Science.gov

Sample records for affinity chromatography recombinant

  1. Affinity Chromatography of Native and Recombinant Proteins from Receptors for Insulin and IGF-I to Recombinant Single Chain Antibodies

    PubMed Central

    Fujita-Yamaguchi, Yoko

    2015-01-01

    Affinity chromatography is an efficient method to isolate proteins by taking advantage of their affinities for specific molecules such as substrates, inhibitors, antigens, ligands, antibodies, and other interacting molecules, including subunits. Nowadays, we take the effectiveness and excellence of this technology for granted. This essay will mainly cover the use of affinity chromatography based on my experience. PMID:26579073

  2. A recombinant envelope protein from Dengue virus purified by IMAC is bioequivalent with its immune-affinity chromatography purified counterpart.

    PubMed

    Hermida, L; Rodríguez, R; Lazo, L; López, C; Márquez, G; Páez, R; Suárez, C; Espinosa, R; García, J; Guzmán, G; Guillén, G

    2002-03-28

    Semi-purified DEN-4 envelope protein, obtained in Pichia pastoris, was capable of generating neutralising and protecting antibodies after immunisation in mice. Here we compared two purification processes of this recombinant protein using two chromatographic steps: immune-affinity chromatography and immobilised metal ion adsorption chromatography (IMAC). The protein purified by both methods produced functional antibodies reflected by titres of haemagglutination inhibition and neutralisation. IMAC could be used as an alternative for high scale purification.

  3. Recombinant Passenger Proteins Can Be Conveniently Purified by One-Step Affinity Chromatography.

    PubMed

    Wang, Hua-zhen; Chu, Zhi-zhan; Chen, Chang-chao; Cao, Ao-cheng; Tong, Xin; Ouyang, Can-bin; Yuan, Qi-hang; Wang, Mi-nan; Wu, Zhong-kun; Wang, Hai-hong; Wang, Sheng-bin

    2015-01-01

    Fusion tag is one of the best available tools to date for enhancement of the solubility or improvement of the expression level of recombinant proteins in Escherichia coli. Typically, two consecutive affinity purification steps are often necessitated for the purification of passenger proteins. As a fusion tag, acyl carrier protein (ACP) could greatly increase the soluble expression level of Glucokinase (GlcK), α-Amylase (Amy) and GFP. When fusion protein ACP-G2-GlcK-Histag and ACP-G2-Amy-Histag, in which a protease TEV recognition site was inserted between the fusion tag and passenger protein, were coexpressed with protease TEV respectively in E. coli, the efficient intracellular processing of fusion proteins was achieved. The resulting passenger protein GlcK-Histag and Amy-Histag accumulated predominantly in a soluble form, and could be conveniently purified by one-step Ni-chelating chromatography. However, the fusion protein ACP-GFP-Histag was processed incompletely by the protease TEV coexpressed in vivo, and a large portion of the resulting target protein GFP-Histag aggregated in insoluble form, indicating that the intracellular processing may affect the solubility of cleaved passenger protein. In this context, the soluble fusion protein ACP-GFP-Histag, contained in the supernatant of E. coli cell lysate, was directly subjected to cleavage in vitro by mixing it with the clarified cell lysate of E. coli overexpressing protease TEV. Consequently, the resulting target protein GFP-Histag could accumulate predominantly in a soluble form, and be purified conveniently by one-step Ni-chelating chromatography. The approaches presented here greatly simplify the purification process of passenger proteins, and eliminate the use of large amounts of pure site-specific proteases.

  4. Evaluation of immobilized metal affinity chromatography kits for the purification of histidine-tagged recombinant CagA protein.

    PubMed

    Karakus, Cebrail; Uslu, Merve; Yazici, Duygu; Salih, Barik A

    2016-05-15

    Immobilized metal affinity chromatography (IMAC) technique is used for fast and reliable purification of histidine(His)-tagged recombinant proteins. The technique provides purification under native and denaturing conditions. The aim of this study is to evaluate three commercially available IMAC kits (Thermo Scientific, GE Healthcare and Qiagen) for the purification of a 6xHis-tagged recombinant CagA (cytotoxin-associated gene A) protein from IPTG-induced Escherichia coli BL21(DE3) culture. The kits were tested according to the manufacturer instructions and the protein was purified with only GE Healthcare and Qiagen kits under denaturing conditions. 1% (w/v) SDS was used as denaturing agent in PBS instead of extraction reagent of Thermo Scientific kit to lyse bacterial cells from 100ml culture. The 6xHis-tagged recombinant protein was purified by the three kits equally.

  5. Immobilized palladium(II) ion affinity chromatography for recovery of recombinant proteins with peptide tags containing histidine and cysteine.

    PubMed

    Kikot, Pamela; Polat, Aise; Achilli, Estefania; Fernandez Lahore, Marcelo; Grasselli, Mariano

    2014-11-01

    Fusion of peptide-based tags to recombinant proteins is currently one of the most used tools for protein production. Also, immobilized metal ion affinity chromatography (IMAC) has a huge application in protein purification, especially in research labs. The combination of expression systems of recombinant tagged proteins with this robust chromatographic system has become an efficient and rapid tool to produce milligram-range amounts of proteins. IMAC-Ni(II) columns have become the natural partners of 6xHis-tagged proteins. The Ni(II) ion is considered as the best compromise of selectivity and affinity for purification of a recombinant His-tagged protein. The palladium(II) ion is also able to bind to side chains of amino acids and form ternary complexes with iminodiacetic acid and free amino acids and other sulfur-containing molecules. In this work, we evaluated two different cysteine- and histidine-containing six amino acid tags linked to the N-terminal group of green fluorescent protein (GFP) and studied the adsorption and elution conditions using novel eluents. Both cysteine-containing tagged GFPs were able to bind to IMAC-Pd(II) matrices and eluted successfully using a low concentration of thiourea solution. The IMAC-Ni(II) system reaches less than 20% recovery of the cysteine-containing tagged GFP from a crude homogenate of recombinant Escherichia coli, meanwhile the IMAC-Pd(II) yields a recovery of 45% with a purification factor of 13.

  6. [Prospects of application of the chitin-binding domains to isolation and purification of recombinant proteins by affinity chromatography: a review].

    PubMed

    Kurek, D V; Lopatin, S A; Varlamov, V P

    2009-01-01

    Properties of substrate-binding domains, some parameters of affinity sorbents, and a number of other special features that were necessary to take into account during creation of chromatographic system for isolation and purification of proteins with incorporated chitin-binding domain were discussed in this review. This method was shown to be successfully used along with metal-chelate affinity chromatography. The metal-chelate affinity chromatography with the use of polyhistidine peptides as affinity labels is successfully applied to isolation, purification, and investigation of recombinant proteins. However, this system had some disadvantages. At present, scientists attracted more and more attention to substrate-binding domains, including those chitin-binding, because they had a number of advantages being used as affinity label.

  7. Monolith immuno-affinity enrichment liquid chromatography tandem mass spectrometry for quantitative protein analysis of recombinant bovine somatotropin in serum.

    PubMed

    Smits, Nathalie G E; Blokland, Marco H; Wubs, Klaas L; Nessen, Merel A; van Ginkel, Leen A; Nielen, Michel W F

    2015-08-01

    The use of recombinant bovine somatotropin (rbST) to enhance milk production is approved in several countries, but it is prohibited in the European Union. According to EU legislation, it is necessary to confirm positive screening results prior to enforcement. Although adequate screening assays are available nowadays, development of liquid chromatography tandem mass spectrometry (LC-MS/MS) confirmatory methods to detect low levels of rbST is still a challenge. Here, we present a novel approach using immuno-affinity enrichment on monolithic micro-columns in combination with state-of-the-art ultra-high pressure LC-MS/MS (UHPLC-MS/MS) detection. The developed approach enables detection and confirmation of rbST in serum at a decision limit (CCα) concentration of 0.8 ng mL(-1). Furthermore, the method is easy to handle, robust and reproducible. We successfully applied the confirmatory method to serum samples from rbST treated cows that were found suspect after immunoassay-based screening. The use of rbST could be confirmed over 1 week after treatment, and the developed method demonstrated the sensitivity needed for effective control. Graphical Abstract Graphical summary of the workflow, for serum preparation, enrichment with monolith microcolumns and LC-MS/MS measurement of rbST.

  8. Identification of native Escherichia coli BL21 (DE3) proteins that bind to immobilized metal affinity chromatography under high imidazole conditions and use of 2D-DIGE to evaluate contamination pools with respect to recombinant protein expression level.

    PubMed

    Bartlow, Patrick; Uechi, Guy T; Cardamone, John J; Sultana, Tamanna; Fruchtl, McKinzie; Beitle, Robert R; Ataai, Mohammad M

    2011-08-01

    Immobilized metal affinity chromatography (IMAC) is a widely used purification tool for the production of active, soluble recombinant proteins. Escherichia coli proteins that routinely contaminate IMAC purifications have been characterized to date. The work presented here narrows that focus to the most problematic host proteins, those retaining nickel affinity under elevated imidazole conditions, using a single bind-and-elute step. Two-dimensional difference gel electrophoresis, a favored technique for resolving complex protein mixtures and evaluating their expression, here discerns variation in the soluble extract pools that are loaded in IMAC and the remaining contaminants with respect to varied levels of recombinant protein expression. Peptidyl-prolyl isomerase SlyD and catabolite activator protein (CAP) are here shown to be the most persistent contaminants and have greater prevalence at low target protein expression.

  9. Modern affinity reagents: Recombinant antibodies and aptamers.

    PubMed

    Groff, Katherine; Brown, Jeffrey; Clippinger, Amy J

    2015-12-01

    Affinity reagents are essential tools in both basic and applied research; however, there is a growing concern about the reproducibility of animal-derived monoclonal antibodies. The need for higher quality affinity reagents has prompted the development of methods that provide scientific, economic, and time-saving advantages and do not require the use of animals. This review describes two types of affinity reagents, recombinant antibodies and aptamers, which are non-animal technologies that can replace the use of animal-derived monoclonal antibodies. Recombinant antibodies are protein-based reagents, while aptamers are nucleic-acid-based. In light of the scientific advantages of these technologies, this review also discusses ways to gain momentum in the use of modern affinity reagents, including an update to the 1999 National Academy of Sciences monoclonal antibody production report and federal incentives for recombinant antibody and aptamer efforts. In the long-term, these efforts have the potential to improve the overall quality and decrease the cost of scientific research.

  10. Protein purification using PDZ affinity chromatography.

    PubMed

    Walkup, Ward G; Kennedy, Mary B

    2015-04-01

    PDZ domains function in nature as protein-binding domains within scaffold and membrane-associated proteins. They comprise approximately 90 residues and undergo specific, high-affinity interactions with complementary C-terminal peptide sequences, other PDZ domains, and/or phospholipids. We have previously shown that the specific, strong interactions of PDZ domains with their ligands make them well suited for use in affinity chromatography. This unit provides protocols for the PDZ affinity chromatography procedure that are applicable for the purification of proteins that contain PDZ domains or PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We detail the preparation of affinity resins composed of PDZ domains or PDZ domain peptide ligands coupled to solid supports. These resins can be used to purify proteins containing endogenous or genetically introduced PDZ domains or ligands, eluting the proteins with free PDZ domain peptide ligands.

  11. Studies with an immobilized metal affinity chromatography cassette system involving binuclear triazacyclononane-derived ligands: automation of batch adsorption measurements with tagged recombinant proteins.

    PubMed

    Petzold, Martin; Coghlan, Campbell J; Hearn, Milton T W

    2014-07-18

    This study describes the determination of the adsorption isotherms and binding kinetics of tagged recombinant proteins using a recently developed IMAC cassette system and employing automated robotic liquid handling procedures for IMAC resin screening. These results confirm that these new IMAC resins, generated from a variety of different metal-charged binuclear 1,4,7-triaza-cyclononane (tacn) ligands, interact with recombinant proteins containing a novel N-terminal metal binding tag, NT1A, with static binding capacities similar to those obtained with conventional hexa-His tagged proteins, but with significantly increased association constants. In addition, higher kinetic binding rates were observed with these new IMAC systems, an attribute that can be positively exploited to increase process productivity. The results from this investigation demonstrate that enhancements in binding capacities and affinities were achieved with these new IMAC resins and chosen NT1A tagged protein. Further, differences in the binding performances of the bis(tacn) xylenyl-bridged ligands were consistent with the distance between the metal binding centres of the two tacn moieties, the flexibility of the ligand and the potential contribution from the aromatic ring of the xylenyl group to undergo π/π stacking interactions with the tagged proteins.

  12. Affinity Chromatography in Nonionic Detergent Solutions

    NASA Astrophysics Data System (ADS)

    Robinson, Jack B.; Strottmann, James M.; Wick, Donald G.; Stellwagen, Earle

    1980-10-01

    Anionic dye affinity chromatography is commonly unproductive in the presence of nonionic detergents used to extract particulate proteins. Using lactate dehydrogenase as a model protein, Cibacron blue F3GA as a model dye, and Triton X-100 as a model detergent, we find that the dye is encapsulated in nonionic detergent micelles, rendering the dye incapable of ligation with the enzyme. However, the dye can be liberated from the micelles without altering the nonionic detergent concentration by addition of an anionic detergent, such as deoxycholate or sodium dodecyl sulfate, forming mixed anionic/nonionic micelles that displace the anionic dye. Encapsulation of the anionic detergents prevents their activity as protein denaturants. These observations have been successfully translated to the dye affinity chromatography of a detergent extract of brain particulate cyclic nucleotide phosphodiesterase.

  13. Heparin-binding peptide as a novel affinity tag for purification of recombinant proteins.

    PubMed

    Morris, Jacqueline; Jayanthi, Srinivas; Langston, Rebekah; Daily, Anna; Kight, Alicia; McNabb, David S; Henry, Ralph; Kumar, Thallapuranam Krishnaswamy Suresh

    2016-10-01

    Purification of recombinant proteins constitutes a significant part of the downstream processing in biopharmaceutical industries. Major costs involved in the production of bio-therapeutics mainly depend on the number of purification steps used during the downstream process. Affinity chromatography is a widely used method for the purification of recombinant proteins expressed in different expression host platforms. Recombinant protein purification is achieved by fusing appropriate affinity tags to either N- or C- terminus of the target recombinant proteins. Currently available protein/peptide affinity tags have proved quite useful in the purification of recombinant proteins. However, these affinity tags suffer from specific limitations in their use under different conditions of purification. In this study, we have designed a novel 34-amino acid heparin-binding affinity tag (HB-tag) for the purification of recombinant proteins expressed in Escherichia coli (E. coli) cells. HB-tag fused recombinant proteins were overexpressed in E. coli in high yields. A one-step heparin-Sepharose-based affinity chromatography protocol was developed to purify HB-fused recombinant proteins to homogeneity using a simple sodium chloride step gradient elution. The HB-tag has also been shown to facilitate the purification of target recombinant proteins from their 8 M urea denatured state(s). The HB-tag has been demonstrated to be successfully released from the fusion protein by an appropriate protease treatment to obtain the recombinant target protein(s) in high yields. Results of the two-dimensional NMR spectroscopy experiments indicate that the purified recombinant target protein(s) exist in the native conformation. Polyclonal antibodies raised against the HB-peptide sequence, exhibited high binding specificity and sensitivity to the HB-fused recombinant proteins (∼10 ng) in different crude cell extracts obtained from diverse expression hosts. In our opinion, the HB-tag provides a

  14. Phosphopeptide Enrichment by Immobilized Metal Affinity Chromatography.

    PubMed

    Thingholm, Tine E; Larsen, Martin R

    2016-01-01

    Immobilized metal affinity chromatography (IMAC) has been the method of choice for phosphopeptide enrichment prior to mass spectrometric analysis for many years and it is still used extensively in many laboratories. Using the affinity of negatively charged phosphate groups towards positively charged metal ions such as Fe(3+), Ga(3+), Al(3+), Zr(4+), and Ti(4+) has made it possible to enrich phosphorylated peptides from peptide samples. However, the selectivity of most of the metal ions is limited, when working with highly complex samples, e.g., whole-cell extracts, resulting in contamination from nonspecific binding of non-phosphorylated peptides. This problem is mainly caused by highly acidic peptides that also share high binding affinity towards these metal ions. By lowering the pH of the loading buffer nonspecific binding can be reduced significantly, however with the risk of reducing specific binding capacity. After binding, the enriched phosphopeptides are released from the metal ions using alkaline buffers of pH 10-11, EDTA, or phosphate-containing buffers. Here we describe a protocol for IMAC using Fe(3+) for phosphopeptide enrichment. The principles are illustrated on a semi-complex peptide mixture.

  15. [Separation of osteoclasts by lectin affinity chromatography].

    PubMed

    Itokazu, M; Tan, A; Tanaka, S

    1991-09-01

    Newborn rat calvaria bone cells obtained by digestion were fractionated on columns of wheat-germ agglutinin (WGA) sepharose 6MB for osteoclast isolation. The initial nonspecific binding cells which were passed through the WGA sepharose column by a buffer acquired a high enzyme activity of alkaline phosphatase, but not that of acid phosphatase. However, elution of cells using a buffer with the addition of N-acetyl-D-glucosamine resulted in a high acid phosphatase activity but no alkaline phosphatase activity. The former WGA binding negative fraction enriched osteoblasts averaging 30 microns in size. The latter WGA binding positive fraction enriched osteoclasts ranging from 20 microns to 60 microns in size. The electron-microscope clearly demonstrated the cellular details of osteoclasts. Isolated cell counts showed a ratio of six to four. These results indicate that our method of osteoclast isolation is simple and useful in lectin affinity chromatography because all cells have sugar moieties on their surface and the binding of osteoclasts can be reversed by the addition of specific lectin-binding sugars to the eluting buffer.

  16. Purification of baculovirus vectors using heparin affinity chromatography

    PubMed Central

    Nasimuzzaman, Md; Lynn, Danielle; van der Loo, Johannes CM; Malik, Punam

    2016-01-01

    Baculoviruses are commonly used for recombinant protein and vaccine production. Baculoviruses are nonpathogenic to vertebrates, have a large packaging capacity, display broad host and cell type tropism, infect both dividing and nondividing cells, and do not elicit strong immune or allergic responses in vivo. Hence, their use as gene delivery vehicles has become increasingly popular in recent years. Moreover, baculovirus vectors carrying mammalian regulatory elements can efficiently transduce and express transgenes in mammalian cells. Based on the finding that heparan sulfate, which is structurally similar to heparin, is an attachment receptor for baculovirus, we developed a novel scalable baculovirus purification method using heparin-affinity chromatography. Baculovirus supernatants were loaded onto a POROS heparin column, washed to remove unbound materials, and eluted with 1.5 mol/l NaCl, which yielded a recovery of purified baculovirus of 85%. After ultracentrifugation, baculovirus titers increased from 200- to 700-fold with overall yields of 26–29%. We further show that baculovirus particles were infectious, normal in morphology and size, despite high-salt elution and shear forces used during purification and concentration. Our chromatography-based purification method is scalable and, together with ultracentrifugation and/or tangential flow filtration, will be suitable for large-scale manufacturing of baculovirus stocks for protein and vaccine production and in gene therapy applications. PMID:27933303

  17. PDZ Affinity Chromatography: A general method for affinity purification of proteins based on PDZ domains and their ligands

    PubMed Central

    Walkup, Ward G.; Kennedy, Mary B.

    2014-01-01

    PDZ (PSD-95, DiscsLarge, ZO1) domains function in nature as protein binding domains within scaffold and membrane-associated proteins. They comprise ~ 90 residues and make specific, high affinity interactions with complementary C-terminal peptide sequences, with other PDZ domains, and with phospholipids. We hypothesized that the specific, strong interactions of PDZ domains with their ligands would make them well suited for use in affinity chromatography. Here we describe a novel affinity chromatography method applicable for the purification of proteins that contain PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We created a series of affinity resins comprised of PDZ domains from the scaffold protein PSD-95, or from neuronal nitric oxide synthase (nNOS), coupled to solid supports. We used them to purify heterologously expressed neuronal proteins or protein domains containing endogenous PDZ domain ligands, eluting the proteins with free PDZ domain peptide ligands. We show that Proteins of Interest (POIs) lacking endogenous PDZ domain ligands can be engineered as fusion products containing C-terminal PDZ domain ligand peptides or internal, N- or C-terminal PDZ domains and then can be purified by the same method. Using this method, we recovered recombinant GFP fused to a PDZ-domain ligand in active form as verified by fluorescence yield. Similarly, chloramphenicol acetyltransferase (CAT) and β-Galactosidase (LacZ) fused to a C-terminal PDZ domain ligand or an N-terminal PDZ domain were purified in active form as assessed by enzymatic assay. In general, PDZ domains and ligands derived from PSD-95 were superior to those from nNOS for this method. PDZ Domain Affinity Chromatography promises to be a versatile and effective method for purification of a wide variety of natural and recombinant proteins. PMID:24607360

  18. PDZ affinity chromatography: a general method for affinity purification of proteins based on PDZ domains and their ligands.

    PubMed

    Walkup, Ward G; Kennedy, Mary B

    2014-06-01

    PDZ (PSD-95, DiscsLarge, ZO1) domains function in nature as protein binding domains within scaffold and membrane-associated proteins. They comprise ∼90 residues and make specific, high affinity interactions with complementary C-terminal peptide sequences, with other PDZ domains, and with phospholipids. We hypothesized that the specific, strong interactions of PDZ domains with their ligands would make them well suited for use in affinity chromatography. Here we describe a novel affinity chromatography method applicable for the purification of proteins that contain PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We created a series of affinity resins comprised of PDZ domains from the scaffold protein PSD-95, or from neuronal nitric oxide synthase (nNOS), coupled to solid supports. We used them to purify heterologously expressed neuronal proteins or protein domains containing endogenous PDZ domain ligands, eluting the proteins with free PDZ domain peptide ligands. We show that Proteins of Interest (POIs) lacking endogenous PDZ domain ligands can be engineered as fusion products containing C-terminal PDZ domain ligand peptides or internal, N- or C-terminal PDZ domains and then can be purified by the same method. Using this method, we recovered recombinant GFP fused to a PDZ domain ligand in active form as verified by fluorescence yield. Similarly, chloramphenicol acetyltransferase (CAT) and β-Galactosidase (LacZ) fused to a C-terminal PDZ domain ligand or an N-terminal PDZ domain were purified in active form as assessed by enzymatic assay. In general, PDZ domains and ligands derived from PSD-95 were superior to those from nNOS for this method. PDZ Domain Affinity Chromatography promises to be a versatile and effective method for purification of a wide variety of natural and recombinant proteins.

  19. Profiling of drug binding proteins by monolithic affinity chromatography in combination with liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhang, Xuepei; Wang, Tongdan; Zhang, Hanzhi; Han, Bing; Wang, Lishun; Kang, Jingwu

    2014-09-12

    A new approach for proteome-wide profiling drug binding proteins by using monolithic capillary affinity chromatography in combination with HPLC-MS/MS is reported. Two immunosuppresive drugs, namely FK506 and cyclosporin A, were utilized as the experimental models for proof-of-concept. The monolithic capillary affinity columns were prepared through a single-step copolymerization of the drug derivatives with glycidyl methacrylate and ethylene dimethacrylate. The capillary chromatography with the affinity monolithic column facilitates the purification of the drug binding proteins from the cell lysate. By combining the capillary affinity column purification and the shot-gun proteomic analysis, totally 33 FK506- and 32 CsA-binding proteins including all the literature reported target proteins of these two drugs were identified. Among them, two proteins, namely voltage-dependent anion-selective channel protein 1 and serine/threonine-protein phosphatase PGAM5 were verified by using the recombinant proteins. The result supports that the monolithic capillary affinity chromatography is likely to become a valuable tool for profiling of binding proteins of small molecular drugs as well as bioactive compounds.

  20. Generation of recombinant antibodies and means for increasing their affinity.

    PubMed

    Altshuler, E P; Serebryanaya, D V; Katrukha, A G

    2010-12-01

    Highly specific interaction with foreign molecules is a unique feature of antibodies. Since 1975, when Keller and Milstein proposed the method of hybridoma technology and prepared mouse monoclonal antibodies, many antibodies specific to various antigens have been obtained. Recent development of methods for preparation of recombinant DNA libraries and in silico bioinformatics approaches for protein structure analysis makes possible antibody preparation using gene engineering approaches. The development of gene engineering methods allowed creating recombinant antibodies and improving characteristics of existing antibodies; this significantly extends the applicability of antibodies. By modifying biochemical and immunochemical properties of antibodies by changing their amino acid sequences it is possible to create antibodies with properties optimal for certain tasks. For example, application of recombinant technologies resulted in antibody preparation of high affinity significantly exceeding the initial affinity of natural antibodies. In this review we summarize information about the structure, modes of preparation, and application of recombinant antibodies and their fragments and also consider the main approaches used to increase antibody affinity.

  1. Kinetic Studies of Biological Interactions By Affinity Chromatography

    PubMed Central

    Schiel, John E.; Hage, David S.

    2009-01-01

    The rates at which biological interactions occur can provide important information on the mechanism and behavior of such processes in living systems. This review will discuss how affinity chromatography can be used as a tool to examine the kinetics of biological interactions. This approach, referred to here as biointeraction chromatography, uses a column with an immobilized binding agent to examine the association or dissociation of this agent with other compounds. The use of HPLC-based affinity columns in kinetic studies has received particular attention in recent years. Advantages of using HPLC with affinity chromatography for this purpose include the ability to reuse the same ligand within a column for a large number of experiments, and the good precision and accuracy of this approach. A number of techniques are available for kinetic studies through the use of affinity columns and biointeraction chromatography. These approaches include plate height measurements, peak profiling, peak fitting, split-peak measurements, and peak decay analysis. The general principles for each of these methods are discussed in this review and some recent applications of these techniques are presented. The advantages and potential limitations of each approach are also considered. PMID:19391173

  2. Protein purification by aminosquarylium cyanine dye-affinity chromatography.

    PubMed

    Silva, M S; Graça, V C; Reis, L V; Santos, P F; Almeida, P; Queiroz, J A; Sousa, F

    2013-12-01

    The most selective purification method for proteins and other biomolecules is affinity chromatography. This method is based on the unique biological-based specificity of the biomolecule-ligand interaction and commonly uses biological ligands. However, these ligands may present some drawbacks, mainly because of their cost and lability. Dye-affinity chromatography overcomes the limitations of biological ligands and is widely used owing to the low cost of synthetic dyes and to their resistance to biological and chemical degradation. In this work, immobilized aminosquarylium cyanine dyes are used in order to exploit affinity interactions with standard proteins such as lysozyme, α-chymotrypsin and trypsin. These studies evaluate the affinity interactions occurring between the immobilized ligand and the different proteins, as a reflection of the sum of several molecular interactions, namely ionic, hydrophobic and van der Waals, spread throughout the structure, in a defined spatial manner. The results show the possibility of using an aminosquarylium cyanine dye bearing a N-hexyl pendant chain, with a ligand density of 1.8 × 10(-2) mmol of dye/g of chromatographic support, to isolate lysozyme, α-chymotrypsin and trypsin from a mixture. The application of a decreasing ammonium sulfate gradient resulted in the recovery of lysozyme in the flowthrough. On the other hand, α-chymotrypsin and trypsin were retained, involving different interactions with the ligand. In conclusion, this study demonstrates the potential applicability of ligands such as aminosquarylium cyanine dyes for the separation and purification of proteins by affinity chromatography.

  3. The Purification of a Blood Group A Glycoprotein: An Affinity Chromatography Experiment.

    ERIC Educational Resources Information Center

    Estelrich, J.; Pouplana, R.

    1988-01-01

    Describes a purification process through affinity chromatography necessary to obtain specific blood group glycoproteins from erythrocytic membranes. Discusses the preparation of erythrocytic membranes, extraction of glycoprotein from membranes, affinity chromatography purification, determination of glycoproteins, and results. (CW)

  4. Recombinant spider silk genetically functionalized with affinity domains.

    PubMed

    Jansson, Ronnie; Thatikonda, Naresh; Lindberg, Diana; Rising, Anna; Johansson, Jan; Nygren, Per-Åke; Hedhammar, My

    2014-05-12

    Functionalization of biocompatible materials for presentation of active protein domains is an area of growing interest. Herein, we describe a strategy for functionalization of recombinant spider silk via gene fusion to affinity domains of broad biotechnological use. Four affinity domains of different origin and structure; the IgG-binding domains Z and C2, the albumin-binding domain ABD, and the biotin-binding domain M4, were all successfully produced as soluble silk fusion proteins under nondenaturing purification conditions. Silk films and fibers produced from the fusion proteins were demonstrated to be chemically and thermally stable. Still, the bioactive domains are concluded to be folded and accessible, since their respective targets could be selectively captured from complex samples, including rabbit serum and human plasma. Interestingly, materials produced from mixtures of two different silk fusion proteins displayed combined binding properties, suggesting that tailor-made materials with desired stoichiometry and surface distributions of several binding domains can be produced. Further, use of the IgG binding ability as a general mean for presentation of desired biomolecules could be demonstrated for a human vascular endothelial growth factor (hVEGF) model system, via a first capture of anti-VEGF IgG to silk containing the Z-domain, followed by incubation with hVEGF. Taken together, this study demonstrates the potential of recombinant silk, genetically functionalized with affinity domains, for construction of biomaterials capable of presentation of almost any desired biomolecule.

  5. N-terminal processing of affinity-tagged recombinant proteins purified by IMAC procedures.

    PubMed

    Mooney, Jane T; Fredericks, Dale P; Christensen, Thorkild; Bruun Schiødt, Christine; Hearn, Milton T W

    2015-07-01

    The ability of a new class of metal binding tags to facilitate the purification of recombinant proteins, exemplified by the tagged glutathione S-transferase and human growth hormone, from Escherichia coli fermentation broths and lysates has been further investigated. These histidine-containing tags exhibit high affinity for borderline metal ions chelated to the immobilised ligand, 1,4,7-triazacyclononane (tacn). The use of this tag-tacn immobilised metal ion affinity chromatography (IMAC) system engenders high selectivity with regard to host cell protein removal and permits facile tag removal from the E. coli-expressed recombinant protein. In particular, these tags were specifically designed to enable their efficient removal by the dipeptidyl aminopeptidase 1 (DAP-1), thus capturing the advantages of high substrate specificity and rates of cleavage. MALDI-TOF MS analysis of the cleaved products from the DAP-1 digestion of the recombinant N-terminally tagged proteins confirmed the complete removal of the tag within 4-12 h under mild experimental conditions. Overall, this study demonstrates that the use of tags specifically designed to target tacn-based IMAC resins offers a comprehensive and flexible approach for the purification of E. coli-expressed recombinant proteins, where complete removal of the tag is an essential prerequisite for subsequent application of the purified native proteins in studies aimed at delineating the molecular and cellular basis of specific biological processes.

  6. Three Recombinant Engineered Antibodies against Recombinant Tags with High Affinity and Specificity.

    PubMed

    Zhao, Hongyu; Shen, Ao; Xiang, Yang K; Corey, David P

    2016-01-01

    We describe three recombinant engineered antibodies against three recombinant epitope tags, constructed with divalent binding arms to recognize divalent epitopes and so achieve high affinity and specificity. In two versions, an epitope is inserted in tandem into a protein of interest, and a homodimeric antibody is constructed by fusing a high-affinity epitope-binding domain to a human or mouse Fc domain. In a third, a heterodimeric antibody is constructed by fusing two different epitope-binding domains which target two different binding sites in GFP, to polarized Fc fragments. These antibody/epitope pairs have affinities in the low picomolar range and are useful tools for many antibody-based applications.

  7. Three Recombinant Engineered Antibodies against Recombinant Tags with High Affinity and Specificity

    PubMed Central

    Zhao, Hongyu; Shen, Ao; Xiang, Yang K.; Corey, David P.

    2016-01-01

    We describe three recombinant engineered antibodies against three recombinant epitope tags, constructed with divalent binding arms to recognize divalent epitopes and so achieve high affinity and specificity. In two versions, an epitope is inserted in tandem into a protein of interest, and a homodimeric antibody is constructed by fusing a high-affinity epitope-binding domain to a human or mouse Fc domain. In a third, a heterodimeric antibody is constructed by fusing two different epitope-binding domains which target two different binding sites in GFP, to polarized Fc fragments. These antibody/epitope pairs have affinities in the low picomolar range and are useful tools for many antibody-based applications. PMID:26943906

  8. Extension of the selection of protein chromatography and the rate model to affinity chromatography.

    PubMed

    Sandoval, G; Shene, C; Andrews, B A; Asenjo, J A

    2010-01-01

    The rational selection of optimal protein purification sequences, as well as mathematical models that simulate and allow optimization of chromatographic protein purification processes have been developed for purification procedures such as ion-exchange, hydrophobic interaction and gel filtration chromatography. This paper investigates the extension of such analysis to affinity chromatography both in the selection of chromatographic processes and in the use of the rate model for mathematical modelling and simulation. Two affinity systems were used: Blue Sepharose and Protein A. The extension of the theory developed previously for ion-exchange and HIC chromatography to affinity separations is analyzed in this paper. For the selection of operations two algorithms are used. In the first, the value of η, which corresponds to the efficiency (resolution) of the actual chromatography and, Σ, which determines the amount of a particular contaminant eliminated after each separation step, which determines the purity, have to be determined. It was found that the value of both these parameters is not generic for affinity separations but will depend on the type of affinity system used and will have to be determined on a case by case basis. With Blue Sepharose a salt gradient was used and with Protein A, a pH gradient. Parameters were determined with individual proteins and simulations of the protein mixtures were done. This approach allows investigation of chromatographic protein purification in a holistic manner that includes ion-exchange, HIC, gel filtration and affinity separations for the first time.

  9. [Progresses in screening active compounds from herbal medicine by affinity chromatography].

    PubMed

    Feng, Ying-shu; Tong, Shan-shan; Xu, Xi-ming; Yu, Jiang-nan

    2015-03-01

    Affinity chromatography is a chromatographic method for separating molecules using the binding characteristics of the stationary phase with potential drug molecules. This method can be performed as a high throughput screening method and a chromatographic separation method to screen a variety of active drugs. This paper summarizes the history of affinity chromatography, screening technology of affinity chromatography, and application of affinity chromatography in screening bio-active compounds in herbal medicines, and then discusses its application prospects, in order to broaden applications of the affinity chromatography in drug screening.

  10. PHARMACEUTICAL AND BIOMEDICAL APPLICATIONS OF AFFINITY CHROMATOGRAPHY: RECENT TRENDS AND DEVELOPMENTS

    PubMed Central

    Hage, David S.; Anguizola, Jeanethe A.; Bi, Cong; Li, Rong; Matsuda, Ryan; Papastavros, Efthimia; Pfaunmiller, Erika; Vargas, John; Zheng, Xiwei

    2012-01-01

    Affinity chromatography is a separation technique that has become increasingly important in work with biological samples and pharmaceutical agents. This method is based on the use of a biologically-related agent as a stationary phase to selectively retain analytes or to study biological interactions. This review discusses the basic principles behind affinity chromatography and examines recent developments that have occurred in the use of this method for biomedical and pharmaceutical analysis. Techniques based on traditional affinity supports are discussed, but an emphasis is placed on methods in which affinity columns are used as part of HPLC systems or in combination with other analytical methods. General formats for affinity chromatography that are considered include step elution schemes, weak affinity chromatography, affinity extraction and affinity depletion. Specific separation techniques that are examined include lectin affinity chromatography, boronate affinity chromatography, immunoaffinity chromatography, and immobilized metal ion affinity chromatography. Approaches for the study of biological interactions by affinity chromatography are also presented, such as the measurement of equilibrium constants, rate constants, or competition and displacement effects. In addition, related developments in the use of immobilized enzyme reactors, molecularly imprinted polymers, dye ligands and aptamers are briefly considered. PMID:22305083

  11. A novel gigaporous GSH affinity medium for high-speed affinity chromatography of GST-tagged proteins.

    PubMed

    Huang, Yongdong; Zhang, Rongyue; Li, Juan; Li, Qiang; Su, Zhiguo; Ma, Guanghui

    2014-03-01

    Novel GSH-AP (phenoxyl agarose coated gigaporous polystyrene, Agap-co-PSt) microspheres were successfully prepared by introducing GSH ligand into hydrophilic AP microspheres pre-activated with 1,4-butanediol diglycidyl ether. The gigaporous structure and chromatographic properties of GSH-AP medium were evaluated and compared with commercial GSH Sepharose FF (GSH-FF) medium. The macropores (100-500nm) of gigaporous PSt microspheres were well maintained after coating with agarose and functionalized with GSH ligand. Hydrodynamic experiments showed that GSH-AP column had less backpressure and plate height than those of GSH-FF column at high flow velocity, which was beneficial for its use in high-speed chromatography. The presence of flow-through pores in GSH-AP microspheres also accelerated the mass transfer rate of biomolecules induced by convective flow, leading to high protein resolution and high dynamic binding capacity (DBC) of glutathione S-transferase (GST) at high flow velocity. High purity of GST and GST-tagged recombinant human interleukin-1 receptor antagonist (rhIL-1RA) were obtained from crude extract with an acceptable recovery yield within 1.5min at a velocity up to 1400cm/h. GSH-AP medium is promising for high-speed affinity chromatography for the purification of GST and GST-tagged proteins.

  12. Virus inactivation by protein denaturants used in affinity chromatography.

    PubMed

    Roberts, Peter L; Lloyd, David

    2007-10-01

    Virus inactivation by a number of protein denaturants commonly used in gel affinity chromatography for protein elution and gel recycling has been investigated. The enveloped viruses Sindbis, herpes simplex-1 and vaccinia, and the non-enveloped virus polio-1 were effectively inactivated by 0.5 M sodium hydroxide, 6 M guanidinium thiocyanate, 8 M urea and 70% ethanol. However, pH 2.6, 3 M sodium thiocyanate, 6 M guanidinium chloride and 20% ethanol, while effectively inactivating the enveloped viruses, did not inactivate polio-1. These studies demonstrate that protein denaturants are generally effective for virus inactivation but with the limitation that only some may inactivate non-enveloped viruses. The use of protein denaturants, together with virus reduction steps in the manufacturing process should ensure that viral cross contamination between manufacturing batches of therapeutic biological products is prevented and the safety of the product ensured.

  13. Purification of cytochrome c oxidase by lysine-affinity chromatography.

    PubMed

    Felsch, J; Kotake, S; Copeland, R A

    1992-02-01

    A method for the purification of cytochrome c oxidase that is based on the affinity of this enzyme for polycations such as poly-L-lysine is described. When detergent extracts of bovine cardiac mitochondria were applied to either a poly-L-lysine-agarose or a lysine-Sepharose column at low ionic strength, cytochrome c oxidase was found to adhere tightly, whereas the bulk of the proteins were eluted by washing with the same buffer. The cytochrome c oxidase was eluted by application of a linear potassium chloride gradient to the columns. The resulting enzyme was identical to that obtained by more traditional purification methods in terms of its subunit composition, optical and resonance Raman spectra, and cytochrome c oxidizing activity. When detergent extracts of spheroplasts from Paracoccus denitrificans were applied to these columns, the cytochrome c oxidase from this organism was also found to adhere tightly. Thus this purification method appears applicable to both prokaryotic and eukaryotic forms of the enzyme. The advantages of this new purification method are that it is less labor intensive than the traditional procedure and less expensive than methods based on cytochrome c-affinity chromatography.

  14. Purification of human copper, zinc superoxide dismutase by copper chelate affinity chromatography

    SciTech Connect

    Weslake, R.J.; Chesney, S.L.; Petkau, A.; Friesen, A.D.

    1986-05-15

    Copper, zinc superoxide dismutase was isolated from human red blood cell hemolysate by DEAE-Sepharose and copper chelate affinity chromatography. Enzyme preparations had specific activities ranging from 3400 to 3800 U/mg and recoveries were approximately 60% of the enzyme activity in the lysate. Copper chelate affinity chromatography resulted in a purification factor of about 60-fold. The homogeneity of the superoxide dismutase preparation was analyzed by sodium dodecyl sulfate-gel electrophoresis, analytical gel filtration chromatography, and isoelectric focusing.

  15. Expression and antigenicity of recombinant human respiratory syncytial virus glycoproteins having different affinity tags.

    PubMed

    Lee, Han Saem; Kim, A-Reum; Kim, Kisoon; Lee, Wan-Ji; Kim, Sung Soon; Kim, You-Jin

    2016-12-29

    Human respiratory syncytial virus (HRSV) is a main cause of lower respiratory tract infections in infants and the elderly. Glycoprotein (G) is major antigen on the viral surface, and plays a key role for virus entry. Therefore, purification of the glycoprotein of HRSV is critical for the development of HRSV vaccine and serological diagnosis. In this study, we report the design and characterization of glycoprotein engineered rationally to enhance the protein solubility and to facilitate efficient purification. We permuted HRSV glycoproteins with two tags: (i) an immunoglobulin (Ig) M signal peptide and a protein A B domain tag to render HRSV glycoprotein secret into the culture media and (ii) a foldon and 6 × histidine tag with or without transmembrane domain. Three recombinant baculoviruses were constructed: (i) transmembrane-truncated HRSV glycoprotein (amino acid positions 66-298) inserted with the N-terminal IgM signal peptide and protein A B domain (MG-GΔTM), (ii) truncated HRSV glycoprotein (amino acid positions 66-298) fused with a C-terminal foldon and 6 × histidine tag (GΔTM-FH), and (iii) full-length HRSV glycoprotein (amino acid positions 1-298) fused with a C-terminal foldon and 6 × histidine tag (G-FH). Highly soluble recombinant MG-GΔTM protein was clearly purified using one-step affinity chromatography with IgG-sepharose resin, whereas the recombinant G-FH protein and truncated GΔTM-FH were purified partially using nickel-resin. Although, the antigenicity of GΔTM-FH was stronger than highly mannose-rich MG-GΔTM protein, MG-GΔTM induced neutralizing antibodies efficiently in the mice to protect from infectious HRSV.

  16. Using ion exchange chromatography to purify a recombinantly expressed protein.

    PubMed

    Duong-Ly, Krisna C; Gabelli, Sandra B

    2014-01-01

    Ion exchange chromatography (IEX) separates molecules by their surface charge, a property that can vary vastly between different proteins. There are two types of IEX, cation exhange and anion exchange chromatography. The protocol that follows was designed by the authors for anion exchange chromatography of a recombinantly expressed protein having a pI of 4.9 and containing two cysteine residues and one tryptophan residue, using an FPLC system. Prior to anion exchange, the protein had been salted out using ammonium sulfate precipitation and partially purified via hydrophobic interaction chromatography (see Salting out of proteins using ammonium sulfate precipitation and Use and Application of Hydrophobic Interaction Chromatography for Protein Purification). Slight modifications to this protocol may be made to accommodate both the protein of interest and the availability of equipment.

  17. The Binding of Biotin to Sepharose-Avidin Column: Demonstration of the Affinity Chromatography Technique

    ERIC Educational Resources Information Center

    Landman, A. D.; Landman, N. N.

    1976-01-01

    Describes a biochemistry experiment that illustrates the methodology of affinity chromatography by attaching avidin, a glycoprotein in egg white, to a Sepharose matrix in order to bind biotin-containing proteins. (MLH)

  18. Affinity Chromatography of Lactate Dehydrogenase: An Experiment for the Undergraduate Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Anderson, Alexander J.

    1988-01-01

    Discusses a laboratory technique of enzyme purification by affinity chromatography as part of an undergraduate biochemical methodology course. Provides preparation details of the rat muscle homogenate and reagents. Proposes column requirements and assaying information. (MVL)

  19. Expression and affinity purification of recombinant proteins from plants

    NASA Technical Reports Server (NTRS)

    Desai, Urvee A.; Sur, Gargi; Daunert, Sylvia; Babbitt, Ruth; Li, Qingshun

    2002-01-01

    With recent advances in plant biotechnology, transgenic plants have been targeted as an inexpensive means for the mass production of proteins for biopharmaceutical and industrial uses. However, the current plant purification techniques lack a generally applicable, economic, large-scale strategy. In this study, we demonstrate the purification of a model protein, beta-glucuronidase (GUS), by employing the protein calmodulin (CaM) as an affinity tag. In the proposed system, CaM is fused to GUS. In the presence of calcium, the calmodulin fusion protein binds specifically to a phenothiazine-modified surface of an affinity column. When calcium is removed with a complexing agent, e.g., EDTA, calmodulin undergoes a conformational change allowing the dissociation of the calmodulin-phenothiazine complex and, therefore, permitting the elution of the GUS-CaM fusion protein. The advantages of this approach are the fast, efficient, and economical isolation of the target protein under mild elution conditions, thus preserving the activity of the target protein. Two types of transformation methods were used in this study, namely, the Agrobacterium-mediated system and the viral-vector-mediated transformation system. Copyright 2002 Elsevier Science (USA).

  20. New family of glutathionyl-biomimetic ligands for affinity chromatography of glutathione-recognising enzymes.

    PubMed

    Melissis, S C; Rigden, D J; Clonis, Y D

    2001-05-11

    Three anthraquinone glutathionyl-biomimetic dye ligands, comprising as terminal biomimetic moiety glutathione analogues (glutathionesulfonic acid, S-methyl-glutathione and glutathione) were synthesised and characterised. The biomimetic ligands were immobilised on agarose gel and the affinity adsorbents, together with a nonbiomimetic adsorbent bearing Cibacron Blue 3GA, were studied for their purifying ability for the glutathione-recognising enzymes, NAD+-dependent formaldehyde dehydrogenase (FaDH) from Candida boidinii, NAD(P)+-dependent glutathione reductase from S. cerevisiae (GSHR) and recombinant maize glutathione S-transferase I (GSTI). All biomimetic adsorbents showed higher purifying ability for the target enzymes compared to the nonbiomimetic adsorbent, thus demonstrating their superior effectiveness as affinity chromatography materials. In particular, the affinity adsorbent comprising as terminal biomimetic moiety glutathionesulfonic acid (BM1), exhibited the highest purifying ability for FaDH and GSTI, whereas, the affinity adsorbent comprising as terminal biomimetic moiety methyl-glutathione (BM2) exhibited the highest purifying ability for GSHR. The BM1 adsorbent was integrated in a facile two-step purification procedure for FaDH. The purified enzyme showed a specific activity equal to 79 U/mg and a single band after sodium dodecylsulfate-polyacrylamide gel electrophoresis analysis. Molecular modelling was employed to visualise the binding of BM1 with FaDH, indicating favourable positioning of the key structural features of the biomimetic dye. The anthraquinone moiety provides the driving force for the correct positioning of the glutathionyl-biomimetic moiety in the binding site. It is located deep in the active site cleft forming many favourable hydrophobic contacts with hydrophobic residues of the enzyme. The positioning of the glutathione-like biomimetic moiety is primarily achieved by the strong ionic interactions with the Zn2+ ion of FaDH and Arg

  1. Recombinant enterokinase light chain with affinity tag: expression from Saccharomyces cerevisiae and its utilities in fusion protein technology.

    PubMed

    Choi, S I; Song, H W; Moon, J W; Seong, B L

    2001-12-20

    Enterokinase and recombinant enterokinase light chain (rEK(L)) have been used widely to cleave fusion proteins with the target sequence of (Asp)(4)-Lys. In this work, we show that their utility as a site-specific cleavage agent is compromised by sporadic cleavage at other sites, albeit at low levels. Further degradation of the fusion protein in cleavage reaction is due to an intrinsic broad specificity of the enzyme rather than to the presence of contaminating proteases. To offer facilitated purification from fermentation broth and efficient removal of rEK(L) after cleavage reaction, thus minimizing unwanted cleavage of target protein, histidine affinity tag was introduced into rEK(L). Utilizing the secretion enhancer peptide derived from the human interleukin 1 beta, the recombinant EK(L) was expressed in Saccharomyces cerevisiae and efficiently secreted into culture medium. The C-terminal His-tagged EK(L) was purified in a single-step procedure on nickel affinity chromatography. It retained full enzymatic activity similar to that of EK(L), whereas the N-terminal His-tagged EK(L) was neither efficiently purified nor had any enzymatic activity. After cleavage reaction of fusion protein, the C-terminal His-tagged EK(L) was efficiently removed from the reaction mixture by a single passage through nickel-NTA spin column. The simple affinity tag renders rEK(L) extremely useful for purification, post-cleavage removal, recovery, and recycling and will broaden the utility and the versatility of the enterokinase for the production of recombinant proteins.

  2. Mullerian inhibiting substance fractionation by dye affinity chromatography.

    PubMed

    Budzik, G P; Powell, S M; Kamagata, S; Donahoe, P K

    1983-08-01

    Mullerian inhibiting substance (MIS), a large glycoprotein secreted by the fetal and neonatal testis, is responsible for regression of the Mullerian ducts in the male embryo. This fetal growth regulator has been purified more than 2000-fold from crude testicular incubation medium following fractionation on a triazinyl dye affinity support. A high yield of 60% recovered activity was achieved in the absence of exogenous carrier protein by stabilizing MIS with 2-mercaptoethanol, EDTA, and Nonidet-P40 and eliminating losses in the handling and concentration of MIS fractions. Although affinity elution with nucleotides has proved successful in other systems, MIS could not be eluted with ATP, GTP, or AMP, with or without divalent metal ions. Nucleotide elution, however, does remove contaminating proteins prior to MIS recovery with high ionic strength. The 2000-fold-purified MIS fraction, although not homogeneous, shows a reduction-sensitive band after SDS-gel electrophoresis that has been proposed to be the MIS dimer.

  3. Calcium-modulated conformational affinity chromatography. Application to the purification of calmodulin and S100 proteins.

    PubMed

    Fleminger, G; Neufeld, T; Star-Weinstock, M; Litvak, M; Solomon, B

    1992-04-24

    The purification of proteins by affinity chromatography is based on their highly specific interaction with an immobilized ligand followed by elution under conditions where their affinity towards the ligand is markedly reduced. Thus, a high-degree purification by a single chromatographic step is achieved. However, when several proteins in the crude mixture share affinity to a common immobilized ligand, they may not be resolved by affinity chromatography and subsequent "real" chromatographic purification steps may be required. It is shown that by using properly selected gradient elution conditions, the affinities of the various proteins towards the immobilized ligand may be gradually modulated and their separation may be achieved. This is exemplified by the isolation and separation of a group of Ca(2+)-activated proteins, Calmodulin, S100a and S100b, from bovine brain extract, using a melittin-Eupergit C affinity column which is developed with Ca(2+)-chelator gradients. As expected, separation of the three proteins into individual peaks, eluted in order of increasing affinity to the matrix, was obtained. Sigmoid selectivity curves calculated from the elution volumes under different elution conditions for each of the proteins were obtained, illustrating the chromatographic behaviour of the gradient affinity separation system.

  4. Mixed-bed affinity chromatography: principles and methods.

    PubMed

    Boschetti, Egisto; Righetti, Pier Giorgio

    2015-01-01

    Mixed-bed chromatography is far from being a well-established technology within the panoply of bioseparation tools. Composed of an assembly of distinct sorbents that are mixed in a single bed, they have been mostly developed in the last decade for the reduction of dynamic concentration range where they allowed discovering many low-copy proteins within very complex proteomes. Other interesting preparative applications of mixed-bed chromatography have since been developed. In this chapter the basic concepts first and then detailed application recipes are described for (1) the reduction of protein dynamic concentration range, (2) the removal of impurity traces at the last stage of a biopurification process, and (3) the selection and use of sorbents as mixed bed in protein purification.

  5. Twin-column CaptureSMB: a novel cyclic process for protein A affinity chromatography.

    PubMed

    Angarita, Monica; Müller-Späth, Thomas; Baur, Daniel; Lievrouw, Roel; Lissens, Geert; Morbidelli, Massimo

    2015-04-10

    A twin-column counter-current chromatography processes, CaptureSMB, was used for the protein A affinity capture of a monoclonal antibody (mAb). By means of sequential loading, the process improves the utilization of the stationary phase by achieving loadings much closer to the static binding capacity of the resin in comparison to batch chromatography. Using a mAb capture case study with protein A affinity chromatography, the performance and product quality obtained from CaptureSMB and batch processes were compared. The effect of the flow rate, column length and titer concentration on the process performance and product quality were evaluated. CaptureSMB showed superior performance compared to batch chromatography with respect to productivity, capacity utilization, product concentration and buffer consumption. A simplified economic evaluation showed that CaptureSMB could decrease resin costs of 10-30% depending on the manufacturing scenario.

  6. Affinity Purification of a Recombinant Protein Expressed as a Fusion with the Maltose-Binding Protein (MBP) Tag.

    PubMed

    Duong-Ly, Krisna C; Gabelli, Sandra B

    2015-01-01

    Expression of fusion proteins such as MBP fusions can be used as a way to improve the solubility of the expressed protein in E. coli (Fox and Waugh, 2003; Nallamsetty et al., 2005; Nallamsetty and Waugh, 2006) and as a way to introduce an affinity purification tag. The protocol that follows was designed by the authors as a first step in the purification of a recombinant protein fused with MBP, using fast protein liquid chromatography (FPLC). Cells should have been thawed, resuspended in binding buffer, and lysed by sonication or microfluidization before mixing with the amylose resin or loading on the column. Slight modifications to this protocol may be made to accommodate both the protein of interest and the availability of equipment.

  7. Affinity monolith chromatography: A review of principles and recent analytical applications

    PubMed Central

    Pfaunmiller, Erika L.; Paulemond, Marie Laura; Dupper, Courtney M.; Hage, David S.

    2012-01-01

    Affinity monolith chromatography (AMC) is a type of liquid chromatography that uses a monolithic support and a biologically-related binding agent as a stationary phase. AMC is a powerful method for the selective separation, analysis or studies of specific target compounds in a sample. This review discusses the basic principles of AMC and recent developments or applications of this method, with particular emphasis being given to work that has appeared in the last five years. Various materials that have been used to prepare columns for AMC are examined, including organic monoliths, silica monoliths, agarose monoliths and cryogels. These supports have been used in AMC for formats that have ranged from traditional columns to disks, microcolumns and capillaries. Many binding agents have also been employed in AMC, such as antibodies, enzymes, proteins, lectins, immobilized metal-ions and dyes. Some applications that have been reported with these binding agents in AMC are bioaffinity chromatography, immunoaffinity chromatography or immunoextraction, immobilized metal-ion affinity chromatography, dye-ligand affinity chromatography, chiral separations and biointeraction studies. Examples are presented from fields that include analytical chemistry, pharmaceutical analysis, clinical testing and biotechnology. Current trends and possible future directions in AMC are also discussed. PMID:23187827

  8. Affinity purification using recombinant PXR as a tool to characterize environmental ligands.

    PubMed

    Dagnino, Sonia; Bellet, Virginie; Grimaldi, Marina; Riu, Anne; Aït-Aïssa, Sélim; Cavaillès, Vincent; Fenet, Hélène; Balaguer, Patrick

    2014-02-01

    Many environmental endocrine disrupting compounds act as ligands for nuclear receptors. The human pregnane X receptor (hPXR), for instance, is activated by a variety of environmental ligands such as steroids, pharmaceutical drugs, pesticides, alkylphenols, polychlorinated biphenyls and polybromo diethylethers. Some of us have previously reported the occurrence of hPXR ligands in environmental samples but failed to identify them. The aim of this study was to test whether a PXR-affinity column, in which recombinant hPXR was immobilized on solid support, could help the purification of these chemicals. Using PXR ligands of different affinity (10 nM < EC50 < 10 μM), we demonstrated that the PXR-affinity preferentially column captured ligands with medium to high affinities (EC50 < 1 μM). Furthermore, by using the PXR-affinity column to analyze an environmental sample containing ERα, AhR, AR, and PXR activities, we show that (i) half of the PXR activity of the sample was due to compounds with medium to high affinity for PXR and (ii) PXR shared ligands with ERα, AR, and AhR. These findings demonstrate that the newly developed PXR-affinity column coupled to reporter cell lines represents a valuable tool for the characterization of the nature of PXR active compounds and should therefore guide and facilitate their further analysis.

  9. High-affinity interactions of ligands at recombinant Guinea pig 5HT7 receptors

    NASA Astrophysics Data System (ADS)

    Wilcox, R. E.; Ragan, J. E.; Pearlman, R. S.; Brusniak, M. Y.-. K.; Eglen, R. M.; Bonhaus, D. W.; Tenner, T. E., Jr.; Miller, J. D.

    2001-10-01

    The serotonin 5HT7 receptor has been implicated in numerous physiological and pathological processes from circadian rhythms [1] to depression and schizophrenia. Clonal cell lines heterologously expressing recombinant receptors offer good models for understanding drug-receptor interactions and development of quantitative structure-activity relationships (QSAR). Comparative Molecular Field Analysis (CoMFA) is an important modern QSAR procedure that relates the steric and electrostatic fields of a set of aligned compounds to affinity. Here, we utilized CoMFA to predict affinity for a number of high-affinity ligands at the recombinant guinea pig 5HT7 receptor. Using R-lisuride as the template, a final CoMFA model was derived using procedures similar to those of our recent papers [2, 3, 4] The final cross-validated model accounted for >85% of the variance in the compound affinity data, while the final non-cross validated model accounted for >99% of the variance. Model evaluation was done using cross-validation methods with groups of 5 ligands. Twenty cross-validation runs yielded an average predictive r2(q2) of 0.779 ± 0.015 (range: 0.669-0.867). Furthermore, 3D-chemical database search queries derived from the model yielded hit lists of promising agents with high structural similarity to the template. Together, these results suggest a possible basis for high-affinity drug action at 5HT7 receptors.

  10. Application of coupled affinity-sizing chromatography for the detection of proteolyzed HSA-tagged proteins.

    PubMed

    London, Anne Serdakowski; Patel, Kunal; Quinn, Lisa; Lemmerer, Martin

    2015-04-01

    Coupled affinity liquid chromatography and size exclusion chromatography (ALC-SEC) is a technique that has been shown to successfully report product quality of proteins during cell expression and prior to the commencement of downstream processing chromatography steps. This method was applied to monitoring the degradation and subsequent partial remediation of a HSA-tagged protein which showed proteolysis, allowing for rapid cell line development to address this product quality dilemma. This paper outlines the novel application of this method for measuring and addressing protease-induced proteolysis.

  11. Glycan-specific whole cell affinity chromatography: a versatile microbial adhesion platform

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have constructed a C-glycoside ketohydrazide affinity chromatography resin that interacts with viable whole-cell microbial populations with biologically appropriate stereo-specificity in a carbohydrate-defined manner. It readily allows for the quantification, selection, and manipulation of target...

  12. Purification of native and recombinant cobra venom factor using thiophilic adsorption chromatography.

    PubMed

    Kölln, Johanna; Braren, Ingke; Bredehorst, Reinhard; Spillner, Edzard

    2007-01-01

    The complement activating venom component Cobra Venom Factor (CVF) forms a stable CVF-dependent C3 convertase complex, which initiates continuous activation of the complement system, consumes all downstream complement components and obliterates functional complement. Therefore, native CVF is routinely used as decomplementing agent in vivo and in vitro. However, in most countries, CVF and even unfractionated cobra venom are now becoming unavailable due to the CITES agreement. Although CVF is a complex molecule with three disulfide linked polypeptide chains and pronounced glycosylation, recombinant expression of the active molecule in eukaryotic host cells may provide an alternative source. In this study we describe a strategy for the production and efficient isolation of recombinant CVF from supernatant of mammalian cells. Thiophilic adsorption chromatography (TAC), an efficient procedure for purification of the human homologue C3, was evaluated for its suitability regarding purification of both native as well as recombinant CVF. Native CVF could be purified by TAC in a one-step procedure from cobra venom with yields of 92% compared to 35% by conventional approaches. After establishment of stably transfected mammalian cells recombinant CVF could be obtained and enriched from CHO supernatants by TAC to a purity of 73%, and up to 90% if an additional affinity chromatography step was included. Subsequent characterization revealed comparable hemolytic and bystander lysis activity and of rCVF and nCVF. These data demonstrate that the functional expression in mammalian cells in combination with TAC for purification renders rCVF a highly attractive substitute for its native counterpart.

  13. Cross-linked leucaena seed gum matrix: an affinity chromatography tool for galactose-specific lectins.

    PubMed

    Seshagirirao, Kottapalli; Leelavathi, Chaganti; Sasidhar, Vemula

    2005-05-31

    A cross-linked leucaena (Leucaena leucocephala) seed gum (CLLSG) matrix was prepared for the isolation of galactose-specific lectins by affinity chromatography. The matrix was evaluated for affinity with a known galactose-specific lectin from the seeds of snake gourd (Trichosanthes anguina). The matrix preparation was simple and inexpensive when compared to commercial galactose-specific matrices (i.e. about 1.5 US dollars/100 ml of matrix). The current method is also useful for the demonstration of the affinity chromatography technique in laboratories. Since leucaena seeds are abundant and inexpensive, and the matrix preparation is easy, CLLSG appears to be a promising tool for the separation of galactose-specific lectins.

  14. Affitins as robust tailored reagents for affinity chromatography purification of antibodies and non-immunoglobulin proteins.

    PubMed

    Béhar, Ghislaine; Renodon-Cornière, Axelle; Mouratou, Barbara; Pecorari, Frédéric

    2016-04-08

    Affinity chromatography is a convenient way of purifying proteins, as a high degree of purity can be reached in one step. The use of tags has greatly contributed to the popularity of this technique. However, the addition of tags may not be desirable or possible for the production of biopharmaceuticals. There is thus a need for tailored artificial affinity ligands. We have developed the use of archaeal extremophilic proteins as scaffolds to generate affinity proteins (Affitins). Here, we explored the potential of Affitins as ligand to design affinity columns. Affitins specific for human immunoglobulin G (hIgG), bacterial PulD protein, and chicken egg lysozyme were immobilized on an agarose matrix. The columns obtained were functional and highly selective for their cognate target, even in the presence of exogenous proteins as found in cell culture media, ascites and bacterial lysates, which result in a high degree of purity (∼95%) and recovery (∼100%) in a single step. Anti-hIgG Affitin columns withstand repetitive cycles of purification and cleaning-in-place treatments with 0.25 M NaOH as well as Protein A does. High levels of Affitin productions in Escherichia coli makes it possible to produce these affinity columns at low cost. Our results validate Affitins as a new class of tailored ligands for the affinity chromatography purification of potentially any proteins of interest including biopharmaceuticals.

  15. Determination of equilibrium dissociation constants for recombinant antibodies by high-throughput affinity electrophoresis.

    PubMed

    Pan, Yuchen; Sackmann, Eric K; Wypisniak, Karolina; Hornsby, Michael; Datwani, Sammy S; Herr, Amy E

    2016-12-23

    High-quality immunoreagents enhance the performance and reproducibility of immunoassays and, in turn, the quality of both biological and clinical measurements. High quality recombinant immunoreagents are generated using antibody-phage display. One metric of antibody quality - the binding affinity - is quantified through the dissociation constant (KD) of each recombinant antibody and the target antigen. To characterize the KD of recombinant antibodies and target antigen, we introduce affinity electrophoretic mobility shift assays (EMSAs) in a high-throughput format suitable for small volume samples. A microfluidic card comprised of free-standing polyacrylamide gel (fsPAG) separation lanes supports 384 concurrent EMSAs in 30 s using a single power source. Sample is dispensed onto the microfluidic EMSA card by acoustic droplet ejection (ADE), which reduces EMSA variability compared to sample dispensing using manual or pin tools. The KD for each of a six-member fragment antigen-binding fragment library is reported using ~25-fold less sample mass and ~5-fold less time than conventional heterogeneous assays. Given the form factor and performance of this micro- and mesofluidic workflow, we have developed a sample-sparing, high-throughput, solution-phase alternative for biomolecular affinity characterization.

  16. Determination of equilibrium dissociation constants for recombinant antibodies by high-throughput affinity electrophoresis

    PubMed Central

    Pan, Yuchen; Sackmann, Eric K.; Wypisniak, Karolina; Hornsby, Michael; Datwani, Sammy S.; Herr, Amy E.

    2016-01-01

    High-quality immunoreagents enhance the performance and reproducibility of immunoassays and, in turn, the quality of both biological and clinical measurements. High quality recombinant immunoreagents are generated using antibody-phage display. One metric of antibody quality – the binding affinity – is quantified through the dissociation constant (KD) of each recombinant antibody and the target antigen. To characterize the KD of recombinant antibodies and target antigen, we introduce affinity electrophoretic mobility shift assays (EMSAs) in a high-throughput format suitable for small volume samples. A microfluidic card comprised of free-standing polyacrylamide gel (fsPAG) separation lanes supports 384 concurrent EMSAs in 30 s using a single power source. Sample is dispensed onto the microfluidic EMSA card by acoustic droplet ejection (ADE), which reduces EMSA variability compared to sample dispensing using manual or pin tools. The KD for each of a six-member fragment antigen-binding fragment library is reported using ~25-fold less sample mass and ~5-fold less time than conventional heterogeneous assays. Given the form factor and performance of this micro- and mesofluidic workflow, we have developed a sample-sparing, high-throughput, solution-phase alternative for biomolecular affinity characterization. PMID:28008969

  17. Affinity chromatography approaches to overcome the challenges of purifying plasmid DNA.

    PubMed

    Sousa, Fani; Prazeres, Duarte M F; Queiroz, João A

    2008-09-01

    The diversity of biomolecules present in plasmid DNA (pDNA)-containing extracts and the structural and chemical similarities between pDNA and impurities are some of the main challenges of improving or establishing novel purification procedures. In view of the unequalled specificity of affinity purification, this technique has recently begun to be applied in downstream processing of plasmids. This paper discusses the progress and importance of affinity chromatography (AC) for the purification of pDNA-based therapeutic products. Several affinity approaches have already been successfully developed for a variety of applications, and we will focus here on highlighting their possible contributions to the pDNA purification challenge. Diverse affinity applications and their advantages and disadvantages are discussed, as well as the most significant results and improvements in the challenging task of purifying plasmids.

  18. Purification of GFP fusion proteins with high purity and yield by monoclonal antibody-coupled affinity column chromatography.

    PubMed

    Zhuang, Ran; Zhang, Yuan; Zhang, Rui; Song, Chaojun; Yang, Kun; Yang, Angang; Jin, Boquan

    2008-05-01

    GFP has often been used as a marker of gene expression, protein localization in living and fixed tissues as well as for protein targeting in intact cells and organisms. Monitoring foreign protein expression via GFP fusion is also very appealing for bioprocess applications. Many cells, including bacterial, fungal, plant, insect and mammalian cells, can express recombinant GFP (rGFP) efficiently. Several methods and procedures have been developed to purify the rGFP or recombinant proteins fused with GFP tag. However, most current GFP purification methods are limited by poor yields and low purity. In the current study, we developed an improved purification method, utilizing a FMU-GFP.5 monoclonal antibody (mAb) to GFP together with a mAb-coupled affinity chromatography column. The method resulted in a sample that was highly pure (more than 97% homogeneity) and had a sample yield of about 90%. Moreover, the GFP epitope permitted the isolation of almost all the active recombinant target proteins fused with GFP, directly and easily, from the crude cellular sources. Our data suggests this method is more efficient than any currently available method for purification of GFP protein.

  19. Routes to improve binding capacities of affinity resins demonstrated for Protein A chromatography.

    PubMed

    Müller, Egbert; Vajda, Judith

    2016-05-15

    Protein A chromatography is a well-established platform in downstream purification of monoclonal antibodies. Dynamic binding capacities are continuously increasing with almost every newly launched Protein A resin. Nevertheless, binding capacities of affinity chromatography resins cannot compete with binding capacities obtained with modern ion exchange media. Capacities of affinity resins are roughly 50% lower. High binding capacities of ion exchange media are supported by spacer technologies. In this article, we review existing spacer technologies of affinity chromatography resins. A yet known effective approach to increase the dynamic binding capacity of Protein A resins is oligomerization of the particular Protein A motifs. This resembles the tentacle technology used in ion exchange chromatography. Dynamic binding capacities of a hexameric ligand are roughly twice as high compared to capacities obtained with a tetrameric ligand. Further capacity increases up to 130mg/ml can be realized with the hexamer ligand, if the sodium phosphate buffer concentration is increased from 20 to 100mM. Equilibrium isotherms revealed a BET shape for the hexamer ligand at monoclonal antibody liquid phase concentrations higher than 9mg/ml. The apparent multilayer formation may be due to hydrophobic forces. Other quality attributes such as recovery, aggregate content, and overall purity of the captured monoclonal antibody are not affected.

  20. Affinity chromatography of Band 3, the anion transport protein of erythrocyte membranes.

    PubMed

    Pimplikar, S W; Reithmeier, R A

    1986-07-25

    Affinity chromatography of Band 3 was performed using a series of affinity matrices synthesized with various inhibitor ligands and spacer arms. Hydrophilic spacer arms greater than four atoms in length were essential for Band 3 binding. An affinity resin prepared by reacting 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonate (Ki = 10 microM) with Affi-Gel 102 was found to be the most effective resin of the series tested. Solubilized proteins from human erythrocyte membranes were incubated with the affinity resin, and pure Band 3 was recovered by eluting with 4-benzamido-4'-aminostilbene-2,2'-disulfonate (BADS; Ki = 2 microM). Band 3 bound to the resin specifically in its stilbene disulfonate binding site, and optimal binding was achieved at pH 8 and at high ionic strength. At 4 degrees C, up to 80% of the bound Band 3 could be eluted by 1 mM BADS, whereas the remainder could be eluted under denaturing conditions using 1% lithium dodecyl sulfate. At 22 or 37 degrees C, the amount of BADS-elutable Band 3 was reduced with a concomitant increase of Band 3 in the lithium dodecyl sulfate elute. Thus, for successful affinity chromatography, the experiment must be carried out rapidly at 4 degrees C. This procedure was also used to purify the Band 3 protein from mouse, horse, pig, and chicken erythrocytes.

  1. Engineering Escherichia coli BL21(DE3) derivative strains to minimize E. coli protein contamination after purification by immobilized metal affinity chromatography.

    PubMed

    Robichon, Carine; Luo, Jianying; Causey, Thomas B; Benner, Jack S; Samuelson, James C

    2011-07-01

    Recombinant His-tagged proteins expressed in Escherichia coli and purified by immobilized metal affinity chromatography (IMAC) are commonly coeluted with native E. coli proteins, especially if the recombinant protein is expressed at a low level. The E. coli contaminants display high affinity to divalent nickel or cobalt ions, mainly due to the presence of clustered histidine residues or biologically relevant metal binding sites. To improve the final purity of expressed His-tagged protein, we engineered E. coli BL21(DE3) expression strains in which the most recurring contaminants are either expressed with an alternative tag or mutated to decrease their affinity to divalent cations. The current study presents the design, engineering, and characterization of two E. coli BL21(DE3) derivatives, NiCo21(DE3) and NiCo22(DE3), which express the endogenous proteins SlyD, Can, ArnA, and (optionally) AceE fused at their C terminus to a chitin binding domain (CBD) and the protein GlmS, with six surface histidines replaced by alanines. We show that each E. coli CBD-tagged protein remains active and can be efficiently eliminated from an IMAC elution fraction using a chitin column flowthrough step, while the modification of GlmS results in loss of affinity for nickel-containing resin. The "NiCo" strains uniquely complement existing methods for improving the purity of recombinant His-tagged protein.

  2. The Use of Affinity Tags to Overcome Obstacles in Recombinant Protein Expression and Purification.

    PubMed

    Amarasinghe, Chinthaka; Jin, Jian-Ping

    2015-01-01

    Research and industrial demands for recombinant proteins continue to increase over time for their broad applications in structural and functional studies and as therapeutic agents. These applications often require large quantities of recombinant protein at desirable purity, which highlights the importance of developing and improving production approaches that provide high level expression and readily achievable purity of recombinant protein. E. coli is the most widely used host for the expression of a diverse range of proteins at low cost. However, there are common pitfalls that can severely limit the expression of exogenous proteins, such as stability, low solubility and toxicity to the host cell. To overcome these obstacles, one strategy that has found to be promising is the use of affinity tags or carrier peptide to aid in the folding of the target protein, increase solubility, lower toxicity and increase the level of expression. In the meantime, the tags and fusion proteins can be designed to facilitate affinity purification. Since the fusion protein may not exhibit the native conformation of the target protein, various strategies have been developed to remove the tag during or after purification to avoid potential complications in structural and functional studies and to obtain native biological activities. Despite extensive research and rapid development along these lines, there are unsolved problems and imperfect applications. This focused review compares and contrasts various strategies that employ affinity tags to improve bacterial expression and to facilitate purification of recombinant proteins. The pros and cons of the approaches are discussed for more effective applications and new directions of future improvement.

  3. Single-step purification of native miraculin using immobilized metal-affinity chromatography.

    PubMed

    Duhita, Narendra; Hiwasa-Tanase, Kyoko; Yoshida, Shigeki; Ezura, Hiroshi

    2009-06-24

    Miraculin is a taste-modifying protein that can be isolated from miracle fruit ( Richadella dulcifica ), a shrub native to West Africa. It is able to turn a sour taste into a sweet taste. The commercial exploitation of this sweetness-modifying protein is underway, and a fast and efficient purification method to extract the protein is needed. We succeeded in purifying miraculin from miracle fruit in a single-step purification using immobilized metal-affinity chromatography (IMAC). The purified miraculin exhibited high purity (>95%) in reverse-phase high-performance liquid chromatography. We also demonstrated the necessity of its structure for binding to the nickel-IMAC column.

  4. Affinity chromatography of porcine pepsin A using quinolin-8-ol as ligand.

    PubMed

    Novotná, Lenka; Hrubý, Martin; Benes, Milan J; Kucerová, Zdenka

    2005-08-19

    Stationary phase containing quinolin-8-ol immobilized on macroporous methacrylate support for the affinity chromatography of porcine pepsin A is described. Optimized chromatographic conditions for separation of porcine pepsin A on this stationary phase were found investigating the influence of pH, concentration, ionic strength and chemical composition of the used mobile phases. The stationary phase shows a good reproducibility of chromatographic analyses (relative standard deviation, +/-2%), a high recovery (ca. 93%) and a satisfactory capacity (13 mg pepsin A/1 mL stationary phase) for porcine pepsin A. The obtained findings confirm the applicability of affinity chromatography on the stationary phase with immobilized quinolin-8-ol to the isolation and determination of porcine pepsin A.

  5. Identification of potential cellular targets of aloisine A by affinity chromatography.

    PubMed

    Corbel, Caroline; Haddoub, Rose; Guiffant, Damien; Lozach, Olivier; Gueyrard, David; Lemoine, Jérôme; Ratin, Morgane; Meijer, Laurent; Bach, Stéphane; Goekjian, Peter

    2009-08-01

    Affinity chromatography was used to identify potential cellular targets of aloisine A (7-n-butyl-6-(4'-hydroxyphenyl)-5H-pyrrolo[2,3b]pyrazine), a potent inhibitor of cyclin-dependent kinases. This technique is based on the immobilization of the drug on a solid matrix, followed by identification of specifically bound proteins. To this end, both aloisine A and the protein-kinase inactive control N-methyl aloisine, bearing extended linker chains have been synthesized. We present the preparation of such analogues having the triethylene glycol chain at different positions of the molecule, as well as their immobilization on an agarose-based matrix. Affinity chromatography of various biological extracts on the aloisine matrices allowed the identification of both protein kinases and non-kinase proteins as potential cellular targets of aloisine.

  6. Preparation of adsorbents for affinity chromatography using TSKgel Tresyl-Toyopearl 650M.

    PubMed

    Nakamura, K; Toyoda, K; Kato, Y; Shimura, K; Kasai, K

    1989-09-08

    The optimum conditions for the coupling of proteins were investigated using TSKgel Tresyl-Toyopearl 650M. They were dependent on the proteins coupled. For example, when soybean trypsin inhibitor was coupled at pH 8 the coupling was completed within 1 h and the subsequent adsorption capacity for trypsin was maximal. Longer coupling times decreased the adsorption capacity due to multi-point attachment. The adsorbents obtained were successfully used for affinity chromatography in a short time.

  7. Optimising the design and operation of semi-continuous affinity chromatography for clinical and commercial manufacture.

    PubMed

    Pollock, James; Bolton, Glen; Coffman, Jon; Ho, Sa V; Bracewell, Daniel G; Farid, Suzanne S

    2013-04-05

    This paper presents an integrated experimental and modelling approach to evaluate the potential of semi-continuous chromatography for the capture of monoclonal antibodies (mAb) in clinical and commercial manufacture. Small-scale single-column experimental breakthrough studies were used to derive design equations for the semi-continuous affinity chromatography system. Verification runs with the semi-continuous 3-column and 4-column periodic counter current (PCC) chromatography system indicated the robustness of the design approach. The product quality profiles and step yields (after wash step optimisation) achieved were comparable to the standard batch process. The experimentally-derived design equations were incorporated into a decisional tool comprising dynamic simulation, process economics and sizing optimisation. The decisional tool was used to evaluate the economic and operational feasibility of whole mAb bioprocesses employing PCC affinity capture chromatography versus standard batch chromatography across a product's lifecycle from clinical to commercial manufacture. The tool predicted that PCC capture chromatography would offer more significant savings in direct costs for early-stage clinical manufacture (proof-of-concept) (∼30%) than for late-stage clinical (∼10-15%) or commercial (∼5%) manufacture. The evaluation also highlighted the potential facility fit issues that could arise with a capture resin (MabSelect) that experiences losses in binding capacity when operated in continuous mode over lengthy commercial campaigns. Consequently, the analysis explored the scenario of adopting the PCC system for clinical manufacture and switching to the standard batch process following product launch. The tool determined the PCC system design required to operate at commercial scale without facility fit issues and with similar costs to the standard batch process whilst pursuing a process change application. A retrofitting analysis established that the direct cost

  8. Immobilized Metal Affinity Chromatography Coupled to Multiple Reaction Monitoring Enables Reproducible Quantification of Phospho-signaling*

    PubMed Central

    Kennedy, Jacob J.; Yan, Ping; Zhao, Lei; Ivey, Richard G.; Voytovich, Uliana J.; Moore, Heather D.; Lin, Chenwei; Pogosova-Agadjanyan, Era L.; Stirewalt, Derek L.; Reding, Kerryn W.; Whiteaker, Jeffrey R.; Paulovich, Amanda G.

    2016-01-01

    A major goal in cell signaling research is the quantification of phosphorylation pharmacodynamics following perturbations. Traditional methods of studying cellular phospho-signaling measure one analyte at a time with poor standardization, rendering them inadequate for interrogating network biology and contributing to the irreproducibility of preclinical research. In this study, we test the feasibility of circumventing these issues by coupling immobilized metal affinity chromatography (IMAC)-based enrichment of phosphopeptides with targeted, multiple reaction monitoring (MRM) mass spectrometry to achieve precise, specific, standardized, multiplex quantification of phospho-signaling responses. A multiplex immobilized metal affinity chromatography- multiple reaction monitoring assay targeting phospho-analytes responsive to DNA damage was configured, analytically characterized, and deployed to generate phospho-pharmacodynamic curves from primary and immortalized human cells experiencing genotoxic stress. The multiplexed assays demonstrated linear ranges of ≥3 orders of magnitude, median lower limit of quantification of 0.64 fmol on column, median intra-assay variability of 9.3%, median inter-assay variability of 12.7%, and median total CV of 16.0%. The multiplex immobilized metal affinity chromatography- multiple reaction monitoring assay enabled robust quantification of 107 DNA damage-responsive phosphosites from human cells following DNA damage. The assays have been made publicly available as a resource to the community. The approach is generally applicable, enabling wide interrogation of signaling networks. PMID:26621847

  9. Method for trapping affinity chromatography of transcription factors using aldehyde-hydrazide coupling to agarose.

    PubMed

    Jia, Yinshan; Jarrett, Harry W

    2015-08-01

    The use of a method of coupling DNA was investigated for trapping and purifying transcription factors. Using the GFP-C/EBP (CAAT/enhancer binding protein) fusion protein as a model, trapping gives higher purity and comparable yield to conventional affinity chromatography. The chemistry used is mild and was shown to have no detrimental effect on GFP fluorescence or GFP-C/EBP DNA binding. The method involves introducing a ribose nucleotide to the 3' end of a DNA sequence. Reaction with mM NaIO4 (sodium metaperiodate) produces a dialdehyde of ribose that couples to hydrazide-agarose. The DNA is combined at nM concentration with a nuclear extract or other protein mixture, and DNA-protein complexes form. The complex is then coupled to hydrazide-agarose for trapping the DNA-protein complex and the protein eluted by increasing NaCl concentration. Using a different oligonucleotide with the proximal E-box sequence from the human telomerase promoter, USF-2 transcription factor was purified by trapping, again with higher purity than results from conventional affinity chromatography and similar yield. Other transcription factors binding E-boxes, including E2A, c-Myc, and Myo-D, were also purified, but myogenin and NFκB were not. Therefore, this approach proved to be valuable for both affinity chromatography and the trapping approach.

  10. Polystyrene as an affinity chromatography matrix for the purification of antibodies.

    PubMed

    Staak, C; Salchow, F; Clausen, P H; Luge, E

    1996-08-14

    Affinity chromatography is used for the purification of diagnostic polyclonal antibodies in order to ensure specificity. Most commonly, activated bead-formed agarose or its derivatives are used as gel matrices. Alternative matrix materials have been described, but as yet they do not appear to offer important advantages. In this study, pulverized polystyrene (PS 158K, BASF, Mannheim, Germany) was used as a solid phase for the immobilisation of bovine immunoglobulins (Ig). Affinity chromatography was performed using these coated polystyrene beads as the column matrix material in the purification of anti-bovine Ig. The polystyrene binding capacity for the different bovine Ig classes was compared using the Mancini single radial immunodiffusion technique, and ELISA procedures were used to monitor the antibody reactivity of purified and unpurified antibodies. The degree of purification was comparable to the most commonly used procedure using gel matrices from activated bead-formed agarose (e.g. CNBr-activated Sepharose 4B, Pharmacia/LKB Biotechnology, Uppsala, Sweden), but the antibody yield per ml column volume was distinctly lower. In order to raise the yield, such polystyrene bead columns with immobilized antigen can be re-used without loss of activity or larger column volumes can be used to raise the binding capacity. The polystyrene material is quite durable, chemically and immunologically inert and has a long shelf life. We conclude that polystyrene based affinity chromatography is efficient, simple and cheap.

  11. Isolation and purification of blood group antigens using immuno-affinity chromatography on short monolithic columns.

    PubMed

    Mönster, Andrea; Hiller, Oliver; Grüger, Daniela; Blasczyk, Rainer; Kasper, Cornelia

    2011-02-04

    Monolithic columns have gained increasing attention as stationary phases for the separation of biomolecules and biopharmaceuticals. In the present work the performance of monolithic convective interaction media (CIM(®)) chromatography for the purification of blood group antigens was established. The proteins employed in this study are derived from blood group antigens Knops, JMH and Scianna, equipped both with a His-tag and with a V5-tag by which they can be purified. In a first step a monoclonal antibody directed against the V5-tag was immobilized on a CIM(®) Disk with epoxy chemistry. After this, the immobilized CIM(®) Disk was used in immuno-affinity chromatography to purify the three blood group antigens from cell culture supernatant. Up-scaling of the applied technology was carried out using CIM(®) Tubes. In comparison to conventional affinity chromatography, blood group antigens were also purified via His-tag using a HiTrap(®) metal-affinity column. The two purifications have been compared regarding purity, yield and purification speed. Using the monolithic support, it was possible to isolate the blood group antigens with a higher flow rate than using the conventional bed-packed column.

  12. Identification of proteins interacting with ammodytoxins in Vipera ammodytes ammodytes venom by immuno-affinity chromatography.

    PubMed

    Brgles, Marija; Kurtović, Tihana; Kovačič, Lidija; Križaj, Igor; Barut, Miloš; Lang Balija, Maja; Allmaier, Günter; Marchetti-Deschmann, Martina; Halassy, Beata

    2014-01-01

    In order to perform their function, proteins frequently interact with other proteins. Various methods are used to reveal protein interacting partners, and affinity chromatography is one of them. Snake venom is composed mostly of proteins, and various protein complexes in the venom have been found to exhibit higher toxicity levels than respective components separately. Complexes can modulate envenomation activity of a venom and/or potentiate its effect. Our previous data indicate that the most toxic components of the Vipera ammodytes ammodytes (Vaa) venom isolated so far-ammodytoxins (Atxs)-are contributing to the venom's toxicity only moderately; therefore, we aimed to explore whether they have some interacting partner(s) potentiating toxicity. For screening of possible interactions, immuno-affinity chromatography combined with identification by mass spectrometry was used. Various chemistries (epoxy, carbonyldiimidazole, ethylenediamine) as well as protein G functionality were used to immobilize antibodies on monolith support, a Convective Interaction Media disk. Monoliths have been demonstrated to better suit the separation of large biomolecules. Using such approach, several proteins were indicated as potential Atx-binding proteins. Among these, the interaction of Atxs with a Kunitz-type inhibitor was confirmed by far-Western dot-blot and surface plasmon resonance measurement. It can be concluded that affinity chromatography on monolithic columns combined with mass spectrometry identification is a successful approach for screening of protein interactions and it resulted with detection of the interaction of Atx with Kunitz-type inhibitor in Vaa venom for the first time.

  13. A novel approach for separating bacteriophages from other bacteriophages using affinity chromatography and phage display.

    PubMed

    Ceglarek, Izabela; Piotrowicz, Agnieszka; Lecion, Dorota; Miernikiewicz, Paulina; Owczarek, Barbara; Hodyra, Katarzyna; Harhala, Marek; Górski, Andrzej; Dąbrowska, Krystyna

    2013-11-14

    Practical applications of bacteriophages in medicine and biotechnology induce a great need for technologies of phage purification. None of the popular methods offer solutions for separation of a phage from another similar phage. We used affinity chromatography combined with competitive phage display (i) to purify T4 bacteriophage from bacterial debris and (ii) to separate T4 from other contaminating bacteriophages. In 'competitive phage display' bacterial cells produced both wild types of the proteins (expression from the phage genome) and the protein fusions with affinity tags (expression from the expression vectors). Fusion proteins were competitively incorporated into the phage capsid. It allowed effective separation of T4 from a contaminating phage on standard affinity resins.

  14. Robotic high-throughput purification of affinity-tagged recombinant proteins.

    PubMed

    Wiesler, Simone C; Weinzierl, Robert O J

    2015-01-01

    Affinity purification of recombinant proteins has become the method of choice to obtain good quantities and qualities of proteins for a variety of downstream biochemical applications. While manual or FPLC-assisted purification techniques are generally time-consuming and labor-intensive, the advent of high-throughput technologies and liquid handling robotics has simplified and accelerated this process significantly. Additionally, without the human factor as a potential source of error, automated purification protocols allow for the generation of large numbers of proteins simultaneously and under directly comparable conditions. The delivered material is ideal for activity comparisons of different variants of the same protein. Here, we present our strategy for the simultaneous purification of up to 24 affinity-tagged proteins for activity measurements in biochemical assays. The protocol described is suitable for the scale typically required in individual research laboratories.

  15. A Novel Recombinant DNA System for High Efficiency Affinity Purification of Proteins in Saccharomyces cerevisiae

    PubMed Central

    Carrick, Brian H.; Hao, Linxuan; Smaldino, Philip J.; Engelke, David R.

    2015-01-01

    Isolation of endogenous proteins from Saccharomyces cerevisiae has been facilitated by inserting encoding polypeptide affinity tags at the C-termini of chromosomal open reading frames (ORFs) using homologous recombination of DNA fragments. Tagged protein isolation is limited by a number of factors, including high cost of affinity resins for bulk isolation and low concentration of ligands on the resin surface, leading to low isolation efficiencies and trapping of contaminants. To address this, we have created a recombinant “CelTag” DNA construct from which PCR fragments can be created to easily tag C-termini of S. cerevisiae ORFs using selection for a nat1 marker. The tag has a C-terminal cellulose binding module to be used in the first affinity step. Microgranular cellulose is very inexpensive and has an effectively continuous ligand on its surface, allowing rapid, highly efficient purification with minimal background. Cellulose-bound proteins are released by specific cleavage of an included site for TEV protease, giving nearly pure product. The tag can be lifted from the recombinant DNA construct either with or without a 13x myc epitope tag between the target ORF and the TEV protease site. Binding of CelTag protein fusions to cellulose is stable to high salt, nonionic detergents, and 1 M urea, allowing stringent washing conditions to remove loosely associated components, as needed, before specific elution. It is anticipated that this reagent could allow isolation of protein complexes from large quantities of yeast extract, including soluble, membrane-bound, or nucleic acid-associated assemblies. PMID:26715090

  16. A Novel Recombinant DNA System for High Efficiency Affinity Purification of Proteins in Saccharomyces cerevisiae.

    PubMed

    Carrick, Brian H; Hao, Linxuan; Smaldino, Philip J; Engelke, David R

    2015-12-29

    Isolation of endogenous proteins from Saccharomyces cerevisiae has been facilitated by inserting encoding polypeptide affinity tags at the C-termini of chromosomal open reading frames (ORFs) using homologous recombination of DNA fragments. Tagged protein isolation is limited by a number of factors, including high cost of affinity resins for bulk isolation and low concentration of ligands on the resin surface, leading to low isolation efficiencies and trapping of contaminants. To address this, we have created a recombinant "CelTag" DNA construct from which PCR fragments can be created to easily tag C-termini of S. cerevisiae ORFs using selection for a nat1 marker. The tag has a C-terminal cellulose binding module to be used in the first affinity step. Microgranular cellulose is very inexpensive and has an effectively continuous ligand on its surface, allowing rapid, highly efficient purification with minimal background. Cellulose-bound proteins are released by specific cleavage of an included site for TEV protease, giving nearly pure product. The tag can be lifted from the recombinant DNA construct either with or without a 13x myc epitope tag between the target ORF and the TEV protease site. Binding of CelTag protein fusions to cellulose is stable to high salt, nonionic detergents, and 1 M urea, allowing stringent washing conditions to remove loosely associated components, as needed, before specific elution. It is anticipated that this reagent could allow isolation of protein complexes from large quantities of yeast extract, including soluble, membrane-bound, or nucleic acid-associated assemblies.

  17. Purification to homogeneity of an active opioid receptor from rat brain by affinity chromatography.

    PubMed

    Loukas, S; Mercouris, M; Panetsos, F; Zioudrou, C

    1994-05-10

    Active opioid binding proteins were solubilized from rat brain membranes in high yield with sodium deoxycholate in the presence of NaCl. Purification of opioid binding proteins was accomplished by opioid antagonist affinity chromatography. Chromatography using the delta-opioid antagonist N,N-diallyl-Tyr-D-Leu-Gly-Tyr-Leu attached to omega-aminododecyl-agarose (Affi-G) (procedure A) yielded a partially purified protein that binds selectively the delta-opioid agonist [3H]Tyr-D-Ser-Gly-Phe-Leu-Thr ([3H]DSLET), with a Kd of 19 +/- 3 nM and a Bmax of 5.1 +/- 0.4 nmol/mg of protein. Subsequently, Lens culinaris agglutinin-Sepharose 4B chromatography of the Affi-G eluate resulted in isolation of an electrophoretically homogeneous protein of 58 kDa that binds selectively [3H]DSLET with a Kd of 21 +/- 3 nM and a Bmax of 16.5 +/- 1.0 nmol/mg of protein. Chromatography using the nonselective antagonist 6-aminonaloxone coupled to 6-aminohexanoic acid-Sepharose 4B (Affi-NAL) (procedure B) resulted in isolation of a protein that binds selectively [3H]DSLET with a Kd of 32 +/- 2 nM and a Bmax of 12.4 +/- 0.5 nmol/mg of protein, and NaDodSO4/PAGE revealed a major band of apparent molecular mass 58 kDa. Polyclonal antibodies (Anti-R IgG) raised against the Affi-NAL protein inhibit the specific [3H]DSLET binding to the Affi-NAL eluate and to the solubilized membranes. Moreover, the Anti-R IgG inhibits the specific binding of radiolabeled Tyr-D-Ala-Gly-N-methyl-Phe-Gly-ol (DAMGO; mu-agonist), DSLET (delta-agonist), and naloxone to homogenates of rat brain membranes with equal potency. Furthermore, immunoaffinity chromatography of solubilized membranes resulted in the retention of a major protein of apparent molecular mass 58 kDa. In addition, immunoblotting of solubilized membranes and purified proteins from the Affi-G and Affi-NAL matrices revealed that the Anti-R IgG interacts with a protein of 58 kDa.

  18. Kosmotropes enhance the yield of antibody purified by affinity chromatography using immobilized bacterial immunoglobulin binding proteins.

    PubMed

    Ngo, That T; Narinesingh, Dyer

    2008-01-01

    The yield of antibody purified using affinity chromatography on immobilized Protein A or Protein G was increased up to 5-fold (500%) by including kosmotropic salts in the binding buffer. The binding buffer is used to equilibrate the affinity column before applying a sample to the column and also to dilute the sample prior to loading onto the affinity column to optimize conditions for a maximal binding of antibodies to affinity gels. In this study, the kosmotropic salts that were effective in greatly increasing antibody binding to Protein A included both inorganic and organic salts of ammonium; sodium; or potassium sulfate, phosphate, polycarboxylates; for example, succinate, citrate, isocitrate, N-(2-hydroxyethylene diamine triacetate (HEDTA), ethylene diamine tetraacetate (EDTA), and ethylene glycol-O,O'-bis(2-aminoethyl)-N,N,N'N'-tetra acetate(EGTA). On an equal-molar basis, the greater the number of carboxylic groups within the polycarboxylate molecule, the greater the increase in the yield of the purified antibody that was observed. The data show that kosmotropes can be used as effective additives to enhance the binding of immunoglobulins to Protein A or Protein G gels with a resultant increase in the yield of the purified antibodies. Thus, it appears that strongly hydrated anions (citrate, sulfate, and phosphate) and weakly hydrated cations (ammonium, potassium) increase the yield of antibody purified on either Protein A or Protein G affinity gels.

  19. Purification of prenylated proteins by affinity chromatography on cyclodextrin-modified agarose

    PubMed Central

    Chung, Jinhwa A.; Wollack, James W.; Hovlid, Marisa L.; Okesli, Ayse; Chen, Yan; Mueller, Joachim D.; Distefano, Mark D.; Taton, T. Andrew

    2009-01-01

    Although protein prenylation is widely studied, there are few good methods for isolating prenylated proteins from their non-prenylated relatives. We report that crosslinked agarose (e.g., Sepharose) chromatography media that has been chemically functionalized with β-cyclodextrin (β-CD) is extremely effective in affinity chromatography of prenylated proteins. In this study, a variety of proteins with C-terminal prenylation target (“CAAX box”) sequences were enzymatically prenylated in vitro with natural and non-natural prenyl diphosphate substrates. The prenylated protein products could then be isolated from starting materials by gravity chromatography or fast protein liquid chromatography (FPLC) on a β-CD-Sepharose column. One particular prenylation reaction—farnesylation of a mCherry-CAAX fusion construct—was studied in detail. In this case, purified farnesylated product was unambiguously identified by electrospray mass spectrometry. In addition, when mCherry-CAAX was prenylated with a non-natural, functional isoprenoid substrate, the functional group was maintained by chromatography on β-CD-Sepharose, such that the resulting protein could be selectively bound at its C terminus to complementary functionality on a solid substrate. Finally, β-CD-Sepharose FPLC was used to isolate prenylated mCherry-CAAX from crude HeLa cell lysate, as a model for purifying prenylated proteins from cell extracts. We propose that this method could be generally useful to the community of researchers studying protein prenylation. PMID:18834849

  20. Aflatoxin metabolism in humans: detection of metabolites and nucleic acid adducts in urine by affinity chromatography

    SciTech Connect

    Groopman, J.D.; Donahue, P.R.; Zhu, J.Q.; Chen, J.S.; Wogan, G.N.

    1985-10-01

    A high-affinity IgM monoclonal antibody specific for aflatoxins was covalently bound to Sepharose 4B and used as a preparative column to isolate aflatoxin derivatives from the urine of people and experimental animals who had been exposed to the carcinogen environmentally or under laboratory conditions. Aflatoxin levels were quantified by radioimmunoassay and high-performance liquid chromatography after elution from the affinity column. In studies on rats injected with ( UC)aflatoxin B1, the authors identified the major aflatoxin-DNA adduct, 2,3-dihydro-2-(N7-guanyl)-3-hydroxy-aflatoxin B1 (AFB1-N7-Gua), and the oxidative metabolites M1 and P1 as the major aflatoxin species present in the urine. When this methodology was applied to human urine samples obtained from people from the Guangxi Province of China exposed to aflatoxin B1 through dietary contamination, the aflatoxin metabolites detected were also AFB1-N7-Gua and aflatoxins M1 and P1. Therefore, affinity chromatography using a monoclonal antibody represents a useful and rapid technique with which to isolate this carcinogen and its metabolites in biochemical epidemiology and for subsequent quantitative measurements, providing exposure information that can be used for risk assessment.

  1. Development and Validation of an Affinity Chromatography-Protein G Method for IgG Quantification

    PubMed Central

    Paradina Fernández, Lesly; Calvo, Loany; Viña, Lisel

    2014-01-01

    Nimotuzumab, an IgG that recognizes the epidermal growth factor receptor (EGF-R) overexpressed in some tumors, is used in the treatment of advanced head and neck cancer. For the quantification of this protein in cell culture supernatants, protein G-HPLC affinity chromatography is used due to its high affinity and specificity for antibodies of this class. The technique relies on the comparison of the area under the curve of the elution peak of the samples to be evaluated versus to a calibration curve of well-known concentrations and was validated by assessment of its robustness, specificity, repeatability, intermediate precision, accuracy, linearity, limit of detection, limit of quantification, and range. According to results of the study all validation parameters fulfilled the preestablished acceptance criteria and demonstrated the feasibility of the assay for the analysis of samples of cell culture supernatant as well as drug product. PMID:27379284

  2. A novel strategy for the purification of a recombinant protein using ceramic fluorapatite-binding peptides as affinity tags.

    PubMed

    Islam, Tuhidul; Aguilar-Yañez, José Manuel; Simental-Martínez, Jesús; Ortiz-Alcaraz, Cesar Ivan; Rito-Palomares, Marco; Fernandez-Lahore, Marcelo

    2014-04-25

    In recent years, affinity fusion-tag systems have become a popular technique for the purification of recombinant proteins from crude extracts. However, several drawbacks including the high expense and low stability of ligands, their leakage during operation, and difficulties in immobilization, make it important to further develop the method. The present work is concerned with the utilization of a ceramic fluorapatite (CFT)-based chromatographic matrix to overcome these drawbacks. A heptapeptide library exhibiting a range of properties have been synthesized and subjected to ceramic fluorapatite (CFT) chromatography to characterize their retention behavior as a function of pH and composition of the binding buffer. The specific binding and elution behavior demonstrates the possible application of CFT-binding peptides as tags for enhancing the selective recovery of proteins by CFT chromatography. To materialize this strategy, a phage-derived CFT-specific sequence KPRSVSG (Tag1) with/without a consecutive hexalysine sequence, KKKKKKKPRSVSG (Tag2), were fused at the C-terminus of an enhanced green fluorescent protein (eGFP). The resulting gene constructs H-eGFP, H-eGFP-Tag1 and H-eGFP-Tag2 were expressed in Escherichia coli strain BL-21, and the clarified cell lysate was applied to the CFT column equilibrated with binding buffer (20-50mM sodium phosphate, pH 6-8.4). Sodium phosphate (500mM) or 1M NaCl in the respective binding buffer was used to elute the fused proteins, and the chromatographic fractions were analyzed by gel electrophoresis. Both the yield and purity were over 90%, demonstrating the potential application of the present strategy.

  3. Isolation and partial characterization of Bromelia hemisphaerica protease by affinity chromatography.

    PubMed

    Ochoa, N; Agundis, C; Córdoba, F

    1987-01-01

    Hemisphaericin, the protease from Bromelia hemisphaerica fruit juice was isolated by affinity chromatography in one step, using a mercurial sepharose derivative. The enzyme behaves as a single component in immunodifussion, immunoelectrophoresis and polyacrylamide electrophoresis in the presence of SDS and 2-mercaptoethanol. Association and dissociation of active components were evidenced in electrophoresis at pH 3.6 and at pH 8.6. Immunoelectrophoresis analyses also disclosed a certain degree of internal immunological heterogeneity. The results are explained by the presence of an enzyme subunit, of about 8000 daltons, endowed with polymeric properties induced by the pH and oxidative environment.

  4. Rapid and Complete Purification of Acetylcholinesterases of Electric Eel and Erythrocyte by Affinity Chromatography

    PubMed Central

    Berman, Jonathan Dembitz; Young, Michael

    1971-01-01

    Affinity chromatography has been used to purify acetylcholinesterase both from the electric tissue of Electrophorus electricus and from bovine erythrocyte membranes. For this purpose, several specific enzymic inhibitors of each protein were synthesized and joined covalently to an insoluble support resin. AchE is selectively retained by such inhibitor-resins when highly impure solutions are chromatographed upon them. After removal from the resin, both enzymes are electrophoretically homogeneous and they may be recovered in yields of 75% or more. Images PMID:5277092

  5. Procedure for rapid isolation of photosynthetic reaction centers using cytochrome c affinity chromatography

    SciTech Connect

    Brudvig, G.W.; Worland, S.T.; Sauer, K.

    1983-02-01

    Horse heart cytochrome c linked to Sepharose 4B is used to purify reaction centers from Rhodopseudomonas sphaeroides R-26. This procedure allows for an initial recovery of 80-90% of the bacterial reaction centers present in chromatophore membranes. High purity reaction centers (A/sub 280//A/sub 802/ < 1.30) can be obtained with a 30% recovery. Reaction centers from wild-type Rps. sphaeroides and Rps. capsulata also bind to a cytochrome c column. Cytochrome c affinity chromatography can also be used to isolate photosystem I complexes from spinach chloroplasts.

  6. Partial purification of the microsomal rat liver iodothyronine deiodinase. II. Affinity chromatography.

    PubMed

    Mol, J A; van den Berg, T P; Visser, T J

    1988-02-01

    Iodothyronine deiodinase has been solubilized and purified approximately 2400 times from liver microsomal fractions of male Wistar rats pretreated with thyroxine. The deiodinase was solubilized with 1% cholate, and stripped of adhering phospholipids by ammonium sulfate precipitation followed by solubilization with the non-ionic detergent Emulgen 911. The enzyme was further purified by successive ion-exchange chromatography on DEAE-Sephacel and Cellex-P and affinity chromatography on 3,3',5-triiodothyronine-Sepharose. Finally, the deiodinase was reacted with 6-propionyl-2-thiouracil-Sepharose, a derivative of the mechanism-based inhibitor 6-propyl-2-thiouracil. Covalent binding was observed only in the presence of substrate in agreement with the proposed mechanism of deiodination. The deiodinase was eluted from the affinity column by reduction of the enzyme-propylthiouracil mixed disulfide with 50 mM dithiothreitol. The enzyme was approximately 50% pure as judged by SDS-PAGE, exhibiting a subunit molecular weight of 25,000. This preparation was equally enriched in outer ring and inner ring deiodinase activities in keeping with the view that both are intrinsic to a single, type I deiodinase.

  7. A new affinity approach to isolate Escherichia coli 6S RNA with histidine-chromatography.

    PubMed

    Martins, R; Queiroz, J A; Sousa, F

    2010-01-01

    6S RNA is an abundant non-coding RNA in Escherichia coli (E. coli), but its function has not been discovered until recently. The first advance on 6S RNA function was the demonstration of its ability to bind the σ(70)-holoenzyme form of RNA polymerase, inhibiting its activity and consequently the transcription process. The growing interest in the investigation of non-coding small RNAs (sRNA) calls for the development of new methods for isolation and purification of RNA. This work presents an optimized RNA extraction procedure and describes a new affinity chromatography method using a histidine support to specifically purify 6S RNA from other E. coli sRNA species. The RNA extraction procedure was optimized, and a high yield was obtained in the separation of sRNA and ribosomal RNA (rRNA) from total RNA (RNAt). This improved method takes advantage of its simplicity and significant cost reduction, since some complex operations have been eliminated. A purification strategy was also developed to separate 6S RNA from an sRNA mixture. Pure RNA can be advantageously obtained using the histidine-affinity chromatography method, aiming at its application to structural or functional studies.

  8. Affinity chromatography reveals RuBisCO as an ecdysteroid-binding protein.

    PubMed

    Uhlik, Ondrej; Kamlar, Marek; Kohout, Ladislav; Jezek, Rudolf; Harmatha, Juraj; Macek, Tomas

    2008-12-22

    The aim of this work was to isolate plant ecdysteroid-binding proteins using affinity chromatography. Ecdysteroids as insect hormones have been investigated thoroughly but their function and the mechanism of action in plants and other organisms is still unknown although ecdysteroids occur in some plants in a relatively large amount. Therefore, 20-hydroxyecdysone was immobilized on a polymeric carrier as a ligand for affinity chromatography in order to isolate plant ecdysteroid-binding proteins from the cytosolic extract of New Zealand spinach (Tetragonia tetragonoides). Non-specifically bound proteins were eluted with a rising gradient of concentration of sodium chloride, and 3% (v/v) acetic acid was used for the elution of the specifically bound proteins. Using this method, ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) was isolated. The influence of ecdysteroids on RuBisCO was further studied. Our results show that ecdysteroids are able to increase the yield of RuBisCO-mediated reaction in which CO(2) is fixed into organic matter by more than 10%.

  9. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies

    PubMed Central

    Boulet-Audet, Maxime; Kazarian, Sergei G.; Byrne, Bernadette

    2016-01-01

    In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan. PMID:27470880

  10. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies

    NASA Astrophysics Data System (ADS)

    Boulet-Audet, Maxime; Kazarian, Sergei G.; Byrne, Bernadette

    2016-07-01

    In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan.

  11. Application of Frontal Affinity Chromatography to Study the Biomolecular Interactions with Trypsin.

    PubMed

    Hu, YuanYuan; Qian, Junqing; Guo, Hui; Jiang, ShengLan; Zhang, Zheng

    2015-07-01

    Trypsin is a serine protease that has been proposed as a potential therapeutic target for metabolic disorders and malignancy diseases, thus the identification of biomolecular interactions of compounds to trypsin could be of great therapeutic importance. In this study, trypsin was immobilized on a monolithic silica capillary column via sol-gel. The binding properties of four small molecules (daidzin, genistin, matrine and oxymatrine) to trypsin were examined using the trypsin affinity columns by frontal analysis. The results indicate that the matrine (dissociation constant, Kd = 7.904 μM) has stronger interaction with trypsin than the oxymatrine (Kd = 8.204 μM), whereas daidzin and genistin were nearly have no affinity with trypsin. The results demonstrated that the frontal affinity chromatography can be used for the direct determination of protein-protease inhibitor binding interactions and have several significant advantages, including easy fabricating, reproducible, minimal technological requirements and potential to become a reliable alternative for quantitative studies of biomolecular interactions.

  12. The development of mitochondrial membrane affinity chromatography columns for the study of mitochondrial transmembrane proteins

    PubMed Central

    Habicht, K-L.; Singh, N.S.; Indig, F.E.; Wainer, I.W.; Moaddel, R.; Shimmo, R.

    2015-01-01

    Mitochondrial membrane fragments from U-87 MG (U87MG) and HEK-293 cells were successfully immobilized on to Immobilized Artificial Membrane (IAM) chromatographic support and surface of activated open tubular (OT) silica capillary resulting in mitochondrial membrane affinity chromatography (MMAC) columns. Translocator protein (TSPO), located in mitochondrial outer membrane as well as sulfonylurea and mitochondrial permeability transition pore (mPTP) receptors, localized to the inner membrane, were characterized. Frontal displacement experiments with multiple concentrations of dipyridamole (DIPY) and PK-11195 were run on MMAC-(U87MG) column and the binding affinities (Kd) determined were 1.08 ± 1.49 and 0.0086 ± 0.0006 μM respectively, which was consistent with previously reported values. Further, binding affinities (Ki) for DIPY binding site were determined for TSPO ligands, PK-11195, mesoporphyrin IX, protoporphyrin IX and rotenone. Additionally, the relative ranking of these TSPO ligands based on single displacement studies using DIPY as marker on MMAC-(U87MG) was consistent with the obtained Ki values. The immobilization of mitochondrial membrane fragments was also confirmed by confocal microscopy. PMID:26049098

  13. Affinity chromatography of chaperones based on denatured proteins: Analysis of cell lysates of different origin.

    PubMed

    Marchenko, N Yu; Sikorskaya, E V; Marchenkov, V V; Kashparov, I A; Semisotnov, G V

    2016-03-01

    Molecular chaperones are involved in folding, oligomerization, transport, and degradation of numerous cellular proteins. Most of chaperones are heat-shock proteins (HSPs). A number of diseases of various organisms are accompanied by changes in the structure and functional activity of chaperones, thereby revealing their vital importance. One of the fundamental properties of chaperones is their ability to bind polypeptides lacking a rigid spatial structure. Here, we demonstrate that affinity chromatography using sorbents with covalently attached denatured proteins allows effective purification and quantitative assessment of their bound protein partners. Using pure Escherichia coli chaperone GroEL (Hsp60), the capacity of denatured pepsin or lysozyme-based affinity sorbents was evaluated as 1 mg and 1.4 mg of GroEL per 1 ml of sorbent, respectively. Cell lysates of bacteria (E. coli, Thermus thermophilus, and Yersinia pseudotuberculosis), archaea (Halorubrum lacusprofundi) as well as the lysate of rat liver mitochondria were analyzed using affinity carrier with denatured lysozyme. It was found that, apart from Hsp60, other proteins with a molecular weight of about 100, 50, 40, and 20 kDa are able to interact with denatured lysozyme.

  14. Immunoproteomics using polyclonal antibodies and stable isotope-labeled affinity-purified recombinant proteins.

    PubMed

    Edfors, Fredrik; Boström, Tove; Forsström, Björn; Zeiler, Marlis; Johansson, Henrik; Lundberg, Emma; Hober, Sophia; Lehtiö, Janne; Mann, Matthias; Uhlen, Mathias

    2014-06-01

    The combination of immuno-based methods and mass spectrometry detection has great potential in the field of quantitative proteomics. Here, we describe a new method (immuno-SILAC) for the absolute quantification of proteins in complex samples based on polyclonal antibodies and stable isotope-labeled recombinant protein fragments to allow affinity enrichment prior to mass spectrometry analysis and accurate quantification. We took advantage of the antibody resources publicly available from the Human Protein Atlas project covering more than 80% of all human protein-coding genes. Epitope mapping revealed that a majority of the polyclonal antibodies recognized multiple linear epitopes, and based on these results, a semi-automated method was developed for peptide enrichment using polyclonal antibodies immobilized on protein A-coated magnetic beads. A protocol based on the simultaneous multiplex capture of more than 40 protein targets showed that approximately half of the antibodies enriched at least one functional peptide detected in the subsequent mass spectrometry analysis. The approach was further developed to also generate quantitative data via the addition of heavy isotope-labeled recombinant protein fragment standards prior to trypsin digestion. Here, we show that we were able to use small amounts of antibodies (50 ng per target) in this manner for efficient multiplex analysis of quantitative levels of proteins in a human HeLa cell lysate. The results suggest that polyclonal antibodies generated via immunization of recombinant protein fragments could be used for the enrichment of target peptides to allow for rapid mass spectrometry analysis taking advantage of a substantial reduction in sample complexity. The possibility of building up a proteome-wide resource for immuno-SILAC assays based on publicly available antibody resources is discussed.

  15. Isolation and purification of recombinant human plasminogen Kringle 5 by liquid chromatography and ammonium sulfate salting-out.

    PubMed

    Bian, Liujiao; Ji, Xu; Hu, Wei

    2014-07-01

    In this work, a novel method was established to isolate and purify Human plasminogen Kringle 5 (HPK5) as a histidine-tagged fusion protein expressed in Escherichia coli BL21 (DE3). This method consisted of sample extraction using a Ni-chelated Sepharose Fast-Flow affinity column, ammonium sulfate salting-out and Sephadex G-75 size-exclusion column in turn. The purity analysis by SDS-PAGE, high-performance size-exclusion and reversed-phase chromatographies showed that the obtained recombinant fusion HPK5 was homogeneous and its purity was higher than 96%; the activity analysis by chorioallantoic membrane model of chicken embryos revealed that the purified recombinant HPK5 exhibited an obvious anti-angiogenic activity under the effective range of 5.0-25.0 µg/mL. Through this procedure, about 19 mg purified recombinant fusion HPK5 can be obtained from 1 L of original fermentation solution. Approximate 32% of the total recombinant fusion HPK5 can be captured and the total yield was approximately 11%.

  16. Selective isolation of β-glucan from corn pericarp hemicelluloses by affinity chromatography on cellulose column.

    PubMed

    Yoshida, Tomoki; Honda, Yoichi; Tsujimoto, Takashi; Uyama, Hiroshi; Azuma, Jun-ichi

    2014-10-13

    A combination of anion-exchange chromatography and affinity chromatography on a cellulose column was found to be effective for the isolation of β-(1,3;1,4)-glucan (BG) from corn pericarp hemicelluloses (CPHs). CPHs containing 6.6% BG were extracted from corn pericarp with 6M urea-2 wt% NaOH solution and initially fractionated into neutral and acidic parts by anion exchange chromatography to remove acidic arabinoxylan consisting of arabinose (35.6%) and xylose (50.9%). The neutral fraction (yield; 10.1% on the basis of CPHs) consisting of 1.0% arabinose, 10.1% xylose and 80.3% glucose containing 28.4% BG was then applied to a cellulose column of Whatman CF-11. BG could be recovered from the adsorbed fraction on the cellulose column by elution with 2% NaOH in a yield of 2.6% on the basis of CPHs with a purity of 84.7%. The chemical structure of the isolated corn pericarp BG was confirmed by (13)C NMR spectroscopic, methylation and lichenase treatment analyses. The results indicate that the ratios of (1,4)/(1,3) linkage and cellotriosyl/cellotetraosyl segments of the BG were 2.60 and 2.5, respectively.

  17. The Dynamics Behind the Affinity: Controlling Heme-Gas Affinity via Geminate Recombination and Heme Propionate Conformation in the NO Carrier Cytochrome c'.

    PubMed

    Andrew, Colin R; Petrova, Olga N; Lamarre, Isabelle; Lambry, Jean-Christophe; Rappaport, Fabrice; Negrerie, Michel

    2016-11-18

    Nitric oxide (NO) sensors are heme proteins which may also bind CO and O2. Control of heme-gas affinity and their discrimination are achieved by the structural properties and reactivity of the heme and its distal and proximal environments, leading to several energy barriers. In the bacterial NO sensor cytochrome c' from Alcaligenes xylosoxidans (AXCP), the single Leu16Ala distal mutation boosts the affinity for gas ligands by a remarkable 10(6)-10(8)-fold, transforming AXCP from one of the lowest affinity gas binding proteins to one of the highest. Here, we report the dynamics of diatomics after photodissociation from wild type and L16A-AXCP over 12 orders of magnitude in time. For the L16A variant, the picosecond geminate rebinding of both CO and NO appears with an unprecedented 100% yield, and no exit of these ligands from protein to solvent could be observed. Molecular dynamic simulations saliently demonstrate that dissociated CO stays within 4 Å from Fe(2+), in contrast to wild-type AXCP. The L16A mutation confers a heme propionate conformation and docking site which traps the diatomics, maximizing the probability of recombination and directly explaining the ultrahigh affinities for CO, NO, and O2. Overall, our results point to a novel mechanism for modulating heme-gas affinities in proteins.

  18. Purification and characterization of a new type lactose-binding Ulex europaeus lectin by affinity chromatography.

    PubMed

    Konami, Y; Yamamoto, K; Osawa, T

    1991-02-01

    A new type lactose-binding lectin was purified from extracts of Ulex europaeus seeds by affinity chromatography on a column of galactose-Sepharose 4B, followed by gel filtration on Sephacryl S-300. This lectin, designated as Ulex europaeus lectin III (UEA-III), was found to be inhibited by lactose. The dimeric lectin is a glycoprotein with a molecular mass of 70,000 Da; it consists of two apparently identical subunits of a molecular mass of 34,000 Da. Compositional analysis showed that this lectin contains 30% carbohydrate and a large amount of aspartic acid, serine and valine, but no sulfur-containing amino acids. The N-terminal amino-acid sequences of L-fucose-binding Ulex europaeus lectin I (UEA-I) and di-N-acetylchitobiose-binding Ulex europaeus lectin II (UEA-II), both of which we have already purified and characterized, and that of UEA-III were determined and compared.

  19. Identification of the Cardiac Beta-Adrenergic Receptor Protein: Solubilization and Purification by Affinity Chromatography

    PubMed Central

    Lefkowitz, Robert J.; Haber, Edgar; O'Hara, Donald

    1972-01-01

    A protein that binds catecholamines with a specificity parallel to that of their in vivo effects on cardiac contractility (isoproterenol > epinephrine or norepinephrine > dopamine > dihydroxyphenylalanine) was solubilized from a microsomal fraction of canine ventricular myocardium. The binding protein was purified 500 to 800-fold by solubilization and subsequent affinity chromatography with conjugates of norepinephrine linked to agarose beads. Purified β-adrenergic binding protein exists in two forms, corresponding to molecular weights of 40,000 and 160,000. The purified material has a single association constant, 2.3 × 105 liters/mol (as compared to two association constants, 107 and 106 liters/mol, for the binding protein in particulate form) but retains the identical binding specificity for β-adrenergic drugs and antagonists. Images PMID:4507606

  20. Protein Affinity Chromatography with Purified Yeast DNA Polymerase α Detects Proteins that Bind to DNA Polymerase

    NASA Astrophysics Data System (ADS)

    Miles, Jeff; Formosa, Tim

    1992-02-01

    We have overexpressed the POL1 gene of the yeast Saccharomyces cerevisiae and purified the resulting DNA polymerase α polypeptide in an apparently intact form. We attached the purified DNA polymerase covalently to an agarose matrix and used this matrix to chromatograph extracts prepared from yeast cells. At least six proteins bound to the yeast DNA polymerase α matrix that did not bind to a control matrix. We speculate that these proteins might be DNA polymerase α accessory proteins. Consistent with this interpretation, one of the binding proteins, which we have named POB1 (polymerase one binding), is required for normal chromosome transmission. Mutations in this gene cause increased chromosome loss and an abnormal cell morphology, phenotypes that also occur in the presence of mutations in the yeast α or δ polymerase genes. These results suggest that the interactions detected by polymerase affinity chromatography are biologically relevant and may help to illuminate the architecture of the eukaryotic DNA replication machinery.

  1. Contamination of ribosome inactivating proteins with ribonucleases, separated by affinity chromatography on red sepharose.

    PubMed

    Wang, H X; Ng, T B; Cheng, C H K; Fong, W P

    2003-05-01

    Three preparations of type 1 ribosome inactivating proteins (RIPs), namely, agrostin, saporin, and luffin, were subjected to affinity chromatography on Red Sepharose and eluted with a linear concentration gradient of NaCl in 10 mM Tris-HCl buffer (pH 7.4). The eluate was assayed for ability to inhibit translation in a cell-free rabbit reticulocyte lysate system which measures RIP activity, and for ability to hydrolyze yeast transfer RNA which measures RNase activity. It was found that, in all three RIP preparations, the peak of RIP activity, which coincided with the peak of absorbance at 280 nm, was eluted earlier than the peak of RNase activity. It appears that RNase is a possible contaminant of ribosome inactivating protein preparations and that this contamination can be minimized by using Red Sepharose.

  2. Reinforcement of frontal affinity chromatography for effective analysis of lectin-oligosaccharide interactions.

    PubMed

    Hirabayashi, J; Arata, Y; Kasai, K

    2000-08-25

    Frontal affinity chromatography is a method for quantitative analysis of biomolecular interactions. We reinforced it by incorporating various merits of a contemporary liquid chromatography system. As a model study, the interaction between an immobilized Caenorhabditis elegans galectin (LEC-6) and fluorescently labeled oligosaccharides (pyridylaminated sugars) was analyzed. LEC-6 was coupled to N-hydroxysuccinimide-activated Sepharose 4 Fast Flow (100 microm diameter), and packed into a miniature column (e.g., 10 x 4.0 mm, 0.126 ml). Twelve pyridylaminated oligosaccharides were applied to the column through a 2-ml sample loop, and their elution patterns were monitored by fluorescence. The volume of the elution front (V) determined graphically for each sample was compared with that obtained in the presence of an excess amount of hapten saccharide, lactose (V0); and the dissociation constant, Kd, was calculated according to the literature [K. Kasai, Y. Oda, M. Nishikawa, S. Ishii, J. Chromatogr. 376 (1986) 33]. This system also proved to be useful for an inverse confirmation; that is, application of galectins to an immobilized glycan column (in the present case, asialofetuin was immobilized on Sepharose 4 Fast Flow), and the elution profiles were monitored by fluorescence based on tryptophan. The relative affinity of various galectins for asialofetuin could be easily compared in terms of the extent of retardation. The newly constructed system proved to be extremely versatile. It enabled rapid (analysis time 12 min/cycle) and sensitive (20 nM for pyridylaminated derivatives, and 1 microg/ml for protein) analyses of lectin-carbohydrate interactions. It should become a powerful tool for elucidation of biomolecular interactions, in particular for functional analysis of a large number of proteins that should be the essential issues of post-genome projects.

  3. Phenylboronic acid-salicylhydroxamic acid bioconjugates. 2. Polyvalent immobilization of protein ligands for affinity chromatography.

    PubMed

    Wiley, J P; Hughes, K A; Kaiser, R J; Kesicki, E A; Lund, K P; Stolowitz, M L

    2001-01-01

    Phenylboronic acid bioconjugates prepared from alkaline phosphatase by reaction with either 2,5-dioxopyrrolidinyl 3-[N-[3-(1,3,2-dioxaboran-2-yl)phenyl]carbamoyl]propanoate (PBA-XX-NHS) or 2,5-dioxopyrrolidinyl 6-[[3,5-di-(1,3,2-dioxaboran-2-yl)phenyl]carbonylamino]hexanoate (PDBA-X-NHS) were compared with respect to the efficiency with which they were immobilized on salicylhydroxamic acid-modified Sepharose (SHA-X-Sepharose) by boronic acid complex formation. When immobilized on moderate capacity SHA-X-Sepharose (5.4 micromol of SHA/mL of gel), PDBA-alkaline phosphatase conjugates were shown to be stable with respect to both the alkaline (pH 11.0) and acidic (pH 2.5) buffers utilized to recover anti-alkaline phosphatase during affinity chromatography. Boronic acid complex formation was compared to covalent immobilization of alkaline phosphatase on Affi-Gel 10 and Affi-Gel 15. PDBA-AP.SHA-X-Sepharose was shown to afford superior performance to both Affi-Gel 10 and Affi-Gel 15 with respect to immobilization of alkaline phosphatase, retention of anti-alkaline phosphatase and recovery of anti-alkaline phosphatase under alkaline conditions. High capacity SHA-X-Sepharose (> or = 7 micromol of SHA/mL of gel) was shown to afford superior performance to moderate capacity SHA-X-Sepharose (4.5 micromol of SHA/mL of gel) with respect to stability at pH 11.0 and pH 2.5 when a PDBA-alphaHuman IgG conjugate with a low incorporation ratio of only 1.5:1 was immobilized on SHA-X-Sepharose and subsequently utilized for affinity chromatography of Human IgG. The results are interpreted in terms of either a bivalent or trivalent interaction involving boronic acid complex formation.

  4. Single-Step Purification of Monomeric l-Selectin via Aptamer Affinity Chromatography

    PubMed Central

    Kuehne, Christian; Wedepohl, Stefanie; Dernedde, Jens

    2017-01-01

    l-selectin is a transmembrane receptor expressed on the surface of white blood cells and responsible for the tethering of leukocytes to vascular endothelial cells. This initial intercellular contact is the first step of the complex leukocyte adhesion cascade that ultimately permits extravasation of leukocytes into the surrounding tissue in case of inflammation. Here we show the binding of a soluble histidine tagged l-selectin to a recently described shortened variant of an l-selectin specific DNA aptamer with surface plasmon resonance. The high specificity of this aptamer in combination with its high binding affinity of ~12 nM, allows for a single-step protein purification from cell culture supernatants. In comparison to the well-established Ni-NTA based technology, aptamer affinity chromatography (AAC) was easier to establish, resulted in a 3.6-fold higher protein yield, and increased protein purity. Moreover, due to target specificity, the DNA aptamer facilitated binding studies directly from cell culture supernatant, a helpful characteristic to quickly monitor successful expression of biological active l-selectin. PMID:28125045

  5. Purification of peroxidase from red cabbage (Brassica oleracea var. capitata f. rubra) by affinity chromatography.

    PubMed

    Somtürk, Burcu; Kalın, Ramazan; Özdemir, Nalan

    2014-08-01

    Peroxidase was purified in a single step using 4-amino benzohydrazide affinity chromatography from red cabbage (Brassica oleracea var. capitata f. rubra), and some important biochemical characteristics of the purified enzyme were determined. The enzyme, with a specific activity of 3,550 EU/mg protein, was purified 120.6-fold with a yield of 2.9% from the synthesized affinity matrix. The molecular weight of the enzyme was found to be 69.3 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme exhibited maximum activity at pH 7.0 and 30 °C. For guaiacol substrate, the K m and V max values were found as 0.048 mM and 1.46 EU/mL/min, respectively. Additionally, the IC50 and K i values for 4-amino benzohydrazide were calculated to be 1.047 and 0.702±0.05 mM, respectively, and 4-amino benzohydrazide showed noncompetitive inhibition.

  6. Using affinity chromatography to engineer and characterize pH-dependent protein switches.

    PubMed

    Sagermann, Martin; Chapleau, Richard R; DeLorimier, Elaine; Lei, Margarida

    2009-01-01

    Conformational changes play important roles in the regulation of many enzymatic reactions. Specific motions of side chains, secondary structures, or entire protein domains facilitate the precise control of substrate selection, binding, and catalysis. Likewise, the engineering of allostery into proteins is envisioned to enable unprecedented control of chemical reactions and molecular assembly processes. We here study the structural effects of engineered ionizable residues in the core of the glutathione-S-transferase to convert this protein into a pH-dependent allosteric protein. The underlying rational of these substitutions is that in the neutral state, an uncharged residue is compatible with the hydrophobic environment. In the charged state, however, the residue will invoke unfavorable interactions, which are likely to induce conformational changes that will affect the function of the enzyme. To test this hypothesis, we have engineered a single aspartate, cysteine, or histidine residue at a distance from the active site into the protein. All of the mutations exhibit a dramatic effect on the protein's affinity to bind glutathione. Whereas the aspartate or histidine mutations result in permanently nonbinding or binding versions of the protein, respectively, mutant GST50C exhibits distinct pH-dependent GSH-binding affinity. The crystal structures of the mutant protein GST50C under ionizing and nonionizing conditions reveal the recruitment of water molecules into the hydrophobic core to produce conformational changes that influence the protein's active site. The methodology described here to create and characterize engineered allosteric proteins through affinity chromatography may lead to a general approach to engineer effector-specific allostery into a protein structure.

  7. Separation of TFIIIC into two functional components by sequence specific DNA affinity chromatography.

    PubMed Central

    Dean, N; Berk, A J

    1987-01-01

    Recently, it has been shown that mammalian transcription factor IIIC (TFIIIC) activity can be separated by anion exchange FPLC chromatography into two functional components (1), both of which are required for transcription of tRNA and the adenovirus VA RNA genes. Here we show that these two functional components, designated TFIIIC1 and TFIIIC2, can also be separated by sequence specific DNA affinity chromatography. These results confirm the observation that TFIIIC can be fractionated into two components, which are both required for transcription of VA I and tRNA genes in vitro. Thus in the mammalian reconstituted system, a minimum of three proteins, in addition to RNA polymerase III, are required for the transcription of the VA and tRNA genes in vitro. The DNA binding component, TFIIIC2, binds specifically to the 3' segment of the internal promoter (the B block), demonstrated by its ability to protect this region from digestion by DNase I. TFIIIC2 is the limiting, titratable component in the phosphocellulose C fraction required for the formation of a stable pre-initiation complex on the VAI RNA gene in vitro, as demonstrated with a template competition and rescue assay. Images PMID:3697084

  8. Fractionation of the genetic variants of human alpha 1-acid glycoprotein in the native form by chromatography on an immobilized copper(II) affinity adsorbent. Heterogeneity of the separate variants by isoelectrofocusing and by concanavalin A affinity chromatography.

    PubMed

    Hervé, F; Gomas, E; Duché, J C; Tillement, J P

    1993-05-19

    Fractionation of the three main genetic variants (F1, S and A) of human alpha 1-acid glycoprotein (AAG), in their native (sialylated) form, by chromatography on immobilized copper(II) affinity adsorbent was investigated. This chromatographic method had been previously developed to fractionate the desialylated protein variants. For that purpose, the three main AAG phenotypes samples (F1S/A, F1/A and S/A), which had been previously isolated from individual human plasma samples, and an AAG sample from commercial source (a mixture of the phenotypes) were used in the native form. Affinity chromatography of these different samples on an iminodiacetate Sepharose-copper(II) gel at pH 7 resolved two protein peaks, irrespective of the origin of the native AAG sample used. The unbound peak 1 was found to consist of the F1, the S or both variants, depending on the phenotype of the AAG sample used in the chromatography. The bound peak 2 was found to consist of the A variant in a pure form. The fractionation results obtained with native AAG were found to be the same as those originally yielded by the desialylated protein. However, comparison of the interactions of native and desialylated AAG with immobilized copper(II) ions, using an affinity chromatographic method and a non-chromatographic equilibrium binding technique, respectively, showed that desialylation increased the non-specific interactions of the protein with immobilized copper(II) ions. The AAG variants were not fractionated when affinity chromatography was performed using immobilized zinc, nickel or cobalt(II) ions, instead of copper. After purification of each variant in the sialylated form (F1, S and A), their respective heterogeneity was studied by analytical isoelectrofocusing with carrier ampholytes in the pH range 2.5-4.5. In addition, the lectin-binding behaviour of the separate sialylated AAG variants was investigated by affinity chromatography on immobilized concanavalin A.

  9. Refolding and simultaneous purification of recombinant human proinsulin from inclusion bodies on protein-folding liquid-chromatography columns.

    PubMed

    Yuan, Jie; Zhou, Huifang; Yang, Yicong; Li, Weimin; Wan, Yi; Wang, Lili

    2015-05-01

    Protein-folding liquid chromatography (PFLC) is an effective and scalable method for protein renaturation with simultaneous purification. However, it has been a challenge to fully refold inclusion bodies in a PFLC column. In this work, refolding with simultaneous purification of recombinant human proinsulin (rhPI) from inclusion bodies from Escherichia coli were investigated using the surface of stationary phases in immobilized metal ion affinity chromatography (IMAC) and high-performance size-exclusion chromatography (HPSEC). The results indicated that both the ligand structure on the surface of the stationary phase and the composition of the mobile phase (elution buffer) influenced refolding of rhPI. Under optimized chromatographic conditions, the mass recoveries of IMAC column and HPSEC column were 77.8 and 56.8% with purifies of 97.6 and 93.7%, respectively. These results also indicated that the IMAC column fails to refold rhPI, and the HPSEC column enables efficient refolding of rhPI with a low-urea gradient-elution method. The refolded rhPI was characterized by circular dichroism spectroscopy. The molecular weight of the converted human insulin was further confirmed with SDS-18% PAGE, Matrix-Assisted Laser Desorption/ Ionization Time of Flight Mass Spectrometry (MALDI-TOF-MS) and the biological activity assay by HP-RPLC.

  10. Generation of Recombinant Polioviruses Harboring RNA Affinity Tags in the 5' and 3' Noncoding Regions of Genomic RNAs.

    PubMed

    Flather, Dylan; Cathcart, Andrea L; Cruz, Casey; Baggs, Eric; Ngo, Tuan; Gershon, Paul D; Semler, Bert L

    2016-02-04

    Despite being intensely studied for more than 50 years, a complete understanding of the enterovirus replication cycle remains elusive. Specifically, only a handful of cellular proteins have been shown to be involved in the RNA replication cycle of these viruses. In an effort to isolate and identify additional cellular proteins that function in enteroviral RNA replication, we have generated multiple recombinant polioviruses containing RNA affinity tags within the 3' or 5' noncoding region of the genome. These recombinant viruses retained RNA affinity sequences within the genome while remaining viable and infectious over multiple passages in cell culture. Further characterization of these viruses demonstrated that viral protein production and growth kinetics were unchanged or only slightly altered relative to wild type poliovirus. However, attempts to isolate these genetically-tagged viral genomes from infected cells have been hindered by high levels of co-purification of nonspecific proteins and the limited matrix-binding efficiency of RNA affinity sequences. Regardless, these recombinant viruses represent a step toward more thorough characterization of enterovirus ribonucleoprotein complexes involved in RNA replication.

  11. The chromatography-free release, isolation and purification of recombinant peptide for fibril self-assembly.

    PubMed

    Hartmann, B M; Kaar, W; Yoo, I K; Lua, L H L; Falconer, R J; Middelberg, A P J

    2009-12-01

    One of the major expenses associated with recombinant peptide production is the use of chromatography in the isolation and purification stages of a bioprocess. Here we report a chromatography-free isolation and purification process for recombinant peptide expressed in Escherichia coli (E. coli). Initial peptide release is by homogenization and then by enzymatic cleavage of the peptide-containing fusion protein, directly in the E. coli homogenate. Release is followed by selective solvent precipitation (SSP) to isolate and purify the peptide away from larger cell contaminants. Specifically, we expressed in E. coli the self-assembling beta-sheet forming peptide P(11)-2 in fusion to thioredoxin. Homogenate was heat treated (55 degrees C, 15 min) and then incubated with tobacco etch virus protease (TEVp) to release P(11)-2 having a native N-terminus. SSP with ethanol at room temperature then removed contaminating proteins in an integrated isolation-purification step; it proved necessary to add 250 mM NaCl to homogenate to prevent P(11)-2 from partitioning to the precipitate. This process structure gave recombinant P(11)-2 peptide at 97% polypeptide purity and 40% overall yield, without a single chromatography step. Following buffer-exchange of the 97% pure product by bind-elute chromatography into defined chemical conditions, the resulting peptide was shown to be functionally active and able to form self-assembled fibrils. To the best of our knowledge, this manuscript reports the first published process for chromatography-free recombinant peptide release, isolation and purification. The process proved able to deliver functional recombinant peptide at high purity and potentially low cost, opening cost-sensitive materials applications for peptide-based materials.

  12. Dynamic affinity chromatography in the separation of sulfated lignins binding to thrombin

    PubMed Central

    Liang, Aiye; Thakkar, Jay N.; Hindle, Michael; Desai, Umesh R.

    2013-01-01

    Sulfated low molecular weight lignins (LMWLs), a mixture of chemo-enzymatically prepared oligomers, have been found to be potent antagonists of coagulation. However, structures that induce anticoagulation remain unidentified. The highly polar sulfate groups on these molecules and the thousands of different structures present in these mixtures make traditional chromatographic resolution of sulfated LMWLs difficult. We performed dynamic thrombin affinity chromatography monitored using chromogenic substrate hydrolysis assay to isolate sulfated LMWL fractions that differed significantly in their biophysical and biochemical properties. Three fractions, I35, I55 and Peak II, were isolated from the starting complex mixture. Independent plasma clotting assays suggested that I35 possessed good anticoagulation potential (APTT = 4.2 μM; PT = 6.8 μM), while I55 and Peak II were approximately 10- and 100-fold less potent. The ESI-MS spectrum of this oligomeric fraction showed multiple peaks at 684.8, 610.6, 557.4, 541.4, 536.5, and 519.4 m/z, which most probably arise from variably functionalized (β-O4—β-β-linked trimers and/or a β-O4—β-O4-linked dimers. The first direct observation of these structures in sulfated LMWLs will greatly assist in the discovery of more potent sulfated LMWL-based anticoagulants. PMID:23122400

  13. Purification and characterization of a Cytisus-type Ulex europeus hemagglutinin II by affinity chromatography.

    PubMed

    Konami, Y; Tsuji, T; Matsumoto, I; Osawa, T

    1981-07-01

    Ulex europeus hemagglutinin II [Cytisus-type anti-H(O) hemagglutinin] inhibited most by di-N-acetylchitobiose has been purified by affinity chromatography on a column of chitobiose-Sepharose 4B, followed by gel filtration on Sephacryl S-300. The purified hemagglutinin was homogeneous by ultracentrifugal analysis and gave a single band by electrophoresis on polyacrylamide gel, and had a molecular weight of 105 000 by sedimentation equilibrium and an isoelectric point of pH 6.66. This hemagglutinin was found to be composed of four, apparently identical, subunits of a molecular weight of 25 000 +/- 2 000 by dodecyl sulphate-polyacrylamide gel electrophoresis, and to contain 10.3% carbohydrate in which mannose (3.7%) was the predominant sugar, with smaller amounts of glucose, glucosamine, xylose, fucose and galactose. Amino acid analysis of the purified hemagglutinin II showed a large amount of aspartic acid and serine, but as little as 0.1 mol/100 mol of cystine or methionine could be detected.

  14. NMR screening of new carbocyanine dyes as ligands for affinity chromatography.

    PubMed

    Cruz, Carla; Boto, Renato E F; Drzazga, Anna K; Almeida, Paulo; Queiroz, João A

    2014-04-01

    Four new carbocyanines containing symmetric and asymmetric heterocyclic moieties and N-carboxyalkyl groups have been synthesized and characterized. The binding mechanism established between these cyanines and several proteins was evaluated using saturation transfer difference (STD) NMR. The results obtained for the different dyes revealed a specific interaction to the standard proteins lysozyme, α-chymotrypsin, ribonuclease (RNase), bovine serum albumin (BSA), and gamma globulin. For instance, the two un-substituted symmetrical dyes (cyanines 1 and 3) interacted preferentially through its benzopyrrole and dibenzopyrrole units with lysozyme, α-chymotrypsin, and RNase, whereas the symmetric disulfocyanine dye (cyanine 2) bound BSA and gamma globulin through its carboxyalkyl chains. On the other hand, the asymmetric dye (cyanine 4) interacts with lysozyme and α-chymotrypsin through benzothiazole moiety and with RNase through dibenzopyrrole unit. Thus, STD-NMR technique was successfully used to screen cyanine-protein interactions and determine potential binding sites of the cyanines for posterior use as ligands in affinity chromatography.

  15. CHARACTERIZATION OF DRUG INTERACTIONS WITH SERUM PROTEINS BY USING HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY

    PubMed Central

    Hage, David S.; Anguizola, Jeanethe; Barnaby, Omar; Jackson, Abby; Yoo, Michelle J.; Papastavros, Efthimia; Pfaunmiller, Erika; Sobansky, Matt; Tong, Zenghan

    2011-01-01

    The binding of drugs with serum proteins can affect the activity, distribution, rate of excretion, and toxicity of pharmaceutical agents in the body. One tool that can be used to quickly analyze and characterize these interactions is high-performance affinity chromatography (HPAC). This review shows how HPAC can be used to study drug-protein binding and describes the various applications of this approach when examining drug interactions with serum proteins. Methods for determining binding constants, characterizing binding sites, examining drug-drug interactions, and studying drug-protein dissociation rates will be discussed. Applications that illustrate the use of HPAC with serum binding agents such as human serum albumin, α1-acid glycoprotein, and lipoproteins will be presented. Recent developments will also be examined, such as new methods for immobilizing serum proteins in HPAC columns, the utilization of HPAC as a tool in personalized medicine, and HPAC methods for the high-throughput screening and characterization of drug-protein binding. PMID:21395530

  16. Purification of human immunoglobulin G autoantibodies to tumor necrosis factor using affinity chromatography and magnetic separation.

    PubMed

    Sennikov, S V; Golikova, E A; Kireev, F D; Lopatnikova, J A

    2013-04-30

    Autoantibodies to cytokines are important biological effector molecules that can regulate cytokine activities. The aim of the study was to develop a protocol to purify autoantibodies to tumor necrosis factor from human serum, for use as a calibration material to determine the absolute content of autoantibodies to tumor necrosis factor by enzyme-linked immunosorbent assay. The proposed protocol includes a set of affinity chromatography methods, namely, Bio-Gel P6DG sorbent to remove albumin from serum, Protein G Sepharose 4 Fast Flow to obtain a total immunoglobulin G fraction of serum immunoglobulins, and Affi-Gel 15 to obtain specifically antibodies to tumor necrosis factor. The addition of a magnetic separation procedure to the protocol eliminated contaminant tumor necrosis factor from the fraction of autoantibodies to tumor necrosis factor. The protocol generated a pure fraction of autoantibodies to tumor necrosis factor, and enabled us to determine the absolute concentrations of different subclasses of immunoglobulin G autoantibodies to tumor necrosis factor in apparently healthy donors.

  17. Purification of a thermostable alkaline laccase from papaya (Carica papaya) using affinity chromatography.

    PubMed

    Jaiswal, Nivedita; Pandey, Veda P; Dwivedi, Upendra N

    2015-01-01

    A laccase from papaya leaves was purified to homogeneity by a two step procedure namely, heat treatment (at 70 °C) and Con-A affinity chromatography. The procedure resulted in 1386.7-fold purification of laccase with a specific activity of 41.3 units mg(-1) and an overall yield of 61.5%. The native purified laccase was found to be a hexameric protein of ∼ 260 kDa. The purified enzyme exhibited acidic and alkaline pH optima of 6.0 and 8.0 with the non-phenolic substrate (ABTS) and phenolic substrate (catechol), respectively. The purified laccase was found to be thermostable up to 70 °C such that it retained ∼ 80% activity upon 30 min incubation at 70 °C. The Arrhenius energy of activation for purified laccase was found to be 7.7 kJ mol(-1). The enzyme oxidized various phenolic and non-phenolic substrates having catalytic efficiency (K(cat)/K(m)) in the order of 7.25>0.67>0.27 mM(-1) min(-1) for ABTS, catechol and hydroquinone, respectively. The purified laccase was found to be activated by Mn(2+), Cd(2+), Ca(2+), Na(+), Fe(2+), Co(2+) and Cu(2+) while weakly inhibited by Hg(2+). The properties such as thermostability, alkaline pH optima and metal tolerance exhibited by the papaya laccase make it a promising candidate enzyme for industrial exploitation.

  18. Characterization of minor site probes for human serum albumin by high-performance affinity chromatography.

    PubMed

    Sengupta, A; Hage, D S

    1999-09-01

    This study used high-performance affinity chromatography (HPAC) and immobilized human serum albumin (HSA) columns to examine the specificity and cross-reactivity of various compounds that have been proposed as markers for the minor binding sites of HSA. These agents included acetyldigitoxin and digitoxin as probes for the digitoxin site, phenol red as a probe for the bilirubin site, and cisor trans-clomiphene as markers for the tamoxifen site. None of these probes showed any significant binding at HSA's indole-benzodiazepine site. However, phenol red did bind at the warfarin-azapropazone site of HSA, and cis/trans-clomiphene gave positive allosteric effects caused by the binding of warfarin to HSA. Digitoxin and acetyldigitoxin were found to bind to a common, unique region on HSA; cis- and trans-clomiphene also appeared to interact at a unique site, although trans-clomiphene displayed additional direct competition with phenol red. From these results it was possible to develop a model that described the general relationship between these binding regions on HSA. This information should be useful in future studies that employ HPAC for characterizing the binding of HSA to other drugs or clinical agents.

  19. Advance chromatin extraction improves capture performance of protein A affinity chromatography.

    PubMed

    Nian, Rui; Zhang, Wei; Tan, Lihan; Lee, Jeremy; Bi, Xeuzhi; Yang, Yuansheng; Gan, Hui Theng; Gagnon, Pete

    2016-01-29

    Practical effects of advance chromatin removal on performance of protein A affinity chromatography were evaluated using a caprylic acid-allantoin-based extraction method. Lacking this treatment, the practice of increasing loading residence time to increase capacity was shown to increase host protein contamination of the eluted IgG. Advance chromatin extraction suspended that compromise. Protein A ligand leakage from columns loaded with chromatin-extracted harvest was half the level observed on protein A columns loaded with non-extracted harvest. Columns loaded with chromatin-extracted harvest were cleaned more effectively by 50-100mM NaOH than columns loaded with non-extracted harvest that were cleaned with 250-500mM NaOH. Two protein A media with IgG capacities in excess of 50g/L were loaded with chromatin-extracted harvest, washed with 2.0M NaCl before elution, and the eluted IgG fraction titrated to pH 5.5 before microfiltration. Host protein contamination in the filtrate was reduced to <1ppm, DNA to <1ppb, protein A leakage to 0.5ppm, and aggregates to 1.0%. Caprylic acid and allantoin were both reduced below 5ppm. Step recovery of IgG was 99.4%. Addition of a single polishing step reduced residual protein A beneath the level of detection and aggregates to <0.1%. Overall process recovery including chromatin extraction was 90%.

  20. RPAP1, a Novel Human RNA Polymerase II-Associated Protein Affinity Purified with Recombinant Wild-Type and Mutated Polymerase Subunits

    PubMed Central

    Jeronimo, Célia; Langelier, Marie-France; Zeghouf, Mahel; Cojocaru, Marilena; Bergeron, Dominique; Baali, Dania; Forget, Diane; Mnaimneh, Sanie; Davierwala, Armaity P.; Pootoolal, Jeff; Chandy, Mark; Canadien, Veronica; Beattie, Bryan K.; Richards, Dawn P.; Workman, Jerry L.; Hughes, Timothy R.; Greenblatt, Jack; Coulombe, Benoit

    2004-01-01

    We have programmed human cells to express physiological levels of recombinant RNA polymerase II (RNAPII) subunits carrying tandem affinity purification (TAP) tags. Double-affinity chromatography allowed for the simple and efficient isolation of a complex containing all 12 RNAPII subunits, the general transcription factors TFIIB and TFIIF, the RNAPII phosphatase Fcp1, and a novel 153-kDa polypeptide of unknown function that we named RNAPII-associated protein 1 (RPAP1). The TAP-tagged RNAPII complex is functionally active both in vitro and in vivo. A role for RPAP1 in RNAPII transcription was established by shutting off the synthesis of Ydr527wp, a Saccharomyces cerevisiae protein homologous to RPAP1, and demonstrating that changes in global gene expression were similar to those caused by the loss of the yeast RNAPII subunit Rpb11. We also used TAP-tagged Rpb2 with mutations in fork loop 1 and switch 3, two structural elements located strategically within the active center, to start addressing the roles of these elements in the interaction of the enzyme with the template DNA during the transcription reaction. PMID:15282305

  1. Isolation of human beta-interferon receptor by wheat germ lectin affinity and immunosorbent column chromatographies

    SciTech Connect

    Zhang, Z.Q.; Fournier, A.; Tan, Y.H.

    1986-06-15

    Radioiodinated human beta-interferon-Ser 17 (Betaseron) was reversibly cross-linked to Daudi cells by dithiobis(succinimidylpropionate). The radioactive ligand was cross-linked to three macromolecules forming labeled complexes of apparent Mr values of 130,000, 220,000, and 320,000. Betaseron, human alpha-interferon, human interleukin 2 but not recombinant human gamma-interferon competed with the labeled ligand for binding to these putative receptor(s). Human leukocyte-produced gamma-interferon competed weakly with /sup 125/I-Betaseron for binding to Daudi cells. The Betaseron-receptor complex(es) was purified by passage through a wheat germ lectin column followed by chromatography on an anti-interferon immunosorbent column and semipreparative gel electrophoresis. The cross-linked ligand-receptor complex was shown to be highly purified by sodium dodecyl sulfate and acetic acid:urea:Triton X-100 polyacrylamide gel electrophoresis. It can be dissociated into the labeled Betaseron (Mr = 17,000) ligand and a receptor moiety which has an apparent molecular weight of 110,000. The chromatographic behavior of the ligand-receptor complex on wheat germ lectin column suggests that the receptor is a glycoprotein. The described procedure yielded about 1 microgram of Betaseron receptor from 10(10) Daudi cells, estimated to contain a maximum of about 15 micrograms of the receptor.

  2. Expression, purification and characterization of the recombinant kringle 2 and kringle 3 domains of human plasminogen and analysis of their binding affinity for omega-aminocarboxylic acids.

    PubMed

    Marti, D; Schaller, J; Ochensberger, B; Rickli, E E

    1994-01-15

    The kringle 2 (E161T/C162S/EEE[K2HPg/C169S]TT) and the kringle 3 (TYQ[K3HPg]DS) domains of human plasminogen (HPg) were expressed in Escherichia coli in an expression vector with the phage T5 promotor/operator element N250PSN250P29 and the cDNA sequence for a hexahistidine tail to facilitate the isolation of the recombinant protein. A coagulation factor Xa (FXa)-sensitive cleavage site was introduced to remove the N-terminal histidine tag. In r-K2, mutations E161T and C162S were introduced to enhance the FXa cleavage yield and C169S to replace the cysteine residue, participating in the inter-kringle disulfide bridge between kringles 2 and 3. Recombinant proteins were isolated by affinity chromatography on Ni(2+)-nitrilotriacetic acid/agarose and refolded under denaturing and reducing conditions followed by a non-denaturing and oxidising environment. The free thiol group in position 297 in r-K3 was selectively alkylated with iodoacetamide. The hexahistidine tail was successfully removed with FXa. The N-terminal sequence, the amino acid composition and the molecular mass analyses are in agreement with the expected data. The correct arrangement of the disulfide bonds was verified by sequence analysis of the corresponding thermolytic and subtilisin fragments. r-K2 exhibits weak binding to lysine-Bio-Gel. The weak binding affinity of r-K2 for omega-aminocarboxylic acids is confirmed by intrinsic fluorescence titration with 6-aminohexanoic acid (NH2C5COOH) indicating a Kd of approximately 401 microM. In contrast, r-K3 seems to be devoid of a binding affinity for omega-aminocarboxylic acids. Considering earlier determined Kd values of kringle 1, kringle 4 and kringle 5, the binding affinity of HPg kringle domains for NH2C5COOH is proposed to decrease in the following order, kringle 1 > kringle 4 > kringle 5 > kringle 2 > kringle 3.

  3. Hemoglobin Ypsilanti: a high-oxygen-affinity hemoglobin demonstrated by two automated high-pressure liquid chromatography systems.

    PubMed

    Mais, Daniel D; Boxer, Laurence A; Gulbranson, Ronald D; Keren, David F

    2007-11-01

    Hemoglobin (Hb) Ypsilanti is a rare high-oxygen-affinity hemoglobin. Like other high-oxygen-affinity hemoglobins, Hb Ypsilanti manifests as erythrocytosis. Because the migration of many high-oxygen-affinity variants on alkaline and acid gels does not differ from that of HbA, oxygen-hemoglobin dissociation studies are often used to document their presence. Hb Ypsilanti is a notable exception because its electrophoresis pattern on alkaline gel is highly characteristic, exemplifying the phenomenon of hybrid formation in variant hemoglobins. In the past few years, several laboratories have begun to use high-pressure liquid chromatography (HPLC) as a screen for hemoglobinopathies. We demonstrate the elution profile of Hb Ypsilanti on the 2 most widely used HPLC methods.

  4. Physicochemical and Biological Characterization of Fucoidan from Fucus vesiculosus Purified by Dye Affinity Chromatography

    PubMed Central

    Zayed, Ahmed; Muffler, Kai; Hahn, Thomas; Rupp, Steffen; Finkelmeier, Doris; Burger-Kentischer, Anke; Ulber, Roland

    2016-01-01

    A comparative study concerning the physicochemical, monomeric composition and biological characters among different fucoidan fractions is presented. Common purification techniques for fucoidan usually involve many steps. During these steps, the important structural features might be affected and consequently alter its biological activities. Three purified fractions were derived from Fucus vesiculosus water extract which, afterwards, were purified by a recently-developed dye affinity chromatography protocol. This protocol is based on dye-sulfated polysaccharide interactions. The first two fractions were obtained from crude precipitated fucoidan at different pH values of the adsorption phase: pH 1 and 6. This procedure resulted in fucoidan_1 and 6 fractions. The other, third, fraction: fucoidan_M, however, was obtained from a buffered crude extract at pH 1, eliminating the ethanol precipitation step. All of the three fractions were then further evaluated. Results revealed that fucoidan_M showed the highest sulfur content (S%), 12.11%, with the lowest average molecular weight, 48 kDa. Fucose, galactose, and uronic acid/glucose dimers were detected in all fractions, although, xylose was only detected in fucoidan_1 and 6. In a concentration of 10 µg·mL−1, Fucoidan_6 showed the highest heparin-like anticoagulant activity and could prolong the APTT and TT significantly to 66.03 ± 2.93 and 75.36 ± 1.37 s, respectively. In addition, fucoidan_M demonstrated the highest potency against HSV-1 with an IC50 of 2.41 µg·mL−1. The technique proved to be a candidate for fucoidan purifaction from its crude extract removing the precipitation step from common purification protocols and produced different fucoidan qualities resulted from the different incubation conditions with the immobilized thiazine toluidine blue O dye. PMID:27092514

  5. Sequential injection affinity chromatography utilizing an albumin immobilized monolithic column to study drug-protein interactions.

    PubMed

    Zacharis, Constantinos K; Kalaitzantonakis, Eftichios A; Podgornik, Ales; Theodoridis, Georgios

    2007-03-09

    In this study, sequential injection affinity chromatography was used for drug-protein interactions studies. The analytical system used consisted of a sequential injection analysis (SIA) manifold directly connected with convective interaction media (CIM) monolithic epoxy disks modified by ligand-immobilization of protein. A non-steroidal, anti-inflammatory drug, naproxen (NAP) and bovine serum albumin (BSA) were selected as model drug and protein, respectively. The SIA system was used for sampling, introduction and propulsion of drug towards to the monolithic column. Association equilibrium constants, binding capacity at various temperatures and thermodynamic parameters (free energy DeltaG, enthalpy DeltaH) of the binding reaction of naproxen are calculated by using frontal analysis mathematics. The variation of incubation time and its effect in on-line binding mode was also studied. The results indicated that naproxen had an association equilibrium constant of 2.90 x 10(6)M(-1) at pH 7.4 and 39 degrees C for a single binding site. The associated change in enthalpy (DeltaH) was -27.36 kcal mol(-1) and the change in entropy (DeltaS) was -73 cal mol(-1)K(-1) for a single type of binding sites. The location of the binding region was examined by competitive binding experiments using a biphosphonate drug, alendronate (ALD), as a competitor agent. It was found that the two drugs occupy the same class of binding sites on BSA. All measurements were performed with fluorescence (lambda(ext)=230 nm, lambda(em)=350 nm) and spectrophotometric detection (lambda=280 nm).

  6. Determination of the kinetic rate constant of cyclodextrin supramolecular systems by high performance affinity chromatography.

    PubMed

    Li, Haiyan; Ge, Jingwen; Guo, Tao; Yang, Shuo; He, Zhonggui; York, Peter; Sun, Lixin; Xu, Xu; Zhang, Jiwen

    2013-08-30

    It is challenging and extremely difficult to measure the kinetics of supramolecular systems with extensive, weak binding (Ka<10(5)M(-1)), and fast dissociation, such as those composed of cyclodextrins and drugs. In this study, a modified peak profiling method based on high performance affinity chromatography (HPAC) was established to determine the dissociation rate constant of cyclodextrin supramolecular systems. The interactions of β-cyclodextrin with acetaminophen and sertraline were used to exemplify the method. The retention times, variances and the plate heights of the peaks for acetaminophen or sertraline, conventional non-retained substance (H2O) on the β-cyclodextrin bonded column and a control column were determined at four flow rates under linear elution conditions. Then, plate heights for the theoretical non-retained substance were estimated by the modified HPAC method, in consideration of the diffusion and stagnant mobile phase mass transfer. As a result, apparent dissociation rate constants of 1.82 (±0.01)s(-1) and 3.55 (±0.37)s(-1) were estimated for acetaminophen and sertraline respectively at pH 6.8 and 25°C with multiple flow rates. Following subtraction of the non-specific binding with the support, dissociation rate constants were estimated as 1.78 (±0.00) and 1.91 (±0.02)s(-1) for acetaminophen and sertraline, respectively. These results for acetaminophen and sertraline were in good agreement with the magnitude of the rate constants for other drugs determined by capillary electrophoresis reported in the literature and the peak fitting method we performed. The method described in this work is thought to be suitable for other supramolecules, with relatively weak, fast and extensive interactions.

  7. Physicochemical and Biological Characterization of Fucoidan from Fucus vesiculosus Purified by Dye Affinity Chromatography.

    PubMed

    Zayed, Ahmed; Muffler, Kai; Hahn, Thomas; Rupp, Steffen; Finkelmeier, Doris; Burger-Kentischer, Anke; Ulber, Roland

    2016-04-15

    A comparative study concerning the physicochemical, monomeric composition and biological characters among different fucoidan fractions is presented. Common purification techniques for fucoidan usually involve many steps. During these steps, the important structural features might be affected and consequently alter its biological activities. Three purified fractions were derived from Fucus vesiculosus water extract which, afterwards, were purified by a recently-developed dye affinity chromatography protocol. This protocol is based on dye-sulfated polysaccharide interactions. The first two fractions were obtained from crude precipitated fucoidan at different pH values of the adsorption phase: pH 1 and 6. This procedure resulted in fucoidan_1 and 6 fractions. The other, third, fraction: fucoidan_M, however, was obtained from a buffered crude extract at pH 1, eliminating the ethanol precipitation step. All of the three fractions were then further evaluated. Results revealed that fucoidan_M showed the highest sulfur content (S%), 12.11%, with the lowest average molecular weight, 48 kDa. Fucose, galactose, and uronic acid/glucose dimers were detected in all fractions, although, xylose was only detected in fucoidan_1 and 6. In a concentration of 10 µg·mL(-1), Fucoidan_6 showed the highest heparin-like anticoagulant activity and could prolong the APTT and TT significantly to 66.03 ± 2.93 and 75.36 ± 1.37 s, respectively. In addition, fucoidan_M demonstrated the highest potency against HSV-1 with an IC50 of 2.41 µg·mL(-1). The technique proved to be a candidate for fucoidan purifaction from its crude extract removing the precipitation step from common purification protocols and produced different fucoidan qualities resulted from the different incubation conditions with the immobilized thiazine toluidine blue O dye.

  8. Purification and characterization of two types of Cytisus multiflorus hemagglutinin by affinity chromatography.

    PubMed

    Konami, Y; Yamamoto, K; Tsuji, T; Matsumoto, I; Osawa, T

    1983-10-01

    Two hemagglutinins were separated from extracts of Cytisus multiflorus seeds by successive affinity chromatographies on columns of galactose- and di- N-acetylchitobiose-Sepharose 4B. One was found to be inhibited by di- N-acetylchitobiose or tri- N-acetylchitotriose and shown to possess anti-H(O) activity [Cytisus-type anti-H(O) hemagglutinin designated as Cytisus multiflorus hemagglutinin I]. The other, which was not a blood group-specific hemagglutinin, was inhibited by galactose or lactose (hemagglutinin II). Hemagglutinins I and II were further purified by gel filtration on Sephacryl S-300. These preparations were homogeneous as judged by polyacrylamide gel electrophoresis and gel filtration. The molecular weights of the purified hemagglutinins I and II were found to be 86000 by sedimentation equilibrium analysis and 80000 by gel filtration. On disc gel electrophoresis in the presence of sodium dodecyl sulfate and dithiothreitol, both hemagglutinins gave a single component of a molecular weight of 42000 +/- 2000, suggesting that these hemagglutinins are dimeric proteins of two identical subunits. Hemagglutinins I and II contain 2.7% and 1.5% carbohydrate, respectively, and only very small amounts of cystine and methionine were detected, but they are rich in aspartic acid and serine. Treatment of human O erythrocytes with a purified H-decomposing enzyme (alpha-L-fucosidase from Bacillus fulminans abolished the agglutinability of the cells with hemagglutinin I. This indicates that the L-fucosyl residue is important even for the H-specificity detected by this di-N-acetylchitobiose-specific hemagglutinin I.

  9. Preparation of affinity membranes using thermally induced phase separation for one-step purification of recombinant proteins.

    PubMed

    Honjo, Takafumi; Hoe, Kazuki; Tabayashi, Shunsuke; Tanaka, Tsutomu; Shimada, Josui; Goto, Masahiro; Matsuyama, Hideto; Maruyama, Tatsuo

    2013-03-15

    We synthesized several surfactant-like ligands and prepared affinity membranes by introducing them into porous polymeric membranes using the thermally induced phase separation method. The ligands (nitrilotriacetate, iminodiacetate, and glutathione) were successfully displayed on the surfaces of cellulose diacetate membranes. Membranes functionalized with nitrilotriacetate and glutathione captured and released hexahistidine-tagged enhanced green fluorescent protein (His-tag GFP) and glutathione S-transferase (GST) selectively under appropriate conditions. The affinity membranes also enabled highly selective purification of target proteins (GFP and GST) from cell lysates. The protein-binding capacity was 15 μg/cm(2) for His-tag GFP and 13 μg/cm(2) for GST. The application-specific membranes described in this work will aid high-throughput screening and high-throughput analysis of recombinant proteins.

  10. Analysis of insecticidal proteins from Bacillus thuringiensis and recombinant Escherichia coli by capillary electrokinetic chromatography.

    PubMed

    Luong, John H T; Male, Keith B; Mazza, Alberto; Masson, Luke; Brousseau, Roland

    2004-10-01

    Bacillus thuringiensis and recombinant Escherichia coli proteinaceous protoxins were subject to proteolysis and analyzed by capillary electrokinetic chromatography. Three resulting toxins (65 kDa) were baseline-resolved within 22 min using a 10 mM borate, pH 11 separation buffer consisting of 25 mM sodium dodecyl sulfate (SDS) and 30 mM phytic acid. The toxins displayed differential interactions with the SDS and phytic acid phases to effect their separation. The ion-pairing interaction between the analyte and phytic acid was also useful in preventing adsorption to the capillary walls and thus enhanced separation resolution and efficiency. The use of electrokinetic chromatography allows achievement of the separation in a significantly shorter time than conventional high-performance liquid chromatography (HPLC) using a diethylaminoethyl (DEAE) weak-anion exchanger.

  11. G-quadruplex on oligo affinity support (G4-OAS): an easy affinity chromatography-based assay for the screening of G-quadruplex ligands.

    PubMed

    Musumeci, Domenica; Amato, Jussara; Randazzo, Antonio; Novellino, Ettore; Giancola, Concetta; Montesarchio, Daniela; Pagano, Bruno

    2014-05-06

    A simple, cheap, and highly reproducible affinity chromatography-based method has been developed for the screening of G-quadruplex binders. The tested compounds were flowed through a polystyrene resin functionalized with an oligonucleotide able to form, in proper conditions, a G-quadruplex structure. Upon cation-induced control of the folding/unfolding processes of the immobilized G-quadruplex-forming sequence, small molecules specifically interacting with the oligonucleotide structure were first captured and then released depending on the used working solution. This protocol, first optimized for different kinds of known G-quadruplex ligands and then applied to a set of putative ligands, has allowed one to fully reuse the same functionalized resin batch, recycled for several tens of experiments without loss in efficiency and reproducibility.

  12. Polyethyleneimine precipitation versus anion exchange chromatography in fractionating recombinant beta-glucuronidase from transgenic tobacco extract.

    PubMed

    Holler, Chris; Vaughan, David; Zhang, Chenming

    2007-02-16

    Tobacco has been studied as a possible host for the production of recombinant proteins. In this report, recombinant beta-glucuronidase (rGUS) was used as a model protein to study the feasibility of using polyethyleneimine (PEI) precipitation to fractionate acidic recombinant proteins from transgenic tobacco. Results showed that rGUS was preferentially precipitated when the PEI dosage was beyond 200mg PEI/g total protein. At 700-800 mg PEI/g total protein, nearly 100% rGUS was precipitated with less than 40% native tobacco proteins co-precipitated. Approximately 85-90% of the rGUS activity could be recovered from the precipitation pellet for an enrichment ratio of 2.7-3.4. As a comparison, anion exchange chromatography (AEX) yielded similar results to PEI precipitation with 66-90% rGUS activity recovered and an enrichment ratio of 1.8-3.1. The rGUS was further purified by an additional hydrophobic interaction chromatographic (HIC) step after precipitation or AEX. Similar results in terms of rGUS activity recovered and enrichment were obtained. The major interfering protein at the end of all purification steps is most likely the Fraction 1 protein ribulose 1,5-bisphosphate carboxylase-oxygenase (Rubisco). The presence of this protein is likely the cause for the varying and somewhat low enrichment ratios, but it may be later removed via a size-exclusion chromatography step. PEI precipitation offers the advantage of allowing significant sample concentration prior to subsequent purification techniques such as chromatography and is much less expensive than chromatographic methods as well. Through direct comparison, this study shows that PEI may be used as an initial fractionation step in replacement of AEX to facilitate the purification of acidic recombinant proteins from transgenic tobacco.

  13. Tryptophan tags and de novo designed complementary affinity ligands for the expression and purification of recombinant proteins.

    PubMed

    Pina, Ana Sofia; Carvalho, Sara; Dias, Ana Margarida G C; Guilherme, Márcia; Pereira, Alice S; Caraça, Luciana T; Coroadinha, Ana Sofia; Lowe, Christopher R; Roque, A Cecília A

    2016-11-11

    A common strategy for the production and purification of recombinant proteins is to fuse a tag to the protein terminal residues and employ a "tag-specific" ligand for fusion protein capture and purification. In this work, we explored the effect of two tryptophan-based tags, NWNWNW and WFWFWF, on the expression and purification of Green Fluorescence Protein (GFP) used as a model fusion protein. The titers obtained with the expression of these fusion proteins in soluble form were 0.11mgml(-1) and 0.48mgml(-1) for WFWFWF and NWNWNW, respectively. A combinatorial library comprising 64 ligands based on the Ugi reaction was prepared and screened for binding GFP-tagged and non-tagged proteins. Complementary ligands A2C2 and A3C1 were selected for the effective capture of NWNWNW and WFWFWF tagged proteins, respectively, in soluble forms. These affinity pairs displayed 10(6)M(-1) affinity constants and Qmax values of 19.11±2.60ugg(-1) and 79.39ugg(-1) for the systems WFWFWF AND NWNWNW, respectively. GFP fused to the WFWFWF affinity tag was also produced as inclusion bodies, and a refolding-on column strategy was explored using the ligand A4C8, selected from the combinatorial library of ligands but in presence of denaturant agents.

  14. Purification of chimeric heavy chain monoclonal antibody EG2-hFc using hydrophobic interaction membrane chromatography: an alternative to protein-A affinity chromatography.

    PubMed

    Sadavarte, Rahul; Spearman, Maureen; Okun, Natalie; Butler, Michael; Ghosh, Raja

    2014-06-01

    Heavy chain monoclonal antibodies are being considered as alternative to whole-IgG monoclonal antibodies for certain niche applications. Protein-A chromatography which is widely used for purifying IgG monoclonal antibodies is also used for purifying heavy chain monoclonal antibodies as these molecules possess fully functional Fc regions. However, the acidic conditions used to elute bound antibody may sometimes also leach protein-A, which is immunotoxic. Low pH conditions also tend to make the mAb molecules unstable and prone to aggregation. Moreover, protein-A affinity chromatography does not remove aggregates already present in the feed. Hydrophobic interaction membrane chromatography (or HIMC) has already been studied as an alternative to protein-A chromatography for purifying whole-IgG monoclonal antibodies. This paper describes the use of HIMC for capturing a humanized chimeric heavy chain monoclonal antibody (EG2-hFC). Binding and eluting conditions were suitably optimized using pure EG2-hFC. Based on this, an HIMC method was developed for capture of EG2-hFC directly from cell culture supernatant. The EG2-hFc purity obtained in this single-step process was high. The glycan profiles of protein-A and HIMC purified monoclonal antibody samples were similar, clearly demonstrating that both techniques captured similarly glycosylated population of EG2-hFc. Moreover, this technique was able to resolve aggregates from monomeric form of the EG2-hFc.

  15. Extracellular production and affinity purification of recombinant proteins with Escherichia coli using the versatility of the maltose binding protein.

    PubMed

    Sommer, Benjamin; Friehs, Karl; Flaschel, Erwin; Reck, Michael; Stahl, Frank; Scheper, Thomas

    2009-03-25

    Recombinant proteins are essential products of today's industrial biotechnology. In this study we address two crucial factors in recombinant protein production: (i) product accessibility and (ii) product recovery. Escherichia coli, one of the most frequently used hosts for recombinant protein expression, does not inherently secrete proteins into the extracellular environment. The major drawback of this expression system is, therefore, to be found in the intracellular protein accumulation and hampered product accessibility. We have constructed a set of expression vectors in order to facilitate extracellular protein production and purification. The maltose binding protein from E. coli is used as fusion partner for several proteins of interest allowing an export to the bacteria's periplasm via both the Sec and the Tat pathway. Upon coexpression of a modified Cloacin DF13 bacteriocin release protein, the hybrid proteins are released into the culture medium. This essentially applies to a distinguished reporter molecule, the green fluorescent protein, for which an extracellular production was not reported so far. The sequestered proteins can be purified to approximate homogeneity by a simple, rapid and cheap procedure which utilizes the affinity of the maltose binding protein to alpha-1,4-glucans.

  16. Camelid VHH affinity ligands enable separation of closely related biopharmaceuticals

    PubMed Central

    Pabst, Timothy M.; Wendeler, Michaela; Wang, Xiangyang; Bezemer, Sandra; Hermans, Pim

    2016-01-01

    Abstract Interest in new and diverse classes of molecules such as recombinant toxins, enzymes, and blood factors continues to grow for use a biotherapeutics. Compared to monoclonal antibodies, these novel drugs typically lack a commercially available affinity chromatography option, which leads to greater process complexity, longer development timelines, and poor platformability. To date, for both monoclonal antibodies and novel molecules, affinity chromatography has been mostly reserved for separation of process‐related impurities such as host cell proteins and DNA. Reports of affinity purification of closely related product variants and modified forms are much rarer. In this work we describe custom affinity chromatography development using camelid VHH antibody fragments as "tunable" immunoaffinity ligands for separation of product‐related impurities. One example demonstrates high selectivity for a recombinant immunotoxin where no binding was observed for an undesired deamidated species. Also discussed is affinity purification of a coagulation factor through specific recognition of the gamma‐carboxylglutamic acid domain. PMID:27677057

  17. Copper(II)-based metal affinity chromatography for the isolation of the anticancer agent bleomycin from Streptomyces verticillus culture.

    PubMed

    Gu, Jiesi; Codd, Rachel

    2012-10-01

    The glycopeptide-based bleomycins are structurally complex natural products produced by Streptomyces verticillus used in combination therapy against testicular and other cancers. Bleomycin has a high affinity towards a range of transition metal ions with the 1:1 Fe(II) complex relevant to its mechanism of action in vivo and the 1:1 Cu(II) complex relevant to its production from culture. The affinity between Cu(II) and bleomycin was the underlying principle for using Cu(II)-based metal affinity chromatography in this work to selectively capture bleomycin from crude S. verticillus culture. A solution of standard bleomycin was retained at a binding capacity of 300 nmol mL(-1) on a 1-mL bed volume of Cu(II)-loaded iminodiacetate (IDA) resin at pH 9 via the formation of the heteroleptic immobilized complex [Cu(IDA)(bleomycin)]. Bleomycin was eluted from the resin at pH 5 as the metal-free ligand under conditions where pK(a) (IDA)affinity chromatography as a green chemistry platform for streamlined access to this high-value therapeutic agent.

  18. Rapid purification of mitochondrial hexokinase from rat brain by a single affinity chromatography step on Affi-Gel blue.

    PubMed

    Wilson, J E

    1989-01-01

    The mitochondrial hexokinase from rat brain, selectively released from mitochondria by the action of glucose 6-phosphate, can be purified to greater than 90% homogeneity by a single affinity chromatography step on Affi-Gel Blue; the Cibacron Blue F3GA ligand bound to this matrix serves as an analog of ATP, the normal substrate for the enzyme, and selective elution is accomplished using glucose 6-phosphate which is a competitive ligand vs. ATP. With this and other modifications to the previously described procedure highly purified enzyme is readily obtained in good yield and with retention of the ability to rebind to mitochondria.

  19. The antigenicity in guinea pigs and monkeys of three mycobacterial polysaccharides purified by affinity chromatography with concanavalin A.

    PubMed

    Daniel, T M

    1975-06-01

    The antigenicity of 3 polysaccharides purified from culture filtrates of Mycobacterim tuberculosis by affinity chromatography using a concanavalin A-agarose absorbent was studied. All 3 purified polysaccharides were found to be potent elicitors of delayed skin test reactions in sensitized guinea pigs and in a tuberculos monkey. This antigenicity could not be attributed to contaminating protein. Small dermal reactions were also observed in control guinea pigs. All 3 polysaccharides reacted with precipitating antibody in guinea pig sera, the antigenic specificity observed with the guinea pig sera differing from that demonstrated with reference goat antiserum. The 3 polysaccharides were also demonstrated to contain hemagglutination antigenic sites.

  20. Recombinant human nerve growth factor is biologically active and labels novel high-affinity binding sites in rat brain

    SciTech Connect

    Altar, C.A.; Burton, L.E.; Bennett, G.L.; Dugich-Djordjevic, M. )

    1991-01-01

    Iodinated recombinant human nerve growth factor (125I-rhNGF) stimulated neurite formation in PC12 cell cultures with a half-maximal potency of 35-49 pg/ml, compared with 39-52 pg/ml for rhNGF. In quantitative ligand autoradiography, the in vitro equilibrium binding of 125I-rhNGF to brain sections showed a 10-fold regional variation in density and was saturable, reversible, and specifically displaced by up to 74% with rhNGF or murine NGF (muNGF). At equilibrium, 125I-rhNGF bound to these sites with high affinity and low capacity (Bmax less than or equal to 13.2 fmol/mg of protein). Calculation of 125I-rhNGF binding affinity by kinetic methods gave average Kd values of 24 and 31 pM. Computer-generated maps revealed binding in brain regions not identified previously with 125I-muNGF, including hippocampus; dentate gyrus; amygdala; paraventricular thalamus; frontal, parietal, occipital, and cingulate cortices; nucleus accumbens; olfactory tubercle; subiculum; pineal gland; and medial geniculate nucleus. NGF binding sites were distributed in a 2-fold increasing medial-lateral gradient in the caudate-putamen and a 2-fold lateral-medial gradient in the nucleus accumbens. 125I-rhNGF binding sites were also found in most areas labeled by 125I-muNGF, including the interpedunucular nucleus, cerebellum, forebrain cholinergic nuclei, caudoventral caudate-putamen, and trigeminal nerve nucleus. 125I-rhNGF binding sites were absent from areas replete with low-affinity NGF binding sites, including circumventricular organs, myelinated fiber bundles, and choroid plexus. The present analysis provides an anatomical differentiation of high-affinity 125I-rhNGF binding sites and greatly expands the number of brain structures that may respond to endogenous NGF or exogenously administered rhNGF.

  1. Detection and identification of heme c-modified peptides by histidine affinity chromatography, high-performance liquid chromatography-mass spectrometry, and database searching.

    PubMed

    Merkley, Eric D; Anderson, Brian J; Park, Jea; Belchik, Sara M; Shi, Liang; Monroe, Matthew E; Smith, Richard D; Lipton, Mary S

    2012-12-07

    Multiheme c-type cytochromes (proteins with covalently attached heme c moieties) play important roles in extracellular metal respiration in dissimilatory metal-reducing bacteria. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) characterization of c-type cytochromes is hindered by the presence of multiple heme groups, since the heme c modified peptides are typically not observed or, if observed, not identified. Using a recently reported histidine affinity chromatography (HAC) procedure, we enriched heme c tryptic peptides from purified bovine heart cytochrome c, two bacterial decaheme cytochromes, and subjected these samples to LC-MS/MS analysis. Enriched bovine cytochrome c samples yielded 3- to 6-fold more confident peptide-spectrum matches to heme c containing peptides than unenriched digests. In unenriched digests of the decaheme cytochrome MtoA from Sideroxydans lithotrophicus ES-1, heme c peptides for 4 of the 10 expected sites were observed by LC-MS/MS; following HAC fractionation, peptides covering 9 out of 10 sites were obtained. Heme c peptide spiked into E. coli lysates at mass ratios as low as 1×10(-4) was detected with good signal-to-noise after HAC and LC-MS/MS analysis. In addition to HAC, we have developed a proteomics database search strategy that takes into account the unique physicochemical properties of heme c peptides. The results suggest that accounting for the double thioether link between heme c and peptide, and the use of the labile heme fragment as a reporter ion, can improve database searching results. The combination of affinity chromatography and heme-specific informatics yielded increases in the number of peptide-spectrum matches of 20-100-fold for bovine cytochrome c.

  2. Detection and Identification of Heme c-Modified Peptides by Histidine Affinity Chromatography, High-Performance Liquid Chromatography-Mass Spectrometry, and Database Searching

    SciTech Connect

    Merkley, Eric D.; Anderson, Brian J.; Park, Jea H.; Belchik, Sara M.; Shi, Liang; Monroe, Matthew E.; Smith, Richard D.; Lipton, Mary S.

    2012-12-07

    Multiheme c-type cytochromes (proteins with covalently attached heme c moieties) play important roles in extracellular metal respiration in dissimilatory metal-reducing bacteria. Liquid chromatography-tandem mass spectrometry-(LC-MS/MS) characterization of c-type cytochromes is hindered by the presence of multiple heme groups, since the heme c modified peptides are typically not observed, or if observed, not identified. Using a recently reported histidine affinity chromatography (HAC) procedure, we enriched heme c tryptic peptides from purified bovine heart cytochrome c, a bacterial decaheme cytochrome, and subjected these samples to LC-MS/MS analysis. Enriched bovine cytochrome c samples yielded three- to six-fold more confident peptide-spectrum matches to heme-c containing peptides than unenriched digests. In unenriched digests of the decaheme cytochrome MtoA from Sideroxydans lithotrophicus ES-1, heme c peptides for four of the ten expected sites were observed by LC-MS/MS; following HAC fractionation, peptides covering nine out of ten sites were obtained. Heme c peptide spiked into E. coli lysates at mass ratios as low as 10-4 was detected with good signal-to-noise after HAC and LC-MS/MS analysis. In addition to HAC, we have developed a proteomics database search strategy that takes into account the unique physicochemical properties of heme c peptides. The results suggest that accounting for the double thioether link between heme c and peptide, and the use of the labile heme fragment as a reporter ion, can improve database searching results. The combination of affinity chromatography and heme-specific informatics yielded increases in the number of peptide-spectrum matches of 20-100-fold for bovine cytochrome c.

  3. Characterization of the human submandibular/sublingual saliva glycoproteome using lectin affinity chromatography coupled to multidimensional protein identification technology.

    PubMed

    Gonzalez-Begne, Mireya; Lu, Bingwen; Liao, Lujian; Xu, Tao; Bedi, Gurrinder; Melvin, James E; Yates, John R

    2011-11-04

    In-depth analysis of the salivary proteome is fundamental to understanding the functions of salivary proteins in the oral cavity and to reveal disease biomarkers involved in different pathophysiological conditions, with the ultimate goal of improving patient diagnosis and prognosis. Submandibular and sublingual glands contribute saliva rich in glycoproteins to the total saliva output, making them valuable sources for glycoproteomic analysis. Lectin-affinity chromatography coupled to mass spectrometry-based shotgun proteomics was used to explore the submandibular/sublingual (SM/SL) saliva glycoproteome. A total of 262 N- and O-linked glycoproteins were identified by multidimensional protein identification technology (MudPIT). Only 38 were previously described in SM and SL salivas from the human salivary N-linked glycoproteome, while 224 were unique. Further comparison analysis with SM/SL saliva of the human saliva proteome, revealed 125 glycoproteins not formerly reported in this secretion. KEGG pathway analyses demonstrated that many of these glycoproteins are involved in processes such as complement and coagulation cascades, cell communication, glycosphingolipid biosynthesis neo-lactoseries, O-glycan biosynthesis, glycan structures-biosynthesis 2, starch and sucrose metabolism, peptidoglycan biosynthesis or others pathways. In summary, lectin-affinity chromatography coupled to MudPIT mass spectrometry identified many novel glycoproteins in SM/SL saliva. These new additions to the salivary proteome may prove to be a critical step for providing reliable biomarkers in the diagnosis of a myriad of oral and systemic diseases.

  4. Enrichment and Analysis of Nonenzymatically Glycated Peptides: Boronate Affinity Chromatography Coupled with Electron-Transfer Dissociation Mass Spectrometry

    SciTech Connect

    Zhang, Qibin; Tang, Ning; Brock, Jonathan W.; Mottaz, Heather M.; Ames, Jennifer M.; Baynes, John; Smith, Richard D.; Metz, Thomas O.

    2007-06-01

    Non-enzymatic glycation of peptides and proteins by D-glucose has important implications in the pathogenesis of diabetes mellitus, particularly in the development of diabetic complications. However, no effective high-throughput methods exist for identifying proteins containing this low abundance post-translational modification in bottom-up proteomic studies. In this report, phenylboronate affinity chromatography was used in a two-step enrichment scheme to selectively isolate first glycated proteins and then glycated, tryptic peptides from human serum glycated in vitro. Enriched peptides were subsequently analyzed by alternating electron transfer dissociation (ETD) and collision induced dissociation (CID) tandem mass spectrometry. It was observed that ETD fragmentation mode resulted in a significantly higher number of glycated peptide identifications (87.6% of all identified peptides) versus CID mode (17.0% of all identified peptides), when utilizing dual glycation enrichment on both the protein and peptide level. This study illustrates that phenylboronate affinity chromatography coupled with LC-MS/MS with ETD as the fragmentation mode is an efficient approach for analyses of glycated proteins and can have broad applications in studies of diabetes mellitus.

  5. Separation and analysis of cis-diol-containing compounds by boronate affinity-assisted micellar electrokinetic chromatography.

    PubMed

    Wang, Heye; Lü, Chenchen; Li, Hengye; Chen, Yang; Zhou, Min; Ouyang, Jian; Liu, Zhen

    2013-10-01

    Cis-diol-containing compounds (CDCCs) are usually highly hydrophilic compounds and are therefore difficult to separate by conventional reversed-phase-based micellar electrokinetic chromatography (MEKC) due to poor selectivity. Here, we report a new method, called boronate affinity-assisted micellar electrokinetic chromatography (BAA-MEKC), to solve this issue. A boronic acid with a hydrophobic alkyl chain was added to the background electrolyte, which acted as a modifier to adjust the selectivity. CDCCs can covalently react with the boronic acid to form negatively charged surfactant-like complexes, which can partition into micelles formed with a cationic surfactant. Thus, CDCCs can be separated according to the differential partition constants of their boronic acid complexes between the micellar phase and the surrounding aqueous phase. To verify this method, eight nucleosides were employed as the test compounds and their separation confirmed that the combination of boronate affinity interaction with MEKC can effectively enhance the separation of CDCCs. The effects of experimental conditions on the separation were investigated. Finally, the BAA-MEKC method was applied to the separation and analysis of nucleosides extracted from human urine. BAA-MEKC exhibited better selectivity and improved separation as compared with conventional MEKC and CZE. Successful quantitative analysis of urinary nucleosides by BAA-MEKC was demonstrated.

  6. Protection against anthrax toxin by recombinant antibody fragments correlates with antigen affinity.

    PubMed

    Maynard, Jennifer A; Maassen, Catharina B M; Leppla, Stephen H; Brasky, Kathleen; Patterson, Jean L; Iverson, Brent L; Georgiou, George

    2002-06-01

    The tripartite toxin produced by Bacillus anthracis is the key determinant in the etiology of anthrax. We have engineered a panel of toxin-neutralizing antibodies, including single-chain variable fragments (scFvs) and scFvs fused to a human constant kappa domain (scAbs), that bind to the protective antigen subunit of the toxin with equilibrium dissociation constants (K(d)) between 63 nM and 0.25 nM. The entire antibody panel showed high serum, thermal, and denaturant stability. In vitro, post-challenge protection of macrophages from the action of the holotoxin correlated with the K(d) of the scFv variants. Strong correlations among antibody construct affinity, serum half-life, and protection were also observed in a rat model of toxin challenge. High-affinity toxin-neutralizing antibodies may be of therapeutic value for alleviating the symptoms of anthrax toxin in infected individuals and for medium-term prophylaxis to infection.

  7. Nickel-Salen supported paramagnetic nanoparticles for 6-His-target recombinant protein affinity purification.

    PubMed

    Rashid, Zahra; Ghahremanzadeh, Ramin; Nejadmoghaddam, Mohammad-Reza; Nazari, Mahboobeh; Shokri, Mohammad-Reza; Naeimi, Hossein; Zarnani, Amir-Hassan

    2017-03-24

    In this research, a simple, efficient, inexpensive, rapid and high yield method for the purification of 6×histidine-tagged recombinant protein was developed. For this purpose, manganese ferrite magnetic nanoparticles (MNPs) were synthesized through a co-precipitation method and then they were conveniently surface-modified with tetraethyl orthosilicate (TEOS) in order to prevent oxidation and form high density of hydroxyl groups. Next, the salen ligand was prepared from condensation reaction of salicylaldehyde and 3-aminopropyl (trimethoxy) silane (APTMS) in 1:1 molar ratio; followed by complexation with Ni(OAc)2.4H2O. Finally, the prepared Ni(II)-salen complex conjugated to silica coated MNPs and MnFe2O4@SiO2@Ni-Salen complex nanoparticles were obtained. The functionalized nanoparticles were spherical with an average diameter around 70nm. The obtained MNPs had a saturation magnetization about 54 emu/g and had super paramagnetic character. These MNPs were used efficiently to enrich recombinant histidine-tagged (His-tagged) protein-A from bacterial cell lysate. In about 45min, highly pure His-tagged recombinant protein was obtained, as judged by SDS-PAGE analysis and silver staining. The amount of target protein in flow through and washing fractions was minimal denoting the high efficiency of purification process. The average capacity of the matrix was found to be high and about 180±15mgg(-1) (protein/MnFe2O4@SiO2@Ni-Salen complex). Collectively, purification process with MnFe2O4@SiO2@Ni-Salen complex nanoparticles is rapid, efficient, selective and whole purification can be carried out in only a single tube without the need for expensive systems.

  8. MHC class II tetramers made from isolated recombinant α and β chains refolded with affinity-tagged peptides.

    PubMed

    Braendstrup, Peter; Justesen, Sune; Osterbye, Thomas; Nielsen, Lise Lotte Bruun; Mallone, Roberto; Vindeløv, Lars; Stryhn, Anette; Buus, Søren

    2013-01-01

    Targeting CD4+ T cells through their unique antigen-specific, MHC class II-restricted T cell receptor makes MHC class II tetramers an attractive strategy to identify, validate and manipulate these cells at the single cell level. Currently, generating class II tetramers is a specialized undertaking effectively limiting their use and emphasizing the need for improved methods of production. Using class II chains expressed individually in E. coli as versatile recombinant reagents, we have previously generated peptide-MHC class II monomers, but failed to generate functional class II tetramers. Adding a monomer purification principle based upon affinity-tagged peptides, we here provide a robust method to produce class II tetramers and demonstrate staining of antigen-specific CD4+ T cells. We also provide evidence that both MHC class II and T cell receptor molecules largely accept affinity-tagged peptides. As a general approach to class II tetramer generation, this method should support rational CD4+ T cell epitope discovery as well as enable specific monitoring and manipulation of CD4+ T cell responses.

  9. Salvage of focal cerebral ischemic damage by transfusion of high O2-affinity recombinant hemoglobin polymers in mouse

    PubMed Central

    Nemoto, Masaaki; Mito, Toshiaki; Brinigar, William S; Fronticelli, Clara; Koehler, Raymond C.

    2006-01-01

    Cell-free hemoglobin solutions with high oxygen affinity might be beneficial for selectively delivering oxygen to ischemic tissue. A recombinant hybrid hemoglobin molecule was designed using the human α-subunit and the bovine β-subunit, with placement of surface cysteines to permit disulfide bond polymerization of the tetramers. The resulting protein generated from an Escherichia coli expression system had a molecular mass >1 MDa, a P50 of ~3 Torr, and a cooperativity of n = 1.0. Anesthetized mice were transfused during 2-h occlusion of the middle cerebral artery. Compared with transfusion with 5% albumin, cerebral infarct volume was reduced by 41% with transfusion of a 3% solution of the high oxygen-affinity hemoglobin polymer and by 50% with transfusion of a 6% solution of the polymer. Transfusion of a 6% solution of a 500-kDa polymer possessing a P50 of 17 Torr and a cooperativity of n = 2.0 resulted in a 66% reduction of infarct volume. These results indicate that cell-free Hb polymers with P50 values much lower than that of red blood cell hemoglobin are highly capable of salvaging ischemic brain. The assumption that the P50 of blood substitutes should be similar to that of blood might not be warranted when used during ischemic conditions. PMID:16424069

  10. An improved affinity tag based on the FLAG peptide for the detection and purification of recombinant antibody fragments.

    PubMed

    Knappik, A; Plückthun, A

    1994-10-01

    The commercially available monoclonal antibodies M1 and M2 were raised against and bind the FLAG sequence DYKDDDDK with high specificity. Using the calcium-dependent M1 antibody and the FLAG tag attached to the N terminus of various fragments of the antibody McPC603 expressed in Escherichia coli, we found that the M1 antibody binds with almost the same affinity to a much shorter version of this sequence (DYKD). Since most antibody light chains start with an aspartate, the addition of only three additional amino acids to the N terminus is sufficient to detect and quantify the expressed antibody fragments using standard immunological methods. Similarly, the heavy chain can be detected specifically with the sequence DYKD, which requires four additional amino acids since most heavy chains do not start with Asp. The signal sequence of both chains that is necessary for the transport of the chains to the periplasm of E. coli is processed correctly. Furthermore, we investigated the influence of the amino acid at the fifth position of the FLAG sequence on the binding affinity of the M1 antibody and found that a glutamate at this position increased the sensitivity in Western blots sixfold over the original long FLAG sequence containing an aspartate residue at this position. Together, the improved FLAG is a versatile tool for both sensitive detection and one-step purification of recombinant proteins.

  11. Production of capsular polysaccharide of Streptococcus pneumoniae type 14 and its purification by affinity chromatography.

    PubMed

    Suárez, N; Fraguas, L F; Texeira, E; Massaldi, H; Batista-Viera, F; Ferreira, F

    2001-02-01

    We describe a rapid and efficient method for producing the capsular polysaccharide of Streptococcus pneumoniae by fermentation on tryptic soy broth and purification of this compound by using immobilized soybean lectin as an affinity adsorbent. In principle, the same strategy can be used to produce purified capsular polysaccharides from other streptococcal serotypes by selecting the appropriate lectin adsorbents.

  12. Production of Capsular Polysaccharide of Streptococcus pneumoniae Type 14 and Its Purification by Affinity Chromatography

    PubMed Central

    Suárez, Norma; Fraguas, Laura Franco; Texeira, Esther; Massaldi, Hugo; Batista-Viera, Francisco; Ferreira, Fernando

    2001-01-01

    We describe a rapid and efficient method for producing the capsular polysaccharide of Streptococcus pneumoniae by fermentation on tryptic soy broth and purification of this compound by using immobilized soybean lectin as an affinity adsorbent. In principle, the same strategy can be used to produce purified capsular polysaccharides from other streptococcal serotypes by selecting the appropriate lectin adsorbents. PMID:11157270

  13. Enrichment of phosphorylated proteins from cell lysate using a novel phosphate-affinity chromatography at physiological pH.

    PubMed

    Kinoshita-Kikuta, Emiko; Kinoshita, Eiji; Yamada, Atsushi; Endo, Mika; Koike, Tohru

    2006-10-01

    While phosphoproteins have attracted great interest toward the post-genome research (e.g. clinical diagnosis and drug design), there have been few procedures for the specific enrichment of native phosphoproteins from cells or tissues. Here, we describe a simple and efficient protocol to enrich phosphoproteins comprehensively from a complex mixture containing solubilized cellular proteins. This method is based on immobilized metal affinity chromatography using a phosphate-binding tag molecule (i.e. a dinuclear zinc(II) complex) attached on a highly cross-linked agarose. The binding, washing, and elution processes were all conducted without a detergent or a reducing agent at pH 7.5 and room temperature. An additive, 1.0 M CH3COONa, was necessary in the binding and washing buffers (0.10 M Tris-CH3COOH, pH 7.5) to prevent the nonphosphorylated protein from binding. The absorbed phosphoproteins were eluted using a mixed buffer solution (pH 7.5) consisting of 0.10 M Tris-CH3COOH, 10 mM NaH2PO4-NaOH, and 1.0 M NaCl. In this study, we demonstrate a typical example of phosphate-affinity chromatography using an epidermal growth factor-stimulated A431 cell lysate. The total time for the column chromatography (1 mL gel scale) was less than 1 h. The strong enrichment of the phosphoproteins into the elution fraction was evaluated using SDS-PAGE followed by Western blotting analysis.

  14. Carbonaceous materials passivation on amine functionalized magnetic nanoparticles and its application for metal affinity isolation of recombinant protein.

    PubMed

    Nata, Iryanti F; El-Safory, Nermeen S; Lee, Cheng-Kang

    2011-09-01

    Magnetic nanoparticles (MNPs) with an amine functionalized surface (MH) were passivated with carbonaceous materials (MH@C) by carbonization of glucose under hydrothermal reaction conditions. The carboxylate groups in carbonaceous shell could be enriched to 0.285 mmol/g when acrylic acid was added as a functional monomer in the carbonization reaction (MH@C-Ac). The carbonaceous shell not only protected the magnetic core from acidic erosion but also showed a high adsorption capacity toward Ni(2+) ion. The Ni(2+) ion complexed on MH@C and MH@C-Ac could specifically isolate 6×His tagged recombinant proteins from crude bacterial extracts via metal affinity interaction. The superparamagnetic property facilitates the easy retrieval of the carbonaceous material passivated MNPs from the viscous proteins solutions. Recombinant green fluorescence protein (GFP) and hyaluronic acid (HA) lyase of 9.4 mg and 2.3 mg could be isolated by 1 g of MH@C-Ac-Ni, respectively.

  15. [Affinity chromatography and proteomic screening as the effective method for S100A4 new protein targets discovery].

    PubMed

    Koshelev, Iu A

    2014-01-01

    Affinity chromatography followed by a selective binding proteins identification can be using as effective method for a biological impotent interactions discovery. The molecular structure and their surface charge as and conformational regulation possibilities, which change their surface hydrophobic properties, all they should to taken in account during method optimization process. With the same' method we had identify some new S100A4 target proteins such as cytoskeleton proteins Sept2, Sept7, Sept11 and this interaction would can to highlight as S100A4 would regulate cell motility. Even we had identify the transcription cofactor Ddx5 and through such complex formation a S100A4 protein would can to regulate E-cadherin, p21 Waf1/Cip1), Bnip3 gene expression. The same protocol can be using for a target proteins search with another S100 protein family members, because their molecules demonstrate a high homology level in amino aside sequences and 3D structures.

  16. Purification of antibodies against N-homocysteinylated proteins by affinity chromatography on Nomega-homocysteinyl-aminohexyl-Agarose.

    PubMed

    Perła, Joanna; Undas, Anetta; Twardowski, Tomasz; Jakubowski, Hieronim

    2004-08-05

    Modification with homocysteine (Hcy)-thiolactone leads to the formation of N-Hcy-Lys-protein. Although N-Hcy-Lys-proteins are immunogenic, pure antibodies have not yet been obtained. Here we describe synthesis and application of Nomega-homocysteinyl-aminohexyl-Agarose for affinity purification of anti-N-Hcy-Lys-protein antibodies. Nomega-homocysteinyl-aminohexyl-Agarose was prepared by N-homocysteinylation of omega-aminohexyl-Agarose with Hcy-thiolactone. Immune serum was obtained from rabbits inoculated with N-Hcy-Lys-keyhole limpet hemocyanine and IgG fraction prepared by chromatography on protein A-Agarose. Anti-N-Hcy-Lys-protein IgG was adsorbed on Nomega-homocysteinyl-aminohexyl-Agarose column at pH 8.6 and eluted with a pH 2.3 buffer. Enzyme-linked immunosorbent assays demonstrate that the antibody recognizes specifically N-homocysteinylated variants of hemoglobin, albumin, transferrin, and antitrypsin.

  17. Separation of Binding Protein of Celangulin V from the Midgut of Mythimna separata Walker by Affinity Chromatography

    PubMed Central

    Lu, Lina; Qi, Zhijun; Zhang, Jiwen; Wu, Wenjun

    2015-01-01

    Celangulin V, an insecticidal compound isolated from the root bark of Chinese bittersweet, can affect the digestive system of insects. However, the mechanism of how Celangulin V induces a series of symptoms is still unknown. In this study, affinity chromatography was conducted through coupling of Celangulin V-6-aminoacetic acid ester to the CNBr-activated Sepharose 4B. SDS-PAGE was used to analyze the collected fraction eluted by Celangulin V. Eight binding proteins (Zinc finger protein, Thioredoxin peroxidase (TPx), Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), SUMO E3 ligase RanBP2, Transmembrane protein 1, Actin, APN and V-ATPase) were obtained and identified by LC/Q-TOF-MS from the midgut of Mythimna separata larvae. The potential of these proteins to serve as target proteins involved in the insecticidal activity of Celangulin V is discussed. PMID:25996604

  18. Determination of soluble immunoglobulin G in bovine colostrum products by Protein G affinity chromatography-turbidity correction and method validation.

    PubMed

    Holland, Patrick T; Cargill, Anne; Selwood, Andrew I; Arnold, Kate; Krammer, Jacqueline L; Pearce, Kevin N

    2011-05-25

    Immunoglobulin-containing food products and nutraceuticals such as bovine colostrum are of interest to consumers as they may provide health benefits. Commercial scale colostrum products are valued for their immunoglobulin G (IgG) content and therefore require accurate analysis. One of the most commonly used methods for determining total soluble IgG in colostrum products is based on affinity chromatography using a Protein G column and UV detection. This paper documents improvements to the accuracy of the Protein G analysis of IgG in colostrum products, especially those containing aggregated forms of IgG. Capillary electrophoresis-sodium dodecyl sulfate (CE-SDS) analysis confirmed that aggregated IgG measured by Protein G does not contain significant amounts of casein or other milk proteins. Size exclusion chromatography identified the content of soluble IgG as mainly monomeric IgG and aggregated material MW > 450 kDa with small amounts of dimer and trimer. The turbidity of the eluting IgG, mainly associated with aggregated IgG, had a significant effect on the quantitative results. Practical techniques were developed to correct affinity LC data for turbidity on an accurate, consistent, and efficient basis. The method was validated in two laboratories using a variety of colostrum powders. Precision for IgG was 2-3% (RSD(r)) and 3-12% (RSD(R)). Recovery was 100.2 ± 2.4% (mean ± RSD, n = 10). Greater amounts of aggregated IgG were solubilized by a higher solution:sample ratio and extended times of mixing or sonication, especially for freeze-dried material. It is concluded that the method without acid precipitation and with turbidity correction provides accurate, precise, and robust data for total soluble IgG and is suitable for product specification and quality control of colostrum products.

  19. Induced binding of proteins by ammonium sulfate in affinity and ion-exchange column chromatography.

    PubMed

    Arakawa, Tsutomu; Tsumoto, Kouhei; Ejima, Daisuke; Kita, Yoshiko; Yonezawa, Yasushi; Tokunaga, Masao

    2007-04-10

    In general, proteins bind to affinity or ion-exchange columns at low salt concentrations, and the bound proteins are eluted by raising the salt concentration, changing the solvent pH, or adding competing ligands. Blue-Sepharose is often used to remove bovine serum albumin (BSA) from samples, but when we applied BSA to Blue-Sepharose in 20 mM phosphate, pH 7.0, 50%-60% of the protein flowed through the column; however, complete binding of BSA was achieved by the addition of 2 M ammonium sulfate (AS) to the column equilibration buffer and the sample. The bound protein was eluted by decreasing the AS concentration or by adding 1 M NaCl or arginine. AS at high concentrations resulted in binding of BSA even to an ion-exchange column, Q-Sepharose, at pH 7.0. Thus, although moderate salt concentrations elute proteins from Blue-Sepharose or ion-exchange columns, proteins can be bound to these columns under extreme salting-out conditions. Similar enhanced binding of proteins by AS was observed with an ATP-affinity column.

  20. Affinity-based screening of combinatorial libraries using automated, serial-column chromatography

    SciTech Connect

    Evans, D.M.; Williams, K.P.; McGuinness, B.

    1996-04-01

    The authors have developed an automated serial chromatographic technique for screening a library of compounds based upon their relative affinity for a target molecule. A {open_quotes}target{close_quotes} column containing the immobilized target molecule is set in tandem with a reversed-phase column. A combinatorial peptide library is injected onto the target column. The target-bound peptides are eluted from the first column and transferred automatically to the reversed-phase column. The target-specific peptide peaks from the reversed-phase column are identified and sequenced. Using a monoclonal antibody (3E-7) against {beta}-endorphin as a target, we selected a single peptide with sequence YGGFL from approximately 5800 peptides present in a combinatorial library. We demonstrated the applicability of the technology towards selection of peptides with predetermined affinity for bacterial lipopolysaccharide (LPS, endotoxin). We expect that this technology will have broad applications for high throughput screening of chemical libraries or natural product extracts. 21 refs., 4 figs.

  1. The Plasma Membrane Ca(2+) ATPase: Purification by Calmodulin Affinity Chromatography, and Reconstitution of the Purified Protein.

    PubMed

    Niggli, Verena; Carafoli, Ernesto

    2016-01-01

    Plasma membrane Ca(2+) ATPases (PMCA pumps) are key regulators of cytosolic Ca(2+) in eukaryotes. They extrude Ca(2+) from the cytosol, using the energy of ATP hydrolysis and operate as Ca(2+)-H(+) exchangers. They are activated by the Ca(2+)-binding protein calmodulin, by acidic phospholipids and by other mechanisms, among them kinase-mediated phosphorylation. Isolation of the PMCA in pure and active form is essential for the analysis of its structure and function. In this chapter, the purification of the pump, as first achieved from erythrocyte plasma membranes by calmodulin-affinity chromatography, is described in detail. The reversible, high-affinity, Ca(2+)-dependent interaction of the pump with calmodulin is the basis of the procedure. Either phospholipids or glycerol have to be present in the isolation buffers to keep the pump active during the isolation procedure. After the isolation of the PMCA pump from human erythrocytes the pump was purified from other cell types, e.g., heart sarcolemma, plant microsomal fractions, and cells that express it ectopically. The reconstitution of the purified pump into phospholipid vesicles using the cholate dialysis method will also be described. It allows studies of transport mechanism and of regulation of pump activity. The purified pump can be stored in the reconstituted form for several days at 4 °C with little loss of activity, but it rapidly loses activity when stored in the detergent-solubilized form.

  2. Affinity chromatography on immobilized "biomimetic" ligands. Synthesis, immobilization and chromatographic assessment of an immunoglobulin G-binding ligand.

    PubMed

    Teng, S F; Sproule, K; Husain, A; Lowe, C R

    2000-03-31

    A synthetic bifunctional ligand (22/8) comprising a triazine scaffold substituted with 3-aminophenol (22) and 4-amino-1-naphthol (8) has been designed, synthesised, characterised and immobilized on agarose beads to create a robust, highly selective affinity adsorbent for human immunoglobulin G (IgG). Scatchard analysis of the binding isotherm for IgG on immobilized 22/8 (90 micromol 22/8/g moist weight gel) indicated an affinity constant (Ka) of 1.4 x 10(5) M(-1) and a theoretical maximum capacity of 151.9 mg IgG/g moist weight gel. The adsorbent shows similar selectivity to immobilized protein A and binds IgG from a number of species. An apparent capacity of 51.9 mg human IgG/g moist weight gel was observed under the experimental conditions selected for adsorption. Human IgG was eluted with glycine-HCl buffer with a recovery of 67-69% and a purity of 97.3-99.2%, depending on the pH value of the buffer used for elution. Preparative chromatography of IgG from human plasma showed that under the specified conditions, 94.4% of plasma IgG was adsorbed and 60% subsequently eluted with a purity of 92.5%. The immobilized ligand was able to withstand incubation in 1 M NaOH for 7 days without loss of binding capacity for IgG.

  3. Ultra sensitive affinity chromatography on avidin-functionalized PMMA microchip for low abundant post-translational modified protein enrichment.

    PubMed

    Xia, Hui; Murray, Kermit; Soper, Steven; Feng, June

    2012-02-01

    Post-translational modifications (PTM) of proteins play essential roles in cellular physiology and disease. The identification of protein substrates and detection of modification site helps understand PTM-mediated regulation in essential biological pathways and functions in various diseases. However, PTM proteins are typically present only at trace levels, making them difficult to identify in mass spectrometry based proteomics. In this paper, we report a novel and sensitive affinity chromatography on the avidin-functionalized poly(methyl methacrylate) (PMMA) microchip for enrichment of nanogram (ng) amount of PTMs. The chemical modification of poly(methyl methacrylate) (PMMA) surfaces yield avidin-terminated PMMA surfaces after UV radiation and consecutive EDC mediated coupling (amide reaction). This functionalized PMMA micro-device was developed to identify and specifically trap biotinylated PTM proteins of low abundance from complex protein mixture. Here we selected carbonylated protein as a representative PTM to illustrate the wide application of this affinity microchip for any PTMs converted into a tractable tag after derivatization. The surface topography, surface functional group mapping and elemental composition changes after each modification step of the treatment process were systematically measured qualitatively and quantitatively by atomic force microscopy, X-ray photoelectron spectroscopy and fluorescence microscopy. Quantitative study of biotinlated carbonylated protein capture recovery and elution efficiency of the device was also studied. We also envision that this subproteome enrichment micro-device can be assembled with other lab-on-a-chip components for follow-up protein analysis.

  4. Sialic acid-specific affinity chromatography for the separation of erythropoietin glycoforms using serotonin as a ligand.

    PubMed

    Meininger, M; Stepath, M; Hennig, R; Cajic, S; Rapp, E; Rotering, H; Wolff, M W; Reichl, U

    2016-02-15

    Recombinant human erythropoietin (rhEPO) is an important CHO cell-derived glycoprotein and the degree of sialylation of this hormone is crucial for its in vivo bioactivity. In order to improve the purification process serotonin as a potential affinity ligand was tested for preparative chromatographic separation of rhEPO glycoforms into fractions of different degrees of sialylation. Therefore, two chromatographic matrices were prepared by immobilizing serotonin on CNBr- and NHS-Sepharose™. First it was shown both matrices bind rhEPO only in its sialylated form. Results indicate that binding is pH independent between pH 3.5 to 8 suggesting it is not only based on electrostatic interactions. Second, after optimal binding conditions were identified, semi-purified rhEPO was loaded onto both matrices and eluted using a stepwise elution gradient of sodium chloride. For comparison same affinity purification experiments were performed using wheat germ agglutinin-coupled agarose, a lectin known for its affinity towards sialylated glycoproteins. To monitor changes in N-glycan fingerprint, eluate fractions were analyzed by multiplexed capillary gel electrophoresis coupled to laser-induced fluorescence (xCGE-LIF). For the serotonin matrices an increasing degree of sialylation was observed from the first to the third elution fraction while purity of rhEPO could be increased at the same time. The late elution fractions of serotonin-coupled CNBr- and NHS-Sepharose™ also showed an overall sialylation degree exceeding that of the starting material. In contrast, for rhEPO bound to wheat germ agglutinin-coupled agarose, no distinct change in the degree of sialylation could be observed after elution. Overall, these encouraging results highlight the potential of serotonin as a chromatographic ligand for the improvement of pharmaceutical purification processes of rhEPO.

  5. Development of production and purification processes of recombinant fragment of pneumococcal surface protein A in Escherichia coli using different carbon sources and chromatography sequences.

    PubMed

    Carvalho, Rimenys Junior; Cabrera-Crespo, Joaquin; Tanizaki, Martha Massako; Gonçalves, Viviane Maimoni

    2012-05-01

    Pneumococcal surface protein A (PspA) is essential for Streptococcus pneumoniae virulence and its use either as a novel pneumococcal vaccine or as carrier in a conjugate vaccine would improve the protection and the coverage of the vaccine. Within this context, the development of scalable production and purification processes of His-tagged recombinant fragment of PspA from clade 3 (rfPspA3) in Escherichia coli BL21(DE3) was proposed. Fed-batch production was performed using chemically defined medium with glucose or glycerol as carbon source. Although the use of glycerol led to lower acetate production, the concentration of cells were similar at the end of both fed-batches, reaching high cell density of E. coli (62 g dry cell weight/L), and the rfPspA3 production was higher with glucose (3.48 g/L) than with glycerol (2.97 g/L). A study of downstream process was also carried out, including cell disruption and clarification steps. Normally, the first chromatography step for purification of His-tagged proteins is metal affinity. However, the purification design using anion exchange followed by metal affinity gave better results for rfPspA3 than the opposite sequence. Performing this new design of chromatography steps, rfPspA3 was obtained with 95.5% and 75.9% purity, respectively, from glucose and glycerol culture. Finally, after cation exchange chromatography, rfPspA3 purity reached 96.5% and 90.6%, respectively, from glucose and glycerol culture, and the protein was shown to have the expected alpha-helix secondary structure.

  6. Indirect ELISAs based on recombinant and affinity-purified glycoprotein E of Aujeszky's disease virus to differentiate between vaccinated and infected animals.

    PubMed

    Morenkov, O S; Fodor, N; Fodor, I

    1999-01-01

    Two indirect ELISAs for the detection of antibodies against glycoprotein E (gE) of Aujeszky's disease virus (ADV) in sera have been developed. The rec-gE-ELISA is based on the E. coli-expressed recombinant protein containing the N-terminal sequences of gE (aa 1-125) fused with the glutathione S-transferase from Schistosoma japonicum. The affi-gE-ELISA is based on native gE, which was purified from virions by affinity chromatography. The tests were optimised and compared with each other, as well as with the recently developed blocking gE-ELISA (Morenkov et al., 1997b), with respect to specificity and sensitivity. The rec-gE-ELISA was less sensitive in detecting ADV-infected animals than the affi-gE-ELISA (sensitivity 80% and 97%, respectively), which is probably due to the lack of conformation-dependent immunodominant epitopes on the recombinant protein expressed in E. coli. The specificity of the rec-gE-ELISA and affi-gE-ELISA was rather moderate (90% and 94%, respectively) because it was necessary to set such cut-off values in the tests that provided a maximum level of sensitivity, which obviously increased the incidence of false positive reactions. Though the indirect ELISAs detect antibodies against many epitopes of gE, the blocking gE-ELISA, which detects antibodies against only one immunodominant epitope of gE, showed a better test performance (specificity 99% and sensitivity 98%). This is most probably due to rather high dilutions of the sera used in the indirect gE-ELISAs (1:30) as compared to the serum dilution in the blocking gE-ELISA (1:2). We conclude that the indirect gE-ELISAs are sufficiently specific and sensitive to distinguish ADV-infected swine from those vaccinated with gE-negative vaccine and can be useful, in particularly affi-gE-ELISA, as additional tests for the detection of antibodies to gE.

  7. Technical advance: identification of plant actin-binding proteins by F-actin affinity chromatography

    NASA Technical Reports Server (NTRS)

    Hu, S.; Brady, S. R.; Kovar, D. R.; Staiger, C. J.; Clark, G. B.; Roux, S. J.; Muday, G. K.

    2000-01-01

    Proteins that interact with the actin cytoskeleton often modulate the dynamics or organization of the cytoskeleton or use the cytoskeleton to control their localization. In plants, very few actin-binding proteins have been identified and most are thought to modulate cytoskeleton function. To identify actin-binding proteins that are unique to plants, the development of new biochemical procedures will be critical. Affinity columns using actin monomers (globular actin, G-actin) or actin filaments (filamentous actin, F-actin) have been used to identify actin-binding proteins from a wide variety of organisms. Monomeric actin from zucchini (Cucurbita pepo L.) hypocotyl tissue was purified to electrophoretic homogeneity and shown to be native and competent for polymerization to actin filaments. G-actin, F-actin and bovine serum albumin affinity columns were prepared and used to separate samples enriched in either soluble or membrane-associated actin-binding proteins. Extracts of soluble actin-binding proteins yield distinct patterns when eluted from the G-actin and F-actin columns, respectively, leading to the identification of a putative F-actin-binding protein of approximately 40 kDa. When plasma membrane-associated proteins were applied to these columns, two abundant polypeptides eluted selectively from the F-actin column and cross-reacted with antiserum against pea annexins. Additionally, a protein that binds auxin transport inhibitors, the naphthylphthalamic acid binding protein, which has been previously suggested to associate with the actin cytoskeleton, was eluted in a single peak from the F-actin column. These experiments provide a new approach that may help to identify novel actin-binding proteins from plants.

  8. [Isolation and purification of recombinant soluble and non-fusion angiogenesis inhibitor Kringle 5 using chromatography].

    PubMed

    Ma, Lina; Wu, Dan; Bian, Liujiao

    2012-08-01

    The Kringle 5 domain of plasminogen is one of the most potent angiogenesis inhibitors known to date, which can inhibit cell proliferation and migration efficiently. In the study, on the foundation of successful clone and expression of recombinant soluble and non-fusion angiogenesis inhibitor Kringle 5, a two-step chromatographic method, including the use of SP Sepharose Fast Flow cation exchanger and Sephacryl S-100 HR size exclusion chromatography in sequence, was established to separate and purify angiogenesis inhibitor Kringle 5. On the SP Sepharose Fast Flow column, the buffer A consisted of 50.0 mmol/L acetic acid-sodium acetate (pH 5.2), and the buffer B consisted of buffer A with the addition of 0.5 mol/L sodium chloride (pH 5.2); on Sephacryl S-100 HR column, the elution buffer was 5.0 mmol/L phosphate solution (pH 7.0). Through the two-step chromatographic purification process, the purity of the obtained Kringle 5 was more than 98%. In addition, it was found that the obtained Kringle 5 could inhibit the blood vessel growth of chick embryo chorioallantoic membrane effectively. Finally it is concluded that this method can effectively separate active recombinant soluble and non-fusion angiogenesis inhibitor Kringle 5.

  9. Heparin-sepharose affinity chromatography for purification of bull seminal-plasma hyaluronidase.

    PubMed Central

    Srivastava, P N; Farooqui, A A

    1979-01-01

    Bull seminal-plasma hyaluronidase was purified 180-fold by chromatography on concanvalin A-Sepharose, heparin Sepharose, Sephadex G-200 and Sephacryl S-200. With hyaluronic acid as the substrate, the specific activity and turnover number of purified hyaluronidase were 3.63 mumol/min per mg (104000 National Formulary units/mg of protein) and 214 min-1 (mol of product formed/mol of enzyme per min) respectively. Polyacrylamide-gel electrophoresis indicated that the purified enzyme migrated as a single band on 7.5 and 10% (w/v) gels at pH 4.3 and 5.3. Bull seminal-plasma hyaluronidase was markedly inhibited by hydroxylamine, phenylhydrazine and semicarbazide. Purified hyaluronidase (1.25 munits; 1 unit = 1 mumol of N-acetylglucosamine liberated/min at 37 degrees C) dispersed the cumulus clot of rabbit ova in 1 h at 22 degrees C. Images Fig. 4. PMID:540029

  10. An illustration of the clinical relevance of detecting human antimouse antibody interference by affinity chromatography.

    PubMed

    Koper, N P; Massuger, L F; Thomas, C M; Beyer, C; Crooy, M J

    1999-10-01

    Elevated Cancer antigen 125 (CA 125) serum concentrations (up to 221 kU/1) were measured in a 39 year old woman with a positive family history of breast cancer. The serum determinations were performed with the automated Immulite OM-MA chemiluminescent enzyme immunoassay system (Diagnostic Products). Laparoscopic evaluation of the ovaries did not reveal any abnormalities. CA 125 measurements in the same patient using the automated IMx immunoassay system (Abbott) demonstrated normal serum levels. Using a previously reported chromatography procedure IgG type human antimouse antibody activity was found to be present in the serum samples explaining the falsely elevated levels. To prevent this interference the manufacturer modified the assay system by replacing the monoclonal M11 detection antibody with a rabbit polyclonal antibody. Using the modified OM-MA CA 125 assay results were comparable with the IMx values.

  11. Affinity chromatography matrices for depletion and purification of casein glycomacropeptide from bovine whey.

    PubMed

    Baieli, María F; Urtasun, Nicolás; Martinez, María J; Hirsch, Daniela B; Pilosof, Ana M R; Miranda, María V; Cascone, Osvaldo; Wolman, Federico J

    2017-01-01

    Casein glycomacropeptide (CMP) is a 64- amino acid peptide found in cheese whey, which is released after κ-casein specific cleavage by chymosin. CMP lacks aromatic amino acids, a characteristic that makes it usable as a nutritional supplement for people with phenylketonuria. CMP consists of two nonglycosylated isoforms (aCMP A and aCMP B) and its different glycosylated forms (gCMP A and gCMP B). The most predominant carbohydrate of gCMP is N-acetylneuraminic acid (sialic acid). Here, we developed a CMP purification process based on the affinity of sialic acid for wheat germ agglutinin (WGA). After formation of chitosan beads and adsorption of WGA, the agglutinin was covalently attached with glutaraldehyde. Two matrices with different WGA density were assayed for CMP adsorption. Maximum adsorption capacities were calculated according to the Langmuir model from adsorption isotherms developed at pH 7.0, being 137.0 mg/g for the matrix with the best performance. In CMP reduction from whey, maximum removal percentage was 79% (specifically 33.7% of gCMP A and B, 75.8% of aCMP A, and 93.9% of aCMP B). The CMP was recovered as an aggregate with an overall yield of 64%. Therefore, the matrices developed are promising for CMP purification from cheese whey. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:171-180, 2017.

  12. New approach for separating Bacillus subtilis metalloprotease and alpha-amylase by affinity chromatography and for purifying neutral protease by hydrophobic chromatography.

    PubMed

    Lauer, I; Bonnewitz, B; Meunier, A; Beverini, M

    2000-01-14

    Proteases are commonly used in the biscuit and cracker industry as processing aids. They cause moderate hydrolysis of gluten proteins and improve dough rheology to better control product texture and crunchiness. Commercial bacterial proteases are derived from Bacillus fermentation broth. As filtration and ultrafiltration are carried out as the only recovery steps, these preparations contain also alpha-amylase and beta-glucanase as the main side activities. The aim of this study is to purify and characterize the Bacillus subtilis metalloprotease from a commercial preparation, in order to study separately the impact of the protease activity with regards to its functionality on biscuit properties. Purification was achieved by means of affinity chromatography on Cibacron Blue and HIC as a polishing step. Affinity appeared to be the most appropriate matrix for large scale purification while ion exchange chromatography was inefficient in terms of recovery yields. The crude product was first loaded on a Hi Trap Blue column (34 microm, Pharmacia Biotech); elution was carried out with a gradient of NaCl in the presence of 1 mM ZnCl2. This step was only efficient in the presence of Zn cations, because this salt promoted both protease stabilization resulting in high recovery yields and also complexation of amylase units into dimers resulting in amylase retention on the column and a better separation of the 3 activities. Beta-glucanase was mostly non retained on the column and a part was coeluted with the protease. This protease fraction was then loaded on a Resource Phe column (15 microm, Pharmacia Biotech) in a last step of polishing. Elution was carried out with a linear gradient of 100-0% ammonium sulfate 1.3 M; protease was eluted at the beginning of the gradient and well separated from amylase and glucanase trace impurities. The homogeneity of the purified protease was confirmed by SDS-PAGE, which showed that its MW was about 38. pH and temperature optima were also

  13. Rapid purification of the gastric H+/K(+)-ATPase complex by tomato-lectin affinity chromatography.

    PubMed Central

    Callaghan, J M; Toh, B H; Simpson, R J; Baldwin, G S; Gleeson, P A

    1992-01-01

    We have previously shown that tomato lectin binds specifically to the 60-90 kDa membrane glycoprotein of parietal cell tubulovesicles, the beta-subunit of the gastric H+/K(+)-ATPase (proton pump) [Callaghan, Toh, Pettitt, Humphris & Gleeson (1990) J. Cell Sci. 95, 563-576; Toh, Gleeson, Simpson, Mortiz, Callaghan, Goldkorn, Jones, Martinelli, Mu, Humphris, Pettitt, Mori, Masuda, Sobieszczuk, Weinstock, Mantamadiotis & Baldwin (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 6418-6422]. Here we have exploited this interaction for the development of a rapid single-step chromatography procedure for the purification of an active pig gastric proton pump complex. Initially, H+/K(+)-ATPase-enriched membranes, prepared from pig gastric microsomes by density-gradient centrifugation, were extracted in 1% Triton X-100 and passed through a 1 ml tomato lectin-Sepharose 4B column. The bound material, eluted with 20 mM-chitotriose, showed a major band with an apparent molecular mass of 95 kDa, and a faint broad band of 60-90 kDa, by SDS/PAGE. N-Glycanase treatment of the bound material resulted in the appearance of a 35 kDa band, the size of the protein core of the 60-90 kDa glycoprotein beta-subunit. The two components were identified as the 95 kDa alpha-subunit and the 60-90 kDa beta-subunit of the gastric H+/K(+)-ATPase, by immunoreactivity with monospecific antibodies, and by tryptic peptide sequences of the tomato-lectin-bound material. The beta-subunit was present in approximately equimolar amounts to the catalytic alpha-subunit. Whereas the gastric H+/K(+)-ATPase was not active after solubilization in 1% Triton X-100, solubilization of density-gradient-purified membranes in the non-ionic detergent, C12E8, followed by chromatography of the extract on tomato lectin-Sepharose 4B, resulted in the purification of the gastric H+/K(+)-ATPase complex which exhibited K(+)-dependent phosphatase activity. This is the first report of a rapid purification of a partially active solubilized

  14. Isolation of two molecular populations of human complement factor H by hydrophobic affinity chromatography.

    PubMed Central

    Ripoche, J; Al Salihi, A; Rousseaux, J; Fontaine, M

    1984-01-01

    Human complement factor H was prepared in highly purified form from fresh serum by euglobulin precipitation, DEAE-Sephacel chromatography and Sephacryl S-300 gel filtration. This preparation allowed the recovery of 37% of the initial factor H. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis revealed that factor H was homogeneous both in reduced and non-reduced media and exhibited a molecular mass of 150 kDa. Charge-shift experiments clearly showed the presence of hydrophobic sites in the factor H molecule. Charge shifts were observed with two detergent systems (Triton/sodium deoxycholate and Triton/cetyltrimethylammonium bromide). Factor H was able to bind to phenyl-Sepharose. This property allowed us to study two populations of factor H. These two populations exhibited the same physicochemical parameters, but revealed differences in their ability to aggregate in low- and iso-ionic-strength media. The molecular basis and biological significance of this heterogeneity are discussed. Images Fig. 3. Fig. 4. Fig. 5. PMID:6235808

  15. Efficient production and purification of recombinant human interleukin-12 (IL-12) overexpressed in mammalian cells without affinity tag

    PubMed Central

    Jayanthi, Srinivas; Koppolu, Bhanu prasanth; Smith, Sean G.; Jalah, Rashmi; Bear, Jenifer; Rosati, Margherita; Pavlakis, George N.; Felber, Barbara K.; Zaharoff, David A.; Kumar, Thallapuranam Krishnaswamy Suresh

    2014-01-01

    Interleukin-12 is a heterodimeric, pro-inflammatory cytokine that is a key driver of cell-mediated immunity. Clinical interest in IL-12 is significant due to its potent anti-tumor activity and efficacy in controlling certain infectious diseases such as Leishmaniasis and Listeria infection. For clinical applications, the ease of production and purification of IL-12 and the associated cost continues to be a consideration. In this context, we report a simple and effective heparin-affinity based purification of recombinant human IL-12 (hIL-12) from the serum-free supernatants of stable IL-12-transduced HEK293 cells. Fractionation of culture supernatants on heparin Sepharose columns revealed that hIL-12 elutes as a single peak in 500 mM NaCl. Coomassie staining and Western blot analysis showed that hIL-12 eluted in 500 mM NaCl is homogeneous.Purity of hIL-12 was ascertained by RP-HPLC and ESI-MS analysis, and found to be ~98%. Western blot analysis, using monoclonal antibodies, demonstrated that the crucial inter-subunit disulfide bond linking the p35 and p40 subunits is intact in the purified hIL-12. Results of far UV circular dichrosim, steady-state tryptophan fluorescence, and differential scanning calorimetry experiments suggest that purified hIL-12 is in its stable native conformation. Enzyme linked immunosorbent assays (ELISAs) and bioactivity studies demonstrate that hIL-12 is obtained in high yields (0.31 ± 0.05 mg/ mL of the culture medium) and is also fully bioactive. Isothermal titration calorimetry data show that IL-12 exhibits a moderate binding affinity (Kd(app) = 69 ± 1 μM) to heparin. The purification method described in this study is expected to provide greater impetus for research on the role of heparin in the regulation of the function of IL-12. In addition, the results of this study provide an avenue to obtain high amounts of IL-12 required for structural studies which are aimed at the development of novel IL-12-based therapeutics. PMID:25123642

  16. Characterization of a multiple endogenously expressed adenosine triphosphate-binding cassette transporters using nuclear and cellular membrane affinity chromatography columns.

    PubMed

    Habicht, K-L; Singh, N S; Khadeer, M A; Shimmo, R; Wainer, I W; Moaddel, R

    2014-04-25

    Glioblastoma multiforme is an aggressive form of human astrocytoma, with poor prognosis due to multi-drug resistance to a number of anticancer drugs. The observed multi-drug resistance is primarily due to the efflux activity of ATP-Binding Cassette (ABC) efflux transporters such as Pgp, MRP1 and BCRP. The expression of these transporters has been demonstrated in nuclear and cellular membranes of the LN-229 human glioblastoma cell line. Nuclear membrane and cellular membrane fragments from LN-229 cells were immobilized on the IAM stationary phase to create nuclear and cellular membrane affinity chromatography columns, (NMAC(LN-229)) and (CMAC(LN-229)), respectively. Pgp, MRP1 and BCRP transporters co-immobilized on both columns were characterized and compared by establishing the binding affinities for estrone-3-sulfate (3.8 vs. 3.7μM), verapamil (0.6 vs. 0.7μM) and prazosin (0.099 vs. 0.033μM) on each column and no significant differences were observed. Since the marker ligands had overlapping selectivities, the selective characterization of each transporter was carried out by saturation of the binding sites of the non-targeted transporters. The addition of verapamil (Pgp and MRP1 substrate) to the mobile phase allowed the comparative screening of eight compounds at the nuclear and cellular BCRP using etoposide as the marker ligand. AZT increased the retention of etoposide (+15%), a positive allosteric interaction, on the CMAC(LN-229) column and decreased it (-5%) on the NMAC(LN-229), while the opposite effect was produced by rhodamine. The results indicate that there are differences between the cellular and nuclear membrane expressed BCRP and that NMAC and CMAC columns can be used to probe these differences.

  17. Comparative study of glycated hemoglobin by ion exchange chromatography and affinity binding nycocard reader in type 2 diabetes mellitus.

    PubMed

    Gautam, N; Dubey, R K; Jayan, A; Nepaune, Y; Padmavathi, P; Chaudhary, S; Jha, S K; Sinha, A K

    2014-12-01

    The aim of this study was to compare the level of glycated hemoglobin (HbA1c) in type 2 Diabetes Mellitus (DM) patients by two different methods namely Ion Exchange Chromatography and Affinity Binding Nycocard Reader. This is a cross-sectional study conducted on confirmed type 2 diabetes mellitus patients (n = 100) who visited Out Patients Department of the Universal College of Medical Sciences Teaching hospital, Bhairahawa, Nepal from November 2012 to March 2013. The diagnosis of diabetes mellitus was done on the basis of their fasting (164.46 ± 45.33 mg/dl) and random (187.93 ± 78.02 mg/dl) serum glucose level along with clinical history highly suggestive of type 2 DM. The HbA1c values of (7.8 ± 1.9%) and (8.0 ± 2.2%) were found in DM patients as estimated by those two different methods respectively. The highest frequency was observed in HbA1c > 8.0% indicating maximum cases were under very poor glycemic control. However, there were no significant differences observed in HbA1c value showing both methods are comparable in nature and can be used in lab for ease of estimation. The significant raised in HbA1c indicates complications associated with DM and monitoring of therapy become hard for those patients. Despite having standard reference method for HbA1c determination, the availability of report at the time of the patient visit can be made easy by using Nycocard Reader and Ion Exchange Chromatography techniques without any delay in communicating glycemic control, clinical decision-making and changes in treatment regimen.

  18. Efficient and versatile one-step affinity purification of in vivo biotinylated proteins: Expression, characterization and structure analysis of recombinant human glutamate carboxypeptidase II

    SciTech Connect

    Tykvart, J.; Sacha, P.; Barinka, C.; Knedlik, T.; Starkova, J.; Lubkowski, J.; Konvalinka, J.

    2012-02-07

    Affinity purification is a useful approach for purification of recombinant proteins. Eukaryotic expression systems have become more frequently used at the expense of prokaryotic systems since they afford recombinant eukaryotic proteins with post-translational modifications similar or identical to the native ones. Here, we present a one-step affinity purification set-up suitable for the purification of secreted proteins. The set-up is based on the interaction between biotin and mutated streptavidin. Drosophila Schneider 2 cells are chosen as the expression host, and a biotin acceptor peptide is used as an affinity tag. This tag is biotinylated by Escherichia coli biotin-protein ligase in vivo. We determined that localization of the ligase within the ER led to the most effective in vivo biotinylation of the secreted proteins. We optimized a protocol for large-scale expression and purification of AviTEV-tagged recombinant human glutamate carboxypeptidase II (Avi-GCPII) with milligram yields per liter of culture. We also determined the 3D structure of Avi-GCPII by X-ray crystallography and compared the enzymatic characteristics of the protein to those of its non-tagged variant. These experiments confirmed that AviTEV tag does not affect the biophysical properties of its fused partner. Purification approach, developed here, provides not only a sufficient amount of highly homogenous protein but also specifically and effectively biotinylates a target protein and thus enables its subsequent visualization or immobilization.

  19. Anion-exchange purification of recombinant factor IX from cell culture supernatant using different chromatography supports.

    PubMed

    Ribeiro, Daniel A; Passos, Douglas F; Ferraz, Helen C; Castilho, Leda R

    2013-11-01

    Both recombinant and plasma-derived factor IX concentrates are used in replacement therapies for the treatment of haemophilia B. In the present work, the capture step for a recombinant FIX (rFIX) purification process was investigated. Different strong anion-exchange chromatography media (the resins Q Sepharose(®) FF and Fractogel(®) TMAE, the monolith CIM(®) QA and the membrane adsorber Sartobind(®) Q) were tested for their rFIX binding capacity under dynamic conditions. In these experiments, crude supernatant from CHO cells was used, thus in the presence of supernatant contaminants and mimicking process conditions. The highest dynamic binding capacity was obtained for the monolith, which was then further investigated. To study pseudoaffinity elution of functional rFIX with Ca(2+) ions, a design of experiments to evaluate the effects of pH, NaCl and CaCl2 on yield and purification factor was carried out. The effect of pH was not statistically significant, and a combination of no NaCl and 45mM CaCl2 yielded a good purification factor combined with a high yield of active rFIX. Under these conditions, activity yield of rFIX was higher than the mass yield, confirming selective elution of functional, γ-carboxylated rFIX. Scaling-up of this process 8 fold resulted in very similar process performance. Monitoring of the undesired activated FIX (FIXa) revealed that the FIXa/FIX ratio (1.94%) was higher in the eluate than in the loaded sample, but was still within an acceptable range. HCP and DNA clearances were high (1256 and 7182 fold, respectively), indicating that the proposed process is adequate for the intended rFIX capture step.

  20. Chromatography.

    ERIC Educational Resources Information Center

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities on chromatography. Directions for preparing leaf pigment extracts using alcohol are given, and paper chromatography and thin-layer chromatography are described as modifications of the basic principles of chromatography. (KHR)

  1. Purification of a lectin from M. rubra leaves using immobilized metal ion affinity chromatography and its characterization.

    PubMed

    Sureshkumar, Thavamani; Priya, Sulochana

    2012-12-01

    Lectins represent a heterogeneous group of proteins/glycoproteins with unique carbohydrate specificity, with wide range of biomedical applications. The multi-step purification protocols generally used for purification of lectin result in a significant reduction in the final yield and activity. In the present study, Morus rubra lectin (MRL) was purified to homogeneity from the leaves using a single-step immobilized metal ion affinity chromatography (IMAC) procedure. The approximate molecular weight of purified MRL resolved as a single band on SDS-PAGE was 52 kDa. Final percentage yield of purified lectin by IMAC was calculated as 74.7 %. Purified MRL was specific to three sugars, galactose, D-galactosamine and N-acetyl-D-galactosamine, and rendered haemagglutination (HA) activity towards different human blood group RBCs. MRL showed stability over a wide range of temperature (up to 80 °C) and pH (4-11). Chelation of the lectin with EDTA did not alter HA which indicates that metal ion is not required for activity. In the presence of Fe(2+), Ca(2+), Zn(2+), Ni(2+), Mn(2+), Na(+) and K(+), HA activity was reduced to 50 %, whereas the presence of trivalent metal ions (Fe3(+) and Al(3+)) and Cu(2+) did not affect the activity. In the presence of Mg(2+) and Hg(2+), only 25 % of HA activity remained.

  2. Serodiagnosis of human neurocysticercosis using antigenic components of Taenia solium metacestodes derived from the unbound fraction from jacalin affinity chromatography.

    PubMed

    Machado, Gleyce Alves; Oliveira, Heliana Batista de; Gennari-Cardoso, Margareth Leitão; Mineo, José Roberto; Costa-Cruz, Julia Maria

    2013-05-01

    The aim of the present study was to analyse Taenia solium metacestode antigens that were derived from the unbound fraction of jacalin affinity chromatography and subsequent tert-octylphenoxy poly (oxyethylene) ethanol Triton X-114 (TX-114) partitioning in the diagnosis of human neurocysticercosis (NCC). Immunoassays were designed to detect T. solium-specific IgG antibodies by ELISA and immunoblot. Serum samples were collected from 132 individuals who were categorised as follows: 40 had NCC, 62 presented Taenia spp or other parasitic diseases and 30 were healthy individuals. The jacalin-unbound (J unbound ) fraction presented higher sensitivity and specificity rates than the jacalin-bound fraction and only this fraction was subjected to subsequent TX-114 partitioning, resulting in detergent (DJ unbound ) and aqueous (AJ unbound ) fractions. The ELISA sensitivity and specificity were 85% and 84.8% for J unbound , 92.5% and 93.5% for DJ unbound and 82.5% and 82.6% for AJ unbound . By immunoblot, the DJ unbound fraction showed 100% sensitivity and specificity and only serum samples from patients with NCC recognised the 50-70 kDa T. solium-specific components. We conclude that the DJ unbound fraction can serve as a useful tool for the differential immunodiagnosis of NCC by immunoblot.

  3. Proteomic analysis of human O {sup 6}-methylguanine-DNA methyltransferase by affinity chromatography and tandem mass spectrometry

    SciTech Connect

    Niture, Suryakant K.; Doneanu, Catalin E.; Velu, Chinavenmeni S.; Bailey, Nathan I.; Srivenugopal, Kalkunte S. . E-mail: Kalkunte.srivenugopal@ttuhsc.edu

    2005-12-02

    Recent evidence suggests that human O {sup 6}-methylguanine-DNA methyltransferase (MGMT), a DNA repair protein that protects the genome against mutagens and accords tumor resistance to many anticancer alkylating agents, may have other roles besides repair. Therefore, we isolated MGMT-interacting proteins from extracts of HT29 human colon cancer cells using affinity chromatography on MGMT-Sepharose. Specific proteins bound to this column were identified by electrospray ionization tandem mass spectrometry and/or Western blotting. These procedures identified >60 MGMT-interacting proteins with diverse functions including those involved in DNA replication and repair (MCM2, PCNA, ORC1, DNA polymerase {delta}, MSH-2, and DNA-dependent protein kinase), cell cycle progression (CDK1, cyclin B, CDK2, CDC7, CDC10, 14-3-3 protein, and p21{sup waf1/cip1}), RNA processing and translation (poly(A)-binding protein, nucleolin, heterogeneous nuclear ribonucleoproteins, A2/B1, and elongation factor-1{alpha}), several histones (H4, H3.4, and H2A.1), and topoisomerase I. The heat shock proteins, HSP-90{alpha} and {beta}, also bound strongly with MGMT. The DNA repair activity of MGMT was greatly enhanced in the presence of interacting proteins or histones. These data, for the first time, suggest that human MGMT is likely to have additional functions, possibly, in sensing and integrating the DNA damage/repair-related signals with replication, cell cycle progression, and genomic stability.

  4. Inosine 5'-monophosphate dehydrogenase of Escherichia coli. Purification by affinity chromatography, subunit structure and inhibition by guanosine 5'-monophosphate.

    PubMed Central

    Gilbert, H J; Lowe, C R; Drabble, W T

    1979-01-01

    Escherichia coli IMP dehydrogenase (EC 1.2.1.14) was purified by affinity chromatography on immobilized nucleotides. The enzyme binds to agarose-bound 8-(6-aminohexyl)-AMP, N6-(6-aminohexyl)-AMP and 8-(8-amino-octyl)-IMP but not to immobilized NAD+ or Cibacron Blue F3G-A. AMP proved to be an effective eluent. A large-scale purification scheme in which 8-(6-aminohexyl)-AMP-agarose was used resulted in a homogeneous preparation of IMP dehydrogenase. The enzyme was also purified by immunoprecipitation with monospecific antisera. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, N-terminal amino acid analysis and tryptic 'finger-printing' demonstrated that IMP dehydrogenase comprises identical subunits of mol.wt. 58000. Trypsin and Pronase cleave the 58000-mol.wt. subunit into peptides of mol.wts. 42000 and 14000, with a concomitant decrease in enzyme activity. These observations rationalize much of the contradictory data on the subunit composition of the enzyme found in the literature. GMP appears to be a competitive inhibitor with respect to IMP, with no evidence for regulatory behaviour being found. The two purification procedures were also used to purify inactive mutant enzymes from guaB mutant strains of E. coli. PMID:44191

  5. Use of Aleuria alantia Lectin Affinity Chromatography to Enrich Candidate Biomarkers from the Urine of Patients with Bladder Cancer

    PubMed Central

    Ambrose, Sarah R.; Gordon, Naheema S.; Goldsmith, James C.; Wei, Wenbin; Zeegers, Maurice P.; James, Nicholas D.; Knowles, Margaret A.; Bryan, Richard T.; Ward, Douglas G.

    2015-01-01

    Developing a urine test to detect bladder tumours with high sensitivity and specificity is a key goal in bladder cancer research. We hypothesised that bladder cancer-specific glycoproteins might fulfill this role. Lectin-ELISAs were used to study the binding of 25 lectins to 10 bladder cell lines and serum and urine from bladder cancer patients and non-cancer controls. Selected lectins were then used to enrich glycoproteins from the urine of bladder cancer patients and control subjects for analysis by shotgun proteomics. None of the lectins showed a strong preference for bladder cancer cell lines over normal urothlelial cell lines or for urinary glycans from bladder cancer patients over those from non-cancer controls. However, several lectins showed a strong preference for bladder cell line glycans over serum glycans and are potentially useful for enriching glycoproteins originating from the urothelium in urine. Aleuria alantia lectin affinity chromatography and shotgun proteomics identified mucin-1 and golgi apparatus protein 1 as proteins warranting further investigation as urinary biomarkers for low-grade bladder cancer. Glycosylation changes in bladder cancer are not reliably detected by measuring lectin binding to unfractionated proteomes, but it is possible that more specific reagents and/or a focus on individual proteins may produce clinically useful biomarkers. PMID:28248271

  6. Glycopeptide Site Heterogeneity and Structural Diversity Determined by Combined Lectin Affinity Chromatography/IMS/CID/MS Techniques

    NASA Astrophysics Data System (ADS)

    Zhu, Feifei; Trinidad, Jonathan C.; Clemmer, David E.

    2015-07-01

    Glycopeptides from a tryptic digest of chicken ovomucoid were enriched using a simplified lectin affinity chromatography (LAC) platform, and characterized by high-resolution mass spectrometry (MS) as well as ion mobility spectrometry (IMS)-MS. The LAC platform effectively enriched the glycoproteome, from which a total of 117 glycopeptides containing 27 glycan forms were identified for this protein. IMS-MS analysis revealed a high degree of glycopeptide site heterogeneity. Comparison of the IMS distributions of the glycopeptides from different charge states reveals that higher charge states allow more structures to be resolved. Presumably the repulsive interactions between charged sites lead to more open configurations, which are more readily separated compared with the more compact, lower charge state forms of the same groups of species. Combining IMS with collision induced dissociation (CID) made it possible to determine the presence of isomeric glycans and to reconstruct their IMS profiles. This study illustrates a workflow involving hybrid techniques for determining glycopeptide site heterogeneity and evaluating structural diversity of glycans and glycopeptides.

  7. Purification of the Plasma Membrane Ca2+-ATPase from Radish Seedlings by Calmodulin-Agarose Affinity Chromatography1

    PubMed Central

    Bonza, Cristina; Carnelli, Antonella; De Michelis, Maria Ida; Rasi-Caldogno, Franca

    1998-01-01

    The Ca2+-ATPase of the plasma membrane (PM) of germinating radish (Raphanus sativus L.) seeds was purified by calmodulin (CaM)-affinity chromatography using a batch procedure. PM purified by aqueous two-phase partitioning was solubilized with n-dodecyl β-d-maltoside and applied to a CaM-agarose matrix. After various washings with decreasing Ca2+ concentrations, the Ca2+-ATPase was eluted with 5 mm ethylenediaminetetraacetate (EDTA). The EDTA-eluted fraction contained about 25% of the loaded Ca2+-ATPase activity, with a specific activity 70-fold higher than that of the starting PM fraction. The EDTA-eluted fraction was highly enriched in a 133-kD polypeptide, which was identified as the PM Ca2+-ATPase by 125I-CaM overlay and fluorescein-isothiocyanate labeling. The PM Ca2+-ATPase cross-reacted with an antiserum against a putative Ca2+-ATPase of the Arabidopsis thaliana chloroplast envelope. PMID:9490776

  8. Optimization of pore structure and particle morphology of mesoporous silica for antibody adsorption for use in affinity chromatography

    NASA Astrophysics Data System (ADS)

    Hikosaka, Ryouichi; Nagata, Fukue; Tomita, Masahiro; Kato, Katsuya

    2016-10-01

    Antibodies have received significant attention for use as antibody drugs, because they bind the objective protein (antigen) via antigen-antibody reactions. Recently, many reports have appeared on various monoclonal antibodies that recognize a single antigen. In this study, monoclonal antibodies are used as adsorbates on mesoporous silica (MPS) for affinity chromatography. MPS has high surface area and large pore volume; moreover, pore diameter, pore structure, and particle morphology are relatively easy to tune by adjusting the conditions of synthesis. The pore structure (two-dimensional (2D) hexagonal and three-dimensional cubic) and particle morphology (spherical and polyhedral) of MPS are optimized for use in a monoclonal antibody/MPS composite. When anti-IgG (one of the monoclonal antibodies) adsorbs on the MPS material and IgG (antigen) binds to anti-IgG/MPS composites, MCM-41p with a 2D-hexagonal pore structure and polyhedral particle morphology has the highest IgG binding efficiency. In addition, the antibody/MPS composites remain stable in chaotropic and low-pH solutions and can be cycled at least five times without decreasing IgG elution. In purification and removal tests, the use of the antibody/MPS composites allows only the objective protein from protein mixtures to be bound and eluted.

  9. Serodiagnosis of human neurocysticercosis using antigenic components of Taenia solium metacestodes derived from the unbound fraction from jacalin affinity chromatography

    PubMed Central

    Machado, Gleyce Alves; de Oliveira, Heliana Batista; Gennari-Cardoso, Margareth Leitão; Mineo, José Roberto; Costa-Cruz, Julia Maria

    2013-01-01

    The aim of the present study was to analyse Taenia solium metacestode antigens that were derived from the unbound fraction of jacalin affinity chromatography and subsequent tert-octylphenoxy poly (oxyethylene) ethanol Triton X-114 (TX-114) partitioning in the diagnosis of human neurocysticercosis (NCC). Immunoassays were designed to detect T. solium-specific IgG antibodies by ELISA and immunoblot. Serum samples were collected from 132 individuals who were categorised as follows: 40 had NCC, 62 presented Taenia spp or other parasitic diseases and 30 were healthy individuals. The jacalin-unbound (Junbound) fraction presented higher sensitivity and specificity rates than the jacalin-bound fraction and only this fraction was subjected to subsequent TX-114 partitioning, resulting in detergent (DJunbound) and aqueous (AJunbound) fractions. The ELISA sensitivity and specificity were 85% and 84.8% for Junbound, 92.5% and 93.5% for DJunboundand 82.5% and 82.6% for AJunbound. By immunoblot, the DJunboundfraction showed 100% sensitivity and specificity and only serum samples from patients with NCC recognised the 50-70 kDa T. solium-specific components. We conclude that the DJunboundfraction can serve as a useful tool for the differential immunodiagnosis of NCC by immunoblot. PMID:23778661

  10. LC-MS/MS quantitation of esophagus disease blood serum glycoproteins by enrichment with hydrazide chemistry and lectin affinity chromatography.

    PubMed

    Song, Ehwang; Zhu, Rui; Hammoud, Zane T; Mechref, Yehia

    2014-11-07

    Changes in glycosylation have been shown to have a profound correlation with development/malignancy in many cancer types. Currently, two major enrichment techniques have been widely applied in glycoproteomics, namely, lectin affinity chromatography (LAC)-based and hydrazide chemistry (HC)-based enrichments. Here we report the LC-MS/MS quantitative analyses of human blood serum glycoproteins and glycopeptides associated with esophageal diseases by LAC- and HC-based enrichment. The separate and complementary qualitative and quantitative data analyses of protein glycosylation were performed using both enrichment techniques. Chemometric and statistical evaluations, PCA plots, or ANOVA test, respectively, were employed to determine and confirm candidate cancer-associated glycoprotein/glycopeptide biomarkers. Out of 139, 59 common glycoproteins (42% overlap) were observed in both enrichment techniques. This overlap is very similar to previously published studies. The quantitation and evaluation of significantly changed glycoproteins/glycopeptides are complementary between LAC and HC enrichments. LC-ESI-MS/MS analyses indicated that 7 glycoproteins enriched by LAC and 11 glycoproteins enriched by HC showed significantly different abundances between disease-free and disease cohorts. Multiple reaction monitoring quantitation resulted in 13 glycopeptides by LAC enrichment and 10 glycosylation sites by HC enrichment to be statistically different among disease cohorts.

  11. Engineering Streptavidin and a Streptavidin-Binding Peptide with Infinite Binding Affinity and Reversible Binding Capability: Purification of a Tagged Recombinant Protein to High Purity via Affinity-Driven Thiol Coupling

    PubMed Central

    Fogen, Dawson; Wu, Sau-Ching; Ng, Kenneth Kai-Sing; Wong, Sui-Lam

    2015-01-01

    To extend and improve the utility of the streptavidin-binding peptide tag (SBP-tag) in applications ranging from affinity purification to the reversible immobilization of recombinant proteins, a cysteine residue was introduced to the streptavidin mutein SAVSBPM18 and the SBP-tag to generate SAVSBPM32 and SBP(A18C), respectively. This pair of derivatives is capable of forming a disulfide bond through the newly introduced cysteine residues. SAVSBPM32 binds SBP-tag and biotin with binding affinities (Kd ~ 10-8M) that are similar to SAVSBPM18. Although SBP(A18C) binds to SAVSBPM32 more weakly than SBP-tag, the binding affinity is sufficient to bring the two binding partners together efficiently before they are locked together via disulfide bond formation–a phenomenon we have named affinity-driven thiol coupling. Under the condition with SBP(A18C) tags in excess, two SBP(A18C) tags can be captured by a tetrameric SAVSBPM32. The stoichiometry of the disulfide-bonded SAVSBPM32-SBP(A18C) complex was determined using a novel two-dimensional electrophoresis method which has general applications for analyzing the composition of disulfide-bonded protein complexes. To illustrate the application of this reversible immobilization technology, optimized conditions were established to use the SAVSBPM32-affinity matrix for the purification of a SBP(A18C)-tagged reporter protein to high purity. Furthermore, we show that the SAVSBPM32-affinity matrix can also be applied to purify a biotinylated protein and a reporter protein tagged with the unmodified SBP-tag. The dual (covalent and non-covalent) binding modes possible in this system offer great flexibility to many different applications which need reversible immobilization capability. PMID:26406477

  12. Increased Yield of High Purity Recombinant Human Interferon-γ Utilizing Reversed Phase Column Chromatography

    PubMed Central

    Reddy, Praveen K.; Reddy, Srinivasa G.; Narala, Venkata R.; Majee, Sangita S.; Konda, Sudhakar; Gunwar, Sripad; Reddy, Raju C.

    2007-01-01

    Increasing therapeutic applications for recombinant human interferon-γ (rhIFN-γ), an antiviral proinflammatory cytokine, has broadened interest in optimizing methods for its production and purification. We describe a reversed phase chromatography (RPC) procedure using Source-30™ matrix in the purification of rhIFN-γ from Escherichia coli that results in a higher yield than previously reported. The purified rhIFN-γ monomer from the RPC column is refolded in Tris buffer. Optimal refolding occurs at protein concentrations between 50–100 μg/ml. This method yields greater than 90% of the dimer form with a yield of 40 mg g−1 cell mass. Greater than 99% purity is achieved with further purification over a Superdex G-75 column to obtain specific activities of from 2 to 4 × 107 IU/mg protein as determined via cytopathic antiviral assay. The improved yield of rhIFN-γ in a simple chromatographic purification procedure promises to enhance the development and therapeutic application of this biologically potent molecule. PMID:17049266

  13. Isolation and purification of recombinant proteins, antibodies and plasmid DNA with hydroxyapatite chromatography.

    PubMed

    Hilbrig, Frank; Freitag, Ruth

    2012-01-01

    Hydroxyapatite and related stationary phases increasingly play a role in the downstream processing of high-value biological materials, such as recombinant proteins, therapeutic antibodies and pharmaceutical-grade plasmid DNA. Chromatographic hydroxyapatite is an inorganic, ceramic material identical in composition, if not in structure, to calcium phosphate found in human bones and teeth. The interaction of hydroxyapatite with biomacromolecules is complex and highly dynamic, which can make predicting performance difficult, but also allows the design of very selective isolation processes. This review discusses the currently commercially available chromatographic materials, different retention mechanisms supported by these materials and differential exploitation for the design of highly specific isolation procedures. The state of the art of antibody purification by hydroxy- and fluoroapatite is reviewed together with tested routines for method development and implementation. Finally, the isolation of plasmid DNA is discussed, since the purification of DNA therapeutics at a sufficiently large scale is an emerging need in bioprocess development and perhaps the area in bioseparation where apatite chromatography can make its most important contribution to date.

  14. A new approach on the purification of recombinant human soluble catechol-O-methyltransferase from an Escherichia coli extract using hydrophobic interaction chromatography.

    PubMed

    Passarinha, L A; Bonifácio, M J; Soares-da-Silva, P; Queiroz, J A

    2008-01-11

    Catechol-O-methyltransferase (COMT) is a significant target in protein engineering due to its role not only in normal brain function but also to its possible involvement in some human disorders. In this work, a new approach was employed for the purification of recombinant human soluble COMT (hSCOMT) using hydrophobic interaction chromatography, as the main isolation method, from an Escherichia coli culture broth. A simplified overall process flow is proposed. Indeed, with an optimized heterologous expression system for recombinant hSCOMT production, such as E. coli, it was possible to produce and recover the active monomeric enzyme directly from the cell crude culture broth either by a freeze/thaw or ultrasonication lysis step. The recombinant enzyme present in the bacterial soluble fraction, exhibited similar affinity for epinephrine (K(m) 276 [215; 337] microM) and the methyl donor (S-adenosyl-L-methionine, SAMe) (K(m) 36 [30; 41]microM) as human SCOMT. After the precipitation step by 55% of ammonium sulphate, a HIC step on the butyl-sepharose resin was found to be highly effective in selectively eluting a range of contaminating key proteins present in the concentrate soluble extract. Consequently, the partially purified eluate from HIC could then be loaded and polished by gel filtration in order to increase the process efficiency. The final product appeared as a single band in sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The procedure resulted in a global 10.9-fold purification with a specific activity of 5500 nmol/h/mg of protein. The widespread applicability of the process, here described, to different COMT sources could make this protocol highly useful for all studies requiring purified and active COMT proteins.

  15. Multiple affinity purification of a baculovirus-derived recombinant prion protein with in vitro ability to convert to its pathogenic form.

    PubMed

    Imamura, Morikazu; Kato, Nobuko; Iwamaru, Yoshifumi; Mohri, Shirou; Yokoyama, Takashi; Murayama, Yuichi

    2017-01-02

    We previously showed that baculovirus-derived recombinant prion protein (Bac-PrP) can be converted to the misfolded infectious form (PrP(Sc)) by protein misfolding cyclic amplification, an in vitro conversion technique. Bac-PrP, with post-translational modifications, would be useful for various applications such as using PrP as an immunogen for generating anti-PrP antibody, developing anti-prion drugs or diagnostic assays using in vitro conversion systems, and establishing an in vitro prion propagation model. For this purpose, highly purified Bac-PrP with in vitro conversion activity is necessary for use as a PrP(C) source, to minimize contamination. Furthermore, an exogenous affinity tag-free form is desirable to avoid potential steric interference by the affinity tags during the conversion process. In this study, we established purification methods for the untagged Bac-PrP under native conditions by combining exogenous double-affinity tags, namely, a polyhistidine-tag and a profinity eXact tag, with an octarepeat sequence of the N-terminal region of PrP, which has metal ion-binding affinity. The untagged Bac-PrP with near-homogeneity was obtained by three-step affinity purification, and it was shown that the final, purified Bac-PrP could convert to its pathogenic form. The presented purification procedure could be applied not only to PrP but also to other eukaryotic, recombinant proteins that require high purity and intact physiological activity.

  16. Purification of biologically active human plasma transthyretin by dye-affinity chromatography: studies on dye leakage and possibility of heat treatment for virus inactivation.

    PubMed

    Regnault, V; Rivat, C; Vallar, L; Geschier, C; Stolz, J F

    1992-12-11

    The application of a purification procedure for the industrial preparation from human plasma of a therapeutic protein may be hindered by several safety concerns. The dye leaching from Remazol Yellow GGL-Sepharose used for the affinity chromatography of human plasma transthyretin was quantitatively studied by a sensitive competitive enzyme immunoassay. The possibility of including a heat treatment step for virus inactivation in the purification process while preserving the biochemical and functional characteristics of the protein is also reported.

  17. Purification of modified mycobacterial A60 antigen by affinity chromatography and its use for rapid diagnostic tuberculosis infection.

    PubMed

    Yari, Sh; Hadizadeh Tasbiti, A; Fateh, A; Karimi, A; Yari, F; Sakhai, F; Ghazanfari, M; Bahrmand, A

    2011-11-01

    Tuberculosis has been declared a global emergency. The mainstay for its control is the rapid and accurate identification of infected individual. Antibodies to A60, one of the macromolecular antigen complexes of mycobacteria were commonly used in the rapid detection of Mycobacterium tuberculosis. The aim of this study was to prepare specific antibodies against A60 for detection of tuberculosis infection. Specific polyclonal antibodies against A60, (A60-Ab) were prepared in rabbits using 2 boosted injections of the antigen (A60). The antibodies were purified and treated with normal oral flora to remove any non-specific and cross-reactive antibodies. These antibodies were conjugated to CNBr-activated Sepharose 4B and used to isolate subunits of A60 with more specificity for M. tuberculosis. A new affinity column was designed to prepare modified (purified) A60 antigen. Purified A60 antigen (PA60-Ag) was used to develop antibody production by Immunoaffinity chromatography. 113 patients with a confirmed diagnosis of pulmonary TB at Pasteur Institute were selected for the study. The specificity of the results was analyzed with TB-rapid test by using PA60-antibodies. TB-rapid test revealed that normal oral flora-absorbed antibodies could lead to more specific results than that of the non-absorbed antibodies. The developed, modified A60 antibodies, (PA60-Ab)-rapid test showed higher sensitivity, specificity, Positive Predictive Value (PPV), Negative Predictive Value (NPV) and overall efficiency (93.0%, 86.0%, 90.0%, 91.0%, and 90.0% respectively) for the detection of the Mycobacterium antigen. Moreover, PA60-Ag showed only two protein bands of molecular weight 45 and 66kDa in SDS-PAGE while untreated A60 showed multiple bands. Thus, our study helped in the purification of a novel and well characterized A60 antigen and good diagnostic potential for detecting tuberculosis infection.

  18. Characterization of the rabbit homolog of human MUC1 glycoprotein isolated from bladder by affinity chromatography on immobilized jacalin.

    PubMed

    Higuchi, T; Xin, P; Buckley, M S; Erickson, D R; Bhavanandan, V P

    2000-07-01

    The urinary bladder is lined by transitional epithelium, the glycocalyx on the luminal surface has interesting properties and is implicated in protective functions. Glycoconjugates are major components of the glycocalyx, but their biochemical nature is not well understood. Previous studies on rabbit bladder indicated the presence of significant levels of sialoglycoproteins compared to glycosaminoglycans in the epithelium. In this study, rabbit explant cultures were radiolabeled by precursor sugars or amino acids and a major lectin-reactive glycoprotein of rabbit bladder mucosa was isolated by affinity chromatography on jacalin-agarose. The radiolabeled glycoprotein was purified to homogeneity by a second cycle on the lectin column, followed by gel filtration and density gradient centrifugation. The average molecular mass of the glycoprotein was estimated to be 245 kDa and 210 kDa by gel filtration and SDS-PAGE, respectively. Its buoyant density was 1.40 g/ml, suggesting a carbohydrate content of approximately 50%. The percent distribution of glucosamine-derived tritium label in sialic acid, galactosamine, and glucosamine was 30, 52, and 18, respectively. The glycoprotein consisted entirely of small sialylated and neutral oligosaccharides O-glycosidically linked to serine and threonine residues. The same glycoprotein could be immunoprecipitated with an antibody against the carboxy terminal 17 amino acid peptide of human MUC1 mucin glycoprotein. This suggests that this mucin glycoprotein is the rabbit homolog of MUC1 glycoprotein, which has been previously established to be a component of human bladder urothelium and has been purified from human urine and biochemically characterized.

  19. Purification and characterization of two types of Cytisus sessilifolius anti-H(O) lectins by affinity chromatography.

    PubMed

    Konami, Y; Yamamoto, K; Osawa, T

    1991-02-01

    Two anti-H(O) lectins were separated from extracts of Cytisus sessilifolius seeds by successive affinity chromatographies on columns of di-N-acetylchitobiose- and galactose-Sepharose 4B. One was found to be inhibited most by di-N-acetylchitotriose or tri-N-acetylchitotriose [Cytisus-type anti-H(O) lectin designated as Cytisus sessilifolius lectin I (CSA-I)] and the other anti-H(O) lectin was inhibited by galactose or lactose and designated as Cytisus sessilifolius lectin II (CSA-II). These two anti-H(O) lectins were further purified by gel filtration on TSK-Gel G3000SW. These preparations were homogeneous as judged by polyacrylamide gel electrophoresis and gel filtration. The molecular masses of the purified lectins I and II were found to be 95,000 and 68,000 Da, respectively, by gel filtration on TSK-Gel G3000SW. On polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and 2-mercaptoethanol, both lectins gave a single component of molecular masses of 27,000 +/- 2,000 and 34,000 +/- 2,000 Da, respectively, suggesting that the lectins I and II were composed of four and two apparently identical subunits, respectively. Lectins I and II contain 38% and 13% carbohydrate, respectively, and only very small amounts of cysteine and methionine, but they are rich in aspartic acid, serine and glycine. The N-terminal amino-acid sequences of these two lectins were determined and compared with those of several lectins already published.

  20. Single-step affinity and cost-effective purification of recombinant proteins using the Sepharose-binding lectin-tag from the mushroom Laetiporus sulphureus as fusion partner.

    PubMed

    Li, Xiao-Jing; Liu, Jin-Ling; Gao, Dong-Sheng; Wan, Wen-Yan; Yang, Xia; Li, Yong-Tao; Chang, Hong-Tao; Chen, Lu; Wang, Chuan-Qing; Zhao, Jun

    2016-03-01

    Previous research showed that a lectin from the mushroom Laetiporus sulphureus, designed LSL, bound to Sepharose and could be eluted by lactose. In this study, by taking advantage of the strong affinity of LSL-tag for Sepharose, we developed a single-step purification method for LSL-tagged fusion proteins. We utilized unmodified Sepharose-4B as a specific adsorbent and 0.2 M lactose solution as an elution buffer. Fusion proteins of LSL-tag and porcine circovirus capsid protein, designated LSL-Cap was recovered with purity of 90 ± 4%, and yield of 87 ± 3% from crude extract of recombinant Escherichia coli. To enable the remove of LSL-tag, tobacco etch virus (TEV) protease recognition sequence was placed downstream of LSL-tag in the expression vector, and LSL-tagged TEV protease, designated LSL-TEV, was also expressed in E. coli., and was recovered with purity of 82 ± 5%, and yield of 85 ± 2% from crude extract of recombinant E. coli. After digestion of LSL-tagged recombinant proteins with LSL-TEV, the LSL tag and LSL-TEV can be easily removed by passing the digested products through the Sepharose column. It is of worthy noting that the Sepharose can be reused after washing with PBS. The LSL affinity purification method enables rapid and inexpensive purification of LSL-tagged fusion proteins and scale-up production of native proteins.

  1. Enzyme-amplified protein micorarray and a fluidic renewable surface fluorescence immunoassay for botulinum neurotoxin detection using high-affinity recombinant antibodies

    SciTech Connect

    Varnum, Susan M.; Warner, Marvin G.; Dockendorff, Brian P.; Anheier, Norman C.; Lou, Jianlong; Marks, James D.; Smith, Leonard A.; Feldhaus, Michael J.; Grate, Jay W.; Bruckner-Lea, Cindy J.

    2006-06-16

    With the use of high-affinity recombinant monoclonal antibodies against the receptor binding domain of botulinum neurotoxin A (BoNT/A), two separate immunoassay platforms were developed for either the sensitive or the rapid detection of BoNT/A. An enzyme-linked immunosorbent assay (ELISA) microarray was developed for the specific and sensitive detection of BoNT in buffer and clinical fluids. This assay has the sensitivity to detect BoNT in diverse samples down to 14 fM (1.4 pg/mL). Using the recombinant monoclonal antibodies, a renewable surface microcolumn sensor was developed for the rapid detection of BoNT/A in an automated fluidic system. While the ELISA microarray assay, because of its sensitivity, offers an alternative to the mouse bioassay, the renewable surface assay has potential as a rapid screening assay for the analysis of complex environmental samples.

  2. Analysis of Free Drug Fractions in Serum by Ultrafast Affinity Extraction and Two-Dimensional Affinity Chromatography using α1-Acid Glycoprotein Microcolumns

    PubMed Central

    Bi, Cong; Zheng, Xiwei; Hage, David S.

    2016-01-01

    In the circulatory system, many drugs are reversibly bound to serum proteins such as human serum albumin (HSA) and alpha1-acid glycoprotein (AGP), resulting in both free and protein-bound fractions for these drugs. This report examined the use of microcolumns containing immobilized AGP for the measurement of free drug fractions by ultrafast affinity extraction and a two-dimensional affinity system. Several drugs known to bind AGP were used as models to develop and evaluate this approach. Factors considered during the creation of this method included the retention of the drugs on the microcolumns, the injection flow rate, the microcolumn size, and the times at which a second AGP column was placed on-line with the microcolumn. The final system had residence times of only 110–830 ms during sample passage through the AGP microcolumns and allowed free drug fractions to be determined within 10–20 min when using only 3–10 µL of sample per injection. This method was used to measure the free fractions of the model drugs at typical therapeutic levels in serum, giving good agreement with the results obtained by ultrafiltration. This approach was also used to estimate the binding constants for each drug with AGP in serum, even for drugs that had significant interactions with both AGP and HSA in such samples. These results indicated that AGP microcolumns could be used with ultrafast affinity extraction to measure free drug fractions in a label-free manner and to study the binding of drugs with AGP in complex samples such as serum. PMID:26797422

  3. Analysis of Multi-Site Drug-Protein Interactions by High-Performance Affinity Chromatography: Binding by Glimepiride to Normal or Glycated Human Serum Albumin

    PubMed Central

    Matsuda, Ryan; Li, Zhao; Zheng, Xiwei; Hage, David S.

    2015-01-01

    High-performance affinity chromatography (HPAC) was used in a variety of formats to examine multi-site interactions between glimepiride, a third-generation sulfonylurea drug, and normal or in vitro glycated forms of the transport protein human serum albumin (HSA). Frontal analysis revealed that glimepiride interacts with normal HSA and glycated HSA at a group of high affinity sites (association equilibrium constant, or Ka, 9.2–11.8 × 105 M−1 at pH 7.4 and 37°C) and a group of lower affinity regions (Ka, 5.9–16.2 × 103 M−1). Zonal elution competition studies were designed and carried out in both normal- and reversed-role formats to investigate the binding by this drug at specific sites. These experiments indicated that glimepiride was interacting at both Sudlow sites I and II. Allosteric effects were also noted with R-warfarin at Sudlow site I and with tamoxifen at the tamoxifen site on HSA. The binding at Sudlow site I had a 2.1- to 2.3-fold increase in affinity in going from normal HSA to the glycated samples of HSA. There was no significant change in the affinity for glimepiride at Sudlow site II in going from normal HSA to a moderately glycated sample of HSA, but a slight decrease in affinity was seen in going to a more highly glycated HSA sample. These results demonstrated how various HPAC-based methods can be used to profile and characterize multi-site binding by a drug such as glimepiride to a protein and its modified forms. The information obtained from this study should be useful in providing a better understanding of how drug-protein binding may be affected by glycation and of how separation and analysis methods based on HPAC can be employed to study systems with complex interactions or that involve modified proteins. PMID:26189669

  4. Affinity chromatography of GroEL chaperonin based on denatured proteins: role of electrostatic interactions in regulation of GroEL affinity for protein substrates.

    PubMed

    Marchenko, N Iu; Marchenkov, V V; Kaĭsheva, A L; Kashparov, I A; Kotova, N V; Kaliman, P A; Semisotnov, G V

    2006-12-01

    The chaperonin GroEL of the heat shock protein family from Escherichia coli cells can bind various polypeptides lacking rigid tertiary structure and thus prevent their nonspecific association and provide for acquisition of native conformation. In the present work we studied the interaction of GroEL with six denatured proteins (alpha-lactalbumin, ribonuclease A, egg lysozyme in the presence of dithiothreitol, pepsin, beta-casein, and apocytochrome c) possessing negative or positive total charge at neutral pH values and different in hydrophobicity (affinity for a hydrophobic probe ANS). To prevent the influence of nonspecific association of non-native proteins on their interaction with GroEL and make easier the recording of the complexing, the proteins were covalently attached to BrCN-activated Sepharose. At low ionic strength (lower than 60 mM), tight binding of the negatively charged denatured proteins with GroEL (which is also negatively charged) needed relatively low concentrations (approximately 10 mM) of bivalent cations Mg2+ or Ca2+. At the high ionic strength (approximately 600 mM), a tight complex was produced also in the absence of bivalent cations. In contrast, positively charged denatured proteins tightly interacted with GroEL irrespectively of the presence of bivalent cations and ionic strength of the solution (from 20 to 600 mM). These features of GroEL interaction with positively and negatively charged denatured proteins were confirmed by polarized fluorescence (fluorescence anisotropy). The findings suggest that the affinity of GroEL for denatured proteins can be determined by the balance of hydrophobic and electrostatic interactions.

  5. Synthesis of sulfonamide- and sulfonyl-phenylboronic acid-modified silica phases for boronate affinity chromatography at physiological pH.

    PubMed

    Li, Xiaobao; Pennington, Justin; Stobaugh, John F; Schöneich, Christian

    2008-01-15

    Two new types of boronate affinity solid phases were synthesized and characterized. The materials were prepared by silylation of porous silica gel with monochlorosilane derivatives containing synthetic sulfonyl- and sulfonamide-substituted phenylboronic acids. The new solid phases were evaluated for boronate affinity chromatography with aryl and alkyl cis-diol compounds and were found to be suitable for the retention of cis-diols under acidic conditions. Significant correlations between the retention factor (K) and the pH of the mobile phase demonstrate that the binding of cis-diols to the solid phases is best rationalized by chelation. Based on the lower pKa, caused by the electron-withdrawing effects of the sulfonyl and sulfonamide groups, these media display an enhanced affinity for cis-diols as compared with unsubstituted phenylboronic acid. Using isocratic elution, a mixture of various biologically relevant l-tyrosines, l-DOPA, and several catecholamines were resolved with a mobile phase composed of 0.05M phosphate buffer (pH 5.5). Mono-, di-, and triphosphates of adenosine were also separated at pH 6.0. Hence, the new boronate solid phase offers efficient affinity separation and purification of cis-diol-containing molecules under rather mild pH conditions.

  6. Chromatography

    MedlinePlus

    Chromatography is a way of separating two or more chemical compounds. Chemical compounds are chemicals that are ... of chemical compound. There are different kinds of chromatography. These include gas, high pressure liquid, or ion ...

  7. Isolation of a Trypanosoma cruzi antigen by affinity chromatography with a monoclonal antibody. Preliminary evaluation of its possible applications in serological tests.

    PubMed Central

    Carbonetto, C H; Malchiodi, E L; Chiaramonte, M; Durante de Isola, E; Fossati, C A; Margni, R A

    1990-01-01

    By affinity chromatography with a monoclonal antibody (163B6), obtained in our laboratory, we have isolated a T. cruzi antigen which could be useful for differential diagnosis of Chagas' disease from leishmaniasis. This antigen, a 52-kD protein, reacted with all sera from Chagas' disease patients tested but not with sera from patients with leishmania, in ELISA. The 52-kD antigen is widely distributed in the Trypanosoma genus since the 163B6 monoclonal antibody reacts with T. rangeli and 8 strains and a clone of T. cruzi epimastigotes. Images Fig. 1 Fig. 2 PMID:2119921

  8. Use of differential dye-ligand chromatography with affinity elution for enzyme purification: 2-keto-3-deoxy-6-phosphogluconate aldolase from Zymomonas mobilis.

    PubMed

    Scopes, R K

    1984-02-01

    2-Keto-3-deoxy-6-phosphogluconate aldolase (EC 4.1.2.14) has been isolated from extracts of Zymomonas mobilis using differential dye-ligand chromatography and affinity elution with product/product analog. The one-step procedure gives an enzyme with specific activity 600 units mg-1. Only 1 out of 47 dyes, Procion Yellow MX-GR, bound the enzyme completely in 20 mM phosphate buffer, pH 6.5. A column of Navy HE-R adsorbent was used first to remove most of the potentially adsorbing proteins.

  9. On-column refolding of denatured lysozyme by the conjoint chromatography composed of SEC and immobilized recombinant DsbA.

    PubMed

    Luo, Man; Guan, Yi-Xin; Yao, Shan-Jing

    2011-10-15

    DsbA (disulfide bond formation protein A) located in the periplasm of Escherichia coli is a disulfide isomerase, which is vital to disulfide bonds formation directly affecting the nascent peptides folding to the correct conformation. In this paper, recombinant DsbA was firstly immobilized onto NHS-activated Sepharose Fast Flow gel. Then Sephadex G-100 gel was sequentially packed on the top of recDsbA Sepharose Fast Flow, and a so-called conjoint chromatography column composed of SEC and immobilized recombinant DsbA was constructed. Denatured lysozyme was applied on the conjoint column. The effect of SEC volume, flow rate, loading amount and volume, pre-equilibrium mode and KCl concentration in the buffer on lysozyme refolding were investigated in detail and the stability of DsbA immobilization was evaluated. Finally the reusability of the conjoint refolding column was also tested. When loading 2.4 mg denatured lysozyme in 0.5 ml solution, the activity recovery reached 92.7% at optimized experimental conditions, and the conjoint column renaturation capacity decreased only 7.7% after six run reuse due to the use of SEC section in the chromatographic refolding process. The conjoint chromatography offers an efficient strategy to refold proteins in vitro with high productivity and column reusability.

  10. Antibody VH and VL recombination using phage and ribosome display technologies reveals distinct structural routes to affinity improvements with VH-VL interface residues providing important structural diversity.

    PubMed

    Groves, Maria A T; Amanuel, Lily; Campbell, Jamie I; Rees, D Gareth; Sridharan, Sudharsan; Finch, Donna K; Lowe, David C; Vaughan, Tristan J

    2014-01-01

    In vitro selection technologies are an important means of affinity maturing antibodies to generate the optimal therapeutic profile for a particular disease target. Here, we describe the isolation of a parent antibody, KENB061 using phage display and solution phase selections with soluble biotinylated human IL-1R1. KENB061 was affinity matured using phage display and targeted mutagenesis of VH and VL CDR3 using NNS randomization. Affinity matured VHCDR3 and VLCDR3 library blocks were recombined and selected using phage and ribosome display protocol. A direct comparison of the phage and ribosome display antibodies generated was made to determine their functional characteristics.In our analyses, we observed distinct differences in the pattern of beneficial mutations in antibodies derived from phage and ribosome display selections, and discovered the lead antibody Jedi067 had a ~3700-fold improvement in KD over the parent KENB061. We constructed a homology model of the Fv region of Jedi067 to map the specific positions where mutations occurred in the CDR3 loops. For VL CDR3, positions 94 to 97 carry greater diversity in the ribosome display variants compared with the phage display. The positions 95a, 95b and 96 of VLCDR3 form part of the interface with VH in this model. The model shows that positions 96, 98, 100e, 100f, 100 g, 100h, 100i and 101 of the VHCDR3 include residues at the VH and VL interface. Importantly, Leu96 and Tyr98 are conserved at the interface positions in both phage and ribosome display indicating their importance in maintaining the VH-VL interface. For antibodies derived from ribosome display, there is significant diversity at residues 100a to 100f of the VH CDR3 compared with phage display. A unique deletion of isoleucine at position 102 of the lead candidate, Jedi067, also occurs in the VHCDR3.As anticipated, recombining the mutations via ribosome display led to a greater structural diversity, particularly in the heavy chain CDR3, which in turn

  11. Quantitation of a recombinant monoclonal antibody in monkey serum by liquid chromatography-mass spectrometry.

    PubMed

    Liu, Hongcheng; Manuilov, Anton V; Chumsae, Chris; Babineau, Michelle L; Tarcsa, Edit

    2011-07-01

    A method including protein A purification, limited Lys-C digestion, and mass spectrometry analysis was used in the study to quantify a recombinant monoclonal antibody in cynomolgus monkey serum. The same antibody that was isotopically labeled was used as an internal standard. Interferences from serum proteins were first significantly reduced by protein A purification and then by limited Lys-C digestion of protein A bound IgG, including both monkey and the recombinant IgG. Fab fragment of the recombinant human IgG was analyzed directly by LC-MS, while monkey IgG and the Fc fragment of the recombinant human IgG remained bound to protein A resin. Quantitation was achieved by measuring the peak intensity of the Fab from the recombinant human IgG and comparing it to that of the Fab from the stable isotope-labeled internal standard. The results were in good agreement with the values from ELISA. LC-MS can therefore be used as a complementary approach to ELISA to quantify recombinant monoclonal antibodies in serum for pharmacokinetics studies and it can also be used where specific reagents such as antigens are not readily available for ELISA.

  12. Refolding and purification of recombinant human (Pro)renin receptor from Escherichia coli by ion exchange chromatography.

    PubMed

    Wang, Fei; Guo, Jinjin; Bai, Quan; Wang, Lili

    2014-01-01

    Purification of the recombinant human renin receptor (rhRnR) is a major aspect of its biological or biophysical analysis, as well as structural research. A simple and efficient method for the refolding and purification of rhRnR expressed in Escherichia coli with weak anion-exchange chromatography (WAX) was presented in this work. The solution containing denatured rhRnR in 8.0 mol/L urea extracted from the inclusion bodies was directly injected into the WAX column. The aggregation was prevented and the soluble form of renatured rhRnR in aqueous solution was obtained after desorption from the column. Effects of the extracting solutions, the pH values and urea concentrations in the mobile phase, as well as the sample size on the refolding and purification of rhRnR were investigated, indicating that the above mentioned factors had remarkable influences on the efficiency of refolding, purification and mass recovery of rhRnR. Under the optimal conditions, rhRnR was successfully refolded and purified simultaneously by WAX in one step within only 30 min. The result was satisfactory with mass recovery of 71.8% and purity of 94.8%, which was further tested by western blotting. The specific binding of the purified rhRnR to recombinant human renin was also determined using surface plasmon resonance (SPR). The association constant of rhRnR to recombinant human renin was calculated to be 3.25 × 10(8) L/mol, which demonstrated that rhRnR was already renatured and simultaneously purified in one step using WAX. All of the above demonstrate that protein folding liquid chromatography (PFLC) should be a powerful tool for the purification and renaturation of rhRnR.

  13. Alternative purification method for recombinant measles viral nucleoprotein expressed in insect cells by ion-exchange chromatography.

    PubMed

    Lee, Han Saem; Kim, You-Jin; Yang, Jeongsun; Yoon, Hee Sook; Kim, Seung Tae; Kim, Kisoon

    2014-03-01

    Recombinant measles virus nucleoproteins (rMeV N) and fusion (F) proteins were characterized as major antigenic proteins expressed in insect cells mediated by recombinant baculoviruses (rBVs). Band intensities were analyzed by Western blotting to recognize IgG and IgM antibodies against the rMeV N and F proteins in human sera and cerebrospinal fluids (CSFs) from patients with measles infections. Positive results from the blots using the rMeV N were consistent with the results of enzyme-linked immunosorbent assays (ELISAs) in which whole viral proteins were used as antigens. Human sera and CSFs reacted more strongly with the rMeV N than with the rMeV F proteins prepared in an identical expression system. For efficient and reliable purification, ion-exchange chromatography using Source Q anion resin was applied, and high-purity rMeV N protein was harvested. To characterize the similarity with the native viral protein to purified N protein, structural mimicry of purified recombinant proteins with intact rMeV N was shown through transmission electron microscopy, and the truncation and the phosphorylation status of the expressed protein were analyzed. These results suggest that the rMeV N purified by ion-exchange chromatography has features similar to those of naïve N including a self-assembled structure, phosphorylation and antigenic function. Thus, these expression and purification methods can be applied to the large-scale production of the rMeV N, which is essential for the development of new diagnostic tools and vaccines for acute and chronic MeV infections.

  14. Preparation and evaluation of a phenylboronate affinity monolith for selective capture of glycoproteins by capillary liquid chromatography.

    PubMed

    Lin, Zi An; Pang, Ji Lei; Lin, Yao; Huang, Hui; Cai, Zong Wei; Zhang, Lan; Chen, Guo Nan

    2011-08-21

    A phenylboronate affinity monolith was prepared and applied to the selective capture of glycoproteins from unfractionated protein mixtures. The monolith was synthesized in a 100 μm i.d capillary by an in situ polymerization procedure using a pre-polymerization mixture consisting of 4-vinylphenylboronic acid (VPBA) as functional monomer, ethylene dimethacrylate (EDMA) as crosslinker, diethylene glycol and ethylene glycol as binary porogenic solvents, and azobisisobutyronitrile (AIBN) as initiator. The prepared monolith was characterized in terms of the morphology, pore property, and recognition property. The selectivity and dynamic binding capacity were evaluated by using standard glycoproteins and nonglycoproteins as model proteins. The chromatographic results demonstrated that the phenylboronate affinity monolith had higher selectivity and binding capacity for glycoprotein than nonglycoprotein. The resulting phenylboronate affinity monolith was used as the sorbent for in-tube solid phase microextraction (in-tube SPME), and the extraction performance of the monolith was assessed by capture of ovalbumin from egg white sample.

  15. Refolding of recombinant human interferon alpha-2a from Escherichia coli by urea gradient size exclusion chromatography.

    PubMed

    Gao, F; Shi, L; Xu, L X

    2013-01-01

    Protein refolding is still a puzzle in the production of recombinant proteins expressed as inclusion bodies (IBs) in Escherichia coli. Gradient size exclusion chromatography (SEC) is a recently developed method for refolding of recombinant proteins in IBs. In this study, we used a decreasing urea gradient SEC for the refolding of recombinant human interferon alpha-2a (rhLFNalpha-2a) which was overexpressed as IBs in E. coli. In chromatographic process, the denatured rhLFNalpha-2a would pass along the 8.0-3.0 M urea gradient and refold gradually. Several operating conditions, such as final concentration of urea along the column, gradient length, the ratio of reduced to oxidized glutathione and flow rate were investigated, respectively. Under the optimum conditions, 1.2 x 10(8) IU/mg of specific activity and 82% mass recovery were obtained from the loaded 10 ml of 1.75 mg/ml denatured protein, and rhLFNalpha-2a was also purified during this process with the purity of higher than 92%. Compared with dilution method, urea gradient SEC was more efficient for the rhl FNalpha-2a refolding in terms of specific activity and mass recovery.

  16. Chromatography on DEAE ion-exchange and Protein G affinity columns in tandem for the separation and purification of proteins.

    PubMed

    Qi, Y; Yan, Z; Huang, J

    2001-10-30

    A high-performance liquid-chromatographic method based on coupled DEAE anion-exchange and Protein G affinity columns has been developed for the simultaneous separation and purification of immunoglobulin G and albumin from mouse serum. The diluted mouse serum was injected directly into this system, and the proteins were eluted separately from the DEAE and Protein G columns, coupled in series, by the column-switching technique. The advantages of this method are that IgG and albumin can be separated and purified simultaneously, the expensive affinity column is protected from contamination by the impurities in the mouse serum, and it is fast, selective, robust, and reproducible.

  17. [Obtaining of ScFv-CBD fusion protein and its application for affinity purification of recombinant human interferon alpha2b].

    PubMed

    Hil'chuk, P V; Okuniev, O V; Pavlova, M V; Irodov, D M; Horbatiuk, O B

    2006-01-01

    The gene of ScFv-CBD-fusion protein has been designed using the DNA sequences encoding of single-chain antibody (ScFv) against human interferon alpha2b (IFN-alpha2b) and cellulose-binding domain (CBD) from Clostridium thermocellum cellulosome. Biosynthesis of ScFv-CBD utilizing high-productive Escherichia coli system was carried out and the accumulation of target protein in bacterial inclusion bodies was shown. After the purification of the inclusion bodies and their subsequent in vitro refolding the soluble ScFv-CBD-fusion protein was directly immobilized on cellulose by bioaffinity coupling. The possibility to obtain the preparative quantities of ScFv-CBD in biologically-active form using different refolding schemes was accurately investigated in the paper. The general applicability of biologically immobilized ScFv-CBD-fusion proteins for affinity purification of recombinant IFN-alpha2b is shown.

  18. On-column entrapment of alpha1-acid glycoprotein for studies of drug-protein binding by high-performance affinity chromatography.

    PubMed

    Anguizola, Jeanethe; Bi, Cong; Koke, Michelle; Jackson, Abby; Hage, David S

    2016-08-01

    An on-column approach for protein entrapment was developed to immobilize alpha1-acid glycoprotein (AGP) for drug-protein binding studies based on high-performance affinity chromatography. Soluble AGP was physically entrapped by using microcolumns that contained hydrazide-activated porous silica and by employing mildly oxidized glycogen as a capping agent. Three on-column entrapment methods were evaluated and compared to a previous slurry-based entrapment method. The final selected method was used to prepare 1.0 cm × 2.1 mm I.D. affinity microcolumns that contained up to 21 (±4) μg AGP and that could be used over the course of more than 150 sample applications. Frontal analysis and zonal elution studies were performed on these affinity microcolumns to examine the binding of various drugs with the entrapped AGP. Site-selective competition studies were also conducted for these drugs. The results showed good agreement with previous observations for these drug-protein systems and with binding constants that have been reported in the literature. The entrapment method developed in this study should be useful for future work in the area of personalized medicine and in the high-throughput screening of drug interactions with AGP or other proteins. Graphical abstract On-column protein entrapment using a hydrazide-activated support and oxidized glycogen as a capping agent.

  19. Immobilized fusion protein affinity chromatography combined with HPLC-ESI-Q-TOF-MS/MS for rapid screening of PPARγ ligands from natural products.

    PubMed

    Zhu, Junfeng; Yi, Xiaojiao; Liu, Wenhui; Xu, Yingchun; Chen, Shuqing; Wu, Yongjiang

    2017-04-01

    Screening agonists of peroxisome proliferator-activated receptor-γ (PPARγ) from natural products is particularly motivated by the need for effective anti-diabetic agents. However, method for direct identification of PPARγ ligands from a complex sample is rarely reported. Here we propose a novel immobilized fusion protein affinity chromatography (IFPAC) to achieve rapid multicomponent screening. First, functional human PPARγ ligand binding domain (hPPARγLBD) was bacterially produced by fusion to glutathione S-transferase (GST). The unpurified GST-hPPARγLBD was directly applied to a 96-well filter plate prepacked with glutathione sepharose. Due to the strong affinity between GST and glutathione, the fusion protein could selectively attach to the glutathione matrix with an oriented immobilization, which was rapidly purified under non-denaturing conditions. Experimental results indicated that the prepared 96-affinity column array exhibited excellent selectivity and sensitivity for fishing novel interacting compounds. The proposed approach was applied in the high-throughput screening of PPARγ ligands from natural products, followed by rapid characterization of active compounds using HPLC-ESI-Q-TOF-MS/MS. Isochlorogenic acid A in Dendranthema indicum flowers was found to be a PPARγ ligand. Our findings suggested the IFPAC could be a powerful tool for drug discovery from natural products.

  20. Actin affinity chromatography in the purification of human, avian and other mammalian plasma proteins binding vitamin D and its metabolites (Gc globulins).

    PubMed Central

    Haddad, J G; Kowalski, M A; Sanger, J W

    1984-01-01

    The human plasma protein binding vitamin D and its metabolites (Gc globulin; group-specific component) has been isolated from human plasma by column affinity chromatography on gels to which monomeric actin was covalently attached. Rabbit skeletal-muscle G-actin was covalently coupled to amino-agarose gels before the application of human plasma. At actin/protein molar ratios of 4-8:1, excellent recovery (approximately 58%) of purified binding protein was achieved. After 0.75 M-NaCl washes, the binding protein was eluted from the columns in 3 M-guanidinium chloride, dialysed and analysed. These eluates contained the binding protein as 34-100% of the total protein, reflecting a 130-fold average purification in this single step. In the presence of Ca2+, gelsolin (another plasma protein that binds actin) was apparently retained by the affinity column, but this was prevented by chelation of plasma Ca2+. The actin affinity step also was effective in the isolation of the binding protein from rat, rabbit and chicken plasma, as indicated by autoradiographs of purified fractions analysed by gel electrophoresis after incubation with 25-hydroxy[26,27-3H]cholecalciferol. Further isolation by hydroxyapatite chromatography yielded a purified binding protein which displayed characteristic binding activity toward vitamin D metabolites and G-actin, and retained its physicochemical features. This brief purification sequence is relatively simple and efficient, and should prove to be useful to investigators studying this interesting plasma protein. Images Fig. 1. Fig. 3. Fig. 4. PMID:6547042

  1. Synthesis of 17 beta-hydroxyandrost-4-en-3-one-7 alpha-(biotinyl-6-N-hexylamide), a conjugate useful for affinity chromatography and for testosterone immunoassays.

    PubMed

    Luppa, P; Hauck, S; Schwab, I; Birkmayer, C; Hauptmann, H

    1996-01-01

    We describe the synthesis of 17 beta-hydroxyandrost-4-en-3-one-7 alpha-(biotinyl-6-N-hexylamide) from 17 beta-hydroxyandrost-4-en-3-one (testosterone) via copper-catalyzed 1,6 Michael addition of a 6-(tertbutyldimethylsilyloxyhexyl) chain to 6-dehydrotestosterone 17 beta-acetate. After chromatographic separation of the 7 alpha-isomer from the alpha / beta mixture and cleavage of the silyl ether, the alcohol was oxidized to the 6-hexanal side chain and then subjected to reductive amination. The resulting primary amine is easily biotinylated using biotinyl-N-hydroxysuccinimide ester. The overall yield for the epimeric 7 alpha-end product was 30%. The absolute configurations of the epimers were investigated by 1H NMR studies by the nuclear Overhauser effect. We introduced a biotin label to the testosterone molecule at ring position 7 in compliance with Landsteiner's principle, which states that antibody specificity is directed primarily at that portion of the hapten furthest from the functional group linking it to the carrier protein. Thus, this negligible alteration in comparison to the structure of the respective testosterone hapten used to elicit antibodies offers the feasibility of applying the testosterone derivative as an optimal immunoadsorbent in affinity chromatography. The 7 alpha-biotinylated testosterone was used to obtain active antitestosterone antibodies from a specific antiserum by affinity chromatography. This was achieved by attaching the biotinylated testosterone to agarose-coupled streptavidin beads. Accordingly, a 3H-testosterone-binding test demonstrated a 20-fold increase in affinity of the purified antibody to the steroid compared to the original antiserum, and a recovery of > 80% could be obtained. The antitestosterone antibody, obtained by that method, is an effective component for use in a competitive immunoassay for testosterone in human sera. An assay configuration is conceivable with the same 7 alpha-biotinylated testosterone employed as

  2. Selective and high affinity labeling of neuronal and recombinant nociceptin receptors with the hexapeptide radioprobe [(3)H]Ac-RYYRIK-ol.

    PubMed

    Bojnik, Engin; Farkas, Judit; Magyar, Anna; Tömböly, Csaba; Güçlü, Umit; Gündüz, Ozge; Borsodi, Anna; Corbani, Maïthe; Benyhe, Sándor

    2009-12-01

    The synthetic hexapeptide Ac-Arg-Tyr-Tyr-Arg-Ile-Lys-ol (Ac-RYYRIK-ol) represents a highly potent and selective partial agonist ligand for the nociceptin/orphanin FQ (N/OFQ) peptide receptor (nociceptin receptor, NOPr). Ac-RYYRIK-ol has been labeled with tritium yielding [(3)H]Ac-RYYRIK-ol with exceptionally high specific radioactivity of 94Ci/mmol. The radioprobe is chemically stable even at 24 degrees C in ethanol solution for at least 4 days. No significant decomposition of the [(3)H]ligand occurred under the condition of the binding experiments indicating a fine enzymatic stability of the peptide. Radioreceptor binding studies were conducted using native neuronal NOPr preparation of rat brain membrane fractions and recombinant human nociceptin receptor ((h)NOPr) preparations from cultured Chinese Hamster Ovary (CHO) cells stably expressing (h)NOPr. Specific binding of the compound was reversible, saturable and of high affinity. No cross-reaction with the opioid receptors was observed suggesting superior NOPr selectivity of the ligand. Monophasic isotherm curves obtained in radioligand binding saturation and homologous displacement experiments indicated the presence of single binding sites in both preparations. Average densities of the [(3)H]Ac-RYYRIK-ol recognition sites were 237 and 749fmol/mg protein in rat brain and transfected cells, respectively. Equilibrium affinity values (K(d)s) were determined by three independent way providing identical results. In rat brain membranes K(d)s of 0.3-1.3nM were found depending upon the assay type. In homologous competition studies performed on (h)NOP-CHO cell membranes almost the same binding affinities were measured for Ac-RYYRIK-ol either with [(3)H]Ac-RYYRIK-ol (K(i) 2.8nM) or with [(3)H](Leu(14))nociceptin (2.3nM). A number of NOPr and opioid ligands were screened in heterologous displacement experiments and displayed a rank order of affinity profile being consistent with fairly good NOPr selectivity of the sites

  3. Affinity membrane chromatography: relationship of dye-ligand type to surface polarity and their effect on lysozyme separation and purification.

    PubMed

    Arica, M Yakup; Yilmaz, Meltem; Yalçin, Emine; Bayramoğlu, Gülay

    2004-06-15

    Two different dye-ligands, i.e. Procion Brown MX-5BR (RB-10) and Procion Green H-4G (RG-5) were immobilised onto poly(2-hydroxyethylmethacrylate) (pHEMA) membranes. The polarities of the affinity membranes were determined by contact angle measurements. Separation and purification of lysozyme from solution and egg white were investigated. The adsorption data was analysed using two adsorption kinetic models the first order and the second order to determine the best-fit equation for the separation of lysozyme using affinity membranes. The second-order equation for the adsorption of lysozyme on the RB-10 and RG-5 immobilised membranes systems is the most appropriate equation to predict the adsorption capacity for the affinity membranes. The reversible lysozyme adsorption on the RB-10 and RG-5 did not follow the Langmuir model, but obeyed the Temkin and Freundlich isotherm model. Separation and purification were monitored by determining the lysozyme activity using Micrococcus lysodeikticus as substrate. The purities of the eluted lysozyme, as determined by HPLC, were 76 and 92% with recovery 63 and 77% for RB-10 and RG-5 membranes, respectively. For the separation and purification of lysozyme the RG-5 immobilised membrane provided the best results. The affinity membranes are stable when subjected to sanitization with sodium hydroxide after repeated adsorption-elution cycles.

  4. Characterization of the native and denatured herceptin by enzyme linked immunosorbent assay and quartz crystal microbalance using a high-affinity single chain fragment variable recombinant antibody.

    PubMed

    Shang, Yuqin; Mernaugh, Ray; Zeng, Xiangqun

    2012-10-02

    Herceptin/Trastuzumab is a humanized IgG1κ light chain antibody used to treat some forms of breast cancer. A phage-displayed recombinant antibody library was used to obtain a single chain fragment variable (scFv, designated 2B4) to a linear synthetic peptide representing Herceptin's heavy chain CDR3. Enzyme linked immunosorbent assays (ELISAs) and piezoimmunosensor/quartz crystal microbalance (QCM) assays were used to characterize 2B4-binding activity to both native and heat denatured Herceptin. The 2B4 scFv specifically bound to heat denatured Herceptin in a concentration dependent manner over a wide (35-220.5 nM) dynamic range. Herceptin denatures and forms significant amounts of aggregates when heated. UV-vis characterization confirms that Herceptin forms aggregates as the temperature used to heat Herceptin increases. QCM affinity assay shows that binding stoichiometry between 2B4 scFv and Herceptin follows a 1:2 relationship proving that 2B4 scFv binds strongly to the dimers of heat denatured Herceptin aggregates and exhibits an affinity constant of 7.17 × 10(13) M(-2). The 2B4-based QCM assay was more sensitive than the corresponding ELISA. Combining QCM with ELISA can be used to more fully characterize nonspecific binding events in assays. The potential theoretical and clinical implications of these results and the advantages of the use of QCM to characterize human therapeutic antibodies in samples are also discussed.

  5. Expression of recombinant West Nile virus prM protein fused to an affinity tag for use as a diagnostic antigen.

    PubMed

    Setoh, Y X; Hobson-Peters, J; Prow, N A; Young, P R; Hall, R A

    2011-07-01

    Previous studies have concluded that the Flavivirus prM protein is a suitable viral antigen to distinguish serologically between infections with closely related Flaviviruses (Cardosa et al., 2002). To express the recombinant West Nile virus (WNV) prM antigen fused to a suitable affinity tag for purification, a series of prM-His-tag and prM-V5-tag fusion proteins were generated. Analysis of the prM-His-tag fusion proteins revealed that either prM epitopes were disrupted or the His-tag was not presented properly depending on the location of the His tag and the presence of the prM transmembrane domains in these constructs. This identified domains critical for proper folding of prM, and arrangements that allowed the correct presentation of the His-tag. However, the inclusion of the V5 epitope tag fused to the C terminus of prM allowed formation of the authentic antigenic structure of prM and the proper presentation of the V5 epitope. Capture of tagged recombinant WNV(NY99) prM antigen to the solid phase with anti-V5 antibody in ELISA enabled the detection of prM-specific antibodies in WNV(NY99)-immune horse serum, confirming its potential as a useful diagnostic reagent.

  6. Virus-binding proteins recovered from bacterial culture derived from activated sludge by affinity chromatography assay using a viral capsid peptide.

    PubMed

    Sano, Daisuke; Matsuo, Takahiro; Omura, Tatsuo

    2004-06-01

    The contamination of water environments by pathogenic viruses has raised concerns about outbreaks of viral infectious diseases in our society. Because conventional water and wastewater treatment systems are not effective enough to inactivate or remove pathogenic viruses, a new technology for virus removal needs to be developed. In this study, the virus-binding proteins (VBPs) in a bacterial culture derived from activated sludge were successfully recovered. The recovery of VBPs was achieved by applying extracted crude proteins from a bacterial culture to an affinity column in which a custom-made peptide of capsid protein from the poliovirus type 1 (PV1) Mahoney strain (H(2)N-DNPASTTNKDKL-COOH) was immobilized as a ligand. VBPs exhibited the ability to adsorb infectious particles of PV1 Sabin 1 as determined by enzyme-linked immunosorbent assay. The evaluation of surface charges of VBPs with ion-exchange chromatography found that a majority of VBP molecules had a net negative charge under the conditions of affinity chromatography. On the other hand, a calculated isoelectric point implied that the viral peptide in the affinity column was also charged negatively. As a result, the adsorption of the VBPs to the viral peptide in the affinity column occurred with a strong attractive force that was able to overcome the electrostatic repulsive force. Two-dimensional electrophoresis revealed that the isolated VBPs include a number of proteins, and their molecular masses were widely distributed but smaller than 100 kDa. Amino acid sequences of N termini of five VBPs were determined. Homology searches for the N termini against all protein sequences in the National Center for Biotechnology Information (NCBI) database showed that the isolated VBPs in this study were newly discovered proteins. These VBPs that originated with bacteria in activated sludge might be stable, because they are existing in the environment of wastewater treatments. Therefore, a virus removal technology

  7. Conformational changes of recombinant monoclonal antibodies by limited proteolytic digestion, stable isotope labeling, and liquid chromatography-mass spectrometry.

    PubMed

    Ponniah, Gomathinayagam; Nowak, Christine; Kita, Adriana; Cheng, Guilong; Kori, Yekaterina; Liu, Hongcheng

    2016-03-15

    Limited proteolytic digestion is a method with a long history that has been used to study protein domain structures and conformational changes. A method of combining limited proteolytic digestion, stable isotope labeling, and mass spectrometry was established in the current study to investigate protein conformational changes. Recombinant monoclonal antibodies with or without the conserved oligosaccharides, and with or without oxidation of the conserved methionine residues, were used to test the newly proposed method. All of the samples were digested in ammonium bicarbonate buffer prepared in normal water. The oxidized deglycosylated sample was also digested in ammonium bicarbonate buffer prepared in (18)O-labeled water. The sample from the digestion in (18)O-water was spiked into each sample digested in normal water. Each mixed sample was subsequently analyzed by liquid chromatography-mass spectrometry (LC-MS). The molecular weight differences between the peptides digested in normal water versus (18)O-water were used to differentiate peaks from the samples. The relative peak intensities of peptides with or without the C-terminal incorporation of (18)O atoms were used to determine susceptibility of different samples to trypsin and chymotrypsin. The results demonstrated that the method was capable of detecting local conformational changes of the recombinant monoclonal antibodies caused by deglycosylation and oxidation.

  8. Characterisation of aroma profiles of commercial sufus by odour activity value, gas chromatography-olfactometry, aroma recombination and omission studies.

    PubMed

    Xiao, Zuobing; Shang, Yi; Chen, Feng; Niu, Yunwei; Gu, Yongbo; Liu, Shengjiang; Zhu, Jiancai

    2015-01-01

    Sufu is a solid-state fermented product made from soya beans. For the sake of quality control and regulation purposes, it is essential to be able to identify key odorants of various commercial sufus. To identify the aroma-active compounds in sufus, gas chromatography-olfactometry/aroma extract dilution analysis (GC-O/AEDA) was performed, and odour activity value (OAV) was estimated. The correlations between aroma profiles and identified aroma-active compounds were also investigated by principal component analysis. Results showed that 35 aroma-active compounds were detected through OAV calculation, while 28 compounds were identified by using GC-O/AEDA. Quantitative descriptive analysis revealed that aroma recombination model based on OAV calculation was more similar to original sufu in terms of aroma comparing to aroma recombination model based on GC-O/AEDA. Omission experiments further confirmed that the aroma compounds, such as ethyl butanoate, ethyl 2-methylbutanoate, ethyl hexanoate, (E,E)-2,4-decadienal and 2,6-dimethylpyrazine, contributed most significantly to the characteristic aroma of a commercial sufu.

  9. Purification of anti-MUC1 antibodies by peptide mimotope affinity chromatography using peptides derived from a polyvalent phage display library.

    PubMed

    Smith, Richard G; Missailidis, Sotiris; Price, Michael R

    2002-01-05

    A polyvalent, lytic phage display system (T7Select415-1b) displaying a random peptide library has been investigated for its ability to discover novel mimotopes reactive with the therapeutic monoclonal antibody C595. Sequence analysis of enriched phage lead to the identification of a predominant sequence RNREAPRGKICS, and two other consensus sequences RXXP and RXP. The novel synthetic peptide RNREAPRGKICS was linked to beaded agarose and the performance as a mimotope affinity chromatography matrix evaluated. Antibody purified using the novel matrix was found to be of higher specific reactivity than antibody purified using the conventional epitope matrix (peptide APDTRPAPG). The RNREAPRGKICS peptide binding to C595 demonstrated a higher equilibrium association constant (K(A)=0.75 x 10(6)) than the epitope peptide (K(A)=0.16 x 10(6)). Circular dichroism showed that the novel peptide had a more highly ordered structure at 4 degrees C and room temperature, than the epitope peptide.

  10. Immobilized metal ion affinity chromatography on Co2+-carboxymethylaspartate-agarose Superflow, as demonstrated by one-step purification of lactate dehydrogenase from chicken breast muscle.

    PubMed

    Chaga, G; Hopp, J; Nelson, P

    1999-02-01

    A rapid method for the purification of lactate dehydrogenase from whole chicken muscle extract in one chromatographic step is reported. The purification procedure can be accomplished in less than 1 h. A new type of immobilized metal ion affinity chromatography adsorbent is used that can be utilized at linear flow rates higher than 5 cm/min. The final preparation of the enzyme was with purity higher than 95% as ascertained by SDS-PAGE. Three immobilized metal ions (Ni2+, Zn2+ and Co2+) were compared for their binding properties towards the purified enzyme. The binding site of the enzyme for immobilized intermediate metal ions was determined after cleavage with CNBr and binding studies of the derivative peptides on immobilized Co2+. A peptide located on the N-terminus of the enzyme, implicated in the binding, has great potential as a purification tag in fusion proteins.

  11. Purification of HBsAg produced by the human hepatoma cell line PLC/PRE/5 by affinity chromatography using monoclonal antibodies and application for ELISA diagnostic.

    PubMed

    Merten, O W; Reiter, S; Scheirer, W; Katinger, H

    1983-01-01

    The human cell line PLC/PRF/5 (5) was used for the production of hepatitis B surface antigen subtype ad (HBsAg ad) and purified by affinity chromatography (AC) with monoclonal antibodies (mAb). mAb to HBsAg from mouse ascites have been purified by Protein A - AC prior coupling to AH-Sepharose 4B (Pharmacia). The combined procedure of ammonium-sulphate-precipitation of HBsAg from culture supernatants and immunosorbent-AC leads to approx. 700-fold purification. ELISA results using the mAb and the HBsAg for diagnostics of human serum, positive for anti-HBsAg-antibodies correlate with the RIA (AUSAB, Abbott).

  12. Enantioseparation of nuarimol by affinity electrokinetic chromatography-partial filling technique using human serum albumin as chiral selector.

    PubMed

    Martínez-Gómez, Maria Amparo; Escuder-Gilabert, Laura; Villanueva-Camañas, Rosa M; Sagrado, Salvador; Medina-Hernández, Maria J

    2008-10-01

    The present paper deals with the enantiomeric separation of nuarimol enantiomers by affinity EKC-partial filling technique using HSA as chiral selector. Firstly, a study of nuarimol interactions with HSA by CE-frontal analysis was performed. The binding parameters obtained for the first site of interaction were n(1) = 0.84; K(1) = 9.7 +/- 0.3x10(3 )M(-1) and the protein binding percentage of nuarimol at physiological concentration of HSA was 75.2 +/- 0.2%. Due to the moderate affinity of nuarimol towards HSA the possibility of using this protein as chiral selector for the separation of nuarimol using the partial filling technique was evaluated. A multivariate optimization approach of the most critical experimental variables in enantioresolution, running pH, HSA concentration and plug length was carried out. Separation of nuarimol enantiomers was obtained under the following selected conditions: electrophoretic buffer composed of 50 mM Tris at pH 7.3; 160 muM HSA solution applied at 50 mbar for 156 s as chiral selector; nuarimol solutions in the range of 2-8x10(-4) M injected hydrodynamically at 30 mbar for 2 s and the electrophoretic runs performed at 30 degrees C applying 15 kV voltage. Resolution, accuracy, reproducibility speed and cost of the proposed method make it suitable for quality control of the enantiomeric composition of nuarimol in formulations and for further toxicological studies. The results showed a different affinity between nuarimol enantiomers towards HSA.

  13. Capillary high-performance liquid chromatography/mass spectrometric analysis of proteins from affinity-purified plasma membrane.

    PubMed

    Zhao, Yingxin; Zhang, Wei; White, Michael A; Zhao, Yingming

    2003-08-01

    Proteomics analysis of plasma membranes is a potentially powerful strategy for the discovery of proteins involved in membrane remodeling under diverse cellular environments and identification of disease-specific membrane markers. A key factor for successful analysis is the preparation of plasma membrane fractions with low contamination from subcellular organelles. Here we report the characterization of plasma membrane prepared by an affinity-purification method, which involves biotinylation of cell-surface proteins and subsequent affinity enrichment with strepavidin beads. Western blotting analysis showed this method was able to achieve a 1600-fold relative enrichment of plasma membrane versus mitochondria and a 400-fold relative enrichment versus endoplasmic reticulum, two major contaminants in plasma membrane fractions prepared by conventional ultracentrifugation methods. Capillary-HPLC/MS analysis of 30 microg of affinity-purified plasma membrane proteins led to the identification of 918 unique proteins, which include 16.4% integral plasma membrane proteins and 45.5% cytosol proteins (including 8.6% membrane-associated proteins). Notable among the identified membrane proteins include 30 members of ras superfamily, receptors (e.g., EGF receptor, integrins), and signaling molecules. The low number of endoplasmic reticulum and mitochondria proteins (approximately 3.3% of the total) suggests the plasma membrane preparation has minimum contamination from these organelles. Given the importance of integral membrane proteins for drug design and membrane-associated proteins in the regulation cellular behaviors, the described approach will help expedite the characterization of plasma membrane subproteomes, identify signaling molecules, and discover therapeutic membrane-protein targets in diseases.

  14. Effect of the detergent Tween-20 on the DNA affinity chromatography of Gal4, C/EBPalpha, and lac repressor with observations on column regeneration.

    PubMed

    Robinson, F Darlene; Moxley, Robert A; Jarrett, Harry W

    2004-01-23

    C/EBPalpha, Gal4, and lac repressor, representing three different transcription factor homology families, were expressed as fusion proteins and used to characterize the effects of column aging, Mg2+, the nonionic detergent Tween-20, column loading, and bovine serum albumin on DNA-affinity chromatography. When lac-repressor-beta-galactosidase fusion protein is loaded onto a new DNA-Sepharose column, less elutes from a new column than one that has been used two or more times. Higher amounts of lac repressor, the Green Fluorescent Protein fusions with CAAT enhancer binding protein (C/EBPalpha) and Gal4, elute from the columns when 0.1% Tween-20 is added to the mobile phase. The amount of improvement found depends upon the transcription factor studied and the amount of the protein loaded on the column; lac repressor and Gal4 are eluted in higher amounts over a large range of protein loads while C/EBP shows the greatest effect at low protein loads. This detergent effect is seen when either Sepharose or silica is used for the stationary phase. Including bovine serum albumin in the mobile phase gives a similar though lesser improvement to that observed with Tween-20. Mg2+ or EDTA in the mobile phase gave similar chromatography for C/EBP; since EDTA protects columns from DNases, its inclusion in the mobile phase is preferred. After extended use, the DNA affinity columns no longer bind transcription factors and this is not due to losses of DNA from the columns. Two simple methods (sodium dodecylsulfate and KSCN) were developed to regenerate such worn out columns.

  15. Affinity chromatography of proteins on non-porous copolymerized particles of styrene, methyl methacrylate and glycidyl methacrylate.

    PubMed

    Chen, C H; Lee, W C

    2001-06-29

    Non-porous particles having an average diameter of 2.1 microm were prepared by co-polymerization of styrene, methyl methacrylate and glycidyl methacrylate, which was abbreviated as P(S-MMA-GMA). The particles were mechanically stable due to the presence of benzene rings in the backbone of polymer chains, and could withstand high pressures when a column packed with these particles was operated in the HPLC mode. The polymer particles were advantaged by immobilization of ligands via the epoxy groups on the particle surface that were introduced by one of the monomers, glycidyl methacrylate. As a model system, Cibacron Blue 3G-A was covalently immobilized onto the non-porous copolymer beads. The dye-immobilized P(S-MMA-GMA) particles were slurry packed into a 1.0 cm x 0.46 cm I.D. column. This affinity column was effective for the separation of turkey egg white lysozyme from a protein mixture. The bound lysozyme could be eluted to yield a sharp peak by using a phosphate buffer containing 1 M NaCl. For a sample containing up to 8 microg of lysozyme, the retained portion of proteins could be completely eluted without any slit peak. Due to the use of a shorter column, the analysis time was shorter in comparison with other affinity systems reported in the literature. The retention time could be reduced significantly by increasing the flow-rate, while the capacity factor remained at the same level.

  16. Online micro-solid-phase extraction based on boronate affinity monolithic column coupled with high-performance liquid chromatography for the determination of monoamine neurotransmitters in human urine.

    PubMed

    Yang, Xiaoting; Hu, Yufei; Li, Gongke

    2014-05-16

    Quantification of monoamine neurotransmitters is very important in diagnosing and monitoring of patients with neurological disorders. We developed an online analytical method to selectively determine urinary monoamine neurotransmitters, which coupled the boronate affinity monolithic column micro-solid-phase extraction with high-performance liquid chromatography (HPLC). The boronate affinity monolithic column was prepared by in situ polymerization of vinylphenylboronic acid (VPBA) and N,N'-methylenebisacrylamide (MBAA) in a stainless capillary column. The prepared monolithic column showed good permeability, high extraction selectivity and capacity. The column-to-column reproducibility was satisfactory and the enrichment factors were 17-243 for four monoamine neurotransmitters. Parameters that influence the online extraction efficiency, including pH of sample solution, flow rate of extraction and desorption, extraction volume and desorption volume were investigated. Under the optimized conditions, the developed method exhibited low limit of detection (0.06-0.80μg/L), good linearity (with R(2) between 0.9979 and 0.9993). The recoveries in urine samples were 81.0-105.5% for four monoamine neurotransmitters with intra- and inter-day RSDs of 2.1-8.2% and 3.7-10.6%, respectively. The online analytical method was sensitive, accurate, selective, reliable and applicable to analysis of trace monoamine neurotransmitters in human urine sample.

  17. High performance affinity chromatography (HPAC) as a high-throughput screening tool in drug discovery to study drug-plasma protein interactions.

    PubMed

    Vuignier, Karine; Guillarme, Davy; Veuthey, Jean-Luc; Carrupt, Pierre-Alain; Schappler, Julie

    2013-02-23

    Drug-plasma protein binding is an important parameter that, together with other physicochemical properties such as lipophilicity and pK(a), greatly influences drug absorption, distribution, metabolism, and excretion (ADME). Therefore, it is important for pharmaceutical companies to develop a rapid screening assay to examine plasma protein binding during the early stages of the drug discovery process. Human serum albumin (HSA) and α(1)-acid glycoprotein (AGP) are the most important plasma proteins that are capable of binding drugs. In this work, an automated and high-throughput (<3 min/compound) strategy was developed using high performance affinity chromatography (HPAC) with commercial HSA and AGP columns to evaluate drug-plasma protein interactions for drug screening. A generic gradient was used throughout the study to separate drugs that were weakly and tightly bound to HSA and AGP. To accelerate the analysis time, the system was calibrated in a single run by pooling reference compounds without overloading the column. For both HSA and AGP studies, the developed methods were successfully transferred from HPAC-UV to HPAC-MS with single quadrupole MS detection and ammonium acetate, pH 7.0 as a volatile mobile phase. The MS detection enhanced the sensitivity, selectivity, and throughput of the method by pooling unknown compounds. For HSA analyses, the binding percentages obtained using HPAC were well correlated with the binding percentages from the literature. This method was also able to rank compounds based on their affinity for HSA. Concerning the AGP analyses, the quality of the correlation between the binding percentages obtained in HPAC and those from the literature was weaker. However, the method was able to classify compounds into weak, medium, and strong binders and rank compounds based on their affinity for AGP.

  18. C-Terminally fused affinity Strep-tag II is removed by proteolysis from recombinant human erythropoietin expressed in transgenic tobacco plants

    PubMed Central

    Kittur, Farooqahmed S.; Lalgondar, Mallikarjun; Hung, Chiu-Yueh; Sane, David C.

    2014-01-01

    Asialo-erythropoietin (asialo-EPO), a desialylated form of EPO, is a potent tissue-protective agent. Recently, we and others have exploited a low cost plant-based expression system to produce recombinant human asialo-EPO (asialo-rhuEPOP). To facilitate purification from plant extracts, Strep-tag II was engineered at the C-terminus of EPO. Although asialo-rhuEPOP was efficiently expressed in transgenic tobacco plants, affinity purification based on Strep-tag II did not result in the recovery of the protein. In this study, we investigated the stability of Strep-tag II tagged asialo-rhuEPOP expressed in tobacco plants to understand whether this fused tag is cleaved or inaccessible. Sequencing RT-PCR products confirmed that fused DNA sequences encoding Strep-tag II were properly transcribed, and three-dimensional protein structure model revealed that the tag must be fully accessible. However, Western blot analysis of leaf extracts and purified asialo-rhuEPOP revealed that the Strep-tag II was absent on the protein. Additionally, no peptide fragment containing Strep-tag II was identified in the LC-MS/MS analysis of purified protein further supporting that the affinity tag was absent on asialo-rhuEPOP. However, Strep-tag II was detected on asialo-rhuEPOP that was retained in the endoplasmic reticulum, suggesting that the Strep-tag II is removed during protein secretion or extraction. These findings together with recent reports that C-terminally fused Strep-tag II or IgG Fc domain are also removed from EPO in tobacco plants, suggest that its C-terminus may be highly susceptible to proteolysis in tobacco plants. Therefore, direct fusion of purification tags at the C-terminus of EPO should be avoided while expressing it in tobacco plants. PMID:25504272

  19. Proteomic analysis of copper-binding proteins in excess copper-stressed rice roots by immobilized metal affinity chromatography and two-dimensional electrophoresis.

    PubMed

    Song, Yufeng; Zhang, Hongxiao; Chen, Chen; Wang, Guiping; Zhuang, Kai; Cui, Jin; Shen, Zhenguo

    2014-04-01

    Copper (Cu) is an essential micronutrient required for plant growth and development. However, excess Cu can inactivate and disturb protein structure as a result of unavoidable binding to proteins. To understand better the mechanisms involved in Cu toxicity and tolerance in plants, we developed a new immobilized metal affinity chromatography (IMAC) method for the separation and isolation of Cu-binding proteins extracted from roots of rice seedling exposed to excess Cu. In our method, IDA-Sepharose or EDDS-Sepharose column (referred as pre-chromatography) and Cu-IDA-Sepharose column (referred as Cu-IMAC) were connected in tandem. Namely, protein samples were pre-chromatographed with IDA-Sepharose column to removal metal ions, then protein solution was flowed into Cu-IMAC column for enriching Cu-binding proteins in vitro. Compared with the control (Cu-IMAC without any pre-chromatography), IDA-Sepharose pre-chromatography method markedly increased yield of the Cu-IMAC-binding proteins, and number of protein spots and the abundance of 40 protein spots on two-dimensional electrophoresis (2-DE) gels. Thirteen protein spots randomly selected from 2-DE gel and 11 proteins were identified using MALDI-TOF-TOF MS. These putative Cu-binding proteins included those involved in antioxidant defense, carbohydrate metabolism, nucleic acid metabolism, protein folding and stabilization, protein transport and cell wall synthesis. Ten proteins contained one or more of nine putative metal-binding motifs reported by Smith et al. (J Proteome Res 3:834-840, 2004) and seven proteins contained one or two of top six motifs reported by Kung et al. (Proteomics 6:2746-2758, 2006). Results demonstrated that more proteins specifically bound with Cu-IMAC could be enriched through removal of metal ions from samples by IDA-Sepharose pre-chromatography. Further studies are needed on metal-binding characteristics of these proteins in vivo and the relationship between Cu ions and protein biological

  20. Performance of two ELISAs for antifilaggrin autoantibodies, using either affinity purified or deiminated recombinant human filaggrin, in the diagnosis of rheumatoid arthritis

    PubMed Central

    Nogueira, L; Sebbag, M; Vincent, C; Arnaud, M; Fournie, B; Cantagrel, A; Jolivet, M; Serre, G

    2001-01-01

    OBJECTIVE—To develop a standardisable enzyme linked immunosorbent assay (ELISA), using human filaggrin, for detection of antifilaggrin autoantibodies in rheumatoid arthritis (RA). To compare the diagnostic performance of the ELISA with those of reference tests: "antikeratin antibodies" ("AKA"), and antibodies to human epidermis filaggrin detected by immunoblotting (AhFA-IB).
METHODS—Two ELISAs were developed using either affinity purified neutral-acidic human epidermis filaggrin (AhFA-ELISA-pur) or a recombinant human filaggrin deiminated in vitro (AhFA-ELISA-rec) as immunosorbent. Antifilaggrin autoantibodies were assayed in 714 serum samples from patients with well characterised rheumatic diseases, including 241 RA and 473 other rheumatic diseases, using the two ELISAs. "AKA" and AhFA-IB tests were carried out in the same series of patients. The diagnostic performance of the four tests was compared and their relationships analysed.
RESULTS—The titres of "AKA", AhFA-IB, and the AhFA-ELISAs correlated strongly with each other. The diagnostic sensitivity of the AhFA-ELISA-rec, which was better than that of AhFA-ELISA-pur, was 0.52 for a specificity of 0.95. This performance was similar to those of "AKA" or AhFA-IB. However, combining AhFA-ELISA-rec with AhFA-IB led to a diagnostic sensitivity of 0.55 for a specificity of 0.99.
CONCLUSION—A simple and easily standardisable ELISA for detection of antifilaggrin autoantibodies was developed and validated on a large series of patients using a citrullinated recombinant human filaggrin. The diagnostic performance of the test was similar to that of the "AKA" and AhFA-IB. Nevertheless, combining the AhFA-ELISA-rec with one of the other tests clearly enhanced the performance.

 PMID:11502616

  1. Potential of human serum albumin as chiral selector of basic drugs in affinity electrokinetic chromatography-partial filling technique.

    PubMed

    Martínez-Gómez, Maria A; Villanueva-Camañas, R M; Sagrado, Salvador; Medina-Hernández, Maria J

    2006-11-01

    The enantiomeric resolution of compounds using HSA by means of affinity EKC (AEKC)-partial filling technique is the result of a delicate balance between different experimental variables such as protein concentration, running pH (background electrophoretic buffer (BGE), protein, and compound solutions), and plug length. In this paper, the possibility of using HSA as chiral selector for enantioseparation of 28 basic drugs using this methodology is studied. The effect of the physicochemical parameters, the structural properties of compounds, and compound-HSA protein binding percentages over their chiral resolution with HSA is outlined. Based on the results obtained, a decision tree is proposed for the "a priori" prediction of the capability of HSA for enantioseparation of basic drugs in AEKC. The results obtained indicated that enantioresolution of basic compounds with HSA depends on the hydrophobicity, polarity, and molar volume of compounds.

  2. Evaluation of microbeads of calcium alginate as a fluidized bed medium for affinity chromatography of Aspergillus niger Pectinase.

    PubMed

    Roy, Ipsita; Jain, Sulakshana; Teotia, Sunita; Gupta, Munishwar Nath

    2004-01-01

    Calcium alginate microbeads (212-425 microm) were prepared by spraying 2% (w/v) alginate solution into 1 M CaCl2 solution. The fluidization behavior of these beads was studied, and the bed expansion index and terminal velocity were found to be 4.3 and 1808 cm h(-1), respectively. Residence time distribution curves showed that the dispersion of the protein was much less with these microbeads than with conventionally prepared calcium alginate macrobeads when both kinds of beads were used for chromatography in a fluidized bed format. The fluidized bed of these beads was used for the purification of pectinase from a commercial preparation. The media performed well even with diluted feedstock; 90% activity recovery with 211-fold purification was observed.

  3. Semi-Automated Hydrophobic Interaction Chromatography Column Scouting Used in the Two-Step Purification of Recombinant Green Fluorescent Protein

    PubMed Central

    Murphy, Patrick J. M.

    2014-01-01

    Background Hydrophobic interaction chromatography (HIC) most commonly requires experimental determination (i.e., scouting) in order to select an optimal chromatographic medium for purifying a given target protein. Neither a two-step purification of untagged green fluorescent protein (GFP) from crude bacterial lysate using sequential HIC and size exclusion chromatography (SEC), nor HIC column scouting elution profiles of GFP, have been previously reported. Methods and Results Bacterial lysate expressing recombinant GFP was sequentially adsorbed to commercially available HIC columns containing butyl, octyl, and phenyl-based HIC ligands coupled to matrices of varying bead size. The lysate was fractionated using a linear ammonium phosphate salt gradient at constant pH. Collected HIC eluate fractions containing retained GFP were then pooled and further purified using high-resolution preparative SEC. Significant differences in presumptive GFP elution profiles were observed using in-line absorption spectrophotometry (A395) and post-run fluorimetry. SDS-PAGE and western blot demonstrated that fluorometric detection was the more accurate indicator of GFP elution in both HIC and SEC purification steps. Comparison of composite HIC column scouting data indicated that a phenyl ligand coupled to a 34 µm matrix produced the highest degree of target protein capture and separation. Conclusions Conducting two-step protein purification using the preferred HIC medium followed by SEC resulted in a final, concentrated product with >98% protein purity. In-line absorbance spectrophotometry was not as precise of an indicator of GFP elution as post-run fluorimetry. These findings demonstrate the importance of utilizing a combination of detection methods when evaluating purification strategies. GFP is a well-characterized model protein, used heavily in educational settings and by researchers with limited protein purification experience, and the data and strategies presented here may aid in

  4. Multivariate optimization approach for chiral resolution of drugs using human serum albumin in affinity electrokinetic chromatography-partial filling technique.

    PubMed

    Martinez-Gomez, Maria A; Villanueva-Camañas, Rosa M; Sagrado, Salvador; Medina-Hernández, Maria J

    2005-11-01

    The enantiomeric resolution of chiral compounds using HSA by means of affinity EKC (AEKC)-partial filling technique is the result of a delicate balance between different experimental variables such as protein concentration, running pH (background electrophoretic buffer, protein and compound solutions) and protein solution plug length. In this paper multivariate optimization approaches for chiral separation of four basic drugs (alprenolol, oxprenolol, promethazine and propranolol) using HSA as chiral selector in AEKC-partial filling technique are studied. The experimental conditions to achieve maximum resolution are optimized using the Box-Behnken experimental design. Partial least squares and pareto charts are used to analyse the main effects on the resolution. The experimental resolutions observed for all compounds studied in optimum conditions agree with the estimated values based on response surface models. The results obtained show that the range of experimental conditions that provided enantioresolution narrows as hydrophobicity of analytes decreases. This fact can be explained by assuming that hydrophobicity controls the interaction of basic compounds with HSA.

  5. A general method for fractionation of plasma proteins. Dye-ligand affinity chromatography on immobilized Cibacron blue F3-GA.

    PubMed

    Gianazza, E; Arnaud, P

    1982-01-01

    The chromatographic behaviour of 27 different plasma proteins on fractionation of human plasma on immobilized Cibacron Blue F3-GA was studied. The column was eluted by using a three-step procedure. First, a low-molarity buffer (30 mM-H3PO4/Na3PO4, pH 7.0, I0.053) was used, then a linear salt gradient (0-1 M-NaCl in the buffer above) was applied, followed by a wash with two bed volumes of 1.0 M-NaCl. Finally, bound proteins were 'stripped' with 0.5 M-NaSCN. Up to 1 ml of whole plasma could be loaded per 5 ml bed volume. No denaturation of proteinase inhibitors or complement fractions was observed. The recovery of individual proteins ranged between 52 and greater than 95%. Enrichment of four individual plasma components (alpha 1-antitrypsin, caeruloplasmin, antithrombin III and haemopexin) was between 10-fold and 75-fold. These results indicate that chromatography on immobilized Cibacron Blue F3-GA can be a useful initial step in the purification of plasma proteins.

  6. [Development of a new hydrophobic interaction chromatography absorbent and its application to the purification of recombinant hepatitis B surface antigen].

    PubMed

    Wang, Yang-Mu; Bi, Jing-Xiu; Zhao, Lan; Zhou, Wei-Bin; Li, Yan; Huang, Yong-Dong; Zhang, Yan; Lin, Hai; Su, Zhi-Guo

    2006-03-01

    A new hydrophobic absorbent based on homemade highly cross-linked agarose beads was synthesized by immobilizing butyl derivative onto the matrix linkage. The density of ligand was controlled by adjusting the concentration of butanethiol and the synthesis route was optimized by evaluating the purification efficiency of recombinant Hepatitis B surface antigen (HBsAg) expressed by Chinese hamster ovary (CHO) cell line. A high performance absorbent was finally screened out with up to 80% of HBsAg recovery and purification-fold (PF) about 20. Furthermore, the column pressure was about 0.06 MPa under the flow rate of 500cm/h, and no leaked butyl were detected after exposing the gel in common buffers, chaotropic agents, high concentrations of denaturing agents such as guanidine hydrochloride, urea and polar organic solvents. These results demonstrated that the absorbent have high physico-chemical stability, so it was available for the downstream process. Finally, after scaled up to 2L wet gel/batch, the absorbent was applied to the integration of three-step chromatography and obtained the purified CHO-HBsAg with 95% purity by SDS-PAGE and HPLC, which meet the requirements of SFDA. The purification efficiency and the reproducible ability of the absorbents were also evaluated from batch-to-batch. The results demonstrated that the absorbent met the requirement of scalable, reproducible, economic effect as well. This absorbent is a promising alternative exported HIC gel for wildly being used in Chinese pharmaceutical industries.

  7. Purification of recombinant adeno-associated virus type 8 vectors by ion exchange chromatography generates clinical grade vector stock.

    PubMed

    Davidoff, Andrew M; Ng, Catherine Y C; Sleep, Susan; Gray, John; Azam, Selina; Zhao, Yuan; McIntosh, Jenny H; Karimipoor, Morteza; Nathwani, Amit C

    2004-11-01

    Recombinant vectors based on the recently isolated AAV serotype 8 (rAAV-8) shows great promise for gene therapy, particularly for disorders affecting the liver. Transition of this vector system to the clinic, however, is limited by the lack of an efficient scaleable purification method. In this report, we describe a simple method for purification of rAAV-8 vector particles based on ion exchange chromatography that generates vector stocks with greater than 90% purity. The average yield of purified rAAV-8 from five different vector preparation was 41%. Electron microscopy of these purified stocks revealed typical icosohedral virions with less than 10% empty particles. Liver targeted delivery of ion-exchange purified rAAV-8 vector encoding the human factor IX (hFIX) gene, resulted in plasma hFIX levels approaching 30% of normal in immunocompetent mice, which is 20-fold higher than observed with an equivalent number of rAAV-5 ion exchange purified vector particles. The method takes less then 5 h to process and purify rAAV-8 vector from producer cells and represents a significant advance on the CsCl density centrifugation technique in current use for purification of rAAV-8 vector systems and will likely facilitate the transition of the rAAV-8 vector system to the clinic.

  8. Adsorption and recovery issues of recombinant monoclonal antibodies in reversed-phase liquid chromatography.

    PubMed

    Fekete, Szabolcs; Beck, Alain; Wagner, Elsa; Vuignier, Karine; Guillarme, Davy

    2015-01-01

    The poor recovery of large biomolecules is a well-known issue in reversed-phase liquid chromatography. Several papers have reported this problem, but the reasons behind this behavior are not yet fully understood. In the present study, state-of-the-art reversed-phase wide-pore stationary phases were used to evaluate the adsorption of therapeutic monoclonal antibodies. These biomolecules possess molar mass of approximately 150,000 g/mol and isoelectric points between 6.6 and 9.3. Two types of stationary phases were tested, the Phenomenex Aeris Widepore (silica based), with 3.6 μm superficially porous particles, and the Waters Acquity BEH300 (ethylene-bridged hybrid), with 1.7 μm fully porous particles. A systematic investigation was carried out using 11 immunoglobulin G1, G2, and G4 antibodies, namely, panitumumab, natalizumab, cetuximab, bevacizumab, trastuzumab, rituximab, palivizumab, belimumab, adalimumab, denosumab, and ofatumumab. All are approved by the Food and Drug Administration and the European Medicines Agency in various therapeutic indications and are considered as reference antibodies. Several test proteins, such as human serum albumin, transferrin, apoferritin, ovalbumin, and others, possessing a molar mass between 42,000 and 443,000 g/mol were also evaluated to draw reliable conclusions. The purpose of this study was to find a correlation between the adsorption of monoclonal antibodies and their physicochemical properties. Therefore, the impact of isoelectric point, molar mass, protein glycosylation, and hydrophobicity was investigated. The adsorption of intact antibodies on the stationary phase was significantly higher than that of proteins of similar size, isoelectric point, or hydrophobicity. The present study also demonstrates the unique behavior of monoclonal antibodies, contributing some unwanted and unpredictable strong secondary interactions.

  9. Lectin affinity chromatography of articular cartilage fibromodulin: Some molecules have keratan sulphate chains exclusively capped by α(2-3)-linked sialic acid.

    PubMed

    Lauder, Robert M; Huckerby, Thomas N; Nieduszynski, Ian A

    2011-10-01

    Fibromodulin from bovine articular cartilage has been subjected to lectin affinity chromatography by Sambucus nigra lectin which binds α(2-6)- linked N-acetylneuraminic acid, and the structure of the keratan sulphate in the binding and non-binding fractions examined by keratanase II digestion and subsequent high pH anion exchange chromatography. It has been confirmed that the keratan sulphate chains attached to fibromodulin isolated from bovine articular cartilage may have the chain terminating N-acetylneuraminic acid residue α(2-3)- or α(2-6)-linked to the adjacent galactose residue. Although the abundance of α(2-6)-linked N-acetylneuraminic acid (ca. 22%) is such that this could cap one of the four chains in almost all fibromodulin molecules, it was found that ca. 34% of the fibromodulin proteoglycan molecules from bovine articular cartilage were capped exclusively with α(2-3)-linked N-acetylneuraminic acid. The remainder of the fibromodulin proteoglycans, which bound to the lectin had a mixture of α(2-3)- and α(2-6)-linked N-acetylneuraminic acid capping structures. The keratan sulphates attached to fibromodulin molecules capped exclusively with α(2-3)- linked N-acetylneuraminic acid were found to have a higher level of galactose sulphation than those from fibromodulin with both α(2-3)- and α(2-6)-linked N-acetylneuraminic acid caps, which bound to the Sambucus nigra lectin. In addition, both pools contained chains of similar length (ca. 8-9 disaccharides). Both also contained α(1-3)-linked fucose, showing that this feature does not co-distribute with α(2-6)-linked N-acetylneuraminic acid, although these two features are present only in mature articular cartilage. These data show that there are discrete populations of fibromodulin within articular cartilage, which may have differing impacts upon tissue processes.

  10. One-step affinity tag purification of full-length recombinant human AP-1 complexes from bacterial inclusion bodies using a polycistronic expression system.

    PubMed

    Wang, Wei-Ming; Lee, A-Young; Chiang, Cheng-Ming

    2008-05-01

    The AP-1 transcription factor is a dimeric protein complex formed primarily between Jun (c-Jun, JunB, JunD) and Fos (c-Fos, FosB, Fra-1, Fra-2) family members. These distinct AP-1 complexes are expressed in many cell types and modulate target gene expression implicated in cell proliferation, differentiation, and stress responses. Although the importance of AP-1 has long been recognized, the biochemical characterization of AP-1 remains limited in part due to the difficulty in purifying full-length, reconstituted dimers with active DNA-binding and transcriptional activity. Using a combination of bacterial coexpression and epitope-tagging methods, we successfully purified all 12 heterodimers (3 Junx4 Fos) of full-length human AP-1 complexes as well as c-Jun/c-Jun, JunD/JunD, and c-Jun/JunD dimers from bacterial inclusion bodies using one-step nickel-NTA affinity tag purification following denaturation and renaturation of coexpressed AP-1 subunits. Coexpression of two constitutive components in a dimeric AP-1 complex helps stabilize the proteins when compared with individual protein expression in bacteria. Purified dimeric AP-1 complexes are functional in sequence-specific DNA binding, as illustrated by electrophoretic mobility shift assays and DNase I footprinting, and are also active in transcription with in vitro-reconstituted human papillomavirus (HPV) chromatin containing AP-1-binding sites in the native configuration of HPV nucleosomes. The availability of these recombinant full-length human AP-1 complexes has greatly facilitated mechanistic studies of AP-1-regulated gene transcription in many biological systems.

  11. Identification, Modeling and Ligand Affinity of Early Deuterostome CYP51s, and Functional Characterization of Recombinant Zebrafish Sterol 14α-Demethylase

    PubMed Central

    Morrison, Ann Michelle Stanley; Goldstone, Jared V.; Lamb, David C.; Kubota, Akira; Lemaire, Benjamin; Stegeman, John. J.

    2014-01-01

    Background Sterol 14α-demethylase (cytochrome P450 51, CYP51, P45014DM) is a microsomal enzyme that in eukaryotes catalyzes formation of sterols essential for cell membrane function and as precursors in biosynthesis of steroid hormones. Functional properties of CYP51s are unknown in non-mammalian deuterostomes. Methods PCR-cloning and sequencing and computational analyses (homology modeling and docking) addressed CYP51 in zebrafish Danio rerio, the reef fish sergeant major Abudefduf saxatilis, and the sea urchin Strongylocentrotus purpuratus. Following N-terminal amino acid modification, zebrafish CYP51 was expressed in Escherichia coli, and lanosterol 14α-demethylase activity and azole inhibition of CYP51 activity were characterized using GC/MS. Results Molecular phylogeny positioned S. purpuratus CYP51 at the base of the deuterostome clade. In zebrafish, CYP51 is expressed in all organs examined, most strongly in intestine. The recombinant protein bound lanosterol and catalyzed 14α-demethylase activity, at 3.2 nmol/min/nmol CYP51. The binding of azoles to zebrafish CYP51 gave KS (dissociation constant) values of 0.26 μM for ketoconazole and 0.64 μM for propiconazole. Displacement of carbon monoxide also indicated zebrafish CYP51 has greater affinity for ketoconazole. Docking to homology models showed that lanosterol docks in fish and sea urchin CYP51s with an orientation essentially the same as in mammalian CYP51. Docking of ketoconazole indicates it would inhibit fish and sea urchin CYP51s. Conclusions Biochemical and computational analyses are consistent with lanosterol being a substrate for early deuterostome CYP51s. General Significance The results expand the phylogenetic view of animal CYP51, with evolutionary, environmental and therapeutic implications. PMID:24361620

  12. An in depth proteomic analysis based on ProteoMiner, affinity chromatography and nano-HPLC-MS/MS to explain the potential health benefits of bovine colostrum.

    PubMed

    Altomare, Alessandra; Fasoli, Elisa; Colzani, Mara; Parra, Ximena Maria Paredes; Ferrari, Marina; Cilurzo, Francesco; Rumio, Cristiano; Cannizzaro, Luca; Carini, Marina; Righetti, Pier Giorgio; Aldini, Giancarlo

    2016-03-20

    Bovine colostrum (BC), the initial milk secreted by the mammary gland immediately after parturition, is widely used for several health applications. We here propose an off-target method based on proteomic analysis to explain at molecular level the potential health benefits of BC. The method is based on the set-up of an exhaustive protein data bank of bovine colostrum, including the minor protein components, followed by a bioinformatic functional analysis. The proteomic approach based on ProteoMiner technology combined to a highly selective affinity chromatography approach for the immunoglobulins depletion, identified 1786 proteins (medium confidence; 634 when setting high confidence), which were then clustered on the basis of their biological function. Protein networks were then created on the basis of the biological functions or health claims as input. A set of 93 proteins involved in the wound healing process was identified. Such an approach also permits the exploration of novel biological functions of BC by searching in the database the presence of proteins characterized by innovative functions. In conclusion an advanced approach based on an in depth proteomic analysis is reported which permits an explanation of the wound healing effect of bovine colostrum at molecular level and allows the search of novel potential beneficial effects.

  13. Quantitative Phosphoproteome Analysis of Lysophosphatidic Acid Induced Chemotaxis applying Dual-step ¹⁸O Labeling Coupled with Immobilized Metal-ion Affinity Chromatography

    SciTech Connect

    Ding, Shi-Jian; Wang, Yingchun; Jacobs, Jon M.; Qian, Weijun; Yang, Feng; Tolmachev, Aleksey V.; Du, Xiuxia; Wang, Wei; Moore, Ronald J.; Monroe, Matthew E.; Purvine, Samuel O.; Waters, Katrina M.; Heibeck, Tyler H.; Adkins, Joshua N.; Camp, David G.; Klemke, Richard L.; Smith, Richard D.

    2008-10-01

    Reversible protein phosphorylation is a central cellular regulatory mechanism in modulating protein activity and propagating signals within cellular pathways and networks. Development of more effective methods for the simultaneous identification of phosphorylation sites and quantification of temporal changes in protein phosphorylation could provide important insights into molecular signaling mechanisms in a variety of different cellular processes. Here we present an integrated quantitative phosphoproteomics approach and its applications for comparative analysis of Cos-7 cells in response to lysophosphatidic acid (LPA) gradient stimulation. The approach combines trypsin-catalyzed 16O/18O labeling plus 16O/18O-methanol esterification labeling for quantitation, a macro- Immobilized Metal-ion Affinity Chromatography trap for phosphopeptide enrichment, and a monolithic capillary column with integrated electrospray emitter. LC separation and MS/MS is followed by neutral loss-dependent MS/MS/MS for phosphopeptide identification using a linear ion trap (LTQ)-FT mass spectrometer and complementary searching algorithms for interpreting MS/MS spectra. Protein phosphorylation involved in various signaling pathways of cell migration were identified and quantified, such as mitogen-activated protein kinase 1, dual-specificity mitogen-activated protein kinase kinase 2, and dual-specificity tyrosine-phosphorylation regulated kinase 1b, and a number of Rho GTPase-activating proteins. These results demonstrate the efficiency of this quantitative phosphoproteomics approach and its application for rapid discovery of phosphorylation events associated with gradient sensing and cell chemotaxis.

  14. The purification of human enterokinase by affinity chromatography and immunoadsorption. Some observations on its molecular characteristics and comparisons with the pig enzyme.

    PubMed Central

    Grant, D A; Hermon-Taylor, J

    1976-01-01

    A method is described for the purification of human enterokinase from accumulated duodenal fluid by affinity chromatography using p-aminobenzamidine as the ligand. Resolution was greatest when glycylglycine was substituted as the spacer arm. Purification was not a one-step procedure, and some contamination, principally by the alpha-glucosidases, remained. Their removal was completed by immunoadsorption using antisera raised to enterokinase-free material containing these enzymes, prepared as a by-product of the purification procedure. The final preparation had an activity of 4260 nmol of trypsin/min per mg and was free of other enzymic activity tested. Amino acid and sugar analyses of the highly purified enzyme indicated an acidic glycoprotein containing 57% sugar (neutral sugars 47%, amino sugars 10%). The apparent mol.wts. and Stokes radii of human and pig enterokinase were 296 000 and 316 000, and 5.65 and 5.78 nm respectively. Two isoenzymes were identified for human enterokinase and three for the pig enzyme. Human enterokinase demonstrated a resistance to reduction of disulphide linkages and to sodium dodecyl sulphate binding, which may be related to the need for it to retain its integrity in the digestive environment of the upper small intestine. Antisera to highly purified pig and human enterokinases specifically inhibited enterokinase activity. Immuno-inhibition of intestinal aminopeptidase, maltase and glucoamylase by homologous antisera was not observed. Images PLATE 1 PMID:945736

  15. Identification of phosphoproteins in Arabidopsis thaliana leaves using polyethylene glycol fractionation, immobilized metal-ion affinity chromatography, two-dimensional gel electrophoresis and mass spectrometry.

    PubMed

    Aryal, Uma K; Krochko, Joan E; Ross, Andrew R S

    2012-01-01

    Reversible protein phosphorylation is a key regulatory mechanism in cells. Identification and characterization of phosphoproteins requires specialized enrichment methods, due to the relatively low abundance of these proteins, and is further complicated in plants by the high abundance of Rubisco in green tissues. We present a novel method for plant phosphoproteome analysis that depletes Rubisco using polyethylene glycol fractionation and utilizes immobilized metal-ion affinity chromatography to enrich phosphoproteins. Subsequent protein separation by one- and two-dimensional gel electrophoresis is further improved by extracting the PEG-fractionated protein samples with SDS/phenol and methanol/chloroform to remove interfering compounds. Using this approach, we identified 132 phosphorylated proteins in a partial Arabidopsis leaf extract. These proteins are involved in a range of biological processes, including CO(2) fixation, protein assembly and folding, stress response, redox regulation, and cellular metabolism. Both large and small subunits of Rubisco were phosphorylated at multiple sites, and depletion of Rubisco enhanced detection of less abundant phosphoproteins, including those associated with state transitions between photosystems I and II. The discovery of a phosphorylated form of AtGRP7, a self-regulating RNA-binding protein that affects floral transition, as well as several previously uncharacterized ribosomal proteins confirm the utility of this approach for phosphoproteome analysis and its potential to increase our understanding of growth and development in plants.

  16. Serial lectin affinity chromatography with concavalin A and wheat germ agglutinin demonstrates altered asparagine-linked sugar-chain structures of prostatic acid phosphatase in human prostate carcinoma.

    PubMed

    Yoshida, K I; Honda, M; Arai, K; Hosoya, Y; Moriguchi, H; Sumi, S; Ueda, Y; Kitahara, S

    1997-08-01

    Differences between human prostate carcinoma (PCA, five cases) and benign prostatic hyperplasia (BPH, five cases) in asparagine-linked (Asn) sugar-chain structure of prostatic acid phosphatase (PAP) were investigated using lectin affinity chromatography with concanavalin A (Con A) and wheat germ agglutinin (WGA). PAP activities were significantly decreased in PCA-derived PAP, while no significant differences between the two PAP preparations were observed in the enzymatic properties (Michaelis-Menten value, optimal pH, thermal stability, and inhibition study). In these PAP preparations, all activities were found only in the fractions which bound strongly to the Con A column and were undetectable in the Con A unbound fractions and in the fractions which bound weakly to the Con A column. The relative amounts of PAP which bound strongly to the Con A column but passed through the WGA column, were significantly greater in BPH-derived PAP than in PCA-derived PAP. In contrast, the relative amounts of PAP which bound strongly to the Con A column and bound to the WGA column, were significantly greater in PCA-derived PAP than in BPH-derived PAP. The findings suggest that Asn-linked sugar-chain structures are altered during oncogenesis in human prostate and also suggest that studies of qualitative differences of sugar-chain structures of PAP might lead to a useful diagnostic tool for PCA.

  17. Purification by cobalamin-Sepharose affinity chromatography and intrinsic factor-binding activity of an extramembrane proteolytic product from pig ileal mucosa.

    PubMed Central

    Yerima, A; Safi, A; Gastin, I; Michalski, J C; Saunier, M; Gueant, J L

    1996-01-01

    We have purified a cobalamin-binding protein obtained by papain digestion of pig intestine by cobalamin-AH-Sepharose affinity chromatography, with a purification factor of 17,300, a yield of 63% and a cobalamin-binding activity of 11,260 pmol/mg of protein. The protein contained 3.8% carbohydrate and was O- and N-glycosylated. Its molecular mass was 69 kDa on SDS/PAGE and its isoelectric point was 5.1. It had a binding activity for both [57Co]cobalamin and [57Co]cobalamin-intrinsic factor in native PAGE autoradiography and it inhibited the binding of intrinsic factor to the intact intestinal receptor with an IC50 of 49.31 nmol/l in a radioisotope assay. In conclusion, the purified protein shared a binding activity for both cobalamin and intrinsic factor-cobalamin complexes and could correspond to the extracellular domain of the ileal intrinsic factor receptor. PMID:8573109

  18. Molecular insight in the purification of immunoglobulin by pseudobiospecific ligand l-histidine and histidyl moieties in histidine ligand affinity chromatography (HLAC) by molecular docking.

    PubMed

    Savane, Tushar S; Kumar, Sanjit; Janakiraman, Vignesh Narasimhan; Kamalanathan, Agamudi S; Vijayalakshmi, Mookambeswaran A

    2016-05-15

    Pseudobiospecific ligand l-histidine is an inexpensive, highly stable, non-toxic ligand explored successfully over the last twenty years for the purification of immunoglobulins in immobilised histidine ligand affinity chromatography. It is of great interest to know the molecular recognition sites of IgG to immobilized l-histidine. Here, we have used an in silico approach to explore the molecular recognition of l-histidine by IgG. We have assessed the feasible binding modes of histidine and its moieties at different sites of IgG and considered only those binding conformations which are exhibited via the imidazole ring NH group or any other OH donating group apart from the ones which are terminally conjugated with the support matrix. We categorised binding site into two categories; category I: inner binding groove and category II: surface binding groove and observed that the hinge region of IgG has most favourable binding pocket for l-histidine and histidyl moieties. Ser and Tyr residues on the hinge region make several significant interactions with l-histidine and histidyl moieties. In case of Fc region of IgG, l-histidine and histidyl moieties closely resemble the binding modes of Protein A, biomimetic ligand 22/8 and B domain of SpA to IgG. In addition to these we have also observed a significant binding site for l-histidine and histidyl moieties at Fab region of IgG.

  19. Enantioseparation of phenotiazines by affinity electrokinetic chromatography using human serum albumin as chiral selector: application to enantiomeric quality control in pharmaceutical formulations.

    PubMed

    Martínez-Gómez, María Amparo; Sagrado, Salvador; Villanueva-Camañas, Rosa María; Medina-Hernández, Maria José

    2007-01-23

    Nowadays, there is a special interest within the pharmaceutical laboratories to develop single enantiomer formulations and consequently a need for analytical methods to determine the enantiomeric purity of drugs. The present paper deals with the enantiomeric separation of promethazine and trimeprazine enantiomers by affinity electrokinetic chromatography (AEKC)-partial filling technique using human serum albumin (HSA) as chiral selector. A multivariate optimization of the most critical experimental variables in enantioresolution, running pH, HSA concentration and plug length, is carried out to obtain enantioresolution of promethazine and trimeprazine. The estimated maximum and optimum resolution of trimeprazine and prometazine enantiomers (Rs=1.74 and 2.01, respectively) corresponded to the following experimental conditions: pH 7.5; [HSA] 170 microM and plug length 190 s and pH 7.6; [HSA] 170 microM and plug length 170 s, for trimeprazine and prometazine, respectively. The developed methodologies were applied for the enantiomeric quality control of promethazine and trimeprazine enantiomers in commercially available pharmaceutical formulations. Resolution, accuracy, reproducibility, cost and sample throughput of the proposed methodologies make it suitable for quality control of the enantiomeric composition of promethazine and trimeprazine in pharmaceutical preparations.

  20. Penetrable silica microspheres for immobilization of bovine serum albumin and their application to the study of the interaction between imatinib mesylate and protein by frontal affinity chromatography.

    PubMed

    Ma, Liyun; Li, Jing; Zhao, Juan; Liao, Han; Xu, Li; Shi, Zhi-guo

    2016-01-01

    In the current study, novel featured silica, named penetrable silica, simultaneously containing macropores and mesopores, was immobilized with bovine serum albumin (BSA) via Schiff base method. The obtained BSA-SiO2 was employed as the high-performance liquid chromatographic (HPLC) stationary phase. Firstly, D- and L-tryptophan were used as probes to investigate the chiral separation ability of the BSA-SiO2 stationary phase. An excellent enantioseparation factor was obtained up to 4.3 with acceptable stability within at least 1 month. Next, the BSA-SiO2 stationary phase was applied to study the interaction between imatinib mesylate (IM) and BSA by frontal affinity chromatography. A single type of binding site was found for IM with the immobilized BSA, and the hydrogen-bonding and van der Waals interactions were expected to be contributing interactions based on the thermodynamic studies, and this was a spontaneous process. Compared to the traditional silica for HPLC stationary phase, the proposed penetrable silica microsphere possessed a larger capacity to bond more BSA, minimizing column overloading effects and enhancing enantioseparation ability. In addition, the lower running column back pressure and fast mass transfer were meaningful for the column stability and lifetime. It was a good substrate to immobilize biomolecules for fast chiral resolution and screening drug-protein interactions.

  1. Recognition and binding of β-lactam antibiotics to bovine serum albumin by frontal affinity chromatography in combination with spectroscopy and molecular docking.

    PubMed

    Li, Qian; Zhang, Tianlong; Bian, Liujiao

    2016-03-01

    Serum albumins are the most abundant carrier proteins in blood plasma and participate in the binding and transportation of various exogenous and endogenous compounds in the body. This work was designed to investigate the recognition and binding of three typical β-lactam antibiotics including penicillin G (Pen G), penicillin V (Pen V) and cefalexin (Cef) with bovine serum albumin (BSA) by frontal affinity chromatography in combination with UV-vis absorption spectra, fluorescence emission spectra, binding site marker competitive experiment and molecular docking under simulated physiological conditions. The results showed that a BSA only bound with one antibiotic molecule in the binding process, and the binding constants for Pen G-BSA, Pen V-BSA and Cef-BSA complexes were 4.22×10(1), 4.86×10(2) and 3.32×10(3) (L/mol), respectively. All the three β-lactam antibiotics were mainly inserted into the subdomain IIA (binding site 1) of BSA by hydrogen bonds and Van der Waals forces. The binding capacity between the antibiotics and BSA was closely related to the functional groups and flexibility of side chains in antibiotics. This study provided an important insight into the molecular recognition and binding interaction of BSA with β-lactam antibiotics, which may be a useful guideline for the innovative clinical medications and new antibiotic designs with effective pharmacological properties.

  2. Novel cartilage oligomeric matrix protein (COMP) neoepitopes identified in synovial fluids from patients with joint diseases using affinity chromatography and mass spectrometry.

    PubMed

    Åhrman, Emma; Lorenzo, Pilar; Holmgren, Kristin; Grodzinsky, Alan J; Dahlberg, Leif E; Saxne, Tore; Heinegård, Dick; Önnerfjord, Patrik

    2014-07-25

    To identify patients at risk for progressive joint damage, there is a need for early diagnostic tools to detect molecular events leading to cartilage destruction. Isolation and characterization of distinct cartilage oligomeric matrix protein (COMP) fragments derived from cartilage and released into synovial fluid will allow discrimination between different pathological conditions and monitoring of disease progression. Early detection of disease and processes in the tissue as well as an understanding of the pathologic mechanisms will also open the way for novel treatment strategies. Disease-specific COMP fragments were isolated by affinity chromatography of synovial fluids from patients with rheumatoid arthritis, osteoarthritis, or acute trauma. Enriched COMP fragments were separated by SDSPAGE followed by in-gel digestion and mass spectrometric identification and characterization.Using the enzymes trypsin, chymotrypsin, and Asp-N for the digestions, an extensive analysis of the enriched fragments could be accomplished. Twelve different neoepitopes were identified and characterized within the enriched COMP fragments. For one of the neoepitopes, Ser77, an inhibition ELISA was developed. This ELISA quantifies COMP fragments clearly distinguishable from total COMP. Furthermore, fragments containing the neoepitope Ser77 were released into the culture medium of cytokine (TNF-α and IL-6/soluble IL-6 receptor)-stimulated human cartilage explants. The identified neoepitopes provide a complement to the currently available commercial assays for cartilage markers. Through neoepitope assays, tools to pinpoint disease progression, evaluation methods for therapy, and means to elucidate disease mechanisms will be provided.

  3. Development and characterization of the α3β4α5 nicotinic receptor cellular membrane affinity chromatography column and its application for on line screening of plant extracts

    PubMed Central

    Ciesla, L.; Okine, M.; Rosenberg, A.; Dossou, K.S.S.; Toll, L.; Wainer, I.W.; Moaddel, R.

    2016-01-01

    The α3β4α5 nAChR has been recently shown to be a useful target for smoking cessation pharmacotherapies. Herein, we report on the development and characterization of the α3β4α5 nicotinic receptor column by frontal displacement chromatography. The binding affinity of the nicotine and minor alkaloids found in tobacco smoke condensates were determined for both the α3β4 and α3β4α5 nicotinic receptors. It was demonstrated that while no subtype selectivity was observed for nicotine and nornicotine, anabasine was selective for the α3β4α5 nicotinic receptor. The non-competitive inhibitor binding site was also studied and it was demonstrated while mecamylamine was not selective between subtypes, buproprion showed subtype selectivity for the α3β4 nicotinic receptor. The application of this methodology to complex mixtures was then carried out by screening aqueous-alcoholic solutions of targeted plant extracts, including Lycopodium clavatum L. (Lycopodiaceae) and Trigonella foenum graecum L. (Fabaceae) against both the α3β4 and α3β4α5 nAChRs. PMID:26774122

  4. Separation and quantitation of hepatoma-associated gamma-glutamyltransferase by affinity chromatography with Affi-Gel blue and Con A-Sepharose.

    PubMed

    Izumi, M; Taketa, K

    1983-01-01

    Isozymes of serum gamma-glutamyltransferase (GGT) in patients with hepatocellular carcinoma (HCC) and other liver diseases were separated into two groups by double-affinity column chromatography with Affi-Gel blue and Con A-Sepharose, one recovered in the unbound fraction and the other in the bound fraction. Upon electrophoresis with polyacrylamide gradient gel slabs, the unbound fraction gave a GGTI1 band and a faint II1 band and the bound fraction gave a GGT I band and faint bands of GGT I", II' and X, when the original serum contained hepatoma-associated GGT (I1, I" and II') and high-molecular-weight lipid-protein complex, GGT(X). GGT I was present in all cases as a common isozyme. Other lipoprotein-associated GGT isozymes, III-IX, were removed by passing through Affi-Gel blue. GGT activities of unbound fraction in patients with HCC were generally higher than those in patients with non-HCC liver diseases, although the difference was not significant. When the percent of GGT activity of unbound (unbound + bound) was taken, 54% of patients with HCC had a ratio greater than 22%, whereas none of the healthy subjects or patients with other liver diseases gave values greater than this. The present technique may prove to be a useful clinical test for the diagnosis of HCC.

  5. Novel Cartilage Oligomeric Matrix Protein (COMP) Neoepitopes Identified in Synovial Fluids from Patients with Joint Diseases Using Affinity Chromatography and Mass Spectrometry*

    PubMed Central

    Åhrman, Emma; Lorenzo, Pilar; Holmgren, Kristin; Grodzinsky, Alan J.; Dahlberg, Leif E.; Saxne, Tore; Heinegård, Dick; Önnerfjord, Patrik

    2014-01-01

    To identify patients at risk for progressive joint damage, there is a need for early diagnostic tools to detect molecular events leading to cartilage destruction. Isolation and characterization of distinct cartilage oligomeric matrix protein (COMP) fragments derived from cartilage and released into synovial fluid will allow discrimination between different pathological conditions and monitoring of disease progression. Early detection of disease and processes in the tissue as well as an understanding of the pathologic mechanisms will also open the way for novel treatment strategies. Disease-specific COMP fragments were isolated by affinity chromatography of synovial fluids from patients with rheumatoid arthritis, osteoarthritis, or acute trauma. Enriched COMP fragments were separated by SDS-PAGE followed by in-gel digestion and mass spectrometric identification and characterization. Using the enzymes trypsin, chymotrypsin, and Asp-N for the digestions, an extensive analysis of the enriched fragments could be accomplished. Twelve different neoepitopes were identified and characterized within the enriched COMP fragments. For one of the neoepitopes, Ser77, an inhibition ELISA was developed. This ELISA quantifies COMP fragments clearly distinguishable from total COMP. Furthermore, fragments containing the neoepitope Ser77 were released into the culture medium of cytokine (TNF-α and IL-6/soluble IL-6 receptor)-stimulated human cartilage explants. The identified neoepitopes provide a complement to the currently available commercial assays for cartilage markers. Through neoepitope assays, tools to pinpoint disease progression, evaluation methods for therapy, and means to elucidate disease mechanisms will be provided. PMID:24917676

  6. Designed synthesis of Graphene @titania @mesoporous silica hybrid material as size-exclusive metal oxide affinity chromatography platform for selective enrichment of endogenous phosphopeptides.

    PubMed

    Yao, Jizong; Sun, Nianrong; Deng, Chunhui; Zhang, Xiangming

    2016-04-01

    In this work, a novel size-exclusive metal oxide affinity chromatography (SE-MOAC) platform was built for phosphoproteome research. The operation for preparing graphene @titania @mesoporous silica nanohybrids (denoted as G@TiO2@mSiO2) was facile and easy to conduct by grafting titania nanoparticles on polydopamine (PD)-covered graphene, following a layer of mesoporous silica was coated on the outermost layer. The G@TiO2@mSiO2 nanohybrids exhibited high sensitivity with a low detection limit of 5 amol/μL (a total amount of 1 fmol) and high selectivity for phosphopeptides at a mass ratio of phosphopeptides to non-phosphopeptides (1:1000). The size-exclusive capability of the nanohybrids were also demonstrated by enriching the phosphopeptides from the mixture of Bovine Serum Albumin (BSA), α-casein, and β-casein digests with a high mass ratio (β-casein digests: α-casein: BSA, 1:500:500), which was attributed to the large surface area and ordered mesoporous channels. In addition, the G@TiO2@mSiO2 nanohybrids were employed to capture the endogenous phosphopeptides from human serum successfully.

  7. Role of urea on recombinant Apo A-I stability and its utilization in anion exchange chromatography.

    PubMed

    Angarita, Monica; Arosio, Paolo; Müller-Späth, Thomas; Baur, Daniel; Falkenstein, Roberto; Kuhne, Wolfgang; Morbidelli, Massimo

    2014-08-08

    Apolipoprotein A-I (Apo A-I) is an important lipid-binding protein involved in the transport and metabolism of cholesterol. High protein purity, in particular with respect to endotoxins is required for therapeutic applications. The use of urea during the purification process of recombinant Apo A-I produced in Escherichia coli has been suggested so as to provide high endotoxin clearance. In this work, we show that urea can be used as a sole modifier during the ion exchange chromatographic purification of Apo A-I and we investigate the molecular mechanism of elution by correlating the effect of urea on self-association, conformation and adsorption equilibrium properties of a modified model Apo A-I. In the absence of urea the protein was found to be present as a population of oligomers represented mainly by trimers, hexamers and nonamers. The addition of urea induced oligomer dissociation and protein structure unfolding. We correlated the changes in protein association and conformation with variations of the adsorption equilibrium of the protein on a strong anion exchanger. It was confirmed that the adsorption isotherms, described by a Langmuir model, were dependent on both protein and urea concentrations. Monomers, observed at low urea concentration (0.5M), were characterized by larger binding affinity and adsorption capacity compared to both protein oligomers (0M) and unfolded monomers (2-8M). The reduction of both the binding strength and maximum adsorption capacity at urea concentrations larger than 0.5M explains the ability of urea of inducing elution of the protein from the ion exchange resin. The dissociation of the protein complexes occurring during the elution could likely be the origin of the effective clearance of endotoxins originally trapped inside the oligomers.

  8. The synthesis and characterization of a nuclear membrane affinity chromatography column for the study of human breast cancer resistant protein (BCRP) using nuclear membranes obtained from the LN-229 cells.

    PubMed

    Habicht, K-L; Frazier, C; Singh, N; Shimmo, R; Wainer, I W; Moaddel, R

    2013-01-01

    BCRP expression has been reported in glioblastoma cell lines and clinical specimens and has been shown to be expressed both in purified nuclei and in the soluble cytoplasmic fraction. To date, the nuclear BCRP has not been characterized. Our laboratory has previously developed an online chromatographic approach for the study of binding interactions between ligands and protein, cellular membrane affinity chromatography. To this end, we have immobilized the nuclear membrane fragments onto an immobilized artificial membrane stationary phase (IAM), resulting in the nuclear membrane affinity chromatography (NMAC) column. Initial characterization was carried out on the radio flow detector, as well as the LC-MSD, using frontal displacement chromatography techniques. Etoposide, a substrate for BCRP, was initially tested, to determine the functional immobilization of BCRP. Frontal displacement experiments with multiple concentrations of etoposide were run and the binding affinity was determined to be 4.54 μM, which is in close agreement with literature. The BCRP was fully characterized on the NMAC column and this demonstrates that for the first time the nuclear membranes have been successfully immobilized.

  9. Biospecific affinity chromatography of an adenosine 3′:5′-cyclic monophosphate-stimulated protein kinase (protamine kinase from trout testis) by using immobilized adenine nucleotides

    PubMed Central

    Jergil, Bengt; Guilford, Hugh; Mosbach, Klaus

    1974-01-01

    1. Two adenine nucleotides, 8-(6-aminohexyl)aminoadenosine 3′:5′-cyclic monophosphate and 8-(6-aminohexyl)amino-AMP, were synthesized. Their structures were established in particular by using mass spectroscopy. 2. Free cyclic AMP and 8-(6-aminohexyl)amino cyclic AMP both stimulate protamine kinase activity at low concentrations, but are inhibitory at concentrations above 0.1mm. AMP is an inhibitor of enzymic activity, whereas neither 8-(6-aminohexyl)amino-AMP nor the earlier synthesized N6-(6-aminohexyl)-AMP is inhibitory. 3. The nucleotides were coupled to Sepharose 4B and used for biospecific chromatography of partially purified protamine kinase. Enzyme applied at high buffer concentrations to the cyclic AMP–Sepharose material was retarded and thereby purified tenfold. At low buffer concentrations the enzyme was adsorbed to the affinity material, and was subsequently released by a pulse of the inhibitor AMP, yielding a 50–100-fold purification. Enzyme applied to immobilized 8-(6-aminohexyl)amino-AMP or N6-(6-aminohexyl)-AMP was eluted together with the main protein peak in the void volume. 4. Protamine kinase eluted from 8-(6-aminohexyl)amino cyclic AMP–Sepharose was no longer activated by cyclic AMP. Results from sucrose gradient centrifugation suggest that a dissociation of the enzyme took place on the immobilized nucleotide. 5. Further information on the mass spectroscopy has been deposited as Supplementary Publication SUP 50026 at the British Library (Lending Division) (formerly the National Lending Library for Science and Technology), Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies may be obtained on the terms given in Biochem. J. (1973) 131, 5. PMID:4374933

  10. Simultaneous speciation of selenoproteins and selenometabolites in plasma and serum by dual size exclusion-affinity chromatography with online isotope dilution inductively coupled plasma mass spectrometry.

    PubMed

    García-Sevillano, M A; García-Barrera, T; Gómez-Ariza, J L

    2014-04-01

    A method for the simultaneous speciation of selenoproteins and selenometabolites in mouse plasma has been developed based on in series two-dimensional size exclusion and affinity high-performance liquid chromatography (2D/SE-AF-HPLC), using two columns of each type, and hyphenation to inductively coupled plasma-(quadrupole) mass spectrometry (ICP-QMS). The method allows the quantitative determination of selenoprotein P (SeP), extracellular glutathione peroxidase (eGPx), selenoalbumin (SeAlb), and selenometabolites in mouse plasma using species-unspecific isotope dilution (SUID). The 2D chromatographic separation is proposed to remove typical spectral interferences in plasma from chloride and bromide on (77)Se ((40)Ar(37)Cl) and (82)Se ((81)Br(1)H). In addition, the approach increases chromatographic resolution allowing the separation of eGPx from Se metabolites of low molecular mass. The method is robust, reliable, and fast with a typical chromatographic runtime less than 20 min. Precision in terms of relative standard deviation (n = 5) is in the order of 4 %, and detection limits are in the range of 0.2 to 1.0 ng Se g(-1). Method accuracy for determination of total protein bound to Se was assessed by analyzing human serum reference material (BCR-637) certified for total Se content, and latterly applied to mouse plasma (Mus musculus). In summary, a reliable speciation method for the analysis of eGPx, selenometabolites, SeP, and SeAlb in plasma/serum samples is proposed for the first time and is applicable to the evaluation of Se status in human in clinical studies and other mammals for environmental or toxicological assessment.

  11. A versatile and scalable two-step ion-exchange chromatography process for the purification of recombinant adeno-associated virus serotypes-2 and -5.

    PubMed

    Brument, Nicole; Morenweiser, Robert; Blouin, Véronique; Toublanc, Estelle; Raimbaud, Isabelle; Chérel, Yan; Folliot, Sébastien; Gaden, Florence; Boulanger, Pierre; Kroner-Lux, Gabrielle; Moullier, Philippe; Rolling, Fabienne; Salvetti, Anna

    2002-11-01

    Here we describe the development of a two-step chromatography process based on the use of ion-exchange resins for the purification of recombinant adeno-associated virus (rAAV) serotypes-2 and-5. In vitro and in vivo results demonstrate that this method, which does not require any prepurification step of the cell lysate, can be applied to obtain highly pure rAAV2 and rAAV5 stocks. As such,this procedure can be easily transferred in vector cores and also scaled up, allowing the direct comparison of these two, and potentially other, AAV serotypes in large animal models.

  12. Simultaneous high-throughput determination of interaction kinetics for drugs and cyclodextrins by high performance affinity chromatography with mass spectrometry detection.

    PubMed

    Wang, Caifen; Wang, Xiaobo; Xu, Xiaonan; Liu, Botao; Xu, Xu; Sun, Lixin; Li, Haiyan; Zhang, Jiwen

    2016-02-25

    The individual determination of the apparent dissociation rate constant (kd,app) using high performance affinity chromatography (HPAC) is a tedious process requiring numerous separate tests and massive data fitting, unable to provide the apparent association rate constant (ka) and equilibrium binding constant (Ka). In this study, a HPAC with mass spectrometry detection (HPAC-MS/MS) was employed to determine the drug-cyclodextrin (CD) interaction kinetics with low sample loading quantity (<10 ng per injection for single compound) and high-throughput yield as twenty drugs determined in one injection. The kd,app measured by HPAC-MS/MS approach were 0.89 ± 0.07, 4.34 ± 0.01, 1.48 ± 0.01 and 7.77 ± 0.04 s(-1) for ketoprofen, trimethoprim, indapamide and acetaminophen, with kd,app for acetaminophen consistent with that from the HPAC method with UV detector in our previous studies. For twenty drugs with diverse structures and chemical properties, good correlationship was found between kd,app measured by single compound analysis method and high-throughput HPAC-MS/MS approach, with the correlation coefficient of 0.987 and the significance F less than 0.001. Comprehensive quantification of ka,app, kd,app and Ka values was further performed based on the measurement of kd,app by peak profiling method and Ka by the peak fitting method. And the investigation of the drug-CD interaction kinetics under different conditions indicated that the column temperature and mobile phase composition significantly affected the determination of ka,app, kd,app and Ka while also dependent on the acidity and basicity of drugs. In summary, the high-throughput HPAC-MS/MS approach has been demonstrated high efficiency in determination of the drug-CD primary interaction kinetic parameter, especially, kd,app, being proven as a novel tool in screening the right CD for the solubilization of the right drug.

  13. Simultaneous detection of recombinant growth hormones in equine plasma by liquid chromatography/high-resolution tandem mass spectrometry for doping control.

    PubMed

    Wong, Kin-Sing; Chan, George H M; Ho, Emmie N M; Wan, Terence S M

    2016-12-23

    Growth hormone (GH), or somatotropin, is a protein that may enhance physical performance and facilitate growth and wound healing. For this reason, growth hormones and their recombinant analogues are prohibited in human sports by the World Anti-Doping Agency (WADA) and in horseracing under Article 6 of the International Agreement on Breeding, Racing and Wagering published by the International Federation of Horse Racing Authorities (IFHA). Identifying the illicit use of GHs in both human athletes and racehorses is challenging, especially when differentiating between endogenous and exogenous GHs, and between analogues of GH from different species. This paper describes a multiplexed mass spectrometric method for the simultaneous detection of three recombinant GHs, namely recombinant equine GH (reGH), recombinant human GH (rhGH) and recombinant porcine GH (rpGH), in equine plasma. Recombinant chicken GH (rcGH) was used as an internal standard. The recombinant GHs were extracted from equine plasma by automated C4 solid-phase extraction after ammonium sulfate precipitation, and then cleaned up by chloroform/methanol precipitation before trypsination. Proteotypic peptides were analyzed by liquid chromatography/high-resolution tandem mass spectrometry (LC-MS/HRMS). The limits of detection were estimated to be approximately 0.5ng/mL for reGH, 2.5ng/mL for rhGH and 1.25ng/mL for rpGH. Confirmation at 1ng/mL for reGH and 5ng/mL each for rhGH and rpGH was successfully achieved by comparing the retention times and relative abundances of three major product-ions of the respective standards in accordance with industry criteria published by the Association of Official Racing Chemists. The developed method requires less plasma (2mL) and has a shorter turnaround time as compared with other published mass spectrometric methods, and demonstrates good precision and reproducibility. To our knowledge, this is the first reported method for the simultaneous detection of different

  14. One-step refolding and purification of recombinant human tumor necrosis factor-α (rhTNF-α) using ion-exchange chromatography.

    PubMed

    Wang, Yan; Ren, Wenxuan; Gao, Dong; Wang, Lili; Yang, Ying; Bai, Quan

    2015-02-01

    Protein refolding is a key step for the production of recombinant proteins, especially at large scales, and usually their yields are very low. Chromatographic-based protein refolding techniques have proven to be superior to conventional dilution refolding methods. High refolding yield can be achieved using these methods compared with dilution refolding of proteins. In this work, recombinant human tumor necrosis factor-α (rhTNF-α) from inclusion bodies expressed in Escherichia coli was renatured with simultaneous purification by ion exchange chromatography with a DEAE Sepharose FF column. Several chromatographic parameters influencing the refolding yield of the denatured/reduced rhTNF-α, such as the urea concentration, pH value and concentration ratio of glutathione/oxidized glutathione in the mobile phase, were investigated in detail. Under optimal conditions, rhTNF-α can be renatured and purified simultaneously within 30 min by one step. Specific bioactivity of 2.18 × 10(8) IU/mg, purity of 95.2% and mass recovery of 76.8% of refolded rhTNF-α were achieved. Compared with the usual dilution method, the ion exchange chromatography method developed here is simple and more effective for rhTNF-α refolding in terms of specific bioactivity and mass recovery.

  15. High pH solubilization and chromatography-based renaturation and purification of recombinant human granulocyte colony-stimulating factor from inclusion bodies.

    PubMed

    Li, Ming; Fan, Hua; Liu, Jiahua; Wang, Minhong; Wang, Lili; Wang, Chaozhan

    2012-03-01

    Recombinant human granulocyte colony-stimulating factor (rhG-CSF) is a very efficient therapeutic protein drug which has been widely used in human clinics to treat cancer patients suffering from chemotherapy-induced neutropenia. In this study, rhG-CSF was solubilized from inclusion bodies by using a high-pH solution containing low concentration of urea. It was found that solubilization of the rhG-CSF inclusion bodies greatly depended on the buffer pH employed; alkalic pH significantly favored the solubilization. In addition, when small amount of urea was added to the solution at high pH, the solubilization was further enhanced. After solubilization, the rhG-CSF was renatured with simultaneous purification by using weak anion exchange, strong anion exchange, and hydrophobic interaction chromatography, separately. The results indicated that the rhG-CSF solubilized by the high-pH solution containing low concentration of urea had much higher mass recovery than the one solubilized by 8 M urea when using anyone of the three refolding methods employed in this work. In the case of weak anion exchange chromatography, the high pH solubilized rhG-CSF could get a mass recovery of 73%. The strategy of combining solubilization of inclusion bodies at high pH with refolding of protein using liquid chromatography may become a routine method for protein production from inclusion bodies.

  16. Methods for protecting silica sorbents used in high-performance liquid chromatography from strongly adsorbed impurities during purification of human recombinant insulin.

    PubMed

    Gusarov, D; Lasman, V; Bayramashvili, D

    2007-06-15

    One of the main stages of human recombinant insulin (HRI) production is the hormone purification by means of reversed phase high-performance liquid chromatography (RP HPLC). The optimization of this stage determines the increase of the total manufacturing yield. Therefore, the cost of the sorbent used in HPLC influences the cost of the manufacturing product, i.e. HRI substance. However, resolution between HRI and its admixtures decreases with time. The reason for this is the sorbent contamination with strongly adsorbed impurities (SAI) which are accumulated during elution. In the following research several methods for sorbent protection are studied. The opinion that SAI are mainly high-molecular weight compounds was examined using gel filtration. Different sorbent types were tested for the use in guard column. The results obtained were applied and improved at preparative level.

  17. Verification of key odorants in rose oil by gas chromatography-olfactometry/aroma extract dilution analysis, odour activity value and aroma recombination.

    PubMed

    Xiao, Zuobing; Li, Jing; Niu, Yunwei; Liu, Qiang; Liu, Junhua

    2017-03-28

    Rose oil is much too expensive but very popular. It's well known that the flower oil's aroma profile hasn't been intensively investigated. In order to verify the aroma profile of rose oil, the synthetic blend of odorants was prepared and then compared with the original rose oil using electronic nose analysis (ENA) combined with quantitative descriptive analysis (QDA). The odorants from rose oils were screened out by Gas Chromatography-Olfactometry/aroma extract dilution analysis (GC-O/AEDA) combined with odour activity value (OAV). Both ENA and QDA indicated the recombination model derived from OAV and GC-O/AEDA closely resembled the original rose oil. The experiment results show that rose oxide, linalool, α-pinene, β-pinene, nonanal, heptanal citronellal, phenyl ethyl alcohol, benzyl alcohol, eugenol, methyl eugenol, β-citronellol, hexyl acetate, β-ionone, nerol, etc. are very important constituent to rose oil aroma profile.

  18. Purification of recombinant virus-like particles of porcine circovirus type 2 capsid protein using ion-exchange monolith chromatography.

    PubMed

    Zaveckas, Mindaugas; Snipaitis, Simas; Pesliakas, Henrikas; Nainys, Juozas; Gedvilaite, Alma

    2015-06-01

    Diseases associated with porcine circovirus type 2 (PCV2) infection are having a severe economic impact on swine-producing countries. The PCV2 capsid (Cap) protein expressed in eukaryotic systems self-assemble into virus-like particles (VLPs) which can serve as antigens for diagnostics or/and as vaccine candidates. In this work, conventional adsorbents as well as a monolithic support with large pore sizes were examined for the chromatographic purification of PCV2 Cap VLPs from clarified yeast lysate. Q Sepharose XL was used for the initial separation of VLPs from residual host nucleic acids and some host cell proteins. For the further purification of PCV2 Cap VLPs, SP Sepharose XL, Heparin Sepharose CL-6B and CIMmultus SO3 monolith were tested. VLPs were not retained on SP Sepharose XL. The purity of VLPs after chromatography on Heparin Sepharose CL-6B was only 4-7% and the recovery of VLPs was 5-7%. Using ion-exchange chromatography on the CIMmultus SO3 monolith, PCV2 Cap VLPs with the purity of about 40% were obtained. The recovery of VLPs after chromatography on the CIMmultus SO3 monolith was 15-18%. The self-assembly of purified PCV2 Cap protein into VLPs was confirmed by electron microscopy. Two-step chromatographic purification procedure of PCV2 Cap VLPs from yeast lysate was developed using Q Sepharose XL and cation-exchange CIMmultus SO3 monolith.

  19. Recombinant hnRNP protein A1 and its N-terminal domain show preferential affinity for oligodeoxynucleotides homologous to intron/exon acceptor sites.

    PubMed Central

    Buvoli, M; Cobianchi, F; Biamonti, G; Riva, S

    1990-01-01

    The reported binding preference of human hnRNP protein A1 for the 3'-splice site of some introns (Swanson and Dreyfuss (1988) EMBO J. 7, 3519-3529; Mayrand and Pederson (1990) Nucleic Acids Res. 18, 3307-3318) was tested by assaying in vitro the binding of purified recombinant A1 protein (expressed in bacteria) to synthetic oligodeoxynucleotides (21-mers) of suitable sequence. In such a minimal system we find preferential binding of protein A1 to oligodeoxynucleotide sequences corresponding to the 3'-splice site of IVS1 of human beta-globin pre-mRNA and of IVS1 of Adenovirus type 2 major late transcript. Mutation studies demonstrate that the binding specificity is dependent on the known critical domains of this intron region, the AG splice site dinucleotide and polypyrimidine tract, and resides entirely in the short oligonucleotide sequence. Moreover specific binding does not require the presence of other hnRNP proteins or of snRNP particles. Studies with a truncated recombinant protein demonstrated that the minimal protein sequence determinants for A1 recognition of 3'-splice acceptor site reside entirely in the N-terminal 195 aa of the unmodified protein. Images PMID:2251120

  20. Stabilization of affinity-tagged recombinant protein during/after its production in a cell-free system using wheat-germ extract.

    PubMed

    Kawarasaki, Yasuaki; Yamada, Yasuhiro; Ichimori, Maki; Shinbata, Tomoya; Kohda, Katsunori; Nakano, Hideo; Yamane, Tsuneo

    2003-01-01

    We found that the affinity tag fused to the carboxyl (C-) terminal of a single-chain Fv (scFv) antibody was proteolytically degraded in a wheat germ cell-free protein synthesis system. The addition of two extra residues of glycine to the tail of the cMyc tag significantly increased the stability of the tag, suggesting that wheat endogenous carboxypeptidase(s) play a primary role in the C-terminal tag-specific degradation. In addition to the modification of the tag sequence, addition of diisopropyl fluorophosphate, which is known as an inhibitor of carboxypeptidases, prevented the cMyc tag sequence degradation. The effects of other protease inhibitors on the translation reaction and stability of the synthesized protein are also reported.

  1. Analysis of particle content of recombinant adeno-associated virus serotype 8 vectors by ion-exchange chromatography.

    PubMed

    Lock, Martin; Alvira, Mauricio R; Wilson, James M

    2012-02-01

    Advances in adeno-associated virus (AAV)-mediated gene therapy have brought the possibility of commercial manufacturing of AAV vectors one step closer. To realize this prospect, a parallel effort with the goal of ever-increasing sophistication for AAV vector production technology and supporting assays will be required. Among the important release assays for a clinical gene therapy product, those monitoring potentially hazardous contaminants are most critical for patient safety. A prominent contaminant in many AAV vector preparations is vector particles lacking a genome, which can substantially increase the dose of AAV capsid proteins and lead to possible unwanted immunological consequences. Current methods to determine empty particle content suffer from inconsistency, are adversely affected by contaminants, or are not applicable to all serotypes. Here we describe the development of an ion-exchange chromatography-based assay that permits the rapid separation and relative quantification of AAV8 empty and full vector particles through the application of shallow gradients and a strong anion-exchange monolith chromatography medium.

  2. The synthesis and characterization of cellular membrane affinity chromatography columns for the study of human multidrug resistant proteins MRP1, MRP2 and human breast cancer resistant protein BCRP using membranes obtained from Spodoptera frugiperda (Sf9) insect cells.

    PubMed

    Bhatia, Prateek A; Moaddel, Ruin; Wainer, Irving W

    2010-06-15

    CMAC (cellular membrane affinity chromatography columns) have been developed for the study of the human multidrug transporters MRP1, MRP2 and the breast cancer resistance protein (BCRP). The columns were constructed using the immobilized artificial membrane (IAM) stationary phase and cellular membrane fragments obtained from Spodoptera frugiperda (Sf9) cells that had been stably transfected with human Mrp1, Mrp2 or Bcrp cDNA, using a baculovirus expression system. The resulting CMAC(Sf9(MRP1)), CMAC(Sf9(MRP2)) and CMAC(Sf9(BCRP)) columns and a control column produced using membrane fragments from non-transfected Sf9 cells, CMAC(Sf9), were characterized using frontal affinity chromatography using [(3)H]-etoposide as the marker ligand and etoposide, benzbromarone and MK571 as the displacers on the CMAC(Sf9(MRP1)) column, etoposide and furosemide on the CMAC(Sf9(MRP2)) column and etoposide and fumitremorgin C on the CMAC(Sf9(BCPR)) column. The binding affinities (K(i) values) obtained from the chromatographic studies were consistent with the data obtained using non-chromatographic techniques and the results indicate that the immobilized MRP1, MRP2 and BCRP transporters retained their ability to selectively bind known ligands. (S)-verapamil displaced [(3)H]-etoposide on the CMAC(Sf9(MRP1)) column to a greater extent than (R)-verapamil and the relative IC(50) values of the enantiomers were calculated using the changes in the retention times of the marker. The observed enantioselectivity and calculated IC(50) values were consistent with previously reported data. The results indicated that the CMAC(Sf9(MRP1)), CMAC(Sf9(MRP2)) and CMAC(Sf9(BCRP)) columns can be used for the study of binding to the MRP1, MRP2 and BCRP transporters and that membranes from the Sf9 cell line can be used to prepare CMAC columns. This is the first example of the use of membranes from a non-mammalian cell line in an affinity chromatographic system.

  3. Continuous processing of recombinant proteins: integration of refolding and purification using simulated moving bed size-exclusion chromatography with buffer recycling.

    PubMed

    Wellhoefer, Martin; Sprinzl, Wolfgang; Hahn, Rainer; Jungbauer, Alois

    2014-04-11

    Continuous processing of recombinant proteins was accomplished by combining continuous matrix-assisted refolding and purification by tandem simulated moving bed (SMB) size-exclusion chromatography (SEC). Recombinant proteins, N(pro) fusion proteins from inclusion bodies were dissolved with NaOH and refolded in the SMB system with a closed-loop set-up with refolding buffer as the desorbent buffer and buffer recycling of the refolding buffer of the raffinate by tangential flow filtration. For further purification of the refolded proteins, a second SMB operation also based on SEC was added. The whole system could be operated isocratically with refolding buffer as the desorbent buffer, and buffer recycling could also be applied in the purification step. Thus, a significant reduction in buffer consumption was achieved. The system was evaluated with two proteins, the N(pro) fusion pep6His and N(pro) fusion MCP-1. Refolding solution, which contained residual N(pro) fusion peptide, the cleaved autoprotease N(pro), and the cleaved target peptide was used as feed solution. Full separation of the cleaved target peptide from residual proteins was achieved at a purity and recovery in the raffinate and extract, respectively, of approximately 100%. In addition, more than 99% of the refolding buffer of the raffinate was recycled. A comparison of throughput, productivity, and buffer consumption of the integrated continuous process with two batch processes demonstrated that up to 60-fold higher throughput, up to 180-fold higher productivity, and at least 28-fold lower buffer consumption can be obtained by the integrated continuous process, which compensates for the higher complexity.

  4. Ultra-fast liquid chromatography with tandem mass spectrometry determination of ochratoxin A in traditional Chinese medicines based on vortex-assisted solid-liquid microextraction and aptamer-affinity column clean-up.

    PubMed

    Yang, Xihui; Hu, Yichen; Kong, Weijun; Chu, Xianfeng; Yang, Meihua; Zhao, Ming; Ouyang, Zhen

    2014-11-01

    A rapid, selective, and sensitive ultra-fast liquid chromatography with tandem mass spectrometry method was developed for the determination of ochratoxin A in traditional Chinese medicines based on vortex-assisted solid-liquid microextraction and aptamer-affinity column clean-up. Through optimizing the sample pretreatment procedures and chromatographic conditions, good linearity (r(2) ≥ 0.9993), low limit of detection (0.5-0.8 μg/kg), and satisfactory recovery (83.54-94.44%) expressed the good reliability and applicability of the established method in various traditional Chinese medicines. Moreover, the aptamer-affinity column, prepared in-house, showed an excellent feasibility owing to its specific identification of ochratoxin A in various kinds of selected traditional Chinese medicines. The maximum adsorption amount and applicability value were 188.96 ± 10.56 ng and 72.3%, respectively. The matrix effects were effectively eliminated, especially for m/z 404.2→358.0 of ochratoxin A. The application of the developed method for screening the natural contamination levels of ochratoxin A in 25 random traditional Chinese medicines on the market in China indicated that only eight samples were contaminated with low levels below the legal limit (5.0 μg/kg) set by the European Union. This study provided a preferred choice for the rapid and accurate monitoring of ochratoxin A in complex matrices.

  5. Electrochemical affinity biosensors for detection of mycotoxins: A review.

    PubMed

    Vidal, Juan C; Bonel, Laura; Ezquerra, Alba; Hernández, Susana; Bertolín, Juan R; Cubel, Carlota; Castillo, Juan R

    2013-11-15

    This review discusses the current state of electrochemical biosensors in the determination of mycotoxins in foods. Mycotoxins are highly toxic secondary metabolites produced by molds. The acute toxicity of these results in serious human and animal health problems, although it has been only since early 1960s when the first studied aflatoxins were found to be carcinogenic. Mycotoxins affect a broad range of agricultural products, most important cereals and cereal-based foods. A majority of countries, mentioning especially the European Union, have established preventive programs to control contamination and strict laws of the permitted levels in foods. Official methods of analysis of mycotoxins normally requires sophisticated instrumentation, e.g. liquid chromatography with fluorescence or mass detectors, combined with extraction procedures for sample preparation. For about sixteen years, the use of simpler and faster analytical procedures based on affinity biosensors has emerged in scientific literature as a very promising alternative, particularly electrochemical (i.e., amperometric, impedance, potentiometric or conductimetric) affinity biosensors due to their simplicity and sensitivity. Typically, electrochemical biosensors for mycotoxins use specific antibodies or aptamers as affinity ligands, although recombinant antibodies, artificial receptors and molecular imprinted polymers show potential utility. This article deals with recent advances in electrochemical affinity biosensors for mycotoxins and covers complete literature from the first reports about sixteen years ago.

  6. Identification of recombinant human relaxin-2 in equine plasma by liquid chromatography-high resolution mass spectrometry.

    PubMed

    Kwok, Wai Him; Ho, Emmie N M; Leung, Gary N W; Wong, April S Y; Yue, Samuel K; Wan, Terence S M

    2013-08-01

    Relaxin (RLX) is a peptide hormone belonging to the relaxin-like peptide family. Relaxin-2 (RLX-2), a heteromeric polypeptide consisting of an A-chain (24 amino acids) and a B-chain (29 amino acids) linked together by two inter-chain disulfide bonds, is the main circulating RLX hormone in human. Due to its ability to dilate blood vessels surrounding the smooth muscles via induction of nitric oxide resulting in the increase of blood and oxygen supplies to the muscles, it may enhance athletic performance and is therefore banned in horseracing, equestrian competitions, and human sports. In order to control the abuse of rhRLX-2, a definitive method is required to detect and confirm the presence of rhRLX-2 in biological samples. This paper describes, for the first time, the detection and confirmation of rhRLX-2 in equine plasma by liquid chromatography-high resolution mass spectrometry (LC-HRMS) after immunoaffinity extraction. rhRLX-2 could be detected at less than 0.1 ng/ml, and confirmed at less than 0.2 ng/ml in plasma samples.

  7. Immobilized metal affinity chromatography in open-loop simulated moving bed technology: purification of a heat stable histidine tagged beta-glucosidase.

    PubMed

    Sahoo, Deepti; Andersson, Jonatan; Mattiasson, Bo

    2009-06-01

    Open-loop simulated moving bed (SMB) has been used for immobilized metal affinity chromatographic (IMAC) purification of his-tagged beta-glucosidase expressed in E. coli. A simplified approach based on an optimized single column protocol is used to design the open-loop SMB. A set of columns in the SMB represent one step in the chromatographic cycle i.e. there will be one set each of columns for load, wash, elution etc within the SMB. Only the wash and elution are operated with columns in sequence. The beta-glucosidase was purified to almost single band purity with a purification factor of 15 and a recovery of 91%. SMB-performance showed reduced buffer consumption, higher purification fold, a better yield and higher productivity.

  8. Heterologous Expression, Purification, and Immunological Reactivity of a Recombinant HSP60 from Paracoccidioides brasiliensis

    PubMed Central

    Cunha, Daniela A.; Zancopé-Oliveira, Roseli M.; Sueli, M.; Felipe, S.; Salem-Izacc, Silvia M.; Deepe Jr., George S.; Soares, Célia M. A.

    2002-01-01

    The complete coding cDNA of HSP60 from Paracoccidioides brasiliensis was overexpressed in an Escherichia coli host to produce high levels of recombinant protein. The protein was purified by affinity chromatography. A total of 169 human serum samples were tested for reactivity by Western blot analysis with the purified HSP60 recombinant protein. Immunoblots indicated that the recombinant P. brasiliensis HSP60 was recognized by antibodies in 72 of 75 sera from paracoccidioidomycosis patients. No cross-reactivity was detected with individual sera from patients with aspergillosis, sporotrichosis, cryptococcosis, and tuberculosis. Reactivity to HSP60 was observed in sera from 9.52% of control healthy individuals and 11.5% of patients with histoplasmosis. The high sensitivity and specificity (97.3 and 92.5%, respectively) for HSP60 suggested that the recombinant protein can be used singly or in association with other recombinant antigens to detect antibody responses in P. brasiliensis-infected patients. PMID:11874881

  9. [Quantitative specific detection of Staphylococcus aureus based on recombinant lysostaphin and ATP bioluminescence].

    PubMed

    Li, Yuyuan; Mi, Zhiqiang; An, Xiaoping; Zhou, Yusen; Tong, Yigang

    2014-08-01

    Quantitative specific detection of Staphylococcus aureus is based on recombinant lysostaphin and ATP bioluminescence. To produce recombinant lysostaphin, the lysostaphin gene was chemically synthesized and inserted it into prokaryotic expression vector pQE30, and the resulting expression plasmid pQE30-Lys was transformed into E. coli M15 for expressing lysostaphin with IPTG induction. The recombinant protein was purified by Ni(2+)-NTA affinity chromatography. Staphylococcus aureus was detected by the recombinant lysostaphin with ATP bioluminescence, and plate count method. The results of the two methods were compared. The recombinant lysostaphin was successfully expressed, and a method of quantitative specific detection of S. aureus has been established, which showed a significant linear correlation with the colony counting. The detection method developed has good perspective to quantify S. aureus.

  10. Separation of recombinant apolipoprotein A-I(Milano) modified forms and aggregates in an industrial ion-exchange chromatography unit operation.

    PubMed

    Hunter, Alan K; Suda, Eric J; Herberg, John T; Thomas, Kristin E; Shell, Robert E; Gustafson, Mark E; Ho, Sa V

    2008-09-12

    We have shown how protein self-association impacts the ion-exchange separation of modified forms and aggregates for apolipoprotein A-I(Milano). It is well known that reversible self-association of a protein can lead to chromatographic band broadening, peak splitting, merging, fronting, and tailing. To mitigate these effects, urea or an organic modifier can be added to the chromatography buffers to shift the equilibrium distribution of the target molecule to the dissociated form. A first generation process that did not utilize urea resulted in low yield and low purity as it was not possible to separate protein aggregates. A second generation process run in the presence of 6M urea resulted in high purity and high yield, but throughput was limited due to low resin binding capacity when the protein was completely denatured. A third generation process achieved high purity, high yield, and high throughput by shifting the urea concentration during the process to continually operate in the optimal window for maximum loading and selectivity. Key to these systematic process improvements was the rational understanding of the interplay of urea concentration and ion-exchange chromatographic behavior. Results from pilot and industrial scale operations are presented, demonstrating the suitability of the techniques described in this work for the large scale manufacture of recombinant therapeutic proteins.

  11. Characterization of the Key Aroma Compounds in Chinese Vidal Icewine by Gas Chromatography-Olfactometry, Quantitative Measurements, Aroma Recombination, and Omission Tests.

    PubMed

    Ma, Yue; Tang, Ke; Xu, Yan; Li, Ji-Ming

    2017-01-18

    The key aroma compounds of Chinese Vidal icewine were characterized by means of gas chromatography-olfactometry (GC-O) coupled with mass spectrometry (MS) on polar and nonpolar columns, and their flavor dilution (FD) factors were determined by aroma extract dilution analysis (AEDA). A total of 59 odor-active aroma compounds in three ranks of Vidal icewines were identified, and 28 odorants (FD ≥ 9) were further quantitated for aroma reconstitution and omission tests. β-Damascenone showed the highest FD value of 2187 in all icewines. Methional and furaneol were first observed as important odorants in Vidal icewine. Aroma recombination experiments revealed a good similarity containing the 28 important aromas. Omission tests corroborated the significant contribution of β-damascenone and the entire group of esters. Besides, 4-hydroxy-2,5-dimethyl-3(2H)-furanone (furaneol) and 3-(methylthio)-1-propanal (methional) also had significant effects on icewine character, especially on apricot, caramel, and tropical fruit characteristics.

  12. Phase system selection with fractional factorial design for purification of recombinant cyanovirin-N from a hydroponic culture medium using centrifugal partition chromatography.

    PubMed

    Grudzień, Łukasz; Madeira, Luisa; Fisher, Derek; Ma, Julian; Garrard, Ian

    2013-04-12

    Centrifugal partition chromatography (CPC) with an aqueous two-phase system (ATPS) was used to purify recombinant cyanovirin-N (CV-N) from other proteins which were co-secreted into a hydroponic plant medium in a rhizosecretion process. To achieve satisfactory protein concentration, the purification was preceded by ultrafiltration performed on a 5 kDa filter. ATPS, because of their gentle nature, were selected as the phase system for CPC. A systematic phase system selection was applied. This involved studying the effect of seven parameters of ATPS: polymer type, salt type, the polymer and salt concentration, the polymer molecular weight, pH, and presence of two additional salts; NaCl and NaClO4, which all together gave 320 combinations. design of experiment (DoE) software allowed the reduction of this number to 46. Having tested partitioning of cyanovirin-N and impurities in 46 ATPS, the three best potential phase systems generated by the programme were then tested on the CPC. Out of these three, 13/13% PEG4000 sodium phosphate, pH 3.0, proved to be most effective phase system in the purification of cyanovirin-N, judged by ELISA and SDS-PAGE analysis, as it eliminated most of the impurities from the final cyanovirin-N preparation.

  13. Toxicity identification fractionation of environmental estrogens in waste water and sludge using gas and liquid chromatography coupled to mass spectrometry and recombinant yeast assay.

    PubMed

    Fernandez, Marc P; Noguerol, Tania-Noelia; Lacorte, Silvia; Buchanan, Ian; Piña, Benjamin

    2009-02-01

    We developed a toxicity identification fractionation (TIF) procedure to determine estrogenic compounds in wastewaters and sludge. The procedure consisted in fractionation of samples through a C(18) solid-phase extraction cartridge, in which Fraction I contained nonylphenol (NP) and its mono (NPEO(1)) and diethoxylate (NPEO(2)) and the markers of faecal exposure, Fraction II contained bisphenol A (BPA) and synthetic and natural hormones, and Fraction III contained the hormone conjugates. These three fractions were analyzed in parallel using gas or liquid chromatography coupled to mass spectrometry and recombinant yeast assay (RYA). Water samples collected daily throughout a whole week contained from 0.45 to 7.22 microg L(-1) of NP > NPEO(1) > NPEO(2) and were responsible for the estrogenicity of these samples. Fractions II and III were not estrogenic and that was due to the low ng L(-1) level of hormones and hormone conjugates found, respectively. The biological treatment sewage treatment plant (STP) was capable to eliminate from 52 to 100% of the compounds, with bisphenol A being the least removed. Only alkylphenols were accumulated in sludge with concentrations from 8.69 to 26.3 mg kg(-1) dw of NPEO(1) > NPEO(2) > NP. The integrated procedure herein proposed can be used as a screening method to evaluate estrogenic compounds in STPs and to survey faecal elimination.

  14. Development and Validation of a Multiplexed Protein Quantitation Assay for the Determination of Three Recombinant Proteins in Soybean Tissues by Liquid Chromatography with Tandem Mass Spectrometry.

    PubMed

    Hill, Ryan C; Oman, Trent J; Shan, Guomin; Schafer, Barry; Eble, Julie; Chen, Cynthia

    2015-08-26

    Currently, traditional immunochemistry technologies such as enzyme-linked immunosorbent assays (ELISA) are the predominant analytical tool used to measure levels of recombinant proteins expressed in genetically engineered (GE) plants. Recent advances in agricultural biotechnology have created a need to develop methods capable of selectively detecting and quantifying multiple proteins in complex matrices because of increasing numbers of transgenic proteins being coexpressed or "stacked" to achieve tolerance to multiple herbicides or to provide multiple modes of action for insect control. A multiplexing analytical method utilizing liquid chromatography with tandem mass spectrometry (LC-MS/MS) has been developed and validated to quantify three herbicide-tolerant proteins in soybean tissues: aryloxyalkanoate dioxygenase (AAD-12), 5-enol-pyruvylshikimate-3-phosphate synthase (2mEPSPS), and phosphinothricin acetyltransferase (PAT). Results from the validation showed high recovery and precision over multiple analysts and laboratories. Results from this method were comparable to those obtained with ELISA with respect to protein quantitation, and the described method was demonstrated to be suitable for multiplex quantitation of transgenic proteins in GE crops.

  15. Laminin-121--recombinant expression and interactions with integrins.

    PubMed

    Sasaki, Takako; Takagi, Junichi; Giudici, Camilla; Yamada, Yoshihiko; Arikawa-Hirasawa, Eri; Deutzmann, Rainer; Timpl, Rupert; Sonnenberg, Arnoud; Bächinger, Hans Peter; Tonge, David

    2010-07-01

    Laminin-121, previously referred as to laminin-3, was expressed recombinantly in human embryonic kidney (HEK) 293 cells by triple transfection of full-length cDNAs encoding mouse laminin α1, β2 and γ1 chains. The recombinant laminin-121 was purified using Heparin-Sepharose followed by molecular sieve chromatography and shown to be correctly folded by electron microscopy and circular dichroism (CD). The CD spectra of recombinant laminin-121 were very similar to those of laminin-111 isolated from Engelbreth-Holm-Swarm tumor (EHS-laminin) but its T(m) value was smaller than EHS-laminin and recombinant lamnin-111 suggesting that the replacement of the β chain reduced the stability of the coiled-coil structure of laminin-121. Its binding to integrins was compared with EHS-laminin, laminin-3A32 purified from murine epidermal cell line and recombinantly expressed laminins-111, -211 and -221. Laminin-121 showed the highest affinity to α6β1 and α7β1 integrins and furthermore, laminin-121 most effectively supported neurite outgrowth. Together, this suggests that the β2 laminins have higher affinity for integrins than the β1 laminins.

  16. [Analysis of rice leaves proteomes by liquid chromatography-tandem, mass spectrometry based on the purification using a novel affinity detergent removal spin column].

    PubMed

    Cao, Xiaolin; Gong, Jiadi; Chen, Mingxue; Yu, Shasha; Bian, Yingfang; Cao, Zhaoyun

    2014-11-01

    A purification method was established for the analysis of proteomes in rice leaves based on a novel detergent removal spin column (DRSC). The proteins were extracted by phenol protein extraction method followed by sodium dodecyl sulfate (SDS) lysis. The lysate was purified by the detergent removal spin column and the enzymolytic peptides were detected by the nanoflow liquid chromatography-hybrid linear trap quadrupole orbitrap mass spectrometry (nanoLC-LTQ/Orbitrap). In terms of SDS removal efficiencies and protein identification, the method of DRSC was compared with those of filter aided sample preparation (FASP) and acetone precipitation. As a result, there were good efficiencies ( > 95%) of SDS removal for the three methods. With the DRSC purification strategy, 563 proteins were identified from rice leaves, while only 196 and 306 proteins were identified by FASP and acetone precipitation procedures respectively, in spite of certain complementarities among these identified proteins by the three methods. DRSC is suitable for proteins with various relative molecular masses and pI values. However, there were similar losses of proteins with different relative molecular masses and pI values with the other two methods. Using the established method, 588 proteins were identified by once injection analysis. According to the molecular functions, 296 proteins with at least two identified peptides can be classified into eight categories with binding activity, enzyme activity, transporter activity, inhibitor activity, structural constitute, catalytic activity, other and unknown functions. The method provides technical reference for conducting rice proteomes.

  17. Role of DNA Repair Factor Xeroderma Pigmentosum Protein Group C in Response to Replication Stress As Revealed by DNA Fragile Site Affinity Chromatography and Quantitative Proteomics.

    PubMed

    Beresova, Lucie; Vesela, Eva; Chamrad, Ivo; Voller, Jiri; Yamada, Masayuki; Furst, Tomas; Lenobel, Rene; Chroma, Katarina; Gursky, Jan; Krizova, Katerina; Mistrik, Martin; Bartek, Jiri

    2016-12-02

    Replication stress (RS) fuels genomic instability and cancer development and may contribute to aging, raising the need to identify factors involved in cellular responses to such stress. Here, we present a strategy for identification of factors affecting the maintenance of common fragile sites (CFSs), which are genomic loci that are particularly sensitive to RS and suffer from increased breakage and rearrangements in tumors. A DNA probe designed to match the high flexibility island sequence typical for the commonly expressed CFS (FRA16D) was used as specific DNA affinity bait. Proteins significantly enriched at the FRA16D fragment under normal and replication stress conditions were identified using stable isotope labeling of amino acids in cell culture-based quantitative mass spectrometry. The identified proteins interacting with the FRA16D fragment included some known CFS stabilizers, thereby validating this screening approach. Among the hits from our screen so far not implicated in CFS maintenance, we chose Xeroderma pigmentosum protein group C (XPC) for further characterization. XPC is a key factor in the DNA repair pathway known as global genomic nucleotide excision repair (GG-NER), a mechanism whose several components were enriched at the FRA16D fragment in our screen. Functional experiments revealed defective checkpoint signaling and escape of DNA replication intermediates into mitosis and the next generation of XPC-depleted cells exposed to RS. Overall, our results provide insights into an unexpected biological role of XPC in response to replication stress and document the power of proteomics-based screening strategies to elucidate mechanisms of pathophysiological significance.

  18. Profiling of cis-Diol-containing Nucleosides and Ribosylated Metabolites by Boronate-affinity Organic-silica Hybrid Monolithic Capillary Liquid Chromatography/Mass Spectrometry

    PubMed Central

    Jiang, Han-Peng; Qi, Chu-Bo; Chu, Jie-Mei; Yuan, Bi-Feng; Feng, Yu-Qi

    2015-01-01

    RNA contains a large number of modified nucleosides. In the metabolic re-exchange of RNA, modified nucleosides cannot be recycled and are thus excreted from cells into biological fluids. Determination of endogenous modified nucleosides in biological fluids may serve as non-invasive cancers diagnostic methods. Here we prepared boronate-affinity organic-silica hybrid capillary monolithic column (BOHCMC) that exhibited excellent selectivity toward the cis-diol-containing compounds. We then used the prepared BOHCMC as the on-line solid-phase microextraction (SPME) column and developed an on-line SPME-LC-MS/MS method to comprehensively profile cis-diol-containing nucleosides and ribosylated metabolites in human urine. Forty-five cis-diol-containing nucleosides and ribosylated metabolites were successfully identified in human urine. And five ribose conjugates, for the first time, were identified existence in human urine in the current study. Furthermore, the relative quantification suggested 4 cis-diol-containing compounds (5′-deoxy-5′-methylthioadensine, N4-acetylcytidine, 1-ribosyl-N-propionylhistamine and N2,N2,7-trimethylguanosine) increased more than 1.5 folds in all the 3 types of examined cancers (lung cancer, colorectal cancer, and nasopharyngeal cancer) compared to healthy controls. The on-line SPME-LC-MS/MS method demonstrates a promising method for the comprehensive profiling of cis-diol-containing ribose conjugates in human urines, which provides an efficient strategy for the identification and discovery of biomarkers and may be used for the screening of cancers. PMID:25585609

  19. A Method to Site-Specifically Identify and Quantitate Carbonyl End Products of Protein Oxidation Using Oxidation-Dependent Element Coded Affinity Tags (O-ECAT) and NanoLiquid Chromatography Fourier Transform Mass Spectrometry

    SciTech Connect

    Lee, S; Young, N L; Whetstone, P A; Cheal, S M; Benner, W H; Lebrilla, C B; Meares, C F

    2005-08-25

    Protein oxidation is linked to cellular stress, aging, and disease. Protein oxidations that result in reactive species are of particular interest, since these reactive oxidation products may react with other proteins or biomolecules in an unmediated and irreversible fashion, providing a potential marker for a variety of disease mechanisms. We have developed a novel system to identify and quantitate, relative to other states, the sites of oxidation on a given protein. A specially designed Oxidation-dependent carbonyl-specific Element-Coded Affinity Mass Tag (O-ECAT), AOD, ((S)-2-(4-(2-aminooxy)-acetamido)-benzyl)-1, 4, 7, 10-tetraazacyclododecane-N, N', N'', N'''-tetraacetic acid, is used to covalently tag the residues of a protein oxidized to aldehyde or keto end products. After proteolysis, the resulting AOD-tagged peptides are affinity purified, and analyzed by nanoLC-FTICR-MS, which provides high specificity in extracting co-eluting AOD mass pairs with a unique mass difference and affords relative quantitation based on isotopic ratios. Using this methodology, we have mapped the surface oxidation sites on a model protein, recombinant human serum albumin (rHSA) in its native form (as purchased) and after FeEDTA oxidation. A variety of modified amino acid residues including lysine, arginine, proline, histidine, threonine, aspartic and glutamic acids, were found to be oxidized to aldehyde and keto end products. The sensitivity of this methodology is shown by the number of peptides identified, twenty peptides on the native protein and twenty-nine after surface oxidation using FeEDTA and ascorbate. All identified peptides map to the surface of the HSA crystal structure validating this method for identifying oxidized amino acids on protein surfaces. In relative quantitation experiments between FeEDTA oxidation and native protein oxidation, identified sites showed different relative propensities towards oxidation independent of amino acid residue. We expect to extend

  20. Isoform separation and structural identification of mono-PEGylated recombinant human growth hormone (PEG-rhGH) with pH gradient chromatography.

    PubMed

    Qin, Xiufeng; Li, Jing; Li, Yong; Gan, Yiru; Huang, He; Liang, Chenggang

    2017-02-15

    Human growth hormone plays an essential role in the treatment of dwarfism diseases, but it is limited in its short circulating half-life. Nowadays, some manufacturers are trying to take advantage of polyethylene glycol (PEG) conjugated with recombinant human growth hormone (rhGH) to improve its half-life and efficacy. However, the modified products are heterogeneous mixtures composed of reaction products with different modification sites. It is generally known as a challenging task to separate and characterize a PEGylated product, especially for its positional isoforms. In this study, cation exchange high performance liquid chromatograph (IEC-HPLC) based on a pH gradient separation method was presented to separate five position isomers of rhGH conjugated with a 40-kDa branched PEG N-hydroxysuccinimidyl (NHS) functional group. Then Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALD-TOF MS) and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) indicated that each of five materials collected by IEC-HPLC was conjugated with only one branched PEG chain. Furthermore, rhGH and PEG-rhGH were digested by trypsin and peptides were collected by reversed phase high performance liquid chromatography (RP-HPLC). Following MALDI-TOF MS, PEG modification sites were determined through comparative analysis of peptide mapping between PEG-rhGH and rhGH. Finally, biological activities of those positional isomers were performed in vivo and very small variations were observed. This method was shown to be suitable for heterogeneity analysis of PEGylated biopharmaceutical products.

  1. Recombinant factor C (rFC) assay and gas chromatography/mass spectrometry (GC/MS) analysis of endotoxin variability in four agricultural dusts.

    PubMed

    Saito, Rena; Cranmer, Brian K; Tessari, John D; Larsson, Lennart; Mehaffy, John M; Keefe, Thomas J; Reynolds, Stephen J

    2009-10-01

    Endotoxin exposure is a significant concern in agricultural environments due to relatively high exposure levels. The goals of this study were to determine patterns of 3-hydroxy fatty acid (3-OHFA) distribution in dusts from four types of agricultural environments (dairy, cattle feedlot, grain elevator, and corn farm) and to evaluate correlations between the results of gas chromatography/mass spectrometry (GC/MS) analysis (total endotoxin) and biological recombinant factor C (rFC) assay (free bioactive endotoxin). An existing GC/MS-MS method (for house dust) was modified to reduce sample handling and optimized for small amount (<1 mg) of agricultural dusts using GC/EI-MS. A total of 134 breathing zone samples using Institute of Occupational Medicine (IOM) inhalable samplers were collected from agricultural workers in Colorado and Nebraska. Livestock dusts contained approximately two times higher concentrations of 3-OHFAs than grain dusts. Patterns of 3-OHFA distribution and proportion of each individual 3-OHFA varied by dust type. The rank order of Pearson correlations between the biological rFC assay and the modified GC/EI-MS results was feedlot (0.72) > dairy (0.53) > corn farm (0.33) > grain elevator (0.11). In livestock environments, both odd- and even-numbered carbon chain length 3-OHFAs correlated with rFC assay response. The GC/EI-MS method should be especially useful for identification of specific 3-OHFAs for endotoxins from various agricultural environments and may provide useful information for evaluating the relationship between bacterial exposure and respiratory disease among agricultural workers.

  2. Purification of rat kidney glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and glutathione reductase enzymes using 2',5'-ADP Sepharose 4B affinity in a single chromatography step.

    PubMed

    Adem, Sevki; Ciftci, Mehmet

    2012-01-01

    The enzymes of glucose 6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), and glutathione reductase (GR) were purified from rat kidney in one chromatographic step consisting of the use of the 2',5'-ADP Sepharose 4B by using different elution buffers. This purification procedure was accomplished with the preparation of the homogenate and affinity chromatography on 2',5'-ADP Sepharose 4B. The purity and subunit molecular weights of the enzymes were checked on SDS-PAGE and purified enzymes showed a single band on the gel. The native molecular weights of the enzymes were found with Sephadex G-150 gel filtration chromatography. Using this procedure, G6PG, having the specific activity of 32 EU/mg protein, was purified 531-fold with a yield of 88%; 6PGD, having the specific activity of 25 EU/mg protein, was purified 494-fold with a yield of 73%; and GR, having the specific activity of 33 EU/mg protein, was purified 477-fold with a yield of 76%. Their native molecular masses were estimated to be 144 kDa for G6PD, 110 kDa for 6PGD, and 121 kDa for GR and the subunit molecular weights were found to be 68, 56, and 61 kDa, respectively. A new modified method to purify G6PD, 6PGD, and GR, namely one chromatographic step using the 2',5'-ADP Sepharose 4B, is described for the first time in this study. This procedure has several advantages for purification of enzymes, such as, rapid purification, produces high yield, and uses less chemical materials.

  3. An efficient depyrogenation method for recombinant bacterial outer membrane lipoproteins.

    PubMed

    Basto, Afonso P; Morais, Joana; Marcelino, Eduardo; Leitão, Alexandre; Santos, Dulce M

    2014-06-01

    Bacterial outer membrane lipoproteins are anchored in the outer membrane lipid layer in close association with lipopolysaccharides (LPS) and with other hydrophobic membrane proteins, making their purification technically challenging. We have previously shown that a thorough delipidation of outer membrane preparations from the Escherichia coli expression host is an important step to eliminate contaminant proteins when purifying recombinant antigens expressed in fusion with the Pseudomonas aeruginosa OprI lipoprotein. Here we report the cloning and expression of three antigens in fusion with OprI (ovalbumin, eGFP and BbPDI) and our efforts to deal with the variable LPS contamination levels observed in different batches of purified lipoproteins. The use of polymyxin B columns or endotoxin removal polycationic magnetic beads for depyrogenation of purified lipoproteins resulted in high protein losses and the use of Triton X-114 or sodium deoxycholate during the course of affinity chromatography showed to be ineffective to reduce LPS contamination. Instead, performing a hot phenol/water LPS extraction from outer membrane preparations prior to metal affinity chromatography allowed the purification of the recombinant fusion lipoproteins with LPS contents below 0.02EU/μg of protein. The purified recombinant lipoproteins retain their capacity to stimulate bone marrow-derived dendritic cells allowing for the study of their immunomodulatory properties through TLR2/1. This is a simple and easy to scale up method that can also be considered for the purification of other outer membrane lipoproteins.

  4. Kinetic studies of drug-protein interactions by using peak profiling and high-performance affinity chromatography: examination of multi-site interactions of drugs with human serum albumin columns.

    PubMed

    Tong, Zenghan; Schiel, John E; Papastavros, Efthimia; Ohnmacht, Corey M; Smith, Quentin R; Hage, David S

    2011-04-15

    Carbamazepine and imipramine are drugs that have significant binding to human serum albumin (HSA), the most abundant serum protein in blood and a common transport protein for many drugs in the body. Information on the kinetics of these drug interactions with HSA would be valuable in understanding the pharmacokinetic behavior of these drugs and could provide data that might lead to the creation of improved assays for these analytes in biological samples. In this report, an approach based on peak profiling was used with high-performance affinity chromatography to measure the dissociation rate constants for carbamazepine and imipramine with HSA. This approach compared the elution profiles for each drug and a non-retained species on an HSA column and control column over a board range of flow rates. Various approaches for the corrections of non-specific binding between these drugs and the support were considered and compared in this process. Dissociation rate constants of 1.7 (±0.2) s(-1) and 0.67 (±0.04) s(-1) at pH 7.4 and 37°C were estimated by this approach for HSA in its interactions with carbamazepine and imipramine, respectively. These results gave good agreement with rate constants that have determined by other methods or for similar solute interactions with HSA. The approach described in this report for kinetic studies is not limited to these particular drugs or HSA but can also be extended to other drugs and proteins.

  5. Tandem lectin affinity chromatography monolithic columns with surface immobilised concanavalin A, wheat germ agglutinin and Ricinus communis agglutinin-I for capturing sub-glycoproteomics from breast cancer and disease-free human sera.

    PubMed

    Selvaraju, Subhashini; El Rassi, Ziad

    2012-07-01

    In this study, a liquid-phase separation platform consisting of tandem lectin affinity chromatography was introduced for the selective capturing of sub-glycoproteomics that are affected in cancers, e.g. breast cancer. The platform is comprised of three monolithic columns with surface immobilised lectins including concanavalin A (Con A), wheat germ agglutinin (WGA) and Ricinus communis agglutinin-I (RCA-I). While WGA and Con A have specificities directed towards the core portion of N-glycans on the glycoprotein surface, RCA-I specifically interacts with the non-reducing terminal moieties of the outer chain structures of N-glycans. The effects of the order in which the three lectin columns were arranged in the tandem columns format were evaluated. The most suitable order proved to be WGA → Con A → RCA-I (denoted as WCR) as far as the number of captured proteins was concerned. The WCR tandem columns allowed the capture of 113 and 112 proteins from disease-free and breast cancer sera, respectively, corresponding to 75 and 65 non-redundant proteins, respectively. Using mass spectral count ratios and Q-Q plots yielded a panel of 23 non-redundant differentially expressed proteins (i.e. a panel of 23 candidate markers), which should in principle be more representative of a pathophysiological state than a single marker candidate.

  6. Expression of the affinity tags, glutathione-S-transferase and maltose-binding protein, in tobacco chloroplasts.

    PubMed

    Ahmad, Niaz; Michoux, Franck; McCarthy, James; Nixon, Peter J

    2012-04-01

    Chloroplast transformation offers an exciting platform for the safe, inexpensive and large-scale production of recombinant proteins in plants. An important advantage for the isolation of proteins produced in the chloroplast would be the use of affinity tags for rapid purification by affinity chromatography. To date, only His-tags have been used. In this study, we have tested the feasibility of expressing two additional affinity tags: glutathione-S-transferase (GST) and a His-tagged derivative of the maltose-binding protein (His₆-MBP). By using the chloroplast 16S rRNA promoter and 5' untranslated region of phage T7 gene 10, GST and His₆-MBP were expressed in homoplastomic tobacco plants at approximately 7% and 37% of total soluble protein, respectively. GST could be purified by one-step-affinity purification using a glutathione column. Much better recoveries were obtained for His₆-MBP by using a twin-affinity purification procedure involving first immobilised nickel followed by binding to amylose. Interestingly, expression of GST led to cytoplasmic male sterility. Overall, our work expands the tools available for purifying recombinant proteins from the chloroplast.

  7. Preparation of the Mgm101 recombination protein by MBP-based tagging strategy.

    PubMed

    Wang, Xiaowen; Mbantenkhu, MacMillan; Wierzbicki, Sara; Chen, Xin Jie

    2013-06-25

    The MGM101 gene was identified 20 years ago for its role in the maintenance of mitochondrial DNA. Studies from several groups have suggested that the Mgm101 protein is involved in the recombinational repair of mitochondrial DNA. Recent investigations have indicated that Mgm101 is related to the Rad52-type recombination protein family. These proteins form large oligomeric rings and promote the annealing of homologous single stranded DNA molecules. However, the characterization of Mgm101 has been hindered by the difficulty in producing the recombinant protein. Here, a reliable procedure for the preparation of recombinant Mgm101 is described. Maltose Binding Protein (MBP)-tagged Mgm101 is first expressed in Escherichia coli. The fusion protein is initially purified by amylose affinity chromatography. After being released by proteolytic cleavage, Mgm101 is separated from MBP by cationic exchange chromatography. Monodispersed Mgm101 is then obtained by size exclusion chromatography. A yield of ~0.87 mg of Mgm101 per liter of bacterial culture can be routinely obtained. The recombinant Mgm101 has minimal contamination of DNA. The prepared samples are successfully used for biochemical, structural and single particle image analyses of Mgm101. This protocol may also be used for the preparation of other large oligomeric DNA-binding proteins that may be misfolded and toxic to bacterial cells.

  8. Bioengineering of bacteria to assemble custom-made polyester affinity resins.

    PubMed

    Hay, Iain D; Du, Jinping; Burr, Natalie; Rehm, Bernd H A

    2015-01-01

    Proof of concept for the in vivo bacterial production of a polyester resin displaying various customizable affinity protein binding domains is provided. This was achieved by engineering various protein binding domains into a bacterial polyester-synthesizing enzyme. Affinity binding domains based on various structural folds and derived from molecular libraries were used to demonstrate the potential of this technique. Designed ankyrin repeat proteins (DARPins), engineered OB-fold domains (OBodies), and VHH domains from camelid antibodies (nanobodies) were employed. The respective resins were produced in a single bacterial fermentation step, and a simple purification protocol was developed. Purified resins were suitable for most lab-scale affinity chromatography purposes. All of the affinity domains tested produced polyester beads with specific affinity for the target protein. The binding capacity of these affinity resins ranged from 90 to 600 nmol of protein per wet gram of polyester affinity resin, enabling purification of a recombinant protein target from a complex bacterial cell lysate up to a purity level of 96% in one step. The polyester resin was efficiently produced by conventional lab-scale shake flask fermentation, resulting in bacteria accumulating up to 55% of their cellular dry weight as polyester. A further proof of concept demonstrating the practicality of this technique was obtained through the intracellular coproduction of a specific affinity resin and its target. This enables in vivo binding and purification of the coproduced "target protein." Overall, this study provides evidence for the use of molecular engineering of polyester synthases toward the microbial production of specific bioseparation resins implementing previously selected binding domains.

  9. Bioengineering of Bacteria To Assemble Custom-Made Polyester Affinity Resins

    PubMed Central

    Hay, Iain D.; Du, Jinping; Burr, Natalie

    2014-01-01

    Proof of concept for the in vivo bacterial production of a polyester resin displaying various customizable affinity protein binding domains is provided. This was achieved by engineering various protein binding domains into a bacterial polyester-synthesizing enzyme. Affinity binding domains based on various structural folds and derived from molecular libraries were used to demonstrate the potential of this technique. Designed ankyrin repeat proteins (DARPins), engineered OB-fold domains (OBodies), and VHH domains from camelid antibodies (nanobodies) were employed. The respective resins were produced in a single bacterial fermentation step, and a simple purification protocol was developed. Purified resins were suitable for most lab-scale affinity chromatography purposes. All of the affinity domains tested produced polyester beads with specific affinity for the target protein. The binding capacity of these affinity resins ranged from 90 to 600 nmol of protein per wet gram of polyester affinity resin, enabling purification of a recombinant protein target from a complex bacterial cell lysate up to a purity level of 96% in one step. The polyester resin was efficiently produced by conventional lab-scale shake flask fermentation, resulting in bacteria accumulating up to 55% of their cellular dry weight as polyester. A further proof of concept demonstrating the practicality of this technique was obtained through the intracellular coproduction of a specific affinity resin and its target. This enables in vivo binding and purification of the coproduced “target protein.” Overall, this study provides evidence for the use of molecular engineering of polyester synthases toward the microbial production of specific bioseparation resins implementing previously selected binding domains. PMID:25344238

  10. False positive RNA binding activities after Ni-affinity purification from Escherichia coli.

    PubMed

    Milojevic, Tetyana; Sonnleitner, Elisabeth; Romeo, Alessandra; Djinović-Carugo, Kristina; Bläsi, Udo

    2013-06-01

    A His-tag is often added by means of recombinant DNA technology to a heterologous protein of interest, which is then over-produced in Escherchia coli and purified by one-step immobilized metal-affinity chromatography (IMAC). Owing to the presence of 24 histidines at the C-termini of the hexameric E. coli RNA chaperone Hfq, the protein co-purifies with His-tagged proteins of interest. As Hfq can bind to distinct RNA substrates with high affinity, its presence can obscure studies performed with (putative) RNA binding activities purified by IMAC. Here, we present results for a seemingly positive RNA-binding activity, exemplifying that false-positive results can be avoided if the protein of interest is either subjected to further purification step(s) or produced in an E. coli hfq- strain.

  11. Introduction of structural affinity handles as a tool in selective nucleic acid separations

    NASA Technical Reports Server (NTRS)

    Willson, III, Richard Coale (Inventor); Cano, Luis Antonio (Inventor)

    2011-01-01

    The method is used for separating nucleic acids and other similar constructs. It involves selective introduction, enhancement, or stabilization of affinity handles such as single-strandedness in the undesired (or desired) nucleic acids as compared to the usual structure (e.g., double-strandedness) of the desired (or undesired) nucleic acids. The undesired (or desired) nucleic acids are separated from the desired (or undesired) nucleic acids due to capture by methods including but not limited to immobilized metal affinity chromatography, immobilized single-stranded DNA binding (SSB) protein, and immobilized oligonucleotides. The invention is useful to: remove contaminating genomic DNA from plasmid DNA; remove genomic DNA from plasmids, BACs, and similar constructs; selectively separate oligonucleotides and similar DNA fragments from their partner strands; purification of aptamers, (deoxy)-ribozymes and other highly structured nucleic acids; Separation of restriction fragments without using agarose gels; manufacture recombinant Taq polymerase or similar products that are sensitive to host genomic DNA contamination; and other applications.

  12. IMAC capture of recombinant protein from unclarified mammalian cell feed streams

    PubMed Central

    Kinna, Alexander; Tolner, Berend; Rota, Enrique Miranda; Titchener‐Hooker, Nigel; Nesbeth, Darren

    2015-01-01

    ABSTRACT Fusion‐tag affinity chromatography is a key technique in recombinant protein purification. Current methods for protein recovery from mammalian cells are hampered by the need for feed stream clarification. We have developed a method for direct capture using immobilized metal affinity chromatography (IMAC) of hexahistidine (His6) tagged proteins from unclarified mammalian cell feed streams. The process employs radial flow chromatography with 300–500 μm diameter agarose resin beads that allow free passage of cells but capture His‐tagged proteins from the feed stream; circumventing expensive and cumbersome centrifugation and/or filtration steps. The method is exemplified by Chinese Hamster Ovary (CHO) cell expression and subsequent recovery of recombinant His‐tagged carcinoembryonic antigen (CEA); a heavily glycosylated and clinically relevant protein. Despite operating at a high NaCl concentration necessary for IMAC binding, cells remained over 96% viable after passage through the column with host cell proteases and DNA detected at ∼8 U/mL and 2 ng/μL in column flow‐through, respectively. Recovery of His‐tagged CEA from unclarified feed yielded 71% product recovery. This work provides a basis for direct primary capture of fully glycosylated recombinant proteins from unclarified mammalian cell feed streams. Biotechnol. Bioeng. 2016;113: 130–140. © 2015 Wiley Periodicals, Inc. PMID:26174988

  13. A recombinant single-chain human class II MHC molecule (HLA-DR1) as a covalently linked heterotrimer of alpha chain, beta chain, and antigenic peptide, with immunogenicity in vitro and reduced affinity for bacterial superantigens.

    PubMed

    Zhu, X; Bavari, S; Ulrich, R; Sadegh-Nasseri, S; Ferrone, S; McHugh, L; Mage, M

    1997-08-01

    Major histocompatibility complex (MHC) class II molecules bind to numerous peptides and display these on the cell surface for T cell recognition. In a given immune response, receptors on T cells recognize antigenic peptides that are a minor population of MHC class II-bound peptides. To control which peptides are presented to T cells, it may be desirable to use recombinant MHC molecules with covalently bound antigenic peptides. To study T cell responses to such homogeneous peptide-MHC complexes, we engineered an HLA-DR1 cDNA coding for influenza hemagglutinin, influenza matrix, or HIV p24 gag peptides covalently attached via a peptide spacer to the N terminus of the DR1 beta chain. Co-transfection with DR alpha cDNA into mouse L cells resulted in surface expression of HLA-DR1 molecules that reacted with monoclonal antibodies (mAb) specific for correctly folded HLA-DR epitopes. This suggested that the spacer and peptide did not alter expression or folding of the molecule. We then engineered an additional peptide spacer between the C terminus of a truncated beta chain (without transmembrane or cytoplasmic domains) and the N terminus of full-length DR alpha chain. Transfection of this cDNA into mouse L cells resulted in surface expression of the entire covalently linked heterotrimer of peptide, beta chain, and alpha chain with the expected molecular mass of approximately 66 kDa. These single-chain HLA-DR1 molecules reacted with mAb specific for correctly folded HLA-DR epitopes, and identified one mAb with [MHC + peptide] specificity. Affinity-purified soluble secreted single-chain molecules with truncated alpha chain moved in electrophoresis as compact class II MHC dimers. Cell surface two-chain or single-chain HLA-DR1 molecules with a covalent HA peptide stimulated HLA-DR1-restricted HA-specific T cells. They were immunogenic in vitro for peripheral blood mononuclear cells. The two-chain and single-chain HLA-DR1 molecules with covalent HA peptide had reduced binding

  14. Centrifugal precipitation chromatography.

    PubMed

    Ito, Yoichiro; Qi, Lin

    2010-01-15

    Centrifugal precipitation chromatography separates analytes according their solubility in ammonium sulfate (AS) solution and other precipitants. The separation column is made from a pair of long spiral channels partitioned with a semipermeable membrane. In a typical separation, concentrated ammonium sulfate is eluted through one channel while water is eluted through the other channel in the opposite direction. This countercurrent process forms an exponential AS concentration gradient through the water channel. Consequently, protein samples injected into the water channel is subjected to a steadily increasing AS concentration and at the critical AS concentration they are precipitated and deposited in the channel bed by the centrifugal force. Then the chromatographic separation is started by gradually reducing the AS concentration in the AS channel which lowers the AS gradient concentration in the water channel. This results in dissolution of deposited proteins which are again precipitated at an advanced critical point as they move through the channel. Consequently, proteins repeat precipitation and dissolution through a long channel and finally eluted out from the column in the order of their solubility in the AS solution. The present method has been successfully applied to a number of analytes including human serum proteins, recombinant ketosteroid isomerase, carotenoid cleavage enzymes, plasmid DNA, polysaccharide, polymerized pigments, PEG-protein conjugates, etc. The method is capable to single out the target species of proteins by affinity ligand or immunoaffinity separation.

  15. Recombinant protein production data after expression in the bacterium Escherichia coli

    PubMed Central

    Cantu-Bustos, J. Enrique; Cano del Villar, Kevin D.; Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Zarate, Xristo

    2016-01-01

    Fusion proteins have become essential for the expression and purification of recombinant proteins in Escherichia coli. The metal-binding protein CusF has shown several features that make it an attractive fusion protein and affinity tag: "Expression and purification of recombinant proteins in Escherichia coli tagged with the metal-binding protein CusF" (Cantu-Bustos et al., 2016 [1]). Here we present accompanying data from protein expression experiments; we tested different protein tags, temperatures, expression times, cellular compartments, and concentrations of inducer in order to obtain soluble protein and low formation of inclusion bodies. Additionally, we present data from the purification of the green fluorescent protein (GFP) tagged with CusF, using Ag(I) metal affinity chromatography. PMID:27014739

  16. Recombinant protein production data after expression in the bacterium Escherichia coli.

    PubMed

    Cantu-Bustos, J Enrique; Cano Del Villar, Kevin D; Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Zarate, Xristo

    2016-06-01

    Fusion proteins have become essential for the expression and purification of recombinant proteins in Escherichia coli. The metal-binding protein CusF has shown several features that make it an attractive fusion protein and affinity tag: "Expression and purification of recombinant proteins in Escherichia coli tagged with the metal-binding protein CusF" (Cantu-Bustos et al., 2016 [1]). Here we present accompanying data from protein expression experiments; we tested different protein tags, temperatures, expression times, cellular compartments, and concentrations of inducer in order to obtain soluble protein and low formation of inclusion bodies. Additionally, we present data from the purification of the green fluorescent protein (GFP) tagged with CusF, using Ag(I) metal affinity chromatography.

  17. Production of Recombinant Caffeine Synthase from Guarana (Paullinia cupana var. sorbilis) in Escherichia coli.

    PubMed

    Schimpl, Flávia Camila; Kiyota, Eduardo; Mazzafera, Paulo

    2016-01-01

    Caffeine synthase (CS) is a methyltransferase responsible for the last two steps of the caffeine biosynthesis pathway in plants. CS is able to convert 7-methylxanthine to theobromine (3,7-dimethylxanthine) and theobromine to caffeine (1,3,7-trimethylxanthine) using S-adenosyl-L-methionine as the methyl donor in both reactions. The production of a recombinant protein is an important tool for the characterization of enzymes, particularly when the enzyme has affinity for different substrates. Guarana has the highest caffeine content among more than a hundred plant species that contain this alkaloid. Different from other plants, in which CS has a higher affinity for paraxanthine (1,7-dimethylxanthine), caffeine synthase from guarana (PcCS) has a higher affinity for theobromine. Here, we describe a method to produce a recombinant caffeine synthase from guarana in Escherichia coli and its purification by affinity chromatography. The recombinant protein retains activity and can be used in enzymatic assays and other biochemical characterization studies.

  18. Recombinant production of TEV cleaved human parathyroid hormone.

    PubMed

    Audu, Christopher O; Cochran, Jared C; Pellegrini, Maria; Mierke, Dale F

    2013-08-01

    The parathyroid hormone, PTH, is responsible for calcium and phosphate ion homeostasis in the body. The first 34 amino acids of the peptide maintain the biological activity of the hormone and is currently marketed for calcium imbalance disorders. Although several methods for the production of recombinant PTH(1-34) have been reported, most involve the use of cleavage conditions that result in a modified peptide or unfavorable side products. Herein, we detail the recombinant production of (15) N-enriched human parathyroid hormone, (15) N PTH(1-34), generated via a plasmid vector that gives reasonable yield, low-cost protease cleavage (leaving the native N-terminal serine in its amino form), and purification by affinity and size exclusion chromatography. We characterize the product by multidimensional, heteronuclear NMR, circular dichroism, and LC/MS.

  19. Extraction of haemoglobin from human blood by affinity precipitation using a haptoglobin-based stimuli-responsive affinity macroligand.

    PubMed

    Stocker-Majd, Gisela; Hilbrig, Frank; Freitag, Ruth

    2008-06-13

    Affinity precipitation was compared to affinity chromatography and batch adsorption as the final purification step in a protocol for the isolation of haemoglobin from human blood. Haptoglobin was the affinity ligand. The first steps on the process were realized by traditional methods (lyses of red blood cells followed by ammonium sulphate precipitation). For affinity chromatography (and batch adsorption) the ligand was linked to Sepharose, for affinity precipitation to a thermoresponsive polymer, namely poly(N-isopropylacrylamide). Five haptoglobin-poly(N-isopropylacrylamide) bioconjugates (affinity macroligands) were constructed with different polymer: haptoglobin-coupling ratios. Conjugation of haptoglobin to the soluble poly(N-isopropylacrylamide) apparently does not change the interaction thermodynamics with haemoglobin, as the haemoglobin binding constants calculated by a Scatchard analysis for the affinity macroligand were of the same order of magnitude as those described in the literature for the haemoglobin-haptoglobin complex in solution. Two elution protocols were used for haemoglobin release from the various affinity materials, one at pH 2, the other with 5 M urea at pH 11. Both affinity chromatography and affinity precipitation yielded a pure haemoglobin of high quality. Compared to the affinity chromatography, affinity precipitation showed a significantly higher ligand efficiency (ratio of the experimental capacity to the theoretical one). The method thus makes better use of the expensive affinity ligands. As affinity precipitation only requires small temperature changes to bring about precipitation/redissolution of the affinity complexes and a centrifugation step for recovery of the precipitate, the method in addition has advantages in term of scalability and simplicity.

  20. Recombinant production of Epstein-Barr virus BZLF1 trans-activator and characterization of its DNA-binding specificity.

    PubMed

    Lim, Chun Shen; Goh, Siang Ling; Krishnan, Gopala; Ng, Ching Ching

    2014-03-01

    This paper describes the recombinant production of a biologically active Epstein-Barr virus BZLF1 trans-activator, i.e., Z-encoded broadly reactive activator (ZEBRA), that recognized specific DNA motifs. We used auto-induction for histidine-tagged BZLF1 expression in Escherichia coli and immobilized cobalt affinity membrane chromatography for protein purification under native conditions. We obtained the purified BZLF1 at a yield of 5.4mg per gram of wet weight cells at 75% purity, in which 27% of the recombinant BZLF1 remained biologically active. The recombinant BZLF1 bound to oligonucleotides containing ZEBRA response elements, either AP-1 or ZIIIB, but not a ZIIIB mutant. The recombinant BZLF1 showed a specific DNA-binding activity which could be useful for functional studies.

  1. Protein A affinity precipitation of human immunoglobulin G.

    PubMed

    Janoschek, Lars; Freiherr von Roman, Matthias; Berensmeier, Sonja

    2014-08-15

    The potential of protein A affinity precipitation as an alternative method for traditional antibody purification techniques was investigated. Recombinant produced protein A from Staphylococcus aureus (SpA) was covalently linked to the pH-responsive copolymer Eudragit(®) S-100 and used for purification of human immunoglobulin G (hIgG). The Eudragit-SpA conjugate had a static binding capacity of 93.9 ± 2.8 mg hIgG per g conjugate and a dissociation constant of 787 ± 67 nM at 7 ± 1°C. The antibody was adsorbed rapidly onto Eudragit-SpA and reached equilibrium within 5 min. An excess of hIgG binding sites, provided by the conjugate, as well as adjusted elution conditions resulted in an appropriate hIgG purification performance. In summary, Eudragit-SpA was successfully applied to capture hIgG from a protein mixture with 65% antibody yield in the elution step. Nearly 96% purity and a purification factor of 12.4 were achieved. The Eudragit-SpA conjugate showed a stable ligand density over several cycles, which enabled reusability for repeated precipitation of hIgG. According to this, pH induced affinity precipitation can be seen as a potential alternative for protein A chromatography in antibody purification processes.

  2. Investigation of the effect of mutations of rat albumin on the binding affinity to the alpha(4)beta(1) integrin antagonist, 4-[1-[3-chloro-4-[N'-(2-methylphenyl)ureido]phenylacetyl]-(4S)-fluoro-(2S)-pyrrolidine-2-yl]methoxybenzoic acid (D01-4582), using recombinant rat albumins.

    PubMed

    Ito, Takashi; Takahashi, Masayuki; Okazaki, Osamu; Sugiyama, Yuichi

    2010-08-02

    The authors reported previously rat strain differences in plasma protein binding to alpha(4)beta(1) antagonist D01-4582, resulting in a great strain difference in its pharmacokinetics (19-fold differences in the AUC). The previous study suggested that amino acid changes of V238L and/or T293I in albumin reduced the binding affinity. In order to elucidate the relative significance of these mutations, an expression system was developed to obtain recombinant rat albumins (rRSA) using Pichia pastoris, followed by a binding analysis of four rRSAs by the ultracentrifugation method. The equilibrium dissociation constant (K(d)) of wild-type rRSA was 210 nM, while K(d) of rRSA that carried both V238L and T293I mutations was 974 nM. K(d) of artificial rRSA that carried only V238L was 426 nM, and K(d) of artificial rRSA that carried only T293I was 191 nM. These results suggested that V238L would be more important in the alteration of K(d). However, since none of the single mutations were sufficient to explain the reduction of affinity, the possibility was also suggested that T293I interacted cooperatively to reduce the binding affinity of rat albumin to D01-4582. Further investigation is required to elucidate the mechanism of the possible cooperative interaction.

  3. Endotoxin depletion of recombinant protein preparations through their preferential binding to histidine tags.

    PubMed

    Mack, Laura; Brill, Boris; Delis, Natalia; Groner, Bernd

    2014-12-01

    The presence of endotoxins in preparations of recombinantly produced therapeutic proteins poses serious problems for patients. Endotoxins can cause fever, respiratory distress syndromes, intravascular coagulation, or endotoxic shock. A number of methods have been devised to remove endotoxins from protein preparations using separation procedures based on molecular mass or charge properties. Most of the methods are limited in their endotoxin removal capacities and lack general applicability. We are describing a biotechnological approach for endotoxin removal. This strategy exploits the observation that endotoxins form micelles that expose negative charges on their surface, leading to preferential binding of endotoxins to cationic surfaces, allowing the separation from their resident protein. Endotoxins exhibit high affinity to stretches of histidines, which are widely used tools to facilitate the purification of recombinant proteins. They bind to nickel ions and are the basis for protein purification from cellular extracts by immobilized metal affinity chromatography. We show that the thrombin-mediated cleavage of two histidine tags from the purified recombinant protein and the adsorption of these histidine tags and their associated endotoxins to a nickel affinity column result in an appreciable depletion of the endotoxins in the purified protein fraction.

  4. Antigenicity of partial fragments of recombinant Pasteurella multocida toxin.

    PubMed

    Lee, Jeongmin; Woo, Hee-Jong

    2010-12-01

    Pasteurella multocida serogroup D strain, which produces P. multocida toxin (PMT), is a widespread and harmful pathogen of respiratory diseases such as pneumonia and progressive atrophic rhinitis (PAR) in swine. Vaccination has been considered the most desirable and effective approach for controlling the diseases caused by toxigenic P. multocida. To investigate the antigenicity and immunogenicity of partial fragments of recombinant PMT, recombinant proteins of the N-terminal (PMT-A), middle (PMT-B), Cterminal (PMT-C), and middle-C-terminal (PMT2.3) regions of PMT were successfully produced in an Escherichia coli expression system. The molecular masses of PMT-A, PMT-B, PMT-C, and PMT2.3 were ca. 53, 55, 35, and 84 kDa, respectively, purified by nickel-nitrilotriacetic acid (Ni-NTA) affinity column chromatography. All the recombinant proteins except for PMT-A showed immune responses to antisera obtained from a swine showing symptoms of PAR. Moreover, high titers of PMT-specific antibodies were raised from mice immunized with each of the recombinant proteins; however, the immunoreactivities of the antibodies to authentic PMT and heat-inactivated whole bacteria were different, respectively. In the protection study, the highest protection against homologous challenge was shown in the case of PMT2.3; relatively poor protections occurred for the other PMT fragments.

  5. Molecular Characterization of a Recombinant Manganese Superoxide Dismutase from Lactococcus lactis M4

    PubMed Central

    Chor Leow, Thean; Foo, Hooi Ling; Abdul Rahim, Raha

    2014-01-01

    A superoxide dismutase (SOD) gene of Lactococcus lactis M4 was cloned and expressed in a prokaryotic system. Sequence analysis revealed an open reading frame of 621 bp which codes for 206 amino acid residues. Expression of sodA under T7 promoter exhibited a specific activity of 4967 U/mg when induced with 1 mM of isopropyl-β-D-thiogalactopyranoside. The recombinant SOD was purified to homogeneity by immobilised metal affinity chromatography and Superose 12 gel filtration chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blot analyses of the recombinant SOD detected a molecular mass of approximately 27 kDa. However, the SOD was in dimer form as revealed by gel filtration chromatography. The purified recombinant enzyme had a pI of 4.5 and exhibited maximal activity at 25°C and pH 7.2. It was stable up to 45°C. The insensitivity of this lactococcal SOD to cyanide and hydrogen peroxide established that it was a MnSOD. Although it has 98% homology to SOD of L. lactis IL1403, this is the first elucidated structure of lactococcal SOD revealing active sites containing the catalytic manganese coordinated by four ligands (H-27, H-82, D-168, and H-172). PMID:24592392

  6. The Cutting Edge of Affinity Electrophoresis Technology

    PubMed Central

    Kinoshita, Eiji; Kinoshita-Kikuta, Emiko; Koike, Tohru

    2015-01-01

    Affinity electrophoresis is an important technique that is widely used to separate and analyze biomolecules in the fields of biology and medicine. Both quantitative and qualitative information can be gained through affinity electrophoresis. Affinity electrophoresis can be applied through a variety of strategies, such as mobility shift electrophoresis, charge shift electrophoresis or capillary affinity electrophoresis. These strategies are based on changes in the electrophoretic patterns of biological macromolecules that result from interactions or complex-formation processes that induce changes in the size or total charge of the molecules. Nucleic acid fragments can be characterized through their affinity to other molecules, for example transcriptional factor proteins. Hydrophobic membrane proteins can be identified by means of a shift in the mobility induced by a charged detergent. The various strategies have also been used in the estimation of association/disassociation constants. Some of these strategies have similarities to affinity chromatography, in that they use a probe or ligand immobilized on a supported matrix for electrophoresis. Such methods have recently contributed to profiling of major posttranslational modifications of proteins, such as glycosylation or phosphorylation. Here, we describe advances in analytical techniques involving affinity electrophoresis that have appeared during the last five years. PMID:28248262

  7. Continuous processing of recombinant proteins: Integration of inclusion body solubilization and refolding using simulated moving bed size exclusion chromatography with buffer recycling.

    PubMed

    Wellhoefer, Martin; Sprinzl, Wolfgang; Hahn, Rainer; Jungbauer, Alois

    2013-12-06

    An integrated process which combines continuous inclusion body dissolution with NaOH and continuous matrix-assisted refolding based on closed-loop simulated moving bed size exclusion chromatography was designed and experimentally evaluated at laboratory scale. Inclusion bodies from N(pro) fusion pep6His and N(pro) fusion MCP1 from high cell density fermentation were continuously dissolved with NaOH, filtered and mixed with concentrated refolding buffer prior to refolding by size exclusion chromatography (SEC). This process enabled an isocratic operation of the simulated moving bed (SMB) system with a closed-loop set-up with refolding buffer as the desorbent buffer and buffer recycling by concentrating the raffinate using tangential flow filtration. With this continuous refolding process, we increased the refolding and cleavage yield of both model proteins by 10% compared to batch dilution refolding. Furthermore, more than 99% of the refolding buffer of the raffinate could be recycled which reduced the buffer consumption significantly. Based on the actual refolding data, we compared throughput, productivity, and buffer consumption between two batch dilution refolding processes - one using urea for IB dissolution, the other one using NaOH for IB dissolution - and our continuous refolding process. The higher complexity of the continuous refolding process was rewarded with higher throughput and productivity as well as significantly lower buffer consumption compared to the batch dilution refolding processes.

  8. Design, synthesis and application of benzyl-sulfonate biomimetic affinity adsorbents for monoclonal antibody purification from transgenic corn.

    PubMed

    Maltezos, Anastasios; Platis, Dimitris; Vlachakis, Dimitrios; Kossida, Sophia; Marinou, Marigianna; Labrou, Nikolaos E

    2014-01-01

    The human anti-human immunodeficiency virus (HIV) antibody 2G12 (mAb 2G12) is one of the most broadly neutralizing antibodies against HIV that recognizes a unique epitope on the surface glycoprotein gp120. In the present work, a limited affinity-ligand library was synthesized and evaluated for its ability to bind and purify recombinant mAb 2G12 expressed in transgenic corn. The affinity ligands were structural fragments of polysulfonate triazine dye Cibacron Blue 3GA (CB3GA) and represent novel lead scaffolds for designing synthetic affinity ligands. Solid phase chemistry was used to synthesize variants of CB3GA lead ligand. One immobilized ligand, bearing 4-aminobenzyl sulfonic acid (4ABS) linked on two chlorine atoms of the triazine ring (4ABS-Trz-4ABS), displayed high affinity for mAb 2G12. Absorption equilibrium, 3D molecular modelling and molecular dynamics simulation studies were carried out to provide a detailed picture of the 4ABS-Trz-4ABS interaction with mAb 2G12. This biomimetic affinity ligand was exploited for the development of a facile two-step purification protocol for mAb 2G12. In the first step of the procedure, mAb 2G12 was purified on an S-Sepharose FF cation exchanger, and in the second step, mAb 2G12 was purified using affinity chromatography on 4ABS-Trz-4ABS affinity adsorbent. Analysis of the antibody preparation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and enzyme-linked immunosorbent assay showed that the mAb 2G12 was fully active and of sufficient purity suitable for analytical applications.

  9. High-Mannose Specific Lectin and Its Recombinants from a Carrageenophyta Kappaphycus alvarezii Represent a Potent Anti-HIV Activity Through High-Affinity Binding to the Viral Envelope Glycoprotein gp120.

    PubMed

    Hirayama, Makoto; Shibata, Hiromi; Imamura, Koji; Sakaguchi, Takemasa; Hori, Kanji

    2016-04-01

    We previously reported that a high-mannose binding lectin KAA-2 from the red alga Kappaphycus alvarezii, which is an economically important species and widely cultivated as a source of carrageenans, had a potent anti-influenza virus activity. In this study, the full-length sequences of two KAA isoforms, KAA-1 and KAA-2, were elucidated by a combination of peptide mapping and cDNA cloning. They consisted of four internal tandem-repeated domains, which are conserved in high-mannose specific lectins from lower organisms, including a cyanobacterium Oscillatoria agardhii and a red alga Eucheuma serra. Using an Escherichia coli expression system, an active recombinant form of KAA-1 (His-tagged rKAA-1) was successfully generated in the yield of 115 mg per a litter of culture. In a detailed oligosaccharide binding analysis by a centrifugal ultrafiltration-HPLC method with 27 pyridylaminated oligosaccharides, His-tagged rKAA-1 and rKAA-1 specifically bound to high-mannose N-glycans with an exposed α1-3 mannose in the D2 arm as the native lectin did. Predicted from oligosaccharide-binding specificity, a surface plasmon resonance analysis revealed that the recombinants exhibit strong interaction with gp120, a heavily glycosylated envelope glycoprotein of HIV with high association constants (1.48-1.61 × 10(9) M(-1)). Native KAAs and the recombinants inhibited the HIV-1 entry at IC50s of low nanomolar levels (7.3-12.9 nM). Thus, the recombinant proteins would be useful as antiviral reagents targeting the viral surface glycoproteins with high-mannose N-glycans, and the cultivated alga K. alvarezii could also be a good source of not only carrageenans but also this functional lectin(s).

  10. High-Mannose Specific Lectin and Its Recombinants from a Carrageenophyta Kappaphycus alvarezii Represent a Potent Anti-HIV Activity Through High-Affinity Binding to the Viral Envelope Glycoprotein gp120.

    PubMed

    Hirayama, Makoto; Shibata, Hiromi; Imamura, Koji; Sakaguchi, Takemasa; Hori, Kanji

    2016-02-01

    We previously reported that a high-mannose binding lectin KAA-2 from the red alga Kappaphycus alvarezii, which is an economically important species and widely cultivated as a source of carrageenans, had a potent anti-influenza virus activity. In this study, the full-length sequences of two KAA isoforms, KAA-1 and KAA-2, were elucidated by a combination of peptide mapping and complementary DNA (cDNA) cloning. They consisted of four internal tandem-repeated domains, which are conserved in high-mannose specific lectins from lower organisms, including a cyanobacterium Oscillatoria agardhii and a red alga Eucheuma serra. Using an Escherichia coli expression system, an active recombinant form of KAA-1 (His-tagged rKAA-1) was successfully generated in the yield of 115 mg per liter of culture. In a detailed oligosaccharide binding analysis by a centrifugal ultrafiltration-HPLC method with 27 pyridylaminated oligosaccharides, His-tagged rKAA-1 and rKAA-1 specifically bound to high-mannose N-glycans with an exposed α1-3 mannose in the D2 arm as the native lectin did. Predicted from oligosaccharide binding specificity, a surface plasmon resonance analysis revealed that the recombinants exhibit strong interaction with gp120, a heavily glycosylated envelope glycoprotein of HIV with high association constants (1.48 - 1.61 × 10(9) M(-1)). Native KAAs and the recombinants inhibited the HIV-1 entry at IC50s of low nanomolar levels (7.3-12.9 nM). Thus, the recombinant proteins would be useful as antiviral reagents targeting the viral surface glycoproteins with high-mannose N-glycans, and the cultivated alga K. alvarezii could also be a good source of not only carrageenans but also this functional lectin(s).

  11. Transmembrane-truncated alphavbeta3 integrin retains high affinity for ligand binding: evidence for an 'inside-out' suppressor?

    PubMed Central

    Mehta, R J; Diefenbach, B; Brown, A; Cullen, E; Jonczyk, A; Güssow, D; Luckenbach, G A; Goodman, S L

    1998-01-01

    The molecular mechanisms of alphavbeta3 integrin affinity regulation have important biological implications in tumour development, wound repair and angiogenesis. We expressed, purified and characterized recombinant forms of human alphavbeta3 (r-alphavbeta3) and compared the activation state of these with alphavbeta3 in its cellular environment. The ligand specificity and selectivity of recombinant full-length and double transmembrane truncations of r-alphavbeta3 cloned in BacPAK6 vectors and expressed in Sf9 and High Five insect cells were compared with those of native placental alphavbeta3 and the receptor in situ on the cell surface. r-alphavbeta3 integrins were purified by affinity chromatography from detergent extracts of cells (full-length), and from the culture medium of cells expressing double-truncated r-alphavbeta3. r-alphavbeta3 had the same epitopes, ligand-binding specificities, bivalent cation requirements and susceptibility to RGD-containing peptides as native alphavbeta3. On M21-L4 melanoma cells, alphavbeta3 mediated binding to vitronectin, but not to fibrinogen unless activated with Mn2+. Non-activated alphaIIbbeta3 integrin as control in M21-L-IIb cells had the opposite profile, mediating binding to fibrinogen, but not to vitronectin unless activated with Mn2+. Thus these receptors had moderate to low ligand affinity. In marked contrast, purified alphavbeta3 receptors, with or without transmembrane and cytoplasmic domains, were constitutively of high affinity and able to bind strongly to vitronectin, fibronectin and fibrinogen under physiological conditions. Our data suggest that, in contrast with the positive regulation of alphaIIbbeta3 in situ, intracellular controls lower the affinity of alphavbeta3, and the cytoplasmic domains may act as a target for negative regulators of alphavbeta3 activity. PMID:9480902

  12. Expression and purification of recombinant proteins in Escherichia coli tagged with a small metal-binding protein from Nitrosomonas europaea.

    PubMed

    Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Zarate, Xristo

    2016-02-01

    Escherichia coli is still the preferred organism for large-scale production of recombinant proteins. The use of fusion proteins has helped considerably in enhancing the solubility of heterologous proteins and their purification with affinity chromatography. Here, the use of a small metal-binding protein (SmbP) from Nitrosomonas europaea is described as a new fusion protein for protein expression and purification in E. coli. Fluorescent proteins tagged at the N-terminal with SmbP showed high levels of solubility, compared with those of maltose-binding protein and glutathione S-transferase, and low formation of inclusion bodies. Using commercially available IMAC resins charged with Ni(II), highly pure recombinant proteins were obtained after just one chromatography step. Proteins may be purified from the periplasm of E. coli if SmbP contains the signal sequence at the N-terminal. After removal of the SmbP tag from the protein of interest, high-yields are obtained since SmbP is a protein of just 9.9 kDa. The results here obtained suggest that SmbP is a good alternative as a fusion protein/affinity tag for the production of soluble recombinant proteins in E. coli.

  13. Expression and immunogenic analysis of recombinant polypeptides derived from capsid protein VP1 for developing subunit vaccine material against hepatitis A virus.

    PubMed

    Jang, Kyoung Ok; Park, Jong-Hwa; Lee, Hyun Ho; Chung, Dae Kyun; Kim, Wonyong; Chung, In Sik

    2014-08-01

    Three recombinant polypeptides, VP1-His, VP1-3N-His, and 3D2-His, were produced by Escherichia coli expression system. Recombinant VP1-His, VP1-3N-His, and 3D2-His were expressed as bands with molecular weights of 32, 38, and 30 kDa, respectively. These were purified by affinity chromatography using Ni-NTA Fast-flow resin and/or ion-exchange chromatography using DEAE-Sepharose Fast-flow resin. Intraperitoneal immunizations of recombinant polypeptides successfully elicited the productions of VP1-His, VP1-3N-His, and 3D2-His specific IgG antibodies (IgG subclass distribution of IgG1>IgG2a>IgG2b>IgG3) in sera and induced the secretions of cytokines IFN-γ and IL-6 in spleen cells. Sera from recombinant VP1-His-, VP1-3N-His-, and 3D2-His-immunized mice neutralized the propagation of HAV. The highest neutralizing activity was shown in sera from recombinant VP1-3N-His-immunized mice. These results suggest that recombinant VP1-3N-His can be a useful source for developing hepatitis A virus (HAV) subunit vaccine candidates.

  14. Characterization of the Key Odorants in Chinese Zhima Aroma-Type Baijiu by Gas Chromatography-Olfactometry, Quantitative Measurements, Aroma Recombination, and Omission Studies.

    PubMed

    Zheng, Yang; Sun, Baoguo; Zhao, Mouming; Zheng, Fuping; Huang, Mingquan; Sun, Jinyuan; Sun, Xiaotao; Li, Hehe

    2016-07-06

    Zhima aroma-type Baijiu with typical sesame aroma is particularly popular in northern China. To our knowledge, it is still uncertain which components are important to make contributions to its unique aroma, although a few pieces of research have reported many volatile compounds in this Baijiu. The aroma-active compounds from the Baijiu were researched in this paper. A total of 56 odorants were identified in Chinese Zhima aroma-type Baijiu by aroma extract dilution analysis (AEDA). Their odor activity values (OAVs) were determined by different quantitative measurements, and then 26 aroma compounds were further confirmed as important odorants due to their OAVs ≥ 1, and these had higher values, such as ethyl hexanoate (OAV 2691), 3-methylbutanal (2403), ethyl pentanoate (1019), and so on. The overall aroma of Zhima aroma-type Baijiu could be simulated by mixing of the 26 key odorants in their measured concentrations. The similarity of the overall aroma profiles between the recombination model and the commercial sample was judged to be 2.7 out of 3.0 points. Omission experiments further corroborated the importance of methional and ethyl hexanoate for the overall aroma of Chinese Zhima aroma-type Baijiu.

  15. Modulating Uranium Binding Affinity in Engineered Calmodulin EF-Hand Peptides: Effect of Phosphorylation

    PubMed Central

    Pardoux, Romain; Sauge-Merle, Sandrine; Lemaire, David; Delangle, Pascale; Guilloreau, Luc; Adriano, Jean-Marc; Berthomieu, Catherine

    2012-01-01

    To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T9TKE12 sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from Kd = 25±6 nM to Kd = 5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the subnanomolar range (Kd = 0.25±0.06 nM). FTIR analyses showed that the phosphothreonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the νas(P-O) and νs(P-O) IR modes of phosphothreonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in νas(UO2)2+ vibration (from 923 cm−1 to 908 cm−1) was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH. PMID:22870263

  16. Characterization of the key odorants in light aroma type chinese liquor by gas chromatography-olfactometry, quantitative measurements, aroma recombination, and omission studies.

    PubMed

    Gao, Wenjun; Fan, Wenlai; Xu, Yan

    2014-06-25

    The light aroma type liquor is widely welcomed by consumers due to its pleasant fruity and floral aroma, particularly in northern China. To answer the puzzling question of which key aroma compounds are responsible for the typical aroma, three typical liquors were studied in this paper. A total of 66 aroma compounds were identified in three liquors by means of gas chromatography-olfactometry (GC-O) coupled with mass spectrometry (MS), and 27 odorants were further screened out as the important odorants according to quantitative study and odor activity values (OAVs). For OAV calculation, odor thresholds of the odorants were determined in a hydroalcoholic solution at 46% ethanol by volume. The typical light type aroma dominated by fruity and floral notes was successfully simulated by dissolving these important odorants in the 46% vol hydroalcoholic solution in their natural concentrations. Omission experiments further confirmed β-damascenone and ethyl acetate as the key odorants and revealed the significance of the entire group of esters, particularly ethyl lactate, geosmin, acetic acid, and 2-methylpropanoic acid, for the overall aroma of the light aroma type Chinese liquor.

  17. Preparation and immunogenicity of tag-free recombinant human eppin

    PubMed Central

    Zhang, Jie; Ding, Xin-Liang; Bian, Zeng-Hui; Xia, Yan-Kai; Wang, Shou-Lin; Song, Ling; Wang, Xin-Ru

    2011-01-01

    Human epididymal protease inhibitor (eppin) may be effective as a male contraceptive vaccine. In a number of studies, eppin with an engineered His6-tag has been produced using prokaryotic expression systems. For production of pharmaceutical-grade proteins for human use, however, the His6-tag must be removed. This study describes a method for producing recombinant human eppin without a His6-tag. We constructed plasmid pET28a (+)-His6-tobacco etch virus (TEV)-eppin for expression in Escherichia coli. After purification and refolding, the fusion protein His6-TEV-eppin was digested with TEV protease to remove the His6-tag and was further purified by NTA-Ni2+ affinity chromatography. Using this procedure, 2 mg of eppin without a His6-tag was isolated from 1 l of culture with a purity of >95%. The immunogenicity of the eppin was characterized using male Balb/c mice. PMID:21892195

  18. A simple strategy for extracellular production of CotA laccase in Escherichia coli and decolorization of simulated textile effluent by recombinant laccase.

    PubMed

    Wang, Tian-Nyu; Zhao, Min

    2017-01-01

    Laccases are green oxidases with a number of potential industrial applications. In this study, recombinant Bacillus subtilis CotA laccase was secreted by Escherichia coli via both the α-hemolysin secretion system and the YebF secretion system after microaerobic induction. Meanwhile, we discovered a much simpler approach for extracellular production of recombinant CotA laccase from E. coli, involving alternation of induction conditions to release recombinant CotA following intracellular expression. By optimizing the induction parameters, the extracellular yield of recombinant CotA laccase was improved from 157.4 to 2401.3 U/L after 24 h of induction. This strategy could be suitable for large-scale production of CotA laccase for industrial use. Recombinant CotA laccase was purified by Ni(2+) affinity chromatography in a single step and showed similar biochemical properties to wild-type laccase. Purified as well as crude recombinant CotA laccase efficiently decolorized seven structurally different dyes. The decolorization capability of recombinant CotA laccase under harsh conditions was investigated by incubation of the enzyme with a simulated textile effluent (STE) with pH 11.6, 3.5 % salinity and peak absorbance of 10.42. Recombinant CotA laccase efficiently decolorized 77.0 % of STE after 48 h reaction, demonstrating the potential of this enzyme for industrial dye effluent treatment.

  19. A simplified method for purification of recombinant soluble DnaA proteins.

    PubMed

    Zawilak-Pawlik, Anna M; Kois, Agnieszka; Zakrzewska-Czerwinska, Jolanta

    2006-07-01

    An improved, simplified method for the purification of recombinant, tagged DnaA proteins is described. The presented protocol allowed us to purify soluble DnaA proteins from two different bacterial species: Helicobacter pylori and Streptomyces coelicolor, but it can most likely also be used for the isolation of DnaA proteins from other bacteria, as it was adapted for Mycobacterium tuberculosis DnaA. The isolation procedure consists of protein precipitation with ammonium sulphate followed by affinity chromatography. The composition of the buffers used at each purification step is crucial for the successful isolation of the recombinant DnaA proteins. The universality of the method in terms of its application to differently tagged proteins (His-tagged or GST-tagged) as well as different properties of purified proteins (e.g., highly aggregating truncated forms) makes the protocol highly useful for all studies requiring purified and active DnaA proteins.

  20. Optimisation of expression and purification of the recombinant Yol066 (Rib2) protein from Saccharomyces cerevisiae.

    PubMed

    Urban, A; Ansmant, I; Motorin, Y

    2003-03-25

    Yeast protein Yol066 (encoded by YOL066 ORF, also known as Rib2) possesses two distinct sequence domains: C-terminal deaminase domain and N-terminal part related to RNA:pseudouridine (psi)-synthases. The deaminase domain is implicated in the riboflavine biosynthesis, while the exact function of the RNA:Psi-synthase domain remains obscure. Here we report the optimisation of growth conditions and purification scheme for recombinant His(6)-tagged Yol066 expressed in E. coli BL21(DE3) using pET28 plasmid. Production of soluble Yol066 protein is best at low temperature (18 degrees C) and IPTG concentration (50 micro M) and Yol066 purification was achieved using metal-affinity and ion-exchange chromatography. This optimised protocol yields about 10 mg of highly purified recombinant Yol066 from 3 l of E. coli culture.

  1. Facile Method for the Production of Recombinant Cholera Toxin B Subunit in E. coli.

    PubMed

    Hamorsky, Krystal; Matoba, Nobuyuki

    2016-01-01

    Herein, we report an Escherichia coli-based expression and purification method of recombinant cholera toxin B subunit (CTB). The CTB gene (E. coli codon optimized) is cloned into commercial pET-22b(+) vector using standard molecular biology techniques and the resulting vector is transformed into BL21(DE3) electrocompetent cells. The bacterial cells are grown and induction with isopropyl β-D-1-thiogalactopyranoside (IPTG) results in accumulation of CTB in the culture medium. CTB is purified from the culture medium using a simple two-step chromatography process: immobilized metal affinity chromatography (IMAC) followed by ceramic hydroxyapatite (CHT). CTB is purified to >95 % homogeneity with a yield of over 10 mg per liter of culture. Depending on the application, endotoxin is removed using a commercially available endotoxin removal resin to <1 EU/mg.

  2. Rapid determination of oxidized methionine residues in recombinant human basic fibroblast growth factor by ultra-performance liquid chromatography and electrospray ionization quadrupole time-of-flight mass spectrometry with in-source collision-induced dissociation.

    PubMed

    Ohkubo, Tsutomu; Inagaki, Shinsuke; Min, Jun Zhe; Kamiya, Daiki; Toyo'oka, Toshimasa

    2009-07-01

    The primary structure of the deteriorated recombinant human basic fibroblast growth factor (rhbFGF) was determined by ultra-performance liquid chromatography and electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC/ESI-QTOF-MS) with in-source collision-induced dissociation (CID). The rhbFGFs before and after treatment with hydrogen peroxide (H(2)O(2)) were separated using an ACQUITY UPLC BEH300 C18 column (1.7 microm, 150 mm x 2.1 mm i.d.) with a gradient elution of a mixture of water/acetonitrile containing 0.1% formic acid. The separated proteins were then detected by a SYNAPT High Definition Mass Spectrometry system (SYNAPT-MS). Two methionine (Met) residues in the rhbFGF structure were oxidized to Met-sulfoxide (Met-O) in 0.03% H(2)O(2) at pH 2.0. As the result, three peaks, except for the peak of rhbFGF, appeared on the chromatogram. The three proteins corresponding to each peak were estimated as the denatured rhbFGFs including the Met-O residue(s) with TOF-MS. Furthermore, the position of the Met-O residue(s) was efficiently identified by UPLC/ESI-QTOF-MS using the in-source CID technique. The proposed method seems to be very useful for the structural elucidation of proteins, because the oxidized Met residues in rhbFGF were easily and rapidly identified.

  3. Optimization of the purification methods for recovery of recombinant growth hormone from Paralichthys olivaceus

    NASA Astrophysics Data System (ADS)

    Zang, Xiaonan; Zhang, Xuecheng; Mu, Xiaosheng; Liu, Bin

    2013-03-01

    This study aimed to optimize the purification of recombinant growth hormone from Paralichthys olivaceus. Recombinant flounder growth hormone (r-fGH) was expressed by Escherichia coli in form of inclusion body or as soluble protein under different inducing conditions. The inclusion body was renatured using two recovery methods, i.e., dilution and dialysis. Thereafter, the refolded protein was purified by Glutathione Sepharase 4B affinity chromatography and r-fGH was obtained by cleavage of thrombin. For soluble products, r-fGH was directly purified from the lysates by Glutathione Sepharase 4B affinity chromatography. ELISA-receptor assay demonstrated that despite its low receptor binding activity, the r-fGH purified from refolded inclusion body had a higher yield (2.605 mg L-1) than that from soluble protein (1.964 mg L-1). Of the tested recovery methods, addition of renaturing buffer (pH 8.5) into denatured inclusion body yielded the best recovery rate (17.9%). This work provided an optimized purification method for high recovery of r-fGH, thus contributing to the application of r-fGH to aquaculture.

  4. Stability-indicating capillary zone electrophoresis method for the assessment of recombinant human interleukin-11 and its correlation with reversed-phase liquid chromatography and biossay.

    PubMed

    Souto, Ricardo Bizogne; Stamm, Fernanda Pavani; Schumacher, Jéssica Barbieri; Cardoso, Clovis Dervil Appratto; de Freitas, Guilherme Weber; Perobelli, Rafaela Ferreira; Dalmora, Sérgio Luiz

    2014-06-01

    A stability-indicating capillary zone electrophoresis (CZE) method was validated for the analysis of recombinant human interleukin-11(rhIL-11) using rupatadine fumarate, as internal standard (IS). A fused-silica capillary, (50 µm i.d.; effective length, 40 cm) was used at 25°C; the applied voltage was 20 kV. The background electrolyte solution consisted of 50 mmol L(-1) sodium dihydrogen phosphate solution at pH 3.0. Injections were performed using a pressure mode at 50 mbar for 45 s, with detection by photodiode array detector set at 196 nm. Specificity and stability-indicating capability were established in degradation studies, which also showed that there was no interference of the excipients. The method was linear over the concentration range of 1.0-300 µg mL(-1) (r(2)=0.9992) and the limit of detection (LOD) and limit of quantitation (LOQ) were 0.2 µg mL(-1) and 1.0 µg mL(-1), respectively. The accuracy was 100.4% with bias lower than 1.1%. Moreover, the in vitro cytotoxicity test of the degraded products showed significant differences (p<0.05). The method was applied for the content/potency assessment of rhIL-11 in biopharmaceutical formulations, and the results were correlated to those of a validated reversed-phase LC method (RP-LC) and an TF-1 cell culture assay, showing non-significant differences (p>0.05). In addition the CZE and RP-LC methods were applied for the analysis of rhIL-11 in human plasma. Therefore, the proposed alternative method can be applied to monitor stability, to assure the batch-to-batch consistency and quality of the bulk and finished biotechnology-derived medicine.

  5. Human butyrylcholinesterase produced in insect cells: huprine-based affinity purification and crystal structure.

    PubMed

    Brazzolotto, Xavier; Wandhammer, Marielle; Ronco, Cyril; Trovaslet, Marie; Jean, Ludovic; Lockridge, Oksana; Renard, Pierre-Yves; Nachon, Florian

    2012-08-01

    Butyrylcholinesterase (BChE) is a serine hydrolase that is present in all mammalian tissues. It can accommodate larger substrates or inhibitors than acetylcholinesterase (AChE), the enzyme responsible for hydrolysis of the neurotransmitter acetylcholine in the central nervous system and neuromuscular junctions. AChE is the specific target of organophosphorous pesticides and warfare nerve agents, and BChE is a stoichiometric bioscavenger. Conversion of BChE into a catalytic bioscavenger by rational design or designing reactivators specific to BChE required structural data obtained using a recombinant low-glycosylated human BChE expressed in Chinese hamster ovary cells. This expression system yields ≈ 1 mg of pure enzyme per litre of cell culture. Here, we report an improved expression system using insect cells with a fourfold higher yield for truncated human BChE with all glycosylation sites present. We developed a fast purification protocol for the recombinant protein using huprine-based affinity chromatography, which is superior to the classical procainamide-based affinity. The purified BChE crystallized under different conditions and space group than the recombinant low-glycosylated protein produced in Chinese hamster ovary cells. The crystals diffracted to 2.5 Å. The overall monomer structure is similar to the low-glycosylated structure except for the presence of the additional glycans. Remarkably, the carboxylic acid molecule systematically bound to the catalytic serine in the low-glycosylated structure is also present in this new structure, despite the different expression system, purification protocol and crystallization conditions.

  6. Expression and purification of recombinant proteins in Escherichia coli tagged with the metal-binding protein CusF.

    PubMed

    Cantu-Bustos, J Enrique; Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Galbraith, David W; McEvoy, Megan M; Zarate, Xristo

    2016-05-01

    Production of recombinant proteins in Escherichia coli has been improved considerably through the use of fusion proteins, because they increase protein solubility and facilitate purification via affinity chromatography. In this article, we propose the use of CusF as a new fusion partner for expression and purification of recombinant proteins in E. coli. Using a cell-free protein expression system, based on the E. coli S30 extract, Green Fluorescent Protein (GFP) was expressed with a series of different N-terminal tags, immobilized on self-assembled protein microarrays, and its fluorescence quantified. GFP tagged with CusF showed the highest fluorescence intensity, and this was greater than the intensities from corresponding GFP constructs that contained MBP or GST tags. Analysis of protein production in vivo showed that CusF produces large amounts of soluble protein with low levels of inclusion bodies. Furthermore, fusion proteins can be exported to the cellular periplasm, if CusF contains the signal sequence. Taking advantage of its ability to bind copper ions, recombinant proteins can be purified with readily available IMAC resins charged with this metal ion, producing pure proteins after purification and tag removal. We therefore recommend the use of CusF as a viable alternative to MBP or GST as a fusion protein/affinity tag for the production of soluble recombinant proteins in E. coli.

  7. Production of biologically active recombinant goose FSH in a single chain form with a CTP linker sequence.

    PubMed

    Li, Hui; Zhu, Huanxi; Qin, Qinming; Lei, Mingming; Shi, Zhendan

    2017-02-01

    FSH is a glycoprotein hormone secreted by the pituitary gland that is essential for gonadal development and reproductive function. In avian reproduction study, especially in avian reproduction hormone study, it is hindered by the lack of biologically active FSH. In order to overcome this shortcoming, we prepared recombinant goose FSH as a single chain molecule and tested its biological activities in the present study. Coding sequences for mature peptides of goose FSH α and β subunits were amplified from goose pituitary cDNA. A chimeric gene containing α and β subunit sequences linked by the hCG carboxyl terminal peptide coding sequence was constructed. The recombinant gene was inserted into the pcDNA3.1-Fc eukaryotic expression vector to form pcDNA-Fc-gFSHβ-CTP-α and then transfected into 293-F cells. A recombinant, single chain goose FSH was expressed and verified by SDS-PAGE and western blot analysis, and was purified using Protein A agarose affinity and gel filtration chromatography. Biological activity analysis results showed that the recombinant, chimeric goose FSH possesses the function of stimulating estradiol secretion and cell proliferation, in cultured chicken granulosa cells. These results indicated that bioactive, recombinant goose FSH has been successfully prepared in vitro. The recombinant goose FSH will have the potential of being used as a research tool for studying avian reproductive activities, and as a standard for developing avian FSH bioassays.

  8. Affinity filtration coupled with capillary-based affinity purification for the isolation of protein complexes.

    PubMed

    Qureshi, M S; Sheikh, Q I; Hill, R; Brown, P E; Dickman, M J; Tzokov, S B; Rice, D W; Gjerde, D T; Hornby, D P

    2013-08-01

    The isolation of complex macromolecular assemblies at the concentrations required for structural analysis represents a major experimental challenge. Here we present a method that combines the genetic power of site-specific recombination in order to selectively "tag" one or more components of a protein complex with affinity-based rapid filtration and a final step of capillary-based enrichment. This modified form of tandem affinity purification produces highly purified protein complexes at high concentrations in a highly efficient manner. The application of the method is demonstrated for the yeast Arp2/3 heptameric protein complex involved in mediating reorganization of the actin cytoskeleton.

  9. A dielectric affinity microbiosensor

    NASA Astrophysics Data System (ADS)

    Huang, Xian; Li, Siqi; Schultz, Jerome S.; Wang, Qian; Lin, Qiao

    2010-01-01

    We present an affinity biosensing approach that exploits changes in dielectric properties of a polymer due to its specific, reversible binding with an analyte. The approach is demonstrated using a microsensor comprising a pair of thin-film capacitive electrodes sandwiching a solution of poly(acrylamide-ran-3-acrylamidophenylboronic acid), a synthetic polymer with specific affinity to glucose. Binding with glucose induces changes in the permittivity of the polymer, which can be measured capacitively for specific glucose detection, as confirmed by experimental results at physiologically relevant concentrations. The dielectric affinity biosensing approach holds the potential for practical applications such as long-term continuous glucose monitoring.

  10. Affinity in electrophoresis.

    PubMed

    Heegaard, Niels H H

    2009-06-01

    The journal Electrophoresis has greatly influenced my approaches to biomolecular affinity studies. The methods that I have chosen as my main tools to study interacting biomolecules--native gel and later capillary zone electrophoresis--have been the topic of numerous articles in Electrophoresis. Below, the role of the journal in the development and dissemination of these techniques and applications reviewed. Many exhaustive reviews on affinity electrophoresis and affinity CE have been published in the last few years and are not in any way replaced by the present deliberations that are focused on papers published by the journal.

  11. Minibodies and Multimodal Chromatography Methods: A Convergence of Challenge and Opportunity.

    PubMed

    Gagnon, Pete; Cheung, Chia-Wei; Lepin, Eric J; Wu, Anna M; Sherman, Mark A; Raubitschek, Andrew A; Yazaki, Paul J

    2010-02-01

    This case study describes early phase purification process development for a recombinant anticancer minibody produced in mammalian cell culture. The minibody did not bind to protein A. Cation-exchange, anion-exchange, hydrophobic-interaction, and hydroxyapatite (eluted by phosphate gradient) chromatographic methods were scouted, but the minibody coeluted with BSA to a substantial degree on each. Hydroxyapatite eluted with a sodium chloride gradient separated BSA and also removed a dimeric contaminant, but BSA consumed so much binding capacity that this proved impractical as a capture tool. Capto MMC media proved capable of supporting adequate capture and significant dimer removal, although both loading and elution selectivity varied dramatically with the amount of supernatant applied to the column. An anion-exchange step was included to fortify overall virus and DNA removal. These results illustrate the value of multimodal chromatography methods when affinity chromatography methods are lacking and conventional alternatives prove inadequate.

  12. Affine dynamics with torsion

    NASA Astrophysics Data System (ADS)

    Gültekin, Kemal

    2016-03-01

    In this study, we give a thorough analysis of a general affine gravity with torsion. After a brief exposition of the affine gravities considered by Eddington and Schrödinger, we construct and analyze different affine gravities based on the determinants of the Ricci tensor, the torsion tensor, the Riemann tensor, and their combinations. In each case we reduce equations of motion to their simplest forms and give a detailed analysis of their solutions. Our analyses lead to the construction of the affine connection in terms of the curvature and torsion tensors. Our solutions of the dynamical equations show that the curvature tensors at different points are correlated via non-local, exponential rescaling factors determined by the torsion tensor.

  13. Lectin affinity electrophoresis.

    PubMed

    Kobayashi, Yuka

    2014-01-01

    An interaction or a binding event typically changes the electrophoretic properties of a molecule. Affinity electrophoresis methods detect changes in the electrophoretic pattern of molecules (mainly macromolecules) that occur as a result of biospecific interactions or complex formation. Lectin affinity electrophoresis is a very effective method for the detection and analysis of trace amounts of glycobiological substances. It is particularly useful for isolating and separating the glycoisomers of target molecules. Here, we describe a sensitive technique for the detection of glycoproteins separated by agarose gel-lectin affinity electrophoresis that uses antibody-affinity blotting. The technique is tested using α-fetoprotein with lectin (Lens culinaris agglutinin and Phaseolus vulgaris agglutinin)-agarose gels.

  14. Applying Chromatography.

    ERIC Educational Resources Information Center

    Klein, Jessie W.; Patev, Paul

    1998-01-01

    Presents three experiments to introduce students to different kinds of chromatography: (1) paper chromatography; (2) gel filtration chromatography; and (3) reverse-phase liquid chromatography. Written in the form of a laboratory manual, explanations of each of the techniques, materials needed, procedures, and a glossary are included. (PVD)

  15. Genetic Recombination

    ERIC Educational Resources Information Center

    Whitehouse, H. L. K.

    1973-01-01

    Discusses the mechanisms of genetic recombination with particular emphasis on the study of the fungus Sordaria brevicollis. The study of recombination is facilitated by the use of mutants of this fungus in which the color of the ascospores is affected. (JR)

  16. Production of recombinant proteins in Escherichia coli tagged with the fusion protein CusF3H.

    PubMed

    Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Zarate, Xristo

    2017-04-01

    Recombinant protein expression in the bacterium Escherichia coli still is the number one choice for large-scale protein production. Nevertheless, many complications can arise using this microorganism, such as low yields, the formation of inclusion bodies, and the requirement for difficult purification steps. Most of these problems can be solved with the use of fusion proteins. Here, the use of the metal-binding protein CusF3H+ is described as a new fusion protein for recombinant protein expression and purification in E. coli. We have previously shown that CusF produces large amounts of soluble protein, with low levels of formation of inclusion bodies, and that proteins can be purified using IMAC resins charged with Cu(II) ions. CusF3H+ is an enhanced variant of CusF, formed by the addition of three histidine residues at the N-terminus. These residues then can bind Ni(II) ions allowing improved purity after affinity chromatography. Expression and purification of Green Fluorescent Protein tagged with CusF3H+ showed that the mutation did not alter the capacity of the fusion protein to increase protein expression, and purity improved considerably after affinity chromatography with immobilized nickel ions; high yields are obtained after tag-removal since CusF3H+ is a small protein of just 10 kDa. Furthermore, the results of experiments involving expression of tagged proteins having medium to large molecular weights indicate that the presence of the CusF3H+ tag improves protein solubility, as compared to a His-tag. We therefore endorse CusF3H+ as a useful alternative fusion protein/affinity tag for production of recombinant proteins in E. coli.

  17. Affinity Monolith-Integrated Microchips for Protein Purification and Concentration.

    PubMed

    Gao, Changlu; Sun, Xiuhua; Wang, Huaixin; Qiao, Wei; Hu, Bo

    2016-01-01

    Affinity chromatography is a valuable method to purify and concentrate minute amount of proteins. Monoliths with epoxy groups for affinity immobilization were prepared by direct in-situ photopolymerization of glycidyl methacrylate and ethylene glycol dimethacrylate in porogenic solvents consisting of 1-dodecanol and cyclohexanol. By integrating affinity monoliths onto a microfluidic system, targeted biomolecules can be captured and retained on affinity column, while other biomolecules having no specific interactions toward the immobilized ligands flow through the microchannel. Therefore, proteins which remain on the affinity column are purified and concentrated, and then eluted by appropriate solutions and finally, separated by microchip capillary electrophoresis. This integrated microfluidic device has been applied to the purification and separation of specific proteins (FITC-labeled human serum albumin and IgG) in a mixture.

  18. Recombinant expression of porcine spermadhesin AWN and its phospholipid interaction: Indication for a novel lipid binding property.

    PubMed

    Schröter, F; Müller, K; Müller, P; Krause, E; Braun, B C

    2017-03-21

    AWN is a porcine (Sus scrofa domestica) seminal plasma protein and has been linked to a variety of processes related to fertilization. To acquire the protein in sufficient amount and purity for functional studies, we established its recombinant expression in E. coli and a three-step purification protocol based on different chromatographies. The test for AWN-phospholipid interaction revealed phosphatidic acid and cardiolipin as potential binding partners. As phosphatidic acid is surmised to play a role in cation-induced membrane destabilization and fusion events, we propose a membrane protective function of the presented binding affinity. Further studies with recombinant AWN will allow new insights into the mechanism of sperm-spermadhesin interaction and might provide new approaches for artificial reproduction techniques.

  19. Recombinant Production of Human Aquaporin-1 to an Exceptional High Membrane Density in Saccharomyces cerevisiae

    PubMed Central

    Bomholt, Julie; Hélix-Nielsen, Claus; Scharff-Poulsen, Peter; Pedersen, Per Amstrup

    2013-01-01

    In the present paper we explored the capacity of yeast Saccharomyces cerevisiae as host for heterologous expression of human Aquaporin-1. Aquaporin-1 cDNA was expressed from a galactose inducible promoter situated on a plasmid with an adjustable copy number. Human Aquaporin-1 was C-terminally tagged with yeast enhanced GFP for quantification of functional expression, determination of sub-cellular localization, estimation of in vivo folding efficiency and establishment of a purification protocol. Aquaporin-1 was found to constitute 8.5 percent of total membrane protein content after expression at 15°C in a yeast host over-producing the Gal4p transcriptional activator and growth in amino acid supplemented minimal medium. In-gel fluorescence combined with western blotting showed that low accumulation of correctly folded recombinant Aquaporin-1 at 30°C was due to in vivo mal-folding. Reduction of the expression temperature to 15°C almost completely prevented Aquaporin-1 mal-folding. Bioimaging of live yeast cells revealed that recombinant Aquaporin-1 accumulated in the yeast plasma membrane. A detergent screen for solubilization revealed that CYMAL-5 was superior in solubilizing recombinant Aquaporin-1 and generated a monodisperse protein preparation. A single Ni-affinity chromatography step was used to obtain almost pure Aquaporin-1. Recombinant Aquaporin-1 produced in S. cerevisiae was not N-glycosylated in contrast to the protein found in human erythrocytes. PMID:23409185

  20. Expression of a functional recombinant Phoneutria nigriventer toxin active on K+ channels.

    PubMed

    Carneiro, A M D; Kushmerick, C; Koenen, J; Arndt, M H L; Cordeiro, M N; Chavez-Olortegui, C; Diniz, C R; Gomez, M V; Kalapothakis, E; Prado, M A M; Prado, V F

    2003-03-01

    PnTx3-1 is a peptide isolated from the venom of the spider Phoneutria nigriventer that specifically inhibits A-type K(+) currents (I(A)) in GH(3) cells. Here we used a bacterial expression system to produce an NH(2)-extended mutant of PnTx3-1 (ISEF-PnTx3-1) and tested whether the toxin is functional. The recombinant toxin was purified from bacterial extracts by a combination of affinity and ion-exchange chromatography. The recombinant toxin blocked A-type K(+) currents in GH(3) cells in a fashion similar to that observed with the wild-type toxin purified from the spider venom. These results suggest that recombinant cDNA methods provide a novel source for the production of functional Phoneutria toxins. The recombinant ISEF-PnTx3-1 should be useful for further understanding of the role of A-type K(+) currents in biological processes.

  1. Production and purification of recombinant enteropeptidase expressed in an insect-baculovirus cell system.

    PubMed

    Azhar, Mahammad; Somashekhar, R

    2015-01-01

    Enteropeptidase (EC 3.4.21.9) is the glycoprotein enzyme in the small intestine that triggers the activation of the zymogens in pancreatic juice by converting trypsinogen into trypsin. Because of its physiological significance, there have been many studies on the expression, purification, and characterization of enteropeptidase from different species. The baculovirus expression system has been commonly used in research communities and scientific industries for the production of high levels of recombinant proteins, which require posttranslational modifications for functional activity. In the present study, we isolated bovine enteropeptidase catalytic subunit gene from Bos taurus indicus (GenBank accession no. KC756844), and cloned it in pFast Bac HT "A" baculovirus expression donor vector, under the polyhedrin promoter. Recombinant bovine enteropeptidase was expressed in SF-9 insect cells with high expression levels. Recombinant enteropeptidase was purified using Ni-NTA affinity chromatography. A 6-mg quantity of pure active protein was obtained from 100 mL culture using this approach. Its activity and kinetic parameters were determined by cleavage of its fluorogenic substrate Gly-(Asp) 4-Lys-β-naphthylamide. The recombinant bovine enteropeptidase showed a K m value of 0.75 ± 0.02 mM with K cat 25 ± 1 s.

  2. Generation of polyclonal antibodies against recombinant human glucocerebrosidase produced in Escherichia coli.

    PubMed

    Novo, Juliana Branco; Oliveira, Maria Leonor Sarno; Magalhães, Geraldo Santana; Morganti, Ligia; Raw, Isaías; Ho, Paulo Lee

    2010-11-01

    Deficiency of the lysosomal glucocerebrosidase (GCR) enzyme results in Gaucher's disease, the most common inherited storage disorder. Treatment consists of enzyme replacement therapy by the administration of recombinant GCR produced in Chinese hamster ovary cells. The production of anti-GCR antibodies has already been described with placenta-derived human GCR that requires successive chromatographic procedures. Here, we report a practical and efficient method to obtain anti-GCR polyclonal antibodies against recombinant GCR produced in Escherichia coli and further purified by a single step through nickel affinity chromatography. The purified GCR was used to immunize BALB/c mice and the induction of anti-GCR antibodies was evaluated by enzyme-linked immunosorbent assay. The specificity of the antiserum was also evaluated by western blot analysis against recombinant GCR produced by COS-7 cells or against endogenous GCR of human cell lines. GCR was strongly recognized by the produced antibodies, either as cell-associated or as secreted forms. The detected molecular masses of 59-66 kDa are in accordance to the expected size for glycosylated GCR. The GCR produced in E. coli would facilitate the production of polyclonal (shown here) and monoclonal antibodies and their use in the characterization of new biosimilar recombinant GCRs coming in the near future.

  3. A novel self-cleavage system for production of soluble recombinant protein in Escherichia coli.

    PubMed

    Feng, Yufei; Xu, Qingyuan; Yang, Tao; Sun, Encheng; Li, Junping; Shi, Dongfang; Wu, Donglai

    2014-07-01

    Many approaches for generating large quantities of recombinant protein in Escherichia coli fuse the protein of interest to a protein tag to enhance solubility and improve recovery. However, the fusion tags can confound downstream applications, as the fusion partner can alter the structure and biological activity of the recombinant protein and proteolytic removal of the fusion tags can be expensive. Here we describe a new system for production of native proteins in E. coli that allows for removal of the fusion tag via intracellular self-cleavage by the human rhinovirus 3C (HRV3C) protease. This system allows for parallel cloning of target protein coding sequences into six different expression vectors, each with a different fusion partner tag to enhance solubility during induction. Temperature-regulated expression of the HRV3C protease allows for intracellular removal of the fusion tag following induction, and the liberated recombinant protein can be purified by affinity chromatography by virtue of a short six-histidine tag. This system will be an attractive approach for the expression and purification of recombinant proteins free of solubility-enhancing fusion tags, and should be amenable to high-throughput applications.

  4. Purification of recombinant protein by cold-coacervation of fusion constructs incorporating resilin-inspired polypeptides.

    PubMed

    Lyons, Russell E; Elvin, Christopher M; Taylor, Karin; Lekieffre, Nicolas; Ramshaw, John A M

    2012-12-01

    Polypeptides containing between 4 and 32 repeats of a resilin-inspired sequence AQTPSSYGAP, derived from the mosquito Anopheles gambiae, have been used as tags on recombinant fusion proteins. These repeating polypeptides were inspired by the repeating structures that are found in resilins and sequence-related proteins from various insects. Unexpectedly, an aqueous solution of a recombinant resilin protein displays an upper critical solution temperature (cold-coacervation) when held on ice, leading to a separation into a protein rich phase, typically exceeding 200 mg/mL, and a protein-poor phase. We show that purification of recombinant proteins by cold-coacervation can be performed when engineered as a fusion partner to a resilin-inspired repeat sequence. In this study, we demonstrate the process by the recombinant expression and purification of enhanced Green fluorescent protein (EGFP) in E. coli. This facile purification system can produce high purity, concentrated protein solutions without the need for affinity chromatography or other time-consuming or expensive purification steps, and that it can be used with other bulk purification steps such as low concentration ammonium sulfate precipitation. Protein purification by cold-coacervation also minimizes the exposure of the target protein to enhanced proteolysis at higher temperature.

  5. Characterization and Recombinant Expression of Terebrid Venom Peptide from Terebra guttata

    PubMed Central

    Moon, John; Gorson, Juliette; Wright, Mary Elizabeth; Yee, Laurel; Khawaja, Samer; Shin, Hye Young; Karma, Yasmine; Musunri, Rajeeva Lochan; Yun, Michelle; Holford, Mande

    2016-01-01

    Venom peptides found in terebrid snails expand the toolbox of active compounds that can be applied to investigate cellular physiology and can be further developed as future therapeutics. However, unlike other predatory organisms, such as snakes, terebrids produce very small quantities of venom, making it difficult to obtain sufficient amounts for biochemical characterization. Here, we describe the first recombinant expression and characterization of terebrid peptide, teretoxin Tgu6.1, from Terebra guttata. Tgu6.1 is a novel forty-four amino acid teretoxin peptide with a VI/VII cysteine framework (C–C–CC–C–C) similar to O, M and I conotoxin superfamilies. A ligation-independent cloning strategy with an ompT protease deficient strain of E. coli was employed to recombinantly produce Tgu6.1. Thioredoxin was introduced in the plasmid to combat disulfide folding and solubility issues. Specifically Histidine-6 tag and Ni-NTA affinity chromatography were applied as a purification method, and enterokinase was used as a specific cleavage protease to effectively produce high yields of folded Tgu6.1 without extra residues to the primary sequence. The recombinantly-expressed Tgu6.1 peptide was bioactive, displaying a paralytic effect when injected into a Nereis virens polychaete bioassay. The recombinant strategy described to express Tgu6.1 can be applied to produce high yields of other disulfide-rich peptides. PMID:26950153

  6. Validation of affinity reagents using antigen microarrays.

    PubMed

    Sjöberg, Ronald; Sundberg, Mårten; Gundberg, Anna; Sivertsson, Asa; Schwenk, Jochen M; Uhlén, Mathias; Nilsson, Peter

    2012-06-15

    There is a need for standardised validation of affinity reagents to determine their binding selectivity and specificity. This is of particular importance for systematic efforts that aim to cover the human proteome with different types of binding reagents. One such international program is the SH2-consortium, which was formed to generate a complete set of renewable affinity reagents to the SH2-domain containing human proteins. Here, we describe a microarray strategy to validate various affinity reagents, such as recombinant single-chain antibodies, mouse monoclonal antibodies and antigen-purified polyclonal antibodies using a highly multiplexed approach. An SH2-specific antigen microarray was designed and generated, containing more than 6000 spots displayed by 14 identical subarrays each with 406 antigens, where 105 of them represented SH2-domain containing proteins. Approximately 400 different affinity reagents of various types were analysed on these antigen microarrays carrying antigens of different types. The microarrays revealed not only very detailed specificity profiles for all the binders, but also showed that overlapping target sequences of spotted antigens were detected by off-target interactions. The presented study illustrates the feasibility of using antigen microarrays for integrative, high-throughput validation of various types of binders and antigens.

  7. Affine Sphere Relativity

    NASA Astrophysics Data System (ADS)

    Minguzzi, E.

    2017-03-01

    We investigate spacetimes whose light cones could be anisotropic. We prove the equivalence of the structures: (a) Lorentz-Finsler manifold for which the mean Cartan torsion vanishes, (b) Lorentz-Finsler manifold for which the indicatrix (observer space) at each point is a convex hyperbolic affine sphere centered on the zero section, and (c) pair given by a spacetime volume and a sharp convex cone distribution. The equivalence suggests to describe (affine sphere) spacetimes with this structure, so that no algebraic-metrical concept enters the definition. As a result, this work shows how the metric features of spacetime emerge from elementary concepts such as measure and order. Non-relativistic spacetimes are obtained replacing proper spheres with improper spheres, so the distinction does not call for group theoretical elements. In physical terms, in affine sphere spacetimes the light cone distribution and the spacetime measure determine the motion of massive and massless particles (hence the dispersion relation). Furthermore, it is shown that, more generally, for Lorentz-Finsler theories non-differentiable at the cone, the lightlike geodesics and the transport of the particle momentum over them are well defined, though the curve parametrization could be undefined. Causality theory is also well behaved. Several results for affine sphere spacetimes are presented. Some results in Finsler geometry, for instance in the characterization of Randers spaces, are also included.

  8. Chaperokine function of recombinant Hsp72 produced in insect cells using a baculovirus expression system is retained.

    PubMed

    Zheng, Hongying; Nagaraja, Ganachari M; Kaur, Punit; Asea, Edwina E; Asea, Alexzander

    2010-01-01

    Extracellular heat shock protein 72 (Hsp72; inducible form of the 70-kDa heat shock protein) plays a critical role in innate and adaptive immune responses and has shown promise as an ideal adjuvant for the optimization of antigen-specific anti-tumor vaccines. Recent studies suggest that to correctly elucidate the mechanisms by which Hsp72 exerts its beneficial effects in vitro, great care must be taken to ensure that endotoxin by-products do not invalidate the findings. In this study, we have taken advantage of the baculovirus expression vector system for production of endotoxin-free recombinant Hsp72. The coding sequence of human hsp72 was recombined into the baculovirus immediately downstream of the strong polyhedron gene promoter. Ninety-six h post-infection of Sf9 insect cells with recombinant baculovirus, maximal levels of Hsp72 protein were detected. The recombinant human Hsp72 was purified by affinity chromatography from insect cells, and purity was confirmed by SDS-PAGE and mass spectrometry. The purified human recombinant Hsp72(bv) (Hsp72 produced using the BEVS) was demonstrated to have no endotoxin contamination and was shown to have stimulated potent calcium flux in the human monocytic cell line. Furthermore, recombinant Hsp72(bv) enhanced the tolerance of neuroblastoma cells to heat stress-induced cell death and displayed classical chaperokine functions including augmentation of inflammatory cytokine productions in mouse splenocytes. The production of functional, endotoxin-free recombinant human Hsp72(bv) in insect cells is inexpensive and convenient and eliminates the need of special procedures for endotoxin depletion. Endotoxin-free recombinant human Hsp72(bv) can now be used to unlock the important role Hsp72 plays in modulating immune function.

  9. On-line casein micelle disruption for downstream purification of recombinant human myelin basic protein produced in the milk of transgenic cows.

    PubMed

    Al-Ghobashy, Medhat A; Williams, Martin A K; Brophy, Brigid; Laible, Götz; Harding, David R K

    2009-06-01

    Downstream purification of a model recombinant protein (human myelin basic protein) from milk of transgenic cows is described. The recombinant protein was expressed as a His tagged fusion protein in the milk of transgenic cows and was found associated with the casein micellar phase. While difficulties in obtaining good recoveries were found when employing conventional micelle disruption procedures, direct capture using the cation exchanger SP Sepharose Big Beads was found successful in the extraction of the recombinant protein. Early breakthrough suggested a slow release of the recombinant protein from the micelles and dictated micelle disruption in order to obtain good yields. A new approach for deconstruction of the calcium core of the casein micelles, employing the interaction between the micellar calcium and the active sites of the cation exchanger resin was developed. Milk samples were loaded to the column in aliquots with a column washing step after each aliquot. This sequential loading approach successfully liberated the recombinant protein from the micelles and was found superior to the conventional sample loading approach. It increased the recovery by more than 25%, reduced fouling due to milk components and improved the column hydrodynamic properties as compared to the conventional sample loading approach. Hardware and software modifications to the chromatography system were necessary in order to keep the whole process automated. A second purification step using a Ni2+ affinity column was used to isolate the recombinant protein at purity more than 90% and a recovery percentage of 78%.

  10. Neuere Chromatographie

    NASA Astrophysics Data System (ADS)

    Hostettmann, K.

    1983-04-01

    Besides high-performance liquid chromatography (HPLC) which is now a well-established and currently used technique, several emerging methods for the isolation and separation of natural products are receiving considerable attention. Centrifugal thin-layer chromatography is a very rapid technique, but limited in resolution. Of special interest are the recently developed support-free liquid-liquid chromatography methods such as droplet counter-current chromatography (DCCC) and rotation locular counter-current chromatography (RLCC). This latter method was applied to the separation of the enantiomers of (±)-norephedrine.

  11. Human sphingosine kinase: purification, molecular cloning and characterization of the native and recombinant enzymes.

    PubMed Central

    Pitson, S M; D'andrea, R J; Vandeleur, L; Moretti, P A; Xia, P; Gamble, J R; Vadas, M A; Wattenberg, B W

    2000-01-01

    Sphingosine 1-phosphate (S1P) is a novel lipid messenger that has important roles in a wide variety of mammalian cellular processes including growth, differentiation and death. Basal levels of S1P in mammalian cells are generally low, but can increase rapidly and transiently when cells are exposed to mitogenic agents and other stimuli. This increase is largely due to increased activity of sphingosine kinase (SK), the enzyme that catalyses its formation. In the current study we have purified, cloned and characterized the first human SK to obtain a better understanding of its biochemical activity and possible activation mechanisms. The enzyme was purified to homogeneity from human placenta using ammonium sulphate precipitation, anion-exchange chromatography, calmodulin-affinity chromatography and gel-filtration chromatography. This resulted in a purification of over 10(6)-fold from the original placenta extract. The enzyme was cloned and expressed in active form in both HEK-293T cells and Escherichia coli, and the recombinant E. coli-derived SK purified to homogeneity. To establish whether post-translational modifications lead to activation of human SK activity we characterized both the purified placental enzyme and the purified recombinant SK produced in E. coli, where such modifications would not occur. The premise for this study was that post-translational modifications are likely to cause conformational changes in the structure of SK, which may result in detectable changes in the physico-chemical or catalytic properties of the enzyme. Thus the enzymes were characterized with respect to substrate specificity and kinetics, inhibition kinetics and various other physico-chemical properties. In all cases, both the native and recombinant SKs displayed remarkably similar properties, indicating that post-translational modifications are not required for basal activity of human SK. PMID:10947957

  12. [An effective scheme to produce recombinant uracil-DNA glycosylase of Escherichia coli for PCR diagnostics].

    PubMed

    Dmitrochenko, A E; Turiianskaia, O M; Gilep, A A; Usanov, S A; Iantsevich, A V

    2014-01-01

    An effective scheme has been developed to produce recombinant uracil-DNA glycosylase of Escherichia coli K12 intended to be used for PCR diagnostics, making it possible to achieve a high yield of the end product using a two-stage purification. The gene encoding this enzyme was cloned into the pCWori vector within the same reading frame with six residues of histidine in the C-erminal sequence. Using this vector and the E. coli DH5alpha, a host-vector expression system has been developed and conditions for protein synthesis have been optimized. To purify the protein, metal affinity chromatography with further dialysis was used to remove imidazole. The enzyme yield was no less than 60 mg of the end protein per 1 L of the culture medium. The concordance between amino acid sequences of the recombinant and native enzymes was proved by peptide mass fingerprinting and mass spectrometry. A rapid test to determine the activity of the enzyme preparation was suggested. It was found that the activity of 1.0 mg of the recombinant protein is no less than 3 x 10(3) units. The recombinant enzyme was most stable at pH 8.0 and an ionic strength of the solution equal to 200 mM; it lost its activity completely for 10 min at 60 degrees C. Storage during 1 h at 20 degrees C resulted in the loss of no more than 30% of activity. In the enzyme preparation, the activity of DNase was absent. The free energy of the unfolding of the protein globule of the recombinant uracil-DNA glycosylase is 23.1 +/- 0.2 kJ/mol. The data obtained indicate that the recombinant enzyme may be recommended for use in PCR diagnostics to prevent the appearance of false positive results caused by pollution of the reaction mixture by products of the preceding reactions.

  13. Purification and Refolding to Amyloid Fibrils of (His)6-tagged Recombinant Shadoo Protein Expressed as Inclusion Bodies in E. coli.

    PubMed

    Li, Qiaojing; Richard, Charles-Adrien; Moudjou, Mohammed; Vidic, Jasmina

    2015-12-19

    The Escherichia coli expression system is a powerful tool for the production of recombinant eukaryotic proteins. We use it to produce Shadoo, a protein belonging to the prion family. A chromatographic method for the purification of (His)6-tagged recombinant Shadoo expressed as inclusion bodies is described. The inclusion bodies are solubilized in 8 M urea and bound to a Ni(2+)-charged column to perform ion affinity chromatography. Bound proteins are eluted by a gradient of imidazole. Fractions containing Shadoo protein are subjected to size exclusion chromatography to obtain a highly purified protein. In the final step purified Shadoo is desalted to remove salts, urea and imidazole. Recombinant Shadoo protein is an important reagent for biophysical and biochemical studies of protein conformation disorders occurring in prion diseases. Many reports demonstrated that prion neurodegenerative diseases originate from the deposition of stable, ordered amyloid fibrils. Sample protocols describing how to fibrillate Shadoo into amyloid fibrils at acidic and neutral/basic pHs are presented. The methods on how to produce and fibrillate Shadoo can facilitate research in laboratories working on prion diseases, since it allows for production of large amounts of protein in a rapid and low cost manner.

  14. Purification of bone morphogenetic protein-2 from refolding mixtures using mixed-mode membrane chromatography.

    PubMed

    Gieseler, Gesa; Pepelanova, Iliyana; Stuckenberg, Lena; Villain, Louis; Nölle, Volker; Odenthal, Uwe; Beutel, Sascha; Rinas, Ursula; Scheper, Thomas

    2017-01-01

    In this study, we present the development of a process for the purification of recombinant human bone morphogenetic protein-2 (rhBMP-2) using mixed-mode membrane chromatography. RhBMP-2 was produced as inclusion bodies in Escherichia coli. In vitro refolding using rapid dilution was carried out according to a previously established protocol. Different membrane chromatography phases were analyzed for their ability to purify BMP-2. A membrane phase with salt-tolerant properties resulting from mixed-mode ligand chemistry was able to selectively purify BMP-2 dimer from refolding mixtures. No further purification or polishing steps were necessary and high product purity was obtained. The produced BMP-2 exhibited a biological activity of 7.4 × 10(5) U/mg, comparable to commercial preparations. Mixed-mode membrane chromatography can be a valuable tool for the direct purification of proteins from solutions with high-conductivity, for example refolding buffers. In addition, in this particular case, it allowed us to circumvent the use of heparin-affinity chromatography, thus allowing the design of an animal-component-free process.

  15. Expression and Functional Properties of an Anti-Triazophos High-Affinity Single-Chain Variable Fragment Antibody with Specific Lambda Light Chain

    PubMed Central

    Liu, Rui; Liang, Xiao; Xiang, Dandan; Guo, Yirong; Liu, Yihua; Zhu, Guonian

    2016-01-01

    Triazophos is a widely used organophosphorous insecticide that has potentially adverse effects to organisms. In the present study, a high-affinity single-chain variable fragment (scFv) antibody with specific lambda light chain was developed for residue monitoring. First, the specific variable regions were correctly amplified from a hybridoma cell line 8C10 that secreted monoclonal antibody (mAb) against triazophos. The regions were then assembled as scFv via splicing by overlap extension polymerase chain reaction. Subsequently, the recombinant anti-triazophos scFv-8C10 was successfully expressed in Escherichia coli strain HB2151 in soluble form, purified through immobilized metal ion affinity chromatography, and verified via Western blot and peptide mass fingerprinting analyses. Afterward, an indirect competitive enzyme-linked immunosorbent assay was established based on the purified anti-triazophos scFv-8C10 antibody. The assay exhibited properties similar to those based on the parent mAb, with a high sensitivity (IC50 of 1.73 ng/mL) to triazophos and no cross reaction for other organophosphorus pesticides; it was reliable in detecting triazophos residues in spiked water samples. Moreover, kinetic measurement using a surface plasmon resonance biosensor indicated that the purified scFv-8C10 antibody had a high affinity of 1.8 × 10−10 M and exhibited good binding stability. Results indicated that the recombinant high-affinity scFv-8C10 antibody was an effective detection material that would be promising for monitoring triazophos residues in environment samples. PMID:27338340

  16. Purification and characterization of recombinant ligand-binding domains from the ecdysone receptors of four pest insects.

    PubMed

    Graham, Lloyd D; Pilling, Patricia A; Eaton, Ruth E; Gorman, Jeffrey J; Braybrook, Carl; Hannan, Garry N; Pawlak-Skrzecz, Anna; Noyce, Leonie; Lovrecz, George O; Lu, Louis; Hill, Ronald J

    2007-06-01

    Cloned EcR and USP cDNAs encoding the ecdysone receptors of four insect pests (Lucilia cuprina, Myzus persicae, Bemisia tabaci, Helicoverpa armigera) were manipulated to allow the co-expression of their ligand binding domains (LBDs) in insect cells using a baculovirus vector. Recombinant DE/F segment pairs (and additionally, for H. armigera, an E/F segment pair) from the EcR and USP proteins associated spontaneously with high affinity to form heterodimers that avidly bound an ecdysteroid ligand. This shows that neither ligand nor D-regions are essential for the formation of tightly associated and functional LBD heterodimers. Expression levels ranged up to 16.6mg of functional apo-LBD (i.e., unliganded LBD) heterodimer per liter of recombinant insect cell culture. Each recombinant heterodimer was affinity-purified via an oligo-histidine tag at the N-terminus of the EcR subunit, and could be purified further by ion exchange and/or gel filtration chromatography. The apo-LBD heterodimers appeared to be more easily inactivated than their ligand-containing counterparts: after purification, populations of the former were <40% active, whereas for the latter >70% could be obtained as the ligand-LBD heterodimer complex. Interestingly, we found that the amount of ligand bound by recombinant LBD heterodimer preparations could be enhanced by the non-denaturing detergent CHAPS (3-[(3-cholamidopropyl)dimethyl-ammonio]-1-propanesulfonate). Purity, integrity, size and charge data are reported for the recombinant proteins under native and denaturing conditions. Certain intra- and intermolecular disulfide bonds were observed to form in the absence of reducing agents, and thiol-specific alkylation was shown to suppress this phenomenon but to introduce microheterogeneity.

  17. Recombinant allergens

    PubMed Central

    Jutel, Marek; Solarewicz-Madejek, Katarzyna; Smolinska, Sylwia

    2012-01-01

    Allergen specific immunotherapy (SIT) is the only known causative treatment of allergic diseases. Recombinant allergen-based vaccination strategies arose from a strong need to both to improve safety and enhance efficacy of SIT. In addition, new vaccines can be effective in allergies including food allergy or atopic dermatitis, which poorly respond to the current treatment with allergen extracts. A number of successful clinical studies with both wild-type and hypoallergenic derivatives of recombinant allergens vaccines have been reported for the last decade. They showed high efficacy and safety profile as well as very strong modulation of T and B cell responses to specific allergens. PMID:23095874

  18. Recombinant gonadotropins.

    PubMed

    Lathi, R B; Milki, A A

    2001-10-01

    Recombinant DNA technology makes it possible to produce large amounts of human gene products for pharmacologic applications, supplanting the need for human tissues. The genes for the alpha and beta subunits of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and human chorionic gonadotropin (hCG) have been characterized and cloned. Recombinant FSH (rFSH) has been shown to be safe and effective in the treatment of fertility disorders. In comparison with the urinary gonadotropin products, human menopausal gonadotropins (HMG), and urinary follitropins (uFSH), rFSH is more potent and better tolerated by patients. Recombinant HCG appears to be as efficacious as urinary HCG with the benefit of improved local tolerance. Recombinant LH (rLH) is likely to be recommended as a supplement to rFSH for ovulation induction in hypogonadotropic women. It may also benefit in vitro fertilization patients undergoing controlled ovarian hyperstimulation with rFSH combined with pituitary suppression, with a gonadotropin-releasing hormone agonist or antagonist.

  19. Spectrum Recombination.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1984-01-01

    Describes several methods of executing lecture demonstrations involving the recombination of the spectrum. Groups the techniques into two general classes: bringing selected portions of the spectrum together using lenses or mirrors and blurring the colors by rapid movement or foreshortening. (JM)

  20. Analysis of biomolecular interactions using affinity microcolumns: A review

    PubMed Central

    Zheng, Xiwei; Li, Zhao; Beeram, Sandya; Podariu, Maria; Matsuda, Ryan; Pfaunmiller, Erika L.; White, Christopher J.; Carter, NaTasha; Hage, David S.

    2014-01-01

    Affinity chromatography has become an important tool for characterizing biomolecular interactions. The use of affinity microcolumns, which contain immobilized binding agents and have volumes in the mid-to-low microliter range, has received particular attention in recent years. Potential advantages of affinity microcolumns include the many analysis and detection formats that can be used with these columns, as well as the need for only small amounts of supports and immobilized binding agents. This review examines how affinity microcolumns have been used to examine biomolecular interactions. Both capillary-based microcolumns and short microcolumns are considered. The use of affinity microcolumns with zonal elution and frontal analysis methods are discussed. The techniques of peak decay analysis, ultrafast affinity extraction, split-peak analysis, and band-broadening studies are also explored. The principles of these methods are examined and various applications are provided to illustrate the use of these methods with affinity microcolumns. It is shown how these techniques can be utilized to provide information on the binding strength and kinetics of an interaction, as well as on the number and types of binding sites. It is further demonstrated how information on competition or displacement effects can be obtained by these methods. PMID:24572459

  1. Production of Recombinant Cholera Toxin B Subunit in Nicotiana benthamiana Using GENEWARE® Tobacco Mosaic Virus Vector.

    PubMed

    Moore, Lauren; Hamorsky, Krystal; Matoba, Nobuyuki

    2016-01-01

    Here, we describe a method to produce a recombinant cholera toxin B subunit in Nicotiana benthamiana plants (CTBp) using the GENEWARE(®) tobacco mosaic virus vector system. Infectious transcripts of the vector RNA are generated in vitro and inoculated on N. benthamiana seedlings. After 11 days, CTBp is extracted in a simple tris buffer at room temperature. No protease inhibitor is required. The leaf homogenate is treated with mild heat and a pH shift to selectively precipitate host-derived proteins. CTBp is purified to >95 % homogeneity by two-step chromatography using immobilized metal affinity and ceramic hydroxyapatite resins. This procedure yields on average 400 mg of low-endotoxin CTBp from 1 kg of fresh leaf material.

  2. Chromatographic purification of an insoluble histidine tag recombinant Ykt6p SNARE from Arabidopsis thaliana over-expressed in E. coli.

    PubMed

    Vincent, Patrick; Dieryck, Wilfrid; Maneta-Peyret, Lilly; Moreau, Patrick; Cassagne, Claude; Santarelli, Xavier

    2004-08-25

    In order to undertake in plant cell the study of the endoplasmic reticulum (ER)-Golgi apparatus (GA) protein and/or lipid vesicular transport pathway, expressed sequence tag (EST) coding for a homologue to the yeast soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) Ykt6p has been cloned in Arabidopsis thaliana by reverse transcription polymerase chain reaction (RT-PCR). The corresponding protein was over-expressed as a recombinant histidine-tag (his-tag) protein in E. coli. Starting from one litter of culture, an ultrasonic homogenization was performed for cell disruption and after centrifugation the Arabidopsis Ykt6p SNARE present in inclusion bodies in the pellet was solubilized. After centrifugation, the clarified feedstock obtained was injected onto an immobilized metal affinity chromatography (IMAC) in presence of 6 M guanidine and on-column refolding was performed. Folded and subsequently purified (94% purity) recombinant protein was obtained with 82% of recovery.

  3. Equilibrium dialysis measurements of the Ca2+-binding properties of recombinant radish vacuolar Ca2+-binding protein expressed in Escherichia coli.

    PubMed

    Yuasa, Koji; Maeshima, Masayoshi

    2002-11-01

    Vacuoles of radish (Raphanus sativus) contained a Ca2+-binding protein (RVCaB) of 43 kDa. We investigated the Ca2+-binding properties of the protein. RVCaB was expressed in Escherichia coli and was purified from an extract by ion-exchange chromatography, nitrocellulose membrane filtration, and gel-filtration column chromatography. Ca2+-binding properties of the recombinant protein were examined by equilibrium dialysis with 45Ca2+ and small dialysis buttons. The protein was estimated to bind 19Ca2+ ions per molecule with a Kd for Ca2+ of 3.4 mM. Ca2+ was bound to the protein even in the presence of high concentrations of Mg2+ or K+. The results suggested that the protein bound Ca2+ with high ion selectivity, high capacity, and low affinity.

  4. Biphasic Affinity Chromatographic Approach for Deep Tyrosine Phosphoproteome Analysis.

    PubMed

    Deng, Zhenzhen; Dong, Mingming; Wang, Yan; Dong, Jing; Li, Shawn S-C; Zou, Hanfa; Ye, Mingliang

    2017-02-21

    Tyrosine phosphorylation (pTyr) is important for normal physiology and implicated in many human diseases, particularly cancer. Identification of pTyr sites is critical to dissecting signaling pathways and understanding disease pathologies. However, compared with serine/threonine phosphorylation (pSer/pThr), the analysis of pTyr at the proteome level is more challenging due to its low abundance. Here, we developed a biphasic affinity chromatographic approach where Src SH2 superbinder was coupled with NeutrAvidin affinity chromatography, for tyrosine phosphoproteome analysis. With the use of competitive elution agent biotin-pYEEI, this strategy can distinguish high-affinity phosphotyrosyl peptides from low-affinity ones, while the excess competitive agent is readily removed by using NeutrAvidin agarose resin in an integrated tip system. The excellent performance of this system was demonstrated by analyzing tyrosine phosphoproteome of Jurkat cells from which 3,480 unique pTyr sites were identified. The biphasic affinity chromatography method for deep Tyr phosphoproteome analysis is rapid, sensitive, robust, and cost-effective. It is widely applicable to the global analysis of the tyrosine phosphoproteome associated with tyrosine kinase signal transduction.

  5. Improved strategy for recombinant production and purification of antimicrobial peptide tachyplesin I and its analogs with high cell selectivity.

    PubMed

    Panteleev, Pavel V; Ovchinnikova, Tatiana V

    2017-01-01

    Here, we report an efficient procedure for recombinant production and purification of tachyplesin I (THI) with a final yield of 17 mg/L of the culture medium. The peptide was expressed in Escherichia coli as a part of the thioredoxin fusion protein. With the use of soluble expression followed by immobilized metal-ion affinity chromatography, the recombinant protein cleavage and reversed-phase high-performance liquid chromatography, a yield of THI did not exceed 6.5 mg/L of the culture medium. Further optimization studies were carried out to improve the protein expression level and simplify purification procedure of the target peptide. To achieve better yield of the peptide, we used high-cell-density bacterial expression. The formed inclusion bodies were highly enriched with the fusion protein, which allowed us to perform direct chemical cleavage of the inclusion bodies solubilized in 6 M guanidine-HCl with subsequent selective precipitation of proteins with trifluoroacetic acid. This enabled us to avoid an extra step of purification by immobilized metal-ion affinity chromatography. The developed procedure has made it possible to obtain biologically active THI and was used for screening a number of its mutant analogs. As a result, several selective and nonhemolytic analogs were developed. Significant reduction in hemolytic activity without losing antimicrobial activity was achieved by substitution of tyrosine or isoleucine residue in the β-turn region of the molecule with hydrophilic serine. The present study affords further insight into molecular mechanism of antimicrobial action of tachyplesin and gains a better understanding of structure-activity relationships in its analogs. This is aimed at searching for novel antibiotics on the basis of antimicrobial peptides with reduced cytotoxicity.

  6. Identification of Novel O-Linked Glycosylated Toxoplasma Proteins by Vicia villosa Lectin Chromatography

    PubMed Central

    Wang, Kevin; Peng, Eric D.; Huang, Amy S.; Xia, Dong; Vermont, Sarah J.; Lentini, Gaelle; Lebrun, Maryse; Wastling, Jonathan M.; Bradley, Peter J.

    2016-01-01

    Toxoplasma gondii maintains its intracellular life cycle using an extraordinary arsenal of parasite-specific organelles including the inner membrane complex (IMC), rhoptries, micronemes, and dense granules. While these unique compartments play critical roles in pathogenesis, many of their protein constituents have yet to be identified. We exploited the Vicia villosa lectin (VVL) to identify new glycosylated proteins that are present in these organelles. Purification of VVL-binding proteins by lectin affinity chromatography yielded a number of novel proteins that were subjected to further study, resulting in the identification of proteins from the dense granules, micronemes, rhoptries and IMC. We then chose to focus on three proteins identified by this approach, the SAG1 repeat containing protein SRS44, the rhoptry neck protein RON11 as well as a novel IMC protein we named IMC25. To assess function, we disrupted their genes by homologous recombination or CRISPR/Cas9. The knockouts were all successful, demonstrating that these proteins are not essential for invasion or intracellular survival. We also show that IMC25 undergoes substantial proteolytic processing that separates the C-terminal domain from the predicted glycosylation site. Together, we have demonstrated that lectin affinity chromatography is an efficient method of identifying new glycosylated parasite-specific proteins. PMID:26950937

  7. Identification of Novel O-Linked Glycosylated Toxoplasma Proteins by Vicia villosa Lectin Chromatography.

    PubMed

    Wang, Kevin; Peng, Eric D; Huang, Amy S; Xia, Dong; Vermont, Sarah J; Lentini, Gaelle; Lebrun, Maryse; Wastling, Jonathan M; Bradley, Peter J

    2016-01-01

    Toxoplasma gondii maintains its intracellular life cycle using an extraordinary arsenal of parasite-specific organelles including the inner membrane complex (IMC), rhoptries, micronemes, and dense granules. While these unique compartments play critical roles in pathogenesis, many of their protein constituents have yet to be identified. We exploited the Vicia villosa lectin (VVL) to identify new glycosylated proteins that are present in these organelles. Purification of VVL-binding proteins by lectin affinity chromatography yielded a number of novel proteins that were subjected to further study, resulting in the identification of proteins from the dense granules, micronemes, rhoptries and IMC. We then chose to focus on three proteins identified by this approach, the SAG1 repeat containing protein SRS44, the rhoptry neck protein RON11 as well as a novel IMC protein we named IMC25. To assess function, we disrupted their genes by homologous recombination or CRISPR/Cas9. The knockouts were all successful, demonstrating that these proteins are not essential for invasion or intracellular survival. We also show that IMC25 undergoes substantial proteolytic processing that separates the C-terminal domain from the predicted glycosylation site. Together, we have demonstrated that lectin affinity chromatography is an efficient method of identifying new glycosylated parasite-specific proteins.

  8. Expression and purification of active recombinant equine lysozyme in Escherichia coli.

    PubMed

    Casaite, Vida; Bruzyte, Simona; Bukauskas, Virginijus; Setkus, Arunas; Morozova-Roche, Ludmilla A; Meskys, Rolandas

    2009-11-01

    Equine lysozyme (EL) is a calcium (Ca)-binding lysozyme and is an intermediary link between non-Ca-binding C-type lysozyme and alpha-lactalbumin. The feature of lysozymes to assemble into the fibrils has recently gained considerable attention for the investigation of the functional properties of these proteins. To study the structural and functional properties of EL, a synthetic gene was cloned and EL was overexpressed in Escherichia coli as a fused protein. The His-tagged recombinant EL was accumulated as inclusion bodies. Up to 50 mg/l of the recombinant EL could be achieved after purification by Ni(2+) affinity chromatography, refolding in the presence of arginine, CM-Sepharose column purification following TEV protease cleavage. The purified protein was functionally active, as determined by the lysozyme activity, proving the proper folding of protein. The purified lysozyme was used for the oligomerisation studies. The protein formed amyloid fibrils during incubation in acidic pH and elevated temperature. The recombinant EL forms two types of fibrils: ring shaped and linear, similar to the native EL.

  9. Recombinant TNF-binding protein from variola virus as a novel potential TNF antagonist.

    PubMed

    Gileva, I P; Nepomnyashchikh, T S; Ryazankin, I A; Shchelkunov, S N

    2009-12-01

    Gel-filtration chromatographic separation of the lysate of Sf21 insect cells infected with recombinant baculovirus BVi67 containing the gene for TNF-binding protein (CrmB) of variola virus (VARV) revealed that hTNF-cytotoxicity neutralization activity is associated with a fraction corresponding mainly to high molecular weight proteins (above 500 kDa) and less with fractions corresponding to proteins of 270 or 90 kDa. The recombinant VARV-CrmB protein has been purified by affinity chromatography. Difference in the experimentally determined and estimated (according to amino acid composition) VARV-CrmB molecular weight is due to glycosylation of the recombinant protein expressed in the insect cells. VARV-CrmB neutralizes in vitro the cytotoxic effect of hTNF and hLTalpha, and its TNF-neutralizing activity is two to three orders of magnitude higher compared to the analogous effects of type I and II soluble TNF receptors, comparable with the activity of mAb MAK195, and somewhat lower than the effect of the commercial drug Remicade.

  10. Expression, purification, and therapeutic implications of recombinant sFRP1.

    PubMed

    Ghoshal, Archita; Ghosh, Siddhartha Sankar

    2015-02-01

    Secreted frizzled-related proteins (sFRPs) constitute a family of proteins, which impede the Wnt signaling pathway. Upregulation of the Wnt cascade is one of the multiple facets of carcinogenesis. Herein, we report the expression, solubilization, purification, characterization, and anti-cell proliferative activity of a novel recombinant GST-tagged sFRP1 of human origin. sFRP1 was cloned into pGEX-4T2 bacterial expression vector, and the recombinant protein was overexpressed in Escherichia coli BL21 (DE3). It was solubilized from inclusion bodies with N-lauroylsarcosine and Triton X-100, before being purified to homogeneity using glutathione agarose affinity chromatography column. The purified protein was characterized using Western blotting, MALDI TOF-TOF, and circular dichroism spectroscopy analysis. Homology modeling and docking studies revealed that tagging GST with sFRP1 does not change the binding conformation of the cysteine-rich domain and hence, possibly does not alter its function. The novel anti-proliferative activity of GST-sFRP1 was demonstrated in a dose-dependent manner on two cancer cell lines, viz., HeLa (cervical cancer) and MCF-7 (breast cancer). Also, combination therapy of the protein with chemotherapeutic drugs resulted in enhanced anti-cancer activity. This opens up a new avenue in the application of recombinant sFRP1 for cancer therapeutics.

  11. Development of a keratinase activity assay using recombinant chicken feather keratin substrates

    PubMed Central

    Jin, Hyeon-Su; Park, Seon Yeong; Kim, Kyungmin; Lee, Yong-Jik; Nam, Gae-Won; Kang, Nam Joo; Lee, Dong-Woo

    2017-01-01

    Poultry feathers consist mainly of the protein keratin, which is rich in β-pleated sheets and consequently resistant to proteolysis. Although many keratinases have been identified, the reasons for their substrate specificity towards β-keratin remain unclear due to difficulties in preparing a soluble feather keratin substrate for use in activity assays. In the present study, we overexpressed Gallus gallus chromosomes 2 and 27 β-keratin-encoding genes in Escherichia coli, purified denatured recombinant proteins by Ni2+ affinity chromatography, and refolded by stepwise dialysis to yield soluble keratins. To assess the keratinolytic activity, we compared the proteolytic activity of crude extracts from the feather- degrading bacterium Fervidobacterium islandicum AW-1 with proteinase K, trypsin, and papain using purified recombinant keratin and casein as substrates. All tested proteases showed strong proteolytic activities for casein, whereas only F. islandicum AW-1 crude extracts and proteinase K exhibited pronounced keratinolytic activity for the recombinant keratin. Moreover, LC-MS/MS analysis of keratin hydrolysates allowed us to predict the P1 sites of keratinolytic enzymes in the F. islandicum AW-1 extracts, thereby qualifying and quantifying the extent of keratinolysis. The soluble keratin-based assay has clear therapeutic and industrial potential for the development of a high-throughput screening system for proteases hydrolyzing disease-related protein aggregates, as well as mechanically resilient keratin-based polymers. PMID:28231319

  12. Biological properties of purified recombinant HCV particles with an epitope-tagged envelope

    SciTech Connect

    Takahashi, Hitoshi; Akazawa, Daisuke; Kato, Takanobu; Date, Tomoko; Shirakura, Masayuki; Nakamura, Noriko; Mochizuki, Hidenori; Tanaka-Kaneko, Keiko; Sata, Tetsutaro; Tanaka, Yasuhito; Mizokami, Masashi; Suzuki, Tetsuro; Wakita, Takaji

    2010-05-14

    To establish a simple system for purification of recombinant infectious hepatitis C virus (HCV) particles, we designed a chimeric J6/JFH-1 virus with a FLAG (FL)-epitope-tagged sequence at the N-terminal region of the E2 hypervariable region-1 (HVR1) gene (J6/JFH-1/1FL). We found that introduction of an adaptive mutation at the potential N-glycosylation site (E2N151K) leads to efficient production of the chimeric virus. This finding suggests the involvement of glycosylation at Asn within the envelope protein(s) in HCV morphogenesis. To further analyze the biological properties of the purified recombinant HCV particles, we developed a strategy for large-scale production and purification of recombinant J6/JFH-1/1FL/E2N151K. Infectious particles were purified from the culture medium of J6/JFH-1/1FL/E2N151K-infected Huh-7 cells using anti-FLAG affinity chromatography in combination with ultrafiltration. Electron microscopy of the purified particles using negative staining showed spherical particle structures with a diameter of 40-60 nm and spike-like projections. Purified HCV particle-immunization induced both an anti-E2 and an anti-FLAG antibody response in immunized mice. This strategy may contribute to future detailed analysis of HCV particle structure and to HCV vaccine development.

  13. Expression of GPI anchored human recombinant erythropoietin in CHO cells is devoid of glycosylation heterogeneity.

    PubMed

    Singh, Pankaj Kumar; Devasahayam, Mercy; Devi, Sobita

    2015-04-01

    Erythropoietin is a glycohormone involved in the regulation of the blood cell levels. It is a 166 amino acid protein having 3 N-glycosylation and one O-linked glycosylation sites, and is used to treat anaemia related illness. Though human recombinant erythropoietin (rEPO) is produced in CHO cells, the loss in quality control is 80% due to incomplete glycosylation of the rEPO with low levels of fully glycosylated active rEPO. Here, we describe the expression from CHO cells of fully glycosylated human rEPO when expressed as a GPI anchored molecule (rEPO-g). The results demonstrated the production of a homogenous completely glycosylated human rEPO-g as a 42 kD band without any low molecular weight glycoform variants as shown by affinity chromatography followed by SDS-PAGE and anti-human EPO specific western blot. The western blot using specific monoclonal antibody is the available biochemical technique to prove the presence of homogeneity in the expressed recombinant protein. The GPI anchor can be removed during the purification process to yield a therapeutically relevant recombinant erythropoietin molecule cells with a higher in vivo biological activity due to its high molecular weight of 40 kD. This is possibly the first report on the production of a homogenous and completely glycosylated human rEPO from CHO cells for efficient therapy.

  14. Economics of recombinant antibody production processes at various scales: Industry-standard compared to continuous precipitation.

    PubMed

    Hammerschmidt, Nikolaus; Tscheliessnig, Anne; Sommer, Ralf; Helk, Bernhard; Jungbauer, Alois

    2014-06-01

    Standard industry processes for recombinant antibody production employ protein A affinity chromatography in combination with other chromatography steps and ultra-/diafiltration. This study compares a generic antibody production process with a recently developed purification process based on a series of selective precipitation steps. The new process makes two of the usual three chromatographic steps obsolete and can be performed in a continuous fashion. Cost of Goods (CoGs) analyses were done for: (i) a generic chromatography-based antibody standard purification; (ii) the continuous precipitation-based purification process coupled to a continuous perfusion production system; and (iii) a hybrid process, coupling the continuous purification process to an upstream batch process. The results of this economic analysis show that the precipitation-based process offers cost reductions at all stages of the life cycle of a therapeutic antibody, (i.e. clinical phase I, II and III, as well as full commercial production). The savings in clinical phase production are largely attributed to the fact that expensive chromatographic resins are omitted. These economic analyses will help to determine the strategies that are best suited for small-scale production in parallel fashion, which is of importance for antibody production in non-privileged countries and for personalized medicine.

  15. Gas Chromatography.

    ERIC Educational Resources Information Center

    Karasek, Francis W.; And Others

    1984-01-01

    This review covers fundamental developments in gas chromatography during 1982 and 1983. Literature is considered under these headings: columns; liguid phases; solid supports; sorption processes and solvents; open tubular column gas chromatography; instrumentation; high-resolution columns and applications; other techniques; qualitative and…

  16. Ultrasensitive characterization of site-specific glycosylation of affinity-purified haptoglobin from lung cancer patient plasma using 10 μm i.d. porous layer open tubular liquid chromatography-linear ion trap collision-induced dissociation/electron transfer dissociation mass spectrometry.

    PubMed

    Wang, Dongdong; Hincapie, Marina; Rejtar, Tomas; Karger, Barry L

    2011-03-15

    Site-specific analysis of protein glycosylation is important for biochemical and clinical research efforts. Glycopeptide analysis using liquid chromatography-collision-induced dissociation/electron transfer dissociation mass spectrometry (LC-CID/ETD-MS) allows simultaneous characterization of the glycan structure and attached peptide site. However, due to the low ionization efficiency of glycopeptides during electrospray ionization, 200-500 fmol of sample per injection is needed for a single LC-MS run, which makes it challenging for the analysis of limited amounts of glycoprotein purified from biological matrixes. To improve the sensitivity of LC-MS analysis for glycopeptides, an ultranarrow porous layer open tubular (PLOT) LC column (2.5 m × 10 μm i.d.) was coupled to a linear ion trap (LTQ) collision-induced dissociation/electron transfer dissociation mass spectrometer to provide sensitive analysis of N-linked protein glycosylation heterogeneity. The potential of the developed method is demonstrated by the characterization of site-specific glycosylation using haptoglobin (Hpt) as a model protein. To limit the amount of haptoglobin to low picomole amounts of protein, we affinity purified it from 1 μL of pooled lung cancer patient plasma. A total of 26 glycoforms/glycan compositions on three Hpt tryptic glycopeptides were identified and quantified from 10 LC-MS runs with a consumption of 100 fmol of Hpt digest (13 ng of protein, 10 fmol per injection). Included in this analysis was the determination of the glycan occupancy level. At this sample consumption level, the high sensitivity of the PLOT LC-LTQ-CID/ETD-MS system allowed glycopeptide identification and structure determination, along with relative quantitation of glycans presented on the same peptide backbone, even for low abundant glycopeptides at the ∼100 amol level. The PLOT LC-MS system is shown to have sufficient sensitivity to allow characterization of site-specific protein glycosylation from trace

  17. Fed batch fermentation and purification strategy for high yield production of Brucella melitensis recombinant Omp 28 kDa protein and its application in disease diagnosis.

    PubMed

    Karothia, B S; Athmaram, T N; D, Thavaselvam; Ashu, Kumar; Tiwari, Sapna; Singh, Anil K; Sathyaseelan, K; Gopalan, N

    2013-07-01

    Brucellosis is a disease caused by bacteria belonging to the genus Brucella. It affects cattle, goat, sheep, dog and humans. The serodiagnosis of brucellosis involves detection of antibodies generated against the LPS or whole cell bacterial extracts, however these tests lack sensitivity and specificity. The present study was performed to optimize the culture condition for the production of recombinant Brucella melitensis outer membrane protein 28 kDa protein in E.coli via fed batch fermentation. Expression was induced with 1.5mM isopropyl β thiogalactoside and the expressed recombinant protein was purified using Ni-NTA affinity chromatography. After fed-batch fermentation the dry cell weight of 17.81 g/L and a purified protein yield of 210.10 mg/L was obtained. The purified Brucella melitensis recombinant Omp 28 kDa protein was analyzed through SDS- poly acrylamide gel electrophoresis and western blotting. The obtained recombinant protein was evaluated for its diagnostic application through Indirect ELISA using brucellosis suspected human sera samples. Our results clearly indicate that recombinant Omp28 produced via fed batch fermentation has immense potential as a diagnostic reagent that could be employed in sero monitoring of brucellosis.

  18. Expression of recombinant antibody (single chain antibody fragment) in transgenic plant Nicotiana tabacum cv. Xanthi.

    PubMed

    Dobhal, S; Chaudhary, V K; Singh, A; Pandey, D; Kumar, A; Agrawal, S

    2013-12-01

    Plants offer an alternative inexpensive and convenient technology for large scale production of recombinant proteins especially recombinant antibodies (plantibodies). In this paper, we describe the expression of a model single chain antibody fragment (B6scFv) in transgenic tobacco. Four different gene constructs of B6scFv with different target signals for expression in different compartments of a tobacco plant cell with and without endoplasmic reticulum (ER) retention signal were used. Agrobacterium mediated plant transformation of B6scFv gene was performed with tobacco leaf explants and the gene in regenerated plants was detected using histochemical GUS assay and PCR. The expression of B6scFv gene was detected by western blotting and the recombinant protein was purified from putative transgenic tobacco plants using metal affinity chromatography. The expression level of recombinant protein was determined by indirect enzyme-linked immunosorbent assay. The highest accumulation of protein was found up to 3.28 % of the total soluble protein (TSP) in plants expressing B6scFv 1003 targeted to the ER, and subsequently expression of 2.9 % of TSP in plants expressing B6scFv 1004 (with target to apoplast with ER retention signal). In contrast, lower expression of 0.78 and 0.58 % of TSP was found in plants expressing antibody fragment in cytosol and apoplast, without ER retention signal. The described method/system could be used in the future for diverse applications including expression of other recombinant molecules in plants for immunomodulation, obtaining pathogen resistance against plant pathogens, altering metabolic pathways and also for the expression of different antibodies of therapeutic and diagnostic uses.

  19. Substrate Specificity of Purified Recombinant Chicken β-Carotene 9',10'-Oxygenase (BCO2).

    PubMed

    Dela Seña, Carlo; Sun, Jian; Narayanasamy, Sureshbabu; Riedl, Kenneth M; Yuan, Yan; Curley, Robert W; Schwartz, Steven J; Harrison, Earl H

    2016-07-08

    Provitamin A carotenoids are oxidatively cleaved by β-carotene 15,15'-dioxygenase (BCO1) at the central 15-15' double bond to form retinal (vitamin A aldehyde). Another carotenoid oxygenase, β-carotene 9',10'-oxygenase (BCO2) catalyzes the oxidative cleavage of carotenoids at the 9'-10' bond to yield an ionone and an apo-10'-carotenoid. Previously published substrate specificity studies of BCO2 were conducted using crude lysates from bacteria or insect cells expressing recombinant BCO2. Our attempts to obtain active recombinant human BCO2 expressed in Escherichia coli were unsuccessful. We have expressed recombinant chicken BCO2 in the strain E. coli BL21-Gold (DE3) and purified the enzyme by cobalt ion affinity chromatography. Like BCO1, purified recombinant chicken BCO2 catalyzes the oxidative cleavage of the provitamin A carotenoids β-carotene, α-carotene, and β-cryptoxanthin. Its catalytic activity with β-carotene as substrate is at least 10-fold lower than that of BCO1. In further contrast to BCO1, purified recombinant chicken BCO2 also catalyzes the oxidative cleavage of 9-cis-β-carotene and the non-provitamin A carotenoids zeaxanthin and lutein, and is inactive with all-trans-lycopene and β-apocarotenoids. Apo-10'-carotenoids were detected as enzymatic products by HPLC, and the identities were confirmed by LC-MS. Small amounts of 3-hydroxy-β-apo-8'-carotenal were also consistently detected in BCO2-β-cryptoxanthin reaction mixtures. With the exception of this activity with β-cryptoxanthin, BCO2 cleaves specifically at the 9'-10' bond to produce apo-10'-carotenoids. BCO2 has been shown to function in preventing the excessive accumulation of carotenoids, and its broad substrate specificity is consistent with this.

  20. Kernel Affine Projection Algorithms

    NASA Astrophysics Data System (ADS)

    Liu, Weifeng; Príncipe, José C.

    2008-12-01

    The combination of the famed kernel trick and affine projection algorithms (APAs) yields powerful nonlinear extensions, named collectively here, KAPA. This paper is a follow-up study of the recently introduced kernel least-mean-square algorithm (KLMS). KAPA inherits the simplicity and online nature of KLMS while reducing its gradient noise, boosting performance. More interestingly, it provides a unifying model for several neural network techniques, including kernel least-mean-square algorithms, kernel adaline, sliding-window kernel recursive-least squares (KRLS), and regularization networks. Therefore, many insights can be gained into the basic relations among them and the tradeoff between computation complexity and performance. Several simulations illustrate its wide applicability.

  1. Adjoint affine fusion and tadpoles

    NASA Astrophysics Data System (ADS)

    Urichuk, Andrew; Walton, Mark A.

    2016-06-01

    We study affine fusion with the adjoint representation. For simple Lie algebras, elementary and universal formulas determine the decomposition of a tensor product of an integrable highest-weight representation with the adjoint representation. Using the (refined) affine depth rule, we prove that equally striking results apply to adjoint affine fusion. For diagonal fusion, a coefficient equals the number of nonzero Dynkin labels of the relevant affine highest weight, minus 1. A nice lattice-polytope interpretation follows and allows the straightforward calculation of the genus-1 1-point adjoint Verlinde dimension, the adjoint affine fusion tadpole. Explicit formulas, (piecewise) polynomial in the level, are written for the adjoint tadpoles of all classical Lie algebras. We show that off-diagonal adjoint affine fusion is obtained from the corresponding tensor product by simply dropping non-dominant representations.

  2. Modeling on-column reduction of trisulfide bonds in monoclonal antibodies during protein A chromatography.

    PubMed

    Ghose, Sanchayita; Rajshekaran, Rupshika; Labanca, Marisa; Conley, Lynn

    2017-01-06

    Trisulfides can be a common post-translational modification in many recombinant monoclonal antibodies. These are a source of product heterogeneity that add to the complexity of product characterization and hence, need to be reduced for consistent product quality. Trisulfide bonds can be converted to the regular disulfide bonds by incorporating a novel cysteine wash step during Protein A affinity chromatography. An empirical model is developed for this on-column reduction reaction to compare the reaction rates as a function of typical operating parameters such as temperature, cysteine concentration, reaction time and starting level of trisulfides. The model presented here is anticipated to assist in the development of optimal wash conditions for the Protein A step to effectively reduce trisulfides to desired levels.

  3. Functionalized multi-walled carbon nanotubes as affinity ligands

    NASA Astrophysics Data System (ADS)

    Yu, L.; Li, C. M.; Zhou, Q.; Gan, Y.; Bao, Q. L.

    2007-03-01

    Functionalization of carbon nanotubes is very challenging for their applications. The paper here describes a new method to functionalize multi-walled carbon nanotubes (MWCNTs) as specific affinity adsorbents. MWCNTs were acid purified and pretreated with (3-aminopropyl)-triethoxysilane (APTES) in order to introduce abundant amino groups on the surface of MWCNTs. After the conversion of amino groups to carboxyl groups by succinic acid anhydride, MWCNTs were attached to protein A or aminodextran using 1-ethyl-3,3' (dimethylamion)-propylcarbodiimide as a biofunctional crosslinker. The incorporation of aminodextran as a spacer arm noticeably increased the binding capacity of the APTES-modified MWCNTs for protein A. The application of affinity MWCNTs for purification of immunoglobulin G was then evaluated. The affinity of MWCNTs with AMD spacer exhibited a high adsorption capacity of ~361 µg IgG/mg MWCNT (wet basis). About 75% of bound IgG was eluted from affinity MWCNTs (ANT-I and ANT-II) and ELISA confirmed that the biological activity of IgG was well preserved during the course of affinity separation. The functionalized MWCNTs could be potentially used in affinity chromatography.

  4. Gas Chromatography.

    ERIC Educational Resources Information Center

    Cram, Stuart P.; And Others

    1980-01-01

    Selects fundamental developments in theory, methodology, and instrumentation in gas chromatography (GC). A special section reviews GC in the People's Republic of China. Over 1,000 references are cited. (CS)

  5. Selection of Recombinant Human Antibodies.

    PubMed

    Tomszak, Florian; Weber, Susanne; Zantow, Jonas; Schirrmann, Thomas; Hust, Michael; Frenzel, André

    2016-01-01

    Since the development of therapeutic antibodies the demand of recombinant human antibodies is steadily increasing. Traditionally, therapeutic antibodies were generated by immunization of rat or mice, the generation of hybridoma clones, cloning of the antibody genes and subsequent humanization and engineering of the lead candidates. In the last few years, techniques were developed that use transgenic animals with a human antibody gene repertoire. Here, modern recombinant DNA technologies can be combined with well established immunization and hybridoma technologies to generate already affinity maturated human antibodies. An alternative are in vitro technologies which enabled the generation of fully human antibodies from antibody gene libraries that even exceed the human antibody repertoire. Specific antibodies can be isolated from these libraries in a very short time and therefore reduce the development time of an antibody drug at a very early stage.In this review, we describe different technologies that are currently used for the in vitro and in vivo generation of human antibodies.

  6. Affinity approaches in RNAi-based therapeutics purification.

    PubMed

    Pereira, Patrícia; Queiroz, João A; Figueiras, Ana; Sousa, Fani

    2016-05-15

    The recent investigation on RNA interference (RNAi) related mechanisms and applications led to an increased awareness of the importance of RNA in biology. Nowadays, RNAi-based technology has emerged as a potentially powerful tool for silencing gene expression, being exploited to develop new therapeutics for treating a vast number of human disease conditions, as it is expected that this technology can be translated onto clinical applications in a near future. This approach makes use of a large number of small (namely short interfering RNAs, microRNAs and PIWI-interacting RNAs) and long non-coding RNAs (ncRNAs), which are likely to have a crucial role as the next generation therapeutics. The commercial and biomedical interest in these RNAi-based therapy applications have fostered the need to develop innovative procedures to easily and efficiently purify RNA, aiming to obtain the final product with high purity degree, good quality and biological activity. Recently, affinity chromatography has been applied to ncRNAs purification, in view of the high specificity. Therefore, this article intends to review the biogenesis pathways of regulatory ncRNAs and also to discuss the most significant and recent developments as well as applications of affinity chromatography in the challenging task of purifying ncRNAs. In addition, the importance of affinity chromatography in ncRNAs purification is addressed and prospects for what is forthcoming are presented.

  7. Electrospun polyethersulfone affinity membrane: membrane preparation and performance evaluation.

    PubMed

    Ma, Zuwei; Lan, Zhengwei; Matsuura, Takeshi; Ramakrishna, Seeram

    2009-11-01

    Non-woven polyethersulfone (PES) membranes were prepared by electrospinning. After heat treatment and surface activation, the membranes were covalently functionalized with ligands to be used as affinity membranes. The membranes were characterized in terms of fiber diameter, porosity, specific area, pore size, ligand density and binding capacities. To evaluate the binding efficiency of the membrane, dynamic adsorption of bovine serum albumin (BSA) on the Cibacron blue F3GA (CB) functionalized PES membrane was studied. Experimental breakthrough curves were fitted with the theoretical curves based on the plate model to estimate plate height (H(p)) of the affinity membrane. The high value of H(p) (1.6-8 cm) of the affinity membrane implied a poor dynamic binding efficiency, which can be explained by the intrinsic microstructures of the material. Although the electrospun membrane might not be an ideal candidate for the preparative affinity membrane chromatography for large-scale production, it still can be used for fast small-scale protein purification in which a highly efficient binding is not required. Spin columns packed with protein A/G immobilized PES membranes were demonstrated to be capable of binding IgG specifically. SDS-PAGE results demonstrated that the PES affinity membrane had high specific binding selectivity for IgG molecules and low non-specific protein adsorption. Compared with other reported affinity membranes, the PES affinity membrane had a comparable IgG binding capacity of 4.5 mg/ml, and had a lower flow through pressure drop due to its larger pore size. In conclusion, the novel PES affinity membrane is an ideal spin column packing material for fast protein purification.

  8. Electron Affinity Calculations for Thioethers

    NASA Technical Reports Server (NTRS)

    Sulton, Deley L.; Boothe, Michael; Ball, David W.; Morales, Wilfredo

    1997-01-01

    Previous work indicated that polyphenyl thioethers possessed chemical properties, related to their electron affinities, which could allow them to function as vapor phase lubricants (VPL). Indeed, preliminary tribological tests revealed that the thioethers could function as vapor phase lubricants but not over a wide temperature and hertzian pressure range. Increasing the electron affinity of the thioethers may improve their VPL properties over this range. Adding a substituent group to the thioether will alter its electron affinity in many cases. Molecular orbital calculations were undertaken to determine the effect of five different substituent groups on the electron affinity of polyphenyl thioethers. It was found that the NO2, F, and I groups increased the thioethers electron affinity by the greatest amount. Future work will involve the addition of these groups to the thioethers followed by tribological testing to assess their VPL properties.

  9. Affinity-based target deconvolution of safranal

    PubMed Central

    2013-01-01

    Background and the purpose of the study Affinity-based target deconvolution is an emerging method for the identification of interactions between drugs/drug candidates and cellular proteins, and helps to predict potential activities and side effects of a given compound. In the present study, we hypothesized that a part of safranal pharmacological effects, one of the major constituent of Crocus sativus L., relies on its physical interaction with target proteins. Methods Affinity chromatography solid support was prepared by covalent attachment of safranal to agarose beads. After passing tissue lysate through the column, safranal-bound proteins were isolated and separated on SDS-PAGE or two-dimensional gel electrophoresis. Proteins were identified using MALDI-TOF/TOF mass spectrometry and Mascot software. Results and major conclusion Data showed that safranal physically binds to beta actin, cytochrome b-c1 complex sub-unit 1, trifunctional enzyme sub-unit beta and ATP synthase sub-unit alpha and beta. These interactions may explain part of safranal’s pharmacological effects. However, phenotypic and/or biological relevance of these interactions remains to be elucidated by future pharmacological studies. PMID:23514587

  10. Expression and characterization of recombinant gamma-tryptase.

    PubMed

    Yuan, Jing; Beltman, Jeri; Gjerstad, Erik; Nguyen, Margaret T; Sampang, Jun; Chan, Hedy; Janc, James W; Clark, James M

    2006-09-01

    Tryptases are trypsin-like serine proteases whose expression is restricted to cells of hematopoietic origin, notably mast cells. gamma-Tryptase, a recently described member of the family also known as transmembrane tryptase (TMT), is a membrane-bound serine protease found in the secretory granules or on the surface of degranulated mast cells. The 321 amino acid protein contains an 18 amino acid propeptide linked to the catalytic domain (cd), followed by a single-span transmembrane domain. gamma-Tryptase is distinguished from other human mast cell tryptases by the presence of two unique cysteine residues, Cys(26) and Cys(145), that are predicted to form an intra-molecular disulfide bond linking the propeptide to the catalytic domain to form the mature, membrane-anchored two-chain enzyme. We expressed gamma-tryptase as either a soluble, single-chain enzyme with a C-terminal His tag (cd gamma-tryptase) or as a soluble pseudozymogen activated by enterokinase cleavage to form a two-chain protein with an N-terminal His tag (tc gamma-tryptase). Both recombinant proteins were expressed at high levels in Pichia pastoris and purified by affinity chromatography. The two forms of gamma-tryptase exhibit comparable kinetic parameters, indicating the propeptide does not contribute significantly to the substrate affinity or activity of the protease. Substrate and inhibitor library screening indicate that gamma-tryptase possesses a substrate preference and inhibitor profile distinct from that of beta-tryptase. Although the role of gamma-tryptase in mast cell function is unknown, our results suggest that it is likely to be distinct from that of beta-tryptase.

  11. In vitro refolding with simultaneous purification of recombinant human parathyroid hormone (rhPTH 1-34) from Escherichia coli directed by protein folding size exclusion chromatography (PF-SEC): implication of solution additives and their role on aggregates and renaturation.

    PubMed

    Vemula, Sandeep; Vemula, Sushma; Dedaniya, Akshay; Ronda, Srinivasa Reddy

    2016-01-01

    Recombinant proteins are frequently hampered by aggregation during the refolding and purification process. A simple and rapid method for in vitro refolding and purification of recombinant human parathyroid hormone (rhPTH 1-34) expressed in Escherichia coli with protein folding size exclusion chromatography (PF-SEC) was developed in the present work. Discrete effects of potential solution additives such as urea, polypolyethylene glycol, proline, and maltose on the refolding with simultaneous purification of rhPTH were investigated. The results of individual additives indicated that both maltose and proline had remarkable influences on the efficiency of refolding with a recovery yield of 65 and 66% respectively. Further, the synergistic effect of these additives on refolding was also explored. These results demonstrate that the additive combinations are more effective for inhibiting protein aggregation during purification of rhPTH in terms of recovery yield, purity, and specific activity. The maltose and proline combination system achieved the highest renatured rhPTH having a recovery yield of 78%, a purity of ≥99%, and a specific activity of 3.31 × 10(3) cAMP pM/cell respectively, when compared to the classical dilution method yield (41%) and purity (97%). In addition, the role of maltose and proline in a combined system on protein aggregation and refolding has been explained. The molecular docking (in silico) scores of maltose (-10.91) and proline (-9.0) support the in vitro results.

  12. Biochemical characterization of recombinant mevalonate kinase from Bacopa monniera.

    PubMed

    Kumari, Uma; Vishwakarma, Rishi K; Sonawane, Prashant; Abbassi, Shakeel; Khan, Bashir M

    2015-01-01

    Mevalonate kinase (MK; ATP: mevalonate 5-phosphotransferase; EC 2.7.1.36) plays a key role in isoprenoid biosynthetic pathway in plants. MK catalyzes the phosphorylation of mevalonate to form mevalonate-5-phosphate. The recombinant BmMK was cloned and over-expressed in E. coli BL21 (DE3), and purified to homogeneity by affinity chromatography followed by gel filtration. Optimum pH and temperature for forward reaction was found to be 7.0 and 30 °C, respectively. The enzyme was most stable at pH 8 at 25 °C with deactivation rate constant (Kd*) 1.398 × 10(-4) and half life (t1/2) 49 h. pH activity profile of BmMK indicates the involvement of carboxylate ion, histidine, lysine, arginine or aspartic acid at the active site of enzyme. Activity of recombinant BmMK was confirmed by phosphorylation of RS-mevalonate in the presence of Mg(2+), having Km and Vmax 331.9 μM and 719.1 pKat μg(-1), respectively. The values of kcat and kcat/Km for RS-mevalonate were determined to be 143.82 s(-1) and 0.43332 M(-1) s(-1) and kcat and kcat/Km values for ATP were found 150.9 s(-1) and 1.023 M(-1) s(-1). The metal ion studies suggested that BmMK is a metal dependent enzyme and highly active in the presence of MgCl2.

  13. Rational Design of a Carrier Protein for the Production of Recombinant Toxic Peptides in Escherichia coli

    PubMed Central

    Pizzo, Elio; Varcamonti, Mario; Zanfardino, Anna; Sgambati, Valeria; Di Maro, Antimo; Carpentieri, Andrea; Izzo, Viviana; Di Donato, Alberto; Cafaro, Valeria; Notomista, Eugenio

    2016-01-01

    Commercial uses of bioactive peptides require low cost, effective methods for their production. We developed a new carrier protein for high yield production of recombinant peptides in Escherichia coli very well suited for the production of toxic peptides like antimicrobial peptides. GKY20, a short antimicrobial peptide derived from the C-terminus of human thrombin, was fused to the C-terminus of Onconase, a small ribonuclease (104 amino acids), which efficiently drove the peptide into inclusion bodies with very high expression levels (about 200–250 mg/L). After purification of the fusion protein by immobilized metal ion affinity chromatography, peptide was obtained by chemical cleavage in diluted acetic acid of an acid labile Asp-Pro sequence with more than 95% efficiency. To improve peptide purification, Onconase was mutated to eliminate all acid labile sequences thus reducing the release of unwanted peptides during the acid cleavage. Mutations were chosen to preserve the differential solubility of Onconase as function of pH, which allows its selective precipitation at neutral pH after the cleavage. The improved carrier allowed the production of 15–18 mg of recombinant peptide per liter of culture with 96–98% purity without the need of further chromatographic steps after the acid cleavage. The antimicrobial activity of the recombinant peptide, with an additional proline at the N-terminus, was tested on Gram-negative and Gram-positive strains and was found to be identical to that measured for synthetic GKY20. This finding suggests that N-terminal proline residue does not change the antimicrobial properties of recombinant (P)GKY20. The improved carrier, which does not contain cysteine and methionine residues, Asp-Pro and Asn-Gly sequences, is well suited for the production of peptides using any of the most popular chemical cleavage methods. PMID:26808536

  14. Recombinant tandem multi-linear neutralizing epitopes of human enterovirus 71 elicited protective immunity in mice

    PubMed Central

    2014-01-01

    Background Human Enterovirus 71 (EV71) has emerged as the leading cause of viral encephalitis in children, especially in the Asia-Pacific regions. EV71 vaccine development is of high priority at present, and neutralization antibodies have been documented to play critical roles during in vitro and in vivo protection against EV71 infection. Results In this study, a novel strategy to produce EV71 vaccine candidate based on recombinant multiple tandem linear neutralizing epitopes (mTLNE) was proposed. The three well identified EV71 linear neutralizing epitopes in capsid proteins, VP1-SP55, VP1-SP70 and VP2-SP28, were sequentially linked by a Gly-Ser linker ((G4S)3), and expressed in E.coli in fusion with the Trx and His tag at either terminal. The recombinant protein mTLNE was soluble and could be purified by standard affinity chromatography. Following three dosage of immunization in adult mice, EV71-specific IgG and neutralization antibodies were readily induced by recombinant mTLNE. IgG subtyping demonstrated that lgG1 antibodies dominated the mTLNE-induced humoral immune response. Especially, cytokine profiling in spleen cells from the mTLNE-immunized mice revealed high production of IL-4 and IL-6. Finally, in vivo challenge experiments showed that passive transfer with anti-mTLNE sera conferred full protection against lethal EV71 challenge in neonatal mice. Conclusion Our results demonstrated that this rational designed recombinant mTLNE might have the potential to be further developed as an EV71 vaccine in the future. PMID:24885030

  15. Cloning and expression of recombinant human platelet-derived growth factor-BB in Pichia Pink.

    PubMed

    Babavalian, H; Latifi, A M; Shokrgozar, M A; Bonakdar, S; Tebyanian, H; Shakeri, F

    2016-07-31

    The PDGF-BB plays a key role in several pathogenesis diseases and it is believed to be an important mediator for wound healing. The recombinant human PDGF-BB is safe and effective to stimulate the healing of chronic, full thickness and lower extremity diabetic neurotrophic ulcers. In the present study, we attempted to produce a PDGF-BB growth factor and also, evaluate its functionality in cell proliferation in yeast host Pichia pink. Pichia pink yeast was used as a host for evaluation of the rhPDGF-BB expression. The coding sequence of PDGF-BB protein was synthesized after optimization and packed into the pGEM. Recombinant proteins were produced and purified. The construct of pPinkα-HC-pdgf was confirmed by sequence, the PDGF-BB protein was expressed and purified with using a nickel affinity chromatography column and then characterized by SDS-PAGE electrophoresis. The biological activity of PDGF-BB was estimated with using human fibroblast cell line. The measurement of protein concentration was determined by Bradford and human PDGF-BB ELISA kit. Purified rhPDGF-BB showed similar biological activity (as the standard PDGF-BB) and suggested that the recombinant protein has a successful protein expression (as well as considerable biological activity in P. pink host). The exact amount of recombinant PDGF-BB concentrations were measured by specific ELISA test which it was about 30 μg/ml. Our study suggested that efficiency of biological activity of PDGF-BB protein may be related to its conformational similarity with standard type and also, it practically may be important in wound healing and tissue regeneration.

  16. Recombinant cold-adapted trypsin I from Atlantic cod-expression, purification, and identification.

    PubMed

    Jónsdóttir, Gudrún; Bjarnason, Jón Bragi; Gudmundsdóttir, Agústa

    2004-01-01

    Atlantic cod trypsin I is a cold-adapted proteolytic enzyme exhibiting approximately 20 times higher catalytic efficiency (kcat/KM) than its mesophilic bovine counterpart for the simple amide substrate BAPNA. In general, cold-adapted proteolytic enzymes are sensitive to autolytic degradation, thermal inactivation as well as molecular aggregation, even at temperatures as low as 18-25 degrees C which may explain the problems observed with their expression, activation, and purification. Prior to the data presented here, there have been no reports in the literature on the expression of psychrophilic or cold-adapted proteolytic enzymes from fish. Nevertheless, numerous cold-adapted proteolytic microbial enzymes have been successfully expressed in bacteria and yeast. This report describes successful expression, activation, and purification of the recombinant cod trypsin I in the His-Patch ThioFusion Escherichia coli expression system. The E. coli pThioHis expression vector used in the study enabled the formation of a fusion protein between a highly soluble fraction of HP-thioredoxin contained in the vector and the N-terminal end of the precursor form of cod trypsin I. The HP-thioredoxin part of the fusion protein binds to a metal-chelating ProBond column, which facilitated its purification. The cod trypsin I part of the purified fusion protein was released by proteolytic cleavage, resulting in concomitant activation of the recombinant enzyme. The recombinant cod trypsin I was purified to homogeneity on a trypsin-specific benzamidine affinity column. The identity of the recombinant enzyme was demonstrated by electrophoresis and chromatography.

  17. Rational Design of a Carrier Protein for the Production of Recombinant Toxic Peptides in Escherichia coli.

    PubMed

    Pane, Katia; Durante, Lorenzo; Pizzo, Elio; Varcamonti, Mario; Zanfardino, Anna; Sgambati, Valeria; Di Maro, Antimo; Carpentieri, Andrea; Izzo, Viviana; Di Donato, Alberto; Cafaro, Valeria; Notomista, Eugenio

    2016-01-01

    Commercial uses of bioactive peptides require low cost, effective methods for their production. We developed a new carrier protein for high yield production of recombinant peptides in Escherichia coli very well suited for the production of toxic peptides like antimicrobial peptides. GKY20, a short antimicrobial peptide derived from the C-terminus of human thrombin, was fused to the C-terminus of Onconase, a small ribonuclease (104 amino acids), which efficiently drove the peptide into inclusion bodies with very high expression levels (about 200-250 mg/L). After purification of the fusion protein by immobilized metal ion affinity chromatography, peptide was obtained by chemical cleavage in diluted acetic acid of an acid labile Asp-Pro sequence with more than 95% efficiency. To improve peptide purification, Onconase was mutated to eliminate all acid labile sequences thus reducing the release of unwanted peptides during the acid cleavage. Mutations were chosen to preserve the differential solubility of Onconase as function of pH, which allows its selective precipitation at neutral pH after the cleavage. The improved carrier allowed the production of 15-18 mg of recombinant peptide per liter of culture with 96-98% purity without the need of further chromatographic steps after the acid cleavage. The antimicrobial activity of the recombinant peptide, with an additional proline at the N-terminus, was tested on Gram-negative and Gram-positive strains and was found to be identical to that measured for synthetic GKY20. This finding suggests that N-terminal proline residue does not change the antimicrobial properties of recombinant (P)GKY20. The improved carrier, which does not contain cysteine and methionine residues, Asp-Pro and Asn-Gly sequences, is well suited for the production of peptides using any of the most popular chemical cleavage methods.

  18. Recombinant Expression and Characterization of α-Conotoxin LvIA in Escherichia coli

    PubMed Central

    Zhu, Xiaopeng; Bi, Jianpeng; Yu, Jinpeng; Li, Xiaodan; Zhang, Yaning; Zhangsun, Dongting; Luo, Sulan

    2016-01-01

    α-Conotoxin LvIA is derived from Conus lividus, native to Hainan, and is the most selective inhibitor of α3β2 nicotinic acetylcholine receptors (nAChRs) known to date. In this study, an efficient approach for the production of recombinant α-Conotoxin LvIA is described. Tandem repeats of a LvIA gene fragment were constructed and fused with a KSI gene and a His6 tag in a Escherichia coli (E. coli) expression vector pET-31b(+). The recombinant plasmids were transformed into E. coli and were found to express well. The KSI-(LvIA)n-His6 fusion protein was purified by metal affinity chromatography and then cleaved with CNBr to release recombinant LvIA (rLvIA). High yields of fusion protein ranging from 100 to 500 mg/L culture were obtained. The pharmacological profile of rLvIA was determined by two-electrode voltage-clamp electrophysiology in Xenopus laevis oocytes expressing rat nAChR subtypes. The rLvIA antagonized the α3β2 nAChR subtype selectively with a nano-molar IC50. The rLvIA was analgesic in a mouse hot-plate test model of pain. Overall, this study provides an effective method to synthesize α-conotoxin LvIA in an E. coli recombinant expression system, and this approach could be useful to obtain active conopeptides in large quantity and at low cost. PMID:26742048

  19. Familial secondary erythrocytosis due to increased oxygen affinity is caused by destabilization of the T state of hemoglobin Brigham (α2β2Pro100Leu)

    PubMed Central

    Mollan, Todd L; Abraham, Bindu; Strader, Michael Brad; Jia, Yiping; Lozier, Jay N; Olson, John S; Alayash, Abdu I

    2012-01-01

    Hemoglobin Brigham (β Pro100 to Leu) was first reported in a patient with familial erythrocytosis. Erythrocytes of an affected individual from the same family contain both HbA and Hb Brigham and exhibit elevated O2 affinity compared with normal cells (P50 = 23 mm Hg vs. 31 mmHg at pH 7.4 at 37°C). O2 affinities measured for hemolysates were sensitive to changes in pH or chloride concentrations, indicating little change in the Bohr and Chloride effects. Hb Brigham was separated from normal HbA by nondenaturing cation exchange liquid chromatography, and the amino acid substitution was verified by mass spectrometry. The properties of Hb Brigham isolated from the patient's blood were then compared with those of recombinant Hb Brigham expressed in Escherichia coli. Kinetic experiments suggest that the rate constants for ligand binding and release in the high (R) and low (T) affinity quaternary states of Hb Brigham are similar to those of native hemoglobin. However, the Brigham mutation decreases the T to R equilibrium constant (L) which accelerates the switch to the R state during ligand binding to deoxy-Hb, increasing the rate of association by approximately twofold, and decelerates the switch during ligand dissociation from HbO2, decreasing the rate approximately twofold. These kinetic data help explain the high O2 affinity characteristics of Hb Brigham and provide further evidence for the importance of the contribution of Pro100 to intersubunit contacts and stabilization of the T quaternary structure. PMID:22821886

  20. Picomolar affinity fibronectin domains engineered utilizing loop length diversity, recursive mutagenesis, and loop shuffling.

    PubMed

    Hackel, Benjamin J; Kapila, Atul; Wittrup, K Dane

    2008-09-19

    The 10th type III domain of human fibronectin (Fn3) has been validated as an effective scaffold for molecular recognition. In the current work, it was desired to improve the robustness of selection of stable, high-affinity Fn3 domains. A yeast surface display library of Fn3 was created in which three solvent-exposed loops were diversified in terms of amino acid composition and loop length. The library was screened by fluorescence-activated cell sorting to isolate binders to lysozyme. An affinity maturation scheme was developed to rapidly and broadly diversify populations of clones by random mutagenesis as well as homologous recombination-driven shuffling of mutagenized loops. The novel library and affinity maturation scheme combined to yield stable, monomeric Fn3 domains with 3 pM affinity for lysozyme. A secondary affinity maturation identified a stable 1.1 pM binder, the highest affinity yet reported for an Fn3 domain. In addition to extension of the affinity limit for this scaffold, the results demonstrate the ability to achieve high-affinity binding while preserving stability and the monomeric state. This library design and affinity maturation scheme is highly efficient, utilizing an initial diversity of 2x10(7) clones and screening only 1x10(8) mutants (totaled over all affinity maturation libraries). Analysis of intermediate populations revealed that loop length diversity, loop shuffling, and recursive mutagenesis of diverse populations are all critical components.

  1. Optimal expression condition of recombinant RAP.

    PubMed

    Zhang, Jie; Zhang, Hong; Bi, Hao; Liu, Zhiguo; Guo, Jianli; Qu, Shen

    2007-02-01

    In order to construct the expression recombinant of human receptor associated protein (RAP), optimize its expression condition and obtain the recombinant protein after expression with high efficiency, two prokaryotic expression vectors-pT7-PL and pET-28a(+) were used to construct the expression recombinant containing RAP cDNA, and the expression efficiency of two kinds of expression E. coli of BL21 strains was compared. The effect of different induction conditions on the expression of recombinant RAP was observed. After recombinant protein was purified with Ni(+) -nitrilotriacetic acid (Ni(+) -NTA) affinity chromatogram, its binding ability with microphage was observed. The results showed that two recombinant plasmids both obtained high expression of RAP. The expression levels of RAP in plasmid pT7-PL-RAP in BL21 (DE3, plysS) strain were significantly higher than in BL21 (DE3) strain. The expression of pT7-PL-RAP in the presence of chloramphenicol was higher than in the absence of chloramphenicol, and most of the inducible expressed RAP was soluble. The RAP which was purified by Ni(+) -NTA resin could strongly bind with the RAW264.7 cells rich in low density lipoprotein receptor (LDLR) family receptors. It was concluded that the expression condition of recombinant RAP was optimized and functional RAP was obtained, which offered a good foundation for the further production of RAP as research tool.

  2. Effect of recombinant α1-antitrypsin Fc-fused (AAT-Fc)protein on the inhibition of inflammatory cytokine production and streptozotocin-induced diabetes.

    PubMed

    Lee, Siyoung; Lee, Youngmin; Hong, Kwangwon; Hong, Jaewoo; Bae, Suyoung; Choi, Jida; Jhun, Hyunjhung; Kwak, Areum; Kim, Eunsom; Jo, Seunghyun; Dinarello, Charles A; Kim, Soohyun

    2013-05-20

    α1-Antitrypsin (AAT) is a member of the serine proteinase inhibitor family that impedes the enzymatic activity of serine proteinases, including human neutrophil elastase, cathepsin G and neutrophil proteinase 3. Here, we expressed recombinant AAT by fusing the intact AAT gene to the constant region of IgG1 to generate soluble recombinant AAT-Fc protein. The recombinant AAT-Fc protein was produced in Chinese hamster ovary (CHO) cells and purified using mini-protein A affinity chromatography. Recombinant AAT-Fc protein was tested for antiinflammatory function and AAT-Fc sufficiently suppressed tumor necrosis factor (TNF)-α-induced interleukin (IL)-6 in human peripheral blood mononuclear cells (PBMCs) and inhibited cytokine-induced TNFα by different cytokines in mouse macrophage Raw 264.7 cells. However, AAT-Fc failed to suppress lipopolysaccharide-induced cytokine production in both PBMCs and macrophages. In addition, our data showed that AAT-Fc blocks the development of hyperglycemia in a streptozotocin-induced mouse model of diabetes. Interestingly, we also found that plasma-derived AAT specifically inhibited the enzymatic activity of elastase but that AAT-Fc had no inhibitory effect on elastase activity.

  3. Efficient production of recombinant glycoprotein D of herpes simplex virus type 2 in Pichia pastoris and its protective efficacy against viral challenge in mice.

    PubMed

    Wang, Man; Jiang, Shuai; Zhou, Li; Wang, Chaoqun; Mao, Ruifeng; Ponnusamy, Murugavel

    2017-03-01

    Herpes simplex virus type 2 (HSV-2) infection is the leading cause of genital ulcer disease and a significant public health concern. However, there are no approved vaccines available to prevent HSV-2 infection. The glycoprotein D (gD) of HSV-2 is the most important candidate antigen for vaccine development. In this study, a truncated form of gD (codons 1-340, gD1-340) was produced as a secretory protein in the methylotrophic yeast Pichia pastoris. The recombinant gD1-340 with a His6 tag was purified to homogeneity by one-step affinity chromatography. Mice immunized with the recombinant gD1-340 developed high levels of antigen-specific antibody responses with HSV-2 neutralizing activity. Immunization with the recombinant gD1-340 conferred significant protection against lethal HSV-2 infection in mice. Moreover, measurement of the secretion of gD1-340-specific cytokines demonstrated that the recombinant gD1-340 induced mixed Th1/Th2 cellular immune responses. These findings indicated that P. pastoris-derived gD1-340 represents a promising HSV-2 vaccine candidate with strong immunogenicity and prophylactic efficacy.

  4. Recombinant expression and purification of a MAP30-cell penetrating peptide fusion protein with higher anti-tumor bioactivity.

    PubMed

    Lv, Qiang; Yang, Xu-Zhong; Fu, Long-Yun; Lu, Yv-Ting; Lu, Yan-Hua; Zhao, Jian; Wang, Fu-Jun

    2015-07-01

    MAP30 (Momordica Antiviral Protein 30 Kd), a single-stranded type-I ribosome inactivating protein, possesses versatile biological activities including anti-tumor abilities. However, the low efficiency penetrating into tumor cells hampers the tumoricidal effect of MAP30. This paper describes MAP30 fused with a human-derived cell penetrating peptide HBD which overcome the low uptake efficiency by tumor cells and exhibits higher anti-tumor bioactivity. MAP30 gene was cloned from the genomic DNA of Momordica charantia and the recombinant plasmid pET28b-MAP30-HBD was established and transferred into Escherichia coli BL21 (DE3). The recombinant MAP30-HBD protein (rMAP30-HBD) was expressed in a soluble form after being induced by 0.5mM IPTG for 14h at 15°C. The recombinant protein was purified to greater than 95% purity with Ni-NTA affinity chromatography. The rMAP30-HBD protein not only has topological inactivation and protein translation inhibition activity but also showed significant improvements in cytotoxic activity compared to that of the rMAP30 protein without HBD in the tested tumor cell lines, and induced higher apoptosis rates in HeLa cells analyzed by Annexin V-FITC with FACS. This paper demonstrated a new method for improving MAP30 protein anti-tumor activity and might have potential applications in cancer therapy area.

  5. Production of functional human insulin-like growth factor binding proteins (IGFBPs) using recombinant expression in HEK293 cells.

    PubMed

    Wanscher, Anne Sofie Molsted; Williamson, Michael; Ebersole, Tasja Wainani; Streicher, Werner; Wikström, Mats; Cazzamali, Giuseppe

    2015-04-01

    Insulin-like growth factor binding proteins (IGFBPs) display many functions in humans including regulation of the insulin-like growth factor (IGF) signaling pathway. The various roles of human IGFBPs make them attractive protein candidates in drug discovery. Structural and functional knowledge on human proteins with therapeutic relevance is needed to design and process the next generation of protein therapeutics. In order to conduct structural and functional investigations large quantities of recombinant proteins are needed. However, finding a suitable recombinant production system for proteins such as full-length human IGFBPs, still remains a challenge. Here we present a mammalian HEK293 expression method suitable for over-expression of secretory full-length human IGFBP-1 to -7. Protein purification of full-length human IGFBP-1, -2, -3 and -5 was conducted using a two-step chromatography procedure and the final protein yields were between 1 and 12mg protein per liter culture media. The recombinant IGFBPs contained PTMs and exhibited high-affinity interactions with their natural ligands IGF-1 and IGF-2.

  6. Targeting Anti-Cancer Active Compounds: Affinity-Based Chromatographic Assays

    PubMed Central

    de Moraes, Marcela Cristina; Cardoso, Carmen Lucia; Seidl, Claudia; Moaddel, Ruin; Cass, Quezia Bezerra

    2016-01-01

    Affinity-based chromatography assays encompass the use of solid supports containing immobilized biological targets to monitor binding events in the isolation , identification and/or characterization of bioactive compounds. This powerful bioanalytical technique allows the screening of potential binders through fast analyses that can be directly performed using isolated substances or complex matrices. An overview of the recent researches in frontal and zonal affinity-based chromatography screening assays, which has been used as a tool in the identification and characterization of new anti-cancer agents, is discussed. In addition, a critical evaluation of the recently emerged ligands fishing assays in complex mixtures is also discussed. PMID:27306095

  7. Green chromatography.

    PubMed

    Płotka, Justyna; Tobiszewski, Marek; Sulej, Anna Maria; Kupska, Magdalena; Górecki, Tadeusz; Namieśnik, Jacek

    2013-09-13

    Analysis of organic compounds in samples characterized by different composition of the matrix is very important in many areas. A vast majority of organic compound determinations are performed using gas or liquid chromatographic methods. It is thus very important that these methods have negligible environmental impact. Chromatographic techniques have the potential to be greener at all steps of the analysis, from sample collection and preparation to separation and final determination. The paper summarizes the approaches used to accomplish the goals of green chromatography. While complete elimination of sample preparation would be an ideal approach, it is not always practical. Solventless extraction techniques offer a very good alternative. Where solvents must be used, the focus should be on the minimization of their consumption. The approaches used to make chromatographic separations greener differ depending on the type of chromatography. In gas chromatography it is advisable to move away from using helium as the carrier gas because it is a non-renewable resource. GC separations using low thermal mass technology can be greener because of energy savings offered by this technology. In liquid chromatography the focus should be on the reduction of solvent consumption and replacement of toxic and environmentally hazardous solvents with more benign alternatives. Multidimensional separation techniques have the potential to make the analysis greener in both GC and LC. The environmental impact of the method is often determined by the location of the instrument with respect to the sample collection point.

  8. Ion Chromatography.

    ERIC Educational Resources Information Center

    Mulik, James D.; Sawicki, Eugene

    1979-01-01

    Accurate for the analysis of ions in solution, this form of analysis enables the analyst to directly assay many compounds that previously were difficult or impossible to analyze. The method is a combination of the methodologies of ion exchange, liquid chromatography, and conductimetric determination with eluant suppression. (Author/RE)

  9. Contractions of affine spherical varieties

    SciTech Connect

    Arzhantsev, I V

    1999-08-31

    The language of filtrations and contractions is used to describe the class of G-varieties obtainable as the total spaces of the construction of contraction applied to affine spherical varieties, which is well-known in invariant theory. These varieties are local models for arbitrary affine G-varieties of complexity 1 with a one-dimensional categorical quotient. As examples, reductive algebraic semigroups and three-dimensional SL{sub 2}-varieties are considered.

  10. Expression of recombinant chinese bovine enterokinase catalytic subunit in P. pastoris and its purification and characterization.

    PubMed

    Fang, Lei; Sun, Qi-Ming; Hua, Zi-Chun

    2004-07-01

    Enterokinase is a tool protease widely utilized in the cleavage of recombinant fusion proteins. cDNA encoding the catalytic subunit of Chinese bovine enterokinase (EKL) was amplified by PCR and then fused to the 3' end of prepro secretion signal peptide gene of alpha-mating factor from Saccharomyces cerevisiae to get the alpha-MF signal-EKL-His6 encoding gene by PCR. Then the whole coding sequence was cloned into the integrative plasmid pAO815 under the control of a methanol-inducible promoter and transformed GS115 methylotrophic strain of Pichia pastoris. Secreted expression of recombinant EKL-His6 was attained by methanol induction and its molecular weight is 43 kD. Because of the existence of His6-tag, EKL-His6 was easily purified from P. pastoris fermentation supernatant by using Ni2+ affinity chromatography and the yield is 5.4 mg per liter of fermentation culture. This purified EKL-His6 demonstrates excellent cleavage activity towards fusion protein containing EK cleavage site.

  11. Enterokinase cleavage of fusion proteins for preparation of recombinant human parathyroid hormone 1-34.

    PubMed

    Xiu, Zhao-Yang; Zhou, He-Yue; Yu, Ying; Dai, Jin-Feng; Chen, Chang-Qing

    2002-07-01

    An engineering E.coli strain, BL21 (DE3)/pGEX-4T hPTH (1-34), was constructed by oligonucleotide annealing and PCR amplifying the target gene, then ligating it with pGEX-4T-3 vector and transferring into BL21 host. The yield of soluble fusion protein of GST-hPTH(1-34) expressed from BL21(DE3)/pGEX-4T hPTH(1-34) is about 10 g/L after high-density, high expression culture and purification by affinity chromatography. Following the simple digestion of enterokinase, about 0.6 g/L intact hPTH (1-34) was harvested. The product is checked by HPLC MS and N-terminus sequence analysis. The purified recombinant hPTH(1-34) stimulated adenylate cyclase in rabbit renal cortical cell membranes to exactly the same extent as synthetic human parathyroid hormone standards, indicating that the recombinant product has full biological activity.

  12. Recombinant expression and purification of heparin binding proteins: midkine and pleiotrophin from Escherichia coli.

    PubMed

    Singh, Priyo K; Srivastava, Vivek

    2012-10-01

    Midkine (MDK) and Pleiotrophin (PTN) belong to a class of heparin-binding growth factors and are highly expressed in a number of cancers. Bioactive and recombinant MDK and PTN are critical reagent for cancer drug discovery studies. MDK and PTN belong to a newly evolving family of secreted neurotrophic and developmentally regulated heparin-binding molecules. PTN is related to MDK with 45% sequence identity and both proteins have been shown to be involved in promoting neurite outgrowth. MDK is a cysteine-rich 13kDa protein containing five disulfide bonds and PTN is 19kDa protein containing ten disulphide bonds. In this study, we expressed recombinant human MDK (rhMDK), mouse MDK (rmMDK) and human pleiotrophin (rhPTN) in Escherichia coli BL21(DE3)pLysS strain. Soluble rhMDK, rmMDK and rhPTN were expressed at a high-level in this strain and the protein was purified (∼90%) by a one-step purification using heparin affinity chromatography. A total of 4mg purified MDK and 7mg of purified PTN were obtained with the overall yield from 1L of bacterial culture. Activity of purified rhMDK and rhPTN was confirmed by a cell proliferation assay using NIH3T3 cells.

  13. Cloning, Expression and Characterization of Recombinant, NADH Oxidase from Giardia lamblia.

    PubMed

    Castillo-Villanueva, Adriana; Méndez, Sara Teresa; Torres-Arroyo, Angélica; Reyes-Vivas, Horacio; Oria-Hernández, Jesús

    2016-02-01

    The NADH oxidase family of enzymes catalyzes the oxidation of NADH by reducing molecular O2 to H2O2, H2O or both. In the protozoan parasite Giardia lamblia, the NADH oxidase enzyme (GlNOX) produces H2O as end product without production of H2O2. GlNOX has been implicated in the parasite metabolism, the intracellular redox regulation and the resistance to drugs currently used against giardiasis; therefore, it is an interesting protein from diverse perspectives. In this work, the GlNOX gene was amplified from genomic G. lamblia DNA and expressed in Escherichia coli as a His-Tagged protein; then, the enzyme was purified by immobilized metal affinity chromatography, characterized, and its properties compared with those of the endogenous enzyme previously isolated from trophozoites (Brown et al. in Eur J Biochem 241(1):155-161, 1996). In comparison with the trophozoite-extracted enzyme, which was scarce and unstable, the recombinant heterologous expression system and one-step purification method produce a stable protein preparation with high yield and purity. The recombinant enzyme mostly resembles the endogenous protein; where differences were found, these were attributable to methodological discrepancies or artifacts. This homogenous, pure and functional protein preparation can be used for detailed structural or functional studies of GlNOX, which will provide a deeper understanding of the biology and pathogeny of G. lamblia.

  14. Expression of Recombinant Human Mast Cell Chymase with Asn-linked Glycans in Glycoengineered Pichia pastoris

    PubMed Central

    Smith, Eliot T.; Perry, Evan T.; Sears, Megan B.; Johnson, David A.

    2014-01-01

    Recombinant human mast cell chymase (rhChymase) was expressed in secreted form as an active enzyme in the SuperMan5 strain of GlycoSwitch® Pichia pastoris, which is engineered to produce proteins with (Man)5(GlcNAc)2 Asn-linked glycans. Cation exchange and heparin affinity chromatography yielded 5 mg of active rhChymase per liter of fermentation medium. Purified rhChymase migrated on SDSPAGE as a single band of 30 kDa and treatment with peptide N-glycosidase F decreased this to 25 kDa, consistent with the established properties of native human chymase (hChymase). Polyclonal antibodies against hChymase detected rhChymase by Western blot. Active site titration with Eglin C, a potent chymase inhibitor, quantified the concentration of purified active enzyme. Kinetic analyses with succinyl-Ala-Ala-Pro-Phe (suc-AAPF) p-nitroanilide and thiobenzyl ester synthetic substrates showed that heparin significantly reduced Km, whereas heparin effects on kcat were minor. Pure rhChymase with Asn-linked glycans closely resembles hChymase. This bioengineering approach avoided hyperglycosylation and provides a source of active rhChymase for other studies as well as a foundation for production of recombinant enzyme with human glycosylation patterns. PMID:25131858

  15. Site-selective conjugation of an anticoagulant aptamer to recombinant albumins and maintenance of neonatal Fc receptor binding.

    PubMed

    Schmøkel, Julie; Voldum, Anders; Tsakiridou, Georgia; Kuhlmann, Matthias; Cameron, Jason; Sørensen, Esben; Wengel, Jesper; Howard, Kenneth A

    2017-03-31

    Aptamers are an attractive molecular medicine that offers high target specificity. Nucleic acid-based aptamers however, are prone to nuclease degradation and rapid renal excretion that require blood circulatory half-life extension enabling technologies. The long circulatory half-life, predominately facilitated by engagement with the cellular recycling neonatal Fc receptor (FcRn), and ligand transport properties of albumin promote it as an attractive candidate to improve the pharmacokinetic profile of aptamers. This study investigates the effect of Cys34 site-selective covalent attachment of a factor IXa anticoagulant aptamer on aptamer functionality and FcRn engagement using recombinant human albumin (rHA) of either a wild type (WT) or an engineered human FcRn high binding variant (HB). Aptamer-albumin conjugates, connected covalently through a heterobifunctional succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate linker, were successfully prepared and purified by high performance liquid chromatography as confirmed by gel electrophoresis band-shift analysis and matrix-assisted laser desorption/ionization time of flight. Minimal reduction (~ 25%) in activity of WT-linked aptamer to that of aptamer alone was found using an anticoagulant activity assay measuring temporal levels of activated partial thrombin. Covalent aptamer-albumin conjugation, however, substantially compromised binding to FcRn, to 10% affinity of that of non-conjugated WT, determined by biolayer interferometry. Binding could be rescued by aptamer conjugation to recombinant albumin engineered for higher FcRn affinity (HB) that exhibited an 8-fold affinity compared to WT alone. This work describes a novel albumin-based aptamer delivery system whose FcRn binding can be increased using a high binding engineered albumin.

  16. Metal binding proteins, recombinant host cells and methods

    DOEpatents

    Summers, Anne O.; Caguiat, Jonathan J.

    2004-06-15

    The present disclosure provides artificial heavy metal binding proteins termed chelons by the inventors. These chelons bind cadmium and/or mercuric ions with relatively high affinity. Also disclosed are coding sequences, recombinant DNA molecules and recombinant host cells comprising those recombinant DNA molecules for expression of the chelon proteins. In the recombinant host cells or transgenic plants, the chelons can be used to bind heavy metals taken up from contaminated soil, groundwater or irrigation water and to concentrate and sequester those ions. Recombinant enteric bacteria can be used within the gastrointestinal tracts of animals or humans exposed to toxic metal ions such as mercury and/or cadmium, where the chelon recombinantly expressed in chosen in accordance with the ion to be rededicated. Alternatively, the chelons can be immobilized to solid supports to bind and concentrate heavy metals from a contaminated aqueous medium including biological fluids.

  17. Overview of the purification of recombinant proteins.

    PubMed

    Wingfield, Paul T

    2015-04-01

    When the first version of this unit was written in 1995, protein purification of recombinant proteins was based on a variety of standard chromatographic methods and approaches, many of which were described and mentioned throughout Current Protocols in Protein Science. In the interim, there has been a shift toward an almost universal usage of the affinity or fusion tag. This may not be the case for biotechnology manufacture where affinity tags can complicate producing proteins under regulatory conditions. Regardless of the protein expression system, questions are asked as to which and how many affinity tags to use, where to attach them in the protein, and whether to engineer a self-cleavage system or simply leave them on. We will briefly address some of these issues. Also, although this overview focuses on E.coli, protein expression and purification, other commonly used expression systems are mentioned and, apart from cell-breakage methods, protein purification methods and strategies are essentially the same.

  18. A linker peptide with high affinity towards silica-containing materials.

    PubMed

    Sunna, Anwar; Chi, Fei; Bergquist, Peter L

    2013-06-25

    A peptide sequence with affinity to silica-containing materials was fused to a truncated form of Streptococcus strain G148 Protein G. The resulting recombinant Linker-Protein G (LPG) was produced in Escherichia coli and purified to apparent homogeneity. It displayed high affinity towards two natural clinoptilolite zeolites. The LPG also displayed high binding affinity towards commercial-grade synthetic zeolite, silica and silica-containing materials. A commercial sample of the truncated Protein G and a basic protein, both without the linker, did not bind to natural or synthetic zeolites or silica. We conclude that the zeolite-binding affinity is mediated by the linker peptide sequence. As a consequence, these data may imply that the binding affinity is directed to the SiO2 component rather than to the atomic orientation on the zeolite crystal surface as previously assumed.

  19. Improving baculovirus recombination

    PubMed Central

    Zhao, Yuguang; Chapman, David A. G.; Jones, Ian M.

    2003-01-01

    Recombinant baculoviruses have established themselves as a favoured technology for the high-level expression of recombinant proteins. The construction of recombinant viruses, however, is a time consuming step that restricts consideration of the technology for high throughput developments. Here we use a targeted gene knockout technology to inactivate an essential viral gene that lies adjacent to the locus used for recombination. Viral DNA prepared from the knockout fails to initiate an infection unless rescued by recombination with a baculovirus transfer vector. Modified viral DNA allows 100% recombinant virus formation, obviates the need for further virus purification and offers an efficient means of mass parallel recombinant formation. PMID:12527795

  20. Gas chromatography.

    PubMed

    Eiceman, G A; Hill, H H; Gardea-Torresdey, J

    1998-06-15

    This review of the fundamental developments in gas chromatography (GC) includes articles published from 1996 and 1997 and an occasional citation prior to 1996. The literature was reviewed principally using CA Selects for Gas Chromatography from Chemical Abstracts Service, and some significant articles from late 1997 may be missing from the review. In addition, the online SciSearch Database (Institute for Scientific Information) capability was used to abstract review articles or books. As with the prior recent reviews, emphasis has been given to the identification and discussion of selected developments, rather than a presentation of a comprehensive literature search, now available widely through computer-based resources. During the last two years, several themes emerged from a review of the literature. Multidimensional gas chromatography has undergone transformation encompassing a broad range of activity, including attempts to establish methods using chromatographic principles rather than a totally empirical approach. Another trend noted was a comparatively large effort in chromatographic theory through modeling efforts; these presumably became resurgent with inexpensive and powerful computing tools. Finally, an impressive level of activity was noted through the themes highlighted in this review, and this was particularly true with detectors and field instruments.

  1. An improved method for high-level soluble expression and purification of recombinant amyloid-beta peptide for in vitro studies.

    PubMed

    Chhetri, Gaurav; Pandey, Tripti; Chinta, Ramesh; Kumar, Awanish; Tripathi, Timir

    2015-10-01

    Amyloid-beta (Aβ) peptide mediates several neurodegenerative diseases. The 42 amino acid (Aβ1-42) is the predominant form of peptide found in the neuritic plaques and has been demonstrated to be neurotoxic in vivo and in vitro. The availability of large quantities of Aβ peptide will help in several biochemical and biophysical studies that may help in exploring the aggregation mechanism and toxicity of Aβ peptide. We report a convenient and economical method to obtain such a peptide biologically. Synthetic oligonucleotides encoding Aβ1-42 were constructed and amplified through the polymerase cycling assembly (also known as assembly PCR), followed by the amplification PCR. Aβ1-42 gene was cloned into pET41a(+) vector for expression. Interestingly, the addition of 3% (v/v) ethanol to the culture medium resulted in the production of large amounts of soluble Aβ fusion protein. The Aβ fusion protein was subjected to a Ni-NTA affinity chromatography followed by enterokinase digestion, and the Aβ peptide was purified using glutathione Sepharose affinity chromatography. The peptide yield was ∼15mg/L culture, indicating the utility of this method for high-yield production of soluble Aβ peptide. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis and immunoblotting with anti-His antibody confirmed the identity of purified Aβ fusion protein and Aβ peptide. In addition, this method provides an advantage over the chemical synthesis and other conventional methods used for large-scale production of recombinant Aβ peptide.

  2. /Chromatography+RECOVERY=superresolution chromatography

    NASA Astrophysics Data System (ADS)

    Kosarev, E. L.; Muranov, K. O.

    2003-04-01

    A method for improving the resolution of the chromatographic analysis based on deriving the point-spread function of a chromatographic column, i.e., a chromatogram of an individual compound, is described. The system of two data sets, namely, a chromatogram of a substance analyzed and a point-spread function of a chromatographic column in combination with the noise statistics, makes it possible to use the RECOVERY signal-reconstruction software package described in paper by Gelfgat et al. (Comp. Phys. Commun. 74 (1993) 335). The proposed method has been tested by chromatography of bovine serum albumin using gel filtration. The resultant resolution exceeds that reached using high-performance liquid chromatography (with the cost of the instruments being lower by a factor of 15-20).

  3. Process and product monitoring of recombinant DNA-derived biopharmaceuticals with high-performance capillary electrophoresis.

    PubMed

    Sunday, Brooks R; Sydor, Wasyl; Guariglia, Lawrence M; Obara, Julie; Mengisen, Roland

    2003-01-01

    High-performance capillary electrophoresis (HPCE) has emerged over the past 20 years as a powerful multidimensional separation tool that is orthogonal to HPLC and comparable to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) slab gel methods. HPCE is most frequently applied in the QC release testing of recombinant DNA-derived protein and monoclonal antibody (MAb) biopharmaceuticals. HPCE is a rugged and robust separation tool that can be used like HPLC to monitor the purification process, as well as to analyze bulk drug and drug substances. Examples of the practical applications of the predominant free-solution capillary electrophoresis (FSCE) and capillary gel electrophoresis (CGE) formats of HPCE, applied for process monitoring and product monitoring of recombinant protein and MAb biotherapeutics, are presented. HPCE has been applied in FSCE mode to monitor the purification of the rDNA-derived protein, recombinant human interleukin-4 (rhIL4). FSCE is demonstrated to be a robust method that can be used to monitor multiple column chromatographic purification processes, such as immobiilized metal-ion affinity chromatography (IMAC), ion exchange chromatography (IEC), and size exclusion chromatography (SEC) columns. The FSCE data are used to pool fractions to carry forward for further purification. The FSCE method is compared to the corresponding RP-HPLC method for rhIL4. HPCE has been applied in the CGE mode to monitor the purification of an rDNA-derived IgG4 MAb. CGE is demonstrated to be a convenient and rapid method to profile the purification process, compare purification processes, and provide a fingerprint of the MAb bulk drug that is useful for determining purity and lot-to-lot consistency. The practical advantages and limitations of CGE for process monitoring and product monitoring of MAbs are presented. The CGE method is compared to the high-performance SEC separation of the MAb under nondenaturing (HP-SEC) and denaturing (HP

  4. Study on CCR5 analogs and affinity peptides.

    PubMed

    Wu, Yingping; Deng, Riqiang; Wu, Wenyan

    2012-03-01

    The G protein-coupled receptor of human chemokine receptor 5 (CCR5) is a key target in the human immunodeficiency virus (HIV) infection process due to its major involvement in binding to the HIV type 1 (HIV-1) envelope glycoprotein gp120 and facilitating virus entry into the cells. The identification of naturally occurring CCR5 mutations (especially CCR5 delta-32) has allowed us to address the CCR5 molecule as a promising target to prevent or resist HIV infection in vivo. To obtain high-affinity peptides that can be used to block CCR5, CCR5 analogs with high conformational similarity are required. In this study, two recombinant proteins named CCR5 N-Linker-E2 and CCR5 mN-E1-E2 containing the fragments of the CCR5 N-terminal, the first extracellular loop or the second extracellular loop are cloned from a full-length human CCR5 cDNA. The recombinant human CCR5 analogs with self-cleavage activity of the intein Mxe or Ssp in the vector pTwinI were then produced with a high-yield expression and purification system in Escherichia coli. Experiments of extracellular epitope-activity identification (such as immunoprecipitation and indirective/competitive enzyme-linked immunosorbent assay) confirmed the close similarity between the epitope activity of the CCR5 analogs and that of the natural CCR5, suggesting the applicability of the recombinant CCR5 analogs as antagonists of the chemokine ligands. Subsequent screening of high-affinity peptides from the phage random-peptides library acquired nine polypeptides, which could be used as CCR5 peptide antagonists. The CCR5 analogs and affinity peptides elucidated in this paper provide us with a basis for further study of the mechanism of inhibition of HIV-1 infection.

  5. Are axial and radial flow chromatography different?

    PubMed

    Besselink, Tamara; van der Padt, Albert; Janssen, Anja E M; Boom, Remko M

    2013-01-04

    Radial flow chromatography can be a solution for scaling up a packed bed chromatographic process to larger processing volumes. In this study we compared axial and radial flow affinity chromatography both experimentally and theoretically. We used an axial flow column and a miniaturized radial flow column with a ratio of 1.8 between outer and inner surface area, both with a bed height of 5 cm. The columns were packed with affinity resin to adsorb BSA. The average velocity in the columns was set equal. No difference in performance between the two columns could be observed. To gain more insight into the design of a radial flow column, the velocity profile and resin distribution in the radial flow column were calculated. Using mathematical models we found that the breakthrough performance of radial flow chromatography is very similar to axial flow when the ratio between outer and inner radius of the radial flow column is around 2. When this ratio is increased, differences become more apparent, but remain small. However, the ratio does have a significant influence on the velocity profile inside the resin bed, which directly influences the pressure drop and potentially resin compression, especially at higher values for this ratio. The choice between axial and radial flow will be based on cost price, footprint and packing characteristics. For small-scale processes, axial flow chromatography is probably the best choice, for resin volumes of at least several tens of litres, radial flow chromatography may be preferable.

  6. Chemical binding affinity estimation using MSB

    NASA Astrophysics Data System (ADS)

    Weaver, John B.; Rauwerdink, Adam M.

    2011-03-01

    Binding affinity can be estimated in several ways in the laboratory but there is no viable way to estimate binding affinity in vivo without assumptions on the number of binding sites. Magnetic spectroscopy of nanoparticle Brownian motion, MSB, measures the rotational Brownian motion. The MSB signal is affected by nanoparticle binding affinity so it provides a mechanism to measure the chemical binding affinity. We present a possible mechanism to quantify the binding affinity and test that mechanism using viscous solutions.

  7. Isolation of murine sialoglycoprotein using consecutive chromatography.

    PubMed

    Wilson, D J; Planas, J M

    1991-01-01

    Affinity columns and high performance liquid chromatography were employed consecutively to obtain 89, 65, 46 and 29 kilodalton sialoglycoproteins from mouse erythrocyte ghosts free of the Band 3 protein which traditionally co-purifies with these proteins. The purification scheme involves Concanavalin A, Wheat Germ Agglutinin and/or Limulus lectin Sepharose 4B columns. We have designated these glycophorin-like proteins Sialoglycoproteins 1, 2, 3, and 4, respectively. Sialoglycoprotein 2 can be isolated independently using a Limulus column combination, while Sialoglycoproteins 3 and 4 were isolated separately during high performance liquid chromatography, demonstrating heterogeneity in binding properties between these sialoglycoproteins.

  8. Serial coupling of ion-exchange and size-exclusion chromatography to determine aggregation levels in mAbs in the presence of a proteinaceous excipient, recombinant human serum albumin.

    PubMed

    Weisbjerg, Paul Luigi Gargani; Caspersen, Mikael Bjerg; Cook, Ken; Van De Weert, Marco

    2015-02-01

    Aggregation levels of therapeutic proteins may be difficult to determine in mixtures containing other proteinaceous excipients. We performed a feasibility study of using serial coupling of an anion exchange and size exclusion column to determine the aggregation levels of four different model monoclonal antibodies (mAb) mixed with the model proteinaceous excipient recombinant human serum albumin (rHSA). For three of the four mAbs suitable elution conditions could be established. From the limitations imposed by the pI of the rHSA, the pI of the mAb and the nature of the columns used, it was possible to propose a set of general conditions that allows quantification of the aggregation level of a therapeutic protein in the presence of a proteinaceous excipient: The excipient protein and protein of interest should differ in pI by a minimum of 0.5 units, and the pI of the protein of interest should not be higher than ca. 8.5.

  9. Developing recombinant antibodies for biomarker detection

    SciTech Connect

    Baird, Cheryl L.; Fischer, Christopher J.; Pefaur, Noah B.; Miller, Keith D.; Kagen, Jacob; Srivastava, Sudhir; Rodland, Karin D.

    2010-10-01

    Monoclonal antibodies (mAbs) have an essential role in biomarker validation and diagnostic assays. A barrier to pursuing these applications is the reliance on immunization and hybridomas to produce mAbs, which is time-consuming and may not yield the desired mAb. We recommend a process flow for affinity reagent production that utilizes combinatorial protein display systems (eg, yeast surface display or phage display) rather than hybridomas. These systems link a selectable phenotype-binding conferred by an antibody fragment-with a means for recovering the encoding gene. Recombinant libraries obtained from immunizations can produce high-affinity antibodies (<10 nM) more quickly than other methods. Non-immune libraries provide an alternate route when immunizations are not possible, or when suitable mAbs are not recovered from an immune library. Directed molecular evolution (DME) is an integral part of optimizing mAbs obtained from combinatorial protein display, but can also be used on hybridoma-derived mAbs. Variants can easily be obtained and screened to increase the affinity of the parent mAb (affinity maturation). We discuss examples where DME has been used to tailor affinity reagents to specific applications. Combinatorial protein display also provides an accessible method for identifying antibody pairs, which are necessary for sandwich-type diagnostic assays.

  10. Affine reflection groups for tiling applications: Knot theory and DNA

    NASA Astrophysics Data System (ADS)

    Bodner, M.; Patera, J.; Peterson, M.

    2012-01-01

    We present in this paper some non-conventional applications of affine Weyl groups Waff of rank 2, the symmetry group of the tiling/lattice. We first develop and present the tools for applications requiring tilings of a real Euclidean plane {R}^2. We then elucidate the equivalence of these tilings with 2D projections of knots. The resulting mathematical structure provides a framework within which is encompassed recent work utilizing knot theory for modeling the structure and function of genetic molecules, specifically the action of particular enzymes in altering the topology of DNA in site-specific recombination.

  11. Affine Contractions on the Plane

    ERIC Educational Resources Information Center

    Celik, D.; Ozdemir, Y.; Ureyen, M.

    2007-01-01

    Contractions play a considerable role in the theory of fractals. However, it is not easy to find contractions which are not similitudes. In this study, it is shown by counter examples that an affine transformation of the plane carrying a given triangle onto another triangle may not be a contraction even if it contracts edges, heights or medians.…

  12. Affinity-aware checkpoint restart

    SciTech Connect

    Saini, Ajay; Rezaei, Arash; Mueller, Frank; Hargrove, Paul; Roman, Eric

    2014-12-08

    Current checkpointing techniques employed to overcome faults for HPC applications result in inferior application performance after restart from a checkpoint for a number of applications. This is due to a lack of page and core affinity awareness of the checkpoint/restart (C/R) mechanism, i.e., application tasks originally pinned to cores may be restarted on different cores, and in case of non-uniform memory architectures (NUMA), quite common today, memory pages associated with tasks on a NUMA node may be associated with a different NUMA node after restart. Here, this work contributes a novel design technique for C/R mechanisms to preserve task-to-core maps and NUMA node specific page affinities across restarts. Experimental results with BLCR, a C/R mechanism, enhanced with affinity awareness demonstrate significant performance benefits of 37%-73% for the NAS Parallel Benchmark codes and 6-12% for NAMD with negligible overheads instead of up to nearly four times longer an execution times without affinity-aware restarts on 16 cores.

  13. Affinity-aware checkpoint restart

    DOE PAGES

    Saini, Ajay; Rezaei, Arash; Mueller, Frank; ...

    2014-12-08

    Current checkpointing techniques employed to overcome faults for HPC applications result in inferior application performance after restart from a checkpoint for a number of applications. This is due to a lack of page and core affinity awareness of the checkpoint/restart (C/R) mechanism, i.e., application tasks originally pinned to cores may be restarted on different cores, and in case of non-uniform memory architectures (NUMA), quite common today, memory pages associated with tasks on a NUMA node may be associated with a different NUMA node after restart. Here, this work contributes a novel design technique for C/R mechanisms to preserve task-to-core mapsmore » and NUMA node specific page affinities across restarts. Experimental results with BLCR, a C/R mechanism, enhanced with affinity awareness demonstrate significant performance benefits of 37%-73% for the NAS Parallel Benchmark codes and 6-12% for NAMD with negligible overheads instead of up to nearly four times longer an execution times without affinity-aware restarts on 16 cores.« less

  14. ELECTRON AFFINITIES OF INORGANIC RADICALS.

    DTIC Science & Technology

    energy in the latter compound is 110 kcals/mole, distinctly higher than in ammonia. Cyanogen (CN)2 and hydrocyanic acid (HCN) yield values for the...ions very readily, and the electron affinity is 49 kcals/mole. A comparison with the results from thiocyanic acid (HNCS) indicates that the H-N bond

  15. Gas Chromatography

    NASA Astrophysics Data System (ADS)

    Qian, Michael C.

    Gas chromatography (GC) has many applications in the analysis of food products. GC has been used for the determination of fatty acids, triglycerides, cholesterol, gases, water, alcohols, pesticides, flavor compounds, and many more. While GC has been used for other food components such as sugars, oligosaccharides, amino acids, peptides, and vitamins, these substances are more suited to analysis by high performance liquid chromatography. GC is ideally suited to the analysis of volatile substances that are thermally stable. Substances such as pesticides and flavor compounds that meet these criteria can be isolated from a food and directly injected into the GC. For compounds that are thermally unstable, too low in volatility, or yield poor chromatographic separation due to polarity, a derivatization step must be done before GC analysis. The two parts of the experiment described here include the analysis of alcohols that requires no derivatization step, and the analysis of fatty acids which requires derivatization. The experiments specify the use of capillary columns, but the first experiment includes conditions for a packed column.

  16. Expression and Characterization of Geobacillus stearothermophilus SR74 Recombinant α-Amylase in Pichia pastoris

    PubMed Central

    Gandhi, Sivasangkary; Salleh, Abu Bakar; Rahman, Raja Noor Zaliha Raja Abd; Chor Leow, Thean; Oslan, Siti Nurbaya

    2015-01-01

    Geobacillus stearothermophilus SR74 is a locally isolated thermophilic bacteria producing thermostable and thermoactive α-amylase. Increased production and commercialization of thermostable α-amylase strongly warrant the need of a suitable expression system. In this study, the gene encoding the thermostable α-amylase in G. stearothermophilus SR74 was amplified, sequenced, and subcloned into P. pastoris GS115 strain under the control of a methanol inducible promoter, alcohol oxidase (AOX). Methanol induced recombinant expression and secretion of the protein resulted in high levels of extracellular amylase production. YPTM medium supplemented with methanol (1% v/v) was the best medium and once optimized, the maximum recombinant α-amylase SR74 achieved in shake flask was 28.6 U mL−1 at 120 h after induction. The recombinant 59 kDa α-amylase SR74 was purified 1.9-fold using affinity chromatography with a product yield of 52.6% and a specific activity of 151.8 U mg−1. The optimum pH of α-amylase SR74 was 7.0 and the enzyme was stable between pH 6.0–8.0. The purified enzyme was thermostable and thermoactive, exhibiting maximum activity at 65°C with a half-life (t1/2) of 88 min at 60°C. In conclusion, thermostable α-amylase SR74 from G. stearothermophilus SR74 would be beneficial for industrial applications, especially in liquefying saccrification. PMID:26090417

  17. Activity of recombinant and natural defensins from Vigna unguiculata seeds against Leishmania amazonensis.

    PubMed

    Souza, Géssika Silva; do Nascimento, Viviane Veiga; de Carvalho, Laís Pessanha; de Melo, Edésio José Tenório; Fernandes, Keysson Vieira; Machado, Olga Lima Tavares; Retamal, Claudio Andres; Gomes, Valdirene Moreira; Carvalho, André de Oliveira

    2013-09-01

    Antimicrobial peptides (AMPs), which are differentiated from other antibiotic peptides, such as gramicidins and polymyxins, because they are synthesized by large enzymatic complex and bear modified amino acids including d-amino acids, are short polymers of l-amino acids synthesized by ribosomes upon which all living organisms rely to defend themselves from invaders or competitor microorganisms. AMPs have received a great deal of attention from the scientific community as potential new drugs for neglected diseases such as Leishmaniasis. In plants, they include several families of compounds, including the plant defensins. The aim of the present study was to improve the expression of recombinant defensin from Vigna unguiculata seeds (Vu-Defr) and to test its activity against Leishmania amazonensis promatigotes. Recombinant expression was performed in LB and TB media and under different conditions. The purification of Vu-Defr was achieved by immobilized metal ion affinity and reversed-phase chromatography. The purified Vu-Defr was analyzed by circular dichroism (CD), and its biological activity was tested against L. amazonenis promastigotes. To demonstrate that the recombinant production of Vu-Defr did not interfere with its fold and biological activity, the results of all experiments were compared with the results from the natural defensin (Vu-Def). The CD spectra of both peptides presented good superimposition indicating that both peptides present very similar secondary structure and that the Vu-Defr was correctly folded. L. amazonensis treated with Vu-Defr led to the elimination of 54.3% and 46.9% of the parasites at 24 and 48h of incubation time, respectively. Vu-Def eliminated 50% and 54.8% of the parasites at 24 and 48 h, respectively. Both were used at a concentration of 100 μg/mL. These results suggested the potential for plant defensins to be used as new antiparasitic substances.

  18. Expression and Characterization of Geobacillus stearothermophilus SR74 Recombinant α-Amylase in Pichia pastoris.

    PubMed

    Gandhi, Sivasangkary; Salleh, Abu Bakar; Rahman, Raja Noor Zaliha Raja Abd; Chor Leow, Thean; Oslan, Siti Nurbaya

    2015-01-01

    Geobacillus stearothermophilus SR74 is a locally isolated thermophilic bacteria producing thermostable and thermoactive α-amylase. Increased production and commercialization of thermostable α-amylase strongly warrant the need of a suitable expression system. In this study, the gene encoding the thermostable α-amylase in G. stearothermophilus SR74 was amplified, sequenced, and subcloned into P. pastoris GS115 strain under the control of a methanol inducible promoter, alcohol oxidase (AOX). Methanol induced recombinant expression and secretion of the protein resulted in high levels of extracellular amylase production. YPTM medium supplemented with methanol (1% v/v) was the best medium and once optimized, the maximum recombinant α-amylase SR74 achieved in shake flask was 28.6 U mL(-1) at 120 h after induction. The recombinant 59 kDa α-amylase SR74 was purified 1.9-fold using affinity chromatography with a product yield of 52.6% and a specific activity of 151.8 U mg(-1). The optimum pH of α-amylase SR74 was 7.0 and the enzyme was stable between pH 6.0-8.0. The purified enzyme was thermostable and thermoactive, exhibiting maximum activity at 65°C with a half-life (t₁/₂) of 88 min at 60°C. In conclusion, thermostable α-amylase SR74 from G. stearothermophilus SR74 would be beneficial for industrial applications, especially in liquefying saccrification.

  19. Immobilizing affinity proteins to nitrocellulose: a toolbox for paper-based assay developers.

    PubMed

    Holstein, Carly A; Chevalier, Aaron; Bennett, Steven; Anderson, Caitlin E; Keniston, Karen; Olsen, Cathryn; Li, Bing; Bales, Brian; Moore, David R; Fu, Elain; Baker, David; Yager, Paul

    2016-02-01

    To enable enhanced paper-based diagnostics with improved detection capabilities, new methods are needed to immobilize affinity reagents to porous substrates, especially for capture molecules other than IgG. To this end, we have developed and characterized three novel methods for immobilizing protein-based affinity reagents to nitrocellulose membranes. We have demonstrated these methods using recombinant affinity proteins for the influenza surface protein hemagglutinin, leveraging the customizability of these recombinant "flu binders" for the design of features for immobilization. The three approaches shown are: (1) covalent attachment of thiolated affinity protein to an epoxide-functionalized nitrocellulose membrane, (2) attachment of biotinylated affinity protein through a nitrocellulose-binding streptavidin anchor protein, and (3) fusion of affinity protein to a novel nitrocellulose-binding anchor protein for direct coupling and immobilization. We also characterized the use of direct adsorption for the flu binders, as a point of comparison and motivation for these novel methods. Finally, we demonstrated that these novel methods can provide improved performance to an influenza hemagglutinin assay, compared to a traditional antibody-based capture system. Taken together, this work advances the toolkit available for the development of next-generation paper-based diagnostics.

  20. Theoretical proton affinity and fluoride affinity of nerve agent VX.

    PubMed

    Bera, Narayan C; Maeda, Satoshi; Morokuma, Keiji; Viggiano, Al A

    2010-12-23

    Proton affinity and fluoride affinity of nerve agent VX at all of its possible sites were calculated at the RI-MP2/cc-pVTZ//B3LYP/6-31G* and RI-MP2/aug-cc-pVTZ//B3LYP/6-31+G* levels, respectively. The protonation leads to various unique structures, with H(+) attached to oxygen, nitrogen, and sulfur atoms; among which the nitrogen site possesses the highest proton affinity of -ΔE ∼ 251 kcal/mol, suggesting that this is likely to be the major product. In addition some H(2), CH(4) dissociation as well as destruction channels have been found, among which the CH(4) + [Et-O-P(═O)(Me)-S-(CH(2))(2)-N(+)(iPr)═CHMe] product and the destruction product forming Et-O-P(═O)(Me)-SMe + CH(2)═N(+)(iPr)(2) are only 9 kcal/mol less stable than the most stable N-protonated product. For fluoridization, the S-P destruction channel to give Et-O-P(═O)(Me)(F) + [S-(CH(2))(2)-N-(iPr)(2)](-) is energetically the most favorable, with a fluoride affinity of -ΔE ∼ 44 kcal. Various F(-) ion-molecule complexes are also found, with the one having F(-) interacting with two hydrogen atoms in different alkyl groups to be only 9 kcal/mol higher than the above destruction product. These results suggest VX behaves quite differently from surrogate systems.

  1. Recombinant protein production technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombinant protein production is an important technology for antibody production, biochemical activity study, and structural determination during the post-genomic era. Limiting factors in recombinant protein production include low-level protein expression, protein precipitation, and loss of protein...

  2. Rat acid phosphatase: overexpression of active, secreted enzyme by recombinant baculovirus-infected insect cells, molecular properties, and crystallization.

    PubMed Central

    Vihko, P; Kurkela, R; Porvari, K; Herrala, A; Lindfors, A; Lindqvist, Y; Schneider, G

    1993-01-01

    Rat prostatic acid phosphatase (rPAP; orthophosphoric-monoester phosphohydrolase (acid optimum), EC 3.1.3.2) was expressed in the baculovirus expression vector system. Recombinant protein was secreted into the medium at a high yield by infected insect cells, which were cultured at high density in a 30-liter bioreactor allowing high oxygen content for rapidly growing cells. About 20% of the cell protein produced was rPAP. Partial sequence determination of the N terminus of the purified recombinant secreted protein revealed identity to the native secreted protein, showing that the signal peptide is recognized and properly cleaved in insect cells. The enzyme was purified by using L-(+)-tartrate affinity chromatography. The purified protein had a high specific activity of 2620 mumol.min-1.mg-1 with p-nitrophenyl phosphate at the substrate, and it also showed phosphotyrosine phosphatase activity. The molecular mass of the recombinant rPAP was 155 kDa. Two subunits of 46 kDa and 48 kDa could be detected in SDS/PAGE, but only one subunit of 41 kDa was present after digestion with N-glycosidase. The active enzyme is a trimer of subunits differing only in glycosylation. When recombinant rPAP was crystallized with polyethylene glycol 6000 as the precipitant, the crystals were trigonal (space group P3(1)21) with cell dimensions a = 89.4 A and c = 152.0 A. The observed diffraction pattern extends to a resolution of at least 3 A. Images PMID:8430088

  3. A Cost-Effective ELP-Intein Coupling System for Recombinant Protein Purification from Plant Production Platform

    PubMed Central

    Tian, Li; Sun, Samuel S. M.

    2011-01-01

    Background Plant bioreactor offers an efficient and economical system for large-scale production of recombinant proteins. However, high cost and difficulty in scaling-up of downstream purification of the target protein, particularly the common involvement of affinity chromatography and protease in the purification process, has hampered its industrial scale application, therefore a cost-effective and easily scale-up purification method is highly desirable for further development of plant bioreactor. Methodology/Principal Findings To tackle this problem, we investigated the ELP-intein coupling system for purification of recombinant proteins expressed in transgenic plants using a plant lectin (PAL) with anti-tumor bioactivity as example target protein and rice seeds as production platform. Results showed that ELP-intein-PAL (EiP) fusion protein formed novel irregular ER-derived protein bodies in endosperm cells by retention of endogenous prolamins. The fusion protein was partially self-cleaved in vivo, but only self-cleaved PAL protein was detected in total seed protein sample and deposited in protein storage vacuoles (PSV). The in vivo uncleaved EiP protein was accumulated up to 2–4.2% of the total seed protein. The target PAL protein could be purified by the ELP-intein system efficiently without using complicated instruments and expensive chemicals, and the yield of pure PAL protein by the current method was up to 1.1 mg/g total seed protein. Conclusion/Significance This study successfully demonstrated the purification of an example recombinant protein from rice seeds by the ELP-intein system. The whole purification procedure can be easily scaled up for industrial production, providing the first evidence on applying the ELP-intein coupling system to achieve cost-effective purification of recombinant proteins expressed in plant bioreactors and its possible application in industry. PMID:21918684

  4. Therapeutic Recombinant Monoclonal Antibodies

    ERIC Educational Resources Information Center

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  5. Enhanced Mitogenic Activity of Recombinant Human Vascular Endothelial Growth Factor VEGF121 Expressed in E. coli Origami B (DE3) with Molecular Chaperones.

    PubMed

    Kaplan, Ondřej; Zárubová, Jana; Mikulová, Barbora; Filová, Elena; Bártová, Jiřina; Bačáková, Lucie; Brynda, Eduard

    2016-01-01

    We describe the production of a highly-active mutant VEGF variant, α2-PI1-8-VEGF121, which contains a substrate sequence for factor XIIIa at the aminoterminus designed for incorporation into a fibrin gel. The α2-PI1-8-VEGF121 gene was synthesized, cloned into a pET-32a(+) vector and expressed in Escherichia coli Origami B (DE3) host cells. To increase the protein folding and the solubility, the resulting thioredoxin-α2-PI1-8-VEGF121 fusion protein was co-expressed with recombinant molecular chaperones GroES/EL encoded by independent plasmid pGro7. The fusion protein was purified from the soluble fraction of cytoplasmic proteins using affinity chromatography. After cleavage of the thioredoxin fusion part with thrombin, the target protein was purified by a second round of affinity chromatography. The yield of purified α2-PI1-8-VEGF121 was 1.4 mg per liter of the cell culture. The α2-PI1-8-VEGF121 expressed in this work increased the proliferation of endothelial cells 3.9-8.7 times in comparison with commercially-available recombinant VEGF121. This very high mitogenic activity may be caused by co-expression of the growth factor with molecular chaperones not previously used in VEGF production. At the same time, α2-PI1-8-VEGF121 did not elicit considerable inflammatory activation of human endothelial HUVEC cells and human monocyte-like THP-1 cells.

  6. Enhanced Mitogenic Activity of Recombinant Human Vascular Endothelial Growth Factor VEGF121 Expressed in E. coli Origami B (DE3) with Molecular Chaperones

    PubMed Central

    Kaplan, Ondřej; Zárubová, Jana; Mikulová, Barbora; Filová, Elena; Bártová, Jiřina; Bačáková, Lucie; Brynda, Eduard

    2016-01-01

    We describe the production of a highly-active mutant VEGF variant, α2-PI1-8-VEGF121, which contains a substrate sequence for factor XIIIa at the aminoterminus designed for incorporation into a fibrin gel. The α2-PI1-8-VEGF121 gene was synthesized, cloned into a pET-32a(+) vector and expressed in Escherichia coli Origami B (DE3) host cells. To increase the protein folding and the solubility, the resulting thioredoxin-α2-PI1-8-VEGF121 fusion protein was co-expressed with recombinant molecular chaperones GroES/EL encoded by independent plasmid pGro7. The fusion protein was purified from the soluble fraction of cytoplasmic proteins using affinity chromatography. After cleavage of the thioredoxin fusion part with thrombin, the target protein was purified by a second round of affinity chromatography. The yield of purified α2-PI1-8-VEGF121 was 1.4 mg per liter of the cell culture. The α2-PI1-8-VEGF121 expressed in this work increased the proliferation of endothelial cells 3.9–8.7 times in comparison with commercially-available recombinant VEGF121. This very high mitogenic activity may be caused by co-expression of the growth factor with molecular chaperones not previously used in VEGF production. At the same time, α2-PI1-8-VEGF121 did not elicit considerable inflammatory activation of human endothelial HUVEC cells and human monocyte-like THP-1 cells. PMID:27716773

  7. Identification of a recombinant inulin fructotransferase (difructose dianhydride III forming) from Arthrobacter sp. 161MFSha2.1 with high specific activity and remarkable thermostability.

    PubMed

    Wang, Xiao; Yu, Shuhuai; Zhang, Tao; Jiang, Bo; Mu, Wanmeng

    2015-04-08

    Difructose dianhydride III (DFA III) is a functional carbohydrate produced from inulin by inulin fructotransferase (IFTase, EC 4.2.2.18). In this work, an IFTase gene from Arthrobacter sp. 161MFSha2.1 was cloned and expressed in Escherachia coli. The recombinant enzyme was purified by metal affinity chromatography. It showed significant inulin hydrolysis activity, and the produced main product from inulin was determined as DFA III by nuclear magnetic resonance analysis. The molecular mass of the purified protein was calculated to be 43 and 125 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration, respectively, suggesting the native enzyme might be a homotrimer. The recombinant enzyme showed maximal activity as 2391 units/mg at pH 6.5 and 55 °C. It displayed the highest thermostability among previously reported IFTases (DFA III forming) and was stable up to 80 °C for 4 h of incubation. The smallest substrate was determined as nystose. The conversion ratio of inulin to DFA III reached 81% when 100 g/L inulin was catalyzed by 80 nM recombinant enzyme for 20 min at pH 6.5 and 55 °C. All of these data indicated that the IFTase (DFA III forming) from Arthrobacter sp. 161MFSha2.1 had great potential for industrial DFA III production.

  8. Expression, purification, and refolding of active recombinant human E-selectin lectin and EGF domains in Escherichia coli.

    PubMed

    Kawano, Susumu; Iyaguchi, Daisuke; Okada, Chiaki; Sasaki, Yusuke; Toyota, Eiko

    2013-06-01

    Attempts to obtain active E-selectin from Escherichia coli (E. coli) have not yet been successful. In this study, we succeeded in expressing the recombinant lectin and epidermal growth factor domain fragments of human E-selectin (rh-ESLE) in E. coli on a large-scale. The rh-ESLE protein was expressed as an inactive form in the inclusion bodies. The inactive form of rh-ESLE was denatured and solubilized by 6 M guanidine hydrochloride and then purified by Ni(2+) affinity chromatography under denaturing conditions. Denatured rh-ESLE was then refolded by a rapid-dilution method using a large amount of refolding buffer, which contained arginine and cysteine/cystine. The refolded rh-ESLE showed binding affinity for sLe(X) (K(d) = 321 nM, B(max) = 1.9 pmol/μg protein). This result suggests that the refolded rh-ESLE recovered its native and functional structure.

  9. Characterization and downstream mannose phosphorylation of human recombinant α-L-iduronidase produced in Arabidopsis complex glycan-deficient (cgl) seeds.

    PubMed

    He, Xu; Pierce, Owen; Haselhorst, Thomas; von Itzstein, Mark; Kolarich, Daniel; Packer, Nicolle H; Gloster, Tracey M; Vocadlo, David J; Qian, Yi; Brooks, Doug; Kermode, Allison R

    2013-12-01

    Mucopolysaccharidosis (MPS) I is a lysosomal storage disease caused by a deficiency of α-L-iduronidase (IDUA) (EC 3.2.1.76); enzyme replacement therapy is the conventional treatment for this genetic disease. Arabidopsis cgl mutants are characterized by a deficiency of the activity of N-acetylglucosaminyl transferase I (EC 2.4.1.101), the first enzyme in the pathway of hybrid and complex N-glycan biosynthesis. To develop a seed-based platform for the production of recombinant IDUA for potential treatment of MPS I, cgl mutant seeds were generated to express human IDUA at high yields and to avoid maturation of the N-linked glycans on the recombinant human enzyme. Enzyme kinetic data showed that cgl-IDUA has similar enzymatic properties to the commercial recombinant IDUA derived from cultured Chinese hamster ovary (CHO) cells (Aldurazyme™). The N-glycan profile showed that cgl-derived IDUA contained predominantly high-mannose-type N-glycans (94.5%), and the residual complex/hybrid N-glycan-containing enzyme was efficiently removed by an additional affinity chromatography step. Furthermore, purified cgl-IDUA was amenable to sequential in vitro processing by soluble recombinant forms of the two enzymes that mediate the addition of the mannose-6-phosphate (M6P) tag in mammalian cells-UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine (GlcNAc)-1-phosphotransferase-and GlcNAc-1-phosphodiester α-N-acetylglucosaminidase (the 'uncovering enzyme'). Arabidopsis seeds provide an alternative system for producing recombinant lysosomal enzymes for enzyme replacement therapy; the purified enzymes can be subjected to downstream processing to create the M6P, a recognition marker essential for efficient receptor-mediated uptake into lysosomes of human cells.

  10. Protein purification using chromatography: selection of type, modelling and optimization of operating conditions.

    PubMed

    Asenjo, J A; Andrews, B A

    2009-01-01

    To achieve a high level of purity in the purification of recombinant proteins for therapeutic or analytical application, it is necessary to use several chromatographic steps. There is a range of techniques available including anion and cation exchange, which can be carried out at different pHs, hydrophobic interaction chromatography, gel filtration and affinity chromatography. In the case of a complex mixture of partially unknown proteins or a clarified cell extract, there are many different routes one can take in order to choose the minimum and most efficient number of purification steps to achieve a desired level of purity (e.g. 98%, 99.5% or 99.9%). This review shows how an initial 'proteomic' characterization of the complex mixture of target protein and protein contaminants can be used to select the most efficient chromatographic separation steps in order to achieve a specific level of purity with a minimum number of steps. The chosen methodology was implemented in a computer- based Expert System. Two algorithms were developed, the first algorithm was used to select the most efficient purification method to separate a protein from its contaminants based on the physicochemical properties of the protein product and the protein contaminants and the second algorithm was used to predict the number and concentration of contaminants after each separation as well as protein product purity. The application of the Expert System approach was experimentally tested and validated with a mixture of four proteins and the experimental validation was also carried out with a supernatant of Bacillus subtilis producing a recombinant beta-1,3-glucanase. Once the type of chromatography is chosen, optimization of the operating conditions is essential. Chromatographic elution curves for a three-protein mixture (alpha-lactoalbumin, ovalbumin and beta-lactoglobulin), carried out under different flow rates and ionic strength conditions, were simulated using two different mathematical

  11. Generation of an affinity column for antibody purification by intein-mediated protein ligation.

    PubMed

    Sun, Luo; Ghosh, Inca; Xu, Ming-Qun

    2003-11-01

    Coupling an antigenic peptide to a solid support is a crucial step in the affinity purification of a peptide-specific antibody. Conventional methods for generating reactive agarose, cellulose or other matrices for peptide conjugation are laborious and can result in a significant amount of chemical waste. In this report, we present a novel method for the facile production of a peptide affinity column by employing intein-mediated protein ligation (IPL) in conjunction with chitin affinity chromatography. A reactive thioester was generated at the C-terminal of the chitin binding domain (CBD) from the chitinase A1 of Bacillus circulans WL-2 by thiol-induced cleavage of the peptide bond between the CBD and a modified intein. Peptide epitopes possessing an N-terminal cysteine wer