin specific mycelial lectin from Aspergillus gorakhpurensis: application for mitogenic and antimicrobial activity.

    PubMed

    Singh, Ram Sarup; Kaur, Hemant Preet; Singh, Jatinder

    2014-01-01

    Lectins are carbohydrate binding proteins or glycoproteins that bind reversibly to specific carbohydrates present on the apposing cells, which are responsible for their ability to agglutinate red blood cells, lymphocytes, fibroblasts, etc. Interest in lectins has been intensified due to their carbohydrate specificity as they can be valuable reagents for the investigation of cell surface sugars, purification and characterization of glycoproteins. The present study reports the purification, characterization and evaluation of mitogenic and antimicrobial potential of a mycelial lectin from Aspergillus gorakhpurensis. Affinity chromatography on mucin-sepharose column was carried out for purification of Aspergillus gorakhpurensis lectin. The lectin was characterized for physico-chemical parameters. Mitogenic potential of the lectin was evaluated against splenocytes of Swiss albino mice by MTT assay. Antimicrobial activity of the purified lectin has also been evaluated by disc diffusion assay. Single-step affinity purification resulted in 18.6-fold purification of the mycelial lectin. The molecular mass of the lectin was found to be 70 kDa and it was composed of two subunits of 34.8 kDa as determined by gel filtration chromatography, SDS-PAGE and MALDI-TOF analysis. pH optima of the lectin was found to be 6.5-9.5, while optimum temperature for lectin activity was 20-30 °C. Lectin was stable within a pH range of 7.0-10.5 and showed fair thermostability. EDTA did not affect lectin activity whereas it was found susceptible to the denaturants tested. MTT assay revealed strong mitogenic potential of A. gorakhpurensis lectin at a concentration upto 150 µg/mL. Antimicrobial activity assay showed its potent antibacterial activity against Bacillus cereus, Staphylococcous aureus and Escherichia coli and marginal antifungal activity against Saccharomyces cerevisiae. This is the first report on the mitogenic and antimicrobial potential of Aspergillus gorakhpurensis lectin. The results will provide useful guidelines for further research in clinical applications of this lectin.

  7. Induced binding of proteins by ammonium sulfate in affinity and ion-exchange column chromatography.

    PubMed

    Arakawa, Tsutomu; Tsumoto, Kouhei; Ejima, Daisuke; Kita, Yoshiko; Yonezawa, Yasushi; Tokunaga, Masao

    2007-04-10

    In general, proteins bind to affinity or ion-exchange columns at low salt concentrations, and the bound proteins are eluted by raising the salt concentration, changing the solvent pH, or adding competing ligands. Blue-Sepharose is often used to remove bovine serum albumin (BSA) from samples, but when we applied BSA to Blue-Sepharose in 20 mM phosphate, pH 7.0, 50%-60% of the protein flowed through the column; however, complete binding of BSA was achieved by the addition of 2 M ammonium sulfate (AS) to the column equilibration buffer and the sample. The bound protein was eluted by decreasing the AS concentration or by adding 1 M NaCl or arginine. AS at high concentrations resulted in binding of BSA even to an ion-exchange column, Q-Sepharose, at pH 7.0. Thus, although moderate salt concentrations elute proteins from Blue-Sepharose or ion-exchange columns, proteins can be bound to these columns under extreme salting-out conditions. Similar enhanced binding of proteins by AS was observed with an ATP-affinity column.

  8. Purification, crystallization and preliminary crystallographic studies of haemoglobin from mongoose (Helogale parvula) in two different crystal forms induced by pH variation

    PubMed Central

    Mohamed Abubakkar, M.; Saraboji, K.; Ponnuswamy, M. N.

    2013-01-01

    Haemoglobin (Hb) is a respiratory pigment; it is a tetrameric protein that ferries oxygen from the lungs to tissues and transports carbon dioxide on the return journey. The oxygen affinity of haemoglobin is regulated by the concentration of oxygen surrounding it and several efforts have revealed the shapes of Hb in different states and with different functions. However, study of the molecular basis of Hbs from low-oxygen-affinity species is critically needed in order to increase the understanding of the mechanism behind oxygen adaptation. The present study reports the preliminary crystallographic study of low-oxygen-affinity haemoglobin from mongoose, a burrowing mammal. Haemoglobin from mongoose was purified by anion-exchange chromatography, crystallized using the hanging-drop vapour-diffusion method and diffraction data sets were collected from monoclinic (2.3 Å resolution) and orthorhombic (2.9 Å resolution) crystal forms obtained by pH variation. The monoclinic and orthorhombic asymmetric units contained half and a whole biological molecule, respectively. PMID:23385751

  9. Evaluation of the levels of alcohol sulfates and ethoxysulfates in marine sediments near wastewater discharge points along the coast of Tenerife Island.

    PubMed

    Fernández-Ramos, C; Ballesteros, O; Zafra-Gómez, A; Camino-Sánchez, F J; Blanc, R; Navalón, A; Pérez-Trujillo, J P; Vílchez, J L

    2014-02-15

    Alcohol sulfates (AS) and alcohol ethoxysulfates (AES) are all High Production Volume and 'down-the-drain' chemicals used globally in detergent and personal care products, resulting in low levels ultimately released to the environment via wastewater treatment plant effluents. They have a strong affinity for sorption to sediments. Almost 50% of Tenerife Island surface area is environmentally protected. Therefore, determination of concentration levels of AS/AES in marine sediments near wastewater discharge points along the coast of the Island is of interest. These data were obtained after pressurized liquid extraction and liquid chromatography-tandem mass spectrometry analysis. Short chains of AES and especially of AS dominated the homologue distribution for AES. The Principal Components Analysis was used. The results showed that the sources of AS and AES were the same and that both compounds exhibit similar behavior. Three different patterns in the distribution for homologues and ethoxymers were found. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolonko, Nadine; Bannach, Oliver; Aschermann, Katja

    Viroids are single-stranded, circular RNAs of 250 to 400 bases, that replicate autonomously in their host plants but do not code for a protein. Viroids of the family Pospiviroidae, of which potato spindle tuber viroid (PSTVd) is the type strain, are replicated by the host's DNA-dependent RNA polymerase II in the nucleus. To analyze the initiation site of transcription from the (+)-stranded circles into (-)-stranded replication intermediates, we used a nuclear extract from a non-infected cell culture of the host plant S. tuberosum. The (-)-strands, which were de novo-synthesized in the extract upon addition of circular (+)-PSTVd, were purified bymore » affinity chromatography. This purification avoided contamination by host nucleic acids that had resulted in a misassignment of the start site in an earlier study. Primer-extension analysis of the de novo-synthesized (-)-strands revealed a single start site located in the hairpin loop of the left terminal region in circular PSTVd's secondary structure. This start site is supported further by analysis of the infectivity and replication behavior of site-directed mutants in planta.« less

  11. Isolation and initial structural characterization of a 27 kDa protein from Zingiber officinale

    NASA Astrophysics Data System (ADS)

    Rasheed, Saima; Malik, Shoaib Ahmad; Falke, Sven; Arslan, Ali; Fazel, Ramin; Schlüter, Hartmut; Betzel, Christian; Choudhary, M. Iqbal

    2018-03-01

    Zingiber officinale Roscoe (Ginger) is a widely used traditional medicinal plant (for different ailments such as arthritis, constipation, and hypertension). This article describes the isolation and characterization of a so far unknown protein from ginger rhizomes applying ion exchange, affinity, size-exclusion chromatography, small angle X-ray scattering (SAXS), and mass spectrometry techniques. One-dimensional Coomassie-stained SDS-PAGE was performed under non-reducing conditions, showing one band corresponding to approx. 27 kDa. Dynamic light scattering (DLS) analysis of the protein solution revealed monodispersity and a monomeric state of the purified protein. Circular dichroism (CD) spectroscopy strongly indicated a β-sheet-rich protein, and disordered regions. MALDI-TOF-MS, and LC-MS/MS analysis resulted in the identification of 27.29 kDa protein, having 32.13% and 25.34% sequence coverage with Zingipain-1 and 2, respectively. The monomeric state and molecular weight were verified by small angle X-ray scattering (SAXS) studies. An elongated ab-initio model was calculated based on the scattering intensity distribution.

  12. Isolation and cloning of a metalloproteinase from king cobra snake venom.

    PubMed

    Guo, Xiao-Xi; Zeng, Lin; Lee, Wen-Hui; Zhang, Yun; Jin, Yang

    2007-06-01

    A 50 kDa fibrinogenolytic protease, ohagin, from the venom of Ophiophagus hannah was isolated by a combination of gel filtration, ion-exchange and heparin affinity chromatography. Ohagin specifically degraded the alpha-chain of human fibrinogen and the proteolytic activity was completely abolished by EDTA, but not by PMSF, suggesting it is a metalloproteinase. It dose-dependently inhibited platelet aggregation induced by ADP, TMVA and stejnulxin. The full sequence of ohagin was deduced by cDNA cloning and confirmed by protein sequencing and peptide mass fingerprinting. The full-length cDNA sequence of ohagin encodes an open reading frame of 611 amino acids that includes signal peptide, proprotein and mature protein comprising metalloproteinase, disintegrin-like and cysteine-rich domains, suggesting it belongs to P-III class metalloproteinase. In addition, P-III class metalloproteinases from the venom glands of Naja atra, Bungarus multicinctus and Bungarus fasciatus were also cloned in this study. Sequence analysis and phylogenetic analysis indicated that metalloproteinases from elapid snake venoms form a new subgroup of P-III SVMPs.

  13. [Molecular cloning, expression and characterization of lysine decarboxylase gene of endophytic fungus Shiraia sp. Slf14 from Huperzia serrata].

    PubMed

    Peng, Silu; Yang, Huilin; Zhu, Du; Zhang, Zhibin; Yan, Riming; Wang, Ya

    2016-04-14

    Huperzine A (HupA) was approved as a drug for the treatment of Alzheimer's disease. The HupA biosynthetic pathway was started from lysine decarboxylase (LDC), which catalyzes lysine to cadaverine. In this study, we cloned and expressed an LDC gene from a HupA-producing endophytic fungus, and tested LDC activities. An endophytic fungus Shiraia sp. Slf14 from Huperzia serrata was used. LDC gene was obtained by RT-PCR, and cloned into pET-22b(+) and pET-32a(+) vectors to construct recombinant plasmids pET- 22b-LDC and pET-32a-LDC. These two recombinant plasmids were transformed into E. coli BL21, cultured for 8 h at 24 °C, 200 r/min with 1×10–3 mol/L IPTG into medium to express the LDC proteins, respectively. LDC proteins were purified by Ni2+ affinity chromatography. Catalytic activities were measured by Thin Layer Chromatography. At last, the physicochemical properties and structures of these two LDCs were obtained by bioinformatics software. LDC and Trx-LDC were expressed in E. coli BL21 successfully. SDS-PAGE analysis shows that the molecular weight of LDC and Trx-LDC were 24.4 kDa and 42.7 kDa respectively, which are consistent with bioinformatics analysis. In addition, TLC analysis reveals that both LDC and Trx-LDC had catalytic abilities. This work can provide fundamental data for enriching LDC molecular information and reveal the HupA biosynthetic pathway in endophytic fungi.

  14. Two forms of alpha-amylase in mantle tissue of Mytilus galloprovincialis: purification and molecular properties of form II.

    PubMed

    Lombraña, M; Suárez, P; San Juan, F

    2005-09-01

    alpha-Amylase activity has been shown for the first time in a non-digestive tissue from Mytilus galloprovincialis. alpha-amylase from mussel mantle tissue has been purified by affinity chromatography on insoluble starch, followed by gel-filtration chromatography on Superdex-200. The chromatographic and electrophoretic behaviour of M. galloprovincialis alpha-amylase and stability characteristics suggest two forms of this enzyme: one form forming stable aggregates (form I) and a monomeric form (form II) that is more abundant, active and unstable. Both forms show an inverse quantitative variation. Purified form II was highly unstable and the molecular mass was estimated to be 66 kDa by sodium dodecyl sulphate (SDS)-gel electrophoresis. Maximum activity was noted at pH 6.5 and 35 degrees C.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qibin; Tang, Ning; Schepmoes, Athena A.

    Non-enzymatic glycation of peptides and proteins by D-glucose has important implications in the pathogenesis of diabetes mellitus, particularly in the development of diabetic complications. In this report, a thorough proteomic profiling of glycated proteins was attempted by using phenylboronate affinity chromatography to enrich glycated proteins and glycated, tryptic peptides from human plasma and erythrocyte membranes. Enriched peptides were subsequently analyzed by liquid chromatography coupled with electron transfer dissociation tandem mass spectrometry, and 76 and 31 proteins were confidently identified as glycated from human plasma and erythrocyte membrane, respectively. It was observed that most of the glycated proteins can be identifiedmore » in samples from individuals with normal glucose tolerance, although samples from individuals with impaired glucose tolerance and type 2 diabetes mellitus have slightly higher numbers of glycated proteins and more glycation sites identified.« less

  16. Evaluation of microbeads of calcium alginate as a fluidized bed medium for affinity chromatography of Aspergillus niger Pectinase.

    PubMed

    Roy, Ipsita; Jain, Sulakshana; Teotia, Sunita; Gupta, Munishwar Nath

    2004-01-01

    Calcium alginate microbeads (212-425 microm) were prepared by spraying 2% (w/v) alginate solution into 1 M CaCl2 solution. The fluidization behavior of these beads was studied, and the bed expansion index and terminal velocity were found to be 4.3 and 1808 cm h(-1), respectively. Residence time distribution curves showed that the dispersion of the protein was much less with these microbeads than with conventionally prepared calcium alginate macrobeads when both kinds of beads were used for chromatography in a fluidized bed format. The fluidized bed of these beads was used for the purification of pectinase from a commercial preparation. The media performed well even with diluted feedstock; 90% activity recovery with 211-fold purification was observed.

  17. Processing of N-linked oligosaccharides from precursor- to mature-form herpes simplex virus type 1 glycoprotein gC.

    PubMed

    Serafini-Cessi, F; Dall'Olio, F; Pereira, L; Campadelli-Fiume, G

    1984-09-01

    Immature and mature forms of glycoprotein gC were purified by immunoadsorbent from herpes simplex virus type 1-infected BHK cells labeled with [3H]mannose for a 20-min pulse or for 11 h followed by a 3-h chase. The nature of N-asparagine-linked oligosaccharides carried by the immature form, pgC (molecular weight = 92,000), and the mature gC (molecular weight = 120,000) has been investigated. All pronase-digested glycopeptides of pgC were susceptible to endo-beta-N-acetylglucosaminidase H treatment; thus they have a high-mannose structure. Using thin-layer chromatography to separate endo-beta-N-acetylglucosaminidase H-cleaved oligosaccharides, polymannosyl chains of different sizes, ranging from Man9GlcNAc to Man5GlcNAc, were separated. The major components were Man8GlcNAc and Man7GlcNAc, suggesting that pgC labeled in a 20-min pulse represents the form of glycoprotein already routed to the Golgi apparatus. Analysis of glycopeptides of mature gC showed that the majority (95%) of N-linked glycans were converted to complex-type glycans. Ion-exchange chromatography and affinity chromatography on concanavalin A-Sepharose and leucoagglutinin-agarose revealed that diantennary and triantennary glycans predominated, whereas tetrantennary chains were not present. Parts of the di- and triantennary chains were not fully sialylated. The high heterogeneity of complex-type chains found in mature gC may be related to the high number of N-glycosylation sites of the glycoprotein as predicted by DNA sequencing studies (Frink et al., J. Virol. 45:634-647, 1983).

  18. Cloning and Characterization of Cold-Adapted α-Amylase from Antarctic Arthrobacter agilis.

    PubMed

    Kim, Su-Mi; Park, Hyun; Choi, Jong-Il

    2017-03-01

    In this study, the gene encoding an α-amylase from a psychrophilic Arthrobacter agilis PAMC 27388 strain was cloned into a pET-28a(+) vector and heterologously expressed in Escherichia coli BL21(DE3). The recombinant α-amylase with a molecular mass of about 80 kDa was purified by using Ni 2+ -NTA affinity chromatography. This recombinant α-amylase exhibited optimal activity at pH 3.0 and 30 °C and was highly stable at varying temperatures (30-60 °C) and within the pH range of 4.0-8.0. Furthermore, α-amylase activity was enhanced in the presence of FeCl 3 (1 mM) and β-mercaptoethanol (5 mM), while CoCl 2 (1 mM), ammonium persulfate (5 mM), SDS (10 %), Triton X-100 (10 %), and urea (1 %) inhibited the enzymatic activity. Importantly, the presence of Ca 2+ ions and phenylmethylsulfonyl fluoride (PMSF) did not affect enzymatic activity. Thin layer chromatography (TLC) analysis showed that recombinant A. agilis α-amylase hydrolyzed starch, maltotetraose, and maltotriose, producing maltose as the major end product. These results make recombinant A. agilis α-amylase an attractive potential candidate for industrial applications in the textile, paper, detergent, and pharmaceutical industries.

  19. Glucosylated free oligosaccharides are biomarkers of endoplasmic- reticulum alpha-glucosidase inhibition.

    PubMed

    Alonzi, Dominic S; Neville, David C A; Lachmann, Robin H; Dwek, Raymond A; Butters, Terry D

    2008-01-15

    The inhibition of ER (endoplasmic reticulum) alpha-glucosidases I and II by imino sugars, including NB-DNJ (N-butyl-deoxynojirimycin), causes the retention of glucose residues on N-linked oligosaccharides. Therefore, normal glycoprotein trafficking and processing through the glycosylation pathway is abrogated and glycoproteins are directed to undergo ERAD (ER-associated degradation), a consequence of which is the production of cytosolic FOS (free oligosaccharides). Following treatment with NB-DNJ, FOS were extracted from cells, murine tissues and human plasma and urine. Improved protocols for analysis were developed using ion-exchange chromatography followed by fluorescent labelling with 2-AA (2-aminobenzoic acid) and purification by lectin-affinity chromatography. Separation of 2-AA-labelled FOS by HPLC provided a rapid and sensitive method that enabled the detection of all FOS species resulting from the degradation of glycoproteins exported from the ER. The generation of oligosaccharides derived from glucosylated protein degradation was rapid, reversible, and time- and inhibitor concentration-dependent in cultured cells and in vivo. Long-term inhibition in cultured cells and in vivo indicated a slow rate of clearance of glucosylated FOS. In mouse and human urine, glucosylated FOS were detected as a result of transrenal excretion and provide unique and quantifiable biomarkers of ER-glucosidase inhibition.

  20. Systematic optimization of expression and refolding of the Plasmodium falciparum cysteine protease falcipain-2.

    PubMed

    Sijwali, P S; Brinen, L S; Rosenthal, P J

    2001-06-01

    The Plasmodium falciparum cysteine protease falcipain-2 is a potential new target for antimalarial chemotherapy. In order to obtain large quantities of active falcipain-2 for biochemical and structural analysis, a systematic assessment of optimal parameters for the expression and refolding of the protease was carried out. High-yield expression was achieved using M15(pREP4) Escherichia coli transformed with the pQE-30 plasmid containing a truncated profalcipain-2 construct. Recombinant falcipain-2 was expressed as inclusion bodies, solubilized, and purified by nickel affinity chromatography. A systematic approach was then used to optimize refolding parameters. This approach utilized 100-fold dilutions of reduced and denatured falcipain-2 into 203 different buffers in a microtiter plate format. Refolding efficiency varied markedly. Optimal refolding was obtained in an alkaline buffer containing glycerol or sucrose and equal concentrations of reduced and oxidized glutathione. After optimization of the expression and refolding protocols and additional purification with anion-exchange chromatography, 12 mg of falcipain-2 was obtained from 5 liters of E. coli, and crystals of the protease were grown. The systematic approach described here allowed the rapid evaluation of a large number of expression and refolding conditions and provided milligram quantities of recombinant falcipain-2. Copyright 2001 Academic Press.

  1. Expression and purification of human and Saccharomyces cerevisiae equilibrative nucleoside transporters.

    PubMed

    Boswell-Casteel, Rebba C; Johnson, Jennifer M; Roe-Žurž, Zygy; Duggan, Kelli D; Schmitz, Hannah; Hays, Franklin A

    2018-02-01

    Nucleosides play an essential role in the physiology of eukaryotes by acting as metabolic precursors in de novo nucleic acid synthesis and energy metabolism. Nucleosides also act as ligands for purinergic receptors. Equilibrative nucleoside transporters (ENTs) are polytopic integral membrane proteins that aid in regulating plasmalemmal flux of purine and pyrimidine nucleosides and nucleobases. ENTs exhibit broad substrate selectivity across different isoforms and utilize diverse mechanisms to drive substrate flux across membranes. However, the molecular mechanisms and chemical determinants of ENT-mediated substrate recognition, binding, inhibition, and transport are poorly understood. To determine how ENT-mediated transport occurs at the molecular level, greater chemical insight and assays employing purified protein are essential. This article focuses on the expression and purification of human ENT1, human ENT2, and Saccharomyces cerevisiae ScENT1 using novel expression and purification strategies to isolate recombinant ENTs. ScENT1, hENT1, and hENT2 were expressed in W303 Saccharomyces cerevisiae cells and detergent solubilized from the membrane. After detergent extraction, these ENTs were further purified using immobilized metal affinity chromatography and size exclusion chromatography. This effort resulted in obtaining quantities of purified protein sufficient for future biophysical analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Expression and immunogenic analysis of recombinant polypeptides derived from capsid protein VP1 for developing subunit vaccine material against hepatitis A virus.

    PubMed

    Jang, Kyoung Ok; Park, Jong-Hwa; Lee, Hyun Ho; Chung, Dae Kyun; Kim, Wonyong; Chung, In Sik

    2014-08-01

    Three recombinant polypeptides, VP1-His, VP1-3N-His, and 3D2-His, were produced by Escherichia coli expression system. Recombinant VP1-His, VP1-3N-His, and 3D2-His were expressed as bands with molecular weights of 32, 38, and 30 kDa, respectively. These were purified by affinity chromatography using Ni-NTA Fast-flow resin and/or ion-exchange chromatography using DEAE-Sepharose Fast-flow resin. Intraperitoneal immunizations of recombinant polypeptides successfully elicited the productions of VP1-His, VP1-3N-His, and 3D2-His specific IgG antibodies (IgG subclass distribution of IgG1>IgG2a>IgG2b>IgG3) in sera and induced the secretions of cytokines IFN-γ and IL-6 in spleen cells. Sera from recombinant VP1-His-, VP1-3N-His-, and 3D2-His-immunized mice neutralized the propagation of HAV. The highest neutralizing activity was shown in sera from recombinant VP1-3N-His-immunized mice. These results suggest that recombinant VP1-3N-His can be a useful source for developing hepatitis A virus (HAV) subunit vaccine candidates. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Anti-complementary neutral polysaccharides from leaves of Artemisia princeps.

    PubMed

    Zhao, Q C; Kiyohara, H; Yamada, H

    1994-01-01

    The three anti-complementary neutral polysaccharides, IA-1, IB-1 and IC-1, were purified from the leaves of Artemisia princeps by anion-exchange chromatography, gel filtration and affinity chromatography. The order of the anti-complementary activity was IA-1 > IB-1 > IC-1. The polysaccharides appeared to be homogeneous from the results of gel filtration, HPLC and electrophoresis. The M(r)s of IA-1 IB-1 and IC-1 were estimated to be 56,000, 16,000, and 7000, respectively, by HPLC. IA-1 consisted mainly of arabinose (Ara), galactose (Gal) and glucose (Glc) in molar ratios of 1.8:1.0:0.9, whereas IB-1 and IC-1 were composed mainly of Ara, mannose (Man), Gal and Glc in molar ratios of 3.5:0.8:1.0:0.8 and 2.3:3.5:1.0:3.2, respectively. Methylation analysis, 13C NMR and enzymic digestion suggested that IA-1 mainly contained alpha-L-(1-->3,5)-arabinan, beta-D-(1-->6)-linked Gal and beta-D-(1-->3)-linked Glc. IB-1 also consisted mainly of alpha-L-(1-->3,5)-arabinan and beta-D-(1-->6)-linked Gal, whereas IC-1 was composed mainly of beta-D-(1-->4)- linked Glc and alpha- or beta-D-(1-->4)-linked Man.

  4. Purification and characterization of human mitochondrial transcription factor 1.

    PubMed Central

    Fisher, R P; Clayton, D A

    1988-01-01

    We purified to near homogeneity a transcription factor from human KB cell mitochondria. This factor, designated mitochondrial transcription factor 1 (mtTF1), is required for the in vitro recognition of both major promoters of human mitochondrial DNA by the homologous mitochondrial RNA polymerase. Furthermore, it has been shown to bind upstream regulatory elements of the two major promoters. After separation from RNA polymerase by phosphocellulose chromatography, mtTF1 was chromatographed on a MonoQ anion-exchange fast-performance liquid chromatography column. Analysis of mtTF1-containing fractions by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single major polypeptide with an Mr of approximately 25,000. Centrifugation in analytical glycerol gradients indicated a sedimentation coefficient of approximately 2.5 S, consistent with a monomeric 25-kilodalton protein. Finally, when the 25-kilodalton polypeptide was excised from a stained sodium dodecyl sulfate-polyacrylamide gel and allowed to renature, it regained DNA-binding and transcriptional stimulatory activities at both promoters. Although mtTF1 is the only mitochondrial DNA-binding transcription factor to be purified and characterized, its properties, such as a high affinity for random DNA and a weak specificity for one of its target sequences, may typify this class of regulatory proteins. Images PMID:3211148

  5. An integrative strategy for quantitative analysis of the N-glycoproteome in complex biological samples.

    PubMed

    Wang, Ji; Zhou, Chuang; Zhang, Wei; Yao, Jun; Lu, Haojie; Dong, Qiongzhu; Zhou, Haijun; Qin, Lunxiu

    2014-01-15

    The complexity of protein glycosylation makes it difficult to characterize glycosylation patterns on a proteomic scale. In this study, we developed an integrated strategy for comparatively analyzing N-glycosylation/glycoproteins quantitatively from complex biological samples in a high-throughput manner. This strategy entailed separating and enriching glycopeptides/glycoproteins using lectin affinity chromatography, and then tandem labeling them with 18O/16O to generate a mass shift of 6 Da between the paired glycopeptides, and finally analyzing them with liquid chromatography-mass spectrometry (LC-MS) and the automatic quantitative method we developed based on Mascot Distiller. The accuracy and repeatability of this strategy were first verified using standard glycoproteins; linearity was maintained within a range of 1:10-10:1. The peptide concentration ratios obtained by the self-build quantitative method were similar to both the manually calculated and theoretical values, with a standard deviation (SD) of 0.023-0.186 for glycopeptides. The feasibility of the strategy was further confirmed with serum from hepatocellular carcinoma (HCC) patients and healthy individuals; the expression of 44 glycopeptides and 30 glycoproteins were significantly different between HCC patient and control serum. This strategy is accurate, repeatable, and efficient, and may be a useful tool for identification of disease-related N-glycosylation/glycoprotein changes.

  6. Synthesis of molecular imprinted polymers for selective extraction of domperidone from human serum using high performance liquid chromatography with fluorescence detection.

    PubMed

    Salehi, Simin; Rasoul-Amini, Sara; Adib, Noushin; Shekarchi, Maryam

    2016-08-01

    In this study a novel method is described for selective quantization of domperidone in biological matrices applying molecular imprinted polymers (MIPs) as a sample clean up procedure using high performance liquid chromatography coupled with a fluorescence detector. MIPs were synthesized with chloroform as the porogen, ethylene glycol dimethacrylate as the crosslinker, methacrylic acid as the monomer, and domperidone as the template molecule. The new imprinted polymer was used as a molecular sorbent for separation of domperidone from serum. Molecular recognition properties, binding capacity and selectivity of MIPs were determined. The results demonstrated exceptional affinity for domperidone in biological fluids. The domperidone analytical method using MIPs was verified according to validation parameters, such as selectivity, linearity (5-80ng/mL, r(2)=0.9977), precision and accuracy (10-40ng/mL, intra-day=1.7-5.1%, inter-day=4.5-5.9%, and accuracy 89.07-98.9%).The limit of detection (LOD) and quantization (LOQ) of domperidone was 0.0279 and 0.092ng/mL, respectively. The simplicity and suitable validation parameters makes this a highly valuable selective bioequivalence method for domperidone analysis in human serum. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Penicillin-binding protein 4 of Escherichia coli: molecular cloning of the dacB gene, controlled overexpression, and alterations in murein composition.

    PubMed

    Korat, B; Mottl, H; Keck, W

    1991-03-01

    The penicillin-binding protein 4 (PBP4), from Escherichia coli, a DD-carboxypeptidase/DD-endopeptidase, was purified in an enzymatically active form to homogeneity by affinity chromatography on 6-aminopenicillanic acid/Sepharose and heparin/Sepharose. Polyclonal antibodies raised against the pure protein were used to identify and isolate PBP4 overproducing clones from an E. coli expression library, which was established on the basis of a temperature-inducible runaway replication plasmid. Three positive clones were isolated, one of which carried the intact structural gene dacB that codes for PBP4, on a 1.9kb SmaI-EcoRI fragment, whereas the other two carried truncated forms of this gene. The direction of transcription was determined. The PBP4 overproducing strain, when grown in rich medium, tolerated 160-fold overexpression. After disrupting cells by sonication, the majority (80%) of the overproduced PBP4 was detected in the 100,000 X g supernatant. Southern blotting analysis using the cloned dacB gene as a probe revealed that, in contrast to that described by Takeda et al. (1981), the plasmid pLC18-38 of the Clarke-Carbon collection does not code for PBP4. The overall composition of murein, synthesized in vitro or in vivo by the PBP4 overproducing strain, as determined by high-performance liquid chromatography analysis, suggests that PBP4 is not involved in transpeptidation but exclusively catalyses a DD-carboxypeptidase and DD-endopeptidase reaction.

  8. Binding kinetics of five drugs to beta2-adrenoceptor using peak profiling method and nonlinear chromatography.

    PubMed

    Liang, Yuan; Wang, Jing; Fei, Fuhuan; Sun, Huanmei; Liu, Ting; Li, Qian; Zhao, Xinfeng; Zheng, Xiaohui

    2018-02-23

    Investigations of drug-protein interactions have advanced our knowledge of ways to design more rational drugs. In addition to extensive thermodynamic studies, ongoing works are needed to enhance the exploration of drug-protein binding kinetics. In this work, the beta2-adrenoceptor (β 2 -AR) was immobilized on N, N'-carbonyldiimidazole activated amino polystyrene microspheres to prepare an affinity column (4.6 mm × 5.0 cm, 8 μm). The β 2 -AR column was utilized to determine the binding kinetics of five drugs to the receptor. Introducing peak profiling method into this receptor chromatographic analysis, we determined the dissociation rate constants (k d ) of salbutamol, terbutaline, methoxyphenamine, isoprenaline hydrochloride and ephedrine hydrochloride to β 2 -AR to be 15 (±1), 22 (±1), 3.3 (±0.2), 2.3 (±0.2) and 2.1 (±0.1) s -1 , respectively. The employment of nonlinear chromatography (NLC) in this case exhibited the same rank order of k d values for the five drugs bound to β 2 -AR. We confirmed that both the peak profiling method and NLC were capable of routine measurement of receptor-drug binding kinetics. Compared with the peak profiling method, NLC was advantageous in the simultaneous assessment of the kinetic and apparent thermodynamic parameters. It will become a powerful method for high throughput drug-receptor interaction analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. The association of low-molecular-weight hydrophobic compounds with native casein micelles in bovine milk

    PubMed Central

    Cheema, M.; Mohan, M. S.; Campagna, S. R.; Jurat-Fuentes, J. L.; Harte, F. M.

    2015-01-01

    The agreed biological function of the casein micelles in milk is to carry minerals (calcium, magnesium, and phosphorus) from mother to young along with amino acids for growth and development. Recently, native and modified casein micelles were used as encapsulating and delivery agents for various hydrophobic low-molecular-weight probes. The ability of modified casein micelles to bind certain probes may derive from the binding affinity of native casein micelles. Hence, a study with milk from single cows was conducted to further elucidate the association of hydrophobic molecules into native casein micelles and further understand their biological function. Hydrophobic and hydrophilic extraction followed by ultraperformance liquid chromatography-high resolution mass spectrometry analysis were performed over protein fractions obtained from size exclusion fractionation of raw skim milk. Hydrophobic compounds, including phosphatidylcholine, lyso-phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin, showed strong association exclusively to casein micelles as compared with whey proteins, whereas hydrophilic compounds did not display any preference for their association among milk proteins. Further analysis using liquid chromatography-tandem mass spectrometry detected 42 compounds associated solely with the casein-micelles fraction. Mass fragments in tandem mass spectrometry identified 4 of these compounds as phosphatidylcholine with fatty acid composition of 16:0/18:1, 14:0/16:0, 16:0/16:0, and 18:1/18:0. These results support that transporting low-molecular-weight hydrophobic molecules is also a biological function of the casein micelles in milk. PMID:26074238

  10. Purification, crystallization and preliminary crystallographic study of low oxygen-affinity haemoglobin from cat (Felis silvestris catus) in two different crystal forms.

    PubMed

    Balasubramanian, M; Moorthy, Pon Sathya; Neelagandan, K; Ponnuswamy, M N

    2009-03-01

    Haemoglobin is a metalloprotein which plays a major role in the transportation of oxygen from the lungs to tissues and of carbon dioxide back to the lungs. The present work reports the preliminary crystallographic study of low oxygen-affinity haemoglobin from cat in different crystal forms. Cat blood was collected, purified by anion-exchange chromatography and crystallized in two different conditions by the hanging-drop vapour-diffusion method under unbuffered low-salt and buffered high-salt concentrations using PEG 3350 as a precipitant. Intensity data were collected using MAR345 and MAR345dtb image-plate detector systems. Cat haemoglobin crystallizes in monoclinic and orthorhombic crystal forms with one and two whole biological molecules (alpha(2)beta(2)), respectively, in the asymmetric unit.

  11. Site-selective conjugation of an anticoagulant aptamer to recombinant albumins and maintenance of neonatal Fc receptor binding

    NASA Astrophysics Data System (ADS)

    Schmøkel, Julie; Voldum, Anders; Tsakiridou, Georgia; Kuhlmann, Matthias; Cameron, Jason; Sørensen, Esben S.; Wengel, Jesper; Howard, Kenneth A.

    2017-05-01

    Aptamers are an attractive molecular medicine that offers high target specificity. Nucleic acid-based aptamers, however, are prone to nuclease degradation and rapid renal excretion that require blood circulatory half-life extension enabling technologies. The long circulatory half-life, predominately facilitated by engagement with the cellular recycling neonatal Fc receptor (FcRn), and ligand transport properties of albumin promote it as an attractive candidate to improve the pharmacokinetic profile of aptamers. This study investigates the effect of Cys34 site-selective covalent attachment of a factor IXa anticoagulant aptamer on aptamer functionality and human FcRn (hFcRn) engagement using recombinant human albumin (rHA) of either a wild type (WT) or an engineered human FcRn high binding variant (HB). Albumin-aptamer conjugates, connected covalently through a heterobifunctional succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate linker, were successfully prepared and purified by high performance liquid chromatography as confirmed by gel electrophoresis band-shift analysis and matrix-assisted laser desorption/ionization time of flight. Minimal reduction (∼25%) in activity of WT-linked aptamer to that of aptamer alone was found using an anticoagulant activity assay measuring temporal levels of activated partial thrombin. Covalent albumin-aptamer conjugation, however, substantially compromized binding to hFcRn, to 10% affinity of that of non-conjugated WT, determined by biolayer interferometry. Binding could be rescued by aptamer conjugation to recombinant albumin engineered for higher FcRn affinity (HB) that exhibited an 8-fold affinity compared to WT alone. This work describes a novel albumin-based aptamer delivery system whose hFcRn binding can be increased using a HB engineered albumin.

  12. Guanine nucleotide-binding protein regulation of melatonin receptors in lizard brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivkees, S.A.; Carlson, L.L.; Reppert, S.M.

    Melatonin receptors were identified and characterized in crude membrane preparations from lizard brain by using {sup 125}I-labeled melatonin ({sup 125}I-Mel), a potent melatonin agonist. {sup 125}I-Mel binding sites were saturable; Scatchard analysis revealed high-affinity and lower affinity binding sites, with apparent K{sub d} of 2.3 {plus minus} 1.0 {times} 10{sup {minus}11} M and 2.06 {plus minus} 0.43 {times} 10{sup {minus}10} M, respectively. Binding was reversible and inhibited by melatonin and closely related analogs but not by serotonin or norepinephrine. Treatment of crude membranes with the nonhydrolyzable GTP analog guanosine 5{prime}-({gamma}-thio)triphosphate (GTP({gamma}S)), significantly reduced the number of high-affinity receptors and increasedmore » the dissociation rate of {sup 125}I-Mel from its receptor. Furthermore, GTP({gamma}S) treatment of ligand-receptor complexes solubilized by Triton X-100 also led to a rapid dissociation of {sup 125}I-Mel from solubilized ligand-receptor complexes. Gel filtration chromatography of solubilized ligand-receptor complexes revealed two major peaks of radioactivity corresponding to M{sub r} > 400,000 and M{sub r} ca. 110,000. This elution profile was markedly altered by pretreatment with GTP({gamma}S) before solubilization; only the M{sub r} 110,000 peak was present in GTP({gamma}S)-pretreated membranes. The results strongly suggest that {sup 125}I-mel binding sites in lizard brain are melatonin receptors, with agonist-promoted guanine nucleotide-binding protein (G protein) coupling and that the apparent molecular size of receptors uncoupled from G proteins is about 110,000.« less

  13. Site-selective conjugation of an anticoagulant aptamer to recombinant albumins and maintenance of neonatal Fc receptor binding.

    PubMed

    Schmøkel, Julie; Voldum, Anders; Tsakiridou, Georgia; Kuhlmann, Matthias; Cameron, Jason; Sørensen, Esben S; Wengel, Jesper; Howard, Kenneth A

    2017-05-19

    Aptamers are an attractive molecular medicine that offers high target specificity. Nucleic acid-based aptamers, however, are prone to nuclease degradation and rapid renal excretion that require blood circulatory half-life extension enabling technologies. The long circulatory half-life, predominately facilitated by engagement with the cellular recycling neonatal Fc receptor (FcRn), and ligand transport properties of albumin promote it as an attractive candidate to improve the pharmacokinetic profile of aptamers. This study investigates the effect of Cys34 site-selective covalent attachment of a factor IXa anticoagulant aptamer on aptamer functionality and human FcRn (hFcRn) engagement using recombinant human albumin (rHA) of either a wild type (WT) or an engineered human FcRn high binding variant (HB). Albumin-aptamer conjugates, connected covalently through a heterobifunctional succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate linker, were successfully prepared and purified by high performance liquid chromatography as confirmed by gel electrophoresis band-shift analysis and matrix-assisted laser desorption/ionization time of flight. Minimal reduction (∼25%) in activity of WT-linked aptamer to that of aptamer alone was found using an anticoagulant activity assay measuring temporal levels of activated partial thrombin. Covalent albumin-aptamer conjugation, however, substantially compromized binding to hFcRn, to 10% affinity of that of non-conjugated WT, determined by biolayer interferometry. Binding could be rescued by aptamer conjugation to recombinant albumin engineered for higher FcRn affinity (HB) that exhibited an 8-fold affinity compared to WT alone. This work describes a novel albumin-based aptamer delivery system whose hFcRn binding can be increased using a HB engineered albumin.

  14. Purification and characterization of a rice class I chitinase, OsChia1b, produced in Esherichia coli.

    PubMed

    Mizuno, Ryoji; Itoh, Yoshikane; Nishizawa, Yoko; Kezuka, Yuichiro; Suzuki, Kazushi; Nonaka, Takamasa; Watanabe, Takeshi

    2008-03-01

    To determine the properties and structure of OsChia1b, a family 19 chitinase from Oryza sativa L. cv. Nipponbare (japonica ssp.), recombinant OsChia1b was produced in Esherichia coli cells and purified to homogeneity by chitin affinity column chromatography. OsChia1b was highly active against soluble chitinous substrate, but not against crystalline chitin, and clearly inhibited hyphal extension of Trichoderma reesei.

  15. Cloning, biochemical characterization and expression of a sunflower (Helianthus annuus L.) hexokinase associated with seed storage compounds accumulation.

    PubMed

    Troncoso-Ponce, M A; Rivoal, J; Dorion, S; Moisan, M-C; Garcés, R; Martínez-Force, E

    2011-03-01

    A full-length hexokinase cDNA, HaHXK1, was cloned and characterized from Helianthus annuus L. developing seeds. Based on its sequence and phylogenetic relationships, HaHXK1 is a membrane-associated (type-B) hexokinase. The predicted structural model resembles known hexokinase structures, folding into two domains of unequal size: a large and a small one separated by a deep cleft containing the residues involved in the enzyme active site. A truncated version, without the 24 N-terminal residues, was heterologously expressed in Escherichia coli, purified to electrophoretic homogeneity using immobilized metal ion affinity chromatography and biochemically characterized. The purified enzyme behaved as a monomer on size exclusion chromatography and had a specific activity of 19.3 μmol/min/mg protein, the highest specific activity ever reported for a plant hexokinase. The enzyme had higher affinity for glucose and mannose relative to fructose, but the enzymatic efficiency was higher with glucose. Recombinant HaHXK1 was inhibited by ADP and was insensitive either to glucose-6-phosphate or to trehalose-6-phosphate. Its expression profile showed higher levels in heterotrophic tissues, developing seeds and roots, than in photosynthetic ones. A time course of HXK activity and expression in seeds showed that the highest HXK levels are found at the early stages of reserve compounds, lipids and proteins accumulation. Copyright © 2010 Elsevier GmbH. All rights reserved.

  16. Biomonitoring of selenoprotein P in human serum by fast affinity chromatography coupled to ICP-MS.

    PubMed

    Heitland, Peter; Köster, Helmut D

    2018-04-01

    Most of the Se in human serum is bound to selenoprotein P (SEPP1) in which Se is present in form of selenocysteine. The SEPP1 is a new possible biomarker for the Se status and for this reason we developed a fast, simple and reliable method for the quantitative determination of SEPP1 in serum by affinity chromatography coupled to ICP-MS. It is possible to separate SEPP1 from other selenoproteins in serum in only 5 min, which allows high sample throughput in clinical laboratories. Measured and certified concentrations of total Se and Se(SEPP1) are in good agreement for the reference material SRM 1950. The SEPP1 concentration was stable in serum samples of 3 persons for a minimum of 2 weeks. Further results of method validation were described including internal and external quality assurance. The analytical method was applied for a biomonitoring study of the SEPP1 and total Se concentration in human serum of 50 occupationally non-exposed persons living in northern Germany. Concentration ranges and mean concentrations for Se(SEPP1) are 31.1-59.7 and 46.2 μg/L, respectively. The corresponding values for total Se are 62-120 and 83.5 μg/L. The mean percentage of total Se in serum present as SEPP1 is 58%. Copyright © 2018 Elsevier GmbH. All rights reserved.

  17. [Construction and expression of fusion protein TRX-hJagged1 in E.coli BL21].

    PubMed

    Li, Guo-Hui; Fan, Yu-Zhen; Huang, Si-Yong; Liu, Qiang; Yin, Dan-Dan; Liu, Li; Chen, Ren-An; Hao, Miao-Wang; Liang, Ying-Min

    2014-06-01

    This study was purposed to construct prokaryotic expression vector and to investigate the expression of Notch ligand Jagged1 in E.coli. An expression vector pET-hJagged1 was constructed, which can be inserted in Jagged1 with different lengths, but the DSL domain of human Jagged1 should be contained. Then the recombinant plasmids were transformed into the competent cell of E.coli BL21, and the expression of the fusion protein was induced by IPTG. Fusion protein was purified from the supernatant of cell lysates via the Nickel affinity chromatography. The results showed that prokaryotic expression vectors pET-hJagged1 (Bgl II), pET-hJagged1 (Hind I) and pET-hJagged1 (Stu I) were successfully constructed, but only pET-hJagged1 (Stu I) could express the soluble TRX-hJagged1. The purified TRX-Jagged1 protein could be obtained via the Nickel affinity chromatography, and then confirmed by Western Blot. It is concluded that prokaryotic expression vector pET-hJagged1 is successfully constructed, but only pET-hJagged1 (Stu I) can express the soluble TRX-hJagged1 and the TRX-Jagged1 fusion protein is obtained through the prokaryotic expression system, which laid a solid foundation for further to explore the effects of Jagged1 in hematopoietic and lymphoid system.

  18. Expression, purification, crystallization and preliminary X-ray crystallographic studies of Deinococcus radiodurans thioredoxin reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obiero, Josiah; Bonderoff, Sara A.; Goertzen, Meghan M.

    2006-08-01

    Recombinant D. radiodurans TrxR with a His tag at the N-terminus was expressed in Escherichia coli and purified by metal-affinity chromatography. The protein was crystallized using the sitting-drop vapour-diffusion method in the presence of 35% PEG 4000, 0.2 M ammonium acetate and citric acid buffer pH 5.1 at 293 K. Deinococcus radiodurans, a Gram-positive bacterium capable of withstanding extreme ionizing radiation, contains two thioredoxins (Trx and Trx1) and a single thioredoxin reductase (TrxR) as part of its response to oxidative stress. Thioredoxin reductase is a member of the family of pyridine nucleotide-disulfide oxidoreductase flavoenzymes. Recombinant D. radiodurans TrxR with amore » His tag at the N-terminus was expressed in Escherichia coli and purified by metal-affinity chromatography. The protein was crystallized using the sitting-drop vapour-diffusion method in the presence of 35% PEG 4000, 0.2 M ammonium acetate and citric acid buffer pH 5.1 at 293 K. X-ray diffraction data were collected on a cryocooled crystal to a resolution of 1.9 Å using a synchrotron-radiation source. The space group was determined to be P3{sub 2}21, with unit-cell parameters a = b = 84.33, c = 159.88 Å. The structure of the enzyme has been solved by molecular-replacement methods and structure refinement is in progress.« less

  19. Affinity purification of human factor H on polypeptides derived from streptococcal m protein: enrichment of the Y402 variant.

    PubMed

    Nilsson, O Rickard; Lannergård, Jonas; Morgan, B Paul; Lindahl, Gunnar; Gustafsson, Mattias C U

    2013-01-01

    Recent studies indicate that defective activity of complement factor H (FH) is associated with several human diseases, suggesting that pure FH may be used for therapy. Here, we describe a simple method to isolate human FH, based on the specific interaction between FH and the hypervariable region (HVR) of certain Streptococcus pyogenes M proteins. Special interest was focused on the FH polymorphism Y402H, which is associated with the common eye disease age-related macular degeneration (AMD) and has also been implicated in the binding to M protein. Using a fusion protein containing two copies of the M5-HVR, we found that the Y402 and H402 variants of FH could be efficiently purified by single-step affinity chromatography from human serum containing the corresponding protein. Different M proteins vary in their binding properties, and the M6 and M5 proteins, but not the M18 protein, showed selective binding of the FH Y402 variant. Accordingly, chromatography on a fusion protein derived from the M6-HVR allowed enrichment of the Y402 protein from serum containing both variants. Thus, the exquisite binding specificity of a bacterial protein can be exploited to develop a simple and robust procedure to purify FH and to enrich for the FH variant that protects against AMD.

  20. Antibacterial activity and phospholipid recognition of the recombinant defensin J1-1 from Capsicum genus.

    PubMed

    Guillén-Chable, Francisco; Arenas-Sosa, Iván; Islas-Flores, Ignacio; Corzo, Gerardo; Martinez-Liu, Cynthia; Estrada, Georgina

    2017-08-01

    The gene of the four disulfide-bridged defensin J1-1 from Capsicum was cloned into the expression vector pQE30 containing a 6His-tag as fusion protein. This construct was transfected into Origami strain of Escherichia coli and expressed after induction with isopropyl thiogalactoside (IPTG). The level of expression was 4 mg/L of culture medium, and the His-tagged recombinant defensin (HisXarJ1-1) was expressed exclusively into inclusion bodies. After solubilization, HisXarJ1-1 was purified by affinity and hydrophobic interaction chromatography. The reverse-phase HPLC profile of the HisXarJ1-1 product obtained from the affinity chromatography step showed single main peptide fraction of molecular masses of 7050.6 Da and after treatment with DTT a single fraction of 7, 042.6 Da corresponding to the reduced peptide was observed. An in vitro folding step of the HisXarJ1-1 generated a distinct profile of oxidized forms of the peptide this oxidized peptide was capable of binding phosphatidic acid in vitro. Possible dimer and oligomer of HisXarJ1-1 were visible in gel electrophoresis and immunodetected with anti-His antibodies. Pure recombinant defensin HisXarJ1-1 exhibited antibacterial activity against Pseudomonas aeruginosa. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Enhanced Purification of Recombinant Rat NADPH-P450 Reductase by Using a Hexahistidine-Tag.

    PubMed

    Park, Hyoung-Goo; Lim, Young-Ran; Han, Songhee; Jeong, Dabin; Kim, Donghak

    2017-05-28

    NADPH-P450 reductase (NPR) transfers electrons from NADPH to cytochrome P450 and heme oxygenase enzymes to support their catalytic activities. This protein is localized within the endoplasmic reticulum membrane and utilizes FMN, FAD, and NADPH as cofactors. Although NPR is essential toward enabling the biochemical and pharmacological analyses of P450 enzymes, its production as a recombinant purified protein requires a series of tedious efforts and a high cost due to the use of NADP + in the affinity chromatography process. In the present study, the rat NPR clone containing a 6× Histidine-tag (NPR-His) was constructed and heterologously expressed. The NPR-His protein was purified using Ni 2+ -affinity chromatography, and its functional features were characterized. A single band at 78 kDa was observed from SDS-PAGE and the purified protein displayed a maximum absorbance at 455 nm, indicating the presence of an oxidized flavin cofactor. Cytochrome c and nitroblue tetrazolium were reduced by purified NPR-His in an NADPH-dependent manner. The purified NPR-His successfully supported the catalytic activities of human P450 1A2 and 2A6 and fungal CYP52A21, yielding results similar to those obtained using conventional purified rat reductase. This study will facilitate the use of recombinant NPR-His protein in the various fields of P450 research.

  2. Penetrable silica microspheres for immobilization of bovine serum albumin and their application to the study of the interaction between imatinib mesylate and protein by frontal affinity chromatography.

    PubMed

    Ma, Liyun; Li, Jing; Zhao, Juan; Liao, Han; Xu, Li; Shi, Zhi-guo

    2016-01-01

    In the current study, novel featured silica, named penetrable silica, simultaneously containing macropores and mesopores, was immobilized with bovine serum albumin (BSA) via Schiff base method. The obtained BSA-SiO2 was employed as the high-performance liquid chromatographic (HPLC) stationary phase. Firstly, D- and L-tryptophan were used as probes to investigate the chiral separation ability of the BSA-SiO2 stationary phase. An excellent enantioseparation factor was obtained up to 4.3 with acceptable stability within at least 1 month. Next, the BSA-SiO2 stationary phase was applied to study the interaction between imatinib mesylate (IM) and BSA by frontal affinity chromatography. A single type of binding site was found for IM with the immobilized BSA, and the hydrogen-bonding and van der Waals interactions were expected to be contributing interactions based on the thermodynamic studies, and this was a spontaneous process. Compared to the traditional silica for HPLC stationary phase, the proposed penetrable silica microsphere possessed a larger capacity to bond more BSA, minimizing column overloading effects and enhancing enantioseparation ability. In addition, the lower running column back pressure and fast mass transfer were meaningful for the column stability and lifetime. It was a good substrate to immobilize biomolecules for fast chiral resolution and screening drug-protein interactions.

  3. Affinity and Efficacy Studies of Tetrahydrocannabinolic Acid A at Cannabinoid Receptor Types One and Two.

    PubMed

    McPartland, John M; MacDonald, Christa; Young, Michelle; Grant, Phillip S; Furkert, Daniel P; Glass, Michelle

    2017-01-01

    Introduction: Cannabis biosynthesizes Δ 9 -tetrahydrocannabinolic acid (THCA-A), which decarboxylates into Δ 9 -tetrahydrocannabinol (THC). There is growing interest in the therapeutic use of THCA-A, but its clinical application may be hampered by instability. THCA-A lacks cannabimimetic effects; we hypothesize that it has little binding affinity at cannabinoid receptor 1 (CB 1 ). Materials and Methods: Purity of certified reference standards were tested with high performance liquid chromatography (HPLC). Binding affinity of THCA-A and THC at human (h) CB 1 and hCB 2 was measured in competition binding assays, using transfected HEK cells and [ 3 H]CP55,940. Efficacy at hCB 1 and hCB 2 was measured in a cyclic adenosine monophosphase (cAMP) assay, using a Bioluminescence Resonance Energy Transfer (BRET) biosensor. Results: The THCA-A reagent contained 2% THC. THCA-A displayed small but measurable binding at both hCB 1 and hCB 2 , equating to approximate K i values of 3.1μM and 12.5μM, respectively. THC showed 62-fold greater affinity at hCB 1 and 125-fold greater affinity at hCB 2 . In efficacy tests, THCA-A (10μM) slightly inhibited forskolin-stimulated cAMP at hCB 1 , suggestive of weak agonist activity, and no measurable efficacy at hCB 2 . Discussion: The presence of THC in our THCA-A certified standard agrees with decarboxylation kinetics (literature reviewed herein), which indicate contamination with THC is nearly unavoidable. THCA-A binding at 10μM approximated THC binding at 200nM. We therefore suspect some of our THCA-A binding curve was artifact-from its inevitable decarboxylation into THC-and the binding affinity of THCA-A is even weaker than our estimated values. We conclude that THCA-A has little affinity or efficacy at CB 1 or CB 2 .

  4. Bifunctional fusion proteins of calmodulin and protein A as affinity ligands in protein purification and in the study of protein-protein interactions.

    PubMed

    Hentz, N G; Daunert, S

    1996-11-15

    An affinity chromatography system is described that incorporates a genetically designed bifunctional affinity ligand. The utility of the system in protein purification and in the study of protein-protein interactions is demonstrated by using the interaction between protein A and the heat shock protein DnaK as a model system. The bifunctional affinity ligand was developed by genetically fusing calmodulin (CaM) to protein A (ProtA). The dual functionality of protein A-calmodulin (ProtA-CaM) stems from the molecular recognition properties of the two components of the fusion protein. In particular, CaM serves as the anchoring component by virtue of its binding properties toward phenothiazine. Thus, the ProtA-CaM can be immobilized on a solid support containing phenothiazine from the C-terminal domain of the fusion protein. Protein A is at the N-terminal domain of the fusion protein and serves as the affinity site for DnaK. While DnaK binds specifically to the protein A domain of the bifunctional ligand, it is released upon addition of ATP and under very mild conditions (pH 7.0). In addition to obtaining highly purified DnaK, this system is very rugged in terms of its performance. The proteinaceous bifunctional affinity ligand can be easily removed by addition of EGTA, and fresh ProtA-CaM can be easily reloaded onto the column. This allows for a facile regeneration of the affinity column because the phenothiazine-silica support matrix is stable for long periods of time under a variety of conditions. This study also demonstrates that calmodulin fusions can provide a new approach to study protein-protein interactions. Indeed, the ProtA-CaM fusion protein identified DnaK as a cellular component that interacts with protein A from among the thousands of proteins present in Escherichia coli.

  5. Study of a newly developed high-performance liquid chromatography analyser for glycosylated haemoglobin measurements in blood containing haemoglobin variants in the Japanese population.

    PubMed

    Miyashita, Tetsuo; Sugiyama, Takahiro; Yamadate, Shuukoh; Nagashima, Masaaki; Satomura, Atsushi; Nakayama, Tomohiro

    2014-09-01

    This study examined the new high-performance liquid chromatography analyser HLC-723GX (GX) and investigated its ability to both measure glycosylated haemoglobin (HbA1c) values and determine whether haemoglobin variants could cause interference with these measurements in the Japanese population. For the basic GX examination, the within- and between-run precision, linearity of measurements, correlation of HbA1c values with current systems and the interference of chemically modified haemoglobin were determined. GX interference caused by the haemoglobin variant was examined by analysing 39 clinical laboratory samples that contained haemoglobin variants. Good within- and between-run precision were found, with the coefficients of variation at ≤1.0%. A wide range of HbA1c measurement values were confirmed, with the HbA1c values strongly correlated with the results of the currently used HLC-723G8 system. Chemically modified haemoglobins were prepared by adding glucose, sodium cyanate, acetaldehyde or acetylsalicylic acid to normal blood samples. None of these samples had any influence on the HbA1c values determined by GX. GX analysis showed haemoglobin variants that eluted after HbA0 and were similar to HbD, or HbS had HbA1c values that were close to those measured by boronate affinity chromatography and immunoassay. GX found lower HbA1c values in blood that contained HbE or haemoglobin variants, which elute before or at nearly the same time as HbA0. GX is useful for the analysis of HbA1c samples that contain HbD, HbS, HbC and haemoglobin variants, even though the elution times are similar. However, a countermeasure is needed in order to avoid overlooking other haemoglobin variants in Japan. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  6. Arp2/3 Complex from Acanthamoeba Binds Profilin and Cross-links Actin Filaments

    PubMed Central

    Mullins, R. Dyche; Kelleher, Joseph F.; Xu, James; Pollard, Thomas D.

    1998-01-01

    The Arp2/3 complex was first purified from Acanthamoeba castellanii by profilin affinity chromatography. The mechanism of interaction with profilin was unknown but was hypothesized to be mediated by either Arp2 or Arp3. Here we show that the Arp2 subunit of the complex can be chemically cross-linked to the actin-binding site of profilin. By analytical ultracentrifugation, rhodamine-labeled profilin binds Arp2/3 complex with a Kd of 7 μM, an affinity intermediate between the low affinity of profilin for barbed ends of actin filaments and its high affinity for actin monomers. These data suggest the barbed end of Arp2 is exposed, but Arp2 and Arp3 are not packed together in the complex exactly like two actin monomers in a filament. Arp2/3 complex also cross-links actin filaments into small bundles and isotropic networks, which are mechanically stiffer than solutions of actin filaments alone. Arp2/3 complex is concentrated at the leading edge of motile Acanthamoeba, and its localization is distinct from that of α-actinin, another filament cross-linking protein. Based on localization and actin filament nucleation and cross-linking activities, we propose a role for Arp2/3 in determining the structure of the actin filament network at the leading edge of motile cells. PMID:9529382

  7. Perfusion chromatography separation of the tomato fruit-specific pectin methylesterase from a semipurified commercial enzyme preparation.

    PubMed

    Savary, B J

    2001-08-01

    A rapid and simple method was developed, using perfusion chromatography media, to separate the fruit-specific pectin methylesterase (PME) isoform from the depolymerizing enzyme polygalacturonase (PG) and other contaminating pectinases present in a commercial tomato enzyme preparation. Pectinase activities were adsorbed onto a Poros HS (a strong cation exchanger) column in 20 M HEPES buffer at pH 7.5. The fruit-specific PME was eluted from the column with 80 mM NaCl, followed by a step to 300 mM NaCl to elute PG activity. Rechromatography of the PME activity peak with a linear gradient further resolved two PME isoenzymes and removed residual traces of PG activity. The PG activity peak was further treated with lectin affinity chromatography to provide purified PG enzyme, which was separated from a salt-dependent PME (tentatively identified as a "ubiquitous-type" isoform), and a pectin acetylesterase. The later enzyme has not been reported previously in tomato. This method provides monocomponent enzymes that will be useful for studying enzyme mechanisms and for modifying pectin structure and functional properties.

  8. Purification and Characterization of a Lectin from Phaseolus vulgaris cv. (Anasazi Beans)

    PubMed Central

    Sharma, Arishya; Ng, Tzi Bun; Wong, Jack Ho; Lin, Peng

    2009-01-01

    A lectin has been isolated from seeds of the Phaseolus vulgaris cv. “Anasazi beans” using a procedure that involved affinity chromatography on Affi-gel blue gel, fast protein liquid chromatography (FPLC)-ion exchange chromatography on Mono S, and FPLC-gel filtration on Superdex 200. The lectin was comprised of two 30-kDa subunits with substantial N-terminal sequence similarity to other Phaseolus lectins. The hemagglutinating activity of the lectin was stable within the pH range of 1–14 and the temperature range of 0–80°C. The lectin potently suppressed proliferation of MCF-7 (breast cancer) cells with an IC50 of 1.3 μM, and inhibited the activity of HIV-1 reverse transcriptase with an IC50 of 7.6 μM. The lectin evoked a mitogenic response from murine splenocytes as evidenced by an increase in [3H-methyl]-thymidine incorporation. The lectin had no antifungal activity. It did not stimulate nitric oxide production by murine peritoneal macrophages. Chemical modification results indicated that tryptophan was crucial for the hemagglutinating activity of the lectin. PMID:19343172

  9. Bauhinia variegata var. variegata lectin: isolation, characterization, and comparison.

    PubMed

    Chan, Yau Sang; Ng, Tzi Bun

    2015-01-01

    Bauhinia variegata var. variegata seeds are rich in proteins. Previously, one of the major storage proteins of the seeds was found to be a trypsin inhibitor that possessed various biological activities. By using another purification protocol, a glucoside- and galactoside-binding lectin that demonstrated some differences from the previously reported B. variegata lectin could be isolated from the seeds. It involved affinity chromatography on Affi-gel blue gel, ion exchange chromatography on Q-Sepharose and Mono Q, and also size exclusion chromatography on Superdex 75. The lectin was not retained on Affi-gel blue gel but interacted with Q-Sepharose. The lectin was a 64-kDa protein with two 32-kDa subunits. It had low thermostability (stable up to 50 °C) and moderate pH stability (stable in pH 3-10). It exhibited anti-proliferative activity on nasopharyngeal carcinoma HONE1 cells with an IC50 of 12.8 μM after treatment for 48 h. It also slightly inhibited the growth of hepatoma HepG2 cells. The lectin may have potential in aiding cancer treatments.

  10. PET-modified red mud as catalysts for oxidative desulfurization reactions.

    PubMed

    do Prado, Nayara T; Heitmann, Ana P; Mansur, Herman S; Mansur, Alexandra A; Oliveira, Luiz C A; de Castro, Cinthia S

    2017-07-01

    This work describes the synthesis of catalysts based on red mud/polyethylene terephthalate (PET) composites and their subsequent heat treatment under N 2 atmosphere. The materials were characterized by scanning electron microscopy (SEM), temperature programmed reduction (TPR), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric (TG) analysis and N 2 adsorption/desorption. The catalysts were evaluated in the oxidative desulfurization reaction of dibenzothiophene (DBT) in a biphasic system. The results indicated that the PET impregnation on red mud increased the affinity of the catalyst with the nonpolar phase (fuel), in which the contaminant was dissolved, allowing a higher conversion (up to 80%) and selectivity to the corresponding dibenzothiophene sulfone. The sulfone compound is more polar than DBT and diffused into the polar solvent as indicated by the data obtained via gas chromatography-mass spectrometry (GC-MS). Copyright © 2017. Published by Elsevier B.V.

  11. Applications of reversible covalent chemistry in analytical sample preparation.

    PubMed

    Siegel, David

    2012-12-07

    Reversible covalent chemistry (RCC) adds another dimension to commonly used sample preparation techniques like solid-phase extraction (SPE), solid-phase microextraction (SPME), molecular imprinted polymers (MIPs) or immuno-affinity cleanup (IAC): chemical selectivity. By selecting analytes according to their covalent reactivity, sample complexity can be reduced significantly, resulting in enhanced analytical performance for low-abundance target analytes. This review gives a comprehensive overview of the applications of RCC in analytical sample preparation. The major reactions covered include reversible boronic ester formation, thiol-disulfide exchange and reversible hydrazone formation, targeting analyte groups like diols (sugars, glycoproteins and glycopeptides, catechols), thiols (cysteinyl-proteins and cysteinyl-peptides) and carbonyls (carbonylated proteins, mycotoxins). Their applications range from low abundance proteomics to reversible protein/peptide labelling to antibody chromatography to quantitative and qualitative food analysis. In discussing the potential of RCC, a special focus is on the conditions and restrictions of the utilized reaction chemistry.

  12. Comparison of three quantitative phosphoproteomic strategies to study receptor tyrosine kinase signaling.

    PubMed

    Zhang, Guoan; Neubert, Thomas A

    2011-12-02

    There are three quantitative phosphoproteomic strategies most commonly used to study receptor tyrosine kinase (RTK) signaling. These strategies quantify changes in: (1) all three forms of phosphosites (phosphoserine, phosphothreonine and phosphotyrosine) following enrichment of phosphopeptides by titanium dioxide or immobilized metal affinity chromatography; (2) phosphotyrosine sites following anti- phosphotyrosine antibody enrichment of phosphotyrosine peptides; or (3) phosphotyrosine proteins and their binding partners following anti-phosphotyrosine protein immunoprecipitation. However, it is not clear from literature which strategy is more effective. In this study, we assessed the utility of these three phosphoproteomic strategies in RTK signaling studies by using EphB receptor signaling as an example. We used all three strategies with stable isotope labeling with amino acids in cell culture (SILAC) to compare changes in phosphoproteomes upon EphB receptor activation. We used bioinformatic analysis to compare results from the three analyses. Our results show that the three strategies provide complementary information about RTK pathways.

  13. Plasma fibronectin: three steps to purification and stability.

    PubMed

    Poulouin, L; Gallet, O; Rouahi, M; Imhoff, J M

    1999-10-01

    Large amounts of soluble fibronectin were easily purified from cryoprecipitated or fresh citrated human blood plasma by a three-step combination of gelatin and heparin-cellufine affinity chromatography. The elution conditions were optimized to obtain a homogeneous fraction on SDS-PAGE and Western blot under reducing condition. No proteolytic activities were detected by zymography at acidic or neutral pH. Furthermore, the fibronectin preparation was stable over time up to 456 h at 37 degrees C in the presence of calcium, zinc, or mercury. This preparation of very stable fibronectin, called highly purified fibronectin (hpFN), gave a yield of 7.00 +/- 0.77 mg of fibronectin per gram of cryoprecipitated plasma and 0.16 mg of fibronectin per milliliter of fresh citrated, giving a yield of 32 to 53% (from presumed fibronectin concentration). This preparation may be useful for cellular tests and interaction analysis. Copyright 1999 Academic Press.

  14. Library Design-Facilitated High-Throughput Sequencing of Synthetic Peptide Libraries.

    PubMed

    Vinogradov, Alexander A; Gates, Zachary P; Zhang, Chi; Quartararo, Anthony J; Halloran, Kathryn H; Pentelute, Bradley L

    2017-11-13

    A methodology to achieve high-throughput de novo sequencing of synthetic peptide mixtures is reported. The approach leverages shotgun nanoliquid chromatography coupled with tandem mass spectrometry-based de novo sequencing of library mixtures (up to 2000 peptides) as well as automated data analysis protocols to filter away incorrect assignments, noise, and synthetic side-products. For increasing the confidence in the sequencing results, mass spectrometry-friendly library designs were developed that enabled unambiguous decoding of up to 600 peptide sequences per hour while maintaining greater than 85% sequence identification rates in most cases. The reliability of the reported decoding strategy was additionally confirmed by matching fragmentation spectra for select authentic peptides identified from library sequencing samples. The methods reported here are directly applicable to screening techniques that yield mixtures of active compounds, including particle sorting of one-bead one-compound libraries and affinity enrichment of synthetic library mixtures performed in solution.

  15. Eukaryotic expression, purification and structure/function analysis of native, recombinant CRISP3 from human and mouse

    NASA Astrophysics Data System (ADS)

    Volpert, Marianna; Mangum, Jonathan E.; Jamsai, Duangporn; D'Sylva, Rebecca; O'Bryan, Moira K.; McIntyre, Peter

    2014-02-01

    While the Cysteine-Rich Secretory Proteins (CRISPs) have been broadly proposed as regulators of reproduction and immunity, physiological roles have yet to be established for individual members of this family. Past efforts to investigate their functions have been limited by the difficulty of purifying correctly folded CRISPs from bacterial expression systems, which yield low quantities of correctly folded protein containing the eight disulfide bonds that define the CRISP family. Here we report the expression and purification of native, glycosylated CRISP3 from human and mouse, expressed in HEK 293 cells and isolated using ion exchange and size exclusion chromatography. Functional authenticity was verified by substrate-affinity, native glycosylation characteristics and quaternary structure (monomer in solution). Validated protein was used in comparative structure/function studies to characterise sites and patterns of N-glycosylation in CRISP3, revealing interesting inter-species differences.

  16. Crystallization and preliminary X-ray analysis of the NADPH-dependent 3-quinuclidinone reductase from Rhodotorula rubra

    PubMed Central

    Takeshita, Daijiro; Kataoka, Michihiko; Miyakawa, Takuya; Miyazono, Ken-ichi; Uzura, Atsuko; Nagata, Koji; Shimizu, Sakayu; Tanokura, Masaru

    2009-01-01

    (R)-3-Quinuclidinol is a useful compound that is applicable to the synthesis of various pharmaceuticals. The NADPH-dependent carbonyl reductase 3-­quinuclidinone reductase from Rhodotorula rubra catalyzes the stereospecific reduction of 3-quinuclidinone to (R)-3-quinuclidinol and is expected to be utilized in industrial production of this alcohol. 3-Quinuclidinone reductase from R. rubra was expressed in Escherichia coli and purified using Ni-affinity and ion-exchange column chromatography. Crystals of the protein were obtained by the sitting-drop vapour-diffusion method using PEG 8000 as the precipitant. The crystals belonged to space group P41212, with unit-cell parameters a = b = 91.3, c = 265.4 Å, and diffracted X-rays to 2.2 Å resolution. The asymmetric unit contained four molecules of the protein and the solvent content was 48.4%. PMID:19478454

  17. Crystallization and X-ray analysis of the salmon-egg lectin SEL24K.

    PubMed

    Murata, Kenji; Fisher, Andrew J; Hedrick, Jerry L

    2007-05-01

    The 24 kDa egg lectin of Chinook salmon (Oncorhynchus tshawytscha) is released from the egg during the cortical reaction. The lectin functions in blocking polyspermy during the fertilization process. The egg lectin was purified by affinity chromatography from salmon eggs and crystallized by the hanging-drop vapor-diffusion method using 15/4 EO/OH (pentaerythritol ethoxylate) as a precipitant. The crystal diffracted synchrotron-radiation X-rays to 1.63 A resolution. The crystal belongs to the monoclinic space group P2(1), with unit-cell parameters a = 93.0, b = 73.6, c = 113.6 A, alpha = 90, beta = 92.82, gamma = 90 degrees. The crystal is likely to contain eight molecules in the asymmetric unit (V(M) = 2.3 A3 Da(-1)), corresponding to a solvent content of 45.5%. A self-rotation function suggests an arrangement with 222 point symmetry within the asymmetric unit.

  18. Glycosylation analysis of recombinant neutral protease I from Aspergillus oryzae expressed in Pichia pastoris.

    PubMed

    Lei, Da; Xu, Yang; He, Qinghua; Pang, Yifeng; Chen, Bo; Xiong, Liang; Li, Yanping

    2013-12-01

    Neutral protease I from Aspergillus oryzae 3.042 was expressed in Pichia pastoris and its N-glycosylation properties were analyzed. After purification by nickel-affinity chromatography column, the recombinant neutral protease (rNPI) was confirmed to be N-glycosylated by periodicacid/Schiff's base staining and Endo H digestion. Moreover, the deglycosylated protein's molecular weight decreased to 43.3 kDa from 54.5 kDa analyzed by SDS-PAGE and MALDI-TOF-MS, and the hyperglycosylation extent was 21 %. The N-glycosylation site of rNPI was analyzed by nano LC-MS/MS after digesting by trypsin and Glu-C, and the unique potential site Asn41 of mature peptide was found to be glycosylated. Homology modeling of the 3D structure of rNPI indicated that the attached N-glycans hardly affected neutral protease's activity due to the great distance away from the active site of the enzyme.

  19. Isolation and molecular characterization of two lectins from dwarf elder (Sambucus ebulus L.) blossoms related to the Sam n1 allergen.

    PubMed

    Jimenez, Pilar; Cabrero, Patricia; Basterrechea, José E; Tejero, Jesús; Cordoba-Diaz, Damian; Girbes, Tomas

    2013-10-14

    Sambucus species contain a number of lectins with and without antiribosomal activity. Here, we show that dwarf elder (Sambucus ebulus L.) blossoms express two D-galactose-binding lectins that were isolated and purified by affinity chromatography and gel filtration. These proteins, which we named ebulin blo (A-B toxin) and SELblo (B-B lectin)--blo from blossoms--were subjected to molecular characterization and analysis by MALDI-TOF mass spectrometry and tryptic peptide fingerprinting. Both lectins share a high degree of amino acid sequence homology with Sambucus lectins related to the Sam n1 allergen. Ebulin blo, but not SELblo, was highly toxic by nasal instillation to mice. Overall, our results suggested that both lectins would belong to an allergen family exemplified by Sam n1 and could trigger allergy responses. Furthermore, they raise a concern about ebulin blo toxicity.

  20. Isolation and Molecular Characterization of Two Lectins from Dwarf Elder (Sambucus ebulus L.) Blossoms Related to the Sam n1 Allergen

    PubMed Central

    Jimenez, Pilar; Cabrero, Patricia; Basterrechea, José E.; Tejero, Jesús; Cordoba-Diaz, Damian; Girbes, Tomas

    2013-01-01

    Sambucus species contain a number of lectins with and without antiribosomal activity. Here, we show that dwarf elder (Sambucus ebulus L.) blossoms express two d-galactose-binding lectins that were isolated and purified by affinity chromatography and gel filtration. These proteins, which we named ebulin blo (A-B toxin) and SELblo (B-B lectin)—blo from blossoms—were subjected to molecular characterization and analysis by MALDI-TOF mass spectrometry and tryptic peptide fingerprinting. Both lectins share a high degree of amino acid sequence homology with Sambucus lectins related to the Sam n1 allergen. Ebulin blo, but not SELblo, was highly toxic by nasal instillation to mice. Overall, our results suggested that both lectins would belong to an allergen family exemplified by Sam n1 and could trigger allergy responses. Furthermore, they raise a concern about ebulin blo toxicity. PMID:24129061

Top