Science.gov

Sample records for affinity chromatography coupled

  1. Affinity Chromatography.

    ERIC Educational Resources Information Center

    Gray, Gary R.

    1980-01-01

    Presents selected recent advances in immobilization chemistry which have important connections to affinity chromatography. Discusses ligand immobilization and support modification. Cites 51 references. (CS)

  2. Report: Affinity Chromatography.

    ERIC Educational Resources Information Center

    Walters, Rodney R.

    1985-01-01

    Supports, affinity ligands, immobilization, elution methods, and a number of applications are among the topics considered in this discussion of affinity chromatography. An outline of the basic principles of affinity chromatography is included. (JN)

  3. Method for trapping affinity chromatography of transcription factors using aldehyde-hydrazide coupling to agarose.

    PubMed

    Jia, Yinshan; Jarrett, Harry W

    2015-08-01

    The use of a method of coupling DNA was investigated for trapping and purifying transcription factors. Using the GFP-C/EBP (CAAT/enhancer binding protein) fusion protein as a model, trapping gives higher purity and comparable yield to conventional affinity chromatography. The chemistry used is mild and was shown to have no detrimental effect on GFP fluorescence or GFP-C/EBP DNA binding. The method involves introducing a ribose nucleotide to the 3' end of a DNA sequence. Reaction with mM NaIO4 (sodium metaperiodate) produces a dialdehyde of ribose that couples to hydrazide-agarose. The DNA is combined at nM concentration with a nuclear extract or other protein mixture, and DNA-protein complexes form. The complex is then coupled to hydrazide-agarose for trapping the DNA-protein complex and the protein eluted by increasing NaCl concentration. Using a different oligonucleotide with the proximal E-box sequence from the human telomerase promoter, USF-2 transcription factor was purified by trapping, again with higher purity than results from conventional affinity chromatography and similar yield. Other transcription factors binding E-boxes, including E2A, c-Myc, and Myo-D, were also purified, but myogenin and NFκB were not. Therefore, this approach proved to be valuable for both affinity chromatography and the trapping approach. PMID:25935261

  4. Method for trapping affinity chromatography of transcription factors using aldehyde-hydrazide coupling to agarose

    PubMed Central

    Jia, Yinshan; Jarrett, Harry W.

    2015-01-01

    The uses of a method of coupling DNA is investigated for trapping and purifying transcription factors. Using the GFP-C/EBP fusion protein as a model, trapping gives higher purity and comparable yield to conventional affinity chromatography. The chemistry utilized is mild and was shown to have no detrimental effect on GFP fluorescence or GFP-C/EBP DNA-binding. The method involves introducing a ribose nucleotide to the 3′ end of a DNA sequence. Reaction with mM NaIO4 (sodium metaperiodate) produces a dialdehyde of ribose which couples to hydrazide-agarose. The DNA is combined at nM concentration with a nuclear extract or other protein mixture and DNA-protein complexes form. The complex is then coupled to hydrazide-agarose for trapping the DNA-protein complex and the protein eluted by increasing NaCl concentration. Using a different oligonucleotide with the proximal E-box sequence from the human telomerase promoter, USF-2 transcription factor was purified by trapping, again with higher purity than results from conventional affinity chromatography and similar yield. Other transcription factors binding E-boxes including E2A, c-myc, and myo-D were also purified but myogenenin and NFκB were not. Therfore, this approach proved valuable for both affinity chromatography and for the trapping approach. PMID:25935261

  5. Immobilized Metal Affinity Chromatography Coupled to Multiple Reaction Monitoring Enables Reproducible Quantification of Phospho-signaling.

    PubMed

    Kennedy, Jacob J; Yan, Ping; Zhao, Lei; Ivey, Richard G; Voytovich, Uliana J; Moore, Heather D; Lin, Chenwei; Pogosova-Agadjanyan, Era L; Stirewalt, Derek L; Reding, Kerryn W; Whiteaker, Jeffrey R; Paulovich, Amanda G

    2016-02-01

    A major goal in cell signaling research is the quantification of phosphorylation pharmacodynamics following perturbations. Traditional methods of studying cellular phospho-signaling measure one analyte at a time with poor standardization, rendering them inadequate for interrogating network biology and contributing to the irreproducibility of preclinical research. In this study, we test the feasibility of circumventing these issues by coupling immobilized metal affinity chromatography (IMAC)-based enrichment of phosphopeptides with targeted, multiple reaction monitoring (MRM) mass spectrometry to achieve precise, specific, standardized, multiplex quantification of phospho-signaling responses. A multiplex immobilized metal affinity chromatography- multiple reaction monitoring assay targeting phospho-analytes responsive to DNA damage was configured, analytically characterized, and deployed to generate phospho-pharmacodynamic curves from primary and immortalized human cells experiencing genotoxic stress. The multiplexed assays demonstrated linear ranges of ≥3 orders of magnitude, median lower limit of quantification of 0.64 fmol on column, median intra-assay variability of 9.3%, median inter-assay variability of 12.7%, and median total CV of 16.0%. The multiplex immobilized metal affinity chromatography- multiple reaction monitoring assay enabled robust quantification of 107 DNA damage-responsive phosphosites from human cells following DNA damage. The assays have been made publicly available as a resource to the community. The approach is generally applicable, enabling wide interrogation of signaling networks. PMID:26621847

  6. Special Report: Affinity Chromatography.

    ERIC Educational Resources Information Center

    Parikh, Indu; Cuatrecasas, Pedro

    1985-01-01

    Describes the nature of affinity chromatography and its use in purifying enzymes, studying cell interactions, exploring hormone receptors, and other areas. The potential the technique may have in treating disease is also considered. (JN)

  7. Characterization of the human submandibular/sublingual saliva glycoproteome using lectin affinity chromatography coupled to Multidimensional Protein Identification Technology

    PubMed Central

    Gonzalez-Begne, Mireya; Lu, Bingwen; Liao, Lujian; Xu, Tao; Bedi, Gurrinder; Melvin, James E.; Yates, John R.

    2011-01-01

    In-depth analysis of the salivary proteome is fundamental to understanding the functions of salivary proteins in the oral cavity and to reveal disease biomarkers involved in different pathophysiological conditions, with the ultimate goal of improving patient diagnosis and prognosis. Submandibular and sublingual glands contribute saliva rich in glycoproteins to the total saliva output, making them valuable sources for glycoproteomic analysis. Lectin-affinity chromatography coupled to mass spectrometry-based shotgun proteomics was used to explore the submandibular/sublingual (SM/SL) saliva glycoproteome. A total of 262 N- and O-linked glycoproteins were identified by multidimensional protein identification technology (MudPIT). Only 38 were previously described in SM and SL salivas from the human salivary N-linked glycoproteome, while 224 were unique. Further comparison analysis with SM/SL saliva of the human saliva proteome, revealed 125 glycoproteins not formerly reported in this secretion. KEGG pathway analyses demonstrated that many of these glycoproteins are involved in processes such as complement and coagulation cascades, cell communication, glycosphingolipid biosynthesis neo-lactoseries, O-glycan biosynthesis, glycan structures-biosynthesis 2, starch and sucrose metabolism, peptidoglycan biosynthesis or others pathways. In summary, lectin-affinity chromatography coupled to MudPIT mass spectrometry identified many novel glycoproteins in SM/SL saliva. These new additions to the salivary proteome may prove to be a critical step for providing reliable biomarkers in the diagnosis of a myriad of oral and systemic diseases. PMID:21936497

  8. Coupling Isotachophoresis with Affinity Chromatography for Rapid and Selective Purification with High Column Utilization, Part 1: Theory

    PubMed Central

    2015-01-01

    We present a novel technique that couples isotachophoresis (ITP) with affinity chromatography (AC) to achieve rapid, selective purification with high column utilization. ITP simultaneously preconcentrates an analyte and purifies it, based on differences in mobility of sample components, excluding species that may foul or compete with the target at the affinity substrate. ITP preconcentration accelerates the affinity reaction, reducing assay time, improving column utilization, and allowing for capture of targets with higher dissociation constants. Furthermore, ITP-AC separates the target and contaminants into nondiffusing zones, thus achieving high resolution in a short distance and time. We present an analytical model for spatiotemporal dynamics of ITP-AC. We identify and explore the effect of key process parameters, including target distribution width and height, ITP zone velocity, forward and reverse reaction constants, and probe concentration on necessary affinity region length, assay time, and capture efficiency. Our analytical approach shows collapse of these variables to three nondimensional parameters. The analysis yields simple analytical relations for capture length and capture time in relevant ITP-AC regimes, and it demonstrates how ITP greatly reduces assay time and improves column utilization. In the second part of this two-part series, we will present experimental validation of our model and demonstrate ITP-AC separation of the target from 10,000-fold more-abundant contaminants. PMID:24937679

  9. Affinity chromatography: a historical perspective.

    PubMed

    Hage, David S; Matsuda, Ryan

    2015-01-01

    Affinity chromatography is one of the most selective and versatile forms of liquid chromatography for the separation or analysis of chemicals in complex mixtures. This method makes use of a biologically related agent as the stationary phase, which provides an affinity column with the ability to bind selectively and reversibly to a given target in a sample. This review examines the early work in this method and various developments that have lead to the current status of this technique. The general principles of affinity chromatography are briefly described as part of this discussion. Past and recent efforts in the generation of new binding agents, supports, and immobilization methods for this method are considered. Various applications of affinity chromatography are also summarized, as well as the influence this field has played in the creation of other affinity-based separation or analysis methods. PMID:25749941

  10. Enrichment and Analysis of Nonenzymatically Glycated Peptides: Boronate Affinity Chromatography Coupled with Electron-Transfer Dissociation Mass Spectrometry

    SciTech Connect

    Zhang, Qibin; Tang, Ning; Brock, Jonathan W.; Mottaz, Heather M.; Ames, Jennifer M.; Baynes, John; Smith, Richard D.; Metz, Thomas O.

    2007-06-01

    Non-enzymatic glycation of peptides and proteins by D-glucose has important implications in the pathogenesis of diabetes mellitus, particularly in the development of diabetic complications. However, no effective high-throughput methods exist for identifying proteins containing this low abundance post-translational modification in bottom-up proteomic studies. In this report, phenylboronate affinity chromatography was used in a two-step enrichment scheme to selectively isolate first glycated proteins and then glycated, tryptic peptides from human serum glycated in vitro. Enriched peptides were subsequently analyzed by alternating electron transfer dissociation (ETD) and collision induced dissociation (CID) tandem mass spectrometry. It was observed that ETD fragmentation mode resulted in a significantly higher number of glycated peptide identifications (87.6% of all identified peptides) versus CID mode (17.0% of all identified peptides), when utilizing dual glycation enrichment on both the protein and peptide level. This study illustrates that phenylboronate affinity chromatography coupled with LC-MS/MS with ETD as the fragmentation mode is an efficient approach for analyses of glycated proteins and can have broad applications in studies of diabetes mellitus.

  11. Coupling Isotachophoresis with Affinity Chromatography for Rapid and Selective Purification with High Column Utilization, Part 2: Experimental Study

    PubMed Central

    2015-01-01

    We present an experimental study of coupling of isotachophoresis (ITP) and affinity chromatography (AC) to effect rapid, selective purification with high column utilization and high resolution. We provide a detailed protocol for performing ITP-AC and describe the design of a buffer system to perform sequence specific separation of nucleic acids. We describe the synthesis and functionalization of our affinity substrate, poly(glycidyl methacrylate-co-ethylene dimethacrylate) porous polymer monolith (GMA-EDMA PPM). This substrate allows easy immobilization of affinity probes, is nonsieving (even to macromolecules), and exhibits negligible nonspecific binding. We demonstrate ITP-AC with 25 nt, Cy5 labeled DNA target and a DNA probe and study the spatiotemporal dynamics using epifluorescence imaging. We make qualitative and quantitative comparisons between these data and the model presented in the first part of this two-paper series. We vary the target concentration from 1 pg μL–1 to 100 pg μL–1 and ITP velocity over the range of 10–50 μm s–1, and thereby explore over 4 orders of magnitude of scaled target amount. We observe very good agreement between predictions and experimental data for the spatiotemporal behavior of the coupled ITP and affinity process, and for key figures of merit, including scaled capture length and maximum capture efficiency. Lastly, we demonstrate that the resolution of ITP-AC increases linearly with time and purify 25 nt target DNA from 10 000-fold higher abundance background (contaminating) genomic fish sperm DNA. We perform this capture from 200 μL of sample in under 1 mm column length and within <10 min. PMID:24937777

  12. Affinity selection-based two-dimensional chromatography coupled with high-performance liquid chromatography-mass spectrometry for discovering xanthine oxidase inhibitors from Radix Salviae Miltiorrhizae.

    PubMed

    Fu, Yu; Mo, Hua-Yan; Gao, Wen; Hong, Jia-Ying; Lu, Jun; Li, Ping; Chen, Jun

    2014-08-01

    Xanthine oxidase (XOD) is a key oxidative enzyme to the pathogenesis of hyperuricemia and certain diseases induced by excessive reactive oxygen species. XOD inhibitors could provide an important therapeutic approach to treat such diseases. A new method using affinity selection-based two-dimensional chromatography coupled with liquid chromatography-mass spectrometry was developed for the online screening of potential XOD inhibitors from Radix Salviae Miltiorrhizae. Based on our previous study, the two-dimensional, turbulent-flow chromatography (TFC) was changed to a mixed-mode anion-exchange/reversed-phase column and one reversed-phase column. The developed method was validated to be selective and sensitive for screening XOD-binding compounds, especially weak acidic ones, in the extracts. Three salvianolic acids were screened from the Radix Salviae Miltiorrhizae extract via the developed method. The XOD inhibitory activities of salvianolic acid C and salvianolic acid A were confirmed, and their inhibitory modes were measured. Salvianolic acid C exhibited potent XOD inhibitory activity with an IC(50) of 9.07 μM. This work demonstrated that the developed online, two-dimensional TFC/LC-MS method was effective in discovering the binding affinity of new compounds from natural extracts for target proteins, even at low concentrations.

  13. "Clickable" agarose for affinity chromatography.

    PubMed

    Punna, Sreenivas; Kaltgrad, Eiton; Finn, M G

    2005-01-01

    Successful purification of biological molecules by affinity chromatography requires the attachment of desired ligands to biocompatible chromatographic supports. The Cu(I)-catalyzed cycloaddition of azides and alkynes-the premier example of "click chemistry"-is an efficient way to make covalent connections among diverse molecules and materials. Both azide and alkyne units are highly selective in their reactivity, being inert to most chemical functionalities and stable to wide ranges of solvent, temperature, and pH. We show that agarose beads bearing alkyne and azide groups can be easily made and are practical precursors to functionalized agarose materials for affinity chromatography.

  14. Protein purification using PDZ affinity chromatography.

    PubMed

    Walkup, Ward G; Kennedy, Mary B

    2015-01-01

    PDZ domains function in nature as protein-binding domains within scaffold and membrane-associated proteins. They comprise approximately 90 residues and undergo specific, high-affinity interactions with complementary C-terminal peptide sequences, other PDZ domains, and/or phospholipids. We have previously shown that the specific, strong interactions of PDZ domains with their ligands make them well suited for use in affinity chromatography. This unit provides protocols for the PDZ affinity chromatography procedure that are applicable for the purification of proteins that contain PDZ domains or PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We detail the preparation of affinity resins composed of PDZ domains or PDZ domain peptide ligands coupled to solid supports. These resins can be used to purify proteins containing endogenous or genetically introduced PDZ domains or ligands, eluting the proteins with free PDZ domain peptide ligands. PMID:25829303

  15. Displacement phenomena in lectin affinity chromatography.

    PubMed

    Cho, Wonryeon

    2015-10-01

    The work described here examines displacement phenomena that play a role in lectin affinity chromatography and their potential to impact reproducibility. This was achieved using Lycopersicon esculentum lectin (LEL), a lectin widely used in monitoring cancer. Four small identical LEL columns were coupled in series to form a single affinity chromatography system with the last in the series connected to an absorbance detector. The serial affinity column set (SACS) was then loaded with human plasma proteins. At the completion of loading, the column set was disassembled, the four columns were eluted individually, the captured proteins were trypsin digested, the peptides were deglycosylated with PNGase F, and the parent proteins were identified through mass spectral analyses. Significantly different sets of glycoproteins were selected by each column, some proteins appearing to be exclusively bound to the first column while others were bound further along in the series. Clearly, sample displacement chromatography (SDC) occurs. Glycoproteins were bound at different places in the column train, identifying the presence of glycoforms with different affinity on a single glycoprotein. It is not possible to see these phenomena in the single column mode of chromatography. Moreover, low abundance proteins were enriched, which facilitates detection. The great advantage of this method is that it differentiates between glycoproteins on the basis of their binding affinity. Displacement phenomena are concluded to be a significant component of the separation mechanism in heavily loaded lectin affinity chromatography columns. This further suggests that care must be exercised in sample loading of lectin columns to prevent analyte displacement with nonretained proteins. PMID:26348026

  16. Lectin affinity chromatography of glycolipids

    SciTech Connect

    Torres, B.V.; Smith, D.F.

    1987-05-01

    Since glycolipids (GLs) are either insoluble or form mixed micelles in water, lectin affinity chromatography in aqueous systems has not been applied to their separation. They have overcome this problem by using tetrahydrofuran (THF) in the mobile phase during chromatography. Affinity columns prepared with the GalNAc-specific Helix pomatia agglutinin (HPA) and equilibrated in THF specifically bind the (/sup 3/H)oligosaccharide derived from Forssman GL indicating that the immobilized HPA retained its carbohydrate-binding specificity in this solvent. Intact Forssman GL was bound by the HPA-column equilibrated in THF and was specifically eluted with 0.1 mg/ml GalNAc in THF. Purification of the Forssman GL was achieved when a crude lipid extract of sheep erythrocyte membranes was applied to the HPA-column in THF. Non-specifically bound GLs were eluted from the column using a step gradient of aqueous buffer in THF, while the addition of GalNAc was required to elute the specifically bound GLs. Using this procedure the A-active GLs were purified from a crude lipid extract of type A human erythrocytes in a single chromatographic step. The use of solvents that maintain carbohydrate-binding specificity and lipid solubility will permit the application of affinity chromatography on immobilized carbohydrate-binding proteins to intact GLs.

  17. Affinity chromatography for purification of two urokinases from human urine.

    PubMed

    Takahashi, R; Akiba, K; Koike, M; Noguchi, T; Ezure, Y

    2000-05-26

    A new affinity chromatography (hydrophobic-mediated affinity chromatography), which was characterized by the matrix having both affinity site to urokinase and hydrophobic site, was established for the purification of urokinase from human urine. The hydrophobic affinity matrix (tentatively named PAS in the text) was prepared by immobilizing 6-aminocaproic acid on Sepharose CL-6B, followed by a coupling p-aminobenzamidine to a part of the hydrophobic site on the matrix. The PAS matrix was applied to the purification of urokinase from human urine, and high- and low-molecular weight pure urokinases were efficiently obtained in high yield by the present method. PMID:10892585

  18. Synthesis and characterization of a cellular membrane affinity chromatography column containing histamine 1 and P2Y1 receptors: A multiple G-protein coupled receptor column

    PubMed Central

    Moaddel, Ruin; Musyimi, Harrison K.; Sanghvi, Mitesh; Bashore, Charlene; Frazier, Chester R.; Khadeer, Mohammad; Bhatia, Prateek; Wainer, Irving W.

    2015-01-01

    A cellular membrane affinity chromatography (CMAC) column has been created using cellular membrane fragments from a 1321N1 cell line stably transfected with the P2Y1 receptor. The CMAC(1321N1P2Y1) column contained functional P2Y1 and histamine 1 receptors, which independently bound receptor-specific ligands. The data obtained with the CMAC(1321N1P2Y1) column demonstrate that multiple-G-protein coupled receptor (GPCR) columns can be developed and used to probe interactions with the immobilized receptors and that endogenously expressed GPCRs can be used to create CMAC columns. The results also establish that the histamine 1 receptor can be immobilized with retention of ligand-specific binding. PMID:19608372

  19. Online micro-solid-phase extraction based on boronate affinity monolithic column coupled with high-performance liquid chromatography for the determination of monoamine neurotransmitters in human urine.

    PubMed

    Yang, Xiaoting; Hu, Yufei; Li, Gongke

    2014-05-16

    Quantification of monoamine neurotransmitters is very important in diagnosing and monitoring of patients with neurological disorders. We developed an online analytical method to selectively determine urinary monoamine neurotransmitters, which coupled the boronate affinity monolithic column micro-solid-phase extraction with high-performance liquid chromatography (HPLC). The boronate affinity monolithic column was prepared by in situ polymerization of vinylphenylboronic acid (VPBA) and N,N'-methylenebisacrylamide (MBAA) in a stainless capillary column. The prepared monolithic column showed good permeability, high extraction selectivity and capacity. The column-to-column reproducibility was satisfactory and the enrichment factors were 17-243 for four monoamine neurotransmitters. Parameters that influence the online extraction efficiency, including pH of sample solution, flow rate of extraction and desorption, extraction volume and desorption volume were investigated. Under the optimized conditions, the developed method exhibited low limit of detection (0.06-0.80μg/L), good linearity (with R(2) between 0.9979 and 0.9993). The recoveries in urine samples were 81.0-105.5% for four monoamine neurotransmitters with intra- and inter-day RSDs of 2.1-8.2% and 3.7-10.6%, respectively. The online analytical method was sensitive, accurate, selective, reliable and applicable to analysis of trace monoamine neurotransmitters in human urine sample.

  20. Affinity Chromatography in Nonionic Detergent Solutions

    NASA Astrophysics Data System (ADS)

    Robinson, Jack B.; Strottmann, James M.; Wick, Donald G.; Stellwagen, Earle

    1980-10-01

    Anionic dye affinity chromatography is commonly unproductive in the presence of nonionic detergents used to extract particulate proteins. Using lactate dehydrogenase as a model protein, Cibacron blue F3GA as a model dye, and Triton X-100 as a model detergent, we find that the dye is encapsulated in nonionic detergent micelles, rendering the dye incapable of ligation with the enzyme. However, the dye can be liberated from the micelles without altering the nonionic detergent concentration by addition of an anionic detergent, such as deoxycholate or sodium dodecyl sulfate, forming mixed anionic/nonionic micelles that displace the anionic dye. Encapsulation of the anionic detergents prevents their activity as protein denaturants. These observations have been successfully translated to the dye affinity chromatography of a detergent extract of brain particulate cyclic nucleotide phosphodiesterase.

  1. [Determination of the interaction kinetics between meloxicam and β-cyclodextrin using the quantitative high-performance affinity chromatography coupled with mass spectrometry].

    PubMed

    Wang, Cai-fen; Li, Zhuo; Wang, Xiao-bo; Li, Hai-yan; Zhang, Ji-wen; Sun, Li-xin

    2015-09-01

    The association rate constant and dissociation rate constant are important parameters of the drug-cyclodextrin supermolecule systems, which determine the dissociation of drugs from the complex and the further in vivo absorption of drugs. However, the current studies of drug-cyclodextrin interactions mostly focus on the thermodynamic parameter of equilibrium constants (K). In this paper, a method based on quantitative high performance affinity chromatography coupled with mass spectrometry was developed to determine the apparent dissociation rate constant (k(off,app)) of drug-cyclodextrin supermolecule systems. This method was employed to measure the k(off,app) of meloxicam and acetaminophen. Firstly, chromatographic peaks of drugs and non-retained solute (uracil) on β-cyclodextrin column at different flow rates were acquired, and the retention time and variance values were obtained via the fitting the peaks. Then, the plate heights of drugs (H(R)) and uracil (H(M,C)) were calculated. The plate height of theoretical non-retained solute (H(M,T)) was calculated based on the differences of diffusion coefficient and the stagnant mobile phase mass transfer between drugs and uracil. Finally, the k(off,app) was calculated from the slope of the regression equation between (H(R)-H(M,T)) and uk/(1+k)2, (0.13 ± 0.00) s(-1) and (4.83 ± 0.10) s(-1) for meloxicam and acetaminophen (control drug), respectively. In addition, the apparent association rate constant (k(on,app)) was also calculated through the product of K (12.53 L x mol(-1)) and k(off,app). In summary, it has been proved that the method established in our study was simple, efficiently fast and reproducible for investigation on the kinetics of drug-cyclodextrin interactions. PMID:26757555

  2. Affinity purification of metalloprotease from marine bacterium using immobilized metal affinity chromatography.

    PubMed

    Li, Shangyong; Wang, Linna; Yang, Juan; Bao, Jing; Liu, Junzhong; Lin, Shengxiang; Hao, Jianhua; Sun, Mi

    2016-06-01

    In this study, an efficient affinity purification protocol for an alkaline metalloprotease from marine bacterium was developed using immobilized metal affinity chromatography. After screening and optimization of the affinity ligands and spacer arm lengths, Cu-iminmodiacetic acid was chosen as the optimal affinity ligand, which was coupled to Sepharose 6B via a 14-atom spacer arm. The absorption analysis of this medium revealed a desorption constant Kd of 21.5 μg/mL and a theoretical maximum absorption Qmax of 24.9 mg/g. Thanks to this affinity medium, the enzyme could be purified by only one affinity purification step with a purity of approximately 95% pure when analyzed by high-performance liquid chromatography and reducing sodium dodecyl sulfate polyacrylamide gel electrophoresis. The recovery of the protease activity reached 74.6%, which is much higher than the value obtained by traditional protocols (8.9%). These results contribute to the industrial purifications and contribute a significant reference for the purification of other metalloproteases. PMID:27058973

  3. Phosphopeptide Enrichment by Immobilized Metal Affinity Chromatography.

    PubMed

    Thingholm, Tine E; Larsen, Martin R

    2016-01-01

    Immobilized metal affinity chromatography (IMAC) has been the method of choice for phosphopeptide enrichment prior to mass spectrometric analysis for many years and it is still used extensively in many laboratories. Using the affinity of negatively charged phosphate groups towards positively charged metal ions such as Fe(3+), Ga(3+), Al(3+), Zr(4+), and Ti(4+) has made it possible to enrich phosphorylated peptides from peptide samples. However, the selectivity of most of the metal ions is limited, when working with highly complex samples, e.g., whole-cell extracts, resulting in contamination from nonspecific binding of non-phosphorylated peptides. This problem is mainly caused by highly acidic peptides that also share high binding affinity towards these metal ions. By lowering the pH of the loading buffer nonspecific binding can be reduced significantly, however with the risk of reducing specific binding capacity. After binding, the enriched phosphopeptides are released from the metal ions using alkaline buffers of pH 10-11, EDTA, or phosphate-containing buffers. Here we describe a protocol for IMAC using Fe(3+) for phosphopeptide enrichment. The principles are illustrated on a semi-complex peptide mixture. PMID:26584922

  4. Improving affinity chromatography resin efficiency using semi-continuous chromatography.

    PubMed

    Mahajan, Ekta; George, Anupa; Wolk, Bradley

    2012-03-01

    Protein A affinity chromatography is widely used for purification of monoclonal antibodies (MAbs) from harvested cell culture fluid (HCCF). At the manufacturing scale, the HCCF is typically loaded on a single Protein A affinity chromatography column in cycles until all of the HCCF is processed. Protein A resin costs are significant, comprising a substantial portion of the raw material costs in MAb manufacturing. Cost can be reduced by operating the process continuously using multiple smaller columns to a higher binding capacity in lieu of one industrial scale column. In this study, a series of experiments were performed using three 1-ml Hi-Trap™ MabSelect SuRe™ columns on a modified ÄKTA™ system operated according to the three Column Periodic Counter Current Chromatography (3C PCC) principle. The columns were loaded individually at different times until the 70% breakthrough point was achieved. The HCCF with unbound protein from the column was then loaded onto the next column to capture the MAb, preventing any protein loss. At any given point, all three columns were in operation, either loading or washing, enabling a reduction in processing time. The product yield and quality were evaluated and compared with a batch process to determine the effect of using the three column continuous process. The continuous operation shows the potential to reduce both resin volume and buffer consumption by ∼40%, however the system hardware and the process is more complex than the batch process. Alternative methods using a single standard affinity column, such as recycling load effluent back to the tank or increasing residence time, were also evaluated to improve Protein A resin efficiency. These alternative methods showed similar cost benefits but required longer processing time. PMID:22265178

  5. Affinity chromatography with an immobilized RNA enzyme.

    PubMed Central

    Vioque, A; Altman, S

    1986-01-01

    M1 RNA, the catalytic subunit of Escherichia coli RNase P, has been covalently linked at its 3' terminus to agarose beads. Unlike M1 RNA, which is active in solution in the absence of the protein component (C5) of RNase P, the RNA linked to the beads is active only in the presence of C5 protein. Affinity chromatography of crude extracts of E. coli on a column prepared from the beads to which the RNA has been crosslinked results in the purification of C5 protein in a single step. The protein has been purified in this manner from cells that contain a plasmid, pINIIIR20, which includes the gene that codes for C5 protein. A 6-fold amplification of the expression of C5 protein is found in these cells after induction as compared to cells that do not harbor the plasmid. Images PMID:3526344

  6. Exploring Fluorous Affinity by Liquid Chromatography.

    PubMed

    Catani, Martina; Guzzinati, Roberta; Marchetti, Nicola; Pasti, Luisa; Cavazzini, Alberto

    2015-07-01

    Terms such as "fluorous affinity" and "fluorophilicity" have been used to describe the unique partition and sorption properties often exhibited by highly fluorinated organic compounds, that is molecules rich in sp(3) carbon-fluorine bonds. In this work, we made use of a highly fluorinated stationary phase and a series of benzene derivatives to study the effect of one single perfluorinated carbon on the chromatographic behavior and adsorption properties of molecules. For this purpose, the adsorption equilibria of α,α,α-trifluorotoluene, toluene, and other alkylbenzenes have been studied by means of nonlinear chromatography in a variety of acetonitrile/water eluents. Our results reveal that one single perfluorinated carbon is already enough to induce a drastic change in the adsorption properties of molecules on the perfluorinated stationary phase. In particular, it has been found that adsorption is monolayer if the perfluoroalkyl carbon is present but that, when this unit is missing, molecules arrange as multilayer stack structures. These findings can contribute to the understanding of molecular mechanisms of fluorous affinity. PMID:26047527

  7. Quantitative Phosphoproteome Analysis of Lysophosphatidic Acid Induced Chemotaxis applying Dual-step ¹⁸O Labeling Coupled with Immobilized Metal-ion Affinity Chromatography

    SciTech Connect

    Ding, Shi-Jian; Wang, Yingchun; Jacobs, Jon M.; Qian, Weijun; Yang, Feng; Tolmachev, Aleksey V.; Du, Xiuxia; Wang, Wei; Moore, Ronald J.; Monroe, Matthew E.; Purvine, Samuel O.; Waters, Katrina M.; Heibeck, Tyler H.; Adkins, Joshua N.; Camp, David G.; Klemke, Richard L.; Smith, Richard D.

    2008-10-01

    Reversible protein phosphorylation is a central cellular regulatory mechanism in modulating protein activity and propagating signals within cellular pathways and networks. Development of more effective methods for the simultaneous identification of phosphorylation sites and quantification of temporal changes in protein phosphorylation could provide important insights into molecular signaling mechanisms in a variety of different cellular processes. Here we present an integrated quantitative phosphoproteomics approach and its applications for comparative analysis of Cos-7 cells in response to lysophosphatidic acid (LPA) gradient stimulation. The approach combines trypsin-catalyzed 16O/18O labeling plus 16O/18O-methanol esterification labeling for quantitation, a macro- Immobilized Metal-ion Affinity Chromatography trap for phosphopeptide enrichment, and a monolithic capillary column with integrated electrospray emitter. LC separation and MS/MS is followed by neutral loss-dependent MS/MS/MS for phosphopeptide identification using a linear ion trap (LTQ)-FT mass spectrometer and complementary searching algorithms for interpreting MS/MS spectra. Protein phosphorylation involved in various signaling pathways of cell migration were identified and quantified, such as mitogen-activated protein kinase 1, dual-specificity mitogen-activated protein kinase kinase 2, and dual-specificity tyrosine-phosphorylation regulated kinase 1b, and a number of Rho GTPase-activating proteins. These results demonstrate the efficiency of this quantitative phosphoproteomics approach and its application for rapid discovery of phosphorylation events associated with gradient sensing and cell chemotaxis.

  8. Purification of glycolytic enzymes by using affinity-elution chromatography.

    PubMed Central

    Scopes, R K

    1977-01-01

    1. A systematic procedure for the purification of enzymes by affinity-elution chromatography is described. Enzymes are adsorbed on a cation-exchanger, and eluted with ligands specific for the enzyme concerned. 2. All of the glycolytic and some related enzymes present in rabbit muscle can be purified by the affinity-elution technique. The pH range for adsorption and elution of each enzyme was found, and the effects of minor variations of conditions are described. 3. A description of experimental conditions suitable for affinity elution of each enzyme is given, together with special features relevant to each individual enzyme. 4. Theoretical considerations of affinity elution chromatography are discussed, including its limitations, advantages and disadvantages compared with affinity-adsorption chromatography. Possible developments are suggested to cover enzymes which because of their adsorption characteristics are not at present amenable to affinity-elution procedures. PMID:192194

  9. On-line coupling of surface plasmon resonance optical sensing to size-exclusion chromatography for affinity assessment of antibody samples.

    PubMed

    Lakayan, Dina; Haselberg, Rob; Niessen, Wilfried M A; Somsen, Govert W; Kool, Jeroen

    2016-06-24

    Surface plasmon resonance (SPR) is an optical technique that measures biomolecular interactions. Stand-alone SPR cannot distinguish different binding components present in one sample. Moreover, sample matrix components may show non-specific binding to the sensor surface, leading to detection interferences. This study describes the development of coupled size-exclusion chromatography (SEC) SPR sensing for the separation of sample components prior to their on-line bio-interaction analysis. A heterogeneous polyclonal human serum albumin antibody (anti-HSA) sample, which was characterized by proteomics analysis, was used as test sample. The proposed SEC-SPR coupling was optimized by studying system parameters, such as injection volume, flow rate and sample concentration, using immobilized HSA on the sensor chip. Automated switch valves were used for on-line regeneration of the SPR sensor chip in between injections and for potential chromatographic heart cutting experiments, allowing SPR detection of individual components. The performance of the SEC-SPR system was evaluated by the analysis of papain-digested anti-HSA sampled at different incubation time points. The new on-line SEC-SPR methodology allows specific label-free analysis of real-time interactions of eluting antibody sample constituents towards their antigenic target. PMID:27215465

  10. Purification of muscarinic acetylcholine receptors by affinity chromatography.

    PubMed Central

    André, C; De Backer, J P; Guillet, J C; Vanderheyden, P; Vauquelin, G; Strosberg, A D

    1983-01-01

    Calf forebrain homogenates contain 2.8 pM muscarinic acetylcholine receptors per mg of protein. [3H]Antagonist saturation binding experiments under equilibrium conditions revealed a single class of sites with equilibrium dissociation constants of 0.82 nM for [3H]dexetimide and 0.095 nM for [3H]quinuclidinyl benzilate. Displacement binding studies with agonists revealed the presence of low and high affinity sites. Here we describe the solubilization of muscarinic acetylcholine receptors with digitonin and their purification by affinity chromatography using an affinity gel which consisted of dexetimide coupled to Affi-Gel 10 (i.e., carboxy N-hydroxysuccinimide esters linked via a 1 nm spacer arm to agarose beads). Purified proteins were obtained by specific elution with muscarinic drugs, i.e., the antagonist atropine and the irreversible ligand propylbenzilylcholine mustard. SDS-polyacrylamide gel electrophoresis of the radioiodinated purified preparations revealed a major 70-K protein. Images Fig. 3. PMID:6605245

  11. Frontal affinity chromatography (FAC): theory and basic aspects.

    PubMed

    Kasai, Ken-ichi

    2014-01-01

    Frontal affinity chromatography (FAC) is a versatile analytical tool for determining specific interactions between biomolecules and is particularly useful in the field of glycobiology. This article presents its basic aspects, merits, and theory. PMID:25117240

  12. Affinity chromatography of bacterial lactate dehydrogenases.

    PubMed Central

    Kelly, N; Delaney, M; O'Carra, P

    1978-01-01

    The affinity system used was the immobilized oxamate derivative previously used to purify mammalian lactate dehydrogenases. The bacterial dehydrogenases specific for the L-stereoisomer of lactate behaved in the same way as the mammalian enzymes, binding strongly in the presence of NADH. The D-lactate-specific enzymes, however, did not show any biospecific affinity for this gel. The L-specific enzymes could be purified to homogeneity in one affinity-chromatographic step. The D-specific enzymes could be efficiently separated from the L-specific ones and could then be further purified on an immobilized NAD derivative. The mechanism of activation of the lactate dehydrogenase from Streptococcus faecalis by fructose 1,6-bisphosphate was investigated by using the immobilized oxamate gel. PMID:666726

  13. Affinity chromatography of bacterial lactate dehydrogenases.

    PubMed

    Kelly, N; Delaney, M; O'Carra, P

    1978-06-01

    The affinity system used was the immobilized oxamate derivative previously used to purify mammalian lactate dehydrogenases. The bacterial dehydrogenases specific for the L-stereoisomer of lactate behaved in the same way as the mammalian enzymes, binding strongly in the presence of NADH. The D-lactate-specific enzymes, however, did not show any biospecific affinity for this gel. The L-specific enzymes could be purified to homogeneity in one affinity-chromatographic step. The D-specific enzymes could be efficiently separated from the L-specific ones and could then be further purified on an immobilized NAD derivative. The mechanism of activation of the lactate dehydrogenase from Streptococcus faecalis by fructose 1,6-bisphosphate was investigated by using the immobilized oxamate gel. PMID:666726

  14. Prediction of Neutral Salt Elution Profiles for Affinity Chromatography

    NASA Astrophysics Data System (ADS)

    Robinson, Jack B.; Strottmann, James M.; Stellwagen, Earle

    1981-04-01

    Neutral salts exhibit very marked differences as eluants of proteins from affinity columns. We observe: (i) that the relative potencies of neutral salts as eluants are independent of the protein or the affinity ligand in the systems studied, (ii) that the absolute salt concentration necessary to elute any given protein bound to the affinity matrix is proportional to the algebraic sum of a set of elution coefficients defined herein for the separate ions present in the solution, and (iii) that the proportionality between elution potency and elution coefficient is a function of the affinity of the protein for the immobilized ligand. Given the concentration of one neutral salt required for elution of a protein of interest from an affinity column, the elution capability of any neutral salt at any temperature can be quantitatively predicted for that protein. Accordingly, application and elution protocols for affinity chromatography can be designed to optimize the yield and fold purification of proteins.

  15. Kinetic Studies of Biological Interactions By Affinity Chromatography

    PubMed Central

    Schiel, John E.; Hage, David S.

    2009-01-01

    The rates at which biological interactions occur can provide important information on the mechanism and behavior of such processes in living systems. This review will discuss how affinity chromatography can be used as a tool to examine the kinetics of biological interactions. This approach, referred to here as biointeraction chromatography, uses a column with an immobilized binding agent to examine the association or dissociation of this agent with other compounds. The use of HPLC-based affinity columns in kinetic studies has received particular attention in recent years. Advantages of using HPLC with affinity chromatography for this purpose include the ability to reuse the same ligand within a column for a large number of experiments, and the good precision and accuracy of this approach. A number of techniques are available for kinetic studies through the use of affinity columns and biointeraction chromatography. These approaches include plate height measurements, peak profiling, peak fitting, split-peak measurements, and peak decay analysis. The general principles for each of these methods are discussed in this review and some recent applications of these techniques are presented. The advantages and potential limitations of each approach are also considered. PMID:19391173

  16. Specific capture of uranyl protein targets by metal affinity chromatography.

    PubMed

    Basset, Christian; Dedieu, Alain; Guérin, Philippe; Quéméneur, Eric; Meyer, Daniel; Vidaud, Claude

    2008-03-28

    To improve general understanding of biochemical mechanisms in the field of uranium toxicology, the identification of protein targets needs to be intensified. Immobilized metal affinity chromatography (IMAC) has been widely developed as a powerful tool for capturing metal binding proteins from biological extracts. However uranyl cations (UO2(2+)) have particular physico-chemical characteristics which prevent them from being immobilized on classical metal chelating supports. We report here on the first development of an immobilized uranyl affinity chromatography method, based on the cation-exchange properties of aminophosphonate groups for uranyl binding. The cation distribution coefficient and loading capacity on the support were determined. Then the stability of the uranyl-bonded phase under our chromatographic conditions was optimized to promote affinity mechanisms. The successful enrichment of uranyl binding proteins from human serum was then proven using proteomic and mass spectral analysis. PMID:18308325

  17. PDZ Affinity Chromatography: A general method for affinity purification of proteins based on PDZ domains and their ligands

    PubMed Central

    Walkup, Ward G.; Kennedy, Mary B.

    2014-01-01

    PDZ (PSD-95, DiscsLarge, ZO1) domains function in nature as protein binding domains within scaffold and membrane-associated proteins. They comprise ~ 90 residues and make specific, high affinity interactions with complementary C-terminal peptide sequences, with other PDZ domains, and with phospholipids. We hypothesized that the specific, strong interactions of PDZ domains with their ligands would make them well suited for use in affinity chromatography. Here we describe a novel affinity chromatography method applicable for the purification of proteins that contain PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We created a series of affinity resins comprised of PDZ domains from the scaffold protein PSD-95, or from neuronal nitric oxide synthase (nNOS), coupled to solid supports. We used them to purify heterologously expressed neuronal proteins or protein domains containing endogenous PDZ domain ligands, eluting the proteins with free PDZ domain peptide ligands. We show that Proteins of Interest (POIs) lacking endogenous PDZ domain ligands can be engineered as fusion products containing C-terminal PDZ domain ligand peptides or internal, N- or C-terminal PDZ domains and then can be purified by the same method. Using this method, we recovered recombinant GFP fused to a PDZ-domain ligand in active form as verified by fluorescence yield. Similarly, chloramphenicol acetyltransferase (CAT) and β-Galactosidase (LacZ) fused to a C-terminal PDZ domain ligand or an N-terminal PDZ domain were purified in active form as assessed by enzymatic assay. In general, PDZ domains and ligands derived from PSD-95 were superior to those from nNOS for this method. PDZ Domain Affinity Chromatography promises to be a versatile and effective method for purification of a wide variety of natural and recombinant proteins. PMID:24607360

  18. Affinity chromatography of immobilized actin and myosin.

    PubMed Central

    Bottomley, R C; Trayer, I P

    1975-01-01

    Actin and myosin were immobilized by coupling them to agarose matrices. Both immobilized G-actin and immobilized myosin retain most of the properties of the proteins in free solution and are reliable over long periods of time. Sepharose-F-actin, under the conditions used in this study, has proved unstable and variable in its properties. Sepharose-G-actin columns were used to bind heavy meromyosin and myosin subfragment 1 specifically and reversibly. The interaction involved is sensitive to variation in ionic strength, such that myosin itself is not retained by the columns at the high salt concentration required for its complete solubilization. Myosin, rendered soluble at low ionic strength by polyalanylation, will interact successfully with the immobilized actin. The latter can distinguish between active and inactive fractions of the proteolytic and polyalanyl myosin derivatives, and was used in the preparation of these molecules. The complexes formed between the myosin derivatives and Sepharose-G-actin can be dissociated by low concentrations of ATP, ADP and pyrophosphate in both the presence and the absence of Mg2+. The G-actin columns were used to evaluate the results of chemical modifications of myosin subfragments on their interactions with actin. F-Actin in free solution is bound specifically and reversibly to columns of insolubilized myosin. Thus, with elution by either ATP or pyrophosphate, actin has been purified in one step from extracts of acetone-dried muscle powder. PMID:241335

  19. The Purification of a Blood Group A Glycoprotein: An Affinity Chromatography Experiment.

    ERIC Educational Resources Information Center

    Estelrich, J.; Pouplana, R.

    1988-01-01

    Describes a purification process through affinity chromatography necessary to obtain specific blood group glycoproteins from erythrocytic membranes. Discusses the preparation of erythrocytic membranes, extraction of glycoprotein from membranes, affinity chromatography purification, determination of glycoproteins, and results. (CW)

  20. Affinity Chromatography Purification of Cytochrome c Binding Enzymes

    NASA Astrophysics Data System (ADS)

    Azzi, Angelo; Bill, Kurt; Broger, Clemens

    1982-04-01

    An efficient affinity chromatography procedure for the isolation of mitochondrial cytochrome c oxidase and reductase is described. Saccharomyces cerevisiae cytochrome c was used as a ligand, bound to a thiol-Sepharose 4B gel through cysteine-107. In this way, the site of interaction of cytochrome c with cytochrome oxidase and reductase remained unmodified and available for binding to a number of partner enzymes. The procedure is adequate for the purification of all those proteins having in common the property of binding with high affinity to cytochrome c--e.g., cytochrome c oxidase, reductase, and peroxidase, sulfite oxidase, and reaction centers of photosynthetic bacteria.

  1. The derivatization of oxidized polysaccharides for protein immobilization and affinity chromatography.

    PubMed

    Junowicz, E; Charm, S E

    1976-03-25

    The present report describes the preparation of modified polysaccharides matrices useful for the synthesis of affinity adsorbents and immobilized proteins. Hydrazido-matrices were synthesized by condensing an excess of the bifunctional reagent, adipic acid dihydrazide, with periodate oxidized cellulose paper, Sephadex, or Sepharose matrices. Ribonucleotide dialdehyde cofactors, glyceraldehyde 3-phosphate, pyridoxal 5'-phosphate and oxidized DNAase B were separately bound to the hydrazido-polymers. Azido-matrices obtained by modification of the hydrazido-derivatives were coupled to specific amino ligands such as amino acids and proteins. Several adsorbents were prepared and used as models for affinity chromatography. PMID:1260016

  2. [Progresses in screening active compounds from herbal medicine by affinity chromatography].

    PubMed

    Feng, Ying-shu; Tong, Shan-shan; Xu, Xi-ming; Yu, Jiang-nan

    2015-03-01

    Affinity chromatography is a chromatographic method for separating molecules using the binding characteristics of the stationary phase with potential drug molecules. This method can be performed as a high throughput screening method and a chromatographic separation method to screen a variety of active drugs. This paper summarizes the history of affinity chromatography, screening technology of affinity chromatography, and application of affinity chromatography in screening bio-active compounds in herbal medicines, and then discusses its application prospects, in order to broaden applications of the affinity chromatography in drug screening. PMID:26226740

  3. PHARMACEUTICAL AND BIOMEDICAL APPLICATIONS OF AFFINITY CHROMATOGRAPHY: RECENT TRENDS AND DEVELOPMENTS

    PubMed Central

    Hage, David S.; Anguizola, Jeanethe A.; Bi, Cong; Li, Rong; Matsuda, Ryan; Papastavros, Efthimia; Pfaunmiller, Erika; Vargas, John; Zheng, Xiwei

    2012-01-01

    Affinity chromatography is a separation technique that has become increasingly important in work with biological samples and pharmaceutical agents. This method is based on the use of a biologically-related agent as a stationary phase to selectively retain analytes or to study biological interactions. This review discusses the basic principles behind affinity chromatography and examines recent developments that have occurred in the use of this method for biomedical and pharmaceutical analysis. Techniques based on traditional affinity supports are discussed, but an emphasis is placed on methods in which affinity columns are used as part of HPLC systems or in combination with other analytical methods. General formats for affinity chromatography that are considered include step elution schemes, weak affinity chromatography, affinity extraction and affinity depletion. Specific separation techniques that are examined include lectin affinity chromatography, boronate affinity chromatography, immunoaffinity chromatography, and immobilized metal ion affinity chromatography. Approaches for the study of biological interactions by affinity chromatography are also presented, such as the measurement of equilibrium constants, rate constants, or competition and displacement effects. In addition, related developments in the use of immobilized enzyme reactors, molecularly imprinted polymers, dye ligands and aptamers are briefly considered. PMID:22305083

  4. Molecular modeling of the affinity chromatography of monoclonal antibodies.

    PubMed

    Paloni, Matteo; Cavallotti, Carlo

    2015-01-01

    Molecular modeling is a methodology that offers the possibility of studying complex systems such as protein-ligand complexes from an atomistic point of view, making available information that can be difficultly obtained from experimental studies. Here, a protocol for the construction of molecular models of the interaction between antibodies and ligands that can be used for an affinity chromatography process is presented. The outlined methodology focuses mostly on the description of a procedure that may be adopted to determine the structure and free energy of interaction between the antibody and the affinity ligand. A procedure to extend the proposed methodology to include the effect of the environment (buffer solution, spacer, support matrix) is also briefly outlined. PMID:25749965

  5. Isolation of human lactate dehydrogenase isoenzyme X by affinity chromatography.

    PubMed Central

    Kolk, A H; van Kuyk, L; Boettcher, B

    1978-01-01

    Human isoenzyme LDH-X (lactate dehydrogenase isoenzyme X) was isolated from seminal fluid of frozen semen samples by affinity chromatography by using oxamate-Sepharose and AMP-Sepharose. In the presence of 1.6 mM-NAD+, isoenzyme LDH-X does not bind to AMP-Sepharose, whereas the other lactate dehydrogenase isoenzymes do. This is the crucial point in the isolation of isoenzyme LDH-X from the other isoenzymes. The purified human isoenzyme LDH-X had a specific activity of 146 units/mg of protein. Images Fig. 2. Fig. 3. PMID:213050

  6. Kinetic analysis of drug-protein interactions by affinity chromatography.

    PubMed

    Bi, Cong; Beeram, Sandya; Li, Zhao; Zheng, Xiwei; Hage, David S

    2015-10-01

    Information on the kinetics of drug-protein interactions is of crucial importance in drug discovery and development. Several methods based on affinity chromatography have been developed in recent years to examine the association and dissociation rates of these processes. These techniques include band-broadening measurements, the peak decay method, peak fitting methods, the split-peak method, and free fraction analysis. This review will examine the general principles and applications of these approaches and discuss their use in the characterization, screening and analysis of drug-protein interactions in the body. PMID:26724332

  7. Enrichment of Phosphopeptides via Immobilized Metal Affinity Chromatography.

    PubMed

    Swaney, Danielle L; Villén, Judit

    2016-03-01

    Immobilized metal affinity chromatography (IMAC) is a frequently used method for the enrichment of phosphorylated peptides from complex, cellular lysate-derived peptide mixtures. Here we outline an IMAC protocol that uses iron-chelated magnetic beads to selectively isolate phosphorylated peptides for mass spectrometry-based proteomic analysis. Under acidic conditions, negatively charged phosphoryl modifications preferentially bind to positively charged metal ions (e.g., Fe(3+), Ga(3+)) on the beads. After washing away nonphosphorylated peptides, a pH shift to basic conditions causes the elution of bound phosphopeptides from the metal ion. Under optimal conditions, very high specificity for phosphopeptides can be achieved. PMID:26933247

  8. Evaluation of capillary chromatographic supports for immobilized human purine nucleoside phosphorylase in frontal affinity chromatography studies.

    PubMed

    de Moraes, Marcela Cristina; Temporini, Caterina; Calleri, Enrica; Bruni, Giovanna; Ducati, Rodrigo Gay; Santos, Diógenes Santiago; Cardoso, Carmen Lucia; Cass, Quezia Bezerra; Massolini, Gabriella

    2014-04-18

    The aim of this work was to optimize the preparation of a capillary human purine nucleoside phosphorylase (HsPNP) immobilized enzyme reactor (IMER) for characterization and affinity screening studies of new inhibitors by frontal affinity chromatography coupled to mass spectrometry (FAC-MS). For this purpose two monolithic supports, a Chromolith Speed Rod (0.1mm I.D.×5cm) and a methacrylate-based monolithic epoxy polymeric capillary column (0.25mm I.D.×5cm) with epoxy reactive groups were considered and compared to an IMER previously developed using an open fused silica capillary. Each HsPNP-IMER was characterized in terms of catalytic activity using Inosine as standard substrate. Furthermore, they were also explored for affinity ranking experiments. Kd determination was carried out with the based fused silica HsPNP-IMER and the results are herein discussed.

  9. Use of protein-protein interactions in affinity chromatography.

    PubMed

    Muronetz, V I; Sholukh, M; Korpela, T

    2001-10-30

    Biospecific recognition between proteins is a phenomenon that can be exploited for designing affinity-chromatographic purification systems for proteins. In principle, the approach is straightforward, and there are usually many alternative ways, since a protein can be always found which binds specifically enough to the desired protein. Routine immunoaffinity chromatography utilizes the recognition of antigenic epitopes by antibodies. However, forces involved in protein-protein interactions as well the forces keeping the three-dimensional structures of proteins intact are complicated, and proteins are easily unfolded by various factors with unpredictable results. Because of this and because of the generally high association strength between proteins, the correct adjustment of binding forces between an immobilized protein and the protein to be purified as well as the release of bound proteins in biologically active form from affinity complexes are the main problem. Affinity systems involving interactions like enzyme-enzyme, subunit-oligomer, protein-antibody, protein-chaperone and the specific features involved in each case are presented as examples. This article also aims to sketch prospects for further development of the use of protein-protein interactions for the purification of proteins. PMID:11694271

  10. Comparison of Inlet Geometry in Microfluidic Cell Affinity Chromatography

    PubMed Central

    Li, Peng; Tian, Yu; Pappas, Dimitri

    2011-01-01

    Cell separation based on microfluidic affinity chromatography is a widely used methodology in cell analysis research when rapid separations with high purity are needed. Several successful examples have been reported with high separation efficiency and purity; however, cell capture at the inlet area and inlet design has not been extensively described or studied. The most common inlets—used to connect the microfluidic chip to pumps, tubing, etc—are vertical (top-loading) inlets and parallel (in-line) inlets. In this work, we investigated the cell capture behavior near the affinity chip inlet area and compared the different performance of vertical inlet devices and parallel inlet devices. Vertical inlet devices showed significant cell capture capability near the inlet area, which led to the formation of cell blockages as the separation progressed. Cell density near the inlet area was much higher than the remaining channel, while for parallel inlet chips cell density at the inlet area was similar to the rest of the channel. In this paper, we discuss the effects of inlet type on chip fabrication, nonspecific binding, cell capture efficiency, and separation purity. We also discuss the possibility of using vertical inlets in negative selection separations. Our findings show that inlet design is critical and must be considered when fabricating cell affinity microfluidic devices. PMID:21207967

  11. Protein purification by aminosquarylium cyanine dye-affinity chromatography.

    PubMed

    Graça, Vânia C; Sousa, Fani; Santos, Paulo F; Almeida, Paulo S

    2015-01-01

    Affinity chromatography (AC) is one of the most important techniques for the separation and purification of biomolecules, being probably the most selective technique for protein purification. It is based on unique specific reversible interactions between the target molecule and a ligand. In this affinity interaction, the choice of the ligand is extremely important for the success of the purification protocol. The growing interest in AC has motivated an intense research effort toward the development of materials able to overcome the disadvantages of conventional natural ligands, namely their high cost and chemical and biological lability. In this context, synthetic dyes have emerged, in recent decades, as a promising alternative to biological ligands. Herein, detailed protocols for the assembling of a new chromatographic dye-ligand affinity support bearing an immobilized aminosquarylium cyanine dye on an agarose-based matrix (Sepharose CL-6B) and for the separation of a mixture o f three standard proteins: lysozyme, α-chymotrypsin, and trypsin are provided. PMID:25749942

  12. Affinity chromatography of nicotinamide-adenine dinucleotide-linked dehydrogenases on immobilized derivatives of the dinucleotide.

    PubMed

    Barry, S; O'Carra, P

    1973-12-01

    1. Three established methods for immobilization of ligands through primary amino groups promoted little or no attachment of NAD(+) through the 6-amino group of the adenine residue. Two of these methods (coupling to CNBr-activated agarose and to carbodi-imide-activated carboxylated agarose derivatives) resulted instead in attachment predominantly through the ribosyl residues. Other immobilized derivatives were prepared by azolinkage of NAD(+) (probably through the 8 position of the adenine residue) to a number of different spacer-arm-agarose derivatives. 2. The effectiveness of these derivatives in the affinity chromatography of a variety of NAD-linked dehydrogenases was investigated, applying rigorous criteria to distinguish general or non-specific adsorption effects from truly NAD-specific affinity (bio-affinity). The ribosyl-attached NAD(+) derivatives displayed negligible bio-affinity for any of the NAD-linked dehydrogenases tested. The most effective azo-linked derivative displayed strong bio-affinity for glycer-aldehyde 3-phosphate dehydrogenase, weaker bio-affinity for lactate dehydrogenase and none at all for malate dehydrogenase, although these three enzymes have very similar affinities for soluble NAD(+). Alcohol dehydrogenase and xanthine dehydrogenase were subject to such strong non-specific interactions with the hydrocarbon spacer-arm assembly that any specific affinity was completely eclipsed. 3. It is concluded that, in practice, the general effectiveness of a general ligand may be considerably distorted and attenuated by the nature of the immobilization linkage. However, this attenuation can result in an increase in specific effectiveness, allowing dehydrogenases to be separated from one another in a manner unlikely to be feasible if the general effectiveness of the ligand remained intact. 4. The bio-affinity of the various derivatives for lactate dehydrogenase is correlated with the known structure of the NAD(+)-binding site of this enzyme. Problems

  13. Characterization of Extracellular Proteins in Tomato Fruit using Lectin Affinity Chromatography and LC-MALDI-MS/MS analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The large-scale isolation and analysis of glycoproteins by lectin affinity chromatography coupled with mass spectrometry has become a powerful tool to monitor changes in the “glycoproteome” of mammalian cells. Thus far, however, this approach has not been used extensively for the analysis of plant g...

  14. Search for Amyloid-Binding Proteins by Affinity Chromatography

    PubMed Central

    Calero, Miguel; Rostagno, Agueda; Ghiso, Jorge

    2013-01-01

    ‘Amyloid binging proteins’ is a generic term used to designate proteins that interact with different forms of amyloidogenic peptides or proteins and that, as a result, may modulate their physiological and pathological functions by altering solubility, transport, clearance, degradation, and fibril formation. We describe a simple affinity chromatography protocol to isolate and characterize amyloid-binding proteins based on the use of sequential elution steps that may provide further information on the type of binding interaction. As an example, we depict the application of this protocol to the study of Alzheimer’s amyloid β (Aβ) peptide-binding proteins derived from human plasma. Biochemical analysis of the proteins eluted under different conditions identified serum amyloid P component (SAP) and apolipoprotein J (clusterin) as the main plasma Aβ-binding proteins while various apolipoproteins (apoA-IV, apoE, and apoA-I), as well as albumin (HSA) and fibulin were identified as minor contributors. PMID:22528093

  15. Production and Purification of Streptokinase by Protected Affinity Chromatography

    PubMed Central

    Babashamsi, Mohammad; Razavian, Mohammad Hossein; Nejadmoghaddam, Mohammad Reza

    2009-01-01

    Streptokinase is an extracellular protein, extracted from certain strains of beta hemolytic streptococcus. It is a non-protease plasminogen activator that activates plasminogen to plasmin, the enzyme that degrades fibrin cloth through its specific lysine binding site; it is used therefore as a drug in thrombolytic therapy. The rate of bacterial growth and streptokinase production was studied in condition of excess glucose addition to culture media and its pH maintenance. The streptokinase product of the bacterial culture was preliminary extracted by salt precipitation and then purified by affinity chromatography on plasminogen substituted sepharose-4B in a condition that the plasminogen active site was protected from streptokinase-induced activation. The purity of streptokinase was confirmed by SDS-PAGE and its biological activity determined in a specific streptokinase assay. The results showed that in the fed–batch culture, the rate of streptokinase production increased over two times as compared with the batch culture while at the same time, shortening the streptokinase purification to a single step increased the yield over 95% at the chromatography stage. PMID:23407807

  16. Lipodisks integrated with weak affinity chromatography enable fragment screening of integral membrane proteins.

    PubMed

    Duong-Thi, Minh-Dao; Bergström, Maria; Edwards, Katarina; Eriksson, Jonny; Ohlson, Sten; Ying, Janet To Yiu; Torres, Jaume; Hernández, Víctor Agmo

    2016-02-01

    Membrane proteins constitute the largest class of drug targets but they present many challenges in drug discovery. Importantly, the discovery of potential drug candidates is hampered by the limited availability of efficient methods for screening drug-protein interactions. In this work we present a novel strategy for rapid identification of molecules capable of binding to a selected membrane protein. An integral membrane protein (human aquaporin-1) was incorporated into planar lipid bilayer disks (lipodisks), which were subsequently covalently coupled to porous derivatized silica and packed into HPLC columns. The obtained affinity columns were used in a typical protocol for fragment screening by weak affinity chromatography (WAC), in which one hit was identified out of a 200 compound collection. The lipodisk-based strategy, which ensures a stable and native-like lipid environment for the protein, is expected to work also with other membrane proteins and screening procedures. PMID:26673836

  17. Purification of human copper, zinc superoxide dismutase by copper chelate affinity chromatography

    SciTech Connect

    Weslake, R.J.; Chesney, S.L.; Petkau, A.; Friesen, A.D.

    1986-05-15

    Copper, zinc superoxide dismutase was isolated from human red blood cell hemolysate by DEAE-Sepharose and copper chelate affinity chromatography. Enzyme preparations had specific activities ranging from 3400 to 3800 U/mg and recoveries were approximately 60% of the enzyme activity in the lysate. Copper chelate affinity chromatography resulted in a purification factor of about 60-fold. The homogeneity of the superoxide dismutase preparation was analyzed by sodium dodecyl sulfate-gel electrophoresis, analytical gel filtration chromatography, and isoelectric focusing.

  18. Affine group formulation of the Standard Model coupled to gravity

    SciTech Connect

    Chou, Ching-Yi; Ita, Eyo; Soo, Chopin

    2014-04-15

    In this work we apply the affine group formalism for four dimensional gravity of Lorentzian signature, which is based on Klauder’s affine algebraic program, to the formulation of the Hamiltonian constraint of the interaction of matter and all forces, including gravity with non-vanishing cosmological constant Λ, as an affine Lie algebra. We use the hermitian action of fermions coupled to gravitation and Yang–Mills theory to find the density weight one fermionic super-Hamiltonian constraint. This term, combined with the Yang–Mills and Higgs energy densities, are composed with York’s integrated time functional. The result, when combined with the imaginary part of the Chern–Simons functional Q, forms the affine commutation relation with the volume element V(x). Affine algebraic quantization of gravitation and matter on equal footing implies a fundamental uncertainty relation which is predicated upon a non-vanishing cosmological constant. -- Highlights: •Wheeler–DeWitt equation (WDW) quantized as affine algebra, realizing Klauder’s program. •WDW formulated for interaction of matter and all forces, including gravity, as affine algebra. •WDW features Hermitian generators in spite of fermionic content: Standard Model addressed. •Constructed a family of physical states for the full, coupled theory via affine coherent states. •Fundamental uncertainty relation, predicated on non-vanishing cosmological constant.

  19. Mining the soluble chloroplast proteome by affinity chromatography

    PubMed Central

    Bayer, Roman G; Stael, Simon; Csaszar, Edina; Teige, Markus

    2011-01-01

    Chloroplasts are fundamental organelles enabling plant photoautotrophy. Besides their outstanding physiological role in fixation of atmospheric CO2, they harbor many important metabolic processes such as biosynthesis of amino acids, vitamins or hormones. Technical advances in MS allowed the recent identification of most chloroplast proteins. However, for a deeper understanding of chloroplast function it is important to obtain a complete list of constituents, which is so far limited by the detection of low-abundant proteins. Therefore, we developed a two-step strategy for the enrichment of low-abundant soluble chloroplast proteins from Pisum sativum and their subsequent identification by MS. First, chloroplast protein extracts were depleted from the most abundant protein ribulose-1,5-bisphosphate carboxylase/oxygenase by SEC or heating. Further purification was carried out by affinity chromatography, using ligands specific for ATP- or metal-binding proteins. By these means, we were able to identify a total of 448 proteins including 43 putative novel chloroplast proteins. Additionally, the chloroplast localization of 13 selected proteins was confirmed using yellow fluorescent protein fusion analyses. The selected proteins included a phosphoglycerate mutase, a cysteine protease, a putative protein kinase and an EF-hand containing substrate carrier protein, which are expected to exhibit important metabolic or regulatory functions. PMID:21365755

  20. Aptamer stationary phase for protein capture in affinity capillary chromatography.

    PubMed

    Connor, Adam C; McGown, Linda B

    2006-04-14

    The thrombin-binding DNA aptamer was used with thrombin as a model system to investigate protein capture using aptamer stationary phases in affinity capillary chromatography. The aptamer was covalently attached to the inner surface of a bare fused-silica glass capillary to serve as the stationary phase. Proteins were loaded onto the capillary via an applied pressure. The capillary was then washed to remove unbound and non-specifically associated proteins. Finally, the bound protein was released and eluted using 20 mM Tris buffer containing 8 M urea, pH 7.3, at 50 degrees C. Eluate was collected after each step (load, wash and elute) and relative amounts of protein each were compared using fluorescence spectroscopy. The identity of the protein in the collections was confirmed using matrix assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry. The experiment was repeated for thrombin on a bare (unmodified) capillary and a capillary coated with a scrambled-sequence, non-G-quartet forming oligonucleotide that does not bind with thrombin. The results show that the aptamer stationary phase captures approximately three times as much thrombin as the control columns. The experiment was also repeated using human serum albumin (HSA) alone and in an equimolar mixture with thrombin. HSA was not retained on the aptamer capillary, nor did it affect the capture of thrombin from the mixture.

  1. Purification of Bovine Carbonic Anhydrase by Affinity Chromatography: An Undergraduate Biochemistry Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Bering, C. Larry; Kuhns, Jennifer J.; Rowlett, Roger

    1998-08-01

    We have developed a rapid and inexpensive experiment utilizing affinity chromatography to isolate carbonic anhydrase (CA) from bovine blood. The more specific an affinity gel is the better the purification, but the greater the cost. Some costs would be prohibitive in the undergraduate biochemistry laboratory. Less specific resins may be more affordable but may bind a number of closely related proteins. One alternative would be to couple a specific ligand to an inexpensive resin such as an ion exchanger. We describe a simple procedure for preparing a sulfonamide-coupled resin which specifically binds CA from a blood hemolysate. The CA is eluted and analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). It was found that only a single band of 31 kD was obtained. The instructor can readily prepare the affinity gel prior to the lab, and the students, beginning with packed red blood cells can carry out the lysis, binding to the gel, elution, enzymatic assays, and electrophoresis.

  2. Purification of proteins specifically binding human endogenous retrovirus K long terminal repeat by affinity elution chromatography.

    PubMed

    Trubetskoy, D O; Zavalova, L L; Akopov, S B; Nikolaev, L G

    2002-11-01

    A novel affinity elution procedure for purification of DNA-binding proteins was developed and employed to purify to near homogeneity the proteins recognizing a 21 base pair sequence within the long terminal repeat of human endogenous retroviruses K. The approach involves loading the initial protein mixture on a heparin-agarose column and elution of protein(s) of interest with a solution of double-stranded oligonucleotide containing binding sites of the protein(s). The affinity elution has several advantages over conventional DNA-affinity chromatography: (i) it is easier and faster, permitting to isolate proteins in a 1 day-one stage procedure; (ii) yield of a target protein is severalfold higher than that in DNA-affinity chromatography; (iii) it is not necessary to prepare a special affinity support for each factor to be isolated. Theaffinity elution could be a useful alternative to conventional DNA-affinity chromatography.

  3. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies

    PubMed Central

    Boulet-Audet, Maxime; Kazarian, Sergei G.; Byrne, Bernadette

    2016-01-01

    In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan. PMID:27470880

  4. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies.

    PubMed

    Boulet-Audet, Maxime; Kazarian, Sergei G; Byrne, Bernadette

    2016-01-01

    In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan. PMID:27470880

  5. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies

    NASA Astrophysics Data System (ADS)

    Boulet-Audet, Maxime; Kazarian, Sergei G.; Byrne, Bernadette

    2016-07-01

    In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan.

  6. The Binding of Biotin to Sepharose-Avidin Column: Demonstration of the Affinity Chromatography Technique

    ERIC Educational Resources Information Center

    Landman, A. D.; Landman, N. N.

    1976-01-01

    Describes a biochemistry experiment that illustrates the methodology of affinity chromatography by attaching avidin, a glycoprotein in egg white, to a Sepharose matrix in order to bind biotin-containing proteins. (MLH)

  7. Affinity Chromatography of Lactate Dehydrogenase: An Experiment for the Undergraduate Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Anderson, Alexander J.

    1988-01-01

    Discusses a laboratory technique of enzyme purification by affinity chromatography as part of an undergraduate biochemical methodology course. Provides preparation details of the rat muscle homogenate and reagents. Proposes column requirements and assaying information. (MVL)

  8. Preparation of high capacity affinity adsorbents using new hydrazino-carriers and their use for low and high performance affinity chromatography of lectins.

    PubMed

    Ito, Y; Yamasaki, Y; Seno, N; Matsumoto, I

    1986-04-01

    Two kinds of carriers with high concentrations of hydrazino groups were prepared by simple and convenient procedures. Hydrazino-carriers (I) and (II) were obtained on incubation of epoxy-activated carriers with hydrazine hydrate and adipic acid dihydrazide, respectively. Disaccharides were coupled to the hydrazino carriers through reductive amination in the presence of sodium cyanoborohydride. The reaction time was much shorter (24 h) than that in the case of the method involving amino-Sepharose 6B (800 h) [Matsumoto, I., Kitagaki, H., Akai, Y., Ito, Y., & Seno, N. (1981) Anal. Biochem. 116, 103-110]. The glycamyl-Sepharose thus obtained showed high adsorption capacities for lectins. Glycamyl-TSKgel G3000 PW obtained by the same method with TSKgel G3000 PW, which is a hydrophobic vinyl polymer matrix for high performance gel permeation liquid chromatography, could be successfully used for the high performance liquid affinity chromatography of lectins. N-Acetylglutamic acid was coupled to hydrazino-Sepharose 4B (I) in the presence of N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline. The adsorbent obtained was used for the affinity chromatography of Japanese horseshoe crab lectin. PMID:3711062

  9. Frontal affinity chromatography: A unique research tool for biospecific interaction that promotes glycobiology

    PubMed Central

    KASAI, Kenichi

    2014-01-01

    Combination of bioaffinity and chromatography gave birth to affinity chromatography. A further combination with frontal analysis resulted in creation of frontal affinity chromatography (FAC). This new versatile research tool enabled detailed analysis of weak interactions that play essential roles in living systems, especially those between complex saccharides and saccharide-binding proteins. FAC now becomes the best method for the investigation of saccharide-binding proteins (lectins) from viewpoints of sensitivity, accuracy, and efficiency, and is contributing greatly to the development of glycobiology. It opened a door leading to deeper understanding of the significance of saccharide recognition in life. The theory is also concisely described. PMID:25169774

  10. Frontal affinity chromatography: a unique research tool for biospecific interaction that promotes glycobiology.

    PubMed

    Kasai, Kenichi

    2014-01-01

    Combination of bioaffinity and chromatography gave birth to affinity chromatography. A further combination with frontal analysis resulted in creation of frontal affinity chromatography (FAC). This new versatile research tool enabled detailed analysis of weak interactions that play essential roles in living systems, especially those between complex saccharides and saccharide-binding proteins. FAC now becomes the best method for the investigation of saccharide-binding proteins (lectins) from viewpoints of sensitivity, accuracy, and efficiency, and is contributing greatly to the development of glycobiology. It opened a door leading to deeper understanding of the significance of saccharide recognition in life. The theory is also concisely described. PMID:25169774

  11. Affinity Chromatography of Native and Recombinant Proteins from Receptors for Insulin and IGF-I to Recombinant Single Chain Antibodies.

    PubMed

    Fujita-Yamaguchi, Yoko

    2015-01-01

    Affinity chromatography is an efficient method to isolate proteins by taking advantage of their affinities for specific molecules such as substrates, inhibitors, antigens, ligands, antibodies, and other interacting molecules, including subunits. Nowadays, we take the effectiveness and excellence of this technology for granted. This essay will mainly cover the use of affinity chromatography based on my experience. PMID:26579073

  12. Affinity Chromatography of Native and Recombinant Proteins from Receptors for Insulin and IGF-I to Recombinant Single Chain Antibodies

    PubMed Central

    Fujita-Yamaguchi, Yoko

    2015-01-01

    Affinity chromatography is an efficient method to isolate proteins by taking advantage of their affinities for specific molecules such as substrates, inhibitors, antigens, ligands, antibodies, and other interacting molecules, including subunits. Nowadays, we take the effectiveness and excellence of this technology for granted. This essay will mainly cover the use of affinity chromatography based on my experience. PMID:26579073

  13. Purification of phage display-modified bacteriophage T4 by affinity chromatography

    PubMed Central

    2011-01-01

    Background Affinity chromatography is one of the most efficient protein purification strategies. This technique comprises a one-step procedure with a purification level in the order of several thousand-fold, adaptable for various proteins, differentiated in their size, shape, charge, and other properties. The aim of this work was to verify the possibility of applying affinity chromatography in bacteriophage purification, with the perspective of therapeutic purposes. T4 is a large, icosahedral phage that may serve as an efficient display platform for foreign peptides or proteins. Here we propose a new method of T4 phage purification by affinity chromatography after its modification with affinity tags (GST and Histag) by in vivo phage display. As any permanent introduction of extraneous DNA into a phage genome is strongly unfavourable for medical purposes, integration of foreign motifs with the phage genome was not applied. The phage was propagated in bacteria expressing fusions of the phage protein Hoc with affinity tags from bacterial plasmids, independently from the phage expression system. Results Elution profiles of phages modified with the specific affinity motifs (compared to non-specific phages) document their binding to the affinity resins and effective elution with standard competitive agents. Non-specific binding was also observed, but was 102-105 times weaker than the specific one. GST-modified bacteriophages were also effectively released from glutathione Sepharose by proteolytic cleavage. The possibility of proteolytic release was designed at the stage of expression vector construction. Decrease in LPS content in phage preparations was dependent on the washing intensity; intensive washing resulted in preparations of 11-40 EU/ml. Conclusions Affinity tags can be successfully incorporated into the T4 phage capsid by the in vivo phage display technique and they strongly elevate bacteriophage affinity to a specific resin. Affinity chromatography can be

  14. Identification by affinity chromatography of the eukaryotic ribosomal proteins that bind to 5.8 S ribosomal ribonucleic acid.

    PubMed

    Ulbrich, N; Lin, A; Wool, I G

    1979-09-10

    The proteins that bind to rat liver 5.8 S ribosomal ribonucleic acid were identified by affinity chromatography. The nucleic acid was oxidized with periodate and coupled by its 3'-terminus to Sepharose 4B through and adipic acid dihydrazide spacer. The ribosomal proteins that associate with the immobilized 5.8 S rRNA were identified by polyacrylamide gel electrophoresiss: they were L19, L8, and L6 from the 60 S subunit; and S13 and S9 from the small subparticle. Small amounts of L14, L17', L18, L27/L27', and L35', and of S11, S15, S23/S24, and S26 also were bound to the affinity column, but whether they associate directly and specifically with 5.8 S rRNA is not known. Escherichia coli ribosomal proteins did not bind to the rat liver 5.8 S rRNA affinity column. PMID:468846

  15. Purification of infective bluetongue virus particles by immuno-affinity chromatography using anti-core antibody.

    PubMed

    Chand, Karam; Biswas, Sanchay K; Mondal, Bimalendu

    2016-03-01

    An immuno-affinity chromatography technique for purification of infective bluetongue virus (BTV) has been descried using anti-core antibodies. BTV anti-core antibodies (prepared in guinea pig) were mixed with cell culture-grown BTV-1 and then the mixture was added to the cyanogens bromide-activated protein-A Sepharose column. Protein A binds to the antibody which in turn binds to the antigen (i.e. BTV). After thorough washing, antigen-antibody and antibody-protein A couplings were dissociated with 4M MgCl2, pH6.5. Antibody molecules were removed by dialysis and virus particles were concentrated by spin column ultrafiltration. Dialyzed and concentrated material was tested positive for BTV antigen by a sandwich ELISA and the infectivity of the chromatography-purified virus was demonstrated in cell culture. This method was applied for selective capture of BTV from a mixture of other viruses. As group-specific antibodies (against BTV core) were used to capture the virus, it is expected that virus of all BTV serotypes could be purified by this method. This method will be helpful for selective capture and enrichment of BTV from concurrently infected blood or tissue samples for efficient isolation in cell culture. Further, this method can be used for small scale purification of BTV avoiding ultracentrifugation. PMID:26925450

  16. Site-specific DNA-affinity chromatography of the lac repressor.

    PubMed Central

    Herrick, G

    1980-01-01

    To test the feasibility of site-specific DNA-affinity chromatography, E. coli lac repressor was bound to an operator-containing DNA column, and in parallel to a non-operator DNA column. Salt gradient elution shows: 1) elution from non-operator DNA was near 250mM KCl or NaCl; interpretation of this result suggests the usefulness of the procedure for studying salt-dependence of DNA-protein affinities; 2) elution from operator-containing DNA was delayed (average elution = 1000mM salt), demonstrating a feasibility of site-specific DNA-affinity chromatography, if one provides a sufficiently favorable ratio of specific to non-specific DNA binding sites; 3) repressor eluted from operator-containing DNA over a very broad salt range, which may represent chromatography-generated repressor heterogeneity. PMID:7001362

  17. Negative Enrichment of Target Cells by Microfluidic Affinity Chromatography

    PubMed Central

    Li, Peng; Gao, Yan; Pappas, Dimitri

    2011-01-01

    A three-dimensional microfluidic channel was developed for high purity cell separations. This system featured high capture affinity using multiple vertical inlets to an affinity surface. In cell separations, positive selection (capture of the target cell) is usually employed. Negative enrichment, the capture of non-target cells and elution of target cells, has distinct advantages over positive selection. In negative enrichment, target cells are not labeled, and are not subjected to strenuous elution conditions or dilution. As a result, negative enrichment systems are amenable to multi-step processes in microfluidic systems. In previous work, we reported cell capture enhancement effects at vertical inlets to the affinity surface. In this study, we designed a chip that has multiple vertical and horizontal channels, forming a three-dimensional separation system. Enrichment of target cells showed separation purities of 92-96%, compared with straight-channel systems (77% purity). A parallelized chip was also developed for increased sample throughput. A two-channel showed similar separation purity with twice the sample flow rate. This microfluidic system, featuring high separation purity, ease of fabrication and use, is suitable for cell separations when subsequent analysis of target cells is required. PMID:21939198

  18. Supramolecular Affinity Chromatography for Methylation-Targeted Proteomics.

    PubMed

    Garnett, Graham A E; Starke, Melissa J; Shaurya, Alok; Li, Janessa; Hof, Fraser

    2016-04-01

    Proteome-wide studies of post-translationally methylated species using mass spectrometry are complicated by high sample diversity, competition for ionization among peptides, and mass redundancies. Antibody-based enrichment has powered methylation proteomics until now, but the reliability, pan-specificity, polyclonal nature, and stability of the available pan-specific antibodies are problematic and do not provide a standard, reliable platform for investigators. We have invented an anionic supramolecular host that can form host-guest complexes selectively with methyllysine-containing peptides and used it to create a methylysine-affinity column. The column resolves peptides on the basis of methylation-a feat impossible with a comparable commercial cation-exchange column. A proteolyzed nuclear extract was separated on the methyl-affinity column prior to standard proteomics analysis. This experiment demonstrates that such chemical methyl-affinity columns are capable of enriching and improving the analysis of methyllysine residues from complex protein mixtures. We discuss the importance of this advance in the context of biomolecule-driven enrichment methods. PMID:26973166

  19. Purification of a Recombinant Polyhistidine-Tagged Glucosyltransferase Using Immobilized Metal-Affinity Chromatography (IMAC).

    PubMed

    de Costa, Fernanda; Barber, Carla J S; Pujara, Pareshkumar T; Reed, Darwin W; Covello, Patrick S

    2016-01-01

    Short peptide tags genetically fused to recombinant proteins have been widely used to facilitate detection or purification without the need to develop specific procedures. In general, an ideal affinity tag would allow the efficient purification of tagged proteins in high yield, without affecting its function. Here, we describe the purification steps to purify a recombinant polyhistidine-tagged glucosyltransferase from Centella asiatica using immobilized metal affinity chromatography. PMID:26843168

  20. Dimerization Capacities of FGF2 Purified with or without Heparin-Affinity Chromatography

    PubMed Central

    Chiu, Liang-Yuan; Taouji, Said; Moroni, Elisabetta; Colombo, Giorgio; Chevet, Eric; Sue, Shih-Che; Bikfalvi, Andreas

    2014-01-01

    Fibroblast growth factor-2 (FGF2) is a pleiotropic growth factor exhibiting a variety of biological activities. In this article, we studied the capacity of FGF2 purified with or without heparin affinity chromatography to self-associate. Analyzing the NMR HSQC spectra for different FGF2 concentrations, heparin-affinity purified FGF2 showed perturbations that indicate dimerization and are a higher-order oligomerization state. HSQC perturbation observed with different FGF2 concentrations revealed a heparin-binding site and two dimer interfaces. Thus, with increasing protein concentrations, FGF2 monomers make contacts with each other and form dimers or higher order oligomers. On the contrary, FGF2 purified with ion-exchange chromatography did not show similar perturbation indicating that self-association of FGF2 is eliminated if purification is done without heparin-affinity chromatography. The HSQC spectra of heparin-affinity purified FGF2 can be reproduced to some extent by adding heparin tetra-saccharide to ion exchange chromatography purified FGF2. Heparin-affinity purified FGF2 bound to acceptor and donor beads in a tagged form using His-tagged or GST-tagged proteins, also dimerized in the AlphaScreen™ assay. This assay was further validated using different experimental conditions and competitors. The assay constitutes an interesting tool to study dimerization of other FGF forms as well. PMID:25299071

  1. Mixed-bed affinity chromatography: principles and methods.

    PubMed

    Boschetti, Egisto; Righetti, Pier Giorgio

    2015-01-01

    Mixed-bed chromatography is far from being a well-established technology within the panoply of bioseparation tools. Composed of an assembly of distinct sorbents that are mixed in a single bed, they have been mostly developed in the last decade for the reduction of dynamic concentration range where they allowed discovering many low-copy proteins within very complex proteomes. Other interesting preparative applications of mixed-bed chromatography have since been developed. In this chapter the basic concepts first and then detailed application recipes are described for (1) the reduction of protein dynamic concentration range, (2) the removal of impurity traces at the last stage of a biopurification process, and (3) the selection and use of sorbents as mixed bed in protein purification. PMID:25749952

  2. Twin-column CaptureSMB: a novel cyclic process for protein A affinity chromatography.

    PubMed

    Angarita, Monica; Müller-Späth, Thomas; Baur, Daniel; Lievrouw, Roel; Lissens, Geert; Morbidelli, Massimo

    2015-04-10

    A twin-column counter-current chromatography processes, CaptureSMB, was used for the protein A affinity capture of a monoclonal antibody (mAb). By means of sequential loading, the process improves the utilization of the stationary phase by achieving loadings much closer to the static binding capacity of the resin in comparison to batch chromatography. Using a mAb capture case study with protein A affinity chromatography, the performance and product quality obtained from CaptureSMB and batch processes were compared. The effect of the flow rate, column length and titer concentration on the process performance and product quality were evaluated. CaptureSMB showed superior performance compared to batch chromatography with respect to productivity, capacity utilization, product concentration and buffer consumption. A simplified economic evaluation showed that CaptureSMB could decrease resin costs of 10-30% depending on the manufacturing scenario.

  3. Twin-column CaptureSMB: a novel cyclic process for protein A affinity chromatography.

    PubMed

    Angarita, Monica; Müller-Späth, Thomas; Baur, Daniel; Lievrouw, Roel; Lissens, Geert; Morbidelli, Massimo

    2015-04-10

    A twin-column counter-current chromatography processes, CaptureSMB, was used for the protein A affinity capture of a monoclonal antibody (mAb). By means of sequential loading, the process improves the utilization of the stationary phase by achieving loadings much closer to the static binding capacity of the resin in comparison to batch chromatography. Using a mAb capture case study with protein A affinity chromatography, the performance and product quality obtained from CaptureSMB and batch processes were compared. The effect of the flow rate, column length and titer concentration on the process performance and product quality were evaluated. CaptureSMB showed superior performance compared to batch chromatography with respect to productivity, capacity utilization, product concentration and buffer consumption. A simplified economic evaluation showed that CaptureSMB could decrease resin costs of 10-30% depending on the manufacturing scenario. PMID:25748537

  4. Affinity monolith chromatography: A review of principles and recent analytical applications

    PubMed Central

    Pfaunmiller, Erika L.; Paulemond, Marie Laura; Dupper, Courtney M.; Hage, David S.

    2012-01-01

    Affinity monolith chromatography (AMC) is a type of liquid chromatography that uses a monolithic support and a biologically-related binding agent as a stationary phase. AMC is a powerful method for the selective separation, analysis or studies of specific target compounds in a sample. This review discusses the basic principles of AMC and recent developments or applications of this method, with particular emphasis being given to work that has appeared in the last five years. Various materials that have been used to prepare columns for AMC are examined, including organic monoliths, silica monoliths, agarose monoliths and cryogels. These supports have been used in AMC for formats that have ranged from traditional columns to disks, microcolumns and capillaries. Many binding agents have also been employed in AMC, such as antibodies, enzymes, proteins, lectins, immobilized metal-ions and dyes. Some applications that have been reported with these binding agents in AMC are bioaffinity chromatography, immunoaffinity chromatography or immunoextraction, immobilized metal-ion affinity chromatography, dye-ligand affinity chromatography, chiral separations and biointeraction studies. Examples are presented from fields that include analytical chemistry, pharmaceutical analysis, clinical testing and biotechnology. Current trends and possible future directions in AMC are also discussed. PMID:23187827

  5. Purification of the hexokinases by affinity chromatography on sepharose-N-aminoacylglucosamine derivates. Design of affinity matrices from free solution kinetics.

    PubMed Central

    Wright, C L; Warsy, A S; Holroyde, M J; Trayer, I P

    1978-01-01

    The purification is described of rat hepatic hexokinase type III and kidney hexokinase type I on a large scale by using a combination of conventional and affinity techniques similar to those previously used for the purification of rat hepatic glucokinase [Holroyde, Allen, Storer, Warsy, Chesher, Trayer, Cornish-Bowden & Walker (1976) Biochem. J. 153, 363-373] and muscle hexokinase type II [Holroyde & Trayer (1976) FEBS Lett. 62, 215-219]. The key to each purification was the use of a Sepharose-N-aminoacylglucosamine affinity matrix in which a high degree of specificity for a particular hexokinase isoenzyme could be introduced by either varying the length of the aminoacyl spacer and/or varying the ligand concentration coupled to the gel. This was predicted from a study of the free solution kinetic properties of the various N-aminoacylglucosamine derivatives used (N-aminopropionyl, N-aminobutyryl, N-aminohexanoyl and N-aminooctanoyl), synthesized as described by Holroyde, Chesher, Trayer & Walker [(1976) Biochem. J. 153, 351-361]. All derivatives were competitive inhibitors, with respect to glucose, of the hexokinase reaction, and there was a direct correlation between the Ki for a particular derivative and its ability to act as an affinity matrix when immobilized to CNBr-activated Sepharose 4B. Muscle hexokinase type II could be chromatographed on the Sepharose conjugates of all four N-aminoacylglucosamine derivatives, although the N-aminohexanoylglucosamine derivative proved best. This same derivative was readily able to bind hepatic glucokinase and hexokinase type III, but Sepharose-N-amino-octanoyl-glucosamine was better for these enzymes and was the only derivative capable of binding kidney hexokinase type I efficiently. Separate studies with yeast hexokinase showed that again only the Sepharose-N-amino-octanoylglucosamine was capable of acting as an efficient affinity matrix for this enzyme. Implications of these studies in our understanding of affinity-chromatography

  6. A strategy of designing the ligand of antibody affinity chromatography based on molecular dynamics simulation.

    PubMed

    Dai, Lu; Li, Weikang; Sun, Fei; Li, Baizhi; Li, Hongrui; Zhang, Hongxing; Zheng, Qingchuan; Liang, Chongyang

    2016-09-01

    Designing affinity ligands has always been the development focus of affinity chromatography. Previous antibody affinity ligand designs were mostly based on the crystal structure of protein A (UniProt code number: P38507), and the antibody-binding domains were modified according to the properties of amino acid residues. Currently, more effective bioinformatic prediction and experimental validation has been used to improve the design of antibody affinity ligands. In the present study, the complex crystal structure (the domain D of protein A and the Fab segment of IgM, PDB code: 1DEE) was used as the model. The vital site that inhibits the binding between domain D and IgM was estimated by means of molecular dynamics (MD) simulation, then MM-GBSA calculations were used to design a mutant of domain D (K46E) for improving affinity on the above vital site. The binding analysis using Biacore showed the association and dissociation parameters of K46E mutant that were optimized with IgM. The affinity increase of K46E mutant preferred for IgM, the affinity order is K46E tetramer (KD=6.02×10(-9)M)>K46E mutant (KD=6.66×10(-8)M)>domain D (KD=2.17×10(-7)M). Similar results were obtained when the optimized ligands were immobilized to the chromatography medium. A complete designing strategy was validated in this study, which will provide a novel insight into designing new ligands of antibody affinity chromatography media.

  7. A strategy of designing the ligand of antibody affinity chromatography based on molecular dynamics simulation.

    PubMed

    Dai, Lu; Li, Weikang; Sun, Fei; Li, Baizhi; Li, Hongrui; Zhang, Hongxing; Zheng, Qingchuan; Liang, Chongyang

    2016-09-01

    Designing affinity ligands has always been the development focus of affinity chromatography. Previous antibody affinity ligand designs were mostly based on the crystal structure of protein A (UniProt code number: P38507), and the antibody-binding domains were modified according to the properties of amino acid residues. Currently, more effective bioinformatic prediction and experimental validation has been used to improve the design of antibody affinity ligands. In the present study, the complex crystal structure (the domain D of protein A and the Fab segment of IgM, PDB code: 1DEE) was used as the model. The vital site that inhibits the binding between domain D and IgM was estimated by means of molecular dynamics (MD) simulation, then MM-GBSA calculations were used to design a mutant of domain D (K46E) for improving affinity on the above vital site. The binding analysis using Biacore showed the association and dissociation parameters of K46E mutant that were optimized with IgM. The affinity increase of K46E mutant preferred for IgM, the affinity order is K46E tetramer (KD=6.02×10(-9)M)>K46E mutant (KD=6.66×10(-8)M)>domain D (KD=2.17×10(-7)M). Similar results were obtained when the optimized ligands were immobilized to the chromatography medium. A complete designing strategy was validated in this study, which will provide a novel insight into designing new ligands of antibody affinity chromatography media. PMID:27524303

  8. Glycan-specific whole cell affinity chromatography: a versatile microbial adhesion platform

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have constructed a C-glycoside ketohydrazide affinity chromatography resin that interacts with viable whole-cell microbial populations with biologically appropriate stereo-specificity in a carbohydrate-defined manner. It readily allows for the quantification, selection, and manipulation of target...

  9. Selective retention of basic compounds by metal aquo-ion affinity chromatography.

    PubMed

    Asakawa, Yoshiki; Yamamoto, Eiichi; Asakawa, Naoki

    2014-10-01

    A novel metal aquo-ion affinity chromatography has been developed for the analysis of basic compounds using heat-treated silica gel containing hydrated metal cations (metal aquo-ions) as the packing material. The packing materials of the metal aquo-ion affinity chromatography were prepared by the immobilization of a single metal component such as Fe(III), Al(III), Ag(I), and Ni(II) on silica gel followed by extensive heat treatment. The immobilized metals form aquo-ions to present cation-exchange ability for basic analytes and the cation-exchange ability for basic analytes depends on pKa of the immobilized metal species. In the present study, to evaluate the retention characteristics of metal aquo-ion affinity chromatography, the on-line solid-phase extraction of drugs was investigated. Obtained data clearly evidence the selective retention capability of metal aquo-ion affinity chromatography for basic analytes with sufficient capacity. PMID:25044622

  10. Screening of Potential Xanthine Oxidase Inhibitors in Gnaphalium hypoleucum DC. by Immobilized Metal Affinity Chromatography and Ultrafiltration-Ultra Performance Liquid Chromatography-Mass Spectrometry.

    PubMed

    Zhang, Hong-Jian; Hu, Yi-Juan; Xu, Pan; Liang, Wei-Qing; Zhou, Jie; Liu, Pei-Gang; Cheng, Lin; Pu, Jin-Bao

    2016-01-01

    In this study, a new method based on immobilized metal affinity chromatography (IMAC) combined with ultrafiltration-ultra performance liquid chromatography-mass spectrometry (UF-UPLC-MS) was developed for discovering ligands for xanthine oxidase (XO) in Gnaphalium hypoleucum DC., a folk medicine used in China for the treatment of gout. By IMAC, the high flavonoid content of G. hypoleucum could be determined rapidly and efficiently. UF-UPLC-MS was used to select the bound xanthine oxidase ligands in the mixture and identify them. Finally, two flavonoids, luteolin-4'-O-glucoside and luteolin, were successfully screened and identified as the candidate XO inhibitors of G. hypoleucum. They were evaluated in vitro for XO inhibitory activity and their interaction mechanism was studied coupled with molecular simulations. The results were in favor of the hypothesis that the flavonoids of G. hypoleucum might be the active content for gout treatment by inhibiting XO. PMID:27649136

  11. The quest for affinity chromatography ligands: are the molecular libraries the right source?

    PubMed

    Perret, Gérald; Santambien, Patrick; Boschetti, Egisto

    2015-08-01

    Affinity chromatography separations of proteins call for highly specific ligands. Antibodies are the most obvious approach; however, except for specific situations, technical and economic reasons are arguments against this choice especially for preparative purposes. With this in mind, the rationale is to select the most appropriate ligands from collections of pre-established molecules. To reach the objective of having a large structural coverage, combinatorial libraries have been proposed. These are classified according to their nature and origin. This review presents and discusses the most common affinity ligand libraries along with the most appropriate screening methods for the identification of the right affinity chromatography selective structure according to the type of library; a side-by-side comparison is also presented. PMID:26033846

  12. A new method of quantitative affinity chromatography and its application to the study of myosin.

    PubMed Central

    Bottomley, R C; Storer, A C; Trayer, I P

    1976-01-01

    A new method of quantifying the interactions between two or three components of an interacting system, one of which is insoluble, is described. The method differs from those previously applied to affinity chromatography systems in that it does not require that elution volumes be measured, but is instead dependent on measurements of the quantity of affinity-bound material. Theoretical expressions are derived for systems in which the acceptor is immobilized. Examples presented to illustrate the validity of the theory are of the latter type and are from studies on the myosin-adenosine nucleotide-PPi system. With Sepharose-myosin columns (myosin covalently coupled to CNBr-activated Sepharose) a dissociation constant of 1.8 muM for ATP4- was found. Data were also obtained under conditions that closely approximate to those found in vivo, i.e. on columns packed with a slurry of Sephadex G-50 and precipitated myosin filaments formed at low ionic strength. The binding of MgATP2-, MgADP-, ATP4- and MgPPi2- to "filamentous" myosin in both two- (myosin and nucleotide) and three- (myosin, nucleotide and PPi) component systems at different temperatures was studied and the dissociation constants obtained agreed well with previously published values. Except for the binding of ATP4- to filamentous myosin at 4 degrees when 85% of the protein was interacting with the nucleotide, much lower values for the number of available sites occupied by the nucleotides were as a routine found in this system. Although this apparent discrepancy is difficult to explain, it is not an anomaly of the theoretical approach and may reflect the present state of understanding of the myosin system. PMID:1008824

  13. Affitins as robust tailored reagents for affinity chromatography purification of antibodies and non-immunoglobulin proteins.

    PubMed

    Béhar, Ghislaine; Renodon-Cornière, Axelle; Mouratou, Barbara; Pecorari, Frédéric

    2016-04-01

    Affinity chromatography is a convenient way of purifying proteins, as a high degree of purity can be reached in one step. The use of tags has greatly contributed to the popularity of this technique. However, the addition of tags may not be desirable or possible for the production of biopharmaceuticals. There is thus a need for tailored artificial affinity ligands. We have developed the use of archaeal extremophilic proteins as scaffolds to generate affinity proteins (Affitins). Here, we explored the potential of Affitins as ligand to design affinity columns. Affitins specific for human immunoglobulin G (hIgG), bacterial PulD protein, and chicken egg lysozyme were immobilized on an agarose matrix. The columns obtained were functional and highly selective for their cognate target, even in the presence of exogenous proteins as found in cell culture media, ascites and bacterial lysates, which result in a high degree of purity (∼95%) and recovery (∼100%) in a single step. Anti-hIgG Affitin columns withstand repetitive cycles of purification and cleaning-in-place treatments with 0.25 M NaOH as well as Protein A does. High levels of Affitin productions in Escherichia coli makes it possible to produce these affinity columns at low cost. Our results validate Affitins as a new class of tailored ligands for the affinity chromatography purification of potentially any proteins of interest including biopharmaceuticals.

  14. Affitins as robust tailored reagents for affinity chromatography purification of antibodies and non-immunoglobulin proteins.

    PubMed

    Béhar, Ghislaine; Renodon-Cornière, Axelle; Mouratou, Barbara; Pecorari, Frédéric

    2016-04-01

    Affinity chromatography is a convenient way of purifying proteins, as a high degree of purity can be reached in one step. The use of tags has greatly contributed to the popularity of this technique. However, the addition of tags may not be desirable or possible for the production of biopharmaceuticals. There is thus a need for tailored artificial affinity ligands. We have developed the use of archaeal extremophilic proteins as scaffolds to generate affinity proteins (Affitins). Here, we explored the potential of Affitins as ligand to design affinity columns. Affitins specific for human immunoglobulin G (hIgG), bacterial PulD protein, and chicken egg lysozyme were immobilized on an agarose matrix. The columns obtained were functional and highly selective for their cognate target, even in the presence of exogenous proteins as found in cell culture media, ascites and bacterial lysates, which result in a high degree of purity (∼95%) and recovery (∼100%) in a single step. Anti-hIgG Affitin columns withstand repetitive cycles of purification and cleaning-in-place treatments with 0.25 M NaOH as well as Protein A does. High levels of Affitin productions in Escherichia coli makes it possible to produce these affinity columns at low cost. Our results validate Affitins as a new class of tailored ligands for the affinity chromatography purification of potentially any proteins of interest including biopharmaceuticals. PMID:26952369

  15. Affinity chromatography and inhibition of chorismate mutase-prephenate dehydrogenase by derivatives of phenylalanine and tyrosine.

    PubMed Central

    Smith, G D; Roberts, D V; Daday, A

    1977-01-01

    Several derivatives of phenylalanine and tyrosine were prepared and tested for inhibition of chorismate mutase-prephenate dehydrogenase (EC 1.3.1.12) from Escherichia coli K12 (strain JP 232). The best inhibitors were N-toluene-p-sulphonyl-L-phenylalanine, N-benzenesulphonyl-L-phenylalanine and N-benzloxycarbonyl-L-phenylalanine. Consequently two compounds, N-toluene-sulphonyl-L-p-aminophenylalanine and N-p-aminobenzenesulphonyl-L-phenylalanine, were synthesized for coupling to CNBr-activated Sepharose-4B. The N-toluene-p-sulphonyl-L-p-aminophenylalanine-Sepharose-4B conjugate was shown to bind the enzyme very strongly at pH 7.5. The enzyme was not eluted by various eluents, including 1 M-NaCl, but could be quantitatively recovered by washing with buffer of pH9. Elution was more effective in the presence of 10 mM-1-adamantaneacetic acid, a competitive inhibitor of the enzyme. This affinity-chromatography procedure results in a high degree of purification of the enzyme and can be used to prepare the enzyme in a one-step procedure from the bacterial crude extract. Such a procedure may therefore prove useful in studying this enzyme in a state that closely resembles that in vivo. PMID:889568

  16. Ligand affinity chromatography, an indispensable method for the purification of soluble cytokine receptors and binding proteins.

    PubMed

    Novick, Daniela; Rubinstein, Menachem

    2012-01-01

    Ligand affinity chromatography separation is based on unique interaction between the target analyte and a ligand, which is coupled covalently to a resin. It is a simple, rapid, selective, and efficient purification procedure of proteins providing tens of thousands fold purification in one step. The biological activity of the isolated proteins is retained in most cases thus function is revealed concomitantly with the isolation. Prior to the completion of the genome project this method facilitated rapid and reliable cloning of the corresponding gene. Upon completion of this project, a partial protein sequence is enough for retrieving its complete mRNA and hence its complete protein sequence. This method is indispensable for the isolation of both expected (e.g. receptors) but mainly unexpected, unpredicted and very much surprising binding proteins. No other approach would yield the latter. This chapter provides examples for both the expected target proteins, isolated from rich sources of human proteins, as well as the unexpected binding proteins, found by serendipity. PMID:22131033

  17. Routes to improve binding capacities of affinity resins demonstrated for Protein A chromatography.

    PubMed

    Müller, Egbert; Vajda, Judith

    2016-05-15

    Protein A chromatography is a well-established platform in downstream purification of monoclonal antibodies. Dynamic binding capacities are continuously increasing with almost every newly launched Protein A resin. Nevertheless, binding capacities of affinity chromatography resins cannot compete with binding capacities obtained with modern ion exchange media. Capacities of affinity resins are roughly 50% lower. High binding capacities of ion exchange media are supported by spacer technologies. In this article, we review existing spacer technologies of affinity chromatography resins. A yet known effective approach to increase the dynamic binding capacity of Protein A resins is oligomerization of the particular Protein A motifs. This resembles the tentacle technology used in ion exchange chromatography. Dynamic binding capacities of a hexameric ligand are roughly twice as high compared to capacities obtained with a tetrameric ligand. Further capacity increases up to 130mg/ml can be realized with the hexamer ligand, if the sodium phosphate buffer concentration is increased from 20 to 100mM. Equilibrium isotherms revealed a BET shape for the hexamer ligand at monoclonal antibody liquid phase concentrations higher than 9mg/ml. The apparent multilayer formation may be due to hydrophobic forces. Other quality attributes such as recovery, aggregate content, and overall purity of the captured monoclonal antibody are not affected. PMID:26830536

  18. Affinity chromatography and affinity labeling of rat liver succinyl-CoA synthetase.

    PubMed

    Ball, D J; Nishimura, J S

    1980-11-25

    Succinyl-CoA synthetase has been purified to apparent homogeneity from rat liver. The key step in the purification procedure involved adsorption on a GDP dialdehyde (dial-GDP)-adipic dihydrazide-Sepharose 4B column and elution by GDP-Mg2+. Like the pig heart enzyme (Brownie, E. R., and Bridger, W. A. (1972) Can. J. Biochem. 50, 719--724), the rat liver enzyme was an alpha beta heterodimer and only the alpha subunit was phosphorylated by [gamma-32P]GTP. The A 280(0.1%) of the enzyme was determined to be 0.5. Amino acid analyses revealed significant similarities in 50% of the amino acid residues of rat liver and Escherichia coli succinyl-CoA synthetases. However, immunodiffusion analysis failed to reveal any antigenic identity between the two enzymes. Incubation with the affinity label, dial-GDP, in the presence of Mg2+ resulted in a biphasic inactivation of the enzyme. The extent of the rapid phase of inactivation appeared to be related to the extent of dephosphorylation of the enzyme and was prevented by preincubation of the enzyme with GTP-Mg2+. The presence of GDP-Mg2+ in the incubation medium prevented the slow phase of the inactivation and retarded the rapid phase. Dephosphorylated enzyme was approximately 2 orders of magnitude more susceptible to inactivation by dial-GDP than phosphorylated enzyme. Labeling of succinyl-CoA synthetase with [3H]dial-GDP gave a linear relationship between inactivation and incorporation of radioactivity with an extrapolated value of less than 1.2 mol of analog/mol of enzyme at 100% inactivation. The distribution of the label in enzyme that was inactivated 40% was approximately 60% in the alpha subunit and 40% in the beta subunit. Thus, while phosphorylation of the enzyme occurs exclusively in the alpha subunit, the nucleotide binding site appears to include components from both alpha and beta subunits. PMID:7430155

  19. Single-step purification of native miraculin using immobilized metal-affinity chromatography.

    PubMed

    Duhita, Narendra; Hiwasa-Tanase, Kyoko; Yoshida, Shigeki; Ezura, Hiroshi

    2009-06-24

    Miraculin is a taste-modifying protein that can be isolated from miracle fruit ( Richadella dulcifica ), a shrub native to West Africa. It is able to turn a sour taste into a sweet taste. The commercial exploitation of this sweetness-modifying protein is underway, and a fast and efficient purification method to extract the protein is needed. We succeeded in purifying miraculin from miracle fruit in a single-step purification using immobilized metal-affinity chromatography (IMAC). The purified miraculin exhibited high purity (>95%) in reverse-phase high-performance liquid chromatography. We also demonstrated the necessity of its structure for binding to the nickel-IMAC column. PMID:19469504

  20. One-step purification of phosphinothricin acetyltransferase using reactive dye-affinity chromatography.

    PubMed

    Wang, Cunxi; Lee, Thomas C; Crowley, Kathleen S; Bell, Erin

    2015-01-01

    Reactive dye purification is an affinity purification technique offering unique selectivity and high purification potential. Historically, purification of phosphinothricin acetyltransferase (PAT) has involved several steps of precipitation and column chromatography. Here, we describe a novel purification method that is simple, time-saving, inexpensive, and reproducible. The novel method employs a single chromatography step using a reactive dye resin, Reactive brown 10-agarose. Reactive brown 10 preferentially binds the PAT protein, which can then be specifically released by one of its substrates, acetyl-CoA. Using Reactive brown 10-agarose, PAT protein can be purified to homogeneity from E. coli or plant tissue with high recovery efficiency. PMID:25749943

  1. Use of Tandem Affinity Chromatography for Purification of Cannabinoid Receptor CB2

    PubMed Central

    Locatelli-Hoops, Silvia C.; Yeliseev, Alexei A.

    2016-01-01

    Tandem affinity purification has been increasingly applied to isolation of recombinant proteins. It relies on two consecutive chromatographic steps that take advantage of the affinity tags placed at opposing ends of the target protein. This allows for efficient removal of contaminating proteins, including products of proteolytic degradation of the fusion that lack either N- or C-terminal tags. Here, we describe the use of two small affinity tags, a poly-histidine tag and a Strep-tag for expression and purification of the human cannabinoid receptor CB2, an integral membrane G protein-coupled receptor. PMID:24943318

  2. Specific recognition of supercoiled plasmid DNA by affinity chromatography using a synthetic aromatic ligand.

    PubMed

    Caramelo-Nunes, Catarina; Tomaz, Cândida T

    2015-01-01

    Liquid chromatography is the method of choice for the purification of plasmid DNA (pDNA), since it is simple, robust, versatile, and highly reproducible. The most important features of a chromatographic procedure are the use of suitable stationary phases and ligands. As conventional purification protocols are being replaced by more sophisticated and selective procedures, the focus changes toward designing and selecting ligands of high affinity and specificity. In fact, the chemical composition of the chromatographic supports determines the interactions established with the target molecules, allowing their preferential retention over the undesirable ones. Here it is described the selective recognition and purification of supercoiled pDNA by affinity chromatography, using an intercalative molecule (3,8-diamino-6-phenylphenanthridine) as ligand. PMID:25749945

  3. Isolation and purification of blood group antigens using immuno-affinity chromatography on short monolithic columns.

    PubMed

    Mönster, Andrea; Hiller, Oliver; Grüger, Daniela; Blasczyk, Rainer; Kasper, Cornelia

    2011-02-01

    Monolithic columns have gained increasing attention as stationary phases for the separation of biomolecules and biopharmaceuticals. In the present work the performance of monolithic convective interaction media (CIM(®)) chromatography for the purification of blood group antigens was established. The proteins employed in this study are derived from blood group antigens Knops, JMH and Scianna, equipped both with a His-tag and with a V5-tag by which they can be purified. In a first step a monoclonal antibody directed against the V5-tag was immobilized on a CIM(®) Disk with epoxy chemistry. After this, the immobilized CIM(®) Disk was used in immuno-affinity chromatography to purify the three blood group antigens from cell culture supernatant. Up-scaling of the applied technology was carried out using CIM(®) Tubes. In comparison to conventional affinity chromatography, blood group antigens were also purified via His-tag using a HiTrap(®) metal-affinity column. The two purifications have been compared regarding purity, yield and purification speed. Using the monolithic support, it was possible to isolate the blood group antigens with a higher flow rate than using the conventional bed-packed column.

  4. A novel approach for separating bacteriophages from other bacteriophages using affinity chromatography and phage display

    PubMed Central

    Ceglarek, Izabela; Piotrowicz, Agnieszka; Lecion, Dorota; Miernikiewicz, Paulina; Owczarek, Barbara; Hodyra, Katarzyna; Harhala, Marek; Górski, Andrzej; Dąbrowska, Krystyna

    2013-01-01

    Practical applications of bacteriophages in medicine and biotechnology induce a great need for technologies of phage purification. None of the popular methods offer solutions for separation of a phage from another similar phage. We used affinity chromatography combined with competitive phage display (i) to purify T4 bacteriophage from bacterial debris and (ii) to separate T4 from other contaminating bacteriophages. In ‘competitive phage display’ bacterial cells produced both wild types of the proteins (expression from the phage genome) and the protein fusions with affinity tags (expression from the expression vectors). Fusion proteins were competitively incorporated into the phage capsid. It allowed effective separation of T4 from a contaminating phage on standard affinity resins. PMID:24225840

  5. Purification of proteins containing zinc finger domains using Immobilized Metal Ion Affinity Chromatography

    PubMed Central

    Voráčková, Irena; Suchanová, Šárka; Ulbrich, Pavel; Diehl, William E.; Ruml, Tomáš

    2011-01-01

    Heterologous proteins are frequently purified by Immobilized Metal Ion Affinity Chromatography (IMAC) based on their modification with a hexa-histidine affinity tag (His-tag). The terminal His-tag can, however, alter functional properties of the tagged protein. Numerous strategies for the tag removal have been developed including chemical treatment and insertion of protease target sequences in the protein sequence. Instead of using these approaches, we took an advantage of natural interaction of zinc finger domains with metal ions to purify functionally similar retroviral proteins from two different retroviruses. We found that these proteins exhibited significantly different affinities to the immobilized metal ions, despite that both contain the same type of zinc finger motif (i.e. CCHC). While zinc finger proteins may differ in biochemical properties, the multitude of IMAC platforms should allow relatively simple yet specific method for their isolation in native state. PMID:21600288

  6. Analytical FcRn affinity chromatography for functional characterization of monoclonal antibodies

    PubMed Central

    Schlothauer, Tilman; Rueger, Petra; Stracke, Jan Olaf; Hertenberger, Hubert; Fingas, Felix; Kling, Lothar; Emrich, Thomas; Drabner, Georg; Seeber, Stefan; Auer, Johannes; Koch, Stefan; Papadimitriou, Apollon

    2013-01-01

    The neonatal Fc receptor (FcRn) is important for the metabolic fate of IgG antibodies in vivo. Analysis of the interaction between FcRn and IgG in vitro might provide insight into the structural and functional integrity of therapeutic IgG that may affect pharmacokinetics (PK) in vivo. We developed a standardized pH gradient FcRn affinity liquid chromatography method with conditions closely resembling the physiological mechanism of interaction between IgG and FcRn. This method allows the separation of molecular IgG isoforms, degradation products and engineered molecules based on their affinity to FcRn. Human FcRn was immobilized on the column and a linear pH gradient from pH 5.5 to 8.8 was applied. FcRn chromatography was used in comparison to surface plasmon resonance to characterize different monoclonal IgG preparations, e.g., oxidized or aggregated species. Wild-type and engineered IgGs were compared in vitro by FcRn chromatography and in vivo by PK studies in huFcRn transgenic mice. Analytical FcRn chromatography allows differentiation of IgG samples and variants by peak pattern and retention time profile. The method can distinguish: 1) IgGs with different Fabs, 2) oxidized from native IgG, 3) aggregates from monomer and 4) antibodies with mutations in the Fc part from wild-type IgGs. Changes in the FcRn chromatographic behavior of mutant IgGs relative to the wild-type IgG correlate to changes in the PK profile in the FcRn transgenic mice. These results demonstrate that FcRn affinity chromatography is a useful new method for the assessment of IgG integrity. PMID:23765230

  7. Protecting group-free immobilization of glycans for affinity chromatography using glycosylsulfonohydrazide donors.

    PubMed

    Hernandez Armada, Daniel; Santos, Jobette T; Richards, Michele R; Cairo, Christopher W

    2015-11-19

    A variety of applications in glycobiology exploit affinity chromatography through the immobilization of glycans to a solid support. Although several strategies are known, they may provide certain advantages or disadvantages in how the sugar is attached to the affinity matrix. Additionally, the products of some methods may be hard to characterize chemically due to non-specific reactions. The lack of specificity in standard immobilization reactions makes affinity chromatography with expensive oligosaccharides challenging. As a result, methods for specific and efficient immobilization of oligosaccharides remain of interest. Herein, we present a method for the immobilization of saccharides using N'-glycosylsulfonohydrazide (GSH) carbohydrate donors. We have compared GSH immobilization to known strategies, including the use of divinyl sulfone (DVS) and cyanuric chloride (CC), for the generation of affinity matrices. We compared immobilization methods by determining their immobilization efficiency, based on a comparison of the mass of immobilized carbohydrate and the concentration of active binding sites (determined using lectins). Our results indicate that immobilization using GSH donors can provide comparable amounts of carbohydrate epitopes on solid support while consuming almost half of the material required for DVS immobilization. The lectin binding capacity observed for these two methods suggests that GSH immobilization is more efficient. We propose that this method of oligosaccharide immobilization will be an important tool for glycobiologists working with precious glycan samples purified from biological sources. PMID:26454791

  8. Affinity chromatography purification of angiotensin II reactor using photoactivable biotinylated probes

    SciTech Connect

    Marie, J.; Seyer, R.; Lombard, C.; Desarnaud, F.; Aumelas, A.; Jard, A.; Bonnafous, J.C. )

    1990-09-25

    The authors have developed biotinylated photoactivable probes that are suitable for covalent labeling of angiotensin II (AII) receptors and the subsequent purification of covalent complexes through immobilized avidin or streptavidin. One of these probes, biotin-NH(CH{sub 2}){sub 2}SS(CH{sub 2}){sub 2}CO-(Ala{sup 1}, Phe(4N{sub 3}){sup 8})AII, which contains a cleavage disulfide bridge in its spacer arm and which displays, in its radioiodinated form, very high affinity for AII receptors (K{sub d}{approximately}1 nM), proved to be suitable for indirect affinity chromatography of rate liver receptor with facilitated recovery from avidin gels by use of reducing agents. This constituted the central step of an efficient partial purification scheme involving hydroxylapatite chromatography, streptavidin chromatography, and thiopropyl-Sepharose chromatography. SDS-PAGE analysis and autoradiography established the identity of the purified entity (molecular weight 65K) as the AII receptor. Possible ways of completing purification to homogeneity and extrapolation of the protocols to a preparative scale are discussed, as well as the potential contribution of our new probes to the study of the structural properties of angiotensin receptors.

  9. Structural assessment of beta-glucuronidase carbohydrate chains by lectin affinity chromatography.

    PubMed

    Wójczyk, B; Hoja, D; Lityńska, A

    1993-04-01

    Rat liver beta-glucuronidase was studied by sequential lectin affinity chromatography. beta-Glucuronidase glycopeptides were obtained by extensive Pronase digestion followed by N-[14C]acetylation and desialylation by neuraminidase treatment. According to the distribution of the radioactivity in the various fractions obtained by chromatography on different lectins, and on the assumption that all glycopeptides were acetylated to the same specific radioactivity, a relative distribution of glycan structure types is proposed. The presence of complex biantennary and oligomannose type glycans (56.8% and 42.7%, respectively) was indicated by Concanavalin A-Sepharose chromatography. Ulex europaeus agglutinin-agarose chromatography revealed the presence of alpha(1-3)linked fucose in some of the complex biantennary type glycans (16.6% of the total glycopeptides). Wheat germ agglutinin chromatography indicated that the minority (0.5%) were hybrid or poly (N-acetyllactosamine) type glycans. Furthermore, the absence of O-glycans, tri-, tetra- and bisected biantennary type glycans was demonstrated by analysis of Concanavalin A-Sepharose unbound fraction by chromatography on immobilized soybean agglutinin, Ricinus communis agglutinin and Phaseolus vulgaris erythroagglutinin. PMID:8400827

  10. Characteristics of the interaction of calcium with casein submicelles as determined by analytical affinity chromatography

    SciTech Connect

    Jang, H.D.; Swaisgood, H.E. )

    1990-12-01

    Interaction of calcium with casein submicelles was investigated in CaCl2 and calcium phosphate buffers and with synthetic milk salt solutions using the technique of analytical affinity chromatography. Micelles that had been prepared by size exclusion chromatography with glycerolpropyl controlled-pore glass from fresh raw skim milk that had never been cooled, were dialyzed at room temperature against calcium-free imidazole buffer, pH 6.7. Resulting submicelles were covalently immobilized on succinamidopropyl controlled-pore glass (300-nm pore size). Using 45Ca to monitor the elution retardation, the affinity of free Ca2+ and calcium salt species was determined at temperatures of 20 to 40 degrees C and pH 6.0 to 7.5. Increasing the pH in this range or increasing the temperature strengthened the binding of calcium to submicelles, similar to previous observations with individual caseins. However, the enthalpy change obtained from the temperature dependence was considerably greater than that reported for alpha s1- and beta-caseins. Furthermore, the elution profiles for 45Ca in milk salt solutions were decidedly different from those in CaCl2 or calcium phosphate buffers and the affinities were also greater. For example, at pH 6.7 and 30 degrees C the average dissociation constant for the submicelle-calcium complex is 0.074 mM for CaCl2 and calcium phosphate buffers, vs 0.016 mM for the milk salt solution. The asymmetric frontal boundaries and higher average affinities observed with milk salts may be due to binding of calcium salts with greater affinity in addition to the binding of free Ca2+ in these solutions.

  11. Aflatoxin metabolism in humans: detection of metabolites and nucleic acid adducts in urine by affinity chromatography

    SciTech Connect

    Groopman, J.D.; Donahue, P.R.; Zhu, J.Q.; Chen, J.S.; Wogan, G.N.

    1985-10-01

    A high-affinity IgM monoclonal antibody specific for aflatoxins was covalently bound to Sepharose 4B and used as a preparative column to isolate aflatoxin derivatives from the urine of people and experimental animals who had been exposed to the carcinogen environmentally or under laboratory conditions. Aflatoxin levels were quantified by radioimmunoassay and high-performance liquid chromatography after elution from the affinity column. In studies on rats injected with ( UC)aflatoxin B1, the authors identified the major aflatoxin-DNA adduct, 2,3-dihydro-2-(N7-guanyl)-3-hydroxy-aflatoxin B1 (AFB1-N7-Gua), and the oxidative metabolites M1 and P1 as the major aflatoxin species present in the urine. When this methodology was applied to human urine samples obtained from people from the Guangxi Province of China exposed to aflatoxin B1 through dietary contamination, the aflatoxin metabolites detected were also AFB1-N7-Gua and aflatoxins M1 and P1. Therefore, affinity chromatography using a monoclonal antibody represents a useful and rapid technique with which to isolate this carcinogen and its metabolites in biochemical epidemiology and for subsequent quantitative measurements, providing exposure information that can be used for risk assessment.

  12. Separation of Binding Protein of Celangulin V from the Midgut of Mythimna separata Walker by Affinity Chromatography

    PubMed Central

    Lu, Lina; Qi, Zhijun; Zhang, Jiwen; Wu, Wenjun

    2015-01-01

    Celangulin V, an insecticidal compound isolated from the root bark of Chinese bittersweet, can affect the digestive system of insects. However, the mechanism of how Celangulin V induces a series of symptoms is still unknown. In this study, affinity chromatography was conducted through coupling of Celangulin V-6-aminoacetic acid ester to the CNBr-activated Sepharose 4B. SDS-PAGE was used to analyze the collected fraction eluted by Celangulin V. Eight binding proteins (Zinc finger protein, Thioredoxin peroxidase (TPx), Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), SUMO E3 ligase RanBP2, Transmembrane protein 1, Actin, APN and V-ATPase) were obtained and identified by LC/Q-TOF-MS from the midgut of Mythimna separata larvae. The potential of these proteins to serve as target proteins involved in the insecticidal activity of Celangulin V is discussed. PMID:25996604

  13. Separation of Binding Protein of Celangulin V from the Midgut of Mythimna separata Walker by Affinity Chromatography.

    PubMed

    Lu, Lina; Qi, Zhijun; Zhang, Jiwen; Wu, Wenjun

    2015-05-01

    Celangulin V, an insecticidal compound isolated from the root bark of Chinese bittersweet, can affect the digestive system of insects. However, the mechanism of how Celangulin V induces a series of symptoms is still unknown. In this study, affinity chromatography was conducted through coupling of Celangulin V-6-aminoacetic acid ester to the CNBr-activated Sepharose 4B. SDS-PAGE was used to analyze the collected fraction eluted by Celangulin V. Eight binding proteins (Zinc finger protein, Thioredoxin peroxidase (TPx), Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), SUMO E3 ligase RanBP2, Transmembrane protein 1, Actin, APN and V-ATPase) were obtained and identified by LC/Q-TOF-MS from the midgut of Mythimna separata larvae. The potential of these proteins to serve as target proteins involved in the insecticidal activity of Celangulin V is discussed. PMID:25996604

  14. Purification of recombinant proteins from mammalian cell culture using a generic double-affinity chromatography scheme.

    PubMed

    Cass, Brian; Pham, Phuong Lan; Kamen, Amine; Durocher, Yves

    2005-03-01

    Transient transfection of mammalian cells has proven to be a useful technique for the rapid production of recombinant proteins because of its ability to produce milligram quantities within 2 weeks following cloning of their corresponding cDNA. This rapid production also requires a fast and efficient purification scheme that can be applied generically, typically through the use of affinity tags such as the polyhistidine-tag for capture by immobilized metal-affinity chromatography (IMAC) or the Strep-tag II, which binds to the StrepTactin affinity ligand. However, one-step purification using either of these tags has disadvantages in terms of yield, elution conditions, and purity. Here, we show that the addition of both Strep-tag-II and (His)(8) to the C-terminal of r-proteins allows efficient purification by consecutive IMAC and StrepTactin affinity. This approach has been successfully demonstrated using the intracellular protein DsRed, as well as two secreted proteins, secreted alkaline phosphatase (SEAP) and vascular endothelial growth factor (VEGF), all produced by transient transfection of HEK293-EBNA1 cells in medium supplemented with bovine calf serum. All proteins were purified to >99% homogeneity with yields varying from 29 to 81%. PMID:15721774

  15. Affinity chromatography of human leukocyte and diploid cell interferons on sepharose-bound antibodies.

    PubMed

    Berg, K; Ogburn, C A; Paucker, K; Mogensen, K E; Cantell, K

    1975-02-01

    Interferons produced in human peripheral leukocytes (LE) and foreskin fibroblast (FS-4) cells were subjected to affinity chromatography on Sepharose-bound globulins from rabbits immunized with these interferons. Anti-LE interferon sera neutralized both interferons, but titers against FS-4 interferon were consistently lower than those against LE interferon. Anti-FS-4 interferon sera neutralized only FS-4 but not LE interferon. Accordingly, affinity columns constructed with anti-FS-4 globulin excluded LE but not FS-4 interferon, whereas those prepared with anti-LE interferon globulin bound and eluted both LE and FS-4 interferons. Purification of native interferons of both types on anti-LE interferon-Sepharose ranged from 680- to 3,600-fold and recoveries from 72 to 126%. Specific activities of eluate pools varied from 4 to 30 times 10-6 reference (B, 69/19) units per milligram protien.

  16. Development and Validation of an Affinity Chromatography-Protein G Method for IgG Quantification

    PubMed Central

    Paradina Fernández, Lesly; Calvo, Loany; Viña, Lisel

    2014-01-01

    Nimotuzumab, an IgG that recognizes the epidermal growth factor receptor (EGF-R) overexpressed in some tumors, is used in the treatment of advanced head and neck cancer. For the quantification of this protein in cell culture supernatants, protein G-HPLC affinity chromatography is used due to its high affinity and specificity for antibodies of this class. The technique relies on the comparison of the area under the curve of the elution peak of the samples to be evaluated versus to a calibration curve of well-known concentrations and was validated by assessment of its robustness, specificity, repeatability, intermediate precision, accuracy, linearity, limit of detection, limit of quantification, and range. According to results of the study all validation parameters fulfilled the preestablished acceptance criteria and demonstrated the feasibility of the assay for the analysis of samples of cell culture supernatant as well as drug product. PMID:27379284

  17. Crosslinked glass fiber affinity membrane chromatography and its application to fibronectin separation.

    PubMed

    Guo, Wei; Ruckenstein, Eli

    2003-09-25

    Macroporous glass membranes were prepared from glass fiber filters via chemical crosslinking and modification, and used for the membrane affinity chromatography of fibronectin from human blood plasma. The filters were first treated with a piranha solution (a concentrated solution of H2SO4 + H2O2 in water), and then crosslinked with bifunctional organosilanes and modified to introduce amino or aniline moieties. Ligand immobilizations via diazotization and glutaraldehyde pathways were carried out and compared. Characterization of the membranes was performed using bovine serum albumin and trypsin as test ligands. By using a cartridge containing gelatin immobilized affinity membranes followed by another cartridge containing heparin immobilized membranes, fibronectin from human blood plasma could be separated.

  18. Affinity Purification and Characterization of a G-Protein Coupled Receptor, Saccharomyces cerevisiae Ste2p

    SciTech Connect

    Lee, Byung-Kwon; Jung, Kyung-Sik; Son, Cagdas D; Kim, Heejung; Verberkmoes, Nathan C; Arshava, Boris; Naider, Fred; Becker, Jeffrey Marvin

    2007-01-01

    We present a rare example of a biologically active G protein coupled receptor (GPCR) whose purity and identity were verified by mass spectrometry after being purified to near homogeneity from its native system. An overexpression vector was constructed to encode the Saccharomyces cerevisiae GPCR -factor receptor (Ste2p, the STE2 gene product) containing a 9-amino acid sequence of rhodopsin that served as an epitope/affinity tag. In the construct, two glycosylation sites and two cysteine residues were removed to aid future structural and functional studies. The receptor was expressed in yeast cells and was detected as a single band in a western blot indicating the absence of glycosylation. Tests of the epitope-tagged, mutated receptor showed it maintained its full biological activity. For extraction of Ste2p, yeast membranes were solubilized with 0.5 % n-dodecyl maltoside (DM). Approximately 120 g of purified -factor receptor was obtained per liter of culture by single-step affinity chromatography using a monoclonal antibody to the rhodopsin epitope. The binding affinity (Kd) of the purified -factor receptor in DM micelles was 28 nM as compared to Kd = 12.7 nM for Ste2p in cell membranes, and approximately 40 % of the purified receptor was correctly folded as judged by ligand saturation binding. About 50 % of the receptor sequence was retrieved from MALDITOF and nanospray mass spectrometry after CNBr digestion of the purified receptor. The methods described will enable structural studies of the -factor receptor and may provide an efficient technique to purify other GPCRs that have been functionally expressed in yeast.

  19. Isolation and partial characterization of Bromelia hemisphaerica protease by affinity chromatography.

    PubMed

    Ochoa, N; Agundis, C; Córdoba, F

    1987-01-01

    Hemisphaericin, the protease from Bromelia hemisphaerica fruit juice was isolated by affinity chromatography in one step, using a mercurial sepharose derivative. The enzyme behaves as a single component in immunodifussion, immunoelectrophoresis and polyacrylamide electrophoresis in the presence of SDS and 2-mercaptoethanol. Association and dissociation of active components were evidenced in electrophoresis at pH 3.6 and at pH 8.6. Immunoelectrophoresis analyses also disclosed a certain degree of internal immunological heterogeneity. The results are explained by the presence of an enzyme subunit, of about 8000 daltons, endowed with polymeric properties induced by the pH and oxidative environment.

  20. Procedure for rapid isolation of photosynthetic reaction centers using cytochrome c affinity chromatography

    SciTech Connect

    Brudvig, G.W.; Worland, S.T.; Sauer, K.

    1983-02-01

    Horse heart cytochrome c linked to Sepharose 4B is used to purify reaction centers from Rhodopseudomonas sphaeroides R-26. This procedure allows for an initial recovery of 80-90% of the bacterial reaction centers present in chromatophore membranes. High purity reaction centers (A/sub 280//A/sub 802/ < 1.30) can be obtained with a 30% recovery. Reaction centers from wild-type Rps. sphaeroides and Rps. capsulata also bind to a cytochrome c column. Cytochrome c affinity chromatography can also be used to isolate photosystem I complexes from spinach chloroplasts.

  1. Fractionation of Aspergillus niger cellulases by combined ion exchange affinity chromatography

    SciTech Connect

    Boyer, R.F.; Allen, T.L.; Dykema, P.A.

    1987-02-05

    Eight chemically modified cellulose supports were tested for their ability to adsorb components of the Aspergillus niger cellulase system. At least two of the most effective adsorbents, aminoethyl cellulose and carboxymethyl cellulose, were shown to be useful for the fractionation of cellulases. These supports apparently owe their resolving capacity to both ion exchange and biospecific binding effects; however, the relative importance of each effect is unknown. These observations form the basis for a new cellulase fractionation technique, combined ion exchange-affinity chromatography. 22 references.

  2. Ni2+-based immobilized metal ion affinity chromatography of lactose operon repressor protein from Escherichia coli.

    PubMed

    Velkov, Tony; Jones, Alun; Lim, Maria L R

    2008-01-01

    A two-step chromatographic sequence is described for the purification of native lactose operon repressor protein from Escherichia coli cells. The first step involves Ni(2+)-based immobilized metal ion affinity chromatography of the soluble cytoplasmic extract. This method provides superior speed, resolution and yield than the established phosphocellulose cation-exchange chromatographic procedure. Anion-exchange chromatography is used for further purification to >95% purity. The identity and purity of the lactose repressor protein were demonstrated using sodium dodecylsulphate polyacrylamide electrophoresis, crystallization, tryptic finger-printing mass spectrometry, and inducer binding assays. The purified lac repressor exhibited inducer sensitivity for operator DNA binding and undergoes a conformational change upon inducer binding. By all these extensive biochemical criteria, the purified protein behaves exactly as that described for the Escherichia coli lactose operon repressor. PMID:18800304

  3. Development of a novel affinity chromatography resin for platform purification of lambda fabs.

    PubMed

    Eifler, Nora; Medaglia, Giovanni; Anderka, Oliver; Laurin, Linus; Hermans, Pim

    2014-01-01

    Antigen-binding fragments (Fabs) are novel formats in the growing pipeline of biotherapeutics. Sharing similar features to monoclonal antibodies (mAbs) with regard to expression, Fabs are considered as unchallenging for upstream development. Yet for downstream processing, the mature mAb downstream purification platform is not directly applicable. New approaches need to be found to achieve a lean purification process that maintains quality, productivity, and timelines while being generically applicable independent of the expression system. In a successful collaboration, BAC BV, GE Healthcare, and Novartis Pharma AG have developed a new affinity chromatography medium (resin) suitable to support cGMP manufacturing of lambda Fabs. We show that using this novel chromatography medium for the capture step, a purification platform for lambda Fabs can be established. PMID:25082738

  4. Development of an aptamer-affinity chromatography for efficient single step purification of Concanavalin A from Canavalia ensiformis.

    PubMed

    Ahirwar, Rajesh; Nahar, Pradip

    2015-08-01

    Herein, an aptamer-based affinity chromatography method for rapid and single step purification of Concanavalin A is developed and validated. We have used a 41ntssDNA aptamer of Con A (Con A aptabody) as an affinity reagent in the developed aptamer-affinity chromatography. Stationary phase of the method consists of surface functionalized agarose beads carrying covalently immobilized Con A-aptabody. Affinity purification of Con A from jack bean (Canavalia ensiformis) seed using developed aptamer-affinity columns has resulted in ≥66% recovery with 90% purity and 336-fold purification of Con A. The developed aptamer-affinity chromatography has shown efficient scalability and consistent purification when analysed over 13mm, 20mm and 25mm diameter columns having a bed height of 60mm each. Also, the developed aptamer-agarose columns were found to be reusable with recovery decrease of 12.9% in seven sequential cycles of purification. Therefore, the developed aptamer-affinity chromatography provides a novel, efficient and single-step methodology for isolation and purification of Con A. PMID:26102634

  5. Determination of residual fluoroquinolones in honey by liquid chromatography using metal chelate affinity chromatography.

    PubMed

    Yatsukawa, Yoh-Ichi; Ito, Hironobu; Matsuda, Takahiro; Nakamura, Munetomo; Watai, Masatoshi; Fujita, Kazuhiro

    2011-01-01

    A new analytical method for the simultaneous determination of seven fluoroquinolones, namely, norfloxacin, ciprofloxacin, danofloxacin, enrofloxacin, orbifloxacin, sarafloxacin, and difloxacin, especially in dark-colored honey, has been developed. Fluoroquinolone antibiotics were extracted from samples with MacIlvaine buffer solution (pH 4.0) containing EDTA disodium salt dihydrate. The extracts were treated with both a polymeric cartridge and a metal chelate affinity column preloaded with ferric ion (Fe3+). LC separation with fluorescence detection was performed at 40 degrees C using an Inertsil ODS-4 analytical column (150 x 4.6 mm, 3 microm). The mobile phase was composed of 20 mM/L citrate buffer solution (pH 3.1)-acetonitrile mixture (70 + 30, v/v) containing 1 mM/L sodium dodecyl sulfate. Lomefloxacin was used as an internal standard. The developed method was validated according to the criteria of European Commission Decision 2002/657/EC. Decision limits and detection capabilities were below 2.9 and 4.4 microg/kg, respectively.

  6. Affinity chromatography of aminoacyl-transfer ribonucleic acid synthetases. Small organic ligands.

    PubMed Central

    Clarke, C M; Knowles, J R

    1977-01-01

    The usefulness of affinity chromatography for the purification of aminoacyl-tRNA synthetases was explored by using column ligands derived from the corresponding amino acid and aminoalkyladenylate, a non-labile analogue of the aminoacyladenylate reaction intermediate. Four modes of attachment of the aminoalkyladenylate to Sepharose were studied. The interaction between amino acid derivatives and the corresponding aminoacyl-tRNA synthetases is too weak to allow their use as ligands for affinity chromatography. Attachment of the aminoalkyladenylate via the alpha-nitrogen atom of the amino acid or via C-8 of the nucleotide abolishes synthetase binding, and immobilization via the oxidized ribose ring is only marginally useful. However, attachment of the aminoalkyladenylate to the matrix via N-6 of the nucleotide allows strong and specific synthetase binding, and the use of such columns permits the isolation of homogeneous synthetase from crude mixtures. The effect of non-specific adsorption and the utility of pre-columns and of specific substrate elution are investigated and discussed. Images Fig. 4. Fig. 7. PMID:597251

  7. Characterization of Murine Brain Membrane Glycoproteins by Detergent Assisted Lectin Affinity Chromatography (DALAC)

    PubMed Central

    Wei, Xin; Dulberger, Charles; Li, Lingjun

    2010-01-01

    Membrane glycoproteins play vital roles in many fundamental physiological and pathophysiological processes in the central nervous system and represent important targets for pharmaceuticals and biomarker discovery. However, their isolation and characterization has been greatly limited. Lectin affinity chromatography (LAC) has evolved as a powerful method to enrich glycoproteins in biofluid and cell/tissue lysate. However, its use in the hydrophobic fraction of the samples has rarely been explored. In this study, we have conducted a systematic investigation on the lectin binding efficiency in the presence of four commonly used detergents. We have found that under certain concentrations, detergents can minimize the nonspecific bindings and facilitate the elution of hydrophobic glycoproteins. With the Detergent Assisted Lectin Affinity Chromatography (DALAC), a total of 1491 proteins were identified with low numbers of false positives from two lectins. 699 proteins were identified with at least two unique peptides, of which 219 are membrane glycoproteins. Compared to the traditional methods, the DALAC approach significantly increased the recovery of plasma membrane and glycoproteins. NP-40 is recommended as a well rounded detergent for DALAC, but the conditions for enriching certain target proteins need to be empirically determined. This study represents the first global identification of the murine brain glycoproteome. PMID:20700909

  8. Determination of the kinetic rate constant of cyclodextrin supramolecular systems by high-performance affinity chromatography.

    PubMed

    Zhang, Jiwen; Li, Haiyan; Sun, Lixin; Wang, Caifen

    2015-01-01

    The kinetics of the association and dissociation are fundamental kinetic processes for the host-guest interactions (such as the drug-target and drug-excipient interactions) and the in vivo performance of supramolecules. With advantages of rapid speed, high precision and ease of automation, the high-performance affinity chromatography (HPAC) is one of the best techniques to measure the interaction kinetics of weak to moderate affinities, such as the typical host-guest interactions of drug and cyclodextrins by using a cyclodextrin-immobilized column. The measurement involves the equilibration of the cyclodextrin column, the upload and elution of the samples (non-retained substances and retained solutes) at different flow rates on the cyclodextrin and control column, and data analysis. It has been indicated that cyclodextrin-immobilized chromatography is a cost-efficient high-throughput tool for the measurement of (small molecule) drug-cyclodextrin interactions as well as the dissociation of other supramolecules with relatively weak, fast, and extensive interactions. PMID:25749964

  9. p53-Encoding pDNA Purification by Affinity Chromatography for Cancer Therapy.

    PubMed

    Sousa, Ângela; Queiroz, João A; Sousa, Fani

    2015-01-01

    The gene therapy approach based on reestablishment of p53 tumor suppressor, which acts as a prevailing guardian against malignant cell transformation, is raising new prospects on the outcome of an effective anticancer treatment. It is well known that the success of gene transfer to cells and subsequent expression is strictly affected by the vector manufacturing process. Therefore, several downstream methods have been proposed to achieve high quantities of supercoiled plasmid DNA with pharmaceutical grade purity. Affinity chromatography with amino acids as ligands has recently yielded interesting results because these ligands take advantage of their biological function or chemical structure to promote specific interactions with different nucleic acids. Here, we describe detailed procedures for the preparation and purification of supercoiled plasmid DNA, with the purity degree required by regulatory agencies, by using arginine affinity chromatography. With this methodology pure pDNA is obtained, efficient on eukaryotic cell transfection and biologically active, resulting in the reestablishment of the p53 protein levels in cancer cell lines. PMID:26072404

  10. Affinity chromatography of branched oligosaccharides in rat liver beta-glucuronidase.

    PubMed

    Hoja-Lukowicz, D; Lityńska, A; Wójczyk, B S

    2001-05-01

    Rat liver microsomal and lysosomal beta-glucuronidase-derived glycopeptides were obtained by extensive Pronase digestion followed by N-[14C]acetylation and desialylation by neuraminidase treatment. These glycopeptides were studied by sequential chromatography on lectin-affinity columns such as concanavalin A, lentil lectin, Phaseolus vulgaris erythroagglutinin, Ricinus communis agglutinin I, Triticum vulgaris agglutinin, Glycine max agglutinin and Ulex europaeus agglutinin. Using serial lectin affinity chromatography approach combined with neuraminidase treatment allowed us to show the unexpected presence of complex tri- and/or tetraantennary type glycans (40.8 and 17.0% for microsomal and lysosomal enzyme, respectively). Moreover, the application of neuraminidase treatment revealed that complex biantennary type glycans, present on lysosomal beta-glucuronidase, are almost fully sialylated while the same type of glycans present on microsomal enzyme do not contain sialic acid. Furthermore, the results obtained confirmed that microsomal and lysosomal beta-glucuronidases possess high mannose and/or hybrid type glycans (19.6 and 36.6%, respectively), and complex biantennary type glycans (38.9 and 46.4%, respectively). PMID:11393703

  11. The development of mitochondrial membrane affinity chromatography columns for the study of mitochondrial transmembrane proteins

    PubMed Central

    Habicht, K-L.; Singh, N.S.; Indig, F.E.; Wainer, I.W.; Moaddel, R.; Shimmo, R.

    2015-01-01

    Mitochondrial membrane fragments from U-87 MG (U87MG) and HEK-293 cells were successfully immobilized on to Immobilized Artificial Membrane (IAM) chromatographic support and surface of activated open tubular (OT) silica capillary resulting in mitochondrial membrane affinity chromatography (MMAC) columns. Translocator protein (TSPO), located in mitochondrial outer membrane as well as sulfonylurea and mitochondrial permeability transition pore (mPTP) receptors, localized to the inner membrane, were characterized. Frontal displacement experiments with multiple concentrations of dipyridamole (DIPY) and PK-11195 were run on MMAC-(U87MG) column and the binding affinities (Kd) determined were 1.08 ± 1.49 and 0.0086 ± 0.0006 μM respectively, which was consistent with previously reported values. Further, binding affinities (Ki) for DIPY binding site were determined for TSPO ligands, PK-11195, mesoporphyrin IX, protoporphyrin IX and rotenone. Additionally, the relative ranking of these TSPO ligands based on single displacement studies using DIPY as marker on MMAC-(U87MG) was consistent with the obtained Ki values. The immobilization of mitochondrial membrane fragments was also confirmed by confocal microscopy. PMID:26049098

  12. The development of mitochondrial membrane affinity chromatography columns for the study of mitochondrial transmembrane proteins.

    PubMed

    Habicht, K-L; Singh, N S; Indig, F E; Wainer, I W; Moaddel, R; Shimmo, R

    2015-09-01

    Mitochondrial membrane fragments from U-87 MG (U87MG) and HEK-293 cells were successfully immobilized onto immobilized artificial membrane (IAM) chromatographic support and surface of activated open tubular (OT) silica capillary, resulting in mitochondrial membrane affinity chromatography (MMAC) columns. Translocator protein (TSPO), located in mitochondrial outer membrane as well as sulfonylurea and mitochondrial permeability transition pore (mPTP) receptors, localized to the inner membrane, were characterized. Frontal displacement experiments with multiple concentrations of dipyridamole (DIPY) and PK-11195 were run on MMAC (U87MG) column, and the binding affinities (Kd) determined were 1.08±0.49 and 0.0086±0.0006μM, respectively, consistent with previously reported values. Furthermore, binding affinities (Ki) for DIPY binding site were determined for TSPO ligands, PK-11195, mesoporphyrin IX, protoporphyrin IX, and rotenone. In addition, the relative ranking of these TSPO ligands based on single displacement studies using DIPY as marker on MMAC (U87MG) was consistent with the obtained Ki values. The immobilization of mitochondrial membrane fragments was also confirmed by confocal microscopy. PMID:26049098

  13. Affinity chromatography of chaperones based on denatured proteins: Analysis of cell lysates of different origin.

    PubMed

    Marchenko, N Yu; Sikorskaya, E V; Marchenkov, V V; Kashparov, I A; Semisotnov, G V

    2016-03-01

    Molecular chaperones are involved in folding, oligomerization, transport, and degradation of numerous cellular proteins. Most of chaperones are heat-shock proteins (HSPs). A number of diseases of various organisms are accompanied by changes in the structure and functional activity of chaperones, thereby revealing their vital importance. One of the fundamental properties of chaperones is their ability to bind polypeptides lacking a rigid spatial structure. Here, we demonstrate that affinity chromatography using sorbents with covalently attached denatured proteins allows effective purification and quantitative assessment of their bound protein partners. Using pure Escherichia coli chaperone GroEL (Hsp60), the capacity of denatured pepsin or lysozyme-based affinity sorbents was evaluated as 1 mg and 1.4 mg of GroEL per 1 ml of sorbent, respectively. Cell lysates of bacteria (E. coli, Thermus thermophilus, and Yersinia pseudotuberculosis), archaea (Halorubrum lacusprofundi) as well as the lysate of rat liver mitochondria were analyzed using affinity carrier with denatured lysozyme. It was found that, apart from Hsp60, other proteins with a molecular weight of about 100, 50, 40, and 20 kDa are able to interact with denatured lysozyme. PMID:26644295

  14. ANALYSIS OF DRUG INTERACTIONS WITH HIGH DENSITY LIPOPROTEIN BY HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY

    PubMed Central

    Chen, Sike; Sobansky, Matthew R.; Hage, David S.

    2009-01-01

    Columns containing immobilized lipoproteins were prepared for the analysis of drug interactions with these particles by high-performance affinity chromatography. This approach was evaluated by using it to examine the binding of high density lipoprotein (HDL) to the drugs propranolol or verapamil. HDL was immobilized by the Schiff base method onto silica and gave HPLC columns with reproducible binding to propranolol over four to five days of continuous operation at pH 7.4. Frontal analysis experiments indicated that two types of interactions were occurring between R/S-propranolol and HDL at 37°C: saturable binding with an association equilibrium constant (Ka) of 1.1–1.9 × 105 M−1, and non-saturable binding with an overall affinity constant (n Ka) of 3.7–4.1 × 104 M−1. Similar results were found at 4 and 27°C. Verapamil also gave similar behavior, with a Ka of 6.0 × 104 M−1 at 37°C for the saturable sites and a n Ka value for the non-saturable sites of 2.5 × 104 M−1. These measured affinities gave good agreement with solution-phase values. The results indicated HPAC can be used to study drug interactions with HDL, providing information that should be valuable in obtaining a better description of how drugs are transported within the body. PMID:19833090

  15. Weak affinity chromatography as a new approach for fragment screening in drug discovery.

    PubMed

    Duong-Thi, Minh-Dao; Meiby, Elinor; Bergström, Maria; Fex, Tomas; Isaksson, Roland; Ohlson, Sten

    2011-07-01

    Fragment-based drug design (FBDD) is currently being implemented in drug discovery, creating a demand for developing efficient techniques for fragment screening. Due to the intrinsic weak or transient binding of fragments (mM-μM in dissociation constant (K(D))) to targets, methods must be sensitive enough to accurately detect and quantify an interaction. This study presents weak affinity chromatography (WAC) as an alternative tool for screening of small fragments. The technology was demonstrated by screening of a selected 23-compound fragment collection of documented binders, mostly amidines, using trypsin and thrombin as model target protease proteins. WAC was proven to be a sensitive, robust, and reproducible technique that also provides information about affinity of a fragment in the range of 1 mM-10 μM. Furthermore, it has potential for high throughput as was evidenced by analyzing mixtures in the range of 10 substances by WAC-MS. The accessibility and flexibility of the technology were shown as fragment screening can be performed on standard HPLC equipment. The technology can further be miniaturized and adapted to the requirements of affinity ranges of the fragment library. All these features of WAC make it a potential method in drug discovery for fragment screening. PMID:21352794

  16. Fragment screening of cyclin G-associated kinase by weak affinity chromatography.

    PubMed

    Meiby, Elinor; Knapp, Stefan; Elkins, Jonathan M; Ohlson, Sten

    2012-11-01

    Fragment-based drug discovery (FBDD) has become a new strategy for drug discovery where lead compounds are evolved from small molecules. These fragments form low affinity interactions (dissociation constant (K(D)) = mM - μM) with protein targets, which require fragment screening methods of sufficient sensitivity. Weak affinity chromatography (WAC) is a promising new technology for fragment screening based on selective retention of fragments by a drug target. Kinases are a major pharmaceutical target, and FBDD has been successfully applied to several of these targets. In this work, we have demonstrated the potential to use WAC in combination with mass spectrometry (MS) detection for fragment screening of a kinase target-cyclin G-associated kinase (GAK). One hundred seventy fragments were selected for WAC screening by virtual screening of a commercial fragment library against the ATP-binding site of five different proteins. GAK protein was immobilized on a capillary HPLC column, and compound binding was characterized by frontal affinity chromatography. Compounds were screened in sets of 13 or 14, in combination with MS detection for enhanced throughput. Seventy-eight fragments (46 %) with K(D) < 200 μM were detected, including a few highly efficient GAK binders (K(D) of 2 μM; ligand efficiency = 0.51). Of special interest is that chiral screening by WAC may be possible, as two stereoisomeric fragments, which both contained one chiral center, demonstrated twin peaks. This ability, in combination with the robustness, sensitivity, and simplicity of WAC makes it a new method for fragment screening of considerable potential. PMID:22918538

  17. SwellGel: a sample preparation affinity chromatography technology for high throughput proteomic applications.

    PubMed

    Haney, Paul J; Draveling, Connie; Durski, Wendy; Romanowich, Kathryn; Qoronfleh, M Walid

    2003-04-01

    Development of high throughput systems for purification and analysis of proteins is essential for the success of today's proteomic research. We have developed an affinity chromatography technology that allows the customization of high capacity/high throughput chromatographic separation of proteins. This technology utilizes selected chromatography media that are dehydrated to form uniform SwellGel discs. Unlike wet resin slurries, these discs are easily adaptable to a variety of custom formats, eliminating problems associated with resin dispensing, equilibration, or leakage. Discs can be made in assorted sizes (resin volume 15 microl-3 ml) dispensed in various formats (384-, 96-, 48-, and 24-well microplates or columns) and different ligands can be attached to the matrix. SwellGel discs rapidly hydrate upon addition of either water or the protein sample, providing dramatically increased capacity compared to coated plates. At the same time, the discs offer greater stability, reproducibility, and ease of handling than standard wet chromatography resins. We previously reported the development of SwellGel for the purification of 6x His- and glutathione-S-transferase (GST)-tagged fusion proteins [Prot. Exp. Purif. 22 (2001) 359-366]. In this paper, we discuss an expanded list of SwellGel stabilized chromatographic methods that have been adapted to high throughput formats for processing protein samples ranging from 10 microl to 10 ml (1 microg to 50 mg protein). Data are presented applying SwellGel discs to high throughput proteomic applications such as affinity tag purification, protein desalting, the removal of abundant proteins from serum including albumin and immunoglobulin, and the isolation of phosphorylated peptides for mass spectrometry. PMID:12699691

  18. Selective isolation of β-glucan from corn pericarp hemicelluloses by affinity chromatography on cellulose column.

    PubMed

    Yoshida, Tomoki; Honda, Yoichi; Tsujimoto, Takashi; Uyama, Hiroshi; Azuma, Jun-ichi

    2014-10-13

    A combination of anion-exchange chromatography and affinity chromatography on a cellulose column was found to be effective for the isolation of β-(1,3;1,4)-glucan (BG) from corn pericarp hemicelluloses (CPHs). CPHs containing 6.6% BG were extracted from corn pericarp with 6M urea-2 wt% NaOH solution and initially fractionated into neutral and acidic parts by anion exchange chromatography to remove acidic arabinoxylan consisting of arabinose (35.6%) and xylose (50.9%). The neutral fraction (yield; 10.1% on the basis of CPHs) consisting of 1.0% arabinose, 10.1% xylose and 80.3% glucose containing 28.4% BG was then applied to a cellulose column of Whatman CF-11. BG could be recovered from the adsorbed fraction on the cellulose column by elution with 2% NaOH in a yield of 2.6% on the basis of CPHs with a purity of 84.7%. The chemical structure of the isolated corn pericarp BG was confirmed by (13)C NMR spectroscopic, methylation and lichenase treatment analyses. The results indicate that the ratios of (1,4)/(1,3) linkage and cellotriosyl/cellotetraosyl segments of the BG were 2.60 and 2.5, respectively.

  19. A fullerene C60-based ligand in a stationary phase for affine chromatography of membrane porphyrin-binding proteins

    NASA Astrophysics Data System (ADS)

    Amirshakhi, N.; Alyautdin, R. N.; Orlov, A. P.; Poloznikov, A. A.; Kuznetsov, D. A.

    2008-11-01

    A new affine chromatography technique is suggested for the purification of porphyrin-binding proteins (PBP) from mammal cell membranes. The procedure uses new fullerene-porphyrin ligands immobilized on agarose and bound to the polysaccharide matrix via the epoxycyclohexyl residue. A selective PBP stationary phase was used in a single-column chromatography run for the complete purification of a monomeric protein (17.6 kDa) from mitochondrial membranes of rat myocardium. This protein was characterized by high affinity for porphyrin-related structures. To separate it from other nonspecifically sorbed membrane proteins, synchronous linear pH and ionic strength gradients were used.

  20. Protein Affinity Chromatography with Purified Yeast DNA Polymerase α Detects Proteins that Bind to DNA Polymerase

    NASA Astrophysics Data System (ADS)

    Miles, Jeff; Formosa, Tim

    1992-02-01

    We have overexpressed the POL1 gene of the yeast Saccharomyces cerevisiae and purified the resulting DNA polymerase α polypeptide in an apparently intact form. We attached the purified DNA polymerase covalently to an agarose matrix and used this matrix to chromatograph extracts prepared from yeast cells. At least six proteins bound to the yeast DNA polymerase α matrix that did not bind to a control matrix. We speculate that these proteins might be DNA polymerase α accessory proteins. Consistent with this interpretation, one of the binding proteins, which we have named POB1 (polymerase one binding), is required for normal chromosome transmission. Mutations in this gene cause increased chromosome loss and an abnormal cell morphology, phenotypes that also occur in the presence of mutations in the yeast α or δ polymerase genes. These results suggest that the interactions detected by polymerase affinity chromatography are biologically relevant and may help to illuminate the architecture of the eukaryotic DNA replication machinery.

  1. Purification of infectious canine parvovirus from cell culture by affinity chromatography with monoclonal antibodies.

    PubMed

    Rimmelzwaan, G F; Groen, J; Juntti, N; Teppema, J S; UytdeHaag, F G; Osterhaus, A D

    1987-03-01

    Immuno affinity chromatography with virus neutralizing monoclonal antibodies, directed to the haemagglutinating protein of canine parvovirus (CPV) was used to purify and concentrate CPV from infected cell culture. The procedure was monitored by testing the respective fractions in an infectivity titration system, in an ELISA, in a haemagglutination assay and by negative contrast electron microscopy to quantify CPV or CPV antigen. The degree of purification was further estimated by testing the fractions for total protein content in a colorimetric method, for bovine serum albumin content in an ELISA and by SDS-PAGE. Over 99% of the contaminating proteins proved to be removed, and 20% or 70-90% of infectious CPV or CPV antigen, respectively, was recovered.

  2. Fibulin-1 purification from human plasma using affinity chromatography on Factor H-Sepharose.

    PubMed

    DiScipio, Richard G; Liddington, Robert C; Schraufstatter, Ingrid U

    2016-05-01

    A method is reported to purify Fibulin-1 from human plasma resulting in a 36% recovery. The steps involve removal of the cryoglobulin and the vitamin K dependent proteins followed by polyethylene glycol and ammonium sulfate precipitations, DEAE-Sephadex column chromatography and finally Factor H-Sepharose affinity purification. The procedure is designed to be integrated into an overall scheme for the isolation of over 30 plasma proteins from a single batch of human plasma. Results from mass spectroscopy, SDS-PAGE, and Western blotting indicate that human plasma Fibulin-1 is a single chain of the largest isotype. Functional binding assays demonstrated calcium ion dependent interaction of Fibulin-1 for fibrinogen, fibronectin, and Factor H. The procedure described is the first to our knowledge that enables a large scale purification of Fibulin-1 from human plasma. PMID:26826315

  3. Purification of peroxidase from red cabbage (Brassica oleracea var. capitata f. rubra) by affinity chromatography.

    PubMed

    Somtürk, Burcu; Kalın, Ramazan; Özdemir, Nalan

    2014-08-01

    Peroxidase was purified in a single step using 4-amino benzohydrazide affinity chromatography from red cabbage (Brassica oleracea var. capitata f. rubra), and some important biochemical characteristics of the purified enzyme were determined. The enzyme, with a specific activity of 3,550 EU/mg protein, was purified 120.6-fold with a yield of 2.9% from the synthesized affinity matrix. The molecular weight of the enzyme was found to be 69.3 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme exhibited maximum activity at pH 7.0 and 30 °C. For guaiacol substrate, the K m and V max values were found as 0.048 mM and 1.46 EU/mL/min, respectively. Additionally, the IC50 and K i values for 4-amino benzohydrazide were calculated to be 1.047 and 0.702±0.05 mM, respectively, and 4-amino benzohydrazide showed noncompetitive inhibition.

  4. Removal of PCR Error Products and Unincorporated Primers by Metal-Chelate Affinity Chromatography

    PubMed Central

    Kanakaraj, Indhu; Jewell, David L.; Murphy, Jason C.; Fox, George E.; Willson, Richard C.

    2011-01-01

    Immobilized Metal Affinity Chromatography (IMAC) has been used for decades to purify proteins on the basis of amino acid content, especially surface-exposed histidines and “histidine tags” genetically added to recombinant proteins. We and others have extended the use of IMAC to purification of nucleic acids via interactions with the nucleotide bases, especially purines, of single-stranded RNA and DNA. We also have demonstrated the purification of plasmid DNA from contaminating genomic DNA by IMAC capture of selectively-denatured genomic DNA. Here we describe an efficient method of purifying PCR products by specifically removing error products, excess primers, and unincorporated dNTPs from PCR product mixtures using flow-through metal-chelate affinity adsorption. By flowing a PCR product mixture through a Cu2+-iminodiacetic acid (IDA) agarose spin column, 94–99% of the dNTPs and nearly all the primers can be removed. Many of the error products commonly formed by Taq polymerase also are removed. Sequencing of the IMAC-processed PCR product gave base-calling accuracy comparable to that obtained with a commercial PCR product purification method. The results show that IMAC matrices (specifically Cu2+-IDA agarose) can be used for the purification of PCR products. Due to the generality of the base-specific mechanism of adsorption, IMAC matrices may also be used in the purification of oligonucleotides, cDNA, mRNA and micro RNAs. PMID:21264292

  5. High-Performance Affinity Chromatography: Applications in Drug-Protein Binding Studies and Personalized Medicine.

    PubMed

    Li, Zhao; Beeram, Sandya R; Bi, Cong; Suresh, D; Zheng, Xiwei; Hage, David S

    2016-01-01

    The binding of drugs with proteins and other agents in serum is of interest in personalized medicine because this process can affect the dosage and action of drugs. The extent of this binding may also vary with a given disease state. These interactions may involve serum proteins, such as human serum albumin or α1-acid glycoprotein, or other agents, such as lipoproteins. High-performance affinity chromatography (HPAC) is a tool that has received increasing interest as a means for studying these interactions. This review discusses the general principles of HPAC and the various approaches that have been used in this technique to examine drug-protein binding and in work related to personalized medicine. These approaches include frontal analysis and zonal elution, as well as peak decay analysis, ultrafast affinity extraction, and chromatographic immunoassays. The operation of each method is described and examples of applications for these techniques are provided. The type of information that can be obtained by these methods is also discussed, as related to the analysis of drug-protein binding and the study of clinical or pharmaceutical samples. PMID:26827600

  6. ANALYSIS OF DRUG INTERACTIONS WITH VERY LOW DENSITY LIPOPROTEIN BY HIGH PERFORMANCE AFFINITY CHROMATOGRAPHY

    PubMed Central

    Sobansky, Matthew R.; Hage, David S.

    2014-01-01

    High-performance affinity chromatography (HPAC) was utilized to examine the binding of very low density lipoprotein (VLDL) with drugs, using R/S-propranolol as a model. These studies indicated that two mechanisms existed for the binding of R- and S-propranolol with VLDL. The first mechanism involved non-saturable partitioning of these drugs with VLDL, which probably occurred with the lipoprotein's non-polar core. This partitioning was described by overall affinity constants of 1.2 (± 0.3) × 106 M-1 for R-propranolol and 2.4 (± 0.6) × 106 M-1 for S-propranolol at pH 7.4 and 37 °C. The second mechanism occurred through saturable binding by these drugs at fixed sites on VLDL, such as represented by apolipoproteins on the surface of the lipoprotein. The association equilibrium constants for this saturable binding at 37 °C were 7.0 (± 2.3) × 104 M-1 for R-propranolol and 9.6 (± 2.2) × 104 M-1 for S-propranolol. Comparable results were obtained at 20 °C and 27 °C for the propranolol enantiomers. This work provided fundamental information on the processes involved in the binding of R- and S-propranolol to VLDL, while also illustrating how HPAC can be used to evaluate relatively complex interactions between agents such as VLDL and drugs or other solutes. PMID:25103529

  7. Binding of angiogenesis inhibitor kringle 5 to its specific ligands by frontal affinity chromatography.

    PubMed

    Bian, Liujiao; Li, Qian; Ji, Xu

    2015-07-01

    The interactions between angiogenesis inhibitor Kringle 5 and its five specific ligands were investigated by frontal affinity chromatography in combination with fluorescence spectra and site-directed molecular docking. The binding constants of trans-4-(aminomethyl) cyclohexane carboxylic acid (AMCHA), epsilon-aminocaproic acid (EACA), benzylamine, 7-aminoheptanoic acid (7-AHA) and L-lysine to Kringle 5 were 19.0×10(3), 7.97×10(3), 6.45×10(3), 6.07×10(3) and 4.04×10(3) L/mol, respectively. The five ligands bound to Kringle 5 on the lysine binding site in equimolar amounts, which was pushed mainly by hydrogen bond and Van der Waals force. This binding affinity was believed to be dependent on the functional group and flexible feature in ligands. This study will provide an important insight into the binding mechanism of angiogenesis inhibitor Kringle 5 to its specific ligands. PMID:25981289

  8. DETECTION OF HETEROGENEOUS DRUG-PROTEIN BINDING BY FRONTAL ANALYSIS AND HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY

    PubMed Central

    Tong, Zenghan; Joseph, K.S.; Hage, David S.

    2011-01-01

    This study examined the use of frontal analysis and high-performance affinity chromatography for detecting heterogeneous binding in biomolecular interactions, using the binding of acetohexamide with human serum albumin (HSA) as a model. It was found through the use of this model system and chromatographic theory that double-reciprocal plots could be used more easily than traditional isotherms for the initial detection of binding site heterogeneity. The deviations from linearity that were seen in double-reciprocal plots as a result of heterogeneity were a function of the analyte concentration, the relative affinities of the binding sites in the system and the amount of each type of site that was present. The size of these deviations was determined and compared under various conditions. Plots were also generated to show what experimental conditions would be needed to observe these deviations for general heterogeneous systems or for cases in which some preliminary information was available on the extent of binding heterogeneity. The methods developed in this work for the detection of binding heterogeneity are not limited to drug interactions with HSA but could be applied to other types of drug-protein binding or to additional biological systems with heterogeneous binding. PMID:21612784

  9. Glycan-specific whole cell affinity chromatography: A versatile microbial adhesion platform

    PubMed Central

    Van Tassell, Maxwell L.; Price, Neil P.J.; Miller, Michael J.

    2014-01-01

    We have sought a universal platform for elucidating and exploiting specificity of glycan-mediated adhesion by potentially uncharacterized microorganisms. Several techniques exist to explore microbial interactions with carbohydrate structures. Many are unsuitable for investigating specific mechanisms or uncharacterized organisms, requiring pure cultures, labeling techniques, expensive equipment, or other limitations such as questionable stability, stereospecificity, or scalability. We have adapted an affinity chromatography resin as a model to overcome these drawbacks, among others. It readily allows for the quantification, selection, and manipulation of target organisms based on interactions with glycan ligands. To maximize its utility as a selective screening method, we have constructed the tool such that it:•Promotes whole-cell interactions using viable, unaltered cells.•Provides robust spatial interactions with target glycans, presented with controlled stereo-specificity, for high affinity/avidity interactions that reflect a complex in vivo matrix.•Has the ability to utilize any reducing glycan, is quick, efficient, safe, and affordable to construct, and is scalable and reusable for multiple applications. PMID:26150959

  10. Necator americanus secretory acetylcholinesterase and its purification from excretory-secretory products by affinity chromatography.

    PubMed

    Pritchard, D I; Leggett, K V; Rogan, M T; McKean, P G; Brown, A

    1991-03-01

    Acetylcholinesterase (AChE) secretion by adult N. americanus was enhanced in vitro by incorporating insoluble collagen rafts into culture dishes. Enzyme produced in this way had preferential substrate specificity for acetylthiocholine iodide (ATC), and its activity was inhibited by eserine (1.1 x 10(-8) M). Ancylostoma ceylanicum, another hookworm species, failed to produce comparable amounts of AChE in culture. AChE was efficiently purified from culture medium by affinity chromatography on edrophonium sepharose; 81% of the AChE activity was retained by the affinity matrix, although this fraction contained only 4.3% of the protein loaded. Antisera raised against purified AChE in rabbits immunohistochemically stained the oesophageal glands of the parasite, and reacted with molecules of 32, 60, 80, 140 and 220 kDa in reduced adult ES products on Western blotting, although differential activity was observed against worm homogenates and earlier developmental stages. On IEF, purified AChE resolved predominantly with a pl of 3.55; proteins with a similar pl were recognized by rabbit anti-AChE. IgG preparations of this antiserum inhibited AChE activity in ES products, and inhibited AChE secretion by adult worms in culture. The availability of this immunological probe will allow definitive experiments to be conducted on the role of this enigmatic enzyme in the host-parasite relationship. PMID:2052405

  11. CHARACTERIZATION OF THE BINDING OF SULFONYLUREA DRUGS TO HSA BY HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY

    PubMed Central

    Joseph, K.S.; Hage, David S.

    2010-01-01

    Sulfonylurea drugs are often prescribed as a treatment for type II diabetes to help lower blood sugar levels by stimulating insulin secretion. These drugs are believed to primarily bind in blood to human serum albumin (HSA). This study used high-performance affinity chromatography (HPAC) to examine the binding of sulfonylureas to HSA. Frontal analysis with an immobilized HSA column was used to determine the association equilibrium constants (Ka) and number of binding sites on HSA for the sulfonylurea drugs acetohexamide and tolbutamide. The results from frontal analysis indicated HSA had a group of relatively high affinity binding regions and weaker binding sites for each drug, with average Ka values of 1.3 (± 0.2) × 105 M−1 and 3.5 (± 3.0) × 102 M−1 for acetohexamide and values of 8.7 (± 0.6) × 104 and 8.1 (± 1.7) × 103 M−1 for tolbutamide. Zonal elution and competition studies with site-specific probes were used to further examine the relatively high affinity interactions of these drugs by looking directly at the interactions that were occurring at Sudlow sites I and II of HSA (i.e., the major drug binding sites on this protein). It was found that acetohexamide was able to bind at both Sudlow sites I and II, with Ka values of 1.3 (± 0.1) × 105 and 4.3 (± 0.3) × 104 M−1, respectively, at 37°C. Tolbutamide also appeared to interact with both Sudlow sites I and II, with Ka values of 5.5 (± 0.2) × 104 and 5.3 (± 0.2) × 104 M−1, respectively. The results provide a more quantitative picture of how these drugs bind with HSA and illustrate how HPAC and related tools can be used to examine relatively complex drug-protein interactions. PMID:20435530

  12. Purification of CD47-streptavidin fusion protein from bacterial lysate using biotin-agarose affinity chromatography.

    PubMed

    Salehi, Nasrin; Peng, Ching-An

    2016-07-01

    CD47 is a widely expressed transmembrane glycoprotein that modulates the activity of a plethora of immune cells via its extracellular domain. Therefore, CD47 plays important roles in the regulation of immune responses and may serve as targets for the development of immunotherapeutic agents. To make sure CD47 functionality is intact under the process of protein conjugation, CD47-streptavidin fusion protein was expressed and purified because it can easily bind to biotin-tagged materials via the unique biotin-streptavidin affinity. In this study, gene sequences of CD47 extracellular domain (CD47ECD) and core streptavidin (coreSA) with a total 834 bp were inserted into pET20b plasmid to construct recombinant plasmid encoding CD47-SA fusion gene. After bacteria transformation, the CD47-SA fusion protein was expressed by isopropyl-β-d-thiogalactopyranoside (IPTG) induction. The collected bacteria lysate was loaded on biotinylated agarose to proceed the purification of CD47-SA fusion protein. Due to the unexpected high affinity between biotin and coreSA, standard washing and elution approaches (e.g., varying pH, using biotin, and applying guanidine hydrochloride) reported for biotin-streptavidin affinity chromatography were not able to separate the target fusion protein. Instead, using low concentration of the non-ionic detergent Triton X-100 followed with alkaline buffer could efficiently weaken the binding between biotin and coreSA, thereby eluting out CD47-SA fusion protein from the biotin agarose column. The purified CD47-SA fusion protein was further characterized by molecular biology methods and its antiphagocytic functionality was confirmed by the phagocytosis assay. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:949-958, 2016. PMID:27110670

  13. One-step purification of lactoperoxidase from bovine milk by affinity chromatography.

    PubMed

    Atasever, Ali; Ozdemir, Hasan; Gulcin, Ilhami; Irfan Kufrevioglu, O

    2013-01-15

    Sulphanilamide was determined to be a new inhibitor of lactoperoxidase (LPO) with an IC(50) of 0.848.10(-5)M. The K(i) for sulphanilamide was determined to be 3.57.10(-5)M and sulphanilamide showed competitive inhibition, which makes it a suitable ligand for constructing a Sepharose 4B-L-tyrosine affinity matrix. The affinity matrix was synthesised by coupling sulphanilamide as the ligand and L-tyrosine as the spacer arm to a cyanogen bromide (CNBr)-activated-Sepharose 4B matrix. Lactoperoxidase was purified 409-fold from the synthesized affinity matrix in a single step, with a yield of 62.3% and a specific activity of 40.9 EU/mg protein. The enzyme activity was measured using ABTS as a chromogenic substrate (pH 6.0). The degree of LPO purification was monitored by SDS-PAGE and its R(z) (A(412)/A(280)) value. The R(z) value for the purified LPO was found to be 0.7. Maximum binding was achieved and K(m) and V(max) values were determined.

  14. Evaluation and optimization of the metal-binding properties of a complex ligand for immobilized metal affinity chromatography.

    PubMed

    Chen, Bin; Li, Rong; Li, Shiyu; Chen, Xiaoli; Yang, Kaidi; Chen, Guoliang; Ma, Xiaoxun

    2016-02-01

    The simultaneous determination of two binding parameters for metal ions on an immobilized metal affinity chromatography column was performed by frontal chromatography. In this study, the binding parameters of Cu(2+) to l-glutamic acid were measured, the metal ion-binding characteristics of the complex ligand were evaluated. The linear correlation coefficients were all greater than 99%, and the relative standard deviations of two binding parameters were 0.58 and 0.059%, respectively. The experiments proved that the frontal chromatography method was accurate, reproducible, and could be used to determine the metal-binding parameters of the affinity column. The effects of buffer pH, type, and concentration on binding parameters were explored by uniform design experiment. Regression, matching and residual analyses of the models were performed. Meanwhile, the optimum-binding conditions of Cu(2+) on the l-glutamic acid-silica column were obtained. Under these binding conditions, observations and regression values of two parameters were similar, and the observation values were the best. The results demonstrated that high intensity metal affinity column could be effectively prepared by measuring and evaluating binding parameters using frontal chromatography combined with a uniform design experiment. The present work provided a new mode for evaluating and preparing immobilized metal affinity column with good metal-binding behaviors. PMID:26632098

  15. Biotin-functionalized poly(ethylene terephthalate) capillary-channeled polymer fibers as HPLC stationary phase for affinity chromatography.

    PubMed

    Jiang, Liuwei; Marcus, R Kenneth

    2015-01-01

    Native poly(ethylene terephthalate) (PET) capillary-channeled polymer (C-CP) fibers have been used as the stationary phase for high-performance liquid chromatography (HPLC) of proteins via reversed-phase and ion-exchange processes. Functionalization can be used to bring about greater selectivity through surface modification. PET fibers were treated with ethylenediamine to generate primary amine groups on the fiber surface, enabling subsequent covalent attachment of ligands. The ninhydrin test for primary amines revealed surface densities of 13.9-60.0 μmol m(-2) for PET fibers exposed for periods of 3-12 min. Here, 8-amino-3,6-dioxaoctanoic acid was linked to the EDA-treated PET fiber surface as a hydrophilic spacer, and then D-biotin was attached on the end of the spacer as an affinity ligand. The streptavidin binding capacity and binding homogeneity were studied on the biotin-functionalized PET C-CP fiber microbore column. The selectivity of the biotin surface functionalization was assessed by spiking lysate with Texas Red-labeled streptavidin and enhanced green fluorescent protein. Greater than 99% selectivity was realized. This ligand-coupling strategy from standard solid-phase peptide synthesis used in stationary phase functionalization creates great potential for PET C-CP fiber-packed HPLC columns to perform a variety of chromatographic separations. PMID:25410640

  16. The identification by affinity chromatography of the rat liver ribosomal proteins that bind to elongator and initiator transfer ribonucleic acids.

    PubMed

    Ulbrich, N; Wool, I G; Ackerman, E; Sigler, P B

    1980-07-25

    Mixed yeast elongator-tRNAs (bulk tRNA lacking fRNAm,fMet), pure isoaccepting species of elongator-tRNAs (tRNAmMet and tRNAPhe), and purified initiator-tRNA (tRNAfMet) were each oxidized with periodate and the 3' terminus was coupled to Sepharose 4B through an adipic acid dihydrazide spacer. The rat liver ribosomal proteins that associated with the tRNAs were isolated by affinity chromatography and identified by electrophoresis in polyacrylamide gels. The rat liver ribosomal proteins that were bound to the elongator-tRNA preparations were L6, L35a, and S15; small amounts of a number of other proteins also associated with the nucleic acid. When initiator-tRNA (tRNAfMet) was immobilized on Sepharose, only L6 and L35a were bound; no 40 S subunit proteins associated with initiator-tRNA. No Escherichia coli proteins formed a complex with either eukaryotic initiator- or elongator-tRNAs. PMID:7391064

  17. Comparing multistep immobilized metal affinity chromatography and multistep TiO2 methods for phosphopeptide enrichment.

    PubMed

    Yue, Xiaoshan; Schunter, Alissa; Hummon, Amanda B

    2015-09-01

    Phosphopeptide enrichment from complicated peptide mixtures is an essential step for mass spectrometry-based phosphoproteomic studies to reduce sample complexity and ionization suppression effects. Typical methods for enriching phosphopeptides include immobilized metal affinity chromatography (IMAC) or titanium dioxide (TiO2) beads, which have selective affinity and can interact with phosphopeptides. In this study, the IMAC enrichment method was compared with the TiO2 enrichment method, using a multistep enrichment strategy from whole cell lysate, to evaluate their abilities to enrich for different types of phosphopeptides. The peptide-to-beads ratios were optimized for both IMAC and TiO2 beads. Both IMAC and TiO2 enrichments were performed for three rounds to enable the maximum extraction of phosphopeptides from the whole cell lysates. The phosphopeptides that are unique to IMAC enrichment, unique to TiO2 enrichment, and identified with both IMAC and TiO2 enrichment were analyzed for their characteristics. Both IMAC and TiO2 enriched similar amounts of phosphopeptides with comparable enrichment efficiency. However, phosphopeptides that are unique to IMAC enrichment showed a higher percentage of multiphosphopeptides as well as a higher percentage of longer, basic, and hydrophilic phosphopeptides. Also, the IMAC and TiO2 procedures clearly enriched phosphopeptides with different motifs. Finally, further enriching with two rounds of TiO2 from the supernatant after IMAC enrichment or further enriching with two rounds of IMAC from the supernatant TiO2 enrichment does not fully recover the phosphopeptides that are not identified with the corresponding multistep enrichment. PMID:26237447

  18. Recombinant Passenger Proteins Can Be Conveniently Purified by One-Step Affinity Chromatography.

    PubMed

    Wang, Hua-zhen; Chu, Zhi-zhan; Chen, Chang-chao; Cao, Ao-cheng; Tong, Xin; Ouyang, Can-bin; Yuan, Qi-hang; Wang, Mi-nan; Wu, Zhong-kun; Wang, Hai-hong; Wang, Sheng-bin

    2015-01-01

    Fusion tag is one of the best available tools to date for enhancement of the solubility or improvement of the expression level of recombinant proteins in Escherichia coli. Typically, two consecutive affinity purification steps are often necessitated for the purification of passenger proteins. As a fusion tag, acyl carrier protein (ACP) could greatly increase the soluble expression level of Glucokinase (GlcK), α-Amylase (Amy) and GFP. When fusion protein ACP-G2-GlcK-Histag and ACP-G2-Amy-Histag, in which a protease TEV recognition site was inserted between the fusion tag and passenger protein, were coexpressed with protease TEV respectively in E. coli, the efficient intracellular processing of fusion proteins was achieved. The resulting passenger protein GlcK-Histag and Amy-Histag accumulated predominantly in a soluble form, and could be conveniently purified by one-step Ni-chelating chromatography. However, the fusion protein ACP-GFP-Histag was processed incompletely by the protease TEV coexpressed in vivo, and a large portion of the resulting target protein GFP-Histag aggregated in insoluble form, indicating that the intracellular processing may affect the solubility of cleaved passenger protein. In this context, the soluble fusion protein ACP-GFP-Histag, contained in the supernatant of E. coli cell lysate, was directly subjected to cleavage in vitro by mixing it with the clarified cell lysate of E. coli overexpressing protease TEV. Consequently, the resulting target protein GFP-Histag could accumulate predominantly in a soluble form, and be purified conveniently by one-step Ni-chelating chromatography. The approaches presented here greatly simplify the purification process of passenger proteins, and eliminate the use of large amounts of pure site-specific proteases. PMID:26641240

  19. Recombinant Passenger Proteins Can Be Conveniently Purified by One-Step Affinity Chromatography

    PubMed Central

    Wang, Hua-zhen; Chu, Zhi-zhan; Chen, Chang-chao; Cao, Ao-cheng; Tong, Xin; Ouyang, Can-bin; Yuan, Qi-hang; Wang, Mi-nan; Wu, Zhong-kun; Wang, Hai-hong; Wang, Sheng-bin

    2015-01-01

    Fusion tag is one of the best available tools to date for enhancement of the solubility or improvement of the expression level of recombinant proteins in Escherichia coli. Typically, two consecutive affinity purification steps are often necessitated for the purification of passenger proteins. As a fusion tag, acyl carrier protein (ACP) could greatly increase the soluble expression level of Glucokinase (GlcK), α-Amylase (Amy) and GFP. When fusion protein ACP-G2-GlcK-Histag and ACP-G2-Amy-Histag, in which a protease TEV recognition site was inserted between the fusion tag and passenger protein, were coexpressed with protease TEV respectively in E. coli, the efficient intracellular processing of fusion proteins was achieved. The resulting passenger protein GlcK-Histag and Amy-Histag accumulated predominantly in a soluble form, and could be conveniently purified by one-step Ni-chelating chromatography. However, the fusion protein ACP-GFP-Histag was processed incompletely by the protease TEV coexpressed in vivo, and a large portion of the resulting target protein GFP-Histag aggregated in insoluble form, indicating that the intracellular processing may affect the solubility of cleaved passenger protein. In this context, the soluble fusion protein ACP-GFP-Histag, contained in the supernatant of E. coli cell lysate, was directly subjected to cleavage in vitro by mixing it with the clarified cell lysate of E. coli overexpressing protease TEV. Consequently, the resulting target protein GFP-Histag could accumulate predominantly in a soluble form, and be purified conveniently by one-step Ni-chelating chromatography. The approaches presented here greatly simplify the purification process of passenger proteins, and eliminate the use of large amounts of pure site-specific proteases. PMID:26641240

  20. BIOINTERACTION ANALYSIS BY HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY: KINETIC STUDIES OF IMMOBILIZED ANTIBODIES

    PubMed Central

    Nelson, Mary Anne; Moser, Annette; Hage, David S.

    2009-01-01

    A system based on high-performance affinity chromatography was developed for characterizing the binding, elution and regeneration kinetics of immobilized antibodies and immunoaffinity supports. This information was provided by using a combination of frontal analysis, split-peak analysis and peak decay analysis to determine the rate constants for antibody-antigen interactions under typical sample application and elution conditions. This technique was tested using immunoaffinity supports that contained monoclonal antibodies for 2,4-dichlorophenoxyacetic acid (2,4-D). Association equilibrium constants measured by frontal analysis for 2,4-D and related compounds with the immobilized antibodies were 1.7–12 × 106 M−1 at pH 7.0 and 25°C. Split-peak analysis gave association rate constants of 1.4–12 × 105 M−1s−1 and calculated dissociation rate constants of 0.01–0.4 s−1 under the application conditions. Elution at pH 2.5 for the analytes from the antibodies was examined by peak decay analysis and gave dissociation rate constants of 0.056–0.17 s−1. A comparison of frontal analysis results after various periods of column regeneration allowed the rate of antibody regeneration to be examined, with the results giving a first-order regeneration rate constant of 2.4 × 10−4 s−1. This combined approach and the information it provides should be useful in the design and optimization of immunoaffinity chromatography and other analytical methods that employ immobilized antibodies. The methods described are not limited to the particular analytes and antibodies employed in this study but should be useful in characterizing other targets, ligands and supports. PMID:19394281

  1. Purification of the proprotein convertase furin by affinity chromatography based on PC-specific inhibitors

    PubMed Central

    Kuester, Miriam; Becker, Gero L.; Hardes, Kornelia; Lindberg, Iris; Steinmetzer, Torsten; Than, Manuel E.

    2013-01-01

    In eucaryotes, many secreted proteins and peptides are proteolytically excised from larger precursor proteins by a specific class of serine proteases, the proprotein/prohormone convertases (PCs). This cleavage is essential for substrate activation, making the PCs very interesting pharmacological targets in cancer and infectious disease research. Correspondingly, their structure, function and inhibition are intensely studied – studies that require the respective target proteins in large amounts and at high purity. Here we describe the development of a novel purification protocol of furin, the best-studied member of the PC family. We combined the heterologous expression of furin from CHO cells with a novel purification scheme employing an affinity step that efficiently extracts only active furin from the conditioned medium by using furin-specific inhibitor moieties as bait. Several potential affinity tags were synthesized and their binding to furin characterized. The best compound, Biotin-(Adoa)2-Arg-Pro-Arg-4-Amba coupled to streptavidin-Sepharose beads, was used in a three-step chromatographic protocol and routinely resulted in a high yield of a homogeneous furin preparation with a specific activity of ~60 units/mg protein. This purification and the general strategy can easily be adapted to the efficient purification of other PC family members. PMID:21875402

  2. Analysis of free drug fractions in human serum by ultrafast affinity extraction and two-dimensional affinity chromatography.

    PubMed

    Zheng, Xiwei; Podariu, Maria; Matsuda, Ryan; Hage, David S

    2016-01-01

    Ultrafast affinity extraction and a two-dimensional high performance affinity chromatographic system were used to measure the free fractions for various drugs in serum and at typical therapeutic concentrations. Pooled samples of normal serum or serum from diabetic patients were utilized in this work. Several drug models (i.e., quinidine, diazepam, gliclazide, tolbutamide, and acetohexamide) were examined that represented a relatively wide range of therapeutic concentrations and affinities for human serum albumin (HSA). The two-dimensional system consisted of an HSA microcolumn for the extraction of a free drug fraction, followed by a larger HSA analytical column for the further separation and measurement of this fraction. Factors that were optimized in this method included the flow rates, column sizes, and column switching times that were employed. The final extraction times used for isolating the free drug fractions were 333-665 ms or less. The dissociation rate constants for several of the drugs with soluble HSA were measured during system optimization, giving results that agreed with reference values. In the final system, free drug fractions in the range of 0.7-9.5% were measured and gave good agreement with values that were determined by ultrafiltration. Association equilibrium constants or global affinities were also estimated by this approach for the drugs with soluble HSA. The results for the two-dimensional system were obtained in 5-10 min or less and required only 1-5 μL of serum per injection. The same approach could be adapted for work with other drugs and proteins in clinical samples or for biomedical research. PMID:26462924

  3. Affinity chromatography using 2' fluoro-substituted RNAs for detection of RNA-protein interactions in RNase-rich or RNase-treated extracts.

    PubMed

    Hovhannisyan, Ruben; Carstens, Russ

    2009-02-01

    Use of RNA affinity chromatography is commonly used to identify RNA binding proteins that interact with specific RNA cis-elements that function in post-transcriptional gene regulation. These purifications can be complicated by residual RNase activity in cellular extracts that can degrade the RNAs on these affinity columns. Furthermore, some proteins may associate indirectly with the column as a component of multi-protein complexes that are "tethered" through the binding of cellular RNAs. We present a protocol for an RNA affinity procedure that can be used in conjunction with RNase-rich or RNase-treated extracts by using RNAs synthesized with 2' fluoro-substituted cytidine triphosphate (CTP) and uridine triphosphate (UTP). The resulting RNAs are shown to be RNase A-resistant and capable of direct coupling to adipic acid dihydrazide agarose beads. Using an RNA cis-element previously shown to bind hnRNP M, we demonstrated that the substituted RNAs preserve binding capability by a common class of RNA binding proteins. Our results provide a method that may be used more generally for RNA affinity purification or as a validation step to verify more direct binding of a given RNA binding protein to a target RNA. PMID:19317654

  4. Purification of a thermostable alkaline laccase from papaya (Carica papaya) using affinity chromatography.

    PubMed

    Jaiswal, Nivedita; Pandey, Veda P; Dwivedi, Upendra N

    2015-01-01

    A laccase from papaya leaves was purified to homogeneity by a two step procedure namely, heat treatment (at 70 °C) and Con-A affinity chromatography. The procedure resulted in 1386.7-fold purification of laccase with a specific activity of 41.3 units mg(-1) and an overall yield of 61.5%. The native purified laccase was found to be a hexameric protein of ∼ 260 kDa. The purified enzyme exhibited acidic and alkaline pH optima of 6.0 and 8.0 with the non-phenolic substrate (ABTS) and phenolic substrate (catechol), respectively. The purified laccase was found to be thermostable up to 70 °C such that it retained ∼ 80% activity upon 30 min incubation at 70 °C. The Arrhenius energy of activation for purified laccase was found to be 7.7 kJ mol(-1). The enzyme oxidized various phenolic and non-phenolic substrates having catalytic efficiency (K(cat)/K(m)) in the order of 7.25>0.67>0.27 mM(-1) min(-1) for ABTS, catechol and hydroquinone, respectively. The purified laccase was found to be activated by Mn(2+), Cd(2+), Ca(2+), Na(+), Fe(2+), Co(2+) and Cu(2+) while weakly inhibited by Hg(2+). The properties such as thermostability, alkaline pH optima and metal tolerance exhibited by the papaya laccase make it a promising candidate enzyme for industrial exploitation.

  5. Purification of a protease inhibitor from Dolichos biflorus using immobilized metal affinity chromatography.

    PubMed

    Kuhar, Kalika; Mittal, Anuradha; Kansal, Rekha; Gupta, Vijay Kumar

    2014-02-01

    Plant protease inhibitors (PIs) are generally small proteins which play key roles in regulation of endogenous proteases and may exhibit antifeedant, antifungal, antitumor and cytokine inducing activities. Dolichos biflorus (horse gram) is an unexploited legume, which is rich in nutrients and also has therapeutic importance. It contains a double-headed PI, which is an anti-nutritional factor. As there is no report available on its simultaneous removal and purification in single step, in this study, a double-headed PI active against both trypsin and chymotrypsin was purified from Dolichos biflorus to -14-fold with -84% recovery using an immobilized metal affinity chromatography (IMAC) medium consisting of Zn-alginate beads. The method was single-step, fast, simple, reliable and economical. The purified inhibitor showed a single band on SDS-PAGE corresponding to molecular mass of 16 kDa and was stable over a pH range of 2.0-12.0 and up to a temperature of 100 degrees C for 20 min. The optimum temperature for trypsin and chymotrypsin inhibitor was observed to be 50 degrees C and 37 degrees C, respectively and pH optimum was pH 7.0 and 8.0, respectively. Thus, IMAC using Zn-alginate beads was useful in simultaneous purification and removal of an anti-nutritional factor from horse gram flour in single step. This procedure may also be employed for purification of other plant PIs in one step.

  6. Affinity chromatography of Drosophila melanogaster ribosomal proteins to 5S rRNA.

    PubMed

    Stark, B C; Chooi, W Y

    1985-02-20

    The binding of Drosophila melanogaster ribosomal proteins to D. melanogaster 5S rRNA was studied using affinity chromatography of total ribosomal proteins (TP80) on 5S rRNA linked via adipic acid dihydrazide to Sepharose 4B. Ribosomal proteins which bound 5S rRNA at 0.3 M potassium chloride and were eluted at 1 M potassium chloride were identified as proteins 1, L4, 2/3, L14/L16, and S1, S2, S3, S4, S5, by two-dimensional polyacrylamide gel electrophoresis. Using poly A-Sepharose 4B columns as a model of non-specific binding, we found that a subset of TP80 proteins is also bound. This subset, while containing some of the proteins bound by 5S rRNA columns, was distinctly different from the latter subset, indicating that the binding to 5S rRNA was specific for that RNA species. PMID:3923010

  7. Analysis of the Glycoproteome of Toxoplasma gondii using Lectin Affinity Chromatography and Tandem Mass Spectrometry

    PubMed Central

    Luo, Qilie; Upadhya, Rajendra; Zhang, Hong; Madrid-Aliste, Carlos; Nieves, Edward; Kim, Kami; Angeletti, Ruth Hogue; Weiss, Louis M.

    2011-01-01

    Glycoproteins are involved in many important molecular recognition processes including invasion, adhesion, differentiation, and development. To identify the glycoproteins of Toxoplasma gondii, a proteomic analysis was undertaken. T. gondii proteins were prepared and fractioned using lectin affinity chromatography. The proteins in each fraction were then separated using SDS-PAGE and identified by tryptic in gel digestion followed by tandem mass spectrometry. Utilizing these methods 132 proteins were identified. Among the identified proteins were 17 surface proteins, 9 microneme proteins, 15 rhoptry proteins, 11 heat shock proteins (HSP), and 32 hypothetical proteins. Several proteins had 1 to 5 transmembrane domains (TMD) with some being as large as 608.3 kDa. Both lectin-fluorescence labeling and lectin blotting were employed to confirm the presence of carbohydrates on the surface or cytoplasm of T. gondii parasites. PCR demonstrated that selected hypothetical proteins were expressed in T. gondii tachyzoites. This is data provides a large scale analysis of the T. gondii glycoproteome. Studies of the function of glycosylation of these proteins may help elucidate mechanism(s) involved in invasion improving drug therapy as well as identify glycoproteins that may prove to be useful as vaccine candidates. PMID:21920448

  8. Studies of drug interactions with glycated human serum albumin by high-performance affinity chromatography

    PubMed Central

    Matsuda, Ryan; Kye, So-Hwang; Anguizola, Jeanethe; Hage, David S.

    2015-01-01

    Diabetes is a health condition associated with elevated levels of glucose in the bloodstream and affects 366 million people worldwide. Type II diabetes is often treated with sulfonylurea drugs, which are known to bind tightly in blood to the transport protein human serum albumin (HSA). One consequence of the elevated levels of glucose in diabetes is the non-enzymatic glycation of proteins such as HSA. Several areas of HSA are now known to be affected by glycation-related modifications, which may in turn affect the binding of sulfonylurea drugs and other solutes to this protein. This review discusses some recent studies that have examined these changes in drug-protein binding by employing high-performance affinity chromatography (HPAC). A description of the theoretical and experimental techniques that were used in these studies is given. The information on drug interactions with glycated HSA, as obtained through this method, is also summarized. In addition, the potential advantages of this approach in the areas of biointeraction analysis and personalized medicine are considered. PMID:26526139

  9. MEASUREMENT OF DRUG-PROTEIN DISSOCIATION RATES BY HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY AND PEAK PROFILING

    PubMed Central

    Schiel, John E.; Ohnmacht, Corey M.; Hage, David S.

    2012-01-01

    The rate at which a drug or other small solute interacts with a protein is important in understanding the biological and pharmacokinetic behavior of these agents. One approach that has been developed for examining these rates involves the use of high-performance affinity chromatography (HPAC) and estimates of band-broadening through peak profiling. Previous work with this method has been based on a comparison of the statistical moments for a retained analyte versus non-retained species at a single, high flow rate to obtain information on stationary phase mass transfer. In this study an alternative approach was created that allows a broad range of flow rates to be used for examining solute-protein dissociation rates. Chromatographic theory was employed to derive equations that could be used with this approach on a single column, as well as with multiple columns to evaluate and correct for the impact of stagnant mobile phase mass transfer. The interaction of L-tryptophan with human serum albumin was used as a model system to test this method. A dissociation rate constant of 2.7 (± 0.2) s−1 was obtained by this approach at pH 7.4 and 37°C, which was in good agreement with previous values determined by other methods. The techniques described in this report can be applied to other biomolecular systems and should be valuable for the determination of drug-protein dissociation rates. PMID:19422253

  10. Dynamic affinity chromatography in the separation of sulfated lignins binding to thrombin

    PubMed Central

    Liang, Aiye; Thakkar, Jay N.; Hindle, Michael; Desai, Umesh R.

    2013-01-01

    Sulfated low molecular weight lignins (LMWLs), a mixture of chemo-enzymatically prepared oligomers, have been found to be potent antagonists of coagulation. However, structures that induce anticoagulation remain unidentified. The highly polar sulfate groups on these molecules and the thousands of different structures present in these mixtures make traditional chromatographic resolution of sulfated LMWLs difficult. We performed dynamic thrombin affinity chromatography monitored using chromogenic substrate hydrolysis assay to isolate sulfated LMWL fractions that differed significantly in their biophysical and biochemical properties. Three fractions, I35, I55 and Peak II, were isolated from the starting complex mixture. Independent plasma clotting assays suggested that I35 possessed good anticoagulation potential (APTT = 4.2 μM; PT = 6.8 μM), while I55 and Peak II were approximately 10- and 100-fold less potent. The ESI-MS spectrum of this oligomeric fraction showed multiple peaks at 684.8, 610.6, 557.4, 541.4, 536.5, and 519.4 m/z, which most probably arise from variably functionalized (β-O4—β-β-linked trimers and/or a β-O4—β-O4-linked dimers. The first direct observation of these structures in sulfated LMWLs will greatly assist in the discovery of more potent sulfated LMWL-based anticoagulants. PMID:23122400

  11. CHARACTERIZATION OF DRUG INTERACTIONS WITH SERUM PROTEINS BY USING HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY

    PubMed Central

    Hage, David S.; Anguizola, Jeanethe; Barnaby, Omar; Jackson, Abby; Yoo, Michelle J.; Papastavros, Efthimia; Pfaunmiller, Erika; Sobansky, Matt; Tong, Zenghan

    2011-01-01

    The binding of drugs with serum proteins can affect the activity, distribution, rate of excretion, and toxicity of pharmaceutical agents in the body. One tool that can be used to quickly analyze and characterize these interactions is high-performance affinity chromatography (HPAC). This review shows how HPAC can be used to study drug-protein binding and describes the various applications of this approach when examining drug interactions with serum proteins. Methods for determining binding constants, characterizing binding sites, examining drug-drug interactions, and studying drug-protein dissociation rates will be discussed. Applications that illustrate the use of HPAC with serum binding agents such as human serum albumin, α1-acid glycoprotein, and lipoproteins will be presented. Recent developments will also be examined, such as new methods for immobilizing serum proteins in HPAC columns, the utilization of HPAC as a tool in personalized medicine, and HPAC methods for the high-throughput screening and characterization of drug-protein binding. PMID:21395530

  12. Analysis of Lidocaine Interactions with Serum Proteins Using High-Performance Affinity Chromatography

    PubMed Central

    Soman, Sony; Yoo, Michelle J.; Jang, Yoon Jeong; Hage, David S.

    2010-01-01

    High-performance affinity chromatography was used to study binding by the drug lidocaine to human serum albumin (HSA) and α1–acid glycoprotein (AGP). AGP had strong binding to lidocaine, with an association equilibrium constant (Ka) of 1.1-1.7 × 105 M-1 at 37 °C and pH 7.4. Lidocaine had weak-to-moderate binding to HSA, with a Ka in the range of 103 to 104 M-1. Competitive experiments with site selective probes showed that lidocaine was interacting with Sudlow site II of HSA and the propranolol site of AGP. These results agree with previous observations in the literature and provide a better quantitative understanding of how lidocaine binds to these serum proteins and is transported in the circulation. This study also demonstrates how HPAC can be used to examine the binding of a drug with multiple serum proteins and provide detailed information on the interaction sites and equilibrium constants that are involved in such processes. PMID:20138813

  13. Immobilized metal-affinity chromatography protein-recovery screening is predictive of crystallographic structure success

    PubMed Central

    Choi, Ryan; Kelley, Angela; Leibly, David; Nakazawa Hewitt, Stephen; Napuli, Alberto; Van Voorhis, Wesley

    2011-01-01

    The recombinant expression of soluble proteins in Escherichia coli continues to be a major bottleneck in structural genomics. The establishment of reliable protocols for the performance of small-scale expression and solubility testing is an essential component of structural genomic pipelines. The SSGCID Protein Production Group at the University of Washington (UW-PPG) has developed a high-throughput screening (HTS) protocol for the measurement of protein recovery from immobilized metal-affinity chromatography (IMAC) which predicts successful purification of hexahistidine-tagged proteins. The protocol is based on manual transfer of samples using multichannel pipettors and 96-well plates and does not depend on the use of robotic platforms. This protocol has been applied to evaluate the expression and solubility of more than 4000 proteins expressed in E. coli. The UW-PPG also screens large-scale preparations for recovery from IMAC prior to purification. Analysis of these results show that our low-cost non-automated approach is a reliable method for the HTS demands typical of large structural genomic projects. This paper provides a detailed description of these protocols and statistical analysis of the SSGCID screening results. The results demonstrate that screening for proteins that yield high recovery after IMAC, both after small-scale and large-scale expression, improves the selection of proteins that can be successfully purified and will yield a crystal structure. PMID:21904040

  14. Characterization of glycoproteins in pancreatic cyst fluid using a high performance multiple lectin affinity chromatography platform

    PubMed Central

    Gbormittah, Francisca Owusu; Haab, Brian B.; Partyka, Katie; Garcia-Ott, Carolina; Hancapie, Marina; Hancock, William S.

    2014-01-01

    Currently, pancreatic cancer is the fourth cause of cancer death. In 2013, it is estimated that approximately 38,460 people will die of pancreatic cancer. Early detection of malignant cyst (pancreatic cancer precursor) is necessary to help prevent late diagnosis of the tumor. In this study, we characterized glycoproteins and non-glycoproteins on pooled mucinous (n=10) and non-mucinous (n=10) pancreatic cyst fluid to identify ‘proteins of interest’ to differentiate between mucinous cyst from non-mucinous cyst and investigate these proteins as potential biomarker targets. An automated multi-lectin affinity chromatography (M-LAC) platform was utilized for glycoprotein enrichment followed by nano-LC-MS/MS analysis. Spectral count quantitation allowed for the identification of proteins with significant differential levels in mucinous cysts from non-mucinous cysts of which one protein (periostin) was confirmed via immunoblotting. To exhaustively evaluate differentially expressed proteins, we used a number of proteomic tools including; gene ontology classification, pathway and network analysis, Novoseek data mining and chromosome gene mapping. Utilization of complementary proteomic tools, revealed that several of the proteins such as mucin 6 (MUC6), bile salt-activated lipase (CEL) and pyruvate kinase lysozyme M1/M2 with significant differential expression have strong association with pancreatic cancer. Further, chromosome gene mapping demonstrated co-expressions and co-localization of some proteins of interest including 14-3-3 protein epsilon (YWHAE), pigment epithelium derived factor (SERPINF1) and oncogene p53. PMID:24303806

  15. Advance chromatin extraction improves capture performance of protein A affinity chromatography.

    PubMed

    Nian, Rui; Zhang, Wei; Tan, Lihan; Lee, Jeremy; Bi, Xeuzhi; Yang, Yuansheng; Gan, Hui Theng; Gagnon, Pete

    2016-01-29

    Practical effects of advance chromatin removal on performance of protein A affinity chromatography were evaluated using a caprylic acid-allantoin-based extraction method. Lacking this treatment, the practice of increasing loading residence time to increase capacity was shown to increase host protein contamination of the eluted IgG. Advance chromatin extraction suspended that compromise. Protein A ligand leakage from columns loaded with chromatin-extracted harvest was half the level observed on protein A columns loaded with non-extracted harvest. Columns loaded with chromatin-extracted harvest were cleaned more effectively by 50-100mM NaOH than columns loaded with non-extracted harvest that were cleaned with 250-500mM NaOH. Two protein A media with IgG capacities in excess of 50g/L were loaded with chromatin-extracted harvest, washed with 2.0M NaCl before elution, and the eluted IgG fraction titrated to pH 5.5 before microfiltration. Host protein contamination in the filtrate was reduced to <1ppm, DNA to <1ppb, protein A leakage to 0.5ppm, and aggregates to 1.0%. Caprylic acid and allantoin were both reduced below 5ppm. Step recovery of IgG was 99.4%. Addition of a single polishing step reduced residual protein A beneath the level of detection and aggregates to <0.1%. Overall process recovery including chromatin extraction was 90%. PMID:26774119

  16. Analysis of Drug Interactions with Lipoproteins by High-Performance Affinity Chromatography

    PubMed Central

    Sobansky, Matthew R.; Hage, David S.

    2013-01-01

    Lipoproteins such as high-density lipoprotein (HDL) and low-density lipoprotein (LDL) are known to interact with drugs and other solutes in blood. These interactions have been examined in the past by methods such as equilibrium dialysis and capillary electrophoresis. This chapter describes an alternative approach that has recently been developed for examining these interactions by using high-performance affinity chromatography. In this method, lipoproteins are covalently immobilized to a solid support and used within a column as a stationary phase for binding studies. This approach allows the same lipoprotein preparation to be used for a large number of binding studies, leading to precise estimates of binding parameters. This chapter will discuss how this technique can be applied to the identification of interaction models and be used to differentiate between systems that have interactions based on partitioning, adsorption or mixed-mode interactions. It is also shown how this approach can then be used for the measurement of binding parameters for HDL and LDL with drugs. Examples of these studies are provided, with particular attention being given to the use of frontal analysis to examine the interactions of R- and S-propranolol with HDL and LDL. The advantages and possible limitations of this method are described. The extension of this approach to other types of drug-lipoprotein interactions is also considered. PMID:25392741

  17. Studies of drug interactions with glycated human serum albumin by high-performance affinity chromatography.

    PubMed

    Matsuda, Ryan; Kye, So-Hwang; Anguizola, Jeanethe; Hage, David S

    2014-08-01

    Diabetes is a health condition associated with elevated levels of glucose in the bloodstream and affects 366 million people worldwide. Type II diabetes is often treated with sulfonylurea drugs, which are known to bind tightly in blood to the transport protein human serum albumin (HSA). One consequence of the elevated levels of glucose in diabetes is the non-enzymatic glycation of proteins such as HSA. Several areas of HSA are now known to be affected by glycation-related modifications, which may in turn affect the binding of sulfonylurea drugs and other solutes to this protein. This review discusses some recent studies that have examined these changes in drug-protein binding by employing high-performance affinity chromatography (HPAC). A description of the theoretical and experimental techniques that were used in these studies is given. The information on drug interactions with glycated HSA, as obtained through this method, is also summarized. In addition, the potential advantages of this approach in the areas of biointeraction analysis and personalized medicine are considered. PMID:26526139

  18. The Lectin Frontier Database (LfDB), and data generation based on frontal affinity chromatography.

    PubMed

    Hirabayashi, Jun; Tateno, Hiroaki; Shikanai, Toshihide; Aoki-Kinoshita, Kiyoko F; Narimatsu, Hisashi

    2015-01-01

    Lectins are a large group of carbohydrate-binding proteins, having been shown to comprise at least 48 protein scaffolds or protein family entries. They occur ubiquitously in living organisms-from humans to microorganisms, including viruses-and while their functions are yet to be fully elucidated, their main underlying actions are thought to mediate cell-cell and cell-glycoconjugate interactions, which play important roles in an extensive range of biological processes. The basic feature of each lectin's function resides in its specific sugar-binding properties. In this regard, it is beneficial for researchers to have access to fundamental information about the detailed oligosaccharide specificities of diverse lectins. In this review, the authors describe a publicly available lectin database named "Lectin frontier DataBase (LfDB)", which undertakes the continuous publication and updating of comprehensive data for lectin-standard oligosaccharide interactions in terms of dissociation constants (Kd's). For Kd determination, an advanced system of frontal affinity chromatography (FAC) is used, with which quantitative datasets of interactions between immobilized lectins and >100 fluorescently labeled standard glycans have been generated. The FAC system is unique in its clear principle, simple procedure and high sensitivity, with an increasing number (>67) of associated publications that attest to its reliability. Thus, LfDB, is expected to play an essential role in lectin research, not only in basic but also in applied fields of glycoscience. PMID:25580689

  19. High speed immuno-affinity chromatography on supports with gigapores and porous glass.

    PubMed

    Schuste, M; Wasserbauer, E; Neubauer, A; Jungbauer, A

    2000-01-01

    Immuno-affinity chromatography exploiting the Ca2+ dependent interaction of the anti-Flag antibody and Flag-tagged proteins has been investigated. The antibody has been immobilized on porous glass beads (Prosep) containing gigapores and on a monolith, the polymethacrylate based Convective Interactive Media (CIM) column at a ligand density of 2 mg/g and 10 mg/ml respectively. The performance of the columns was assessed by applying clarified yeast culture supernatant containing overexpressed Flag-human serum albumin. Dynamic binding capacity and purity was checked at various flow rates ranging from 100 cm/h to 800 cm/h. 95% purity could be obtained. Anti Flag-CIM columns showed a higher unspecific adsorption, requiring a longer wash cycle to obtain the same purity compared to the Prosep column. Anti Flag-CIM columns showed a flow independent performance, which is explained by its monolithic structure. A decreasing dynamic binding capacity with flow was observed with anti-Flag-Prosep columns. Both columns are suited to purify milligrams of protein out of a yeast culture supernatant within a few minutes. We considered them as promising candidates for high throughput screening, where fast purification is a necessity.

  20. Selection of ceramic fluorapatite-binding peptides from a phage display combinatorial peptide library: optimum affinity tags for fluorapatite chromatography.

    PubMed

    Islam, Tuhidul; Bibi, Noor Shad; Vennapusa, Rami Reddy; Fernandez-Lahore, Marcelo

    2013-08-01

    Peptide affinity tags have become efficient tools for the purification of recombinant proteins from biological mixtures. The most commonly used ligands in this type of affinity chromatography are immobilized metal ions, proteins, antibodies, and complementary peptides. However, the major bottlenecks of this technique are still related to the ligands, including their low stability, difficulties in immobilization, and leakage into the final products. A model approach is presented here to overcome these bottlenecks by utilizing macroporous ceramic fluorapatite (CFA) as the stationary phase in chromatography and the CFA-specific short peptides as tags. The CFA chromatographic materials act as both the support matrix and the ligand. Peptides that bind with affinity to CFA were identified from a randomized phage display heptapeptide library. A total of five rounds of phage selection were performed. A common N-terminal sequence was found in two selected peptides: F4-2 (KPRSMLH) and F5-4 (KPRSVSG). The peptide F5-4, displayed by more than 40% of the phages analyzed in the fifth round of selection, was subjected to further studies. Selectivity of the peptide for the chemical composition and morphology of CFA was assured by the adsorption studies. The dissociation constant, obtained from the F5-4/CFA adsorption isotherm, was in the micromolar range, and the maximum capacity was 39.4 nmol/mg. The chromatographic behavior of the peptides was characterized on a CFA stationary phase with different buffers. Preferential affinity and specific retention properties suggest the possible application of the phage-derived peptides as a tag in CFA affinity chromatography for enhancing the selective recovery of proteins.

  1. Physicochemical and Biological Characterization of Fucoidan from Fucus vesiculosus Purified by Dye Affinity Chromatography

    PubMed Central

    Zayed, Ahmed; Muffler, Kai; Hahn, Thomas; Rupp, Steffen; Finkelmeier, Doris; Burger-Kentischer, Anke; Ulber, Roland

    2016-01-01

    A comparative study concerning the physicochemical, monomeric composition and biological characters among different fucoidan fractions is presented. Common purification techniques for fucoidan usually involve many steps. During these steps, the important structural features might be affected and consequently alter its biological activities. Three purified fractions were derived from Fucus vesiculosus water extract which, afterwards, were purified by a recently-developed dye affinity chromatography protocol. This protocol is based on dye-sulfated polysaccharide interactions. The first two fractions were obtained from crude precipitated fucoidan at different pH values of the adsorption phase: pH 1 and 6. This procedure resulted in fucoidan_1 and 6 fractions. The other, third, fraction: fucoidan_M, however, was obtained from a buffered crude extract at pH 1, eliminating the ethanol precipitation step. All of the three fractions were then further evaluated. Results revealed that fucoidan_M showed the highest sulfur content (S%), 12.11%, with the lowest average molecular weight, 48 kDa. Fucose, galactose, and uronic acid/glucose dimers were detected in all fractions, although, xylose was only detected in fucoidan_1 and 6. In a concentration of 10 µg·mL−1, Fucoidan_6 showed the highest heparin-like anticoagulant activity and could prolong the APTT and TT significantly to 66.03 ± 2.93 and 75.36 ± 1.37 s, respectively. In addition, fucoidan_M demonstrated the highest potency against HSV-1 with an IC50 of 2.41 µg·mL−1. The technique proved to be a candidate for fucoidan purifaction from its crude extract removing the precipitation step from common purification protocols and produced different fucoidan qualities resulted from the different incubation conditions with the immobilized thiazine toluidine blue O dye. PMID:27092514

  2. Physicochemical and Biological Characterization of Fucoidan from Fucus vesiculosus Purified by Dye Affinity Chromatography.

    PubMed

    Zayed, Ahmed; Muffler, Kai; Hahn, Thomas; Rupp, Steffen; Finkelmeier, Doris; Burger-Kentischer, Anke; Ulber, Roland

    2016-04-15

    A comparative study concerning the physicochemical, monomeric composition and biological characters among different fucoidan fractions is presented. Common purification techniques for fucoidan usually involve many steps. During these steps, the important structural features might be affected and consequently alter its biological activities. Three purified fractions were derived from Fucus vesiculosus water extract which, afterwards, were purified by a recently-developed dye affinity chromatography protocol. This protocol is based on dye-sulfated polysaccharide interactions. The first two fractions were obtained from crude precipitated fucoidan at different pH values of the adsorption phase: pH 1 and 6. This procedure resulted in fucoidan_1 and 6 fractions. The other, third, fraction: fucoidan_M, however, was obtained from a buffered crude extract at pH 1, eliminating the ethanol precipitation step. All of the three fractions were then further evaluated. Results revealed that fucoidan_M showed the highest sulfur content (S%), 12.11%, with the lowest average molecular weight, 48 kDa. Fucose, galactose, and uronic acid/glucose dimers were detected in all fractions, although, xylose was only detected in fucoidan_1 and 6. In a concentration of 10 µg·mL(-1), Fucoidan_6 showed the highest heparin-like anticoagulant activity and could prolong the APTT and TT significantly to 66.03 ± 2.93 and 75.36 ± 1.37 s, respectively. In addition, fucoidan_M demonstrated the highest potency against HSV-1 with an IC50 of 2.41 µg·mL(-1). The technique proved to be a candidate for fucoidan purifaction from its crude extract removing the precipitation step from common purification protocols and produced different fucoidan qualities resulted from the different incubation conditions with the immobilized thiazine toluidine blue O dye.

  3. Comprehensive and Reproducible Phosphopeptide Enrichment Using Iron Immobilized Metal Ion Affinity Chromatography (Fe-IMAC) Columns

    PubMed Central

    Ruprecht, Benjamin; Koch, Heiner; Medard, Guillaume; Mundt, Max; Kuster, Bernhard; Lemeer, Simone

    2015-01-01

    Advances in phosphopeptide enrichment methods enable the identification of thousands of phosphopeptides from complex samples. Current offline enrichment approaches using TiO2, Ti, and Fe immobilized metal ion affinity chromatography (IMAC) material in batch or microtip format are widely used, but they suffer from irreproducibility and compromised selectivity. To address these shortcomings, we revisited the merits of performing phosphopeptide enrichment in an HPLC column format. We found that Fe-IMAC columns enabled the selective, comprehensive, and reproducible enrichment of phosphopeptides out of complex lysates. Column enrichment did not suffer from bead-to-sample ratio issues and scaled linearly from 100 μg to 5 mg of digest. Direct measurements on an Orbitrap Velos mass spectrometer identified >7500 unique phosphopeptides with 90% selectivity and good quantitative reproducibility (median cv of 15%). The number of unique phosphopeptides could be increased to more than 14,000 when the IMAC eluate was subjected to a subsequent hydrophilic strong anion exchange separation. Fe-IMAC columns outperformed Ti-IMAC and TiO2 in batch or tip mode in terms of phosphopeptide identification and intensity. Permutation enrichments of flow-throughs showed that all materials largely bound the same phosphopeptide species, independent of physicochemical characteristics. However, binding capacity and elution efficiency did profoundly differ among the enrichment materials and formats. As a result, the often quoted orthogonality of the materials has to be called into question. Our results strongly suggest that insufficient capacity, inefficient elution, and the stochastic nature of data-dependent acquisition in mass spectrometry are the causes of the experimentally observed complementarity. The Fe-IMAC enrichment workflow using an HPLC format developed here enables rapid and comprehensive phosphoproteome analysis that can be applied to a wide range of biological systems. PMID

  4. Optimization of human serum albumin monoliths for chiral separations and high-performance affinity chromatography

    PubMed Central

    Pfaunmiller, Erika L.; Hartmann, Mahli; Dupper, Courtney M.; Soman, Sony; Hage, David S.

    2012-01-01

    Various organic-based monoliths were prepared and optimized for immobilization of the protein human serum albumin (HSA) as a binding agent for chiral separations and high-performance affinity chromatography. These monoliths contained co-polymers based on glycidyl methacrylate (GMA) and ethylene glycol dimethacrylate (EDMA) or GMA and trimethylolpropane trimethacrylate (TRIM). A mixture of cyclohexanol and 1-dodecanol was used as the porogen, with the ratio of these solvents being varied along with the polymerization temperature to generate a library of monoliths. These monoliths were used with both the Schiff base and epoxy immobilization methods and measured for their final content of HSA. Monoliths showing the highest protein content were further evaluated in chromatographic studies using R/S-warfarin and d/l-tryptophan as model chiral solutes. A 2.6–2.7-fold increase in HSA content was obtained in the final monoliths when compared to similar HSA monoliths prepared according to the literature. The increased protein content made it possible for the new monoliths to provide higher retention and/or two-fold faster separations for the tested solutes when using 4.6 mm i.d. × 50 mm columns. These monoliths were also used to create 4.6 mm i.d. × 10 mm HSA microcolumns that could separate the same chiral solutes in only 1.5–6.0 min. The approaches used in this study could be extended to the separation of other chiral solutes and to the optimization of organic monoliths for use with additional proteins as binding agents. PMID:23010249

  5. Physicochemical and Biological Characterization of Fucoidan from Fucus vesiculosus Purified by Dye Affinity Chromatography.

    PubMed

    Zayed, Ahmed; Muffler, Kai; Hahn, Thomas; Rupp, Steffen; Finkelmeier, Doris; Burger-Kentischer, Anke; Ulber, Roland

    2016-04-01

    A comparative study concerning the physicochemical, monomeric composition and biological characters among different fucoidan fractions is presented. Common purification techniques for fucoidan usually involve many steps. During these steps, the important structural features might be affected and consequently alter its biological activities. Three purified fractions were derived from Fucus vesiculosus water extract which, afterwards, were purified by a recently-developed dye affinity chromatography protocol. This protocol is based on dye-sulfated polysaccharide interactions. The first two fractions were obtained from crude precipitated fucoidan at different pH values of the adsorption phase: pH 1 and 6. This procedure resulted in fucoidan_1 and 6 fractions. The other, third, fraction: fucoidan_M, however, was obtained from a buffered crude extract at pH 1, eliminating the ethanol precipitation step. All of the three fractions were then further evaluated. Results revealed that fucoidan_M showed the highest sulfur content (S%), 12.11%, with the lowest average molecular weight, 48 kDa. Fucose, galactose, and uronic acid/glucose dimers were detected in all fractions, although, xylose was only detected in fucoidan_1 and 6. In a concentration of 10 µg·mL(-1), Fucoidan_6 showed the highest heparin-like anticoagulant activity and could prolong the APTT and TT significantly to 66.03 ± 2.93 and 75.36 ± 1.37 s, respectively. In addition, fucoidan_M demonstrated the highest potency against HSV-1 with an IC50 of 2.41 µg·mL(-1). The technique proved to be a candidate for fucoidan purifaction from its crude extract removing the precipitation step from common purification protocols and produced different fucoidan qualities resulted from the different incubation conditions with the immobilized thiazine toluidine blue O dye. PMID:27092514

  6. Glycoproteomic analysis of embryonic stem cells: identification of potential glycobiomarkers using lectin affinity chromatography of glycopeptides

    PubMed Central

    Alvarez-Manilla, Gerardo; Warren, Nicole L.; Atwood, James; Orlando, Ron; Dalton, Stephen; Pierce, Michael

    2011-01-01

    Numerous studies have recently focused on the identification of specific glycan biomarkers; given the important roles that protein linked glycans play, for example, during development and disease progression. The identification of protein glycobiomarkers, which are part of a very complex proteome, has involved the use of fractionation techniques such as lectin affinity chromatography. In this study, the glycoproteomic characterization of pluripotent murine embryonic stem cells (ES) and from ES cells that were differentiated into embroid bodies (EB) was performed using immobilized Concanavalin A (ConA). This procedure allowed the isolation of glycopeptides that express biantennary and hybrid N-linked structures (ConA2 fraction) as well as high mannose glycans (ConA3 fraction), that were abundant in both ES and EB stages. A total of 293 unique N-linked glycopeptide sequences (from 180 glycoproteins) were identified in the combined data sets from ES and EB cells. Of these glycopeptides, a total of 119 sequences were identified exclusively in only one of the lectin bound fractions, (24 in the ES-ConA2, 15 in the ES-ConA3, 16 in the EB-ConA2 and 64 in the EB-ConA3). Results from this study allowed the identification of individual N-glycosylation sites of proteins that express specific glycan types. The absence of some of these lectin bound glycopeptides in a cell stage suggested that they were derived from proteins that were either expressed exclusively on a defined developmental stage, or were expressed in both cell stages but carried the lectin bound oligosaccharides in only one of them. Therefore, these lectin bound glycopeptides can be considered as stage specific glycobiomarkers. PMID:19545112

  7. Separation of recombinant human protein C from transgenic animal milk using immobilized metal affinity chromatography.

    PubMed

    Dalton, J C; Bruley, D F; Kang, K A; Drohan, W N

    1997-01-01

    Protein C is an important serine protease due to its ability to proteolytically cleave activated Factors V and VIII. Excess coagulation and blood agglutination can lead to plugged capillaries, thereby reducing oxygen transport to interstitial tissues. To treat patients with hereditary and acquired protein C deficiency would require a greater amount of Protein C than that available from human plasma. However, the potential demand for this protein could be met by the production of human protein C from transgenic animal mammary glands. Thus, research into inexpensive, efficient methods to purify proteins from transgenic animal milk will be a critical area of study for the large scale production of protein C. Immobilized metal affinity chromatography (IMAC) is a novel method for the purification of protein C. A proposed method of purification is to take advantage of protein C's strong metal ion binding characteristics with IMAC to assist in the separation from transgenic animal milk. The separation procedure is benchmarked against current systems in use by the American Red Cross for purification of Protein C from transgenic porcine milk. Common problems in developing separation schemes for new therapeutics are the initial availability of the product (protein), and time-to-market concerns. Extensive experimental tests for scaleable purification schemes are often cost and time prohibitive. In order to optimize an IMAC protocol with minimal waste of time and resources, total quality management tools have been adopted. Initial experiments were designed to choose buffer conditions, eluents, immobilized valence metals, and flow rates using Taguchi experimental design, which is a total quality management (TQM) tool. One of the values of Taguchi methods lies in the use of Latin orthogonal sets. Through the use of the orthogonal sets, the total number of experiments may be reduced, shortening the focus time on optimal conditions.

  8. Affinity chromatography of alpha/sub 2/-adrenergic receptors (. cap alpha. /sub 2/AR) from pig cerebral cortex

    SciTech Connect

    Repaske, M.G.; Limbird, L.E.

    1986-03-01

    A high capacity, ..cap alpha../sub 2/AR-selective affinity resin (YOH. ag) has been prepared by coupling yohimbinic acid to diaminodipropylamine agarose with 1,3 dicyclohexylcarbodiimide. Unreacted amino groups on the agarose matrix are blocked subsequently by acetylation. One volume of YOH. ag adsorbs 75% of the ..cap alpha../sub 2/AR from 50 volumes of digitonin-solubilized preparation containing 0.2 pmol ..cap alpha../sub 2/AR/mg protein. Digitonin-solubilized preparations are derived from cholate extracts of porcine cerebral cortex containing approx. 0.075 pmol ..cap alpha../sub 2/AR/mg protein. Adsorption of ..cap alpha../sub 2/AR to YOH. ag is selective and thus is blocked by the ..cap alpha..-adrenergic antagonist phentolamine. Adsorbed ..cap alpha../sub 2/AR are eluted with 10 ..mu..M phentolamine (20% yield) after removal of non-related proteins with NaCl gradients. Following hydroxylapatite chromatography to concentrate ..cap alpha..''AR and to remove phentolamine, the ..cap alpha..AR is present at 200-400 pmol/mg protein, assayed using sub-saturating concentrations of (/sup 3/H)-yohimbine. (It is estimated that the specific activity of a homogeneous ..cap alpha../sub 2/AR preparation would be 12,000-16,000 pmol/mg protein.) The availability of large quantities of cortical ..cap alpha../sub 2/AR and a resin easily prepared from commercially-supplied reagents suggests that purification of quantities of ..cap alpha../sub 2/AR sufficient for subsequent biochemical studies is feasible.

  9. Affinity chromatography for the purification of therapeutic proteins from transgenic maize using immobilized histamine.

    PubMed

    Platis, Dimitris; Labrou, Nikolaos E

    2008-03-01

    Plant molecular pharming is a technology that uses plants as bioreactors to produce recombinant molecules of medical and veterinary importance. In the present study, we evaluated the ability of histamine (HIM), tryptamine (TRM), phenylamine (PHEM) and tyramine (TYRM) coupled to Sepharose CL-4B via a 1,4-butanediol diglycidyl ether spacer to bind and purify human monoclonal anti-HIV antibody 2F5 (mAb 2F5) from spiked maize seed and tobacco leaf extracts. Detailed studies were carried out to determine the factors that affect the chromatographic behaviour of mAb 2F5 and also maize seed and tobacco leaf proteins. All affinity adsorbents showed a reduced capacity to bind and a reduced ability to purify proteins from tobacco extract compared to maize extract. Under optimal conditions, HIM exhibited high selectivity for mAb 2F5 and allowed a high degree of purification (>95% purity) and recovery (>90%) in a single step with salt elution (0.4 M KCl) from spiked maize seed extract. Analysis of the purified antibody fraction by ELISA and Western blot showed that the antibody was fully active and free of degraded variants or modified forms. The efficacy of the system was assessed further using a second therapeutic antibody (human monoclonal anti-HIV antibody mAb 2G12) and a therapeutic enzyme (alpha-chymotrypsin). HIM may find application in the purification of a wide range of biopharmaceuticals from transgenic plants.

  10. Affinity chromatography for the purification of therapeutic proteins from transgenic maize using immobilized histamine.

    PubMed

    Platis, Dimitris; Labrou, Nikolaos E

    2008-03-01

    Plant molecular pharming is a technology that uses plants as bioreactors to produce recombinant molecules of medical and veterinary importance. In the present study, we evaluated the ability of histamine (HIM), tryptamine (TRM), phenylamine (PHEM) and tyramine (TYRM) coupled to Sepharose CL-4B via a 1,4-butanediol diglycidyl ether spacer to bind and purify human monoclonal anti-HIV antibody 2F5 (mAb 2F5) from spiked maize seed and tobacco leaf extracts. Detailed studies were carried out to determine the factors that affect the chromatographic behaviour of mAb 2F5 and also maize seed and tobacco leaf proteins. All affinity adsorbents showed a reduced capacity to bind and a reduced ability to purify proteins from tobacco extract compared to maize extract. Under optimal conditions, HIM exhibited high selectivity for mAb 2F5 and allowed a high degree of purification (>95% purity) and recovery (>90%) in a single step with salt elution (0.4 M KCl) from spiked maize seed extract. Analysis of the purified antibody fraction by ELISA and Western blot showed that the antibody was fully active and free of degraded variants or modified forms. The efficacy of the system was assessed further using a second therapeutic antibody (human monoclonal anti-HIV antibody mAb 2G12) and a therapeutic enzyme (alpha-chymotrypsin). HIM may find application in the purification of a wide range of biopharmaceuticals from transgenic plants. PMID:18307162

  11. Development of an automated mid-scale parallel protein purification system for antibody purification and affinity chromatography.

    PubMed

    Zhang, Chi; Long, Alexander M; Swalm, Brooke; Charest, Ken; Wang, Yan; Hu, Jiali; Schulz, Craig; Goetzinger, Wolfgang; Hall, Brian E

    2016-12-01

    Protein purification is often a bottleneck during protein generation for large molecule drug discovery. Therapeutic antibody campaigns typically require the purification of hundreds of monoclonal antibodies (mAbs) during the hybridoma process and lead optimization. With the increase in high-throughput cloning, faster DNA sequencing, and the use of parallel protein expression systems, a need for high-throughput purification approaches has evolved, particularly in the midsize range between 20 ml and 100 ml. To address this we modified a four channel Gilson solid phase extraction system (referred to as MG-SPE) with switching valves and sample holding loops to be able to perform standard affinity purification using commercially available columns and micro-titer format deep well blocks. By running 4 samples in parallel, the MG-SPE has the capacity to purify up to 24 samples of greater than 50 ml each using a single-step affinity purification protocol or a two-step protocol consisting of affinity chromatography followed by desalting/buffer exchange overnight (∼12 h run time). Our evaluation of affinity purification using mAbs and Fc-fusion proteins from mammalian cell supernatants demonstrates that the MG-SPE compared favorably with industry standard systems for both protein quality and yield. Overall the system is simple to operate and fills a void in purification processes where a simple, efficient, automated system is needed for affinity purification of midsize research samples. PMID:27498022

  12. Development of an automated mid-scale parallel protein purification system for antibody purification and affinity chromatography.

    PubMed

    Zhang, Chi; Long, Alexander M; Swalm, Brooke; Charest, Ken; Wang, Yan; Hu, Jiali; Schulz, Craig; Goetzinger, Wolfgang; Hall, Brian E

    2016-12-01

    Protein purification is often a bottleneck during protein generation for large molecule drug discovery. Therapeutic antibody campaigns typically require the purification of hundreds of monoclonal antibodies (mAbs) during the hybridoma process and lead optimization. With the increase in high-throughput cloning, faster DNA sequencing, and the use of parallel protein expression systems, a need for high-throughput purification approaches has evolved, particularly in the midsize range between 20 ml and 100 ml. To address this we modified a four channel Gilson solid phase extraction system (referred to as MG-SPE) with switching valves and sample holding loops to be able to perform standard affinity purification using commercially available columns and micro-titer format deep well blocks. By running 4 samples in parallel, the MG-SPE has the capacity to purify up to 24 samples of greater than 50 ml each using a single-step affinity purification protocol or a two-step protocol consisting of affinity chromatography followed by desalting/buffer exchange overnight (∼12 h run time). Our evaluation of affinity purification using mAbs and Fc-fusion proteins from mammalian cell supernatants demonstrates that the MG-SPE compared favorably with industry standard systems for both protein quality and yield. Overall the system is simple to operate and fills a void in purification processes where a simple, efficient, automated system is needed for affinity purification of midsize research samples.

  13. Enrichment and analysis of phosphopeptides under different experimental conditions using titanium dioxide affinity chromatography and mass spectrometry.

    PubMed

    Aryal, Uma K; Ross, Andrew R S

    2010-01-01

    Titanium dioxide metal oxide affinity chromatography (TiO(2)-MOAC) is widely regarded as being more selective than immobilized metal-ion affinity chromatography (IMAC) for phosphopeptide enrichment. However, the widespread application of TiO(2)-MOAC to biological samples is hampered by conflicting reports as to which experimental conditions are optimal. We have evaluated the performance of TiO(2)-MOAC under a wide range of loading and elution conditions. Loading and stringent washing of peptides with strongly acidic solutions ensured highly selective enrichment for phosphopeptides, with minimal carryover of non-phosphorylated peptides. Contrary to previous reports, the addition of glycolic acid to the loading solution was found to reduce specificity towards phosphopeptides. Base elution in ammonium hydroxide or ammonium phosphate provided optimal specificity and recovery of phosphorylated peptides. In contrast, elution with phosphoric acid gave incomplete recovery of phosphopeptides, whereas inclusion of 2,5-dihydroxybenzoic acid in the eluant introduced a bias against the recovery of multiply phosphorylated peptides. TiO(2)-MOAC was also found to be intolerant of many reagents commonly used as phosphatase inhibitors during protein purification. However, TiO(2)-MOAC showed higher specificity than immobilized gallium (Ga(3+)), immobilized iron (Fe(3+)), or zirconium dioxide (ZrO(2)) affinity chromatography for phosphopeptide enrichment. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) was more effective in detecting larger, multiply phosphorylated peptides than liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS), which was more efficient for smaller, singly phosphorylated peptides. PMID:20014058

  14. Purification of antibodies to O antigen of Salmonella Typhimurium from human serum by affinity chromatography.

    PubMed

    O'Shaughnessy, Colette M; Micoli, Francesca; Gavini, Massimiliano; Goodall, Margaret; Cobbold, Mark; Saul, Allan; Maclennan, Calman A

    2013-01-31

    Nontyphoidal Salmonellae (NTS) are a common cause of bacteraemia in children and HIV-infected adults in Sub-Saharan Africa. We have previously shown that antibodies play a key role in both bactericidal and cellular mechanisms of immunity to NTS, but found that high concentrations of antibody to Salmonella Typhimurium O antigen (OAg) in the serum of some HIV-infected African adults is associated with impaired killing of NTS. To further investigate the function of antibodies to the OAg of NTS, we developed a method to purify these antibodies from human serum by affinity chromatography. Purified Salmonella Typhimurium OAg was activated with adipic acid dihydrazide (ADH) via two different chemistries before linking to N-hydroxysuccinamide-Sepharose resin: one ADH molecule was introduced per OAg chain on its terminal 3-deoxy-D-manno-octulosonic acid sugar (OAg-ADH), or multiple ADH molecules were attached along the OAg chain after oxidation with sodium periodate (OAgoxADH). Both resulting columns worked well when tested with commercial polyclonal anti-O:4,5 antibodies from rabbit serum. Over 90% of the applied antibodies bound to the resin and 89% of these antibodies were then eluted as detected by ELISA. OAg-ADH was preferred as the method for OAg derivatisation as it does not modify the saccharide chain and can be applied to OAg from different bacteria. Both columns were able to bind OAg-specific antibodies in human serum, but antibody recovery was initially low. Different elution buffers were tested and different amounts of OAg-ADH were linked to the resin to improve the yield. Optimal recovery (51%) was obtained by loading 1mg of activated OAg per ml of resin and eluting with 0.1M glycine, 0.1M NaCl pH2.4. The column matrix could be regenerated following elution with no detectable loss in performance for over ten uses. This method offers the potential to purify antibodies to Salmonella OAg from polyclonal serum following vaccination or natural exposure to Salmonella

  15. Identification of Novel in vivo MAP Kinase Substrates in Arabidopsis thaliana Through Use of Tandem Metal Oxide Affinity Chromatography*

    PubMed Central

    Hoehenwarter, Wolfgang; Thomas, Martin; Nukarinen, Ella; Egelhofer, Volker; Röhrig, Horst; Weckwerth, Wolfram; Conrath, Uwe; Beckers, Gerold J. M.

    2013-01-01

    Mitogen-activated protein kinase (MPK) cascades are important for eukaryotic signal transduction. They convert extracellular stimuli (e.g. some hormones, growth factors, cytokines, microbe- or damage-associated molecular patterns) into intracellular responses while at the same time amplifying the transmitting signal. By doing so, they ensure proper performance, and eventually survival, of a given organism, for example in times of stress. MPK cascades function via reversible phosphorylation of cascade components MEKKs, MEKs, and MPKs. In plants the identity of most MPK substrates remained elusive until now. Here, we provide a robust and powerful approach to identify and quantify, with high selectivity, site-specific phosphorylation of MPK substrate candidates in the model plant Arabidopsis thaliana. Our approach represents a two-step chromatography combining phosphoprotein enrichment using Al(OH)3-based metal oxide affinity chromatography, tryptic digest of enriched phosphoproteins, and TiO2-based metal oxide affinity chromatography to enrich phosphopeptides from complex protein samples. When applied to transgenic conditional gain-of-function Arabidopsis plants supporting in planta activation of MPKs, the approach allows direct measurement and quantification ex vivo of site-specific phosphorylation of several reported and many yet unknown putative MPK substrates in just a single experiment. PMID:23172892

  16. Direct capture of His₆-tagged proteins using megaporous cryogels developed for metal-ion affinity chromatography.

    PubMed

    Singh, Naveen Kumar; DSouza, Roy N; Bibi, Noor Shad; Fernández-Lahore, Marcelo

    2015-01-01

    Immobilized metal-ion affinity chromatography (IMAC) has been developed for the rapid isolation and purification of recombinant proteins. In this chapter, megaporous cryogels were synthesized having metal-ion affinity functionality, and their adsorptive properties were investigated. These cryogels have large pore sizes ranging from 10 to 100 μm with corresponding porosities between 80 and 90%. The synthesized IMAC-cryogel had a total ligand density of 770 μmol/g. Twelve milligram of a His6-tagged protein (NAD(P)H-dependent 2-cyclohexen-1-one-reductase) can be purified from a crude cell extract per gram of IMAC-cryogels. The protein binding capacity is increased with higher degrees of grafting, although a slight decrease in column efficiency may result. This chapter provides methodologies for a rapid single-step purification of recombinant His6-tagged proteins from crude cell extracts using IMAC-cryogels. PMID:25749956

  17. Detection and Identification of Heme c-Modified Peptides by Histidine Affinity Chromatography, High-Performance Liquid Chromatography-Mass Spectrometry, and Database Searching

    SciTech Connect

    Merkley, Eric D.; Anderson, Brian J.; Park, Jea H.; Belchik, Sara M.; Shi, Liang; Monroe, Matthew E.; Smith, Richard D.; Lipton, Mary S.

    2012-12-07

    Multiheme c-type cytochromes (proteins with covalently attached heme c moieties) play important roles in extracellular metal respiration in dissimilatory metal-reducing bacteria. Liquid chromatography-tandem mass spectrometry-(LC-MS/MS) characterization of c-type cytochromes is hindered by the presence of multiple heme groups, since the heme c modified peptides are typically not observed, or if observed, not identified. Using a recently reported histidine affinity chromatography (HAC) procedure, we enriched heme c tryptic peptides from purified bovine heart cytochrome c, a bacterial decaheme cytochrome, and subjected these samples to LC-MS/MS analysis. Enriched bovine cytochrome c samples yielded three- to six-fold more confident peptide-spectrum matches to heme-c containing peptides than unenriched digests. In unenriched digests of the decaheme cytochrome MtoA from Sideroxydans lithotrophicus ES-1, heme c peptides for four of the ten expected sites were observed by LC-MS/MS; following HAC fractionation, peptides covering nine out of ten sites were obtained. Heme c peptide spiked into E. coli lysates at mass ratios as low as 10-4 was detected with good signal-to-noise after HAC and LC-MS/MS analysis. In addition to HAC, we have developed a proteomics database search strategy that takes into account the unique physicochemical properties of heme c peptides. The results suggest that accounting for the double thioether link between heme c and peptide, and the use of the labile heme fragment as a reporter ion, can improve database searching results. The combination of affinity chromatography and heme-specific informatics yielded increases in the number of peptide-spectrum matches of 20-100-fold for bovine cytochrome c.

  18. Detection and identification of heme c-modified peptides by histidine affinity chromatography, high-performance liquid chromatography-mass spectrometry, and database searching.

    PubMed

    Merkley, Eric D; Anderson, Brian J; Park, Jea; Belchik, Sara M; Shi, Liang; Monroe, Matthew E; Smith, Richard D; Lipton, Mary S

    2012-12-01

    Multiheme c-type cytochromes (proteins with covalently attached heme c moieties) play important roles in extracellular metal respiration in dissimilatory metal-reducing bacteria. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) characterization of c-type cytochromes is hindered by the presence of multiple heme groups, since the heme c modified peptides are typically not observed or, if observed, not identified. Using a recently reported histidine affinity chromatography (HAC) procedure, we enriched heme c tryptic peptides from purified bovine heart cytochrome c, two bacterial decaheme cytochromes, and subjected these samples to LC-MS/MS analysis. Enriched bovine cytochrome c samples yielded 3- to 6-fold more confident peptide-spectrum matches to heme c containing peptides than unenriched digests. In unenriched digests of the decaheme cytochrome MtoA from Sideroxydans lithotrophicus ES-1, heme c peptides for 4 of the 10 expected sites were observed by LC-MS/MS; following HAC fractionation, peptides covering 9 out of 10 sites were obtained. Heme c peptide spiked into E. coli lysates at mass ratios as low as 1×10(-4) was detected with good signal-to-noise after HAC and LC-MS/MS analysis. In addition to HAC, we have developed a proteomics database search strategy that takes into account the unique physicochemical properties of heme c peptides. The results suggest that accounting for the double thioether link between heme c and peptide, and the use of the labile heme fragment as a reporter ion, can improve database searching results. The combination of affinity chromatography and heme-specific informatics yielded increases in the number of peptide-spectrum matches of 20-100-fold for bovine cytochrome c. PMID:23082897

  19. Affinity chromatography of aminoacyl-transfer ribonucleic acid synthetases. Cognate transfer ribonucleic acid as a ligand.

    PubMed Central

    Clarke, C M; Knowles, J R

    1977-01-01

    The use of tRNA affinity columns for the purification of aminoacyl-tRNA synthetases was investigated. A purification method for valyl-tRNA synthetase from Bacillus stearothermophilus is described that uses two affinity columns, one containing the pure cognate tRNA, and the other containing all tRNA species except the cognate tRNA. A method for the rapid preparation of the two columns was developed, which does not require prior isolation of cognate tRNA but makes use of the ability of the target synthetase to select its cognate tRNA. The usefulness of tRNA columns is compared with that of affinity columns derived from the aminoalkyladenylate reported in the preceding paper [Clarke & Knowles (1977) Biochem J. 167, 405-417]. PMID:23108

  20. A Highly Selective Hsp90 Affinity Chromatography Resin with a Cleavable Linker

    PubMed Central

    Hughes, Philip F; Barrott, Jared J; Carlson, David A; Loiselle, David R; Speer, Brittany L; Bodoor, Khaldon; Rund, Lauretta A; Haystead, Timothy A J

    2012-01-01

    Over 200 proteins have been identified that interact with the protein chaperone Hsp90, a recognized therapeutic target thought to participate in non-oncogene addiction in a variety of human cancers. However, defining Hsp90 clients is challenging because interactions between Hsp90 and its physiologically relevant targets involve low affinity binding and are thought to be transient. Using a chemo-proteomic strategy, we have developed a novel orthogonally cleavable Hsp90 affinity resin that allows purification of the native protein and is quite selective for Hsp90 over its immediate family members, GRP94 and TRAP 1. We show that the resin can be used under low stringency conditions for the rapid, unambiguous capture of native Hsp90 in complex with a native client. We also show that the choice of linker used to tether the ligand to the insoluble support can have a dramatic effect on the selectivity of the affinity media. PMID:22520629

  1. Evaluation of equilibrium constants for the interaction of lactate dehydrogenase isoenzymes with reduced nicotinamide-adenine dinucleotide by affinity chromatography.

    PubMed Central

    Brinkworth, R I; Masters, C J; Winzor, D J

    1975-01-01

    Rabbit muscle lactate dehydrogenase was subjected to frontal affinity chromatography on Sepharose-oxamate in the presence of various concentrations of NADH and sodium phosphate buffer (0.05 M, pH 6.8) containing 0.5 M-NaCl. Quantitative interpretation of the results yields an intrinsic association constant of 9.0 x 10 (4)M-1 for the interaction of enzyme with NADH at 5 degrees C, a value that is confirmed by equilibrium-binding measurements. In a second series of experiments, zonal affinity chromatography of a mouse tissue extract under the same conditions was used to evaluate assoication constants of the order 2 x 10(5)M-1, 3 x 10(5)M-1, 4 x 10(5)M-1, 7 x 10(5)M-1 and 2 x 10(6)M-1 for the interaction of NADH with the M4, M3H, M2H2, MH3 and H4 isoenzymes respectively of lactate dehydrogenase. PMID:175784

  2. Production of capsular polysaccharide of Streptococcus pneumoniae type 14 and its purification by affinity chromatography.

    PubMed

    Suárez, N; Fraguas, L F; Texeira, E; Massaldi, H; Batista-Viera, F; Ferreira, F

    2001-02-01

    We describe a rapid and efficient method for producing the capsular polysaccharide of Streptococcus pneumoniae by fermentation on tryptic soy broth and purification of this compound by using immobilized soybean lectin as an affinity adsorbent. In principle, the same strategy can be used to produce purified capsular polysaccharides from other streptococcal serotypes by selecting the appropriate lectin adsorbents. PMID:11157270

  3. Production of capsular polysaccharide of Streptococcus pneumoniae type 14 and its purification by affinity chromatography.

    PubMed

    Suárez, N; Fraguas, L F; Texeira, E; Massaldi, H; Batista-Viera, F; Ferreira, F

    2001-02-01

    We describe a rapid and efficient method for producing the capsular polysaccharide of Streptococcus pneumoniae by fermentation on tryptic soy broth and purification of this compound by using immobilized soybean lectin as an affinity adsorbent. In principle, the same strategy can be used to produce purified capsular polysaccharides from other streptococcal serotypes by selecting the appropriate lectin adsorbents.

  4. Production of Capsular Polysaccharide of Streptococcus pneumoniae Type 14 and Its Purification by Affinity Chromatography

    PubMed Central

    Suárez, Norma; Fraguas, Laura Franco; Texeira, Esther; Massaldi, Hugo; Batista-Viera, Francisco; Ferreira, Fernando

    2001-01-01

    We describe a rapid and efficient method for producing the capsular polysaccharide of Streptococcus pneumoniae by fermentation on tryptic soy broth and purification of this compound by using immobilized soybean lectin as an affinity adsorbent. In principle, the same strategy can be used to produce purified capsular polysaccharides from other streptococcal serotypes by selecting the appropriate lectin adsorbents. PMID:11157270

  5. Rapid Microscale Isolation and Purification of Yeast Alcohol Dehydrogenase Using Cibacron Blue Affinity Chromatography

    NASA Astrophysics Data System (ADS)

    Morgan, Chad; Moir, Neil

    1996-11-01

    A rapid microscale procedure has been developed for the isolation and purification of yeast alcohol dehydrogenase. Glass beads are used for cytolysis, PEG precipitation for partial purification and a cibacron blue affinity column for the final step. A 27.5 fold purification can be achieved in 2 - 3 hours.

  6. Isolation of the Binding Protein of Periplocoside E from BBMVs in Midgut of the Oriental Amyworm Mythimna separata Walker (Lepidoptera: Noctuidae) through Affinity Chromatography.

    PubMed

    Feng, Mingxing; He, Zhenyu; Wang, Yuanyuan; Yan, Xiufang; Zhang, Jiwen; Hu, Zhaonong; Wu, Wenjun

    2016-01-01

    Periplocosides, which are insecticidal compounds isolated from the root bark of Periploca sepium Bunge, can affect the digestive system of insects. However, the mechanism though which periplocosides induces a series of symptoms remains unknown. In this study, affinity chromatography was conducted by coupling periplocoside E-semi-succinic acid ester with epoxy amino hexyl (EAH) sepharose 4B. Sodium dodecyl sulfonate-polyacrylamide gelelectrophoresis (SDS-PAGE) was performed to analyze the fraction eluted by periplocoside E. Eight binding proteins (luciferin 4-monooxygenase, aminopeptidase N, aminopeptidase N3, nicotinamide adenine dinucleotide health (NADH) dehydrogenase subunit 5, phosphatidylinositol 3-phosphate 3-phosphatase myotubularin, actin, uncharacterized family 31 glucosidase KIAA1161, and 2OG-Fe(2) oxygenase superfamily protein) were obtained and identified through liquid chromatography/quadrupole-time of flight-mass spectrometry (LC/Q-TOF-MS) analysis of the midgut epithelium cells of Mythimna separata larvae. Aminopeptidase N and N3 are potential putative targets of periplocosides. This study establishes the foundation for further research on the mechanism of action and target localization of periplocosides in agricultural pests. PMID:27153092

  7. Isolation of the Binding Protein of Periplocoside E from BBMVs in Midgut of the Oriental Amyworm Mythimna separata Walker (Lepidoptera: Noctuidae) through Affinity Chromatography

    PubMed Central

    Feng, Mingxing; He, Zhenyu; Wang, Yuanyuan; Yan, Xiufang; Zhang, Jiwen; Hu, Zhaonong; Wu, Wenjun

    2016-01-01

    Periplocosides, which are insecticidal compounds isolated from the root bark of Periploca sepium Bunge, can affect the digestive system of insects. However, the mechanism though which periplocosides induces a series of symptoms remains unknown. In this study, affinity chromatography was conducted by coupling periplocoside E-semi-succinic acid ester with epoxy amino hexyl (EAH) sepharose 4B. Sodium dodecyl sulfonate-polyacrylamide gelelectrophoresis (SDS-PAGE) was performed to analyze the fraction eluted by periplocoside E. Eight binding proteins (luciferin 4-monooxygenase, aminopeptidase N, aminopeptidase N3, nicotinamide adenine dinucleotide health (NADH) dehydrogenase subunit 5, phosphatidylinositol 3-phosphate 3-phosphatase myotubularin, actin, uncharacterized family 31 glucosidase KIAA1161, and 2OG-Fe(2) oxygenase superfamily protein) were obtained and identified through liquid chromatography/quadrupole-time of flight-mass spectrometry (LC/Q-TOF-MS) analysis of the midgut epithelium cells of Mythimna separata larvae. Aminopeptidase N and N3 are potential putative targets of periplocosides. This study establishes the foundation for further research on the mechanism of action and target localization of periplocosides in agricultural pests. PMID:27153092

  8. Fundamental and practical studies on high-performance liquid affinity chromatography of biopolymers with novel stationary phases

    SciTech Connect

    Bacolod, M.D.

    1992-01-01

    Rigid microparticulate stationary phases having surface-bound metal chelating functions were developed and evaluated in high performance metal chelate affinity chromatography of proteins. Silica- and polystyrene-divinylbenzene-based metal chelate sorbents were produced in wide pore and in non-porous type of column packings. A major effort has been placed on development of non-porous highly crosslinked polystyrene-divinylbenzene (PSDVB). These PSDVB microparticles were produced by a two-step swelling polymerization, and exhibited excellent mechanical strength over a wide range of flow-rates and composition used in high performance liquid chromatography (HPLC). Simple and reproducible hydrophilic coatings were developed for the surface modification of hydrophobic PSDVB supports. A tetradentate metal chelating ligand, ethylenediamine-N, N[prime]-diacetic acid (EDDA), was covalently bound to the surface of the various supports. Sorbents having iminodiacetic acid (IDA) metal chelating functions were also evaluated. The hydrophilic character and surface coverage of various stationary phases were assessed chromatographically. Studies concerning the effects of eluent pH as well as the nature and concentration of salts on retention and selectivity with different metal chelate stationary phases having various immobilized metal ions were carried out. Elution schemes were developed for rapid separation of proteins in metal chelate affinity chromatography. EDDA stationary phases in metal forms can be viewed as complementary to IDA stationary phases since they afforded different selectivity and retentivity toward proteins. Hydrophilic PSDVB could be functionalized with IDA or EDDA metal chelating ligands or lectins. The non-porous metal chelate stationary phases afforded rapid separation of proteins by the development of multiple gradient systems, which permitted higher column peak capacity, enabling the separation of a greater number of proteins in a single chromatographic run.

  9. Octapeptide-based affinity chromatography of human immunoglobulin G: comparisons of three different ligands.

    PubMed

    Zhao, Wei-Wei; Liu, Fu-Feng; Shi, Qing-Hong; Sun, Yan

    2014-09-12

    In an earlier work, we have developed a biomimetic design strategy based on the human IgG (hIgG)-Protein A interactions and identified an affinity ligand for hIgG, FYWHCLDE, which ranked top one in a pool of 14 potential candidates. Herein, two more octapeptides, FYCHWALE and FYCHTIDE, were identified, and the binding and purification of hIgG on the affinity columns packed with the three octapeptide-modified Sepharose gels were extensively studied and compared to find more effective octapeptide-based affinity ligands. It was found that all the three ligands bound hIgG and Fc fragment but barely bound Fab fragment, and the binding to hIgG and Fc was mainly by electrostatic interactions. The optimum binding pH values for the three ligands were different from each other, but kept in the range of 5.0-6.0. Ligand binding competition revealed that the binding sites on hIgG for the three octapeptides were similar to those for Protein A. Adsorption isotherms revealed that hIgG binding capacity was in the range of 64-104mg/mL drained gel in the order of FYWHCLDE>FYCHWALE>FYCHTIDE. Then, purifications of hIgG and human monoclonal antibody from human serum and cell culture supernatant, respectively, were achieved with the three affinity columns at high purities and recovery yields. Finally, the molecular basis for the binding affinity of the peptides for the Fc fragment of hIgG was elucidated by molecular dynamics simulations. PMID:25064536

  10. Purification of F plasmid-encoded native TraC from Escherichia coli by affinity chromatography on calmodulin Sepharose.

    PubMed

    Hellstern, Simon; Mutzel, Rupert

    2016-06-01

    We have enriched several native bacterial proteins from Escherichia coli by chromatography on the immobilized eukaryotic Ca(2+)-binding protein, calmodulin. These bacterial proteins bound in a Ca(2+)-dependent manner to calmodulin, and were released by the addition of the Ca(2+)-chelator, EGTA, similar to many eukaryotic calmodulin-binding proteins. One of the bacterial proteins, F factor-encoded TraC, was purified to apparent homogeneity by an additional chromatographic step, anion exchange chromatography on MonoQ. Experiments with four chemically distinct calmodulin antagonists (R24571, Compound 48/80, melittin, and W7) showed that all of these substances inhibited the binding of purified TraC to calmodulin at effective concentrations comparable to those required for inhibiting in vitro binding of eukaryotic calmodulin-binding proteins. Three further bacterial proteins were identified as calmodulin-binding proteins: SecA, GlpD, and GlpC. We suggest that also these native bacterial proteins might be isolated by the unusual purification procedure including affinity chromatography on calmodulin Sepharose. Whether the identified proteins bind to, and are regulated by, putative bacterial calmodulin-like proteins in Escherichia coli remains to be established. PMID:26892535

  11. Isolation of new pregnancy-associated glycoproteins from water buffalo (Bubalus bubalis) placenta by Vicia villosa affinity chromatography.

    PubMed

    Barbato, O; Sousa, N M; Klisch, K; Clerget, E; Debenedetti, A; Barile, V L; Malfatti, A; Beckers, J F

    2008-12-01

    The present study describes the isolation and characterization of new pregnancy-associated glycoprotein molecules (PAG) from midpregnancy and late-pregnancy placentas in the water buffalo (Bubalus bubalis). After extraction, the homogenates are subjected to acid and ammonium sulfate precipitations followed by DEAE chromatography. Subsequently, the water buffalo PAG (wbPAG) from these solutions are enriched by Vicia villosa agarose (VVA) affinity chromatography. As determined by western blotting with anti-PAG sera, the apparent molecular masses of the immunoreactive bands from the VVA peaks range from 59.5 to 75.8kDa and from 57.8 to 73.3kDa in the midpregnancy and late-pregnancy placentas, respectively. Amino-terminal microsequencing of the immunoreactive proteins has allowed the identification of three distinct wbPAG sequences, which have been deposited in the SwissProt database: RGSXLTIHPLRNIRDFFYVG (acc. no. P85048), RGSXLTILPLRNIID (acc. no. P85049), and RGSXLTHLPLRNI (acc. no. P85050). Their comparison to previously identified proteins has shown that two of them are new because they have not been described before. Our results confirm the suitability of VVA chromatography for the enrichment of the multiple PAG molecules expressed in buffalo placenta.

  12. Sialic acid-specific affinity chromatography for the separation of erythropoietin glycoforms using serotonin as a ligand.

    PubMed

    Meininger, M; Stepath, M; Hennig, R; Cajic, S; Rapp, E; Rotering, H; Wolff, M W; Reichl, U

    2016-02-15

    Recombinant human erythropoietin (rhEPO) is an important CHO cell-derived glycoprotein and the degree of sialylation of this hormone is crucial for its in vivo bioactivity. In order to improve the purification process serotonin as a potential affinity ligand was tested for preparative chromatographic separation of rhEPO glycoforms into fractions of different degrees of sialylation. Therefore, two chromatographic matrices were prepared by immobilizing serotonin on CNBr- and NHS-Sepharose™. First it was shown both matrices bind rhEPO only in its sialylated form. Results indicate that binding is pH independent between pH 3.5 to 8 suggesting it is not only based on electrostatic interactions. Second, after optimal binding conditions were identified, semi-purified rhEPO was loaded onto both matrices and eluted using a stepwise elution gradient of sodium chloride. For comparison same affinity purification experiments were performed using wheat germ agglutinin-coupled agarose, a lectin known for its affinity towards sialylated glycoproteins. To monitor changes in N-glycan fingerprint, eluate fractions were analyzed by multiplexed capillary gel electrophoresis coupled to laser-induced fluorescence (xCGE-LIF). For the serotonin matrices an increasing degree of sialylation was observed from the first to the third elution fraction while purity of rhEPO could be increased at the same time. The late elution fractions of serotonin-coupled CNBr- and NHS-Sepharose™ also showed an overall sialylation degree exceeding that of the starting material. In contrast, for rhEPO bound to wheat germ agglutinin-coupled agarose, no distinct change in the degree of sialylation could be observed after elution. Overall, these encouraging results highlight the potential of serotonin as a chromatographic ligand for the improvement of pharmaceutical purification processes of rhEPO.

  13. Sialic acid-specific affinity chromatography for the separation of erythropoietin glycoforms using serotonin as a ligand.

    PubMed

    Meininger, M; Stepath, M; Hennig, R; Cajic, S; Rapp, E; Rotering, H; Wolff, M W; Reichl, U

    2016-02-15

    Recombinant human erythropoietin (rhEPO) is an important CHO cell-derived glycoprotein and the degree of sialylation of this hormone is crucial for its in vivo bioactivity. In order to improve the purification process serotonin as a potential affinity ligand was tested for preparative chromatographic separation of rhEPO glycoforms into fractions of different degrees of sialylation. Therefore, two chromatographic matrices were prepared by immobilizing serotonin on CNBr- and NHS-Sepharose™. First it was shown both matrices bind rhEPO only in its sialylated form. Results indicate that binding is pH independent between pH 3.5 to 8 suggesting it is not only based on electrostatic interactions. Second, after optimal binding conditions were identified, semi-purified rhEPO was loaded onto both matrices and eluted using a stepwise elution gradient of sodium chloride. For comparison same affinity purification experiments were performed using wheat germ agglutinin-coupled agarose, a lectin known for its affinity towards sialylated glycoproteins. To monitor changes in N-glycan fingerprint, eluate fractions were analyzed by multiplexed capillary gel electrophoresis coupled to laser-induced fluorescence (xCGE-LIF). For the serotonin matrices an increasing degree of sialylation was observed from the first to the third elution fraction while purity of rhEPO could be increased at the same time. The late elution fractions of serotonin-coupled CNBr- and NHS-Sepharose™ also showed an overall sialylation degree exceeding that of the starting material. In contrast, for rhEPO bound to wheat germ agglutinin-coupled agarose, no distinct change in the degree of sialylation could be observed after elution. Overall, these encouraging results highlight the potential of serotonin as a chromatographic ligand for the improvement of pharmaceutical purification processes of rhEPO. PMID:26851523

  14. Identification of IgG alloantibodies in patients with high-titer IgM cold agglutinins by serum/plasma affinity chromatography.

    PubMed

    Stahl, D; Kreft, H; Hack, H; Schraven, B; Roelcke, D

    1997-01-01

    The detection of IgG alloantibodies in the presence of high-titer cold autoagglutinins (CAs) can be extremely difficult, especially under pressure of time when transfusion of red blood cells is urgently needed. Here we demonstrate that IgG alloantibodies in the presence of high-titer IgM CAs can be easily detected by quantitative IgG purification from serum or plasma by affinity chromatography. In comparison with the routinely used methods for IgG alloantibody identification, affinity chromatography shows better or identical results and is the method leading to results most rapidly.

  15. Arginine as an eluent overcomes the hindrance of monoclonal antibody quantification by dextran sulfate in protein A affinity chromatography.

    PubMed

    Kim, Bong Gyun; Park, Hong Woo

    2015-01-01

    Analytical chromatography using protein A affinity columns was employed for the fast and simple quantitative analysis of monoclonal antibodies (mAb) from suspension cultures of recombinant Chinese hamster ovary (rCHO) cells. Reliable results could not be obtained from analysis of rCHO cell culture supernatants containing dextran sulfate using elution buffers such as phosphate, glycine, or MgCl2 . These problems increased as the number of analysis and the concentration of dextran sulfate in samples increased. Arginine was identified as an alternative eluent to overcome the hindrance by dextran sulfate. When the samples contain dextran sulfate up to 100 mg/L, the elution buffer containing 0.6-1.0 M arginine at pH 3.0-3.8 is useful for the effective analysis. Reproducible results in the mAb quantification could be obtained by this developed arginine elution buffer from rCHO cell culture supernatants containing dextran sulfate.

  16. Purification of Hemoglobin from Red Blood Cells using Tangential Flow Filtration and Immobilized Metal Ion Affinity Chromatography

    PubMed Central

    Elmer, Jacob; Harris, David; Palmer, Andre F.

    2011-01-01

    Two methods for purifying hemoglobin (Hb) from red blood cells (RBCs) are examined and compared. In the first method, red blood cell lysate is clarified with a 50 nm tangential flow filter and hemoglobin is purified using immobilized metal ion affinity chromatography (IMAC). In the second method, RBC lysate is processed with 50 nm, 500 kDa, and 50-100 kDa tangential flow filters, then hemoglobin is purified with IMAC. Our results show that the hemoglobins from both processes produce identical Hb products that are ultrapure and retain their biophysical properties (except for chicken hemoglobin, which shows erratic oxygen binding behavior after purification). Therefore, the most efficient method for Hb purification appears to be clarification with a 50 nm tangential flow filter, followed by purification with IMAC, and sample concentration/polishing on a 10-50 kDa tangential flow filter. PMID:21195679

  17. Evaluation of immobilized metal affinity chromatography kits for the purification of histidine-tagged recombinant CagA protein.

    PubMed

    Karakus, Cebrail; Uslu, Merve; Yazici, Duygu; Salih, Barik A

    2016-05-15

    Immobilized metal affinity chromatography (IMAC) technique is used for fast and reliable purification of histidine(His)-tagged recombinant proteins. The technique provides purification under native and denaturing conditions. The aim of this study is to evaluate three commercially available IMAC kits (Thermo Scientific, GE Healthcare and Qiagen) for the purification of a 6xHis-tagged recombinant CagA (cytotoxin-associated gene A) protein from IPTG-induced Escherichia coli BL21(DE3) culture. The kits were tested according to the manufacturer instructions and the protein was purified with only GE Healthcare and Qiagen kits under denaturing conditions. 1% (w/v) SDS was used as denaturing agent in PBS instead of extraction reagent of Thermo Scientific kit to lyse bacterial cells from 100ml culture. The 6xHis-tagged recombinant protein was purified by the three kits equally. PMID:26657801

  18. Imidazole-free purification of His3-tagged recombinant proteins using ssDNA aptamer-based affinity chromatography.

    PubMed

    Bartnicki, Filip; Kowalska, Ewa; Pels, Katarzyna; Strzalka, Wojciech

    2015-10-30

    Immobilized metal ion affinity chromatography (IMAC) is widely used for the purification of many different His6-tagged recombinant proteins. On the one hand, it is a powerful technique but on the other hand it has its disadvantages. In this report, we present the development of a unique ssDNA aptamer for the purification of His3-tagged recombinant proteins. Our study shows that stability of the His3-tag/H3T aptamer complex can be controlled by the sodium ion concentration. Based on this feature, we demonstrate that H3T aptamer resin was successfully employed for the purification of three out of four tested His3-tagged recombinant proteins from an E. coli total protein extract using imidazole-free buffers. Finally, we show that the purity of His3-tagged proteins is superior when purified with the help of the H3T aptamer in comparison with Ni-NTA resin. PMID:26427325

  19. Arginine as an eluent overcomes the hindrance of monoclonal antibody quantification by dextran sulfate in protein A affinity chromatography.

    PubMed

    Kim, Bong Gyun; Park, Hong Woo

    2015-01-01

    Analytical chromatography using protein A affinity columns was employed for the fast and simple quantitative analysis of monoclonal antibodies (mAb) from suspension cultures of recombinant Chinese hamster ovary (rCHO) cells. Reliable results could not be obtained from analysis of rCHO cell culture supernatants containing dextran sulfate using elution buffers such as phosphate, glycine, or MgCl2 . These problems increased as the number of analysis and the concentration of dextran sulfate in samples increased. Arginine was identified as an alternative eluent to overcome the hindrance by dextran sulfate. When the samples contain dextran sulfate up to 100 mg/L, the elution buffer containing 0.6-1.0 M arginine at pH 3.0-3.8 is useful for the effective analysis. Reproducible results in the mAb quantification could be obtained by this developed arginine elution buffer from rCHO cell culture supernatants containing dextran sulfate. PMID:26363185

  20. Multi-Parameter Cell Affinity Chromatography: Separation and Analysis in a Single Microfluidic Channel

    PubMed Central

    Li, Peng; Gao, Yan; Pappas, Dimitri

    2012-01-01

    The ability to sort and capture more than one cell type from a complex sample will enable a wide variety of studies of cell proliferation, death, and the analysis of disease states. In this work, we integrated a pneumatic actuated control layer to an affinity separation layer to create different antibody coating regions on the same fluidic channel. The comparison of different antibody capture capabilities to the same cell line was demonstrated by flowing Ramos cells through anti-CD19 and anti-CD71 coated regions in the same channel, respectively. It was determined that cell capture density on anti-CD19 region was 2.44±0.13 times higher than on anti-CD71 coated region. This approach can be used to test different affinity molecules for selectivity and capture efficiency using a single cell line in one separation. Selective capture of Ramos and HuT 78 cells from a mixture was also demonstrated using two antibody regions in the same channel. Greater than 90% purity was obtained on both capture areas in both continuous flow and stop flow separation modes. A four-region antibody coated device was then fabricated to study the simultaneous, serial capture of three different cell lines. In this case the device showed effective capture of cells in a single separation channel, opening up the possibility of multiple cell sorting. Multi-parameter sequential blood sample analysis was also demonstrated with high capture specificity (>97% for both CD19+ and CD4+ leukocytes). The chip can also be used to selectively treat cells after affinity separation. PMID:22958145

  1. Affinity-based screening of combinatorial libraries using automated, serial-column chromatography

    SciTech Connect

    Evans, D.M.; Williams, K.P.; McGuinness, B.

    1996-04-01

    The authors have developed an automated serial chromatographic technique for screening a library of compounds based upon their relative affinity for a target molecule. A {open_quotes}target{close_quotes} column containing the immobilized target molecule is set in tandem with a reversed-phase column. A combinatorial peptide library is injected onto the target column. The target-bound peptides are eluted from the first column and transferred automatically to the reversed-phase column. The target-specific peptide peaks from the reversed-phase column are identified and sequenced. Using a monoclonal antibody (3E-7) against {beta}-endorphin as a target, we selected a single peptide with sequence YGGFL from approximately 5800 peptides present in a combinatorial library. We demonstrated the applicability of the technology towards selection of peptides with predetermined affinity for bacterial lipopolysaccharide (LPS, endotoxin). We expect that this technology will have broad applications for high throughput screening of chemical libraries or natural product extracts. 21 refs., 4 figs.

  2. Purification of xanthine oxidase from bovine milk by affinity chromatography with a novel gel.

    PubMed

    Beyaztaş, Serap; Arslan, Oktay

    2015-06-01

    A new affinity gel was synthesized for the purification of xanthine oxidase (XO, EC 1.2.3.22) from bovine milk. The gel was prepared on a Sepharose 4B matrix on which a spacer arm based on l-tyrosine was covalently attached via CNBr activation, followed by reaction with the XO inhibitor p-aminobenzamidine. The elution conditions of affinity gel were determined at different pH values and ionic strengths. Maximum elution of XO was achieved at pH 9.0 and ionic strength around 0.4. The overall purification for XO was 1645-fold with 20.49% yield. SDS-PAGE of the enzyme indicates a single band with an apparent MW of 150 kDa. The gel provides a simple, rapid and effective useful for the purification of XO. Heat stability was determined on purified XO activity. Xanthine oxidase was preserved up to 70% with activity exposure of 60 °C and incubated for 60 min. These results indicated that the enzyme was heat stable. PMID:25089709

  3. ANALYSIS OF DRUG-PROTEIN BINDING BY ULTRAFAST AFFINITY CHROMATOGRAPHY USING IMMOBILIZED HUMAN SERUM ALBUMIN

    PubMed Central

    Mallik, Rangan; Yoo, Michelle J.; Briscoe, Chad J.; Hage, David S.

    2010-01-01

    Human serum albumin (HSA) was explored for use as a stationary phase and ligand in affinity microcolumns for the ultrafast extraction of free drug fractions and the use of this information for the analysis of drug-protein binding. Warfarin, imipramine, and ibuprofen were used as model analytes in this study. It was found that greater than 95% extraction of all these drugs could be achieved in as little as 250 ms on HSA microcolumns. The retained drug fraction was then eluted from the same column under isocratic conditions, giving elution in less than 40 s when working at 4.5 mL/min. The chromatographic behavior of this system gave a good fit with that predicted by computer simulations based on a reversible, saturable model for the binding of an injected drug with immobilized HSA. The free fractions measured by this method were found to be comparable to those determined by ultrafiltration, and equilibrium constants estimated by this approach gave good agreement with literature values. Advantages of this method include its speed and the relatively low cost of microcolumns that contain HSA. The ability of HSA to bind many types of drugs also creates the possibility of using the same affinity microcolumn to study and measure the free fractions for a variety of pharmaceutical agents. These properties make this technique appealing for use in drug binding studies and in the high-throughput screening of new drug candidates. PMID:20227701

  4. The Plasma Membrane Ca(2+) ATPase: Purification by Calmodulin Affinity Chromatography, and Reconstitution of the Purified Protein.

    PubMed

    Niggli, Verena; Carafoli, Ernesto

    2016-01-01

    Plasma membrane Ca(2+) ATPases (PMCA pumps) are key regulators of cytosolic Ca(2+) in eukaryotes. They extrude Ca(2+) from the cytosol, using the energy of ATP hydrolysis and operate as Ca(2+)-H(+) exchangers. They are activated by the Ca(2+)-binding protein calmodulin, by acidic phospholipids and by other mechanisms, among them kinase-mediated phosphorylation. Isolation of the PMCA in pure and active form is essential for the analysis of its structure and function. In this chapter, the purification of the pump, as first achieved from erythrocyte plasma membranes by calmodulin-affinity chromatography, is described in detail. The reversible, high-affinity, Ca(2+)-dependent interaction of the pump with calmodulin is the basis of the procedure. Either phospholipids or glycerol have to be present in the isolation buffers to keep the pump active during the isolation procedure. After the isolation of the PMCA pump from human erythrocytes the pump was purified from other cell types, e.g., heart sarcolemma, plant microsomal fractions, and cells that express it ectopically. The reconstitution of the purified pump into phospholipid vesicles using the cholate dialysis method will also be described. It allows studies of transport mechanism and of regulation of pump activity. The purified pump can be stored in the reconstituted form for several days at 4 °C with little loss of activity, but it rapidly loses activity when stored in the detergent-solubilized form. PMID:26695022

  5. Immobilized palladium(II) ion affinity chromatography for recovery of recombinant proteins with peptide tags containing histidine and cysteine.

    PubMed

    Kikot, Pamela; Polat, Aise; Achilli, Estefania; Fernandez Lahore, Marcelo; Grasselli, Mariano

    2014-11-01

    Fusion of peptide-based tags to recombinant proteins is currently one of the most used tools for protein production. Also, immobilized metal ion affinity chromatography (IMAC) has a huge application in protein purification, especially in research labs. The combination of expression systems of recombinant tagged proteins with this robust chromatographic system has become an efficient and rapid tool to produce milligram-range amounts of proteins. IMAC-Ni(II) columns have become the natural partners of 6xHis-tagged proteins. The Ni(II) ion is considered as the best compromise of selectivity and affinity for purification of a recombinant His-tagged protein. The palladium(II) ion is also able to bind to side chains of amino acids and form ternary complexes with iminodiacetic acid and free amino acids and other sulfur-containing molecules. In this work, we evaluated two different cysteine- and histidine-containing six amino acid tags linked to the N-terminal group of green fluorescent protein (GFP) and studied the adsorption and elution conditions using novel eluents. Both cysteine-containing tagged GFPs were able to bind to IMAC-Pd(II) matrices and eluted successfully using a low concentration of thiourea solution. The IMAC-Ni(II) system reaches less than 20% recovery of the cysteine-containing tagged GFP from a crude homogenate of recombinant Escherichia coli, meanwhile the IMAC-Pd(II) yields a recovery of 45% with a purification factor of 13.

  6. Immobilized palladium(II) ion affinity chromatography for recovery of recombinant proteins with peptide tags containing histidine and cysteine.

    PubMed

    Kikot, Pamela; Polat, Aise; Achilli, Estefania; Fernandez Lahore, Marcelo; Grasselli, Mariano

    2014-11-01

    Fusion of peptide-based tags to recombinant proteins is currently one of the most used tools for protein production. Also, immobilized metal ion affinity chromatography (IMAC) has a huge application in protein purification, especially in research labs. The combination of expression systems of recombinant tagged proteins with this robust chromatographic system has become an efficient and rapid tool to produce milligram-range amounts of proteins. IMAC-Ni(II) columns have become the natural partners of 6xHis-tagged proteins. The Ni(II) ion is considered as the best compromise of selectivity and affinity for purification of a recombinant His-tagged protein. The palladium(II) ion is also able to bind to side chains of amino acids and form ternary complexes with iminodiacetic acid and free amino acids and other sulfur-containing molecules. In this work, we evaluated two different cysteine- and histidine-containing six amino acid tags linked to the N-terminal group of green fluorescent protein (GFP) and studied the adsorption and elution conditions using novel eluents. Both cysteine-containing tagged GFPs were able to bind to IMAC-Pd(II) matrices and eluted successfully using a low concentration of thiourea solution. The IMAC-Ni(II) system reaches less than 20% recovery of the cysteine-containing tagged GFP from a crude homogenate of recombinant Escherichia coli, meanwhile the IMAC-Pd(II) yields a recovery of 45% with a purification factor of 13. PMID:25277090

  7. NON-COMPETITIVE PEAK DECAY ANALYSIS OF DRUG-PROTEIN DISSOCIATION BY HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY

    PubMed Central

    Chen, Jianzhong; Schiel, John E.; Hage, David S.

    2009-01-01

    The peak decay method is an affinity chromatographic technique that has been used to examine the dissociation of solutes from immobilized ligands in the presence of excess displacing agent. However, it can be difficult to find a displacing agent that does not interfere with detection of the eluting analyte. In this study, a non-competitive peak decay method was developed in which no displacing agent was required for analyte elution. This method was evaluated for the study of drug-protein interactions by using it along with high-performance affinity chromatography to measure the dissociation rate constants for R- and S-warfarin from columns containing immobilized human serum albumin (HSA). Several factors were considered in the optimization of this method, including the amount of applied analyte, the column size, and the flow rate. The dissociation rate constants for R- and S-warfarin from HSA were measured at several temperatures by this approach, giving values of 0.56 (± 0.01) and 0.66 (± 0.01) s−1 at pH 7.4 and 37°C. These results were in good agreement with previous values obtained by other methods. This approach is not limited to warfarin and HSA but could be employed in studying additional drug-protein interactions or other systems with weak-to-moderate binding. PMID:19472288

  8. High performance aptamer affinity chromatography for single-step selective extraction and screening of basic protein lysozyme.

    PubMed

    Han, Bin; Zhao, Chao; Yin, Junfa; Wang, Hailin

    2012-08-15

    A DNA aptamer based high-performance affinity chromatography is developed for selective extraction and screening of a basic protein lysozyme. First, a poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolithic column was synthesized in situ by thermally initiated radical polymerization, and then an anti-lysozyme DNA aptamer was covalently immobilized on the surface of the monolith through a 16-atom spacer arm. The target protein lysozyme but non-target proteins can be trapped by the immobilized anti-lysozyme DNA aptamer. In contrast, lysozyme cannot be trapped by the immobilized oligodeoxynucleotide that does not contain the sequence of the anti-lysozyme DNA aptamer. The study clearly demonstrates the trapping of lysozyme by the immobilized anti-lysozyme DNA aptamer is mainly due to specific recognition rather than simple electrostatic interaction of positively charged protein and the negatively charged DNA. The inter-day precision was determined as 0.8% for migration time and 4.2% for peak area, respectively. By the use of aptamer affinity monolith, a screening strategy is developed to selectively extract lysozyme from chicken egg white, showing the advantages of high efficiency, low cost and ease-of-operation.

  9. Analysis of glipizide binding to normal and glycated human serum albumin by high-performance affinity chromatography.

    PubMed

    Matsuda, Ryan; Li, Zhao; Zheng, Xiwei; Hage, David S

    2015-07-01

    In diabetes, the elevated levels of glucose in the bloodstream can result in the nonenzymatic glycation of proteins such as human serum albumin (HSA). This type of modification has been shown to affect the interactions of some drugs with HSA, including several sulfonylurea drugs that are used to treat type II diabetes. This study used high-performance affinity chromatography (HPAC) to examine the interactions of glipizide (i.e., a second-generation sulfonylurea drug) with normal HSA or HSA that contained various levels of in vitro glycation. Frontal analysis indicated that glipizide was interacting with both normal and glycated HSA through two general groups of sites: a set of relatively strong interactions and a set of weaker interactions with average association equilibrium constants at pH 7.4 and 37 °C in the range of 2.4-6.0 × 10(5) and 1.7-3.7 × 10(4) M(-1), respectively. Zonal elution competition studies revealed that glipizide was interacting at both Sudlow sites I and II, which were estimated to have affinities of 3.2-3.9 × 10(5) and 1.1-1.4 × 10(4) M(-1). Allosteric effects were also noted to occur for this drug between the tamoxifen site and the binding of R-warfarin at Sudlow site I. Up to an 18% decrease in the affinity for glipizide was observed at Sudlow site I ongoing from normal HSA to glycated HSA, while up to a 27% increase was noted at Sudlow site II. This information should be useful in indicating how HPAC can be used to investigate other drugs that have complex interactions with proteins. These results should also be valuable in providing a better understanding of how glycation may affect drug-protein interactions and the serum transport of drugs such as glipizide during diabetes. PMID:25912461

  10. Elucidation of binding specificity of Jacalin toward O-glycosylated peptides: quantitative analysis by frontal affinity chromatography.

    PubMed

    Tachibana, Kouichi; Nakamura, Sachiko; Wang, Han; Iwasaki, Hiroko; Tachibana, Kahori; Maebara, Kanako; Cheng, Lamei; Hirabayashi, J; Narimatsu, H

    2006-01-01

    Jacalin, a lectin from the jackfruit Artocarpus integrifolia, has been known as a valuable tool for specific capturing of O-glycoproteins such as mucins and IgA1. Though its sugar-binding preference for T/Tn-antigens is well established, its detailed specificity has not been elucidated. In this study, we prepared a series of mucin-type glycopeptides using human glycosyltransferases, that is, ST6GalNAc1, Core1Gal-T1 and -T2, beta3Gn-T6, and Core2GnT1, and investigated their binding to immobilized Jacalin by frontal affinity chromatography (FAC). As a result, consistent with the previous observation, Jacalin showed high affinity for T-antigen (Core1) and Tn-antigen (alpha N-acetylgalactosamine)-attached peptides. Furthermore, we here show as novel findings that (1) Jacalin also showed significant affinity for Core3 and sialyl-T (ST)-attached peptides, but (2) Jacalin could not bind to Core2, Core6, and sialyl-Tn (STn)-attached peptides. The results were also confirmed by FAC using p-nitrophenyl (pNP)-derivatized saccharides. In conclusion, Jacalin binds to a GalNAcalpha1-peptide, in which C6-OH of alphaGalNAc is free (i.e., Core1, Tn, Core3, and ST), whereas it cannot recognize a GalNAcalpha1-peptide with a substitution at the C6 position (i.e., Core2, Core6, and STn). These findings provide useful information when applying jacalin for functional analysis of mucin-type glycoproteins and glycopeptides.

  11. Unravelling plant molecular machineries through affinity purification coupled to mass spectrometry.

    PubMed

    Dedecker, Maarten; Van Leene, Jelle; De Jaeger, Geert

    2015-04-01

    Rather than functioning independently, proteins tend to work in concert with each other and with other macromolecules to form macromolecular complexes. Affinity purification coupled to mass spectrometry (AP-MS) can lead to a better understanding of the cellular functions of these complexes. With the development of easy purification protocols and ultra-sensitive MS, AP-MS is currently widely used for screening co-complex membership in plants. Studying complexes in their developmental context through the isolation of specific organs and tissues has now become feasible. Besides, the tagged protein can be employed for probing other interactions like protein-DNA and protein-RNA interactions. With the tools at hand, protein-centred interaction studies will greatly improve our knowledge of how plant cells wire their functional components in relation to their function. PMID:25603557

  12. Technical advance: identification of plant actin-binding proteins by F-actin affinity chromatography

    NASA Technical Reports Server (NTRS)

    Hu, S.; Brady, S. R.; Kovar, D. R.; Staiger, C. J.; Clark, G. B.; Roux, S. J.; Muday, G. K.

    2000-01-01

    Proteins that interact with the actin cytoskeleton often modulate the dynamics or organization of the cytoskeleton or use the cytoskeleton to control their localization. In plants, very few actin-binding proteins have been identified and most are thought to modulate cytoskeleton function. To identify actin-binding proteins that are unique to plants, the development of new biochemical procedures will be critical. Affinity columns using actin monomers (globular actin, G-actin) or actin filaments (filamentous actin, F-actin) have been used to identify actin-binding proteins from a wide variety of organisms. Monomeric actin from zucchini (Cucurbita pepo L.) hypocotyl tissue was purified to electrophoretic homogeneity and shown to be native and competent for polymerization to actin filaments. G-actin, F-actin and bovine serum albumin affinity columns were prepared and used to separate samples enriched in either soluble or membrane-associated actin-binding proteins. Extracts of soluble actin-binding proteins yield distinct patterns when eluted from the G-actin and F-actin columns, respectively, leading to the identification of a putative F-actin-binding protein of approximately 40 kDa. When plasma membrane-associated proteins were applied to these columns, two abundant polypeptides eluted selectively from the F-actin column and cross-reacted with antiserum against pea annexins. Additionally, a protein that binds auxin transport inhibitors, the naphthylphthalamic acid binding protein, which has been previously suggested to associate with the actin cytoskeleton, was eluted in a single peak from the F-actin column. These experiments provide a new approach that may help to identify novel actin-binding proteins from plants.

  13. Polymeric Cryogel-Based Boronate Affinity Chromatography for Separation of Ribonucleic Acid from Bacterial Extracts.

    PubMed

    Shakya, Akhilesh Kumar; Srivastava, Akshay; Kumar, Ashok

    2015-01-01

    Three-dimensional monolithic columns are preferred stationary phase in column chromatography. Conventional columns based on silica or particles are efficient in bioseparation though associated with limitations of nonspecific interaction and uneven porosity that causes high mass transfer resistance for the movement of big molecules. Cryogels as a monolith column have shown promising application in bioseparation. Cryogels column can be synthesized in the form of a monolith at sub-zero temperature through gelation of pre-synthesized polymers or polymerization of monomers. Cryogels are macroporous and mechanically stable materials. They have open interconnected micron-sized pores with a wide range of porosity (10-200 μm). Current protocol demonstrated the ability of poly(hydroxymethyl methacrylate)-co-vinylphenyl boronic acid p(HEMA-co-VPBA) cryogel matrix for selective separation of RNA from the bacterial crude extract. PMID:26623972

  14. [PHEMA/PEI]-Cu(II) based immobilized metal affinity chromatography cryogels: Application on the separation of IgG from human plasma.

    PubMed

    Bakhshpour, Monireh; Derazshamshir, Ali; Bereli, Nilay; Elkak, Assem; Denizli, Adil

    2016-04-01

    The immobilized metal-affinity chromatography (IMAC) has gained significant interest as a widespread separation and purification tool for therapeutic proteins, nucleic acids and other biological molecules. The enormous potential of IMAC for proteins with natural surface exposed-histidine residues and for recombinant proteins with histidine clusters. Cryogels as monolithic materials have recently been proposed as promising chromatographic adsorbents for the separation of biomolecules in downstream processing. In the present study, IMAC cryogels have been synthesized and utilized for the adsorption and separation of immunoglobulin G (IgG) from IgG solution and whole human plasma. For this purpose, Cu(II)-ions were coupled to poly(hydroxyethyl methacrylate) PHEMA using poly(ethylene imine) (PEI) as the chelating ligand. In this study the cryogels formation optimized by the varied proportion of PEI from 1% to 15% along with different amounts of Cu (II) as chelating metal. The prepared cryogels were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The [PHEMA/PEI]-Cu(II) cryogels were assayed for their capability to bind the human IgG from aqueous solutions. The IMAC cryogels were found to have high affinity toward human IgG. The adsorption of human IgG was investigated onto the PHEMA/PEI cryogels with (10% PEI) and the concentration of Cu (II) varied as 10, 50, 100 and 150 mg/L. The separation of human IgG was achieved in one purification step at pH7.4. The maximum adsorption capacity was observed at the [PHEMA/PEI]-Cu(II) (10% PEI) with 72.28 mg/g of human IgG. The purification efficiency and human IgG purity were investigated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). PMID:26838913

  15. Rapid purification of the gastric H+/K(+)-ATPase complex by tomato-lectin affinity chromatography.

    PubMed Central

    Callaghan, J M; Toh, B H; Simpson, R J; Baldwin, G S; Gleeson, P A

    1992-01-01

    We have previously shown that tomato lectin binds specifically to the 60-90 kDa membrane glycoprotein of parietal cell tubulovesicles, the beta-subunit of the gastric H+/K(+)-ATPase (proton pump) [Callaghan, Toh, Pettitt, Humphris & Gleeson (1990) J. Cell Sci. 95, 563-576; Toh, Gleeson, Simpson, Mortiz, Callaghan, Goldkorn, Jones, Martinelli, Mu, Humphris, Pettitt, Mori, Masuda, Sobieszczuk, Weinstock, Mantamadiotis & Baldwin (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 6418-6422]. Here we have exploited this interaction for the development of a rapid single-step chromatography procedure for the purification of an active pig gastric proton pump complex. Initially, H+/K(+)-ATPase-enriched membranes, prepared from pig gastric microsomes by density-gradient centrifugation, were extracted in 1% Triton X-100 and passed through a 1 ml tomato lectin-Sepharose 4B column. The bound material, eluted with 20 mM-chitotriose, showed a major band with an apparent molecular mass of 95 kDa, and a faint broad band of 60-90 kDa, by SDS/PAGE. N-Glycanase treatment of the bound material resulted in the appearance of a 35 kDa band, the size of the protein core of the 60-90 kDa glycoprotein beta-subunit. The two components were identified as the 95 kDa alpha-subunit and the 60-90 kDa beta-subunit of the gastric H+/K(+)-ATPase, by immunoreactivity with monospecific antibodies, and by tryptic peptide sequences of the tomato-lectin-bound material. The beta-subunit was present in approximately equimolar amounts to the catalytic alpha-subunit. Whereas the gastric H+/K(+)-ATPase was not active after solubilization in 1% Triton X-100, solubilization of density-gradient-purified membranes in the non-ionic detergent, C12E8, followed by chromatography of the extract on tomato lectin-Sepharose 4B, resulted in the purification of the gastric H+/K(+)-ATPase complex which exhibited K(+)-dependent phosphatase activity. This is the first report of a rapid purification of a partially active solubilized

  16. DETERMINATION OF CHLOROETHENES IN ENVIRONMENTAL BIOLOGICAL SAMPLES USING GAS CHROMATOGRAPHY COUPLED WITH SOLID PHASE MICRO EXTRACTION

    EPA Science Inventory

    An analytical method has been developed to determine the chloroethene series, tetrachloroethene (PCE), trichloroethene (TCE),cisdichloroethene (cis-DCE) andtransdichloroethene (trans-DCE) in environmental biotreatment studies using gas chromatography coupled with a solid phase mi...

  17. Isolation of human beta-interferon receptor by wheat germ lectin affinity and immunosorbent column chromatographies

    SciTech Connect

    Zhang, Z.Q.; Fournier, A.; Tan, Y.H.

    1986-06-15

    Radioiodinated human beta-interferon-Ser 17 (Betaseron) was reversibly cross-linked to Daudi cells by dithiobis(succinimidylpropionate). The radioactive ligand was cross-linked to three macromolecules forming labeled complexes of apparent Mr values of 130,000, 220,000, and 320,000. Betaseron, human alpha-interferon, human interleukin 2 but not recombinant human gamma-interferon competed with the labeled ligand for binding to these putative receptor(s). Human leukocyte-produced gamma-interferon competed weakly with /sup 125/I-Betaseron for binding to Daudi cells. The Betaseron-receptor complex(es) was purified by passage through a wheat germ lectin column followed by chromatography on an anti-interferon immunosorbent column and semipreparative gel electrophoresis. The cross-linked ligand-receptor complex was shown to be highly purified by sodium dodecyl sulfate and acetic acid:urea:Triton X-100 polyacrylamide gel electrophoresis. It can be dissociated into the labeled Betaseron (Mr = 17,000) ligand and a receptor moiety which has an apparent molecular weight of 110,000. The chromatographic behavior of the ligand-receptor complex on wheat germ lectin column suggests that the receptor is a glycoprotein. The described procedure yielded about 1 microgram of Betaseron receptor from 10(10) Daudi cells, estimated to contain a maximum of about 15 micrograms of the receptor.

  18. Purification of phosphinothricin acetyltransferase using Reactive brown 10 affinity in a single chromatography step.

    PubMed

    Wang, Cunxi; Lee, Thomas C; Crowley, Kathleen S; Bell, Erin

    2013-08-01

    The expression of phosphinothricin N-acetyltransferase (PAT) protein in transgenic plants confers tolerance to the herbicide glufosinate. To enable the characterization of PAT protein expressed in plants, it is necessary to obtain high purity PAT protein from the transgenic grain. Because transgenically expressed proteins are typical present at very low levels (i.e. 0.1-50 μg protein/g grain), a highly specific and efficient purification protocol is required to purify them. Based on the physicochemical properties of PAT, we developed a novel purification method that is simple, time-saving, inexpensive and reproducible. The novel method employs a single chromatography step using a reactive dye resin, Reactive brown 10-agarose. Reactive brown 10 preferentially binds the PAT protein, which can then be specifically released by one of its substrates, acetyl-CoA. Using Reactive brown 10-agarose, PAT protein was purified to homogeneity from cottonseed with high recovery efficiency. As expected, the Reactive brown 10-produced PAT was enzymatically active. Other applications of the method on protein expression and purification, and development of PAT enzymatic inhibitors were also discussed. PMID:23748142

  19. Chromatography.

    ERIC Educational Resources Information Center

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities on chromatography. Directions for preparing leaf pigment extracts using alcohol are given, and paper chromatography and thin-layer chromatography are described as modifications of the basic principles of chromatography. (KHR)

  20. Characterization of a multiple endogenously expressed adenosine triphosphate-binding cassette transporters using nuclear and cellular membrane affinity chromatography columns.

    PubMed

    Habicht, K-L; Singh, N S; Khadeer, M A; Shimmo, R; Wainer, I W; Moaddel, R

    2014-04-25

    Glioblastoma multiforme is an aggressive form of human astrocytoma, with poor prognosis due to multi-drug resistance to a number of anticancer drugs. The observed multi-drug resistance is primarily due to the efflux activity of ATP-Binding Cassette (ABC) efflux transporters such as Pgp, MRP1 and BCRP. The expression of these transporters has been demonstrated in nuclear and cellular membranes of the LN-229 human glioblastoma cell line. Nuclear membrane and cellular membrane fragments from LN-229 cells were immobilized on the IAM stationary phase to create nuclear and cellular membrane affinity chromatography columns, (NMAC(LN-229)) and (CMAC(LN-229)), respectively. Pgp, MRP1 and BCRP transporters co-immobilized on both columns were characterized and compared by establishing the binding affinities for estrone-3-sulfate (3.8 vs. 3.7μM), verapamil (0.6 vs. 0.7μM) and prazosin (0.099 vs. 0.033μM) on each column and no significant differences were observed. Since the marker ligands had overlapping selectivities, the selective characterization of each transporter was carried out by saturation of the binding sites of the non-targeted transporters. The addition of verapamil (Pgp and MRP1 substrate) to the mobile phase allowed the comparative screening of eight compounds at the nuclear and cellular BCRP using etoposide as the marker ligand. AZT increased the retention of etoposide (+15%), a positive allosteric interaction, on the CMAC(LN-229) column and decreased it (-5%) on the NMAC(LN-229), while the opposite effect was produced by rhodamine. The results indicate that there are differences between the cellular and nuclear membrane expressed BCRP and that NMAC and CMAC columns can be used to probe these differences.

  1. IDENTIFICATION AND ANALYSIS OF STEREOSELECTIVE DRUG INTERACTIONS WITH LOW DENSITY LIPOPROTEIN BY HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY

    PubMed Central

    Sobansky, Matthew R.; Hage, David S.

    2012-01-01

    Columns containing immobilized low density lipoprotein (LDL) were prepared for the analysis of drug interactions with this agent by high-performance affinity chromatography (HPAC). R/S-Propranolol was used as a model drug for this study. The LDL columns gave reproducible binding to propranolol over 60 h of continuous use in the presence of pH 7.4, 0.067 M potassium phosphate buffer. Experiments conducted with this type of column through frontal analysis indicated that two types of interactions were occurring between R-propranolol and LDL, while only a single type of interaction was observed between S-propranolol and LDL. The first type of interaction, which was seen for both enantiomers, involved non-saturable binding; this interaction had an overall affinity (nKa) of 1.9 (± 0.1) × 105 M-1 for R-propranolol and 2.7 (± 0.2) × 105 M-1 for S-propranolol at 37 °C. The second type of interaction was observed only for R-propranolol and involved saturable binding that had an association equilibrium constant (Ka) of 5.2 (± 2.3) × 105 M-1 at 37 °C. Similar differences in binding behavior were found for the two enantiomers at 20 °C and 27 °C. This is the first known example of stereoselective binding of drugs by LDL or other lipoproteins. This work also illustrates the ability of HPAC to be used as a tool for characterizing mixed-mode interactions that involve LDL and related binding agents. PMID:22354572

  2. Characterization of a multiple endogenously expressed Adenosine triphosphate-Binding Cassette transporters using nuclear and cellular membrane affinity chromatography columns

    PubMed Central

    Khadeer, M.A.; Shimmo, R.; Wainer, I.W.; Moaddel, R.

    2014-01-01

    Glioblastoma multiforme is an aggressive form of human astrocytoma, with poor prognosis due to multi-drug resistance to a number of anticancer drugs. The observed multi-drug resistance is primarily due to the efflux activity of ATP Binding Cassette (ABC) efflux transporters such as Pgp, MRP1 and BCRP. The expression of these transporters has been demonstrated in nuclear and cellular membranes of the LN-229 human glioblastoma cell line. Nuclear membrane and cellular membrane fragments from LN229 cells were immobilized on the IAM stationary phase to create nuclear and cellular membrane affinity chromatography columns, (NMAC(LN229)) and (CMAC(LN229)), respectively. Pgp, MRP1and BCRP transporters co-immobilized on both columns was characterized and compared by establishing the binding affinities for estrone-3-sulfate (3.8 vs 3.7μM), verapamil (0.6 vs 0.7μM) and prazosin (0.099 vs 0.033μM) on each column and no significant differences were observed. Since the marker ligands had overlapping selectivities, the selective characterization of each transporter was carried out by saturation of the binding sites of the non-targeted transporters. The addition of verapamil (Pgp and MRP1 substrate) to the mobile phase allowed the comparative screening of 8 compounds at the nuclear and cellular BCRP using etoposide as the marker ligand. AZT increased the retention of etoposide (+15%), a positive allosteric interaction, on the CMAC(LN229) column and decreased it (−5%) on the NMAC(LN229), while the opposite effect was produced by rhodamine. The results indicate that there are differences between the cellular and nuclear membrane expressed BCRP and that NMAC and CMAC columns can be used to probe these differences. PMID:24642394

  3. Comparative study of glycated hemoglobin by ion exchange chromatography and affinity binding nycocard reader in type 2 diabetes mellitus.

    PubMed

    Gautam, N; Dubey, R K; Jayan, A; Nepaune, Y; Padmavathi, P; Chaudhary, S; Jha, S K; Sinha, A K

    2014-12-01

    The aim of this study was to compare the level of glycated hemoglobin (HbA1c) in type 2 Diabetes Mellitus (DM) patients by two different methods namely Ion Exchange Chromatography and Affinity Binding Nycocard Reader. This is a cross-sectional study conducted on confirmed type 2 diabetes mellitus patients (n = 100) who visited Out Patients Department of the Universal College of Medical Sciences Teaching hospital, Bhairahawa, Nepal from November 2012 to March 2013. The diagnosis of diabetes mellitus was done on the basis of their fasting (164.46 ± 45.33 mg/dl) and random (187.93 ± 78.02 mg/dl) serum glucose level along with clinical history highly suggestive of type 2 DM. The HbA1c values of (7.8 ± 1.9%) and (8.0 ± 2.2%) were found in DM patients as estimated by those two different methods respectively. The highest frequency was observed in HbA1c > 8.0% indicating maximum cases were under very poor glycemic control. However, there were no significant differences observed in HbA1c value showing both methods are comparable in nature and can be used in lab for ease of estimation. The significant raised in HbA1c indicates complications associated with DM and monitoring of therapy become hard for those patients. Despite having standard reference method for HbA1c determination, the availability of report at the time of the patient visit can be made easy by using Nycocard Reader and Ion Exchange Chromatography techniques without any delay in communicating glycemic control, clinical decision-making and changes in treatment regimen.

  4. Human plasma alpha-cysteine proteinase inhibitor. Purification by affinity chromatography, characterization and isolation of an active fragment.

    PubMed Central

    Gounaris, A D; Brown, M A; Barrett, A J

    1984-01-01

    Human plasma alpha-cysteine proteinase inhibitor (alpha CPI) was purified by a two-stage method: affinity chromatography on S-carboxymethyl-papain-Sepharose, and high-resolution anion-exchange chromatography. The protein was obtained as a form of Mr about 64 000 and material of higher Mr (about 100 000). In sodium dodecyl sulphate/polyacrylamide-gel electrophoresis with reduction, both forms showed a major component of Mr 64 000. An antiserum was raised against alpha CPI, and 'rocket' immunoassays showed the mean concentration in sera from 19 individuals to be 35.9 mg/dl. Both low-Mr and high-Mr forms of alpha CPI were confirmed to be sialoglycoproteins by the decrease in electrophoretic mobility after treatment with neuraminidase. alpha CPI was shown immunologically to be distinct from antithrombin III and alpha 1-antichymotrypsin, two serine proteinase inhibitors from plasma with somewhat similar Mr values. alpha CPI was also distinct from cystatins A and B, the two intracellular low-Mr cysteine proteinase inhibitors from human liver. Complexes of alpha CPI with papain were detectable in immunoelectrophoresis, but dissociated to free enzyme and intact inhibitor in sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The stoichiometry of binding of papain was close to 1:1 for both low-Mr and high-Mr forms. alpha CPI was found to be a tight-binding inhibitor of papain and human cathepsins H and L (Ki 34 pM, 1.1 nM and 62 pM respectively). By contrast, inhibition of cathepsin B was much weaker, Ki being about 35 microM. Dipeptidyl peptidase I also was weakly inhibited. Digestion of alpha CPI with bromelain gave rise to an inhibitory fragment of Mr about 22 000, which was isolated. Images Fig. 2. Fig. 3. Fig. 4. PMID:6548132

  5. TiO2-ZrO2 affinity chromatography polymeric microchip for phosphopeptide enrichment and separation.

    PubMed

    Tsougeni, Katerina; Zerefos, Panagiotis; Tserepi, Angeliki; Vlahou, Antonia; Garbis, Spiros D; Gogolides, Evangelos

    2011-09-21

    We fabricated a TiO(2)-ZrO(2) affinity chromatography micro-column on 2 mm PMMA plates, and demonstrated the enrichment and separation of (a) a standard mono- and tetra-phosphopeptide, and (b) phosphopeptides contained in a tryptic digest of β-Casein. The chromatography column consisted of 32 parallel microchannels with common input and output ports and was fabricated by lithography directly on the polymeric substrate followed by plasma etching (i.e. standard MEMS processing) and sealed with lamination. The liquid deposited TiO(2)-ZrO(2) stationary phase was characterized by X-ray diffraction and was found to be mostly TiO(2) and ZrO(2) in crystalline phases. Off-chip UV detection and MALDI MS identification of the separated effluents were used. The chip had a capacity of >1.4 μg (0.7 nmol) of a prototype mono-phosphopeptide and a recovery of 94 ± 3%, and can be used with small samples (less than 0.1 μL depending on the syringe pump used). The chip design allows an expansion of its capacity by means of increasing the number of parallel microchannels at a constant sample volume. Our approach provided an alternative to off-line extraction tips (with typical capacities of 1-2 μg and sample volumes of 1-10 μL), and to on-chip efforts based on packed bed and frit formats. PMID:21796280

  6. Affinity chromatography of the Neurospora NADP-specific glutamate dehydrogenase, its mutational variants and hybrid hexamers.

    PubMed Central

    Watson, D H; Wootton, J C

    1977-01-01

    The synthesis of an affinity adsorbent, 8-(6-aminohexyl)aminoadenosine 2'-phosphate-Sepharose 4B, is described. The assembly of the 2'-AMP ligand and the hexanediamide spacer arm was synthesized in free solution before its attachment to the Sepharose matrix. This adsorbent retarded the hexameric NADP-specific glutamate dehydrogenase of Neurospora crassa, showing a capacity for this enzyme similar to that of comparable coenzyme-analogue adsorbents for other dehydrogenases. The enzyme was eluted either at pH 6.8 in a concentration gradient of NADP+, or at pH 8.5 in the presence of NADP+ in concentration gradients of either dicarboxylates or NaCl. Anomalous effects of dicarboxylates in facilitating elution are discussed. 2'-AMP and its derivatives, 8-bromoadenosine 2'-phosphate and 8-(l-aminohexyl)aminoadenosine 2'-phosphate, which were used in the synthesis of the adsorbent, all acted as enzyme inhibitors competitive with NADP+. The chromatographic properties of the wild-type enzyme were compared with those of mutationally modified variants containing defined amino acid substitutions. This approach was used to assess the biospecificity of adsorption and elution and the contribution of non-specific binding. The adsorbent showed a low capacity for the enzyme from mutant am1 (Ser-336 replaced by Phe), a variant that has a localized defect in NADP binding, but an otherwise almost normal conformation, suggesting that non-specific interactions are at most weak. The enzyme from mutant am3, a variant modified in a conformational equilibrium, was fully retarded by the adsorbent, but showed a significantly earlier elution position than the wild-type enzyme. This is consistent with measurements in free solution that showed the am3 enzyme to have a higher Ki for 2'-AMP than the wild-type enzyme. The enzyme from mutant am19 was eluted as two distinct peaks at both pH 6.8 and 8.5. The adsorbent was used to separate hybrid hexamers constructed in vitro by a freeze-thaw procedure

  7. Changes in G protein-coupled receptor sorting protein affinity regulate postendocytic targeting of G protein-coupled receptors.

    PubMed

    Thompson, Dawn; Pusch, Margareta; Whistler, Jennifer L

    2007-10-01

    After activation, most G protein-coupled receptors (GPCRs) are regulated by a cascade of events involving desensitization and endocytosis. Internalized receptors can then be recycled to the plasma membrane, retained in an endosomal compartment, or targeted for degradation. The GPCR-associated sorting protein, GASP, has been shown to preferentially sort a number of native GPCRs to the lysosome for degradation after endocytosis. Here we show that a mutant beta(2) adrenergic receptor and a mutant mu opioid receptor that have previously been described as lacking "recycling signals" due to mutations in their C termini in fact bind to GASP and are targeted for degradation. We also show that a mutant dopamine D1 receptor, which has likewise been described as lacking a recycling signal, does not bind to GASP and is therefore not targeted for degradation. Together, these results indicate that alteration of receptors in their C termini can expose determinants with affinity for GASP binding and consequently target receptors for degradation.

  8. Optimization of pore structure and particle morphology of mesoporous silica for antibody adsorption for use in affinity chromatography

    NASA Astrophysics Data System (ADS)

    Hikosaka, Ryouichi; Nagata, Fukue; Tomita, Masahiro; Kato, Katsuya

    2016-10-01

    Antibodies have received significant attention for use as antibody drugs, because they bind the objective protein (antigen) via antigen-antibody reactions. Recently, many reports have appeared on various monoclonal antibodies that recognize a single antigen. In this study, monoclonal antibodies are used as adsorbates on mesoporous silica (MPS) for affinity chromatography. MPS has high surface area and large pore volume; moreover, pore diameter, pore structure, and particle morphology are relatively easy to tune by adjusting the conditions of synthesis. The pore structure (two-dimensional (2D) hexagonal and three-dimensional cubic) and particle morphology (spherical and polyhedral) of MPS are optimized for use in a monoclonal antibody/MPS composite. When anti-IgG (one of the monoclonal antibodies) adsorbs on the MPS material and IgG (antigen) binds to anti-IgG/MPS composites, MCM-41p with a 2D-hexagonal pore structure and polyhedral particle morphology has the highest IgG binding efficiency. In addition, the antibody/MPS composites remain stable in chaotropic and low-pH solutions and can be cycled at least five times without decreasing IgG elution. In purification and removal tests, the use of the antibody/MPS composites allows only the objective protein from protein mixtures to be bound and eluted.

  9. LC-MS/MS quantitation of esophagus disease blood serum glycoproteins by enrichment with hydrazide chemistry and lectin affinity chromatography.

    PubMed

    Song, Ehwang; Zhu, Rui; Hammoud, Zane T; Mechref, Yehia

    2014-11-01

    Changes in glycosylation have been shown to have a profound correlation with development/malignancy in many cancer types. Currently, two major enrichment techniques have been widely applied in glycoproteomics, namely, lectin affinity chromatography (LAC)-based and hydrazide chemistry (HC)-based enrichments. Here we report the LC-MS/MS quantitative analyses of human blood serum glycoproteins and glycopeptides associated with esophageal diseases by LAC- and HC-based enrichment. The separate and complementary qualitative and quantitative data analyses of protein glycosylation were performed using both enrichment techniques. Chemometric and statistical evaluations, PCA plots, or ANOVA test, respectively, were employed to determine and confirm candidate cancer-associated glycoprotein/glycopeptide biomarkers. Out of 139, 59 common glycoproteins (42% overlap) were observed in both enrichment techniques. This overlap is very similar to previously published studies. The quantitation and evaluation of significantly changed glycoproteins/glycopeptides are complementary between LAC and HC enrichments. LC-ESI-MS/MS analyses indicated that 7 glycoproteins enriched by LAC and 11 glycoproteins enriched by HC showed significantly different abundances between disease-free and disease cohorts. Multiple reaction monitoring quantitation resulted in 13 glycopeptides by LAC enrichment and 10 glycosylation sites by HC enrichment to be statistically different among disease cohorts. PMID:25134008

  10. LC–MS/MS Quantitation of Esophagus Disease Blood Serum Glycoproteins by Enrichment with Hydrazide Chemistry and Lectin Affinity Chromatography

    PubMed Central

    2015-01-01

    Changes in glycosylation have been shown to have a profound correlation with development/malignancy in many cancer types. Currently, two major enrichment techniques have been widely applied in glycoproteomics, namely, lectin affinity chromatography (LAC)-based and hydrazide chemistry (HC)-based enrichments. Here we report the LC–MS/MS quantitative analyses of human blood serum glycoproteins and glycopeptides associated with esophageal diseases by LAC- and HC-based enrichment. The separate and complementary qualitative and quantitative data analyses of protein glycosylation were performed using both enrichment techniques. Chemometric and statistical evaluations, PCA plots, or ANOVA test, respectively, were employed to determine and confirm candidate cancer-associated glycoprotein/glycopeptide biomarkers. Out of 139, 59 common glycoproteins (42% overlap) were observed in both enrichment techniques. This overlap is very similar to previously published studies. The quantitation and evaluation of significantly changed glycoproteins/glycopeptides are complementary between LAC and HC enrichments. LC–ESI–MS/MS analyses indicated that 7 glycoproteins enriched by LAC and 11 glycoproteins enriched by HC showed significantly different abundances between disease-free and disease cohorts. Multiple reaction monitoring quantitation resulted in 13 glycopeptides by LAC enrichment and 10 glycosylation sites by HC enrichment to be statistically different among disease cohorts. PMID:25134008

  11. Large-scale purification of staphylococcal enterotoxins A, B, and C2 by dye ligand affinity chromatography.

    PubMed Central

    Brehm, R D; Tranter, H S; Hambleton, P; Melling, J

    1990-01-01

    A simple method for the purification of staphylococcal enterotoxins A (SEA), B (SEB), and C2 (SEC2) from fermentor-grown cultures was developed. The toxins were purified by pseudo-affinity chromatography by using the triazine textile dye "Red A" and gave overall yields of 49% (SEA), 44% (SEB), and 53% (SEC2). The purified toxins were homogeneous when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but isoelectric focusing of the preparations revealed the microheterogeneity associated with these toxins. The SEA and SEB preparations each consisted of two isoelectric forms with pI values of 7.3 and 6.8 (SEA) and 8.9 and 8.55 (SEB); in contrast, SEC2 contained five different isoelectric forms, with pI values ranging between 7.6 and 6.85. The pattern of elution of the isoelectric forms from the column indicated a cationic-exchange process involved in the binding of toxin to Red A. Such a method forms the basis of a high-yielding, rapid means of purifying the staphylococcal enterotoxins that can easily be adapted to large-scale production. Images PMID:2339869

  12. Wide Range of Biotin (Vitamin H) Content in Foodstuffs and Powdered Milks as Assessed by High-performance Affinity Chromatography

    PubMed Central

    Hayakawa, Kou; Katsumata, Noriyuki; Abe, Kiyomi; Hirano, Masahiko; Yoshikawa, Kazuyuki; Ogata, Tsutomu; Horikawa, Reiko; Nagamine, Takeaki

    2009-01-01

    The biotin (vitamin H) contents of various foodstuffs were determined by using a newly developed high-performance affinity chromatography with a trypsin-treated avidin-bound column. Biotin was derivatized with 9-anthryldiazomethane (ADAM) to fluorescent biotin-ADAM ester. A wide range of biotin contents were found in various foodstuffs depending upon the species (strain), season, organ (of plants and animals), geography, freshness, preparation method and storage method. Among the foodstuffs and fermented foods tested, it was found that wide distributions of biotin content were observed in powdered milk, natto, sake (rice wine), beer, edible oil and sea weed. Since powdered milk is important for child health and development, 14 kinds of powdered and special milks for use in children’s diseases were intensively measured. We found that several special milk powders for children with allergies contained low levels of free biotin. Use of these powdered milks caused skin diseases and alopecia in some patients possessing thermolabile serum biotinidase, and administration of free biotin improved their symptoms dramatically. Therefore, it is essential to estimate the total and free biotin contents on each foodstuff in order to improve effective biotin intake and support better health and quality of life for people. PMID:24790379

  13. Purification of His6-organophosphate hydrolase using monolithic supermacroporous polyacrylamide cryogels developed for immobilized metal affinity chromatography.

    PubMed

    Efremenko, E; Votchitseva, Y; Plieva, F; Galaev, I; Mattiasson, B

    2006-05-01

    Organophosphate hydrolase containing hexahistidine tag at the N-terminus of recombinant protein (His6-OPH) and expressed in Escherichia coli cells was purified using supermacroporous polyacrylamide-based monolith columns with immobilized metal affinity matrices [Me2+-iminodiacetic acid (IDA)-polyacrylamide cryogel (PAA) and Me2+-N,N,N'-tris (carboxymethyl) ethylendiamine (TED)-PAA]. Enzyme preparation with 50% purity was obtained by direct chromatography of nonclarified cell homogenate, whereas the combination of addition of 10 mM imidazole to buffers for cell sonication and sample loading, the use of precolumn with IDA-PAA matrix noncharged with metal ions, and the application of high flow rate provided the 99% purity of enzyme isolated directly from crude cell homogenate. Co2+-IDA-PAA provided the highest level of selectivity for His6-OPH. Comparative analysis of purification using Co2+-IDA-PAA and Ni-nitrilotriacetic acid-agarose showed obvious advantages of the former in process time, specific activity of purified enzyme, and simplicity of adsorbent regeneration.

  14. Preparation and loading buffer study of polyvinyl alcohol-based immobilized Ti4+ affinity chromatography for phosphopeptide enrichment.

    PubMed

    Hu, Yufeng; Guo, Shuangxi; Ma, Hongbo; Ye, Ning; Ren, Xueqin

    2013-11-01

    Despite recent advances in phosphoproteomics, an efficient and simple enrichment protocol is still a challenge and of high demand aiming at large-scale plant phosphoproteomics studies. Here, we developed a novel loading buffer system for synthesized immobilized metal affinity chromatography material targeting plant samples, which was prepared by a simple one-step esterification between polyvinyl alcohol and phosphoric acid and then was subjected to immobilize Ti(4+). SEM and Fourier transform IR spectroscopy were used to assure the synthesis protocol of the polyvinyl alcohol-based Ti(4+) immobilized material, and the specific surface areas and pore volumes of the polymers were measured. The selectivity for phosphopeptide enrichment from α-casein was improved by optimizing the pH and components of the loading buffer. By using potassium hydrogen phthalate/hydrochloric acid with pH at 2.50 as the loading buffer, 19 phosphopeptides with high intensity were identified. The final optimized protocol was adapted to salt-stressed maize leaves for phosphoproteome analysis. A total of 57 phosphopeptides containing 59 phosphorylated sites from 50 phosphoproteins were identified in salt-stressed maize leaf. The research was meaningful to obtain much more information about phosphoproteins leading to the comprehension of salt resistance and salt-inducible phosphorylated processes of maize leaves.

  15. LC-MS/MS quantitation of esophagus disease blood serum glycoproteins by enrichment with hydrazide chemistry and lectin affinity chromatography.

    PubMed

    Song, Ehwang; Zhu, Rui; Hammoud, Zane T; Mechref, Yehia

    2014-11-01

    Changes in glycosylation have been shown to have a profound correlation with development/malignancy in many cancer types. Currently, two major enrichment techniques have been widely applied in glycoproteomics, namely, lectin affinity chromatography (LAC)-based and hydrazide chemistry (HC)-based enrichments. Here we report the LC-MS/MS quantitative analyses of human blood serum glycoproteins and glycopeptides associated with esophageal diseases by LAC- and HC-based enrichment. The separate and complementary qualitative and quantitative data analyses of protein glycosylation were performed using both enrichment techniques. Chemometric and statistical evaluations, PCA plots, or ANOVA test, respectively, were employed to determine and confirm candidate cancer-associated glycoprotein/glycopeptide biomarkers. Out of 139, 59 common glycoproteins (42% overlap) were observed in both enrichment techniques. This overlap is very similar to previously published studies. The quantitation and evaluation of significantly changed glycoproteins/glycopeptides are complementary between LAC and HC enrichments. LC-ESI-MS/MS analyses indicated that 7 glycoproteins enriched by LAC and 11 glycoproteins enriched by HC showed significantly different abundances between disease-free and disease cohorts. Multiple reaction monitoring quantitation resulted in 13 glycopeptides by LAC enrichment and 10 glycosylation sites by HC enrichment to be statistically different among disease cohorts.

  16. Monolith immuno-affinity enrichment liquid chromatography tandem mass spectrometry for quantitative protein analysis of recombinant bovine somatotropin in serum.

    PubMed

    Smits, Nathalie G E; Blokland, Marco H; Wubs, Klaas L; Nessen, Merel A; van Ginkel, Leen A; Nielen, Michel W F

    2015-08-01

    The use of recombinant bovine somatotropin (rbST) to enhance milk production is approved in several countries, but it is prohibited in the European Union. According to EU legislation, it is necessary to confirm positive screening results prior to enforcement. Although adequate screening assays are available nowadays, development of liquid chromatography tandem mass spectrometry (LC-MS/MS) confirmatory methods to detect low levels of rbST is still a challenge. Here, we present a novel approach using immuno-affinity enrichment on monolithic micro-columns in combination with state-of-the-art ultra-high pressure LC-MS/MS (UHPLC-MS/MS) detection. The developed approach enables detection and confirmation of rbST in serum at a decision limit (CCα) concentration of 0.8 ng mL(-1). Furthermore, the method is easy to handle, robust and reproducible. We successfully applied the confirmatory method to serum samples from rbST treated cows that were found suspect after immunoassay-based screening. The use of rbST could be confirmed over 1 week after treatment, and the developed method demonstrated the sensitivity needed for effective control. Graphical Abstract Graphical summary of the workflow, for serum preparation, enrichment with monolith microcolumns and LC-MS/MS measurement of rbST. PMID:26077745

  17. Proteomic analysis of human O {sup 6}-methylguanine-DNA methyltransferase by affinity chromatography and tandem mass spectrometry

    SciTech Connect

    Niture, Suryakant K.; Doneanu, Catalin E.; Velu, Chinavenmeni S.; Bailey, Nathan I.; Srivenugopal, Kalkunte S. . E-mail: Kalkunte.srivenugopal@ttuhsc.edu

    2005-12-02

    Recent evidence suggests that human O {sup 6}-methylguanine-DNA methyltransferase (MGMT), a DNA repair protein that protects the genome against mutagens and accords tumor resistance to many anticancer alkylating agents, may have other roles besides repair. Therefore, we isolated MGMT-interacting proteins from extracts of HT29 human colon cancer cells using affinity chromatography on MGMT-Sepharose. Specific proteins bound to this column were identified by electrospray ionization tandem mass spectrometry and/or Western blotting. These procedures identified >60 MGMT-interacting proteins with diverse functions including those involved in DNA replication and repair (MCM2, PCNA, ORC1, DNA polymerase {delta}, MSH-2, and DNA-dependent protein kinase), cell cycle progression (CDK1, cyclin B, CDK2, CDC7, CDC10, 14-3-3 protein, and p21{sup waf1/cip1}), RNA processing and translation (poly(A)-binding protein, nucleolin, heterogeneous nuclear ribonucleoproteins, A2/B1, and elongation factor-1{alpha}), several histones (H4, H3.4, and H2A.1), and topoisomerase I. The heat shock proteins, HSP-90{alpha} and {beta}, also bound strongly with MGMT. The DNA repair activity of MGMT was greatly enhanced in the presence of interacting proteins or histones. These data, for the first time, suggest that human MGMT is likely to have additional functions, possibly, in sensing and integrating the DNA damage/repair-related signals with replication, cell cycle progression, and genomic stability.

  18. [Affinity chromatography and proteomic screening as the effective method for S100A4 new protein targets discovery].

    PubMed

    Koshelev, Iu A

    2014-01-01

    Affinity chromatography followed by a selective binding proteins identification can be using as effective method for a biological impotent interactions discovery. The molecular structure and their surface charge as and conformational regulation possibilities, which change their surface hydrophobic properties, all they should to taken in account during method optimization process. With the same' method we had identify some new S100A4 target proteins such as cytoskeleton proteins Sept2, Sept7, Sept11 and this interaction would can to highlight as S100A4 would regulate cell motility. Even we had identify the transcription cofactor Ddx5 and through such complex formation a S100A4 protein would can to regulate E-cadherin, p21 Waf1/Cip1), Bnip3 gene expression. The same protocol can be using for a target proteins search with another S100 protein family members, because their molecules demonstrate a high homology level in amino aside sequences and 3D structures. PMID:25842873

  19. Glycopeptide Site Heterogeneity and Structural Diversity Determined by Combined Lectin Affinity Chromatography/IMS/CID/MS Techniques.

    PubMed

    Zhu, Feifei; Trinidad, Jonathan C; Clemmer, David E

    2015-07-01

    Glycopeptides from a tryptic digest of chicken ovomucoid were enriched using a simplified lectin affinity chromatography (LAC) platform, and characterized by high-resolution mass spectrometry (MS) as well as ion mobility spectrometry (IMS)-MS. The LAC platform effectively enriched the glycoproteome, from which a total of 117 glycopeptides containing 27 glycan forms were identified for this protein. IMS-MS analysis revealed a high degree of glycopeptide site heterogeneity. Comparison of the IMS distributions of the glycopeptides from different charge states reveals that higher charge states allow more structures to be resolved. Presumably the repulsive interactions between charged sites lead to more open configurations, which are more readily separated compared with the more compact, lower charge state forms of the same groups of species. Combining IMS with collision induced dissociation (CID) made it possible to determine the presence of isomeric glycans and to reconstruct their IMS profiles. This study illustrates a workflow involving hybrid techniques for determining glycopeptide site heterogeneity and evaluating structural diversity of glycans and glycopeptides. PMID:25840811

  20. Glycopeptide Site Heterogeneity and Structural Diversity Determined by Combined Lectin Affinity Chromatography/IMS/CID/MS Techniques

    NASA Astrophysics Data System (ADS)

    Zhu, Feifei; Trinidad, Jonathan C.; Clemmer, David E.

    2015-07-01

    Glycopeptides from a tryptic digest of chicken ovomucoid were enriched using a simplified lectin affinity chromatography (LAC) platform, and characterized by high-resolution mass spectrometry (MS) as well as ion mobility spectrometry (IMS)-MS. The LAC platform effectively enriched the glycoproteome, from which a total of 117 glycopeptides containing 27 glycan forms were identified for this protein. IMS-MS analysis revealed a high degree of glycopeptide site heterogeneity. Comparison of the IMS distributions of the glycopeptides from different charge states reveals that higher charge states allow more structures to be resolved. Presumably the repulsive interactions between charged sites lead to more open configurations, which are more readily separated compared with the more compact, lower charge state forms of the same groups of species. Combining IMS with collision induced dissociation (CID) made it possible to determine the presence of isomeric glycans and to reconstruct their IMS profiles. This study illustrates a workflow involving hybrid techniques for determining glycopeptide site heterogeneity and evaluating structural diversity of glycans and glycopeptides.

  1. Rapid purification of recombinant dengue and West Nile virus envelope Domain III proteins by metal affinity membrane chromatography.

    PubMed

    Tan, Lik Chern Melvin; Chua, Anthony Jin Shun; Goh, Li Shan Liza; Pua, Shu Min; Cheong, Yuen Kuen; Ng, Mah Lee

    2010-11-01

    Arthropod-borne flaviviruses such as dengue virus (DENV) and West Nile virus (WNV) pose significant health threats to the global community. Due to escalating numbers of DENV and WNV infections worldwide, development of an effective vaccine remains a global health priority. As flavivirus envelope Domain III (DIII) protein is highly immunogenic and capable of inducing neutralizing antibodies against wild-type virus, it is both a potential protein subunit vaccine candidate and a suitable diagnostic reagent. Here, we describe the use of metal affinity membrane chromatography as a rapid and improved alternative for the purification of recombinant DIII (rDIII) antigens from DENV serotypes 1-4 and WNV - New York, Sarafend, Wengler and Kunjin strains. Optimum conditions for the expression, solubilization, renaturation and purification of these proteins were established. The purified proteins were confirmed by MALDI-TOF mass spectrometry and ELISA using antibodies raised against the respective viruses. Biological function of the purified rDIII proteins was confirmed by their ability to generate DIII-specific antibodies in mice that could neutralize the virus.

  2. Purification of His6-organophosphate hydrolase using monolithic supermacroporous polyacrylamide cryogels developed for immobilized metal affinity chromatography.

    PubMed

    Efremenko, E; Votchitseva, Y; Plieva, F; Galaev, I; Mattiasson, B

    2006-05-01

    Organophosphate hydrolase containing hexahistidine tag at the N-terminus of recombinant protein (His6-OPH) and expressed in Escherichia coli cells was purified using supermacroporous polyacrylamide-based monolith columns with immobilized metal affinity matrices [Me2+-iminodiacetic acid (IDA)-polyacrylamide cryogel (PAA) and Me2+-N,N,N'-tris (carboxymethyl) ethylendiamine (TED)-PAA]. Enzyme preparation with 50% purity was obtained by direct chromatography of nonclarified cell homogenate, whereas the combination of addition of 10 mM imidazole to buffers for cell sonication and sample loading, the use of precolumn with IDA-PAA matrix noncharged with metal ions, and the application of high flow rate provided the 99% purity of enzyme isolated directly from crude cell homogenate. Co2+-IDA-PAA provided the highest level of selectivity for His6-OPH. Comparative analysis of purification using Co2+-IDA-PAA and Ni-nitrilotriacetic acid-agarose showed obvious advantages of the former in process time, specific activity of purified enzyme, and simplicity of adsorbent regeneration. PMID:16088350

  3. Serodiagnosis of human neurocysticercosis using antigenic components of Taenia solium metacestodes derived from the unbound fraction from jacalin affinity chromatography

    PubMed Central

    Machado, Gleyce Alves; de Oliveira, Heliana Batista; Gennari-Cardoso, Margareth Leitão; Mineo, José Roberto; Costa-Cruz, Julia Maria

    2013-01-01

    The aim of the present study was to analyse Taenia solium metacestode antigens that were derived from the unbound fraction of jacalin affinity chromatography and subsequent tert-octylphenoxy poly (oxyethylene) ethanol Triton X-114 (TX-114) partitioning in the diagnosis of human neurocysticercosis (NCC). Immunoassays were designed to detect T. solium-specific IgG antibodies by ELISA and immunoblot. Serum samples were collected from 132 individuals who were categorised as follows: 40 had NCC, 62 presented Taenia spp or other parasitic diseases and 30 were healthy individuals. The jacalin-unbound (Junbound) fraction presented higher sensitivity and specificity rates than the jacalin-bound fraction and only this fraction was subjected to subsequent TX-114 partitioning, resulting in detergent (DJunbound) and aqueous (AJunbound) fractions. The ELISA sensitivity and specificity were 85% and 84.8% for Junbound, 92.5% and 93.5% for DJunboundand 82.5% and 82.6% for AJunbound. By immunoblot, the DJunboundfraction showed 100% sensitivity and specificity and only serum samples from patients with NCC recognised the 50-70 kDa T. solium-specific components. We conclude that the DJunboundfraction can serve as a useful tool for the differential immunodiagnosis of NCC by immunoblot. PMID:23778661

  4. Optimization of immobilized gallium (III) ion affinity chromatography for selective binding and recovery of phosphopeptides from protein digests.

    PubMed

    Aryal, Uma K; Olson, Douglas J H; Ross, Andrew R S

    2008-12-01

    Although widely used in proteomics research for the selective enrichment of phosphopeptides from protein digests, immobilized metal-ion affinity chromatography (IMAC) often suffers from low specificity and differential recovery of peptides carrying different numbers of phosphate groups. By systematically evaluating and optimizing different loading, washing, and elution conditions, we have developed an efficient and highly selective procedure for the enrichment of phosphopeptides using a commercially available gallium(III)-IMAC column (PhosphoProfile, Sigma). Phosphopeptide enrichment using the reagents supplied with the column is incomplete and biased toward the recovery and/or detection of smaller, singly phosphorylated peptides. In contrast, elution with base (0.4 M ammonium hydroxide) gives efficient and balanced recovery of both singly and multiply phosphorylated peptides, while loading peptides in a strong acidic solution (1% trifluoracetic acid) further increases selectivity toward phosphopeptides, with minimal carryover of nonphosphorylated peptides. 2,5-Dihydroxybenzoic acid, a matrix commonly used when analyzing phosphopeptides by matrix-assisted laser desorption/ionization mass spectrometry was also evaluated as an additive in loading and eluting solvents. Elution with 50% acetonitrile containing 20 mg/mL dihydroxybenzoic acid and 1% phosphoric acid gave results similar to those obtained using ammonium hydroxide as the eluent, although the latter showed the highest specificity for phosphorylated peptides. PMID:19183793

  5. ANALYSIS OF DRUG INTERACTIONS WITH MODIFIED PROTEINS BY HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY: BINDING OF GLIBENCLAMIDE TO NORMAL AND GLYCATED HUMAN SERUM ALBUMIN

    PubMed Central

    Matsuda, Ryan; Anguizola, Jeanethe; Joseph, K.S.; Hage, David S.

    2012-01-01

    High-performance affinity chromatography (HPAC) was used to examine the changes in binding that occur for the sulfonylurea drug glibenclamide with human serum albumin (HSA) at various stages of glycation for HSA. Frontal analysis on columns containing normal HSA or glycated HSA indicated glibenclamide was interacting through both high affinity sites (association equilibrium constant, Ka, 1.4–1.9 × 106 M−1 at pH 7.4 and 37°C) and lower affinity sites (Ka, 4.4–7.2 × 104 M−1). Competition studies were used to examine the effect of glycation at specific binding sites of HSA. An increase in affinity of 1.7- to 1.9-fold was seen at Sudlow site I with moderate to high levels of glycation. An even larger increase of 4.3- to 6.0-fold in affinity was noted at Sudlow site II for all of the tested samples of glycated HSA. A slight decrease in affinity may have occurred at the digitoxin site, but this change was not significant for any individual glycated HSA sample. These results illustrate how HPAC can be used as tool for examining the interactions of relatively non-polar drugs like glibenclamide with modified proteins and should lead to a more complete understanding of how glycation can alter the binding of drugs in blood. PMID:23092871

  6. A mutant trypsin-like enzyme from Streptomyces fradiae, created by site-directed mutagenesis, improves affinity chromatography for protein trypsin inhibitors.

    PubMed

    Katoh, T; Kikuchi, N; Nagata, K; Yoshida, N

    1996-08-01

    The Ser-170 residue of a trypsin-like enzyme from Streptomyces fradiae (SFT), which is considered to be the active-site serine, was replaced with alanine by site-directed mutagenesis to improve the affinity chromatography step for a Kazal-type trypsin inhibitor pancreatic secretory trypsin inhibitor (PSTI). The resulting mutant SFT, designated as [S170A]SFT, was expressed in Streptomyces lividans and purified to homogeneity. [S170A]SFT was catalytically inactive, but still had the ability to bind tightly to PSTI and to soybean trypsin inhibitor with dissociation constants of 3.1 x 10(-7) M and 1.9 x 10(-8) M respectively. We further demonstrated that recombinant human PSTI secreted into Saccharomyces cerevisiae culture broth could be purified to homogeneity with a one-step [S170A]SFT-affinity column. The purified PSTI contained no molecules intramolecularly cleaved by active trypsin, which are found when trypsin-affinity chromatography is used for the purification. This eliminated the need for further separation of intact PSTI from intramolecularly cleaved PSTI by high-performance liquid chromatography, thus simplifying and improving its purification process.

  7. Purification of human immunoglobulins A, G and M from Cohn fraction II/III by small peptide affinity chromatography.

    PubMed

    Liu, Zhuo; Gurgel, Patrick V; Carbonell, Ruben G

    2012-11-01

    This work describes attempts to purify human IgG, IgA and IgM from Cohn fraction II/III using HWRGWV affinity peptide resin. The effects of peptide density and different elution additives on recovery of the three antibodies were investigated. At low peptide density, salting-in salts such as magnesium chloride and calcium chloride facilitated antibody elution. Ethylene glycol, urea and arginine also facilitated elution because of their ability to decrease hydrophobic interactions, hydrogen bonding and electrostatic interactions. However, at high peptide density, no recovery improvements were observed because of increased non-specific hydrophobic interactions. The final elution conditions for each antibody were chosen based on the resulting yields and purities when a 10:2:1mg/mL mixture of human IgG, IgA and IgM was used as starting material. Different pretreatment methods were employed in order to improve the purity of antibodies from Cohn fraction II/III. After pretreatment with caprylic acid precipitation or combination of caprylic acid and polyethylene glycol precipitation, purities over 95% and yields of about 60% were obtained for hIgG, which are comparable to current chromatographic purification methods involving two chromatography steps when hIgG is isolated from plasma fractions. A hIgA-enriched fraction with 42% hIgA and 56% hIgG, as well as a hIgM enriched fraction with 46% hIgM, 28% hIgA and 24% hIgG, were obtained as the by-products. PMID:23026261

  8. Oriented covalent immobilization of antibodies onto heterofunctional agarose supports: a highly efficient immuno-affinity chromatography platform.

    PubMed

    Batalla, Pilar; Bolívar, Juan M; Lopez-Gallego, Fernando; Guisan, Jose M

    2012-11-01

    The development of new bioconjugates formed by one antibody optimally bound (through its Fc region) to fairly inert solid surfaces is of primary relevance in immuno-affinity chromatography. Immunoglobulins G (IgG) have a Fc region very rich in histidine (His) residues. In this way, immobilization of IgGs on heterofunctional metal chelate-glyoxyl supports (Ag-Me(2+)/G) takes place in two steps: firstly the antibodies are conjugated to the support via His-metal coordination bonds. Secondly, their incubation under alkaline condition promotes an intramolecular covalent attachment between lysine residues at the Fc region and glyoxyl groups on the support surface. The IgG that recognizes as antigen the HRP (antiHRP-IgG) has been conjugated to Ag-Me(2+)/G supports. The resulting bioconjugate is highly inert and able to specifically bind the antigen (HRP) without significant unspecific binding of any other proteins, resulting in an excellent HRP purification platform. The binding activity of this bioconjugate has been optimized by controlling the antibody distribution throughout the bead's surface in order to avoid high antibody densities that led to a low binding activity of the antibodies. The optimal antibody distribution has been achieved when these proteins were slowly immobilized on Ag-Cu(2+)/G in presence of imidazole. This bioconjugate was able to bind up to 1.5 moles of antigen per mole of antibody, only 1.3-fold less than the antibody in solution. Hence, we have been able to develop an optimal protocol to prepare bioconjugated composites in an oriented and irreversible fashion which results in highly efficient and specific surfaces for the exclusive biological recognition. PMID:23021645

  9. Characterization of the rabbit homolog of human MUC1 glycoprotein isolated from bladder by affinity chromatography on immobilized jacalin.

    PubMed

    Higuchi, T; Xin, P; Buckley, M S; Erickson, D R; Bhavanandan, V P

    2000-07-01

    The urinary bladder is lined by transitional epithelium, the glycocalyx on the luminal surface has interesting properties and is implicated in protective functions. Glycoconjugates are major components of the glycocalyx, but their biochemical nature is not well understood. Previous studies on rabbit bladder indicated the presence of significant levels of sialoglycoproteins compared to glycosaminoglycans in the epithelium. In this study, rabbit explant cultures were radiolabeled by precursor sugars or amino acids and a major lectin-reactive glycoprotein of rabbit bladder mucosa was isolated by affinity chromatography on jacalin-agarose. The radiolabeled glycoprotein was purified to homogeneity by a second cycle on the lectin column, followed by gel filtration and density gradient centrifugation. The average molecular mass of the glycoprotein was estimated to be 245 kDa and 210 kDa by gel filtration and SDS-PAGE, respectively. Its buoyant density was 1.40 g/ml, suggesting a carbohydrate content of approximately 50%. The percent distribution of glucosamine-derived tritium label in sialic acid, galactosamine, and glucosamine was 30, 52, and 18, respectively. The glycoprotein consisted entirely of small sialylated and neutral oligosaccharides O-glycosidically linked to serine and threonine residues. The same glycoprotein could be immunoprecipitated with an antibody against the carboxy terminal 17 amino acid peptide of human MUC1 mucin glycoprotein. This suggests that this mucin glycoprotein is the rabbit homolog of MUC1 glycoprotein, which has been previously established to be a component of human bladder urothelium and has been purified from human urine and biochemically characterized.

  10. Immobilized Metal Affinity Chromatography Co-Purifies TGF-β1 with Histidine-Tagged Recombinant Extracellular Proteins

    PubMed Central

    Kaur, Jasvir; Reinhardt, Dieter P.

    2012-01-01

    Extracellular recombinant proteins are commonly produced using HEK293 cells as histidine-tagged proteins facilitating purification by immobilized metal affinity chromatography (IMAC). Based on gel analyses, this one-step purification typically produces proteins of high purity. Here, we analyzed the presence of TGF-β1 in such IMAC purifications using recombinant extracellular fibrillin-1 fragments as examples. Analysis of various purified recombinant fibrillin-1 fragments by ELISA consistently revealed the presence of picomolar concentrations of active and latent TGF-β1, but not of BMP-2. These quantities of TGF-β1 were not detectable by Western blotting and mass spectrometry. However, the amounts of TGF-β1 were sufficient to consistently trigger Smad2 phosphorylation in fibroblasts. The purification mechanism was analyzed to determine whether the presence of TGF-β1 in these protein preparations represents a specific or non-specific co-purification of TGF-β1 with fibrillin-1 fragments. Control purifications using conditioned medium from non-transfected 293 cells yielded similar amounts of TGF-β1 after IMAC. IMAC of purified TGF-β1 and the latency associated peptide showed that these proteins bound to the immobilized nickel ions. These data clearly demonstrate that TGF-β1 was co-purified by specific interactions with nickel, and not by specific interactions with fibrillin-1 fragments. Among various chromatographic methods tested for their ability to eliminate TGF-β1 from fibrillin-1 preparations, gel filtration under high salt conditions was highly effective. As various recombinant extracellular proteins purified in this fashion are frequently used for experiments that can be influenced by the presence of TGF-β1, these findings have far-reaching implications for the required chromatographic schemes and quality controls. PMID:23119075

  11. Using Affinity Chromatography to Investigate Novel Protein–Protein Interactions in an Undergraduate Cell and Molecular Biology Lab Course

    PubMed Central

    2009-01-01

    Inquiry-driven lab exercises require students to think carefully about a question, carry out an investigation of that question, and critically analyze the results of their investigation. Here, we describe the implementation and assessment of an inquiry-based laboratory exercise in which students obtain and analyze novel data that contribute to our understanding of macromolecular trafficking between the nucleus and cytoplasm in eukaryotic cells. Although many of the proteins involved in nucleocytoplasmic transport are known, the physical interactions between some of these polypeptides remain uncharacterized. In this cell and molecular biology lab exercise, students investigate novel protein–protein interactions between factors involved in nuclear RNA export. Using recombinant protein expression, protein extraction, affinity chromatography, SDS-polyacrylamide gel electrophoresis, and Western blotting, undergraduates in a sophomore-level lab course identified a previously unreported association between the soluble mRNA transport factor Mex67 and the C-terminal region of the yeast nuclear pore complex protein Nup1. This exercise immersed students in the process of investigative science, from proposing and performing experiments through analyzing data and reporting outcomes. On completion of this investigative lab sequence, students reported enhanced understanding of the scientific process, increased proficiency with cellular and molecular methods and content, greater understanding of data analysis and the importance of appropriate controls, an enhanced ability to communicate science effectively, and an increased enthusiasm for scientific research and for the lab component of the course. The modular nature of this exercise and its focus on asking novel questions about protein–protein interactions make it easily transferable to undergraduate lab courses performed in a wide variety of contexts. PMID:19723816

  12. Engineering foot-and-mouth disease virus serotype O IND R2/1975 for one-step purification by immobilized metal affinity chromatography.

    PubMed

    Biswal, Jitendra K; Bisht, Punam; Subramaniam, Saravanan; Ranjan, Rajeev; Sharma, Gaurav K; Pattnaik, Bramhadev

    2015-09-01

    Immobilized metal affinity chromatography (IMAC) allows for the efficient protein purification via metal affinity tag such as hexa-histidine (His6) sequence. To develop a new chromatography strategy for the purification and concentration of foot-and-mouth disease virus (FMDV) particles, we inserted the His6-tag at the earlier reported site in the VP1 G-H loop of the FMD virus serotype O vaccine strain IND R2/1975. Display of the His6-tag on the capsid surface, endowed the virus with an increased affinity for immobilized nickel ions. We demonstrated that the His6-tagged FMDV could be produced to high titre and purified from the infected BHK-21 cell lysates by IMAC efficiently. Further, a 1150-fold reduction in protein contaminant level and an 8400-fold reduction in DNA contaminant level were achieved in the IMAC purification of His6-tagged FMDV. Through various functional assays it has been found that the tagged virus retains its functionality and infectivity similar to the non-tagged virus. The affinity purification of the His6-tagged FMDV may offer a feasible, alternative approach to the current methods of FMDV antigen purification, concentration and process scalability. PMID:26123433

  13. Open tubular columns containing the immobilized ligand binding domain of peroxisome proliferator-activated receptors α and γ for dual agonists characterization by frontal affinity chromatography with MS detection

    PubMed Central

    Temporini, C.; Pochetti, G.; Fracchiolla, G.; Piemontese, L.; Montanari, R.; Moaddel, R.; Laghezza, A.; Altieri, F.; Cervoni, L.; Ubiali, D.; Prada, E.; Loiodice, F.; Massolini, G.; Calleri, E.

    2013-01-01

    The peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor superfamily. In the last years novel PPARs ligands have been identified and these include PPARα/γ dual agonists. To rapidly identify novel PPARs dual ligands, a robust binding assay amenable to high-throughput screening towards PPAR isoforms would be desirable. In this work we describe a parallel assay based on the principles of Frontal Affinity Chromatography coupled to Mass Spectrometry (FAC-MS) that can be used to characterize dual agonists. For this purpose the ligand binding domain of PPARα receptor was immobilized onto the surface of open tubular capillaries to create new PPAR-alpha-OT columns to be used in parallel with PPAR-gamma-OT columns. The two biochromatographic systems were used in both ranking and Kd experiments towards new ureidofibrate-like dual agonists for subtype selectivity ratio determination. In order to validate the system, the Kd values determined by frontal analysis chromatography were compared to the affinity constants obtained by ITC experiments. The results of this study strongly demonstrate the specific nature of the interaction of the ligands with the two immobilized receptor subtypes. PMID:23466198

  14. Separation of actinides using capillary extraction chromatography-inductively coupled plasma mass spectrometry.

    PubMed

    Peterson, Dominic S; Montoya, Velma M

    2009-08-01

    Trace levels of actinides have been separated on capillary extraction chromatography columns. Detection of the actinides was achieved using an inductively coupled plasma mass spectrometer, which was coupled with the extraction chromatography system. In this study, we compare 30-cm long, 4.6 mm i.d. columns to capillary columns (750 microm i.d.) with lengths from 30 cm up to 150 cm. The columns that were tested were packed with TRU resin. We were able to separate a mixture of five actinides ((232)Th, (238)U, (237)Np, (239)Pu, and (241)Am). This work has application to rapid bioassay as well as automated separations of actinide materials.

  15. Isolation of a new ssDNA aptamer against staphylococcal enterotoxin B based on CNBr-activated sepharose-4B affinity chromatography.

    PubMed

    Hedayati Ch, Mojtaba; Amani, Jafar; Sedighian, Hamid; Amin, Mohsen; Salimian, Jafar; Halabian, Raheleh; Imani Fooladi, Abbas Ali

    2016-09-01

    Staphylococcus aureus are potent human pathogens possessing arsenal of virulence factors. Staphylococcal food poisoning (SFP) and respiratory infections mediated by staphylococcal enterotoxin B (SEB) are common clinical manifestations. Many diagnostic techniques are based on serological detection and quantification of SEB in different food and clinical samples. Aptamers are known as new therapeutic and detection tools which are available in different ssDNA, dsDNA and protein structures. In this study, we used a new set of ssDNA aptamers against SEB. The methods used included preparation of a dsDNA library using standard SEB protein as the target analyte, affinity chromatography matrix in microfuge tubes, SELEX procedures to isolate specific ssDNA-aptamer as an affinity ligand, aptamer purification using ethanol precipitation method, affinity binding assay using ELISA, aptamer cloning and specificity test. Among 12 readable sequences, three of them were selected as the most appropriate aptamer because of their affinity and specificity to SEB. This study presents a new set of ssDNA aptamer with favorable selectivity to SEB through 12 rounds of SELEX. Selected aptamers were used to detect SEB in infected serum samples. Results showed that SEB c1 aptamer (2 µg SEB/100 nM aptamer) had favorable specificity to SEB (kd  = 2.3 × 10(-11) ). In conclusion, aptamers can be considered as useful tools for detecting and evaluating SEB. The results showed that affinity chromatography was an affordable assay with acceptable accuracy to isolate sensitive and selective novel aptamers. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27091327

  16. Analysis of free drug fractions in serum by ultrafast affinity extraction and two-dimensional affinity chromatography using α1-acid glycoprotein microcolumns.

    PubMed

    Bi, Cong; Zheng, Xiwei; Hage, David S

    2016-02-01

    In the circulatory system, many drugs are reversibly bound to serum proteins such as human serum albumin (HSA) and alpha1-acid glycoprotein (AGP), resulting in both free and protein-bound fractions for these drugs. This report examined the use of microcolumns containing immobilized AGP for the measurement of free drug fractions by ultrafast affinity extraction and a two-dimensional affinity system. Several drugs known to bind AGP were used as models to develop and evaluate this approach. Factors considered during the creation of this method included the retention of the drugs on the microcolumns, the injection flow rate, the microcolumn size, and the times at which a second AGP column was placed on-line with the microcolumn. The final system had residence times of only 110-830ms during sample passage through the AGP microcolumns and allowed free drug fractions to be determined within 10-20min when using only 3-10μL of sample per injection. This method was used to measure the free fractions of the model drugs at typical therapeutic levels in serum, giving good agreement with the results obtained by ultrafiltration. This approach was also used to estimate the binding constants for each drug with AGP in serum, even for drugs that had significant interactions with both AGP and HSA in such samples. These results indicated that AGP microcolumns could be used with ultrafast affinity extraction to measure free drug fractions in a label-free manner and to study the binding of drugs with AGP in complex samples such as serum. PMID:26797422

  17. Simplifying the synthesis of SIgA: combination of dIgA and rhSC using affinity chromatography

    PubMed Central

    Moldt, Brian; Saye-Francisco, Karen; Schultz, Niccole; Burton, Dennis R.; Hessell, Ann J.

    2013-01-01

    The mucosal epithelia together with adaptive immune responses, such as local production and secretion of dimeric and polymeric immunoglobulin A (IgA), are a crucial part of the first line of defense against invading pathogens. IgA is primarily secreted as SIgA and plays multiply roles in mucosal defense. The study of SIgA-mediated protection is an important area of research in mucosal immunity but an easy, fast and reproducible method to generate pathogen-specific SIgA in vitro has not been available. We report here a new method to produce SIgA by co-purification of dimeric IgA, containing J chain, and recombinant human SC expressed in CHO cells. We previously reported the generation, production and characterization of the human recombinant monoclonal antibody IgA2 b12. This antibody, derived from the variable regions of the neutralizing anti-HIV-1 mAb IgG1 b12, blocked viral attachment and uptake by epithelial cells in vitro. We used a cloned CHO cell line that expresses monomeric, dimeric and polymeric species of IgA2 b12 for large-scale production of dIgA2 b12. Subsequently, we generated a CHO cell line to express recombinant human secretory component (rhSC). Here, we combined dIgA2 b12 and CHO-expressed rhSC via column chromatography to produce SIgA2 b12 that remains fully intact upon elution with 0.1M Citric acid, pH 3.0. We have performed biochemical analysis of the synthesized SIgA to confirm the species is of the expected size and retains the functional properties previously described for IgA2 b12. We show that SIgA2 b12 binds to the HIV-1 gp120 glycoprotein with similar apparent affinity to that of monomeric and dimeric forms of IgA2 b12 and neutralizes HIV-1 isolates with similar potency. An average yield of 6 mg of SIgA2 b12 was achieved from the combination of 20 mg of purified dIgA2 b12 and 2 L of rhSC-containing CHO cell supernatant. We conclude that synthesized production of stable SIgA can be generated by co-purification. This process introduces a

  18. Chromatography

    MedlinePlus

    Chromatography is a way of separating two or more chemical compounds. Chemical compounds are chemicals that are ... of chemical compound. There are different kinds of chromatography. These include gas, high pressure liquid, or ion ...

  19. Analysis of multi-site drug-protein interactions by high-performance affinity chromatography: Binding by glimepiride to normal or glycated human serum albumin.

    PubMed

    Matsuda, Ryan; Li, Zhao; Zheng, Xiwei; Hage, David S

    2015-08-21

    High-performance affinity chromatography (HPAC) was used in a variety of formats to examine multi-site interactions between glimepiride, a third-generation sulfonylurea drug, and normal or in vitro glycated forms of the transport protein human serum albumin (HSA). Frontal analysis revealed that glimepiride interacts with normal HSA and glycated HSA at a group of high affinity sites (association equilibrium constant, or Ka, 9.2-11.8×10(5)M(-1) at pH 7.4 and 37°C) and a group of lower affinity regions (Ka, 5.9-16×10(3)M(-1)). Zonal elution competition studies were designed and carried out in both normal- and reversed-role formats to investigate the binding by this drug at specific sites. These experiments indicated that glimepiride was interacting at both Sudlow sites I and II. Allosteric effects were also noted with R-warfarin at Sudlow site I and with tamoxifen at the tamoxifen site on HSA. The binding at Sudlow site I had a 2.1- to 2.3-fold increase in affinity in going from normal HSA to the glycated samples of HSA. There was no significant change in the affinity for glimepiride at Sudlow site II in going from normal HSA to a moderately glycated sample of HSA, but a slight decrease in affinity was seen in going to a more highly glycated HSA sample. These results demonstrated how various HPAC-based methods can be used to profile and characterize multi-site binding by a drug such as glimepiride to a protein and its modified forms. The information obtained from this study should be useful in providing a better understanding of how drug-protein binding may be affected by glycation and of how separation and analysis methods based on HPAC can be employed to study systems with complex interactions or that involve modified proteins.

  20. Analysis of multi-site drug-protein interactions by high-performance affinity chromatography: Binding by glimepiride to normal or glycated human serum albumin.

    PubMed

    Matsuda, Ryan; Li, Zhao; Zheng, Xiwei; Hage, David S

    2015-08-21

    High-performance affinity chromatography (HPAC) was used in a variety of formats to examine multi-site interactions between glimepiride, a third-generation sulfonylurea drug, and normal or in vitro glycated forms of the transport protein human serum albumin (HSA). Frontal analysis revealed that glimepiride interacts with normal HSA and glycated HSA at a group of high affinity sites (association equilibrium constant, or Ka, 9.2-11.8×10(5)M(-1) at pH 7.4 and 37°C) and a group of lower affinity regions (Ka, 5.9-16×10(3)M(-1)). Zonal elution competition studies were designed and carried out in both normal- and reversed-role formats to investigate the binding by this drug at specific sites. These experiments indicated that glimepiride was interacting at both Sudlow sites I and II. Allosteric effects were also noted with R-warfarin at Sudlow site I and with tamoxifen at the tamoxifen site on HSA. The binding at Sudlow site I had a 2.1- to 2.3-fold increase in affinity in going from normal HSA to the glycated samples of HSA. There was no significant change in the affinity for glimepiride at Sudlow site II in going from normal HSA to a moderately glycated sample of HSA, but a slight decrease in affinity was seen in going to a more highly glycated HSA sample. These results demonstrated how various HPAC-based methods can be used to profile and characterize multi-site binding by a drug such as glimepiride to a protein and its modified forms. The information obtained from this study should be useful in providing a better understanding of how drug-protein binding may be affected by glycation and of how separation and analysis methods based on HPAC can be employed to study systems with complex interactions or that involve modified proteins. PMID:26189669

  1. Analysis of Multi-Site Drug-Protein Interactions by High-Performance Affinity Chromatography: Binding by Glimepiride to Normal or Glycated Human Serum Albumin

    PubMed Central

    Matsuda, Ryan; Li, Zhao; Zheng, Xiwei; Hage, David S.

    2015-01-01

    High-performance affinity chromatography (HPAC) was used in a variety of formats to examine multi-site interactions between glimepiride, a third-generation sulfonylurea drug, and normal or in vitro glycated forms of the transport protein human serum albumin (HSA). Frontal analysis revealed that glimepiride interacts with normal HSA and glycated HSA at a group of high affinity sites (association equilibrium constant, or Ka, 9.2–11.8 × 105 M−1 at pH 7.4 and 37°C) and a group of lower affinity regions (Ka, 5.9–16.2 × 103 M−1). Zonal elution competition studies were designed and carried out in both normal- and reversed-role formats to investigate the binding by this drug at specific sites. These experiments indicated that glimepiride was interacting at both Sudlow sites I and II. Allosteric effects were also noted with R-warfarin at Sudlow site I and with tamoxifen at the tamoxifen site on HSA. The binding at Sudlow site I had a 2.1- to 2.3-fold increase in affinity in going from normal HSA to the glycated samples of HSA. There was no significant change in the affinity for glimepiride at Sudlow site II in going from normal HSA to a moderately glycated sample of HSA, but a slight decrease in affinity was seen in going to a more highly glycated HSA sample. These results demonstrated how various HPAC-based methods can be used to profile and characterize multi-site binding by a drug such as glimepiride to a protein and its modified forms. The information obtained from this study should be useful in providing a better understanding of how drug-protein binding may be affected by glycation and of how separation and analysis methods based on HPAC can be employed to study systems with complex interactions or that involve modified proteins. PMID:26189669

  2. HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY AND THE ANALYSIS OF DRUG INTERACTIONS WITH MODIFIED PROTEINS: BINDING OF GLICLAZIDE WITH GLYCATED HUMAN SERUM ALBUMIN

    PubMed Central

    Matsuda, Ryan; Anguizola, Jeanethe; Joseph, K.S.; Hage, David S.

    2011-01-01

    This study used high-performance affinity chromatography (HPAC) to examine the binding of gliclazide (i.e., a sulfonylurea drug used to treat diabetes) with the protein human serum albumin (HSA) at various stages of modification due to glycation. Frontal analysis conducted with small HPAC columns was first used to estimate the number of binding sites and association equilibrium constants (Ka) for gliclazide with normal HSA and glycated HSA. Both normal and glycated HSA interacted with gliclazide according to a two-site model, with a class of high affinity sites (average Ka, 7.1-10 × 104 M−1) and a group of lower affinity sites (average Ka, 5.7-8.9 × 103 M−1) at pH 7.4 and 37°C. Competition experiments indicated that Sudlow sites I and II of HSA were both involved in these interactions, with the Ka values for gliclazide at these sites being 1.9 × 104 M−1 and 6.0 × 104 M−1, respectively, for normal HSA. Two samples of glycated HSA had similar affinities to normal HSA for gliclazide at Sudlow site I, but one sample had a 1.9-fold increase in affinity at this site. All three glycated HSA samples differed from normal HSA in their affinity for gliclazide at Sudlow site II. This work illustrated how HPAC can be used to examine both the overall binding of a drug with normal or modified proteins and the site-specific changes that can occur in these interactions as a result of protein modification. PMID:21922305

  3. Phosphatidylglycerol biosynthesis in Bacillus licheniformis Resolution of membrane-bound enzymes by affinity chromatography on cytidinediphospho-sn-1,2-diacylglycerol Sepharose.

    PubMed

    Larson, T J; Hirabayshi, T; Dowhan, W

    1976-03-01

    Cytidinediphospho-sn-1,2-diaclglycerol (CDP-diglyceride) has been covalently linked to Sephrose 4B via adipic acid dihydrazide spacer arm forming an effective affinity chromatography column. This liponucleo-tide ligand and sn-glycero-3-phosphate are subtracts for the formation of 3-sn-phoshatidyl-1'-sn-glycero-3'-phosphate (PGP) catalyzed in both eukaryotic and prokaryotic organisms by sn-glycero-3-phosphate: CMP phosphatidlytranferase (PGP synthetase). Using this CDP-diglyceride Sephrose affinity column we were able to resolve the membrane associated 3-sn-phosphatidyl'1-sn-glycerol (PG) synthesizing system present in Bacillus licheniformis into two activities. A PGP synthetase activity was adsorbed to the affinity column and was eluted using buffer containg CDP-diglyceride; a PGP phosphatease acactivity had no affinity for the column. Both PGP synthase and PGP phosphatase of B. licheniformis were associated with a membrane component of the cell as evidenced by sucrose gradient centrifugation, differential centrifugation, and solubilization by buffers containing detergent... PMID:175832

  4. Engineering Escherichia coli BL21(DE3) Derivative Strains To Minimize E. coli Protein Contamination after Purification by Immobilized Metal Affinity Chromatography ▿ † ‡

    PubMed Central

    Robichon, Carine; Luo, Jianying; Causey, Thomas B.; Benner, Jack S.; Samuelson, James C.

    2011-01-01

    Recombinant His-tagged proteins expressed in Escherichia coli and purified by immobilized metal affinity chromatography (IMAC) are commonly coeluted with native E. coli proteins, especially if the recombinant protein is expressed at a low level. The E. coli contaminants display high affinity to divalent nickel or cobalt ions, mainly due to the presence of clustered histidine residues or biologically relevant metal binding sites. To improve the final purity of expressed His-tagged protein, we engineered E. coli BL21(DE3) expression strains in which the most recurring contaminants are either expressed with an alternative tag or mutated to decrease their affinity to divalent cations. The current study presents the design, engineering, and characterization of two E. coli BL21(DE3) derivatives, NiCo21(DE3) and NiCo22(DE3), which express the endogenous proteins SlyD, Can, ArnA, and (optionally) AceE fused at their C terminus to a chitin binding domain (CBD) and the protein GlmS, with six surface histidines replaced by alanines. We show that each E. coli CBD-tagged protein remains active and can be efficiently eliminated from an IMAC elution fraction using a chitin column flowthrough step, while the modification of GlmS results in loss of affinity for nickel-containing resin. The “NiCo” strains uniquely complement existing methods for improving the purity of recombinant His-tagged protein. PMID:21602383

  5. Characterization of p-aminobenzamidine-based sorbent and its use for high-performance affinity chromatography of trypsin-like proteases.

    PubMed

    Nakamura, Koji; Suzuki, Takao; Hasegawa, Masazumi; Kato, Yoshio; Sasaki, Hiroo; Inouye, Kuniyo

    2003-08-15

    An affinity sorbent, hydrophilic polymer-based carrier of different pore size (Toyopearl) with immobilized p-aminobenzamidine (ABA), has been prepared. Its basic properties and some applications for protein purification were studied. ABA, which is a synthetic inhibitor for trypsin-like proteases, was covalently immobilized to Toyopearl by reductive amination. The ligand density and binding capacity for porcine trypsin varied depending on the pore size of Toyopearl. The maximum binding capacity of the immobilized p-aminobenzamidine Toyopearl (ABA-Toyopearl) for trypsin was more than 40 mg/ml gel. ABA-Toyopearl thus obtained was very stable below pH 8 and was successfully used for high-performance affinity chromatography of trypsin-like proteases such as trypsin, thrombin, tissue-type plasminogen activator or urokinase in a single step at 25 degrees C. PMID:13677653

  6. Isolation of a Trypanosoma cruzi antigen by affinity chromatography with a monoclonal antibody. Preliminary evaluation of its possible applications in serological tests.

    PubMed Central

    Carbonetto, C H; Malchiodi, E L; Chiaramonte, M; Durante de Isola, E; Fossati, C A; Margni, R A

    1990-01-01

    By affinity chromatography with a monoclonal antibody (163B6), obtained in our laboratory, we have isolated a T. cruzi antigen which could be useful for differential diagnosis of Chagas' disease from leishmaniasis. This antigen, a 52-kD protein, reacted with all sera from Chagas' disease patients tested but not with sera from patients with leishmania, in ELISA. The 52-kD antigen is widely distributed in the Trypanosoma genus since the 163B6 monoclonal antibody reacts with T. rangeli and 8 strains and a clone of T. cruzi epimastigotes. Images Fig. 1 Fig. 2 PMID:2119921

  7. Stereoselective Binding of Chiral Ligands to Single Nucleotide Polymorphs (SNPs) of the Human Organic Cation Transporter-1 Determined Using Cellular Membrane Affinity Chromatography

    PubMed Central

    Moaddel, R.; Bighi, F.; Yamaguchi, R.; Patel, S.; Ravichandran, S.; Wainer, I.W.

    2010-01-01

    Membranes from stably transfected cell lines that expresses two point mutations of the human organic cation 1 transporter (hOCT1), R488M and G465R, have been immobilized on the immobilized artificial membrane (IAM) liquid chromatographic stationary phase to form the Cellular Membrane Affinity Chromatography (CMAC) (hOCT1G465R) and CMAC(hOCT1R488M). Columns were created using both stationary phases and frontal displacement chromatography experiments were conducted using [3H]-methyl phenyl pyridinium, [3H]-MPP+, as the marker ligand and various displacers, including the single enantiomers of verapamil, fenoterol and isoproterenol. The chromatographic data obtained was used to refine a previously developed pharmacophore for the hOCT1 transporter. PMID:20206116

  8. Analysis of drug-protein interactions by high-performance affinity chromatography: interactions of sulfonylurea drugs with normal and glycated human serum albumin.

    PubMed

    Matsuda, Ryan; Anguizola, Jeanethe; Hoy, Krina S; Hage, David S

    2015-01-01

    High-performance affinity chromatography (HPAC) is a type of liquid chromatography that has seen growing use as a tool for the study of drug-protein interactions. This report describes how HPAC can be used to provide information on the number of binding sites, equilibrium constants, and changes in binding that can occur during drug-protein interactions. This approach will be illustrated through recent data that have been obtained by HPAC for the binding of sulfonylurea drugs and other solutes to the protein human serum albumin (HSA), and especially to forms of this protein that have been modified by non-enzymatic glycation. The theory and use of both frontal analysis and zonal elution competition studies in such work will be discussed. Various practical aspects of these experiments will be presented, as well as factors to consider in the extension of these methods to other drugs and proteins or additional types of biological interactions. PMID:25749961

  9. Identification of Signaling Protein Complexes by Parallel Affinity Precipitation Coupled with Mass Spectrometry

    PubMed Central

    Lu, Heng; Lin, Qishan; Zhao, Jihe

    2014-01-01

    Protein–protein interactions play a pivotal role in both inter- and intra-cellular signaling. Identification of signaling protein complexes can thus shed important new insights into cell communications. We developed a parallel affinity precipitation protocol to overcome the disadvantages of the tandem affinity purification procedure, such as the potential disruption of target protein conformation, subcellular localization or function by epitope tags, the potential need of large amounts of cell culture or generation of stable cell lines, and relatively long duration the two-step precipitation takes. This new simplified assay of protein interaction is quick, economic and specific. This paper describes the details in the design and method of the assay. PMID:24839392

  10. Expression of bioactive soluble human stem cell factor (SCF) from recombinant Escherichia coli by coproduction of thioredoxin and efficient purification using arginine in affinity chromatography.

    PubMed

    Akuta, Teruo; Kikuchi-Ueda, Takane; Imaizumi, Keitaro; Oshikane, Hiroyuki; Nakaki, Toshio; Okada, Yoko; Sultana, Sara; Kobayashi, Kenichiro; Kiyokawa, Nobutaka; Ono, Yasuo

    2015-01-01

    Stem cell factor (SCF) known as the c-kit ligand is a two disulfide bridge-containing cytokine in the regulation of the development and function of hematopoietic cell lineages and other cells such as mast cells, germ cells, and melanocytes. The secreted soluble form of SCF exists as noncovalently associated homodimer and exerts its activity by signaling through the c-Kit receptor. In this report, we present the high level expression of a soluble recombinant human SCF (rhSCF) in Escherichia coli. A codon-optimized Profinity eXact™-tagged hSCF cDNA was cloned into pET3b vector, and transformed into E. coli BL21(DE3) harboring a bacterial thioredoxin coexpression vector. The recombinant protein was purified via an affinity chromatography processed by cleavage with sodium fluoride, resulting in the complete proteolytic removal the N-terminal tag. Although almost none of the soluble fusion protein bound to the resin in standard protocol using 0.1M sodium phosphate buffer (pH 7.2), the use of binding buffer containing 0.5M l-arginine for protein stabilization dramatically enhanced binding to resin and recovery of the protein beyond expectation. Also pretreatment by Triton X-114 for removing endotoxin was effective for affinity chromatography. In chromatography performance, l-arginine was more effective than Triton X-114 treatment. Following Mono Q anion exchange chromatography, the target protein was isolated in high purity. The rhSCF protein specifically enhanced the viability of human myeloid leukemia cell line TF-1 and the proliferation and maturation of human mast cell line LAD2 cell. This novel protocol for the production of rhSCF is a simple, suitable, and efficient method.

  11. High-Affinity Proton Donors Promote Proton-Coupled Electron Transfer by Samarium Diiodide.

    PubMed

    Chciuk, Tesia V; Anderson, William R; Flowers, Robert A

    2016-05-10

    The relationship between proton-donor affinity for Sm(II) ions and the reduction of two substrates (anthracene and benzyl chloride) was examined. A combination of spectroscopic, thermochemical, and kinetic studies show that only those proton donors that coordinate or chelate strongly to Sm(II) promote anthracene reduction through a PCET process. These studies demonstrate that the combination of Sm(II) ions and water does not provide a unique reagent system for formal hydrogen atom transfer to substrates. PMID:27061351

  12. Photodetachment of an electron from selenide ion - The electron affinity and spin-orbit coupling constant for SeH.

    NASA Technical Reports Server (NTRS)

    Smyth, K. C.; Brauman, J. I.

    1972-01-01

    The relative cross section for the gas phase photodetachment of an electron from SeH(-) was determined in the wavelength region 428 to 578 nm. An ion cyclotron resonance spectrometer was used to generate, trap, and detect the negative ions, and a 1000-W xenon arc lamp with a grating monochromator was employed as the light source. The cross section exhibited two sharp thresholds, whose positions remained unchanged for the photodetachment of SeD(-). As a result of these thresholds, the electron affinity and the spin-orbit coupling constant were evaluated.

  13. Comprehensive two-dimensional chromatography with coupling of reversed phase high performance liquid chromatography and supercritical fluid chromatography.

    PubMed

    Stevenson, Paul G; Tarafder, Abhijit; Guiochon, Georges

    2012-01-13

    A 2D comprehensive chromatographic separation of blackberry sage fragrant oil was performed by using HPLC in the first dimension and SFC in the second. A C(18)-bonded silica column eluted with an ACN gradient was used in the HPLC dimension and an amino-bonded silica column eluted with ACN as a modifier in the SFC dimension. This 2D separation was completed in the off-line mode, the fractions from the HPLC column being collected and injected in the SFC column. The retention factors on the two columns have a -0.757 correlation coefficient. The method provides a practical peak capacity of 2400 in 280 min. The first eluted peaks in HPLC are the last ones eluted in SFC and vice versa. The results demonstrate that the coupling of an HPLC and an SFC separation have a great potential for 2D chromatographic separations.

  14. Surface plasmon resonance spectroscopy-based high-throughput screening of ligands for use in affinity and displacement chromatography.

    PubMed

    Vutukuru, Srinavya; Kane, Ravi S

    2008-10-21

    We describe an approach that uses surface plasmon resonance (SPR) spectroscopy and self-assembled monolayers (SAMs) for the high-throughput screening of ligands for use in displacement and affinity chromatographic processes. We identified a set of commercially available organic amines and allowed them to react with SAMs presenting interchain carboxylic anhydride groups; the resulting surfaces presented ligands of interest in a background of carboxylic acid groups. We used SPR spectroscopy to determine the extent of adsorption of two model proteinslysozyme and cytochrome conto these "multimodal" surfaces and to select promising "affinity" ligands for further characterization. The attachment of selected ligands to UltraLink Biosupport resulted in beads with a significantly greater affinity for lysozyme than for cytochrome c that would be suitable for use in affinity chromatographic processes. Furthermore, we also used the screens to design "affinity displacers"small molecules that selectively retain lysozyme on chromatographic resins, while displacing cytochrome c. The combination of SPR spectroscopy and SAMs represents a powerful technique for identifying novel ligands that enable the purification of complex protein mixtures.

  15. Liquid chromatography-mass spectrometry in metabolomics research: mass analyzers in ultra high pressure liquid chromatography coupling.

    PubMed

    Forcisi, Sara; Moritz, Franco; Kanawati, Basem; Tziotis, Dimitrios; Lehmann, Rainer; Schmitt-Kopplin, Philippe

    2013-05-31

    The present review gives an introduction into the concept of metabolomics and provides an overview of the analytical tools applied in non-targeted metabolomics with a focus on liquid chromatography (LC). LC is a powerful analytical tool in the study of complex sample matrices. A further development and configuration employing Ultra-High Pressure Liquid Chromatography (UHPLC) is optimized to provide the largest known liquid chromatographic resolution and peak capacity. Reasonably UHPLC plays an important role in separation and consequent metabolite identification of complex molecular mixtures such as bio-fluids. The most sensitive detectors for these purposes are mass spectrometers. Almost any mass analyzer can be optimized to identify and quantify small pre-defined sets of targets; however, the number of analytes in metabolomics is far greater. Optimized protocols for quantification of large sets of targets may be rendered inapplicable. Results on small target set analyses on different sample matrices are easily comparable with each other. In non-targeted metabolomics there is almost no analytical method which is applicable to all different matrices due to limitations pertaining to mass analyzers and chromatographic tools. The specifications of the most important interfaces and mass analyzers are discussed. We additionally provide an exemplary application in order to demonstrate the level of complexity which remains intractable up to date. The potential of coupling a high field Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (ICR-FT/MS), the mass analyzer with the largest known mass resolving power, to UHPLC is given with an example of one human pre-treated plasma sample. This experimental example illustrates one way of overcoming the necessity of faster scanning rates in the coupling with UHPLC. The experiment enabled the extraction of thousands of features (analytical signals). A small subset of this compositional space could be mapped into a mass

  16. Determination of oxidized phosphatidylcholines by hydrophilic interaction liquid chromatography coupled to Fourier transform mass spectrometry.

    PubMed

    Sala, Pia; Pötz, Sandra; Brunner, Martina; Trötzmüller, Martin; Fauland, Alexander; Triebl, Alexander; Hartler, Jürgen; Lankmayr, Ernst; Köfeler, Harald C

    2015-04-14

    A novel liquid chromatography-mass spectrometry (LC-MS) approach for analysis of oxidized phosphatidylcholines by an Orbitrap Fourier Transform mass spectrometer in positive electrospray ionization (ESI) coupled to hydrophilic interaction liquid chromatography (HILIC) was developed. This method depends on three selectivity criteria for separation and identification: retention time, exact mass at a resolution of 100,000 and collision induced dissociation (CID) fragment spectra in a linear ion trap. The process of chromatography development showed the best separation properties with a silica-based Kinetex column. This type of chromatography was able to separate all major lipid classes expected in mammalian samples, yielding increased sensitivity of oxidized phosphatidylcholines over reversed phase chromatography. Identification of molecular species was achieved by exact mass on intact molecular ions and CID tandem mass spectra containing characteristic fragments. Due to a lack of commercially available standards, method development was performed with copper induced oxidation products of palmitoyl-arachidonoyl-phosphatidylcholine, which resulted in a plethora of lipid species oxidized at the arachidonoyl moiety. Validation of the method was done with copper oxidized human low-density lipoprotein (LDL) prepared by ultracentrifugation. In these LDL samples we could identify 46 oxidized molecular phosphatidylcholine species out of 99 possible candidates.

  17. Adsorption of peptides and small proteins with control access polymer permeation to affinity binding sites. Part I: Polymer permeation-immobilized metal ion affinity chromatography separation adsorbents with polyethylene glycol and immobilized metal ions.

    PubMed

    González-Ortega, Omar; Porath, Jerker; Guzmán, Roberto

    2012-03-01

    Despite the many efforts to develop efficient protein purification techniques, the isolation of peptides and small proteins on a larger than analytical scale remains a significant challenge. Recovery of small biomolecules from diluted complex biological mixtures, such as human serum, employing porous adsorbents is a difficult task mainly due to the presence of concentrated large biomolecules that can add undesired effects in the system such as blocking of adsorbent pores, impairing diffusion of small molecules, or competition for adsorption sites. Adsorption and size exclusion chromatography (AdSEC) controlled access media, using polyethylene glycol (PEG) as a semi-permeable barrier on a polysaccharide matrix, have been developed and explored in this work to overcome such effects and to preferentially adsorb small molecules while rejecting large ones. In the first part of this work, adsorption studies were performed with small peptides and proteins from synthetic mixtures using controlled access polymer permeation adsorption (CAPPA) media created by effectively grafting PEG on an immobilized metal affinity chromatography (IMAC) agarose resin, where chelating agents and immobilized metal ions were used as the primary affinity binding sites. Synthetic mixtures consisted of bovine serum albumin (BSA) with small proteins, peptides, amino acids (such as histidine or Val⁴-Angiotensin III), and small molecules-spiked human serum. The synthesized hybrid adsorbent consisted of agarose beads modified with iminodiacetic (IDA) groups, loaded with immobilized Cu(II) ions, and PEG. These CAPPA media with grafted PEG on the interior and exterior surfaces of the agarose matrix were effective in rejecting high molecular weight proteins. Different PEG grafting densities and PEG of different molecular weight were tested to determine their effect in rejecting and controlling adsorbent permeation properties. Low grafting density of high molecular weight PEG was found to be as

  18. Separation of actinides using capillary extraction chromatography-inductively coupled plasma mass spectrometry

    SciTech Connect

    Peterson, Dominic S

    2008-01-01

    Trace levels of actinides have been separated on extraction chromatography columns. Detection of the actinides was achieved using an inductively coupled plasma mass spectrometer (ICP-MS), which was coupled with the extraction chromatography system. In this study we compare 30 cm long, 4.6 mm ID columns to capillary columns (750 {micro}m ID) with lengths from 30 cm up to 150 cm. The columns that were tested were packed with TRU resin. We were able to separate a mixture of five actinides ({sup 232}Th, {sup 238}U, {sup 237}Np, {sup 239}pU, {sup 241}Am). This work has application to rapid bioassay as well as for automated separations of actinide materials.

  19. Hollow fiber based affinity selection combined with high performance liquid chromatography-mass spectroscopy for rapid screening lipase inhibitors from lotus leaf.

    PubMed

    Tao, Yi; Zhang, Yufeng; Wang, Yi; Cheng, Yiyu

    2013-06-27

    A novel kind of immobilized enzyme affinity selection strategy based on hollow fibers has been developed for screening inhibitors from extracts of medicinal plants. Lipases from porcine pancreas were adsorbed onto the surface of polypropylene hollow fibers to form a stable matrix for ligand fishing, which was called hollow fibers based affinity selection (HF-AS). A variety of factors related to binding capability, including enzyme concentration, incubation time, temperature, buffer pH and ion strength, were optimized using a known lipase inhibitor hesperidin. The proposed approach was applied in screening potential lipase bound ligands from extracts of lotus leaf, followed by rapid characterization of active compounds using high performance liquid chromatography-mass spectrometry. Three flavonoids including quercetin-3-O-β-D-arabinopyranosyl-(1→2)-β-D-galactopyranoside, quercetin-3-O-β-D-glucuronide and kaempferol-3-O-β-d-glucuronide were identified as lipase inhibitors by the proposed HF-AS approach. Our findings suggested that the hollow fiber-based affinity selection could be a rapid and convenient approach for drug discovery from natural products resources. PMID:23764446

  20. On-column entrapment of alpha1-acid glycoprotein for studies of drug-protein binding by high-performance affinity chromatography.

    PubMed

    Anguizola, Jeanethe; Bi, Cong; Koke, Michelle; Jackson, Abby; Hage, David S

    2016-08-01

    An on-column approach for protein entrapment was developed to immobilize alpha1-acid glycoprotein (AGP) for drug-protein binding studies based on high-performance affinity chromatography. Soluble AGP was physically entrapped by using microcolumns that contained hydrazide-activated porous silica and by employing mildly oxidized glycogen as a capping agent. Three on-column entrapment methods were evaluated and compared to a previous slurry-based entrapment method. The final selected method was used to prepare 1.0 cm × 2.1 mm I.D. affinity microcolumns that contained up to 21 (±4) μg AGP and that could be used over the course of more than 150 sample applications. Frontal analysis and zonal elution studies were performed on these affinity microcolumns to examine the binding of various drugs with the entrapped AGP. Site-selective competition studies were also conducted for these drugs. The results showed good agreement with previous observations for these drug-protein systems and with binding constants that have been reported in the literature. The entrapment method developed in this study should be useful for future work in the area of personalized medicine and in the high-throughput screening of drug interactions with AGP or other proteins. Graphical abstract On-column protein entrapment using a hydrazide-activated support and oxidized glycogen as a capping agent.

  1. On-column entrapment of alpha1-acid glycoprotein for studies of drug-protein binding by high-performance affinity chromatography.

    PubMed

    Anguizola, Jeanethe; Bi, Cong; Koke, Michelle; Jackson, Abby; Hage, David S

    2016-08-01

    An on-column approach for protein entrapment was developed to immobilize alpha1-acid glycoprotein (AGP) for drug-protein binding studies based on high-performance affinity chromatography. Soluble AGP was physically entrapped by using microcolumns that contained hydrazide-activated porous silica and by employing mildly oxidized glycogen as a capping agent. Three on-column entrapment methods were evaluated and compared to a previous slurry-based entrapment method. The final selected method was used to prepare 1.0 cm × 2.1 mm I.D. affinity microcolumns that contained up to 21 (±4) μg AGP and that could be used over the course of more than 150 sample applications. Frontal analysis and zonal elution studies were performed on these affinity microcolumns to examine the binding of various drugs with the entrapped AGP. Site-selective competition studies were also conducted for these drugs. The results showed good agreement with previous observations for these drug-protein systems and with binding constants that have been reported in the literature. The entrapment method developed in this study should be useful for future work in the area of personalized medicine and in the high-throughput screening of drug interactions with AGP or other proteins. Graphical abstract On-column protein entrapment using a hydrazide-activated support and oxidized glycogen as a capping agent. PMID:27289464

  2. Speciation of volatile selenium species in plants using gas chromatography/inductively coupled plasma mass spectrometry.

    PubMed

    Meija, Juris; Montes-Bayón, Maria; Caruso, Joseph A; Leduc, Danika L; Terry, Norman

    2004-01-01

    Gas chromatography/inductively coupled plasma mass spectrometry (GC/ICP-MS) coupled with solid phase micro-extraction can provide a simple, extremely selective and sensitive technique for the analysis of volatile sulfur and selenium compounds in the headspace of growing plants. In this work, the technique was used to evaluate the volatilization of selenium in wild-type and genetically-modified Brassica juncea seedlings. By converting toxic inorganic selenium in the soil to less toxic, volatile organic selenium, B. juncea might be useful in bioremediation of selenium contaminated soil.

  3. Use of entrapment and high-performance affinity chromatography to compare the binding of drugs and site-specific probes with normal and glycated human serum albumin

    PubMed Central

    Jackson, Abby J.; Anguizola, Jeanethe; Pfaunmiller, Erika L.; Hage, David S.

    2013-01-01

    Protein entrapment and high-performance affinity chromatography were used with zonal elution to examine the changes in binding that occurred for site-specific probes and various sulfonylurea drugs with normal and glycated forms of human serum albumin (HSA). Samples of this protein in a soluble form were physically entrapped within porous silica particles by using glycogen-capped hydrazide-activated silica; these supports were then placed into 1.0 cm × 2.1 mm inner diameter columns. Initial zonal elution studies were performed using (R)-warfarin and L-tryptophan as probes for Sudlow sites I and II (i.e., the major drug binding sites of HSA), giving quantitative measures of binding affinities in good agreement with literature values. It was also found for solutes with multisite binding to the same proteins, such as many sulfonylurea drugs, that this method could be used to estimate the global affinity of the solute for the entrapped protein. This entrapment and zonal approach provided retention information with precisions of ±0.1–3.3% (± one standard deviation) and elution within 0.50–3.00 min for solutes with binding affinities of 1 × 104–3 × 105 M−1. Each entrapped-protein column was used for many binding studies, which decreased the cost and amount of protein needed per injection (e.g., the equivalent of only 125–145 pmol of immobilized HSA or glycated HSA per injection over 60 sample application cycles). This method can be adapted for use with other proteins and solutes and should be valuable in high-throughput screening or quantitative studies of drug–protein binding or related biointeractions. PMID:23657448

  4. Isolation of the alpha subunits of GTP-binding regulatory proteins by affinity chromatography with immobilized beta gamma subunits.

    PubMed Central

    Pang, I H; Sternweis, P C

    1989-01-01

    Immobilized beta gamma subunits of GTP-binding regulatory proteins (G proteins) were used to isolate alpha subunits from solubilized membranes of bovine tissues and to separate specific alpha subunits based on their differential affinities for beta gamma subunits. The beta gamma subunits were cross-linked to omega-aminobutyl agarose. Up to 7 nmol of alpha subunit could bind to each milliliter of beta gamma-agarose and be recovered by elution with AIF4-. This affinity resin effectively separated the alpha subunits of Gi1 and Gi2 from "contaminating" alpha subunits of Go, the most abundant G protein in bovine brain, by taking advantage of the apparent lower affinity of the alpha subunits of Go for beta gamma subunits. The beta gamma-agarose was also used to isolate mixtures of alpha subunits from cholate extracts of membranes from different bovine tissues. alpha subunits of 39-41 kDa (in various ratios) as well as the alpha subunits of Gs were purified. The yields from extracts exceeded 60% for all alpha subunits examined and apparently represented the relative content of alpha subunits in the tissues. This technique can rapidly isolate and identify, from a small amount of sample, the endogenous G proteins in various tissues and cells. So far, only polypeptides in the range of 39-52 kDa have been detected with this approach. If other GTP-binding proteins interact with these beta gamma subunits, the interaction is either of low affinity or mechanistically unique from the alpha subunits isolated in this study. Images PMID:2510152

  5. Screening for low molecular weight compounds in fish meal solubles by hydrophilic interaction liquid chromatography coupled to mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A simple analytical method using hydrophilic interaction liquid chromatography coupled with mass spectrometry was developed to screen for low molecular weight compounds in enzyme treated and untreated Alaskan pollock (Theragra chalcogramma) stickwater (SW) generated from processing fish meal with po...

  6. Expression cloning and functional characterization of the kidney cortex high-affinity proton-coupled peptide transporter.

    PubMed Central

    Boll, M; Herget, M; Wagener, M; Weber, W M; Markovich, D; Biber, J; Clauss, W; Murer, H; Daniel, H

    1996-01-01

    The presence of a proton-coupled electrogenic high-affinity peptide transporter in the apical membrane of tubular cells has been demonstrated by microperfusion studies and by use of brush border membrane vesicles. The transporter mediates tubular uptake of filtered di- and tripeptides and aminocephalosporin antibiotics. We have used expression cloning in Xenopus laevis oocytes for identification and characterization of the renal high-affinity peptide transporter. Injection of poly(A)+ RNA isolated from rabbit kidney cortex into oocytes resulted in expression of a pH-dependent transport activity for the aminocephalosporin antibiotic cefadroxil. After size fractionation of poly(A)+ RNA the transport activity was identified in the 3.0- to 5.0-kb fractions, which were used for construction of a cDNA library. The library was screened for expression of cefadroxil transport after injection of complementary RNA synthesized in vitro from different pools of clones. A single clone (rPepT2) was isolated that stimulated cefadroxil uptake into oocytes approximately 70-fold at a pH of 6.0. Kinetic analysis of cefadroxil uptake expressed by the transporter's complementary RNA showed a single saturable high-affinity transport system shared by dipeptides, tripeptides, and selected amino-beta-lactam antibiotics. Electrophysiological studies established that the transport activity is electrogenic and affected by membrane potential. Sequencing of the cDNA predicts a protein of 729 amino acids with 12 membrane-spanning domains. Although there is a significant amino acid sequence identity (47%) to the recently cloned peptide transporters from rabbit and human small intestine, the renal transporter shows distinct structural and functional differences. Images Fig. 7 PMID:8552623

  7. Stationary phase modulation in liquid chromatography through the serial coupling of columns: A review.

    PubMed

    Alvarez-Segura, T; Torres-Lapasió, J R; Ortiz-Bolsico, C; García-Alvarez-Coque, M C

    2016-06-01

    Liquid chromatography with single columns often does not succeed in the analysis of complex samples, in terms of resolution and analysis time. A relatively simple solution to enhance chromatographic resolution is the modulation of the stationary phase through the serial coupling of columns. This can be implemented with any type of column using compatible elution conditions and conventional instruments. This review describes the key features of column coupling and published procedures, where two or more columns were coupled in series to solve separation problems. In all reports, the authors could not resolve their samples with single columns, whereas significant enhancement in chromatographic performance was obtained when the columns were combined. Particularly interesting is the reduction in the analysis time in the isocratic mode, which alleviates the "general elution problem" of liquid chromatography, and may represent a stimulus for the proposal of new procedures, especially in combination with mass spectrometric, electrochemical and refractometric detection. Developments proposed to make the serial coupling of columns useful in routine and research laboratories are outlined, including optimisation strategies that facilitate the selection of the appropriate column combination and elution conditions (solvent content, flow rate or temperature) in both isocratic and gradient modes. The availability of zero dead volume couplers, able to connect standard columns, and the commercialisation of short columns with multiple lengths, have expanded the possibilities of success. PMID:27155298

  8. Stationary phase modulation in liquid chromatography through the serial coupling of columns: A review.

    PubMed

    Alvarez-Segura, T; Torres-Lapasió, J R; Ortiz-Bolsico, C; García-Alvarez-Coque, M C

    2016-06-01

    Liquid chromatography with single columns often does not succeed in the analysis of complex samples, in terms of resolution and analysis time. A relatively simple solution to enhance chromatographic resolution is the modulation of the stationary phase through the serial coupling of columns. This can be implemented with any type of column using compatible elution conditions and conventional instruments. This review describes the key features of column coupling and published procedures, where two or more columns were coupled in series to solve separation problems. In all reports, the authors could not resolve their samples with single columns, whereas significant enhancement in chromatographic performance was obtained when the columns were combined. Particularly interesting is the reduction in the analysis time in the isocratic mode, which alleviates the "general elution problem" of liquid chromatography, and may represent a stimulus for the proposal of new procedures, especially in combination with mass spectrometric, electrochemical and refractometric detection. Developments proposed to make the serial coupling of columns useful in routine and research laboratories are outlined, including optimisation strategies that facilitate the selection of the appropriate column combination and elution conditions (solvent content, flow rate or temperature) in both isocratic and gradient modes. The availability of zero dead volume couplers, able to connect standard columns, and the commercialisation of short columns with multiple lengths, have expanded the possibilities of success.

  9. Virus-Binding Proteins Recovered from Bacterial Culture Derived from Activated Sludge by Affinity Chromatography Assay Using a Viral Capsid Peptide

    PubMed Central

    Sano, Daisuke; Matsuo, Takahiro; Omura, Tatsuo

    2004-01-01

    The contamination of water environments by pathogenic viruses has raised concerns about outbreaks of viral infectious diseases in our society. Because conventional water and wastewater treatment systems are not effective enough to inactivate or remove pathogenic viruses, a new technology for virus removal needs to be developed. In this study, the virus-binding proteins (VBPs) in a bacterial culture derived from activated sludge were successfully recovered. The recovery of VBPs was achieved by applying extracted crude proteins from a bacterial culture to an affinity column in which a custom-made peptide of capsid protein from the poliovirus type 1 (PV1) Mahoney strain (H2N-DNPASTTNKDKL-COOH) was immobilized as a ligand. VBPs exhibited the ability to adsorb infectious particles of PV1 Sabin 1 as determined by enzyme-linked immunosorbent assay. The evaluation of surface charges of VBPs with ion-exchange chromatography found that a majority of VBP molecules had a net negative charge under the conditions of affinity chromatography. On the other hand, a calculated isoelectric point implied that the viral peptide in the affinity column was also charged negatively. As a result, the adsorption of the VBPs to the viral peptide in the affinity column occurred with a strong attractive force that was able to overcome the electrostatic repulsive force. Two-dimensional electrophoresis revealed that the isolated VBPs include a number of proteins, and their molecular masses were widely distributed but smaller than 100 kDa. Amino acid sequences of N termini of five VBPs were determined. Homology searches for the N termini against all protein sequences in the National Center for Biotechnology Information (NCBI) database showed that the isolated VBPs in this study were newly discovered proteins. These VBPs that originated with bacteria in activated sludge might be stable, because they are existing in the environment of wastewater treatments. Therefore, a virus removal technology

  10. Two-dimensional turbulent flow chromatography coupled on-line to liquid chromatography-mass spectrometry for solution-based ligand screening against multiple proteins.

    PubMed

    Zhou, Jian-Liang; An, Jing-Jing; Li, Ping; Li, Hui-Jun; Jiang, Yan; Cheng, Jie-Fei

    2009-03-20

    We present herein a novel bioseparation/chemical analysis strategy for protein-ligand screening and affinity ranking in compound mixtures, designed to increase screening rates and improve sensitivity and ruggedness in performance. The strategy is carried out by combining on-line two-dimensional turbulent flow chromatography (2D-TFC) with liquid chromatography-mass spectrometry (LC-MS), and accomplished through the following steps: (1) a reversed-phase TFC stage to separate the protein/ligand complex from the unbound free molecules, (2) an on-line dissociation process to release the bound ligands from the complexes, and (3) a second mixed-mode cation-exchange/reversed-phase TFC stage to trap the bound ligands and to remove the proteins and salts, followed by LC-MS analysis for identification and determination of the binding affinities. The technique can implement an ultra-fast isolation of protein/ligand complex with the retention time of a complex peak in about 5s, and on-line prepare the "clean" sample to be directly compatible with the LC-MS analysis. The improvement in performance of this 2D-TFC/LC-MS approach over the conventional approach has been demonstrated by determining affinity-selected ligands of the target proteins acetylcholinesterase and butyrylcholinesterase from a small library with known binding affinities and a steroidal alkaloid library composed of structurally similar compounds. Our results show that 2D-TFC/LC-MS is a generic and efficient tool for high-throughput screening of ligands with low-to-high binding affinities, and structure-activity relationship evaluation. PMID:19203758

  11. FYWHCLDE-based affinity chromatography of IgG: effect of ligand density and purifications of human IgG and monoclonal antibody.

    PubMed

    Zhao, Wei-Wei; Shi, Qing-Hong; Sun, Yan

    2014-08-15

    This work reports the development of an octapeptide-based affinity adsorbent for the purification of human IgG (hIgG) and monoclonal antibody (mAb). The octapeptide was FYWHCLDE selected earlier by the biomimetic design of affinity peptide ligands for hIgG. The ligand was coupled to Sepharose gel at four densities from 10.4 to 31.0μmol/mL, and the effect of peptide density on the adsorption of hIgG and bovine serum albumin (BSA) was first investigated. The binding capacity of hIgG increased from 104.2 to 176.4mg/mL within the ligand density range, and the binding affinity (dissociation constant) kept at 2.4-3.7μM. Batch adsorption revealed that the selectivity of FYWHCLDE-Sepharose for IgG was 30-40 times over BSA. The effective pore diffusivity of IgG decreased somewhat with increasing ligand density, but the dynamic binding capacity at 10% breakthrough, measured by using 10-fold diluted human serum as feedstock, doubled with increasing ligand density from 10.4 to 31.0μmol/mL due to the remarkable increase of static binding capacity. By using the affinity column with a ligand density of 23.9μmol/mL, hIgG and humanized mAb purifications from human serum and cell culture supernatant, respectively, were achieved at high purities and recovery yields. Finally, the robustness of the peptide gel was demonstrated by recycled use of the affinity column in 20 breakthrough cycles. PMID:24947889

  12. Isolation of Labile Multi-protein Complexes by in vivo Controlled Cellular Cross-Linking and Immuno-magnetic Affinity Chromatography

    PubMed Central

    Zlatic, Stephanie A.; Ryder, Pearl V.; Salazar, Gloria; Faundez, Victor

    2010-01-01

    The dynamic nature of cellular machineries is frequently built on transient and/or weak protein associations. These low affinity interactions preclude stringent methods for the isolation and identification of protein networks around a protein of interest. The use of chemical crosslinkers allows the selective stabilization of labile interactions, thus bypassing biochemical limitations for purification. Here we present a protocol amenable for cells in culture that uses a homobifunctional crosslinker with a spacer arm of 12 Å, dithiobis-(succinimidyl proprionate) (DSP). DSP is cleaved by reduction of a disulphide bond present in the molecule. Cross-linking combined with immunoaffinity chromatography of proteins of interest with magnetic beads allows the isolation of protein complexes that otherwise would not withstand purification. This protocol is compatible with regular western blot techniques and it can be scaled up for protein identification by mass spectrometry1. Stephanie A. Zlatic and Pearl V. Ryder contributed equally to this work. PMID:20216526

  13. Enhanced DR5 binding capacity of nanovectorized TRAIL compared to its cytotoxic version by affinity chromatography and molecular docking studies.

    PubMed

    Zakaria, Albatoul; Picaud, Fabien; Guillaume, Yves Claude; Gharbi, Tijani; Micheau, Olivier; Herlem, Guillaume

    2016-09-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis of cancer cells when bound to its cognate receptors, TRAIL-R1 and TRAIL-R2 (DR4 and DR5), without being toxic to healthy cells. Nanovectorized TRAIL (abbreviated as NPT) is 10 to 20 times more efficient than one of the most potent soluble TRAIL used in preclinical studies (His-TRAIL). To determine whether differences in affinity may account for NPT superiority, a thermodynamic study was undertaken to evaluate NPT versus TRAIL binding affinity to DR5. Docking calculations showed that TRAIL in homotrimer configuration was more stable than in heterotrimer, because of the presence of one Zn ion in its structure. Indeed, TRAIL trimers can have head-to-tail orientations when Zn is missing. Altogether these data suggest that TRAIL homotrimer structures are predominant in solution and then are grafted on NPT. When docked to DR5, NPT carrying TRAIL homotrimer leads to a more stable complex than TRAIL monomer-based NPT. To comfort these observations, the extracellular domain of DR5 was immobilized on a chromatographic support using an "in situ" immobilization technique. The determination of the thermodynamic data (enthalpy ∆H° and entropy ∆S°*) of TRAIL and NPT binding to DR5 showed that the binding mechanism was pH dependent. The affinity of NPT to DR5 increased with pH, and the ionized energy was more important for NPT than for soluble TRAIL. Moreover, because of negative values of ∆H° and ∆S°* quantities, we demonstrated that van der Waals and hydrogen bonds governed the strong NPT-DR5 association for pH > 7.4 (as for TRAIL alone). Copyright © 2016 John Wiley & Sons, Ltd. PMID:26952193

  14. Application of a convergent, composite coupled cluster approach to bound state, adiabatic electron affinities in atoms and small molecules

    NASA Astrophysics Data System (ADS)

    Feller, David

    2016-01-01

    Benchmark quality adiabatic electron affinities for a collection of atoms and small molecules were obtained with the Feller-Peterson-Dixon composite coupled cluster theory method. Prior applications of this method demonstrated its ability to accurately predict atomization energies/heats of formation for more than 170 molecules. In the current work, the 1-particle expansion involved very large correlation consistent basis sets, ranging up to aug-cc-pV9Z (aug-cc-pV10Z for H and H2), with the goal of minimizing the residual basis set truncation error that must otherwise be approximated with extrapolation formulas. The n-particle expansion begins with coupled cluster calculations through iterative single and double excitations plus a quasiperturbative treatment of "connected" triple excitations (CCSD(T)) pushed to the complete basis set limit followed by CCSDT, CCSDTQ, or CCSDTQ5 corrections. Due to the small size of the systems examined here, it was possible in many cases to extend the n-particle expansion to the full configuration interaction wave function limit. Additional, smaller corrections associated with core/valence correlation, scalar relativity, anharmonic zero point vibrational energies, and non-adiabatic effects were also included. The overall root mean square (RMS) deviation was 0.005 eV (0.12 kcal/mol). This level of agreement was comparable to what was found with molecular heats of formation. A 95% confidence level corresponds to roughly twice the RMS value or 0.01 eV. While the atomic electron affinities are known experimentally to high accuracy, the molecular values are less certain. This contributes to the difficulty of gauging the accuracy of the theoretical results. A limited number of electron affinities were determined with the explicitly correlated CCSD(T)-F12b method. After extending the VnZ-F12 orbital basis sets with additional diffuse functions, the F12b method was found to accurately reproduce the best F/F- value obtained with standard

  15. Application of a convergent, composite coupled cluster approach to bound state, adiabatic electron affinities in atoms and small molecules.

    PubMed

    Feller, David

    2016-01-01

    Benchmark quality adiabatic electron affinities for a collection of atoms and small molecules were obtained with the Feller-Peterson-Dixon composite coupled cluster theory method. Prior applications of this method demonstrated its ability to accurately predict atomization energies/heats of formation for more than 170 molecules. In the current work, the 1-particle expansion involved very large correlation consistent basis sets, ranging up to aug-cc-pV9Z (aug-cc-pV10Z for H and H2), with the goal of minimizing the residual basis set truncation error that must otherwise be approximated with extrapolation formulas. The n-particle expansion begins with coupled cluster calculations through iterative single and double excitations plus a quasiperturbative treatment of "connected" triple excitations (CCSD(T)) pushed to the complete basis set limit followed by CCSDT, CCSDTQ, or CCSDTQ5 corrections. Due to the small size of the systems examined here, it was possible in many cases to extend the n-particle expansion to the full configuration interaction wave function limit. Additional, smaller corrections associated with core/valence correlation, scalar relativity, anharmonic zero point vibrational energies, and non-adiabatic effects were also included. The overall root mean square (RMS) deviation was 0.005 eV (0.12 kcal/mol). This level of agreement was comparable to what was found with molecular heats of formation. A 95% confidence level corresponds to roughly twice the RMS value or 0.01 eV. While the atomic electron affinities are known experimentally to high accuracy, the molecular values are less certain. This contributes to the difficulty of gauging the accuracy of the theoretical results. A limited number of electron affinities were determined with the explicitly correlated CCSD(T)-F12b method. After extending the VnZ-F12 orbital basis sets with additional diffuse functions, the F12b method was found to accurately reproduce the best F/F(-) value obtained with standard

  16. Application of a convergent, composite coupled cluster approach to bound state, adiabatic electron affinities in atoms and small molecules.

    PubMed

    Feller, David

    2016-01-01

    Benchmark quality adiabatic electron affinities for a collection of atoms and small molecules were obtained with the Feller-Peterson-Dixon composite coupled cluster theory method. Prior applications of this method demonstrated its ability to accurately predict atomization energies/heats of formation for more than 170 molecules. In the current work, the 1-particle expansion involved very large correlation consistent basis sets, ranging up to aug-cc-pV9Z (aug-cc-pV10Z for H and H2), with the goal of minimizing the residual basis set truncation error that must otherwise be approximated with extrapolation formulas. The n-particle expansion begins with coupled cluster calculations through iterative single and double excitations plus a quasiperturbative treatment of "connected" triple excitations (CCSD(T)) pushed to the complete basis set limit followed by CCSDT, CCSDTQ, or CCSDTQ5 corrections. Due to the small size of the systems examined here, it was possible in many cases to extend the n-particle expansion to the full configuration interaction wave function limit. Additional, smaller corrections associated with core/valence correlation, scalar relativity, anharmonic zero point vibrational energies, and non-adiabatic effects were also included. The overall root mean square (RMS) deviation was 0.005 eV (0.12 kcal/mol). This level of agreement was comparable to what was found with molecular heats of formation. A 95% confidence level corresponds to roughly twice the RMS value or 0.01 eV. While the atomic electron affinities are known experimentally to high accuracy, the molecular values are less certain. This contributes to the difficulty of gauging the accuracy of the theoretical results. A limited number of electron affinities were determined with the explicitly correlated CCSD(T)-F12b method. After extending the VnZ-F12 orbital basis sets with additional diffuse functions, the F12b method was found to accurately reproduce the best F/F(-) value obtained with standard

  17. Use of a Phosphatidylinositol Phosphate Affinity Chromatography (PIP Chromatography) for the Isolation of Proteins Involved in Protein Quality Control and Proteostasis Mechanisms in Plants.

    PubMed

    Farmaki, T

    2016-01-01

    Protein functionality depends directly on its accurately defined three-dimensional organization, correct and efficient posttranslational modification, and transport. However, proteins are continuously under a hostile environment threatening with folding aberrations, aggregation, and mistargeting. Therefore, proteins must be constantly "followed up" by a tightly regulated homeostatic mechanism specifically known as proteostasis. To this end other proteins ensure this close surveillance including chaperones as well as structural and functional members of the proteolytic mechanisms, mainly the autophagy and the proteasome related. They accomplish their action via interactions not only with other proteins but also with lipids as well as cytoskeletal components. We describe a protocol based on an affinity chromatographic approach aiming at the isolation of phosphatidyl inositol phosphate binding proteins, a procedure which results into the enrichment and purification of several members of the proteostasis mechanism, e.g. autophagy and proteasome, among other components of the cell signaling pathways. PMID:27424758

  18. Analytical high-performance affinity chromatography: evaluation by studies of neurophysin self-association and neurophysin-peptide hormone interaction using glass matrices

    SciTech Connect

    Swaisgood, H.E.; Chaiken, I.M.

    1986-07-01

    Bovine neurophysin II (BNP II) was covalently immobilized on both nonporous and porous (200-nm pore diameter) glass beads and incorporated in a high-performance liquid chromatograph to evaluate analytical high-performance affinity chromatography as a microscale method for characterizing biomolecular interactions. The self-association of neurophysin and its binding of the peptide hormone vasopressin were characterized by using a single chromatograhic column containing immobilized neurophysin predominantly in the monomer form. Both (/sup 3/H)(Arg/sup 8/)vasopressin (AVP) and /sup 125/I-BNP II were rapidly eluted (<25 min). The relatively symmetrical elution peaks obtained allowed calculation of both equilibrium dissociation constants and kinetic dissociation rate constants. In contrast to the agreement of chromatographic equilibrium binding constants with those measured in solution, the dissociation rate, k..sqrt../sub 3/, determined from the variance of the affinity chromatographic elution profile with nonporous beads, was several orders of magnitude smaller than the solution counterpart. This latter difference may reflect the probability of rebinding to contiguous sites immobilized on a surface, a feature which would be related to that for contiguous sites on a membrane.

  19. A Proteomics Platform Combining Depletion, Multi-lectin Affinity Chromatography (M-LAC) and Isoelectric Focusing to Study the Breast Cancer Proteome

    PubMed Central

    Zeng, Zhi; Hincapie, Marina; Pitteri, Sharon J.; Hanash, Samir; Schalkwijk, Joost; Hogan, Jason M.; Wang, Hon; Hancock, William S.

    2011-01-01

    The discovery of breast cancer associated plasma/serum biomarkers is important for early diagnosis, disease mechanism elucidation and determination of treatment strategy for the disease. In this study of serum samples, a multidimensional fractionation platform combined with mass spectrometric analysis were used to achieve the identification of medium to lower abundance proteins, as well as simultaneously detecting glycan and abundance changes. Immuno-affinity depletion and multi-lectin chromatography (M-LAC) were integrated into an automated HPLC platform to remove high abundance protein and fractionate glycoproteins. The collected glycoproteomes were then subjected to isoelectric focusing (IEF) separation by a digital ProteomeChip (dPC), followed by in-gel digestion and LC-MS analysis using an Orbitrap mass spectrometer. As a result, the total number of identified proteins increased significantly when the IEF fractionation step was included as part of the platform. Relevant proteins with biological and disease significance were observed and the dynamic range of the serum proteome measurement was extended. In addition, potential glycan changes were indicated by comparing proteins in control and cancer samples in terms of their affinity to the multi-lectin column (M-LAC) and the pI profiles in IEF separation. In conclusion, a proteomics platform including high abundance protein depletion, lectin affinity fractionation, IEF separation and LC-MS analysis has been applied to discover breast cancer associated proteins. The following candidates, thrombospondin-1 and 5, alpha-1B-glycoprotein, serum amyloid P-component and tenascin-X, were selected as promising examples of the use of this platform. They show potential abundance and glycan changes and will be further investigated in future studies. PMID:21513341

  20. Investigation of the heterogeneity of heterogalactan from the fruit bodies of Fomitopsis pinicola, by employing concanavalin A-Sepharose affinity chromatography.

    PubMed

    Usui, T; Hosokawa, S; Mizuno, T; Suzuki, T; Meguro, H

    1981-04-01

    A heterogalactan was isolated from the hot water extract of fruit bodies of Fomitopsis pinicola by a combination of fractionation procedures including precipitation with ethanol and with Cetavlon, and chromatography on columns of DEAE-cellulose and Sephadex G-100. Despite its apparent homogeneity on gel filtration, zone electrophoresis, sedimentation equilibration, and immunodiffusion analyses, the neutral component of heterogalactan was further fractionated into unbound, weakly bound, and strongly bound forms by affinity chromatography on a column of concanavalin A-Sepharose CL 4B. The former two polysaccharides fractions eluted with 0.1 M phosphate buffer (pH 7.0) were found to be a fucogalactan and a mannofucogalactan, respectively. A more tightly bound fraction (mannofucogalactan) was subsequently eluted with 0.1 M glucose in 1 M NaCl. The results of methylation, complete Smith degradation, and proton and 13C NMR spectroscopic analyses indicated that the three kinds of heterogalactans are all highly branched polysaccharides containing a framework of (1 leads to 6)-linked alpha-D-galactopyranosyl residues, the C-2 positions of which are substituted in different proportions with either single L-fucopyranosyl residues or disaccharide units of 3-O-alpha-D-mannopyranosyl-L-fucopyranose residues.

  1. Proteomic screening for Rho-kinase substrates by combining kinase and phosphatase inhibitors with 14-3-3ζ affinity chromatography.

    PubMed

    Nishioka, Tomoki; Nakayama, Masanori; Amano, Mutsuki; Kaibuchi, Kozo

    2012-01-01

    The small GTPase RhoA is a molecular switch in various extracellular signals. Rho-kinase/ROCK/ROK, a major effector of RhoA, regulates diverse cellular functions by phosphorylating cytoskeletal proteins, endocytic proteins, and polarity proteins. More than twenty Rho-kinase substrates have been reported, but the known substrates do not fully explain the Rho-kinase functions. Herein, we describe the comprehensive screening for Rho-kinase substrates by treating HeLa cells with Rho-kinase and phosphatase inhibitors. The cell lysates containing the phosphorylated substrates were then subjected to affinity chromatography using beads coated with 14-3-3 protein, which interacts with proteins containing phosphorylated serine or threonine residues, to enrich the phosphorylated proteins. The identities of the molecules and phosphorylation sites were determined by liquid chromatography tandem mass spectrometry (LC/MS/MS) after tryptic digestion and phosphopeptide enrichment. The phosphorylated proteins whose phosphopeptide ion peaks were suppressed by treatment with the Rho-kinase inhibitor were regarded as candidate substrates. We identified 121 proteins as candidate substrates. We also identified phosphorylation sites in Partitioning defective 3 homolog (Par-3) at Ser143 and Ser144. We found that Rho-kinase phosphorylated Par-3 at Ser144 both in vitro and in vivo. The method used in this study would be applicable and useful to identify novel substrates of other kinases.

  2. Systematic evaluation of matrix effects in hydrophilic interaction chromatography versus reversed phase liquid chromatography coupled to mass spectrometry.

    PubMed

    Periat, Aurélie; Kohler, Isabelle; Thomas, Aurélien; Nicoli, Raul; Boccard, Julien; Veuthey, Jean-Luc; Schappler, Julie; Guillarme, Davy

    2016-03-25

    Reversed phase liquid chromatography (RPLC) coupled to mass spectrometry (MS) is the gold standard technique in bioanalysis. However, hydrophilic interaction chromatography (HILIC) could represent a viable alternative to RPLC for the analysis of polar and/or ionizable compounds, as it often provides higher MS sensitivity and alternative selectivity. Nevertheless, this technique can be also prone to matrix effects (ME). ME are one of the major issues in quantitative LC-MS bioanalysis. To ensure acceptable method performance (i.e., trueness and precision), a careful evaluation and minimization of ME is required. In the present study, the incidence of ME in HILIC-MS/MS and RPLC-MS/MS was compared for plasma and urine samples using two representative sets of 38 pharmaceutical compounds and 40 doping agents, respectively. The optimal generic chromatographic conditions in terms of selectivity with respect to interfering compounds were established in both chromatographic modes by testing three different stationary phases in each mode with different mobile phase pH. A second step involved the assessment of ME in RPLC and HILIC under the best generic conditions, using the post-extraction addition method. Biological samples were prepared using two different sample pre-treatments, i.e., a non-selective sample clean-up procedure (protein precipitation and simple dilution for plasma and urine samples, respectively) and a selective sample preparation, i.e., solid phase extraction for both matrices. The non-selective pretreatments led to significantly less ME in RPLC vs. HILIC conditions regardless of the matrix. On the contrary, HILIC appeared as a valuable alternative to RPLC for plasma and urine samples treated by a selective sample preparation. Indeed, in the case of selective sample preparation, the compounds influenced by ME were different in HILIC and RPLC, and lower and similar ME occurrence was generally observed in RPLC vs. HILIC for urine and plasma samples

  3. Potential of human serum albumin as chiral selector of basic drugs in affinity electrokinetic chromatography-partial filling technique.

    PubMed

    Martínez-Gómez, Maria A; Villanueva-Camañas, R M; Sagrado, Salvador; Medina-Hernández, Maria J

    2006-11-01

    The enantiomeric resolution of compounds using HSA by means of affinity EKC (AEKC)-partial filling technique is the result of a delicate balance between different experimental variables such as protein concentration, running pH (background electrophoretic buffer (BGE), protein, and compound solutions), and plug length. In this paper, the possibility of using HSA as chiral selector for enantioseparation of 28 basic drugs using this methodology is studied. The effect of the physicochemical parameters, the structural properties of compounds, and compound-HSA protein binding percentages over their chiral resolution with HSA is outlined. Based on the results obtained, a decision tree is proposed for the "a priori" prediction of the capability of HSA for enantioseparation of basic drugs in AEKC. The results obtained indicated that enantioresolution of basic compounds with HSA depends on the hydrophobicity, polarity, and molar volume of compounds.

  4. G-protein coupled receptor assays: to measure affinity or efficacy that is the question.

    PubMed

    Williams, C; Sewing, A

    2005-06-01

    Cell-based assays have always played an important role in the pharmaceutical industry, providing information about the functional effects of compounds. These functional assays have traditionally accompanied facile biochemical high throughput screening programmes, being applied as secondary assays in the later stages of lead development. However, with the disappointing reality that there is not likely to be a plethora of novel, druggable targets in the post-genomic era, the role of cell-based assays in drug discovery is beginning to change. Competition to develop the "best" agents for well established targets and find more effective ways of identifying "novel" agents is driving the industry towards a "quality" versus "quantity" approach. Advances in genetic engineering, automation compatible functional assay technologies and the introduction of more sophisticated robotic systems, have facilitated the application of cell-based assays to primary screening. However, despite some apparent success to move these assays into the routine "toolbox" for high throughput screening, certain preconceptions and concerns about cell-based assays persist and the subject remains a topic of much debate. Here we use examples from the screening portfolio at Pfizer, Sandwich, to discuss the practical and theoretical considerations of employing cell-based assays in HTS with a focus on G-protein coupled receptors.

  5. Thin layer chromatography coupled with electrospray ionization mass spectrometry for direct analysis of raw samples.

    PubMed

    Hu, Bin; Xin, Gui-zhong; So, Pui-Kin; Yao, Zhong-Ping

    2015-10-01

    Conventional mass spectrometric analysis of raw samples commonly requires sample pretreatment and chromatographic separation using high performance liquid chromatography or gas chromatography, which could be time-consuming and laborious. In this study, thin layer chromatography (TLC) coupled with electrospray ionization mass spectrometry (ESI-MS) was developed for direct analysis of raw samples. The sorbent material of the TLC plate was found to be able to retain the interfering compounds and allow interested analytes to be extracted, ionized and detected by ESI-MS with much reduced matrix interference. Our results showed that this method could be effectively applied in direct analysis of samples containing common interfering compounds, e.g., salts and detergents, and rapid detection and quantitation of target analytes in raw samples. Offline and online separation and detection of different components in mixture samples, e.g., plant extracts, using TLC-ESI-MS were also demonstrated. Overall, this study revealed that TLC-ESI-MS could be a simple, rapid and efficient method for analysis of raw samples. PMID:26362806

  6. Thin layer chromatography coupled to paper spray ionization mass spectrometry for cocaine and its adulterants analysis.

    PubMed

    De Carvalho, Thays C; Tosato, Flavia; Souza, Lindamara M; Santos, Heloa; Merlo, Bianca B; Ortiz, Rafael S; Rodrigues, Rayza R T; Filgueiras, Paulo R; França, Hildegardo S; Augusti, Rodinei; Romão, Wanderson; Vaz, Boniek G

    2016-05-01

    Thin layer chromatography (TLC) is a simple and inexpensive type of chromatography that is extensively used in forensic laboratories for drugs of abuse analysis. In this work, TLC is optimized to analyze cocaine and its adulterants (caffeine, benzocaine, lidocaine and phenacetin) in which the sensitivity (visual determination of LOD from 0.5 to 14mgmL(-1)) and the selectivity (from the study of three different eluents: CHCl3:CH3OH:HCOOHglacial (75:20:5v%), (C2H5)2O:CHCl3 (50:50v%) and CH3OH:NH4OH (100:1.5v%)) were evaluated. Aiming to improve these figures of merit, the TLC spots were identified and quantified (linearity with R(2)>0.98) by the paper spray ionization mass spectrometry (PS-MS), reaching now lower LOD values (>1.0μgmL(-1)). The method developed in this work open up perspective of enhancing the reliability of traditional and routine TLC analysis employed in the criminal expertise units. Higher sensitivity, selectivity and rapidity can be provided in forensic reports, besides the possibility of quantitative analysis. Due to the great simplicity, the PS(+)-MS technique can also be coupled directly to other separation techniques such as the paper chromatography and can still be used in analyses of LSD blotter, documents and synthetic drugs. PMID:26970868

  7. Thin layer chromatography coupled to paper spray ionization mass spectrometry for cocaine and its adulterants analysis.

    PubMed

    De Carvalho, Thays C; Tosato, Flavia; Souza, Lindamara M; Santos, Heloa; Merlo, Bianca B; Ortiz, Rafael S; Rodrigues, Rayza R T; Filgueiras, Paulo R; França, Hildegardo S; Augusti, Rodinei; Romão, Wanderson; Vaz, Boniek G

    2016-05-01

    Thin layer chromatography (TLC) is a simple and inexpensive type of chromatography that is extensively used in forensic laboratories for drugs of abuse analysis. In this work, TLC is optimized to analyze cocaine and its adulterants (caffeine, benzocaine, lidocaine and phenacetin) in which the sensitivity (visual determination of LOD from 0.5 to 14mgmL(-1)) and the selectivity (from the study of three different eluents: CHCl3:CH3OH:HCOOHglacial (75:20:5v%), (C2H5)2O:CHCl3 (50:50v%) and CH3OH:NH4OH (100:1.5v%)) were evaluated. Aiming to improve these figures of merit, the TLC spots were identified and quantified (linearity with R(2)>0.98) by the paper spray ionization mass spectrometry (PS-MS), reaching now lower LOD values (>1.0μgmL(-1)). The method developed in this work open up perspective of enhancing the reliability of traditional and routine TLC analysis employed in the criminal expertise units. Higher sensitivity, selectivity and rapidity can be provided in forensic reports, besides the possibility of quantitative analysis. Due to the great simplicity, the PS(+)-MS technique can also be coupled directly to other separation techniques such as the paper chromatography and can still be used in analyses of LSD blotter, documents and synthetic drugs.

  8. Speciation of cisplatin in environmental water samples by hydrophilic interaction liquid chromatography coupled to inductively coupled plasma mass spectrometry.

    PubMed

    Vidmar, Janja; Martinčič, Anže; Milačič, Radmila; Ščančar, Janez

    2015-06-01

    Cisplatin is still widely used for treatment of numerous types of tumours. Different speciation methods have been applied to study behaviour of the intact drug and its individual biotransformation species in various clinical samples. These methods are mainly based on electrophoresis, size exclusion (SEC) or ion chromatography (IC) techniques coupled to inductively coupled plasma mass spectrometry (ICP-MS). Hydrophilic interaction liquid chromatography (HILIC), which is a common technique for separation of polar substances, was rarely applied for separation of cisplatin and its hydrolysed metabolites. There is also a lack of information available on the occurrence of cisplatin and its hydrolysed complexes in the environmental waters. In the present study the concentrations of Pt were determined in hospital wastewaters by ICP-MS. A procedure for separation of cisplatin and its aqueous hydrolysed complexes by the use of HILIC column was optimized. Quantification of separated Pt species was performed by isotope dilution (ID)-ICP-MS procedure. Low limits of detection (LODs) and quantification (LOQs) were obtained for cisplatin and its hydrolysed complexes ranging from 0.0273 to 0.1726 ng Pt/mL and from 0.0909 to 0.5753 ng Pt/mL, respectively. Good repeatability of the procedure with relative standard deviation (RSD) lower than ±2.3% was obtained. The column recoveries, which ranged from 95 to 101%, indicated that the procedure developed enabled quantitative speciation analysis of aqueous cisplatin complexes. The ZIC-HILIC-ID-ICP-MS procedure was successfully applied in speciation of cisplatin in spiked hospital wastewater samples.

  9. Characterization of crude oil biomarkers using comprehensive two-dimensional gas chromatography coupled to tandem mass spectrometry.

    PubMed

    Mogollón, Noroska Gabriela Salazar; Prata, Paloma Santana; Dos Reis, Jadson Zeni; Neto, Eugênio Vaz Dos Santos; Augusto, Fabio

    2016-09-01

    Oil samples from Recôncavo basin (NE Brazil), previously analyzed by traditional techniques such as gas chromatography coupled to tandem mass spectrometry, were evaluated using comprehensive two-dimensional gas chromatography coupled to quadrupole mass spectrometry and comprehensive two-dimensional gas chromatography coupled to tandem mass spectrometry along with simplified methods of samples preparation to evaluate the differences and advantages of these analytical techniques to better understand the development of the organic matter in this basin without altering the normal distribution of the compounds in the samples. As a result, the geochemical parameters calculated by comprehensive two-dimensional gas chromatography coupled to tandem mass spectrometry described better the origin, maturity, and biodegradation of both samples probably by increased selectivity, resolution, and sensitivity inherent of the multidimensional technique. Additionally, the detection of the compounds such as, the C(14α-) homo-26-nor-17α-hopane series, diamoretanes, nor-spergulanes, C19 -C26 A-nor-steranes and 4α-methylsteranes resolved and detected by comprehensive two-dimensional gas chromatography coupled to tandem mass spectrometry were key to classify and differentiate these lacustrine samples according to their maturity and deposition conditions.

  10. Rotation planar chromatography coupled on-line with atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Van Berkel, Gary J; Llave, Jonathan J; De Apadoca, Marilyn F; Ford, Michael J

    2004-01-15

    The coupling of a rotation planar preparative thin-layer chromatography system on-line with mass spectrometry is demonstrated using a simple plumbing scheme and a self-aspirating heated nebulizer probe of a corona discharge atmospheric pressure chemical ionization source. The self-aspiration of the heated nebulizer delivers approximately 20 microL/min of the 3.0 mL/min eluate stream to the mass spectrometer, eliminating the need for an external pump in the system. The viability of the coupling is demonstrated with a three-dye mixture composed of fat red 7B, solvent green 3, and solvent blue 35 separated and eluted from a silica gel-coated rotor using toluene. The real-time characterization of the dyes eluting from the rotor is illustrated in positive ion full-scan mode. Other self-aspirating ion source systems including atmospheric pressure photoionization, electrospray ionization, and inductively coupled plasma ionization, for example, might be configured and used in a similar manner coupled to the chromatograph to expand the types of analytes that could be ionized, detected, and characterized effectively. PMID:14719901

  11. Rotation planar chromatography coupled on-line with atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Van Berkel, Gary J; Llave, Jonathan J; De Apadoca, Marilyn F; Ford, Michael J

    2004-01-15

    The coupling of a rotation planar preparative thin-layer chromatography system on-line with mass spectrometry is demonstrated using a simple plumbing scheme and a self-aspirating heated nebulizer probe of a corona discharge atmospheric pressure chemical ionization source. The self-aspiration of the heated nebulizer delivers approximately 20 microL/min of the 3.0 mL/min eluate stream to the mass spectrometer, eliminating the need for an external pump in the system. The viability of the coupling is demonstrated with a three-dye mixture composed of fat red 7B, solvent green 3, and solvent blue 35 separated and eluted from a silica gel-coated rotor using toluene. The real-time characterization of the dyes eluting from the rotor is illustrated in positive ion full-scan mode. Other self-aspirating ion source systems including atmospheric pressure photoionization, electrospray ionization, and inductively coupled plasma ionization, for example, might be configured and used in a similar manner coupled to the chromatograph to expand the types of analytes that could be ionized, detected, and characterized effectively.

  12. A general method for fractionation of plasma proteins. Dye-ligand affinity chromatography on immobilized Cibacron blue F3-GA.

    PubMed Central

    Gianazza, E; Arnaud, P

    1982-01-01

    The chromatographic behaviour of 27 different plasma proteins on fractionation of human plasma on immobilized Cibacron Blue F3-GA was studied. The column was eluted by using a three-step procedure. First, a low-molarity buffer (30 mM-H3PO4/Na3PO4, pH 7.0, I0.053) was used, then a linear salt gradient (0-1 M-NaCl in the buffer above) was applied, followed by a wash with two bed volumes of 1.0 M-NaCl. Finally, bound proteins were 'stripped' with 0.5 M-NaSCN. Up to 1 ml of whole plasma could be loaded per 5 ml bed volume. No denaturation of proteinase inhibitors or complement fractions was observed. The recovery of individual proteins ranged between 52 and greater than 95%. Enrichment of four individual plasma components (alpha 1-antitrypsin, caeruloplasmin, antithrombin III and haemopexin) was between 10-fold and 75-fold. These results indicate that chromatography on immobilized Cibacron Blue F3-GA can be a useful initial step in the purification of plasma proteins. Images Fig. 2. Fig. 3. Fig. 4. PMID:7082279

  13. Rapid Screening of Drug-Protein Binding Using High-Performance Affinity Chromatography with Columns Containing Immobilized Human Serum Albumin

    PubMed Central

    Li, Ying-Fei; Zhang, Xiao-Qiong; Hu, Wei-Yu; Li, Zheng; Liu, Ping-Xia; Zhang, Zhen-Qing

    2013-01-01

    For drug candidates, a plasma protein binding (PPB) more than 90% is more meaningful and deserves further investigation in development. In the study, a high-performance liquid chromatography method employing column containing immobilized human serum albumin (HSA) to screen in vitro PPB of leading compounds was established and successfully applied to tested compounds. Good correlation (a coefficient correlation of 0.96) was attained between the reciprocal values (X) of experimentally obtained retention time of reference compounds eluted through HSA column and the reported PPB values (Y) with a correlation equation of Y = 92.03 − 97.01X. The method was successfully applied to six test compounds, and the result was confirmed by the conventional ultrafiltration technique, and both yielded equal results. However, due to the particular protein immobilized to column, the method cannot be applied for all compounds and should be exploited judiciously based on the value of the logarithmic measure of the acid dissociation constant (pKa) as per the requirement. If α1-acid glycoprotein and other plasma proteins could be immobilized like HSA with their actual ratio in plasma to column simultaneously, the result attained using immobilized column may be more accurate, and the method could be applied to more compounds without pKa limitation. PMID:23607050

  14. Detection of radiation-induced hydrocarbons in Camembert irradiated before and after the maturing process-comparison of florisil column chromatography and on-line coupled liquid chromatography-gas chromatography

    SciTech Connect

    Schulzki, G.; Spiegelberg, A.; Schreiber, G.A.

    1995-02-01

    The influence of the maturing process on the detection of radiation-induced volatile hydrocarbons in the fat of Camembert has been investigated. Two analytical methods for separation of the hydrocarbon fraction from the lipid were applied: Florisil column chromatography with subsequent gas chromatographic-mass spectrometric (GC-MS) determination as well as on-line coupled liquid chromatography-GC-MS. The maturing process had no influence on the detection of radiation-induced volatiles. Comparable results were achieved with both analytical methods. However, preference is given to the more effective on-line coupled LC-GC method. 17 refs., 5 figs., 2 tabs.

  15. Study of immobilized metal affinity chromatography sorbents for the analysis of peptides by on-line solid-phase extraction capillary electrophoresis-mass spectrometry.

    PubMed

    Ortiz-Martin, Lorena; Benavente, Fernando; Medina-Casanellas, Silvia; Giménez, Estela; Sanz-Nebot, Victoria

    2015-03-01

    Several commercial immobilized metal affinity chromatography sorbents were evaluated in this study for the analysis of two small peptide fragments of the amyloid β-protein (Aβ) (Aβ(1-15) and Aβ(10-20) peptides) by on-line immobilized metal affinity SPE-CE (IMA-SPE-CE). The performance of a nickel metal ion (Ni(II)) sorbent based on nitrilotriacetic acid as a chelating agent was significantly better than two copper metal ion (Cu(II)) sorbents based on iminodiacetic acid. A BGE of 25 mM phosphate (pH 7.4) and an eluent of 50 mM imidazole (in BGE) yielded a 25-fold and 5-fold decrease in the LODs by IMA-SPE-CE-UV for Aβ(1-15) and Aβ(10-20) peptides (0.1 and 0.5 μg/mL, respectively) with regard to CE-UV (2.5 μg/mL for both peptides). The phosphate BGE was also used in IMA-SPE-CE-MS, but the eluent needed to be substituted by a 0.5% HAc v/v solution. Under optimum preconcentration and detection conditions, reproducibility of peak areas and migration times was acceptable (23.2 and 12.0%RSD, respectively). The method was more sensitive for Aβ(10-20) peptide, which could be detected until 0.25 μg/mL. Linearity for Aβ(10-20) peptide was good in a narrow concentration range (0.25-2.5 μg/mL, R(2) = 0.93). Lastly, the potential of the optimized Ni(II)-IMA-SPE-CE-MS method for the analysis of amyloid peptides in biological fluids was evaluated by analyzing spiked plasma and serum samples. PMID:25640944

  16. Argentation high performance liquid chromatography on-line coupled to gas chromatography for the analysis of monounsaturated polyolefin oligomers in packaging materials and foods.

    PubMed

    Lommatzsch, Martin; Biedermann, Maurus; Simat, Thomas J; Grob, Koni

    2015-07-10

    Multidimensional chromatography based on two-dimensional high performance liquid chromatography on-line coupled to gas chromatography (on-line HPLC-HPLC-GC) enables the separate analysis of saturated, monounsaturated and aromatic hydrocarbons in packaging materials like polyolefins or paperboard and their migrates into foods. Since normal-phase HPLC on silica gel did not preseparate saturated from monounsaturated hydrocarbons, a separation step on a normal-phase HPLC column treated in the laboratory with an optimized amount of silver nitrate was added. The preparation of this HPLC column and the instrumental set-up are described, followed by examples showing the potential of the method. In a preliminary investigation of 11 polyolefin granulates for food contact up to 40% monounsaturated hydrocarbons among the oligomers C16-35 were determined.

  17. Simple method for Shiga toxin 2e purification by affinity chromatography via binding to the divinyl sulfone group.

    PubMed

    Arimitsu, Hideyuki; Sasaki, Keiko; Kojima, Hiroe; Yanaka, Tadashi; Tsuji, Takao

    2013-01-01

    Here we describe a simple affinity purification method for Shiga toxin 2e (Stx2e), a major causative factor of edema disease in swine. Escherichia coli strain MV1184 transformed with the expression plasmid pBSK-Stx2e produced Stx2e when cultivated in CAYE broth containing lincomycin. Stx2e bound to commercial D-galactose gel, containing α-D-galactose immobilized on agarose resin via a divinyl sulfone linker, and was eluted with phosphate-buffered saline containing 4.5 M MgCl2. A small amount of Stx2e bound to another commercial α-galactose-immobilized agarose resin, but not to β-galactose-immobilized resin. In addition, Stx2e bound to thiophilic adsorbent resin containing β-mercaptoethanol immobilized on agarose resin via a divinyl sulfone, and was purified in the same manner as from D-galactose gel, but the Stx2e sample contained some contamination. These results indicate that Stx2e bound to D-galactose gel mainly through the divinyl sulfone group on the resin and to a lesser extent through α-D-galactose. With these methods, the yields of Stx2e and attenuated mutant Stx2e (mStx2e) from 1 L of culture were approximately 36 mg and 27.7 mg, respectively, and the binding capacity of the D-galactose gel and thiophilic adsorbent resin for Stx2e was at least 20 mg per 1 ml of resin. In addition, using chimeric toxins with prototype Stx2 which did not bind to thiophilic adsorbent resin and some types of mutant Stx2e and Stx2 which contained inserted mutations in the B subunits, we found that, at the least, asparagine (amino acid 17 of the B subunits) was associated with Stx2e binding to the divinyl sulfone group. The mStx2e that was isolated exhibited vaccine effects in ICR mice, indicating that these methods are beneficial for large-scale preparation of Stx2e toxoid, which protects swine from edema disease. PMID:24340102

  18. Simple Method for Shiga Toxin 2e Purification by Affinity Chromatography via Binding to the Divinyl Sulfone Group

    PubMed Central

    Arimitsu, Hideyuki; Sasaki, Keiko; Kojima, Hiroe; Yanaka, Tadashi; Tsuji, Takao

    2013-01-01

    Here we describe a simple affinity purification method for Shiga toxin 2e (Stx2e), a major causative factor of edema disease in swine. Escherichia coli strain MV1184 transformed with the expression plasmid pBSK-Stx2e produced Stx2e when cultivated in CAYE broth containing lincomycin. Stx2e bound to commercial D-galactose gel, containing α-D-galactose immobilized on agarose resin via a divinyl sulfone linker, and was eluted with phosphate-buffered saline containing 4.5 M MgCl2. A small amount of Stx2e bound to another commercial α-galactose-immobilized agarose resin, but not to β-galactose-immobilized resin. In addition, Stx2e bound to thiophilic adsorbent resin containing β-mercaptoethanol immobilized on agarose resin via a divinyl sulfone, and was purified in the same manner as from D-galactose gel, but the Stx2e sample contained some contamination. These results indicate that Stx2e bound to D-galactose gel mainly through the divinyl sulfone group on the resin and to a lesser extent through α-D-galactose. With these methods, the yields of Stx2e and attenuated mutant Stx2e (mStx2e) from 1 L of culture were approximately 36 mg and 27.7 mg, respectively, and the binding capacity of the D-galactose gel and thiophilic adsorbent resin for Stx2e was at least 20 mg per 1 ml of resin. In addition, using chimeric toxins with prototype Stx2 which did not bind to thiophilic adsorbent resin and some types of mutant Stx2e and Stx2 which contained inserted mutations in the B subunits, we found that, at the least, asparagine (amino acid 17 of the B subunits) was associated with Stx2e binding to the divinyl sulfone group. The mStx2e that was isolated exhibited vaccine effects in ICR mice, indicating that these methods are beneficial for large-scale preparation of Stx2e toxoid, which protects swine from edema disease. PMID:24340102

  19. Recovery of urokinase from integrated mammalian cell culture cryogel bioreactor and purification of the enzyme using p-aminobenzamidine affinity chromatography.

    PubMed

    Bansal, Vibha; Roychoudhury, Pradip K; Mattiasson, Bo; Kumar, Ashok

    2006-01-01

    An integrated product recovery system was developed to separate urokinase from the cell culture broth of human kidney cells HT1080. Supermacroporous monolithic cryogels provided ideal matrices with respect to surface and flow properties for use as cell culture scaffold as well as for affinity chromatographic capture step of the enzyme in the integrated system. The urokinase was produced continuously in the reactor running for 4 weeks with continuous circulation of 500 ml of culture medium. The enzyme activity in the culture medium reached to 280 Plough units (PU)/mg protein. Cu(II)-iminodiacetic acid (IDA)-polyacrylamide (pAAm) cryogel column was used to capture urokinase by integrating with the gelatin-coupled pAAm-cryogel bioreactor for HT1080 cell culture. After removing the urokinase capture column from the integrated system the bound protein was eluted. The metal affinity capture step gave 4.5-fold purification of the enzyme thus achieving a specific activity of 1300 PU/mg protein. The enzyme eluate from Cu(II)-IDA-pAAm cryogel capture column was further purified on benzamidine-Sepharose affinity column. This step finally led to a homogeneous preparation of different forms of urokinase in two different elution peaks with a best urokinase activity of 13 550 PU/mg of protein. As compared to initial activity in the cell culture broth, about 26.2- and 48.4-fold increase in specific activity was achieved with enzyme yields corresponding to 32% and 35% in two different peak fractions, respectively. Native electrophoresis and SDS-PAGE showed multiple protein bands corresponding to different forms of the urokinase, which were confirmed by Western blotting and zymography. PMID:16761300

  20. Coupling Charge Reduction Mass Spectrometry to Liquid Chromatography for Complex Mixture Analysis.

    PubMed

    Stutzman, John R; Crowe, Matthew C; Alexander, James N; Bell, Bruce M; Dunkle, Melissa N

    2016-04-01

    Electrospray ionization (ESI) of solution mixtures often generates complex mass spectra, even following liquid chromatography (LC), due to analyte multiple charging. Multiple charge state distributions can lead to isobaric interferences, mass spectral congestion, and ambiguous ion identification. As a consequence, data interpretation increases in complexity. Several charge reduction mass spectrometry (MS) approaches have been previously developed to reduce the average charge state of gaseous ions; however, all of these techniques have been restricted to direct infusion MS. In this study, synthetic polyols and surfactants separated by liquid chromatography and ionized by positive mode ESI have been subjected to polonium-210 α-particle radiation to reduce the average charge state to singly charged cations prior to mass analysis. LC/MS analysis of 5000 molecular weight poly(ethylene glycol) (PEG5000) generated an average charge state of 5.88+; whereupon, liquid chromatography/electrospray ionization/charge reduction/mass spectrometry (LC/CR/MS) analysis of PEG 5000 generated an average charge state of 1.00+. The PEG5000 results demonstrated a decrease in spectral complexity and enabled facile interpretation. Other complex solution mixtures representing specific MS challenges (i.e., competitive ionization and isobaric ion overlap) were explored and analyzed with LC/CR/MS to demonstrate the benefits of coupling LC to CR/MS. For example, polyol information related to initiator, identity/relative amount of monomer, and estimated molecular weight was characterized in random and triblock ethylene oxide/propylene oxide polyols using LC/CR/MS. LC/CR/MS is a new analytical technique for the analysis of complex mixtures. PMID:26971559

  1. Analysis of reduced monoclonal antibodies using size exclusion chromatography coupled with mass spectrometry

    NASA Astrophysics Data System (ADS)

    Liu, Hongcheng; Gaza-Bulseco, Georgeen; Chumsae, Chris

    2009-12-01

    Size-exclusion chromatography (SEC) has been widely used to detect antibody aggregates, monomer, and fragments. SEC coupled to mass spectrometry has been reported to measure the molecular weights of antibody; antibody conjugates, and antibody light chain and heavy chain. In this study, separation of antibody light chain and heavy chain by SEC and direct coupling to a mass spectrometer was further studied. It was determined that employing mobile phases containing acetonitrile, trifluoroacetic acid, and formic acid allowed the separation of antibody light chain and heavy chain after reduction by SEC. In addition, this mobile phase allowed the coupling of SEC to a mass spectrometer to obtain a direct molecular weight measurement. The application of the SEC-MS method was demonstrated by the separation of the light chain and the heavy chain of multiple recombinant monoclonal antibodies. In addition, separation of a thioether linked light chain and heavy chain from the free light chain and the free heavy chain of a recombinant monoclonal antibody after reduction was also achieved. This optimized method provided a separation of antibody light chain and heavy chain based on size and allowed a direct measurement of molecular weights by mass spectrometry. In addition, this method may help to identify peaks eluting from SEC column directly.

  2. Biosynthesis of Cd-bound phytochelatins by Phaeodactylum tricornutum and their speciation by size-exclusion chromatography and ion-pair chromatography coupled to ICP-MS.

    PubMed

    Loreti, Valeria; Toncelli, Daniel; Morelli, Elisabetta; Scarano, Gioacchino; Bettmer, Jörg

    2005-10-01

    Cd-bound phytochelatins (Cd-PCs) have been synthesised by incubation of Phaeodactylum tricornutum cell cultures with Cd and purified by size-exclusion chromatography-UV-Vis. These complexes, which were identified in previous work, have now been used as model substances to develop and optimise ion-pair chromatography (IPC) coupled to inductively coupled plasma-mass spectrometry (ICP-MS) for analysis of Cd-PCs. Subsequent analysis of samples taken from Silene vulgaris plants cultivated under heavy metal stress conditions revealed Cd signals but no Cd-PC signals. By use of isotopically enriched (116)Cd-PCs the sample preparation steps were verified to determine the stability of the analytes. We observed species transformation between Cd-PCs and other unidentified Cd complexes. Consequently, the kinetic and thermodynamic lability of Cd-PCs are decisive factors in their detection.

  3. Development and characterization of the α3β4α5 nicotinic receptor cellular membrane affinity chromatography column and its application for on line screening of plant extracts.

    PubMed

    Ciesla, L; Okine, M; Rosenberg, A; Dossou, K S S; Toll, L; Wainer, I W; Moaddel, R

    2016-01-29

    The α3β4α5 nAChR has been recently shown to be a useful target for smoking cessation pharmacotherapies. Herein, we report on the development and characterization of the α3β4α5 nicotinic receptor column by frontal displacement chromatography. The binding affinity of the nicotine and minor alkaloids found in tobacco smoke condensates were determined for both the α3β4 and α3β4α5 nicotinic receptors. It was demonstrated that while no subtype selectivity was observed for nicotine and nornicotine, anabasine was selective for the α3β4α5 nicotinic receptor. The non-competitive inhibitor binding site was also studied and it was demonstrated while mecamylamine was not selective between subtypes, buproprion showed subtype selectivity for the α3β4 nicotinic receptor. The application of this methodology to complex mixtures was then carried out by screening aqueous-alcoholic solutions of targeted plant extracts, including Lycopodium clavatum L. (Lycopodiaceae) and Trigonella foenum graecum L. (Fabaceae) against both the α3β4 and α3β4α5 nAChRs. PMID:26774122

  4. Immobilized metal affinity chromatography on collapsed Langmuir-Blodgett iron(III) stearate films and iron(III) oxide nanoparticles for bottom-up phosphoproteomics.

    PubMed

    Gladilovich, Vladimir; Greifenhagen, Uta; Sukhodolov, Nikolai; Selyutin, Artem; Singer, David; Thieme, Domenika; Majovsky, Petra; Shirkin, Alexey; Hoehenwarter, Wolfgang; Bonitenko, Evgeny; Podolskaya, Ekaterina; Frolov, Andrej

    2016-04-22

    Phosphorylation is the enzymatic reaction of site-specific phosphate transfer from energy-rich donors to the side chains of serine, threonine, tyrosine, and histidine residues in proteins. In living cells, reversible phosphorylation underlies a universal mechanism of intracellular signal transduction. In this context, analysis of the phosphoproteome is a prerequisite to better understand the cellular regulatory networks. Conventionally, due to the low contents of signaling proteins, selective enrichment of proteolytic phosphopeptides by immobilized metal affinity chromatography (IMAC) is performed prior to their LC-MS or -MS/MS analysis. Unfortunately, this technique still suffers from low selectivity and compromised analyte recoveries. To overcome these limitations, we propose IMAC systems comprising stationary phases based on collapsed Langmuir-Blodgett films of iron(III) stearate (FF) or iron(III) oxide nanoparticles (FO) and mobile phases relying on ammonia, piperidine and heptadecafluorooctanesulfonic acid (PFOS). Experiments with model phosphopeptides and phosphoprotein tryptic digests showed superior binding capacity, selectivity and recovery for both systems in comparison to the existing commercial analogs. As evidenced by LC-MS/MS analysis of the HeLa phosphoproteome, these features of the phases resulted in increased phosphoproteome coverage in comparison to the analogous commercially available phases, indicating that our IMAC protocol is a promising chromatographic tool for in-depth phosphoproteomic research.

  5. An in depth proteomic analysis based on ProteoMiner, affinity chromatography and nano-HPLC-MS/MS to explain the potential health benefits of bovine colostrum.

    PubMed

    Altomare, Alessandra; Fasoli, Elisa; Colzani, Mara; Parra, Ximena Maria Paredes; Ferrari, Marina; Cilurzo, Francesco; Rumio, Cristiano; Cannizzaro, Luca; Carini, Marina; Righetti, Pier Giorgio; Aldini, Giancarlo

    2016-03-20

    Bovine colostrum (BC), the initial milk secreted by the mammary gland immediately after parturition, is widely used for several health applications. We here propose an off-target method based on proteomic analysis to explain at molecular level the potential health benefits of BC. The method is based on the set-up of an exhaustive protein data bank of bovine colostrum, including the minor protein components, followed by a bioinformatic functional analysis. The proteomic approach based on ProteoMiner technology combined to a highly selective affinity chromatography approach for the immunoglobulins depletion, identified 1786 proteins (medium confidence; 634 when setting high confidence), which were then clustered on the basis of their biological function. Protein networks were then created on the basis of the biological functions or health claims as input. A set of 93 proteins involved in the wound healing process was identified. Such an approach also permits the exploration of novel biological functions of BC by searching in the database the presence of proteins characterized by innovative functions. In conclusion an advanced approach based on an in depth proteomic analysis is reported which permits an explanation of the wound healing effect of bovine colostrum at molecular level and allows the search of novel potential beneficial effects. PMID:26809613

  6. Penetrable silica microspheres for immobilization of bovine serum albumin and their application to the study of the interaction between imatinib mesylate and protein by frontal affinity chromatography.

    PubMed

    Ma, Liyun; Li, Jing; Zhao, Juan; Liao, Han; Xu, Li; Shi, Zhi-guo

    2016-01-01

    In the current study, novel featured silica, named penetrable silica, simultaneously containing macropores and mesopores, was immobilized with bovine serum albumin (BSA) via Schiff base method. The obtained BSA-SiO2 was employed as the high-performance liquid chromatographic (HPLC) stationary phase. Firstly, D- and L-tryptophan were used as probes to investigate the chiral separation ability of the BSA-SiO2 stationary phase. An excellent enantioseparation factor was obtained up to 4.3 with acceptable stability within at least 1 month. Next, the BSA-SiO2 stationary phase was applied to study the interaction between imatinib mesylate (IM) and BSA by frontal affinity chromatography. A single type of binding site was found for IM with the immobilized BSA, and the hydrogen-bonding and van der Waals interactions were expected to be contributing interactions based on the thermodynamic studies, and this was a spontaneous process. Compared to the traditional silica for HPLC stationary phase, the proposed penetrable silica microsphere possessed a larger capacity to bond more BSA, minimizing column overloading effects and enhancing enantioseparation ability. In addition, the lower running column back pressure and fast mass transfer were meaningful for the column stability and lifetime. It was a good substrate to immobilize biomolecules for fast chiral resolution and screening drug-protein interactions.

  7. Glycosylation of alpha1-acid glycoprotein in inflammatory disease: analysis by high-pH anion-exchange chromatography and concanavalin A crossed affinity immunoelectrophoresis.

    PubMed

    Rydén, I; Skude, G; Lundblad, A; Påhlsson, P

    1997-06-01

    High-pH anion-exchange chromatography with pulsed amperometric detection is a highly sensitive technique that can be used for detecting changes in sialylation and fucosylation, as well as different branching patterns of N-linked oligosaccharides in glycoproteins. We examined the N-glycans of alpha1-acid glycoprotein obtained from twelve patients with various inflammatory conditions with this technique, as well as traditional concanavalin A crossed affinity immunoelectrophoresis. We found the chromatographic profiles of N-glycans in all patients with rheumatoid arthritis to be very similar, but significantly different from normal controls. N-glycans from patients with ulcerative colitis also showed specific alterations in their chromatographic profiles. However, some heterogeneity was found between these patients, perhaps reflecting changes in glycosylation secondary to certain states of the disease, or to medical treatment. We conclude that this technique is useful for detailed mapping of glycosylation changes in alpha1-acid glycoprotein in clinical samples, and that it may be used to further increase our knowledge about glycosylation changes in response to inflammatory disease.

  8. The purification of human enterokinase by affinity chromatography and immunoadsorption. Some observations on its molecular characteristics and comparisons with the pig enzyme.

    PubMed Central

    Grant, D A; Hermon-Taylor, J

    1976-01-01

    A method is described for the purification of human enterokinase from accumulated duodenal fluid by affinity chromatography using p-aminobenzamidine as the ligand. Resolution was greatest when glycylglycine was substituted as the spacer arm. Purification was not a one-step procedure, and some contamination, principally by the alpha-glucosidases, remained. Their removal was completed by immunoadsorption using antisera raised to enterokinase-free material containing these enzymes, prepared as a by-product of the purification procedure. The final preparation had an activity of 4260 nmol of trypsin/min per mg and was free of other enzymic activity tested. Amino acid and sugar analyses of the highly purified enzyme indicated an acidic glycoprotein containing 57% sugar (neutral sugars 47%, amino sugars 10%). The apparent mol.wts. and Stokes radii of human and pig enterokinase were 296 000 and 316 000, and 5.65 and 5.78 nm respectively. Two isoenzymes were identified for human enterokinase and three for the pig enzyme. Human enterokinase demonstrated a resistance to reduction of disulphide linkages and to sodium dodecyl sulphate binding, which may be related to the need for it to retain its integrity in the digestive environment of the upper small intestine. Antisera to highly purified pig and human enterokinases specifically inhibited enterokinase activity. Immuno-inhibition of intestinal aminopeptidase, maltase and glucoamylase by homologous antisera was not observed. Images PLATE 1 PMID:945736

  9. Purification by cobalamin-Sepharose affinity chromatography and intrinsic factor-binding activity of an extramembrane proteolytic product from pig ileal mucosa.

    PubMed Central

    Yerima, A; Safi, A; Gastin, I; Michalski, J C; Saunier, M; Gueant, J L

    1996-01-01

    We have purified a cobalamin-binding protein obtained by papain digestion of pig intestine by cobalamin-AH-Sepharose affinity chromatography, with a purification factor of 17,300, a yield of 63% and a cobalamin-binding activity of 11,260 pmol/mg of protein. The protein contained 3.8% carbohydrate and was O- and N-glycosylated. Its molecular mass was 69 kDa on SDS/PAGE and its isoelectric point was 5.1. It had a binding activity for both [57Co]cobalamin and [57Co]cobalamin-intrinsic factor in native PAGE autoradiography and it inhibited the binding of intrinsic factor to the intact intestinal receptor with an IC50 of 49.31 nmol/l in a radioisotope assay. In conclusion, the purified protein shared a binding activity for both cobalamin and intrinsic factor-cobalamin complexes and could correspond to the extracellular domain of the ileal intrinsic factor receptor. PMID:8573109

  10. Penetrable silica microspheres for immobilization of bovine serum albumin and their application to the study of the interaction between imatinib mesylate and protein by frontal affinity chromatography.

    PubMed

    Ma, Liyun; Li, Jing; Zhao, Juan; Liao, Han; Xu, Li; Shi, Zhi-guo

    2016-01-01

    In the current study, novel featured silica, named penetrable silica, simultaneously containing macropores and mesopores, was immobilized with bovine serum albumin (BSA) via Schiff base method. The obtained BSA-SiO2 was employed as the high-performance liquid chromatographic (HPLC) stationary phase. Firstly, D- and L-tryptophan were used as probes to investigate the chiral separation ability of the BSA-SiO2 stationary phase. An excellent enantioseparation factor was obtained up to 4.3 with acceptable stability within at least 1 month. Next, the BSA-SiO2 stationary phase was applied to study the interaction between imatinib mesylate (IM) and BSA by frontal affinity chromatography. A single type of binding site was found for IM with the immobilized BSA, and the hydrogen-bonding and van der Waals interactions were expected to be contributing interactions based on the thermodynamic studies, and this was a spontaneous process. Compared to the traditional silica for HPLC stationary phase, the proposed penetrable silica microsphere possessed a larger capacity to bond more BSA, minimizing column overloading effects and enhancing enantioseparation ability. In addition, the lower running column back pressure and fast mass transfer were meaningful for the column stability and lifetime. It was a good substrate to immobilize biomolecules for fast chiral resolution and screening drug-protein interactions. PMID:26573171

  11. Immobilized metal affinity chromatography on collapsed Langmuir-Blodgett iron(III) stearate films and iron(III) oxide nanoparticles for bottom-up phosphoproteomics.

    PubMed

    Gladilovich, Vladimir; Greifenhagen, Uta; Sukhodolov, Nikolai; Selyutin, Artem; Singer, David; Thieme, Domenika; Majovsky, Petra; Shirkin, Alexey; Hoehenwarter, Wolfgang; Bonitenko, Evgeny; Podolskaya, Ekaterina; Frolov, Andrej

    2016-04-22

    Phosphorylation is the enzymatic reaction of site-specific phosphate transfer from energy-rich donors to the side chains of serine, threonine, tyrosine, and histidine residues in proteins. In living cells, reversible phosphorylation underlies a universal mechanism of intracellular signal transduction. In this context, analysis of the phosphoproteome is a prerequisite to better understand the cellular regulatory networks. Conventionally, due to the low contents of signaling proteins, selective enrichment of proteolytic phosphopeptides by immobilized metal affinity chromatography (IMAC) is performed prior to their LC-MS or -MS/MS analysis. Unfortunately, this technique still suffers from low selectivity and compromised analyte recoveries. To overcome these limitations, we propose IMAC systems comprising stationary phases based on collapsed Langmuir-Blodgett films of iron(III) stearate (FF) or iron(III) oxide nanoparticles (FO) and mobile phases relying on ammonia, piperidine and heptadecafluorooctanesulfonic acid (PFOS). Experiments with model phosphopeptides and phosphoprotein tryptic digests showed superior binding capacity, selectivity and recovery for both systems in comparison to the existing commercial analogs. As evidenced by LC-MS/MS analysis of the HeLa phosphoproteome, these features of the phases resulted in increased phosphoproteome coverage in comparison to the analogous commercially available phases, indicating that our IMAC protocol is a promising chromatographic tool for in-depth phosphoproteomic research. PMID:27016113

  12. Molecular insight in the purification of immunoglobulin by pseudobiospecific ligand l-histidine and histidyl moieties in histidine ligand affinity chromatography (HLAC) by molecular docking.

    PubMed

    Savane, Tushar S; Kumar, Sanjit; Janakiraman, Vignesh Narasimhan; Kamalanathan, Agamudi S; Vijayalakshmi, Mookambeswaran A

    2016-05-15

    Pseudobiospecific ligand l-histidine is an inexpensive, highly stable, non-toxic ligand explored successfully over the last twenty years for the purification of immunoglobulins in immobilised histidine ligand affinity chromatography. It is of great interest to know the molecular recognition sites of IgG to immobilized l-histidine. Here, we have used an in silico approach to explore the molecular recognition of l-histidine by IgG. We have assessed the feasible binding modes of histidine and its moieties at different sites of IgG and considered only those binding conformations which are exhibited via the imidazole ring NH group or any other OH donating group apart from the ones which are terminally conjugated with the support matrix. We categorised binding site into two categories; category I: inner binding groove and category II: surface binding groove and observed that the hinge region of IgG has most favourable binding pocket for l-histidine and histidyl moieties. Ser and Tyr residues on the hinge region make several significant interactions with l-histidine and histidyl moieties. In case of Fc region of IgG, l-histidine and histidyl moieties closely resemble the binding modes of Protein A, biomimetic ligand 22/8 and B domain of SpA to IgG. In addition to these we have also observed a significant binding site for l-histidine and histidyl moieties at Fab region of IgG. PMID:26476866

  13. Recognition and binding of β-lactam antibiotics to bovine serum albumin by frontal affinity chromatography in combination with spectroscopy and molecular docking.

    PubMed

    Li, Qian; Zhang, Tianlong; Bian, Liujiao

    2016-03-01

    Serum albumins are the most abundant carrier proteins in blood plasma and participate in the binding and transportation of various exogenous and endogenous compounds in the body. This work was designed to investigate the recognition and binding of three typical β-lactam antibiotics including penicillin G (Pen G), penicillin V (Pen V) and cefalexin (Cef) with bovine serum albumin (BSA) by frontal affinity chromatography in combination with UV-vis absorption spectra, fluorescence emission spectra, binding site marker competitive experiment and molecular docking under simulated physiological conditions. The results showed that a BSA only bound with one antibiotic molecule in the binding process, and the binding constants for Pen G-BSA, Pen V-BSA and Cef-BSA complexes were 4.22×10(1), 4.86×10(2) and 3.32×10(3) (L/mol), respectively. All the three β-lactam antibiotics were mainly inserted into the subdomain IIA (binding site 1) of BSA by hydrogen bonds and Van der Waals forces. The binding capacity between the antibiotics and BSA was closely related to the functional groups and flexibility of side chains in antibiotics. This study provided an important insight into the molecular recognition and binding interaction of BSA with β-lactam antibiotics, which may be a useful guideline for the innovative clinical medications and new antibiotic designs with effective pharmacological properties. PMID:26882128

  14. Purification of α2-macroglobulin from Cohn Fraction IV by immobilized metal affinity chromatography: A promising method for the better utilization of plasma.

    PubMed

    Huangfu, Chaoji; Ma, Yuyuan; Lv, Maomin; Jia, Junting; Zhao, Xiong; Zhang, Jingang

    2016-07-01

    As an abundant plasma protein, α2-macroglobulin (α2-M) participates widely in physiological and pathological activities including coagulation regulation, antitumor activities, and regulation of cytokines. It also presents a therapeutic potential for radiation injury. A two-step isolation method for the purification of α2-M from Cohn Fraction IV is described. This process includes a salting-out method and immobilized metal affinity chromatography. The LC-ESI-MS/MS analysis and a comparison of the amino acid composition demonstrated that the final product was α2-M. The final protein, with a purity of approximately 95% and a yield of nearly 45%, was obtained from Cohn Fraction IV regardless of plasma haptoglobin type, although all but type 1-1 have previously been considered unfavorable for α2-M preparation. The effects of temperature, pH, and methylamine on α2-M activity were evaluated to avoid activity loss during preparation and preservation. The results suggested that α2-M activity could be readily inactivated at temperatures above 50°C, at pH levels above 9.0 or below 4.0, or in the presence of methylamine. Cohn Fraction IV is usually discarded as a biological waste product in the human serum albumin production process; because the simple process developed in this study is relatively inexpensive, the preparation of α2-M from Cohn Fraction IV may better utilize human plasma, a valuable resource. PMID:27214605

  15. Novel Cartilage Oligomeric Matrix Protein (COMP) Neoepitopes Identified in Synovial Fluids from Patients with Joint Diseases Using Affinity Chromatography and Mass Spectrometry*

    PubMed Central

    Åhrman, Emma; Lorenzo, Pilar; Holmgren, Kristin; Grodzinsky, Alan J.; Dahlberg, Leif E.; Saxne, Tore; Heinegård, Dick; Önnerfjord, Patrik

    2014-01-01

    To identify patients at risk for progressive joint damage, there is a need for early diagnostic tools to detect molecular events leading to cartilage destruction. Isolation and characterization of distinct cartilage oligomeric matrix protein (COMP) fragments derived from cartilage and released into synovial fluid will allow discrimination between different pathological conditions and monitoring of disease progression. Early detection of disease and processes in the tissue as well as an understanding of the pathologic mechanisms will also open the way for novel treatment strategies. Disease-specific COMP fragments were isolated by affinity chromatography of synovial fluids from patients with rheumatoid arthritis, osteoarthritis, or acute trauma. Enriched COMP fragments were separated by SDS-PAGE followed by in-gel digestion and mass spectrometric identification and characterization. Using the enzymes trypsin, chymotrypsin, and Asp-N for the digestions, an extensive analysis of the enriched fragments could be accomplished. Twelve different neoepitopes were identified and characterized within the enriched COMP fragments. For one of the neoepitopes, Ser77, an inhibition ELISA was developed. This ELISA quantifies COMP fragments clearly distinguishable from total COMP. Furthermore, fragments containing the neoepitope Ser77 were released into the culture medium of cytokine (TNF-α and IL-6/soluble IL-6 receptor)-stimulated human cartilage explants. The identified neoepitopes provide a complement to the currently available commercial assays for cartilage markers. Through neoepitope assays, tools to pinpoint disease progression, evaluation methods for therapy, and means to elucidate disease mechanisms will be provided. PMID:24917676

  16. Target-directed screening of the bioactive compounds specifically binding to β₂-adrenoceptor in Semen brassicae by high-performance affinity chromatography.

    PubMed

    An, Yuxin; Li, Xia; Sun, Huanmei; Bian, Wenhai; Li, Zijian; Zhang, Youyi; Zhao, Xinfeng; Zheng, Xiaohui

    2015-10-01

    The bioactive ingredients in Semen sinapis were rapidly screened by immobilized β2-adrenoceptor (β2-AR) and target-directed molecular docking. The methods involved the attachment of β2-AR using any amino group in the receptor, the simultaneous separation and identification of the retention compounds by high-performance affinity chromatography; the binding mechanism of the interesting compound to the receptor was investigated by zonal elution and molecular docking. Sinapine in Semen sinapis was proved to be the bioactive compound that specifically binds to the immobilized receptor. The association constant of sinapine to β2-AR was determined to be 1.36 × 10(5)  M(-1) with a value of 1.27 × 10(-6)  M for the number of binding sites. Ionic bond was believed to be the driving force during the interaction between sinapine and β2-AR. It is possible to become a powerful alternative for rapid screening of bioactive compounds from a complex matrix such as traditional Chinese medicine and further investigation on the drug-receptor interaction. PMID:25982051

  17. Analysis of the sugar-binding specificity of mannose-binding-type Jacalin-related lectins by frontal affinity chromatography--an approach to functional classification.

    PubMed

    Nakamura-Tsuruta, Sachiko; Uchiyama, Noboru; Peumans, Willy J; Van Damme, Els J M; Totani, Kiichiro; Ito, Yukishige; Hirabayashi, Jun

    2008-03-01

    The Jacalin-related lectin (JRL) family comprises galactose-binding-type (gJRLs) and mannose-binding-type (mJRLs) lectins. Although the documented occurrence of gJRLs is confined to the family Moraceae, mJRLs are widespread in the plant kingdom. A detailed comparison of sugar-binding specificity was made by frontal affinity chromatography to corroborate the structure-function relationships of the extended mJRL subfamily. Eight mJRLs covering a broad taxonomic range were used: Artocarpin from Artocarpus integrifolia (jackfruit, Moraceae), BanLec from Musa acuminata (banana, Musaceae), Calsepa from Calystegia sepium (hedge bindweed, Convolvulaceae), CCA from Castanea crenata (Japanese chestnut, Fagaceae), Conarva from Convolvulus arvensis (bindweed, Convolvulaceae), CRLL from Cycas revoluta (King Sago palm tree, Cycadaceae), Heltuba from Helianthus tuberosus (Jerusalem artichoke, Asteraceae) and MornigaM from Morus nigra (black mulberry, Moraceae). The result using 103 pyridylaminated glycans clearly divided the mJRLs into two major groups, each of which was further divided into two subgroups based on the preference for high-mannose-type N-glycans. This criterion also applied to the binding preference for complex-type N-glycans. Notably, the result of cluster analysis of the amino acid sequences clearly corresponded to the above specificity classification. Thus, marked correlation between the sugar-binding specificity of mJRLs and their phylogeny should shed light on the functional significance of JRLs.

  18. Designed synthesis of Graphene @titania @mesoporous silica hybrid material as size-exclusive metal oxide affinity chromatography platform for selective enrichment of endogenous phosphopeptides.

    PubMed

    Yao, Jizong; Sun, Nianrong; Deng, Chunhui; Zhang, Xiangming

    2016-04-01

    In this work, a novel size-exclusive metal oxide affinity chromatography (SE-MOAC) platform was built for phosphoproteome research. The operation for preparing graphene @titania @mesoporous silica nanohybrids (denoted as G@TiO2@mSiO2) was facile and easy to conduct by grafting titania nanoparticles on polydopamine (PD)-covered graphene, following a layer of mesoporous silica was coated on the outermost layer. The G@TiO2@mSiO2 nanohybrids exhibited high sensitivity with a low detection limit of 5 amol/μL (a total amount of 1 fmol) and high selectivity for phosphopeptides at a mass ratio of phosphopeptides to non-phosphopeptides (1:1000). The size-exclusive capability of the nanohybrids were also demonstrated by enriching the phosphopeptides from the mixture of Bovine Serum Albumin (BSA), α-casein, and β-casein digests with a high mass ratio (β-casein digests: α-casein: BSA, 1:500:500), which was attributed to the large surface area and ordered mesoporous channels. In addition, the G@TiO2@mSiO2 nanohybrids were employed to capture the endogenous phosphopeptides from human serum successfully. PMID:26838411

  19. An in depth proteomic analysis based on ProteoMiner, affinity chromatography and nano-HPLC-MS/MS to explain the potential health benefits of bovine colostrum.

    PubMed

    Altomare, Alessandra; Fasoli, Elisa; Colzani, Mara; Parra, Ximena Maria Paredes; Ferrari, Marina; Cilurzo, Francesco; Rumio, Cristiano; Cannizzaro, Luca; Carini, Marina; Righetti, Pier Giorgio; Aldini, Giancarlo

    2016-03-20

    Bovine colostrum (BC), the initial milk secreted by the mammary gland immediately after parturition, is widely used for several health applications. We here propose an off-target method based on proteomic analysis to explain at molecular level the potential health benefits of BC. The method is based on the set-up of an exhaustive protein data bank of bovine colostrum, including the minor protein components, followed by a bioinformatic functional analysis. The proteomic approach based on ProteoMiner technology combined to a highly selective affinity chromatography approach for the immunoglobulins depletion, identified 1786 proteins (medium confidence; 634 when setting high confidence), which were then clustered on the basis of their biological function. Protein networks were then created on the basis of the biological functions or health claims as input. A set of 93 proteins involved in the wound healing process was identified. Such an approach also permits the exploration of novel biological functions of BC by searching in the database the presence of proteins characterized by innovative functions. In conclusion an advanced approach based on an in depth proteomic analysis is reported which permits an explanation of the wound healing effect of bovine colostrum at molecular level and allows the search of novel potential beneficial effects.

  20. Phytochemical analysis of Hibiscus caesius using high performance liquid chromatography coupled with mass spectrometry.

    PubMed

    Ain, Quratul; Naveed, Muhammad Na; Mumtaz, Abdul Samad; Farman, Muhammad; Ahmed, Iftikhar; Khalid, Nauman

    2015-09-01

    Various species in genus Hibiscus are traditionally known for their therapeutic attributes. The present study focused on the phytochemical analysis of a rather unexplored species Hibiscus caesius (H. caesius), using high-pressure liquid chromatography coupled with mass spectrometry (HPLC-MS). The analysis revealed five major compounds in the aqueous extract, viz. vanillic acid, protocatechoic acid, quercetin, quercetin glucoside and apigenin, being reported for the first time in H. caesius. Literature suggests that these compounds have important pharmacological traits such as anti-cancer, anti-inflammatory, anti-bacterial and hepatoprotective etc. however, this requires further pharmacological investigations at in vitro and in vivo scale. The above study concluded the medicinal potential of H. caesius.

  1. Characterization of dihydrostreptomycin-related substances by liquid chromatography coupled to ion trap mass spectrometry.

    PubMed

    Pendela, Murali; Hoogmartens, Jos; Van Schepdael, Ann; Adams, Erwin

    2009-06-01

    Dihydrostreptomycin sulphate (DHS) is a water-soluble, broad-spectrum aminoglycoside antibiotic. For quantitative analysis, the European Pharmacopoeia (Ph. Eur.) prescribes an ion-pairing liquid chromatography/ultraviolet (LC/UV) method using a C18 stationary phase. Several unknown compounds were detected in commercial samples. Hence, for characterization of these unknown peaks in a commercial DHS sample, the Ph. Eur. method was coupled to mass spectrometry (MS). However, since the Ph. Eur. method uses a non-volatile mobile phase, each peak eluted was collected and desalted before introduction into the mass spectrometer. The desalting procedure was applied to remove the non volatile salt, buffer and ion-pairing reagent in the collected fraction. In total, 20 impurities were studied and 14 of them were newly characterized. Five impurities which are already reported in the literature were also traced in this LC/UV method. PMID:19449319

  2. Preparation of inulin-type fructooligosaccharides using fast protein liquid chromatography coupled with refractive index detection.

    PubMed

    Li, J; Cheong, K L; Zhao, J; Hu, D J; Chen, X Q; Qiao, C F; Zhang, Q W; Chen, Y W; Li, S P

    2013-09-20

    A fast protein liquid chromatography coupled with refractive index detection (FPLC-RID) method was firstly developed for preparation and purification of fructooligosaccharides with different degree of polymerization from burdock, Arctium lappa. After extraction with 60% ethanol and decolorization with MCI gel CHP20P, total fructooligosaccharides were purified on Bio-Gel P-2 column eluted with water at the flow rate of 0.3 ml/min, which was the optimized conditions. The obtained fructooligosaccharides with degree of polymerization of 3-9 were identified based on their methylation analysis, MS and NMR data. This method has the advantages of high automation, good recovery and easy performance, which could be used for preparation of FOS from other sources, as well as other targeted compounds without UV absorbance.

  3. Preparation of inulin-type fructooligosaccharides using fast protein liquid chromatography coupled with refractive index detection.

    PubMed

    Li, J; Cheong, K L; Zhao, J; Hu, D J; Chen, X Q; Qiao, C F; Zhang, Q W; Chen, Y W; Li, S P

    2013-09-20

    A fast protein liquid chromatography coupled with refractive index detection (FPLC-RID) method was firstly developed for preparation and purification of fructooligosaccharides with different degree of polymerization from burdock, Arctium lappa. After extraction with 60% ethanol and decolorization with MCI gel CHP20P, total fructooligosaccharides were purified on Bio-Gel P-2 column eluted with water at the flow rate of 0.3 ml/min, which was the optimized conditions. The obtained fructooligosaccharides with degree of polymerization of 3-9 were identified based on their methylation analysis, MS and NMR data. This method has the advantages of high automation, good recovery and easy performance, which could be used for preparation of FOS from other sources, as well as other targeted compounds without UV absorbance. PMID:23962565

  4. Phytochemical analysis of Hibiscus caesius using high performance liquid chromatography coupled with mass spectrometry.

    PubMed

    Ain, Quratul; Naveed, Muhammad Na; Mumtaz, Abdul Samad; Farman, Muhammad; Ahmed, Iftikhar; Khalid, Nauman

    2015-09-01

    Various species in genus Hibiscus are traditionally known for their therapeutic attributes. The present study focused on the phytochemical analysis of a rather unexplored species Hibiscus caesius (H. caesius), using high-pressure liquid chromatography coupled with mass spectrometry (HPLC-MS). The analysis revealed five major compounds in the aqueous extract, viz. vanillic acid, protocatechoic acid, quercetin, quercetin glucoside and apigenin, being reported for the first time in H. caesius. Literature suggests that these compounds have important pharmacological traits such as anti-cancer, anti-inflammatory, anti-bacterial and hepatoprotective etc. however, this requires further pharmacological investigations at in vitro and in vivo scale. The above study concluded the medicinal potential of H. caesius. PMID:26408882

  5. Estimation of interaction between oriented immobilized green fluorescent protein and its antibody by high performance affinity chromatography and molecular docking.

    PubMed

    Li, Qian; Wang, Jing; Yang, Lingjian; Gao, Xiaokang; Chen, Hongwei; Zhao, Xinfeng; Bian, Liujiao; Zheng, Xiaohui

    2015-07-01

    Although green fluorescence protein (GFP) and its antibody are widely used to track a protein or a cell in life sciences, the binding behavior between them remains unclear. In this work, diazo coupling method that synthesized a new stationary GFP was oriented immobilized on the surface of macro-porous silica gel by a phase. The stationary phase was utilized to confirm the validation of injection amount-dependent analysis in exploring protein-protein interaction that use GFP antibody as a probe. GFP antibody was proved to have one type of binding site on immobilized GFP. The number of binding site and association constant were calculated to be (6.41 ± 0.76) × 10(-10) M and (1.39 ± 0.12) × 10(9) M(-1). Further analysis by molecular docking showed that the binding of GFP to its antibody is mainly driven by hydrogen bonds and salt bridges. These results indicated that injection amount-dependent analysis is capable of exploring the protein-protein interactions with the advantages of ligand and time saving. It is a valuable methodology for the ligands, which are expensive or difficult to obtain. PMID:25727342

  6. Evaluation of micro-parallel liquid chromatography as a method for HTS-coupled actives verification.

    PubMed

    Simeonov, Anton; Yasgar, Adam; Klumpp, Carleen; Zheng, Wei; Shafqat, Naeem; Oppermann, Udo; Austin, Christopher P; Inglese, James

    2007-12-01

    The identification of biologically active compounds from high-throughput screening (HTS) can involve considerable postscreening analysis to verify the nature of the sample activity. In this study we evaluated the performance of micro-parallel liquid chromatography (microPLC) as a separation-based enzyme assay platform for follow-up of compound activities found in quantitative HTS of two different targets, a hydrolase and an oxidoreductase. In an effort to couple secondary analysis to primary screening we explored the application of microPLC immediately after a primary screen. In microPLC, up to 24 samples can be loaded and analyzed simultaneously via high-performance liquid chromatography within a specially designed cartridge. In a proof-of-concept experiment for screen-coupled actives verification, we identified, selected, and consolidated the contents of "active" wells from a 1,536-well format HTS experiment into a 384-well plate and subsequently analyzed these samples by a 24-channel microPLC system. The method utilized 0.6% of the original 6-microl 1,536-well assay for the analysis. The analysis revealed several non-biological-based "positive" samples. The main examples included "false" enzyme activators resulting from an increase in well fluorescence due to fluorescent compound or impurity. The microPLC analysis also provided a verification of the activity of two activators of glucocerebrosidase. We discuss the benefits of microPLC and its limitations from the standpoint of ease of use and integration into a seamless postscreen workflow.

  7. Quantitative Characterization of Gold Nanoparticles by Coupling Thin Layer Chromatography with Laser Ablation Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Yan, Neng; Zhu, Zhenli; Jin, Lanlan; Guo, Wei; Gan, Yiqun; Hu, Shenghong

    2015-06-16

    Metal nanoparticles (NPs) determination has recently attracted considerable attention because of the continuing boom of nanotechnology. In this study, a novel method for separation and quantitative characterization of NPs in aqueous suspension was established by coupling thin layer chromatography (TLC) with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Gold nanoparticles (AuNPs) of various sizes were used as the model system. It was demonstrated that TLC not only allowed separation of gold nanoparticles from ionic gold species by using acetyl acetone/butyl alcohol/triethylamine (6:3:1, v/v) as the mobile phase, but it also achieved the separation of differently sized gold nanoparticles (13, 34, and 47 nm) by using phosphate buffer (0.2 M, pH = 6.8), Triton X-114 (0.4%, w/v), and EDTA (10 mM) as the mobile phase. Various experimental parameters that affecting TLC separation of AuNPs, such as the pH of the phosphate buffer, the coating of AuNPs, the concentrations of EDTA and Triton X-114, were investigated and optimized. It was found that separations of AuNPs by TLC displayed size dependent retention behavior with good reproducibility, and the retardation factors (R(f) value) increased linearly with decreasing nanoparticle size. The analytical performance of the present method was evaluated under optimized conditions. The limits of detection were in the tens of pg range, and repeatability (RSD, n = 7) was 6.3%, 5.9%, and 8.3% for 30 ng of 13 nm AuNPs, 34 nm AuNPs, and 47 nm AuNPs, respectively. The developed TLC-LA-ICP-MS method has also been applied to the analysis of spiked AuNPs in lake water, river water, and tap water samples.

  8. Determination of selenium urinary metabolites by high temperature liquid chromatography-inductively coupled plasma mass spectrometry.

    PubMed

    Terol, A; Ardini, F; Basso, A; Grotti, M

    2015-02-01

    The coupling of high temperature liquid chromatography (HTLC) and inductively coupled plasma mass spectrometry (ICPMS) for the determination of selenium metabolites in urine samples is reported for the first time. In order to achieve "ICPMS-friendly" chromatographic conditions, the retention on a graphite stationary phase of the major selenium urinary metabolites using only plain water with 2% methanol as the mobile phase was investigated. Under the optimal conditions (T=80°C, Ql=1.2 mL min(-1)), methyl 2-acetamido-2-deoxy-1-seleno-β-d-galactopyranoside (selenosugar 1), methyl 2-acetamido-2-deoxy-1-seleno-β-d-glucosopyranoside (selenosugar 2) and trimethylselenonium ion were efficiently separated in less than 7 min, without any interferences due to other common selenium species (selenite, selenate, selenocystine and selenomethionine) or detectable effect of the urine matrix. The limits of detection were 0.3-0.5 ng Se mL(-1), and the precision of the analytical procedure was better than 3% (RSD%, n=5). The HTLC-ICPMS method was applied to the analysis of urine samples from two volunteers before and after ingestion of Brazil nuts or selenium supplements. The developed procedure proved to be adequate for the analytical task, providing results consistent with previous studies. PMID:25582485

  9. Off-line coupling of multidimensional immunoaffinity chromatography and ion mobility spectrometry: A promising partnership.

    PubMed

    Armenta, Sergio; de la Guardia, Miguel; Abad-Fuentes, Antonio; Abad-Somovilla, Antonio; Esteve-Turrillas, Francesc A

    2015-12-24

    The extreme specificity of immunoaffinity chromatography (IAC) columns coupled to the high sensitivity of ion mobility spectrometry (IMS) measurements makes this combination really useful for rapid, selective, and sensitive determination of a high variety of analytes in different samples. The capabilities of the IAC-IMS coupling have been highlighted under three different scenarios: (i) multiclass residue analysis using a single IAC column, (ii) multiclass residue analysis using stacked IAC columns, and (iii) isomer analysis. In the first case, the determination of three strobilurin fungicides - azoxystrobin, picoxystrobin, and pyraclostrobin - in water and strawberry juice was considered, obtaining limits of quantification (LOQs) from 11 to 63μgL(-1). Recoveries from 96 to 106% for water, and from 67 to 104% for strawberry juice were obtained. In the second case, anilinopyrimidine compounds, including two analytes with similar drift time, were selectively retained in different IAC columns and analyzed after independent elution in commercial wine samples by IMS. LOQ values of 16, 14 and 12μgL(-1) were obtained for pyrimethanil, mepanipyrim, and cyprodinil, respectively. The obtained recoveries for wine samples spiked with 25 and 100μgL(-1) were from 82 to 123%. Additionally, the stacked IAC columns concept was applied to the separation of Z and E isomers of azoxystrobin that were selectively retained in specific IAC columns and quantified by IMS. Recoveries between 91 and 94% were obtained for both isomers in water samples. PMID:26654255

  10. Determination of Vitamin C (Ascorbic Acid) Using High Performance Liquid Chromatography Coupled with Electrochemical Detection

    PubMed Central

    Gazdik, Zbynek; Zitka, Ondrej; Petrlova, Jitka; Adam, Vojtech; Zehnalek, Josef; Horna, Ales; Reznicek, Vojtech; Beklova, Miroslava; Kizek, Rene

    2008-01-01

    Vitamin C (ascorbic acid, ascorbate, AA) is a water soluble organic compound that participates in many biological processes. The main aim of this paper was to utilize two electrochemical detectors (amperometric – Coulouchem III and coulometric – CoulArray) coupled with flow injection analysis for the detection of ascorbic acid. Primarily, we optimized the experimental conditions. The optimized conditions were as follows: detector potential 100 mV, temperature 25 °C, mobile phase 0.09% TFA:ACN, 3:97 (v/v) and flow rate 0.13 mL·min-1. The tangents of the calibration curves were 0.3788 for the coulometric method and 0.0136 for the amperometric one. The tangent of the calibration curve measured by the coulometric detector was almost 30 times higher than the tangent measured by the amperometric detector. Consequently, we coupled a CoulArray electrochemical detector with high performance liquid chromatography and estimated the detection limit for AA as 90 nM (450 fmol per 5 μL injection). The method was used for the determination of vitamin C in a pharmaceutical preparations (98 ± 2 mg per tablet), in oranges (Citrus aurantium) (varied from 30 to 56 mg/100 g fresh weight), in apples (Malus sp.) (varied from 11 to 19 mg/100 g fresh weight), and in human blood serum (varied from 38 to 78 μM). The recoveries were also determined.

  11. Multivariate analysis of progressive thermal desorption coupled gas chromatography-mass spectrometry.

    SciTech Connect

    Van Benthem, Mark Hilary; Mowry, Curtis Dale; Kotula, Paul Gabriel; Borek, Theodore Thaddeus, III

    2010-09-01

    Thermal decomposition of poly dimethyl siloxane compounds, Sylgard{reg_sign} 184 and 186, were examined using thermal desorption coupled gas chromatography-mass spectrometry (TD/GC-MS) and multivariate analysis. This work describes a method of producing multiway data using a stepped thermal desorption. The technique involves sequentially heating a sample of the material of interest with subsequent analysis in a commercial GC/MS system. The decomposition chromatograms were analyzed using multivariate analysis tools including principal component analysis (PCA), factor rotation employing the varimax criterion, and multivariate curve resolution. The results of the analysis show seven components related to offgassing of various fractions of siloxanes that vary as a function of temperature. Thermal desorption coupled with gas chromatography-mass spectrometry (TD/GC-MS) is a powerful analytical technique for analyzing chemical mixtures. It has great potential in numerous analytic areas including materials analysis, sports medicine, in the detection of designer drugs; and biological research for metabolomics. Data analysis is complicated, far from automated and can result in high false positive or false negative rates. We have demonstrated a step-wise TD/GC-MS technique that removes more volatile compounds from a sample before extracting the less volatile compounds. This creates an additional dimension of separation before the GC column, while simultaneously generating three-way data. Sandia's proven multivariate analysis methods, when applied to these data, have several advantages over current commercial options. It also has demonstrated potential for success in finding and enabling identification of trace compounds. Several challenges remain, however, including understanding the sources of noise in the data, outlier detection, improving the data pretreatment and analysis methods, developing a software tool for ease of use by the chemist, and demonstrating our belief that

  12. Lipid Vesicle-mediated Affinity Chromatography using Magnetic Activated Cell Sorting (LIMACS): a Novel Method to Analyze Protein-lipid Interaction

    PubMed Central

    Bieberich, Erhard

    2011-01-01

    The analysis of lipid protein interaction is difficult because lipids are embedded in cell membranes and therefore, inaccessible to most purification procedures. As an alternative, lipids can be coated on flat surfaces as used for lipid ELISA and Plasmon resonance spectroscopy. However, surface coating lipids do not form microdomain structures, which may be important for the lipid binding properties. Further, these methods do not allow for the purification of larger amounts of proteins binding to their target lipids. To overcome these limitations of testing lipid protein interaction and to purify lipid binding proteins we developed a novel method termed lipid vesicle-mediated affinity chromatography using magnetic-activated cell sorting (LIMACS). In this method, lipid vesicles are prepared with the target lipid and phosphatidylserine as the anchor lipid for Annexin V MACS. Phosphatidylserine is a ubiquitous cell membrane phospholipid that shows high affinity to the protein Annexin V. Using magnetic beads conjugated to Annexin V the phosphatidylserine-containing lipid vesicles will bind to the magnetic beads. When the lipid vesicles are incubated with a cell lysate the protein binding to the target lipid will also be bound to the beads and can be co-purified using MACS. This method can also be used to test if recombinant proteins reconstitute a protein complex binding to the target lipid. We have used this method to show the interaction of atypical PKC (aPKC) with the sphingolipid ceramide and to co-purify prostate apoptosis response 4 (PAR-4), a protein binding to ceramide-associated aPKC. We have also used this method for the reconstitution of a ceramide-associated complex of recombinant aPKC with the cell polarity-related proteins Par6 and Cdc42. Since lipid vesicles can be prepared with a variety of sphingo- or phospholipids, LIMACS offers a versatile test for lipid-protein interaction in a lipid environment that resembles closely that of the cell membrane

  13. The synthesis and characterization of a nuclear membrane affinity chromatography column for the study of human breast cancer resistant protein (BCRP) using nuclear membranes obtained from the LN-229 cells.

    PubMed

    Habicht, K-L; Frazier, C; Singh, N; Shimmo, R; Wainer, I W; Moaddel, R

    2013-01-01

    BCRP expression has been reported in glioblastoma cell lines and clinical specimens and has been shown to be expressed both in purified nuclei and in the soluble cytoplasmic fraction. To date, the nuclear BCRP has not been characterized. Our laboratory has previously developed an online chromatographic approach for the study of binding interactions between ligands and protein, cellular membrane affinity chromatography. To this end, we have immobilized the nuclear membrane fragments onto an immobilized artificial membrane stationary phase (IAM), resulting in the nuclear membrane affinity chromatography (NMAC) column. Initial characterization was carried out on the radio flow detector, as well as the LC-MSD, using frontal displacement chromatography techniques. Etoposide, a substrate for BCRP, was initially tested, to determine the functional immobilization of BCRP. Frontal displacement experiments with multiple concentrations of etoposide were run and the binding affinity was determined to be 4.54 μM, which is in close agreement with literature. The BCRP was fully characterized on the NMAC column and this demonstrates that for the first time the nuclear membranes have been successfully immobilized.

  14. Use of affinity-directed liquid chromatography-mass spectrometry to map the epitopes of a factor VIII inhibitor antibody fraction

    PubMed Central

    Griffiths, Amy E.; Wang, Wensheng; Hagen, Fred K.; Fay, Philip J.

    2011-01-01

    Summary Background Neutralizing factor (F) VIII antibodies develop in ~30% of individuals with hemophilia A and show specificity to multiple sites in the FVIII protein. Methods Reactive epitopes to an immobilized IgG fraction prepared from a high-titer, FVIII inhibitor plasma were determined following immuno-precipitation (IP) of tryptic and chymotryptic peptides derived from digests of the A1 and A2 subunits of FVIIIa and FVIII light chain. Peptides were detected and identified using highly sensitive liquid chromatography-mass spectrometry (LC-MS). Results Coverage maps of the A1 subunit, A2 subunit and light chain represented 79%, 69% and 90%, respectively, of the protein sequences. Dot blots indicated that the inhibitor IgG reacted with epitopes contained within each subunit of FVIIIa. IP coupled with LC-MS identified 19 peptides representing epitopes from all FVIII A and C domains. The majority of peptides (10) were derived from the A2 domain. Three peptides mapped to the C2 domain, while two mapped to the A1 and A3 domains, and single peptides mapped to the a1 segment and C1 domain. Epitopes were typically defined by peptide sequences of <12 residues. Conclusions IP coupled with LC-MS identified extensive antibody reactivity at high resolution over the entire functional FVIII molecule and yielded sequence lengths of less than 15 residues. A number of the peptides identified mapped to known sequences involved in functionally important protein-protein and protein-membrane interactions. PMID:21668738

  15. Determination of a highly selective mixed-affinity sigma receptor ligand, in rat plasma by ultra performance liquid chromatography mass spectrometry and its application to a pharmacokinetic study

    PubMed Central

    Jamalapuram, Seshulatha; Vuppala, Pradeep K.; Mesangeau, Christophe; McCurdy, Christopher R.; Avery, Bonnie A.

    2014-01-01

    A selective, rapid and sensitive ultra performance liquid chromatography mass spectrometry (UPLC/MS) method was developed and validated to quantitate a highly selective mixed-affinity sigma receptor ligand, CM156 (3-(4-(4-cyclohexylpiperazin-1-yl)butyl)benzo[d] thiazole-2(3H)-thione), in rat plasma. CM156 and the internal standard (aripiprazole) were extracted from plasma samples by a single step liquid–liquid extraction using chloroform. The analysis was carried out on an ACQUITY UPLCTM BEH HILIC column (1.7 µm, 2.1 mm × 50 mm) with isocratic elution at flow rate of 0.2 mL/min using 10 mM ammonium formate in 0.1% formic acid and acetonitrile (10:90) as the mobile phase. The detection of the analyte was performed on a mass spectrometer operated in selected ion recording (SIR) mode with positive electrospray ionization (ESI). The validated analytical method resulted in a run time of 4 min and the retention times observed were 2.6 ± 0.1 and 2.1 ± 0.1 min for CM156 and the IS, respectively. The calibration curve exhibited excellent linearity over a concentration range of 5–4000 ng/mL with the lower limit of quantification of 5 ng/mL. The intra- and inter-day precision values were below 15% and accuracy ranged from −6.5% to 5.0%. The mean recovery of CM156 from plasma was 96.8%. The validated method was applied to a pilot intravenous pharmacokinetic study in rats. PMID:22406103

  16. sup 32 P-postlabeling detection of thymine glycols: evaluation of adduct recoveries after enhancement with affinity chromatography, nuclease P1, nuclease S1, and polynucleotide kinase

    SciTech Connect

    Reddy, M.V.; Bleicher, W.T.; Blackburn, G.R. )

    1991-04-01

    Thymine glycol (Tg) is a product of DNA damage by oxygen radicals generated by oxidative mutagens and carcinogens and ionizing radiation. The highly sensitive {sup 32}P-postlabeling assay was validated and optimized for the measurement of Tg generated in vitro by the reaction of dTp or calf thymus DNA with osmium tetroxide (OsO{sub 4}). Adduct detection was enhanced by purification of Tg adducts using phenylboronate affinity chromatography or by preferential dephosphorylation of unmodified 3'-nucleotides with nuclease P1, nuclease S1, or polynucleotide kinase; Tg nucleotides were found to be resistant to limited enzymatic 3'-dephosphorylation. Two adducts were seen with OsO{sub 4}-modified dTp, which may have been cis-Tg adducts, because they were retained on a phenylboronate column, and because OsO{sub 4} selectively forms cis-Tg adducts. With OsO{sub 4}-modified DNA, several adducts were detected, two major derivatives of which coincided chromatographically with those seen in OsO{sub 4}-modified dTp. The recoveries of major adducts were similar before and after enrichment by different methods, indicating that Tg adducts were resistant to enzymatic dephosphorylation. The efficacy of labeling of the two major Tg adducts by polynucleotide kinase was optimal at 60 microM ATP and higher, whereas it was about 3%, 50%, and 80% of the optimal rate at 2, 10, and 30 microM, respectively. This was in contrast to our previous finding that only 0.25 microM ATP was needed for optimal labeling of benzoquinone-DNA adducts.

  17. A novel fully automated on-line coupled liquid chromatography-gas chromatography technique used for the determination of organochlorine pesticide residues in tobacco and tobacco products.

    PubMed

    Qi, Dawei; Fei, Ting; Sha, Yunfei; Wang, Leijun; Li, Gang; Wu, Da; Liu, Baizhan

    2014-12-29

    In this study, a novel fully automated on-line coupled liquid chromatography-gas chromatography (LC-GC) technique was reported and applied for the determination of organochlorine pesticide residues (OCPs) in tobacco and tobacco products. Using a switching valve to isolate the capillary pre-column and the analytical column during the solvent evaporation period, the LC solvent can be completely removed and prevented from reaching the GC column and the detector. The established method was used to determinate the OCPs in tobacco samples. By using Florisil SPE column and employing GPC technique, polarity impurities and large molecule impurities were removed. A dynamic range 1-100ng/mL was achieved with detection limits from 1.5 to 3.3μg/kg. The method exhibited good repeatability and recoveries. This technology may provide an alternative way for trace analysis of complex samples.

  18. Analysis of wax esters in edible oils by automated on-line coupling liquid chromatography-gas chromatography using the through oven transfer adsorption desorption (TOTAD) interface.

    PubMed

    Aragón, Alvaro; Cortés, José M; Toledano, Rosa M; Villén, Jesús; Vázquez, Ana

    2011-07-29

    An automated method for the direct analysis of wax esters in edible oils is presented. The proposed method uses the TOTAD (through oven transfer adsorption desorption) interface for the on-line coupling of normal phase liquid chromatography and gas chromatography. In this fully automated system, the oil with C32 wax ester as internal standard and diluted with heptane is injected directly with no sample pre-treatment step other than filtration. The proposed method allows analysis of different wax esters, and is simpler and faster than the European Union Official Method, which is tedious and time-consuming. The obtained results closely match the certified values obtained from the median of the analytical results of the inter-labs certification study. Relative standard deviations of the concentrations are less than 5%. The method is appropriate for routine analysis as it is totally automated.

  19. Coupled achiral/chiral column techniques in subcritical fluid chromatography for the separation of chiral and nonchiral compounds.

    PubMed

    Phinney, K W; Sander, L C; Wise, S A

    1998-06-01

    A multicolumn approach was developed to address the limited achiral selectivity of chiral stationary phases. Groups of structurally related compounds, including beta-blockers and 1,4-benzodiazepines, were separated using coupled achiral/chiral stationary phases under subcritical fluid conditions. The achiral selectivity of amino and cyano stationary phases was used to modify the resolution of compounds on a Chiralcel OD chiral stationary phase by combining the achiral and chiral columns in series. In the case of the benzodiazepines, separation of achiral compounds was performed concurrently with the enantioseparation of chiral molecules. The separation of components of a multidrug cough and cold medication was also demonstrated on a cyano column coupled with a Chiralpak AD chiral stationary phase. The use of modified carbon dioxide eluents eliminated the mobile phase incompatibility problems associated with column coupling in liquid chromatography and incorporated the high efficiency of sub- and supercritical fluid chromatography.

  20. Affinity separation in magnetically stabilized fluidized beds: synthesis and performance of packing materials

    SciTech Connect

    Lochmueller, C.H.; Wigman, L.S.

    1987-11-01

    A magnetically stabilized fluidized-bed separator designed to test the use of pellicular, ferromagnetic affinity chromatography packing materials has been developed. A wire wound solenoid was used to produce the magnetic field. The ferromagnetic packing material is comprised of a magnetite-containing, polyurethane gel coated onto polystyrene beads. The gel contains free carboxyl groups. These were carbodiimide-coupled to soy trypsin inhibitor and the material used for trypsin purification. Narrow-band affinity chromatography was carried out in packed-bed, fluidized-bed, and magnetically stabilized, fluidized-bed separators. Pressure drop, capacity, dilution, and peak asymmetry were evaluated for each type of separator. The three types provide comparable efficiency but the fluidized separators exhibit a much lower pressure drop. As might be expected, fluidized-bed separators perform well for affinity chromatography (large k') but poorly for size exclusion chromatography.

  1. Defluorinated Sparfloxacin as a New Photoproduct Identified by Liquid Chromatography Coupled with UV Detection and Tandem Mass Spectrometry

    PubMed Central

    Engler, Michael; Rüsing, Guido; Sörgel, Fritz; Holzgrabe, Ulrike

    1998-01-01

    Photodegradation of sparfloxacin was observed by means of high-pressure liquid chromatography with UV detection and liquid chromatography coupled with UV detection and tandem mass spectrometry (LC-MS/MS). Three products were detected. Comparison with an independently synthesized derivative of sparfloxacin revealed the structure of one product which is believed to be 8-desfluorosparfloxacin. The second product is likely to be formed by the splitting off of a fluorine and a cyclopropyl ring. Thus, photodefluorination of quinolone antibacterial agents is found and proved for the first time by LC-MS/MS. PMID:9593143

  2. Comparative Study of Three Methods for Affinity Measurements: Capillary Electrophoresis Coupled with UV Detection and Mass Spectrometry, and Direct Infusion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Mironov, Gleb G.; Logie, Jennifer; Okhonin, Victor; Renaud, Justin B.; Mayer, Paul M.; Berezovski, Maxim V.

    2012-07-01

    We present affinity capillary electrophoresis and mass spectrometry (ACE-MS) as a comprehensive separation technique for label-free solution-based affinity analysis. The application of ACE-MS for measuring affinity constants between eight small molecule drugs [ibuprofen, s-flurbiprofen, diclofenac, phenylbutazone, naproxen, folic acid, resveratrol, and 4,4'-(propane-1,3-diyl) dibenzoic acid] and β-cyclodextrin is described. We couple on-line ACE with MS to combine the separation and kinetic capability of ACE together with the molecular weight and structural elucidation of MS in one system. To understand the full potential of ACE-MS, we compare it with two other methods: Direct infusion mass spectrometry (DIMS) and ACE with UV detection (ACE-UV). After the evaluation, DIMS provides less reliable equilibrium dissociation constants than separation-based ACE-UV and ACE-MS, and cannot be used solely for the study of noncovalent interactions. ACE-MS determines apparent dissociation constants for all reacting small molecules in a mixture, even in cases when drugs overlap with each other during separation. The ability of ACE-MS to interact, separate, and rapidly scan through m/z can facilitate the simultaneous affinity analysis of multiple interacting pairs, potentially leading to the high-throughput screening of drug candidates.

  3. Serum/plasma methylmercury determination by isotope dilution gas chromatography-inductively coupled plasma mass spectrometry.

    PubMed

    Baxter, Douglas C; Faarinen, Mikko; Österlund, Heléne; Rodushkin, Ilia; Christensen, Morten

    2011-09-01

    A method for the determination of methylmercury in plasma and serum samples was developed. The method uses isotope dilution with (198)Hg-labeled methylmercury, extraction into dichloromethane, back-extraction into water, aqueous-phase ethylation, purge and trap collection, thermal desorption, separation by gas chromatography, and mercury isotope specific detection by inductively coupled plasma mass spectrometry. By spiking 2 mL sample with 1.2 ng tracer, measurements in a concentration interval of (0.007-2.9) μg L(-1) could be performed with uncertainty amplification factors <2. A limit of quantification of 0.03 μg L(-1) was estimated at 10 times the standard deviation of concentrations measured in preparation blanks. Within- and between-run relative standard deviations were <10% at added concentration levels of 0.14 μg L(-1), 0.35 μg L(-1) and 2.8 μg L(-1), with recoveries in the range 82-110%. Application of the method to 50 plasma/serum samples yielded a median (mean; range) concentration of methylmercury of 0.081 (0.091; <0.03-0.19) μg L(-1). This is the first time methylmercury has been directly measured in this kind of specimen, and is therefore the first estimate of a reference range.

  4. Determination of plastic additives in packaging by liquid chromatography coupled to high resolution mass spectrometry.

    PubMed

    Moreta, Cristina; Tena, María-Teresa

    2015-10-01

    A simple and sensitive analytical method for the determination of several plastic additives in multilayer packaging based on solid-liquid extraction (SLE) and ultra-high performance liquid chromatography (UHPLC) coupled to variable wavelength (VWD) and time of flight mass spectrometry (TOF-MS) detectors is presented. The proposed method allows the simultaneous determination of fourteen additives belonging to different families such as antioxidants, slip agents and light stabilizers, as well as two oxidation products in only 9min. The developed method was validated in terms of linearity, matrix effect error, detection and quantification limits, repeatability and intermediate precision. The instrumental method showed satisfactory repeatability and intermediate precision at concentrations closed to LOQ with RSDs less than 7 and 20%, respectively, and LODs until 5000 times more sensitive than other GC-FID and HPLC-VWD methods previously reported. Also, focused ultrasound solid-liquid extraction (FUSLE) was optimized and evaluated to extract plastic additives from packaging. Extraction results obtained by FUSLE and SLE were compared to those obtained by pressurized liquid extraction (PLE). All extraction methods showed excellent extraction efficiency for slip agents, however quantitative recovery of all analytes was achieved only by SLE with just 5ml of hexane for 10h. Finally, the selected method was applied to the analysis of packaging samples where erucamide, Irgafos 168, oxidized Irgafos 168, Irganox 1076 and Irganox 1010 were detected and quantified. PMID:26319625

  5. An inductively coupled plasma carbon emission detector for aqueous carbohydrate separations by liquid chromatography.

    PubMed

    Peters, H L; Levine, K E; Jones, B T

    2001-02-01

    An inductively coupled plasma atomic emission spectrometer is used to detect carbon-containing compounds following separation by high-performance liquid chromatography. A calcium form ligand exchange column with distilled and deionized water as the mobile phase is used to separate carbohydrates. The eluting species are detected by monitoring the carbon atomic emission line at 193.09 nm. The mass detection limits using a photomultiplier tube for sucrose and glucose are 50 ng, while that for fructose is 60 ng. The carbon emission detector should provide the same detection limit for any compound with a similar mass percent of carbon, whether or not the compound exhibits appreciable absorption characteristics. While the carbon emission detector will universally detect any organic compound, it will discriminate against species with high molar absorptivity that may be present at low concentration. Such species may act as interferences in chromatograms generated with conventional UV-visible absorption detectors. To demonstrate the utility of the carbon emission detector, three sugars (glucose, fructose, sucrose) are determined in apple, crangrape, and orange juice.

  6. Coupling ultra high-pressure liquid chromatography with mass spectrometry: constraints and possible applications.

    PubMed

    Rodriguez-Aller, Marta; Gurny, Robert; Veuthey, Jean-Luc; Guillarme, Davy

    2013-05-31

    The introduction of columns packed with porous sub-2μm particles and the extension of the upper pressure limit of HPLC instrumentation to 1300bar (ultra-high pressure liquid chromatography, UHPLC) has opened new frontiers in resolution and speed of analysis. However, certain constraints appear when coupling UHPLC technology with mass spectrometry (MS). First, the most significant limitation is related to the narrow peaks that are produced by UHPLC that require a fast duty cycle, which is only available on the latest generations of MS devices. Thus, certain analyzers are more readily compatible with UHPLC (e.g., QqQ or TOF/MS) than others (e.g., ion trap or FT-MS). Second, due to the reduction of the column volume, extra-column band broadening can become significant, leading to a reduction in the kinetic performance of the UHPLC-MS configuration. Third, as the mobile phase linear velocity is higher in UHPLC, the electrospray ionization source must also be able to provide high sensitivity at flow rates of up to 1mL/min. Despite these limitations, the UHPLC-MS/MS platform has successfully been employed over the last decade for various types of applications, including those related to bioanalysis, drug metabolism, multi-residue screening, metabolomics, biopharmaceuticals and polar compounds.

  7. Characterisation of brewpub beer carbohydrates using high performance anion exchange chromatography coupled with pulsed amperometric detection.

    PubMed

    Arfelli, Giuseppe; Sartini, Elisa

    2014-01-01

    High performance anion exchange chromatography (HPAEC) coupled with pulsed amperometric detection (PAD) was optimised in order to quantify mannose, maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose and maltoheptaose content of beer. The method allows the determination of above mentioned oligosaccharides, in a single chromatographic run, without any pre-treatment. Limit of detection and limit of quantification were suitable for beer. Accuracy and repeatability were good for the entire amount considered. Once optimised HPAEC PAD for the specific matrix, the second goal of this research was to verify the possibility to discriminate beers, depending on their style. The carbohydrates content of brewpub commercial beers was very variable, ranging from 19.3 to 1469mg/L (mannose), 34.5 to 2882mg/L (maltose), 141.9 to 20731mg/L (maltotriose), 168.5 to 7650mg/L (maltotetraose), 20.1 to 2537mg/L (maltopentaose), 22.9 to 3295mg/L (maltohexaose), 8.5 to 2492mg/L (maltoeptaose), even in the same style of beer. However, the carbohydrates content was useful, jointed with other compounds amount, to discriminate different styles of beer. As a matter of fact, principal component analysis put in evidence beer differences considering some fermentation conditions and colour.

  8. Integrated microfluidic device for solid-phase extraction coupled to micellar electrokinetic chromatography separation.

    PubMed

    Ramsey, Jeremy D; Collins, Greg E

    2005-10-15

    An integrated microdevice was utilized for the autonomous coupling of solid-phase extraction (SPE) to micellar electrokinetic chromatography (MEKC). Porous plugs of polymethacrylate polymer approximately 200 microm in length) were fabricated by ultraviolet irradiation in microchannels. Microcolumns of hydrophobic beads packed against the polymethacrylate plugs were utilized for the quantitative extraction of rhodamine B, yielding preconcentration factors over 200 for a 90-s extraction. The calculated detection limit for this dye was 60 fM. A sample of coumarin dyes were concentrated by SPE, eluted in a nonaqueous solvent from a separate on-chip reservoir, and injected by a gated valve onto a separate column for MEKC analysis. Using the integrated device, a completely automated sequence of extraction, elution, injection, separation, and detection were performed in less than 5 min. Observed separation efficiencies were high, with plate heights below 2 microm. The analysis was at least 3 times faster than semiautomated, conventional, solid-phase extraction, while requiring no user intervention. The design, fabrication, and autonomous operation of the device is discussed.

  9. Determination of Phytochelatins in Rice by Stable Isotope Labeling Coupled with Liquid Chromatography-Mass Spectrometry.

    PubMed

    Liu, Ping; Cai, Wen-Jing; Yu, Lei; Yuan, Bi-Feng; Feng, Yu-Qi

    2015-07-01

    A highly sensitive method was developed for the detection of phytochelatins (PCs) in rice by stable isotope labeling coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry (IL-LC-ESI-MS/MS) analysis. A pair of isotope-labeling reagents [ω-bromoacetonylquinolinium bromide (BQB) and BQB-d(7)] were used to label PCs in plant sample and standard PCs, respectively, and then combined prior to LC/MS analysis. The heavy labeled standards were used as the internal standards for quantitation to minimize the matrix and ion suppression effects in MS analysis. In addition, the ionization efficiency of PCs was greatly enhanced through the introduction of a permanent charged moiety of quaternary ammonium of BQB into PCs. The detection sensitivities of PCs upon BQB labeling improved by 14-750-fold, and therefore, PCs can be quantitated using only 5 mg of plant tissue. Furthermore, under cadmium (Cd) stress, we found that the contents of PCs in rice dramatically increased with the increased concentrations and treatment time of Cd. It was worth noting that PC5 was first identified and quantitated in rice tissues under Cd stress in the current study. Taken together, this IL-LC-ESI-MS/MS method demonstrated to be a promising strategy in detection of PCs in plants with high sensitivity and reliability. PMID:26073168

  10. Determination of plastic additives in packaging by liquid chromatography coupled to high resolution mass spectrometry.

    PubMed

    Moreta, Cristina; Tena, María-Teresa

    2015-10-01

    A simple and sensitive analytical method for the determination of several plastic additives in multilayer packaging based on solid-liquid extraction (SLE) and ultra-high performance liquid chromatography (UHPLC) coupled to variable wavelength (VWD) and time of flight mass spectrometry (TOF-MS) detectors is presented. The proposed method allows the simultaneous determination of fourteen additives belonging to different families such as antioxidants, slip agents and light stabilizers, as well as two oxidation products in only 9min. The developed method was validated in terms of linearity, matrix effect error, detection and quantification limits, repeatability and intermediate precision. The instrumental method showed satisfactory repeatability and intermediate precision at concentrations closed to LOQ with RSDs less than 7 and 20%, respectively, and LODs until 5000 times more sensitive than other GC-FID and HPLC-VWD methods previously reported. Also, focused ultrasound solid-liquid extraction (FUSLE) was optimized and evaluated to extract plastic additives from packaging. Extraction results obtained by FUSLE and SLE were compared to those obtained by pressurized liquid extraction (PLE). All extraction methods showed excellent extraction efficiency for slip agents, however quantitative recovery of all analytes was achieved only by SLE with just 5ml of hexane for 10h. Finally, the selected method was applied to the analysis of packaging samples where erucamide, Irgafos 168, oxidized Irgafos 168, Irganox 1076 and Irganox 1010 were detected and quantified.

  11. Speciation of heavy metals in environmental water by ion chromatography coupled to ICP-MS.

    PubMed

    Ammann, Adrian A

    2002-02-01

    Biogenic (e.g. phytochelatins, porphyrins, DOM) as well as anthropogenic (e.g. NTA, EDTA, phosphonates) chelators affect the mobility and cycling of heavy metals in environmental waters. Since such chelators can form strongly bound anionic heavy metal complexes that are stable and highly mobile, anion-exchange chromatography coupled to ICP-MS was investigated. A narrow bore HPLC system was connected to a micro concentric nebuliser for in-line sample introduction. A new chromatographic procedure based on a synthetic hydrophilic quaternary ammonium anion exchanger in combination with nitrate as a strong eluent anion, and gradient elution, provided high separation selectivity and a large analytical window. Low detection limits (nmol L(-1)) were achieved by on-column matrix removal and sample preconcentration. This allowed the method to be successfully applied to different environmental research areas. In ecotoxicological studies of heavy metal effects on algae low concentrations of metal EDTA complexes were determined in nutrient solutions without interference from high (buffer) salt concentrations. In groundwater, infiltrated by a polluted river, mobile metal EDTA species were observed. In river water of different pollution levels beside CuEDTA other anionic Cu-complexes were found in nmol L(-1) concentrations. PMID:11939532

  12. Quantitative determination of trisiloxane surfactants in beehive environments based on liquid chromatography coupled to mass spectrometry.

    PubMed

    Chen, Jing; Mullin, Christopher A

    2013-08-20

    Organosilicone surfactants are increasingly being applied to agricultural agro-ecosystems as spray adjuvants, and were recently shown to impact the learning ability of honey bees. Here we developed a method for analyzing three trisiloxane surfactants (single polyethoxylate (EO) chain and end-capped with methyl, acetyl, or hydroxyl groups; TSS-CH3, TSS-COCH3, or TSS-H) in beehive matrices based on liquid chromatography coupled to mass spectrometry (LC-MS) and the QuEChERS (quick, easy, cheap, effective, rugged, and safe) approach from less than 2 g of honey, pollen, or beeswax. Recoveries for each oligomer (2-13 EO) were between 66 and 112% in all matrices. Average method detection limits (MDL) were 0.53, 0.60, 0.56 ng/g in honey, 0.63, 0.81, 0.78 ng/g in pollen, and 0.51, 0.69, 0.63 ng/g in beeswax. Five honey, 10 pollen, and 10 beeswax samples were analyzed. Trisiloxane surfactants were detected in every beeswax and 60% of the pollen samples. Total trisiloxane surfactant concentrations were up to 390 and 39 ng/g in wax and pollen. The described method is proved suitable for analyzing trisiloxane surfactants in beehive samples. The presence of trisiloxane surfactants in North American beehives calls for renewed effort to investigate the consequence of these adjuvants to bee health and the ongoing global bee decline.

  13. Toward Sensitive and Accurate Analysis of Antibody Biotherapeutics by Liquid Chromatography Coupled with Mass Spectrometry

    PubMed Central

    An, Bo; Zhang, Ming

    2014-01-01

    Remarkable methodological advances in the past decade have expanded the application of liquid chromatography coupled with mass spectrometry (LC/MS) analysis of biotherapeutics. Currently, LC/MS represents a promising alternative or supplement to the traditional ligand binding assay (LBA) in the pharmacokinetic, pharmacodynamic, and toxicokinetic studies of protein drugs, owing to the rapid and cost-effective method development, high specificity and reproducibility, low sample consumption, the capacity of analyzing multiple targets in one analysis, and the fact that a validated method can be readily adapted across various matrices and species. While promising, technical challenges associated with sensitivity, sample preparation, method development, and quantitative accuracy need to be addressed to enable full utilization of LC/MS. This article introduces the rationale and technical challenges of LC/MS techniques in biotherapeutics analysis and summarizes recently developed strategies to alleviate these challenges. Applications of LC/MS techniques on quantification and characterization of antibody biotherapeutics are also discussed. We speculate that despite the highly attractive features of LC/MS, it will not fully replace traditional assays such as LBA in the foreseeable future; instead, the forthcoming trend is likely the conjunction of biochemical techniques with versatile LC/MS approaches to achieve accurate, sensitive, and unbiased characterization of biotherapeutics in highly complex pharmaceutical/biologic matrices. Such combinations will constitute powerful tools to tackle the challenges posed by the rapidly growing needs for biotherapeutics development. PMID:25185260

  14. Headspace in-tube microextraction coupled with micellar electrokinetic chromatography of neutral aromatic compounds.

    PubMed

    Cho, Sung Min; Park, Bum Su; Jung, Woo Sung; Lee, Sang Won; Jung, Yunhwan; Chung, Doo Soo

    2016-02-01

    Headspace (HS) extraction can be carried out easily and aptly via single drop microextraction coupled with capillary electrophoresis (CE). However, one drawback is the difficulty of keeping the single drop stably at the capillary tip. To solve this problem, we have recently demonstrated HS in-tube microextraction (ITME) of acidic compounds such as chlrophenols in an acidic sample using a basic run buffer plug in the separation capillary for CE as an acceptor phase. In this report, an organic acceptor plug in a capillary was used to extract neutral organic volatile pollutants such as BTEX (benzene, toluene, ethylbenzene, and m-xylene). After extraction, the analytes enriched in the organic acceptor plug were analyzed with micellar electrokinetic chromatography (MEKC). The enrichment factors for BTEX in a standard solution were up to 350 under an optimal condition of 25°C for 20 min. As an application, BTEX spiked into bottled water were analyzed with HS-ITME-MEKC, and the enrichment factors for BTEX were up to 320. The limits of detections were 1-4 ppb, which are at least 200 times lower than the US Environmental Protection Agency guidelines for drinking water, except benzene. The entire procedure of HS-ITME-MEKC was carried out automatically using a commercial CE instrument. PMID:26653509

  15. Determination of Phytochelatins in Rice by Stable Isotope Labeling Coupled with Liquid Chromatography-Mass Spectrometry.

    PubMed

    Liu, Ping; Cai, Wen-Jing; Yu, Lei; Yuan, Bi-Feng; Feng, Yu-Qi

    2015-07-01

    A highly sensitive method was developed for the detection of phytochelatins (PCs) in rice by stable isotope labeling coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry (IL-LC-ESI-MS/MS) analysis. A pair of isotope-labeling reagents [ω-bromoacetonylquinolinium bromide (BQB) and BQB-d(7)] were used to label PCs in plant sample and standard PCs, respectively, and then combined prior to LC/MS analysis. The heavy labeled standards were used as the internal standards for quantitation to minimize the matrix and ion suppression effects in MS analysis. In addition, the ionization efficiency of PCs was greatly enhanced through the introduction of a permanent charged moiety of quaternary ammonium of BQB into PCs. The detection sensitivities of PCs upon BQB labeling improved by 14-750-fold, and therefore, PCs can be quantitated using only 5 mg of plant tissue. Furthermore, under cadmium (Cd) stress, we found that the contents of PCs in rice dramatically increased with the increased concentrations and treatment time of Cd. It was worth noting that PC5 was first identified and quantitated in rice tissues under Cd stress in the current study. Taken together, this IL-LC-ESI-MS/MS method demonstrated to be a promising strategy in detection of PCs in plants with high sensitivity and reliability.

  16. Headspace in-tube microextraction coupled with micellar electrokinetic chromatography of neutral aromatic compounds.

    PubMed

    Cho, Sung Min; Park, Bum Su; Jung, Woo Sung; Lee, Sang Won; Jung, Yunhwan; Chung, Doo Soo

    2016-02-01

    Headspace (HS) extraction can be carried out easily and aptly via single drop microextraction coupled with capillary electrophoresis (CE). However, one drawback is the difficulty of keeping the single drop stably at the capillary tip. To solve this problem, we have recently demonstrated HS in-tube microextraction (ITME) of acidic compounds such as chlrophenols in an acidic sample using a basic run buffer plug in the separation capillary for CE as an acceptor phase. In this report, an organic acceptor plug in a capillary was used to extract neutral organic volatile pollutants such as BTEX (benzene, toluene, ethylbenzene, and m-xylene). After extraction, the analytes enriched in the organic acceptor plug were analyzed with micellar electrokinetic chromatography (MEKC). The enrichment factors for BTEX in a standard solution were up to 350 under an optimal condition of 25°C for 20 min. As an application, BTEX spiked into bottled water were analyzed with HS-ITME-MEKC, and the enrichment factors for BTEX were up to 320. The limits of detections were 1-4 ppb, which are at least 200 times lower than the US Environmental Protection Agency guidelines for drinking water, except benzene. The entire procedure of HS-ITME-MEKC was carried out automatically using a commercial CE instrument.

  17. Liquid chromatography coupled to tandem mass spectrometry for the analysis of acrylamide in typical Spanish products.

    PubMed

    Bermudo, E; Moyano, E; Puignou, L; Galceran, M T

    2008-07-15

    This paper describes the use of liquid chromatography coupled to tandem mass spectrometry for the determination of acrylamide in several typical foods produced and consumed in Spain. Christmas sweets, olives, traditionally made potato crisps, pastry products, sweet fritters ("churros") and one of Spain's most famous dishes, Spanish omelette, were selected. Using the mass spectra information provided by an ion trap analyzer in combination with the accurate mass measurements from time-of-flight (TOF) spectrometry a co-extractive interference present in some potato products was identified as valine. A porous graphitic carbon column, which enabled the co-extractive and acrylamide to be separated, and ion trap or triple quadrupole analyzers, depending on the acrylamide concentration, were used to determine this genotoxic compound in foodstuffs. The highest values were found in potato products, sweet fritters, Christmas sweets and pastry products, with values ranging between 70 and 2000 microg/g. Spanish omelette presented relatively low levels, similar to those obtained for dried fruits.

  18. Arsenic speciation in soil using high performance liquid chromatography/inductively coupled plasma/mass spectrometry

    SciTech Connect

    Bass, D.A.; Yaeger, J.S.; Parish, K.J.; Crain, J.S.; Kiely, J.T.; Gowdy, M.J.; Mohrman, G.B.; Besmer, M.G.

    1996-08-01

    A method has been developed to identify and quantify As(III), As(V), and organoarsenic compounds in soil samples from the Rocky Mountain Arsenal (RMA) by high performance liquid chromatography/inductively coupled plasma/mass spectrometry (HPLC/ICP/MS). The soils were extracted using tetrabutylammonium hydroxide (TBAH) and sonication. The percentages of As(III), As(V), and organoarsenic species extracted from soil samples were 30, 50, and 100 respectively. The arsenic species were not altered during the extraction process. They were separated by reversed-phase, ion-pairing, HPLC using a microbore Inertsil-ODS{trademark} column. The HPLC column effluent was introduced into an ICP/MS system using a direct injection nebulizer (DIN). Detection limits of less than 1 pg were readily obtained for each arsenic species. Internal standards are recommended to increase accuracy and precision. Soil samples spiked with arsenic oxide, sodium arsenate, dimethylarsinic acid (DMAA), and chlorovinyl arsenious acid (CVAA) were extracted, identified and quantified with the HPLC/ICP/MS system. The soil samples were analyzed in support of the analytical needs of a thermal desorption treatability study being conducted at the RMA.

  19. Simultaneous high-throughput determination of interaction kinetics for drugs and cyclodextrins by high performance affinity chromatography with mass spectrometry detection.

    PubMed

    Wang, Caifen; Wang, Xiaobo; Xu, Xiaonan; Liu, Botao; Xu, Xu; Sun, Lixin; Li, Haiyan; Zhang, Jiwen

    2016-02-25

    The individual determination of the apparent dissociation rate constant (kd,app) using high performance affinity chromatography (HPAC) is a tedious process requiring numerous separate tests and massive data fitting, unable to provide the apparent association rate constant (ka) and equilibrium binding constant (Ka). In this study, a HPAC with mass spectrometry detection (HPAC-MS/MS) was employed to determine the drug-cyclodextrin (CD) interaction kinetics with low sample loading quantity (<10 ng per injection for single compound) and high-throughput yield as twenty drugs determined in one injection. The kd,app measured by HPAC-MS/MS approach were 0.89 ± 0.07, 4.34 ± 0.01, 1.48 ± 0.01 and 7.77 ± 0.04 s(-1) for ketoprofen, trimethoprim, indapamide and acetaminophen, with kd,app for acetaminophen consistent with that from the HPAC method with UV detector in our previous studies. For twenty drugs with diverse structures and chemical properties, good correlationship was found between kd,app measured by single compound analysis method and high-throughput HPAC-MS/MS approach, with the correlation coefficient of 0.987 and the significance F less than 0.001. Comprehensive quantification of ka,app, kd,app and Ka values was further performed based on the measurement of kd,app by peak profiling method and Ka by the peak fitting method. And the investigation of the drug-CD interaction kinetics under different conditions indicated that the column temperature and mobile phase composition significantly affected the determination of ka,app, kd,app and Ka while also dependent on the acidity and basicity of drugs. In summary, the high-throughput HPAC-MS/MS approach has been demonstrated high efficiency in determination of the drug-CD primary interaction kinetic parameter, especially, kd,app, being proven as a novel tool in screening the right CD for the solubilization of the right drug. PMID:26851087

  20. Simultaneous high-throughput determination of interaction kinetics for drugs and cyclodextrins by high performance affinity chromatography with mass spectrometry detection.

    PubMed

    Wang, Caifen; Wang, Xiaobo; Xu, Xiaonan; Liu, Botao; Xu, Xu; Sun, Lixin; Li, Haiyan; Zhang, Jiwen

    2016-02-25

    The individual determination of the apparent dissociation rate constant (kd,app) using high performance affinity chromatography (HPAC) is a tedious process requiring numerous separate tests and massive data fitting, unable to provide the apparent association rate constant (ka) and equilibrium binding constant (Ka). In this study, a HPAC with mass spectrometry detection (HPAC-MS/MS) was employed to determine the drug-cyclodextrin (CD) interaction kinetics with low sample loading quantity (<10 ng per injection for single compound) and high-throughput yield as twenty drugs determined in one injection. The kd,app measured by HPAC-MS/MS approach were 0.89 ± 0.07, 4.34 ± 0.01, 1.48 ± 0.01 and 7.77 ± 0.04 s(-1) for ketoprofen, trimethoprim, indapamide and acetaminophen, with kd,app for acetaminophen consistent with that from the HPAC method with UV detector in our previous studies. For twenty drugs with diverse structures and chemical properties, good correlationship was found between kd,app measured by single compound analysis method and high-throughput HPAC-MS/MS approach, with the correlation coefficient of 0.987 and the significance F less than 0.001. Comprehensive quantification of ka,app, kd,app and Ka values was further performed based on the measurement of kd,app by peak profiling method and Ka by the peak fitting method. And the investigation of the drug-CD interaction kinetics under different conditions indicated that the column temperature and mobile phase composition significantly affected the determination of ka,app, kd,app and Ka while also dependent on the acidity and basicity of drugs. In summary, the high-throughput HPAC-MS/MS approach has been demonstrated high efficiency in determination of the drug-CD primary interaction kinetic parameter, especially, kd,app, being proven as a novel tool in screening the right CD for the solubilization of the right drug.

  1. Comprehensive screening of veterinary drugs in honey by ultra-high-performance liquid chromatography coupled to mass spectrometry.

    PubMed

    Staub Spörri, Aline; Jan, Philippe; Cognard, Emmanuelle; Ortelli, Didier; Edder, Patrick

    2014-01-01

    In the context of multi-residue screening in honey, a complete methodology was developed for 200 veterinary drugs comprising a sample preparation step and an ultra-high-performance liquid chromatography (UHPLC) coupled to time-of-flight (TOF) mass spectrometry analysis. In addition, specific analytical strategies were developed for two compounds, streptomycin and chloramphenicol, using UHPLC and tandem mass spectrometry (MS/MS). Methodologies were then applied to real honey samples obtained from the Swiss market. PMID:24499104

  2. Determination and characterization of phytochelatins by liquid chromatography coupled with on line chemical vapour generation and atomic fluorescence spectrometric detection.

    PubMed

    Bramanti, Emilia; Toncelli, Daniel; Morelli, Elisabetta; Lampugnani, Leonardo; Zamboni, Roberto; Miller, Keith E; Zemetra, Joseph; D'Ulivo, Alessandro

    2006-11-10

    Liquid chromatography (LC) coupled on line with UV/visible diode array detector (DAD) and cold vapour generation atomic fluorescence spectrometry (CVGAFS) has been developed for the speciation, determination and characterization of phytochelatins (PCs). The method is based on a bidimensional approach, e.g. on the analysis of synthetic PC solutions (apo-PCs and Cd(2+)-complexed PCs) (i) by size exclusion chromatography coupled to UV diode array detector (SEC-DAD); (ii) by the derivatization of PC -SH groups in SEC fractions by p-hydroxymercurybenzoate (PHMB) and the indirect detection of PC-PHMB complexes by reversed phase liquid chromatography coupled to atomic fluorescence detector (RPLC-CVGAFS). MALDI-TOF/MS (matrix assisted laser desorption ionization time of flight mass spectrometry) analysis of underivatized synthetic PC samples was performed in order have a qualitative information of their composition. Quantitative analysis of synthetic PC solutions has been performed on the basis of peak area of PC-PHMB complexes of the mercury specific chromatogram and calibration curve of standard solution of glutathione (GSH) complexed to PHMB (GS-PHMB). The limit of quantitation (LOQ) in terms of GS-PHMB complex was 90 nM (CV 5%) with an injection volume of 35 microL, corresponding to 3.2 pmol (0.97 ng) of GSH. The method has been applied to analysis of extracts of cell cultures from Phaeodactylum tricornutum grown in Cd-containing nutrient solutions, analysed by SEC-DAD-CVGAFS and RPLC-DAD-CVGAFS.

  3. Separation and characterization of anti-benzylpenicilloyl (BPO) antibodies. I. Biochemical and biophysical properties of anti-BPO-IgG obtained by affinity and subsequent ion-exchange chromatography.

    PubMed

    Scheiner, O; Stemberger, H; Kraft, D; Wiedermann, G

    1978-01-01

    Anti-BPO antibodies were purified by means of affinity chromatography using AH-Sepharose 4B coated with covalently bound BPO groups. Specific elution was achieved by the hapten analogue BPO-epsilon-aminocaproic acid (BPO-EACA); desorption of the remaining antibody was performed thereafter by 0.1 M acetic acid. The resulting antibody fractions--hapten-eluted antibody (H-Ab) and acid eluted antibody (A-Ab), respectively--were further separated by ion-exchange chromatography which led to the appearance of 3 subfractions in the case of H-Ab (H1, H2, H3) and 2 subfractions in the case of A-Ab (A1 and A2). In liquid isoelectrofocusing an inhomogeneous pattern resulted. The bulk of antibodies focused between pH 6.5 and 7.0. The average avidity of H-Ab was found to be higher than that of A-Ab suggesting that avidity may influence the elution pattern in affinity chromatography. The hydrophobic influence of the "spacer" and/or interactions of antibodies directed against the hydrophobic regions of the BPO group may explain why a considerable part of the antibodies could be recovered from the immunosorbent only by acid elution.

  4. Determination of multiple human arsenic metabolites employing high performance liquid chromatography inductively coupled plasma mass spectrometry.

    PubMed

    Stice, Szabina; Liu, Guangliang; Matulis, Shannon; Boise, Lawrence H; Cai, Yong

    2016-01-15

    During the metabolism of different arsenic-containing compounds in human, a variety of metabolites are produced with significantly varying toxicities. Currently available analytical methods can only detect a limited number of human metabolites in biological samples during one run due to their diverse characteristics. In addition, co-elution of species is often unnoticeable with most detection techniques leading to inaccurate metabolic profiles and assessment of toxicity. A high performance liquid chromatography inductively coupled mass spectrometry (HPLC-ICP-MS) method was developed that can identify thirteen common arsenic metabolites possibly present in human with special attention dedicated to thiolated or thiol conjugated arsenicals. The thirteen species included in this study are arsenite (As(III)), arsino-glutathione (As(GS)3), arsenate (As(V)), monomethylarsonous acid (MMA(III)), monomethylarsino-glutathione (MMA(III)(GS) 2), monomethylarsonic acid (MMA(V)), dimethylarsinous acid (DMA(III) (from DMA(III)I)), S-(dimethylarsinic)cysteine (DMA(III) (Cys)), dimethylarsino-glutathione (DMA(III)(GS)), dimethylarsinic acid (DMA(V)), dimethylmonothioarsinic acid (DMMTA(V)), dimethyldithioarsinic acid (DMDTA(V)), dimethylarsinothioyl glutathione (DMMTA(V)(GS)). The developed method was applied for the analysis of cancer cells that were incubated with darinaparsin (DMA(III)(GS)), a novel chemotherapeutic agent for refractory malignancies, and the arsenic metabolic profile obtained was compared to results using a previously developed method. This method provides a useful analytical tool which is much needed in unequivocally identifying the arsenicals formed during the metabolism of environmental arsenic exposure or therapeutic arsenic administration.

  5. VACUUM DISTILLATION COUPLED WITH GAS CHROMATOGRAPHY/MASS SPECTROMETRY FOR THE ANALYSIS OF ENVIRONMENTAL SAMPLES

    EPA Science Inventory

    A procedure is presented that uses a vacuum distillation/gas chromatography/mass spectrometry system for analysis of problematic matrices of volatile organic compounds. The procedure compensates for matrix effects and provides both analytical results and confidence intervals from...

  6. Relative Quantification of Sites of Peptide and Protein Modification Using Size Exclusion Chromatography Coupled with Electron Transfer Dissociation

    NASA Astrophysics Data System (ADS)

    Xie, Boer; Sharp, Joshua S.

    2016-08-01

    One difficult problem in the analysis of peptide modifications is quantifying isomeric modifications that differ by the position of the amino acid modified. HPLC separation using C18 reverse phase chromatography coupled with electron transfer dissociation (ETD) in tandem mass spectrometry has recently been shown to be able to relatively quantify how much of a given modification occurs at each amino acid position for isomeric mixtures; however, the resolution of reverse phase chromatography greatly complicates quantification of isomeric modifications by ETD because of the chromatographic separation of peptides with identical modifications at different sequence positions. Using peptide oxidation as a model system, we investigated the use of size exclusion chromatography coupled with ETD fragmentation to separate peptide sequences. This approach allows for the benefits of chromatographic separation of peptide sequences while ensuring co-elution of modification isomers for accurate relative quantification of modifications using standard data-dependent acquisitions. Using this method, the relative amount of modification at each amino acid can be accurately measured from single ETD MS/MS spectra in a standard data-dependent acquisition experiment.

  7. Comparative analysis of steroidal saponins in four Dioscoreae herbs by high performance liquid chromatography coupled with mass spectrometry.

    PubMed

    Guo, Long; Zeng, Su-Ling; Zhang, Yu; Li, Ping; Liu, E-Hu

    2016-01-01

    Steroidal saponins, which exhibit multiple pharmacological effects, are the major bioactive constituents in herbal medicines from Dioscoreae species. In this study, a sensitive method based on high performance liquid chromatography-mass spectrometry (HPLC-MS) was established and validated for qualitative and quantitative analysis of steroidal saponins in four Dioscoreae herbs including Dioscoreae Nipponica Rhizome (DNR) and Dioscoreae Hypoglaucae Rhizome (DHR), Dioscoreae Spongiosae Rhizome (DSR) and Dioscoreae Rhizome (DR). A total of eleven steroidal saponins were identified by high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (HPLC-QTOF/MS). Furthermore, seven major steroidal saponins was simultaneous quantified using a high performance liquid chromatography coupled with triple quadrupole mass spectrometry (HPLC-QQQ/MS). The qualitative and quantitative analysis results indicated that the chemical composition of DNR, DHR and DSR samples exhibited a high level of global similarity, while the ingredients in DR varied greatly from the other three herbs. Moreover, principal component analysis (PCA) and hierarchical clustering analysis (HCA) were performed to compare and discriminate the Dioscoreae herbs based on the quantitative data. The results demonstrated the qualitative and quantitative analysis of steroidal saponins based on HPLC-MS is a feasible method for quality control of Dioscoreae herbs.

  8. Determination of pesticide residues in samples of green minor crops by gas chromatography and ultra performance liquid chromatography coupled to tandem quadrupole mass spectrometry.

    PubMed

    Walorczyk, Stanisław; Drożdżyński, Dariusz; Kierzek, Roman

    2015-01-01

    A method was developed for pesticide analysis in samples of high chlorophyll content belonging to the group of minor crops. A new type of sorbent, known as ChloroFiltr, was employed for dispersive-solid phase extraction cleanup (dispersive-SPE) to reduce the unwanted matrix background prior to concurrent analysis by gas chromatography and ultra-performance liquid chromatography coupled to tandem quadrupole mass spectrometry (GC-MS/MS and UPLC-MS/MS). Validation experiments were carried out on green, unripe plants of lupin, white mustard and sorghum. The overall recoveries at the three spiking levels of 0.01, 0.05 and 0.5 mg kg(-1) fell in the range between 68 and 120% (98% on average) and 72-104% (93% on average) with relative standard deviation (RSD) values between 2 and 19% (7% on average) and 3-16% (6% on average) by GC-MS/MS and UPLC-MS/MS technique, respectively. Because of strong enhancement or suppression matrix effects (absolute values >20%) which were exhibited by about 80% of the pesticide and matrix combinations, acceptably accurate quantification was achieved by using matrix-matched standards. Up to now, the proposed method has been successfully used to study the dissipation patterns of pesticides after application on lupin, white mustard, soya bean, sunflower and field bean in experimental plot trials conducted in Poland. PMID:25476298

  9. Rapid recognition of irradiated dry-cured ham by on-line coupling of reversed-phase liquid chromatography with gas chromatography and mass spectrometry.

    PubMed

    Martínez, R M; Barba, C; Calvo, M M; Santa-María, G; Herraiz, M

    2011-06-01

    The use of on-line coupling of reversed-phase liquid chromatography and gas chromatography (RPLC-GC) with the through oven transfer adsorption desorption (TOTAD) interface and mass spectrometry (MS) was proposed for testing different types of commercial Spanish dry-cured ham for irradiation treatment at various doses (0, 1.5, 2, and 4 kGy). The qualitative analysis of radiation-specific compounds (e.g., n-pentadecane, 1-hexadecene, 1,7-hexadecadiene, n-heptadecane, 8-heptadecene, and 2-dodecylcyclobutanone) can be simultaneously established in a single run with samples that have or have not been irradiated. The overall analysis, which takes less than 100 min, includes a rapid extraction step using a small amount of dichloromethane-methanol (1:1, vol/vol) and anhydrous sodium sulfate, the subsequent fractionation of the sample in the first dimension of the system (RPLC), the transfer of the target fraction to the second dimension, the GC separation, and the MS detection. The calculated limits of detection in ham were lower than 22 ng/g. Repeatability studies provided relative standard deviation values of 0.8 to 13.5%.

  10. Qualitative and quantitative analysis of traditional Chinese medicine Niu Huang Jie Du Pill using ultra performance liquid chromatography coupled with tunable UV detector and rapid resolution liquid chromatography coupled with time-of-flight tandem mass spectrometry.

    PubMed

    Liang, Xu; Zhang, Lin; Zhang, Xi; Dai, Weixing; Li, Haiyun; Hu, Liwei; Liu, Hui; Su, Juan; Zhang, Weidong

    2010-02-01

    An ultra performance liquid chromatography coupled with tunable UV detector (UPLC-TUV) and rapid resolution liquid chromatography coupled with time-of-flight tandem mass spectrometry (RRLC-Q-TOF) method was developed for the quality assessment of Niu Huang Jie Du Pill (NHJDP), a commonly used traditional Chinese medicine (TCM). Ten compounds were simultaneously identified by electrospray ion mass spectrometry (ESI/MS) and comparison with reference standards and literature data. All of them were quantified by UPLC method. Baseline separation was achieved on an ODS-140HTP C(18) column (2.3mum, 100mmx2.1mm I.D.) with linear gradient elution of acetonitrile-0.1% formic acid. This developed method provides good linearity (r(2)>0.9996), repeatability (RSD<3.63%), intra- and inter-day precisions (RSD<0.86%) with accuracies (97.88-101.56%) and recovery (98.88-101.92%) of 10 major constituents, namely baicalin, baicalein, wogonoside, wogonin, glycyrrhizic acid, liquiritin, rhein, emodin, chrysophanol and physcion. In addition, the principal component analysis (PCA) coupled with the UPLC fingerprint was applied to classify the NHJDP samples according to their manufacture corporation. This proposed method with high sensitivity and selectivity was successfully utilized to analyze 10 major bioactive compounds in 30 batches of NHJDPs, and the results demonstrate that this analytical method is simple and suitable for the original discrimination and quality control of this TCM.

  11. Evaluation of Multi-tRNA Synthetase Complex by Multiple Reaction Monitoring Mass Spectrometry Coupled with Size Exclusion Chromatography

    PubMed Central

    Kim, Jun Seok; Lee, Cheolju

    2015-01-01

    Eight aminoacyl-tRNA synthetases (M, K, Q, D, R, I, EP and LARS) and three auxiliary proteins (AIMP1, 2 and 3) are known to form a multi-tRNA synthetase complex (MSC) in mammalian cells. We combined size exclusion chromatography (SEC) with reversed-phase liquid chromatography multiple reaction monitoring mass spectrometry (RPLC-MRM-MS) to characterize MSC components and free ARS proteins in human embryonic kidney (HEK 293T) cells. Crude cell extract and affinity-purified proteins were fractionated by SEC in non-denaturing state and ARSs were monitored in each fraction by MRM-MS. The eleven MSC components appeared mostly in earlier SEC fractions demonstrating their participation in complex formation. TARSL2 and AIMP2-DX2, despite their low abundance, were co-purified with KARS and detected in the SEC fractions, where MSC appeared. Moreover, other large complex-forming ARS proteins, such as VARS and FARS, were detected in earlier fractions. The MRM-MS results were further confirmed by western blot analysis. Our study demonstrates usefulness of combined SEC-MRM analysis for the characterization of protein complexes and in understanding the behavior of minor isoforms or variant proteins. PMID:26544075

  12. Methyl mercury in nail clippings in relation to fish consumption analysis with gas chromatography coupled to inductively coupled plasma mass spectrometry: a first orientation.

    PubMed

    Krystek, Petra; Favaro, Paulo; Bode, Peter; Ritsema, Rob

    2012-08-15

    For the identification of human exposure to one of the most toxic compounds, which is methyl mercury (MeHg(+)), fingernail clippings were selected as the matrix of interest. Within this pilot study, six samples from different origins and from people with different food consumption patterns were chosen. Species-analysis of MeHg(+) was performed according to the following procedure: dissolution of the sample material in tetramethylammonium hydroxide (TMAH), derivatisation of MeHg(+) with sodium tetraethylborate (NaBEt(4)), extraction into iso-octane and measurement with gas chromatography hyphenated to inductively coupled plasma mass spectrometry (GC-ICPMS) for the quantification MeHg(+).

  13. Mass spectrometric behavior of anabolic androgenic steroids using gas chromatography coupled to atmospheric pressure chemical ionization source. Part I: ionization.

    PubMed

    Raro, M; Portolés, T; Sancho, J V; Pitarch, E; Hernández, F; Marcos, J; Ventura, R; Gómez, C; Segura, J; Pozo, O J

    2014-06-01

    The detection of anabolic androgenic steroids (AAS) is one of the most important topics in doping control analysis. Gas chromatography coupled to (tandem) mass spectrometry (GC-MS(/MS)) with electron ionization and liquid chromatography coupled to tandem mass spectrometry have been traditionally applied for this purpose. However, both approaches still have important limitations, and, therefore, detection of all AAS is currently afforded by the combination of these strategies. Alternative ionization techniques can minimize these drawbacks and help in the implementation of a single method for the detection of AAS. In the present work, a new atmospheric pressure chemical ionization (APCI) source commercialized for gas chromatography coupled to a quadrupole time-of-flight analyzer has been tested to evaluate the ionization of 60 model AAS. Underivatized and trimethylsylil (TMS)-derivatized compounds have been investigated. The use of GC-APCI-MS allowed for the ionization of all AAS assayed irrespective of their structure. The presence of water in the source as modifier promoted the formation of protonated molecules ([M+H](+)), becoming the base peak of the spectrum for the majority of studied compounds. Under these conditions, [M+H](+), [M+H-H2O](+) and [M+H-2·H2O](+) for underivatized AAS and [M+H](+), [M+H-TMSOH](+) and [M+H-2·TMSOH](+) for TMS-derivatized AAS were observed as main ions in the spectra. The formed ions preserve the intact steroid skeleton, and, therefore, they might be used as specific precursors in MS/MS-based methods. Additionally, a relationship between the relative abundance of these ions and the AAS structure has been established. This relationship might be useful in the structural elucidation of unknown metabolites.

  14. Determination of aminoglycoside antibiotics in pharmaceuticals by capillary zone electrophoresis with indirect UV detection coupled with micellar electrokinetic capillary chromatography.

    PubMed

    Ackermans, M T; Everaerts, F M; Beckers, J L

    1992-08-14

    Aminoglycoside antibiotics can be determined by capillary zone electrophoresis (CZE) with indirect UV detection in the anionic mode with a reversed electroosmotic flow (EOF) by addition of FC 135 to the background electrolyte. The effective mobilities of thirteen aminoglycoside antibiotics were determined as a function of pH. Applying CZE with indirect UV detection in the anionic mode and reversed EOF coupled with micellar electrokinetic capillary chromatography with the cationic surfactant cetyltrimethylammonium bromide, both neutral and charged antibiotics can be determined in combined pharmaceuticals. As an example, neomycin and hydrocortisone were determined in Otosporin eardrops.

  15. Speciation of arsenic in marine food (Anemonia sulcata) by liquid chromatography coupled to inductively coupled plasma mass spectrometry and organic mass spectrometry.

    PubMed

    Contreras-Acuña, M; García-Barrera, T; García-Sevillano, M A; Gómez-Ariza, J L

    2013-03-22

    Arsenic species have been investigated in Anemonia sulcata, which is frequently consumed food staple in Spain battered in wheat flour and fried with olive oil. Speciation in tissue extracts was carried out by anion/cation exchange chromatography with inductively coupled plasma mass spectrometry (HPLC-(AEC/CEC)-ICP-MS). Three methods for the extraction of arsenic species were investigated (ultrasonic bath, ultrasonic probe and focused microwave) and the optimal one was applied. Arsenic speciation was carried out in raw and cooked anemone and the dominant species are dimethylarsinic acid (DMA(V)) followed by arsenobetaine (AB), As(V), monomethylarsonic acid (MA(V)), tetramethylarsonium ion (TETRA) and trimethylarsine oxide (TMAO). In addition, arsenocholine (AsC), glyceryl phosphorylarsenocholine (GPAsC) and dimethylarsinothioic acid (DMAS) were identified by liquid chromatography coupled to triple quadrupole mass spectrometry (HPLC-MS). These results are interesting since GPAsC has been previously reported in marine organisms after experimental exposure to AsC, but not in natural samples. In addition, this paper reports for the first time the identification of DMAS in marine food.

  16. Speciation of arsenic in marine food (Anemonia sulcata) by liquid chromatography coupled to inductively coupled plasma mass spectrometry and organic mass spectrometry.

    PubMed

    Contreras-Acuña, M; García-Barrera, T; García-Sevillano, M A; Gómez-Ariza, J L

    2013-03-22

    Arsenic species have been investigated in Anemonia sulcata, which is frequently consumed food staple in Spain battered in wheat flour and fried with olive oil. Speciation in tissue extracts was carried out by anion/cation exchange chromatography with inductively coupled plasma mass spectrometry (HPLC-(AEC/CEC)-ICP-MS). Three methods for the extraction of arsenic species were investigated (ultrasonic bath, ultrasonic probe and focused microwave) and the optimal one was applied. Arsenic speciation was carried out in raw and cooked anemone and the dominant species are dimethylarsinic acid (DMA(V)) followed by arsenobetaine (AB), As(V), monomethylarsonic acid (MA(V)), tetramethylarsonium ion (TETRA) and trimethylarsine oxide (TMAO). In addition, arsenocholine (AsC), glyceryl phosphorylarsenocholine (GPAsC) and dimethylarsinothioic acid (DMAS) were identified by liquid chromatography coupled to triple quadrupole mass spectrometry (HPLC-MS). These results are interesting since GPAsC has been previously reported in marine organisms after experimental exposure to AsC, but not in natural samples. In addition, this paper reports for the first time the identification of DMAS in marine food. PMID:23422896

  17. Analysis of therapeutic proteins and peptides using multiangle light scattering coupled to ultra high performance liquid chromatography.

    PubMed

    Espinosa-de la Garza, Carlos E; Miranda-Hernández, Mariana P; Acosta-Flores, Lilia; Pérez, Néstor O; Flores-Ortiz, Luis F; Medina-Rivero, Emilio

    2015-05-01

    Analysis of the physical properties of biotherapeutic proteins is crucial throughout all the stages of their lifecycle. Herein, we used size-exclusion ultra high performance liquid chromatography coupled to multiangle light scattering and refractive index detection systems to determine the molar mass, mass-average molar mass, molar-mass dispersity and hydrodynamic radius of two monoclonal antibodies (rituximab and trastuzumab), a fusion protein (etanercept), and a synthetic copolymer (glatiramer acetate) employed as models. A customized instrument configuration was set to diminish band-broadening effects and enhance sensitivity throughout detectors. The customized configuration showed a performance improvement with respect to the high-performance liquid chromatography standard configuration, as observed by a 3 h column conditioning and a higher resolution analysis in 20 min. Analysis of the two monoclonal antibodies showed averaged values of 148.0 kDa for mass-average molar mass and 5.4 nm for hydrodynamic radius, whereas for etanercept these values were 124.2 kDa and 6.9 nm, respectively. Molar-mass dispersity was 1.000 on average for these proteins. Regarding glatiramer acetate, a molar mass range from 3 to 45 kDa and a molar-mass dispersity of 1.304 were consistent with its intrinsic peptide diversity, and its mass-average molar mass was 10.4 kDa. Overall, this method demonstrated an accurate determination of molar mass, overcoming the difficulties of size-exclusion chromatography.

  18. Phosphorylation of the rat Ins(1,4,5)P₃ receptor at T930 within the coupling domain decreases its affinity to Ins(1,4,5)P₃.

    PubMed

    Haun, Shirley; Sun, Lu; Hubrack, Satanay; Yule, David; Machaca, Khaled

    2012-01-01

    The Ins(1,4,5)P 3 receptor acts as a central hub for Ca ( 2+) signaling by integrating multiple signaling modalities into Ca ( 2+) release from intracellular stores downstream of G-protein and tyrosine kinase-coupled receptor stimulation. As such, the Ins(1,4,5)P 3 receptor plays fundamental roles in cellular physiology. The regulation of the Ins(1,4,5)P 3 receptor is complex and involves protein-protein interactions, post-translational modifications, allosteric modulation, and regulation of its sub-cellular distribution. Phosphorylation has been implicated in the sensitization of Ins(1,4,5)P 3-dependent Ca ( 2+) release observed during oocyte maturation. Here we investigate the role of phosphorylation at T-930, a residue phosphorylated specifically during meiosis. We show that a phosphomimetic mutation at T-930 of the rat Ins(1,4,5)P 3 receptor results in decreased Ins(1,4,5)P 3-dependent Ca ( 2+) release and lowers the Ins(1,4,5)P 3 binding affinity of the receptor. These data, coupled to the sensitization of Ins(1,4,5)P 3-dependent Ca ( 2+) release during meiosis, argue that phosphorylation within the coupling domain of the Ins(1,4,5)P 3 receptor acts in a combinatorial fashion to regulate Ins(1,4,5)P 3 receptor function.

  19. Basis set limit electronic excitation energies, ionization potentials, and electron affinities for the 3d transition metal atoms: Coupled cluster and multireference methods

    NASA Astrophysics Data System (ADS)

    Balabanov, Nikolai B.; Peterson, Kirk A.

    2006-08-01

    Recently developed correlation consistent basis sets for the first row transition metal elements Sc-Zn have been utilized to determine complete basis set (CBS) scalar relativistic electron affinities, ionization potentials, and 4s23dn -2-4s1dn -1 electronic excitation energies with single reference coupled cluster methods [CCSD(T), CCSDT, and CCSDTQ] and multireference configuration interaction with three reference spaces: 3d4s, 3d4s4p, and 3d4s4p3d'. The theoretical values calculated with the highest order coupled cluster techniques at the CBS limit, including extrapolations to full configuration interaction, are well within 1kcal/mol of the corresponding experimental data. For the early transition metal elements (Sc-Mn) the internally contracted multireference averaged coupled pair functional method yielded excellent agreement with experiment; however, the atomic properties for the late transition metals (Mn-Zn) proved to be much more difficult to describe with this level of theory, even with the largest reference function of the present work.

  20. Quantitative high-throughput analysis of 16 (fluoro)quinolones in honey using automated extraction by turbulent flow chromatography coupled to liquid chromatography-tandem mass spectrometry.

    PubMed

    Mottier, Pascal; Hammel, Yves-Alexis; Gremaud, Eric; Guy, Philippe A

    2008-01-01

    A method making use of turbulent flow chromatography automated online extraction with tandem mass spectrometry (MS/MS) was developed for the analysis of 4 quinolones and 12 fluoroquinolones in honey. The manual sample preparation was limited to a simple dilution of the honey test portion in water followed by a filtration. The extract was online purified on a large particle size extraction column where the sample matrix was washed away while the analytes were retained. Subsequently, the analytes were eluted from the extraction column onto an analytical column by means of an organic solvent prior to chromatographic separation and MS detection. Validation was performed at three fortification levels (i.e., 5, 20, and 50 microg/kg) in three different honeys (acacia, multiflower, and forest) using the single-point calibration procedure by means of either a 10 or 25 microg/kg calibrant. Good recovery (85-127%, median 101%) as well as within-day (2-18%, median 6%) and between-day (2-42%, median 9%) precision values was obtained whatever the level of fortification and the analyte surveyed. Due to the complexity of the honey matrix and the large variation of the MS/MS transition reaction signals, which were honey-dependent, the limit of quantification for all compounds was arbitrarily set at the lowest fortification level considered during the validation, e.g., 5 microg/kg. This method has been successfully applied in a minisurvey of 34 honeys, showing ciprofloxacin and norfloxacin as the main (fluoro)quinolone antibiotics administered to treat bacterial diseases of bees. Turbulent flow chromatography coupled to LC-MS/MS showed a strong potential as an alternative method compared to those making use of offline sample preparation, in terms of both increasing the analysis throughput and obtaining higher reproducibility linked to automation to ensure the absence of contaminants in honey samples.

  1. Analysis of potassium iodate reduction in tissue homogenates using high performance liquid chromatography-inductively coupled plasma-mass spectrometry.

    PubMed

    Cao, Xiaoxiao; Ma, Wei; Liu, Liejun; Xu, Jing; Wang, Haiyan; Li, Xiuwei; Wang, Jiangqing; Zhang, Jianhua; Wang, Zexi; Gu, Yunyou

    2015-10-01

    Potassium iodate (KIO3) and potassium iodide (KI) are the major salt iodization agents used worldwide. Unlike iodide (I(-)), iodate (IO3(-)) should be reduced to I(-) before it can be effectively used by the thyroid. In this study, we developed a new method for analyzing IO3(-) and I(-) in tissue homogenates using high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry (HPLC-ICP-MS). We further applied the method to demonstrate the KIO3 reduction process by tissues in vitro. The effects of KIO3 on the total antioxidative activity (TAA) and reduced nicotinamide adenine dinucleotide phosphate (NADPH) were also investigated here. Finally, we found that IO3(-) can be reduced to I(-) by tissue homogenates and IO3(-) irreversibly decreases the antioxidant capability of tissues. Our studies suggest that KIO3 might have a big effect on the redox balance of tissue and would further result in oxidative stress of organisms.

  2. Comprehensive analysis of chemical constituents in Xingxiong injection by high performance liquid chromatography coupled with mass spectrometry.

    PubMed

    Guo, Long; Dou, Li-Li; Duan, Li; Liu, Ke; Bi, Zhi-Ming; Li, Ping; Liu, E-Hu

    2015-09-01

    Xingxiong injection (XXI) is a widely used Chinese herbal formula prepared by the folium ginkgo extract and ligustrazine for the treatment of cardiovascular and cerebrovascular diseases. Compared with the pharmacological studies, chemical analysis and quality control studies on this formula are relatively limited. In the present study, a high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (HPLC-QTOF MS) method was applied to comprehensive analysis of constituents in XXI. According to the fragmentation rules and previous reports, thirty ginkgo flavonoids, four ginkgo terpene lactones, and one alkaloid were identified. A high performance liquid chromatography coupled with triple quadrupole mass spectrometry (HPLC-QQQ MS) method was then applied to quantify ten major constituents in XXI. The method validation results indicated that the developed method had desirable specificity, linearity, precision and accuracy. The total contents of ginkgo flavonoids were about 22.05-25.51 μg·mL(-1) and the ginkgo terpene lactones amounts were about 4.41-8.70 μg·mL(-1) in six batches of XXI samples, respectively. Furthermore, cosine ratio algorithm and distance measurements were employed to evaluate the similarity of XXI samples, and the results demonstrated a high-quality consistency. This work could provide comprehensive information on the quality control of Xingxiong injection, which be helpful in the establishment of a rational quality control standard.

  3. The synthesis and characterization of cellular membrane affinity chromatography columns for the study of human multidrug resistant proteins MRP1, MRP2 and human breast cancer resistant protein BCRP using membranes obtained from Spodoptera frugiperda (Sf9) insect cells

    PubMed Central

    Bhatia, Prateek A.; Moaddel, Ruin; Wainer, Irving W.

    2010-01-01

    CMAC (cellular membrane affinity chromatography columns) have been developed for the study of the human multidrug transporters MRP1, MRP2 and the breast cancer resistance protein (BCRP). The columns were constructed using the immobilized artificial membrane (IAM) stationary phase and cellular membrane fragments obtained from Spodopetra frugiperda (Sf9) cells that had been stably transfected with human Mrp1, Mrp2 or Bcrp c-DNA, using a baculovirus expression system. The resulting CMAC(Sf9MRP1), CMAC(Sf9MRP2) and CMAC(Sf9BCRP) columns and a control column produced using membrane fragments from non-transfected Sf9 cells, CMAC(Sf9), were characterized using frontal affinity chromatography using [3H]-etoposide as the marker ligand and etoposide, benzbromarone and MK571 as the displacers on the CMAC(Sf9MRP1) column, etoposide and furosemide on the CMAC(Sf9MRP2) column and etoposide and fumitremorgin C on the CMAC(Sf9BCPR) column The binding affinities (Ki values) obtained from the chromatographic studies were consistent with the data obtained using non-chromatographic techniques and the results indicate that the immobilized MRP1, MRP2 and BCRP transporters retained their ability to selectively bind known ligands. (S)-verapamil displaced [3H]-etoposide on the CMAC(Sf9MRP1) column to a greater extent than (R)-verapamil and the relative IC50 values of the enantiomers were calculated using the changes in the retention times of the marker. The observed enantioselectivity and calculated IC50 values were consistent with previously reported data. The results indicated that the CMAC(Sf9MRP1), CMAC(Sf9MRP2) and CMAC(Sf9BCRP) columns can be used for the study of binding to the MRP1, MRP2 and BCRP transporters and that membranes from the Sf9 cell line can be used to prepare CMAC columns. This is the first example of the use of membranes from a non-mammalian cell line in an affinity chromatographic system. PMID:20441926

  4. Quantification of amyloid fibrils using size exclusion chromatography coupled with online fluorescence and ultraviolet detection.

    PubMed

    Randrianjatovo-Gbalou, Irina; Marcato-Romain, Claire-Emmanuelle; Girbal-Neuhauser, Elisabeth

    2015-11-01

    An amyloid fibrils investigation within biofilm samples requires distinguishing the amyloid β-sheet structure of these proteins and quantifying them. In this study, the property of amyloids to incorporate the fluorescent dye Thioflavin T has been exploited to propose a method of quantification. The experimental protocol includes the preparation of amyloids from commercial κ-casein (κCN) and their fractionation through size exclusion chromatography (SEC) to provide calibration curves from fluorescence and absorbance signals. Finally, a bacterial biofilm extract was injected into SEC, and the amyloid fibrils could be expressed as equivalent κCN, representing approximately 21% of the total proteins.

  5. Automated analysis of perfluorinated compounds in human hair and urine samples by turbulent flow chromatography coupled to tandem mass spectrometry.

    PubMed

    Perez, Francisca; Llorca, Marta; Farré, Marinella; Barceló, Damià

    2012-03-01

    Perfluorinated compounds (PFCs) are ubiquitous contaminants of humans and animals worldwide. PFCs are bioaccumulated because of their affinity for proteins. It has been shown they could have a variety of toxicological effects and cause damage to human health, emphasizing the need for sensitive and robust analytical methods to assess their bioaccumulation in humans. In this paper we report the development and validation of an analytical method for analysis of PFCs in the non-invasive human matrices hair and urine. The method is based on rapid and simple sample pre-treatment followed by online turbulent flow liquid chromatography and tandem mass spectrometry (TFC-LC-MS-MS) for analysis of 21 PFCs. The method was validated for both matrices. Percentage recovery was between 60 and 105 for most compounds in both matrices. Limits of quantification ranged from 0.1 to 9 ng mL(-1) in urine and from 0.04 to 13.4 in hair. The good performance of the method was proved by investigating the presence of selected PFCs in 24 hair and 30 urine samples from different donors living in Barcelona (NE Spain). The results were indicative of bioaccumulation of these compounds in both types of sample. PFOS and PFOA were most frequently detected in hair and PFBA in urine.

  6. Short communication: Identification of iron-binding peptides from whey protein hydrolysates using iron (III)-immobilized metal ion affinity chromatography and reversed phase-HPLC-tandem mass spectrometry.

    PubMed

    Cruz-Huerta, Elvia; Martínez Maqueda, Daniel; de la Hoz, Lucia; da Silva, Vera S Nunes; Pacheco, Maria Teresa Bertoldo; Amigo, Lourdes; Recio, Isidra

    2016-01-01

    Peptides with iron-binding capacity obtained by hydrolysis of whey protein with Alcalase (Novozymes, Araucaria, PR, Brazil), pancreatin, and Flavourzyme (Novozymes) were identified. Hydrolysates were subjected to iron (III)-immobilized metal ion affinity chromatography, and the bound peptides were sequenced by mass spectrometry. Regardless of the enzyme used, the domains f(42-59) and f(125-137) from β-lactoglobulin enclosed most of identified peptides. This trend was less pronounced in the case of peptides derived from α-lactalbumin, with sequences deriving from diverse regions. Iron-bound peptides exhibited common structural characteristics, such as an abundance of Asp, Glu, and Pro, as revealed by mass spectrometry and AA analysis. In conclusion, this characterization of iron-binding peptides helps clarify the relationship between peptide structure and iron-chelating activity and supports the promising role of whey protein hydrolysates as functional ingredients in iron supplementation treatments.

  7. Short communication: Identification of iron-binding peptides from whey protein hydrolysates using iron (III)-immobilized metal ion affinity chromatography and reversed phase-HPLC-tandem mass spectrometry.

    PubMed

    Cruz-Huerta, Elvia; Martínez Maqueda, Daniel; de la Hoz, Lucia; da Silva, Vera S Nunes; Pacheco, Maria Teresa Bertoldo; Amigo, Lourdes; Recio, Isidra

    2016-01-01

    Peptides with iron-binding capacity obtained by hydrolysis of whey protein with Alcalase (Novozymes, Araucaria, PR, Brazil), pancreatin, and Flavourzyme (Novozymes) were identified. Hydrolysates were subjected to iron (III)-immobilized metal ion affinity chromatography, and the bound peptides were sequenced by mass spectrometry. Regardless of the enzyme used, the domains f(42-59) and f(125-137) from β-lactoglobulin enclosed most of identified peptides. This trend was less pronounced in the case of peptides derived from α-lactalbumin, with sequences deriving from diverse regions. Iron-bound peptides exhibited common structural characteristics, such as an abundance of Asp, Glu, and Pro, as revealed by mass spectrometry and AA analysis. In conclusion, this characterization of iron-binding peptides helps clarify the relationship between peptide structure and iron-chelating activity and supports the promising role of whey protein hydrolysates as functional ingredients in iron supplementation treatments. PMID:26601589

  8. Phenotyping breast cancer cell lines EM-G3, HCC1937, MCF7 and MDA-MB-231 using 2-D electrophoresis and affinity chromatography for glutathione-binding proteins

    PubMed Central

    2010-01-01

    Background Transformed phenotypes are common to cell lines derived from various cancers. Proteome profiling is a valuable tool that may reveal uncharacteristic cell phenotypes in transformed cells. Changes in expression of glutathione S-transferases (GSTs) and other proteins interacting with glutathione (GSH) in model cell lines could be of particular interest. Methods We compared the phenotypes of breast cell lines EM-G3, HCC1937, MCF7 and MDA-MB-231 using 2-D electrophoresis (2-DE). We further separated GSH-binding proteins from the cell lines using affinity chromatography with GSH-Sepharose 4B, performed 2-DE analysis and identified the main protein spots. Results Correlation coefficients among 2-DE gels from the cell lines were lower than 0.65, pointing to dissimilarity among the cell lines. Differences in primary constituents of the cytoskeleton were shown by the 2-D protein maps and western blots. The spot patterns in gels of GSH-binding fractions from primary carcinoma-derived cell lines HCC1937 and EM-G3 were similar to each other, and they differed from the spot patterns of cell lines MCF7 and MDA-MB-231 that were derived from pleural effusions of metastatic mammary carcinoma patients. Major differences in the expression of GST P1-1 and carbonyl reductase [NADPH] 1 were observed among the cell lines, indicating differential abilities of the cell lines to metabolize xenobiotics. Conclusions Our results confirmed the applicability of targeted affinity chromatography to proteome profiling and allowed us to characterize the phenotypes of four breast cancer cell lines. PMID:20731849

  9. Potential of ion chromatography coupled to isotope ratio mass spectrometry via a liquid interface for beverages authentication.

    PubMed

    Guyon, Francois; Gaillard, Laetitia; Brault, Audrey; Gaultier, Nicolas; Salagoïty, Marie-Hélène; Médina, Bernard

    2013-12-27

    New tools for the determination of characteristic parameters for food authentication are requested to prevent food adulteration from which health concerns, unfair competition could follow. A new coupling in the area of compound-specific carbon 13 isotope ratio (δ(13)C) analysis was developed to simultaneously quantify δ(13)C values of sugars and organic acids. The coupling of ion chromatography (IC) together with isotope ratio mass spectrometry (IRMS) can be achieved using a liquid interface allowing a chemical oxidation (co) of organic matter. Synthetic solutions containing 1 polyol (glycerol), 3 carbohydrates (sucrose, glucose and fructose) and 12 organic acids (gluconic, lactic, malic, tartaric, oxalic, fumaric, citric and isocitric) were used to optimize chromatographic conditions (concentration gradient and 3 types of column) and the studied isotopic range (-32.28 to -10.65‰) corresponds to the values found in food products. Optimum chromatographic conditions are found using an IonPac AS15, an elution flow rate of 0.3mLmin(-1) and a linear concentration gradient from 2 to 76mM (rate 21mMmin(-1)). Comparison between δ(13)C value individually obtained for each compound with the coupling IRMS and elemental analyzer, EA-IRMS, and the ones measured on the mixture of compounds by IC-co-IRMS does not reveal any isotope fractionation. Thus, under these experimental conditions, IC-co-IRMS results are accurate and reproducible. This new coupling was tested on two food matrices, an orange juice and a sweet wine. Some optimization is necessary as the concentration range between sugars and organic acids is too large: an increase in the filament intensity of the IRMS is necessary to simultaneously detect the two compound families. These first attempts confirm the good results obtained on synthetic solutions and the strong potential of the coupling IC-co-IRMS in food authentication area.

  10. [High-sensitivity analysis of purines in alcoholic beverages using hydrophilic interaction chromatography coupled with tandem mass spectrometry].

    PubMed

    Kakigi, Yasuhiro; Yoshioka, Toshiaki; Nagatomi, Yasushi; Uyama, Atsuo; Mochizuki, Naoki

    2014-01-01

    In this study, we established a high-sensitivity analytical method for purines in alcoholic beverages using hydrophilic interaction chromatography coupled with tandem mass spectrometry. The alcoholic beverages were hydrolyzed with perchloric acid (60%) and subjected to strong cation exchange solid-phase extraction (Bond Elut SCX). The four purine bases (hypoxanthine, adenine, xanthine, guanine) in the extracted solution were separated by hydrophilic interaction chromatography with TSKgel Amide-80 as a separation column, 10 mM ammonium formate (pH 2.0) as mobile phase A, and acetonitrile/100 mM ammonium formate (pH 2.0) (90/10) as mobile phase B. The detection of purine bases was performed by tandem mass spectrometry with ESI. The linearity of this analytical method was not less than 0.996, and the repeatability was not more than 8.4% for each purine base. The recovery was in the range of 60-105%, and the detection limit was not more than 0.005 mg/100 mL. This established method is expected to be useful for quality control and surveillance of purines in alcoholic beverages.

  11. Novel molecularly-imprinted solid-phase microextraction fiber coupled with gas chromatography for analysis of furan.

    PubMed

    Hashemi-Moghaddam, Hamid; Ahmadifard, Mojtaba

    2016-04-01

    This study combined a molecularly-imprinted polymer with headspace solid-phase microextraction (HS-SPME). Preparation of molecularly-imprinted polymer is not effective for volatile compounds. To overcome this limitation, pyrrole was chosen as a template for the preparation of the furan-imprinted polymer. The holes in the synthesized polymer were suitable for furan adsorption because the chemical structure of pyrrole is similar to that of furan. The extraction properties of the fiber to furan were examined using an HS-SPME device coupled with gas chromatography-flame ionization detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS). The effects of the extraction parameters of exposure time, sampling temperature, and salt concentration on extraction efficiency were studied. Satisfactory reproducibility was obtained for extractions from spiked water samples at RSD<7.5% (n=5). The calibration graphs were linear at 0.5-100 ng ml(-1) and the detection limit for furan was 0.042 ng ml(-1). The fabricated fiber was successfully applied for headspace extraction of furan from tap water and canned tuna as shown by GC-MS analysis. PMID:26838393

  12. Simultaneous determination of capsaicin and dihydrocapsaicin for vegetable oil adulteration by immunoaffinity chromatography cleanup coupled with LC-MS/MS.

    PubMed

    Ma, Fei; Yang, Qingqing; Matthäus, Bertrand; Li, Peiwu; Zhang, Qi; Zhang, Liangxiao

    2016-05-15

    Capsaicin and dihydrocapsaicin were selected as adulteration markers to authenticate vegetable oils. In this study, a method of immunoaffinity chromatography (IAC) combined with liquid chromatography-tandem mass spectrometry was established for the determination of capsaicin and dihydrocapsaicin in vegetable oils. In this method, immunosorbents were obtained by covalently coupling highly specific capsaicinoid polyclonal antibodieswith CNBr-activated Sepharose 4B, and then packed into a polyethylene column. In this paper, the major parameters affecting IAC extraction efficiency, including loading, washing and eluting conditions, were also investigated. The IAC column displayed high selectivity for capsaicin and dihydrocapsaicin with the maximum capacity of 240ng. The limit of detection (LOD) and limit of quantification (LOQ) for capsaicin were calculated as 0.02 and 0.08μgkg(-1), and for dihydrocapsaicin were 0.03 and 0.10μgkg(-1). The recoveries of capsaicin and dihydrocapsaicin in oil samples were in the range of 87.3-95.2% with the relative standard deviation (RSD) of less than 6.1%. The results indicated that capsaicinoid compounds could not be found in edible vegetable oils. Therefore, the proposed method is simple, reliable and adequate for routine monitoring of capsaicinoid compounds in vegetable oils and has an excellent potential for detection of adulteration with inedible waste oil. PMID:26739369

  13. Simultaneous determination of capsaicin and dihydrocapsaicin for vegetable oil adulteration by immunoaffinity chromatography cleanup coupled with LC-MS/MS.

    PubMed

    Ma, Fei; Yang, Qingqing; Matthäus, Bertrand; Li, Peiwu; Zhang, Qi; Zhang, Liangxiao

    2016-05-15

    Capsaicin and dihydrocapsaicin were selected as adulteration markers to authenticate vegetable oils. In this study, a method of immunoaffinity chromatography (IAC) combined with liquid chromatography-tandem mass spectrometry was established for the determination of capsaicin and dihydrocapsaicin in vegetable oils. In this method, immunosorbents were obtained by covalently coupling highly specific capsaicinoid polyclonal antibodieswith CNBr-activated Sepharose 4B, and then packed into a polyethylene column. In this paper, the major parameters affecting IAC extraction efficiency, including loading, washing and eluting conditions, were also investigated. The IAC column displayed high selectivity for capsaicin and dihydrocapsaicin with the maximum capacity of 240ng. The limit of detection (LOD) and limit of quantification (LOQ) for capsaicin were calculated as 0.02 and 0.08μgkg(-1), and for dihydrocapsaicin were 0.03 and 0.10μgkg(-1). The recoveries of capsaicin and dihydrocapsaicin in oil samples were in the range of 87.3-95.2% with the relative standard deviation (RSD) of less than 6.1%. The results indicated that capsaicinoid compounds could not be found in edible vegetable oils. Therefore, the proposed method is simple, reliable and adequate for routine monitoring of capsaicinoid compounds in vegetable oils and has an excellent potential for detection of adulteration with inedible waste oil.

  14. High performance liquid chromatography coupled with resonance Rayleigh scattering for the detection of three fluoroquinolones and mechanism study.

    PubMed

    Zhou, Mingqiong; Peng, Jingdong; He, Rongxing; He, Yuting; Zhang, Jing; Li, Aiping

    2015-02-01

    A reliable and versatile high performance liquid chromatography coupled with resonance Rayleigh scattering method was established for the determination of three fluoroquinolones, including levofloxacin, norfloxacin and enrofloxacin in water sample and human urine sample. In pH 4.4-4.6 Britton-Robinson buffer medium, the fluoroquinolones separated by high performance liquid chromatography could react with erythrosine to form 1:1 ion-association complexes, which could make contributions to the great enhancement of RRS. The resonance Rayleigh scattering signal was recorded at λex=λem=330 nm. The resonance Rayleigh scattering spectral characteristics of the drugs and the experimental conditions such as pH, detection wavelength, erythrosine concentration, flow rate, the length of reaction tube were studied. Quantum chemistry calculation, Fourier transform infrared spectroscopy and absorption spectroscopy were used to discuss the reaction mechanism. The recoveries of samples added standard ranged from 97.53% to 102.00%, and the relative standard deviation was below 4.64%. The limit of detection (S/N=3) of 0.05-0.12 μg mL(-1) was reached, and the linear regression coefficients were all above 0.999. The proposed method was proved as a simple, low cost and high sensitivity method.

  15. Leukotriene-E4 in human urine: Comparison of on-line purification and liquid chromatography-tandem mass spectrometry to affinity purification followed by enzyme immunoassay.

    PubMed Central

    Armstrong, Michael; Liu, Andrew H.; Harbeck, Ronald; Reisdorph, Rick; Rabinovitch, Nathan; Reisdorph, Nichole

    2009-01-01

    A new analytical method suitable for high throughput measurements of LTE4 in human urine is described. The methodology utilizes on-line enrichment and liquid chromatography/ tandem mass spectrometry (LC/MS/MS). The novel LC/MS/MS method is rapid, linear from 5 to 500 pg/mL in spiked urine samples of both healthy and asthmatic subjects and more accurate and precise than enzyme immunoassay (EIA) and previous LC/MS/MS methods. Results from sample integrity experiments and preliminary values of urinary LTE4 from healthy adults and children are reported. PMID:19726242

  16. Simultaneous determination of ethyl carbamate and urea in alcoholic beverages by high-performance liquid chromatography coupled with fluorescence detection.

    PubMed

    Zhang, Jian; Liu, Guoxin; Zhang, Ying; Gao, Qiang; Wang, Depei; Liu, Hao

    2014-04-01

    On the basis of the similar fluorescence of ethyl carbamate (EC) and urea derivatives, a high-performance liquid chromatography method coupled with fluorescence detection was developed for the simultaneous determination of EC and urea in alcoholic beverages. The chromatographic separation and derivatization conditions of EC and urea were optimized. Under the established conditions, the detection limit, relative standard deviation, linear range, and recovery were 4.8 μg/L, 1.0-4.2%, 10-500 μg/L, and 93.8-104.6%, respectively, for EC; the corresponding values were 0.003 mg/L, 1.2-4.8%, 0.01-100 mg/L, and 90.7-104.8%, respectively, for urea. The method showed satisfactory values for precision, recovery, and sensitivity for both analytes and is well-suited for routine analysis and kinetic studies of the formation of EC from urea alcoholysis in alcoholic beverages.

  17. Determination of Flow Rates in Capillary Liquid Chromatography Coupled to a Nanoelectrospray Source using Droplet Image Analysis Software.

    PubMed

    Cohen, Alejandro M; Soto, Axel J; Fawcett, James P

    2016-08-01

    Liquid chromatography coupled to electrospray tandem mass spectrometry (LC-ESI-MS/MS) is widely used in proteomic and metabolomic workflows. Considerable analytical improvements have been observed when the components of LC systems are scaled down. Currently, nano-ESI is typically done at capillary LC flow rates ranging from 200 to 300 nL/min. At these flow rates, trouble shooting and leak detection of LC systems has become increasingly challenging. In this paper we present a novel proof-of-concept approach to measure flow rates at the tip of electrospray emitters when the ionization voltage is turned off. This was achieved by estimating the changes in the droplet volume over time using digital image analysis. The results are comparable with the traditional methods of measuring flow rates, with the potential advantages of being fully automatable and nondisruptive. PMID:27351615

  18. Determination of selenium species in human urine by high performance liquid chromatography and inductively coupled plasma mass spectrometry.

    PubMed

    Quijano, M A; Gutiérrez, A M; Pérez-Conde, M C; Cámara, C

    1999-08-23

    A method developed to determine organic and inorganic selenium species in human urine samples is presented in detail. After a simple sample treatment based on elimination of non-charged organic compounds, selenium species were separated by high performance liquid chromatography (HPLC) on a Spherisorb 5 ODS/AMINO column using two different chromatographic conditions: phosphate buffers at pH 2.8 and 6.0. Detection was carried out using an on-line inductively coupled plasma mass spectrometer (ICP-MS). Trimethylselenonium ion and two unknown selenium species in urine samples were found. Selenium species were shown to have stability problems, with the maximum allowed storage time of 1 week.

  19. [Identification of metabolites of nobiletin in rats using ultra-performance liquid chromatography coupled with triple-quadrupole mass spectrometry].

    PubMed

    Xu, Ling-Ling; He, Yu-Qi; Guo, Xin; Lu, Yan-Hua; Wang, Chang-Hong; Wang, Zheng-Tao

    2011-12-01

    In this study, metabolism of nobiletin in rats was studied using ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). As a result, seven major metabolites were found in bile, urine and serum of rats. Three phase I products were assigned to be demethyl and di-demethyl products, and other four phase II products were assigned to be glucuronic and sulfonic conjugates. The four phase II metabolites were reported for the first time. Among the metabolites found in the present study, the glucuronic conjugates of demethyl-nobiletin played a predominant role in the metabolic pathway, indicating that its potential role for glucuronidation-related factors, such as gene polymorphism, drug-drug interaction, etc., in changing the active and toxic effect of nobiletin and that it should be paid more attention in further development.

  20. Determination of selenium species in human urine by high performance liquid chromatography and inductively coupled plasma mass spectrometry.

    PubMed

    Quijano, M A; Gutiérrez, A M; Pérez-Conde, M C; Cámara, C

    1999-08-23

    A method developed to determine organic and inorganic selenium species in human urine samples is presented in detail. After a simple sample treatment based on elimination of non-charged organic compounds, selenium species were separated by high performance liquid chromatography (HPLC) on a Spherisorb 5 ODS/AMINO column using two different chromatographic conditions: phosphate buffers at pH 2.8 and 6.0. Detection was carried out using an on-line inductively coupled plasma mass spectrometer (ICP-MS). Trimethylselenonium ion and two unknown selenium species in urine samples were found. Selenium species were shown to have stability problems, with the maximum allowed storage time of 1 week. PMID:18967706

  1. Determination of trace mercury species by high performance liquid chromatography-inductively coupled plasma mass spectrometry after cloud point extraction.

    PubMed

    Chen, Haiting; Chen, Jianguo; Jin, Xianzhong; Wei, Danyi

    2009-12-30

    A sensitive method for speciation analysis of inorganic mercury (Hg(2+)) and methyl mercury (MeHg(+)) has been developed by using high performance liquid chromatography (HPLC) combined with inductively coupled plasma mass spectrometry (ICP-MS) after cloud point extraction. The analytes were complexed with sodium diethyldithiocarbamate (DDTC) and preconcentrated by a non-ionic surfactant Triton X-114. Mercury species were effectively separated by HPLC in less than 6 min. The enhancement factors for 25 mL sample solution were 42 and 21, and the limits of detection were 4 and 10 ng L(-1) for Hg(2+) and MeHg(+), respectively. The developed method was successfully applied to the determination of trace amount of mercury species in environmental and biological samples.

  2. Separation and determination of amino acids by micellar electrokinetic chromatography coupling with novel multiphoton excited fluorescence detection.

    PubMed

    Chen, Sheng; Xu, Youzhi; Xu, Fei; Feng, Xiaojun; Du, Wei; Luo, Qingming; Liu, Bi-Feng

    2007-08-31

    In this article, it was demonstrated that separation and determination of 20 amino acids were accomplished by micellar electrokinetic chromatography (MEKC) coupling with novel multiphoton excited fluorescence (MPEF) detection method. Different from MPEF achieved by expensive fs laser, continuous wave (CW) diode laser of ultra-low cost was uniquely employed in our MPEF system. Amino acids were fluorescently labeled with fluorescein isothiocyanate (FITC), and were subjected to sodium dodecyl sulfate (SDS)-based MEKC separation and CW-based MPEF detection. The result was compared with that by single photon excited fluorescence (SPEF), which indicated that MPEF had the advantages of better mass detectability and higher separation selectivity over SPEF. Quantitative analysis was performed and revealed linear dynamic range of over 2 orders of magnitude, with mass detection limit down to ymole level. To evaluate the reliability, this method was successfully applied for analyzing a commercial nutrition supplement liquid.

  3. Preparative separation of 1,3,6-pyrenetrisulfonic acid trisodium salt from the color additive D&C Green No. 8 by affinity-ligand pH-zone-refining counter-current chromatography

    PubMed Central

    Weisz, Adrian; Mazzola, Eugene P.; Ito, Yoichiro

    2011-01-01

    In developing analytical methods for batch certification of the color additive D&C Green No. 8 (G8), the U.S. Food and Drug Administration needed the trisodium salt of 1,3,6-pyrenetrisulfonic acid (P3S) for use as a reference material. Since P3S was not commercially available, preparative quantities of it were separated from portions of a sample of G8 that contained ~ 3.5% P3S. The separations were performed by affinity-ligand pH-zone-refining counter-current chromatography using dodecylamine (DA) as the ligand. The added ligand enabled partitioning of the polysulfonated components into the organic stationary phase of the two-phase solvent system used, 1-butanol – water (1:1). A typical separation that involved 20.3 g of G8, using sulfuric acid as the retainer acid and 20% DA in the stationary phase and 0.1M sodium hydroxide as the mobile phase, resulted in ~0.58 g of P3S of greater than 99% purity. The identification and characterization of the separated P3S were performed by proton nuclear magnetic resonance, high-resolution mass spectrometry, ultra-violet spectra and high-performance liquid chromatography. PMID:21982993

  4. Prion Protein—Antibody Complexes Characterized by Chromatography-Coupled Small-Angle X-Ray Scattering

    PubMed Central

    Carter, Lester; Kim, Seung Joong; Schneidman-Duhovny, Dina; Stöhr, Jan; Poncet-Montange, Guillaume; Weiss, Thomas M.; Tsuruta, Hiro; Prusiner, Stanley B.; Sali, Andrej

    2015-01-01

    Aberrant self-assembly, induced by structural misfolding of the prion proteins, leads to a number of neurodegenerative disorders. In particular, misfolding of the mostly α-helical cellular prion protein (PrPC) into a β-sheet-rich disease-causing isoform (PrPSc) is the key molecular event in the formation of PrPSc aggregates. The molecular mechanisms underlying the PrPC-to-PrPSc conversion and subsequent aggregation remain to be elucidated. However, in persistently prion-infected cell-culture models, it was shown that treatment with monoclonal antibodies against defined regions of the prion protein (PrP) led to the clearing of PrPSc in cultured cells. To gain more insight into this process, we characterized PrP-antibody complexes in solution using a fast protein liquid chromatography coupled with small-angle x-ray scattering (FPLC-SAXS) procedure. High-quality SAXS data were collected for full-length recombinant mouse PrP [denoted recPrP(23–230)] and N-terminally truncated recPrP(89–230), as well as their complexes with each of two Fab fragments (HuM-P and HuM-R1), which recognize N- and C-terminal epitopes of PrP, respectively. In-line measurements by fast protein liquid chromatography coupled with SAXS minimized data artifacts caused by a non-monodispersed sample, allowing structural analysis of PrP alone and in complex with Fab antibodies. The resulting structural models suggest two mechanisms for how these Fabs may prevent the conversion of PrPC into PrPSc. PMID:26287631

  5. Nano Liquid Chromatography Directly Coupled to Electron Ionization Mass Spectrometry for Free Fatty Acid Elucidation in Mussel.

    PubMed

    Rigano, Francesca; Albergamo, Ambrogina; Sciarrone, Danilo; Beccaria, Marco; Purcaro, Giorgia; Mondello, Luigi

    2016-04-01

    Recently the miniaturization of liquid chromatography (LC) systems and progresses in mass spectrometry instrumentation have enabled direct introduction of the effluent coming from a nanoLC column into the high-vacuum region of an electron ionization source. In the present research, a nanoLC system was directly coupled to an electron ionization mass spectrometer (EI-MS) without any interface or modification of the ion source. The advantage with respect to atmospheric pressure ionization techniques, normally coupled with LC, is major identification power because of a more extensive and reproducible fragmentation pattern, without any matrix effect or mobile-phase interference. In particular, a nanoLC/EI-MS method was developed for elucidation of the free fatty acid profile in mussel samples, avoiding a previous derivatization step, required when gas chromatographic analysis is involved. A total of 20 fatty acids were reliably identified through the comparison with commercial libraries. A quantitative determination was also carried out by using the response factors approach along with the internal standard method, allowing for quantification of 14 fatty acids. Among them, palmitic acid resulted the most abundant, followed by ω6 arachidonic acid. The quantitative data were compared with those obtained by a well-established technique, such as gas chromatography with flame ionization detection (GC-FID). Both nanoLC/EI-MS and GC-FID methods were validated and similar results were obtained in terms of limit of detection and quantification, resulting in the picomole range, and sensitivity as well was not significantly different, as demonstrated by comparing the slope values of the calibration curves (p < 0.05, from a t-test). PMID:26937891

  6. Computational design and fabrication of core-shell magnetic molecularly imprinted polymer for dispersive micro-solid-phase extraction coupled with high-performance liquid chromatography for the determination of rhodamine 6G.

    PubMed

    Xie, Jin; Xie, Jie; Deng, Jian; Fang, Xiangfang; Zhao, Haiqing; Qian, Duo; Wang, Hongjuan

    2016-06-01

    A novel core-shell magnetic nano-adsorbent with surface molecularly imprinted polymer coating was fabricated and then applied to dispersive micro-solid-phase extraction followed by determination of rhodamine 6G using high-performance liquid chromatography. The molecularly imprinted polymer coating was prepared by copolymerization of dopamine and m-aminophenylboronic acid (functional monomers), in the presence of rhodamine 6G (template). The selection of the suitable functional monomers was based on the interaction between different monomers and the template using the density functional theory. The ratios of the monomers to template were further optimized by an OA9 (3(4) ) orthogonal array design. The binding performances of the adsorbent were evaluated by static, kinetic, and selective adsorption experiments. The results reveal that the adsorbent possesses remarkable affinity and binding specificity for rhodamine 6G because of the enhanced Lewis acid-base interaction between the B(Ш) embedded in the imprinted cavities and the template. The nano-adsorbent was successfully applied to dispersive micro-solid-phase extraction coupled to high-performance liquid chromatography for the trace determination of rhodamine 6G in samples with a detection limit of 2.7 nmol/L. Spiked recoveries ranged from 93.0-99.1, 89.5-92.7, and 86.9-105% in river water, matrimony vine and paprika samples, respectively, with relative standard deviations of less than 4.3%. PMID:27120290

  7. A study of the interactions between carboplatin and blood plasma proteins using size exclusion chromatography coupled to inductively coupled plasma mass spectrometry.

    PubMed

    Xie, Ruimin; Johnson, Willie; Rodriguez, Lorna; Gounder, Murugesan; Hall, Gene S; Buckley, Brian

    2007-04-01

    To study the carboplatin-protein interaction, a sensitive method using size exclusion chromatography coupled to inductively coupled plasma mass spectrometry (SEC-ICP-MS) was developed. The complexes formed between plasma proteins and carboplatin were monitored and identified with this method. Composite blood plasma samples from patients who were undergoing chemotherapy were analyzed, and carboplatin was found to bind plasma proteins. In addition, blank plasma samples were spiked with carboplatin and were analyzed as a time course study, and the results confirmed that carboplatin formed complexes with plasma proteins, primarily albumin and gamma-globulin. To further substantiate the study, these two proteins were incubated with carboplatin. The binding between carboplatin and these proteins was then characterized qualitatively and quantitatively. In addition to a one-to-one binding of Pt to protein, protein aggregation was observed. The kinetics of the binding process of carboplatin to albumin and gamma-globulin was also studied. The initial reaction rate constant of carboplatin binding to albumin was determined to be 0.74 M(-1) min(-1), while that for gamma-globulin was 1.01 M(-1) min(-1), which are both lower than the rate constant of the cisplatin-albumin reaction previously reported.

  8. Determination of actinides in environmental and biological samples using high-performance chelation ion chromatography coupled to sector-field inductively coupled plasma mass spectrometry.

    PubMed

    Truscott, J B; Jones, P; Fairman, B E; Evans, E H

    2001-08-31

    High-performance chelation ion chromatography, using a neutral polystyrene substrate dynamically loaded with 0.1 mM dipicolinic acid, coupled with sector-field inductively coupled plasma mass spectrometry has been successfully used for the separation of the actinides thorium, uranium, americium, neptunium and plutonium. Using this column it was possible to separate the various actinides from each other and from a complex sample matrix. In particular, it was possible to separate plutonium and uranium to facilitate the detection of the former free of spectral interference. The column also exhibited some selectivity for different oxidation states of Np, Pu and U. Two oxidation states each for plutonium and neptunium were found, tentatively identified as Np(V) and Pu(III) eluting at the solvent front, and Np(IV) and Pu(IV) eluting much later. Detection limits were 12, 8, and 4 fg for 237Np, 239Pu, and 241Am, respectively, for a 0.5 ml injection. The system was successfully used for the determination of 239Pu in NIST 4251 Human Lung and 4353 Rocky Flats Soil, with results of 570+/-29 and 2939+/-226 fg g(-1), respectively, compared with a certified range of 227-951 fg g(-1) for the former and a value of 3307+/-248 fg g(-1) for the latter. PMID:11589474

  9. Evaluation of Hydrodynamic Chromatography Coupled with UV-Visible, Fluorescence and Inductively Coupled Plasma Mass Spectrometry Detectors for Sizing and Quantifying Colloids in Environmental Media

    PubMed Central

    Philippe, Allan; Schaumann, Gabriele E.

    2014-01-01

    In this study, we evaluated hydrodynamic chromatography (HDC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) for the analysis of nanoparticles in environmental samples. Using two commercially available columns (Polymer Labs-PDSA type 1 and 2), a set of well characterised calibrants and a new external time marking method, we showed that flow rate and eluent composition have few influence on the size resolution and, therefore, can be adapted to the sample particularity. Monitoring the agglomeration of polystyrene nanoparticles over time succeeded without observable disagglomeration suggesting that even weak agglomerates can be measured using HDC. Simultaneous determination of gold colloid concentration and size using ICP-MS detection was validated for elemental concentrations in the ppb range. HDC-ICP-MS was successfully applied to samples containing a high organic and ionic background. Indeed, online combination of UV-visible, fluorescence and ICP-MS detectors allowed distinguishing between organic molecules and inorganic colloids during the analysis of Ag nanoparticles in synthetic surface waters and TiO2 and ZnO nanoparticles in commercial sunscreens. Taken together, our results demonstrate that HDC-ICP-MS is a flexible, sensitive and reliable method to measure the size and the concentration of inorganic colloids in complex media and suggest that there may be a promising future for the application of HDC in environmental science. Nonetheless the rigorous measurements of agglomerates and of matrices containing natural colloids still need to be studied in detail. PMID:24587393

  10. Evaluation of hydrodynamic chromatography coupled with UV-visible, fluorescence and inductively coupled plasma mass spectrometry detectors for sizing and quantifying colloids in environmental media.

    PubMed

    Philippe, Allan; Schaumann, Gabriele E

    2014-01-01

    In this study, we evaluated hydrodynamic chromatography (HDC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) for the analysis of nanoparticles in environmental samples. Using two commercially available columns (Polymer Labs-PDSA type 1 and 2), a set of well characterised calibrants and a new external time marking method, we showed that flow rate and eluent composition have few influence on the size resolution and, therefore, can be adapted to the sample particularity. Monitoring the agglomeration of polystyrene nanoparticles over time succeeded without observable disagglomeration suggesting that even weak agglomerates can be measured using HDC. Simultaneous determination of gold colloid concentration and size using ICP-MS detection was validated for elemental concentrations in the ppb range. HDC-ICP-MS was successfully applied to samples containing a high organic and ionic background. Indeed, online combination of UV-visible, fluorescence and ICP-MS detectors allowed distinguishing between organic molecules and inorganic colloids during the analysis of Ag nanoparticles in synthetic surface waters and TiO₂ and ZnO nanoparticles in commercial sunscreens. Taken together, our results demonstrate that HDC-ICP-MS is a flexible, sensitive and reliable method to measure the size and the concentration of inorganic colloids in complex media and suggest that there may be a promising future for the application of HDC in environmental science. Nonetheless the rigorous measurements of agglomerates and of matrices containing natural colloids still need to be studied in detail.

  11. DETERMINATION OF BROMATE IN DRINKING WATERS BY ION CHROMATOGRAPHY WITH INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRIC DETECTION

    EPA Science Inventory

    Bromate is a disinfection by-product in drinking water, formed during the ozonation of source water containing bromide. An inductively coupled plasma mass spectrometer is combined with an ion chromatograph for the analysis of bromate in drinking waters. Three chromatographic colu...

  12. High affinity neurexin binding to cell adhesion G-protein-coupled receptor CIRL1/latrophilin-1 produces an intercellular adhesion complex.

    PubMed

    Boucard, Antony A; Ko, Jaewon; Südhof, Thomas C

    2012-03-16

    The G-protein-coupled receptor CIRL1/latrophilin-1 (CL1) and the type-1 membrane proteins neurexins represent distinct neuronal cell adhesion molecules that exhibit no similarities except for one common function: both proteins are receptors for α-latrotoxin, a component of black widow spider venom that induces massive neurotransmitter release at synapses. Unexpectedly, we have now identified a direct binding interaction between the extracellular domains of CL1 and neurexins that is regulated by alternative splicing of neurexins at splice site 4 (SS4). Using saturation binding assays, we showed that neurexins lacking an insert at SS4 bind to CL1 with nanomolar affinity, whereas neurexins containing an insert at SS4 are unable to bind. CL1 competed for neurexin binding with neuroligin-1, a well characterized neurexin ligand. The extracellular sequences of CL1 contain five domains (lectin, olfactomedin-like, serine/threonine-rich, hormone-binding, and G-protein-coupled receptor autoproteolysis-inducing (GAIN) domains). Of these domains, the olfactomedin-like domain mediates neurexin binding as shown by deletion mapping. Cell adhesion assays using cells expressing neurexins and CL1 revealed that their interaction produces a stable intercellular adhesion complex, indicating that their interaction can be trans-cellular. Thus, our data suggest that CL1 constitutes a novel ligand for neurexins that may be localized postsynaptically based on its well characterized interaction with intracellular SH3 and multiple ankyrin repeats adaptor proteins (SHANK) and could form a trans-synaptic complex with presynaptic neurexins.

  13. Enzyme oscillation can enhance the thermodynamic efficiency of cellular metabolism: consequence of anti-phase coupling between reaction flux and affinity

    NASA Astrophysics Data System (ADS)

    Himeoka, Yusuke; Kaneko, Kunihiko

    2016-04-01

    Cells generally convert nutrient resources to products via energy transduction. Accordingly, the thermodynamic efficiency of this conversion process is one of the most essential characteristics of living organisms. However, although these processes occur under conditions of dynamic metabolism, most studies of cellular thermodynamic efficiency have been restricted to examining steady states; thus, the relevance of dynamics to this efficiency has not yet been elucidated. Here, we develop a simple model of metabolic reactions with anabolism-catabolism coupling catalyzed by enzymes. Through application of external oscillation in the enzyme abundances, the thermodynamic efficiency of metabolism was found to be improved. This result is in strong contrast with that observed in the oscillatory input, in which the efficiency always decreased with oscillation. This improvement was effectively achieved by separating the anabolic and catabolic reactions, which tend to disequilibrate each other, and taking advantage of the temporal oscillations so that each of the antagonistic reactions could progress near equilibrium. In this case, anti-phase oscillation between the reaction flux and chemical affinity through oscillation of enzyme abundances is essential. This improvement was also confirmed in a model capable of generating autonomous oscillations in enzyme abundances. Finally, the possible relevance of the improvement in thermodynamic efficiency is discussed with respect to the potential for manipulation of metabolic oscillations in microorganisms.

  14. Raw data for the identification of SUMOylated proteins in S. cerevisiae subjected to two types of osmotic shock, using affinity purification coupled with mass spectrometry

    PubMed Central

    Srikumar, Tharan; Lewicki, Megan C.; Raught, Brian

    2014-01-01

    The small ubiquitin-related modifier (SUMO) “stress response” (SSR) is a poorly understood evolutionarily conserved phenomenon in which steady-state SUMO conjugate levels are dramatically increased in response to environmental stresses. Here we describe the data acquired using affinity-purification coupled with mass spectrometry to identify proteins that are SUMOylated in response to two different types of osmotic stress, 1 M sorbitol and 1 M KCl. The mass spectrometry dataset described here has been uploaded to the MassIVE repository with ID: MSV000078739, and consists of 32 raw MS files acquired in data-dependent mode on a Thermo Q-Exactive instrument. iProphet-processed MS/MS search results and associated SAINT scores are also included as a reference. These data are discussed and interpreted in “The S. cerevisiae SUMO stress response is a conjugation–deconjugation cycle that targets the transcription machinery”, by Lewicki et al. in the Journal of Proteomics, 2014 [1]. PMID:26217701

  15. Identification of homologous pairing and strand-exchange activity from a human tumor cell line based on Z-DNA affinity chromatography

    SciTech Connect

    Fishel, R.A.; Detmer, K.; Rich, A.

    1988-01-01

    An enzymatic activity that catalyzes ATP-dependent homologous pairing and strand exchange of duplex linear DNA and single-stranded circular DNA has been purified several thousand-fold from a human leukemic T-lymphoblast cell line. The activity was identified after chromatography of nuclear proteins on a Z-DNA column matrix. The reaction was shown to transfer the complementary single strand from a donor duplex linear substrate to a viral circular single-stranded acceptor beginning at the 5' end and proceeding in the 3' direction. Products of the strand-transfer reaction were characterized by electron microscopy. A 74-kDa protein was identified as the major ATP-binding peptide in active strand transferase fractions. The protein preparation described in this report binds more strongly to Z-DNA than to B-DNA.

  16. Coupling gas chromatography and electronic nose detection for detailed cigarette smoke aroma characterization.

    PubMed

    Rambla-Alegre, Maria; Tienpont, Bart; Mitsui, Kazuhisa; Masugi, Eri; Yoshimura, Yuta; Nagata, Hisanori; David, Frank; Sandra, Pat

    2014-10-24

    Aroma characterization of whole cigarette smoke samples using sensory panels or electronic nose (E-nose) devices is difficult due to the masking effect of major constituents and solvent used for the extraction step. On the other hand, GC in combination with olfactometry detection does not allow to study the delicate balance and synergetic effect of aroma solutes. To overcome these limitations a new instrumental set-up consisting of heart-cutting gas chromatography using a capillary flow technology based Deans switch and low thermal mass GC in combination with an electronic nose device is presented as an alternative to GC-olfactometry. This new hyphenated GC-E-nose configuration is used for the characterization of cigarette smoke aroma. The system allows the transfer, combination or omission of selected GC fractions before injection in the E-nose. Principal component analysis (PCA) and discriminant factor analysis (DFA) allowed clear visualizing of the differences among cigarette brands and classifying them independently of their nicotine content. Omission and perceptual interaction tests could also be carried out using this configuration. The results are promising and suggest that the GC-E-nose hyphenation is a good approach to measure the contribution level of individual compounds to the whole cigarette smoke.

  17. Quantification of artemisinin in human plasma using liquid chromatography coupled to tandem mass spectrometry

    PubMed Central

    Lindegardh, N.; Tarning, J.; Toi, P.V.; Hien, T.T.; Farrar, J.; Singhasivanon, P.; White, N.J.; Ashton, M.; Day, N.P.J.

    2009-01-01

    A liquid chromatographic tandem mass spectroscopy method for the quantification of artemisinin in human heparinised plasma has been developed and validated. The method uses Oasis HLB™ μ-elution solid phase extraction 96-well plates to facilitate a high throughput of 192 samples a day. Artesunate (internal standard) in a plasma–water solution was added to plasma (50 μL) before solid phase extraction. Artemisinin and its internal standard artesunate were analysed by liquid chromatography and MS/MS detection on a Hypersil Gold C18 (100 mm × 2.1 mm, 5 μm) column using a mobile phase containing acetonitrile–ammonium acetate 10 mM pH 3.5 (50:50, v/v) at a flow rate of 0.5 mL/min. The method has been validated according to published FDA guidelines and showed excellent performance. The within-day, between-day and total precisions expressed as R.S.D., were lower than 8% at all tested quality control levels including the upper and lower limit of quantification. The limit of detection was 0.257 ng/mL for artemisinin and the calibration range was 1.03–762 ng/mL using 50 μL plasma. The method was free from matrix effects as demonstrated both graphically and quantitatively. PMID:19162422

  18. [Determination of trace haloacetic acids in drinking water using ion chromatography coupled with solid phase extraction].

    PubMed

    Sun, Yingxue; Huang, Jianjun; Gu, Ping

    2006-05-01

    The combined solid phase extraction (SPE)-ion chromatography (IC) method was developed for the analysis of trace haloacetic acids (HAAs) in drinking water. The tested HAAs included monochloroacetic acid (MCAA), dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), monobromoacetic acid (MBAA) and dibromoacetic acid (DBAA). For trace determination of HAAs in real drinking water samples, conditions of LiChrolut EN SPE cartridge were investigated for HAAs preconcentration and matrix elimination. Elution was carried out by 2 mL of sodium hydroxide (10 mmol/L) with the flow rate of 2 mL/min. The Dionex IonPac AS16 column (250 mm x 4 mm i. d.), a high capacity and hydroxide-selective anion-exchange column designed for the determination of polarizable anions, was chosen for chromatographic separation. HAAs were analyzed with a concentration gradient of NaOH with the flow rate of 0.8 mL/min and detected by suppressed conductivity. A 500 microL sample loop was used. The detection limits of this SPE-IC method for MCAA, DCAA, DBAA and TCAA were 0.38-1.69 microg/L and MBAA was 12.5 microg/L under 25-fold preconcentration. The results demonstrate that the method is suitable for the analysis of trace haloacetic acids in drinking water.

  19. Plasma jet desorption atomization-atomic fluorescence spectrometry and its application to mercury speciation by coupling with thin layer chromatography.

    PubMed

    Liu, Zhifu; Zhu, Zhenli; Zheng, Hongtao; Hu, Shenghong

    2012-12-01

    A novel plasma jet desorption atomization (PJDA) source was developed for atomic fluorescence spectrometry (AFS) and coupled on line with thin layer chromatography (TLC) for mercury speciation. An argon dielectric barrier discharge plasma jet, which is generated inside a 300 μm quartz capillary, interacts directly with the sample being analyzed and is found to desorb and atomize surface mercury species rapidly. The effectiveness of this PJDA surface sampling technique was demonstrated by measuring AFS signals of inorganic Hg(2+), methylmercury (MeHg), and phenylmercury (PhHg) deposited directly on TLC plate. The detection limits of the proposed PJDA-AFS method for inorganic Hg(2+), MeHg, and PhHg were 0.51, 0.29, and 0.34 pg, respectively, and repeatability was 4.7%, 2.2%, and 4.3% for 10 pg Hg(2+), MeHg, and PhHg. The proposed PJDA-AFS was also successfully coupled to TLC for mercury speciation. Under optimized conditions, the measurements of mercury dithizonate (Hg-D), methylmercury dithizonate (MeHg-D), and phenylmercury dithizonate (PhHg-D) could be achieved within 3 min with detection limits as low as 8.7 pg. The combination of TLC with PJDA-AFS provides a simple, cost-effective, relatively high-throughput way for mercury speciation. PMID:23153091

  20. Determination of trace-level haloacetic acids in drinking water by ion chromatography-inductively coupled plasma mass spectrometry.

    PubMed

    Liu, Yongjian; Mou, Shifen; Chen, Dengyun

    2004-06-11

    A new method for the determination of nine haloacetic acids (HAAs) with ion chromatography (IC) coupled to inductively coupled plasma mass spectrometry (ICP-MS) was developed. With the very hydrophilic anion-exchange column and steep gradient of sodium hydroxide, the nine HAAs could be well separated in 15 min. After suppression with an ASRS suppressor that was introduced in between IC and ICP-MS, the background was much decreased, the interference caused by sodium ion present in eluent was removed, and the sensitivities of HAAs were greatly improved. The chlorinated and brominated HAAs could be detected as 35ClO and 79Br without interference of the matrix due to the elemental selective ICP-MS. The detection limits for mono-, di-, trichloroacetic acids were between 15.6 and 23.6 microg/l. For the other six bromine-containing HAAs, the detection limits were between 0.34 and 0.99 microg/l. With the pretreatment of OnGuard Ag cartridge to remove high concentration of chloride in sample, the developed method could be applied to the determination of HAAs in many drinking water matrices.

  1. Elemental labelling combined with liquid chromatography inductively coupled plasma mass spectrometry for quantification of biomolecules: A review

    PubMed Central

    Kretschy, Daniela; Koellensperger, Gunda; Hann, Stephan

    2012-01-01

    This article reviews novel quantification concepts where elemental labelling is combined with flow injection inductively coupled plasma mass spectrometry (FI-ICP-MS) or liquid chromatography inductively coupled plasma mass spectrometry (LC–ICP-MS), and employed for quantification of biomolecules such as proteins, peptides and related molecules in challenging sample matrices. In the first sections an overview on general aspects of biomolecule quantification, as well as of labelling will be presented emphasizing the potential, which lies in such methodological approaches. In this context, ICP-MS as detector provides high sensitivity, selectivity and robustness in biological samples and offers the capability for multiplexing and isotope dilution mass spectrometry (IDMS). Fundamental methodology of elemental labelling will be highlighted and analytical, as well as biomedical applications will be presented. A special focus will lie on established applications underlining benefits and bottlenecks of such approaches for the implementation in real life analysis. Key research made in this field will be summarized and a perspective for future developments including sophisticated and innovative applications will given. PMID:23062431

  2. Characterization of At- species in simple and biological media by high performance anion exchange chromatography coupled to gamma detector.

    PubMed

    Sabatié-Gogova, A; Champion, J; Huclier, S; Michel, N; Pottier, F; Galland, N; Asfari, Z; Chérel, M; Montavon, G

    2012-04-01

    Astatine is a rare radioelement belonging to the halogen group. Considering the trace amounts of astatine produced in cyclotrons, its chemistry cannot be evaluated by spectroscopic tools. Analytical tools, provided that they are coupled with a radioactive detection system, may be an alternative way to study its chemistry. In this research work, high performance anion exchange chromatography (HPAEC) coupled to a gamma detector (γ) was used to evaluate astatine species under reducing conditions. Also, to strengthen the reliability of the experiments, a quantitative analysis using a reactive transport model has been done. The results confirm the existence of one species bearing one negative charge in the pH range 2-7.5. With respect to the other halogens, its behavior indicates the existence of negative ion, astatide At(-). The methodology was successfully applied to the speciation of the astatine in human serum. Under fixed experimental conditions (pH 7.4-7.5 and redox potential of 250 mV) astatine exists mainly as astatide At(-) and does not interact with the major serum components. Also, the method might be useful for the in vitro stability assessment of (211)At-labeled molecules potentially applicable in nuclear medicine. PMID:22405318

  3. Comprehensive two-dimensional gas chromatography coupled with fast sulphur-chemiluminescence detection: implications of detector electronics.

    PubMed

    Blomberg, Jan; Riemersma, Toby; van Zuijlen, Manfred; Chaabani, Hassan

    2004-09-24

    Within the petrochemical industry, there has been a growing interest in methods capable of providing detailed information on the distribution of sulphur-containing compounds in various product streams, going down to the level of separating and quantifying individual sulphur species. Since no single capillary gas chromatographic column is able to perform this separation, a refuge to multi-dimensional separation techniques has to be taken. In this respect, comprehensive two-dimensional gas chromatography (GC x GC) coupled with sulphur chemiluminescence detection (SCD) has shown to be highly promising. It has been suggested, however, that the detector volume of an SCD restricts its potential to keep up with the fast second-dimension separations of contemporary GC x GC. In this paper, we will demonstrate that the lack of speed of the SCD does not originate from its physical dimensions, but is largely determined by the speed of the electronics used. Additionally, some typical examples will be presented to illustrate the potential of GC x GC coupled with fast SCD.

  4. Separation, detection and characterization of nanomaterials in municipal wastewaters using hydrodynamic chromatography coupled to ICPMS and single particle ICPMS.

    PubMed

    Proulx, Kim; Hadioui, Madjid; Wilkinson, Kevin J

    2016-07-01

    Engineered nanoparticles (ENP) are increasingly being incorporated into consumer products and reaching the environment at a growing rate. Unfortunately, few analytical techniques are available that allow the detection of ENP in complex environmental matrices. The major limitations with existing techniques are their relatively high detection limits and their inability to distinguish ENP from other chemical forms (e.g. ions, dissolved) or from natural colloids. Of the matrices that are considered to be a priority for method development, ENP are predicted to be found at relatively high concentrations in wastewaters and wastewater biosolids. In this paper, we demonstrate the capability of hydrodynamic chromatography (HDC) coupled to inductively coupled plasma mass spectrometry (ICPMS), in its classical and single particle modes (SP ICPMS), to identify ENP in wastewater influents and effluents. The paper first focuses on the detection of standard silver nanoparticles (Ag NP) and their mixtures, showing that significant dissolution of the Ag NP was likely to occur. For the Ag NP, detection limits of 0.03 μg L(-1) were found for the HDC ICPMS whereas 0.1 μg L(-1) was determined for the HDC SP ICPMS (based on results for the 80 nm Ag NP). In the second part of the paper, HDC ICPMS and HDC SP ICPMS were performed on some unspiked natural samples (wastewaters, river water). While nanosilver was below detection limits, it was possible to identify some (likely natural) Cu nanoparticles using the developed separation technology. PMID:26970748

  5. Characterization of At- species in simple and biological media by high performance anion exchange chromatography coupled to gamma detector.

    PubMed

    Sabatié-Gogova, A; Champion, J; Huclier, S; Michel, N; Pottier, F; Galland, N; Asfari, Z; Chérel, M; Montavon, G

    2012-04-01

    Astatine is a rare radioelement belonging to the halogen group. Considering the trace amounts of astatine produced in cyclotrons, its chemistry cannot be evaluated by spectroscopic tools. Analytical tools, provided that they are coupled with a radioactive detection system, may be an alternative way to study its chemistry. In this research work, high performance anion exchange chromatography (HPAEC) coupled to a gamma detector (γ) was used to evaluate astatine species under reducing conditions. Also, to strengthen the reliability of the experiments, a quantitative analysis using a reactive transport model has been done. The results confirm the existence of one species bearing one negative charge in the pH range 2-7.5. With respect to the other halogens, its behavior indicates the existence of negative ion, astatide At(-). The methodology was successfully applied to the speciation of the astatine in human serum. Under fixed experimental conditions (pH 7.4-7.5 and redox potential of 250 mV) astatine exists mainly as astatide At(-) and does not interact with the major serum components. Also, the method might be useful for the in vitro stability assessment of (211)At-labeled molecules potentially applicable in nuclear medicine.

  6. Determination of total phthalates in edible oils by high-performance liquid chromatography coupled with photodiode array detection.

    PubMed

    Xie, Qilong; Sun, Dekui; Han, Yangying; Jia, Litao; Hou, Bo; Liu, Shuhui; Li, Debao

    2016-03-01

    The previously reported procedure for the determination of the total phthalate in fatty food involved the extraction of phthalates using chloroform/methanol followed by the removal of the solvents before alkaline hydrolysis requiring 20 h and derivatization of phthalic acid. In this study, a phase-transfer catalyst (tetrabutylammonium chloride) was used in the liquid-liquid heterogeneous hydrolysis of phthalates in oil matrix shortening the reaction time to within 25 min. The resulting phthalic acid in the hydrolysate was extracted by a novel molecular complex based dispersive liquid-liquid microextraction method coupled with back-extraction before high-performance liquid chromatography coupled with photodiode array detection. Under the optimal experimental conditions, the linearity of the method was in the range of 0.5-12 nmol/g with the correlation coefficients (r) >0.997. The detection limit (S/N = 3) was 0.11 nmol/g. Intraday and interday repeatability values expressed as relative standard deviation were 3.9 and 7.1%, respectively. The recovery rates ranged from 82.4 to 99.0%. The developed method was successfully applied for the analysis of total phthalate in seven edible oils.

  7. Fast quantification of endogenous carbohydrates in plasma using hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Zhu, Bangjie; Liu, Feng; Li, Xituo; Wang, Yan; Gu, Xue; Dai, Jieyu; Wang, Guiming; Cheng, Yu; Yan, Chao

    2015-01-01

    Endogenous carbohydrates in biosamples are frequently highlighted as the most differential metabolites in many metabolomics studies. A simple, fast, simultaneous quantitative method for 16 endogenous carbohydrates in plasma has been developed using hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry. In order to quantify 16 endogenous carbohydrates in plasma, various conditions, including columns, chromatographic conditions, mass spectrometry conditions, and plasma preparation methods, were investigated. Different conditions in this quantified analysis were performed and optimized. The reproducibility, precision, recovery, matrix effect, and stability of the method were verified. The results indicated that a methanol/acetonitrile (50:50, v/v) mixture could effectively and reproducibly precipitate rat plasma proteins. Cold organic solvents coupled with vortex for 1 min and incubated at -20°C for 20 min were the most optimal conditions for protein precipitation and extraction. The results, according to the linearity, recovery, precision, matrix effect, and stability, showed that the method was satisfactory in the quantification of endogenous carbohydrates in rat plasma. The quantified analysis of endogenous carbohydrates in rat plasma performed excellently in terms of sensitivity, high throughput, and simple sample preparation, which met the requirement of quantification in specific expanded metabolomic studies after the global metabolic profiling research.

  8. Comparative oxidation state specific analysis of arsenic species by high-performance liquid chromatography-inductively coupled-mass spectrometry and hydride generation-cryotrapping-atomic absorption spectrometry

    EPA Science Inventory

    The formation of methylarsonous acid (MAsIII) and dimethylarsinous acid (DMAsIII) in the course of inorganic arsenic (iAs) metabolism plays an important role in the adverse effects of chronic exposure to iAs. High-performance liquid chromatography-inductively coupled plasma-mass ...

  9. Speciation of arsenic(III)/arsenic(V) and selenium(IV)/ selenium(VI) using coupled ion chromatography - hydride generation atomic absorption spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Simple analytical methods have been developed to speciate inorganic arsenic and selenium in the ppb range using coupled ion chromatography-hydride generation atomic absorption spectrometry. Because of the differences in toxicity and adsorption behavior, determinations of the redox states arsenite A...

  10. Determination of citrus limonoid glucosides by high performance liquid chromatography coupled to post-column reaction with Ehrlich’s Reagent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method for the identification and quantification of citrus limonoid glucosides in juices based upon high performance liquid chromatography (HPLC) separation coupled to post-column reaction with Ehrlichs’s reagent has been developed. This method utilizes a phenyl stationary phase and an isocratic ...

  11. Functional characterization of the kinase activation loop in nucleophosmin (NPM)-anaplastic lymphoma kinase (ALK) using tandem affinity purification and liquid chromatography-mass spectrometry.

    PubMed

    Wang, Peng; Wu, Fang; Ma, Yupo; Li, Liang; Lai, Raymond; Young, Leah C

    2010-01-01

    Previous studies have shown that the kinase activation loop (KAL) of the oncogenic fusion protein NPM-ALK regulates its overall tyrosine phosphorylation status and tumorigenicity. Using tandem affinity purification-mass spectrometry, we assessed how the KAL of NPM-ALK regulates the phosphorylation status of its individual tyrosines. Using the lysates of GP293 cells transfected with NPM-ALK, our highly reproducible results showed evidence of phosphorylation in all 3 tyrosines in KAL and 8 tyrosines outside KAL. We created 7 KAL mutants, each of which carried a Tyr-to-Phe mutation of >or=1 of the 3 tyrosines in KAL. A complete loss of the 8 phosphotyrosines outside KAL was found in 3 KAL mutants, and their oncogenicity (assessed by cell viability, colony formation, and the ability to phosphorylate effector proteins) was abrogated. A partial loss of the 8 phosphotyrosines was found in 4 KAL mutants, but their oncogenicity did not show simple correlation with the number of residual phosphotyrosines. Tyr-to-Phe mutations of each of the 8 phosphotyrosines outside KAL did not result in a significant decrease in the oncogenicity. In conclusion, we have provided details of how the KAL in NPM-ALK regulates its tyrosine phosphorylation pattern. Our results challenge some of the current concepts regarding the relationship between the tyrosine phosphorylation and oncogenicity of NPM-ALK.

  12. Studies on ram acrosin. Activation of proacrosin accompanying the isolation of acrosin from spermatozoa, and purification of the enzyme by affinity chromatography.

    PubMed Central

    Brown, C R; Hartree, E F

    1978-01-01

    1. A previously described, freeze-dried, partially purified ram acrosin preparation was fractionated on a column of Sepharose linked to the acrosin inhibitor p-(p'-aminophenoxypropoxy)benzamidine. Two acrosin fractions were obtained. 2. beta-Acrosin was homogeneous, quite stable at low pH and very stable when freeze-dried. Its molecular weight is about 38000, and it contains about six sugar residues per molecule, but no sialic acid. psi-Acrosin consisted of at least three unstable forms of acrosin. 3. When the entire purification process, starting from collection of semen, was carried out as rapidly as possible, the yield of beta-acrosin was increased and very little psi-acrosin was obtained. 4. In fresh ram semen the acrosin is present as the intra-acrosomal zymogen, proacrosin. After its extraction from spermatozoa autoproteolytic reactions convert proacrosin into beta-acrosin; psi-acrosin appears to be breakdown products of beta-acrosin. 5. When beta-acrosin was passed through a column of Sepharose linked to the non-inhibitory deamidinated analogue of the inhibitor it behaved as a hydrophobic protein. This is consistent with our view that acrosin (as zymogen) occurs in spermatozoa as a membrane-bound protein. 6. Success in the isolation of pure acrosin in high yield calls for an affinity adsorbent with the appropriate subsidiary hydrophobic properties. PMID:736895

  13. Studies with an immobilized metal affinity chromatography cassette system involving binuclear triazacyclononane-derived ligands: automation of batch adsorption measurements with tagged recombinant proteins.

    PubMed

    Petzold, Martin; Coghlan, Campbell J; Hearn, Milton T W

    2014-07-18

    This study describes the determination of the adsorption isotherms and binding kinetics of tagged recombinant proteins using a recently developed IMAC cassette system and employing automated robotic liquid handling procedures for IMAC resin screening. These results confirm that these new IMAC resins, generated from a variety of different metal-charged binuclear 1,4,7-triaza-cyclononane (tacn) ligands, interact with recombinant proteins containing a novel N-terminal metal binding tag, NT1A, with static binding capacities similar to those obtained with conventional hexa-His tagged proteins, but with significantly increased association constants. In addition, higher kinetic binding rates were observed with these new IMAC systems, an attribute that can be positively exploited to increase process productivity. The results from this investigation demonstrate that enhancements in binding capacities and affinities were achieved with these new IMAC resins and chosen NT1A tagged protein. Further, differences in the binding performances of the bis(tacn) xylenyl-bridged ligands were consistent with the distance between the metal binding centres of the two tacn moieties, the flexibility of the ligand and the potential contribution from the aromatic ring of the xylenyl group to undergo π/π stacking interactions with the tagged proteins.

  14. CHARACTERIZATION OF INTERACTION KINETICS BETWEEN CHIRAL SOLUTES AND HUMAN SERUM ALBUMIN BY USING HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY AND PEAK PROFILING

    PubMed Central

    Tong, Zenghan; Hage, David S.

    2011-01-01

    Peak profiling and high-performance columns containing immobilized human serum albumin (HSA) were used to study the interaction kinetics of chiral solutes with this protein. This approach was tested using the phenytoin metabolites 5-(3-hydroxyphenyl)-5-phenylhydantoin (m-HPPH) and 5-(4-hydroxyphenyl)-5-phenylhydantoin (p-HPPH) as model analytes. HSA columns provided some resolution of the enantiomers for each phenytoin metabolite, which made it possible to simultaneously conduct kinetic studies on each chiral form. The dissociation rate constants for these interactions were determined by using both the single flow rate and multiple flow rate peak profiling methods. Corrections for non-specific interactions with the support were also considered. The final estimates obtained at pH 7.4 and 37°C for the dissociation rate constants of these interactions were 8.2–9.6 s−1 for the two enantiomers of m-HPPH and 3.2–4.1 s−1 for the enantiomers of p-HPPH. These rate constants agreed with previous values that have been reported for other drugs and solutes that have similar affinities and binding regions on HSA. The approach used in this report was not limited to phenytoin metabolites or HSA but could be applied to a variety of other chiral solutes and proteins. This method could also be adopted for use in the rapid screening of drug-protein interactions. PMID:21872871

  15. Functional Characterization of the Kinase Activation Loop in Nucleophosmin (NPM)-Anaplastic Lymphoma Kinase (ALK) Using Tandem Affinity Purification and Liquid Chromatography-Mass Spectrometry*

    PubMed Central

    Wang, Peng; Wu, Fang; Ma, Yupo; Li, Liang; Lai, Raymond; Young, Leah C.

    2010-01-01

    Previous studies have shown that the kinase activation loop (KAL) of the oncogenic fusion protein NPM-ALK regulates its overall tyrosine phosphorylation status and tumorigenicity. Using tandem affinity purification-mass spectrometry, we assessed how the KAL of NPM-ALK regulates the phosphorylation status of its individual tyrosines. Using the lysates of GP293 cells transfected with NPM-ALK, our highly reproducible results showed evidence of phosphorylation in all 3 tyrosines in KAL and 8 tyrosines outside KAL. We created 7 KAL mutants, each of which carried a Tyr-to-Phe mutation of ≥1 of the 3 tyrosines in KAL. A complete loss of the 8 phosphotyrosines outside KAL was found in 3 KAL mutants, and their oncogenicity (assessed by cell viability, colony formation, and the ability to phosphorylate effector proteins) was abrogated. A partial loss of the 8 phosphotyrosines was found in 4 KAL mutants, but their oncogenicity did not show simple correlation with the number of residual phosphotyrosines. Tyr-to-Phe mutations of each of the 8 phosphotyrosines outside KAL did not result in a significant decrease in the oncogenicity. In conclusion, we have provided details of how the KAL in NPM-ALK regulates its tyrosine phosphorylation pattern. Our results challenge some of the current concepts regarding the relationship between the tyrosine phosphorylation and oncogenicity of NPM-ALK. PMID:19887368

  16. Proteochemometric modelling coupled to in silico target prediction: an integrated approach for the simultaneous prediction of polypharmacology and binding affinity/potency of small molecules.

    PubMed

    Paricharak, Shardul; Cortés-Ciriano, Isidro; IJzerman, Adriaan P; Malliavin, Thérèse E; Bender, Andreas

    2015-01-01

    targets and the potency on plasmodial DHFR for the GSK TCAMS dataset, which comprises 13,533 compounds displaying strong anti-malarial activity. 534 of those compounds were identified as DHFR inhibitors by the target prediction algorithm, while the PCM algorithm identified 25 compounds, and 23 compounds (predicted pIC50 > 7) were identified by both methods. Overall, this integrated approach simultaneously provides target and potency/affinity predictions for small molecules. Graphical abstractProteochemometric modelling coupled to in silico target prediction.

  17. Mitochondrial ascorbic acid transport is mediated by a low-affinity form of the sodium-coupled ascorbic acid transporter-2.

    PubMed

    Muñoz-Montesino, Carola; Roa, Francisco J; Peña, Eduardo; González, Mauricio; Sotomayor, Kirsty; Inostroza, Eveling; Muñoz, Carolina A; González, Iván; Maldonado, Mafalda; Soliz, Carlos; Reyes, Alejandro M; Vera, Juan Carlos; Rivas, Coralia I

    2014-05-01

    Despite the fundamental importance of the redox metabolism of mitochondria under normal and pathological conditions, our knowledge regarding the transport of vitamin C across mitochondrial membranes remains far from complete. We report here that human HEK-293 cells express a mitochondrial low-affinity ascorbic acid transporter that molecularly corresponds to SVCT2, a member of the sodium-coupled ascorbic acid transporter family 2. The transporter SVCT1 is absent from HEK-293 cells. Confocal colocalization experiments with anti-SVCT2 and anti-organelle protein markers revealed that most of the SVCT2 immunoreactivity was associated with mitochondria, with minor colocalization at the endoplasmic reticulum and very low immunoreactivity at the plasma membrane. Immunoblotting of proteins extracted from highly purified mitochondrial fractions confirmed that SVCT2 protein was associated with mitochondria, and transport analysis revealed a sigmoidal ascorbic acid concentration curve with an apparent ascorbic acid transport Km of 0.6mM. Use of SVCT2 siRNA for silencing SVCT2 expression produced a major decrease in mitochondrial SVCT2 immunoreactivity, and immunoblotting revealed decreased SVCT2 protein expression by approximately 75%. Most importantly, the decreased protein expression was accompanied by a concomitant decrease in the mitochondrial ascorbic acid transport rate. Further studies using HEK-293 cells overexpressing SVCT2 at the plasma membrane revealed that the altered kinetic properties of mitochondrial SVCT2 are due to the ionic intracellular microenvironment (low in sodium and high in potassium), with potassium acting as a concentration-dependent inhibitor of SVCT2. We discarded the participation of two glucose transporters previously described as mitochondrial dehydroascorbic acid transporters; GLUT1 is absent from mitochondria and GLUT10 is not expressed in HEK-293 cells. Overall, our data indicate that intracellular SVCT2 is localized in mitochondria, is

  18. Coupling Temperature Control with Electrochemically Modulated Liquid Chromatography: Fundamental Aspects and Applications

    SciTech Connect

    Ponton, Lisa M.

    2004-12-19

    The primary focus of the doctoral research presented herein has been the integration of temperature control into electrochemically modulated liquid chromatography (EMLC). The combination of temperature control and the tunable characteristics of carbonaceous EMLC stationary phases have been invaluable in deciphering the subtleties of the retention mechanism. The effects of temperature and Eapp on the retention of several naphthalene disulfonates were therefore examined by the van' Hoff relationship. The results indicate that while the retention of both compounds is exothermic at levels comparable to that in many reversed-phase separations, the potential dependence of the separation is actually entropically affected in a manner paralleling that of several classical ion exchange systems. Furthermore, the retention of small inorganic anions at constant temperature also showed evidence of an ion exchange type of mechanism. While a more complete mechanistic description will come from examining the thermodynamics of retention for a wider variety of analytes, this research has laid the groundwork for full exploitation of temperature as a tool to develop retention rules for EMLC. Operating EMLC at elevated temperature and flow conditions has decreased analysis time and has enabled the separation of analytes not normally achievable on a carbon stationary phase. The separation of several aromatic sulfonates was achieved in less than 1 min, a reduction of analysis time by more than a factor of 20 as compared to room temperature separations. The use of higher operating temperatures also facilitated the separation of this mixture with an entirely aqueous mobile phase in less than 2 min. This methodology was extended to the difficult separation of polycyclic aromatic hydrocarbons on PGC. This study also brought to light the mechanistic implications of the unique retention behavior of these analytes through variations of the mobile phase composition.

  19. Gas chromatography coupled with atomic absorption spectrometry — a sensitive instrumentation for mercury speciation

    NASA Astrophysics Data System (ADS)

    Emteborg, Håkan; Sinemus, Hans-Werner; Radziuk, Bernard; Baxter, Douglas C.; Frech, Wolfgang

    1996-07-01

    New instrumentation for the speciation of mercury is described, and is applied to the analysis of natural water samples. The separation of mercury species is effected using gas chromatography of derivatized mercury species on a widebore capillary column. The solvent is vented using a bypass valve and the separated mercury species are pyrolysed on-line at 800°C for production of mercury atoms. These are then detected by atomic absorption spectrometry (AAS) at the 253.7 and 184.9 nm lines simultaneously in a quartz cuvette. The use of the 184.9 nm line provides a more than five-fold increase in sensitivity compared with the conventional 253.7 nm line and an absolute detection limit of 0.5 pg of mercury. The dynamic range of the combined analytical lines provides a linear response over more than three orders of magnitude. A number of organic compounds not containing mercury are also detected following pyrolysis, especially at the 184.9 nm line. These background species must not co-elute at the retention times for methyl- and inorganic mercury, as otherwise a positive interference would result. By maximizing the chromatographic resolution and minimizing the band broadening in the cuvette by use of a make-up gas, the retention times of interest are freed from co-eluting background peaks. The instrumentation has been applied to the determination of ng l -1 concentrations of methyl- and inorganic mercury in Lake Constance, Germany and within the Lake Constance drinking water supply organization, Bodenseewasserversorgung (BWV). The accuracy for the sum of methyl- and inorganic mercury has been assessed by comparison with an independent method for total mercury based on AAS detection implemented at BWV. Relative detection limits using 1 litre water samples and 15 ml injections of the final hexane extract were 0.03 ng l -1 for methylmercury and 0.4 ng l -1 for inorganic mercury based on the 3j criterion.

  20. Separation and identification of oligomeric vinylmethoxysiloxanes by gradient elution chromatography coupled with electrospray ionization mass spectrometry.

    PubMed

    Jia, Guiying; Wan, Qian-Hong

    2015-05-22

    A high-performance liquid chromatography with online electrospray ionization mass spectrometry (HPLC-ESI-MS) has been used to separate and identify the reaction products resulting from controlled acid-catalyzed hydrolytic polycondensation of vinyltrimethoxysilane (VMS). The reaction products were prepared in the molar ratio of water to VMS (r1) ranging from 0.6 to 1.2, characterized by standard spectroscopic techniques, and subsequently analyzed by HPLC-UV absorbance detection and HPLC-ESI-MS. Linear vinylmethoxysiloxane oligomers with the number of repeat units (n) ranging from 3 to 11 are predominant species at the beginning of the reaction (for r1=0.6). Then they transform into monocyclic (for r1=1.0) and bicyclic (for r1=1.2) species with gradually increasing amount of water in the reaction mixture. The oligomer conversions suggest that structure growth of vinylmetoxysiloxanes proceeds by nonrandom cyclization reactions, which are favored over chain extension under the chosen reaction conditions. Direct ESI-MS, HPLC-ESI-MS and HPLC-UV were used to determine the molar mass distributions for the vinylmethoxysiloxane oligomers prepared in three different values of r1. The molar mass averages increase slightly with the amount of water in the reaction mixture and vary somewhat with the method used. Our results indicate that with the combined capability of separation, sensitivity and identification, HPLC-ESI-MS is especially useful to study highly complex silicon-based compounds with hyperbranched, caged or cubic structures as building blocks for hybrid materials. PMID:25890439

  1. Analysis of additives in dairy products by liquid chromatography coupled to quadrupole-orbitrap mass spectrometry.

    PubMed

    Jia, Wei; Ling, Yun; Lin, Yuanhui; Chang, James; Chu, Xiaogang

    2014-04-01

    A new method combining QuEChERS with ultrahigh-performance liquid chromatography and electrospray ionization quadrupole Orbitrap high-resolution mass spectrometry (UHPLC/ESI Q-Orbitrap) was developed for the highly accurate and sensitive screening of 43 antioxidants, preservatives and synthetic sweeteners in dairy products. Response surface methodology was employed to optimize a quick, easy, cheap, effective, rugged, and safe (QuEChERS) sample preparation method for the determination of 42 different analytes in dairy products for the first time. After optimization, the maximum predicted recovery was 99.33% rate for aspartame under the optimized conditions of 10 mL acetionitrile, 1.52 g sodium acetate, 410 mg PSA and 404 mgC18. For the matrices studied, the recovery rates of the other 42 compounds ranged from 89.4% to 108.2%, with coefficient of variation <6.4%. UHPLC/ESI Q-Orbitrap Mass full scan mode acquired full MS data was used to identify and quantify additives, and data-dependent scan mode obtained fragment ion spectra for confirmation. The mass accuracy typically obtained is routinely better than 1.5ppm, and only need to calibrate once a week. The 43 compounds behave dynamic in the range 0.001-1000 μg kg(-1) concentration, with correlation coefficient >0.999. The limits of detection for the analytes are in the range 0.0001-3.6 μg kg(-1). This method has been successfully applied on screening of antioxidants, preservatives and synthetic sweeteners in commercial dairy product samples, and it is very useful for fast screening of different food additives.

  2. Rapid characterization of triterpene saponins from Conyza blinii by liquid chromatography coupled with mass spectrometry.

    PubMed

    Qiao, Xue; Zhang, Xing; Ye, Min; Su, Yan-fang; Dong, Jing; Han, Jian; Yin, Jun; Guo, De-an

    2010-11-30

    Conyza blinii Le'vl is a medicinal herb used for the treatment of inflammation in Chinese folk medicine. Its major bioactive constituents are triterpene saponins, most of which contain 6-8 sugar residues. In this report, electrospray ionization tandem mass spectrometry fragmentation behaviors of bisdesmosidic triterpene saponins (conyzasaponin A, B, and C) were studied in both positive and negative ion modes with an ion-trap mass spectrometer. In full scan mass spectrometry, these saponins gave predominant [M-H](-) and [M+Na](+) ions, which determined the molecular weights. In tandem mass spectrometry (MS(n), n = 2-4), the [M-H](-) and [M+Na](+) ions yielded fragments [Y(0α)-H](-) and [B(α)+Na](+), which were diagnostic for the structures of the triterpene skeleton and sugar chains. The structural elucidation was approved by accurate mass data using IT-TOF-MS. An interpretation guideline based on MS(n) (n = 2-4) diagnostic ions was proposed in order to elucidate the chemical structures of unknown triterpene saponins in C. blinii extract. The saponins in C. blinii were separated by liquid chromatography with a methanol/acetonitrile/water solvent system, and then analyzed by ion-trap and IT-TOF mass spectrometers. Based on the interpretation guideline, a total of 35 triterpenoid saponins were tentatively identified. Among them, 15 saponins had been previously reported, and the other 20 saponins were reported from Conyza species for the first time. This study indicates that LC/MS is a powerful technology for the rapid characterization of complicated saponins in herbal extracts.

  3. Gas chromatography coupled to atmospheric pressure ionization mass spectrometry (GC-API-MS): review.

    PubMed

    Li, Du-Xin; Gan, Lin; Bronja, Amela; Schmitz, Oliver J

    2015-09-01

    Although the coupling of GC/MS with atmospheric pressure ionization (API) has been reported in 1970s, the interest in coupling GC with atmospheric pressure ion source was expanded in the last decade. The demand of a "soft" ion source for preserving highly diagnostic molecular ion is desirable, as compared to the "hard" ionization technique such as electron ionization (EI) in traditional GC/MS, which fragments the molecule in an extensive way. These API sources include atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization (APPI), atmospheric pressure laser ionization (APLI), electrospray ionization (ESI) and low temperature plasma (LTP). This review discusses the advantages and drawbacks of this analytical platform. After an introduction in atmospheric pressure ionization the review gives an overview about the history and explains the mechanisms of various atmospheric pressure ionization techniques used in combination with GC such as APCI, APPI, APLI, ESI and LTP. Also new developments made in ion source geometry, ion source miniaturization and multipurpose ion source constructions are discussed and a comparison between GC-FID, GC-EI-MS and GC-API-MS shows the advantages and drawbacks of these techniques. The review ends with an overview of applications realized with GC-API-MS.

  4. Speciation analysis of mercury in cereals by liquid chromatography chemical vapor generation inductively coupled plasma-mass spectrometry.

    PubMed

    Lin, Liang-Yen; Chang, Lan-Fang; Jiang, Shiuh-Jen

    2008-08-27

    A simple and rapid procedure for the separation and determination of inorganic, methyl, and ethyl mercury compounds was described using liquid chromatography (LC) followed by vapor generation inductively coupled plasma-mass spectrometry (VG-ICP-MS). Well resolved chromatograms were obtained within 5 min by reversed-phase liquid chromatography with a C8 column as the stationary phase and a pH 4.7 solution containing 0.5% v/v 2-mercaptoethanol and 5% v/v methanol as the mobile phase. The separated mercury compounds were converted to mercury vapors by an in situ nebulizer/vapor generation system for their introduction into ICP. The concentrations of NaBH4 and HNO3 required for vapor generation were also optimized. The method was applied for the speciation of mercury in reference materials NIST SRM 1568a Rice Flour and NIST SRM 1567a Wheat Flour and also rice flour and wheat flour samples purchased locally. The accuracy of the procedure was verified by analyzing the certified reference material NRCC DOLT-3 Dogfish Liver for methyl mercury. Precision between sample replicates was better than 13% for all the determinations. The detection limits of the mercury compounds studied were in the range 0.003-0.006 ng Hg mL(-1) in the injected solutions, which correspond to 0.02-0.06 ng g(-1) in original flour samples. A microwave-assisted extraction procedure was adopted for the extraction of mercury compounds from rice flour, wheat flour, and fish samples using a mobile phase solution.

  5. [Analysis of rice leaves proteomes by liquid chromatography-tandem, mass spectrometry based on the purification using a novel affinity detergent removal spin column].

    PubMed

    Cao, Xiaolin; Gong, Jiadi; Chen, Mingxue; Yu, Shasha; Bian, Yingfang; Cao, Zhaoyun

    2014-11-01

    A purification method was established for the analysis of proteomes in rice leaves based on a novel detergent removal spin column (DRSC). The proteins were extracted by phenol protein extraction method followed by sodium dodecyl sulfate (SDS) lysis. The lysate was purified by the detergent removal spin column and the enzymolytic peptides were detected by the nanoflow liquid chromatography-hybrid linear trap quadrupole orbitrap mass spectrometry (nanoLC-LTQ/Orbitrap). In terms of SDS removal efficiencies and protein identification, the method of DRSC was compared with those of filter aided sample preparation (FASP) and acetone precipitation. As a result, there were good efficiencies ( > 95%) of SDS removal for the three methods. With the DRSC purification strategy, 563 proteins were identified from rice leaves, while only 196 and 306 proteins were identified by FASP and acetone precipitation procedures respectively, in spite of certain complementarities among these identified proteins by the three methods. DRSC is suitable for proteins with various relative molecular masses and pI values. However, there were similar losses of proteins with different relative molecular masses and pI values with the other two methods. Using the established method, 588 proteins were identified by once injection analysis. According to the molecular functions, 296 proteins with at least two identified peptides can be classified into eight categories with binding activity, enzyme activity, transporter activity, inhibitor activity, structural constitute, catalytic activity, other and unknown functions. The method provides technical reference for conducting rice proteomes.

  6. [Analysis of rice leaves proteomes by liquid chromatography-tandem, mass spectrometry based on the purification using a novel affinity detergent removal spin column].

    PubMed

    Cao, Xiaolin; Gong, Jiadi; Chen, Mingxue; Yu, Shasha; Bian, Yingfang; Cao, Zhaoyun

    2014-11-01

    A purification method was established for the analysis of proteomes in rice leaves based on a novel detergent removal spin column (DRSC). The proteins were extracted by phenol protein extraction method followed by sodium dodecyl sulfate (SDS) lysis. The lysate was purified by the detergent removal spin column and the enzymolytic peptides were detected by the nanoflow liquid chromatography-hybrid linear trap quadrupole orbitrap mass spectrometry (nanoLC-LTQ/Orbitrap). In terms of SDS removal efficiencies and protein identification, the method of DRSC was compared with those of filter aided sample preparation (FASP) and acetone precipitation. As a result, there were good efficiencies ( > 95%) of SDS removal for the three methods. With the DRSC purification strategy, 563 proteins were identified from rice leaves, while only 196 and 306 proteins were identified by FASP and acetone precipitation procedures respectively, in spite of certain complementarities among these identified proteins by the three methods. DRSC is suitable for proteins with various relative molecular masses and pI values. However, there were similar losses of proteins with different relative molecular masses and pI values with the other two methods. Using the established method, 588 proteins were identified by once injection analysis. According to the molecular functions, 296 proteins with at least two identified peptides can be classified into eight categories with binding activity, enzyme activity, transporter activity, inhibitor activity, structural constitute, catalytic activity, other and unknown functions. The method provides technical reference for conducting rice proteomes. PMID:25764651

  7. Semi-quantitative Measurement of a Specific Glycoform Using a DNA-tagged Antibody and Lectin Affinity Chromatography for Glyco-biomarker Development*

    PubMed Central

    Lee, Ju Hee; Cho, Chang Hee; Kim, Sun Hee; Kang, Jeong Gu; Yoo, Jong Shin; Chang, Chulhun Ludgerus; Ko, Jeong-Heon; Kim, Yong-Sam

    2015-01-01

    Aberrant glycosylation-targeted disease biomarker development is based on cumulative evidence that certain glycoforms are mass-produced in a disease-specific manner. However, the development process has been hampered by the absence of an efficient validation method based on a sensitive and multiplexed platform. In particular, ELISA-based analytical tools are not adequate for this purpose, mainly because of the presence of a pair of N-glycans of IgG-type antibodies. To overcome the associated hurdles in this study, antibodies were tagged with oligonucleotides with T7 promoter and then allowed to form a complex with corresponding antigens. An antibody-bound specific glycoform was isolated by lectin chromatography and quantitatively measured on a DNA microarray chip following production of fluorescent RNA by T7-trascription. This tool ensured measurement of targeted glycoforms of multiple biomarkers with high sensitivity and multiplexity. This analytical method was applied to an in vitro diagnostic multivariate index assay where a panel of hepatocellular carcinoma (HCC) biomarkers comprising alpha-fetoprotein, hemopexin, and alpha-2-macroglobulin (A2M) was examined in terms of the serum level and their fuco-fractions. The results indicated that the tests using the multiplexed fuco-biomarkers provided improved discriminatory power between non- hepatocellular carcinoma and hepatocellular carcinoma subjects compared with the alpha-fetoprotein level or fuco-alpha-fetoprotein test alone. The developed method is expected to facilitate the validation of disease-specific glycan biomarker candidates. PMID:25525205

  8. Semi-quantitative measurement of a specific glycoform using a DNA-tagged antibody and lectin affinity chromatography for glyco-biomarker development.

    PubMed

    Lee, Ju Hee; Cho, Chang Hee; Kim, Sun Hee; Kang, Jeong Gu; Yoo, Jong Shin; Chang, Chulhun Ludgerus; Ko, Jeong-Heon; Kim, Yong-Sam

    2015-03-01

    Aberrant glycosylation-targeted disease biomarker development is based on cumulative evidence that certain glycoforms are mass-produced in a disease-specific manner. However, the development process has been hampered by the absence of an efficient validation method based on a sensitive and multiplexed platform. In particular, ELISA-based analytical tools are not adequate for this purpose, mainly because of the presence of a pair of N-glycans of IgG-type antibodies. To overcome the associated hurdles in this study, antibodies were tagged with oligonucleotides with T7 promoter and then allowed to form a complex with corresponding antigens. An antibody-bound specific glycoform was isolated by lectin chromatography and quantitatively measured on a DNA microarray chip following production of fluorescent RNA by T7-trascription. This tool ensured measurement of targeted glycoforms of multiple biomarkers with high sensitivity and multiplexity. This analytical method was applied to an in vitro diagnostic multivariate index assay where a panel of hepatocellular carcinoma (HCC) biomarkers comprising alpha-fetoprotein, hemopexin, and alpha-2-macroglobulin (A2M) was examined in terms of the serum level and their fuco-fractions. The results indicated that the tests using the multiplexed fuco-biomarkers provided improved discriminatory power between non- hepatocellular carcinoma and hepatocellular carcinoma subjects compared with the alpha-fetoprotein level or fuco-alpha-fetoprotein test alone. The developed method is expected to facilitate the validation of disease-specific glycan biomarker candidates. PMID:25525205

  9. Qualitative profiling and quantification of neonicotinoid metabolites in human urine by liquid chromatography coupled with mass spectrometry.

    PubMed

    Taira, Kumiko; Fujioka, Kazutoshi; Aoyama, Yoshiko

    2013-01-01

    Neonicotinoid pesticides have been widely applied for the production of fruits and vegetables, and occasionally detected in conventionally grown produce. Thus oral exposure to neonicotinoid pesticides may exist in the general population; however, neonicotinoid metabolites in human body fluids have not been investigated comprehensively. The purpose of this study is the qualitative profiling and quantitative analysis of neonicotinoid metabolites in the human spot urine by liquid chromatography coupled with mass spectrometry (LC/MS). Human urine samples were collected from three patients suspected of subacute exposure to neonicotinoid pesticides. A qualitative profiling of urinary metabolites was performed using liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS) with a database of nominal molecular weights of 57 known metabolites of three neonicotinoid pesticides (acetamiprid, Imidacloprid, and clothianidin), as well as the parent compounds. Then a quantitative analysis of selected urinary metabolites was performed using liquid chromatography/tandem mass spectrometry (LC/MS/MS) with a standard pesticide and metabolite, which were detected by the qualitative profiling. The result of qualitative profiling showed that seven metabolites, i.e. an acetamiprid metabolite, N-desmethyl-acetamiprid; three Imidacloprid metabolites, 5-hydroxy-Imidacloprid, 4,5-dihydroxy-imidacloprid, 4,5-dehydro-Imidacloprid; a common metabolite of acetamiprid and Imidacloprid, N-(6-chloronicotinoyl)-glycine; and two clothianidin metabolites, N-desmethyl-clothianidin, N-(2-(methylsulfanyl)thiazole-5-carboxyl)-glycine, as well as acetamiprid, were detected in the urine of three cases. The result of the quantitative analysis showed N-desmethyl-acetamiprid was determined in the urine of one case, which had been collected on the first visit, at a concentration of 3.2 ng/mL. This is the first report on the qualitative and quantitative detection of N-desmethyl-acetamiprid in the human

  10. Qualitative Profiling and Quantification of Neonicotinoid Metabolites in Human Urine by Liquid Chromatography Coupled with Mass Spectrometry

    PubMed Central

    Taira, Kumiko; Fujioka, Kazutoshi; Aoyama, Yoshiko

    2013-01-01

    Neonicotinoid pesticides have been widely applied for the production of fruits and vegetables, and occasionally detected in conventionally grown produce. Thus oral exposure to neonicotinoid pesticides may exist in the general population; however, neonicotinoid metabolites in human body fluids have not been investigated comprehensively. The purpose of this study is the qualitative profiling and quantitative analysis of neonicotinoid metabolites in the human spot urine by liquid chromatography coupled with mass spectrometry (LC/MS). Human urine samples were collected from three patients suspected of subacute exposure to neonicotinoid pesticides. A qualitative profiling of urinary metabolites was performed using liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS) with a database of nominal molecular weights of 57 known metabolites of three neonicotinoid pesticides (acetamiprid, Imidacloprid, and clothianidin), as well as the parent compounds. Then a quantitative analysis of selected urinary metabolites was performed using liquid chromatography/tandem mass spectrometry (LC/MS/MS) with a standard pesticide and metabolite, which were detected by the qualitative profiling. The result of qualitative profiling showed that seven metabolites, i.e. an acetamiprid metabolite, N-desmethyl-acetamiprid; three Imidacloprid metabolites, 5-hydroxy-Imidacloprid, 4,5-dihydroxy-imidacloprid, 4,5-dehydro-Imidacloprid; a common metabolite of acetamiprid and Imidacloprid, N-(6-chloronicotinoyl)-glycine; and two clothianidin metabolites, N-desmethyl-clothianidin, N-(2-(methylsulfanyl)thiazole-5-carboxyl)-glycine, as well as acetamiprid, were detected in the urine of three cases. The result of the quantitative analysis showed N-desmethyl-acetamiprid was determined in the urine of one case, which had been collected on the first visit, at a concentration of 3.2 ng/mL. This is the first report on the qualitative and quantitative detection of N-desmethyl-acetamiprid in the human

  11. Qualitative profiling and quantification of neonicotinoid metabolites in human urine by liquid chromatography coupled with mass spectrometry.

    PubMed

    Taira, Kumiko; Fujioka, Kazutoshi; Aoyama, Yoshiko

    2013-01-01

    Neonicotinoid pesticides have been widely applied for the production of fruits and vegetables, and occasionally detected in conventionally grown produce. Thus oral exposure to neonicotinoid pesticides may exist in the general population; however, neonicotinoid metabolites in human body fluids have not been investigated comprehensively. The purpose of this study is the qualitative profiling and quantitative analysis of neonicotinoid metabolites in the human spot urine by liquid chromatography coupled with mass spectrometry (LC/MS). Human urine samples were collected from three patients suspected of subacute exposure to neonicotinoid pesticides. A qualitative profiling of urinary metabolites was performed using liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS) with a database of nominal molecular weights of 57 known metabolites of three neonicotinoid pesticides (acetamiprid, Imidacloprid, and clothianidin), as well as the parent compounds. Then a quantitative analysis of selected urinary metabolites was performed using liquid chromatography/tandem mass spectrometry (LC/MS/MS) with a standard pesticide and metabolite, which were detected by the qualitative profiling. The result of qualitative profiling showed that seven metabolites, i.e. an acetamiprid metabolite, N-desmethyl-acetamiprid; three Imidacloprid metabolites, 5-hydroxy-Imidacloprid, 4,5-dihydroxy-imidacloprid, 4,5-dehydro-Imidacloprid; a common metabolite of acetamiprid and Imidacloprid, N-(6-chloronicotinoyl)-glycine; and two clothianidin metabolites, N-desmethyl-clothianidin, N-(2-(methylsulfanyl)thiazole-5-carboxyl)-glycine, as well as acetamiprid, were detected in the urine of three cases. The result of the quantitative analysis showed N-desmethyl-acetamiprid was determined in the urine of one case, which had been collected on the first visit, at a concentration of 3.2 ng/mL. This is the first report on the qualitative and quantitative detection of N-desmethyl-acetamiprid in the human

  12. Rapid screening method for quinolone residues in livestock and fishery products using immobilised metal chelate affinity chromatographic clean-up and liquid chromatography-fluorescence detection.

    PubMed

    Takeda, N; Gotoh, M; Matsuoka, T

    2011-09-01

    An efficient LC method was developed for screening the presence of quinolones (QLs)--comprising fluoroquinolones (FQs) and acidic quinolones (AQs)--residues in various livestock and fishery products. Targeted analytes were for nine FQs of marbofloxacin (MAR), ofloxacin (OFL), norfloxacin (NOR), ciprofloxacin (CIP), enrofloxacin (ENR), danofloxacin (DAN), orbifloxacin (ORB), difloxacin (DIF) and sarafloxacin (SAR), and three AQs of oxolinic acid (OXA), nalidixic acid (NAL) and flumequine (FMQ). Samples comprised ten different food products covering five matrices: muscle (cattle, swine and chicken), liver (chicken), raw fish (shrimp and salmon), egg (chicken), and processed food (ham, sausage and fish sausage). This method involved a simple extraction with (1:1) acetonitrile-methanol, a highly selective clean-up with an immobilised metal chelate affinity column charged with Fe(3+), a fast isocratic LC analysis using a short column (20 mm × 4.6 mm, 3 µm) with a mobile phase of (15:85:0.1) methanol/water/formic acid, and fluorescence detection (excitation/emission wavelengths of 295 nm/455 nm for FQs (495 nm for MAR), and 320 nm/365 nm for AQs). Among FQs, pairs of NOR/OFL, ORB/DIF and ENR/DAN were incompletely resolved. A confirmatory LC run with a Mg(2+) containing methanolic mobile phase was also proposed for the samples suspected of being positive. The optimised method gave satisfactory recoveries of 88.5% (56.1-108.6%) and 78.7% (44.1-99.5%) for intra- and inter-day assays with relative standard deviations of 7.2% (0.7-18.4%) and 6.8% (1.4-16.6%), respectively. Limits of quantitation ranged from 0.8 µg kg(-1) (DAN) to 6.5 µg kg(-1) (SAR). This method was successfully employed to analyse 113 real samples and two positive samples were found: fish sausage (CIP 990 µg kg(-1)) and shrimp (ENR 20 µg kg(-1)).