Sample records for affinity chromatography sds-page

  1. Preparative SDS PAGE as an Alternative to His-Tag Purification of Recombinant Amelogenin

    PubMed Central

    Gabe, Claire M.; Brookes, Steven J.; Kirkham, Jennifer

    2017-01-01

    Recombinant protein technology provides an invaluable source of proteins for use in structure-function studies, as immunogens, and in the development of therapeutics. Recombinant proteins are typically engineered with “tags” that allow the protein to be purified from crude host cell extracts using affinity based chromatography techniques. Amelogenin is the principal component of the developing enamel matrix and a frequent focus for biomineralization researchers. Several groups have reported the successful production of recombinant amelogenins but the production of recombinant amelogenin free of any tags, and at single band purity on silver stained SDS PAGE is technically challenging. This is important, as rigorous structure-function research frequently demands a high degree of protein purity and fidelity of protein sequence. Our aim was to generate His-tagged recombinant amelogenin at single band purity on silver stained SDS PAGE for use in functionality studies after His-tag cleavage. An acetic acid extraction technique (previously reported to produce recombinant amelogenin at 95% purity directly from E. coli) followed by repeated rounds of nickel column affinity chromatography, failed to generate recombinant amelogenin at single band purity. This was because following an initial round of nickel column affinity chromatography, subsequent cleavage of the His-tag was not 100% efficient. A second round of nickel column affinity chromatography, used in attempts to separate the cleaved His-tag free recombinant from uncleaved His-tagged contaminants, was still unsatisfactory as cleaved recombinant amelogenin exhibited significant affinity for the nickel column. To solve this problem, we used preparative SDS PAGE to successfully purify cleaved recombinant amelogenins to single band purity on silver stained SDS PAGE. The resolving power of preparative SDS PAGE was such that His-tag based purification of recombinant amelogenin becomes redundant. We suggest that acetic

  2. Purification of recombinant Aβ(1-42) and pGlu-Aβ(3-42) using preparative SDS-PAGE.

    PubMed

    Spahn, Claudia; Wermann, Michael; Eichentopf, Rico; Hause, Gerd; Schlenzig, Dagmar; Schilling, Stephan

    2017-08-01

    Recombinant expression and purification of amyloid peptides represents a common basis for investigating the molecular mechanisms of amyloid formation and toxicity. However, the isolation of the recombinant peptides is hampered by inefficient separation from contaminants such as the fusion protein required for efficient expression in E. coli. Here, we present a new approach for the isolation of highly purified Aβ(1-42) and pGlu-Aβ(3-42), which is based on a separation using preparative SDS-PAGE. The method relies on the purification of the Aβ fusion protein by affinity chromatography followed by preparative SDS-PAGE under reducing conditions and subsequent removal of detergents by precipitation. The application of preparative SDS-PAGE represents the key step to isolate highly pure recombinant Aβ, which has been applied for characterization of aggregation and toxicity. Thereby, the yield of the purification strategy was  >60%. To the best of our knowledge, this is the first description of an electrophoresis-based method for purification of a recombinant Aβ peptide. Therefore, the method might be of interest for isolation of other amyloid peptides, which are critical for conventional purification strategies due to their aggregation propensity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Fibulin-1 purification from human plasma using affinity chromatography on Factor H-Sepharose

    PubMed Central

    DiScipio, Richard G.; Liddington, Robert C.; Schraufstatter, Ingrid U.

    2016-01-01

    A method is reported to purify Fibulin-1 from human plasma resulting in a 36% recovery. The steps involve removal of the cryoglobulin and the vitamin K dependent proteins followed by polyethylene glycol and ammonium sulfate precipitations, DEAE-Sephadex column chromatography and finally Factor H-Sepharose affinity purification. The procedure is designed to be integrated into an overall scheme for the isolation of over 30 plasma proteins from a single batch of human plasma. Results from mass spectroscopy, SDS-PAGE, and Western blotting indicate that human plasma Fibulin-1 is a single chain of the largest isotype. Functional binding assays demonstrated calcium ion dependent interaction of Fibulin-1 for fibrinogen, fibronectin, and Factor H. The procedure described is the first to our knowledge that enables a large scale purification of Fibulin-1 from human plasma. PMID:26826315

  4. Two-step purification of His-tagged Nef protein in native condition using heparin and immobilized metal ion affinity chromatographies.

    PubMed

    Finzi, Andrés; Cloutier, Jonathan; Cohen, Eric A

    2003-07-01

    The Nef protein encoded by human immunodeficiency virus type 1 (HIV-1) has been shown to be an important factor of progression of viral growth and pathogenesis in both in vitro and in vivo. The lack of a simple procedure to purify Nef in its native conformation has limited molecular studies on Nef function. A two-step procedure that includes heparin and immobilized metal ion affinity chromatographies (IMACs) was developed to purify His-tagged Nef (His(6)-Nef) expressed in bacteria in native condition. During the elaboration of this purification procedure, we identified two closely SDS-PAGE-migrating contaminating bacterial proteins, SlyD and GCHI, that co-eluted with His(6)-Nef in IMAC in denaturing condition and developed purification steps to eliminate these contaminants in native condition. Overall, this study describes a protocol that allows rapid purification of His(6)-Nef protein expressed in bacteria in native condition and that removes metal affinity resin-binding bacterial proteins that can contaminate recombinant His-tagged protein preparation.

  5. Determination of the Subunit Molecular Mass and Composition of Alcohol Dehydrogenase by SDS-PAGE

    ERIC Educational Resources Information Center

    Nash, Barbara T.

    2007-01-01

    SDS-PAGE is a simple, rapid technique that has many uses in biochemistry and is readily adaptable to the undergraduate laboratory. It is, however, a technique prone to several types of procedural pitfalls. This article describes the use of SDS-PAGE to determine the subunit molecular mass and composition of yeast alcohol dehydrogenase employing…

  6. Identification of fish species after cooking by SDS-PAGE and urea IEF: a collaborative study.

    PubMed

    Etienne, M; Jérôme, M; Fleurence, J; Rehbein, H; Kündiger, R; Mendes, R; Costa, H; Pérez-Martín, R; Piñeiro-González, C; Craig, A; Mackie, I; Malmheden Yman, I; Ferm, M; Martínez, I; Jessen, F; Smelt, A; Luten, J

    2000-07-01

    A collaborative study, to validate the use of SDS-PAGE and urea IEF, for the identification of fish species after cooking has been performed by nine laboratories. By following optimized standard operation procedures, 10 commercially important species (Atlantic salmon, sea trout, rainbow trout, turbot, Alaska pollock, pollack, pink salmon, Arctic char, chum salmon, and New Zealand hake) had to be identified by comparison with 22 reference samples. Some differences in the recoveries of proteins from cooked fish flesh were noted between the urea and the SDS extraction procedures used. Generally, the urea extraction procedure appears to be less efficient than the SDS extraction for protein solubilization. Except for some species belonging to the Salmonidae family (Salmo, Oncorhynchus), both of the analytical techniques tested (urea IEF, SDS-PAGE) enabled identification of the species of the samples to be established. With urea IEF, two laboratories could not differentiate Salmo salar from Salmo trutta. The same difficulties were noted for differentiation between Oncorhynchus gorbuscha and Oncorhynchus keta samples. With SDS-PAGE, three laboratories had some difficulties in identifying the S. trutta samples. However, in the contrast with the previous technique, SDS-PAGE allows the characterization of most of the Oncorhynchus species tested. Only Oncorhynchus mykiss was not clearly recognized by one laboratory. Therefore, SDS-PAGE (Excel gel homogeneous 15%) appears to be better for the identification, after cooking, of fish such as the tuna and salmon species which are characterized by neutral and basic protein bands, and urea IEF (CleanGel) is better for the gadoid species, which are characterized by acid protein bands (parvalbumins). Nevertheless, in contentious cases it is preferable to use both analytical methods.

  7. Teaching the structure of immunoglobulins by molecular visualization and SDS-PAGE analysis.

    PubMed

    Rižner, Tea Lanišnik

    2014-01-01

    This laboratory class combines molecular visualization and laboratory experimentation to teach the structure of the immunoglobulins (Ig). In the first part of the class, the three-dimensional structures of the human IgG and IgM molecules available through the RCSB PDB database are visualized using freely available software. In the second part, IgG and IgM are studied using electrophoretic methods. Through SDS-PAGE analysis under reducing conditions, the students determine the number and molecular masses of the polypeptide chains, while through SDS-PAGE under nonreducing conditions, the students assess the oligomerization of these Ig molecules. The aims of this class are to expand upon the knowledge and understanding of the Ig structure that the students have gained from classroom lectures. The combination of this molecular visualization of the Ig molecules and the SDS-PAGE experimentation ensures variety in the teaching techniques, while the implication of the Ig molecules in human disease promotes interest for biomedical students. © 2014 by The International Union of Biochemistry and Molecular Biology.

  8. Real-time Fluorescence Polarization Microscopy of the Moving Boundary in Cross-Gradient SDS-PAGE

    NASA Astrophysics Data System (ADS)

    Hwang, Jeeseong; Giulian, Gary

    2003-03-01

    Real-time Fluorescence Polarization Microscopy of the Moving Boundary in Cross-Gradient SDS-PAGE Jeeseong Hwang, Jeffrey R. Krogmeier, Angela M. Bardo, Scott N. Goldie, Lori S. Goldner; Optical Technology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 Gary G. Giulian, Carl R. Merril; National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) is a popular method to separate proteins by their apparent molecular weight. However, it is a limited technique due, in part, to its low spatial resolution. In order to improve the resolution and to enhance the detection sensitivity of proteins separated by SDS-PAGE we are studying the detergent properties at the moving boundary of precast Tris-Tricine-Acetate cross-gradient gels using fluorescent cationic and pH indicating dyes. We have developed real-time full-field fluorescence polarization microscopy to monitor the dynamic fluorescence anisotropy from the cationic tetramethylindocarbocyanine dyes localized in the "extended stack", a concentrated detergent zone. We will present quantitative results of the fluorescence anisotropy. Our system is capable of analyzing local structures of the detergent molecules in the moving boundary of SDS-PAGE and the microenvironment(s) near the boundary. We will discuss the significance of these results and their potential role in enhanced protein separation.

  9. Effects of high intensity exercise on isoelectric profiles and SDS-PAGE mobility of erythropoietin.

    PubMed

    Voss, S; Lüdke, A; Romberg, S; Schänzer, E; Flenker, U; deMarees, M; Achtzehn, S; Mester, J; Schänzer, W

    2010-06-01

    Exercise induced proteinuria is a common phenomenon in high performance sports. Based on the appearance of so called "effort urines" in routine doping analysis the purpose of this study was to investigate the influence of exercise induced proteinuria on IEF profiles and SDS-PAGE relative mobility values (rMVs) of endogenous human erythropoietin (EPO). Twenty healthy subjects performed cycle-ergometer exercise until exhaustion. VO (2)max, blood lactate, urinary proteins and urinary creatinine were analysed to evaluate the exercise performance and proteinuria. IEF and SDS-PAGE analyses were performed to test for differences in electrophoretic behaviour of the endogenous EPO before and after exercise. All subjects showed increased levels of protein/creatinine ratio after performance (8.8+/-5.2-26.1+/-14.4). IEF analysis demonstrated an elevation of the relative amount of basic band areas (13.9+/-11.3-36.4+/-12.6). Using SDS-PAGE analysis we observed a decrease in rMVs after exercise and no shift in direction of the recombinant human EPO (rhEPO) region (0.543+/-0.013-0.535+/-0.012). Following identification criteria of the World Anti Doping Agency (WADA) all samples were negative. The implementation of the SDS-PAGE method represents a good solution to distinguish between results influenced by so called effort urines and results of rhEPO abuse. Thus this method can be used to confirm adverse analytical findings.

  10. Evaluation of SDS depletion using an affinity spin column and IMS-MS detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hengel, Shawna M.; Floyd, Erica A.; Baker, Erin Shammel

    2012-11-01

    While the use of detergents is necessary for a variety of protein isolation preparation protocols, often prior to mass spectral (MS) analysis, they are not compatible with MS analysis due to ion suppression and adduct formation. This manuscript describes optimization of detergent removal, using commercially available SDS depletion spin columns containing an affinity resin, providing for both increased protein recovery and thorough SDS removal. Ion mobility spectrometry coupled with mass spectrometry (IMS-MS) allowed for a concurrent analysis of both analyte and detergent. In the case of both proteins and peptides, higher detergent concentrations than previously reported provided an increase ofmore » sample recovery; however there was a limit as SDS was detected by IMS-MS at higher levels of SDS indicating incomplete detergent depletion. The results also suggest optimal conditions for SDS removal are dependent on the sample concentration. Overall, this study provides a useful guide for proteomic studies where SDS is required for efficient sample preparation.« less

  11. A Lectin Purified from Blood Red Bracket Mushroom, Pycnoporus sanguineus (Agaricomycetidae), Mycelium Displayed Affinity Toward Bovine Transferrin.

    PubMed

    Albores, Silvana; Moros, Maria; Cerdeiras, Maria Pia; de la Fuente, Jesus Martinez; Grazu, Valeria; Fraguas, Laura Franco

    2016-01-01

    Fungal lectins constitute excellent ligands for development of affinity adsorbents useful in affinity chromatography. In this work, a lectin was purified from Pycnoporus sanguineus (PSL) mycelium using 3 procedures: by affinity chromatography, using magnetic galactosyl-nanoparticles or galactose coupled to Sepharose, and by ionic exchange chromatography (IEC). The highest lectin yield was achieved by IEC (55%); SDS-PAGE of PSL showed 2 bands with molecular mass of 68.7 and 55.2 kDa and IEC displayed 2 bands at pi 5.5 and 5.2. The lectin agglutinates rat erythrocytes, exhibiting broad specificity toward several monosaccharides, including galactose. The agglutination was also inhibited by the glycoproteins fetal calf fetuin, bovine lactoferrin, bovine transferrin, and horseradish peroxidase. The lectin was then used to synthesize an affinity adsorbent (PSL-Sepharose) and the interaction with glycoproteins was evaluated by analyzing their chromatographic behaviors. The strongest interaction with the PSL-derivative was observed with transferrin, although lower interactions were also displayed toward fetuin and lactoferrin. These results indicate that the purified PSL constitutes an interesting ligand for the design of affinity adsorbents to be used (i.e., in glycoprotein purification).

  12. PHARMACEUTICAL AND BIOMEDICAL APPLICATIONS OF AFFINITY CHROMATOGRAPHY: RECENT TRENDS AND DEVELOPMENTS

    PubMed Central

    Hage, David S.; Anguizola, Jeanethe A.; Bi, Cong; Li, Rong; Matsuda, Ryan; Papastavros, Efthimia; Pfaunmiller, Erika; Vargas, John; Zheng, Xiwei

    2012-01-01

    Affinity chromatography is a separation technique that has become increasingly important in work with biological samples and pharmaceutical agents. This method is based on the use of a biologically-related agent as a stationary phase to selectively retain analytes or to study biological interactions. This review discusses the basic principles behind affinity chromatography and examines recent developments that have occurred in the use of this method for biomedical and pharmaceutical analysis. Techniques based on traditional affinity supports are discussed, but an emphasis is placed on methods in which affinity columns are used as part of HPLC systems or in combination with other analytical methods. General formats for affinity chromatography that are considered include step elution schemes, weak affinity chromatography, affinity extraction and affinity depletion. Specific separation techniques that are examined include lectin affinity chromatography, boronate affinity chromatography, immunoaffinity chromatography, and immobilized metal ion affinity chromatography. Approaches for the study of biological interactions by affinity chromatography are also presented, such as the measurement of equilibrium constants, rate constants, or competition and displacement effects. In addition, related developments in the use of immobilized enzyme reactors, molecularly imprinted polymers, dye ligands and aptamers are briefly considered. PMID:22305083

  13. Statistical theory of chromatography: new outlooks for affinity chromatography.

    PubMed Central

    Denizot, F C; Delaage, M A

    1975-01-01

    We have developed further the statistical approach to chromatography initiated by Giddings and Eyring, and applied it to affinity chromatography. By means of a convenient expression of moments the convergence towards the Laplace-Gauss distribution has been established. The Gaussian character is not preserved if other causes of dispersion are taken into account, but expressions of moments can be obtained in a generalized form. A simple procedure is deduced for expressing the fundamental constants of the model in terms of purely experimental quantities. Thus, affinity chromatography can be used to determine rate constants of association and dissociation in a range considered as the domain of the stopped-flow methods. PMID:1061072

  14. Selection of imprinted nanoparticles by affinity chromatography.

    PubMed

    Guerreiro, António R; Chianella, Iva; Piletska, Elena; Whitcombe, Michael J; Piletsky, Sergey A

    2009-04-15

    Soluble molecularly imprinted nanoparticles were synthesised via iniferter initiated polymerisation and separated by size via gel permeation chromatography. Subsequent fractionation of these particles by affinity chromatography allowed the separation of high affinity fractions from the mixture of nanoparticles. Fractions selected this way possess affinity similar to that of natural antibodies (K(d) 6.6x10(-8)) M and were also able to discriminate between related functional analogues of the template.

  15. SDS-PAGE analysis of Aβ oligomers is disserving research into Alzheimer´s disease: appealing for ESI-IM-MS

    NASA Astrophysics Data System (ADS)

    Pujol-Pina, Rosa; Vilaprinyó-Pascual, Sílvia; Mazzucato, Roberta; Arcella, Annalisa; Vilaseca, Marta; Orozco, Modesto; Carulla, Natàlia

    2015-10-01

    The characterization of amyloid-beta peptide (Aβ) oligomer forms and structures is crucial to the advancement in the field of Alzheimer´s disease (AD). Here we report a critical evaluation of two methods used for this purpose, namely sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), extensively used in the field, and ion mobility coupled to electrospray ionization mass spectrometry (ESI-IM-MS), an emerging technique with great potential for oligomer characterization. To evaluate their performance, we first obtained pure cross-linked Aβ40 and Aβ42 oligomers of well-defined order. Analysis of these samples by SDS-PAGE revealed that SDS affects the oligomerization state of Aβ42 oligomers, thus providing flawed information on their order and distribution. In contrast, ESI-IM-MS provided accurate information, while also reported on the chemical nature and on the structure of the oligomers. Our findings have important implications as they challenge scientific paradigms in the AD field built upon SDS-PAGE characterization of Aβ oligomer samples.

  16. Genetic Variability among Lucerne Cultivars Based on Biochemical (SDS-PAGE) and Morphological Markers

    NASA Astrophysics Data System (ADS)

    Farshadfar, M.; Farshadfar, E.

    The present research was conducted to determine the genetic variability of 18 Lucerne cultivars, based on morphological and biochemical markers. The traits studied were plant height, tiller number, biomass, dry yield, dry yield/biomass, dry leaf/dry yield, macro and micro elements, crude protein, dry matter, crude fiber and ash percentage and SDS- PAGE in seed and leaf samples. Field experiments included 18 plots of two meter rows. Data based on morphological, chemical and SDS-PAGE markers were analyzed using SPSSWIN soft ware and the multivariate statistical procedures: cluster analysis (UPGMA), principal component. Analysis of analysis of variance and mean comparison for morphological traits reflected significant differences among genotypes. Genotype 13 and 15 had the greatest values for most traits. The Genotypic Coefficient of Variation (GCV), Phenotypic Coefficient of Variation (PCV) and Heritability (Hb) parameters for different characters raged from 12.49 to 26.58% for PCV, hence the GCV ranged from 6.84 to 18.84%. The greatest value of Hb was 0.94 for stem number. Lucerne genotypes could be classified, based on morphological traits, into four clusters and 94% of the variance among the genotypes was explained by two PCAs: Based on chemical traits they were classified into five groups and 73.492% of variance was explained by four principal components: Dry matter, protein, fiber, P, K, Na, Mg and Zn had higher variance. Genotypes based on the SDS-PAGE patterns all genotypes were classified into three clusters. The greatest genetic distance was between cultivar 10 and others, therefore they would be suitable parent in a breeding program.

  17. [Progresses in screening active compounds from herbal medicine by affinity chromatography].

    PubMed

    Feng, Ying-shu; Tong, Shan-shan; Xu, Xi-ming; Yu, Jiang-nan

    2015-03-01

    Affinity chromatography is a chromatographic method for separating molecules using the binding characteristics of the stationary phase with potential drug molecules. This method can be performed as a high throughput screening method and a chromatographic separation method to screen a variety of active drugs. This paper summarizes the history of affinity chromatography, screening technology of affinity chromatography, and application of affinity chromatography in screening bio-active compounds in herbal medicines, and then discusses its application prospects, in order to broaden applications of the affinity chromatography in drug screening.

  18. Analysis of the axial filaments of Treponema hyodysenteriae by SDS-PAGE and immunoblotting.

    PubMed

    Kent, K A; Sellwood, R; Lemcke, R M; Burrows, M R; Lysons, R J

    1989-06-01

    Purified axial filaments from eight serotypes of Treponema hyodysenteriae and two non-pathogenic intestinal spirochaetes were characterized by SDS-PAGE and Western blotting. Axial filaments of all ten strains had similar SDS-PAGE profiles; five major axial filament polypeptides were identified, with molecular masses of 43.8, 38, 34.8, 32.8 and 29.4 kDa. Hyperimmune gnotobiotic pig serum raised against purified axial filaments of strain P18A (serotype 4) cross-reacted with all other serotypes and with the non-pathogens, and convalescent serum taken from a pig with persistent swine dysentery also showed a strong response to the axial filament polypeptides. Hyperimmune gnotobiotic pig serum raised against axial filaments failed to agglutinate viable organisms and did not inhibit growth in vitro. Hence, the axial filaments of T. hyodysenteriae have been identified as major immunodominant antigens, although the role that antibodies to these antigens play in protection has yet to be established.

  19. Compound immobilization and drug-affinity chromatography.

    PubMed

    Rix, Uwe; Gridling, Manuela; Superti-Furga, Giulio

    2012-01-01

    Bioactive small molecules act through modulating a yet unpredictable number of targets. It is therefore of critical importance to define the cellular target proteins of a compound as an entry point to understanding its mechanism of action. Often, this can be achieved in a direct fashion by chemical proteomics. As with any affinity chromatography, immobilization of the bait to a solid support is one of the earliest and most crucial steps in the process. Interfering with structural features that are important for identification of a target protein will be detrimental to binding affinity. Also, many molecules are sensitive to heat or to certain chemicals, such as acid or base, and might be destroyed during the process of immobilization, which therefore needs to be not only efficient, but also mild. The subsequent affinity chromatography step needs to preserve molecular and conformational integrity of both bait compound and proteins in order to result in the desired specific enrichment while ensuring a high level of compatibility with downstream analysis by mass spectrometry. Thus, the right choice of detergent, buffer, and protease inhibitors is also essential. This chapter describes a widely applicable procedure for the immobilization of small molecule drugs and for drug-affinity chromatography with subsequent protein identification by mass spectrometry.

  20. Lab-on-a-chip and SDS-PAGE analysis of hemolymph protein profile from Rhipicephalus microplus (Acari: Ixodidae) infected with entomopathogenic nematode and fungus.

    PubMed

    Golo, Patrícia Silva; Dos Santos, Alessa Siqueira de Oliveira; Monteiro, Caio Marcio Oliveira; Perinotto, Wendell Marcelo de Souza; Quinelato, Simone; Camargo, Mariana Guedes; de Sá, Fillipe Araujo; Angelo, Isabele da Costa; Martins, Marta Fonseca; Prata, Marcia Cristina de Azevedo; Bittencourt, Vânia Rita Elias Pinheiro

    2016-09-01

    In the present study, lab-on-a-chip electrophoresis (LoaC) was suggested as an alternative method to the conventional polyacrylamide gel electrophoresis under denaturing conditions (SDS-PAGE) to analyze raw cell-free tick hemolymph. Rhipicephalus microplus females were exposed to the entomopathogenic fungus Metarhizium anisopliae senso latu IBCB 116 strain and/or to the entomopathogenic nematode Heterorhabditis indica LPP1 strain. Hemolymph from not exposed or exposed ticks was collected 16 and 24 h after exposure and analyze by SDS-PAGE or LoaC. SDS-PAGE yielded 15 bands and LoaC electrophoresis 17 bands. Despite the differences in the number of bands, when the hemolymph protein profiles of exposed or unexposed ticks were compared in the same method, no suppressing or additional bands were detected among the treatments regardless the method (i.e., SDS-PAGE or chip electrophoresis using the Protein 230 Kit®). The potential of LoaC electrophoresis to detect protein bands from tick hemolymph was considered more efficient in comparison to the detection obtained using the traditional SDS-PAGE method, especially when it comes to protein subunits heavier than 100 KDa. LoaC electrophoresis provided a very good reproducibility, and is much faster than the conventional SDS-PAGE method, which requires several hours for one analysis. Despite both methods can be used to analyze tick hemolymph composition, LoaC was considered more suitable for cell-free hemolymph protein separation and detection. LoaC hemolymph band percent data reported changes in key proteins (i.e., HeLp and vitellogenin) exceptionally important for tick embryogenesis. This study reported, for the first time, tick hemolymph protein profile using LoaC.

  1. Combination of SDS-PAGE and intact mass analysis for rapid determination of heterogeneities in monoclonal antibody therapeutics.

    PubMed

    Yamada, Hideaki; Matsumura, Chiemi; Yamada, Keita; Teshima, Koichiro; Hiroshima, Takashi; Kinoshita, Mitsuhiro; Suzuki, Shigeo; Kakehi, Kazuaki

    2017-05-01

    mAbs are currently mainstream in biopharmaceuticals, and their market has been growing due to their high target specificity. Characterization of heterogeneities in mAbs is performed to secure their quality and safety by physicochemical analyses. However, they require time-consuming task, which often strain the resources of drug development in pharmaceuticals. Rapid and direct method to determine the heterogeneities should be a powerful tool for pharmaceutical analysis. Considering the advantages of electrophoresis and MS, this study addresses the combination of SDS-PAGE and intact mass analysis, which provides direct, rapid, and orthogonal determination of heterogeneities in mAb therapeutics. mAb therapeutics that migrated in SDS-PAGE were recovered from gel by treatment with SDC-containing buffer. Usage of SDC-containing buffer as extraction solvent and ethanol-based staining solution enhanced the recovery of intact IgG from SDS-PAGE gels. Recovery of mAbs reached more than 86% with 0.2% SD. The heterogeneities, especially N-glycan variants in the recovered mAb therapeutics, were clearly determined by intact mass analysis. We believe that the study is important in pharmaceuticals‧ perspective since orthogonal combination of gel electrophoresis and intact mass analysis should be pivotal role for rapid and precise characterization of mAbs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Affinity Chromatography in Nonionic Detergent Solutions

    NASA Astrophysics Data System (ADS)

    Robinson, Jack B.; Strottmann, James M.; Wick, Donald G.; Stellwagen, Earle

    1980-10-01

    Anionic dye affinity chromatography is commonly unproductive in the presence of nonionic detergents used to extract particulate proteins. Using lactate dehydrogenase as a model protein, Cibacron blue F3GA as a model dye, and Triton X-100 as a model detergent, we find that the dye is encapsulated in nonionic detergent micelles, rendering the dye incapable of ligation with the enzyme. However, the dye can be liberated from the micelles without altering the nonionic detergent concentration by addition of an anionic detergent, such as deoxycholate or sodium dodecyl sulfate, forming mixed anionic/nonionic micelles that displace the anionic dye. Encapsulation of the anionic detergents prevents their activity as protein denaturants. These observations have been successfully translated to the dye affinity chromatography of a detergent extract of brain particulate cyclic nucleotide phosphodiesterase.

  3. Affinity Purification of Tumor Necrosis Factor-α Expressed in Raji Cells by Produced scFv Antibody Coupled CNBr-Activated Sepharose

    PubMed Central

    Abdolalizadeh, Jalal; Majidi Zolbanin, Jafar; Nouri, Mohammad; Baradaran, Behzad; Movassaghpour, AliAkbar; Farajnia, Safar; Omidi, Yadollah

    2013-01-01

    Purpose: Recombinant tumor necrosis factor-alpha (TNF-α) has been utilized as an antineoplastic agent for the treatment of patients with melanoma and sarcoma. It targets tumor cell antigens by impressing tumor-associated vessels. Protein purification with affinity chromatography has been widely used in the downstream processing of pharmaceutical-grade proteins. Methods:In this study, we examined the potential of our produced anti-TNF-α scFv fragments for purification of TNF-α produced by Raji cells. The Raji cells were induced by lipopolysaccharides (LPS) to express TNF-α. Western blotting and Fluorescence-activated cell sorting (FACS) flow cytometry analyses were used to evaluate the TNF-α expression. The anti-TNF-α scFv selected from antibody phage display library was coupled to CNBr-activated sepharose 4B beads used for affinity purification of expressed TNF-α and the purity of the protein was assessed by SDS-PAGE. Results: Western blot and FACS flow cytometry analyses showed the successful expression of TNF-α with Raji cells. SDS-PAGE analysis showed the performance of scFv for purification of TNF-α protein with purity over 95%. Conclusion: These findings confirm not only the potential of the produced scFv antibody fragments but also this highly pure recombinant TNF-α protein can be applied for various in vitro and in vivo applications. PMID:24312807

  4. Mathematical analysis of frontal affinity chromatography in particle and membrane configurations.

    PubMed

    Tejeda-Mansir, A; Montesinos, R M; Guzmán, R

    2001-10-30

    The scaleup and optimization of large-scale affinity-chromatographic operations in the recovery, separation and purification of biochemical components is of major industrial importance. The development of mathematical models to describe affinity-chromatographic processes, and the use of these models in computer programs to predict column performance is an engineering approach that can help to attain these bioprocess engineering tasks successfully. Most affinity-chromatographic separations are operated in the frontal mode, using fixed-bed columns. Purely diffusive and perfusion particles and membrane-based affinity chromatography are among the main commercially available technologies for these separations. For a particular application, a basic understanding of the main similarities and differences between particle and membrane frontal affinity chromatography and how these characteristics are reflected in the transport models is of fundamental relevance. This review presents the basic theoretical considerations used in the development of particle and membrane affinity chromatography models that can be applied in the design and operation of large-scale affinity separations in fixed-bed columns. A transport model for column affinity chromatography that considers column dispersion, particle internal convection, external film resistance, finite kinetic rate, plus macropore and micropore resistances is analyzed as a framework for exploring further the mathematical analysis. Such models provide a general realistic description of almost all practical systems. Specific mathematical models that take into account geometric considerations and transport effects have been developed for both particle and membrane affinity chromatography systems. Some of the most common simplified models, based on linear driving-force (LDF) and equilibrium assumptions, are emphasized. Analytical solutions of the corresponding simplified dimensionless affinity models are presented. Particular

  5. SDS-PAGE Electrophoretic Property of Human Chorionic Gonadotropin (hCG) and its β-subunit

    PubMed Central

    2005-01-01

    The microheterogeneity property of hCG with regards to its sialic acid contents resulted in variable mobility of the glycoprotein in SDS-PAGE. The intact hCG molecule is composed of two dissimilar subunits, namely α- and β-subunits. The identification of hCG bands in SDS-PAGE was accomplished by the immunoblotting experiment, whereby the antibody directed toward the specific region of β-subunit of hCG was used. The data shows that the different mobility of intact hCG was attributed to the different degree of desialylation of the glycoprotein. Nevertheless, unlike the intact hCG, the mobility of its β-subunit was not affected by its variety sialic acid content. This characteristic of β-hCG is beneficial when semi-quantification of total hCG is required. Quantification of hCG using the HPLC-reversed phase C18 analytical column is not possible as the glycoprotein was eluted in multiple fractions at different retention times. The identification of denatured hCG (HPLC eluted fractions) was carried out by immunoblotting experiment whilst immunoassay technique failed to detect its presence in any fraction. PMID:16094462

  6. Evaluation of immobilized metal-ion affinity chromatography (IMAC) as a technique for IgG(1) monoclonal antibodies purification: the effect of chelating ligand and support.

    PubMed

    Bresolin, I T L; Borsoi-Ribeiro, M; Tamashiro, W M S C; Augusto, E F P; Vijayalakshmi, M A; Bueno, S M A

    2010-04-01

    Monoclonal antibodies (MAbs) have been used for therapies and some analytical procedures as highly purified molecules. Many techniques have been applied and studied, focusing on monoclonal antibodies purification. In this study, an immobilized metal affinity chromatography membrane was developed and evaluated for the purification of anti-TNP IgG(1) mouse MAbs from cell culture supernatant after precipitation with a 50% saturated ammonium sulfate solution. The chelating ligands iminodiacetic acid, carboxymethylated aspartic acid (CM-Asp), nitrilotriacetic acid, and tris (carboxymethyl) ethylenediamine in agarose gels with immobilized Ni(II) and Zn(II) ions were compared for the adsorption and desorption of MAbs. The most promising chelating ligand--CM-Asp--was then coupled to poly(ethylene vinyl alcohol) (PEVA) hollow fiber membranes. According to SDS-PAGE and ELISA analyses, a higher selectivity and a purification factor of 85.9 (fraction eluted at 500 mM Tris) were obtained for IgG(1) using PEVA-CM-Asp-Zn(II). The anti-TNP MAb could be eluted under mild pH conditions causing no loss of antigen binding capacity.

  7. Affinity monolith chromatography: A review of general principles and applications.

    PubMed

    Li, Zhao; Rodriguez, Elliott; Azaria, Shiden; Pekarek, Allegra; Hage, David S

    2017-11-01

    Affinity monolith chromatography, or AMC, is a liquid chromatographic method in which the support is a monolith and the stationary phase is a biological-binding agent or related mimic. AMC has become popular for the isolation of biochemicals, for the measurement of various analytes, and for studying biological interactions. This review will examine the principles and applications of AMC. The materials that have been used to prepare AMC columns will be discussed, which have included various organic polymers, silica, agarose, and cryogels. Immobilization schemes that have been used in AMC will also be considered. Various binding agents and applications that have been reported for AMC will then be described. These applications will include the use of AMC for bioaffinity chromatography, immunoaffinity chromatography, dye-ligand affinity chromatography, and immobilized metal-ion affinity chromatography. The use of AMC with chiral stationary phases and as a tool to characterize biological interactions will also be examined. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Affinity chromatography: A versatile technique for antibody purification.

    PubMed

    Arora, Sushrut; Saxena, Vikas; Ayyar, B Vijayalakshmi

    2017-03-01

    Antibodies continue to be extremely utilized entities in myriad applications including basic research, imaging, targeted delivery, chromatography, diagnostics, and therapeutics. At production stage, antibodies are generally present in complex matrices and most of their intended applications necessitate purification. Antibody purification has always been a major bottleneck in downstream processing of antibodies, due to the need of high quality products and associated high costs. Over the years, extensive research has focused on finding better purification methodologies to overcome this holdup. Among a plethora of different techniques, affinity chromatography is one of the most selective, rapid and easy method for antibody purification. This review aims to provide a detailed overview on affinity chromatography and the components involved in purification. An array of support matrices along with various classes of affinity ligands detailing their underlying working principles, together with the advantages and limitations of each system in purifying different types of antibodies, accompanying recent developments and important practical methodological considerations to optimize purification procedure are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Selective retention of basic compounds by metal aquo-ion affinity chromatography.

    PubMed

    Asakawa, Yoshiki; Yamamoto, Eiichi; Asakawa, Naoki

    2014-10-01

    A novel metal aquo-ion affinity chromatography has been developed for the analysis of basic compounds using heat-treated silica gel containing hydrated metal cations (metal aquo-ions) as the packing material. The packing materials of the metal aquo-ion affinity chromatography were prepared by the immobilization of a single metal component such as Fe(III), Al(III), Ag(I), and Ni(II) on silica gel followed by extensive heat treatment. The immobilized metals form aquo-ions to present cation-exchange ability for basic analytes and the cation-exchange ability for basic analytes depends on pKa of the immobilized metal species. In the present study, to evaluate the retention characteristics of metal aquo-ion affinity chromatography, the on-line solid-phase extraction of drugs was investigated. Obtained data clearly evidence the selective retention capability of metal aquo-ion affinity chromatography for basic analytes with sufficient capacity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Protein purification by aminosquarylium cyanine dye-affinity chromatography.

    PubMed

    Silva, M S; Graça, V C; Reis, L V; Santos, P F; Almeida, P; Queiroz, J A; Sousa, F

    2013-12-01

    The most selective purification method for proteins and other biomolecules is affinity chromatography. This method is based on the unique biological-based specificity of the biomolecule-ligand interaction and commonly uses biological ligands. However, these ligands may present some drawbacks, mainly because of their cost and lability. Dye-affinity chromatography overcomes the limitations of biological ligands and is widely used owing to the low cost of synthetic dyes and to their resistance to biological and chemical degradation. In this work, immobilized aminosquarylium cyanine dyes are used in order to exploit affinity interactions with standard proteins such as lysozyme, α-chymotrypsin and trypsin. These studies evaluate the affinity interactions occurring between the immobilized ligand and the different proteins, as a reflection of the sum of several molecular interactions, namely ionic, hydrophobic and van der Waals, spread throughout the structure, in a defined spatial manner. The results show the possibility of using an aminosquarylium cyanine dye bearing a N-hexyl pendant chain, with a ligand density of 1.8 × 10(-2) mmol of dye/g of chromatographic support, to isolate lysozyme, α-chymotrypsin and trypsin from a mixture. The application of a decreasing ammonium sulfate gradient resulted in the recovery of lysozyme in the flowthrough. On the other hand, α-chymotrypsin and trypsin were retained, involving different interactions with the ligand. In conclusion, this study demonstrates the potential applicability of ligands such as aminosquarylium cyanine dyes for the separation and purification of proteins by affinity chromatography. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Purification of nitrate reductase from Nicotiana plumbaginifolia by affinity chromatography using 5'AMP-sepharose and monoclonal antibodies.

    PubMed

    Moureaux, T; Leydecker, M T; Meyer, C

    1989-02-15

    Nitrate reductase was purified from leaves of Nicotiana plumbaginifolia using either 5'AMP-Sepharose chromatography or two steps of immunoaffinity chromatography involving monoclonal antibodies directed against nitrate reductase from maize and against ribulose-1,5-bisphosphate carboxylase from N. plumbaginifolia. Nitrate reductase obtained by the first method was purified 1000-fold to a specific activity of 9 units/mg protein. The second method produced an homogenous enzyme, purified 21,000-fold to a specific activity of 80 units/mg protein. SDS/PAGE of nitrate reductase always resulted in two bands of 107 and 99.5 kDa. The 107-kDa band was the nitrate reductase subunit of N. plumbaginifolia; the smaller one of 99.5 kDa is thought, as commonly reported, to result from proteolysis of the larger protein. The molecular mass of 107 kDa is close to the values calculated from the coding sequences of the two nitrate reductase genes recently cloned from tobacco (Nicotiana tabacum cv Xanthi).

  12. Development of Two Analytical Methods Based on Reverse Phase Chromatographic and SDS-PAGE Gel for Assessment of Deglycosylation Yield in N-Glycan Mapping.

    PubMed

    Eckard, Anahita D; Dupont, David R; Young, Johnie K

    2018-01-01

    N -lined glycosylation is one of the critical quality attributes (CQA) for biotherapeutics impacting the safety and activity of drug product. Changes in pattern and level of glycosylation can significantly alter the intrinsic properties of the product and, therefore, have to be monitored throughout its lifecycle. Therefore fast, precise, and unbiased N -glycan mapping assay is desired. To ensure these qualities, using analytical methods that evaluate completeness of deglycosylation is necessary. For quantification of deglycosylation yield, methods such as reduced liquid chromatography-mass spectrometry (LC-MS) and reduced capillary gel electrophoresis (CGE) have been commonly used. Here we present development of two additional methods to evaluate deglycosylation yield: one based on LC using reverse phase (RP) column and one based on reduced sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE gel) with offline software (GelAnalyzer). With the advent of rapid deglycosylation workflows in the market for N -glycan profiling replacing overnight incubation, we have aimed to quantify the level of deglycosylation in a selected rapid deglycosylation workflow. Our results have shown well resolved peaks of glycosylated and deglycosylated protein species with RP-LC method allowing simple quantification of deglycosylation yield of protein with high confidence. Additionally a good correlation, ≥0.94, was found between deglycosylation yields estimated by RP-LC method and that of reduced SDS-PAGE gel method with offline software. Evaluation of rapid deglycosylation protocol from GlycanAssure™ HyPerformance assay kit performed on fetuin and RNase B has shown complete deglycosylation within the recommended protocol time when evaluated with these techniques. Using this kit, N -glycans from NIST mAb were prepared in 1.4 hr and analyzed by hydrophilic interaction chromatography (HILIC) ultrahigh performance LC (UHPLC) equipped with a fluorescence detector (FLD

  13. Affinity monolith chromatography: A review of principles and recent analytical applications

    PubMed Central

    Pfaunmiller, Erika L.; Paulemond, Marie Laura; Dupper, Courtney M.; Hage, David S.

    2012-01-01

    Affinity monolith chromatography (AMC) is a type of liquid chromatography that uses a monolithic support and a biologically-related binding agent as a stationary phase. AMC is a powerful method for the selective separation, analysis or studies of specific target compounds in a sample. This review discusses the basic principles of AMC and recent developments or applications of this method, with particular emphasis being given to work that has appeared in the last five years. Various materials that have been used to prepare columns for AMC are examined, including organic monoliths, silica monoliths, agarose monoliths and cryogels. These supports have been used in AMC for formats that have ranged from traditional columns to disks, microcolumns and capillaries. Many binding agents have also been employed in AMC, such as antibodies, enzymes, proteins, lectins, immobilized metal-ions and dyes. Some applications that have been reported with these binding agents in AMC are bioaffinity chromatography, immunoaffinity chromatography or immunoextraction, immobilized metal-ion affinity chromatography, dye-ligand affinity chromatography, chiral separations and biointeraction studies. Examples are presented from fields that include analytical chemistry, pharmaceutical analysis, clinical testing and biotechnology. Current trends and possible future directions in AMC are also discussed. PMID:23187827

  14. Purification of phage display-modified bacteriophage T4 by affinity chromatography

    PubMed Central

    2011-01-01

    Background Affinity chromatography is one of the most efficient protein purification strategies. This technique comprises a one-step procedure with a purification level in the order of several thousand-fold, adaptable for various proteins, differentiated in their size, shape, charge, and other properties. The aim of this work was to verify the possibility of applying affinity chromatography in bacteriophage purification, with the perspective of therapeutic purposes. T4 is a large, icosahedral phage that may serve as an efficient display platform for foreign peptides or proteins. Here we propose a new method of T4 phage purification by affinity chromatography after its modification with affinity tags (GST and Histag) by in vivo phage display. As any permanent introduction of extraneous DNA into a phage genome is strongly unfavourable for medical purposes, integration of foreign motifs with the phage genome was not applied. The phage was propagated in bacteria expressing fusions of the phage protein Hoc with affinity tags from bacterial plasmids, independently from the phage expression system. Results Elution profiles of phages modified with the specific affinity motifs (compared to non-specific phages) document their binding to the affinity resins and effective elution with standard competitive agents. Non-specific binding was also observed, but was 102-105 times weaker than the specific one. GST-modified bacteriophages were also effectively released from glutathione Sepharose by proteolytic cleavage. The possibility of proteolytic release was designed at the stage of expression vector construction. Decrease in LPS content in phage preparations was dependent on the washing intensity; intensive washing resulted in preparations of 11-40 EU/ml. Conclusions Affinity tags can be successfully incorporated into the T4 phage capsid by the in vivo phage display technique and they strongly elevate bacteriophage affinity to a specific resin. Affinity chromatography can be

  15. Two-dimensional blue native/SDS-PAGE analysis of whole cell lysate protein complexes of rice in response to salt stress.

    PubMed

    Hashemi, Amenehsadat; Gharechahi, Javad; Nematzadeh, Ghorbanali; Shekari, Faezeh; Hosseini, Seyed Abdollah; Salekdeh, Ghasem Hosseini

    2016-08-01

    To understand the biology of a plant in response to stress, insight into protein-protein interactions, which almost define cell behavior, is thought to be crucial. Here, we provide a comparative complexomics analysis of leaf whole cell lysate of two rice genotypes with contrasting responses to salt using two-dimensional blue native/SDS-PAGE (2D-BN/SDS-PAGE). We aimed to identify changes in subunit composition and stoichiometry of protein complexes elicited by salt. Using mild detergent for protein complex solubilization, we were able to identify 9 protein assemblies as hetero-oligomeric and 30 as homo-oligomeric complexes. A total of 20 proteins were identified as monomers in the 2D-BN/SDS-PAGE gels. In addition to identifying known protein complexes that confirm the technical validity of our analysis, we were also able to discover novel protein-protein interactions. Interestingly, an interaction was detected for glycolytic enzymes enolase (ENO1) and triosephosphate isomerase (TPI) and also for a chlorophyll a-b binding protein and RuBisCo small subunit. To show changes in subunit composition and stoichiometry of protein assemblies during salt stress, the differential abundance of interacting proteins was compared between salt-treated and control plants. A detailed exploration of some of the protein complexes provided novel insight into the function, composition, stoichiometry and dynamics of known and previously uncharacterized protein complexes in response to salt stress. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Analysis of Biological Interactions by Affinity Chromatography: Clinical and Pharmaceutical Applications

    PubMed Central

    Hage, David S.

    2017-01-01

    BACKGROUND The interactions between biochemical and chemical agents in the body are important in many clinical processes. Affinity chromatography and high-performance affinity chromatography (HPAC), in which a column contains an immobilized biologically-related binding agent, are two methods that can be used to study these interactions. CONTENT This review looks at various approaches that can be used in affinity chromatography and HPAC to characterize the strength or rate of a biological interaction, the number and types of sites that are involved in this process, and the interactions between multiple solutes for the same binding agent. A number of applications for these methods are examined, with an emphasis on recent developments and high-performance affinity methods. These applications include the use of these techniques for fundamental studies of biological interactions, high-throughput screening of drugs, work with modified proteins, tools for personalized medicine, and studies of drug-drug competition for a common binding agent. SUMMARY The wide range of formats and detection methods that can be used with affinity chromatography and HPAC for examining biological interactions makes these tools attractive for various clinical and pharmaceutical applications. Future directions in the development of small-scale columns and the coupling of these methods with other techniques, such as mass spectrometry or other separation methods, should continue to increase the flexibility and ease with which these approaches can be used in work involving clinical or pharmaceutical samples. PMID:28396561

  17. Antihemorrhagin in the blood serum of king cobra (Ophiophagus hannah): purification and characterization.

    PubMed

    Chanhome, Lawan; Khow, Orawan; Omori-Satoh, Tamotsu; Sitprija, Visith

    2003-06-01

    King cobra (Ophiophagus hannah) serum was found to possess antihemorrhagic activity against king cobra hemorrhagin. The activity was stronger than that in commercial king cobra antivenom. An antihemorrhagin has been purified by ion exchange chromatography, affinity chromatography and gel filtration with a 22-fold purification and an overall yield of 12% of the total antihemorrhagic activity contained in crude serum. The purified antihemorrhagin was homogeneous in disc-PAGE and SDS-PAGE. Its apparent molecular weight determined by SDS-PAGE was 120 kDa. The antihemorrhagin was also active against other hemorrhagic snake venoms obtained in Thailand and Japan such as Calloselasma rhodostoma, Trimeresurus albolabris, Trimeresurus macrops and Trimeresurus flavoviridis (Japanese Habu). It inhibited the proteolytic activity of king cobra venom. It is an acid- and thermolabile protein and does not form precipitin lines against king cobra venom.

  18. Protein identification and quantification from riverbank grape, Vitis riparia: Comparing SDS-PAGE and FASP-GPF techniques for shotgun proteomic analysis.

    PubMed

    George, Iniga S; Fennell, Anne Y; Haynes, Paul A

    2015-09-01

    Protein sample preparation optimisation is critical for establishing reproducible high throughput proteomic analysis. In this study, two different fractionation sample preparation techniques (in-gel digestion and in-solution digestion) for shotgun proteomics were used to quantitatively compare proteins identified in Vitis riparia leaf samples. The total number of proteins and peptides identified were compared between filter aided sample preparation (FASP) coupled with gas phase fractionation (GPF) and SDS-PAGE methods. There was a 24% increase in the total number of reproducibly identified proteins when FASP-GPF was used. FASP-GPF is more reproducible, less expensive and a better method than SDS-PAGE for shotgun proteomics of grapevine samples as it significantly increases protein identification across biological replicates. Total peptide and protein information from the two fractionation techniques is available in PRIDE with the identifier PXD001399 (http://proteomecentral.proteomexchange.org/dataset/PXD001399). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. PURIFICATION AND PARTIAL CHARACTERIZATION OF AN ACID PHOSPHATASE FROM SPIRODELA OLIGORRHIZA AND ITS AFFINITY FOR SELECTED ORGANOPHOSPHATE PESTICIDES

    EPA Science Inventory

    An acid phosphatase from the aquatic plant Spirodela oligorrhiza (duckweed) was isolated by fast protein liquid chromatography (FPLC) and partially characterized. The enzyme was purified 1871-fold with a total yield of 40%. SDS-PAGE electrophoresis of the pure acid phosphatase ...

  20. Weak affinity chromatography for evaluation of stereoisomers in early drug discovery.

    PubMed

    Duong-Thi, Minh-Dao; Bergström, Maria; Fex, Tomas; Svensson, Susanne; Ohlson, Sten; Isaksson, Roland

    2013-07-01

    In early drug discovery (e.g., in fragment screening), recognition of stereoisomeric structures is valuable and guides medicinal chemists to focus only on useful configurations. In this work, we concurrently screened mixtures of stereoisomers and estimated their affinities to a protein target (thrombin) using weak affinity chromatography-mass spectrometry (WAC-MS). Affinity determinations by WAC showed that minor changes in stereoisomeric configuration could have a major impact on affinity. The ability of WAC-MS to provide instant information about stereoselectivity and binding affinities directly from analyte mixtures is a great advantage in fragment library screening and drug lead development.

  1. Analysis of solute-protein interactions and solute-solute competition by zonal elution affinity chromatography.

    PubMed

    Tao, Pingyang; Poddar, Saumen; Sun, Zuchen; Hage, David S; Chen, Jianzhong

    2018-02-02

    Many biological processes involve solute-protein interactions and solute-solute competition for protein binding. One method that has been developed to examine these interactions is zonal elution affinity chromatography. This review discusses the theory and principles of zonal elution affinity chromatography, along with its general applications. Examples of applications that are examined include the use of this method to estimate the relative extent of solute-protein binding, to examine solute-solute competition and displacement from proteins, and to measure the strength of these interactions. It is also shown how zonal elution affinity chromatography can be used in solvent and temperature studies and to characterize the binding sites for solutes on proteins. In addition, several alternative applications of zonal elution affinity chromatography are discussed, which include the analysis of binding by a solute with a soluble binding agent and studies of allosteric effects. Other recent applications that are considered are the combined use of immunoextraction and zonal elution for drug-protein binding studies, and binding studies that are based on immobilized receptors or small targets. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Novel cross-linked alcohol-insoluble solid (CL-AIS) affinity gel from pea pod for pectinesterase purification.

    PubMed

    Wu, Ming-Chang; Lin, Guan-Hui; Wang, Yuh-Tai; Jiang, Chii-Ming; Chang, Hung-Min

    2005-10-05

    Alcohol-insoluble solids (AIS) from pea pod were cross-linked (CL-AIS) and used as an affinity gel matrix to isolate pectin esterases (PEs) from tendril shoots of chayote (TSC) and jelly fig achenes (JFA), and the results were compared with those isolated by ion-exchange chromatography with a commercial resin. CL-AIS gel matrix in a column displayed poor absorption and purification fold of PE; however, highly methoxylated CL-AIS (HM-CL-AIS), by exposing CL-AIS to methanolic sulfuric acid to increase the degree of esterification (DE) to 92%, facilitated the enzyme purification. The purified TSC PE and JFA PE by the HM-CL-AIS column were proofed as a single band on an SDS-PAGE gel, showing that the HM-CL-AIS column was a good matrix for purification of PE, either with alkaline isoelectric point (pI) (TSC PE) or with acidic pI (JFA PE).

  3. Frontal affinity chromatography: A unique research tool for biospecific interaction that promotes glycobiology

    PubMed Central

    KASAI, Kenichi

    2014-01-01

    Combination of bioaffinity and chromatography gave birth to affinity chromatography. A further combination with frontal analysis resulted in creation of frontal affinity chromatography (FAC). This new versatile research tool enabled detailed analysis of weak interactions that play essential roles in living systems, especially those between complex saccharides and saccharide-binding proteins. FAC now becomes the best method for the investigation of saccharide-binding proteins (lectins) from viewpoints of sensitivity, accuracy, and efficiency, and is contributing greatly to the development of glycobiology. It opened a door leading to deeper understanding of the significance of saccharide recognition in life. The theory is also concisely described. PMID:25169774

  4. The rumen microbial metaproteome as revealed by SDS-PAGE.

    PubMed

    Snelling, Timothy J; Wallace, R John

    2017-01-07

    Ruminal digestion is carried out by large numbers of bacteria, archaea, protozoa and fungi. Understanding the microbiota is important because ruminal fermentation dictates the efficiency of feed utilisation by the animal and is also responsible for major emissions of the greenhouse gas, methane. Recent metagenomic and metatranscriptomic studies have helped to elucidate many features of the composition and activity of the microbiota. The metaproteome provides complementary information to these other -omics technologies. The aim of this study was to explore the metaproteome of bovine and ovine ruminal digesta using 2D SDS-PAGE. Digesta samples were taken via ruminal fistulae and by gastric intubation, or at slaughter, and stored in glycerol at -80 °C. A protein extraction protocol was developed to maximise yield and representativeness of the protein content. The proteome of ruminal digesta taken from dairy cows fed a high concentrate diet was dominated by a few very highly expressed proteins, which were identified by LC-MS/MS to be structural proteins, such as actin and α- and β-tubulins, derived from ciliate protozoa. Removal of protozoa from digesta before extraction of proteins revealed the prokaryotic metaproteome, which was dominated by enzymes involved in glycolysis, such as glyceraldehyde-3-phosphate dehydrogenase, phosphoenolpyruvate carboxykinase, phosphoglycerate kinase and triosephosphate isomerase. The enzymes were predominantly from the Firmicutes and Bacteroidetes phyla. Enzymes from methanogenic archaea were also abundant, consistent with the importance of methane formation in the rumen. Gels from samples from dairy cows fed a high proportion of grass silage were consistently obscured by co-staining of humic compounds. Samples from beef cattle and fattening lambs receiving a predominantly concentrate diet produced clearer gels, but the pattern of spots was inconsistent between samples, making comparisons difficult. This work demonstrated for the

  5. PDZ affinity chromatography: a general method for affinity purification of proteins based on PDZ domains and their ligands.

    PubMed

    Walkup, Ward G; Kennedy, Mary B

    2014-06-01

    PDZ (PSD-95, DiscsLarge, ZO1) domains function in nature as protein binding domains within scaffold and membrane-associated proteins. They comprise ∼90 residues and make specific, high affinity interactions with complementary C-terminal peptide sequences, with other PDZ domains, and with phospholipids. We hypothesized that the specific, strong interactions of PDZ domains with their ligands would make them well suited for use in affinity chromatography. Here we describe a novel affinity chromatography method applicable for the purification of proteins that contain PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We created a series of affinity resins comprised of PDZ domains from the scaffold protein PSD-95, or from neuronal nitric oxide synthase (nNOS), coupled to solid supports. We used them to purify heterologously expressed neuronal proteins or protein domains containing endogenous PDZ domain ligands, eluting the proteins with free PDZ domain peptide ligands. We show that Proteins of Interest (POIs) lacking endogenous PDZ domain ligands can be engineered as fusion products containing C-terminal PDZ domain ligand peptides or internal, N- or C-terminal PDZ domains and then can be purified by the same method. Using this method, we recovered recombinant GFP fused to a PDZ domain ligand in active form as verified by fluorescence yield. Similarly, chloramphenicol acetyltransferase (CAT) and β-Galactosidase (LacZ) fused to a C-terminal PDZ domain ligand or an N-terminal PDZ domain were purified in active form as assessed by enzymatic assay. In general, PDZ domains and ligands derived from PSD-95 were superior to those from nNOS for this method. PDZ Domain Affinity Chromatography promises to be a versatile and effective method for purification of a wide variety of natural and recombinant proteins. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Purification of swine haptoglobin by affinity chromatography.

    PubMed Central

    Eurell, T E; Hall, W F; Bane, D P

    1990-01-01

    A globin-agarose affinity chromatography technique was used to purify swine haptoglobin. This technique provides a highly specific, single-step purification method without the contamination of extraneous serum proteins reported by previous studies. Complex formation between the haptoglobin isolate and swine hemoglobin confirmed that biological activity was maintained during the purification process. Immunoelectrophoretic and Ouchterlony immunodiffusion methods revealed that the swine haptoglobin isolate cross-reacted with polyvalent antisera against human haptoglobin. Images Fig. 2. Fig. 3. PMID:2123414

  7. Comparison of low molecular weight glutenin subunits identified by SDS-PAGE, 2-DE, MALDI-TOF-MS and PCR in common wheat.

    PubMed

    Liu, Li; Ikeda, Tatsuya M; Branlard, Gerard; Peña, Roberto J; Rogers, William J; Lerner, Silvia E; Kolman, María A; Xia, Xianchun; Wang, Linhai; Ma, Wujun; Appels, Rudi; Yoshida, Hisashi; Wang, Aili; Yan, Yueming; He, Zhonghu

    2010-06-24

    Low-molecular-weight glutenin subunits (LMW-GS) play a crucial role in determining end-use quality of common wheat by influencing the viscoelastic properties of dough. Four different methods - sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional gel electrophoresis (2-DE, IEF x SDS-PAGE), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and polymerase chain reaction (PCR), were used to characterize the LMW-GS composition in 103 cultivars from 12 countries. At the Glu-A3 locus, all seven alleles could be reliably identified by 2-DE and PCR. However, the alleles Glu-A3e and Glu-A3d could not be routinely distinguished from Glu-A3f and Glu-A3g, respectively, based on SDS-PAGE, and the allele Glu-A3a could not be differentiated from Glu-A3c by MALDI-TOF-MS. At the Glu-B3 locus, alleles Glu-B3a, Glu-B3b, Glu-B3c, Glu-B3g, Glu-B3h and Glu-B3j could be clearly identified by all four methods, whereas Glu-B3ab, Glu-B3ac, Glu-B3ad could only be identified by the 2-DE method. At the Glu-D3 locus, allelic identification was problematic for the electrophoresis based methods and PCR. MALDI-TOF-MS has the potential to reliably identify the Glu-D3 alleles. PCR is the simplest, most accurate, lowest cost, and therefore recommended method for identification of Glu-A3 and Glu-B3 alleles in breeding programs. A combination of methods was required to identify certain alleles, and would be especially useful when characterizing new alleles. A standard set of 30 cultivars for use in future studies was chosen to represent all LMW-GS allelic variants in the collection. Among them, Chinese Spring, Opata 85, Seri 82 and Pavon 76 were recommended as a core set for use in SDS-PAGE gels. Glu-D3c and Glu-D3e are the same allele. Two new alleles, namely, Glu-D3m in cultivar Darius, and Glu-D3n in Fengmai 27, were identified by 2-DE. Utilization of the suggested standard cultivar set, seed of which is available from the

  8. Analytical FcRn affinity chromatography for functional characterization of monoclonal antibodies

    PubMed Central

    Schlothauer, Tilman; Rueger, Petra; Stracke, Jan Olaf; Hertenberger, Hubert; Fingas, Felix; Kling, Lothar; Emrich, Thomas; Drabner, Georg; Seeber, Stefan; Auer, Johannes; Koch, Stefan; Papadimitriou, Apollon

    2013-01-01

    The neonatal Fc receptor (FcRn) is important for the metabolic fate of IgG antibodies in vivo. Analysis of the interaction between FcRn and IgG in vitro might provide insight into the structural and functional integrity of therapeutic IgG that may affect pharmacokinetics (PK) in vivo. We developed a standardized pH gradient FcRn affinity liquid chromatography method with conditions closely resembling the physiological mechanism of interaction between IgG and FcRn. This method allows the separation of molecular IgG isoforms, degradation products and engineered molecules based on their affinity to FcRn. Human FcRn was immobilized on the column and a linear pH gradient from pH 5.5 to 8.8 was applied. FcRn chromatography was used in comparison to surface plasmon resonance to characterize different monoclonal IgG preparations, e.g., oxidized or aggregated species. Wild-type and engineered IgGs were compared in vitro by FcRn chromatography and in vivo by PK studies in huFcRn transgenic mice. Analytical FcRn chromatography allows differentiation of IgG samples and variants by peak pattern and retention time profile. The method can distinguish: 1) IgGs with different Fabs, 2) oxidized from native IgG, 3) aggregates from monomer and 4) antibodies with mutations in the Fc part from wild-type IgGs. Changes in the FcRn chromatographic behavior of mutant IgGs relative to the wild-type IgG correlate to changes in the PK profile in the FcRn transgenic mice. These results demonstrate that FcRn affinity chromatography is a useful new method for the assessment of IgG integrity. PMID:23765230

  9. In vitro pepsin resistance of proteins: Effect of non-reduced SDS-PAGE analysis on fragment observation.

    PubMed

    Pickles, Juliette; Rafiq, Samera; Cochrane, Stella A; Lalljie, Anja

    2014-01-01

    The introduction of novel proteins to food products carries with it the need to assess the potential allergenicity of such materials. Resistance to in vitro pepsin digestion is one parameter considered in such a risk assessment using a weight of evidence approach; however, the methodology used to investigate this has not been fully standardised. In vitro pepsin resistance assays typically involve SDS-PAGE performed under reducing conditions, with limited published data available on the assay using non-reducing conditions despite the need to consider non-reducing analysis techniques having been highlighted by regulatory bodies such as the European Food Safety Authority (EFSA). The purpose of the work reported here was to investigate the applicability of (and additional insight provided by) non-reducing analyses, by digesting a set of proteins using a ring-trial validated method, with analysis by SDS-PAGE under both reducing and non-reducing conditions. In silico prediction of digest fragments was also investigated. Significant differences were observed between results under reduced and non-reduced conditions for proteins in which disulphide bonds have a major role in protein structure, such as ribulose 1,5-diphosphate carboxylase (RUBISCO) and bovine serum albumin. For proteins with no or few disulphide bonds, no significant differences were seen in the results. Structural information such as disulphide bond numbers and positions should be considered during experimental design, as a non-reduced approach may be appropriate for some proteins. The in silico approach was a useful tool to suggest potential digest fragments, however the predictions were not always confirmed in vitro and should be considered a guide only.

  10. A high precision method for length-based separation of carbon nanotubes using bio-conjugation, SDS-PAGE and silver staining.

    PubMed

    Borzooeian, Zahra; Taslim, Mohammad E; Ghasemi, Omid; Rezvani, Saina; Borzooeian, Giti; Nourbakhsh, Amirhasan

    2018-01-01

    Parametric separation of carbon nanotubes, especially based on their length is a challenge for a number of nano-tech researchers. We demonstrate a method to combine bio-conjugation, SDS-PAGE, and silver staining in order to separate carbon nanotubes on the basis of length. Egg-white lysozyme, conjugated covalently onto the single-walled carbon nanotubes surfaces using carbodiimide method. The proposed conjugation of a biomolecule onto the carbon nanotubes surfaces is a novel idea and a significant step forward for creating an indicator for length-based carbon nanotubes separation. The conjugation step was followed by SDS-PAGE and the nanotube fragments were precisely visualized using silver staining. This high precision, inexpensive, rapid and simple separation method obviates the need for centrifugation, additional chemical analyses, and expensive spectroscopic techniques such as Raman spectroscopy to visualize carbon nanotube bands. In this method, we measured the length of nanotubes using different image analysis techniques which is based on a simplified hydrodynamic model. The method has high precision and resolution and is effective in separating the nanotubes by length which would be a valuable quality control tool for the manufacture of carbon nanotubes of specific lengths in bulk quantities. To this end, we were also able to measure the carbon nanotubes of different length, produced from different sonication time intervals.

  11. Absence of sugars in electrophoretically purified cytochrome b5 demonstrated by combined gas chromatography-mass spectrometry

    PubMed Central

    1981-01-01

    The problem of determining small but significant amounts of carbohydrates, in purified proteins, has been studied using the membrane protein, cytochrome b5. A newly developed method that involves direct gas chromatography-mass spectrometry of sugars obtained by hydrolysis of proteins purified by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) allows the identification and determination of small amounts of carbohydrates (e.g., 20 micrograms of glycoprotein containing a minimum of 0.1% monosaccharide), even in the presence of relatively high amounts of impurities. Application of this method to cytochrome b5 fragments obtained by tryptic digestion from rat liver microsomes and purified by combined gel filtration and ion exchange chromatography, followed by SDS PAGE, has consistently yielded values below 0.07 mol of the individual sugars and aminosugars per mole cytochrome b5. It is concluded that cytochrome b5, at least its trypsin-released major amino- terminal fragment, is not constitutively glycosylated. PMID:7251667

  12. Cholera Toxin Inhibitors Studied with High-Performance Liquid Affinity Chromatography: A Robust Method to Evaluate Receptor–Ligand Interactions

    PubMed Central

    Bergström, Maria; Liu, Shuang; Kiick, Kristi L.; Ohlson, Sten

    2009-01-01

    Anti-adhesion drugs may be an alternative to antibiotics to control infection of micro-organisms. The well-characterized interaction between cholera toxin and the cellular glycolipid GM1 makes it an attractive model for inhibition studies in general. In this report, we demonstrate a high-performance liquid affinity chromatography approach called weak affinity chromatography to evaluate cholera toxin inhibitors. The cholera toxin B-subunit was covalently coupled to porous silica and a (weak) affinity column was produced. The KD values of galactose and meta-nitrophenyl α-D-galactoside were determined with weak affinity chromatography to be 52 and 1 mM, respectively, which agree well with IC50 values previously reported. To increase inhibition potency multivalent inhibitors have been developed and the interaction with multivalent glycopolypeptides was also evaluated. The affinity of these compounds was found to correlate with the galactoside content but KD values were not obtained because of the inhomogeneous response and slow off-rate from multivalent interactions. Despite the limitations in obtaining direct KD values of the multivalent galactopolypeptides, weak affinity chromatography represents an additional and valuable tool in the evaluation of monovalent as well as multivalent cholera toxin inhibitors. It offers multiple advantages, such as a low sample consumption, high reproducibility and short analysis time, which are often not observed in other methods of analysis. PMID:19152642

  13. Evaluation of galectin binding by frontal affinity chromatography (FAC).

    PubMed

    Iwaki, Jun; Hirabayashi, Jun

    2015-01-01

    Frontal affinity chromatography (FAC) is a simple and versatile procedure enabling quantitative determination of diverse biological interactions in terms of dissociation constants (K d), even though these interactions are relatively weak. The method is best applied to glycans and their binding proteins, with the analytical system operating on the basis of highly reproducible isocratic elution by liquid chromatography. Its application to galectins has been successfully developed to characterize their binding specificities in detail. As a result, their minimal requirements for recognition of disaccharides, i.e., β-galactosides, as well as characteristic features of individual galectins, have been elucidated. In this chapter, we describe standard procedures to determine the K d's for interactions between a series of standard glycans and various galectins.

  14. Refolding and simultaneous purification of recombinant human proinsulin from inclusion bodies on protein-folding liquid-chromatography columns.

    PubMed

    Yuan, Jie; Zhou, Huifang; Yang, Yicong; Li, Weimin; Wan, Yi; Wang, Lili

    2015-05-01

    Protein-folding liquid chromatography (PFLC) is an effective and scalable method for protein renaturation with simultaneous purification. However, it has been a challenge to fully refold inclusion bodies in a PFLC column. In this work, refolding with simultaneous purification of recombinant human proinsulin (rhPI) from inclusion bodies from Escherichia coli were investigated using the surface of stationary phases in immobilized metal ion affinity chromatography (IMAC) and high-performance size-exclusion chromatography (HPSEC). The results indicated that both the ligand structure on the surface of the stationary phase and the composition of the mobile phase (elution buffer) influenced refolding of rhPI. Under optimized chromatographic conditions, the mass recoveries of IMAC column and HPSEC column were 77.8 and 56.8% with purifies of 97.6 and 93.7%, respectively. These results also indicated that the IMAC column fails to refold rhPI, and the HPSEC column enables efficient refolding of rhPI with a low-urea gradient-elution method. The refolded rhPI was characterized by circular dichroism spectroscopy. The molecular weight of the converted human insulin was further confirmed with SDS-18% PAGE, Matrix-Assisted Laser Desorption/ Ionization Time of Flight Mass Spectrometry (MALDI-TOF-MS) and the biological activity assay by HP-RPLC. Copyright © 2014 John Wiley & Sons, Ltd.

  15. An affinity chromatography-gel filtration device for preparing thyroid microsomal antigen.

    PubMed

    Wang, L; Zheng, W F

    1987-09-24

    On the basis of conventional differential centrifugation for preparing crude thyroid microsomal antigen (TMAg), we have employed Sepharose 4B gel filtration and affinity chromatography separately to study the elution pattern in terms of absorbance and antigenic activity. The result indicates that thyroglobulin (TG) exists in two forms in crude TMAg, i.e., 'free TG' and 'membrane-bound TG'. TMAg is present in two forms in the eluate: (1) the TM fragment or TMAg polymer, which is produced at a higher rate and has greater antigenic activity, but which is less pure; (2) soluble TMAg, which is produced at a lower rate and has less antigenic activity, but which is more pure. We have developed an affinity chromatography-gel filtration (AC-GF) device which is a combination of affinity chromatography and a Sepharose 4B column. Sephadex G-50 is placed between the rubber stopper and Sepharose 4B in the GF column to ensure intactness of the entire system. With such a device, the AC removes the contaminated TG from TM homogenate, and allows the latter to pass directly from AC to GF for rechromatography. This device extracts the full advantages of both methods and each compensates for any deficiency of the other. Using this one-step procedure, one has the greatest chance of removing TG and obtaining TM fragments of TMAg polymers of higher antigenic activity, as well as separating small amounts of more purified soluble TMAg. Thus, the newly developed method meets the need of large quantities of TMAg for practical application, and at the same time the more purified preparations can be used for analytical purposes.

  16. Some parameters relevant to affinity chromatography on immobilized nucleotides

    PubMed Central

    Lowe, C. R.; Harvey, M. J.; Craven, D. B.; Dean, P. D. G.

    1973-01-01

    1. The suitability of cellulose and Sepharose as supports for affinity chromatography of two groups of cofactor-linked enzymes, dehydrogenases and kinases, was examined. Sepharose was found to be superior. 2. The selective capacities of the columns were measured by frontal analysis and are discussed in relation to the nucleotide contents. 3. The effect of various concentrations of enzyme and of non-specific protein on the performance of the affinity columns, and the effects of equilibration time, flow rate, sample volume and dilution of the nucleotide were examined. 4. The effect of interposing polymethylene and polyglycine extension arms between the matrix backbone and the nucleotide was investigated for several cofactor-dependent enzymes. Maximum binding was observed with an extension arm 0.8–1nm long. PMID:4354739

  17. Functionality screen of streptavidin mutants by non-denaturing SDS-PAGE using biotin-4-fluorescein.

    PubMed

    Humbert, Nicolas; Ward, Thomas R

    2008-01-01

    Site-directed mutagenesis or directed evolution of proteins often leads to the production of inactive mutants. For streptavidin and related proteins, mutations may lead to the loss of their biotin-binding properties. With high-throughput screening methodologies in mind, it is imperative to detect, prior to the high-density protein production, the bacteria that produce non-functional streptavidin isoforms. Based on the incorporation of biotin-4-fluorescein in streptavidin mutants present in Escherichia coli bacterial extracts, we detail a functional screen that allows the identification of biotin-binding streptavidin variants. Bacteria are cultivated in a small volume, followed by a rapid treatment of the cells; biotin-4-fluorescein is added to the bacterial extract and loaded on an Sodium Dodecyl Sulfate Poly-Acrylamide Gel Electrophoresis (SDS-PAGE) under non-denaturing conditions. Revealing is performed using a UV transilluminator. This screen is thus easy to implement, cheap and requires only readily available equipment.

  18. Determination of soluble immunoglobulin G in bovine colostrum products by Protein G affinity chromatography-turbidity correction and method validation.

    PubMed

    Holland, Patrick T; Cargill, Anne; Selwood, Andrew I; Arnold, Kate; Krammer, Jacqueline L; Pearce, Kevin N

    2011-05-25

    Immunoglobulin-containing food products and nutraceuticals such as bovine colostrum are of interest to consumers as they may provide health benefits. Commercial scale colostrum products are valued for their immunoglobulin G (IgG) content and therefore require accurate analysis. One of the most commonly used methods for determining total soluble IgG in colostrum products is based on affinity chromatography using a Protein G column and UV detection. This paper documents improvements to the accuracy of the Protein G analysis of IgG in colostrum products, especially those containing aggregated forms of IgG. Capillary electrophoresis-sodium dodecyl sulfate (CE-SDS) analysis confirmed that aggregated IgG measured by Protein G does not contain significant amounts of casein or other milk proteins. Size exclusion chromatography identified the content of soluble IgG as mainly monomeric IgG and aggregated material MW > 450 kDa with small amounts of dimer and trimer. The turbidity of the eluting IgG, mainly associated with aggregated IgG, had a significant effect on the quantitative results. Practical techniques were developed to correct affinity LC data for turbidity on an accurate, consistent, and efficient basis. The method was validated in two laboratories using a variety of colostrum powders. Precision for IgG was 2-3% (RSD(r)) and 3-12% (RSD(R)). Recovery was 100.2 ± 2.4% (mean ± RSD, n = 10). Greater amounts of aggregated IgG were solubilized by a higher solution:sample ratio and extended times of mixing or sonication, especially for freeze-dried material. It is concluded that the method without acid precipitation and with turbidity correction provides accurate, precise, and robust data for total soluble IgG and is suitable for product specification and quality control of colostrum products.

  19. Comparative examination of adsorption of serum proteins on HSA- and PLGA-based nanoparticles using SDS-PAGE and LC-MS.

    PubMed

    Gossmann, R; Fahrländer, E; Hummel, M; Mulac, D; Brockmeyer, J; Langer, K

    2015-06-01

    The behavior of nanosized drug carrier systems under cell culture conditions and therefore also the destiny in the body are highly influenced by the protein corona, which is formed upon entering a biological environment. Some of the adsorbed proteins, named opsonins, lead to a shortened plasma circulation half-life of the nanoparticles. Others are attributed to promote the transport of nanoparticles into other compartments of the body, just to mention two examples. Hence, detailed knowledge concerning the composition of the protein corona is of great importance. The aim of this work was to investigate the influence of the nanoparticle starting material and the surface modification on the composition of the adsorbed serum proteins in a cell culture environment. Therefore, positively charged nanoparticles based on the biodegradable polymer poly(dl-lactide-co-glycolide) (PLGA) stabilized with didodecyldimethylammonium bromide (DMAB) and negatively charged nanoparticles based on human serum albumin (HSA) were prepared and modified with hydrophilic polymers. By incubating the nanoparticles with fetal bovine serum (FBS) the adsorption of serum proteins on the colloidal system was investigated. Using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) a semi-quantitative analysis of the protein corona was performed and after enzymatic in-solution-digestion the adsorbed proteins were identified using high resolution LC-MS. Our study accentuates the influence of the core material, surface charge, and surface modification on the amount and nature of the adsorbed proteins. The combination of SDS-PAGE and LC-MS turns out to be a simple and reliable method to investigate the protein corona of nanoparticles. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Characterization of glycoprotein biopharmaceutical products by Caliper LC90 CE-SDS gel technology.

    PubMed

    Chen, Grace; Ha, Sha; Rustandi, Richard R

    2013-01-01

    Over the last decade, science has greatly improved in the area of protein sizing and characterization. Efficient high-throughput methods are now available to substitute for the traditional labor-intensive SDS-PAGE methods, which alternatively take days to analyze a very limited number of samples. Currently, PerkinElmer(®) (Caliper) has designed an automated chip-based fluorescence detection method capable of analyzing proteins in minutes with sensitivity similar to standard SDS-PAGE. Here, we describe the use and implementation of this technology to characterize and screen a large number of formulations of target glycoproteins in the 14-200 kDa molecular weight range.

  1. The Binding of Biotin to Sepharose-Avidin Column: Demonstration of the Affinity Chromatography Technique

    ERIC Educational Resources Information Center

    Landman, A. D.; Landman, N. N.

    1976-01-01

    Describes a biochemistry experiment that illustrates the methodology of affinity chromatography by attaching avidin, a glycoprotein in egg white, to a Sepharose matrix in order to bind biotin-containing proteins. (MLH)

  2. Application of coupled affinity-sizing chromatography for the detection of proteolyzed HSA-tagged proteins.

    PubMed

    London, Anne Serdakowski; Patel, Kunal; Quinn, Lisa; Lemmerer, Martin

    2015-04-01

    Coupled affinity liquid chromatography and size exclusion chromatography (ALC-SEC) is a technique that has been shown to successfully report product quality of proteins during cell expression and prior to the commencement of downstream processing chromatography steps. This method was applied to monitoring the degradation and subsequent partial remediation of a HSA-tagged protein which showed proteolysis, allowing for rapid cell line development to address this product quality dilemma. This paper outlines the novel application of this method for measuring and addressing protease-induced proteolysis. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Proteomic analysis of human bladder epithelial cells by 2D blue native SDS-PAGE reveals TCDD-induced alterations of calcium and iron homeostasis possibly mediated by nitric oxide.

    PubMed

    Verma, Nisha; Pink, Mario; Petrat, Frank; Rettenmeier, Albert W; Schmitz-Spanke, Simone

    2015-01-02

    A proteomic analysis of the interaction among multiprotein complexes involved in 2,3,7,8-dibenzo-p-dioxin (TCDD)-mediated toxicity in urinary bladder epithelial RT4 cells was performed using two-dimensional blue native SDS-PAGE (2D BN/SDS-PAGE). To enrich the protein complexes, unexposed and TCDD-exposed cells were fractionated. BN/SDS-PAGE of the resulting fractions led to an effective separation of proteins and protein complexes of various origins, including cell membrane, mitochondria, and other intracellular compartments. Major differences between the proteome of control and exposed cells involved the alteration of many calcium-regulated proteins (calmodulin, protein S100-A2, annexin A5, annexin A10, gelsolin isoform b) and iron-regulated proteins (ferritin, heme-binding protein 2, transferrin). On the basis of these findings, the intracellular calcium concentration was determined, revealing a significant increase after 24 h of exposure to TCDD. Moreover, the concentration of the labile iron pool (LIP) was also significantly elevated in TCDD-exposed cells. This increase was strongly inhibited by the calmodulin (CaM) antagonist W-7, which pointed toward a possible interaction between iron and calcium signaling. Because nitric oxide (NO) production was significantly enhanced in TCDD-exposed cells and was also inhibited by W-7, we hypothesize that alterations in calcium and iron homeostasis upon exposure to TCDD may be linked through NO generated by CaM-activated nitric oxide synthase. In our model, we propose that NO produced upon TCDD exposure interacts with the iron centers of iron-regulatory proteins (IRPs) that modulate the alteration of ferritin and transferrin, resulting in an augmented cellular LIP and, hence, increased toxicity.

  4. Purification and biochemical characterization of glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and glutathione reductase from rat lung and inhibition effects of some antibiotics.

    PubMed

    Adem, Sevki; Ciftci, Mehmet

    2016-12-01

    G6PD, 6PGD and GR have been purified separately in the single step from rat lung using 2', 5'-ADP Sepharose 4B affinity chromatography. The purified enzymes showed a single band on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weights of the enzymes were estimated to be 134 kDa for G6PD, 107 kDa for 6PGD and 121 kDa for GR by Sephadex G-150 gel filtration chromatography, and the subunit molecular weights was respectively found to be 66, 52 and 63 kDa by SDS-PAGE. Optimum pH, stable pH, optimum ionic strength, optimum temperature, KM and Vmax values for substrates were determined. Product inhibition studies were also performed. The enzymes were inhibited by levofloxacin, furosemide, ceftazidime, cefuroxime and gentamicin as in vitro with IC50 values in the range of 0.07-30.13 mM. In vivo studies demonstrated that lung GR was inhibited by furosemide and lung 6PGD was inhibited by levofloxacin.

  5. Fragment screening of cyclin G-associated kinase by weak affinity chromatography.

    PubMed

    Meiby, Elinor; Knapp, Stefan; Elkins, Jonathan M; Ohlson, Sten

    2012-11-01

    Fragment-based drug discovery (FBDD) has become a new strategy for drug discovery where lead compounds are evolved from small molecules. These fragments form low affinity interactions (dissociation constant (K(D)) = mM - μM) with protein targets, which require fragment screening methods of sufficient sensitivity. Weak affinity chromatography (WAC) is a promising new technology for fragment screening based on selective retention of fragments by a drug target. Kinases are a major pharmaceutical target, and FBDD has been successfully applied to several of these targets. In this work, we have demonstrated the potential to use WAC in combination with mass spectrometry (MS) detection for fragment screening of a kinase target-cyclin G-associated kinase (GAK). One hundred seventy fragments were selected for WAC screening by virtual screening of a commercial fragment library against the ATP-binding site of five different proteins. GAK protein was immobilized on a capillary HPLC column, and compound binding was characterized by frontal affinity chromatography. Compounds were screened in sets of 13 or 14, in combination with MS detection for enhanced throughput. Seventy-eight fragments (46 %) with K(D) < 200 μM were detected, including a few highly efficient GAK binders (K(D) of 2 μM; ligand efficiency = 0.51). Of special interest is that chiral screening by WAC may be possible, as two stereoisomeric fragments, which both contained one chiral center, demonstrated twin peaks. This ability, in combination with the robustness, sensitivity, and simplicity of WAC makes it a new method for fragment screening of considerable potential.

  6. Fragment screening for drug leads by weak affinity chromatography (WAC-MS).

    PubMed

    Ohlson, Sten; Duong-Thi, Minh-Dao

    2018-02-23

    Fragment-based drug discovery is an important tool for design of small molecule hit-to-lead compounds against various biological targets. Several approved drugs have been derived from an initial fragment screen and many such candidates are in various stages of clinical trials. Finding fragment hits, that are suitable for optimisation by medicinal chemists, is still a challenge as the binding between the small fragment and its target is weak in the range of mM to µM of K d and irrelevant non-specific interactions are abundant in this area of transient interactions. Fortunately, there are methods that can study weak interactions quite efficiently of which NMR, surface plasmon resonance (SPR) and X-ray crystallography are the most prominent. Now, a new technology based on zonal affinity chromatography, weak affinity chromatography (WAC), has been introduced which has remedied many of the problems with other technologies. By combining WAC with mass spectrometry (WAC-MS), it is a powerful tool to identify binders quantitatively in terms of affinity and kinetics either from fragment libraries or from complex mixtures of biological extracts. As WAC-MS can be multiplexed by analysing mixtures of fragments (20-100 fragments) in one sample, this approach yields high throughput, where a whole library of e.g. >2000 fragments can be analysed quantitatively within a day. WAC-MS is easy to perform, where the robustness and quality of HPLC is fully utilized. This review will highlight the rationale behind the application of WAC-MS for fragment screening in drug discovery. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Immobilized Metal Affinity Chromatography Coupled to Multiple Reaction Monitoring Enables Reproducible Quantification of Phospho-signaling*

    PubMed Central

    Kennedy, Jacob J.; Yan, Ping; Zhao, Lei; Ivey, Richard G.; Voytovich, Uliana J.; Moore, Heather D.; Lin, Chenwei; Pogosova-Agadjanyan, Era L.; Stirewalt, Derek L.; Reding, Kerryn W.; Whiteaker, Jeffrey R.; Paulovich, Amanda G.

    2016-01-01

    A major goal in cell signaling research is the quantification of phosphorylation pharmacodynamics following perturbations. Traditional methods of studying cellular phospho-signaling measure one analyte at a time with poor standardization, rendering them inadequate for interrogating network biology and contributing to the irreproducibility of preclinical research. In this study, we test the feasibility of circumventing these issues by coupling immobilized metal affinity chromatography (IMAC)-based enrichment of phosphopeptides with targeted, multiple reaction monitoring (MRM) mass spectrometry to achieve precise, specific, standardized, multiplex quantification of phospho-signaling responses. A multiplex immobilized metal affinity chromatography- multiple reaction monitoring assay targeting phospho-analytes responsive to DNA damage was configured, analytically characterized, and deployed to generate phospho-pharmacodynamic curves from primary and immortalized human cells experiencing genotoxic stress. The multiplexed assays demonstrated linear ranges of ≥3 orders of magnitude, median lower limit of quantification of 0.64 fmol on column, median intra-assay variability of 9.3%, median inter-assay variability of 12.7%, and median total CV of 16.0%. The multiplex immobilized metal affinity chromatography- multiple reaction monitoring assay enabled robust quantification of 107 DNA damage-responsive phosphosites from human cells following DNA damage. The assays have been made publicly available as a resource to the community. The approach is generally applicable, enabling wide interrogation of signaling networks. PMID:26621847

  8. Galactinol synthase from kidney bean cotyledon and zucchini leaf. Purification and N-terminal sequences.

    PubMed Central

    Liu, J J; Odegard, W; de Lumen, B O

    1995-01-01

    Galactinol synthase (GS) was purified 1591-fold with a 3.9% recovery from the cotyledon of kidney bean (Phaseolus vulgaris) by a novel scheme consisting of ammonium sulfate fractionation followed by diethylaminoethyl, Affi-Gel Blue, and UDP-hexanolamine affinity chromatography. The purified enzyme had a specific activity of 8.75 mumol mg-1 min-1, a pH optimum of 7.0, and requirements for manganese ion and DTT. The enzyme exhibited a Km = 0.4 mM for UDP-galactose and a Km = 4.5 mM for myo-inositol. It was identified as a 38-kD peptide that co-purified with a 41- and a 43-kD peptide as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Purification to homogeneity was achieved by isolating the 38-kD peptide from the SDS-PAGE gel. To clarify conflicting reports in the literature about the relative molecular mass of purified GS from zucchini leaf (Cucurbita pepo), a similar scheme with modified eluting conditions was used to purify GS from this source. Zucchini leaf GS was purified to homogeneity and identified as a 36-kD peptide on SDS-PAGE. Partial N-terminal sequences of the 38-kD peptide from kidney bean cotyledon and the 36-kD peptide from zucchini leaf were obtained. To facilitate identification of GS during the purification, an assay utilizing thin-layer chromatography and an isotopic analytic imaging scanner was developed. PMID:7480343

  9. Isolation and purification of recombinant human plasminogen Kringle 5 by liquid chromatography and ammonium sulfate salting-out.

    PubMed

    Bian, Liujiao; Ji, Xu; Hu, Wei

    2014-07-01

    In this work, a novel method was established to isolate and purify Human plasminogen Kringle 5 (HPK5) as a histidine-tagged fusion protein expressed in Escherichia coli BL21 (DE3). This method consisted of sample extraction using a Ni-chelated Sepharose Fast-Flow affinity column, ammonium sulfate salting-out and Sephadex G-75 size-exclusion column in turn. The purity analysis by SDS-PAGE, high-performance size-exclusion and reversed-phase chromatographies showed that the obtained recombinant fusion HPK5 was homogeneous and its purity was higher than 96%; the activity analysis by chorioallantoic membrane model of chicken embryos revealed that the purified recombinant HPK5 exhibited an obvious anti-angiogenic activity under the effective range of 5.0-25.0 µg/mL. Through this procedure, about 19 mg purified recombinant fusion HPK5 can be obtained from 1 L of original fermentation solution. Approximate 32% of the total recombinant fusion HPK5 can be captured and the total yield was approximately 11%. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Accelerated SDS depletion from proteins by transmembrane electrophoresis: Impacts of Joule heating.

    PubMed

    Unterlander, Nicole; Doucette, Alan Austin

    2018-02-08

    SDS plays a key role in proteomics workflows, including protein extraction, solubilization and mass-based separations (e.g. SDS-PAGE, GELFrEE). However, SDS interferes with mass spectrometry and so it must be removed prior to analysis. We recently introduced an electrophoretic platform, termed transmembrane electrophoresis (TME), enabling extensive depletion of SDS from proteins in solution with exceptional protein yields. However, our prior TME runs required 1 h to complete, being limited by Joule heating which causes protein aggregation at higher operating currents. Here, we demonstrate effective strategies to maintain lower TME sample temperatures, permitting accelerated SDS depletion. Among these strategies, the use of a magnetic stir bar to continuously agitate a model protein system (BSA) allows SDS to be depleted below 100 ppm (>98% removal) within 10 min of TME operations, while maintaining exceptional protein recovery (>95%). Moreover, these modifications allow TME to operate without any user intervention, improving throughput and robustness of the approach. Through fits of our time-course SDS depletion curves to an exponential model, we calculate SDS depletion half-lives as low as 1.2 min. This promising electrophoretic platform should provide proteomics researchers with an effective purification strategy to enable MS characterization of SDS-containing proteins. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Purification of PRL receptors from toad kidney: Comparisons with rabbit mammary PRL receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunand, M.; Kraehenbuhl, J.P.; Rossier, B.C.

    1988-03-01

    The binding characteristics of the prolactin (PRL) receptors present in toad (Bufo marinus) kidneys were investigated and compared to those of PRL receptors present in rabbit mammary glands. The molecular characteristics of the Triton X-100 solubilized renal and mammary PRL receptors were assessed by gel filtration and by migration analysis on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) after affinity labeling of the binding sites with {sup 125}I-human growth hormone. Similar results were obtained for both receptors. Partial purification of the toad PRL receptor could be achieved by affinity chromatography. The molecular weight of this purified receptor could be determined bymore » analysis of SDS-PAGE. With the use of a polyclonal antiserum raised against a purified preparation of rabbit mammary PRL receptor, one or several antigenic epitope(s) could be identified on the core of the toad renal PRL receptor. In conclusion, although the structure and the biological role(s) of PRL have substantially changed during evolution, the receptor for this hormone has retained many of its structural features as could be assessed between an amphibian and a mammalian species on functionally different target tissues.« less

  12. A novel approach for separating bacteriophages from other bacteriophages using affinity chromatography and phage display.

    PubMed

    Ceglarek, Izabela; Piotrowicz, Agnieszka; Lecion, Dorota; Miernikiewicz, Paulina; Owczarek, Barbara; Hodyra, Katarzyna; Harhala, Marek; Górski, Andrzej; Dąbrowska, Krystyna

    2013-11-14

    Practical applications of bacteriophages in medicine and biotechnology induce a great need for technologies of phage purification. None of the popular methods offer solutions for separation of a phage from another similar phage. We used affinity chromatography combined with competitive phage display (i) to purify T4 bacteriophage from bacterial debris and (ii) to separate T4 from other contaminating bacteriophages. In 'competitive phage display' bacterial cells produced both wild types of the proteins (expression from the phage genome) and the protein fusions with affinity tags (expression from the expression vectors). Fusion proteins were competitively incorporated into the phage capsid. It allowed effective separation of T4 from a contaminating phage on standard affinity resins.

  13. A novel approach for separating bacteriophages from other bacteriophages using affinity chromatography and phage display

    PubMed Central

    Ceglarek, Izabela; Piotrowicz, Agnieszka; Lecion, Dorota; Miernikiewicz, Paulina; Owczarek, Barbara; Hodyra, Katarzyna; Harhala, Marek; Górski, Andrzej; Dąbrowska, Krystyna

    2013-01-01

    Practical applications of bacteriophages in medicine and biotechnology induce a great need for technologies of phage purification. None of the popular methods offer solutions for separation of a phage from another similar phage. We used affinity chromatography combined with competitive phage display (i) to purify T4 bacteriophage from bacterial debris and (ii) to separate T4 from other contaminating bacteriophages. In ‘competitive phage display’ bacterial cells produced both wild types of the proteins (expression from the phage genome) and the protein fusions with affinity tags (expression from the expression vectors). Fusion proteins were competitively incorporated into the phage capsid. It allowed effective separation of T4 from a contaminating phage on standard affinity resins. PMID:24225840

  14. An investigation into the use of SDS-PAGE of cell surface extracts and proteolytic activity to differentiate Prevotella nigrescens and Prevotella intermedia.

    PubMed

    Cookson, A L; Wray, A; Handley, P S; Jacob, A E

    1996-02-15

    By comparison of the cell surface proteins derived from the outer membrane and fibrils from 14 Prevotella intermedia and 19 Prevotella nigrescens strains using SDS and analysed by SDS-PAGE, it was possible to distinguish the two species. A polypeptide of approx. 21 kDa distinguished P. intermedia strains, whereas two polypeptides of approx. 18 and 22 kDa could be used to identify P. nigrescens strains. Four other human oral black pigmented bacterial species (Porphyromonas gingivalis, Prevotella denticola, Prevotella loescheii and Prevotella melaninogenica) did not have the 18-, 21- or 22-kDa polypeptides shown by P. intermedia or P. nigrescens. The cell-associated proteolytic activity of eight strains of P. intermedia, 14 strains of P. nigrescens and one strain of P. gingivalis (W50) was assessed using four chromogenic substrates. The hydrolysis of the substrate GPPNA (indicative of dipeptidyl peptidase IV-like activity) and SAAPPNA (elastase-like activity) by P. intermedia strains varied from 32 to 114 units and 0.5 to 12.6 units of activity respectively, where one unit was defined as the amount of protease enzyme catalysing the formation of 1 nmol of p-nitroaniline under experimental conditions. 37.5% (3 of 8) of P. intermedia strains hydrolysed SAAPPNA (chymotrypsin-like enzyme activity) with activities of between 7 and 12 units. The hydrolysis of GPPNA and SAAAPNA by P. nigrescens strains was 32-149 and 3-16 units, respectively. 57% (8 of 14) of P. nigrescens strains hydrolysed SAAPPPNA with activities ranging from 3 to 8 units. None of the P. intermedia or P. nigrescens strains examined were found to have trypsin-like enzyme activity (BAPNA hydrolysis). The GPPNA and SAAAPNA hydrolytic activity associated with the proteases from Porphyromonas gingivalis W50 was at least twice that of P. intermedia and P. nigrescens strains. The similar peptidase activities of P. intermedia and P. nigrescens against chromogenic substrates cannot be used to differentiate the

  15. Gallium(III)/4-(2-pyridylazo)resorcinol system in water and SDS solution: kinetics and thermodynamics.

    PubMed

    Biver, T; Boggioni, A; Secco, F; Venturini, M

    2008-01-01

    The equilibria and kinetics of the complex formation and dissociation reaction between gallium(III) and PAR [4-(2-pyridylazo)resorcinol] have been investigated in water and in the presence of SDS micelles. The reactive form of Ga(III) is GaOH2+ in both cases. The addition of SDS results in an increase of both the binding affinity and velocity, the maximum accelerating effect being observed just above the cmc value of SDS that, under the conditions of the experiments, is 5.6 x 10-3 M. At pH = 3.2, the maximum value of the equilibrium constant ratio Kapp(SDS)/Kapp(H2O) is 27.4, whereas that of the binding rate constants kf(SDS)/kf(H2O) is 16. The results are interpreted in terms of increased concentrations of the reactants on the micelle surface and on competition of PAR and SDS for GaOH2+.

  16. Adsorption of endotoxins on Ca2+ -iminodiacetic acid by metal ion affinity chromatography.

    PubMed

    Lopes, André Moreni; Romeu, Jorge Sánchez; Meireles, Rolando Páez; Perera, Gabriel Marquez; Morales, Rolando Perdomo; Pessoa, Adalberto; Cárdenas, Lourdes Zumalacárregui

    2012-11-01

    Endotoxins (also known as lipopolysaccharides (LPS)) are undesirable by-products of recombinant proteins, purified from Escherichia coli. LPS can be considered stable under a wide range of temperature and pH, making their removal one of the most difficult tasks in downstream processes during protein purification. The inherent toxicity of LPS makes their removal an important step for the application of these proteins in several biological assays and for a safe parenteral administration. Immobilized metal affinity chromatography (IMAC) enables the affinity interactions between the metal ions (immobilized on the support through the chelating compound) and the target molecules, thus enabling high-efficiency separation of the target molecules from other components present in a mixture. Affinity chromatography is applied with Ca2+ -iminodiacetic acid (IDA) to remove most of the LPS contaminants from the end product (more than 90%). In this study, the adsorption of LPS on an IDA-Ca2+ was investigated. The adsorption Freundlich isotherm of LPS-IDA-Ca2+ provides a theoretical basis for LPS removal. It was found that LPS is bound mainly by interactions between the phosphate group in LPS and Ca2+ ligands on the beads. The factors such as pH (4.0 or 5.5) and ionic strength (1.0 mol/L) are essential to obtain effective removal of LPS for contaminant levels between endotoxin' concentration values less than 100 EU/mL and 100 000 EU/mL. This new protocol represents a substantial advantage in time, effort, and production costs.

  17. Affinity-aware checkpoint restart

    DOE PAGES

    Saini, Ajay; Rezaei, Arash; Mueller, Frank; ...

    2014-12-08

    Current checkpointing techniques employed to overcome faults for HPC applications result in inferior application performance after restart from a checkpoint for a number of applications. This is due to a lack of page and core affinity awareness of the checkpoint/restart (C/R) mechanism, i.e., application tasks originally pinned to cores may be restarted on different cores, and in case of non-uniform memory architectures (NUMA), quite common today, memory pages associated with tasks on a NUMA node may be associated with a different NUMA node after restart. Here, this work contributes a novel design technique for C/R mechanisms to preserve task-to-core mapsmore » and NUMA node specific page affinities across restarts. Experimental results with BLCR, a C/R mechanism, enhanced with affinity awareness demonstrate significant performance benefits of 37%-73% for the NAS Parallel Benchmark codes and 6-12% for NAMD with negligible overheads instead of up to nearly four times longer an execution times without affinity-aware restarts on 16 cores.« less

  18. Affinity-aware checkpoint restart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saini, Ajay; Rezaei, Arash; Mueller, Frank

    Current checkpointing techniques employed to overcome faults for HPC applications result in inferior application performance after restart from a checkpoint for a number of applications. This is due to a lack of page and core affinity awareness of the checkpoint/restart (C/R) mechanism, i.e., application tasks originally pinned to cores may be restarted on different cores, and in case of non-uniform memory architectures (NUMA), quite common today, memory pages associated with tasks on a NUMA node may be associated with a different NUMA node after restart. Here, this work contributes a novel design technique for C/R mechanisms to preserve task-to-core mapsmore » and NUMA node specific page affinities across restarts. Experimental results with BLCR, a C/R mechanism, enhanced with affinity awareness demonstrate significant performance benefits of 37%-73% for the NAS Parallel Benchmark codes and 6-12% for NAMD with negligible overheads instead of up to nearly four times longer an execution times without affinity-aware restarts on 16 cores.« less

  19. Metal-Chelate Affinity Precipitation with Thermo-Responsive Polymer for Purification of ε-Poly-L-Lysine.

    PubMed

    Li, Sipeng; Ding, Zhaoyang; Liu, Jifu; Cao, Xuejun

    2017-12-01

    ε-Poly-L-lysine (ε-PL) is a natural preservative for food processing industry. A thermo-responsive polymer, attached with Cu 2+ or Ni 2+ , was prepared for metal-chelate affinity precipitation for purification of ε-PL. The low critical solution temperatures (LCSTs) of these polymers were close to the room temperature (31.0-35.0 °C). The optimal adsorption conditions were as follows: pH 4.0, 0 mol/L NaCl, ligand density 75.00 μmol/g, and 120 min. The ligand Cu 2+ showed a stronger affinity interaction with ε-PL and the highest adsorption amount reached 251.93 mg/g polymer. The elution recovery of ε-PL could be 98.42% with 0.50 mol/L imidazole (pH = 8.0) as the eluent. The method could purify ε-PL from fermentation broth and the final product was proved as electrophoretic pure by SDS-PAGE. Moreover, these affinity polymers could be recycled after the purification of ε-PL and the recoveries were above 95.00%. Graphical Abstract Scheme for affinity precipitation of ε-PL.

  20. Optimising the design and operation of semi-continuous affinity chromatography for clinical and commercial manufacture.

    PubMed

    Pollock, James; Bolton, Glen; Coffman, Jon; Ho, Sa V; Bracewell, Daniel G; Farid, Suzanne S

    2013-04-05

    This paper presents an integrated experimental and modelling approach to evaluate the potential of semi-continuous chromatography for the capture of monoclonal antibodies (mAb) in clinical and commercial manufacture. Small-scale single-column experimental breakthrough studies were used to derive design equations for the semi-continuous affinity chromatography system. Verification runs with the semi-continuous 3-column and 4-column periodic counter current (PCC) chromatography system indicated the robustness of the design approach. The product quality profiles and step yields (after wash step optimisation) achieved were comparable to the standard batch process. The experimentally-derived design equations were incorporated into a decisional tool comprising dynamic simulation, process economics and sizing optimisation. The decisional tool was used to evaluate the economic and operational feasibility of whole mAb bioprocesses employing PCC affinity capture chromatography versus standard batch chromatography across a product's lifecycle from clinical to commercial manufacture. The tool predicted that PCC capture chromatography would offer more significant savings in direct costs for early-stage clinical manufacture (proof-of-concept) (∼30%) than for late-stage clinical (∼10-15%) or commercial (∼5%) manufacture. The evaluation also highlighted the potential facility fit issues that could arise with a capture resin (MabSelect) that experiences losses in binding capacity when operated in continuous mode over lengthy commercial campaigns. Consequently, the analysis explored the scenario of adopting the PCC system for clinical manufacture and switching to the standard batch process following product launch. The tool determined the PCC system design required to operate at commercial scale without facility fit issues and with similar costs to the standard batch process whilst pursuing a process change application. A retrofitting analysis established that the direct cost

  1. [Separation of osteoclasts by lectin affinity chromatography].

    PubMed

    Itokazu, M; Tan, A; Tanaka, S

    1991-09-01

    Newborn rat calvaria bone cells obtained by digestion were fractionated on columns of wheat-germ agglutinin (WGA) sepharose 6MB for osteoclast isolation. The initial nonspecific binding cells which were passed through the WGA sepharose column by a buffer acquired a high enzyme activity of alkaline phosphatase, but not that of acid phosphatase. However, elution of cells using a buffer with the addition of N-acetyl-D-glucosamine resulted in a high acid phosphatase activity but no alkaline phosphatase activity. The former WGA binding negative fraction enriched osteoblasts averaging 30 microns in size. The latter WGA binding positive fraction enriched osteoclasts ranging from 20 microns to 60 microns in size. The electron-microscope clearly demonstrated the cellular details of osteoclasts. Isolated cell counts showed a ratio of six to four. These results indicate that our method of osteoclast isolation is simple and useful in lectin affinity chromatography because all cells have sugar moieties on their surface and the binding of osteoclasts can be reversed by the addition of specific lectin-binding sugars to the eluting buffer.

  2. Chitin-coated Celite as an affinity adsorbent for high-performance liquid chromatography of lysozyme.

    PubMed

    Yamada, H; Fukumura, T; Ito, Y; Imoto, T

    1985-04-01

    Preparation of chitin-coated Celite as an affinity adsorbent for high-performance liquid chromatography of lysozymes and its application to separation of N-bromosuccinimide-oxidized lysozymes are described. By pH gradient elution, two diastereomers of oxindolealanine-62-lysozyme, delta 1-acetoxytryptophan-62-lysozyme (intermediate product in the reaction in acetate buffer), and native lysozyme were all separated within 40 min.

  3. Pretargeting of carcinoembryonic antigen-expressing cancers with a trivalent bispecific fusion protein produced in myeloma cells.

    PubMed

    Rossi, Edmund A; Chang, Chien-Hsing; Losman, Michele J; Sharkey, Robert M; Karacay, Habibe; McBride, William; Cardillo, Thomas M; Hansen, Hans J; Qu, Zhengxing; Horak, Ivan D; Goldenberg, David M

    2005-10-01

    To characterize a novel trivalent bispecific fusion protein and evaluate its potential utility for pretargeted delivery of radionuclides to tumors. hBS14, a recombinant fusion protein that binds bispecifically to carcinoembryonic antigen (CEA) and the hapten, histamine-succinyl-glycine (HSG), was produced by transgenic myeloma cells and purified to near homogeneity in a single step using a novel HSG-based affinity chromatography system. Biochemical characterization included size-exclusion high-performance liquid chromatography (SE-HPLC), SDS-PAGE, and isoelectric focusing. Functional characterization was provided by BIAcore and SE-HPLC. The efficacy of hBS14 for tumor pretargeting was evaluated in CEA-expressing GW-39 human colon tumor-bearing nude mice using a bivalent HSG hapten (IMP-241) labeled with (111)In. Biochemical analysis showed that single-step affinity chromatography provided highly purified material. SE-HPLC shows a single protein peak consistent with the predicted molecular size of hBS14. SDS-PAGE analysis shows only two polypeptide bands, which are consistent with the calculated molecular weights of the hBS14 polypeptides. BIAcore showed the bispecific binding properties and suggested that hBS14 possesses two functional CEA-binding sites. This was supported by SE-HPLC immunoreactivity experiments. All of the data suggest that the structure of hBS14 is an 80 kDa heterodimer with one HSG and two CEA binding sites. Pretargeting experiments in the mouse model showed high uptake of radiopeptide in the tumor, with favorable tumor-to-nontumor ratios as early as 3 hours postinjection. The results indicate that hBS14 is an attractive candidate for use in a variety of pretargeting applications, particularly tumor therapy with radionuclides and drugs.

  4. Characterization of plasma membrane domains of mouse EL4 lymphoma cells obtained by affinity chromatography on concanavalin A-Sepharose.

    PubMed

    Szamel, M; Goppelt, M; Resch, K

    1985-12-19

    Purified plasma membranes of mouse EL4 lymphoma cells were fractionated by means of affinity chromatography on concanavalin A-Sepharose into two subfractions; one (MF1) eluted freely from the affinity column, the second (MF2) adhered specifically to Con A-Sepharose. Both membrane subfractions proved to be of plasma membrane origin, as evidenced by the following criteria. (i) The ratio of cholesterol to phospholipid was nearly identical in plasma membrane and both subfractions. (ii) When isolated plasma membranes were labelled with tritiated NaBH4, both subfractions exhibited identical specific radioactivities. (iii) After enzymatic radioiodination of the cells, the total content of labelled proteins was very similar in isolated plasma membranes and in both subfractions. (iv) Some plasma membrane marker enzymes exhibited nearly identical specific activities in plasma membranes, MF1 or MF2 including gamma-glutamyl transpeptidase, 5'-nucleotidase and Mg2+-ATPase. Both subfractions exhibited characteristic differences. Thus the specific activities of (Na+ + K+)-ATPase, Ca2+-ATPase and lysophosphatidylcholine acyltransferase were several-fold enriched in MF2 compared to MF1. SDS-polyacrylamide gel electrophoresis revealed a different polypeptide composition of the two subfractions. Polypeptides of apparent molecular mass of 116, 95, 42, 39, 30 and 28 kDa were highly enriched in MF2, whereas MF1 contained another set of proteins, of apparent molecular mass of 70, 55 and 24 kDa. The phospholipid fatty acid composition of the subfractions proved to be different, as well, MF2 contained more saturated fatty acids than MF1. The data suggest the existence of plasma membrane domains in the plasma membranes of the mouse EL4 lymphoma cells, containing a set of polypeptides, among others membrane bound enzymes, embedded in a different phospholipid milieu.

  5. Genetic variation of jointed goatgrass (Aegilops cylindrica Host.) from Iran using RAPD-PCR and SDS-PAGE of seed proteins.

    PubMed

    Farkhari, M; Naghavi, M R; Pyghambari, S A; Sabokdast

    2007-09-01

    Genetic variation of 28 populations of jointed goatgrass (Aegilops cylindrica Host.), collected from different parts of Iran, were evaluated using both RAPD-PCR and SDS-PAGE of seed proteins. The diversity within and between populations for the three-band High Molecular Weight (HMW) subunits of glutenin pattern were extremely low. Out of 15 screened primers of RAPD, 14 primers generated 133 reproducible fragments which among them 92 fragments were polymorphic (69%). Genetic similarity calculated from the RAPD data ranged from 0.64 to 0.98. A dendrogram was prepared on the basis of a similarity matrix using the UPGMA algorithm and separated the 28 populations into two groups. Confusion can happen between populations with the same origin as well as between populations of very diverse geographical origins. Our results show that compare to seed storage protein, RAPD is suitable for genetic diversity assessment in Ae. cylindrica populations.

  6. Covalent cross-linking of insulin-like growth factor-1 to a specific inhibitor from human serum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ooi, G.T.; Herington, A.C.

    1986-05-29

    Previous studies have shown that a specific inhibitor of insulin-like growth factor (IGF) action in vitro can be isolated from normal human serum and subsequently partially purified on an IGF-affinity column. The ability of the inhibitor to bind the IGFs has now been confirmed directly using covalent cross-linking techniques. When /sup 125/I-IGF-1 was cross-linked to inhibitor using disuccinimidyl suberate, five specifically labelled bands were seen on SDS-PAGE and autoradiography. Two bands (MW 21.5 K and 25.5 K) were intensely labelled, while the remaining three (MW 37 K, 34 K and 18 K) appeared as minor bands only. Inhibitor bioactivity, followingmore » further analysis by hydrophobic interaction chromatography or Con A-Sepharose affinity chromatography, was always associated with the presence of the 21.5 K and/or 25.5 K bands.« less

  7. Aflatoxin metabolism in humans: detection of metabolites and nucleic acid adducts in urine by affinity chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groopman, J.D.; Donahue, P.R.; Zhu, J.Q.

    A high-affinity IgM monoclonal antibody specific for aflatoxins was covalently bound to Sepharose 4B and used as a preparative column to isolate aflatoxin derivatives from the urine of people and experimental animals who had been exposed to the carcinogen environmentally or under laboratory conditions. Aflatoxin levels were quantified by radioimmunoassay and high-performance liquid chromatography after elution from the affinity column. In studies on rats injected with ( UC)aflatoxin B1, the authors identified the major aflatoxin-DNA adduct, 2,3-dihydro-2-(N7-guanyl)-3-hydroxy-aflatoxin B1 (AFB1-N7-Gua), and the oxidative metabolites M1 and P1 as the major aflatoxin species present in the urine. When this methodology was appliedmore » to human urine samples obtained from people from the Guangxi Province of China exposed to aflatoxin B1 through dietary contamination, the aflatoxin metabolites detected were also AFB1-N7-Gua and aflatoxins M1 and P1. Therefore, affinity chromatography using a monoclonal antibody represents a useful and rapid technique with which to isolate this carcinogen and its metabolites in biochemical epidemiology and for subsequent quantitative measurements, providing exposure information that can be used for risk assessment.« less

  8. Comparison of antimicrobial peptide purification via free-flow electrophoresis and gel filtration chromatography.

    PubMed

    Xia, Zhi-Jun; Liu, Zhen; Kong, Fan-Zhi; Fan, Liu-Yin; Xiao, Hua; Cao, Cheng-Xi

    2017-12-01

    Antimicrobial peptides (AMPs) are usually small and cationic biomolecules with broad-spectrum antimicrobial activities against pathogens. Purifying them from complex samples is essential to study their physiochemical properties. In this work, free-flow zone electrophoresis (FFZE) was utilized to purify AMPs from yeast fermentation broth. Meanwhile, gel filtration chromatography (GFC) was conducted for comparison. The separation efficiency was evaluated by SDS-PAGE analysis of the fractions from both methods. Our results demonstrated as follows: (i) FFZE had more than 30-fold higher processing capacity as compared with GFC; (ii) FFZE could achieve 87% purity and 89% recovery rate while in GFC these parameters were about 93 and 82%, respectively; (iii) the former had ∼2-fold dilution but the latter had ∼13-fold dilution. Furthermore, Tricine-SDS-PAGE, Native-PAGE, and gel IEF were carried out to characterize the purified AMPs. We found that two peptides existed as a pair with the molecular mass of ∼5.5 and 7.0 kDa, while the same pI 7.8. These two peptides were proved to have the antimicrobial activity through the standardized agar diffusion method. Therefore, FFZE could be used to continuously purify AMPs with high bioactivity, which will lead to its wide application in the clinical and pharmaceutical fields. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Generation of a novel high-affinity monoclonal antibody with conformational recognition epitope on human IgM.

    PubMed

    Sarikhani, Sina; Mirshahi, Manouchehr; Gharaati, Mohammad Reza; Mirshahi, Tooran

    2010-11-01

    As IgM is the first isotype of antibody which appears in blood after initial exposure to a foreign antigen in the pattern of primary response, detection, and quantification of this molecule in blood seems invaluable. To approach these goals, generation, and characterization of a highly specific mAb (monoclonal antibody) against human IgM were investigated. Human IgM immunoglobulins were used to immunize Balb/c mice. Spleen cells taken from the immunized animals were fused with SP2/O myeloma cells using PEG (polyethylene glycol, MW 1450) as fusogen. The hybridomas were cultured in HAT containing medium and supernatants from the growing hybrids were screened by enzyme-linked immunosorbent assay (ELISA) using plates coated with pure human IgM and the positive wells were then cloned at limiting dilutions. The best clone designated as MAN-1, was injected intraperitoneally to some Pristane-injected mice. Anti-IgM mAb was purified from the animals' ascitic fluid by protein-G sepharose followed by DEAE-cellulose ion exchange chromatography. MAN-1 interacted with human IgM with a very high specificity and affinity. The purity of the sample was tested by SDS-PAGE and the affinity constant was measured (K(a) = 3.5 x 10(9)M(-1). Immunoblotting and competitive ELISA were done and the results showed that the harvested antibody recognizes a conformational epitope on the mu chain of human IgM and there was no cross-reactivity with other subclasses of immunoglobulins. Furthermore, isotyping test was done and the results showed the subclass of the obtained mAb which was IgG(1)kappa.

  10. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies

    NASA Astrophysics Data System (ADS)

    Boulet-Audet, Maxime; Kazarian, Sergei G.; Byrne, Bernadette

    2016-07-01

    In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan.

  11. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies

    PubMed Central

    Boulet-Audet, Maxime; Kazarian, Sergei G.; Byrne, Bernadette

    2016-01-01

    In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan. PMID:27470880

  12. Using SDS-PAGE gel fingerprinting to identify soft-bodied wood-boring insect larvae to species.

    PubMed

    O'Neill, Mark A; Denos, Mia; Reed, Daniel

    2018-03-01

    This paper describes the progress that we have made in assessing the feasibility of 'fingerprinting' using imaged SDS-PAGE gels of haemolymph proteins, to identify soft-bodied wood-boring insect larvae such as the Asian longhorn beetle, Anoplophora glabripennis (Motscholsky, 1853) (Coleoptera: Cerambycidae). Because of stringent import restrictions and difficulty in obtaining licences to work with these organisms, we opted to work with four species of scarab beetle, Mecynorhina polyphemus (Fabricius, 1781), Pachnoda sinuata (Fabricius, 1775), Eucidella shiratica (Csiki, 1909) and Eucidella shultzeorum (Kolbe, 1906) which have near identical larval morphologies. We show that this technology when combined with an advanced pattern matching system (Digital Automated Identification SYstem - DAISY) can classify soft-bodied insect larvae that are almost identical morphologically to species at a level of accuracy is in excess of 98%. The study also indicates that the technology copes well with noisy data and small training sets. The experience gained in undertaking this study gives us confidence that we will be able to develop a field deployable system in the medium term. We believe that as a high-throughput identification tool, this technology is superior to competitor technologies (e.g. fingerprinting of imaged DNA gels) in terms of speed, cost and ease of use; and therefore, is suitable for low-cost deployment in the field. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Isolation, purification, and partial characterization of a membrane-bound Cl-/HCO3--activated ATPase complex from rat brain with sensitivity to GABAAergic ligands.

    PubMed

    Menzikov, Sergey A

    2017-02-07

    This study describes the isolation and purification of a protein complex with [Formula: see text]-ATPase activity and sensitivity to GABA A ergic ligands from rat brain plasma membranes. The ATPase complex was enriched using size-exclusion, affinity, and ion-exchange chromatography. The fractions obtained at each purification step were subjected to SDS-polyacrylamide gel electrophoresis (SDS-PAGE), which revealed four subunits with molecular mass ∼48, 52, 56, and 59 kDa; these were retained at all stages of the purification process. Autoradiography revealed that the ∼52 and 56 kDa subunits could bind [ 3 H]muscimol. The [Formula: see text]-ATPase activity of this enriched protein complex was regulated by GABA A ergic ligands but was not sensitive to blockers of the NKCC or KCC cotransporters.

  14. Characterization of Extracellular Proteins in Tomato Fruit using Lectin Affinity Chromatography and LC-MALDI-MS/MS analysis

    USDA-ARS?s Scientific Manuscript database

    The large-scale isolation and analysis of glycoproteins by lectin affinity chromatography coupled with mass spectrometry has become a powerful tool to monitor changes in the “glycoproteome” of mammalian cells. Thus far, however, this approach has not been used extensively for the analysis of plant g...

  15. Identification, purification, and expression patterns of chitinase from psychrotolerant Pedobacter sp. PR-M6 and antifungal activity in vitro.

    PubMed

    Song, Yong-Su; Seo, Dong-Jun; Jung, Woo-Jin

    2017-06-01

    In this study, a novel psychrotolerant chitinolytic bacterium Pedobacter sp. PR-M6 that displayed strong chitinolytic activity on 0.5% colloidal chitin was isolated from the soil of a decayed mushroom. Chitinase activity of PR-M6 at 25 °C (C25) after 6 days of incubation with colloidal chitin increased rapidly to a maximum level (31.3 U/mg proteins). Three chitinase isozymes (chiII, chiIII, and chiIV) from the crude enzyme at 25 °C (C25) incubation were expressed on SDS-PAGE gels at 25 °C. After purification by chitin-affinity chromatography, six chitinase isozymes (chiI, chiII, chiIII, chiIV, chiV, and chiVI) from C25-fractions were expressed on SDS-PAGE gels at 25 °C. Major bands of chitinase isozymes (chiI, chiII, and chiIII) from C4-fractions were strongly expressed on SDS-PAGE gels at 25 °C. Pedobacter sp. PR-M6 showed high inhibition rate of 60.9% and 57.5% against Rhizoctonia solani and Botrytis cinerea, respectively. These results indicated that psychrotolerant Pedobacter sp. PR-M6 could be applied widely as a microorganism agent for the biocontrol of agricultural phytopathogens at low temperatures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Detection and Identification of Heme c-Modified Peptides by Histidine Affinity Chromatography, High-Performance Liquid Chromatography-Mass Spectrometry, and Database Searching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merkley, Eric D.; Anderson, Brian J.; Park, Jea H.

    2012-12-07

    Multiheme c-type cytochromes (proteins with covalently attached heme c moieties) play important roles in extracellular metal respiration in dissimilatory metal-reducing bacteria. Liquid chromatography-tandem mass spectrometry-(LC-MS/MS) characterization of c-type cytochromes is hindered by the presence of multiple heme groups, since the heme c modified peptides are typically not observed, or if observed, not identified. Using a recently reported histidine affinity chromatography (HAC) procedure, we enriched heme c tryptic peptides from purified bovine heart cytochrome c, a bacterial decaheme cytochrome, and subjected these samples to LC-MS/MS analysis. Enriched bovine cytochrome c samples yielded three- to six-fold more confident peptide-spectrum matches to heme-cmore » containing peptides than unenriched digests. In unenriched digests of the decaheme cytochrome MtoA from Sideroxydans lithotrophicus ES-1, heme c peptides for four of the ten expected sites were observed by LC-MS/MS; following HAC fractionation, peptides covering nine out of ten sites were obtained. Heme c peptide spiked into E. coli lysates at mass ratios as low as 10-4 was detected with good signal-to-noise after HAC and LC-MS/MS analysis. In addition to HAC, we have developed a proteomics database search strategy that takes into account the unique physicochemical properties of heme c peptides. The results suggest that accounting for the double thioether link between heme c and peptide, and the use of the labile heme fragment as a reporter ion, can improve database searching results. The combination of affinity chromatography and heme-specific informatics yielded increases in the number of peptide-spectrum matches of 20-100-fold for bovine cytochrome c.« less

  17. Identification of pregnancy-associated glycoproteins and alpha-fetoprotein in fallow deer (Dama dama) placenta

    PubMed Central

    2014-01-01

    Background This paper describes the isolation and characterization of pregnancy-associated glycoproteins (PAG) from fetal cotyledonary tissue (FCT) and maternal caruncular tissue (MCT) collected from fallow deer (Dama dama) pregnant females. Proteins issued from FCT and MCT were submitted to affinity chromatographies by using Vicia villosa agarose (VVA) or anti-bovine PAG-2 (R#438) coupled to Sepharose 4B gel. Finally, they were characterized by SDS-PAGE and N-terminal microsequencing. Results Four distinct fallow deer PAG (fdPAG) sequences were identified and submitted to Swiss-Prot database. Comparison of fdPAG with PAG sequences identified in other ruminant species exhibited 64 to 83% identity. Additionally, alpha-fetoprotein was identified in fetal and maternal tissues. Conclusion Our results demonstrate the efficacy of VVA and bovine PAG-2 affinity chromatographies for the isolation of PAG molecules expressed in deer placenta. This is the first report giving four specific amino acid sequences of PAG isolated from feto-maternal junction (FCT and MCT) in the Cervidae family. PMID:24410890

  18. A newly-detected reductase from Rauvolfia closes a gap in the biosynthesis of the antiarrhythmic alkaloid ajmaline.

    PubMed

    Gao, Shujuan; von Schumann, Gerald; Stöckigt, Joachim

    2002-10-01

    A new enzyme, 1,2-dihydrovomilenine reductase (E.C. 1.3.1), has been detected in Rauvolfia cell suspension cultures. The enzyme specifically converts 2beta( R)-1,2-dihydrovomilenine through an NADPH-dependent reaction into 17-O-acetylnorajmaline, a close biosynthetic precursor of the antiarrhythmic alkaloid ajmaline from Rauvolfia. A five-step purification procedure using SOURCE 30Q chromatography, hydroxyapatite chromatography, 2',5'-ADP Sepharose 4B affinity chromatography and ion exchange chromatography on DEAE Sepharose and Mono Q delivered an approximately 200-fold enriched enzyme in a yield of approximately 6%. SDS-PAGE showed an M r for the enzyme of approximately 48 kDa. Optimum pH and optimum temperature of the reductase were at pH 6.0 and 37 degrees C. The enzyme shows a limited distribution in cell cultures expressing ajmaline biosynthesis, and is obviously highly specific for the ajmaline pathway.

  19. Determine equilibrium dissociation constant of drug-membrane receptor affinity using the cell membrane chromatography relative standard method.

    PubMed

    Ma, Weina; Yang, Liu; Lv, Yanni; Fu, Jia; Zhang, Yanmin; He, Langchong

    2017-06-23

    The equilibrium dissociation constant (K D ) of drug-membrane receptor affinity is the basic parameter that reflects the strength of interaction. The cell membrane chromatography (CMC) method is an effective technique to study the characteristics of drug-membrane receptor affinity. In this study, the K D value of CMC relative standard method for the determination of drug-membrane receptor affinity was established to analyze the relative K D values of drugs binding to the membrane receptors (Epidermal growth factor receptor and angiotensin II receptor). The K D values obtained by the CMC relative standard method had a strong correlation with those obtained by the frontal analysis method. Additionally, the K D values obtained by CMC relative standard method correlated with pharmacological activity of the drug being evaluated. The CMC relative standard method is a convenient and effective method to evaluate drug-membrane receptor affinity. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Depletion of highly abundant proteins in blood plasma by ammonium sulfate precipitation for 2D-PAGE analysis.

    PubMed

    Mahn, Andrea; Ismail, Maritza

    2011-11-15

    Ammonium sulfate precipitation (ASP) was explored as a method for depleting some highly abundant proteins from blood plasma, in order to reduce the dynamic range of protein concentration and to improve the detection of low abundance proteins by 2D-PAGE. 40% ammonium sulfate saturation was chosen since it allowed depleting 39% albumin and 82% α-1-antitrypsin. ASP-depletion showed high reproducibility in 2D-PAGE analysis (4.2% variation in relative abundance of albumin), similar to that offered by commercial affinity-depletion columns. Besides, it allowed detecting 59 spots per gel, very close to the number of spots detected in immuno-affinity-depleted plasma. Thus, ASP at 40% saturation is a reliable depletion method that may help in proteomic analysis of blood plasma. Finally, ASP-depletion seems to be complementary to hydrophobic interaction chromatography (HIC)-depletion, and therefore an ASP-step followed by a HIC-step could probably deplete the most highly abundant plasma proteins, thus improving the detection of low abundance proteins by 2D-PAGE. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. A simple SDS-PAGE protein pattern from pitcher secretions as a new tool to distinguish Nepenthes species (Nepenthaceae).

    PubMed

    Biteau, Flore; Nisse, Estelle; Miguel, Sissi; Hannewald, Paul; Bazile, Vincent; Gaume, Laurence; Mignard, Benoit; Hehn, Alain; Bourgaud, Frederic

    2013-12-01

    Carnivorous plants have always fascinated scientists because these plants are able to attract, capture, and digest animal prey using their remarkable traps that contain digestive secretions. Nepenthes is one of the largest genera of carnivorous plants, with 120 species described thus far. Despite an outstanding diversity of trap designs, many species are often confused with each other and remain difficult to classify because they resemble pitchers or of the occurrence of interspecific hybrids. Here, we propose a new method to easily distinguish Nepenthes species based on a SDS PAGE protein pattern analysis of their pitcher secretions. Intraspecific comparisons were performed among specimens growing in different environmental conditions to ascertain the robustness of this method. Our results show that, at the juvenile stage and in the absence of prey in the pitcher, an examined species is characterized by a specific and stable profile, whatever the environmental conditions. The method we describe here can be used as a reliable tool to easily distinguish between Nepenthes species and to help with potential identification based on the species-specific protein pattern of their pitcher secretions, which is complementary to the monograph information.

  2. Nonelectrophoretic bidirectional transfer of a single SDS-PAGE gel with multiple antigens to obtain 12 immunoblots.

    PubMed

    Kurien, Biji T; Scofield, R Hal

    2009-01-01

    Protein blotting is an invaluable technique in immunology to detect and characterize proteins of low abundance. Proteins resolved on sodium dodecyl sulfate (SDS) polyacrylamide gels are normally transferred electrophoretically to adsorbent membranes such as nitrocellulose or polyvinylidene diflouride membranes. Here, we describe the nonelectrophroretic transfer of the Ro 60 (or SSA) autoantigen, 220- and 240-kD spectrin antigens, and prestained molecular weight standards from SDS polyacrylamide gels to obtain up to 12 immunoblots from a single gel and multiple sera.

  3. Copper(II)-based metal affinity chromatography for the isolation of the anticancer agent bleomycin from Streptomyces verticillus culture.

    PubMed

    Gu, Jiesi; Codd, Rachel

    2012-10-01

    The glycopeptide-based bleomycins are structurally complex natural products produced by Streptomyces verticillus used in combination therapy against testicular and other cancers. Bleomycin has a high affinity towards a range of transition metal ions with the 1:1 Fe(II) complex relevant to its mechanism of action in vivo and the 1:1 Cu(II) complex relevant to its production from culture. The affinity between Cu(II) and bleomycin was the underlying principle for using Cu(II)-based metal affinity chromatography in this work to selectively capture bleomycin from crude S. verticillus culture. A solution of standard bleomycin was retained at a binding capacity of 300 nmol mL(-1) on a 1-mL bed volume of Cu(II)-loaded iminodiacetate (IDA) resin at pH 9 via the formation of the heteroleptic immobilized complex [Cu(IDA)(bleomycin)]. Bleomycin was eluted from the resin at pH 5 as the metal-free ligand under conditions where pK(a) (IDA)affinity chromatography as a green chemistry platform for streamlined access to this high-value therapeutic agent. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Fluorescent Labeling of Proteins and Its Application to SDS-PAGE and Western Blotting.

    PubMed

    Alba, F Javier; Bartolomé, Salvador; Bermúdez, Antonio; Daban, Joan-Ramon

    2015-01-01

    This chapter describes very simple fluorescent methods developed in our laboratory allowing the rapid monitoring of total protein patterns on both sodium dodecyl sulfate (SDS) polyacrylamide gels and western blots. The noncovalent dye Nile red (9-diethylamino-5H-benzo[α]phenoxazine-5-one) is used for the sensitive staining of proteins in SDS gels. This method is compatible with the electroblotting of protein bands and with the staining of the resulting blot with the covalent dye MDPF (2-methoxy-2,4-diphenyl-3(2H)-furanone). These staining procedures are applied sequentially; there is no need to run a duplicate unstained gel for protein blotting. Furthermore, since only the adduct formed by the reaction of MDPF with proteins is fluorescent, there is no need to destain the membrane after protein labeling. In addition, MDPF staining is compatible with further immunodetection of specific bands with polyclonal antibodies. Finally, using the adequate conditions described below, MDPF staining does not preclude the N-terminal sequence analysis of proteins in selected bands.

  5. Evaluation of IDA-PEVA hollow fiber membrane metal ion affinity chromatography for purification of a histidine-tagged human proinsulin.

    PubMed

    de Aquino, Luciana Cristina Lins; de Sousa, Heloisa Ribeiro Tunes; Miranda, Everson Alves; Vilela, Luciano; Bueno, Sônia Maria Alves

    2006-04-13

    Inabilities to process particulate material and to allow the use of high flow rates are limitations of conventional chromatography. Membranes have been suggested as matrix for affinity separation due to advantages such as allowing high flow rates and low-pressure drops. This work evaluated the feasibility of using an iminodiacetic acid linked poly(ethylenevinyl alcohol) membrane in the immobilized metal ion affinity chromatography (IMAC) purification of a human proinsulin(His)(6) of an industrial insulin production process. The screening of metal ions showed Ni(2+) as metal with higher selectivity and capacity among the Cu(2+), Ni(2+), Zn(2+) and Co(2+). The membrane showed to be equivalent to conventional chelating beads in terms of selectivity and had a lower capacity (3.68 mg/g versus 12.26 mg/g). The dynamic adsorption capacity for human proinsulin(His)(6) was unaffected by the mode of operation (dead-end and cross-flow filtration).

  6. Direct capture of His₆-tagged proteins using megaporous cryogels developed for metal-ion affinity chromatography.

    PubMed

    Singh, Naveen Kumar; DSouza, Roy N; Bibi, Noor Shad; Fernández-Lahore, Marcelo

    2015-01-01

    Immobilized metal-ion affinity chromatography (IMAC) has been developed for the rapid isolation and purification of recombinant proteins. In this chapter, megaporous cryogels were synthesized having metal-ion affinity functionality, and their adsorptive properties were investigated. These cryogels have large pore sizes ranging from 10 to 100 μm with corresponding porosities between 80 and 90%. The synthesized IMAC-cryogel had a total ligand density of 770 μmol/g. Twelve milligram of a His6-tagged protein (NAD(P)H-dependent 2-cyclohexen-1-one-reductase) can be purified from a crude cell extract per gram of IMAC-cryogels. The protein binding capacity is increased with higher degrees of grafting, although a slight decrease in column efficiency may result. This chapter provides methodologies for a rapid single-step purification of recombinant His6-tagged proteins from crude cell extracts using IMAC-cryogels.

  7. Carboxylesterases from the seeds of an underutilized legume, Mucuna pruriens; isolation, purification and characterization.

    PubMed

    Chandrashekharaiah, K S; Swamy, N Ramachandra; Murthy, K R Siddalinga

    2011-12-01

    Two carboxylesterases (ME-III and ME-IV) have been purified to apparent homogeneity from the seeds of Mucuna pruriens employing ammonium sulfate fractionation, cation exchange chromatography on CM-cellulose, gel-permeation chromatography on Sephadex G-100 and preparative PAGE. The homogeneity of the purified preparations was confirmed by polyacrylamide gel electrophoresis (PAGE), gel-electrofocussing and SDS-PAGE. The molecular weights determined by gel-permeation chromatography on Sephadex G-200 were 20.89 kDa (ME-III) and 31.62 kDa (ME-IV). The molecular weights determined by SDS-PAGE both in the presence and absence of 2-mercaptoethanol were 21 kDa (ME-III) and 30.2 kDa (ME-IV) respectively, suggesting a monomeric structure for both the enzymes. The enzymes were found to have Stokes radius of 2.4 nm (ME-III) and 2.7 nm (ME-IV). The isoelectric pH values of the enzymes, ME-III and ME-IV, were 6.8 and 7.4, respectively. ME-III and ME-IV were classified as carboxylesterases employing PAGE in conjunction with substrate and inhibitor specificity. The K(m) of ME-III and ME-IV with 1-naphthyl acetate as substrate was 0.1 and 0.166 mM while with 1-naphthyl propionate as substrate the K(m) was 0.052 and 0.0454 mM, respectively. As the carbon chain length of the acyl group increased, the affinity of the substrate to the enzyme increased indicating hydrophobic nature of the acyl group binding site. The enzymes exhibited an optimum temperature of 45°C (ME-III) and 37°C (ME-IV), an optimum pH of 7.0 (ME-III) and 7.5 (ME-IV) and both the enzymes (ME-III and ME-IV) were stable up to 120 min at 35°C. Both the enzymes were inhibited by organophosphates (dichlorvos and phosphamidon), but resistant towards carbamates (carbaryl and eserine sulfate) and sulphydryl inhibitors (p-chloromercuricbenzoate, PCMB). Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Enrichment and Analysis of Non-enzymatically Glycated Peptides: Boronate Affinity Chromatography Coupled with Electron Transfer Dissociation Mass Spectrometry

    PubMed Central

    Zhang, Qibin; Tang, Ning; Brock, Jonathan W. C.; Mottaz, Heather M.; Ames, Jennifer M.; Baynes, John W.; Smith, Richard D.; Metz, Thomas O.

    2008-01-01

    Non-enzymatic glycation of peptides and proteins by D-glucose has important implications in the pathogenesis of diabetes mellitus, particularly in the development of diabetic complications. However, no effective high-throughput methods exist for identifying proteins containing this low abundance post-translational modification in bottom-up proteomic studies. In this report, phenylboronate affinity chromatography was used in a two-step enrichment scheme to selectively isolate first glycated proteins and then glycated, tryptic peptides from human serum glycated in vitro. Enriched peptides were subsequently analyzed by alternating electron transfer dissociation (ETD) and collision induced dissociation (CID) tandem mass spectrometry. ETD fragmentation mode permitted identification of a significantly higher number of glycated peptides (87.6% of all identified peptides) versus CID mode (17.0% of all identified peptides), when utilizing enrichment on first the protein and then the peptide level. This study illustrates that phenylboronate affinity chromatography coupled with LC-MS/MS and using ETD as the fragmentation mode is an efficient approach for analysis of glycated proteins and may have broad application in studies of diabetes mellitus. PMID:17488106

  9. Analysis by two-dimensional Blue Native/SDS-PAGE of membrane protein alterations in rat soleus muscle after hindlimb unloading.

    PubMed

    Basco, Davide; Nicchia, Grazia Paola; Desaphy, Jean-François; Camerino, Diana Conte; Frigeri, Antonio; Svelto, Maria

    2010-12-01

    Muscle atrophy occurring in several pathophysiological conditions determines decreases in muscle protein synthesis, increases in the rate of proteolysis and changes in muscle fiber composition. To determine the effect of muscle atrophy induced by hindlimb unloading (HU) on membrane proteins from rat soleus, a proteomic approach based on two-dimensional Blue Native/SDS-PAGE was performed. Proteomic analysis of normal and HU soleus muscle demonstrates statistically significant changes in the relative level of 36 proteins. Among the proteins identified by mass spectrometry, most are involved in pathways associated with muscle fuel utilization, indicating a shift in metabolism from oxidative to glycolytic. Moreover, immunoblotting analysis revealed an increase in aquaporin-4 (AQP4) water channel and an alteration of proteins belonging to the dystrophin-glycoprotein complex (DGC). AQP4 and DGC are regulated in soleus muscle subjected to simulated microgravity in response to compensatory mechanisms induced by muscle atrophy, and they parallel the slow-to-fast twitch conversion that occurs in soleus fibers during HU. In conclusion, the alterations of soleus muscle membrane proteome may play a pivotal role in the mechanisms involved in disuse-induced muscle atrophy.

  10. Using Affinity Chromatography to Investigate Novel Protein–Protein Interactions in an Undergraduate Cell and Molecular Biology Lab Course

    PubMed Central

    2009-01-01

    Inquiry-driven lab exercises require students to think carefully about a question, carry out an investigation of that question, and critically analyze the results of their investigation. Here, we describe the implementation and assessment of an inquiry-based laboratory exercise in which students obtain and analyze novel data that contribute to our understanding of macromolecular trafficking between the nucleus and cytoplasm in eukaryotic cells. Although many of the proteins involved in nucleocytoplasmic transport are known, the physical interactions between some of these polypeptides remain uncharacterized. In this cell and molecular biology lab exercise, students investigate novel protein–protein interactions between factors involved in nuclear RNA export. Using recombinant protein expression, protein extraction, affinity chromatography, SDS-polyacrylamide gel electrophoresis, and Western blotting, undergraduates in a sophomore-level lab course identified a previously unreported association between the soluble mRNA transport factor Mex67 and the C-terminal region of the yeast nuclear pore complex protein Nup1. This exercise immersed students in the process of investigative science, from proposing and performing experiments through analyzing data and reporting outcomes. On completion of this investigative lab sequence, students reported enhanced understanding of the scientific process, increased proficiency with cellular and molecular methods and content, greater understanding of data analysis and the importance of appropriate controls, an enhanced ability to communicate science effectively, and an increased enthusiasm for scientific research and for the lab component of the course. The modular nature of this exercise and its focus on asking novel questions about protein–protein interactions make it easily transferable to undergraduate lab courses performed in a wide variety of contexts. PMID:19723816

  11. Evaluation of immobilized metal membrane affinity chromatography for purification of an immunoglobulin G1 monoclonal antibody.

    PubMed

    Serpa, Gisele; Augusto, Elisabeth Fátima Pires; Tamashiro, Wirla Maria Silva Cunha; Ribeiro, Mariana Borçoe; Miranda, Everson Alves; Bueno, Sônia Maria Alves

    2005-02-25

    The large scale production of monoclonal antibodies (McAbs) has gaining increased relevance with the development of the hybridoma cell culture in bioreactors creating a need for specific efficient bioseparation techniques. Conventional fixed bead affinity adsorption commonly applied for McAbs purification has the drawback of low flow rates and colmatage. We developed and evaluated a immobilized metal affinity chromatographies (IMAC) affinity membrane for the purification of anti-TNP IgG(1) mouse McAbs. We immobilized metal ions on a poly(ethylene vinyl alcohol) hollow fiber membrane (Me(2+)-IDA-PEVA) and applied it for the purification of this McAbs from cell culture supernatant after precipitation with 50% saturation of ammonium sulphate. The purity of IgG(1) in the eluate fractions was high when eluted from Zn(2+) complex. The anti-TNP antibody could be eluted under conditions causing no loss of antigen binding capacity. The purification procedure can be considered as an alternative to the biospecific adsorbent commonly applied for mouse IgG(1) purification, the protein G-Sepharose.

  12. Isolation of a new ssDNA aptamer against staphylococcal enterotoxin B based on CNBr-activated sepharose-4B affinity chromatography.

    PubMed

    Hedayati Ch, Mojtaba; Amani, Jafar; Sedighian, Hamid; Amin, Mohsen; Salimian, Jafar; Halabian, Raheleh; Imani Fooladi, Abbas Ali

    2016-09-01

    Staphylococcus aureus are potent human pathogens possessing arsenal of virulence factors. Staphylococcal food poisoning (SFP) and respiratory infections mediated by staphylococcal enterotoxin B (SEB) are common clinical manifestations. Many diagnostic techniques are based on serological detection and quantification of SEB in different food and clinical samples. Aptamers are known as new therapeutic and detection tools which are available in different ssDNA, dsDNA and protein structures. In this study, we used a new set of ssDNA aptamers against SEB. The methods used included preparation of a dsDNA library using standard SEB protein as the target analyte, affinity chromatography matrix in microfuge tubes, SELEX procedures to isolate specific ssDNA-aptamer as an affinity ligand, aptamer purification using ethanol precipitation method, affinity binding assay using ELISA, aptamer cloning and specificity test. Among 12 readable sequences, three of them were selected as the most appropriate aptamer because of their affinity and specificity to SEB. This study presents a new set of ssDNA aptamer with favorable selectivity to SEB through 12 rounds of SELEX. Selected aptamers were used to detect SEB in infected serum samples. Results showed that SEB c1 aptamer (2 µg SEB/100 nM aptamer) had favorable specificity to SEB (kd  = 2.3 × 10(-11) ). In conclusion, aptamers can be considered as useful tools for detecting and evaluating SEB. The results showed that affinity chromatography was an affordable assay with acceptable accuracy to isolate sensitive and selective novel aptamers. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Stability of the neurotensin receptor NTS1 free in detergent solution and immobilized to affinity resin.

    PubMed

    White, Jim F; Grisshammer, Reinhard

    2010-09-07

    Purification of recombinant membrane receptors is commonly achieved by use of an affinity tag followed by an additional chromatography step if required. This second step may exploit specific receptor properties such as ligand binding. However, the effects of multiple purification steps on protein yield and integrity are often poorly documented. We have previously reported a robust two-step purification procedure for the recombinant rat neurotensin receptor NTS1 to give milligram quantities of functional receptor protein. First, histidine-tagged receptors are enriched by immobilized metal affinity chromatography using Ni-NTA resin. Second, remaining contaminants in the Ni-NTA column eluate are removed by use of a subsequent neurotensin column yielding pure NTS1. Whilst the neurotensin column eluate contained functional receptor protein, we observed in the neurotensin column flow-through misfolded NTS1. To investigate the origin of the misfolded receptors, we estimated the amount of functional and misfolded NTS1 at each purification step by radio-ligand binding, densitometry of Coomassie stained SDS-gels, and protein content determination. First, we observed that correctly folded NTS1 suffers damage by exposure to detergent and various buffer compositions as seen by the loss of [(3)H]neurotensin binding over time. Second, exposure to the neurotensin affinity resin generated additional misfolded receptor protein. Our data point towards two ways by which misfolded NTS1 may be generated: Damage by exposure to buffer components and by close contact of the receptor to the neurotensin affinity resin. Because NTS1 in detergent solution is stabilized by neurotensin, we speculate that the occurrence of aggregated receptor after contact with the neurotensin resin is the consequence of perturbations in the detergent belt surrounding the NTS1 transmembrane core. Both effects reduce the yield of functional receptor protein.

  14. Partial purification of coriolus versicolor's extracellular polyphenol oxidase (PPO)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, N.L.; Dashek, W.V.

    1993-05-01

    Coriolus versicolor, a white-rot basidiomycete, secretes ligno-celluloytic enzymes. Because these are valuable to paper-pulp agricultural industries, trials are in progress to substrate induce these enzymes enhance their secretions. Reported are attempts to develop an extracellular PPO (o-diphenols to 0-diquinones) purification protocol applicable to [open quote]batch-cultured[close quote] C. versicolor. Whereas dialysis (MW [open quote]cut-off[close quote], 14,000) of 13 day growth medium (GM) resulted in 2.17 fold PPO spc. act. increase, dialysis plus a 0-30% (NH[sub 4])[sub 2]SO[sub 4] [open quote]cut[close quote] yielded a 3.27 fold enhancement. Subsequent GM chromatography on DEAE CM-Sephadexes revealed that PPO exchanged with DEAE's counterion without enhancingmore » spc. act. Gel filtration of GM commercial PPOs on G-150 resulted in similar elutions indicating a substitute for ion exchange chromatography. Time-dependent fungal growth in liquid medium followed by viscometry utilizing CMC revealed a GM endocellulase 2 days after inoculation an activity rise to day 12. Filteration of Onozuka cellulase on G-150 yielded an elution profile similar to those of GM authentic PPO's compounding C. versicolor's PPO purification. SDS-PAGE of dialyzed GM revealed 4 proteins, one of which was removed by the (NH[sub 4])[sub 2]SO[sub 4]. The m[sub TS] of commercial Sigma's PPO Onozuka cellulase were 0.76 0.59, respectively, for comparison to C. versicolor's PPO. Affinity, hydroxylapatite hydrophobic interaction chromatographies may yield a single SDS-PAGE PPO band.« less

  15. Alternative Affinity Ligands for Immunoglobulins.

    PubMed

    Kruljec, Nika; Bratkovič, Tomaž

    2017-08-16

    The demand for recombinant therapeutic antibodies and Fc-fusion proteins is expected to increase in the years to come. Hence, extensive efforts are concentrated on improving the downstream processing. In particular, the development of better-affinity chromatography matrices, supporting robust time- and cost-effective antibody purification, is warranted. With the advances in molecular design and high-throughput screening approaches from chemical and biological combinatorial libraries, novel affinity ligands representing alternatives to bacterial immunoglobulin (Ig)-binding proteins have entered the scene. Here, we review the design, development, and properties of diverse classes of alternative antibody-binding ligands, ranging from engineered versions of Ig-binding proteins, to artificial binding proteins, peptides, aptamers, and synthetic small-molecular-weight compounds. We also provide examples of applications for the novel affinity matrices in chromatography and beyond.

  16. Phospholipid bilayer affinities and solvation characteristics by electrokinetic chromatography with a nanodisc pseudostationary phase.

    PubMed

    Penny, William M; Steele, Harmen B; Ross, J B Alexander; Palmer, Christopher P

    2017-03-01

    Phospholipid bilayer nanodiscs composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine and synthetic maleic acid-styrene copolymer belts have been introduced as a pseudostationary phase (PSP) in electrokinetic chromatography and demonstrated good performance. The nanodiscs provide a suitable migration range and high theoretical plate counts. Using this nanodisc pseudostationary phase, the affinity of the bilayer structure for probe solutes was determined and characterized. Good correlation is observed between retention factors and octanol water partition coefficients for particular categories of solutes, but the general correlation is weak primarily because the nanodiscs show stronger affinity than octanol for hydrogen bond donors. This suggests that a more appropriate application of this technology is to measure and characterize interactions between solutes and lipid bilayers directly. Linear solvation energy relationship analysis of the nanodisc-solute interactions in this study demonstrates that the nanodiscs provide a solvation environment with low cohesivity and weak hydrogen bond donating ability, and provide relatively strong hydrogen bond acceptor strength. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Purification, Characterization, and Sensitivity to Pesticides of Carboxylesterase From Dendrolimus superans (Lepidoptera: Lasiocampidae)

    PubMed Central

    Zou, Chuan-shan; Cao, Chuan-wang; Zhang, Guo-cai; Wang, Zhi-ying

    2014-01-01

    Abstract Through a combination of steps including centrifugation, ammonium sulfate gradient precipitation, sephadex G-25 gel chromatography, diethylaminoethyl cellulose 52 ion-exchange chromatography and hydroxyapatite affinity chromatography, carboxylesterase (CarE, EC3.1.1.1) from sixth instar larch caterpillar moth, Dendrolimus superans (Lepidoptera: Lasiocampidae) larvae was purified and its biochemical properties were compared between crude homogenate and purified CarE. The final purified CarE after hydroxyapatite chromatography had a specific activity of 52.019 μmol/(min·mg protein), 138.348-fold of crude homogenate, and the yield of 2.782%. The molecular weight of the purified CarE was approximately 84.78 kDa by SDS-PAGE. Three pesticides (dichlorvos, lambda-cyhalothrin, and avermectins) showed different inhibition to crude CarE and purified CarE, respectively. In vitro median inhibitory concentration indicated that the sensitivity of CarE (both crude homogenate and final purified CarE) to pesticides was in decreasing order of dichlorvos > avermectins > lambda-cyhalothrin. By the kinetic analysis, the substrates alpha-naphthyl acetate (α-NA) and beta-naphthyl acetate (β-NA) showed lesser affinity to crude extract than purified CarE. The results also indicated that both crude homogenate and purified CarE had more affinity to α-NA than to β-NA, and the Kcat and Vmax values of crude extract were lower than purified CarE using α-NA or β-NA as substrate. PMID:25525114

  18. Development and validation of an affinity chromatography step using a peptide ligand for cGMP production of factor VIII.

    PubMed

    Kelley, Brian D; Tannatt, Molly; Magnusson, Robert; Hagelberg, Sigrid; Booth, James

    2004-08-05

    An affinity chromatography step was developed for purification of recombinant B-Domain Deleted Factor VIII (BDDrFVIII) using a peptide ligand selected from a phage display library. The peptide library had variegated residues, contained both within a disulfide bond-constrained ring and flanking the ring. The peptide ligand binds to BDDrFVIII with a dissociation constant of approximately 1 microM both in free solution and when immobilized on a chromatographic resin. The peptide is chemically synthesized and the affinity resin is produced by coupling the peptide to an agarose matrix preactivated with N-hydroxysuccinimide. Coupling conditions were optimized to give consistent and complete ligand incorporation and validated with a robustness study that tested various combinations of processing limits. The peptide affinity chromatographic operation employs conditions very similar to an immunoaffinity chromatography step currently in use for BDDrFVIII manufacture. The process step provides excellent recovery of BDDrFVIII from a complex feed stream and reduces host cell protein and DNA by 3-4 logs. Process validation studies established resin reuse over 26 cycles without changes in product recovery or purity. A robustness study using a factorial design was performed and showed that the step was insensitive to small changes in process conditions that represent normal variation in commercial manufacturing. A scaled-down model of the process step was qualified and used for virus removal studies. A validation package addressing the safety of the leached peptide included leaching rate measurements under process conditions, testing of peptide levels in product pools, demonstration of robust removal downstream by spiking studies, end product testing, and toxicological profiling of the ligand. The peptide ligand affinity step was scaled up for cGMP production of BDDrFVIII for clinical trials.

  19. Purification of human alpha uterine protein.

    PubMed

    Sutcliffe, R G; Bolton, A E; Sharp, F; Nicholson, L V; MacKinnon, R

    1980-03-01

    Human alpha uterine protein (AUP) has been prepared from extracts of decudua by antibody affinity chromatography, DEAE Sepharose chromatography and by filtration through Sephadex G-150. This procedure yielded a protein fraction containing AUP, which was labelled with 125I by chloramine T. When analysed by SDS gel electrophoresis this radioiodinated protein fraction was found to contain predominantly a single species of protein which was precipitated by antibodies against AUP in antibody-antigen crossed electrophoresis. Rabbit anti-AUP precipitated 55-65% of the tracer in a double-antibody system. Sephadex G150 gel filtration of AUP obtained before and after affinity chromatography provided a molecular weight estimate of 50000. Since SDS gel electrophoresis revealed a polypeptide molecular weight of 23000-25000, it is suggested that AUP is a dimer.

  20. Supramolecular Affinity Chromatography for Methylation-Targeted Proteomics.

    PubMed

    Garnett, Graham A E; Starke, Melissa J; Shaurya, Alok; Li, Janessa; Hof, Fraser

    2016-04-05

    Proteome-wide studies of post-translationally methylated species using mass spectrometry are complicated by high sample diversity, competition for ionization among peptides, and mass redundancies. Antibody-based enrichment has powered methylation proteomics until now, but the reliability, pan-specificity, polyclonal nature, and stability of the available pan-specific antibodies are problematic and do not provide a standard, reliable platform for investigators. We have invented an anionic supramolecular host that can form host-guest complexes selectively with methyllysine-containing peptides and used it to create a methylysine-affinity column. The column resolves peptides on the basis of methylation-a feat impossible with a comparable commercial cation-exchange column. A proteolyzed nuclear extract was separated on the methyl-affinity column prior to standard proteomics analysis. This experiment demonstrates that such chemical methyl-affinity columns are capable of enriching and improving the analysis of methyllysine residues from complex protein mixtures. We discuss the importance of this advance in the context of biomolecule-driven enrichment methods.

  1. Camelid VHH affinity ligands enable separation of closely related biopharmaceuticals

    PubMed Central

    Pabst, Timothy M.; Wendeler, Michaela; Wang, Xiangyang; Bezemer, Sandra; Hermans, Pim

    2016-01-01

    Abstract Interest in new and diverse classes of molecules such as recombinant toxins, enzymes, and blood factors continues to grow for use a biotherapeutics. Compared to monoclonal antibodies, these novel drugs typically lack a commercially available affinity chromatography option, which leads to greater process complexity, longer development timelines, and poor platformability. To date, for both monoclonal antibodies and novel molecules, affinity chromatography has been mostly reserved for separation of process‐related impurities such as host cell proteins and DNA. Reports of affinity purification of closely related product variants and modified forms are much rarer. In this work we describe custom affinity chromatography development using camelid VHH antibody fragments as "tunable" immunoaffinity ligands for separation of product‐related impurities. One example demonstrates high selectivity for a recombinant immunotoxin where no binding was observed for an undesired deamidated species. Also discussed is affinity purification of a coagulation factor through specific recognition of the gamma‐carboxylglutamic acid domain. PMID:27677057

  2. Purification of bacteriophage M13 by anion exchange chromatography.

    PubMed

    Monjezi, Razieh; Tey, Beng Ti; Sieo, Chin Chin; Tan, Wen Siang

    2010-07-01

    M13 is a non-lytic filamentous bacteriophage (phage). It has been used widely in phage display technology for displaying foreign peptides, and also for studying macromolecule structures and interactions. Traditionally, this phage has been purified by cesium chloride (CsCl) density gradient ultracentrifugation which is highly laborious and time consuming. In the present study, a simple, rapid and efficient method for the purification of M13 based on anion exchange chromatography was established. A pre-packed SepFast Super Q column connected to a fast protein liquid chromatography (FPLC) system was employed to capture released phages in clarified Escherichia coli fermented broth. An average yield of 74% was obtained from a packed bed mode elution using citrate buffer (pH 4), containing 1.5 M NaCl at 1 ml/min flow rate. The purification process was shortened substantially to less than 2 h from 18 h in the conventional ultracentrifugation method. SDS-PAGE revealed that the purity of particles was comparable to that of CsCl gradient density ultracentrifugation method. Plaque forming assay showed that the purified phages were still infectious. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Production of monoclonal antibodies against serum immunoglobulins of black rockfish (Sebastes schlegeli Higendorf)

    PubMed Central

    Shin, Geewook; Lee, Hyungjun; Palaksha, K. J.; Kim, Youngrim; Lee, Eunyoung; Shin, Yongseung; Lee, Eunggoo; Park, Kyungdae

    2006-01-01

    The present study was undertaken to produce monoclonal antibodies (MAbs) against immunoglobulin (Ig) purified from black rockfish (Sebastes schlegeli Higendorf) serum using protein A, mannan binding protein, and goat IgG affinity columns. These three different ligands were found to possess high affinity for black rockfish serum Ig. All of the Igs purified eluted at only 0.46 M NaCl concentration in anion exchange column chromatography and consisted of two bands at 70 kDa and 25 kDa in SDS-PAGE; they also had similar antigenicity for MAbs to Ig heavy chain in immunoblot assays. Therefore, black rockfish Ig is believed to exist as a single isotype within serum. The MAbs produced against Ig heavy chain reacted specifically with spots distributed over the pI range from 4.8 to 5.6 with a molecular weight of 70 kDa on two dimensional gel electrophoresis immunoblot profiles. PMID:16871026

  4. [Effect of gene optimization on the expression and purification of HDV small antigen produced by genetic engineering].

    PubMed

    Ding, Jun-Ying; Meng, Qing-Ling; Guo, Min-Zhuo; Yi, Yao; Su, Qiu-Dong; Lu, Xue-Xin; Qiu, Feng; Bi, Sheng-Li

    2012-10-01

    To study the effect of gene optimization on the expression and purification of HDV small antigen produced by genetic engineering. Based on the colon preference of E. coli, the HDV small antigen original gene from GenBank was optimized. Both the original gene and the optimized gene expressed in prokaryotic cells, SDS-PAGE was made to analyze the protein expression yield and to decide which protein expression style was more proportion than the other. Furthermore, two antigens were purified by chromatography in order to compare the purity by SDS-PAGE and Image Lab software. SDS-PAGE indicated that the molecular weight of target proteins from two groups were the same as we expected. Gene optimization resulted in the higher yield and it could make the product more soluble. After chromatography, the purity of target protein from optimized gene was up to 96.3%, obviously purer than that from original gene. Gene optimization could increase the protein expression yield and solubility of genetic engineering HDV small antigen. In addition, the product from the optimized gene group was easier to be purified for diagnosis usage.

  5. Affinity chromatography on monolithic supports for simultaneous and high-throughput isolation of immunoglobulins from human serum.

    PubMed

    Martinović, Tamara; Andjelković, Uroš; Klobučar, Marko; Černigoj, Urh; Vidič, Jana; Lučić, Marina; Pavelić, Krešimir; Josić, Djuro

    2017-11-01

    Posttranslational modifications of immunoglobulins have been a topic of great interest and have been repeatedly reported as a major factor in disease pathology. Cost-effective, reproducible, and high-throughput (HTP) isolation of immunoglobulins from human serum is vital for studying the changes in protein structure and the following understanding of disease development. Although there are many methods for the isolation of specific immunoglobulin classes, only a few of them are applicable for isolation of all subtypes and variants. Here, we present the development of a scheme for fast and simultaneous affinity purification of α (A), γ (G), and μ (M) immunoglobulins from human serum through affinity monolith chromatography. Affinity-based monolithic columns with immobilized protein A, G, or L were used for antibody isolation. Monolithic stationary phases have a high surface accessibility of binding sites, large flow-through channels, and can be operated at high flow rates, making them the ideal supports for HTP isolation of biopolymers. The presented method can be used for HTP screening of human serum in order to simultaneously isolate all three above-mentioned immunoglobulins and determine their concentration and changes in their glycosylation pattern as potential prognostic and diagnostic disease biomarkers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Hybridization parameters revisited: solutions containing SDS.

    PubMed

    Rose, Ken; Mason, John O; Lathe, Richard

    2002-07-01

    Salt concentration governs nucleic acid hybridization according to the Schildkraut-Lifson equation. High concentrations of SDS are used in some common protocols, but the effects of SDS on hybridization stringency have not been reported. We investigated hybridization parameters in solutions containing SDS. With targets immobilized on nylon membranes and PCR- or transcription-generated probes, we report that the 50% dissociation temperature (Tm*) in the absence of SDS was 15 degrees C-17degrees C lower than the calculated Tm. SDS had only modest effects on Tm* [1% (w/v) equating to 8 mM NaCl]. RNA/DNA hybrids were approximately 11 degrees C more stable than DNA/DNA hybrids. Incomplete homology (69%) significantly reduced the Tm* for DNA/DNA hybrids (approximately /4degrees C; 0.45 degrees C/% nonhomology) but far less so for RNA/DNA hybrids (approximately 2.3 degrees C; approximately 0.07 degrees C/% non-homology); incomplete homology also markedly reduced the extent of hybridization. On these nylonfilters, SDS had a major effect on nonspecific binding. Buffers lacking SDS, or with low salt concentration, gave high hybridization backgrounds; buffers containing SDS, or high-salt buffers, gave reproducibly low backgrounds.

  7. Affinity precipitation of human serum albumin using a thermo-response polymer with an L-thyroxin ligand.

    PubMed

    Ding, Zhaoyang; Cao, Xuejun

    2013-12-17

    Affinity precipitation has been reported as a potential technology for the purification of proteins at the early stage of downstream processing. The technology could be achieved using reversible soluble-insoluble polymers coupled with an affinity ligand to purify proteins from large volumes of dilute solution material such as fermentation broths or plasma. In this study, a thermo-response polymer was synthesized using N-methylol acrylamide, N-isopropyl acrylamide and butyl acrylate as monomers. The molecular weight of the polymer measured by the viscosity method was 3.06 × 104 Da and the lower critical solution temperature (LCST) was 28.0°C.The recovery of the polymer above the LCST was over 95.0%. Human serum albumin (HSA) is the most abundant protein in the human serum system, and it has important functions in the human body. High purity HSA is required in pharmaceuticals. Safe and efficient purification is a crucial process during HSA production. A thermo-response polymer was synthesized and L-thyroxin immobilized on the polymer as an affinity ligand to enable affinity precipitation of HSA. The LCST of the affinity polymer was 31.0°C and the recovery was 99.6% of its original amount after recycling three times. The optimal adsorption condition was 0.02 M Tris-HCl buffer (pH 7.0) and the HSA adsorption capacity was 14.9 mg/g polymer during affinity precipitation. Circular dichroism spectra and a ForteBio Octet system were used to analyze the interactions between the affinity polymer and HSA during adsorption and desorption. The recovery of total HSA by elution with 1.0 mol/L NaSCN was 93.6%. When the affinity polymer was applied to purification of HSA from human serum, HSA could be purified to single-band purity according to SDS-PAGE. A thermo-response polymer was synthesized and L-thyroxin was attached to the polymer. Affinity precipitation was used to purify HSA from human serum.

  8. Affinity precipitation of human serum albumin using a thermo-response polymer with an L-thyroxin ligand

    PubMed Central

    2013-01-01

    Background Affinity precipitation has been reported as a potential technology for the purification of proteins at the early stage of downstream processing. The technology could be achieved using reversible soluble-insoluble polymers coupled with an affinity ligand to purify proteins from large volumes of dilute solution material such as fermentation broths or plasma. In this study, a thermo-response polymer was synthesized using N-methylol acrylamide, N-isopropyl acrylamide and butyl acrylate as monomers. The molecular weight of the polymer measured by the viscosity method was 3.06 × 104 Da and the lower critical solution temperature (LCST) was 28.0°C.The recovery of the polymer above the LCST was over 95.0%. Human serum albumin (HSA) is the most abundant protein in the human serum system, and it has important functions in the human body. High purity HSA is required in pharmaceuticals. Safe and efficient purification is a crucial process during HSA production. Results A thermo-response polymer was synthesized and L-thyroxin immobilized on the polymer as an affinity ligand to enable affinity precipitation of HSA. The LCST of the affinity polymer was 31.0°C and the recovery was 99.6% of its original amount after recycling three times. The optimal adsorption condition was 0.02 M Tris–HCl buffer (pH 7.0) and the HSA adsorption capacity was 14.9 mg/g polymer during affinity precipitation. Circular dichroism spectra and a ForteBio Octet system were used to analyze the interactions between the affinity polymer and HSA during adsorption and desorption. The recovery of total HSA by elution with 1.0 mol/L NaSCN was 93.6%. When the affinity polymer was applied to purification of HSA from human serum, HSA could be purified to single-band purity according to SDS-PAGE. Conclusion A thermo-response polymer was synthesized and L-thyroxin was attached to the polymer. Affinity precipitation was used to purify HSA from human serum. PMID:24341315

  9. Resistance of bromelain to SDS binding.

    PubMed

    Bhattacharya, Reema; Bhattacharyya, Debasish

    2009-04-01

    Interaction of the plant cysteine protease bromelain with SDS has been studied using CD spectroscopy, intrinsic fluorescence emission, extrinsic fluorescence probe pyrene, isothermal calorimetric (ITC) investigations and inhibition of hydrolyzing activity. Results exhibit number of synchronous transitions when plotted against the total SDS concentration. SDS at submicellar level caused conformation change of bromelain leading to a stable entity. ITC and pyrene experiments suggest that the structural modifications below 5 mM, the cmc(app) of SDS solutions containing bromelain, are the result of alterations of solvent hydrophobicity or non-specific weak binding and/or adsorption of SDS monomers. Melting temperature (T(m)) and the free energy change for thermal unfolding (DeltaG(unf)) of the SDS induced conformers was decreased by 5 degrees C and 0.5 kcal/mol respectively, compared to native bromelain. Below 5 mM, SDS caused large decrease in V(max) without affecting K(m) for the substrate Z-Arg-Arg-NHMec. Analysis of kinetic data imply that SDS acts as a partial non-competitive inhibitor since even at 100 mM, the residual activity of bromelain was retained by 3%. Inhibition studies show an IC(50) of 0.55 mM and a high K(i) of 0.145 mM. These demonstrate that bromelain is resistant to SDS binding and denaturation, a property known for beta-sheet rich kinetically stable proteins.

  10. Purification and characterization of cinnamyl alcohol-NADPH-dehydrogenase from the leaf tissues of a basin mangrove Lumnitzera racemosa Willd.

    PubMed

    Murugan, K; Arunkumar, N S; Mohankumar, C

    2004-01-01

    Cinnamyl alcohol-NADPH-dehydrogenase (CAD), the marker enzyme of lignin biosynthesis was purified from the leaf tissues of a basin mangrove Lumnitzera racemosa by ammonium sulphate precipitation, followed by anion-exchange, gel filtration and affinity chromatography. The molecular mass of the CAD enzyme was determined as 89 kDa, by size elution chromatography. SDS-PAGE of CAD revealed two closely associated bands of 45 kDa and 42 kDa as heterogenous subunits. The optimum pH of CAD was found to be 4.0. Km for the substrates cinnamaldehyde, coniferaldehyde and sinapaldehyde was determined. Cinnamaldehyde showed higher Km value than sinapaldehyde and coniferaldehyde. The correlation of activity of CAD with the amount of lignin was found less significant in L. racemosa, compared to plant species of other habitats viz., mesophytes, xerophytes and hydrophytes, suggesting that CAD possibly exhibits physiological suppression due to the saline habitat of the plant.

  11. Selective affinity chromatography of DNA polymerases with associated 3' to 5' exonuclease activities.

    PubMed

    Lee, M Y; Whyte, W A

    1984-05-01

    The use of 5'-AMP as a ligand for the affinity chromatography of DNA polymerases with intrinsic 3' to 5' exonuclease activities was investigated. The basis for this is that 5'-AMP would be expected to act as a ligand for the associated 3' to 5' exonuclease. The requirements for binding of Escherichia coli DNA polymerase I, T4 DNA polymerase, and calf thymus DNA polymerase delta, all of which have associated 3' to 5' exonuclease activities, to several commercially available 5'-AMP supports with different linkages of 5'-AMP to either agarose or cellulose were examined. The DNA polymerases which possessed 3' to 5' exonuclease activities were bound to agarose types in which the 5'-phosphoryl group and the 3'-hydroxyl group of the AMP were unsubstituted. Bound enzyme could be eluted by either an increase in ionic strength or competitive binding of nucleoside 5'-monophosphates. Magnesium was found to reinforce the binding of the enzyme to these affinity supports. DNA polymerase alpha, which does not have an associated 3' to 5' exonuclease activity, did not bind to any of these columns. These differences can be used to advantage for the purification of DNA polymerases that have associated 3' to 5' exonuclease activities, as well as a means for establishing the association of 3' to 5' exonuclease activities with DNA polymerases.

  12. SDS: A Framework for Scientific Data Services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Bin; Byna, Surendra; Wu, Kesheng

    2013-10-31

    Large-scale scientific applications typically write their data to parallel file systems with organizations designed to achieve fast write speeds. Analysis tasks frequently read the data in a pattern that is different from the write pattern, and therefore experience poor I/O performance. In this paper, we introduce a prototype framework for bridging the performance gap between write and read stages of data access from parallel file systems. We call this framework Scientific Data Services, or SDS for short. This initial implementation of SDS focuses on reorganizing previously written files into data layouts that benefit read patterns, and transparently directs read callsmore » to the reorganized data. SDS follows a client-server architecture. The SDS Server manages partial or full replicas of reorganized datasets and serves SDS Clients' requests for data. The current version of the SDS client library supports HDF5 programming interface for reading data. The client library intercepts HDF5 calls and transparently redirects them to the reorganized data. The SDS client library also provides a querying interface for reading part of the data based on user-specified selective criteria. We describe the design and implementation of the SDS client-server architecture, and evaluate the response time of the SDS Server and the performance benefits of SDS.« less

  13. Purification and characterization of Lep d I, a major allergen from the mite Lepidoglyphus destructor.

    PubMed

    Ventas, P; Carreira, J; Polo, F

    1992-04-01

    A major allergen of the storage mite Lepidoglyphus destructor (Lep d I) has been purified by affinity chromatography using an anti-Lep d I monoclonal antibody. The purity of the protein obtained by this procedure was assessed by reverse-phase HPLC. Lep d I displayed a molecular weight of 14 kD on SDS-PAGE under non-reducing conditions, and 16 kD in the presence of a reducing agent. Analytical IEF revealed a little charge microheterogeneity, showing three bands with pIs 7.6-7.8. Purified Lep d I retained IgE-binding ability, as proved by immunoblotting experiments after SDS-PAGE and RAST with individual sera from L. destructor-sensitive patients. Results from the latter technique demonstrated that 87% of L. destructor-allergic patients had specific IgE to Lep d I, and a good correlation between IgE reactivity with L. destructor extract and Lep d I was found. In addition, RAST inhibition experiments showed that IgE-binding sites on Lep d I are major L. destructor-allergenic determinants, since Lep d I could inhibit up to 75% the binding of specific IgE to L. destructor extract; on the other hand, Lep d I did not cross-react with D. pteronyssinus allergens.

  14. Over-expression in Escherichia coli and characterization of two recombinant isoforms of human FAD synthetase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brizio, Carmen; Galluccio, Michele; Wait, Robin

    2006-06-09

    FAD synthetase (FADS) (EC 2.7.7.2) is a key enzyme in the metabolic pathway that converts riboflavin into the redox cofactor FAD. Two hypothetical human FADSs, which are the products of FLAD1 gene, were over-expressed in Escherichia coli and identified by ESI-MS/MS. Isoform 1 was over-expressed as a T7-tagged protein which had a molecular mass of 63 kDa on SDS-PAGE. Isoform 2 was over-expressed as a 6-His-tagged fusion protein, carrying an extra 84 amino acids at the N-terminal with an apparent molecular mass of 60 kDa on SDS-PAGE. It was purified near to homogeneity from the soluble cell fraction by one-stepmore » affinity chromatography. Both isoforms possessed FADS activity and had a strict requirement for MgCl{sub 2}, as demonstrated using both spectrophotometric and chromatographic methods. The purified recombinant isoform 2 showed a specific activity of 6.8 {+-} 1.3 nmol of FAD synthesized/min/mg protein and exhibited a K {sub M} value for FMN of 1.5 {+-} 0.3 {mu}M. This is First report on characterization of human FADS, and First cloning and over-expression of FADS from an organism higher than yeast.« less

  15. Method development of enantiomer separations by affinity capillary electrophoresis, cyclodextrin electrokinetic chromatography and capillary electrophoresis-mass spectrometry.

    PubMed

    Tanaka, Yoshihide

    2002-07-01

    Capillary electrophoresis (CE) has become a powerful tool for enantiomer separations during the last decade. Since 1993, the author has investigated enantiomer separations by affinity capillary electrophoresis (affinity CE) with some proteins and by cyclodextrin electrokinetic chromatography (CDEKC) with some charged cyclodextrins (CDs). Many successful enantiomer separations are demonstrated from our study in this review article. In the enantiomer separations by affinity CE, the deterioration of detection sensitivity was observed under high concentration of the protein in running solutions. The partial filling technique was practically useful to solve the serious problem. It allowed operation at high protein concentrations, such as 500 mumol/L, without the detection problem. Charged CDs had several advantages for the enantiomer separations over neutral ones. Strong electrostatic interactions between a charged CD and oppositely charged analytes should be effective for the formation of the complex. A large difference in electrophoretic mobility between the free analyte and the inclusion complex should also enhance the enantiomeric resolution. In CE-mass spectrometry (CE-MS), the partial filling technique was applied to avoid the introduction of nonvolatile chiral selectors into the CE-MS interface. By replacing the nonvolatile electrolytes in the running buffer by volatile ones, the separation conditions employed in CE with the UV detection method could be transferred to CE-MS.

  16. Isolation and characterization of a specific receptor for human albumin on a group L Streptococcus.

    PubMed

    Lämmler, C

    1988-08-01

    Certain group L streptococci demonstrate surface receptors for human albumin. Binding of 125I-albumin to group L streptococci could be inhibited by unlabelled albumin preparations from humans, dogs, mice and bovines, but not by albumin from rabbits. The albumin-binding proteins (ABP) could be solubilized from the streptococcal surface by hot acid treatment of the bacteria and isolated by affinity chromatography on human-albumin sepharose. ABP and specific antisera produced against ABP inhibited 125I-albumin binding to group L streptococci. The molecular weight of ABP determined by SDS-PAGE and Western blotting, was approximately 48,000 Dalton. ABP preparations of group G streptococci isolated from bovines and humans demonstrated cross reactivity with antiserum produced against group L streptococcal ABP.

  17. Analyzing bean extracts using time-dependent SDS trapping to quantify the kinetic stability of phaseolin proteins.

    PubMed

    Thibeault, Jane; Church, Jennifer; Ortiz-Perez, Brian; Addo, Samuel; Hill, Shakeema; Khalil, Areeg; Young, Malaney; Xia, Ke; Colón, Wilfredo

    2017-09-30

    In common beans and lima bean, the storage protein phaseolin is difficult to degrade and SDS-resistant, a sign of kinetic stability. Kinetically stable proteins (KSPs) are characterized by having a high-energy barrier between the native and denatured states that results in very slow unfolding. Such proteins are resistant to proteolytic degradation and detergents, such as SDS. Here the method SDS-Trapping of Proteins (S-TraP) is applied directly on bean extracts to quantify the kinetic stability of phaseolin in lima bean and several common beans, including black bean, navy bean, and small red bean. The bean extracts were incubated in SDS at various temperatures (60-75 °C) for different time periods, followed by SDS-PAGE analysis at room temperature, and subsequent band quantification to determine the kinetics of phaseolin unfolding. Eyring plot analysis showed that the phaseolin from each bean has high kinetic stability, with an SDS-trapping (i.e. unfolding) half-life ranging from about 20-100 years at 24 °C and 2-7 years at 37 °C. The remarkably high kinetic stability of these phaseolin proteins is consistent with the low digestibility of common beans and lima bean, as well as their relatively high germination temperatures. From a practical perspective, this work exemplifies that S-TraP is a useful and cost-effective method for quantifying the kinetic stability of proteins in biological extracts or lysates. Depending on the protein to be studied and its abundance, S-TraP may be performed directly on the extract without need for protein purification. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Cellular protein receptors of maculosin, a host specific phytotoxin of spotted knapweed (Centaurea maculosa L.).

    PubMed

    Park, S H; Strobel, G A

    1994-01-05

    Maculosin (the diketopiperazine, cyclo (L-Pro-L-Tyr)) is a host specific phytotoxin produced by Alternaria alternata on spotted knapweed (Centaurea maculosa L.). Receptors for this phytotoxin have been isolated from spotted knapweed. Knapweed leaves possess most of the maculosin-binding activity in the cytosolic fraction. However, activity was also observed in the whole membrane fraction of the leaf. The binding component of the cytosolic fraction was identified as a protein(s) because of its heat-lability and sensitivity to proteases. A 16-fold purification of a toxin-binding protein was carried out by ammonium sulfate fractionation, and Sephadex G-200, and maculosin-affinity column chromatography. The affinity column was prepared with epoxy activated Sepharose 6B to which the phenolic group of maculosin was attached. The receptor was estimated to contain more than one binding protein by native and SDS-PAGE. At least one of the maculosin-binding proteins was identified as ribulose-1,5-biphosphate carboxylase (RuBPcase).

  19. Metallomics investigations on potential binding partners of methylmercury in tuna fish muscle tissue using complementary mass spectrometric techniques.

    PubMed

    Kutscher, Daniel J; Sanz-Medel, Alfredo; Bettmer, Jörg

    2012-08-01

    In this study, the binding behaviour of methylmercury (MeHg(+)) towards proteins is investigated. Free sulfhydryl groups in cysteine residues are known to be the most likely binding partners, due to the high affinity of mercury to sulphur. However, detailed knowledge about discrete binding sites in living organisms has been so far scarce. A metallomics approach using different methods like size-exclusion chromatography (SEC) and liquid chromatography (LC) coupled to inductively coupled plasma-mass spectrometry (ICP-MS) as well as complementary mass spectrometric techniques (electrospray ionisation-tandem mass spectrometry, ESI-MS/MS) are combined to sequence and identify possible target proteins or peptides after enzymatic digestion. Potential targets for MeHg(+) in tuna fish muscle tissue are investigated using the certified reference material CRM464 as a model tissue. Different extraction procedures appropriate for the extraction of proteins are evaluated for their efficiency using isotope dilution analysis for the determination of total Hg in the extracts. Due to the high chemical stability of the mercury-sulphur bond, the bioconjugate can be quantitatively extracted with a combination of tris(hydroxymethyl)aminomethane (TRIS) and sodium dodecyl sulphate (SDS). Using different separation techniques such as SEC and SDS-polyacrylamide gel electrophoresis (SDS-PAGE) it can be shown that major binding occurs to a high-molecular weight protein (M(w) > 200 kDa). A potential target protein, skeletal muscle myosin heavy chain, could be identified after tryptic digestion and capillary LC-ESI-MS/MS.

  20. SwellGel: an affinity chromatography technology for high-capacity and high-throughput purification of recombinant-tagged proteins.

    PubMed

    Draveling, C; Ren, L; Haney, P; Zeisse, D; Qoronfleh, M W

    2001-07-01

    The revolution in genomics and proteomics is having a profound impact on drug discovery. Today's protein scientist demands a faster, easier, more reliable way to purify proteins. A high capacity, high-throughput new technology has been developed in Perbio Sciences for affinity protein purification. This technology utilizes selected chromatography media that are dehydrated to form uniform aggregates. The SwellGel aggregates will instantly rehydrate upon addition of the protein sample, allowing purification and direct performance of multiple assays in a variety of formats. SwellGel technology has greater stability and is easier to handle than standard wet chromatography resins. The microplate format of this technology provides high-capacity, high-throughput features, recovering milligram quantities of protein suitable for high-throughput screening or biophysical/structural studies. Data will be presented applying SwellGel technology to recombinant 6x His-tagged protein and glutathione-S-transferase (GST) fusion protein purification. Copyright 2001 Academic Press.

  1. Temperature effect on affinity chromatography of two lectins from the seeds of Ricinus communis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, H.W.; Davis, D.S.; Wei, C.H.

    1976-06-01

    Specific adsorption capacity of Sepharose 4B in affinity chromatography for two purified galactose-binding lectins, designated as III/sub L/ and III/sub H/, from the seed of Ricinus communis (castor bean) was measured from 7 to 24/sup 0/C. The adsorption coefficients for these two protein fractions as a function of temperature were also obtained. It was found that there is a characteristic transition of adsorption coefficient at 18/sup 0/C for both lectins. Adsorption coefficients between Sepharose 4B and these two lectins were also expressed in terms of ..delta..G, ..delta..H, and ..delta..S. It is suggested that the difference in the temperature dependence ofmore » the binding energy of these two lectins may be used for their separation at selected temperature.« less

  2. Purification and characterization of selenium-containing phycocyanin from selenium-enriched Spirulina platensis.

    PubMed

    Chen, Tianfeng; Wong, Yum-Shing; Zheng, Wenjie

    2006-11-01

    A fast protein liquid chromatographic method for purification of selenium-containing phycocyanin (Se-PC) from selenium-enriched Spirulina platensis was described in this study. The purification procedures involved fractionation by ammonium sulfate precipitation, DEAE-Sepharose ion-exchange chromatography and Sephacry S-300 size exclusion chromatography. The purity ratio (A620/A280) and the separation factor (A620/A655) of the purified Se-PC were 5.12 and 7.92, respectively. The Se concentration of purified Se-PC was 496.5 microg g(-1) protein, as determined by ICP-AES analysis. The purity of the Se-PC was further characterized by UV-VIS and fluorescence spectrometry, SDS-PAGE, RP-HPLC and gel filtration HPLC. The apparent molecular mass of the native Se-PC determined by gel filtration HPLC was 109 kDa, indicating that the protein existed as a trimer. SDS-PAGE of the purified Se-PC yielded two major bands corresponding to the alpha and beta subunits. A better separation of these two subunits was obtained by RP-HPLC. Identification of the alpha and beta subunits separated by SDS-PAGE and RP-HPLC was achieved by peptide mass fingerprinting (PMF) using MALDI-TOF-TOF mass spectrometry.

  3. Characterization of the human submandibular/sublingual saliva glycoproteome using lectin affinity chromatography coupled to Multidimensional Protein Identification Technology

    PubMed Central

    Gonzalez-Begne, Mireya; Lu, Bingwen; Liao, Lujian; Xu, Tao; Bedi, Gurrinder; Melvin, James E.; Yates, John R.

    2011-01-01

    In-depth analysis of the salivary proteome is fundamental to understanding the functions of salivary proteins in the oral cavity and to reveal disease biomarkers involved in different pathophysiological conditions, with the ultimate goal of improving patient diagnosis and prognosis. Submandibular and sublingual glands contribute saliva rich in glycoproteins to the total saliva output, making them valuable sources for glycoproteomic analysis. Lectin-affinity chromatography coupled to mass spectrometry-based shotgun proteomics was used to explore the submandibular/sublingual (SM/SL) saliva glycoproteome. A total of 262 N- and O-linked glycoproteins were identified by multidimensional protein identification technology (MudPIT). Only 38 were previously described in SM and SL salivas from the human salivary N-linked glycoproteome, while 224 were unique. Further comparison analysis with SM/SL saliva of the human saliva proteome, revealed 125 glycoproteins not formerly reported in this secretion. KEGG pathway analyses demonstrated that many of these glycoproteins are involved in processes such as complement and coagulation cascades, cell communication, glycosphingolipid biosynthesis neo-lactoseries, O-glycan biosynthesis, glycan structures-biosynthesis 2, starch and sucrose metabolism, peptidoglycan biosynthesis or others pathways. In summary, lectin-affinity chromatography coupled to MudPIT mass spectrometry identified many novel glycoproteins in SM/SL saliva. These new additions to the salivary proteome may prove to be a critical step for providing reliable biomarkers in the diagnosis of a myriad of oral and systemic diseases. PMID:21936497

  4. Lipids and proteins in the Rathke's gland secretions of the North American mud turtle (Kinosternon subrubrum)

    USGS Publications Warehouse

    Seifert, W.E.; Gotte, S.W.; Leto, T.L.; Weldon, P.J.

    1994-01-01

    Lipids and proteins in the Rathke's gland secretions of the North American mud turtle (Kinosternon subrubrum, Kinosternidae) were analyzed by gas chromatography-mass spectrometry (GC-MS) and SDS-polyacrylamide gel electrophoresis (SDS-PAGE), respectively. Analysis by GC-MS indicates 2,3-dihydroxypropanal and C3–C24 free or esterified fatty acids. Analysis by SDS-PAGE indicates a major protein component with an approximate molecular mass of 60 kDa and minor components ranging from ca. 23 to 34 kDa. The major component of K. subrubrum glandular secretions exhibits a mobility that matches that of the Kemp's ridley sea turtle (Lepidochelys kempi, Cheloniidae), suggesting that these proteins are evolutionarily conserved.

  5. How Old Is the New SDS?

    ERIC Educational Resources Information Center

    Isserman, Maurice

    2007-01-01

    Students for a Democratic Society (SDS) was the principal campus radical organization of the 1960s. When SDS first took form in 1960-62 under the leadership of Al Haber and Tom Hayden, it was a small organization of a few hundred members. By the time the author joined the Reed College chapter as a freshman in 1968, SDS had grown into a very large…

  6. Isolation, subunit composition and interaction of the NDH-1 complexes from Thermosynechococcus elongatus BP-1.

    PubMed

    Zhang, Pengpeng; Battchikova, Natalia; Paakkarinen, Virpi; Katoh, Hirokazu; Iwai, Masako; Ikeuchi, Masahiko; Pakrasi, Himadri B; Ogawa, Teruo; Aro, Eva-Mari

    2005-09-01

    NDH (NADH-quinone oxidoreductase)-1 complexes in cyanobacteria have specific functions in respiration and cyclic electron flow as well as in active CO2 uptake. In order to isolate NDH-1 complexes and to study complex-complex interactions, several strains of Thermosynechococcus elongatus were constructed by adding a His-tag (histidine tag) to different subunits of NDH-1. Two strains with His-tag on CupA and NdhL were successfully used to isolate NDH-1 complexes by one-step Ni2+ column chromatography. BN (blue-native)/SDS/PAGE analysis of the proteins eluted from the Ni2+ column revealed the presence of three complexes with molecular masses of about 450, 300 and 190 kDa, which were identified by MS to be NDH-1L, NDH-1M and NDH-1S respectively, previously found in Synechocystis sp. PCC 6803. A larger complex of about 490 kDa was also isolated from the NdhL-His strain. This complex, designated 'NDH-1MS', was composed of NDH-1M and NDH-1S. NDH-1L complex was recovered from WT (wild-type) cells of T. elongatus by Ni2+ column chromatography. NdhF1 subunit present only in NDH-1L has a sequence of -HHDHHSHH- internally, which appears to have an affinity for the Ni2+ column. NDH-1S or NDH-1M was not recovered from WT cells by chromatography of this kind. The BN/SDS/PAGE analysis of membranes solubilized by a low concentration of detergent indicated the presence of abundant NDH-1MS, but not NDH-1M or NDH-1S. These results clearly demonstrated that NDH-1S is associated with NDH-1M in vivo.

  7. Characterization of Affinity-Purified Isoforms of Acinetobacter calcoaceticus Y1 Glutathione Transferases

    PubMed Central

    Chee, Chin-Soon; Tan, Irene Kit-Ping; Alias, Zazali

    2014-01-01

    Glutathione transferases (GST) were purified from locally isolated bacteria, Acinetobacter calcoaceticus Y1, by glutathione-affinity chromatography and anion exchange, and their substrate specificities were investigated. SDS-polyacrylamide gel electrophoresis revealed that the purified GST resolved into a single band with a molecular weight (MW) of 23 kDa. 2-dimensional (2-D) gel electrophoresis showed the presence of two isoforms, GST1 (pI 4.5) and GST2 (pI 6.2) with identical MW. GST1 was reactive towards ethacrynic acid, hydrogen peroxide, 1-chloro-2,4-dinitrobenzene, and trans,trans-hepta-2,4-dienal while GST2 was active towards all substrates except hydrogen peroxide. This demonstrated that GST1 possessed peroxidase activity which was absent in GST2. This study also showed that only GST2 was able to conjugate GSH to isoproturon, a herbicide. GST1 and GST2 were suggested to be similar to F0KLY9 (putative glutathione S-transferase) and F0KKB0 (glutathione S-transferase III) of Acinetobacter calcoaceticus strain PHEA-2, respectively. PMID:24892084

  8. Affinity-reversed-phase liquid chromatography assay to quantitate recombinant antibodies and antibody fragments in fermentation broth.

    PubMed

    Battersby, J E; Snedecor, B; Chen, C; Champion, K M; Riddle, L; Vanderlaan, M

    2001-08-24

    An automated dual-column liquid chromatography assay comprised of affinity and reversed-phase separations that quantifies the majority of antibody-related protein species found in crude cell extracts of recombinant origin is described. Although potentially applicable to any antibody preparation, we here use samples of anti-CD18 (Fab'2LZ) and a full-length antibody, anti-tissue factor (anti-TF), from various stages throughout a biopharmaceutical production process to describe the assay details. The targeted proteins were captured on an affinity column containing an anti-light-chain (kappa) Fab antibody (AME5) immobilized on controlled pore glass. The affinity column was placed in-line with a reversed-phase column and the captured components were transferred by elution with dilute acid and subsequently resolved by eluting the reversed-phase column with a shallow acetonitrile gradient. Characterization of the resolved components showed that most antibody fragment preparations contained a light-chain fragment, free light chain, light-chain dimer and multiple forms of Fab'. Analysis of full-length antibody preparations also resolved these fragments as well as a completely assembled form. Co-eluting with the full-length antibody were high-molecular-mass variants that were missing one or both light chains. Resolved components were quantified by comparison with peak areas of similarly treated standards. By comparing the two-dimensional polyacrylamide gel electrophoresis patterns of an Escherichia coli blank run, a production run and the material affinity captured (AME5) from a production run, it was determined that the AME5 antibody captured isoforms of light chain, light chain covalently attached to heavy chain, and truncated light chain isoforms. These forms comprise the bulk of the soluble product-related fragments found in E. coli cell extracts of recombinantly produced antibody fragments.

  9. Identification of paraoxonase 3 in rat liver microsomes: purification and biochemical properties.

    PubMed Central

    Rodrigo, Lourdes; Gil, Fernando; Hernandez, Antonio F; Lopez, Olga; Pla, Antonio

    2003-01-01

    Three paraoxonase genes (PON1, PON2 and PON3) have been described so far in mammals. Although considerable information is available regarding PON1, little is known about PON2 and PON3. PON3 has been isolated recently from rabbit serum [Draganov, Stetson, Watson, Billecke and La Du (2000) J. Biol. Chem. 275, 33435-33442] and liver [Ozols (1999) Biochem. J. 338, 265-275]. In the present study, we have identified the presence of PON3 in rat liver microsomes and a method for the purification to homogeneity is presented. PON3 has been purified 177-fold to apparent homogeneity with a final specific activity of 461 units/mg using a method consisting of seven steps: solubilization of the microsomal fraction, hydroxyapatite adsorption, chromatography on DEAE-Sepharose CL-6B, non-specific affinity chromatography on Cibacron Blue 3GA, two DEAE-cellulose steps and a final affinity chromatography on concanavalin A-Sepharose. SDS/PAGE of the final preparation indicated a single protein-staining band with an apparent molecular mass of 43 kDa. The isolated protein was identified by nanoelectrospray MS. Internal amino acid sequences of several peptides were determined and compared with those of human, rabbit and mouse PON3, showing a high similarity. Some biochemical properties of PON3 were also studied, including optimum pH, K(m) and heat and pH stability. PMID:12946270

  10. Recombinant Passenger Proteins Can Be Conveniently Purified by One-Step Affinity Chromatography.

    PubMed

    Wang, Hua-zhen; Chu, Zhi-zhan; Chen, Chang-chao; Cao, Ao-cheng; Tong, Xin; Ouyang, Can-bin; Yuan, Qi-hang; Wang, Mi-nan; Wu, Zhong-kun; Wang, Hai-hong; Wang, Sheng-bin

    2015-01-01

    Fusion tag is one of the best available tools to date for enhancement of the solubility or improvement of the expression level of recombinant proteins in Escherichia coli. Typically, two consecutive affinity purification steps are often necessitated for the purification of passenger proteins. As a fusion tag, acyl carrier protein (ACP) could greatly increase the soluble expression level of Glucokinase (GlcK), α-Amylase (Amy) and GFP. When fusion protein ACP-G2-GlcK-Histag and ACP-G2-Amy-Histag, in which a protease TEV recognition site was inserted between the fusion tag and passenger protein, were coexpressed with protease TEV respectively in E. coli, the efficient intracellular processing of fusion proteins was achieved. The resulting passenger protein GlcK-Histag and Amy-Histag accumulated predominantly in a soluble form, and could be conveniently purified by one-step Ni-chelating chromatography. However, the fusion protein ACP-GFP-Histag was processed incompletely by the protease TEV coexpressed in vivo, and a large portion of the resulting target protein GFP-Histag aggregated in insoluble form, indicating that the intracellular processing may affect the solubility of cleaved passenger protein. In this context, the soluble fusion protein ACP-GFP-Histag, contained in the supernatant of E. coli cell lysate, was directly subjected to cleavage in vitro by mixing it with the clarified cell lysate of E. coli overexpressing protease TEV. Consequently, the resulting target protein GFP-Histag could accumulate predominantly in a soluble form, and be purified conveniently by one-step Ni-chelating chromatography. The approaches presented here greatly simplify the purification process of passenger proteins, and eliminate the use of large amounts of pure site-specific proteases.

  11. Recombinant Passenger Proteins Can Be Conveniently Purified by One-Step Affinity Chromatography

    PubMed Central

    Wang, Hua-zhen; Chu, Zhi-zhan; Chen, Chang-chao; Cao, Ao-cheng; Tong, Xin; Ouyang, Can-bin; Yuan, Qi-hang; Wang, Mi-nan; Wu, Zhong-kun; Wang, Hai-hong; Wang, Sheng-bin

    2015-01-01

    Fusion tag is one of the best available tools to date for enhancement of the solubility or improvement of the expression level of recombinant proteins in Escherichia coli. Typically, two consecutive affinity purification steps are often necessitated for the purification of passenger proteins. As a fusion tag, acyl carrier protein (ACP) could greatly increase the soluble expression level of Glucokinase (GlcK), α-Amylase (Amy) and GFP. When fusion protein ACP-G2-GlcK-Histag and ACP-G2-Amy-Histag, in which a protease TEV recognition site was inserted between the fusion tag and passenger protein, were coexpressed with protease TEV respectively in E. coli, the efficient intracellular processing of fusion proteins was achieved. The resulting passenger protein GlcK-Histag and Amy-Histag accumulated predominantly in a soluble form, and could be conveniently purified by one-step Ni-chelating chromatography. However, the fusion protein ACP-GFP-Histag was processed incompletely by the protease TEV coexpressed in vivo, and a large portion of the resulting target protein GFP-Histag aggregated in insoluble form, indicating that the intracellular processing may affect the solubility of cleaved passenger protein. In this context, the soluble fusion protein ACP-GFP-Histag, contained in the supernatant of E. coli cell lysate, was directly subjected to cleavage in vitro by mixing it with the clarified cell lysate of E. coli overexpressing protease TEV. Consequently, the resulting target protein GFP-Histag could accumulate predominantly in a soluble form, and be purified conveniently by one-step Ni-chelating chromatography. The approaches presented here greatly simplify the purification process of passenger proteins, and eliminate the use of large amounts of pure site-specific proteases. PMID:26641240

  12. Immobilized metal affinity cryogel-based high-throughput platform for screening bioprocess and chromatographic parameters of His6-GTPase.

    PubMed

    Sarkar, Joyita; Kumar, Ashok

    2017-04-01

    Among various tools of product monitoring, chromatography is of vital importance as it also extends to the purification of product. Immobilized metal affinity cryogel (Cu(II)-iminodiacetic acid- and Ni(II)-nitrilotriacetic acid-polyacrylamide) minicolumns (diameter 8 mm, height 4 mm, void volume 250 μl) were inserted in open-ended 96-well plate and different chromatographic parameters and bioprocess conditions were analysed. The platform was first validated with lysozyme. Optimum binding of lysozyme (∼90%) was achieved when 50 μg of protein in 20 mM Tris, pH 8.0 was applied to the minicolumns with maximum recovery (∼90%) upon elution with 300 mM imidazole. Thereafter, the platform was screened for chromatographic conditions of His 6 -GTPase. Since cryogels have large pore size, they can easily process non-clarified samples containing debris and particulate matters. The bound enzymes on the gel retain its activity and therefore can be assayed on-column by adding substrate and then displacing the product. Highest binding of His 6 -GTPase was achieved when 50 μl of non-clarified cell lysate was applied to the cryogel and subsequently washed with 50 mM Tris, 150 mM NaCl, 5 mM MgCl 2 , 10 mM imidazole, pH 8.0 with dynamic and static binding capacities of ∼1.5 and 3 activity units. Maximum recovery was obtained upon elution with 300 mM imidazole with a purification fold of ∼10; the purity was also analysed by SDS-PAGE. The platform showed reproducible results which were validated by Bland-Altman plot. The minicolumn was also scaled up for chromatographic capture and recovery of His 6 -GTPase. The bioprocess conditions were monitored which displayed that optimum production of His 6 -GTPase was attained by induction with 200 μM isopropyl-β-D-thiogalactoside at 25 °C for 12 h. It was concluded that immobilized metal affinity cryogel-based platform can be successfully used as a high-throughput platform for screening of bioprocess and

  13. [Protein interaction site of Toxoplasma gondii microneme protein 6 and aldolase determined by site-directed mutagenesis].

    PubMed

    Zheng, Bin; Yin, Zhi-Kui; Zhan, Xi-Mei

    2014-06-01

    To identify the protein interaction site of Toxoplasma gondii microneme protein 6 (MIC6) and aldolase by using site-directed mutagenesis. Based on Toxoplasma gondii MIC6 gene sequence (GenBank Accession No. AF110270), the specific primers were designed. Tryptophan (W)-348 of MIC6 C terminus (MIC6C) was mutated to valine (V) via site-directed mutagenesis. MIC6C W/V gene was obtained from cDNA library by PCR amplification and subcloned into pGEX-4T-1. The mutant protein GST-MIC6C W/V was expressed in E. coli, induced by 0.8 mmol/L IPTG, and purified by affinity chromatography. Glutathione sepharose beads were incubated with GST-MIC6C W/V and GST-MIC6C, respectively, and then incubated with T. gondii tachyzoites lysate, and bound proteins were eluted using sample buffer. Bound products were resolved by SDS-PAGE and Western blotting. Glutathione sepharose beads were incubated with GST-MIC6C W/V and GST-MIC6C, respectively, and then incubated with aldolase-His6. After incubation, the resin was washed and subjected to SDS-PAGE. The MIC6C W/N gene was obtained, and the recombinant plasmid MIC6C W/V/pGEX-4T-1 was successfully constructed. The mutant protein GST-MIC6C W/V was expressed and purified in vitro. SDS-PAGE analysis indicated that GST-MIC6C was co-precipitated with aldolase from T. gondii tachyzoites lysate or aldolase-His6, whereas GST-MIC6C W/V failed to precipitate aldolase from T. gondii tachyzoites lysate or aldolase-His6. Western blotting analysis using anti-aldolase antibody indicated that GST-MIC6C could pull-down aldolase from T. gondii tachyzoites lysate. Tryptophan (W348) was the interaction site of MIC6 and aldolase in T. gondii.

  14. Refolding of SDS-Unfolded Proteins by Nonionic Surfactants.

    PubMed

    Kaspersen, Jørn Døvling; Søndergaard, Anne; Madsen, Daniel Jhaf; Otzen, Daniel E; Pedersen, Jan Skov

    2017-04-25

    The strong and usually denaturing interaction between anionic surfactants (AS) and proteins/enzymes has both benefits and drawbacks: for example, it is put to good use in electrophoretic mass determinations but limits enzyme efficiency in detergent formulations. Therefore, studies of the interactions between proteins and AS as well as nonionic surfactants (NIS) are of both basic and applied relevance. The AS sodium dodecyl sulfate (SDS) denatures and unfolds globular proteins under most conditions. In contrast, NIS such as octaethylene glycol monododecyl ether (C 12 E 8 ) and dodecyl maltoside (DDM) protect bovine serum albumin (BSA) from unfolding in SDS. Membrane proteins denatured in SDS can also be refolded by addition of NIS. Here, we investigate whether globular proteins unfolded by SDS can be refolded upon addition of C 12 E 8 and DDM. Four proteins, BSA, α-lactalbumin (αLA), lysozyme, and β-lactoglobulin (βLG), were studied by small-angle x-ray scattering and both near- and far-UV circular dichroism. All proteins and their complexes with SDS were attempted to be refolded by the addition of C 12 E 8 , while DDM was additionally added to SDS-denatured αLA and βLG. Except for αLA, the proteins did not interact with NIS alone. For all proteins, the addition of NIS to the protein-SDS samples resulted in extraction of the SDS from the protein-SDS complexes and refolding of βLG, BSA, and lysozyme, while αLA changed to its NIS-bound state instead of the native state. We conclude that NIS competes with globular proteins for association with SDS, making it possible to release and refold SDS-denatured proteins by adding sufficient amounts of NIS, unless the protein also interacts with NIS alone. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Development of the Space Debris Sensor (SDS)

    NASA Technical Reports Server (NTRS)

    Hamilton, J.; Liou, J.-C.; Anz-Meador, P. D.; Corsaro, B.; Giovane, F.; Matney, M.; Christiansen, E.

    2017-01-01

    The Space Debris Sensor (SDS) is a NASA experiment scheduled to fly aboard the International Space Station (ISS) starting in 2018. The SDS is the first flight demonstration of the Debris Resistive/Acoustic Grid Orbital NASA-Navy Sensor (DRAGONS) developed and matured at NASA Johnson Space Center's Orbital Debris Program Office. The DRAGONS concept combines several technologies to characterize the size, speed, direction, and density of small impacting objects. With a minimum two-year operational lifetime, SDS is anticipated to collect statistically significant information on orbital debris ranging from 50 microns to 500 microns in size. This paper describes the features of SDS and how data from the ISS mission may be used to update debris environment models. Results of hypervelocity impact testing during the development of SDS and the potential for improvement on future sensors at higher altitudes will be reviewed.

  16. [Isolation and determination of the seeds of Pachyrrhizus errosus protein by high performance gel filtration chromatography (GFC)].

    PubMed

    Wu, H; Hao, B; Tang, G; Lin, Y

    1997-03-01

    From the seeds of Pachyrrhizus errosus, three protein constituents, namel PE1, PE2 and PE3, have been isolated and purified by extraction with 5mmol/L phosphate saline (0.9% NaCl) buffer (PB) at pH 7.2, and S-Sepharose Fast Flow Column (2.6cm x 15cm) chromatography which eluted with 5mmol/L phosphate buffer (pH 7.0) containing 1mmol/L NaCl. Three proteins were burther separated on two connected Protein-Pak 60+Protein-Pak 125 [7.5mm x 39cm, 10microm] columns with mobile phase of 0.2mol/L phosphate buffer (pH 6.5). The flow rate was kept constant at 0.8mL/min by YSB-2 type high press pump. The effluent was monitored at a wavelength of 280nm on photodiode array detector. These three proteins are proved to be homogeneous by SDS-PAGE, IEF and HPGFC experiments, and all present the typical absorption spectra in ultraviolet region. The moleculer weights of the three proteins are approxiamtely 33000D, 14500D and 14000D respectively by SDS-PAGE. But as using HPGFC analysis, the MW value of PE2 is 28000D. This indicates PE2 may be composed of two chains joined by disulfide bond, which is further proved from the latter amino acid composition analysis. The isoelectric points of three proteins are 4.5, 6.5 and 7.5 respectively by using IEF. The amion acids compositions of the three proteins were determined with OPA post-column derivatization/fluorescence detection.

  17. Purification and characterization of an inhibitor (soluble tumor necrosis factor receptor) for tumor necrosis factor and lymphotoxin obtained from the serum ultrafiltrates of human cancer patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gatanaga, Tetsuya; Whang, Chenduen; Cappuccini, F.

    1990-11-01

    Serum ultrafiltrates (SUF) from human patients with different types of cancer contain a blocking factor (BF) that inhibits the cytolytic activity of human tumor necrosis factor {alpha} (TNF-{alpha}) in vitro. BF is a protein with a molecular mass of 28kDa on reducing sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS/PAGE). The active material was purified to homogeneity by a combination of affinity chromatography, PAGE, and high-pressure liquid chromatography. Amino acid sequence analysis revealed that BF is derived from the membrane TNF receptor. Purified BF blocks the lytic activity of recombinant human and mouse TNF-{alpha} and recombinant human lymphotoxin activity of TNF-{alpha} andmore » recombinant human lymphotoxin on murine L929 cells in vitro. However, BF inhibits the lytic activity of TNF-{alpha} more effectively than it does that of lymphotoxin. The BF also inhibits the necrotizing activity of recombinant human TNF-{alpha} when coinjected into established cutaneous Meth A tumors in BALB/c mice. The BF may have an important role in (i) the regulation and control of TNF-{alpha} and lymphotoxin activity in cancer patients, (ii) interaction between the tumor and the host antitumor mechanisms, and (iii) use of systemically administered TNF-{alpha} in clinical trials with human cancer patients.« less

  18. Purification of CD47-streptavidin fusion protein from bacterial lysate using biotin-agarose affinity chromatography.

    PubMed

    Salehi, Nasrin; Peng, Ching-An

    2016-07-08

    CD47 is a widely expressed transmembrane glycoprotein that modulates the activity of a plethora of immune cells via its extracellular domain. Therefore, CD47 plays important roles in the regulation of immune responses and may serve as targets for the development of immunotherapeutic agents. To make sure CD47 functionality is intact under the process of protein conjugation, CD47-streptavidin fusion protein was expressed and purified because it can easily bind to biotin-tagged materials via the unique biotin-streptavidin affinity. In this study, gene sequences of CD47 extracellular domain (CD47ECD) and core streptavidin (coreSA) with a total 834 bp were inserted into pET20b plasmid to construct recombinant plasmid encoding CD47-SA fusion gene. After bacteria transformation, the CD47-SA fusion protein was expressed by isopropyl-β-d-thiogalactopyranoside (IPTG) induction. The collected bacteria lysate was loaded on biotinylated agarose to proceed the purification of CD47-SA fusion protein. Due to the unexpected high affinity between biotin and coreSA, standard washing and elution approaches (e.g., varying pH, using biotin, and applying guanidine hydrochloride) reported for biotin-streptavidin affinity chromatography were not able to separate the target fusion protein. Instead, using low concentration of the non-ionic detergent Triton X-100 followed with alkaline buffer could efficiently weaken the binding between biotin and coreSA, thereby eluting out CD47-SA fusion protein from the biotin agarose column. The purified CD47-SA fusion protein was further characterized by molecular biology methods and its antiphagocytic functionality was confirmed by the phagocytosis assay. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:949-958, 2016. © 2016 American Institute of Chemical Engineers.

  19. Characterization of heterotrimeric collagen molecules in a sea-pen (Cnidaria, Octocorallia).

    PubMed

    Tillet-Barret, E; Franc, J M; Franc, S; Garrone, R

    1992-01-15

    The collagen of a primitive invertebrate, the sea-pen Veretillum Cnidaria, Octocorallia), was studied with respect to its molecular-chain composition. The soft extracellular tissues (mesoglea) were solubilized by limited pepsin proteolysis and the collagen was isolated by selective precipitation at 0.7 M NaCl under acidic conditions. The pepsinized molecules were 260 nm in length, as demonstrated by electron microscope studies of rotary-shadowed molecules and of the segment-long-spacing crystallites obtained by dialysis against ATP. SDS/PAGE of the extract produced two main bands susceptible to bacterial collagenase, designated as the alpha 1 and alpha 2 chain, which were differentiated clearly by their CNBr cleavage products and the higher glycosylation rate of the alpha 2 chain. The latter finding corresponds with the high hydroxylysine content of the alpha 2 chain. The alpha 1/alpha 2 chain ratio observed in SDS/PAGE and the fact that only one peak was obtained by concanavalin-A affinity chromatography of a non-denatured 0.7 M NaCl extract demonstrate the alpha 1 [alpha 2]2 molecular structure of this collagen. These results contrast with data on the structure of other coelenterates (i.e. [alpha]3 for sea anemone collagen molecules and alpha 1 alpha 2 alpha 3 for jellyfish collagen molecules). They are discussed in relation to the evolution of collagen.

  20. Improved method for the on-line metal chelate affinity chromatography-high-performance liquid chromatographic determination of tetracycline antibiotics in animal products.

    PubMed

    Cooper, A D; Stubbings, G W; Kelly, M; Tarbin, J A; Farrington, W H; Shearer, G

    1998-07-03

    An improved on-line metal chelate affinity chromatography-high-performance liquid chromatography (MCAC-HPLC) method for the determination of tetracycline antibiotics in animal tissues and egg has been developed. Extraction was carried out with ethyl acetate. The extract was then evaporated to dryness and reconstituted in methanol prior to on-line MCAC clean-up and HPLC-UV determination. Recoveries of tetracycline, oxytetracycline, demeclocycline and chlortetracycline in the range 42% to 101% were obtained from egg, poultry, fish and venison tissues spiked at 25 micrograms kg-1. Limits of detection less than 10 microgram kg-1 were estimated for all four analytes. This method has higher throughput, higher recovery and lower limits of detection than a previously reported on-line MCAC-HPLC method which involved aqueous extraction and solid-phase extraction clean-up.

  1. Immunoaffinity centrifugal precipitation chromatography.

    PubMed

    Qi, Lin; Ito, Yoichiro

    2007-06-01

    Purification of proteins based on immunoaffinity has been performed using a solid support coated with antibody against the target proteins. The method requires immobilizing the antibody onto the solid support using protein A or G, and has a risk of adsorptive loss of target proteins onto the solid support. Centrifugal precipitation chromatography has been successfully used to purify enzymes, such as ketosteroid isomerase and hyaluronidase without the use of solid support. The purpose of this study is to demonstrate that immunoaffinity centrifugal precipitation chromatography is capable of isolating an antigen by exploiting antigen-antibody binding. The separation was initiated by filling both channels with 40% saturated ammonium sulfate (AS) of pH 4-4.5 followed by loading 20 microl of human plasma (National Institutes of Health blood bank) mixed with 2 mg of rabbit anti-HSA (human serum protein) antibody (Sigma). Then, the sample channel was eluted with water at 0.03 ml/min and AS channel with 40% AS solution of pH 4-4.5 at 1 ml/min until all non-binding components were eluted. Then, the releasing reagent (50% AS solution containing 0.5 M glycine and 10% ammonium hydroxide at pH 10) was introduced through the AS channel to release the target protein (HSA). The retained antibody was recovered by eluting the sample channel with water at 1 ml/min. A hollow fiber membrane device at the outlet (MicroKros, Spectrum, New Brunswick, NJ, USA) was provided on-line dialysis of the eluent before fractions were collected, so that the fractions could be analyzed by SDS-PAGE (sodium dodecyl sulfate - polyacrylamide gel electrophoresis) without further dialysis. The current method does not require immobilizing the antibody onto a matrix, which is used by the conventional immunoaffinity chromatography. This method ensures full recovery of the antigen and antibody, and it may be applied to purification of other proteins.

  2. Ethanol-assisted gel chromatography for single-chirality separation of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zeng, Xiang; Hu, Jinwen; Zhang, Xiao; Zhou, Naigen; Zhou, Weiya; Liu, Huaping; Xie, Sishen

    2015-10-01

    Surfactants or polymers are usually used for the liquid processing of carbon nanotubes for their structure separation. However, they are difficult to remove after separation, affecting the intrinsic properties and applications of the separated species. Here, we report an ethanol-assisted gel chromatography for the chirality separation of single-walled carbon nanotubes (SWCNTs), in which ethanol is employed to finely tune the density/coverage of sodium dodecyl sulfate (SDS) on nanotubes, and thus the interactions between SWCNTs and an allyl dextran-based gel. Incrementally increasing the ethanol content in a low-concentration SDS eluent leads to successive desorption of the different structure SWCNTs adsorbed on the gel, and to achieve multiple distinct (n, m) single-chirality species. The use of ethanol enables the working concentration of SDS to be reduced dramatically and also avoids the introduction of other surfactants or chemical reagents. More importantly, ethanol can be easily removed after separation. The ability of ethanol to tune the interactions between SWCNTs and the gel also gives a deeper insight into the separation mechanism of SWCNTs using gel chromatography.Surfactants or polymers are usually used for the liquid processing of carbon nanotubes for their structure separation. However, they are difficult to remove after separation, affecting the intrinsic properties and applications of the separated species. Here, we report an ethanol-assisted gel chromatography for the chirality separation of single-walled carbon nanotubes (SWCNTs), in which ethanol is employed to finely tune the density/coverage of sodium dodecyl sulfate (SDS) on nanotubes, and thus the interactions between SWCNTs and an allyl dextran-based gel. Incrementally increasing the ethanol content in a low-concentration SDS eluent leads to successive desorption of the different structure SWCNTs adsorbed on the gel, and to achieve multiple distinct (n, m) single-chirality species. The use of

  3. The antigenicity in guinea pigs and monkeys of three mycobacterial polysaccharides purified by affinity chromatography with concanavalin A.

    PubMed

    Daniel, T M

    1975-06-01

    The antigenicity of 3 polysaccharides purified from culture filtrates of Mycobacterim tuberculosis by affinity chromatography using a concanavalin A-agarose absorbent was studied. All 3 purified polysaccharides were found to be potent elicitors of delayed skin test reactions in sensitized guinea pigs and in a tuberculos monkey. This antigenicity could not be attributed to contaminating protein. Small dermal reactions were also observed in control guinea pigs. All 3 polysaccharides reacted with precipitating antibody in guinea pig sera, the antigenic specificity observed with the guinea pig sera differing from that demonstrated with reference goat antiserum. The 3 polysaccharides were also demonstrated to contain hemagglutination antigenic sites.

  4. Mass spectrometry-compatible silver staining of histones resolved on acetic acid-urea-Triton PAGE.

    PubMed

    Pramod, Khare Satyajeet; Bharat, Khade; Sanjay, Gupta

    2009-05-01

    Acetic acid-Urea-Triton (AUT) PAGE is commonly used method to separate histone variants and their post-translationally modified forms. Coomassie staining is the preferred method for protein visualization; however, its sensitivity is less than that of silver staining. Though silver staining of histones in AUT-PAGE has been reported, the method is time-consuming, dependent on prior staining by Amido black and has not been reported suitable for mass spectrometry. Here, we propose 'SDS-Silver' method for rapid, sensitive and mass spectrometry-compatible staining of histones resolved on AUT-PAGE.

  5. Targeting Anti-Cancer Active Compounds: Affinity-Based Chromatographic Assays

    PubMed Central

    de Moraes, Marcela Cristina; Cardoso, Carmen Lucia; Seidl, Claudia; Moaddel, Ruin; Cass, Quezia Bezerra

    2016-01-01

    Affinity-based chromatography assays encompass the use of solid supports containing immobilized biological targets to monitor binding events in the isolation , identification and/or characterization of bioactive compounds. This powerful bioanalytical technique allows the screening of potential binders through fast analyses that can be directly performed using isolated substances or complex matrices. An overview of the recent researches in frontal and zonal affinity-based chromatography screening assays, which has been used as a tool in the identification and characterization of new anti-cancer agents, is discussed. In addition, a critical evaluation of the recently emerged ligands fishing assays in complex mixtures is also discussed. PMID:27306095

  6. Sexual dimorphism in stature (SDS), jealousy and mate retention.

    PubMed

    Brewer, Gayle; Riley, Charlene

    2010-10-02

    Previous research has investigated the manner in which absolute height impacts on jealousy and mate retention. Although relative height is also important, little information exists about the potential influence of sexual dimorphism in stature (SDS) within established relationships. The current study investigated the relationship between SDS and the satisfaction, jealousy and mate retention behaviors reported by men and women. Heterosexual men (n = 98) and women (n = 102) completed a questionnaire. Men in high SDS relationships reported the lowest levels of cognitive and behavioral jealousy, although the impact of SDS on relationship satisfaction was less clear. SDS was not associated with the overall use of mate retention strategies; SDS did however affect the use of three specific strategies (vigilance, monopolization of time, love and care). SDS did not affect women's relationship satisfaction, jealousy (cognitive, behavioral, or emotional) or the use of mate retention strategies (with the exception of resource display).

  7. Production of recombinant protein G through high-density fermentation of engineered bacteria as well as purification.

    PubMed

    Zhang, Hu-Cheng; Yang, Jun; Yang, Guo-Wei; Wang, Xiao-Jie; Fan, Hai-Tao

    2015-08-01

    Recombinant Streptococcus Protein G (PG) is a cell wall protein, which, when combined with mammal immunoglobulin, is used in separating antibody technology. High-density fermentation technologies using an engineered recombinant PG-producing bacteria as well as PG separation and purification technologies have a direct impact on the availability and application of PG. Through primary and secondary seed cultivation, a recombinant E. coli strain was subjected to high-density fermentation with controlled feed supplement concentration under stimulation with isopropyl β-D-1-thiogalactopyranoside. The present study investigated the effect of factors including inoculum size, oxygen levels, pH and the cultivating method on the fermentation process, as well as the effect of the separation and purification technologies, including ultrasonication, nickel column affinity chromatography, Sephadex G-25 gel filtration chromatography and diethylaminoethanol-sepharose fast flow ion exchange chromatography on the yield and purity of PG. The efficiency of extraction was detected using SDS-PAGE. High-density fermentation yielded 80-150 g/l of bacteria and 1 g PG was obtained from one liter broth. The present study delivered a highly efficient novel method via which PG can be obtained at a high concentration and a purity >95%.

  8. Hollow fiber based affinity selection combined with high performance liquid chromatography-mass spectroscopy for rapid screening lipase inhibitors from lotus leaf.

    PubMed

    Tao, Yi; Zhang, Yufeng; Wang, Yi; Cheng, Yiyu

    2013-06-27

    A novel kind of immobilized enzyme affinity selection strategy based on hollow fibers has been developed for screening inhibitors from extracts of medicinal plants. Lipases from porcine pancreas were adsorbed onto the surface of polypropylene hollow fibers to form a stable matrix for ligand fishing, which was called hollow fibers based affinity selection (HF-AS). A variety of factors related to binding capability, including enzyme concentration, incubation time, temperature, buffer pH and ion strength, were optimized using a known lipase inhibitor hesperidin. The proposed approach was applied in screening potential lipase bound ligands from extracts of lotus leaf, followed by rapid characterization of active compounds using high performance liquid chromatography-mass spectrometry. Three flavonoids including quercetin-3-O-β-D-arabinopyranosyl-(1→2)-β-D-galactopyranoside, quercetin-3-O-β-D-glucuronide and kaempferol-3-O-β-d-glucuronide were identified as lipase inhibitors by the proposed HF-AS approach. Our findings suggested that the hollow fiber-based affinity selection could be a rapid and convenient approach for drug discovery from natural products resources. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Trypsin from the pyloric caeca of bluefish (Pomatomus saltatrix).

    PubMed

    Klomklao, Sappasith; Benjakul, Soottawat; Visessanguan, Wonnop; Kishimura, Hideki; Simpson, Benjamin K

    2007-12-01

    Trypsin was purified from the pyloric caeca of bluefish (Pomatomus saltatrix) by ammonium sulfate precipitation, acetone precipitation and soybean trypsin inhibitor-Sepharose 4B affinity chromatography. Bluefish trypsin migrated as a single band using both sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and native-PAGE and had a molecular mass of 28 kDa. The optima pH and temperature for the hydrolysis of benzoyl-dl-arginine-p-nitroanilide (BAPNA) were 9.5 and 55 degrees C, respectively. The enzyme was stable over a broad pH range (7 to 12), but was unstable at acidic pH, and at temperatures greater than 40 degrees C. The enzyme was inhibited by specific trypsin inhibitors: soybean trypsin inhibitor (SBTI), N-p-tosyl-l-lysine chloromethyl ketone (TLCK) and the serine protease inhibitor phenylmethyl sulfonylfluoride (PMSF). CaCl2 partially protected trypsin against activity loss at 40 degrees C, but NaCl (0 to 30%) decreased the activity in a concentration dependent manner. The N-terminal amino acid sequence of trypsin was determined as IVGGYECKPKSAPVQVSLNL and was highly homologous to other known vertebrate trypsins.

  10. Purification of a novel chitin-binding lectin with antimicrobial and antibiofilm activities from a bangladeshi cultivar of potato (Solanum tuberosum).

    PubMed

    Hasan, Imtiaj; Ozeki, Yasuhiro; Kabir, Syed Rashel

    2014-04-01

    A new chitin-binding lectin was purified from a Bangladeshi cultivar 'Deshi' of potato (Solanum tuberosum L.) through anion-exchange and affinity chromatographies using a chitin column. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) showed the molecular mass of the lectin as 20,000 Daltons. This molecular mass was almost half of the molecular masses of chitin-binding lectins derived from other potatoes. The lectin showed both bactericidal and growth-inhibiting activities against Gram-positive (Listeria monocytogenes) and Gram-negative (Escherichia coli, Salmonella enteritidis and Shigella boydii) pathogenic bacteria. It also showed antifungal activity against Rhizopus spp., Penicillium spp. and Aspergillus niger. Biofilm produced by the bacterium Pseudomonas aeruginosa was dose-dependently reduced by 5-20% in 24 h after administration of the lectin, which was attributed to the glycan-binding property of the lectin having affinity to GlcNAc polymers. It was the first observation that any potato lectin prevented biofilm formation by P. aeruginosa and, therefore, could have possible applications in clinical microbiology and biomedical science.

  11. Evaluation of Quantitative Performance of Sequential Immobilized Metal Affinity Chromatographic Enrichment for Phosphopeptides

    PubMed Central

    Sun, Zeyu; Hamilton, Karyn L.; Reardon, Kenneth F.

    2014-01-01

    We evaluated a sequential elution protocol from immobilized metal affinity chromatography (SIMAC) employing gallium-based immobilized metal affinity chromatography (IMAC) in conjunction with titanium-dioxide-based metal oxide affinity chromatography (MOAC). The quantitative performance of this SIMAC enrichment approach, assessed in terms of repeatability, dynamic range, and linearity, was evaluated using a mixture composed of tryptic peptides from caseins, bovine serum albumin, and phosphopeptide standards. While our data demonstrate the overall consistent performance of the SIMAC approach under various loading conditions, the results also revealed that the method had limited repeatability and linearity for most phosphopeptides tested, and different phosphopeptides were found to have different linear ranges. These data suggest that, unless additional strategies are used, SIMAC should be regarded as a semi-quantitative method when used in large-scale phosphoproteomics studies in complex backgrounds. PMID:24096195

  12. Purification and characterization of a new type lactose-binding Ulex europaeus lectin by affinity chromatography.

    PubMed

    Konami, Y; Yamamoto, K; Osawa, T

    1991-02-01

    A new type lactose-binding lectin was purified from extracts of Ulex europaeus seeds by affinity chromatography on a column of galactose-Sepharose 4B, followed by gel filtration on Sephacryl S-300. This lectin, designated as Ulex europaeus lectin III (UEA-III), was found to be inhibited by lactose. The dimeric lectin is a glycoprotein with a molecular mass of 70,000 Da; it consists of two apparently identical subunits of a molecular mass of 34,000 Da. Compositional analysis showed that this lectin contains 30% carbohydrate and a large amount of aspartic acid, serine and valine, but no sulfur-containing amino acids. The N-terminal amino-acid sequences of L-fucose-binding Ulex europaeus lectin I (UEA-I) and di-N-acetylchitobiose-binding Ulex europaeus lectin II (UEA-II), both of which we have already purified and characterized, and that of UEA-III were determined and compared.

  13. Using an FPLC to promote active learning of the principles of protein structure and purification.

    PubMed

    Robinson, Rebekah L; Neely, Amy E; Mojadedi, Wais; Threatt, Katie N; Davis, Nicole Y; Weiland, Mitch H

    2017-01-02

    The concepts of protein purification are often taught in undergraduate biology and biochemistry lectures and reinforced during laboratory exercises; however, very few reported activities allow students to directly gain experience using modern protein purification instruments, such as Fast Protein Liquid Chromatography (FPLC). This laboratory exercise uses size exclusion chromatography (SEC) and ion exchange (IEX) chromatography to separate a mixture of four different proteins. Students use an SEC chromatogram and corresponding SDS-PAGE gel to understand how protein conformations change under different conditions (i.e. native and non-native). Students explore strategies to separate co-eluting proteins by IEX chromatography. Using either cation or anion exchange, one protein is bound to the column while the other is collected in the flow-through. In this exercise, undergraduate students gain hands-on experience with experimental design, buffer and sample preparation, and implementation of instrumentation that is commonly used by experienced researchers while learning and applying the fundamental concepts of protein structure, protein purification, and SDS-PAGE. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):60-68, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  14. Multiplexed Liquid Chromatography-Multiple Reaction Monitoring Mass Spectrometry Quantification of Cancer Signaling Proteins

    PubMed Central

    Chen, Yi; Fisher, Kate J.; Lloyd, Mark; Wood, Elizabeth R.; Coppola, Domenico; Siegel, Erin; Shibata, David; Chen, Yian A.; Koomen, John M.

    2017-01-01

    Quantitative evaluation of protein expression across multiple cancer-related signaling pathways (e.g. Wnt/β-catenin, TGF-β, receptor tyrosine kinases (RTK), MAP kinases, NF-κB, and apoptosis) in tumor tissues may enable the development of a molecular profile for each individual tumor that can aid in the selection of appropriate targeted cancer therapies. Here, we describe the development of a broadly applicable protocol to develop and implement quantitative mass spectrometry assays using cell line models and frozen tissue specimens from colon cancer patients. Cell lines are used to develop peptide-based assays for protein quantification, which are incorporated into a method based on SDS-PAGE protein fractionation, in-gel digestion, and liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM/MS). This analytical platform is then applied to frozen tumor tissues. This protocol can be broadly applied to the study of human disease using multiplexed LC-MRM assays. PMID:28808993

  15. Ethanol-assisted gel chromatography for single-chirality separation of carbon nanotubes.

    PubMed

    Zeng, Xiang; Hu, Jinwen; Zhang, Xiao; Zhou, Naigen; Zhou, Weiya; Liu, Huaping; Xie, Sishen

    2015-10-21

    Surfactants or polymers are usually used for the liquid processing of carbon nanotubes for their structure separation. However, they are difficult to remove after separation, affecting the intrinsic properties and applications of the separated species. Here, we report an ethanol-assisted gel chromatography for the chirality separation of single-walled carbon nanotubes (SWCNTs), in which ethanol is employed to finely tune the density/coverage of sodium dodecyl sulfate (SDS) on nanotubes, and thus the interactions between SWCNTs and an allyl dextran-based gel. Incrementally increasing the ethanol content in a low-concentration SDS eluent leads to successive desorption of the different structure SWCNTs adsorbed on the gel, and to achieve multiple distinct (n, m) single-chirality species. The use of ethanol enables the working concentration of SDS to be reduced dramatically and also avoids the introduction of other surfactants or chemical reagents. More importantly, ethanol can be easily removed after separation. The ability of ethanol to tune the interactions between SWCNTs and the gel also gives a deeper insight into the separation mechanism of SWCNTs using gel chromatography.

  16. Further Characterization of an Interleukin-2-1Ike Cytokine Produced by Xenopus Laevis T Lymphocytes

    PubMed Central

    Haynes, Laura

    1993-01-01

    A T-cell growth factor (TCGF) is produced by antigen- or mitogen-stimulated T lymphocytes from the South African clawed frog Xenopus laevis. This study further defines the physical and biological properties of this cytokine and demonstrates that TCGF is biochemically similar to mammalian interleukin-2 (IL-2). Biologically active TCGF eluted from SDS-PAGE displays a Mr of 16 kD and lectin-affinity chromatography indicates that the three-dimensionmal configuration of carbohydrates on TCGF and human IL-2 is similar. Secretion of TCGF is detectable 1 day after stimulation of splenocytes with the T-cell mitogen phytohemagglutinin (PHA) and peaks following 2 to 3 days of stimulation. Finally, despite the biological and physical similarities between Xenopus TCGF and mammalian IL-2, anti-human IL-2 monoclonal antibodies do not recognize Xenopus TCGF. PMID:8281036

  17. Recombinant expression, purification, and characterization of an acyl-CoA binding protein from Aspergillus oryzae.

    PubMed

    Hao, Qing; Liu, Xiaoguang; Zhao, Guozhong; Jiang, Lu; Li, Ming; Zeng, Bin

    2016-03-01

    To characterize biochemically the lipid metabolism-regulating acyl-CoA binding protein (ACBP) from the industrially-important fungus Aspergillus oryzae. A full-length cDNA encoding a candidate ACBP from A. oryzae (AoACBP) was cloned and expressed in Escherichia coli as a maltose-binding protein (MBP) fusion protein. The MBP-AoACBP protein was purified by an amylose resin chromatography column. SDS-PAGE showed that MBP-AoACBP has an estimated molecular weight of 82 kDa. Microscale thermophoresis binding assay showed that the recombinant AoACBP displayed much greater affinity for palmitoyl-CoA (K d = 80 nM) than for myristoyl-CoA (K d = 510 nM), thus demonstrating the preference of AoACBP for long-chain acyl-CoA. The data support the identification of AoACBP as a long-chain ACBP in A. oryzae.

  18. Limonoate dehydrogenase from Arthrobacter globiformis: the native enzyme and its N-terminal sequence.

    PubMed

    Suhayda, C G; Omura, M; Hasegawa, S

    1995-09-01

    Bitter limonoids in citrus juice lower the quality and value of commercial juices. Limonoate dehydrogenase converts the precursor of bitter limonin, limonoate A-ring lactone, to nonbitter 17-dehydrolimonoate A-ring lactone. This enzyme was isolated from Arthrobacter globiformis cells by a combination of ammonium sulfate fractionation, Cibacron Blue affinity chromatography and DEAE ion exchange HPLC. Using this protocol a 428-fold purification of the enzyme was obtained. Gel filtration HPLC indicated a M(r) of 118,000 for the native enzyme. SDS-PAGE indicated an individual subunit M(r) of 31,000. N-Terminal sequencing of the protein provided a sequence of the first 16 amino acid residues. Since LDH activity in citrus is very low, cloning the gene for this bacterial enzyme into citrus trees should enhance the natural debittering mechanism in citrus fruit.

  19. Purification and characterization of Phaseolus vulgaris alpha-D-galactosidase isozymes.

    PubMed

    Dhar, M; Mitra, M; Hata, J; Butnariu, O; Smith, D

    1994-11-01

    A highly purified preparation of alpha-D-galactosidase [E.C. 3.2.1.22] isozymes was obtained from Phaseolus vulgaris (pinto bean) seeds by extraction, salt precipitation, ion exchange, and affinity chromatography. The final preparation was homogeneous by SDS-PAGE but revealed isozymes of relative mass of 38.3 and 39.6 kDa. The N-terminal sequence for both isozymes was identical, LANGLAKT (one letter code for amino acids). Relative native molecular mass was estimated at 149.3 kDa by Sephacryl S-200 chromatography. Activity was unaffected by ionic strength at high enzyme concentrations, and was specific for alpha-D-galactoside conjugates. No protease or hemagglutinin activity was detected, and activity was stable at 4 degrees C. Studies with soluble oligosaccharides demonstrated high activity against the selected straight and branched-chain substrates. The enzyme was active against terminal alpha 1-3 galactosyl residues on human and rabbit erythrocyte membranes. Because of its activity against membrane glycoconjugates, these isozymes may have potential utility for modifying membrane epitopes on native erythrocytes.

  20. Induction of calcite precipitation through heightened production of extracellular carbonic anhydrase by CO2 sequestering bacteria.

    PubMed

    Sundaram, Smita; Thakur, Indu Shekhar

    2018-04-01

    The thermo-alkalotolerant bacterium exhibiting heightened extracellular carbonic anhydrase (CA) activity, survived at 100 mM sodium bicarbonateand 5% gaseous CO 2 was identified as Bacillus sp. by 16S rRNA sequencing. Extracellular carbonic anhydrase was purified by ammonium sulfate precipitation, gel filtration chromatography and affinity chromatography with a yield of 46.61% and specific activity of 481.66 U/mg. The size of purified carbonic anhydrase was approximately 28 kDa in SDS-PAGE gel filtration and further their role in calcium carbonate production was correlated. The purified enzyme was stable with half-life of 25.36 min at 90 °C and pH 8. K M and Vmax values of the enzyme were 1.77 mg/mL and 385.69 U/mg respectively. The production of calcite was confirmed by Scanning Electron Microscopy (SEM) analysis, FTIR, and Energy-Dispersive X-ray (EDX) analysis. Carbonic anhydrase and calcite deposition coupled with CO 2 fixingbacteria is a significant approach for CO 2 sequestration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Monocarboxylate and alpha-ketoglutarate carriers from bovine heart mitochondria. Purification by affinity chromatography on immobilized 2-cyano-4-hydroxycinnamate.

    PubMed

    Bolli, R; Nałecz, K A; Azzi, A

    1989-10-25

    2-Cyano-4-hydroxycinnamate was covalently linked, through a diazo bond, to Sepharose 4B, which had been elongated with a hydrophobic spacer. A Triton X-100 extract from bovine heart mitochondria was pre-purified by hydroxylapatite chromatography and passed through the 2-cyano-4-hydroxycinnamate affinity resin in the presence of 0.7% deoxycholate. At pH 6 and in the presence of 0.2 M sodium chloride, a single polypeptide with an Mr of 34,000 was eluted. Subsequently, at pH 8 and in the presence of 2-cyano-4-hydroxycinnamate, another single protein with an Mr of 31,500 was released. Both proteins were reconstituted into phospholipid vesicles and their transport activities were measured. High, delta pH-dependent, 2-cyanocinnamate-sensitive pyruvate uptake was measured in vesicles containing only the 34-kDa protein. alpha-Ketobutyrate and other alpha-ketomonocarboxylic acids were competitive inhibitors of the pyruvate uptake, whereas di- and tricarboxylates had only small effects. alpha-Ketoglutarate-alpha-ketoglutarate exchange could only be measured in vesicles containing the 31.5-kDa protein. The molecular weight of this protein and its functional properties were similar to those of the alpha-ketoglutarate carrier isolated by a different method (Bisaccia, Indiveri, C., and Palmieri, F. (1985) Biochim. Biophys. Acta 810, 362-369). 2-Cyano-4-hydroxycinnamate inhibited the alpha-ketoglutarate exchange in a noncompetitive manner with an apparent Ki of 0.7 mM. It is concluded that by the described affinity chromatography procedure, two mitochondrial carriers transporting alpha-ketoacids, i.e. the monocarboxylate and the alpha-ketoglutarate carrier, could be purified in a functionally active state.

  2. Isolation of thylakoid membrane complexes from rice by a new double-strips BN/SDS-PAGE and bioinformatics prediction of stromal ridge subunits interaction.

    PubMed

    Shao, Jinzhen; Zhang, Yubo; Yu, Jianlan; Guo, Lin; Ding, Yi

    2011-01-01

    Thylakoid membrane complexes of rice (Oryza sativa L.) play crucial roles in growth and crop production. Understanding of protein interactions within the complex would provide new insights into photosynthesis. Here, a new "Double-Strips BN/SDS-PAGE" method was employed to separate thylakoid membrane complexes in order to increase the protein abundance on 2D-gels and to facilitate the identification of hydrophobic transmembrane proteins. A total of 58 protein spots could be observed and subunit constitution of these complexes exhibited on 2D-gels. The generality of this new approach was confirmed using thylakoid membrane from spinach (Spinacia oleracea) and pumpkin (Cucurita spp). Furthermore, the proteins separated from rice thylakoid membrane were identified by the mass spectrometry (MS). The stromal ridge proteins PsaD and PsaE were identified both in the holo- and core- PSI complexes of rice. Using molecular dynamics simulation to explore the recognition mechanism of these subunits, we showed that salt bridge interactions between residues R19 of PsaC and E168 of PasD as well as R75 of PsaC and E91 of PsaD played important roles in the stability of the complex. This stromal ridge subunits interaction was also supported by the subsequent analysis of the binding free energy, the intramolecular distances and the intramolecular energy.

  3. Production and purification of polyclonal antibody against F(ab')2 fragment of human immunoglobulin G

    PubMed Central

    Nasiri, Hadi; Valedkarimi, Zahra; Aghebati-Maleki, Leili; Abdolalizadeh, Jalal; Kazemi, Tohid; Esparvarinha, Mojghan; Majidi, Jafar

    2017-01-01

    Antibodies are essential tools of biomedical and biochemical researches. Polyclonal antibodies are produced against different epitopes of antigens. Purified F(ab')2 can be used for animal’s immunization to produce polyclonal antibodies. Human immunoglobulin G (IgG) was purified by ion exchange chromatography method. In all stages verification method of the purified antibodies was sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Purified IgG was digested by pepsin enzyme and F(ab')2 fragment was purified by gel filtration separation method. For production of polyclonal antibody, rabbit was immunized by purified F(ab')2 and antibody production was investigated by enzyme-linked immunosorbent assay. Purified anti-IgG F(ab')2 was conjugated with fluorescein isothiocyanate. Ion exchange chromatography purification yielded 38 mg of human IgG antibody. The results of SDS-PAGE in reduced and non-reduced conditions showed bands with 25-30 kDa molecular weight (MW) and 50-kDa respectively and a distinct band with 150 kDa MW. The results of non-reduced SDS-PAGE for determining the purity of F(ab')2 fragment showed one band in 90 kDa and a band in 150 kDa MW position. Purification by Ion exchange chromatography method resulted about 12 mg rabbit polyclonal antibody. Flow cytometry showed generated polyclonal antibody had an acceptable activity compared to commercial antibody. Taking together, purified IgG F(ab')2 and polyclonal anti-IgG F(ab')2 are useful tools in biomedical and biochemical researches and diagnostic kits. PMID:29326789

  4. Production and purification of polyclonal antibody against F(ab')2 fragment of human immunoglobulin G.

    PubMed

    Nasiri, Hadi; Valedkarimi, Zahra; Aghebati-Maleki, Leili; Abdolalizadeh, Jalal; Kazemi, Tohid; Esparvarinha, Mojghan; Majidi, Jafar

    2017-01-01

    Antibodies are essential tools of biomedical and biochemical researches. Polyclonal antibodies are produced against different epitopes of antigens. Purified F(ab') 2 can be used for animal's immunization to produce polyclonal antibodies. Human immunoglobulin G (IgG) was purified by ion exchange chromatography method. In all stages verification method of the purified antibodies was sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Purified IgG was digested by pepsin enzyme and F(ab') 2 fragment was purified by gel filtration separation method. For production of polyclonal antibody, rabbit was immunized by purified F(ab') 2 and antibody production was investigated by enzyme-linked immunosorbent assay. Purified anti-IgG F(ab') 2 was conjugated with fluorescein isothiocyanate. Ion exchange chromatography purification yielded 38 mg of human IgG antibody. The results of SDS-PAGE in reduced and non-reduced conditions showed bands with 25-30 kDa molecular weight (MW) and 50-kDa respectively and a distinct band with 150 kDa MW. The results of non-reduced SDS-PAGE for determining the purity of F(ab') 2 fragment showed one band in 90 kDa and a band in 150 kDa MW position. Purification by Ion exchange chromatography method resulted about 12 mg rabbit polyclonal antibody. Flow cytometry showed generated polyclonal antibody had an acceptable activity compared to commercial antibody. Taking together, purified IgG F(ab') 2 and polyclonal anti-IgG F(ab') 2 are useful tools in biomedical and biochemical researches and diagnostic kits.

  5. Affinity approaches in RNAi-based therapeutics purification.

    PubMed

    Pereira, Patrícia; Queiroz, João A; Figueiras, Ana; Sousa, Fani

    2016-05-15

    The recent investigation on RNA interference (RNAi) related mechanisms and applications led to an increased awareness of the importance of RNA in biology. Nowadays, RNAi-based technology has emerged as a potentially powerful tool for silencing gene expression, being exploited to develop new therapeutics for treating a vast number of human disease conditions, as it is expected that this technology can be translated onto clinical applications in a near future. This approach makes use of a large number of small (namely short interfering RNAs, microRNAs and PIWI-interacting RNAs) and long non-coding RNAs (ncRNAs), which are likely to have a crucial role as the next generation therapeutics. The commercial and biomedical interest in these RNAi-based therapy applications have fostered the need to develop innovative procedures to easily and efficiently purify RNA, aiming to obtain the final product with high purity degree, good quality and biological activity. Recently, affinity chromatography has been applied to ncRNAs purification, in view of the high specificity. Therefore, this article intends to review the biogenesis pathways of regulatory ncRNAs and also to discuss the most significant and recent developments as well as applications of affinity chromatography in the challenging task of purifying ncRNAs. In addition, the importance of affinity chromatography in ncRNAs purification is addressed and prospects for what is forthcoming are presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Analysis of drought-tolerant sugar beet (Beta vulgaris L.) mutants induced with gamma radiation using SDS-PAGE and ISSR markers.

    PubMed

    Sen, Ayse; Alikamanoglu, Sema

    2012-01-01

    Drought is one of the major environmental stresses which greatly affect the plant growth and productivity. In the present study, various doses (0-75Gy) of gamma rays were applied to investigate the effect of radiation on shoot tip explants. It was observed that the regeneration rates and plant fresh weights decreased significantly with an increase in radiation dose. The optimal irradiation doses for mutation induction were determined at 15 and 20Gy. Afterwards, the induction of somatic mutation in sugar beet (Beta vulgaris L.) was investigated by irradiation of shoot tips with 15 and 20Gy gamma rays. Irradiated shoot tips were sub-cultured and M(1)V(1)-M(1)V(3) generations were obtained. Mutants tolerant to drought stress were selected on MS medium, supplemented with 10 and 20gl(-1) PEG6000. Of the M(1)V(3) plantlets, drought-tolerant mutants were selected. Leaf soluble proteins obtained from the control and drought-tolerant mutants were analyzed by SDS-PAGE. A total of 22 protein bands were determined and 2 of them were observed to be drought-tolerant mutants except the control. Polymorphism was also detected among the control and drought-tolerant mutants by DNA fingerprinting using ISSR markers. A total of 106 PCR fragments were amplified with 19 ISSR primers and 91 of them were polymorphic. The dendrograms were separated into two main clusters. First cluster included M8 mutant plant, which was applied 20Gy gamma radiation and regenerated on selective culture media containing 10gl(-1) PEG6000 concentration, and the second cluster was further divided into five sub-clusters. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Evaluation and standardization of different purification procedures for fish bile and liver metallothionein quantification by spectrophotometry and SDS-PAGE analyses.

    PubMed

    Tenório-Daussat, Carolina Lyrio; Resende, Marcia Carolina Martinho; Ziolli, Roberta L; Hauser-Davis, Rachel Ann; Schaumloffel, Dirk; Saint'Pierre, Tatiana D

    2014-03-01

    Fish bile metallothioneins (MT) have been recently reported as biomarkers for environmental metal contamination; however, no studies regarding standardizations for their purification are available. Therefore, different procedures (varying centrifugation times and heat-treatment temperatures) and reducing agents (DTT, β-mercaptoethanol and TCEP) were applied to purify MT isolated from fish (Oreochromis niloticus) bile and liver. Liver was also analyzed, since these two organs are intrinsically connected and show the same trend regarding MT expression. Spectrophotometrical analyses were used to quantify the resulting MT samples, and SDS-PAGE gels were used to qualitatively assess the different procedure results. Each procedure was then statistically evaluated and a multivariate statistical analysis was then applied. A response surface methodology was also applied for bile samples, in order to further evaluate the responses for this matrix. Heat treatment effectively removes most undesired proteins from the samples, however results indicate that temperatures above 70 °C are not efficient since they also remove MTs from both bile and liver samples. Our results also indicate that the centrifugation times described in the literature can be decreased in order to analyze more samples in the same timeframe, of importance in environmental monitoring contexts where samples are usually numerous. In an environmental context, biliary MT was lower than liver MT, as expected, since liver accumulates MT with slower detoxification rates than bile, which is released from the gallbladder during feeding, and then diluted by water. Therefore, bile MT seems to be more adequate in environmental monitoring scopes regarding recent exposure to xenobiotics that may affect the proteomic and metalloproteomic expression of this biological matrix. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Efficient renaturation of inclusion body proteins denatured by SDS.

    PubMed

    He, Chuan; Ohnishi, Kouhei

    2017-09-02

    Inclusion bodies are often formed when the foreign protein is over expressed in Escherichia coli. Since proteins in inclusion bodies are inactive, denaturing and refolding of inclusion body proteins are necessary to obtain the active form. Instead of the conventional denaturants, urea and guanidine hydrochloride, a strong anionic detergent SDS was used to solubilize C-terminal His-tag form of ulvan lyase in the inclusion bodies. Solution containing SDS-solubilized enzyme were kept on ice to precipitate SDS, followed by SDS-KCl insoluble crystal formation to remove SDS completely. After removing the precipitate by centrifugation, the supernatant was applied to Ni-NTA column to purify His-tagged ulvan lyase. The purified protein showed a dimeric form and ulvan lyase activity, demonstrating that SDS-denatured protein was renatured and recovered enzyme activity. This simple method could be useful for refolding other inclusion body proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Partial purification and characterization of a novel histidine decarboxylase from Enterobacter aerogenes DL-1.

    PubMed

    Zou, Yu; Hu, Wenzhong; Jiang, Aili; Tian, Mixia

    2015-08-18

    Histidine decarboxylase (HDC) from Enterobacter aerogenes DL-1 was purified in a three-step procedure involving ammonium sulfate precipitation, Sephadex G-100, and DEAE-Sepharose column chromatography. The partially purified enzyme showed a single protein band of 52.4 kD on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The optimum pH for HDC activity was 6.5, and the enzyme was stable between pH 4 and 8. Enterobacter aerogenes HDC had optimal activity at 40°C and retained most of its activity between 4 and 50°C. HDC activity was reduced in the presence of numerous tested compounds. Particularly with SDS, it significantly (p < 0.01) inhibited enzyme activity. Conversely, Ca(2+) and Mn(2+) showed prominent activation effects (p < 0.01) with activity increasing to 117.20% and 123.42%, respectively. The Lineweaver-Burk plot showed that K m and V max values of the enzyme for L-histidine were 0.21 mM and 71.39 µmol/min, respectively. In comparison with most HDCs from other microorganisms and animals, HDC from E. aerogenes DL-1 displayed higher affinity and greater reaction velocity toward L-histidine.

  10. Thiacarbocyanine as ligand in dye-affinity chromatography for protein purification. II. Dynamic binding capacity using lysozyme as a model.

    PubMed

    Boto, R E F; Anyanwu, U; Sousa, F; Almeida, P; Queiroz, J A

    2009-09-01

    A constant development of dye-affinity chromatography to replace more traditional techniques is verified, with the aim of increasing specificity in the purification of biomolecules. The establishment of a new dye-affinity chromatographic support imposes their complete characterization, namely with relation to the binding capacity for proteins, in order to evaluate its applicability on global purification processes. Following previous studies, the adsorption of lysozyme onto a thiacarbocyanine dye immobilized on beaded cellulose was investigated. The effect of different parameters, such as temperature, ionic strength, pH, protein concentration and flow rate, on the dynamic binding capacity of the support to retain lysozyme was also studied. Increasing the temperature and the lysozyme concentration had a positive effect on the dynamic binding capacity (DBC), whereas increasing the ionic strength and the flow rate resulted in the opposite. It was also discovered that the pH used had an important impact on the lysozyme binding onto the immobilized dye. The maximum DBC value obtained for lysozyme was 8.6 mg/mL, which was achieved at 30 degrees C and pH 9 with a protein concentration of 0.5 mg/mL and a flow rate of 0.05 mL/min. The dissociation constant (K(d)) obtained was 2.61 +/- 0.36 x 10(-5 )m, proving the affinity interaction between the thiacarbocyanine dye ligand and the lysozyme. Copyright (c) 2009 John Wiley & Sons, Ltd.

  11. Purification of native M. vogae and H. contortus tubulin by TOG affinity chromatography.

    PubMed

    Munguía, Beatriz; Teixeira, Ramiro; Veroli, Victoria; Melian, Elisa; Saldaña, Jenny; Minteguiaga, Mahia; Señorale, Mario; Marín, Mónica; Domínguez, Laura

    2017-11-01

    Microtubules are non-covalent cylindrical polymers formed by alpha- and beta-tubulin heterodimer units, crucial for cell division, intracellular transport, motility and differentiation. This makes them very attractive pharmacological targets exploited to develop different drugs such as anthelmintics, antifungals, and antineoplastics. In this work, in order to establish an in vitro target-based screen to integrate to the search for new anthelmintics, we explored the extraction of native assembly-competent tubulin from two helminth parasites: Mesocestoides vogae tetrathyridia (syn. corti, Cestoda: Cyclophyllidea), a useful cestode biological model, and Haemonchus contortus, a sheep gastrointestinal nematode of interest in livestock production. For this purpose, a novel tubulin affinity chromatography procedure was employed, based on the binding capacity of TOG (Tumor Overexpressed Gene) domain from MAPs (microtubule-associated proteins). The TOG domain of the protein Stu2 from Saccharomyces cerevisiae fused to GST (glutathione S- transferase) were produced in E. coli, and the immobilized recombinant proteins allowed for native tubulin extraction from parasites. The binding capacity of TOG1 affinity column (3.6%) was estimated using commercial porcine brain tubulin. A total amount of up to 126 μg of M. vogae tubulin was purified, whereas H. contortus tubulin co-eluted with glutamate dehydrogenase enzyme. The identity of tubulins was confirmed by western blotting and mass spectrometry. The abundance of tubulin estimated in M. vogae was 10% soluble extract, which probably could explain differences observed between tubulin purification results of both helminth parasites. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Estimation of polyclonal IgG4 hybrids in normal human serum.

    PubMed

    Young, Elizabeth; Lock, Emma; Ward, Douglas G; Cook, Alexander; Harding, Stephen; Wallis, Gregg L F

    2014-07-01

    The in vivo or in vitro formation of IgG4 hybrid molecules, wherein the immunoglobulins have exchanged half molecules, has previously been reported under experimental conditions. Here we estimate the incidence of polyclonal IgG4 hybrids in normal human serum and comment on the existence of IgG4 molecules with different immunoglobulin light chains. Polyclonal IgG4 was purified from pooled or individual donor human sera and sequentially fractionated using light-chain affinity and size exclusion chromatography. Fractions were analysed by SDS-PAGE, immunoblotting, ELISA, immunodiffusion and matrix-assisted laser-desorption mass spectrometry. Polyclonal IgG4 purified from normal serum contained IgG4κ, IgG4λ and IgG4κ/λ molecules. Size exclusion chromatography showed that IgG4 was principally present in monomeric form (150 000 MW). SDS-PAGE, immunoblotting and ELISA showed the purity of the three IgG4 samples. Immunodiffusion, light-chain sandwich ELISA and mass spectrometry demonstrated that both κ and λ light chains were present on only the IgG4κ/λ molecules. The amounts of IgG4κ/λ hybrid molecules ranged from 21 to 33% from the five sera analysed. Based on the molecular weight these molecules were formed of two IgG4 heavy chains plus one κ and one λ light chain. Polyclonal IgG (IgG4-depleted) was similarly fractionated according to light-chain specificity. No evidence of hybrid IgG κ/λ antibodies was observed. These results indicate that hybrid IgG4κ/λ antibodies compose a substantial portion of IgG4 from normal human serum. © 2014 John Wiley & Sons Ltd.

  13. Guanine nucleotide regulatory protein co-purifies with the D/sub 2/-dopamine receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senogles, S.E.; Caron, M.G.

    1986-05-01

    The D/sub 2/-dopamine receptor from bovine anterior pituitary was purified approx.1000 fold by affinity chromatography on CMOS-Sepharose. Reconstitution of the affinity-purified receptor into phospholipid vesicles revealed the presence of high and low affinity agonist sites as detected by N-n-propylnorapomorphine (NPA) competition experiments with /sup 3/H-spiperone. High affinity agonist binding could be converted to the low affinity form by guanine nucleotides, indicating the presence of an endogenous guanine nucleotide binding protein (N protein) in the affinity-purified D/sub 2/ receptor preparations. Furthermore, this preparation contained an agonist-sensitive GTPase activity which was stimulated 2-3 fold over basal by 10 ..mu..M NPA. /sup 35/S-GTP..gamma..Smore » binding to these preparations revealed a stoichiometry of 0.4-0.7 mole N protein/mole receptor, suggesting the N protein may be specifically coupled with the purified D/sub 2/-dopamine receptor and not present as a contaminant. Pertussis toxin treatment of the affinity purified receptor preparations prevented high affinity agonist binding, as well as agonist stimulation of the GTPase activity, presumably by inactivating the associated N protein. Pertussis toxin lead to the ADP-ribosylation of a protein of 39-40K on SDS-PAGE. These findings indicate that an endogenous N protein, N/sub i/ or N/sub o/, co-purifies with the D/sub 2/-dopamine receptor which may reflect a precoupling of this receptor with an N protein within the membranes.« less

  14. A tetrodotoxin-binding protein in the hemolymph of shore crab Hemigrapsus sanguineus: purification and properties.

    PubMed

    Nagashima, Yuji; Yamamoto, Kazuhiko; Shimakura, Kuniyoshi; Shiomi, Kazuo

    2002-06-01

    The shore crab Hemigrapsus sanguineus hemolymph contains soluble proteins that bind tetrodotoxin (TTX) and are responsible for high resistance of the crab to TTX. The TTX-binding protein was purified from the hemolymph by ultrafiltration, lectin affinity chromatography and gel filtration HPLC. The purified protein gave only one band in native-polyacrylamide gel electrophoresis (PAGE), confirming its homogeneity. Its molecular weight was estimated to be about 400k by gel filtration HPLC, while it was estimated to be about 82k under non-reducing conditions and about 72 and 82k under reducing conditions by SDS-PAGE, indicating that the TTX-binding protein was composed of at least two distinct subunits. The TTX-binding protein was an acidic glycoprotein with pI 3.5, abundant in Asp and Glu but absent in Trp, and contained 6% reducing sugar and 12% amino sugar. The protein selectively bound to TTX, with a neutralizing ability of 6.7 mouse unit TTX/mg protein, but not to paralytic shellfish poisoning toxins. However, its neutralizing activity was almost lost by treatments with enzymes (protease XIV, thermolysin, trypsin, amyloglucosidase and alpha-amylase) and denaturing agents (1% SDS, 1% dithiothreitol, 8 M urea and 6 M guanidine hydrochloride), suggesting the involvement of both proteinaceous and sugar moieties in the binding to TTX and the importance of the steric conformation of the TTX-binding protein. Copright 2002 Elsevier Science Ltd.

  15. [Expression in E.coli and bioactivity assay of Micrococcus luteus resuscitation promoting factor domain and its mutants].

    PubMed

    Yue, Chen-Li; Shi, Jie-Ran; Shi, Chang-Hong; Zhang, Hai; Zhao, Lei; Zhang, Ting-Fen; Zhao, Yong; Xi, Li

    2008-10-01

    To express Micrococcus luteus resuscitation promoting factor (Rpf) domain and its mutants in prokaryotic cells, and to investigate their bioactivity. The gene of Rpf domain and its mutants (E54K, E54A) were amplified by polymerase chain reaction (PCR) from the genome of Micrococcus luteus and cloned into pMD18-T vector. After sequenced, the Rpf domain and its mutant gene were subcloned into expression vector PGEX-4T-1, and transfected into E. coli DH5alpha. The expressed product was purified by affinity chromatography using GST Fusion Protein Purification bead. The aim proteins were identified by SDS-PAGE analysis and by Western blot with monoclonal antibodies against Rpf domain (mAb). The bioactivity of the proteins was analyzed by stimulating the resuscitation of Mycobacterium smegmatis. The sequences of the PCR products were identical to those of the Rpf domain and its mutant gene in GenBank. The relative molecular mass identified by SDS-PAGE analysis was consistent with that had been reported, which was also confirmed by Western blot analysis that there were specific bindings at 32 000 with Rpf domain mAb. The purified GST-Rpf domain could stimulate resuscitation of Mycobacterium smegmatis. Replacements E54A and especially E54K resulted in inhibition of Rpf resuscitation activity. Rpf domain and two kinds of its mutant protein were obtained, and its effects on the resuscitation of dormant Mycobacterium smegmatis were clarified.

  16. Pulsed electric field (PEF)-induced aggregation between lysozyme, ovalbumin and ovotransferrin in multi-protein system.

    PubMed

    Wu, Li; Zhao, Wei; Yang, Ruijin; Yan, Wenxu

    2015-05-15

    The aggregation of multi-proteins is of great interest in food processing and a good understanding of the formation of aggregates during PEF processing is needed for the application of the process to pasteurize protein-based foods. The aggregates formation of a multi-protein system (containing ovalbumin, ovotransferrin and lysozyme) was studied through turbidity, size exclusion chromatography and SDS-PAGE patterns for interaction studies and binding forces. Results from size exclusion chromatography indicated that there was no soluble aggregates formed during PEF processing. The existence of lysozyme was important to form insoluble aggregates in the chosen ovalbumin solution. The results of SDS-PAGE patterns indicated that lysozyme was prone to precipitate, and was relatively the higher component of aggregates. Citric acid could be effective in inhibiting lysozyme from interacting with other proteins during PEF processing. Blocking the free sulphydryl by N-ethylmaleimide (NEM) did not affect aggregation inhibition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Dye-ligand affinity systems.

    PubMed

    Denizli, A; Pişkin, E

    2001-10-30

    Dye-ligands have been considered as one of the important alternatives to natural counterparts for specific affinity chromatography. Dye-ligands are able to bind most types of proteins, in some cases in a remarkably specific manner. They are commercially available, inexpensive, and can easily be immobilized, especially on matrices bearing hydroxyl groups. Although dyes are all synthetic in nature, they are still classified as affinity ligands because they interact with the active sites of many proteins mimicking the structure of the substrates, cofactors, or binding agents for those proteins. A number of textile dyes, known as reactive dyes, have been used for protein purification. Most of these reactive dyes consist of a chromophore (either azo dyes, anthraquinone, or phathalocyanine), linked to a reactive group (often a mono- or dichlorotriazine ring). The interaction between the dye ligand and proteins can be by complex combination of electrostatic, hydrophobic, hydrogen bonding. Selection of the supporting matrix is the first important consideration in dye-affinity systems. There are several methods for immobilization of dye molecules onto the support matrix, in which usually several intermediate steps are followed. Both the adsorption and elution steps should carefully be optimized/designed for a successful separation. Dye-affinity systems in the form of spherical sorbents or as affinity membranes have been used in protein separation.

  18. Enhanced Purification of Recombinant Rat NADPH-P450 Reductase by Using a Hexahistidine-Tag.

    PubMed

    Park, Hyoung-Goo; Lim, Young-Ran; Han, Songhee; Jeong, Dabin; Kim, Donghak

    2017-05-28

    NADPH-P450 reductase (NPR) transfers electrons from NADPH to cytochrome P450 and heme oxygenase enzymes to support their catalytic activities. This protein is localized within the endoplasmic reticulum membrane and utilizes FMN, FAD, and NADPH as cofactors. Although NPR is essential toward enabling the biochemical and pharmacological analyses of P450 enzymes, its production as a recombinant purified protein requires a series of tedious efforts and a high cost due to the use of NADP + in the affinity chromatography process. In the present study, the rat NPR clone containing a 6× Histidine-tag (NPR-His) was constructed and heterologously expressed. The NPR-His protein was purified using Ni 2+ -affinity chromatography, and its functional features were characterized. A single band at 78 kDa was observed from SDS-PAGE and the purified protein displayed a maximum absorbance at 455 nm, indicating the presence of an oxidized flavin cofactor. Cytochrome c and nitroblue tetrazolium were reduced by purified NPR-His in an NADPH-dependent manner. The purified NPR-His successfully supported the catalytic activities of human P450 1A2 and 2A6 and fungal CYP52A21, yielding results similar to those obtained using conventional purified rat reductase. This study will facilitate the use of recombinant NPR-His protein in the various fields of P450 research.

  19. High expression and purification of the recombinant camelid anti-MUC1 single domain antibodies in Escherichia coli.

    PubMed

    Rahbarizadeh, Fatemeh; Rasaee, Mohammad Javad; Forouzandeh-Moghadam, Mehdi; Allameh, Abdol-Amir

    2005-11-01

    In contrast to the murine and human VHs, camels' single domain antibodies (sdAb) have sufficient solubility. These antigen-specific fragments are expressed well in Escherichia coli. Here, we report high expression and purification of sdAbs against MUC1 mucin. MUC1 is a high molecular weight glycoprotein with an aberrant expression profile in various malignancies. The sdAb genes were sub-cloned into a pET32a(+) vector to overexpress the protein coupled with fusion tags in E. coli BL21(DE3). The expressed single domain antibodies were purified by immobilized metal affinity chromatography and antigen affinity chromatography. Analysis by SDS-PAGE and Western blotting demonstrated the integrity of the sdAbs-tags, while ELISA results confirm that the activity of these molecules compare favorably with that of the parent recombinant antibodies. Enterokinase treated sdAb showed a band at the molecular weight around 12 kDa which demonstrated the naked protein in its natural structure with activities comparable to that of native protein. The high binding activity to MUC1 antigen purified from ascitic fluid (of patients with small-cell lung aggressive carcinoma and metastasis to peritoneum) and the very close similarity of these molecules to human VHs illustrated the potential application of these novel products as an immunodiagnostic and immunotherapeutic reagent.

  20. A tuber lectin from Arisaema helleborifolium Schott with anti-insect activity against melon fruit fly, Bactrocera cucurbitae (Coquillett) and anti-cancer effect on human cancer cell lines.

    PubMed

    Kaur, Manpreet; Singh, Kuljinder; Rup, Pushpinder J; Saxena, A K; Khan, Rizwan H; Ashraf, Mohd Tashfeen; Kamboj, Sukhdev Singh; Singh, Jatinder

    2006-01-01

    An anti-insect and anti-cancer lectin has been isolated from Arisaema helleborifolium Schott by affinity chromatography using asialofetuin-linked amino activated silica beads. The bound A. helleborifolium lectin (AHL) was eluted with 100mM glycine-HCl buffer, pH 2.5. It gave a single band on SDS-PAGE, pH 8.3, and PAGE, pH 4.5. However, multiple bands were obtained in PAGE at pH 8.3 and isoelectric focusing. The lectin was a homotetramer having subunit molecular mass 13.4kDa while its native molecular mass was 52kDa. It was a glycoprotein with 3.40% carbohydrate and was stable up to 60 degrees C for 30min. It showed anti-insect activity towards second instar larvae of Bactrocera cucurbitae (Coquillett) with LC(50) value of 16.4microg/ml. Larvae fed on artificial diet containing sub-lethal dose of AHL showed a significant decrease in acid phosphatase and alkaline phosphatase activity while esterase activity markedly increased as compared to larvae fed on diet without lectin. AHL was also found to inhibit in vitro proliferation of some well established human cancer cell lines viz HOP-62 (95%), HCT-15 (92%), HEP-2 (66%), HT-29 (68%), PC-3 (39.4%), and A-549 (20.7%).

  1. Two dimensional Blue Native-/SDS-PAGE analysis of SLP family adaptor protein complexes.

    PubMed

    Swamy, Mahima; Kulathu, Yogesh; Ernst, Sandra; Reth, Michael; Schamel, Wolfgang W A

    2006-04-15

    SH2 domain containing leukocyte protein (SLP) adaptor proteins serve a central role in the antigen-mediated activation of lymphocytes by organizing multiprotein signaling complexes. Here, we use two dimensional native-/SDS-gel electrophoresis to study the number, size and relative abundance of protein complexes containing SLP family proteins. In non-stimulated T cells all SLP-76 proteins are in a approximately 400 kDa complex with the small adaptor protein Grb2-like adaptor protein downstream of Shc (Gads), whereas half of Gads is monomeric. This constitutive SLP-76/Gads complex could be reconstituted in Drosophila S2 cells expressing both components, suggesting that it might not contain additional subunits. In contrast, in B cells SLP-65 exists in a 180 kDa complex as well as in monomeric form. Since the complex was not found in S2 cells expressing only SLP-65, it was not di/trimeric SLP-65. Upon antigen-stimulation only the complexed SLP-65 was phosphorylated. Surprisingly, stimulation-induced alteration of SLP complexes could not be detected, suggesting that active signaling complexes form only transiently, and are of low abundance.

  2. BMI and BMI SDS in childhood: annual increments and conditional change.

    PubMed

    Brannsether, Bente; Eide, Geir Egil; Roelants, Mathieu; Bjerknes, Robert; Júlíusson, Pétur Benedikt

    2017-02-01

    Background Early detection of abnormal weight gain in childhood may be important for preventive purposes. It is still debated which annual changes in BMI should warrant attention. Aim To analyse 1-year increments of Body Mass Index (BMI) and standardised BMI (BMI SDS) in childhood and explore conditional change in BMI SDS as an alternative method to evaluate 1-year changes in BMI. Subjects and methods The distributions of 1-year increments of BMI (kg/m 2 ) and BMI SDS are summarised by percentiles. Differences according to sex, age, height, weight, initial BMI and weight status on the BMI and BMI SDS increments were assessed with multiple linear regression. Conditional change in BMI SDS was based on the correlation between annual BMI measurements converted to SDS. Results BMI increments depended significantly on sex, height, weight and initial BMI. Changes in BMI SDS depended significantly only on the initial BMI SDS. The distribution of conditional change in BMI SDS using a two-correlation model was close to normal (mean = 0.11, SD = 1.02, n = 1167), with 3.2% (2.3-4.4%) of the observations below -2 SD and 2.8% (2.0-4.0%) above +2 SD. Conclusion Conditional change in BMI SDS can be used to detect unexpected large changes in BMI SDS. Although this method requires the use of a computer, it may be clinically useful to detect aberrant weight development.

  3. Enhanced production and purification of recombinant surface array protein (Sap) for use in detection of Bacillus anthracis.

    PubMed

    Puranik, Nidhi; Tripathi, N K; Pal, V; Goel, Ajay Kumar

    2018-05-01

    Surface array protein (Sap) can be an important biomarker for specific detection of Bacillus anthracis , which is released by the bacterium during its growth in culture broth. In the present work, we have cloned and expressed Sap in Escherichia coli . The culture conditions and cultivation media were optimized and used in batch fermentation process for scale up of Sap in soluble form. The recombinant Sap was purified employing affinity chromatography followed by diafiltration. The final yield of purified protein was 20 and 46 mg/l of culture during shake flasks and batch fermentation, respectively. The protein purity and its reactivity were confirmed employing SDS-PAGE and Western blot, respectively. The antibodies raised against purified Sap were evaluated by Western blotting for detection of Sap released by B. anthracis . Our results showed that the Sap could be a novel marker for detection and confirmation of B. anthracis .

  4. Plasma fibronectin: three steps to purification and stability.

    PubMed

    Poulouin, L; Gallet, O; Rouahi, M; Imhoff, J M

    1999-10-01

    Large amounts of soluble fibronectin were easily purified from cryoprecipitated or fresh citrated human blood plasma by a three-step combination of gelatin and heparin-cellufine affinity chromatography. The elution conditions were optimized to obtain a homogeneous fraction on SDS-PAGE and Western blot under reducing condition. No proteolytic activities were detected by zymography at acidic or neutral pH. Furthermore, the fibronectin preparation was stable over time up to 456 h at 37 degrees C in the presence of calcium, zinc, or mercury. This preparation of very stable fibronectin, called highly purified fibronectin (hpFN), gave a yield of 7.00 +/- 0.77 mg of fibronectin per gram of cryoprecipitated plasma and 0.16 mg of fibronectin per milliliter of fresh citrated, giving a yield of 32 to 53% (from presumed fibronectin concentration). This preparation may be useful for cellular tests and interaction analysis. Copyright 1999 Academic Press.

  5. Characterization of pterin deaminase from Mucor indicus MTCC 3513

    NASA Astrophysics Data System (ADS)

    Thandeeswaran, M.; Karthika, P.; Mahendran, R.; Palaniswamy, M.; Angayarkanni, J.

    2018-03-01

    Pterin deaminase is an amidohydrolase enzyme which hydrolyses pteridines to produce lumazine derivatives and ammonia. Even though the enzyme was shown as early as 1959 for its anticancer efficacy there was a long gap in the communique after that which was in 2013. In our study we have chosen Mucor indicus MTCC 3513 which was a promising strain for production of different industrial products.The pterin deaminase enzyme was harvested and extracellular from M. indicus. The extracellular sample was partially purified by using ethanol precipitation and ion exchange column (Hi-Trap QFF) in Fast Protein Liquid Chromatography. The molecular weight of the purified pterin deaminase enzyme was apparently determined by SDS-PAGE. The purified enzyme was further biochemically characterized. Molecular docking studies with the predicted sequence showed higher binding affinity towards folic acid interaction. The structure of this protein may open the windows for new drug targets for cancer therapy.

  6. Granulosain I, a cysteine protease isolated from ripe fruits of Solanum granuloso-leprosum (Solanaceae).

    PubMed

    Vallés, Diego; Bruno, Mariela; López, Laura M I; Caffini, Néstor O; Cantera, Ana María B

    2008-08-01

    A new cysteine peptidase (Granulosain I) was isolated from ripe fruits of Solanum granuloso-leprosum Dunal (Solanaceae) by means of precipitation with organic solvent and cation exchange chromatography. The enzyme showed a single band by SDS-PAGE, its molecular mass was 24,746 Da (MALDI-TOF/MS) and its isoelectric point was higher than 9.3. It showed maximum activity (more than 90%) in the pH range 7-8.6. Granulosain I was completely inhibited by E-64 and activated by the addition of cysteine or 2-mercaptoethanol, confirming its cysteinic nature. The kinetic studies carried out with PFLNA as substrate, showed an affinity (Km 0.6 mM) slightly lower than those of other known plant cysteine proteases (papain and bromelain). The N-terminal sequence of granulosain I (DRLPASVDWRGKGVLVLVKNQGQC) exhibited a close homology with other cysteine proteases belonging to the C1A family.

  7. Glycosylation analysis of recombinant neutral protease I from Aspergillus oryzae expressed in Pichia pastoris.

    PubMed

    Lei, Da; Xu, Yang; He, Qinghua; Pang, Yifeng; Chen, Bo; Xiong, Liang; Li, Yanping

    2013-12-01

    Neutral protease I from Aspergillus oryzae 3.042 was expressed in Pichia pastoris and its N-glycosylation properties were analyzed. After purification by nickel-affinity chromatography column, the recombinant neutral protease (rNPI) was confirmed to be N-glycosylated by periodicacid/Schiff's base staining and Endo H digestion. Moreover, the deglycosylated protein's molecular weight decreased to 43.3 kDa from 54.5 kDa analyzed by SDS-PAGE and MALDI-TOF-MS, and the hyperglycosylation extent was 21 %. The N-glycosylation site of rNPI was analyzed by nano LC-MS/MS after digesting by trypsin and Glu-C, and the unique potential site Asn41 of mature peptide was found to be glycosylated. Homology modeling of the 3D structure of rNPI indicated that the attached N-glycans hardly affected neutral protease's activity due to the great distance away from the active site of the enzyme.

  8. Protein Affinity Chromatography with Purified Yeast DNA Polymerase α Detects Proteins that Bind to DNA Polymerase

    NASA Astrophysics Data System (ADS)

    Miles, Jeff; Formosa, Tim

    1992-02-01

    We have overexpressed the POL1 gene of the yeast Saccharomyces cerevisiae and purified the resulting DNA polymerase α polypeptide in an apparently intact form. We attached the purified DNA polymerase covalently to an agarose matrix and used this matrix to chromatograph extracts prepared from yeast cells. At least six proteins bound to the yeast DNA polymerase α matrix that did not bind to a control matrix. We speculate that these proteins might be DNA polymerase α accessory proteins. Consistent with this interpretation, one of the binding proteins, which we have named POB1 (polymerase one binding), is required for normal chromosome transmission. Mutations in this gene cause increased chromosome loss and an abnormal cell morphology, phenotypes that also occur in the presence of mutations in the yeast α or δ polymerase genes. These results suggest that the interactions detected by polymerase affinity chromatography are biologically relevant and may help to illuminate the architecture of the eukaryotic DNA replication machinery.

  9. A Chlorogenic Acid Esterase with a Unique Substrate Specificity from Ustilago maydis

    PubMed Central

    Haase-Aschoff, Paul; Kelle, Sebastian; Linke, Diana; Krings, Ulrich; Popper, Lutz; Berger, Ralf G.

    2014-01-01

    An extracellular chlorogenic acid esterase from Ustilago maydis (UmChlE) was purified to homogeneity by using three separation steps, including anion-exchange chromatography on a Q Sepharose FF column, preparative isoelectric focusing (IEF), and, finally, a combination of affinity chromatography and hydrophobic interaction chromatography on polyamide. SDS-PAGE analysis suggested a monomeric protein of ∼71 kDa. The purified enzyme showed maximal activity at pH 7.5 and at 37°C and was active over a wide pH range (3.5 to 9.5). Previously described chlorogenic acid esterases exhibited a comparable affinity for chlorogenic acid, but the enzyme from Ustilago was also active on typical feruloyl esterase substrates. Kinetic constants for chlorogenic acid, methyl p-coumarate, methyl caffeate, and methyl ferulate were as follows: Km values of 19.6 μM, 64.1 μM, 72.5 μM, and 101.8 μM, respectively, and kcat/Km values of 25.83 mM−1 s−1, 7.63 mM−1 s−1, 3.83 mM−1 s−1 and 3.75 mM−1 s−1, respectively. UmChlE released ferulic, p-coumaric, and caffeic acids from natural substrates such as destarched wheat bran (DSWB) and coffee pulp (CP), confirming activity on complex plant biomass. The full-length gene encoding UmChlE consisted of 1,758 bp, corresponding to a protein of 585 amino acids, and was functionally produced in Pichia pastoris GS115. Sequence alignments with annotated chlorogenic acid and feruloyl esterases underlined the uniqueness of this enzyme. PMID:25548041

  10. The Cutting Edge of Affinity Electrophoresis Technology

    PubMed Central

    Kinoshita, Eiji; Kinoshita-Kikuta, Emiko; Koike, Tohru

    2015-01-01

    Affinity electrophoresis is an important technique that is widely used to separate and analyze biomolecules in the fields of biology and medicine. Both quantitative and qualitative information can be gained through affinity electrophoresis. Affinity electrophoresis can be applied through a variety of strategies, such as mobility shift electrophoresis, charge shift electrophoresis or capillary affinity electrophoresis. These strategies are based on changes in the electrophoretic patterns of biological macromolecules that result from interactions or complex-formation processes that induce changes in the size or total charge of the molecules. Nucleic acid fragments can be characterized through their affinity to other molecules, for example transcriptional factor proteins. Hydrophobic membrane proteins can be identified by means of a shift in the mobility induced by a charged detergent. The various strategies have also been used in the estimation of association/disassociation constants. Some of these strategies have similarities to affinity chromatography, in that they use a probe or ligand immobilized on a supported matrix for electrophoresis. Such methods have recently contributed to profiling of major posttranslational modifications of proteins, such as glycosylation or phosphorylation. Here, we describe advances in analytical techniques involving affinity electrophoresis that have appeared during the last five years. PMID:28248262

  11. HFIP Extraction Followed by 2D CTAB/SDS-PAGE Separation: A New Methodology for Protein Identification from Tissue Sections after MALDI Mass Spectrometry Profiling for Personalized Medicine Research

    PubMed Central

    Longuespée, Rémi; Tastet, Christophe; Desmons, Annie; Kerdraon, Olivier; Day, Robert

    2014-01-01

    Abstract Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) and profiling technology have become the easiest methods for quickly accessing the protein composition of a tissue area. Unfortunately, the demand for the identification of these proteins remains unmet. To overcome this bottleneck, we combined several strategies to identify the proteins detected via MALDI profiling including on-tissue protein extraction using hexafluoroIsopropanol (1,1,1,3,3,3-hexafluoro-2-propanol, HFIP) coupled with two-dimensional cetyl trimethylammonium bromide/sodium dodecyl sulfate–polyacrylamide gel electrophoresis (2D CTAB/SDS-PAGE) for separation followed by trypsin digestion and MALDI-MS analyses for identification. This strategy was compared with an on-tissue bottom-up strategy that we previously developed. The data reflect the complementarity of the approaches. An increase in the number of specific proteins identified has been established. This approach demonstrates the potential of adapted extraction procedures and the combination of parallel identification approaches for personalized medicine applications. The anatomical context provides important insight into identifying biomarkers and may be considered a first step for tissue-based biomarker research, as well as the extemporaneous examination of biopsies during surgery. PMID:24841221

  12. DEVELOPMENT OF SULFHYDRYL-REACTIVE SILICA FOR PROTEIN IMMOBILIZATION IN HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY

    PubMed Central

    Mallik, Rangan; Wa, Chunling; Hage, David S.

    2008-01-01

    Two techniques were developed for the immobilization of proteins and other ligands to silica through sulfhydryl groups. These methods made use of maleimide-activated silica (the SMCC method) or iodoacetyl-activated silica (the SIA method). The resulting supports were tested for use in high-performance affinity chromatography by employing human serum albumin (HSA) as a model protein. Studies with normal and iodoacetamide-modified HSA indicated that these methods had a high selectivity for sulfhydryl groups on this protein, which accounted for the coupling of 77–81% of this protein to maleimide- or iodacetyl-activated silica. These supports were also evaluated in terms of their total protein content, binding capacity, specific activity, non-specific binding, stability and chiral selectivity for several test solutes. HSA columns prepared using maleimide-activated silica gave the best overall results for these properties when compared to HSA that had been immobilized to silica through the Schiff base method (i.e., an amine-based coupling technique). A key advantage of the supports developed in this work is that they offer the potential of giving greater site-selective immobilization and ligand activity than amine-based coupling methods. These features make these supports attractive in the development of protein columns for such applications as the study of biological interactions and chiral separations. PMID:17297940

  13. Purification and partial characterization of a lectin protein complex, the clathrilectin, from the calcareous sponge Clathrina clathrus.

    PubMed

    Gardères, Johan; Domart-Coulon, Isabelle; Marie, Arul; Hamer, Bojan; Batel, Renato; Müller, Werner E G; Bourguet-Kondracki, Marie-Lise

    2016-10-01

    Carbohydrate-binding proteins were purified from the marine calcareous sponge Clathrina clathrus via affinity chromatography on lactose and N-acetyl glucosamine-agarose resins. Proteomic analysis of acrylamide gel separated protein subunits obtained in reducing conditions pointed out several candidates for lectins. Based on amino-acid sequence similarity, two peptides displayed homology with the jack bean lectin Concanavalin A, including a conserved domain shared by proteins in the L-type lectin superfamily. An N-acetyl glucosamine - binding protein complex, named clathrilectin, was further purified via gel filtration chromatography, bioguided with a diagnostic rabbit erythrocyte haemagglutination assay, and its activity was found to be calcium dependent. Clathrilectin, a protein complex of 3200kDa estimated by gel filtration, is composed of monomers with apparent molecular masses of 208 and 180kDa estimated on 10% SDS-PAGE. Nine internal peptides were identified using proteomic analyses, and compared to protein libraries from the demosponge Amphimedon queenslandica and a calcareous sponge Sycon sp. from the Adriatic Sea. The clathrilectin is the first lectin isolated from a calcareous sponge and displays homologies with predicted sponge proteins potentially involved in cell aggregation and interaction with bacteria. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Investigating the fate of activated sludge extracellular proteins in sludge digestion using sodium dodecyl sulfate polyacrylamide gel electrophoresis.

    PubMed

    Park, Chul; Helm, Richard F; Novak, John T

    2008-12-01

    The fate of activated sludge extracellular proteins in sludge digestion was investigated using three different cation-associated extraction methods and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Extraction methods used were the cation exchange resin (CER) method for extracting calcium (Ca2+) and magnesium (Mg2+), sulfide extraction for removing iron, and base treatment (pH 10.5) for dissolving aluminum. Extracellular polymeric substances extracted were then subjected to SDS-PAGE, and the resultant protein profiles were examined before and after sludge digestion. The SDS-PAGE results showed that three methods led to different SDS-PAGE profiles for both undigested and digested sludges. The results further revealed that CER-extracted proteins remained mainly undegraded in anaerobic digestion, but were degraded in aerobic digestion. While the fate of sulfide- and base-extracted proteins was not clear for aerobic digestion, their changes in anaerobic digestion were elucidated. Most sulfide-extracted proteins were removed by anaerobic digestion, while the increase in protein band intensity and diversity was observed for base-extracted proteins. These results suggest that activated sludge flocs contain different fractions of proteins that are distinguishable by their association with certain cations and that each fraction undergoes different fates in anaerobic and aerobic digestion. The proteins that were resistant to degradation and generated during anaerobic digestion were identified by liquid chromatography tandem mass spectrometry. Protein identification results and their putative roles in activated sludge and anaerobic digestion are discussed in this study.

  15. Affinity purification and mass spectrometry: an attractive choice to investigate protein-protein interactions in plant immunity

    USDA-ARS?s Scientific Manuscript database

    Affinity purification of protein complexes from biological tissues, followed by liquid chromatography- tandem mass spectrometry (AP-MS/MS), has ballooned in recent years due to sizeable increases in nucleic acid sequence data essential for interpreting mass spectra, improvements in affinity purifica...

  16. Sds22 regulates aurora B activity and microtubule–kinetochore interactions at mitosis

    PubMed Central

    Posch, Markus; Khoudoli, Guennadi A.; Swift, Sam; King, Emma M.; DeLuca, Jennifer G.

    2010-01-01

    We have studied Sds22, a conserved regulator of protein phosphatase 1 (PP1) activity, and determined its role in modulating the activity of aurora B kinase and kinetochore–microtubule interactions. Sds22 is required for proper progression through mitosis and localization of PP1 to mitotic kinetochores. Depletion of Sds22 increases aurora B T-loop phosphorylation and the rate of recovery from monastrol arrest. Phospho–aurora B accumulates at kinetochores in Sds22-depleted cells juxtaposed to critical kinetochore substrates. Sds22 modulates sister kinetochore distance and the interaction between Hec1 and the microtubule lattice and, thus, the activation of the spindle assembly checkpoint. These results demonstrate that Sds22 specifically defines PP1 function and localization in mitosis. Sds22 regulates PP1 targeting to the kinetochore, accumulation of phospho–aurora B, and force generation at the kinetochore–microtubule interface. PMID:20921135

  17. Optimization of the separation of lysergic acid diethylamide in urine by a sweeping technique using micellar electrokinetic chromatography.

    PubMed

    Fang, Ching; Liu, Ju-Tsung; Lin, Cheng-Huang

    2002-07-25

    The separation and on-line concentrations of lysergic acid diethylamide (LSD), iso-lysergic acid diethylamide (iso-LSD) and lysergic acid N,N-methylpropylamide (LAMPA) in human urine were investigated by capillary electrophoresis-fluorescence spectroscopy using sodium dodecyl sulfate (SDS) as an anionic surfactant. A number of parameters such as buffer pH, SDS concentration, Brij-30 concentration and the content of organic solvent used in separation, were optimized. The techniques of sweeping-micellar electrokinetic chromatography (sweeping-MEKC) and cation-selective exhaustive injection-sweep-micellar electrokinetic chromatography (CSEI-sweep-MEKC) were used for determining on-line concentrations. The advantages and disadvantages of this procedure with respect to sensitivity, precision and simplicity are discussed and compared. Copyright 2002 Elsevier Science BV.

  18. Lactosylamidine-based affinity purification for cellulolytic enzymes EG I and CBH I from Hypocrea jecorina and their properties.

    PubMed

    Ogata, Makoto; Kameshima, Yumiko; Hattori, Takeshi; Michishita, Kousuke; Suzuki, Tomohiro; Kawagishi, Hirokazu; Totani, Kazuhide; Hiratake, Jun; Usui, Taichi

    2010-12-10

    Selective adsorption and separation of β-glucosidase, endo-acting endo-β-(1→4)-glucanase I (EG I), and exo-acting cellobiohydrolase I (CBH I) were achieved by affinity chromatography with β-lactosylamidine as ligand. A crude cellulase preparation from Hypocrea jecorina served as the source of enzyme. When crude cellulase was applied to the lactosylamidine-based affinity column, β-glucosidase appeared in the unbound fraction. By contrast, EG I and CBH I were retained on the column and then separated from each other by appropriately adjusting the elution conditions. The relative affinities of the enzymes, based on their column elution conditions, were strongly dependent on the ligand. The highly purified EG I and CBH I, obtained by affinity chromatography, were further purified by Mono P and DEAE chromatography, respectively. EG I and CBH I cleave only at the phenolic bond in p-nitrophenyl glycosides with lactose and N-acetyllactosamine (LacNAc). By contrast, both scissile bonds in p-nitrophenyl glycosides with cellobiose were subject to hydrolysis although with important differences in their kinetic parameters. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Purification and partial biochemical characterization of polyphenol oxidase from mango (Mangifera indica cv. Manila).

    PubMed

    Palma-Orozco, Gisela; Marrufo-Hernández, Norma A; Sampedro, José G; Nájera, Hugo

    2014-10-08

    Polyphenol oxidase (PPO) is an enzyme widely distributed in the plant kingdom that has been detected in most fruits and vegetables. PPO was extracted and purified from Manila mango (Mangifera indica), and its biochemical properties were studied. PPO was purified 216-fold by hydrophobic interaction and ion exchange chromatography. PPO was purified to homogeneity, and the estimated PPO molecular weight (MW) by SDS-PAGE was ≈31.5 kDa. However, a MW of 65 kDa was determined by gel filtration, indicating a dimeric structure for the native PPO. The isolated PPO showed the highest affinity to pyrogallol (Km = 2.77 mM) followed by 4-methylcatechol (Km = 3.14 mM) and catechol (Km = 15.14 mM). The optimum pH for activity was 6.0. PPO was stable in the temperature range of 20-70 °C. PPO activity was completely inhibited by tropolone, ascorbic acid, sodium metabisulfite, and kojic acid at 0.1 mM.

  20. High production of llama variable heavy-chain antibody fragment (VHH) fused to various reader proteins by Aspergillus oryzae.

    PubMed

    Hisada, Hiromoto; Tsutsumi, Hiroko; Ishida, Hiroki; Hata, Yoji

    2013-01-01

    Llama variable heavy-chain antibody fragment (VHH) fused to four different reader proteins was produced and secreted in culture medium by Aspergillus oryzae. These fusion proteins consisted of N-terminal reader proteins, VHH, and a C-terminal his-tag sequence which facilitated purification using one-step his-tag affinity chromatography. SDS-PAGE analysis of the deglycosylated purified fusion proteins confirmed that the molecular weight of each corresponded to the expected sum of VHH and the respective reader proteins. The apparent high molecular weight reader protein glucoamylase (GlaB) was found to be suitable for efficient VHH production. The GlaB-VHH-His protein bound its antigen, human chorionic gonadotropin, and was detectable by a new ELISA-based method using a coupled assay with glucoamylase, glucose oxidase, peroxidase, maltose, and 3,3',5,5'-tetramethylbenzidine as substrates. Addition of potassium phosphate to the culture medium induced secretion of 0.61 mg GlaB-VHH-His protein/ml culture medium in 5 days.

  1. Cloning, expression, and purification of the virulence-associated protein D from Xylella fastidiosa.

    PubMed

    Catani, Cleide Ferreira; Azzoni, Adriano Rodrigues; Paula, Débora Pires; Tada, Susely Ferraz Siqueira; Rosselli, Luciana Kauer; de Souza, Anete Pereira; Yano, Tomomasa

    2004-10-01

    In this study, an efficient expression system, based on the pET32Xa/LIC vector, for producing a Xylella fastidiosa virulence-associated protein D, found to have a strong similarity to Riemerella anatipestifer and Actinobacillus actinomycetencomitans VapD protein, is presented. The protein has a molecular mass of 17.637 Da and a calculated pI of 5.49. The selected XFa0052 gene was cloned in the pET32Xa/LIC vector and the plasmid was transformed into Escherichia coli BL21 (DE3) strain at 37 degrees C, with an induction time of 2 h and 1 mM IPTG concentration. The protein present in the soluble fraction was purified by immobilized metal affinity chromatography (IMAC), and had its identity determined by mass spectrometry (MALDI-TOF) and N-terminal sequencing. The purified protein was found as a single band on SDS-PAGE and its correct folding was verified by circular dichroism spectroscopy.

  2. Phosphodiesterase from Daboia russelli russelli venom: purification, partial characterization and inhibition of platelet aggregation.

    PubMed

    Mitra, Jyotirmoy; Bhattacharyya, Debasish

    2014-09-01

    Phosphodiesterases (PDEs) belong to a super-family of enzymes that have multiple roles in the metabolism of extracellular nucleotides and regulation of nucleotide-based intercellular signalling. A PDE from Russell's viper (Daboia russelli russelli) venom (DR-PDE) was purified by gel filtration, ion exchange and affinity chromatographies. Homogeneity of the preparation was verified by SDS-PAGE, SE-HPLC and mass spectrometry. It was free from 5'-nucleotidase, alkaline phosphatase and protease activities. Identity of the enzyme was ensured from partial sequence homology with other PDEs. DR-PDE was inactivated by polyvalent anti-venom serum and metal chelators. The enzyme was partially inhibited by the root extracts of four medicinal plants but remained unaffected by inhibitors of intracellular PDEs. DR-PDE hydrolyses ADP and thus, strongly inhibits ADP-induced platelet aggregation in human platelet rich plasma. This study leads to better understanding of a component of Russell's viper venom that affects homoeostatic system of the victim. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Pulsed Dilution Method for the Recovery of Aggregated Mouse TNF-α.

    PubMed

    Mahmoodi, Merat; Ghodsi, Maryam; Moghadam, Malihe; Sankian, Mojtaba

    2017-04-01

    The expression of mouse tumor necrosis factor alpha (TNF-α) in Escherichia coli is a favorable way to get high yield of protein; however, the formation of cytoplasmic inclusion bodies, which is the consequence of insoluble accumulated proteins, is a major obstacle in this system. To overcome this obstacle, we used a pulsed dilution method to convert the product to its native conformation. Reducing agent and guanidine hydrochloride were used to solubilize inclusion bodies formed after TNF-(α) expression. Then, the refolding procedure was performed by pulsed dilution of the denatured protein into a refolding buffer. The properly-folded protein was purified by metal affinity chromatography. SDS-PAGE showed a 19.9 kDa band related to the mature TNF-(α) protein. The protein was recognized by anti-mouse TNF-(α) on western blots. The final concentration of the purified recombinant TNF-(α) was 62.5 µg/mL. Our study demonstrates the efficiency of this method to produce a high yield of folded mature TNF- (α).

  4. Immobilized palladium(II) ion affinity chromatography for recovery of recombinant proteins with peptide tags containing histidine and cysteine.

    PubMed

    Kikot, Pamela; Polat, Aise; Achilli, Estefania; Fernandez Lahore, Marcelo; Grasselli, Mariano

    2014-11-01

    Fusion of peptide-based tags to recombinant proteins is currently one of the most used tools for protein production. Also, immobilized metal ion affinity chromatography (IMAC) has a huge application in protein purification, especially in research labs. The combination of expression systems of recombinant tagged proteins with this robust chromatographic system has become an efficient and rapid tool to produce milligram-range amounts of proteins. IMAC-Ni(II) columns have become the natural partners of 6xHis-tagged proteins. The Ni(II) ion is considered as the best compromise of selectivity and affinity for purification of a recombinant His-tagged protein. The palladium(II) ion is also able to bind to side chains of amino acids and form ternary complexes with iminodiacetic acid and free amino acids and other sulfur-containing molecules. In this work, we evaluated two different cysteine- and histidine-containing six amino acid tags linked to the N-terminal group of green fluorescent protein (GFP) and studied the adsorption and elution conditions using novel eluents. Both cysteine-containing tagged GFPs were able to bind to IMAC-Pd(II) matrices and eluted successfully using a low concentration of thiourea solution. The IMAC-Ni(II) system reaches less than 20% recovery of the cysteine-containing tagged GFP from a crude homogenate of recombinant Escherichia coli, meanwhile the IMAC-Pd(II) yields a recovery of 45% with a purification factor of 13. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Characterization of product-related low molecular weight impurities in therapeutic monoclonal antibodies using hydrophilic interaction chromatography coupled with mass spectrometry.

    PubMed

    Wang, Shunhai; Liu, Anita P; Yan, Yuetian; Daly, Thomas J; Li, Ning

    2018-05-30

    Traditional SDS-PAGE method and its modern equivalent CE-SDS method are both widely applied to assess the purity of therapeutic monoclonal antibody (mAb) drug products. However, structural identification of low molecular weight (LMW) impurities using those methods has been challenging and largely based on empirical knowledges. In this paper, we present that hydrophilic interaction chromatography (HILIC) coupled with mass spectrometry analysis is a novel and orthogonal method to characterize such LMW impurities present within a purified mAb drug product sample. We show here that after removal of N-linked glycans, the HILIC method separates mAb-related LMW impurities with a size-based elution order. The subsequent mass measurement from a high-resolution accurate mass spectrometer provides direct and unambiguous identification of a variety of low-abundance LMW impurities within a single LC-MS analysis. Free light chain, half antibody, H2L species (antibody possessing a single light chain) and protein backbone-truncated species can all be confidently identified and elucidated in great detail, including the truncation sites and associated post-translational modifications. It is worth noting that this study provides the first example where the H2L species can be directly detected in a mAb drug product sample by intact mass analysis without prior enrichment. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Purification, characterization, and crystallization of Crocodylus siamensis hemoglobin.

    PubMed

    Jandaruang, Jinda; Siritapetawee, Jaruwan; Songsiriritthigul, Chomphunuch; Preecharram, Sutthidech; Azuma, Taoka; Dhiravisit, Apisak; Fukumori, Yoshihiro; Thammasirirak, Sompong

    2014-08-01

    Crocodylus siamensis hemoglobin was purified by a size exclusion chromatography, Sephacryl S-100 with buffer containing dithiothreitol. The purified Hb was dissociated to be two forms (α chain and β chain) which observed by SDS-PAGE, indicated that the C. siamensis Hb was an unpolymerized form. The unpolymerized Hb (composed of two α chains and two β chains) showed high oxygen affinity at 3.13 mmHg (P(50)) and 1.96 (n value), and a small Bohr effect (δH(+) = -0.29) at a pH of 6.9-8.4. Adenosine triphosphate did not affect the oxygenation properties, whereas bicarbonate ions strongly depressed oxygen affinity. Crude C. siamensis Hb solutions were showed high O(2) affinity at P(50) of 2.5 mmHg which may assure efficient utilization of the lung O(2) reserve during breath holding and diving. The purified Hbs were changed to cyanmethemoglobin forms prior crystallization. Rod- and plate-shaped crystals were obtained by the sitting-drop vapor-diffusion method at 5 °C using equal volumes of protein solution (37 mg/ml) and reservoir [10-13 % (w/v) PEG 4000, with 0.1 M Tris buffer in present of 0.2 M MgCl(2)·6H(2)O] solution at a pH of 7.0-8.5.

  7. Two-dimensional chromatographic analysis using three second-dimension columns for continuous comprehensive analysis of intact proteins.

    PubMed

    Zhu, Zaifang; Chen, Huang; Ren, Jiangtao; Lu, Juan J; Gu, Congying; Lynch, Kyle B; Wu, Si; Wang, Zhe; Cao, Chengxi; Liu, Shaorong

    2018-03-01

    We develop a new two-dimensional (2D) high performance liquid chromatography (HPLC) approach for intact protein analysis. Development of 2D HPLC has a bottleneck problem - limited second-dimension (second-D) separation speed. We solve this problem by incorporating multiple second-D columns to allow several second-D separations to be proceeded in parallel. To demonstrate the feasibility of using this approach for comprehensive protein analysis, we select ion-exchange chromatography as the first-dimension and reverse-phase chromatography as the second-D. We incorporate three second-D columns in an innovative way so that three reverse-phase separations can be performed simultaneously. We test this system for separating both standard proteins and E. coli lysates and achieve baseline resolutions for eleven standard proteins and obtain more than 500 peaks for E. coli lysates. This is an indication that the sample complexities are greatly reduced. We see less than 10 bands when each fraction of the second-D effluents are analyzed by sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE), compared to hundreds of SDS-PAGE bands as the original sample is analyzed. This approach could potentially be an excellent and general tool for protein analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Purification of a thermostable alkaline laccase from papaya (Carica papaya) using affinity chromatography.

    PubMed

    Jaiswal, Nivedita; Pandey, Veda P; Dwivedi, Upendra N

    2015-01-01

    A laccase from papaya leaves was purified to homogeneity by a two step procedure namely, heat treatment (at 70 °C) and Con-A affinity chromatography. The procedure resulted in 1386.7-fold purification of laccase with a specific activity of 41.3 units mg(-1) and an overall yield of 61.5%. The native purified laccase was found to be a hexameric protein of ∼ 260 kDa. The purified enzyme exhibited acidic and alkaline pH optima of 6.0 and 8.0 with the non-phenolic substrate (ABTS) and phenolic substrate (catechol), respectively. The purified laccase was found to be thermostable up to 70 °C such that it retained ∼ 80% activity upon 30 min incubation at 70 °C. The Arrhenius energy of activation for purified laccase was found to be 7.7 kJ mol(-1). The enzyme oxidized various phenolic and non-phenolic substrates having catalytic efficiency (K(cat)/K(m)) in the order of 7.25>0.67>0.27 mM(-1) min(-1) for ABTS, catechol and hydroquinone, respectively. The purified laccase was found to be activated by Mn(2+), Cd(2+), Ca(2+), Na(+), Fe(2+), Co(2+) and Cu(2+) while weakly inhibited by Hg(2+). The properties such as thermostability, alkaline pH optima and metal tolerance exhibited by the papaya laccase make it a promising candidate enzyme for industrial exploitation. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Best kept secrets ... Source Data Systems, Inc. (SDS).

    PubMed

    Andrew, W F

    1991-03-01

    The SDS/MEDNET system is a cost-effective option for small- to medium-size hospitals (up to 400 beds). The parameter-driven system lets users control operations with only occasional SDS assistance. A full application set, available for modular selection to reduce upfront costs while facilitating steady growth and protecting client investment, is adaptable to multi-facility environments. The industry-standard, Intel-based multi-user processors, network communications and protocols assure high efficiency, low-cost solutions independent of any one hardware vendor. Sustained growth in both client base and product offerings point to a high level of responsiveness and healthcare industry commitment. Corporate emphasis on user involvement and open systems integration assures clients of leading-edge capabilities. SDS/MEDNET will be a strong contender in selected marketing environments.

  10. A chlorogenic acid esterase with a unique substrate specificity from Ustilago maydis.

    PubMed

    Nieter, Annabel; Haase-Aschoff, Paul; Kelle, Sebastian; Linke, Diana; Krings, Ulrich; Popper, Lutz; Berger, Ralf G

    2015-03-01

    An extracellular chlorogenic acid esterase from Ustilago maydis (UmChlE) was purified to homogeneity by using three separation steps, including anion-exchange chromatography on a Q Sepharose FF column, preparative isoelectric focusing (IEF), and, finally, a combination of affinity chromatography and hydrophobic interaction chromatography on polyamide. SDS-PAGE analysis suggested a monomeric protein of ∼71 kDa. The purified enzyme showed maximal activity at pH 7.5 and at 37°C and was active over a wide pH range (3.5 to 9.5). Previously described chlorogenic acid esterases exhibited a comparable affinity for chlorogenic acid, but the enzyme from Ustilago was also active on typical feruloyl esterase substrates. Kinetic constants for chlorogenic acid, methyl p-coumarate, methyl caffeate, and methyl ferulate were as follows: Km values of 19.6 μM, 64.1 μM, 72.5 μM, and 101.8 μM, respectively, and kcat/Km values of 25.83 mM(-1) s(-1), 7.63 mM(-1) s(-1), 3.83 mM(-1) s(-1) and 3.75 mM(-1) s(-1), respectively. UmChlE released ferulic, p-coumaric, and caffeic acids from natural substrates such as destarched wheat bran (DSWB) and coffee pulp (CP), confirming activity on complex plant biomass. The full-length gene encoding UmChlE consisted of 1,758 bp, corresponding to a protein of 585 amino acids, and was functionally produced in Pichia pastoris GS115. Sequence alignments with annotated chlorogenic acid and feruloyl esterases underlined the uniqueness of this enzyme. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Purification and partial characterization of peroxidase from human term placenta of non-smokers: metabolism of benzo(a)pyrene-7, 8-dihydrodiol.

    PubMed

    Madhavan, N D; Naidu, K A

    2000-01-01

    Peroxidase (Donor: H(2)O(2)oxidoreductase EC 1.11.1.7) from human term placentae of non-smokers was purified to homogeneity by a combination of NH(4)Cl extraction, affinity chromatography, (NH(4))(2)SO(4)precipitation, ion-exchange and gel filtration chromatography. The homogeneity of purified human placental peroxidase (HTPP) was confirmed by gel filtration, reverse phase high performance liquid chromatography (HPLC) and SDS-PAGE. Peroxidase was found to be a membrane bound enzyme. A high concentration of NH(4)Cl (1.2 m) was needed to extract and solublize the enzyme. Removal of the salt resulted in irreversible precipitation of the enzyme. The protein exhibited a molecular mass of 126 000 kDa according to gel filtration and approximately 60 000 kDa by SDS-PAGE, indicating that the peroxidase is a homodimer. The purified peroxidase showed an optimum pH range of 7 to 8.5 and the K(m)for H(2)O(2)and guaiacol were found to be 0.08 m m and 10.0 m m, respectively. The purified peroxidase oxidized several substrates, namely potassium iodide, tetramethyl benzidine, guaiacol, ortho dianisidne and tyrosine. The enzyme was resistant to thermal denaturation up to 70 degrees C and also to chaotropic agents, guanidinium chloride and urea. Spectral properties indicated the presence of Soret band at 433 which shifted to 451 nm on complexation with cyanide. The circular dichroism studies showed that HTPP has a predominantly helical secondary structure. The enzyme showed similarities to the myeloperoxidase with regard to spectral and catalytical properties but differed significantly in amino acid composition, the R(z)value and molecular mass. Purified HTPP differed from eosinophil peroxidase in all physico-chemical properties indicating that it is not of eosinophil origin, but may represent a distinct, constitutive peroxidase in human placenta. Further, purified peroxidase catalyzed oxidation of benzo(a)pyrene-7, 8-dihydrodiol in presence of tyrosine and hydrogen peroxide to BP

  12. Screening of missing proteins in the human liver proteome by improved MRM-approach-based targeted proteomics.

    PubMed

    Chen, Chen; Liu, Xiaohui; Zheng, Weimin; Zhang, Lei; Yao, Jun; Yang, Pengyuan

    2014-04-04

    To completely annotate the human genome, the task of identifying and characterizing proteins that currently lack mass spectrometry (MS) evidence is inevitable and urgent. In this study, as the first effort to screen missing proteins in large scale, we developed an approach based on SDS-PAGE followed by liquid chromatography-multiple reaction monitoring (LC-MRM), for screening of those missing proteins with only a single peptide hit in the previous liver proteome data set. Proteins extracted from normal human liver were separated in SDS-PAGE and digested in split gel slice, and the resulting digests were then subjected to LC-schedule MRM analysis. The MRM assays were developed through synthesized crude peptides for target peptides. In total, the expressions of 57 target proteins were confirmed from 185 MRM assays in normal human liver tissues. Among the proved 57 one-hit wonders, 50 proteins are of the minimally redundant set in the PeptideAtlas database, 7 proteins even have none MS-based information previously in various biological processes. We conclude that our SDS-PAGE-MRM workflow can be a powerful approach to screen missing or poorly characterized proteins in different samples and to provide their quantity if detected. The MRM raw data have been uploaded to ISB/SRM Atlas/PASSEL (PXD000648).

  13. Tunable smart digital structure (SDS) to modularly assemble soft actuators with layered adhesive bonding

    NASA Astrophysics Data System (ADS)

    Jin, Hu; Dong, Erbao; Xu, Min; Xia, Qirong; Liu, Shuai; Li, Weihua; Yang, Jie

    2018-01-01

    Many shape memory alloy (SMA)-based soft actuators have specific composite structures and manufacture processes, and are therefore unique. However, these exclusive characteristics limit their capabilities and applications, so in this article a soft and smart digital structure (SDS) is proposed that acts like a modular unit to assemble soft actuators by a layered adhesive bonding process. The SDS is a fully soft structure that encapsulates a digital skeleton consisting of four groups of parallel and independently actuated SMA wires capable of outputting a four-channel tunable force. The layered adhesive bonding process modularly bonds several SDSs with an elastic backbone to fabricate a layered soft actuator where the elastic backbone is used to recover the SDSs in a cooling process using the SMA wires. Two kinds of SDS-based soft actuators were modularly assembled, an actuator, SDS-I, with a two-dimensional reciprocal motion, and an actuator, SDS-II, capable of bi-directional reciprocal motion. The thermodynamics and phase transformation modeling of the SDS-based actuator were analyzed. Several extensional soft actuators were also assembled by bonding the SDS with an anomalous elastic backbone or modularly assembling the SDS-Is and SDS-IIs. These modularly assembled soft actuators delivered more output channels and a complicated motion, e.g., an actinomorphic soft actuator with four SDS-Is jumps in a series of hierarchical heights and directional movement by tuning the input channels of the SDSs. This result showed that the SDS can modularly assemble multifarious soft actuators with diverse capabilities, steerability and tunable outputs.

  14. Expression and fast preparation of biologically active recombinant human coagulation factor VII in CHO-K1 cells.

    PubMed

    Xiao, W; Li, C Q; Xiao, X P; Lin, F Z

    2013-12-16

    Human coagulation factor VII (FVII) plays an important role in the blood coagulation process and exists in micro amounts in human plasma; therefore, any attempt at the large-scale production of FVII in significant quantities is challenging. The purpose of this study was to express and obtain biologically active recombinant FVII (rFVII) from Chinese hamster ovary K1 (CHO-K1) cells. The full-length FVII cDNA was isolated from a HepG2 cell line and then subcloned in pcDNA3.1 to construct an expression vector, pcDNA-FVII. CHO-K1 cells were transfected with 1 µg pcDNA-FVII. The cell line that stably expressed secretory FVII was screened using 900 µg/mL G418. The FVII copy number in CHO-K1 cells was detected by quantitative polymerase chain reaction (qPCR). The rFVII was purified in ligand affinity chromatography medium. The purified protein was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis. The biological activity of the purified FVII protein was determined by a prothrombin time assay. Three cell lines that permanently expressed rFVII were screened. The qPCR results demonstrated that each CHO-K1 cell harbored two FVII DNA copies. The SDS-PAGE and Western blot analysis showed that the purified protein was about 50 kDa. The purity of the target protein was 95%. The prothrombin time assay indicated that the FVII-specific activity of rFVII was 2573 ± 75 IU/mg. This method enabled the fast preparation of high-purity rFVII from CHO-K1 cells, and the purified protein had good biological activity.

  15. Purification and biochemical characterization of a thermostable extracellular glucoamylase produced by the thermotolerant fungus Paecilomyces variotii.

    PubMed

    Michelin, Michele; Ruller, Roberto; Ward, Richard J; Moraes, Luiz Alberto B; Jorge, João A; Terenzi, Héctor F; Polizeli, Maria de Lourdes T M

    2008-01-01

    An extracellular glucoamylase produced by Paecilomyces variotii was purified using DEAE-cellulose ion exchange chromatography and Sephadex G-100 gel filtration. The purified protein migrated as a single band in 7% PAGE and 8% SDS-PAGE. The estimated molecular mass was 86.5 kDa (SDS-PAGE). Optima of temperature and pH were 55 degrees C and 5.0, respectively. In the absence of substrate the purified glucoamylase was stable for 1 h at 50 and 55 degrees C, with a t (50) of 45 min at 60 degrees C. The substrate contributed to protect the enzyme against thermal denaturation. The enzyme was mainly activated by manganese metal ions. The glucoamylase produced by P. variotii preferentially hydrolyzed amylopectin, glycogen and starch, and to a lesser extent malto-oligossacarides and amylose. Sucrose, p-nitrophenyl alpha-D-maltoside, methyl-alpha-D-glucopyranoside, pullulan, alpha- and beta-cyclodextrin, and trehalose were not hydrolyzed. After 24 h, the products of starch hydrolysis, analyzed by thin layer chromatography, showed only glucose. The circular dichroism spectrum showed a protein rich in alpha-helix. The sequence of amino acids of the purified enzyme VVTDSFR appears similar to glucoamylases purified from Talaromyces emersonii and with the precursor of the glucoamylase from Aspergillus oryzae. These results suggested the character of the enzyme studied as a glucoamylase (1,4-alpha-D-glucan glucohydrolase).

  16. Molecular dynamics simulation of sodium dodecylsulfate (SDS) bilayers.

    PubMed

    Zhang, Hongshu; Yuan, Shiling; Sun, Jichao; Liu, Jianqiang; Li, Haiping; Du, Na; Hou, Wanguo

    2017-11-15

    Sodium dodecylsulfate (SDS) - a simple single tailed surfactant (STS) can form stable vesicles from its micellar solution without any additives under the mediation of solid surfaces. To further understand the mechanism of this transition on the molecular level, molecular dynamics simulations are performed to study segments of SDS bilayers (as part of vesicles) in the bulk solution systematically, at the moment that the lower leaflet of bilayers already detached from solid surfaces. The SDS membrane would rather keep their bilayers structure than return to micelles when the initial interdigitated degree (δ i ) between alkyl chains is more than 8.0±1.4%. And the interdigitated degree is always approaching to 31.7±2.0% while the equilibrium is reached. The aggregates behave as curved bilayers, planar bilayers, perforated bilayers, and micelles with the increase of the lower leaflet cross-sectional area. Besides, the structures of salt bridge and water bridge structures are formed between DS - and Na + ions or water molecules, which contribute to the stability of SDS bilayers. The distribution difference of the salt bridges along the direction of S-O axis between the two leaflets leads to the asymmetry of the bilayers, which plays supplementary role to the formation of bilayers curvature. We expect that this work help to shed light on the understanding of interface phenomena and the mechanism of simple single-tailed surfactant vesicle self-assembly on the molecular level. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Sarcoidosis diagnostic score (SDS): a systematic evaluation to enhance the diagnosis of sarcoidosis.

    PubMed

    Bickett, Alexandra N; Lower, Elyse E; Baughman, Robert P

    2018-05-17

    The diagnosis of sarcoidosis is made by the combination of clinical features and biopsy results. The clinical features of sarcoidosis can be quite variable. We developed a Sarcoidosis Diagnostic Score (SDS) to summarize the clinical features of possible sarcoidosis patients. Biopsy confirmed sarcoidosis patients seen during a seven-month time period at the University of Cincinnati Sarcoidosis clinic were prospectively identified. Non-sarcoidosis patients seen at the same clinic were used as controls. Using a modified WASOG organ assessment instrument, we scored all patients for presence of biopsy, one or more highly probable symptom, and one or more at least probable symptom for each area. Two sarcoidosis scores were generated: SDS biopsy (with biopsy) and SDS clinical (without biopsy). The 980 evaluable patients were divided into two cohorts: an initial 600 patients (450 biopsy confirmed sarcoidosis, 150 controls) to establish cut-off values for SDS biopsy and SDS clinical and a validation cohort of 380 patients (103 biopsy confirmed sarcoidosis patients and 277 controls). The best cutoff value for SDS biopsy was > 6 (sensitivity =99.3%; specificity=100%). For the total the 980 patients, an SDS clinical > 3 had a sensitivity of 94.2%, specificity of 88.8%, and a likelihood ratio of 7.9. An SDS clinical score > 4 had a lower sensitivity of (76.9%) but higher specificity (98.6%). For sarcoidosis, the presence of specific clinical features, especially multi-organ involvement, can enhance the diagnostic certainty. The SDS scoring system quantitated the clinical features consistent with sarcoidosis. Copyright © 2018. Published by Elsevier Inc.

  18. Purification and Characterization of a Thermostable Lipase from Geobacillus thermodenitrificans IBRL-nra

    PubMed Central

    Balan, Anuradha; Ibrahim, Darah; Abdul Rahim, Rashidah; Ahmad Rashid, Fatimah Azzahra

    2012-01-01

    Thermostable lipase from Geobacillus thermodenitrificans IBRL-nra was purified and characterized. The production of thermostable lipase from Geobacillus thermodenitrificans IBRL-nra was carried out in a shake-flask system at 65°C in cultivation medium containing; glucose 1.0% (w/v); yeast extract 1.25% (w/v); NaCl 0.45% (w/v) olive oil 0.1% (v/v) with agitation of 200 rpm for 24 hours. The extracted extracellular crude thermostable lipase was purified to homogeneity by using ultrafiltration, Heparin-affinity chromatography, and Sephadex G-100 gel-filtration chromatography by 34 times with a final yield of 9%. The molecular weight of the purified enzyme was estimated to be 30 kDa after SDS-PAGE analysis. The optimal temperature for thermostable lipase was 65°C and it retained its initial activity for 3 hours. Thermostable lipase activity was highest at pH 7.0 and stable for 16 hours at this pH at 65°C. Thermostable lipase showed elevated activity when pretreated with BaCl2, CaCl2, and KCl with 112%, 108%, and 106%, respectively. Lipase hydrolyzed tripalmitin (C16) and olive oil with optimal activity (100%) compared to other substrates. PMID:23198138

  19. Biomonitoring of selenoprotein P in human serum by fast affinity chromatography coupled to ICP-MS.

    PubMed

    Heitland, Peter; Köster, Helmut D

    2018-04-01

    Most of the Se in human serum is bound to selenoprotein P (SEPP1) in which Se is present in form of selenocysteine. The SEPP1 is a new possible biomarker for the Se status and for this reason we developed a fast, simple and reliable method for the quantitative determination of SEPP1 in serum by affinity chromatography coupled to ICP-MS. It is possible to separate SEPP1 from other selenoproteins in serum in only 5 min, which allows high sample throughput in clinical laboratories. Measured and certified concentrations of total Se and Se(SEPP1) are in good agreement for the reference material SRM 1950. The SEPP1 concentration was stable in serum samples of 3 persons for a minimum of 2 weeks. Further results of method validation were described including internal and external quality assurance. The analytical method was applied for a biomonitoring study of the SEPP1 and total Se concentration in human serum of 50 occupationally non-exposed persons living in northern Germany. Concentration ranges and mean concentrations for Se(SEPP1) are 31.1-59.7 and 46.2 μg/L, respectively. The corresponding values for total Se are 62-120 and 83.5 μg/L. The mean percentage of total Se in serum present as SEPP1 is 58%. Copyright © 2018 Elsevier GmbH. All rights reserved.

  20. Use of entrapment and high-performance affinity chromatography to compare the binding of drugs and site-specific probes with normal and glycated human serum albumin

    PubMed Central

    Jackson, Abby J.; Anguizola, Jeanethe; Pfaunmiller, Erika L.; Hage, David S.

    2013-01-01

    Protein entrapment and high-performance affinity chromatography were used with zonal elution to examine the changes in binding that occurred for site-specific probes and various sulfonylurea drugs with normal and glycated forms of human serum albumin (HSA). Samples of this protein in a soluble form were physically entrapped within porous silica particles by using glycogen-capped hydrazide-activated silica; these supports were then placed into 1.0 cm × 2.1 mm inner diameter columns. Initial zonal elution studies were performed using (R)-warfarin and L-tryptophan as probes for Sudlow sites I and II (i.e., the major drug binding sites of HSA), giving quantitative measures of binding affinities in good agreement with literature values. It was also found for solutes with multisite binding to the same proteins, such as many sulfonylurea drugs, that this method could be used to estimate the global affinity of the solute for the entrapped protein. This entrapment and zonal approach provided retention information with precisions of ±0.1–3.3% (± one standard deviation) and elution within 0.50–3.00 min for solutes with binding affinities of 1 × 104–3 × 105 M−1. Each entrapped-protein column was used for many binding studies, which decreased the cost and amount of protein needed per injection (e.g., the equivalent of only 125–145 pmol of immobilized HSA or glycated HSA per injection over 60 sample application cycles). This method can be adapted for use with other proteins and solutes and should be valuable in high-throughput screening or quantitative studies of drug–protein binding or related biointeractions. PMID:23657448

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, A.D.

    The aim of this research was to purify and characterize active opioid receptors and elucidate molecular aspects of opioid receptor heterogeneity. Purification to apparent homogeneity of an opioid binding protein from bovine caudate was achieved by solubilization in the non-ionic detergent, digitonin, followed by sequential chromatography on the opiate affinity matrix, ..beta..-naltrexylethylenediamine-CH-Sepharose 4B, and on the lectine affinity matrix, wheat germ agglutinin-agarose. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS-PAGE) followed by autoradiography revealed that radioiodinated purified receptor gave a single band. Purified receptor preparations showed a specific activity of 12,000-15,000 fmol of opiate bound per mgmore » of protein. Radioiodinated human beta-endorphin (/sup 125/I-beta-end/sub H/) was used as a probe to investigate the ligand binding subunits of mu and delta opioid receptors. /sup 125/I-beta-end/sub H/ was shown to bind to a variety of opioid receptor-containing tissues with high affinity and specificity with preference for mu and delta sites, and with little, if any, binding to kappa sites. Affinity crosslinking techniques were employed to covalently link /sup 125/I-beta-end/sub H/ to opioid receptors, utilizing derivatives of bis-succinimidyl esters that are bifunctional crosslinkers with specificities for amino and sulfhydryl groups. This, and competition experiments with high type-selective ligands, permitted the assignment of two labeled peptides to their receptor types, namely a peptide of M/sub r/ = 65,000 for mu receptors and one of M/sub r/ = 53,000 for delta receptors.« less

  2. Preparation of protein samples for mass spectrometry and N-terminal sequencing.

    PubMed

    Glenn, Gary

    2014-01-01

    The preparation of protein samples for mass spectrometry and N-terminal sequencing is a key step in successfully identifying proteins. Mass spectrometry is a very sensitive technique, and as such, samples must be prepared carefully since they can be subject to contamination of the sample (e.g., due to incomplete subcellular fractionation or purification of a multiprotein complex), overwhelming of the sample by highly abundant proteins, and contamination from skin or hair (keratin can be a very common hit). One goal of sample preparation for mass spec is to reduce the complexity of the sample - in the example presented here, mitochondria are purified, solubilized, and fractionated by sucrose density gradient sedimentation prior to preparative 1D SDS-PAGE. It is important to verify the purity and integrity of the sample so that you can have confidence in the hits obtained. More protein is needed for N-terminal sequencing and ideally it should be purified to a single band when run on an SDS-polyacrylamide gel. The example presented here involves stably expressing a tagged protein in HEK293 cells and then isolating the protein by affinity purification and SDS-PAGE. © 2014 Elsevier Inc. All rights reserved.

  3. Small total dose measurement system for SDS-1

    NASA Astrophysics Data System (ADS)

    Kimoto, Yugo; Satoh, Yohei; Tachihara, Hiroshi

    2009-11-01

    The Japanese Aerospace Exploration Agency (JAXA) uses monitors on board satellites to measure and record in-flight data on ionization effects in space. A compact, total dose measurement system for the small satellite (SDS-1) was developed based on the previous system for measuring total ionizing dose effects. Especially, the sensor for SDS-1 is quite smaller than the sensor for SOHLA-1, which is presented in the last year. The sensor is 8 mm wide×3 mm high×19 mm long and weighs approximately 4 g with 500 mm its wire harness. Eight pin LCC RADFET and temperature sensor are arranged on it. Seven sensors are arranged on some components inside the SDS-1. One of the sensors is arranged on a printed board in advanced microprocessing in-ORBIT experiment equipment (AMI). The AMI demonstrate 320 MIPS microprocessor and DC-DC converter for space. The absorbed dose at the points where the sensors are arranged was evaluated before flight and will be compared with resulting flight data.

  4. Beyond the detergent effect: a binding site for sodium dodecyl sulfate (SDS) in mammalian apoferritin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Renyu, E-mail: renyu.liu@uphs.upenn.edu; Bu, Weiming; Xi, Jin

    2012-05-01

    Using X-ray crystallography and isothermal titration calorimetry, we show that sodium dodecyl sulfate (SDS) binds specifically to a pre-formed internal cavity in horse-spleen apoferritin. Although sodium dodecyl sulfate (SDS) is widely used as an anionic detergent, it can also exert specific pharmacological effects that are independent of the surfactant properties of the molecule. However, structural details of how proteins recognize SDS are scarce. Here, it is demonstrated that SDS binds specifically to a naturally occurring four-helix bundle protein: horse apoferritin. The X-ray crystal structure of the apoferritin–SDS complex was determined at a resolution of 1.9 Å and revealed that themore » SDS binds in an internal cavity that has previously been shown to recognize various general anesthetics. A dissociation constant of 24 ± 9 µM at 293 K was determined by isothermal titration calorimetry. SDS binds in this cavity by bending its alkyl tail into a horseshoe shape; the charged SDS head group lies in the opening of the cavity at the protein surface. This crystal structure provides insights into the protein–SDS interactions that give rise to binding and may prove useful in the design of novel SDS-like ligands for some proteins.« less

  5. Purification of HBsAg produced by the human hepatoma cell line PLC/PRE/5 by affinity chromatography using monoclonal antibodies and application for ELISA diagnostic.

    PubMed

    Merten, O W; Reiter, S; Scheirer, W; Katinger, H

    1983-01-01

    The human cell line PLC/PRF/5 (5) was used for the production of hepatitis B surface antigen subtype ad (HBsAg ad) and purified by affinity chromatography (AC) with monoclonal antibodies (mAb). mAb to HBsAg from mouse ascites have been purified by Protein A - AC prior coupling to AH-Sepharose 4B (Pharmacia). The combined procedure of ammonium-sulphate-precipitation of HBsAg from culture supernatants and immunosorbent-AC leads to approx. 700-fold purification. ELISA results using the mAb and the HBsAg for diagnostics of human serum, positive for anti-HBsAg-antibodies correlate with the RIA (AUSAB, Abbott).

  6. Purification and comparison of heat shock protein 90 (Hsp90) in Candida albicans isolates from Malaysian and Iranian patients and infected mice.

    PubMed

    Khalili, V; Shokri, H; Khosravi, A R; Akim, A; Amri Saroukolaei, S

    2016-06-01

    The purposes of this study were to purify and compare the concentration ratios of heat shock protein 90 (Hsp90) in clinical isolates of Candida albicans (C. albicans) obtained from Malaysian and Iranian patients and infected mice. Hsp90 was extracted using glass beads and ultracentrifugation from yeast cells and purified by ion exchange chromatography (DEAE-cellulose) and followed by affinity chromatography (hydroxyapatite). Purity of Hsp90 was controlled by SDS-PAGE and its identification was realized by immunoblotting test. The graphs of ion exchange and affinity chromatography showed one peak in all C. albicans isolates obtained from both Malaysian and Iranian samples, infected mice and under high-thermal (42°C) and low-thermal (25°C) shock. In immunoblotting, the location of Hsp90 fragments was obtained around 47, 75 and 82kDa. The least average concentration ratios of Hsp90 were 0.350 and 0.240mg/g for Malaysian and Iranian isolates at 25°C, respectively, while the highest average concentration ratios of Hsp90 were 3.05 and 2.600mg/g for Malaysian and Iranian isolates at 42°C, respectively. There were differences in the ratio amount of Hsp90 between Malaysian isolates (1.01±0.07mg/g) and mice kidneys (1.23±0.28mg/g) as well as between Iranian isolates (0.70±0.19mg/g) and mice kidneys (1.00±0.28mg/g) (P<0.05). The results showed differences in all situations tested including Iranian and Malaysian isolates, samples treated with temperatures (25°C or 42°C) and before and after infecting the mice (37°C), indicating higher virulent nature of this yeast species in high temperature in human and animal models. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Binding of TEM-1 beta-lactamase to beta-lactam antibiotics by frontal affinity chromatography.

    PubMed

    Chen, Xiu; Li, Yuhua; Zhang, Yan; Yang, Jianting; Bian, Liujiao

    2017-04-15

    TEM-1 beta-lactamases can accurately catalyze the hydrolysis of the beta-lactam rings in beta-lactam antibiotics, which make beta-lactam antibiotics lose its activity, and the prerequisite for the hydrolysis procedure in the binding interaction of TEM-1 beta-lactamases with beta-lactam antibiotics is the beta-lactam rings in beta-lactam antibiotics. Therefore, the binding of TEM-1 beta-lactamase to three beta-lactam antibiotics including penicillin G, cefalexin as well as cefoxitin was explored here by frontal affinity chromatography in combination with fluorescence spectra, adsorption and thermodynamic data in the temperature range of 278-288K under simulated physiological conditions. The results showed that all the binding of TEM-1 beta-lactamase to the three antibiotics were spontaneously exothermic processes with the binding constants of 8.718×10 3 , 6.624×10 3 and 2.244×10 3 (mol/L), respectively at 288K. All the TEM-1 beta-lactamases were immobilized on the surface of the stationary phase in the mode of monolayer and there existed only one type of binding sites on them. Each TEM-1 beta-lactamase bound with only one beta-lactam antibiotic and hydrogen bond interaction and Van der Waals force were the main forces between them. This work provided an insight into the binding interactions between TEM-1 beta-lactamases and beta-lactam antibiotics, which may be beneficial for the designing and developing of new substrates resistant to TEM-1 beta-lactamases. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Metallothionein quantification in clams by reversed-phase high-performance liquid chromatography coupled to fluorescence detection after monobromobimane derivatization.

    PubMed

    Alhama, José; Romero-Ruiz, Antonio; López-Barea, Juan

    2006-02-24

    In this paper, we describe a highly specific, sensitive and reliable method for total metallothionein (MT) quantification by RP-HPLC coupled to fluorescence detection following reaction with monobromobimane of thiols from metal-depleted MT after heat-denaturation of extracts in the presence of sodium dodecyl sulphate (SDS). SDS-polyacrylamide gel electrophoresis (SDS-PAGE) confirmed the identity of the peak resolved (t(R)=16.44) with MT: a highly fluorescent protein of approximately 8.3 kDa, in agreement with the high thiol content and low MT size. Other heat-resistant and Cys-containing proteins of 35 kDa were efficiently separated. The new method was successfully used to quantify MT content in digestive gland of clams from southern Spanish coastal sites with different metal levels, and is proposed as a tool for using MTs as biomarker in monitoring programmes.

  9. DNA aptamer affinity ligands for highly selective purification of human plasma-related proteins from multiple sources.

    PubMed

    Forier, Cynthia; Boschetti, Egisto; Ouhammouch, Mohamed; Cibiel, Agnès; Ducongé, Frédéric; Nogré, Michel; Tellier, Michel; Bataille, Damien; Bihoreau, Nicolas; Santambien, Patrick; Chtourou, Sami; Perret, Gérald

    2017-03-17

    Nucleic acid aptamers are promising ligands for analytical and preparative-scale affinity chromatography applications. However, a full industrial exploitation requires that aptamer-grafted chromatography media provide a number of high technical standards that remained largely untested. Ideally, they should exhibit relatively high binding capacity associated to a very high degree of specificity. In addition, they must be highly resistant to harsh cleaning/sanitization conditions, as well as to prolonged and repeated exposure to biological environment. Here, we present practical examples of aptamer affinity chromatography for the purification of three human therapeutic proteins from various sources: Factor VII, Factor H and Factor IX. In a single chromatographic step, three DNA aptamer ligands enabled the efficient purification of their target protein, with an unprecedented degree of selectivity (from 0.5% to 98% of purity in one step). Furthermore, these aptamers demonstrated a high stability under harsh sanitization conditions (100h soaking in 1M NaOH). These results pave the way toward a wider adoption of aptamer-based affinity ligands in the industrial-scale purification of not only plasma-derived proteins but also of any other protein in general. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Purification and characterization of protein phosphatase 2A from petals of the tulip Tulipa gesnerina.

    PubMed

    Azad, Md Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi

    2006-11-30

    The holoenzyme of protein phosphatase (PP) from tulip petals was purified by using hydrophobic interaction, anion exchange and microcystin affinity chromatography to analyze activity towards p-nitrophenyl phosphate (p-NPP). The catalytic subunit of PP was released from its endogenous regulatory subunits by ethanol precipitation and further purified. Both preparations were characterized by immunological and biochemical approaches to be PP2A. On SDS-PAGE, the final purified holoenzyme preparation showed three protein bands estimated at 38, 65, and 75 kDa while the free catalytic subunit preparation showed only the 38 kDa protein. In both preparations, the 38 kDa protein was identified immunologically as the catalytic subunit of PP2A by using a monoclonal antibody against the PP2A catalytic subunit. The final 623- and 748- fold purified holoenzyme and the free catalytic preparations, respectively, exhibited high sensitivity to inhibition by 1 nM okadaic acid when activity was measured with p-NPP. The holoenzyme displayed higher stimulation in the presence of ammonium sulfate than the free catalytic subunit did by protamine, thereby suggesting different enzymatic behaviors.

  11. Confirmation of a new conserved linear epitope of Lyssavirus nucleoprotein.

    PubMed

    Xinjun, Lv; Xuejun, Ma; Lihua, Wang; Hao, Li; Xinxin, Shen; Pengcheng, Yu; Qing, Tang; Guodong, Liang

    2012-05-01

    Bioinformatics analysis was used to predict potential epitopes of Lyssavirus nucleoprotein and highlighted some distinct differences in the quantity and localization of the epitopes disclosed by epitope analysis of monoclonal antibodies against Lyssavirus nucleoprotein. Bioinformatics analysis showed that the domain containing residues 152-164 of Lyssavirus nucleoprotein was a conserved linear epitope that had not been reported previously. Immunization of two rabbits with the corresponding synthetic peptide conjugated to the Keyhole Limpe hemocyanin (KLH) macromolecule resulted in a titer of anti-peptide antibody above 1:200,000 in rabbit sera as detected by indirect enzyme-linked immunosorbent assay (ELISA). Western blot analysis demonstrated that the anti-peptide antibody recognized denatured Lyssavirus nucleoprotein in sodium dodecylsulfonate-polyacrylate gel electrophoresis (SDS-PAGE). Affinity chromatography purification and FITC-labeling of the anti-peptide antibody in rabbit sera was performed. FITC-labeled anti-peptide antibody could recognize Lyssavirus nucleoprotein in BSR cells and canine brain tissues even at a 1:200 dilution. Residues 152-164 of Lyssavirus nucleoprotein were verified as a conserved linear epitope in Lyssavirus. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Transient Expression of Lumbrokinase (PI239) in Tobacco (Nicotiana tabacum) Using a Geminivirus-Based Single Replicon System Dissolves Fibrin and Blood Clots.

    PubMed

    Dickey, Alexia; Wang, Nan; Cooper, Edwin; Tull, Lauren; Breedlove, Drew; Mason, Hugh; Liu, Dehu; Wang, Kevin Yueju

    2017-01-01

    Lumbrokinases, a group of fibrinolytic enzymes extracted from earthworm, have been widely used to prevent and treat various cardiovascular diseases. They specifically target fibrin to effectively degrade thrombi without major side effects. Plant expression systems are becoming potential alternative expression platforms for producing pharmaceutical proteins. In this work, a lumbrokinase (PI239) was produced from a plant system. Both wild-type (WT) and plant codon-optimized (OP) PI239 gene sequences were synthesized and cloned into a geminivirus-based single-vector DNA replicon system. Both vectors were independently expressed in tobacco (Nicotiana tabacum) leaves transiently by agroinfiltration. Overexpressed PI239 resulted in sudden tissue necrosis 3 days after infiltration. Remaining proteins were purified through His-tag affinity chromatography and analyzed with SDS-PAGE and Western blot methods. Purified PI239 successfully degraded artificial fibrin with relative activity of 13,400 U/mg when compared with commercial lumbrokinase product. In vitro tests demonstrated that plant-derived PI239 dissolved human blood clots and that the plant expression system is capable of producing functional PI239.

  13. Isolation and initial structural characterization of a 27 kDa protein from Zingiber officinale

    NASA Astrophysics Data System (ADS)

    Rasheed, Saima; Malik, Shoaib Ahmad; Falke, Sven; Arslan, Ali; Fazel, Ramin; Schlüter, Hartmut; Betzel, Christian; Choudhary, M. Iqbal

    2018-03-01

    Zingiber officinale Roscoe (Ginger) is a widely used traditional medicinal plant (for different ailments such as arthritis, constipation, and hypertension). This article describes the isolation and characterization of a so far unknown protein from ginger rhizomes applying ion exchange, affinity, size-exclusion chromatography, small angle X-ray scattering (SAXS), and mass spectrometry techniques. One-dimensional Coomassie-stained SDS-PAGE was performed under non-reducing conditions, showing one band corresponding to approx. 27 kDa. Dynamic light scattering (DLS) analysis of the protein solution revealed monodispersity and a monomeric state of the purified protein. Circular dichroism (CD) spectroscopy strongly indicated a β-sheet-rich protein, and disordered regions. MALDI-TOF-MS, and LC-MS/MS analysis resulted in the identification of 27.29 kDa protein, having 32.13% and 25.34% sequence coverage with Zingipain-1 and 2, respectively. The monomeric state and molecular weight were verified by small angle X-ray scattering (SAXS) studies. An elongated ab-initio model was calculated based on the scattering intensity distribution.

  14. Cloning and expression of gamma carbonic anhydrase from Serratia sp. ISTD04 for sequestration of carbon dioxide and formation of calcite.

    PubMed

    Srivastava, Shaili; Bharti, Randhir Kumar; Verma, Praveen Kumar; Thakur, Indu Shekhar

    2015-01-01

    Bacterial strains isolated from marble mines rock and enriched in the chemostat culture with different concentrations of sodium bicarbonate. The enriched consortium had six bacterial isolates. One of bacterium isolate showed carbonic anhydrase (CA) activity by catalyzing the reversible hydration reaction of carbon dioxide to bicarbonate. The bacterium was identified as Serratia sp. by 16S rRNA sequence analysis. The carbonic anhydrase gene from Serratia sp. was found to be homologous with gamma carbonic anhydrase. The carbonic anhydrase gene was cloned in PET21b(+) and expressed it in recombinant Escherichia coli BL21 (DE3) with His-tag at the C-terminus. The recombinant protein was purified efficiently by using one-step nickel affinity chromatography. Expected size of carbonic anhydrase was approximately 29 kDa in SDS-PAGE gel. Recombinant carbonic anhydrase enzyme was used for biomineralization-based conversion of atmospheric CO2 into valuable calcite minerals. The calcification was confirmed by using XRD, FTIR, EDX and SEM analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Expression and Purification of a Novel Computationally Designed Antigen for Simultaneously Detection of HTLV-1 and HBV Antibodies.

    PubMed

    Heydari Zarnagh, Hafez; Ravanshad, Mehrdad; Pourfatollah, Ali Akbar; Rasaee, Mohammad Javad

    2015-04-01

    Computational tools are reliable alternatives to laborious work in chimeric protein design. In this study, a chimeric antigen was designed using computational techniques for simultaneous detection of anti-HTLV-I and anti-HBV in infected sera. Databases were searched for amino acid sequences of HBV/HLV-I diagnostic antigens. The immunodominant fragments were selected based on propensity scales. The diagnostic antigen was designed using these fragments. Secondary and tertiary structures were predicted and the B-cell epitopes were mapped on the surface of built model. The synthetic DNA coding antigen was sub-cloned into pGS21a expression vector. SDS-PAGE analysis showed that glutathione fused antigen was highly expressed in E. coli BL21 (DE3) cells. The recombinant antigen was purified by nickel affinity chromatography. ELISA results showed that soluble antigen could specifically react with the HTLV-I and HBV infected sera. This specific antigen could be used as suitable agent for antibody-antigen based screening tests and can help clinicians in order to perform quick and precise screening of the HBV and HTLV-I infections.

  16. Purification of R-phycoerythrin from Gracilaria lemaneiformis by centrifugal precipitation chromatography.

    PubMed

    Gu, Dongyu; Lazo-Portugal, Rodrigo; Fang, Chen; Wang, Zhantong; Ma, Ying; Knight, Martha; Ito, Yoichiro

    2018-06-15

    Centrifugal precipitation chromatography (CpC) is a powerful chromatographic technique invented in the year 2000 but so far very little applied. The method combines dialysis, counter-current and salting out processes. The separation rotor consists of two identical spiral channels separated by a dialysis membrane (6-8 K MW cut-off) in which the upper channel is eluted with an ammonium sulfate gradient and the lower channel with water, and the mixtures are separated according to their solubility in ammonium sulfate as a chromatographic technique. In the present study, the method was successfully applied for separation and purification of R-phycoerythrin (R-PE), a protein widely used as a fluorescent probe, from the red alga Gracilaria lemaneiformis. The separation was performed with the elution of ammonium sulfate from 50% to 0% in 21.5 h at a flow rate of 0.5 ml/min, while the lower channel was eluted with water at a flow rate of 0.05 ml/min after sample charge, and the column was rotated at 200 rpm. After a single run, the absorbance ratio A 565 /A 280 (a criterion for the purity of R-PE) was increased from 0.5 of the crude to 6.5. The purified R-PE exhibited a typical "three peaks" spectrum with absorbance maximum at 497, 538 and 565 nm. The Native-PAGE showed one single protein band and 20 kDa (subunits α and β) and 30 kDa (subunit γ) can be observed in SDS-PAGE analysis which were consistent with the (αβ) 6 γ subunit composition of R-PE. The results indicated that CpC is an efficient method to obtain protein with the high purity from a complex source. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Purification and characterization of rat liver minoxidil sulphotransferase.

    PubMed Central

    Hirshey, S J; Falany, C N

    1990-01-01

    Minoxidil (Mx), a pyrimidine N-oxide, is used therapeutically as an antihypertensive agent and to induce hair growth in patients with male pattern baldness. Mx NO-sulphate has been implicated as the agent active in producing these effects. This paper describes the purification of a unique sulphotransferase (ST) from rat liver cytosol that is capable of catalysing the sulphation of Mx. By using DEAE-Sepharose CL-6B chromatography, hydroxyapatite chromatography and ATP-agarose affinity chromatography, Mx-ST activity was purified 240-fold compared with the activity in cytosol. The purified enzyme was also capable of sulphating p-nitrophenol (PNP) at low concentrations (less than 10 microM). Mx-ST was purified to homogeneity, as evaluated by SDS/PAGE and reverse-phase h.p.l.c. The active form of the enzyme had a molecular mass of 66,000-68,000 Da as estimated by gel exclusion chromatography and a subunit molecular mass of 35,000 Da. The apparent Km values for Mx, 3'-phosphoadenosine 5'-phosphosulphate and PNP were 625 microM, 5.0 microM and 0.5 microM respectively. However, PNP displayed potent substrate inhibition at concentrations above 1.2 microM. Antibodies raised in rabbits to the pure enzyme detected a single band in rat liver cytosol with a subunit molecular mass of 35,000 Da, as determined by immunoblotting. The anti-(rat Mx-ST) antibodies also reacted with the phenol-sulphating form of human liver phenol sulphotransferase, suggesting some structural similarity between these proteins. Images Fig. 5. Fig. 6. Fig. 7. PMID:2241904

  18. A cytocidal tissue kallikrein isolated from mouse submandibular glands.

    PubMed

    Murakami, K; Ikigai, H; Nagumo, N; Tomita, M; Shimamura, T

    1989-11-06

    A cytocidal factor against mouse thymocytes was purified from the submandibular glands of female BALB/c mice using Sephadex G-50 gel filtration chromatography and reverse-phase HPLC. SDS-PAGE and amino acid sequence analysis revealed that the cytocidal factor was mouse glandular kallikrein (mGK)-6. mGK-6 showed an optimal enzyme activity at pH 10 and a cytocidal activity against thymocytes in a dose-dependent manner.

  19. Two-dimensional turbulent flow chromatography coupled on-line to liquid chromatography-mass spectrometry for solution-based ligand screening against multiple proteins.

    PubMed

    Zhou, Jian-Liang; An, Jing-Jing; Li, Ping; Li, Hui-Jun; Jiang, Yan; Cheng, Jie-Fei

    2009-03-20

    We present herein a novel bioseparation/chemical analysis strategy for protein-ligand screening and affinity ranking in compound mixtures, designed to increase screening rates and improve sensitivity and ruggedness in performance. The strategy is carried out by combining on-line two-dimensional turbulent flow chromatography (2D-TFC) with liquid chromatography-mass spectrometry (LC-MS), and accomplished through the following steps: (1) a reversed-phase TFC stage to separate the protein/ligand complex from the unbound free molecules, (2) an on-line dissociation process to release the bound ligands from the complexes, and (3) a second mixed-mode cation-exchange/reversed-phase TFC stage to trap the bound ligands and to remove the proteins and salts, followed by LC-MS analysis for identification and determination of the binding affinities. The technique can implement an ultra-fast isolation of protein/ligand complex with the retention time of a complex peak in about 5s, and on-line prepare the "clean" sample to be directly compatible with the LC-MS analysis. The improvement in performance of this 2D-TFC/LC-MS approach over the conventional approach has been demonstrated by determining affinity-selected ligands of the target proteins acetylcholinesterase and butyrylcholinesterase from a small library with known binding affinities and a steroidal alkaloid library composed of structurally similar compounds. Our results show that 2D-TFC/LC-MS is a generic and efficient tool for high-throughput screening of ligands with low-to-high binding affinities, and structure-activity relationship evaluation.

  20. Fractionation and identification of the allergic proteins in Aspergillus species.

    PubMed

    Falahati, M; Ghanbari, S; Ebrahimi, M; Ghazanfari, M; Bazrafshan, F; Farahyar, S; Falak, R

    2016-12-01

    Allergy is an undesired immune response to non-pathogenic agents. However, some opportunistic microorganisms such as fungi can also cause allergy. Among those fungi, hyphae form of Aspergillus strains including A. fumigatus , A. flavus , and A. niger could be mentioned. In this study, we aimed to separate allergic proteins from Aspergillus strains and determine their identity. Standard species of Aspergillus strains were cultivated in optimized conditions and the mycelium was separated by centrifugation. The fungal cells were lysed through physical methods such as freeze-thawing and grinding to prepare a suitable protein extract. The protein concentration was measured by Bradford method and the electrophoretic pattern of the extract was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The proteins were fractionated by ammonium sulfate precipitation and anion exchange chromatography using fast protein liquid chromatography (FPLC) system. The IgE immunoreactivity of the sensitized patients and controls was studied using the fractionated proteins by enzyme-linked immunosorbent assay (ELISA). Following SDS-PAGE, proteins were electrotransferred onto polyvinylidene difluoride (PVDF) membranes and the strips were blotted with allergic patients' and controls' sera. The immunoreactive bands were excised from colloidal coomassie-stained SDS-PAGE gels and studied by mass spectroscopy methods. Among the studied species, A. fumigatus showed stronger IgE reactivity and more IgE reactive protein bands than others did. The proteins with higher molecular weights showed stronger immunoreactivity in Western blotting. Receiver operating characteristic curve analysis demonstrated a correlation between the results of the applied ELISA methods. One of the most prominent IgE-reactive proteins was confirmed to be 45 kDa mycelia catalase. Our findings confirmed that high molecular weight proteins might play a major role in allergy and IgE reactivity to

  1. Interactions of PAMAM dendrimers with SDS at the solid-liquid interface.

    PubMed

    Arteta, Marianna Yanez; Eltes, Felix; Campbell, Richard A; Nylander, Tommy

    2013-05-14

    This work addresses structural and nonequilibrium effects of the interactions between well-defined cationic poly(amidoamine) PAMAM dendrimers of generations 4 and 8 and the anionic surfactant sodium dodecyl sulfate (SDS) at the hydrophilic silica-water interface. Neutron reflectometry and quartz crystal microbalance with dissipation monitoring were used to reveal the adsorption from premixed dendrimer/surfactant solutions as well as sequential addition of the surfactant to preadsorbed layers of dendrimers. PAMAM dendrimers of both generations adsorb to hydrophilic silica as a compact monolayer, and the adsorption is irreversible upon rinsing with salt solution. SDS adsorbs on the dendrimer layer and at low bulk concentrations causes the expansion of the dendrimer layers on the surface. When the bulk concentration of SDS is increased, the surfactant layer consists of aggregates or bilayer-like structures. The adsorption of surfactant is reversible upon rinsing, but slight changes of the structure of the preadsorbed PAMAM monolayer were observed. The adsorption from premixed solutions close to charge neutrality results in thick multilayers, but the surface excess is lower when the bulk complexes have a net negative charge. A critical examination of the pathway of adsorption for the interactions of SDS with preadsorbed PAMAM monolayers and premixed PAMAM/SDS solutions with hydrophilic silica revealed that nonequilibrium effects are important only in the latter case, and the application of a thermodynamic model to such experimental data would be inappropriate.

  2. Purification and biochemical characterization of insoluble acid invertase (INAC-INV) from pea seedlings.

    PubMed

    Kim, Donggiun; Lee, Gunsup; Chang, Man; Park, Jongbum; Chung, Youngjae; Lee, Sukchan; Lee, Taek-Kyun

    2011-10-26

    Invertase (EC 3.2.1.26) catalyzes the hydrolysis of sucrose into D-glucose and D-fructose. Insoluble acid invertase (INAC-INV) was purified from pea (Pisum sativum L.) by sequential procedures entailing ammonium sulfate precipitation, ion exchange chromatography, absorption chromatography, reactive green-19 affinity chromatography, and gel filtration. The purified INAC-INV had a pH optimum of 4.0 and a temperature optimum of 45 °C. The effects of various concentrations of Tris-HCl, HgCl(2), and CuSO(4) on the activities of the purified invertase were examined. INAC-INV was not affected by Tris-HCl and HgCl(2). INAC-INV activity was inhibited by 6.2 mM CuSO(4) up to 50%. The enzymes display typical hyperbolic saturation kinetics for sucrose hydrolysis. The K(m) and V(max) values of INAC-INV were determined to be 4.41 mM and 8.41 U (mg protein)(-1) min(-1), respectively. INAC-INV is a true member of the β-fructofuranosidases, which can react with sucrose and raffinose as substrates. SDS-PAGE and immunoblotting were used to determine the molecular mass of INAC-INV to be 69 kDa. The isoelectric point of INAC-INV was estimated to be about pH 8.0. Taken together, INAC-INV is a pea seedling invertase with a stable and optimum activity at lower acid pH and at higher temperature than other invertases.

  3. Comparative study of glycated hemoglobin by ion exchange chromatography and affinity binding nycocard reader in type 2 diabetes mellitus.

    PubMed

    Gautam, N; Dubey, R K; Jayan, A; Nepaune, Y; Padmavathi, P; Chaudhary, S; Jha, S K; Sinha, A K

    2014-12-01

    The aim of this study was to compare the level of glycated hemoglobin (HbA1c) in type 2 Diabetes Mellitus (DM) patients by two different methods namely Ion Exchange Chromatography and Affinity Binding Nycocard Reader. This is a cross-sectional study conducted on confirmed type 2 diabetes mellitus patients (n = 100) who visited Out Patients Department of the Universal College of Medical Sciences Teaching hospital, Bhairahawa, Nepal from November 2012 to March 2013. The diagnosis of diabetes mellitus was done on the basis of their fasting (164.46 ± 45.33 mg/dl) and random (187.93 ± 78.02 mg/dl) serum glucose level along with clinical history highly suggestive of type 2 DM. The HbA1c values of (7.8 ± 1.9%) and (8.0 ± 2.2%) were found in DM patients as estimated by those two different methods respectively. The highest frequency was observed in HbA1c > 8.0% indicating maximum cases were under very poor glycemic control. However, there were no significant differences observed in HbA1c value showing both methods are comparable in nature and can be used in lab for ease of estimation. The significant raised in HbA1c indicates complications associated with DM and monitoring of therapy become hard for those patients. Despite having standard reference method for HbA1c determination, the availability of report at the time of the patient visit can be made easy by using Nycocard Reader and Ion Exchange Chromatography techniques without any delay in communicating glycemic control, clinical decision-making and changes in treatment regimen.

  4. Bioengineering of Bacteria To Assemble Custom-Made Polyester Affinity Resins

    PubMed Central

    Hay, Iain D.; Du, Jinping; Burr, Natalie

    2014-01-01

    Proof of concept for the in vivo bacterial production of a polyester resin displaying various customizable affinity protein binding domains is provided. This was achieved by engineering various protein binding domains into a bacterial polyester-synthesizing enzyme. Affinity binding domains based on various structural folds and derived from molecular libraries were used to demonstrate the potential of this technique. Designed ankyrin repeat proteins (DARPins), engineered OB-fold domains (OBodies), and VHH domains from camelid antibodies (nanobodies) were employed. The respective resins were produced in a single bacterial fermentation step, and a simple purification protocol was developed. Purified resins were suitable for most lab-scale affinity chromatography purposes. All of the affinity domains tested produced polyester beads with specific affinity for the target protein. The binding capacity of these affinity resins ranged from 90 to 600 nmol of protein per wet gram of polyester affinity resin, enabling purification of a recombinant protein target from a complex bacterial cell lysate up to a purity level of 96% in one step. The polyester resin was efficiently produced by conventional lab-scale shake flask fermentation, resulting in bacteria accumulating up to 55% of their cellular dry weight as polyester. A further proof of concept demonstrating the practicality of this technique was obtained through the intracellular coproduction of a specific affinity resin and its target. This enables in vivo binding and purification of the coproduced “target protein.” Overall, this study provides evidence for the use of molecular engineering of polyester synthases toward the microbial production of specific bioseparation resins implementing previously selected binding domains. PMID:25344238

  5. Human thyrotropin receptor subunits characterized by thyrotropin affinity purification and western blotting.

    PubMed

    Leedman, P J; Newman, J D; Harrison, L C

    1989-07-01

    We studied the subunit structure of the human TSH receptor in thyroid tissue from patients with Graves' disease and multinodular goiter by TSH affinity chromatography, immunoprecipitation with Graves' immunoglobulins (Igs), and a modified technique of Western blotting. Human TSH receptor-binding activity was purified about 1,270-fold by sequential affinity chromatography on wheat germ lectin-agarose and TSH-agarose. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of nonreduced affinity-purified receptors eluted in sodium dodecyl sulfate sample buffer revealed three noncovalently linked subunits of 70,000, 50,000, and 35,000 mol wt. When reduced, a major subunit of 25,000 mol wt was identified. When 3 mol/L NaCl was used to elute affinity-purified receptors only the 50,000 mol wt nonreduced subunit was detected. This subunit bound [125I]bovine TSH and was precipitated by Graves' Igs. Modifications to the conventional Western blotting technique enabled thyroglobulin components (approximately 220,000 mol wt), thyroid microsomal antigen (a doublet of approximately 110,000 mol wt), and putative TSH receptor subunits of 70,000 and 50,000 mol wt to be identified in thyroid particulate membranes by Graves' Igs. Blotting of affinity-purified receptors eluted in sodium dodecyl sulfate sample buffer revealed subunits of either 70,000 or 50,000 mol wt, with a minority of Graves' serum samples. We conclude that the nonreduced human TSH receptor is an oligomeric complex comprising three different subunits of 70,000, 50,000, and 35,000 mol wt. The reduced receptor exists as a single subunit of 25,000 mol wt, which may be disulfide linked to form the higher mol wt forms. The 70,000 and 50,000 mol wt subunits contain epitopes that bind Graves' Igs in modified Western blots, thus directly confirming that the human TSH receptor is a target for Graves' Igs.

  6. Purification and characterization of the glycoprotein hormone. cap alpha. -subunit-like material secreted by HeLa cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, G.S.; Rimerman, R.A.

    1988-08-23

    The protein secreted by HeLa cells that cross-reacts with antiserum developed against the ..cap alpha..-subunit of human chorionic gonadotropin (hCG) has been purified approximately 30,000-fold from concentrated culture medium by organic solvent fractionation followed by ion exchange, gel filtration, and lectin affinity chromatography. The final preparation had a specific activity (by RIA) of 6.8 x 10/sup 5/ ng of ..cap alpha../mg of protein and appeared homogeneous by electrophoresis on reducing/denaturing polyacrylamide gels (SDS-PAGE). Amino acid analysis indicated that HeLa-..cap alpha.. had a composition very similar to that of the urinary hCG ..cap alpha..-subunit. However, comparison of hCG-..cap alpha.. and HeLa-..capmore » alpha.. demonstrated that the tumor-associated subunit was not identical with its normal counterpart. The purified tumor protein had an apparent molecular weight greater than that of the urinary ..cap alpha..-subunit when analyzed by SDS-PAGE, and this difference was even greater when a partially purified preparation was examined by an immunoblot technique (Western). Isoelectric focusing of the HeLa and hCG subunits demonstrated that the tumor protein had a lower pI. Immunoprecipitation and electrophoresis of ..cap alpha..-subunit from HeLa cultures labeled with (/sup 3/H)fucose indicated that the tumor subunit was fucosylated, whereas analysis of hCG-..cap alpha.. hydrosylates by HPLC confirmed previous reports that the placental subunit does not contain fucose. The results indicate that, regardless of whether or not a single ..cap alpha..-subunit gene is being expressed in both normal and neoplastic tissues, posttranslational modifications lead to a highly altered subunit in the tumor. The differences observed may be useful in diagnosing neoplastic vs hyperplastic conditions and may lend insight into the mechanism of ectopic hormone production by tumors.« less

  7. Effects of industrial cashew nut processing on anacardic acid content and allergen recognition by IgE.

    PubMed

    Mattison, Christopher P; Malveira Cavalcante, Jéfferson; Izabel Gallão, Maria; Sousa de Brito, Edy

    2018-02-01

    Cashew nuts are important both nutritionally and industrially, but can also cause food allergies in some individuals. The present study aimed to assess the effect(s) of industrial processing on anacardic acids and allergens present in cashew nuts. Sample analyses were performed using liquid chromatography coupled with mass spectrometry, SDS-PAGE and immunoassay. The anacardic acid concentration ranged from 6.2 to 82.6mg/g during processing, and this variation was attributed to cashew nut shell liquid incorporation during storage and humidification. Dehydrated and selected samples did not significantly differ in anacardic acid content, having values similar to the raw sample. SDS-PAGE and immunoassay analysis with rabbit polyclonal sera and human IgE indicated only minor differences in protein solubility and antibody binding following processing steps. The findings indicate that appreciable amounts of anacardic acid remain in processed nuts, and that changes to cashew allergens during industrial processing may only mildly affect antibody recognition. Published by Elsevier Ltd.

  8. Functionality of ovalbumin during Chinese steamed bread-making processing.

    PubMed

    Sang, Shangyuan; Zhang, Huang; Xu, Lei; Chen, Yisheng; Xu, Xueming; Jin, Zhengyu; Yang, Na; Wu, Fengfeng; Li, Dandan

    2018-07-01

    Hen egg is commonly used in some cereal-based food, including cakes and bread. Ovalbumin, one of the major components of egg white protein, can affect the performance of the food product. The interaction between ovalbumin and gluten protein and its effect on property of dough and quality of Chinese steamed bread was investigated in this study. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) patterns indicated that ovalbumin was surprisingly not incorporated in glutenins by covalent bond, whereas size-exclusion high-performance liquid chromatography showed that glutenin macropolymer content in glutenins increased slightly. Furthermore, dynamic rheology experiments indicated ovalbumin led to a decrease inG' andG″ of dough. Based on molecular dynamic simulation and SDS-PAGE results, it was inferred that ovalbumin was not hydrolyzed by endopeptidases during dough fermentation and crosslinked to gluten proteins during steaming. Finally, ovalbumin improved maximum dough height (Hm) during dough development and specific volume of Chinese steamed bread. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Phosphorylation of PP1 Regulator Sds22 by PLK1 Ensures Accurate Chromosome Segregation.

    PubMed

    Duan, Hequan; Wang, Chunli; Wang, Ming; Gao, Xinjiao; Yan, Maomao; Akram, Saima; Peng, Wei; Zou, Hanfa; Wang, Dong; Zhou, Jiajia; Chu, Youjun; Dou, Zhen; Barrett, Gregory; Green, Hadiyah-Nichole; Wang, Fangjun; Tian, Ruijun; He, Ping; Wang, Wenwen; Liu, Xing; Yao, Xuebiao

    2016-09-30

    During cell division, accurate chromosome segregation is tightly regulated by Polo-like kinase 1 (PLK1) and opposing activities of Aurora B kinase and protein phosphatase 1 (PP1). However, the regulatory mechanisms underlying the aforementioned hierarchical signaling cascade during mitotic chromosome segregation have remained elusive. Sds22 is a conserved regulator of PP1 activity, but how it regulates PP1 activity in space and time during mitosis remains elusive. Here we show that Sds22 is a novel and cognate substrate of PLK1 in mitosis, and the phosphorylation of Sds22 by PLK1 elicited an inhibition of PP1-mediated dephosphorylation of Aurora B at threonine 232 (Thr 232 ) in a dose-dependent manner. Overexpression of a phosphomimetic mutant of Sds22 causes a dramatic increase in mitotic delay, whereas overexpression of a non-phosphorylatable mutant of Sds22 results in mitotic arrest. Mechanistically, the phosphorylation of Sds22 by PLK1 strengthens the binding of Sds22 to PP1 and inhibits the dephosphorylation of Thr 232 of Aurora B to ensure a robust, error-free metaphase-anaphase transition. These findings delineate a conserved signaling hierarchy that orchestrates dynamic protein phosphorylation and dephosphorylation of critical mitotic regulators during chromosome segregation to guard chromosome stability. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Affinity labeling of the folate-methotrexate transporter from Leishmania donovani

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, J.T.; Ullman, B.

    1989-08-22

    An affinity labeling technique has been developed to identify the folate-methotrexate transporter of Leishmania donovani promastigotes using activated derivatives of the ligands. These activated derivatives were synthesized by incubating folate and methotrexate with a 10-fold excess of 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide (EDC) for 10 min at ambient temperature in dimethyl sulfoxide. When intact wild-type (DI700) Leishmania donovani or preparations of their membranes were incubated with a 0.4 {mu}M concentration of either activated ({sup 3}H)folate or activated ({sup 3}H)methotrexate, the radiolabeled ligands were covalently incorporated into a polypeptide with a molecular weight of approximately 46,000, as demonstrated by SDS-polyacrylamide gel electrophoresis. No affinity labelingmore » of a 46,000-dalton protein was observed when equimolar concentrations of activated radiolabeled ligands were incubated with intact cells or membranes prepared from a methotrexate-resistant mutant clone of Leishmania donovani, MTXA5, that is genetically defective in folate-methotrexate transport capability. Time course studies indicated that maximal labeling of the 46,000-dalton protein occurred within 5-10 min of incubation of intact cells with activated ligand. These studies provide biochemical evidence that the folate-methotrexate transporter of Leishmania donovani can be identified in crude extracts by an affinity labeling technique and serve as a prerequisite to further analysis of the transport protein by providing a vehicle for subsequent purification of this membrane carrier. Moreover, these investigations suggest that the affinity labeling technique using EDC-activated ligands may be exploitable to analyze other cell surface binding proteins in Leishmania donovani, as well as in other organisms.« less

  11. Studies on lectins. XXXII. Application of affinity electrophoresis to the study of the interaction of lectins and their derivatives with sugars.

    PubMed

    Horejsí, V; Tichá, M; Kocourek, J

    1977-09-29

    Affinity electrophoresis was used to study the sugar binding heterogeneity of lectins or their derivatives. Commercial and demetallized preparations of concanavalin A could be resolved by affinity electrophoresis into three components with different affinity to immobilized sugar. Similarly the Vicia cracca lectin obtained by affinity chromatography behaved on affinity gels as a mixture of active and inactive molecular species. Affinity electrophoresis has shown that the nonhemagglutinating acetylated lentil lectin and photo-oxidized or sulfenylated pea lectin retain their sugar binding properties; dissociation constants of saccharide complexes of these derivatives are similar to those of native lectins. The presence of specific immobilized sugar in the affinity gel improved the resolution of isolectins from Dolichos biflorus and Ricinus communis seeds.

  12. Expression and purification of recombinant apolipoprotein A-I Zaragoza (L144R) and formation of reconstituted HDL particles.

    PubMed

    Fiddyment, Sarah; Barceló-Batllori, Sílvia; Pocoví, Miguel; García-Otín, Angel-Luis

    2011-11-01

    Apolipoprotein A-I Zaragoza (L144R) (apo A-I Z), has been associated with severe hypoalphalipoproteinemia and an enhanced effect of high density lipoprotein (HDL) reverse cholesterol transport. In order to perform further studies with this protein we have optimized an expression and purification method of recombinant wild-type apo A-I and apo A-I Z and produced mimetic HDL particles with each protein. An pET-45 expression system was used to produce N-terminal His-tagged apo A-I, wild-type or mutant, in Escherichia coli BL21 (DE3) which was subsequently purified by affinity chromatography in non-denaturing conditions. HDL particles were generated via a modified sodium cholate method. Expression and purification of both proteins was verified by SDS-PAGE, MALDI-TOF MS and immunochemical procedures. Yield was 30mg of purified protein (94% purity) per liter of culture. The reconstituted HDL particles checked via non-denaturing PAGE showed high homogeneity in their size when reconstituted both with wild-type apo A-I and apo A-I Z. An optimized system for the expression and purification of wild-type apo A-I and apo A-I Z with high yield and purity grade has been achieved, in addition to their use in reconstituted HDL particles, as a basis for further studies. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. A fragment of alpha-actinin promotes monocyte/macrophage maturation in vitro.

    PubMed

    Luikart, S; Wahl, D; Hinkel, T; Masri, M; Oegema, T

    1999-02-01

    Conditioned media (CM) from cultures of HL-60 myeloid leukemia cells grown on extracellular bone marrow matrix contains a factor that induces macrophage-like maturation of HL-60 cells. This factor was purified from the CM of HL-60 cells grown on bone marrow stroma by ammonium sulfate precipitation, then sequential chromatography on DEAE, affi-gel blue affinity, gel exclusion, and wheat germ affinity columns, followed by C-4 reverse phase HPLC, and SDS-PAGE. The maturation promoting activity of the CM was identified in a single 31 kD protein. Amino acid sequence analysis of four internal tryptic peptides of this protein confirmed significant homology with amino acid residues 48-60, 138-147, 215-220, and 221-236 of human cytoskeletal alpha-actinin. An immunoaffinity purified rabbit polyclonal anti-chicken alpha-actinin inhibited the activity of HL-60 conditioned media. A 27 kD amino-terminal fragment of alpha-actinin produced by thermolysin digestion of chicken gizzard alpha-actinin, but not intact alpha-actinin, had maturation promoting activity on several cell types, including blood monocytes, as measured by lysozyme secretion and tartrate-resistant acid phosphatase staining. We conclude that an extracellular alpha-actinin fragment can promote monocyte/macrophage maturation. This represents the first example of a fragment of a cytoskeletal component, which may be released during tissue remodeling and repair, playing a role in phagocyte maturation.

  14. An inorganic boronate affinity in-needle monolithic device for specific capture of cis-diol containing compounds.

    PubMed

    Jin, Shanxia; Zhang, Wei; Yang, Qin; Dai, Lili; Zhou, Ping

    2018-02-01

    In this work, inorganic boronate affinity monolith was prepared by in situ synthesis in 0.33mm i.d. stainless steel needle through sol-gel process using tetraethoxysilane and tetrabutyl orthotitanate as the co-precursors. The morphology, structure and composition of the monolith were characterized. In contrast to conventional boronate affinity materials, inorganic boric acid was used as affinity ligand. Different compounds were used for the evaluation of the boronate affinity of this inorganic monolithic material. The monolith exhibited good selectivity towards cis-diol containing compounds. Recovery of greater than 90% was achieved for in-needle extraction of catechol under neutral conditions. Owing to the hydrophilic property of the monolith, the procedure of affinity chromatography could be performed in aqueous solution. This monolithic in-needle device will be useful for boronate affinity extraction of small-volume samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Use of anionic denaturing detergents to purify insoluble proteins after overexpression

    PubMed Central

    2012-01-01

    Background Many proteins form insoluble protein aggregates, called “inclusion bodies”, when overexpressed in E. coli. This is the biggest obstacle in biotechnology. Ever since the reversible denaturation of proteins by chaotropic agents such as urea or guanidinium hydrochloride had been shown, these compounds were predominantly used to dissolve inclusion bodies. Other denaturants exist but have received much less attention in protein purification. While the anionic, denaturing detergent sodiumdodecylsulphate (SDS) is used extensively in analytical SDS-PAGE, it has rarely been used in preparative purification. Results Here we present a simple and versatile method to purify insoluble, hexahistidine-tagged proteins under denaturing conditions. It is based on dissolution of overexpressing bacterial cells in a buffer containing sodiumdodecylsulfate (SDS) and whole-lysate denaturation of proteins. The excess of detergent is removed by cooling and centrifugation prior to affinity purification. Host- and overexpressed proteins do not co-precipitate with SDS and the residual concentration of detergent is compatible with affinity purification on Ni/NTA resin. We show that SDS can be replaced with another ionic detergent, Sarkosyl, during purification. Key advantages over denaturing purification in urea or guanidinium are speed, ease of use, low cost of denaturant and the compatibility of buffers with automated FPLC. Conclusion Ionic, denaturing detergents are useful in breaking the solubility barrier, a major obstacle in biotechnology. The method we present yields detergent-denatured protein. Methods to refold proteins from a detergent denatured state are known and therefore we propose that the procedure presented herein will be of general application in biotechnology. PMID:23231964

  16. Isolation and identification of a new intracellular antimicrobial peptide produced by Paenibacillus alvei AN5.

    PubMed

    Alkotaini, Bassam; Anuar, Nurina; Kadhum, Abdul Amir Hassan; Sani, Asmahani Azira Abdu

    2014-04-01

    A wild-type, Gram-positive, rod-shaped, endospore-forming and motile bacteria has been isolated from palm oil mill sludge in Malaysia. Molecular identification using 16S rRNA gene sequence analysis indicated that the bacteria belonged to genus Paenibacillus. With 97 % similarity to P. alvei (AUG6), the isolate was designated as P. alvei AN5. An antimicrobial compound was extracted from P. alvei AN5-pelleted cells using 95 % methanol and was then lyophilized. Precipitates were re-suspended in phosphate buffered saline (PBS), producing an antimicrobial crude extract (ACE). The ACE showed antimicrobial activity against Salmonella enteritidis ATCC 13076, Escherichia coli ATCC 29522, Bacillus cereus ATCC 14579 and Lactobacillus plantarum ATCC 8014. By using SP-Sepharose cation exchange chromatography, Sephadex G-25 gel filtration and Tricine SDS-PAGE, the ACE was purified, which produced a ~2-kDa active band. SDS-PAGE and infrared (IR) spectroscopy indicated the proteinaceous nature of the antimicrobial compound in the ACE, and liquid chromatography electrospray ionization mass spectroscopy and de novo sequencing using an automatic, Q-TOF premier system detected a peptide with the amino acid sequence F-C-K-S-L-P-L-P-L-S-V-K (1,330.7789 Da). This novel peptide was designated as AN5-2. The antimicrobial peptide exhibited stability from pH 3 to 12 and maintained its activity after being heated to 90 °C. It also remained active after incubation with denaturants (urea, SDS and EDTA).

  17. Small Total Dose Measurement System for SOHLA-1 and SDS-1

    NASA Astrophysics Data System (ADS)

    Kimoto, Yugo; Satoh, Yohei; Tachihara, Hiroshi

    The Japanese Aerospace Exploration Agency (JAXA) uses monitors on board satellites to measure and record in-flight data about ionization effects in space. A compact, total-dose measurement system for small satellites—Space-Oriented Higashiosaka Leading Association -1 (SOHLA-1) and Small Demonstration-Satellite -1 (SDS-1)—was developed based on a prior system for measuring total ionizing dose effects. Especially, the sensor for SDS-1 is much smaller than the sensor for SOHLA-1. The sensor for SDS-1 is 8 mm wide × 3 mm high × 19 mm long and weighs approximately 4 g with 500 mm with its wire harness. An 8-pin Lead less Chip Carrier (LCC) RADFET and temperature sensor are arranged on it. Seven sensors are mounted on some components inside the SDS-1. The sensor for SOHLA-1 is a 14-pin Dual Inline Package (DIP) type RADFET. The four sensors, which have RADFET on a printed board covered with an aluminum chassis, are mounted both inside and outside the satellite. This report presents small total dose measurement systems and ground irradiation test results for two small satellites.

  18. Multiparameter cell affinity chromatography: separation and analysis in a single microfluidic channel.

    PubMed

    Li, Peng; Gao, Yan; Pappas, Dimitri

    2012-10-02

    The ability to sort and capture more than one cell type from a complex sample will enable a wide variety of studies of cell proliferation and death and the analysis of disease states. In this work, we integrated a pneumatic actuated control layer to an affinity separation layer to create different antibody-coating regions on the same fluidic channel. The comparison of different antibody capture capabilities to the same cell line was demonstrated by flowing Ramos cells through anti-CD19- and anti-CD71-coated regions in the same channel. It was determined that the cell capture density on the anti-CD19 region was 2.44 ± 0.13 times higher than that on the anti-CD71-coated region. This approach can be used to test different affinity molecules for selectivity and capture efficiency using a single cell line in one separation. Selective capture of Ramos and HuT 78 cells from a mixture was also demonstrated using two antibody regions in the same channel. Greater than 90% purity was obtained on both capture areas in both continuous flow and stop flow separation modes. A four-region antibody-coated device was then fabricated to study the simultaneous, serial capture of three different cell lines. In this case the device showed effective capture of cells in a single separation channel, opening up the possibility of multiple cell sorting. Multiparameter sequential blood sample analysis was also demonstrated with high capture specificity (>97% for both CD19+ and CD4+ leukocytes). The chip can also be used to selectively treat cells after affinity separation.

  19. Expression, purification, characterization and subcellular localization of the goose parvovirus rep1 protein.

    PubMed

    Chen, Zongyan; Li, Chuanfeng; Peng, Gaojing; Liu, Guangqing

    2013-07-01

    The goose parvovirus (GPV) Rep1 protein is both essential for viral replication and a potential target for GPV diagnosis, but its protein characterization and intracellular localization is not clear. We constructed a recombinant plasmid, pET28a/GPV-Rep1, and expressed the Rep1 gene in BL21 (DE3) Escherichia coli. A protein approximately 75 kDa in size was obtained from lysates of E. coli cells expressing the recombinant plasmid. SDS-PAGE analysis showed that after induction with 0.6 mM isopropyl β-D-thiogalactosidase (IPTG) at 30°C for 5 h, the Rep1 protein was highly overexpressed. Two methods used to purify proteins, a salinity-gradient elution and Ni-NTA affinity chromatography, were performed. The amount of Rep1 protein obtained by Ni-NTA affinity chromatography was 41.23 mg, while 119.9 mg of Rep1 protein was obtained by a salinity-gradient elution from a 1 L E. coli BL21 (DE3) culture. An immunogenicity analysis showed that the protein could significantly elicit a specific antibody response in immunized goslings compared to control groups. Antibody titers peaked to 1:5120 (optical density (OD) 450 = 3.9) on day 28 after immunization but had mean titers of 1:10,240 (OD450 = 4.2) in gosling groups immunized with a commercially available GPV-attenuated vaccine strain. Experiments examining subcellular localization showed that the Rep1 protein appeared to associate predominantly with the nuclear membrane, especially during later times of infection. This work provides a basis for biochemical and structural studies on the GPV Rep1 protein.

  20. NMR investigations of self-aggregation characteristics of SDS in a model assembled tri-block copolymer solution.

    PubMed

    Kumar, B V N Phani; Priyadharsini, S Umayal; Prameela, G K S; Mandal, Asit Baran

    2011-08-01

    The present work was undertaken with a view to understand the influence of a model non-ionic tri-block copolymer PEO-PPO-PEO (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)) with molecular weight 5800 i.e., P123 [(EO)(20)-(PO)(70)-(EO)(20)] on the self-aggregation characteristics of the anionic surfactant sodium dodecylsulfate (SDS) in aqueous solution (D(2)O) using NMR chemical shift, self-diffusion and nuclear spin-relaxation as suitable experimental probes. In addition, polymer diffusion has been monitored as a function of SDS concentration. The concentration-dependent chemical shift, diffusion data and relaxation data indicated the significant interaction of polymeric micelles with SDS monomers and micelles at lower and intermediate concentrations of SDS, whereas the weak interaction of the polymer with SDS micelles at higher concentrations of SDS. It has been observed that SDS starts aggregating on the polymer at a lower concentration i.e., critical aggregation concentration (cac=1.94 mM) compared to polymer-free situation, and the onset of secondary micelle concentration (C(2)=27.16 mM) points out the saturation of the 0.2 wt% polymer or free SDS monomers/micelles at higher concentrations of SDS. It has also been observed that the parameter cac is almost independent in the polymer concentrations of study. The TMS (tetramethylsilane) has been used as a solubilizate to measure the bound diffusion coefficient of SDS-polymer mixed system. The self-diffusion data were analyzed using two-site exchange model and the obtained information on aggregation dynamics was commensurate with that inferred from chemical shift and relaxation data. The information on slow motions of polymer-SDS system was also extracted using spin-spin and spin-lattice relaxation rate measurements. The relaxation data points out the disintegration of polymer network at higher concentrations of SDS. The present NMR investigations have been well corroborated by surface tension and

  1. Childhood obesity treatment; Effects on BMI SDS, body composition, and fasting plasma lipid concentrations.

    PubMed

    Nielsen, Tenna Ruest Haarmark; Fonvig, Cilius Esmann; Dahl, Maria; Mollerup, Pernille Maria; Lausten-Thomsen, Ulrik; Pedersen, Oluf; Hansen, Torben; Holm, Jens-Christian

    2018-01-01

    The body mass index (BMI) standard deviation score (SDS) may not adequately reflect changes in fat mass during childhood obesity treatment. This study aimed to investigate associations between BMI SDS, body composition, and fasting plasma lipid concentrations at baseline and during childhood obesity treatment. 876 children and adolescents (498 girls) with overweight/obesity, median age 11.2 years (range 1.6-21.7), and median BMI SDS 2.8 (range 1.3-5.7) were enrolled in a multidisciplinary outpatient treatment program and followed for a median of 1.8 years (range 0.4-7.4). Height and weight, body composition measured by dual-energy X-ray absorptiometry, and fasting plasma lipid concentrations were assessed at baseline and at follow-up. Lipid concentrations (total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), non-HDL, and triglycerides (TG)) were available in 469 individuals (264 girls). Linear regressions were performed to investigate the associations between BMI SDS, body composition indices, and lipid concentrations. At baseline, BMI SDS was negatively associated with concentrations of HDL (p = 6.7*10-4) and positively with TG (p = 9.7*10-6). Reductions in BMI SDS were associated with reductions in total body fat percentage (p<2*10-16) and percent truncal body fat (p<2*10-16). Furthermore, reductions in BMI SDS were associated with improvements in concentrations of TC, LDL, HDL, non-HDL, LDL/HDL-ratio, and TG (all p <0.0001). Changes in body fat percentage seemed to mediate the changes in plasma concentrations of TC, LDL, and non-HDL, but could not alone explain the changes in HDL, LDL/HDL-ratio or TG. Among 81 individuals with available lipid concentrations, who increased their BMI SDS, 61% improved their body composition, and 80% improved their lipid concentrations. Reductions in the degree of obesity during multidisciplinary childhood obesity treatment are accompanied by improvements in body composition and fasting plasma

  2. Nutritional status in sick children and adolescents is not accurately reflected by BMI-SDS.

    PubMed

    Fusch, Gerhard; Raja, Preeya; Dung, Nguyen Quang; Karaolis-Danckert, Nadina; Barr, Ronald; Fusch, Christoph

    2013-01-01

    Nutritional status provides helpful information of disease severity and treatment effectiveness. Body mass index standard deviation scores (BMI-SDS) provide an approximation of body composition and thus are frequently used to classify nutritional status of sick children and adolescents. However, the accuracy of estimating body composition in this population using BMI-SDS has not been assessed. Thus, this study aims to evaluate the accuracy of nutritional status classification in sick infants and adolescents using BMI-SDS, upon comparison to classification using percentage body fat (%BF) reference charts. BMI-SDS was calculated from anthropometric measurements and %BF was measured using dual-energy x-ray absorptiometry (DXA) for 393 sick children and adolescents (5 months-18 years). Subjects were classified by nutritional status (underweight, normal weight, overweight, and obese), using 2 methods: (1) BMI-SDS, based on age- and gender-specific percentiles, and (2) %BF reference charts (standard). Linear regression and a correlation analysis were conducted to compare agreement between both methods of nutritional status classification. %BF reference value comparisons were also made between 3 independent sources based on German, Canadian, and American study populations. Correlation between nutritional status classification by BMI-SDS and %BF agreed moderately (r (2) = 0.75, 0.76 in boys and girls, respectively). The misclassification of nutritional status in sick children and adolescents using BMI-SDS was 27% when using German %BF references. Similar rates observed when using Canadian and American %BF references (24% and 23%, respectively). Using BMI-SDS to determine nutritional status in a sick population is not considered an appropriate clinical tool for identifying individual underweight or overweight children or adolescents. However, BMI-SDS may be appropriate for longitudinal measurements or for screening purposes in large field studies. When accurate nutritional

  3. Micellar electrokinetic chromatography with acid labile surfactant.

    PubMed

    Stanley, Bob; Lucy, Charles A

    2012-02-24

    We present a study of a degradable surfactant, sodium 4-[(2-methyl-2-undecyl-1,3-dioxolan-4-yl)methoxy]-1-propane sulfonate that is also known as an acid-labile surfactant (ALS). The performance of ALS as a pseudostationary phase is assessed and compared with established pseudostationary phases such as sodium dodecyl sulphate (SDS), volatile surfactants and polymeric micelles. ALS achieves separation efficiency of 100,000-145,000 theoretical plates and relative standard deviation (RSD) of electrophoretic mobility (n=5) of less than 3%. Retention factors with ALS are strongly correlated with those with SDS. This is shown by the R2=0.79 for all eleven analytes and an R2=0.992 for specifically the non-hydrogen bonding (NHB) analytes. However, ALS displays different selectivity than SDS for hydrogen bond donor (HBD) and hydrogen bond acceptor (HBA) solutes (R2 of 0.74 and 0.88, respectively). ALS is degraded to less surface active compounds in acidic solution. These less surface-active compounds are more compatible with the electrospray ionization mass spectrometry (ESI-MS). ALS has a half-life of 48 min at pH 4. ALS has the potential to couple micellar electrokinetic chromatography (MEKC) with the ESI-MS. ALS can be used as a pseudostationary phase for a high efficiency separation and later acid hydrolyzed to enable an ESI-MS analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Purification and characterization of a fibrinolytic enzyme from tempeh bongkrek as an alternative of thrombolytic agents

    NASA Astrophysics Data System (ADS)

    Sasmita, I. R. A.; Sutrisno, A.; Zubaidah, E.; Wardani, A. K.

    2018-03-01

    Tempeh is one of Indonesia’s traditional foods that contain fibrinolytic enzymes. Tempeh bongkrek shows very strong activity among various tempeh. The fibrinolytic enzymes of bongkrek tempeh are obtained by steps of purification i.e, ammonium sulphate precipitation, ion exchange chromatography and gel filtration chromatography. The fibrinolytic enzymes has been successfully purified with a yield of 4.37%, specific activity of 3,361 U / mg and purification fold of 44.02. SDS PAGE analysis showed that the enzyme was purified in to single band with estimated molecular mass of 75.82 kDa. The purified enzyme has optimum pH of 7 and optimum temperature of 50°C and pH stability between pH 4 - 7 with temperature stability from 30°-50°C. The fibrinolytic activity is increased with addition of CaCl2 but inhibited with CuSO4, phenylmethylsulfonyl fluoride (PMSF), sodium dodecyl sulfate (SDS), and ethylenediaminetetraacetic acid (EDTA).

  5. [Immuno-affinity chromatographic purification: the study of methods to test citrinin in monascus products by high performance liquid chromatography].

    PubMed

    Qiu, Wen-qian; Liu, Xiao-xia; Zheng, Kui-cheng; Fu, Wu-sheng

    2012-08-01

    To establish a method to test citrinin (CIT) in monascus products by immuno-affinity chromatography (IAC)-high performance liquid chromatography (HPLC), and to detect the content of CIT in monascus products in Fujian province. IAC-HPLC was applied to detect the CIT content in monascus products. The conditions to use HPLC were as follows: C(18) reversed-phase chromatographic column, 150.0 mm×4.6mm×3 µm; mobile phase: the volume ratio of acetonitrile and 0.1% phosphoric acid solution at 65:35; isocratic elution; column temperature: 28°C; flow velocity: 0.8 ml/min; fluorescence detector, excitation wavelength (λ(ex)) was 331 nm and emission wavelength (λ(em)) was 500 nm. The standard curved was established by the linear regression of peak area (Y) to CIT content (X, ng/ml). The accuracy and precision of the method would then be verified. And 32 kinds of monascus products were determined and their color values were compared by this method. The standard curve established in this study was Y = 4634.8X-136.42, r = 1.000; whose limits of detection was 20 µg/kg and the limits of qualification was 64 µg/kg. In the range between 200 and 800 µg/kg, the standard recovery rate was 98.9% - 110.0% (n = 3), and the relative standard deviation (RSD) was 0.51% - 1.76%. Out of the 32 samples, CIT was detected from 11 samples of monascus rice, 9 samples of monascus powder and 5 samples of monascus pigments, the content was around 0.212 - 14.500 mg/kg. 4 out of 7 functional monascus samples were detected out CIT, whose content at 0.142 - 0.275 mg/kg. The method to detect CIT in monascus products by IAC-HPLC has been established.

  6. Effects of Microheterogeneity in Hen Egg-White Lysozyme Crystallization

    NASA Technical Reports Server (NTRS)

    Thomas, B. R.; Vekilov, P. G.; Rosenberger, F.

    1998-01-01

    In earlier sodium dodecylsulfate polyacylamide gel electrophoresis (SDS-PAGE) studies it has been found that commonly utilized commercial hen egg-white lysozyme (HEWL) preparations contained 0.2-0.4 mol% covalently bound dimers. Here it is shown, using high-performance capillary electrophoresis (HPCE), that HEWL contains, in addition, two differently charged monomers in comparable amounts. To explore the origin of these microheterogeneous contaminants, purified HEWL (PHEWL) has been oxidized with hydrogen peroxide (0.0026-0.88 M) at various pH levels between 4.5 and 12.0. Optical densitometry of oxidized PHEWL (OHEWL) bands in SDS PAGE gels shows that hydrogen peroxide at 0.88 M in acetate buffer pH 4.5 increased the amount of dimers about sixfold over that in commercial HEWL. OHEWL had, in addition to one of the two monomer forms found in HEWL and PHEWL, three other differently charged monomer forms, each of them representing about 25% of the preparation. SDS-PAGE analysis of OHEWL yielded two closely spaced dimer bands with M(sub r) = 28 000 and 27 500. In addition, larger HEWL oligomers with M, = 1.7 million and 320 000 were detected by gel-filtration fast protein liquid chromatography with multiangle laser light scattering detection. Non-dissociating PAGE in large pore size gels at pH 4.5 confirmed the presence of these large oligomers in HEWL and OHEWL. Increased microheterogeneity resulted in substantial effects on crystal growth and nucleation rate. On addition of 10 microgram(exp -1) mg ml(exp -1) OHEWL to 32 mg ml(exp -1) HEWL crystallizing solutions, both the number and size of forming crystals decreased roughly proportionally to the concentration of the added microheterogeneity. The same effect was observed in HEWL solutions on addition of 0.03-9,3 M Hydrogen peroxide. Repartioning of the dimer during crystallzation aat various temperatures between 277 and 293 K was analyzed by SDS-PAGE. The crystals contained <= 25 % weight by volume of the oligomers in

  7. Cloning and characterization of thermo-alkalistable and surfactant stable endoglucanase from Puga hot spring metagenome of Ladakh (J&K).

    PubMed

    Gupta, Puneet; Mishra, Arjun K; Vakhlu, Jyoti

    2017-10-01

    A thermo-alkalistable and surfactant stable endoglucanase (PHS) gene consisting of 554 amino acids was identified from metagenomic library of Puga hot spring using functional screening. PHS gene was overexpressed and purified to homogeneity using affinity chromatography The purified PHS protein presented a single band of 60kDa on the SDS-PAGE gel and zymogram. The recombinant PHS exhibited activity over a broad range of pH and temperature with optima at pH 8.0 and 65°C, respectively and having optimum stability at 60°C and pH 8.0, respectively. The recombinant PHS showed highest substrate specificity using CMC (218.4U/mg) as compared with Barley β-glucan (89.2U/mg) and Avicel (0.8U/mg). The K m and V max of recombinant PHS for CMC were 3.85mg/ml and 370.37μmolmin -1 mg -1 , respectively. The activity of the recombinant PHS was enhanced by treatment with 10mM non-ionic detergents such as Tween 20, Tween 40, Tween 80, Triton X- 100 and PEG and was inhibited by CTAB, SDS. Its functionality was stable in the presence of Fe 3+ but inhibited by Cu 2+ , Hg 2+ , Mn 2+ and Zn 2+ . These properties make PHS endoglucanase a potential candidate for use in laundry, textile,paper and pulp industries. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Insight into the biochemical, kinetic and spectroscopic characterization of garlic (Allium sativum) phytocystatin: Implication for cardiovascular disease.

    PubMed

    Siddiqui, Mohd Faizan; Ahmed, Azaj; Bano, Bilqees

    2017-02-01

    Phytocystatins are cysteine proteinase inhibitors present in plants. They play crucial role in maintaining protease-anti protease balance and are involved in various endogenous processes. Thus, they are suitable and convenient targets for genetic engineering which makes their isolation and characterisation from different sources the need of the hour. In the present study a phytocystatin has been isolated from garlic (Allium sativum) by a simple two-step process using ammonium sulphate fractionation and gel filtration chromatography on Sephacryl S-100HR with a fold purification of 152.6 and yield 48.9%. A single band on native gel electrophoresis confirms the homogeneity of the purified inhibitor. The molecular weight of the purified inhibitor was found to be 12.5kDa as determined by SDS-PAGE and gel filtration chromatography. The garlic phytocystatin was found to be stable under broad range of pH (6-8) and temperature (30°C-60°C). Kinetic studies suggests that garlic phytocystatins are reversible and non-competitive inhibitors having highest affinity for papain followed by ficin and bromelain. UV and fluorescence spectroscopy revealed significant conformational change upon garlic phytocystatin-papain complex formation. Secondary structure analysis was performed using CD and FTIR. Garlic phytocystatin possesses 33.9% alpha-helical content as assessed by CD spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Purification and characterization of paraoxon hydrolase from rat liver.

    PubMed Central

    Rodrigo, L; Gil, F; Hernandez, A F; Marina, A; Vazquez, J; Pla, A

    1997-01-01

    Paraoxonase (paraoxon hydrolase), an enzyme that hydrolyses paraoxon (O,O-diethyl O-p-nitrophenyl phosphate), is located in mammals primarily in the serum and liver. Although considerable information is available regarding serum paraoxonase, little is known about the hepatic form of this enzyme. The present work represents the first study on the purification of rat liver paraoxonase. This enzyme has been purified 415-fold to apparent homogeneity with a final specific activity of 1370 units/mg using a protocol consisting of five steps: solubilization of the microsomal fraction, hydroxyapatite adsorption, chromatography on DEAE-Sepharose CL-6B, non-specific affinity chromatography on Cibacron Blue 3GA and anion exchange on Mono Q HR 5/5. The presence of Ca2+ and Triton X-100 in the buffers throughout the purification procedure was essential for maintaining enzyme activity. SDS/PAGE of the final preparation indicated a single protein-staining band with an apparent Mr of 45 000. N-terminal and internal amino acid sequences were determined and compared with those of paraoxonases from human and rabbit serum and mouse liver, showing a high similarity. The pH profile showed optimum activity at pH 8.5. The pH stability and heat inactivation of the enzyme were also studied. The Km for liver paraoxonase was 1.69 mM. PMID:9032442

  10. Physicochemical and Biological Characterization of Fucoidan from Fucus vesiculosus Purified by Dye Affinity Chromatography

    PubMed Central

    Zayed, Ahmed; Muffler, Kai; Hahn, Thomas; Rupp, Steffen; Finkelmeier, Doris; Burger-Kentischer, Anke; Ulber, Roland

    2016-01-01

    A comparative study concerning the physicochemical, monomeric composition and biological characters among different fucoidan fractions is presented. Common purification techniques for fucoidan usually involve many steps. During these steps, the important structural features might be affected and consequently alter its biological activities. Three purified fractions were derived from Fucus vesiculosus water extract which, afterwards, were purified by a recently-developed dye affinity chromatography protocol. This protocol is based on dye-sulfated polysaccharide interactions. The first two fractions were obtained from crude precipitated fucoidan at different pH values of the adsorption phase: pH 1 and 6. This procedure resulted in fucoidan_1 and 6 fractions. The other, third, fraction: fucoidan_M, however, was obtained from a buffered crude extract at pH 1, eliminating the ethanol precipitation step. All of the three fractions were then further evaluated. Results revealed that fucoidan_M showed the highest sulfur content (S%), 12.11%, with the lowest average molecular weight, 48 kDa. Fucose, galactose, and uronic acid/glucose dimers were detected in all fractions, although, xylose was only detected in fucoidan_1 and 6. In a concentration of 10 µg·mL−1, Fucoidan_6 showed the highest heparin-like anticoagulant activity and could prolong the APTT and TT significantly to 66.03 ± 2.93 and 75.36 ± 1.37 s, respectively. In addition, fucoidan_M demonstrated the highest potency against HSV-1 with an IC50 of 2.41 µg·mL−1. The technique proved to be a candidate for fucoidan purifaction from its crude extract removing the precipitation step from common purification protocols and produced different fucoidan qualities resulted from the different incubation conditions with the immobilized thiazine toluidine blue O dye. PMID:27092514

  11. Optimization of pore structure and particle morphology of mesoporous silica for antibody adsorption for use in affinity chromatography

    NASA Astrophysics Data System (ADS)

    Hikosaka, Ryouichi; Nagata, Fukue; Tomita, Masahiro; Kato, Katsuya

    2016-10-01

    Antibodies have received significant attention for use as antibody drugs, because they bind the objective protein (antigen) via antigen-antibody reactions. Recently, many reports have appeared on various monoclonal antibodies that recognize a single antigen. In this study, monoclonal antibodies are used as adsorbates on mesoporous silica (MPS) for affinity chromatography. MPS has high surface area and large pore volume; moreover, pore diameter, pore structure, and particle morphology are relatively easy to tune by adjusting the conditions of synthesis. The pore structure (two-dimensional (2D) hexagonal and three-dimensional cubic) and particle morphology (spherical and polyhedral) of MPS are optimized for use in a monoclonal antibody/MPS composite. When anti-IgG (one of the monoclonal antibodies) adsorbs on the MPS material and IgG (antigen) binds to anti-IgG/MPS composites, MCM-41p with a 2D-hexagonal pore structure and polyhedral particle morphology has the highest IgG binding efficiency. In addition, the antibody/MPS composites remain stable in chaotropic and low-pH solutions and can be cycled at least five times without decreasing IgG elution. In purification and removal tests, the use of the antibody/MPS composites allows only the objective protein from protein mixtures to be bound and eluted.

  12. Optimization of Immobilized Gallium (III) Ion Affinity Chromatography for Selective Binding and Recovery of Phosphopeptides from Protein Digests

    PubMed Central

    Aryal, Uma K.; Olson, Douglas J.H.; Ross, Andrew R.S.

    2008-01-01

    Although widely used in proteomics research for the selective enrichment of phosphopeptides from protein digests, immobilized metal-ion affinity chromatography (IMAC) often suffers from low specificity and differential recovery of peptides carrying different numbers of phosphate groups. By systematically evaluating and optimizing different loading, washing, and elution conditions, we have developed an efficient and highly selective procedure for the enrichment of phosphopeptides using a commercially available gallium(III)-IMAC column (PhosphoProfile, Sigma). Phosphopeptide enrichment using the reagents supplied with the column is incomplete and biased toward the recovery and/or detection of smaller, singly phosphorylated peptides. In contrast, elution with base (0.4 M ammonium hydroxide) gives efficient and balanced recovery of both singly and multiply phosphorylated peptides, while loading peptides in a strong acidic solution (1% trifluoracetic acid) further increases selectivity toward phosphopeptides, with minimal carryover of nonphosphorylated peptides. 2,5-Dihydroxybenzoic acid, a matrix commonly used when analyzing phosphopeptides by matrix-assisted laser desorption/ionization mass spectrometry was also evaluated as an additive in loading and eluting solvents. Elution with 50% acetonitrile containing 20 mg/mL dihydroxybenzoic acid and 1% phosphoric acid gave results similar to those obtained using ammonium hydroxide as the eluent, although the latter showed the highest specificity for phosphorylated peptides. PMID:19183793

  13. Prostate cell membrane chromatography-liquid chromatography-mass spectrometry for screening of active constituents from Uncaria rhynchophylla.

    PubMed

    He, Jianyu; Han, Shengli; Yang, Fangfang; Zhou, Nan; Wang, Sicen

    2013-01-01

    Uncaria rhynchophylla is a traditional Chinese medicinal herb used to treat hypertension and convulsive disorders such as epilepsy. Rat prostate cell membrane chromatography combined with liquid chromatography-mass spectrometry (LC-MS) was used to identify active constituents from U. rhynchophylla extracts. Four compounds (corynoxeine, isorhynchophylline, isocorynoxeine and rhynchophylline) were discovered. Competitive binding assay results indicated that the four compounds were in direct competition at a single common binding site and interacted with α1A adrenergic receptors (α1A-AR) in a manner similar to tamsulosin. Affinity constant values of the four compounds binding with α1A-AR were also measured using rat prostate cell membrane chromatography (CMC). Finally, their pharmacodynamic effects were tested on rat caudal arteries. This CMC combined LC-MS system offers a means of drug discovery by screening natural medicinal herbs for new pharmacologically active molecules targeting specific receptors.

  14. Separation of an associated 90K heat shock protein from the glucocorticoid receptor complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller-Diener, A.; Kirsch, T.; Grove, B.

    1986-05-01

    A 90K heat shock protein(HSP), observed to copurify with the glucocorticoid receptor(GR), can be separated from the complex by 2 methods, allowing investigation of the role of HSP on kinase activity that was previously reported to be inherent to purified activated GR. Na/sub 2/MoO/sub 4/ stabilized unactivated rat hepatic GR complexes have been purified to >10,000-fold using a purification scheme that involves batchwise treatment of cytosol with phosphocellulose/DNAcellulose, elution from an affinity resin, gel filtration and ion exchange chromatography. Samples were subjected to 10-20% gradient SDS-PAGE. Proteins were transferred to nitrocellulose and blotted against monoclonal antibodies to GR(3A6), HSP ormore » nonspecific IgM/G. Immunoblots indicated that HSP was separated from unactivated GR complexes at the affinity step prior to elution of GR with active steroid. GR eluted from the resin with /sup 3/H Triamcinolone acetonide or /sup 3/H Dexamethasone mesylate had an apparent M/sub r/ = 94-96,000 for the steroid binding subunit and is recognized by 3A6. Purification of GR minus the affinity step resulted in copurification of HSP throughout the procedure. However, after Sephadex G75 filtration and subsequent incubation at 25/sup 0/C, 30 min., HSP was separated from activated (DNA binding) GR on DEAE cellulose-52. HSP did not enhance or inhibit /sup 32/P incorporation of the 94K steroid binding subunit nor did it affect phosphorylation of histones by GR.« less

  15. Heparin-binding peptide as a novel affinity tag for purification of recombinant proteins.

    PubMed

    Morris, Jacqueline; Jayanthi, Srinivas; Langston, Rebekah; Daily, Anna; Kight, Alicia; McNabb, David S; Henry, Ralph; Kumar, Thallapuranam Krishnaswamy Suresh

    2016-10-01

    Purification of recombinant proteins constitutes a significant part of the downstream processing in biopharmaceutical industries. Major costs involved in the production of bio-therapeutics mainly depend on the number of purification steps used during the downstream process. Affinity chromatography is a widely used method for the purification of recombinant proteins expressed in different expression host platforms. Recombinant protein purification is achieved by fusing appropriate affinity tags to either N- or C- terminus of the target recombinant proteins. Currently available protein/peptide affinity tags have proved quite useful in the purification of recombinant proteins. However, these affinity tags suffer from specific limitations in their use under different conditions of purification. In this study, we have designed a novel 34-amino acid heparin-binding affinity tag (HB-tag) for the purification of recombinant proteins expressed in Escherichia coli (E. coli) cells. HB-tag fused recombinant proteins were overexpressed in E. coli in high yields. A one-step heparin-Sepharose-based affinity chromatography protocol was developed to purify HB-fused recombinant proteins to homogeneity using a simple sodium chloride step gradient elution. The HB-tag has also been shown to facilitate the purification of target recombinant proteins from their 8 M urea denatured state(s). The HB-tag has been demonstrated to be successfully released from the fusion protein by an appropriate protease treatment to obtain the recombinant target protein(s) in high yields. Results of the two-dimensional NMR spectroscopy experiments indicate that the purified recombinant target protein(s) exist in the native conformation. Polyclonal antibodies raised against the HB-peptide sequence, exhibited high binding specificity and sensitivity to the HB-fused recombinant proteins (∼10 ng) in different crude cell extracts obtained from diverse expression hosts. In our opinion, the HB-tag provides a

  16. Affinity purification of the voltage-sensitive sodium channel from electroplax with resins selective for sialic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, W.M.; Emerick, M.C.; Agnew, W.S.

    1989-07-11

    The voltage-sensitive sodium channel present in the eel (Electrophorus electricus) has an unusually high content of sialic acid, including {alpha}-(2{yields}8)-linked polysialic acid, not found in other electroplax membrane glycopeptides. Lectins from Limax flavus (LFA) and wheat germ (WGA) proved the most effective of 11 lectin resins tried. The most selective resin was prepared from IgM antibodies against Neisseria meningitidis {alpha}-(2{yields}8)-polysialic acid which were affinity purified and coupled to Sepharose 4B. The sodium channel was found to bind to WGA, LFA, and IgM resins and was readily eluted with the appropriate soluble carbohydrates. Experiments with LFA and IgM resins demonstrated bindingmore » and unbinding rates and displacement kinetics, which suggest highly specific binding at multiple sites on the sodium channel protein. In preparative-scale purification of protein previously fractionated by anion-exchange chromatography, without stabilizing TTX, high yields were reproducibly obtained. Further, when detergent extracts were prepared from electroplax membranes fractionated by low-speed sedimentation, a single step over the IgM resin provided a 70-fold purification, yielding specific activities of 3,200 pmol of ({sup 3}H)TTX-binding sites/mg of protein and a single polypeptide of {approximately}285,000 Da on SDS-acrylamide gels. No small peptides were observed after this 5-h isolation. The authors describe a cation-dependent stabilization with millimolar levels of monovalent and micromolar levels of divalent species.« less

  17. Production and biochemical characterization of insecticidal enzymes from Aspergillus fumigatus toward Callosobruchus maculatus.

    PubMed

    Pereira, Jackeline L; Franco, Octávio L; Noronha, Eliane F

    2006-06-01

    In the present work, Aspergillus fumigatus is described as a higher producer of hydrolytic enzymes secreted in response to the presence of the Callosobruchus maculatus bruchid pest. This fungus was able to grow over cowpea weevil shells as a unique carbon source, secreting alkaline proteolytic and chitinolytic enzymes. Enzyme secretion in A. fumigatus was induced by both C. maculatus exoskeleton as well as commercial chitin, and alkaline proteolytic and chitinolytic activities were detected after 48 hours of growth. Furthermore, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed the production of specific proteins. Among them, two extracellular alkaline proteinases from culture enriched with C. maculatus exoskeleton were purified after chromatographic procedures using ion exchange and affinity columns. These proteins, named AP15 and AP30, had apparent molecular masses of 15,500 and 30,000 Da, respectively, as estimated by SDS-PAGE electrophoresis and mass spectrometry. AP30 was classified as a serine proteinase because it was inhibited by 5 mM: phenylmethylsulfonyl fluoride (100%) and 50 microM leupeptin (67.94%).

  18. Medium dependent dual turn on/turn off fluorescence sensing for Cu2 + ions using AMI/SDS assemblies

    NASA Astrophysics Data System (ADS)

    Gujar, Varsha B.; Ottoor, Divya

    2017-02-01

    Behavior of Amiloride (AMI) as a metal ion sensor in anionic surfactant assemblies of varying concentrations at different pH is depicted in this work. From a non-sensor fluorophore, AMI has been transformed in to a tunable fluorosensor for Cu2 + ions in various SDS concentrations. At premicellar concentration of SDS, ion-pair complex is expected to be formed between AMI and SDS due to electrostatic interactions between them. However at CMC concentrations of SDS, fluorescence intensity of AMI is greatly enhanced with red shift in emission, due to the incorporation of AMI molecule in the hydrophobic micellar interface. The behavior of metal sensing by AMI-SDS assemblies gives rise to several interesting observations. Micellation of SDS has been greatly enhanced by increasing copper ion concentrations, as these counter ions screens the charge on monomers of SDS which lead to the aggregation at premicellar concentrations only. Concentrations and pH dependent discrete trends of interactions between SDS-AMI and SDS-Cu2 + ions, have given tunable fluorescence responses (fluorescence turn on/turn off) of AMI for added Cu2 + ions. The electrostatic interaction between the metal cations and the anionic surfactants is the driving force for bringing the metal ions near to the vicinity of micelle where AMI resides. Thus, a comprehensive understanding of the mechanism related to the 'turn on-turn off' fluorescence response of AMI with respect to pH and SDS concentration for effective Cu2 + ion sensing is illustrated in this work.

  19. STUDIES OF VERAPAMIL BINDING TO HUMAN SERUM ALBUMIN BY HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY

    PubMed Central

    Mallik, Rangan; Yoo, Michelle J.; Chen, Sike; Hage, David S.

    2008-01-01

    The binding of verapamil to the protein human serum albumin (HSA) was examined by using high-performance affinity chromatography. Many previous reports have investigated the binding of verapamil with HSA, but the exact strength and nature of this interaction (e.g., the number and location of binding sites) is still unclear. In this study, frontal analysis indicated that at least one major binding site was present for R- and S-verapamil on HSA, with estimated association equilibrium constants on the order of 104 M−1 and a 1.4-fold difference in these values for the verapamil enantiomers at pH 7.4 and 37°C. The presence of a second, weaker group of binding sites on HSA was also suggested by these results. Competitive binding studies using zonal elution were carried out between verapamil and various probe compounds that have known interactions with several major and minor sites on HSA. R/S-Verapamil was found to have direct competition with S-warfarin, indicating that verapamil was binding to Sudlow site I (i.e., the warfarin-azapropazone site of HSA). The average association equilibrium constant for R- and S-verapamil at this site was 1.4 (±0.1) × 104 M−1. Verapamil did not have any notable binding to Sudlow site II of HSA but did appear to have some weak allosteric interactions with L-tryptophan, a probe for this site. An allosteric interaction between verapamil and tamoxifen (a probe for the tamoxifen site) was also noted, which was consistent with the binding of verapamil at Sudlow site I. No interaction was seen between verapamil and digitoxin, a probe for the digitoxin site of HSA. These results gave good agreement with previous observations made in the literature and help provide a more detailed description of how verapamil is transported in blood and of how it may interact with other drugs in the body. PMID:18980867

  20. Childhood obesity treatment; Effects on BMI SDS, body composition, and fasting plasma lipid concentrations

    PubMed Central

    Fonvig, Cilius Esmann; Dahl, Maria; Mollerup, Pernille Maria; Lausten-Thomsen, Ulrik; Pedersen, Oluf; Hansen, Torben; Holm, Jens-Christian

    2018-01-01

    Objective The body mass index (BMI) standard deviation score (SDS) may not adequately reflect changes in fat mass during childhood obesity treatment. This study aimed to investigate associations between BMI SDS, body composition, and fasting plasma lipid concentrations at baseline and during childhood obesity treatment. Methods 876 children and adolescents (498 girls) with overweight/obesity, median age 11.2 years (range 1.6–21.7), and median BMI SDS 2.8 (range 1.3–5.7) were enrolled in a multidisciplinary outpatient treatment program and followed for a median of 1.8 years (range 0.4–7.4). Height and weight, body composition measured by dual-energy X-ray absorptiometry, and fasting plasma lipid concentrations were assessed at baseline and at follow-up. Lipid concentrations (total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), non-HDL, and triglycerides (TG)) were available in 469 individuals (264 girls). Linear regressions were performed to investigate the associations between BMI SDS, body composition indices, and lipid concentrations. Results At baseline, BMI SDS was negatively associated with concentrations of HDL (p = 6.7*10−4) and positively with TG (p = 9.7*10−6). Reductions in BMI SDS were associated with reductions in total body fat percentage (p<2*10−16) and percent truncal body fat (p<2*10−16). Furthermore, reductions in BMI SDS were associated with improvements in concentrations of TC, LDL, HDL, non-HDL, LDL/HDL-ratio, and TG (all p <0.0001). Changes in body fat percentage seemed to mediate the changes in plasma concentrations of TC, LDL, and non-HDL, but could not alone explain the changes in HDL, LDL/HDL-ratio or TG. Among 81 individuals with available lipid concentrations, who increased their BMI SDS, 61% improved their body composition, and 80% improved their lipid concentrations. Conclusion Reductions in the degree of obesity during multidisciplinary childhood obesity treatment are accompanied by

  1. Screening of SDS-degrading bacteria from car wash wastewater and study of the alkylsulfatase enzyme activity

    PubMed Central

    Shahbazi, Razieh; Kasra-Kermanshahi, Roha; Gharavi, Sara; Moosavi-Nejad, Zahra; Borzooee, Faezeh

    2013-01-01

    Background and Objectives Sodium dodecyl sulfate (SDS) is one of the main surfactant components in detergents and cosmetics, used in high amounts as a detergent in products such as shampoos, car wash soap and toothpaste. Therefore, its bioremediation by suitable microorganisms is important. Alkylsulfatase is an enzyme that hydrolyses sulfate -ester bonds to give inorganic sulfate and alcohol. The purpose of this study was to isolate SDS–degrading bacteria from Tehran city car wash wastewater, study bacterial alkylsulfatase enzyme activity and identify the alkylsulfatase enzyme coding gene. Materials and Methods Screening of SDS-degrading bacteria was carried out on basal salt medium containing SDS as the sole source of carbon. Amount of SDS degraded was assayed by methylene blue active substance (MBAS). Results and Conclusion Identification of the sdsA gene was carried by PCR and subsequent sequencing of the 16S rDNA gene and biochemical tests identified Pseudomonas aeruginosa. This bacterium is able to degrade 84% of SDS after four days incubation. Bacteria isolated from car wash wastewater were shown to carry the sdsA gene (670bp) and the alkylsulfatase enzyme specific activity expressed from this gene was determined to be 24.3 unit/mg. The results presented in this research indicate that Pseudomonas aeruginosa is a suitable candidate for SDS biodegradation. PMID:23825734

  2. Purification of camel liver catalase by zinc chelate affinity chromatography and pH gradient elution: An enzyme with interesting properties.

    PubMed

    Chafik, Abdelbasset; Essamadi, Abdelkhalid; Çelik, Safinur Yildirim; Mavi, Ahmet

    2017-12-01

    Climate change and increasing temperatures are global concerns. Camel (Camelus dromedarius) lives most of its life under high environmental stress in the desert and represent ideal model for studying desert adaptation among mammals. Catalase plays a key role in protecting cells against oxidative stress. For the first time, catalase from camel liver was purified to homogeneity by zinc chelate affinity chromatography using pH gradient elution, a better separation was obtained. A purification fold of 201.81 with 1.17% yield and a high specific activity of 1132539.37U/mg were obtained. The native enzyme had a molecular weight of 268kDa and was composed of four subunits of equal size (65kDa). The enzyme showed optimal activity at a temperature of 45°C and pH 7.2. Thiol reagents, β-Mercaptoethanol and D,L-Dithiothreitol, inhibited the enzyme activity. The enzyme was inhibited by Al 3+ , Cd 2+ and Mg 2+ , whereas Ca 2+ , Co 2+ and Ni 2+ stimulated the catalase activity. Reduced glutathione has no effect on catalase activity. The K m and V max of the enzyme for hydrogen peroxide were 37.31mM and 6185157U/mg, respectively. Sodium azide inhibited the enzyme noncompetitively with K i value of 14.43μM, the IC 50 was found to be 16.71μM. The properties of camel catalase were different comparing to those of mammalian species. Relatively higher molecular weight, higher optimum temperature, protection of reduced glutathione from hydrogen peroxide oxidation and higher affinity for hydrogen peroxide and sodium azide, these could be explained by the fact that camel is able to live in the intense environmental stress in the desert. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Characterization of Gly-D-Phe, Gly-L-Leu, and D-Phe as affinity ligands to thermolysin.

    PubMed

    Yasukawa, Kiyoshi; Kusano, Masayuki; Nakamura, Koji; Inouye, Kuniyo

    2006-04-01

    In this study, glycyl-D-phenylalanine (Gly-D-Phe), glycyl-L-leucine (Gly-L-Leu), and D-phenylalanine (D-Phe) were characterized for their abilities as affinity ligands to thermolysin. Each of the ligands was immobilized to the resin. The optimum pH for adsorption of thermolysin is 5.0-6.0 for each of the ligands. By the affinity column chromatography in which 2mg thermolysin was applied onto 4 ml volume of the resins at pH 5.5, the adsorption ratios based on casein hydrolysis activity were 100% for each of the ligands. However, the adsorption ratios of the resins containing Gly-L-Leu and D-Phe, unlike that of Gly-D-Phe, were progressively decreased with increasing the amounts of thermolysin applied to the column. Measurement of adsorption isotherms showed that the association constant to thermolysin at pH 5.5 of the resins containing Gly-D-Phe was (3.3+/-0.8)x10(5)M(-1), while those of Gly-L-Leu and D-Phe were approximately ten times less. This result is coincident with the observations of performances in affinity column chromatography. On the other hand, maximum thermolysin binding capacities were almost the same among the resins examined. These results indicate that Gly-D-Phe is more suitable than Gly-L-Leu and D-Phe as an affinity ligand for purification of thermolysin.

  4. The predictive power of SIMION/SDS simulation software for modeling ion mobility spectrometry instruments

    NASA Astrophysics Data System (ADS)

    Lai, Hanh; McJunkin, Timothy R.; Miller, Carla J.; Scott, Jill R.; Almirall, José R.

    2008-09-01

    The combined use of SIMION 7.0 and the statistical diffusion simulation (SDS) user program in conjunction with SolidWorks® with COSMSOSFloWorks® fluid dynamics software to model a complete, commercial ion mobility spectrometer (IMS) was demonstrated for the first time and compared to experimental results for tests using compounds of immediate interest in the security industry (e.g., 2,4,6-trinitrotoluene, 2,7-dinitrofluorene, and cocaine). The effort of this research was to evaluate the predictive power of SIMION/SDS for application to IMS instruments. The simulation was evaluated against experimental results in three studies: (1) a drift:carrier gas flow rates study assesses the ability of SIMION/SDS to correctly predict the ion drift times; (2) a drift gas composition study evaluates the accuracy in predicting the resolution; (3) a gate width study compares the simulated peak shape and peak intensity with the experimental values. SIMION/SDS successfully predicted the correct drift time, intensity, and resolution trends for the operating parameters studied. Despite the need for estimations and assumptions in the construction of the simulated instrument, SIMION/SDS was able to predict the resolution between two ion species in air within 3% accuracy. The preliminary success of IMS simulations using SIMION/SDS software holds great promise for the design of future instruments with enhanced performance.

  5. The Predictive Power of SIMION/SDS Simulation Software for Modeling Ion Mobility Spectrometry Instruments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanh Lai; Timothy R. McJunkin; Carla J. Miller

    2008-09-01

    The combined use of SIMION 7.0 and the statistical diffusion simulation (SDS) user program in conjunction with SolidWorks® with COSMSOFloWorks® fluid dynamics software to model a complete, commercial ion mobility spectrometer (IMS) was demonstrated for the first time and compared to experimental results for tests using compounds of immediate interest in the security industry (e.g., 2,4,6-trinitrotoluene and cocaine). The effort of this research was to evaluate the predictive power of SIMION/SDS for application to IMS instruments. The simulation was evaluated against experimental results in three studies: 1) a drift:carrier gas flow rates study assesses the ability of SIMION/SDS to correctlymore » predict the ion drift times; 2) a drift gas composition study evaluates the accuracy in predicting the resolution; and 3) a gate width study compares the simulated peak shape and peak intensity with the experimental values. SIMION/SDS successfully predicted the correct drift time, intensity, and resolution trends for the operating parameters studied. Despite the need for estimations and assumptions in the construction of the simulated instrument, SIMION/SDS was able to predict the resolution between two ion species in air within 3% accuracy. The preliminary success of IMS simulations using SIMION/SDS software holds great promise for the design of future instruments with enhanced performance.« less

  6. Effect of SDS on human hair: Study on the molecular structure and morphology.

    PubMed

    Singh, Bhawana; Umapathy, Siva

    2011-05-01

    This paper presents a model study to understand the effect of surfactants on the physicochemical properties of human hair. FT-IR ATR spectroscopy has been employed to understand the chemical changes induced by sodium dodecyl sulfate (SDS) on human scalp hair. In particular, the SDS induced changes in the secondary structure of protein present in the outer protective layer of hair, i.e. cuticle, have been investigated. Conformational changes in the secondary structure of protein were studied by curve fitting of the amide I band after every phase of SDS treatment. It has been found that SDS brings rearrangements in the protein backbone conformations by transforming β -sheet structure to random coil and β -turn. Additionally, AFM and SEM studies were carried out to understand the morphological changes induced on the hair surface. SEM and AFM images demonstrated the rupture and partial erosion of cuticle sublayers. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Predicting drug penetration across the blood-brain barrier: comparison of micellar liquid chromatography and immobilized artificial membrane liquid chromatography.

    PubMed

    De Vrieze, Mike; Lynen, Frédéric; Chen, Kai; Szucs, Roman; Sandra, Pat

    2013-07-01

    Several in vitro methods have been tested for their ability to predict drug penetration across the blood-brain barrier (BBB) into the central nervous system (CNS). In this article, the performance of a variety of micellar liquid chromatographic (MLC) methods and immobilized artificial membrane (IAM) liquid chromatographic approaches were compared for a set of 45 solutes. MLC measurements were performed on a C18 column with sodium dodecyl sulfate (SDS), polyoxyethylene (23) lauryl ether (Brij35), or sodium deoxycholate (SDC) as surfactant in the micellar mobile phase. IAM liquid chromatography measurements were performed with Dulbecco's phosphate-buffered saline (DPBS) and methanol as organic modifier in the mobile phase. The corresponding retention and computed descriptor data for each solute were used for construction of models to predict transport across the blood-brain barrier (log BB). All data were correlated with experimental log BB values and the relative performance of the models was studied. SDS-based models proved most suitable for prediction of log BB values, followed closely by a simplified IAM method, in which it could be observed that extrapolation of retention data to 0% modifier in the mobile phase was unnecessary.

  8. Toxic isolectins from the mushroom Boletus venenatus.

    PubMed

    Horibe, Masashi; Kobayashi, Yuka; Dohra, Hideo; Morita, Tatsuya; Murata, Takeomi; Usui, Taichi; Nakamura-Tsuruta, Sachiko; Kamei, Masugu; Hirabayashi, Jun; Matsuura, Masanori; Yamada, Mina; Saikawa, Yoko; Hashimoto, Kimiko; Nakata, Masaya; Kawagishi, Hirokazu

    2010-04-01

    Ingestion of the toxic mushroom Boletus venenatus causes a severe gastrointestinal syndrome, such as nausea, repetitive vomiting, diarrhea, and stomachache. A family of isolectins (B. venenatus lectins, BVLs) was isolated as the toxic principles from the mushroom by successive 80% ammonium sulfate-precipitation, Super Q anion-exchange chromatography, and TSK-gel G3000SW gel filtration. Although BVLs showed a single band on SDS-PAGE, they were further divided into eight isolectins (BVL-1 to -8) by BioAssist Q anion-exchange chromatography. All the isolectins showed lectin activity and had very similar molecular weights as detected by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis. Among them, BVL-1 and -3 were further characterized with their complete amino acid sequences of 99 amino acids determined and found to be identical to each other. In the hemagglutination inhibition assay, both proteins failed to bind to any mono- or oligo-saccharides tested and showed the same sugar-binding specificity to glycoproteins. Among the glycoproteins examined, asialo-fetuin was the strongest inhibitor. The sugar-binding specificity of each isolectin was also analyzed by using frontal affinity chromatography and surface plasmon resonance analysis, indicating that they recognized N-linked sugar chains, especially Galbeta1-->4GlcNAcbeta1-->4Manbeta1-->4GlcNAcbeta1-->4GlcNAc (Type II) residues in N-linked sugar chains. BVLs ingestion resulted in fatal toxicity in mice upon intraperitoneal administration and caused diarrhea upon oral administration in rats. Copyright 2009 Elsevier Ltd. All rights reserved.

  9. Determination of residual fluoroquinolones in honey by liquid chromatography using metal chelate affinity chromatography.

    PubMed

    Yatsukawa, Yoh-Ichi; Ito, Hironobu; Matsuda, Takahiro; Nakamura, Munetomo; Watai, Masatoshi; Fujita, Kazuhiro

    2011-01-01

    A new analytical method for the simultaneous determination of seven fluoroquinolones, namely, norfloxacin, ciprofloxacin, danofloxacin, enrofloxacin, orbifloxacin, sarafloxacin, and difloxacin, especially in dark-colored honey, has been developed. Fluoroquinolone antibiotics were extracted from samples with MacIlvaine buffer solution (pH 4.0) containing EDTA disodium salt dihydrate. The extracts were treated with both a polymeric cartridge and a metal chelate affinity column preloaded with ferric ion (Fe3+). LC separation with fluorescence detection was performed at 40 degrees C using an Inertsil ODS-4 analytical column (150 x 4.6 mm, 3 microm). The mobile phase was composed of 20 mM/L citrate buffer solution (pH 3.1)-acetonitrile mixture (70 + 30, v/v) containing 1 mM/L sodium dodecyl sulfate. Lomefloxacin was used as an internal standard. The developed method was validated according to the criteria of European Commission Decision 2002/657/EC. Decision limits and detection capabilities were below 2.9 and 4.4 microg/kg, respectively.

  10. Electrochemical affinity biosensors for detection of mycotoxins: A review.

    PubMed

    Vidal, Juan C; Bonel, Laura; Ezquerra, Alba; Hernández, Susana; Bertolín, Juan R; Cubel, Carlota; Castillo, Juan R

    2013-11-15

    This review discusses the current state of electrochemical biosensors in the determination of mycotoxins in foods. Mycotoxins are highly toxic secondary metabolites produced by molds. The acute toxicity of these results in serious human and animal health problems, although it has been only since early 1960s when the first studied aflatoxins were found to be carcinogenic. Mycotoxins affect a broad range of agricultural products, most important cereals and cereal-based foods. A majority of countries, mentioning especially the European Union, have established preventive programs to control contamination and strict laws of the permitted levels in foods. Official methods of analysis of mycotoxins normally requires sophisticated instrumentation, e.g. liquid chromatography with fluorescence or mass detectors, combined with extraction procedures for sample preparation. For about sixteen years, the use of simpler and faster analytical procedures based on affinity biosensors has emerged in scientific literature as a very promising alternative, particularly electrochemical (i.e., amperometric, impedance, potentiometric or conductimetric) affinity biosensors due to their simplicity and sensitivity. Typically, electrochemical biosensors for mycotoxins use specific antibodies or aptamers as affinity ligands, although recombinant antibodies, artificial receptors and molecular imprinted polymers show potential utility. This article deals with recent advances in electrochemical affinity biosensors for mycotoxins and covers complete literature from the first reports about sixteen years ago. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Monolith-based immobilized metal affinity chromatography increases production efficiency for plasmid DNA purification.

    PubMed

    Shin, Min Jae; Tan, Lihan; Jeong, Min Ho; Kim, Ji-Heung; Choe, Woo-Seok

    2011-08-05

    Immobilized metal affinity monolith column as a new class of chromatographic support is shown to be superior to conventional particle-based column as plasmid DNA (pDNA) purification platform. By harnessing the affinity of endotoxin to copper ions in the solution, a majority of endotoxin (90%) was removed from the alkaline cell lysate using CuCl(2)-induced precipitation. RNA and remaining endotoxin were subsequently removed to below detection limit with minimal loss of pDNA using either monolith or particle-based column. Monolith column has the additional advantage of feed concentration and flowrate-independent dynamic binding capacity for RNA molecules, enabling purification process to be conducted at high feed RNA concentration and flowrate. The use of monolith column gives three fold increased productivity of pDNA as compared to particle-based column, providing a more rapid and economical platform for pDNA purification. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Affinity Purification of Proteins in Tag-Free Form: Split Intein-Mediated Ultrarapid Purification (SIRP).

    PubMed

    Guan, Dongli; Chen, Zhilei

    2017-01-01

    Proteins purified using affinity-based chromatography often exploit a recombinant affinity tag. Existing methods for the removal of the extraneous tag, needed for many applications, suffer from poor efficiency and/or high cost. Here we describe a simple, efficient, and potentially low-cost approach-split intein-mediated ultrarapid purification (SIRP)-for both the purification of the desired tagged protein from Escherichia coli lysate and removal of the tag in less than 1 h. The N- and C-fragment of a self-cleaving variant of a naturally split DnaE intein from Nostoc punctiforme are genetically fused to the N-terminus of an affinity tag and a protein of interest (POI), respectively. The N-intein/affinity tag is used to functionalize an affinity resin. The high affinity between the N- and C-fragment of DnaE intein enables the POI to be purified from the lysate via affinity to the resin, and the intein-mediated C-terminal cleavage reaction causes tagless POI to be released into the flow-through. The intein cleavage reaction is strongly inhibited by divalent ions (e.g., Zn 2+ ) under non-reducing conditions and is significantly enhanced by reducing conditions. The POI is cleaved efficiently regardless of the identity of the N-terminal amino acid except in the cases of threonine and proline, and the N-intein-functionalized affinity resin can be regenerated for multiple cycles of use.

  13. Identification and In Silico Analysis of Major Redox Modulated Proteins from Brassica juncea Seedlings Using 2D Redox SDS PAGE (2-Dimensional Diagonal Redox Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis).

    PubMed

    Chaurasia, Satya Prakash; Deswal, Renu

    2017-02-01

    The thiol-disulphide exchange regulates the activity of proteins by redox modulation. Many studies to analyze reactive oxygen species (ROS), particularly, hydrogen peroxide (H 2 O 2 ) induced changes in the gene expression have been reported, but efforts to detect H 2 O 2 modified proteins are comparatively few. Two-dimensional diagonal redox sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) was used to detect polypeptides which undergo thiol-disulphide exchange in Brassica juncea seedlings following H 2 O 2 (10 mM) treatment for 30 min. Eleven redox responsive polypeptides were identified which included cruciferin, NLI [Nuclear LIM (Lin11, Isl-1 & Mec-3 domains)] interacting protein phosphatase, RuBisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) large subunit, and myrosinase. Redox modulation of RuBisCO large subunit was further confirmed by western blotting. However, the small subunit of RuBisCO was not affected by these redox changes. All redox modulated targets except NLI interacting protein (although it contains two cysteines) showed oxidation sensitive cysteines by in silico analysis. Interestingly, interactome of cruciferin and myrosinase indicated that they may have additional function(s) beside their well-known roles in the seedling development and abiotic stress respectively. Cruciferin showed interactions with stress associated proteins like defensing-like protein 192 and 2-cys peroxiredoxin. Similarly, myrosinase showed interactions with nitrilase and cytochrome p450 which are involved in nitrogen metabolism and/or hormone biosynthesis. This simple procedure can be used to detect major stress mediated redox changes in other plants.

  14. Lipid vesicle-mediated affinity chromatography using magnetic activated cell sorting (LIMACS): a novel method to analyze protein-lipid interaction.

    PubMed

    Bieberich, Erhard

    2011-04-26

    The analysis of lipid protein interaction is difficult because lipids are embedded in cell membranes and therefore, inaccessible to most purification procedures. As an alternative, lipids can be coated on flat surfaces as used for lipid ELISA and Plasmon resonance spectroscopy. However, surface coating lipids do not form microdomain structures, which may be important for the lipid binding properties. Further, these methods do not allow for the purification of larger amounts of proteins binding to their target lipids. To overcome these limitations of testing lipid protein interaction and to purify lipid binding proteins we developed a novel method termed lipid vesicle-mediated affinity chromatography using magnetic-activated cell sorting (LIMACS). In this method, lipid vesicles are prepared with the target lipid and phosphatidylserine as the anchor lipid for Annexin V MACS. Phosphatidylserine is a ubiquitous cell membrane phospholipid that shows high affinity to the protein Annexin V. Using magnetic beads conjugated to Annexin V the phosphatidylserine-containing lipid vesicles will bind to the magnetic beads. When the lipid vesicles are incubated with a cell lysate the protein binding to the target lipid will also be bound to the beads and can be co-purified using MACS. This method can also be used to test if recombinant proteins reconstitute a protein complex binding to the target lipid. We have used this method to show the interaction of atypical PKC (aPKC) with the sphingolipid ceramide and to co-purify prostate apoptosis response 4 (PAR-4), a protein binding to ceramide-associated aPKC. We have also used this method for the reconstitution of a ceramide-associated complex of recombinant aPKC with the cell polarity-related proteins Par6 and Cdc42. Since lipid vesicles can be prepared with a variety of sphingo- or phospholipids, LIMACS offers a versatile test for lipid-protein interaction in a lipid environment that resembles closely that of the cell membrane

  15. Detection of Serum Thermolabile β-2 Macroglycoprotein (Hakata Antigen) by Enzyme-Linked Immunosorbent Assay Using Polysaccharide Produced by Aerococcus viridans

    PubMed Central

    Tsujimura, Mitsushi; Ishida, Chuzo; Sagara, Yasuko; Miyazaki, Takashi; Murakami, Koichi; Shiraki, Hiroshi; Okochi, Kazuo; Maeda, Yoshiaki

    2001-01-01

    Although a serum thermolabile β-2 macroglycoprotein (TMG) may play a role in host defense as a lectin, little is known of its related physiological functions, mainly due to a lack of appropriate methods for tracing the functions of TMG. We identified a polysaccharide from Aerococcus viridans, PSA, which reacts with TMG, and based on this finding, we developed an enzyme-linked immunosorbent assay to trace the functions of TMG. Using ethanol precipitation and DEAE-Sepharose and Sephacryl S-400 column chromatographies, we isolated PSA from cultured medium of A. viridans, and it exhibited specific binding against TMG in blood samples. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), the isolated PSA showed ladder bands that implied the existence of repeating units composed of d-glucose, N-acetyl-d-glucosamine, d-mannose, and d-xylose, as confirmed by gas chromatography-mass spectrometry. SDS-PAGE and immunochemical analysis, using rabbit anti-TMG antibody, showed that PSA specifically binds solely to intact serum TMG but not to TMG heated at 56°C for 30 min, a condition under which antigenicity is lost. TMG in serum samples bound to PSA in a dose-dependent manner, and this binding was clearly suppressed by addition of PSA. These observations indicate that PSA is a useful adsorbent to TMG and can be used to develop appropriate methods for tracing the functions of TMG. PMID:11238239

  16. Activity-Based Protein Profiling of Ammonia Monooxygenase in Nitrosomonas europaea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Kristen; Sadler, Natalie C.; Wright, Aaron T.

    Nitrosomonas europaeais an aerobic nitrifying bacterium that oxidizes ammonia (NH 3) to nitrite (NO 2 ₋) through the sequential activities of ammonia monooxygenase (AMO) and hydroxylamine dehydrogenase (HAO). Many alkynes are mechanism-based inactivators of AMO, and here we describe an activity-based protein profiling method for this enzyme using 1,7-octadiyne (17OD) as a probe. Inactivation of NH 4 +-dependent O 2uptake byN. europaeaby 17OD was time- and concentration-dependent. The effects of 17OD were specific for ammonia-oxidizing activity, andde novoprotein synthesis was required to reestablish this activity after cells were exposed to 17OD. Cells were reacted with Alexa Fluor 647 azide usingmore » a copper-catalyzed azide-alkyne cycloaddition (CuAAC) (click) reaction, solubilized, and analyzed by SDS-PAGE and infrared (IR) scanning. A fluorescent 28-kDa polypeptide was observed for cells previously exposed to 17OD but not for cells treated with either allylthiourea or acetylene prior to exposure to 17OD or for cells not previously exposed to 17OD. The fluorescent polypeptide was membrane associated and aggregated when heated with β-mercaptoethanol and SDS. The fluorescent polypeptide was also detected in cells pretreated with other diynes, but not in cells pretreated with structural homologs containing a single ethynyl functional group. The membrane fraction from 17OD-treated cells was conjugated with biotin-azide and solubilized in SDS. Streptavidin affinity-purified polypeptides were on-bead trypsin-digested, and amino acid sequences of the peptide fragments were determined by liquid chromatography-mass spectrometry (LC-MS) analysis. Peptide fragments from AmoA were the predominant peptides detected in 17OD-treated samples. In-gel digestion and matrix-assisted laser desorption ionization–tandem time of flight (MALDI-TOF/TOF) analyses also confirmed that the fluorescent 28-kDa polypeptide was AmoA.« less

  17. Activity-Based Protein Profiling of Ammonia Monooxygenase in Nitrosomonas europaea

    PubMed Central

    Bennett, Kristen; Sadler, Natalie C.; Wright, Aaron T.; Yeager, Chris

    2016-01-01

    Nitrosomonas europaea is an aerobic nitrifying bacterium that oxidizes ammonia (NH3) to nitrite (NO2−) through the sequential activities of ammonia monooxygenase (AMO) and hydroxylamine dehydrogenase (HAO). Many alkynes are mechanism-based inactivators of AMO, and here we describe an activity-based protein profiling method for this enzyme using 1,7-octadiyne (17OD) as a probe. Inactivation of NH4+-dependent O2 uptake by N. europaea by 17OD was time- and concentration-dependent. The effects of 17OD were specific for ammonia-oxidizing activity, and de novo protein synthesis was required to reestablish this activity after cells were exposed to 17OD. Cells were reacted with Alexa Fluor 647 azide using a copper-catalyzed azide-alkyne cycloaddition (CuAAC) (click) reaction, solubilized, and analyzed by SDS-PAGE and infrared (IR) scanning. A fluorescent 28-kDa polypeptide was observed for cells previously exposed to 17OD but not for cells treated with either allylthiourea or acetylene prior to exposure to 17OD or for cells not previously exposed to 17OD. The fluorescent polypeptide was membrane associated and aggregated when heated with β-mercaptoethanol and SDS. The fluorescent polypeptide was also detected in cells pretreated with other diynes, but not in cells pretreated with structural homologs containing a single ethynyl functional group. The membrane fraction from 17OD-treated cells was conjugated with biotin-azide and solubilized in SDS. Streptavidin affinity-purified polypeptides were on-bead trypsin-digested, and amino acid sequences of the peptide fragments were determined by liquid chromatography-mass spectrometry (LC-MS) analysis. Peptide fragments from AmoA were the predominant peptides detected in 17OD-treated samples. In-gel digestion and matrix-assisted laser desorption ionization–tandem time of flight (MALDI-TOF/TOF) analyses also confirmed that the fluorescent 28-kDa polypeptide was AmoA. PMID:26826234

  18. High-throughput screening of dye-ligands for chromatography.

    PubMed

    Kumar, Sunil; Punekar, Narayan S

    2014-01-01

    Dye-ligand-based chromatography has become popular after Cibacron Blue, the first reactive textile dye, found application for protein purification. Many other textile dyes have since been successfully used to purify a number of proteins and enzymes. While the exact nature of their interaction with target proteins is often unclear, dye-ligands are thought to mimic the structural features of their corresponding substrates, cofactors, etc. The dye-ligand affinity matrices are therefore considered pseudo-affinity matrices. In addition, dye-ligands may simply bind with proteins due to electrostatic, hydrophobic, and hydrogen-bonding interactions. Because of their low cost, ready availability, and structural stability, dye-ligand affinity matrices have gained much popularity. Choice of a large number of dye structures offers a range of matrices to be prepared and tested. When presented in the high-throughput screening mode, these dye-ligand matrices provide a formidable tool for protein purification. One could pick from the list of dye-ligands already available or build a systematic library of such structures for use. A high-throughput screen may be set up to choose best dye-ligand matrix as well as ideal conditions for binding and elution, for a given protein. The mode of operation could be either manual or automated. The technology is available to test the performance of dye-ligand matrices in small volumes in an automated liquid-handling workstation. Screening a systematic library of dye-ligand structures can help establish a structure-activity relationship. While the origins of dye-ligand chromatography lay in exploiting pseudo-affinity, it is now possible to design very specific biomimetic dye structures. High-throughput screening will be of value in this endeavor as well.

  19. [Purification and properties of Se-containing allophycocyanins from selenium rich Spirulina platensis].

    PubMed

    Huang, Zhi; Yang, Fang; Zheng, Wen-Jie

    2006-06-01

    Three Se-containing allophycocyanins (Se-APC) with high purity were purified from Se rich Spirulina platensis (Se-sp.) by hydroxyapatite chromatography, DEAE-52 anion-exchange chromatography and native gel preparative electrophoresis. Their biochemicial properties were explored by spectral scanning and electrophoresis analysis of Native-PAGE, SDS-PAGE and IEF on thin slab gel. Protein molecular weight (MW) of APC aggregation was determined by gel filter on Sephadex G-200 column. Se content of native and denatured Se-APC was detected by 2, 3-DAN fluorocence method. According to visible and fluorescence spectral character, three purified fractions of APC were identified to be APCI, APCII and APCIII. Native-PAGE and SDS-PAGE analysis revealed that they all shaped trimer (alphabeta) 3 of alpha and beta subunit with molecular mass of 18.3kDa and 15.7kDa, whereas APCI contains gamma subunit (about 32kDa) visibly and APCIII maybe contain the linker peptide of L(C)(8 - 10 kDa) based on their MW to be determined of 130.9, 98.1 and 106.30 kDa. IEF detection showed that the pl of Se-APCs was 4.76, 4.85 and 5.02 respectively. Se content of three purified Se-APCs were 316, 273 and 408 microg/g, which decreased about 25% after deaggregation treatment by 0.50 mol/L NaSCN and decreased more than 50% after denaturation treatment by 2-mercaptoethanol and reached to a steady content of 132 microg/g on average. These results indicated that Se incorporation into APC had no influence on function of energy transfer as well as biochemical property of APCs, and Se binding with APCs was highly relevant to its aggregation states whereas Se integrated steadily with its subunits.

  20. LC–MS/MS Quantitation of Esophagus Disease Blood Serum Glycoproteins by Enrichment with Hydrazide Chemistry and Lectin Affinity Chromatography

    PubMed Central

    2015-01-01

    Changes in glycosylation have been shown to have a profound correlation with development/malignancy in many cancer types. Currently, two major enrichment techniques have been widely applied in glycoproteomics, namely, lectin affinity chromatography (LAC)-based and hydrazide chemistry (HC)-based enrichments. Here we report the LC–MS/MS quantitative analyses of human blood serum glycoproteins and glycopeptides associated with esophageal diseases by LAC- and HC-based enrichment. The separate and complementary qualitative and quantitative data analyses of protein glycosylation were performed using both enrichment techniques. Chemometric and statistical evaluations, PCA plots, or ANOVA test, respectively, were employed to determine and confirm candidate cancer-associated glycoprotein/glycopeptide biomarkers. Out of 139, 59 common glycoproteins (42% overlap) were observed in both enrichment techniques. This overlap is very similar to previously published studies. The quantitation and evaluation of significantly changed glycoproteins/glycopeptides are complementary between LAC and HC enrichments. LC–ESI–MS/MS analyses indicated that 7 glycoproteins enriched by LAC and 11 glycoproteins enriched by HC showed significantly different abundances between disease-free and disease cohorts. Multiple reaction monitoring quantitation resulted in 13 glycopeptides by LAC enrichment and 10 glycosylation sites by HC enrichment to be statistically different among disease cohorts. PMID:25134008

  1. Purification and characterization of chymotrypsin from viscera of vermiculated sailfin catfish, Pterygoplichthys disjunctivus, Weber, 1991.

    PubMed

    Villalba-Villalba, Ana Gloria; Ramírez-Suárez, Juan Carlos; Pacheco-Aguilar, Ramón; Valenzuela-Soto, Elisa Miriam; Lugo-Sánchez, María Elena; Figueroa-Soto, Ciria Guadalupe

    2013-04-01

    Pterygoplichthys disjunctivus viscera chymotrypsin was purified by fractionation with ammonium sulfate (30-70 % saturation), gel filtration, affinity, and ion exchange chromatography. Chymotrypsin molecular weight was approximately 29 kDa according to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), shown a single band in zymogram. Electrofocusing study suggested being an anionic enzyme (pI ≈ 3.9), exhibiting maximal activity at pH 9 and 50 °C, using Suc-Ala-Ala-Pro-Phe-p-nitroanilide (SAAPNA) as substrate. Enzyme was effectively inhibited by phenyl methyl sulfonyl fluoride (PMSF) (99 %), and N-tosyl-L-phenylalanine chloromethyl ketone (TPCK) (94 %). Enzyme activity was affected by the following ions in decreasing order: Hg(2+), Fe(2+), Cu(2+), Li(1+), Mg(2+), K(1+), Mn(2+), while Ca(2+) had no effect. Chymotrypsin activity decreased continuously as NaCl concentration increased (from 0 to 30 %). K m and V max values were 0.72 ± 1.4 mM and 1.15 ± 0.06 μmol/min/mg of protein, respectively (SAAPNA as substrate). Results suggest the enzyme has a potential application where low processing temperatures are needed, such as in fish sauce production.

  2. [Preparation and identification of the polyclonal antibody against ATRX-C2193-2492].

    PubMed

    Tang, Shuangyang; Liu, Zhimin; Li, Ranhui; Chen, Yan; Zhao, Lanhua; Shen, Haiyan; Wan, Yanping

    2017-04-01

    Objective To prepare the polyclonal antibody against human alpha thalassemia/mental retardation syndrome X-linked (ATRX) C-terminal and study the distribution and expression of ATRX protein in human cervical cancer tissues. Methods The antiserum was obtained from the BALB/c mice immunized with 6 His-ATRX-C 2193-2492 protein and then purified by the saturated ammonium sulfate precipitation and affinity chromatography. The titer of anti-ATRX polyclonal antibody was determined by ELISA. Its specificity was identified by SDS-PAGE analysis and Western blotting. The expression and location of ATRX in human cervical tissues were analyzed by immunohistochemistry. Results The titer of the polyclonal antibody against 6 His-ATRX-C 2193-2492 protein was about 1:12 800. The antibody could recognize 6 His-ATRX-C 2193-2492 protein specifically. With the polyclonal antibody, the target protein was found mainly in the nucleus of para-carcinoma tissues, and it was also expressed in the nucleus of cervical cancer tissue cells, but the expression in the latter was obviously lower. Conclusion The polyclonal antibody against 6 His-ATRX-C 2193-2492 protein has been produced successfully and used to detect ATRX protein in human cervical cancer tissues.

  3. Lens protein composition, glycation and high molecular weight aggregation in aging rats.

    PubMed

    Swamy, M S; Abraham, E C

    1987-10-01

    Because of minimal or no turnover, lens proteins are subjected to substantial post-translational modifications which in turn disrupt lens architecture and change the optical properties leading to senile cataract formation. Progressive glycation is believed to have the potential to initiate the changes that are conducive to lens opacification. Fisher 344 rats were systematically followed from juvenile to older and aged phases of their life to study the relationship between lens glycation and high molecular weight (HMW) aggregate formation as well as quantitative and qualitative changes in lens crystallins. Levels of glycated proteins were quantified by affinity chromatography. Changes in lens crystallin composition and HMW aggregate formation were monitored by molecular sieve HPLC, further confirmed by SDS-PAGE and IEF techniques. As the age advances HMW and insoluble proteins increase with a concomitant disappearance of gamma-crystallins from soluble fraction. This disappearance of gamma-crystallins coincided with increased glycation (approximately 2-fold higher in insoluble fraction) and decreased sulfhydryl groups from soluble fraction. It appears that lens protein glycation, disappearance of gamma-crystallins and sulfhydryls from soluble fraction and increase of insoluble fraction and HMW aggregate are interrelated.

  4. [Prokaryotic expression, purification and antigenicity identification of recombinant human survivin protein].

    PubMed

    Yin, Xiaotao; Wang, Wei; Tian, Renli; Xu, Yuanji; Yan, Jinqi; Zhang, Wei; Gao, Jiangping; Yu, Jiyun

    2013-08-01

    To construct a prokaryotic expression plasmid pET28a-survivin, optimize the recombinant protein expression conditions in E.coli, and purify the survivin recombinant protein and identify its antigenicity. Survivin cDNA segment was amplified by PCR and cloned into prokaryotic expression vector pET28a(+) to construct the recombinant expression vector pET28a-survivin. The expression vector was transformed into BL21 (DE3) and the fusion protein survivin/His was induced by IPTG. The fusion protein was purified through Ni affinity chromatography. The antigenicity of the purified survivin protein was identified by Western blotting and ELISA. The recombinant expression vector was verified successfully by BamHI and HindIII. The fusion protein induced by IPTG was obtained with Mr; about 24 000. The purity of the purified protein reached 90% by SDS-PAGE analysis. And the antigenicity of the survivin protein was validated by Western blotting and ELISA. The prokaryotic expression plasmid pET28a-survivin was successfully constructed and the survivin protein was expressed and purified in E.coli. The antigenicity of the purified survivin protein was demonstrated desirable.

  5. Constructing Chimeric Antigen for Precise Screening of HTLV-I Infection.

    PubMed

    Heydari Zarnagh, Hafez; Hassanpour, Kazem; Rasaee, Mohammad Javad

    2015-08-01

    Individual preparation of two human T-cell lymphotropic virus type I (HTLV-I) diagnostic GST fused peptides (MTA-1 and GD21) is time-consuming and expensive. The aim of this study was to design a novel single chimeric antigen (SCA) to obviate separate expression of proteins and reduce the cost of reagent preparation. Structural protein fragments, including immunodominant B cell linear epitopes, were selected and different SCAs were designed. Tertiary structure, epitope exposure, solubility and stability were calculated for each SCA and compared with each other. The synthetic DNA encoding the interested SCA was sub-cloned into pET32a expression vector, expressed as a soluble form in Escherichia coli BL21 (DE3) cells and purified under native condition using affinity chromatography. The SDS-PAGE results indicated that thioredoxin-fused SCA was successfully expressed as a soluble form in E. coli BL21 (DE3) cells. The results of ELISA confirmed that SCA reacted with anti-HTLV-I antibodies in a concentration-dependent manner. Our results indicated that the designed SCA may be a good candidate for the screening of HTLV-I carriers with antigen-antibody-based tests.

  6. Comparison of humanized IgG and FvFc anti-CD3 monoclonal antibodies expressed in CHO cells.

    PubMed

    Serpieri, Flavia; Inocencio, Andre; de Oliveira, Jose Marcelino; Pimenta, Alécio A; Garbuio, Angélica; Kalil, Jorge; Brigido, Marcelo M; Moro, Ana Maria

    2010-07-01

    Two humanized monoclonal antibody constructs bearing the same variable regions of an anti-CD3 monoclonal antibody, whole IgG and FvFc, were expressed in CHO cells. Random and site-specific integration were used resulting in similar expression levels. The transfectants were selected with appropriate selection agent, and the surviving cells were plated in semi-solid medium for capture with FITC-conjugated anti-human IG antibody and picked with the robotic ClonePix FL. Conditioned media from selected clones were purified by affinity chromatography and characterized by SDS-PAGE, Western-blot, SEC-HPLC, and isoelectric focusing. Binding to the target present in healthy human mononuclear cells was assessed by flow cytometry, as well as by competition between the two constructs and the original murine monoclonal antibody. The humanized constructs were not able to dislodge the murine antibody while the murine anti-CD3 antibody could dislodge around 20% of the FvFc or IgG humanized versions. Further in vitro and in vivo pre-clinical analyses will be carried out to verify the ability of the humanized versions to demonstrate the immunoregulatory profile required for a humanized anti-CD3 monoclonal antibody.

  7. Cloning and expression of a novel antifreeze protein AFP72 from the beetle Tenebrio molitor.

    PubMed

    Yan, Qing-Hua; Yang, Li; Wang, Qing; Zhang, Hui-Rong; Shao, Qiang

    2012-01-01

    A novel antifreeze protein AFP72 cDNA (GenBbank accession No. AY929389) was obtained by RT-PCR from Tenebrio molitor. The 216 bp fragment encodes a protein of 72 amino acid residues. Sequence analysis revealed that the cDNA displays a high degree of homology with T. molitor antifreeze proteins, ranging up to 90.78%. Recombinant plasmids pMAL-p2X-afp72 and pMAL-c2X-afp72 were transferred into E. coil TBI to induce a MBP fusion protein by IPTG. The target fusion protein was released from the periplasm and cytoplasm by the cold osmotic shock procedure and sonication respectively. The content of the fusion protein came up to 38.9 and 41.5% of the total dissolved protein, respectively. The fusion protein was purified through an amylose affinity column, and incised by factor Xa. Molecular sieve chromatography was used to achieve a high state of purity of the target protein. The purified target protein displayed a single band in SDS-PAGE. The fusion protein was shown to increase resistance to low temperatures in bacteria. This finding could help in further investigations of the properties and function of antifreeze proteins.

  8. Purification and characterization of Bacillus cereus protease suitable for detergent industry.

    PubMed

    Prakash, Monika; Banik, Rathindra Mohan; Koch-Brandt, Claudia

    2005-12-01

    An extracellular alkaline protease from an alkalophilic bacterium, Bacillus cereus, was produced in a large amount by the method of extractive fermentation. The protease is thermostable, pH tolerant, and compatible with commercial laundry detergents. The protease purified and characterized in this study was found to be superior to endogenous protease already present in commercial laundry detergents. The enzyme was purified to homogeneity by ammonium sulfate precipitation, concentration by ultrafiltration, anion-exchange chromatography, and gel filtration. The purified enzyme had a specific activity of 3256.05 U/mg and was found to be a monomeric protein with a molecular mass of 28 and 31 kDa, as estimated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and nondenaturing PAGE, respectively. Its maximum protease activity against casein was found to be at pH 10.5 and 50 degrees C. Proteolytic activity of the enzyme was detected by casein and gelatin zymography, which gave a very clear protease activity zone on gel that corresponded to the band obtained on SDS-PAGE and nondenaturing PAGE with a molecular mass of nearly 31 kDa. The purified enzyme was analyzed through matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS) and identified as a subtilisin class of protease. Specific serine protease inhibitors, suggesting the presence of serine residues at the active site, inhibited the enzyme significantly.

  9. Effects of salts on protein-surface interactions: applications for column chromatography.

    PubMed

    Tsumoto, Kouhei; Ejima, Daisuke; Senczuk, Anna M; Kita, Yoshiko; Arakawa, Tsutomu

    2007-07-01

    Development of protein pharmaceuticals depends on the availability of high quality proteins. Various column chromatographies are used to purify proteins and characterize the purity and properties of the proteins. Most column chromatographies require salts, whether inorganic or organic, for binding, elution or simply better recovery and resolution. The salts modulate affinity of the proteins for particular columns and nonspecific protein-protein or protein-surface interactions, depending on the type and concentration of the salts, in both specific and nonspecific manners. Salts also affect the binding capacity of the column, which determines the size of the column to be used. Binding capacity, whether equilibrium or dynamic (under an approximation of a slow flow rate), depends on the binding constant, protein concentration and the number of the binding site on the column as well as nonspecific binding. This review attempts to summarize the mechanism of the salt effects on binding affinity and capacity for various column chromatographies and on nonspecific protein-protein or protein-surface interactions. Understanding such salt effects should also be useful in preventing nonspecific protein binding to various containers. Copyright 2007 Wiley-Liss, Inc.

  10. Improved Thermal Modulator for Gas Chromatography

    NASA Technical Reports Server (NTRS)

    Hasselbrink, Ernest Frederick, Jr.; Hunt, Patrick J.; Sacks, Richard D.

    2008-01-01

    An improved thermal modulator has been invented for use in a variant of gas chromatography (GC). The variant in question denoted as two-dimensional gas chromatography (2DGC) or GC-GC involves the use of three series-connected chromatographic columns, in the form of capillary tubes coated interiorly with suitable stationary phases (compounds for which different analytes exhibit different degrees of affinity). The two end columns are relatively long and are used as standard GC columns. The thermal modulator includes the middle column, which is relatively short and is not used as a standard GC column: instead, its temperature is modulated to affect timed adsorption and desorption of analyte gases between the two end columns in accordance with a 2DGC protocol.

  11. Comparison of selected analytical techniques for protein sizing, quantitation and molecular weight determination.

    PubMed

    Goetz, H; Kuschel, M; Wulff, T; Sauber, C; Miller, C; Fisher, S; Woodward, C

    2004-09-30

    Protein analysis techniques are developing fast due to the growing number of proteins obtained by recombinant DNA techniques. In the present paper we compare selected techniques, which are used for protein sizing, quantitation and molecular weight determination: sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE), lab-on-a-chip or microfluidics technology (LoaC), size exclusion chromatography (SEC) and mass spectrometry (MS). We compare advantages and limitations of each technique in respect to different application areas, analysis time, protein sizing and quantitation performance.

  12. Immobilized Metal Affinity Chromatography Co-Purifies TGF-β1 with Histidine-Tagged Recombinant Extracellular Proteins

    PubMed Central

    Kaur, Jasvir; Reinhardt, Dieter P.

    2012-01-01

    Extracellular recombinant proteins are commonly produced using HEK293 cells as histidine-tagged proteins facilitating purification by immobilized metal affinity chromatography (IMAC). Based on gel analyses, this one-step purification typically produces proteins of high purity. Here, we analyzed the presence of TGF-β1 in such IMAC purifications using recombinant extracellular fibrillin-1 fragments as examples. Analysis of various purified recombinant fibrillin-1 fragments by ELISA consistently revealed the presence of picomolar concentrations of active and latent TGF-β1, but not of BMP-2. These quantities of TGF-β1 were not detectable by Western blotting and mass spectrometry. However, the amounts of TGF-β1 were sufficient to consistently trigger Smad2 phosphorylation in fibroblasts. The purification mechanism was analyzed to determine whether the presence of TGF-β1 in these protein preparations represents a specific or non-specific co-purification of TGF-β1 with fibrillin-1 fragments. Control purifications using conditioned medium from non-transfected 293 cells yielded similar amounts of TGF-β1 after IMAC. IMAC of purified TGF-β1 and the latency associated peptide showed that these proteins bound to the immobilized nickel ions. These data clearly demonstrate that TGF-β1 was co-purified by specific interactions with nickel, and not by specific interactions with fibrillin-1 fragments. Among various chromatographic methods tested for their ability to eliminate TGF-β1 from fibrillin-1 preparations, gel filtration under high salt conditions was highly effective. As various recombinant extracellular proteins purified in this fashion are frequently used for experiments that can be influenced by the presence of TGF-β1, these findings have far-reaching implications for the required chromatographic schemes and quality controls. PMID:23119075

  13. Physicochemical perspectives (aggregation, structure and dynamics) of interaction between pluronic (L31) and surfactant (SDS).

    PubMed

    Prameela, G K S; Phani Kumar, B V N; Pan, A; Aswal, V K; Subramanian, J; Mandal, A B; Moulik, S P

    2015-11-11

    The influence of the water soluble non-ionic tri-block copolymer PEO-PPO-PEO [poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)] i.e., E2P16E2 (L31) on the microstructure and self-aggregation dynamics of the anionic surfactant sodium dodecylsulfate (SDS) in aqueous solution was investigated using cloud point (CP), isothermal titration calorimetry (ITC), high resolution nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), and small-angle neutron scattering (SANS) measurements. CP provided the thermodynamic information on the Gibbs free energy, enthalpy, entropy and heat capacity changes pertaining to the phase separation of the system at elevated temperature. The ITC and NMR self-diffusion measurements helped to understand the nature of the binding isotherms of SDS in the presence of L31 in terms of the formation of mixed aggregates and free SDS micelles in solution. EPR analysis provided the micro-viscosity of the spin probe 5-DSA in terms of rotational correlation time. The SANS study indicated the presence of prolate ellipsoidal mixed aggregates, whose size increased with the increasing addition of L31. At a large [L31], SANS also revealed the progressive decreasing size of the ellipsoidal mixed aggregates of SDS-L31 into nearly globular forms with the increasing SDS addition. Wrapping of the spherical SDS micelles by L31 was also corroborated from (13)C NMR and SANS measurements.

  14. [Schedule for evaluation of the deficit syndrome in schizophrenia: Schedule for Deficit Syndrome (SDS) (Kirkpatrick et al.). Importance pertinence of the SDS. Introduction of the French version].

    PubMed

    Ribeyre, J M; Dollfus, S; Lesieur, P; Ménard, J F; Petit, M

    1994-01-01

    The negative symptoms of schizophrenia have generated a great interest leading some authors (Crow, Andreasen, Kay) to delineate schizophrenic subtypes based on their presence or absence. Carpenter et al. have recently proposed another subtype, the deficit syndrome, based on Kraepelin's clinical description. This differs from other proposed negative subtypes and refers to the presence or absence of prominent, enduring and primary negative symptoms. Primary negative symptoms have to be due to psychophrenia itself, in other words, independent of factors such as depression, anxiety, akinesia... Kirkpatrick et al. have proposed the Schedule for the Deficit Syndrome (SDS) to reliably identify this deficit syndrome. Some studies using this instrument have supported the validity of the deficit syndrome concept. Particularly, deficit patients have clinical, neuropsychological, neurological, eye-tracking and brain imaging impairments compared to nondeficit patients. We realized a french translation of SDS and used it to study a biological index (plasma homovanillic acid, pHVA) among deficit and nondeficit schizophrenic patients. Our data suggest a specific biochemical basis for the deficit syndrome, ie, significant lower mean pHVA levels with a lack of diurnal variation for deficit patients. The french version of SDS was validated by Kirkpatrick after english back translation. We present here our psychometric data regarding reliability (assessed by weighted and unweighted kappa coefficients) and cohesiveness of the construct (assessed by rank-order correlations of each negative symptoms with the other five, using Spearman's rho). These data are quite significant and in agreement with the SDS authors.

  15. Studies on gonadotropin receptor of rat ovary and testis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Q.

    1989-01-01

    The subunit structure of the testicular LH/hCG receptor was studied by a chemical cross-linking technique. Leydig cells isolated from rat testis were incubated with {sup 125}I-hCG, following which the bound {sup 125}I-hCG was covalently cross-linked to the receptor on the cell surface with a cleavable or a non-cleavable cross-linking reagent. The hormone-receptor complex was extracted and then either subjected to gel permeation chromatography under nondenaturing conditions, or resolved by SDS-polyacrylamide gel electrophoresis, followed by autoradiographic analysis. The ovarian LH/hCG receptor was studied with luteal cells from pseudopregnant rats. Purification of the receptor was achieved by ligand affinity chromatography following detergentmore » solubilization of the plasma membrane. The purified hCG receptor displayed properties identical to the membrane bound receptor with regard to binding specificity and affinity, and exhibited a molecular weight of approximately 130,000 dalton.« less

  16. Shrimp arginine kinase being a binding protein of WSSV envelope protein VP31

    NASA Astrophysics Data System (ADS)

    Ma, Cuiyan; Gao, Qiang; Liang, Yan; Li, Chen; Liu, Chao; Huang, Jie

    2016-11-01

    Viral entry into the host is the earliest stage of infection in the viral life cycle in which attachment proteins play a key role. VP31 (WSV340/WSSV396), an envelope protein of white spot syndrome virus (WSSV), contains an Arg-Gly-Asp (RGD) peptide domain known as a cellular attachment site. At present, the process of VP31 interacting with shrimp host cells has not been explored. Therefore, the VP31 gene was cloned into pET30a (+), expressed in Escherichia coli strain BL21 and purified with immobilized metal ion affinity chromatography. Four gill cellular proteins of shrimp ( Fenneropenaeus chinensis) were pulled down by an affinity column coupled with recombinant VP31 (rVP31), and the amino acid sequences were identified with MALDI-TOF/TOF mass spectrometry. Hemocyanin, beta-actin, arginine kinase (AK), and an unknown protein were suggested as the putative VP31 receptor proteins. SDS-PAGE showed that AK is the predominant binding protein of VP31. An i n vitro binding activity experiment indicated that recombinant AK's (rAK) binding activity with rVP31 is comparable to that with the same amount of WSSV. These results suggested that AK, as a member of the phosphagen kinase family, plays a role in WSSV infection. This is the first evidence showing that AK is a binding protein of VP31. Further studies on this topic will elucidate WSSV infection mechanism in the future.

  17. Analysis of free drug fractions in serum by ultrafast affinity extraction and two-dimensional affinity chromatography using α1-acid glycoprotein microcolumns.

    PubMed

    Bi, Cong; Zheng, Xiwei; Hage, David S

    2016-02-05

    In the circulatory system, many drugs are reversibly bound to serum proteins such as human serum albumin (HSA) and alpha1-acid glycoprotein (AGP), resulting in both free and protein-bound fractions for these drugs. This report examined the use of microcolumns containing immobilized AGP for the measurement of free drug fractions by ultrafast affinity extraction and a two-dimensional affinity system. Several drugs known to bind AGP were used as models to develop and evaluate this approach. Factors considered during the creation of this method included the retention of the drugs on the microcolumns, the injection flow rate, the microcolumn size, and the times at which a second AGP column was placed on-line with the microcolumn. The final system had residence times of only 110-830ms during sample passage through the AGP microcolumns and allowed free drug fractions to be determined within 10-20min when using only 3-10μL of sample per injection. This method was used to measure the free fractions of the model drugs at typical therapeutic levels in serum, giving good agreement with the results obtained by ultrafiltration. This approach was also used to estimate the binding constants for each drug with AGP in serum, even for drugs that had significant interactions with both AGP and HSA in such samples. These results indicated that AGP microcolumns could be used with ultrafast affinity extraction to measure free drug fractions in a label-free manner and to study the binding of drugs with AGP in complex samples such as serum. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A comparative study of lectin affinity based plant n-glycoproteome profiling using tomato fruit as a model

    USDA-ARS?s Scientific Manuscript database

    Lectin affinity chromatography (LAC) can provide a valuable front-end enrichment strategy for the study of N-glycoproteins and has been used to characterize a broad range eukaryotic N-glycoproteomes. Moreover, studies with mammalian systems have suggested that the use of multiple lectins with differ...

  19. Detection of recombinant EPO in blood and urine samples with EPO WGA MAIIA, IEF and SAR-PAGE after microdose injections.

    PubMed

    Dehnes, Yvette; Shalina, Alexandra; Myrvold, Linda

    2013-01-01

    The misuse of microdoses of performance enhancing drugs like erythropoietin (EPO) constitutes a major challenge in doping analysis. When injected intravenously, the half-life of recombinant human EPO (rhEPO) like epoetin alfa, beta, and zeta is only a few hours and hence, the window for direct detection of rhEPO in urine is small. In order to investigate the detection window for rhEPO directly in blood and urine with a combined affinity chromatography and lateral flow immunoassay (EPO WGA MAIIA), we recruited nine healthy people who each received six intravenously injected microdoses (7.5 IU/kg) of NeoRecormon (epoetin beta) over a period of three weeks. Blood and urine samples were collected in the days following the injections and analyzed with EPO WGA MAIIA as well as the current validated methods for rhEPO; isoelectric focusing (IEF) and sarcosyl polyacrylamide gel electrophoresis (SAR-PAGE). For samples collected 18 h after a microdose, the sensitivity of the EPO WGA MAIIA assay was 100% in plasma and 87.5% in urine samples at the respective 98% specificity threshold levels. In comparison, the sensitivity in plasma and urine was 75% and 100%, respectively, with IEF, and 87.5% in plasma and 100% in urine when analyzed with SAR-PAGE. We conclude that EPO WGA MAIIA is a sensitive assay for the detection of rhEPO, with the potential of being a fast, supplemental screening assay for use in doping analysis.

  20. Rational design of peptide affinity ligands for the purification of therapeutic enzymes.

    PubMed

    Trasatti, John P; Woo, James; Ladiwala, Asif; Cramer, Steven; Karande, Pankaj

    2018-04-25

    Non-mAb biologics represent a growing class of therapeutics under clinical development. Although affinity chromatography is a potentially attractive approach for purification, the development of platform technologies, such as Protein A for mAbs, has been challenging due to the inherent chemical and structural diversity of these molecules. Here, we present our studies on the rapid development of peptide affinity ligands for the purification of biologics using a prototypical enzyme therapeutic in clinical use. Employing a suite of de novo rational and combinatorial design strategies we designed and screened a library of peptides on microarray platforms for their ability to bind to the target with high affinity and selectivity in cell culture fluid. Lead peptides were evaluated on resin in batch conditions and compared with a commercially available resin to evaluate their efficacy. Two lead candidates identified from microarray studies provided high binding capacity to the target while demonstrating high selectivity against culture contaminants and product variants compared to a commercial resin system. These findings provide a proof-of-concept for developing affinity peptide-based bioseparations processes for a target biologic. Peptide affinity ligand design and screening approaches presented in this work can also be easily translated to other biologics of interest. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  1. Yolk proteins during ovary and egg development of mature female freshwater crayfish (Cherax quadricarinatus).

    PubMed

    Serrano-Pinto, Vania; Vazquez-Boucard, Celia; Villarreal-Colmenares, Humberto

    2003-01-01

    Vitellins from ovaries and eggs at different stages of development in freshwater crayfish (Cherax quadricarinatus) were examined by chromatography, PAGE and SDS-PAGE. With these methods, two forms of vitellin (Vt1 and Vt2) were observed in ovaries and eggs (stages I and V). In ovaries in secondary vitellogenesis, native molecular mass was 470 (Vt1) and 440 (Vt2) kDa. The electrophoretic pattern of the eggs proved to be more complex. The protein molecular mass depend on the development stage of the egg: stage I, 650 kDa (Vt1) and 440 kDa (Vt2); stage V, 390 kDa (Vt1) and 340 kDa (Vt2). The identified vitellins appear to be lipo-glycocarotenoprotein. A similar vitellin polypeptide composition was observed in the two forms of vitellin from ovaries and eggs in stage V. In ovaries the SDS-PAGE analysis showed four subunits with molecular weights of approximately 180, 120, 95 and 80 kDa (Vt1 and Vt2). The polypeptide composition in the two forms of vitellins in stage I and stage III eggs were different at 195, 190, 130 and 110 kDa (Vt1) and 116 and 107 kDa (Vt2). On the other hand, in stage V eggs, 110, 95, 87 and 75 kDa (Vt1 and Vt2) were identified. Two antibodies (Ab1 and Ab2) were prepared against the purified proteins of stage V eggs and their specificity was demonstrated by radial immunoprecipitation, and Western blotting analysis. Two forms of vitellins were also found in stage V eggs after chromatography on Sepharose CL-2B column and hydroxylapatite and polyacrylamide gel electrophoresis.

  2. Immunomodulatory response of mice splenocytes induced by RcaL, a lectin isolated from cobia fish (Rachycentron canadum) serum.

    PubMed

    Coriolano, Marília Cavalcanti; Silva, Cynarha Daysy Cardoso da; Melo, Cristiane Moutinho Lagos de; Bezerra, Ranilson de Souza; Santos, Athiê Jorge Guerra; Pereira, Valéria Rêgo Alves; Coelho, Luana Cassandra Breitenbach Barroso

    2012-11-01

    This work reports the isolation of a serum lectin from cobia fish (Rachycentron canadum) named RcaL. Immunomodulatory activity on mice splenocyte experimental cultures through cytotoxic assays and cytokine production were also performed. RcaL was obtained through precipitation with ammonium sulphate and affinity chromatography on a Concanavalin A-Sepharose 4B column. The ammonium sulphate fraction F3 showed the highest specific hemagglutinating activity and was applied to affinity chromatography. The lectin was eluted with methyl-α-D-mannopyranoside. RcaL showed highest affinity for methyl-α-D-mannopyranoside and D-mannose; eluted fractions of RcaL agglutinated rabbit erythrocytes (titre, 128(-1)) retained 66 % of chromatographed lectin activity, and the obtained purification factor was 1.14. Under reducing conditions, a polypeptide band of 19.2 kDa was revealed in sodium dodecyl sulphate polyacrylamide gel electrophoresis (PAGE). PAGE confirmed RcaL as an acidic protein revealed in a single band. Cytotoxic and immunomodulatory assays with RcaL in mice splenocyte cultures showed that the lectin was not cytotoxic and induced higher interferon gamma and nitric oxide production in splenocyte cultures. Purified RcaL induced preferential Th1 response, suggesting that it acts as an immunomodulatory compound.

  3. Highly thermostable, thermophilic, alkaline, SDS and chelator resistant amylase from a thermophilic Bacillus sp. isolate A3-15.

    PubMed

    Arikan, Burhan

    2008-05-01

    A thermostable alkaline alpha-amylase producing Bacillus sp. A3-15 was isolated from compost samples. There was a slight variation in amylase synthesis within the pH range 6.0 and 12.0 with an optimum pH of 8.5 (8mm zone diameter in agar medium) on starch agar medium. Analyses of the enzyme for molecular mass and amylolytic activity were carried out by starch SDS-PAGE electrophoresis, which revealed two independent bands (86,000 and 60,500 Da). Enzyme synthesis occurred at temperatures between 25 and 65 degrees C with an optimum of 60 degrees C on petri dishes. The partial purification enzyme showed optimum activity at pH 11.0 and 70 degrees C. The enzyme was highly active (95%) in alkaline range of pH (10.0-11.5), and it was almost completely active up to 100 degrees C with 96% of the original activity remaining after heat treatment at 100 degrees C for 30 min. Enzyme activity was enhanced in the presence of 5mM CaCl2 (130%) and inhibition with 5mM by ZnCl2, NaCl, Na-sulphide, EDTA, PMSF (3mM), Urea (8M) and SDS (1%) was obtained 18%, 20%, 36%, 5%, 10%, 80% and 18%, respectively. The enzyme was stable approximately 70% at pH 10.0-11.0 and 60 degrees C for 24h. So our result showed that the enzyme was both, highly thermostable-alkaline, thermophile and chelator resistant. The A3-15 amylase enzyme may be suitable in liquefaction of starch in high temperature, in detergent and textile industries and in other industrial applications.

  4. Allergen-specific IgG antibodies purified from mite-allergic patients sera block the IgE recognition of Dermatophagoides pteronyssinus antigens: an in vitro study.

    PubMed

    Siman, Isabella Lima; de Aquino, Lais Martins; Ynoue, Leandro Hideki; Miranda, Juliana Silva; Pajuaba, Ana Claudia Arantes Marquez; Cunha-Júnior, Jair Pereira; Silva, Deise Aparecida Oliveira; Taketomi, Ernesto Akio

    2013-01-01

    One of the purposes of specific immunotherapy (SIT) is to modulate humoral immune response against allergens with significant increases in allergen-specific IgG levels, commonly associated with blocking activity. The present study investigated in vitro blocking activity of allergen-specific IgG antibodies on IgE reactivity to Dermatophagoides pteronyssinus (Dpt) in sera from atopic patients. Dpt-specific IgG antibodies were purified by ammonium sulfate precipitation followed by protein-G affinity chromatography. Purity was checked by SDS-PAGE and immunoreactivity by slot-blot and immunoblot assays. The blocking activity was evaluated by inhibition ELISA. The electrophoretic profile of the ammonium sulfate precipitated fraction showed strongly stained bands in ligand fraction after chromatography, compatible with molecular weight of human whole IgG molecule. The purity degree was confirmed by detecting strong immunoreactivity to IgG, negligible to IgA, and no reactivity to IgE and IgM. Dpt-specific IgG fraction was capable of significantly reducing levels of IgE anti-Dpt, resulting in 35%-51% inhibition of IgE reactivity to Dpt in atopic patients sera. This study showed that allergen-specific IgG antibodies purified from mite-allergic patients sera block the IgE recognition of Dermatophagoides pteronyssinus antigens. This approach reinforces that intermittent measurement of serum allergen-specific IgG antibodies will be an important objective laboratorial parameter that will help specialists to follow their patients under SIT.

  5. Purification and characterization of an extracellular trypsin-like protease of Fusarium oxysporum var. lini.

    PubMed

    Barata, Ricardo Andrade; Andrade, Milton Hercules Guerra; Rodrigues, Roberta Dias; Castro, Ieso Miranda

    2002-01-01

    An alkaline serineprotease, capable of hydrolyzing Nalpha-benzoyl- dl arginine p-nitroanilide, was secreted by Fusarium oxysporum var. lini grown in the presence of gelatin as the sole nitrogen and carbon source. The protease was purified 65-fold to electrophoretic homogenity from the culture supernatant in a three-step procedure comprising QSepharose chromatography, affinity chromatography, and FPLC on a MonoQ column. SDS-PAGE analysis of the purified protein indicated an estimated molecular mass of 41 kDa. The protease had optimum activity at a reaction temperature of 45 degrees C and showed a rapid decrease of activity at 48 degrees C. The optimum pH was around 8.0. Characterization of the protease showed that Ca2+ and Mg2+ cations increased the activity, which was not inhibited by EDTA or 1,10-phenanthroline. The enzyme activity on Nalpha-benzoyl-DL arginine p-nitroanilide was inhibited by 4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride, p-aminobenzamidine dihydrochloride, aprotinin, 3-4 dichloroisocoumarin, and N-tosyl-L-lysine chloromethyl ketone. The enzyme is also inhibited by substrate concentrations higher than 2.5 x 10(-4)M. The protease had a Michaelis-Menten constant of 0.16 mM and a V(max) of 0.60 mumol released product.min(-1).mg(-1) enzyme when assayed in a non-inhibiting substrate concentration. The activity on Nalpha-benzoyl- dl arginine p-nitroanilide was competitively inhibited by p-aminobenzamidine dihydrochoride. A K(i) value of 0.04 mM was obtained.

  6. Novel hydrophobic interaction chromatography matrix for specific isolation and simple elution of immunoglobulins (A, G, and M) from porcine serum.

    PubMed

    Ramos-Clamont, Gabriela; del Carmen Candia-Plata, Maria; Zamudio, Roberto Guzman; Vazquez-Moreno, Luz

    2006-07-28

    A new, highly acetylated agarose matrix (HA-Sepharose) was synthesized and used as a hydrophobic interaction chromatography (HIC) medium to specifically isolate immunoglobulins (Igs) from porcine serum. Recovery of Igs was in a single step and under mild conditions. HA-Sepharose adsorption was studied in terms of salt, gel acetylation time, flow rate, and protein concentration on the loading buffer. At 0.5 M Na2SO4, control with unmodified Sepharose retained a small fraction (0.70 mg/mL of matrix) of serum albumin. On the contrary HA-Sepharose retained primary Igs (IgA, IgG, and 53% of IgM) as revealed by sodium dodecyl sulphate 10% polyacrylamide gel electrophoresis (SDS-PAGE), quantitative radial immunodiffusion and immunodetection. At a flow rate of 1 mL/min, the HA-Sepharose column capacity (3.9 mg/mL of matrix) was similar to the reported capacity for the commercial thiophilic T-gel. However, HA-Sepharose showed higher recovery of IgA and IgM than the T-gel in the same salt conditions, clearly an advantage in terms of immunoglobulin recovery strategies. Acetylation changed the matrix adsorption from albumin to immunoglobulins; thus, the highly acetylated gel rendered recoveries of Igs from unprocessed porcine serum practically free of albumin.

  7. Isolation and identification of two novel SDS-resistant secreted chitinases from Aeromonas schubertii

    PubMed Central

    Liu, Chao-Lin; Shen, Chia-Rui; Hsu, Fong-Fu; Chen, Jeen-Kuan; Wu, Pei-Tzu; Guo, Shang-Hsin; Lee, Wen-Chien; Yu, Feng-Wei; Mackey, Zachary B.; Turk, John; Gross, Michael L.

    2008-01-01

    Two SDS-resistant endochitinases, designated as ASCHI53 and ASCHI61, were isolated from Aeromonas schubertii in a soil sample from southern Taiwan. MALDI-TOF mass measurement indicates the molecular weights of 53,527 for ASCHI53 and 61,202 for ASCHI61. N-terminal and internal amino acid sequences were obtained, and BLAST analysis of the sequences and MS/MS peptide sequencing showed that they were novel proteins. Degradation of chitin by these two endochitinases gave rise to hexameric chitin oligosaccharide, a compound known to have several potent biomedical functions. ASCHI53 and ASCHI61 retained, respectively, 65% and 75%, of their chitinase activity in the presence of 5% SDS and 100% of their activity in the presence of 10% β-mercaptoethanol. These results demonstrate that they are SDS-resistant endochitinases and probably have a rigid structure. PMID:19197977

  8. Evaluation of protein adsorption and preferred binding regions in multimodal chromatography using NMR

    PubMed Central

    Chung, Wai Keen; Freed, Alexander S.; Holstein, Melissa A.; McCallum, Scott A.; Cramer, Steven M.

    2010-01-01

    NMR titration experiments with labeled human ubiquitin were employed in concert with chromatographic data obtained with a library of ubiquitin mutants to study the nature of protein adsorption in multimodal (MM) chromatography. The elution order of the mutants on the MM resin was significantly different from that obtained by ion-exchange chromatography. Further, the chromatographic results with the protein library indicated that mutations in a defined region induced greater changes in protein affinity to the solid support. Chemical shift mapping and determination of dissociation constants from NMR titration experiments with the MM ligand and isotopically enriched ubiquitin were used to determine and rank the relative binding affinities of interaction sites on the protein surface. The results with NMR confirmed that the protein possessed a distinct preferred binding region for the MM ligand in agreement with the chromatographic results. Finally, coarse-grained ligand docking simulations were employed to study the modes of interaction between the MM ligand and ubiquitin. The use of NMR titration experiments in concert with chromatographic data obtained with protein libraries represents a previously undescribed approach for elucidating the structural basis of protein binding affinity in MM chromatographic systems. PMID:20837551

  9. High oxygen affinity hemoglobins.

    PubMed

    Mangin, O

    2017-02-01

    High oxygen affinity hemoglobins are responsible for rare and heterogeneous autosomic dominant genetic diseases. They cause pure erythrocytosis, sometimes accountable for hyperviscosity and thrombosis, or hemolysis. Differential diagnoses must be first ruled out. The diagnosis is based on the identification of a decreased P50, and their possible characterization by cation exchange-high performance liquid chromatography and capillary electrophoresis. Finally, genetic studies of the responsible globin chain gene will confirm the mutation. The prognosis mainly relies on the P50 decrease rate and on the hemoglobin cooperativity impairment. Disease management should be personalized, and it should primarily depend on smoking cessation and physical activity. Phlebotomy and platelet aggregation inhibitors' prescriptions can be discussed. There is no contraindication to flights, high-altitude conditions, or pregnancy. Nevertheless, blood donation must be prohibited. Copyright © 2016 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  10. Isolation and Purification of Water Soluble Proteins from Ginger Root (Zingiber officinale) by Two Dimensional Liquid Chromatography

    PubMed Central

    Sandovall, A.O.; Andrews, K.; Wahab, A.; Choudhary, M.I.; Ahmed, A.

    2014-01-01

    The RI-INBRE Centralized Core Facility was established in 2003 and participates annually in Undergraduate Summer Research Program. It provides students hands on research experience in key technologies in biomedical sciences. We present here the isolation and purification of water soluble proteins from ginger, a rhizome of the plant, Zingiber officinale. It is an important ingredient of species used in traditional South Asian cuisines. In Indian, Pakistani and Chinese folk medicine, ginger is used for gastro-intestinal disorders, nausea, vomiting, inflammatory diseases, muscle and joint pain. Limited studies have been reported on the bioactive proteins from ginger extract. The water soluble proteins were extracted from ginger root and successfully purified to homogeneity by using two-dimensional liquid chromatography (FPLC/RP-HPLC) approach. The ginger root was washed with distilled water; skin removed and then emulsified using an electric blender. Sample was stirred for four days at 4°C with and without protease inhibitor. Purification of a 42kDa protein was achieved by employing gel filtration, ion-exchange and reversed phase HPLC. The homogeneity of the protein was confirmed by SDS-PAGE gel electrophoresis and MALDI-TOF mass spectrometry. Future work will be conducted on the protein characterization using mass spectrometry and Edman protein sequencing. Supported by grant 5P20GM103430 from the National Institute of General Medical Sciences, NIH, USA.

  11. Micelle to solvent stacking of organic cations in micellar electrokinetic chromatography with sodium dodecyl sulfate.

    PubMed

    Quirino, Joselito P; Aranas, Agnes T

    2011-10-14

    The on-line sample concentration technique, micelle to solvent stacking (MSS), was studied for small organic cations (quaternary ammonium herbicides, β-blocker drugs, and tricyclic antidepressant drugs) in reversed migration micellar electrokinetic chromatography. Electrokinetic chromatography was carried out in fused silica capillaries with a background solution of sodium dodecyl sulfate (SDS) in a low pH phosphate buffer. MSS was performed using anionic SDS micelles in the sample solution for analyte transport and methanol or acetonitrile as organic solvent in the background solution for analyte effective electrophoretic mobility reversal. The solvent also allowed for the separation of the analyte test mixtures. A model for focusing and separation was developed and the mobility reversal that involved micelle collapse was experimentally verified. The effect of analyte retention factor was observed by changing the % organic solvent in the background solution or the concentration of SDS in the sample matrix. With an injection length of 31.9 cm (77% of effective capillary length) for the 7 test drugs, the LODs (S/N=3) of 5-14 ng/mL were 101-346-fold better when compared to typical injection. The linearity (R(2), range=0.025-0.8 μg/mL), intraday and interday repeatability (%RSD, n=10) were ≥0.988, <6.0% and <8.5%, respectively. In addition, analysis of spiked urine samples after 10-fold dilution with the sample matrix yielded LODs=0.02-0.10 μg/mL. These LODs are comparable to published electrophoretic methods that required off-line sample concentration. However, the practicality of the technique for more complex samples will rely on dedicated sample preparation schemes. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Inhibition of the hemorrhagic and proteolytic activities of Lansberg's hognose pit viper (Porthidium lansbergii hutmanni) venom by opossum (Didelphis marsupialis) serum: isolation of Didelphis marsupialis 0.15Dm fraction on DEAE-cellulose chromatography.

    PubMed

    Pineda, María E; Girón, María E; Estrella, Amalid; Sánchez, Elda E; Aguilar, Irma; Fernandez, Irma; Vargas, Alba M; Scannone, Héctor; Rodríguez-Acosta, Alexis

    2008-01-01

    Earlier studies have revealed the ability of sera from several mammals to neutralize the toxic effects of snake venom. The Venezuelan opossum (Didelphis marsupialis) is one that has been found to inhibit hemorrhagic and proteolytic activities of venoms from many species of snakes. In this article it is shown that the opossum sera and its 0.15DM fraction were able to completely neutralize both hemorrhagic and hydrolysis (proteolysis) of casein effects induced by venom of the Lansberg's hognose pit viper (Porthidium lansbergii hutmanni). We have used DEAE-cellulose ion exchange chromatography to collect protein fractions from D. marsupialis sera which were able to defend mice from the lethal effects of P.l. hutmanni venom. The fractions separated were homogeneous by conventional electrophoresis using SDS-PAGE. The protein bands obtained contained molecular weights of approximately 6 to 220 kDa. These results revealed the presence of proteases inhibitors in the opossum sera fractions and the inhibition of venom activity by opossum sera suggesting a reciprocal adaptation at the molecular level.

  13. FPLC and liquid-chromatography mass spectrometry identify candidate necrosis-inducing proteins from culture filtrates of the fungal wheat pathogen Zymoseptoria tritici.

    PubMed

    Ben M'Barek, Sarrah; Cordewener, Jan H G; Tabib Ghaffary, Seyed M; van der Lee, Theo A J; Liu, Zhaohui; Mirzadi Gohari, Amir; Mehrabi, Rahim; America, Antoine H P; Robert, Olivier; Friesen, Timothy L; Hamza, Sonia; Stergiopoulos, Ioannis; de Wit, Pierre J G M; Kema, Gerrit H J

    2015-06-01

    Culture filtrates (CFs) of the fungal wheat pathogen Zymoseptoria tritici were assayed for necrosis-inducing activity after infiltration in leaves of various wheat cultivars. Active fractions were partially purified and characterized. The necrosis-inducing factors in CFs are proteinaceous, heat stable and their necrosis-inducing activity is temperature and light dependent. The in planta activity of CFs was tested by a time series of proteinase K (PK) co-infiltrations, which was unable to affect activity 30min after CF infiltrations. This suggests that the necrosis inducing proteins (NIPs) are either absent from the apoplast and likely actively transported into mesophyll cells or protected from the protease by association with a receptor. Alternatively, plant cell death signaling pathways might be fully engaged during the first 30min and cannot be reversed even after PK treatment. Further fractionation of the CFs with the highest necrosis-inducing activity involved fast performance liquid chromatography, SDS-PAGE and mass spectrometry. This revealed that most of the proteins present in the fractions have not been described before. The two most prominent ZtNIP encoding candidates were heterologously expressed in Pichia pastoris and subsequent infiltration assays showed their differential activity in a range of wheat cultivars. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Efficient, ultra-high-affinity chromatography in a one-step purification of complex proteins

    PubMed Central

    Vassylyeva, Marina N.; Klyuyev, Sergiy; Vassylyev, Alexey D.; Wesson, Hunter; Zhang, Zhuo; Renfrow, Matthew B.; Wang, Hengbin; Higgins, N. Patrick; Chow, Louise T.; Vassylyev, Dmitry G.

    2017-01-01

    Protein purification is an essential primary step in numerous biological studies. It is particularly significant for the rapidly emerging high-throughput fields, such as proteomics, interactomics, and drug discovery. Moreover, purifications for structural and industrial applications should meet the requirement of high yield, high purity, and high activity (HHH). It is, therefore, highly desirable to have an efficient purification system with a potential to meet the HHH benchmark in a single step. Here, we report a chromatographic technology based on the ultra-high-affinity (Kd ∼ 10−14–10−17 M) complex between the Colicin E7 DNase (CE7) and its inhibitor, Immunity protein 7 (Im7). For this application, we mutated CE7 to create a CL7 tag, which retained the full binding affinity to Im7 but was inactivated as a DNase. To achieve high capacity, we developed a protocol for a large-scale production and highly specific immobilization of Im7 to a solid support. We demonstrated its utility with one-step HHH purification of a wide range of traditionally challenging biological molecules, including eukaryotic, membrane, toxic, and multisubunit DNA/RNA-binding proteins. The system is simple, reusable, and also applicable to pulldown and kinetic activity/binding assays. PMID:28607052

  15. Isolation and Characterization of Two Proteins from Moraxella catarrhalis That Bear a Common Epitope

    PubMed Central

    McMichael, John C.; Fiske, Michael J.; Fredenburg, Ross A.; Chakravarti, Deb N.; VanDerMeid, Karl R.; Barniak, Vicki; Caplan, Jeffrey; Bortell, Eric; Baker, Steven; Arumugham, Rasappa; Chen, Dexiang

    1998-01-01

    The UspA1 and UspA2 proteins of Moraxella catarrhalis are potential vaccine candidates for preventing disease caused by this organism. We have characterized both proteins and evaluated their vaccine potential using both in vitro and in vivo assays. Both proteins were purified from the O35E isolate by Triton X-100 extraction, followed by ion-exchange and hydroxyapatite chromatography. Analysis of the sequences of internal peptides, prepared by enzymatic and chemical cleavage of the proteins, revealed that UspA1 and UspA2 exhibited distinct structural differences but shared a common sequence including an epitope recognized by the monoclonal antibody 17C7. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), purified UspA1 exhibited a molecular weight of approximately 350,000 when unheated and a molecular weight of 100,000 after being heated for 10 min at 100°C. In contrast, purified UspA2 exhibited an apparent molecular weight of 240,000 by SDS-PAGE that did not change with the length of time of heating. Their sizes as determined by gel filtration were 1,150,000 and 830,000 for UspA1 and UspA2, respectively. Preliminary results indicate the proteins have separate functions in bacterial pathogenesis. Purified UspA1 was found to bind HEp-2 cells, and sera against UspA1, but not against UspA2, blocked binding of the O35E isolate to the HEp-2 cells. UspA1 also bound fibronectin and appears to have a role in bacterial attachment. Purified UspA2, however, did not bind fibronectin but had an affinity for vitronectin. Both proteins elicited bactericidal antibodies in mice to homologous and heterologous disease isolates. Finally, mice immunized with each of the proteins, followed by pulmonary challenge with either the homologous or a heterologous isolate, cleared the bacteria more rapidly than mock-immunized mice. These results suggest that UspA1 and UspA2 serve different virulence functions and that both are promising vaccine candidates. PMID:9712790

  16. [Expression and purification of a novel thermophilic bacterial single-stranded DNA-binding protein and enhancement the synthesis of DNA and cDNA].

    PubMed

    Jia, Xiao-Wei; Zhang, Guo-Hui; Shi, Hai-Yan

    2012-12-01

    Express a novel species of single-stranded DNA-binding protein (SSB) derived from Thermococcus kodakarensis KOD1, abbreviated kod-ssb. And evaluate the effect of kod-ssb on PCR-based DNA amplification and reverse transcription. We express kod-ssb with the Transrtta (DE3), and kod-ssb was purified by affinity chromatography on a Ni2+ Sepharose column, detected by SDS-PAGE. To evaluate the effect of kod-ssb on PCR-based DNA amplification, the human beta globin gene was used as template to amplify a 5-kb, 9-kb and 13-kb. And to detect the effect of kod-ssb on reverse transcription, we used RNA from flu cell culture supernatant extraction as templates to implement qRT-PCR reaction. The plasmid pET11a-kod was transformed into Transetta (DE3) and the recombinant strain Transetta (pET11 a-kod) was obtained. The kod-ssb was highly expressed when the recombinant strain Transetta(pET11a-kod) was induced by IPTG. The specific protein was detected by SDS-PAGE. To confirm that kod-ssb can enhance target DNA synthesis and reduce PCR by-products, 5-, 9-, and 13-kb human beta globin gene fragments were used as templates for PCR. When PCR reactions did not include SSB proteins, the specific PCR product was contaminated with non-specific products. When kod -ssb was added, kod-ssb significantly enhanced amplification of the 5-, 9-and 13-kb target product and minimised the non-specific PCR products. To confirm that kod-ssb can enhance target cDNA synthesis, RNA from flu cell culture supernatant extraction was used as templates for qRT-PCR reaction. The results was that when kod-ssb was added, kod-ssb significantly enhanced the synthesis of cDNA, average Ct value is 19.42, and the average Ct value without kod-ssb is 22.15. kod-ssb may in future be used to enhance DNA and cDNA amplification.

  17. Nerve growth factor-inducible large external (NILE) glycoprotein: studies of a central and peripheral neuronal marker.

    PubMed

    Salton, S R; Richter-Landsberg, C; Greene, L A; Shelanski, M L

    1983-03-01

    The PC12 clone of pheochromocytoma cells undergoes neuronal differentiation in the presence of nerve growth factor (NGF). Concomitant with this is a significant induction in the incorporation of radiolabeled fucose or glucosamine into a 230,000-dalton cell surface glycoprotein named the NGF-Inducible Large External, or NILE, glycoprotein (GP) (McGuire, J. C., L. A. Greene, and A. V. Furano (1978) Cell 15: 357-365). In the current studies NILE GP was purified from PC12 cells using wheat germ agglutinin-agarose affinity chromatography and SDS-polyacrylamide gel electrophoresis (PAGE). Polyclonal antisera were raised against purified NILE GP and were found to selectively immunoprecipitate a single 230,000-dalton protein from detergent extracts of PC12 cells metabolically labeled with either [3H]fucose, [3H]glucosamine, or [35S]methionine. These antisera stained the surfaces of PC12 cells by indirect immunofluorescence and were cytotoxic to PC12 cells in the presence of complement. Limited treatment of PC12 cells with either trypsin or pronase produced a fucosylated 90,000-dalton immunoreactive fragment of NILE GP which remained in the membrane. Using quantitative immunoelectrophoresis, the action of NGF on NILE GP was represent an increase in the amount of protein, rather than a selective increase in carbohydrate incorporation. Immunofluorescent staining of primary cell cultures and tissue whole mounts revealed that immunologically cross-reactive NILE GP appears to be expressed on the cell surfaces (somas and neurites) of most if not all peripheral and central neurons examined. Immunoprecipitation of radiolabeled cultures showed that the cross-reactive material had an apparent molecular weight by SDS-PAGE of 225,000 to 230,000 in the peripheral nervous system and 200,000 to 210,000 in the central nervous system. NILE-cross-reactive material was also found to a small extent on Schwann cell surfaces, but not at all on a variety of other cell types. These results suggest

  18. Characterization of a uronate dehydrogenase from Thermobispora bispora for production of glucaric acid from hemicellulose substrate.

    PubMed

    Li, Yaxian; Xue, Yemin; Cao, Zhigang; Zhou, Tao; Alnadari, Fawze

    2018-06-23

    A thermostable uronate dehydrogenase Tb-UDH from Thermobispora bispora was over-expressed in Escherichia coli using the T7 polymerase expression system. The Tb-UDH was purified by metal affinity chromatography, and gave a single band on SDS-PAGE. The maximum activity on glucuronic acid was found at 60 °C and pH 7.0. The purified enzyme retained over 58% of its activity after holding a pH ranging from 7.0 to 7.5 for 1 h at 60 °C. The K m and V max values of the purified Tb-UDH for Glucuronic acid (GluUA) were 0.165 mM and 117.7 U mg -1 , respectively, those for galacturonic acid (GalUA) were 0.115 mM and 104.2 U mg -1 , respectively, and those for NAD + were 0.120 mM and 133.3 U mg -1 , respectively; the turnover number (k cat ) with GluUA as a substrate was higher than that with GalUA; however, the Michaelis constant (K m ) for GalUA was lower than that for GluUA. After 60 min of incubation at 50 °C, Tb-UDH exhibited a conversion ratio for glucuronic acid to the glucaric acid of 84% on chemical reagent and 81.3% on hydrolysates from breech xylans formed by xylanase and α-glucuronidase. This work shows that biocatalytic routes have great potential for the conversion of hemicellulose substrate into value-added products derived from renewable biomass. TOC GRAPHIC: (A) The structure of the xylan is described and the site of action of the xylan degrading enzyme is indicated. (B) The effect of substrate concentration on recombinant Tb-UDH activity when galacturonic acid was used as substrate. (C) SDS-PAGE analysis of E. coli BL21 (DE3) harboring pET-20b(+) and pET-20b-Tb-UDH. (D) Oxidative conversion of glucuronic acid from a beechwood xylan to glucaric acid.

  19. Induced binding of proteins by ammonium sulfate in affinity and ion-exchange column chromatography.

    PubMed

    Arakawa, Tsutomu; Tsumoto, Kouhei; Ejima, Daisuke; Kita, Yoshiko; Yonezawa, Yasushi; Tokunaga, Masao

    2007-04-10

    In general, proteins bind to affinity or ion-exchange columns at low salt concentrations, and the bound proteins are eluted by raising the salt concentration, changing the solvent pH, or adding competing ligands. Blue-Sepharose is often used to remove bovine serum albumin (BSA) from samples, but when we applied BSA to Blue-Sepharose in 20 mM phosphate, pH 7.0, 50%-60% of the protein flowed through the column; however, complete binding of BSA was achieved by the addition of 2 M ammonium sulfate (AS) to the column equilibration buffer and the sample. The bound protein was eluted by decreasing the AS concentration or by adding 1 M NaCl or arginine. AS at high concentrations resulted in binding of BSA even to an ion-exchange column, Q-Sepharose, at pH 7.0. Thus, although moderate salt concentrations elute proteins from Blue-Sepharose or ion-exchange columns, proteins can be bound to these columns under extreme salting-out conditions. Similar enhanced binding of proteins by AS was observed with an ATP-affinity column.

  20. Microfluidic device having an immobilized pH gradient and PAGE gels for protein separation and analysis

    DOEpatents

    Sommer, Gregory J.; Hatch, Anson V.; Singh, Anup K.; Wang, Ying-Chih

    2012-12-11

    Disclosed is a novel microfluidic device enabling on-chip implementation of a two-dimensional separation methodology. Previously disclosed microscale immobilized pH gradients (IPG) are combined with perpendicular polyacrylamide gel electrophoresis (PAGE) microchannels to achieve orthogonal separations of biological samples. Device modifications enable inclusion of sodium dodecyl sulfate (SDS) in the second dimension. The device can be fabricated to use either continuous IPG gels, or the microscale isoelectric fractionation membranes we have also previously disclosed, for the first dimension. The invention represents the first all-gel two-dimensional separation microdevice, with significantly higher resolution power over existing devices.

  1. Microfluidic device having an immobilized pH gradient and page gels for protein separation and analysis

    DOEpatents

    Sommer, Gregory J; Hatch, Anson V; Singh, Anup K; Wang, Ying-Chih

    2014-05-20

    Disclosed is a novel microfluidic device enabling on-chip implementation of a two-dimensional separation methodology. Previously disclosed microscale immobilized pH gradients (IPG) are combined with perpendicular polyacrylamide gel electrophoresis (PAGE) microchannels to achieve orthogonal separations of biological samples. Device modifications enable inclusion of sodium dodecyl sulfate (SDS) in the second dimension. The device can be fabricated to use either continuous IPG gels, or the microscale isoelectric fractionation membranes we have also previously disclosed, for the first dimension. The invention represents the first all-gel two-dimensional separation microdevice, with significantly higher resolution power over existing devices.

  2. Purification method for recombinant proteins based on a fusion between the target protein and the C-terminus of calmodulin

    NASA Technical Reports Server (NTRS)

    Schauer-Vukasinovic, Vesna; Deo, Sapna K.; Daunert, Sylvia

    2002-01-01

    Calmodulin (CaM) was used as an affinity tail to facilitate the purification of the green fluorescent protein (GFP), which was used as a model target protein. The protein GFP was fused to the C-terminus of CaM, and a factor Xa cleavage site was introduced between the two proteins. A CaM-GFP fusion protein was expressed in E. coli and purified on a phenothiazine-derivatized silica column. CaM binds to the phenothiazine on the column in a Ca(2+)-dependent fashion and it was, therefore, used as an affinity tail for the purification of GFP. The fusion protein bound to the affinity column was then subjected to a proteolytic digestion with factor Xa. Pure GFP was eluted with a Ca(2+)-containing buffer, while CaM was eluted later with a buffer containing the Ca(2+)-chelating agent EGTA. The purity of the isolated GFP was verified by SDS-PAGE, and the fluorescence properties of the purified GFP were characterized.

  3. Biotinylated probes of artemisinin with labeling affinity toward Trypanosoma brucei brucei target proteins.

    PubMed

    Konziase, Benetode

    2015-08-01

    We studied the target proteins of artemisinin in Trypanosoma brucei brucei using the affinity-labeling method. We designed and synthesized four biotinylated probes of artemisinin for use as molecular tools. Their in vitro trypanocidal activities (data not shown) proved that they mimicked the biological action of artemisinin. We assessed the chemical stability for all of the probes in the parasite culture medium and lysate using reversed-phase high-performance liquid chromatography (HPLC). After 3-h incubations, the probes remained undecomposed in a range of 40 to 65% in the parasite culture medium, whereas approximately 80% of the probes remained stable in the parasite lysate. Using liquid chromatography mass spectrometry (LC-MS), we demonstrated that, with respect to all of the probes, uptakes into the parasite ranging from 81 to 96% occurred after 30-min incubations. In a competitive binding assay between artemisinin and the four biotinylated probes, we searched for the trypanosomal target protein of artemisinin. Consequently, we observed that only the diazirine-free probe 5 could provide the desired result with high affinity-labeling efficiency. Using the horseradish peroxidase-tagged streptavidin-biotin method, we showed that artemisinin could specifically bind to candidate target proteins of approximately 60, 40, and 39 kDa. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Evaluation of affinity and pseudo-affinity adsorption processes for penicillin acylase purification.

    PubMed

    Fonseca, L P; Cabral, J M

    1996-01-01

    Affinity ligand (6-Aminopenicillanic acid, Amoxycillin, Ampicillin, Benzylpenicillin and 4-Phenylbutylanzine) of penicillin acylase (EC 3.5.1.11) were attached to hydrophilic gels like Sepharose 4B-CNBr and Minileak 'medium'. Ampicillin and 4-Phenylbutylamine were the affinity ligands that presented the higher concentrations attached to both gels. Penicillin acylase adsorption on these affinity gels was mainly dependent on the activated group of the gel, the affinity ligand attached and the experimental conditions of enzyme adsorption. Under affinity conditions only the ligands Amoxycillin, Ampicillin and 4-Phenylbutylamine, immobilized on Minileak, adsorbed the enzyme from osmotic shock extracts at different pH values. These affinity ligand systems were characterized by low adsorption capacities of penicillin acylase activity (1.2-2.1 IU mL-1 gel) and specific activity (1.5-2.9 IU mg-1 prot). Under pseudo-affinity conditions all the ligands attached both activated to gels (Sepharose 4B-CNBr and Minileak) adsorbed the enzyme. The affinity gels were characterized by higher values of adsorption capacity (3.7 and 55.6 IU mL-1 gel) and adsorbed specific activity (2.0 and 6.1 IU mg-1 prot) than those observed under affinity conditions. The space arm of Minileak gel, shown to be fundamental to enzyme adsorption under affinity conditions, preferentially adsorbed proteins in relation to the enzyme under pseudo-affinity conditions. However, this effect was partially minimized when the gel was derivatized by the affinity ligands at concentrations higher than 6 mumol mL-1 gel. Ampicillin was the affinity ligand that presented the best results for specific adsorption of penicillin acylase under affinity and pseudo-affinity adsorption processes. The Sepharose 4B-CNBr derivatized gel also presented a good adsorption capacity of enzyme activity (26.8 IU mL-1 gel) under pseudo-affinity adsorption processes.

  5. Purification of an IgA Monoclonal Antibody Specific for the Acr Protein of Mycobacterium tuberculosis by Immunoaffinity Chromatography

    PubMed Central

    REYES, Fátima; OTERO, Oscar; CAMACHO, Frank; SARMIENTO, María Elena; ACOSTA, Armando

    2013-01-01

    Background: A monoclonal antibody (mAb) of the IgA isotype, designated TBA61, is specific for the Acr protein of Mycobacterium tuberculosis (MTB). TBA61 has been used in studies exploring protection against tuberculosis (TB), and its efficacy has been proven using different challenge models. To purify the mouse IgA isotype, a combination of methods, such as globulin precipitation, ion exchange, and gel filtration, is usually required to achieve a satisfactory degree of purity. Methods: To minimise the number of chromatographic steps, we proposed to employ immunoaffinity chromatography using the Acr protein of MTB as a specific ligand for this mAb. For this purpose, the HspX gene was cloned and expressed in Escherichia coli, and recombinant Acr (rAcr) was coupled to a cyanogen bromide-activated Sepharose 4B matrix, which was used to purify TBA61 mAb from ascites produced in mice in a single step. Results: The recovery from the purification procedure was 1.46 mg per mL of ascites. Analysis by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blot showed a high purity. The purified mAb retained its reactivity against the Acr protein based on enzyme-linked immunosorbent assay (ELISA) and western blot. Conclusion: The purification method used is rapid, simple, and specific and can be easily scaled up. PMID:24643305

  6. Semi-Automated Hydrophobic Interaction Chromatography Column Scouting Used in the Two-Step Purification of Recombinant Green Fluorescent Protein

    PubMed Central

    Murphy, Patrick J. M.

    2014-01-01

    Background Hydrophobic interaction chromatography (HIC) most commonly requires experimental determination (i.e., scouting) in order to select an optimal chromatographic medium for purifying a given target protein. Neither a two-step purification of untagged green fluorescent protein (GFP) from crude bacterial lysate using sequential HIC and size exclusion chromatography (SEC), nor HIC column scouting elution profiles of GFP, have been previously reported. Methods and Results Bacterial lysate expressing recombinant GFP was sequentially adsorbed to commercially available HIC columns containing butyl, octyl, and phenyl-based HIC ligands coupled to matrices of varying bead size. The lysate was fractionated using a linear ammonium phosphate salt gradient at constant pH. Collected HIC eluate fractions containing retained GFP were then pooled and further purified using high-resolution preparative SEC. Significant differences in presumptive GFP elution profiles were observed using in-line absorption spectrophotometry (A395) and post-run fluorimetry. SDS-PAGE and western blot demonstrated that fluorometric detection was the more accurate indicator of GFP elution in both HIC and SEC purification steps. Comparison of composite HIC column scouting data indicated that a phenyl ligand coupled to a 34 µm matrix produced the highest degree of target protein capture and separation. Conclusions Conducting two-step protein purification using the preferred HIC medium followed by SEC resulted in a final, concentrated product with >98% protein purity. In-line absorbance spectrophotometry was not as precise of an indicator of GFP elution as post-run fluorimetry. These findings demonstrate the importance of utilizing a combination of detection methods when evaluating purification strategies. GFP is a well-characterized model protein, used heavily in educational settings and by researchers with limited protein purification experience, and the data and strategies presented here may aid in

  7. Semi-automated hydrophobic interaction chromatography column scouting used in the two-step purification of recombinant green fluorescent protein.

    PubMed

    Stone, Orrin J; Biette, Kelly M; Murphy, Patrick J M

    2014-01-01

    Hydrophobic interaction chromatography (HIC) most commonly requires experimental determination (i.e., scouting) in order to select an optimal chromatographic medium for purifying a given target protein. Neither a two-step purification of untagged green fluorescent protein (GFP) from crude bacterial lysate using sequential HIC and size exclusion chromatography (SEC), nor HIC column scouting elution profiles of GFP, have been previously reported. Bacterial lysate expressing recombinant GFP was sequentially adsorbed to commercially available HIC columns containing butyl, octyl, and phenyl-based HIC ligands coupled to matrices of varying bead size. The lysate was fractionated using a linear ammonium phosphate salt gradient at constant pH. Collected HIC eluate fractions containing retained GFP were then pooled and further purified using high-resolution preparative SEC. Significant differences in presumptive GFP elution profiles were observed using in-line absorption spectrophotometry (A395) and post-run fluorimetry. SDS-PAGE and western blot demonstrated that fluorometric detection was the more accurate indicator of GFP elution in both HIC and SEC purification steps. Comparison of composite HIC column scouting data indicated that a phenyl ligand coupled to a 34 µm matrix produced the highest degree of target protein capture and separation. Conducting two-step protein purification using the preferred HIC medium followed by SEC resulted in a final, concentrated product with >98% protein purity. In-line absorbance spectrophotometry was not as precise of an indicator of GFP elution as post-run fluorimetry. These findings demonstrate the importance of utilizing a combination of detection methods when evaluating purification strategies. GFP is a well-characterized model protein, used heavily in educational settings and by researchers with limited protein purification experience, and the data and strategies presented here may aid in development other of HIC-compatible protein

  8. Two forms of alpha-amylase in mantle tissue of Mytilus galloprovincialis: purification and molecular properties of form II.

    PubMed

    Lombraña, M; Suárez, P; San Juan, F

    2005-09-01

    alpha-Amylase activity has been shown for the first time in a non-digestive tissue from Mytilus galloprovincialis. alpha-amylase from mussel mantle tissue has been purified by affinity chromatography on insoluble starch, followed by gel-filtration chromatography on Superdex-200. The chromatographic and electrophoretic behaviour of M. galloprovincialis alpha-amylase and stability characteristics suggest two forms of this enzyme: one form forming stable aggregates (form I) and a monomeric form (form II) that is more abundant, active and unstable. Both forms show an inverse quantitative variation. Purified form II was highly unstable and the molecular mass was estimated to be 66 kDa by sodium dodecyl sulphate (SDS)-gel electrophoresis. Maximum activity was noted at pH 6.5 and 35 degrees C.

  9. WMO Sand and Dust Storm Warning Advisory and Assessment System (SDS-WAS): Regional Cooperation Initiative for Americas

    NASA Astrophysics Data System (ADS)

    Nickovic, S.; Sprigg, W. A.

    2011-12-01

    For countries in and downwind of arid regions, airborne sand and dust present serious risks to the environment, property and human health. The World Meteorological Organization (WMO) has taken the lead on an international scale to develop and implement SDS-WAS - a system of dust-related research, observations, numerical dust prediction and services. Partnership in SDS-WAS is based on a federated 'open-club' principle. SDS-WAS realizes its goals by networking research institutions, operational centers and users organized through regional nodes assisted by associated regional centers. Growing interest and the needs of communities in the Americas call for establishing a Pan-American SDS-WAS node to serve as an information clearinghouse and to facilitate collaboration that will lead to greater economy of effort and speedier transition of research to applications.

  10. Erythrocyte membrane protein analysis by sodium dodecyl sulphate-capillary gel electrophoresis in the diagnosis of hereditary spherocytosis.

    PubMed

    Debaugnies, France; Cotton, Frédéric; Boutique, Charles; Gulbis, Béatrice

    2011-03-01

    Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) is currently the reference method for detecting protein deficiencies related to hereditary spherocytosis. The aim of the study was to evaluate an automated capillary gel electrophoresis system, the Experion instrument from BioRad, for its ability to separate and quantify the erythrocyte membrane proteins. The major erythrocyte membrane proteins (actin, protein 4.2, protein 4.1, band 3, ankyrin, α- and β-spectrin) were extracted and purified from membrane ghosts by centrifugation, immunoprecipitation and electroelution. Analyses were performed using SDS-PAGE and sodium dodecyl sulphate capillary gel electrophoresis (SDS-CGE) to establish a separation profile of the total ghosts. Then, the samples from patients received for investigations of erythrocyte membrane defects were analysed. Five of the seven expected erythrocyte membrane proteins were finally separated and identified. In the 20 studied cases, taking into account the screening test results and the clinical and family histories, the SDS-CGE method allowed us to achieve the same conclusion as with SDS-PAGE, except for the patient with elliptocytosis. The new SDS-CGE method presents interesting features that could make this instrument a powerful diagnostic tool for detection of erythrocyte membrane protein abnormalities, and can be proposed as an automated alternative method to the labour intensive SDS-PAGE analysis.

  11. Determination of drug lipophilicity by phosphatidylcholine-modified microemulsion high-performance liquid chromatography.

    PubMed

    Xuan, Xueyi; Xu, Liyuan; Li, Liangxing; Gao, Chongkai; Li, Ning

    2015-07-25

    A new biomembrane-mimetic liquid chromatographic method using a C8 stationary phase and phosphatidylcholine-modified (PC-modified) microemulsion mobile phase was used to estimate unionized and ionized drugs lipophilicity expressed as an n-octanol/water partition coefficient (logP and logD). The introduction of PC into sodium dodecyl sulfate (SDS) microemulsion yielded a good correlation between logk and logD (R(2)=0.8). The optimal composition of the PC-modified microemulsion liquid chromatography (PC-modified MELC) mobile phase was 0.2% PC-3.0% SDS-6.0% n-butanol-0.8% ethyl acetate-90.0% water (pH 7.0) for neutral and ionized molecules. The interactions between the analytes and system described by this chromatographic method is more similar to biological membrane than the n-octanol/water partition system. The result in this paper suggests that PC-modified MELC can serve as a possible alternative to the shake-flask method for high-throughput unionized and ionized drugs lipophilicity determination and simulation of biological processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Development and characterization of an allergoid of cat dander for immunotherapy.

    PubMed

    Sola, J P; Pedreño, Y; Cerezo, A; Peñalver-Mellado, M

    2018-01-13

    Allergy to cats is a frequent cause of sensitization to indoor allergens and currently there are few alternatives to specific immunotherapy with cat native extracts. The objective is to develop and characterize a new allergoid to increase the tools available for use in clinical practice. The allergoid cat dander extract (ACD) was developed from a native cat dander extract (NCD) by modification with glutaraldehyde, and the optimal process control was determined by SDS-PAGE, DOT BLOT and determination of free amine groups. The ACD was characterized in protein profile by SDS-PAGE, size exclusion chromatography (SEC) and peptide footprint. The allergenic profile of ACD was determined by immunoblot, IgE CAP inhibition and IgG competition ELISA. The major allergen content in NCD was obtained by the ELISA sandwich protocol and was extrapolated to ACD. The control process determined the optimal development of the allergoid. The ACD obtained contains 182.28μg/mg of protein and 11.90μg/mg of Fel d 1. SDS-PAGE and SEC confirmed the presence of high molecular weight proteins in ACD, and the peptide footprint showed the presence of Fel d 1 and Fel d 7. The high degree of polymerization was evidenced with the determination of the reduction of lysine residues in the allergoid, resulting 91.96%. The ACD showed a significant loss of allergenicity respect to NCD, while the IgG-binding capacity was maintained. The ACD obtained presents a good safety profile, so would be a good alternative for treatment of cat allergy. Copyright © 2017 SEICAP. Published by Elsevier España, S.L.U. All rights reserved.

  13. Simple and Efficient Purification of Recombinant Proteins Using the Heparin-Binding Affinity Tag.

    PubMed

    Jayanthi, Srinivas; Gundampati, Ravi Kumar; Kumar, Thallapuranam Krishnaswamy Suresh

    2017-11-01

    Heparin, a member of the glycosaminoglycan family, is known to interact with more than 400 different types of proteins. For the past few decades, significant progress has been made to understand the molecular details involved in heparin-protein interactions. Based on the structural knowledge available from the FGF1-heparin interaction studies, we have designed a novel heparin-binding peptide (HBP) affinity tag that can be used for the simple, efficient, and cost-effective purification of recombinant proteins of interest. HBP-tagged fusion proteins can be purified by heparin Sepharose affinity chromatography using a simple sodium chloride gradient to elute the bound fusion protein. In addition, owing to the high density of positive charges on the HBP tag, recombinant target proteins are preferably expressed in their soluble forms. The purification of HBP-fusion proteins can also be achieved in the presence of chemical denaturants, including urea. Additionally, polyclonal antibodies raised against the affinity tag can be used to detect HBP-fused target proteins with high sensitivity. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  14. Simple, high-yield purification of xanthine oxidase from bovine milk.

    PubMed

    Ozer, N; Müftüoglu, M; Ataman, D; Ercan, A; Ogüs, I H

    1999-05-13

    Xanthine oxidase, a commercially important enzyme with a wide area of application, was extracted from fresh milk, without added preservatives, using toluene and heat. The short purification procedure, with high yield, consisted of extraction, ammonium sulfate fractionation, and DEAE-Sepharose (fast flow) column chromatography. Xanthine oxidase was eluted as a single activity peak from the column using a buffer gradient. The purification fold, specific activity and yield for the purified xanthine oxidase were 328, 10.161 U/mg and 69%, respectively. The enzyme was concentrated by ultrafiltration, although 31% of the activity was lost during concentration, no change in specific activity was observed. Activity and protein gave coincident staining bands on native polyacrylamide gels. The intensity and the number of bands were dependent on the oxidative state(s) of the enzyme; reduction by 2-mercaptoethanol decreased the intensity of the slow-moving bands and increased the intensity of the fastest-moving band. Following sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), two major bands (molecular masses of 152 and 131 kDa) were observed, accounting for > or = 95% of xanthine oxidase. Native- and SDS-PAGE showed that the purified xanthine oxidase becomes a heterodimer due to endogenous proteases.

  15. Studies on effect of additives on protein profile, microstructure and quality characteristics of pasta.

    PubMed

    Purnima, C; Ramasarma, P R; Prabhasankar, P

    2012-02-01

    Wheat storage proteins play a vital role in pasta making quality. In the present study, SDS-PAGE, Gel filtration chromatography and Scanning electron microscopy techniques were employed to understand the changes in the wheat protein fractions and their interactions with additives namely Sodium Steroyl Lactate (SSL), Glycerol Monostearate (GMS) and Hydroxy Propyl Methyl Cellulose (HPMC) during processing of pasta. SDS-PAGE studies indicated changes in High Molecular Weight Glutenin (HMW) fractions during drying stages of pasta preparation and in cooked pasta samples. In uncooked pasta, gel filtration patterns showed four peaks corresponding to different storage proteins whereas in the case of cooked pasta, these peaks were merged into three peaks. Pasta quality characteristics studies indicated that pasta with HPMC was found to have minimum percentage of cooking loss (5.6%), increased cooked weight (82 g), firmness (2.97 N) and high overall quality score (27) than GMS, SSL and control. Microstructure studies confirm the beneficial effect of HPMC. The present study indicated that HPMC is better additive for pasta manufacture followed by GMS. This could be due to interaction of HPMC with starch and protein matrix is different from that of GMS and SSL.

  16. The Monitoring and Affinity Purification of Proteins Using Dual Tags with Tetracysteine Motifs

    NASA Astrophysics Data System (ADS)

    Giannone, Richard J.; Liu, Yie; Wang, Yisong

    Identification and characterization of protein-protein interaction networks is essential for the elucidation of biochemical mechanisms and cellular function. Affinity purification in combination with liquid chromatography-tandem mass spectrometry (LC-MS/MS) has emerged as a very powerful tactic for the identification of specific protein-protein interactions. In this chapter, we describe a comprehensive methodology that uses our recently developed dual-tag affinity purification system for the enrichment and identification of mammalian protein complexes. The protocol covers a series of separate but sequentially related techniques focused on the facile monitoring and purification of a dual-tagged protein of interest and its interacting partners via a system built with tetracysteine motifs and various combinations of affinity tags. Using human telomeric repeat binding factor 2 (TRF2) as an example, we demonstrate the power of the system in terms of bait protein recovery after dual-tag affinity purification, detection of bait protein subcellular localization and expression, and successful identification of known and potentially novel TRF2 interacting proteins. Although the protocol described here has been optimized for the identification and characterization of TRF2-associated proteins, it is, in principle, applicable to the study of any other mammalian protein complexes that may be of interest to the research community.

  17. Combining blue native polyacrylamide gel electrophoresis with liquid chromatography tandem mass spectrometry as an effective strategy for analyzing potential membrane protein complexes of Mycobacterium bovis bacillus Calmette-Guérin

    PubMed Central

    2011-01-01

    Background Tuberculosis is an infectious bacterial disease in humans caused primarily by Mycobacterium tuberculosis, and infects one-third of the world's total population. Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccine has been widely used to prevent tuberculosis worldwide since 1921. Membrane proteins play important roles in various cellular processes, and the protein-protein interactions involved in these processes may provide further information about molecular organization and cellular pathways. However, membrane proteins are notoriously under-represented by traditional two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) and little is known about mycobacterial membrane and membrane-associated protein complexes. Here we investigated M. bovis BCG by an alternative proteomic strategy coupling blue native PAGE to liquid chromatography tandem mass spectrometry (LC-MS/MS) to characterize potential protein-protein interactions in membrane fractions. Results Using this approach, we analyzed native molecular composition of protein complexes in BCG membrane fractions. As a result, 40 proteins (including 12 integral membrane proteins), which were organized in 9 different gel bands, were unambiguous identified. The proteins identified have been experimentally confirmed using 2-D SDS PAGE. We identified MmpL8 and four neighboring proteins that were involved in lipid transport complexes, and all subunits of ATP synthase complex in their monomeric states. Two phenolpthiocerol synthases and three arabinosyltransferases belonging to individual operons were obtained in different gel bands. Furthermore, two giant multifunctional enzymes, Pks7 and Pks8, and four mycobacterial Hsp family members were determined. Additionally, seven ribosomal proteins involved in polyribosome complex and two subunits of the succinate dehydrogenase complex were also found. Notablely, some proteins with high hydrophobicity or multiple transmembrane helixes were identified well

  18. Stress responses of duckweed (Lemna minor L.) and water velvet (Azolla filiculoides Lam.) to anionic surfactant sodium-dodecyl-sulphate (SDS).

    PubMed

    Forni, C; Braglia, R; Harren, F J M; Cristescu, S M

    2012-04-01

    Surfactants are used for several purposes and recently they have attracted the attention for their ability to modify the behavior of other preexistent or co-disposed contaminants, although their use or discharge in wastewaters can represent a real or potential risk for the environment. Lemna minor L. and Azolla filiculoides Lam. are floating aquatic macrophytes, very effective in accumulating several pollutants including sodium dodecyl sulphate (SDS). In this work we evaluated the effects of SDS on these species by determining the stress ethylene production via laser-based trace gas detection, and the activities of enzymes involved in stress response, such as guaiacol peroxidase (G-POD), phenylalanine ammonia-lyase (PAL) and polyphenol-oxidase (PPO). Phenolics content was also determined. The macrophytes were treated with different concentrations of SDS for one week. SDS affected duckweed enzymatic activities and phenol content. While in the fern phenolics amount, PAL, G-POD and PPO activities were not affected by SDS except for 100 ppm SDS, the only concentration that was taken up and not completely degraded. Stress ethylene production was induced only in the fern treated with 50 and 100 ppm SDS. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Superiority of SDS lysis over saponin lysis for direct bacterial identification from positive blood culture bottle by MALDI-TOF MS.

    PubMed

    Caspar, Yvan; Garnaud, Cécile; Raykova, Mariya; Bailly, Sébastien; Bidart, Marie; Maubon, Danièle

    2017-05-01

    Fast species diagnosis has an important health care impact, as rapid and specific antibacterial therapy is of clear benefit for patient's outcome. Here, a new protocol for species identification directly from positive blood cultures is proposed. Four in-house protocols for bacterial identification by MS directly from clinical positive blood cultures evaluating two lytic agents, SDS and saponin, and two protein extraction schemes, fast (FP) and long (LP) are compared. One hundred and sixty-eight identification tests are carried out on 42 strains. Overall, there are correct identifications to the species level in 90% samples for the SDS-LP, 60% for the SDS-FP, 48% for the saponin LP, and 43% for the saponin FP. Adapted scores allowed 92, 86, 72, and 53% identification for SDS-LP, SDS-FP, saponin LP, and saponin FP, respectively. Saponin lysis is associated with a significantly lower score compared to SDS (0.87 [0.83-0.92], p-value < 0.001). This study supports the use of SDS lysis instead of saponin lysis and the application of this rapid and cost-effective protocol in daily routine for microbiological agents implicated in septicemia. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Utilizing a library of synthetic affinity ligands for the enrichment, depletion and one-step purification of leech proteins.

    PubMed

    Dong, Dexian; Gui, Yanli; Chen, Dezhao; Li, Rongxiu

    2008-01-01

    Although the concept of affinity purification using synthetic ligands had been utilized for many years, there are few articles related to this research area, and they focus only on the affinity purification of specific protein by a defined library of synthetic ligands. This study presents the design and construction of a 700-member library of synthetic ligands in detail. We selected 297 ligand columns from a 700-member library of synthetic ligands to screen leech protein extract. Of the 297, 154 columns had an enrichment effect, 83 columns had a depletion effect, 36 columns had a one-step purification effect, and 58 columns had a one-step purification via flowthrough effect. The experimental results achieved by this large library of affinity ligands provide solid convincing data for the theory that affinity chromatography could be used for the enrichment of proteins that are present in low abundance, the depletion of high abundance proteins, and one-step purification of special proteins. 2008 John Wiley & Sons, Ltd

  1. Hb Potomac (101 Glu replaced by Asp): speculations on placental oxygen transport in carriers of high-affinity hemoglobins.

    PubMed

    Charache, S; Jacobson, R; Brimhall, B; Murphy, E A; Hathaway, P; Winslow, R; Jones, R; Rath, C; Simkovich, J

    1978-02-01

    Blood from a woman with unexplained erythrocytosis had increased oxygen affinity, but no abnormality could be detected by electrophoresis or chromatography of her hemolysate. Separation of the tryptic peptides of her beta chains disclosed two half-sized peaks in the regions of beta T-11. The faster of these was abnormal, with the structure beta 101 Glu replaced by Asp. The new hemoglobin was called "Potomac." Three of the proband's four surviving siblings and both of her children were carriers. Differences in the ratio of carrier: normal children born to male of female carriers of 23 other high-affinity hemoglobins were not significant. The high proportion of carriers in this kindred was probably due to chance alone, and not because high maternal oxygen affinity interfered with oxygen transport to fetuses with normal hemoglobin.

  2. Colorimetric protein determination in microalgae (Chlorophyta): association of milling and SDS treatment for total protein extraction.

    PubMed

    Mota, Maria Fernanda S; Souza, Marcella F; Bon, Elba P S; Rodrigues, Marcoaurelio A; Freitas, Suely Pereira

    2018-05-24

    The use of colorimetric methods for protein quantification in microalgae is hindered by their elevated amounts of membrane-embedded intracellular proteins. In this work, the protein content of three species of microalgae was determined by the Lowry method after the cells were dried, ball-milled, and treated with the detergent sodium dodecyl sulfate (SDS). Results demonstrated that the association of milling and SDS treatment resulted in a 3- to 7-fold increase in protein quantification. Milling promoted microalgal disaggregation and cell wall disruption enabling access of the SDS detergent to the microalgal intracellular membrane proteins and their efficient solubilization and quantification. © 2018 Phycological Society of America.

  3. Role of the constant region domain in the structural diversity of human antibody light chains.

    PubMed

    Hifumi, Emi; Taguchi, Hiroaki; Kato, Ryuichi; Uda, Taizo

    2017-04-01

    Issues regarding the structural diversity (heterogeneity) of an antibody molecule have been the subject of discussion along with the development of antibody drugs. Research on heterogeneity has been extensive in recent years, but no clear solution has been reached. Heterogeneity is also observed in catalytic antibody κ light chains (CLs). In this study, we investigated how the constant region domain of CLs concerns structural diversity because it is a simple and good example for elucidating heterogeneity. By means of cation-exchange chromatography, SDS-PAGE, and 2-dimensional electrophoresis for the CL, multimolecular forms consisting of different electrical charges and molecular sizes coexisted in the solution, resulting in the similar heterogeneity of the full length of CLs. The addition of copper ion could cause the multimolecular forms to change to monomolecular forms. Copper ion contributed greatly to the enrichment of the dimer form of CL and the homogenization of the differently charged CLs. Two molecules of the CL protein bound one copper ion. The binding affinity of the ion was 48.0 μM -1 Several divalent metal ions were examined, but only zinc showed a similar effect.-Hifumi, E., Taguchi, H., Kato, R., Uda, T. Role of the constant region domain in the structural diversity of human antibody light chains. © FASEB.

  4. Cloning and characterization of ginsenoside Ra1-hydrolyzing beta-D-xylosidase from Bifidobacterium breve K-110.

    PubMed

    Hyun, Yang-Jin; Kim, Bomi; Kim, Dong-Hyun

    2012-04-01

    beta-D-Xylosidase (E.C. 3.2.1.37) from Bifidobacterium breve K-110, which hydrolyzes ginsenoside Ra1 to ginsenoside Rb2, was cloned and expressed in Escherichia coli. The (His6)-tagged recombinant enzyme, designated as XlyBK- 110, was efficiently purified using Ni²⁺-affinity chromatography (109.9-fold, 84% yield). The molecular mass of XylBK- 100 was found to be 55.7 kDa by SDS-PAGE. Its sequence revealed a 1,347 bp open reading frame (ORF) encoding a protein containing 448 amino acids, which showed 82% identity (DNA) to the previously reported glycosyl hydrolase family 30 of Bifidobacterium adolescentis ATCC 15703. The Km and Vmax values toward p-nitrophenyl-beta-D-xylopyranoside (pNPX) were 1.45mM and 10.75 micromol/min/mg, respectively. This enzyme had pH and temperature optima at 6.0 and 45 degrees C, respectively. XylBK-110 acted to the greatest extent on xyloglucosyl kakkalide, followed by pNPX and ginsenoside Ra1, but did not act on p-nitrophenyl-alpha-Larabinofuranoside, p-nitrophenyl-beta-D-glucopyranoside, or p-nitrophenyl-beta-D-fucopyranoside. In conclusion, this is the first report on the cloning and expression of beta-Dxylosidase- hydrolyzing ginsenoside Ra1 and kakkalide from human intestinal microflora.

  5. Identification of proteins interacting with lactate dehydrogenase in claw muscle of the porcelain crab Petrolisthes cinctipes

    PubMed Central

    Cayenne, Andrea P.; Gabert, Beverly; Stillman, Jonathon H.

    2011-01-01

    Biochemical adaptation of enzymes involves conservation of activity, stability and affinity across a wide range of intracellular and environmental conditions. Enzyme adaptation by alteration of primary structure is well known, but the roles of protein-protein interactions in enzyme adaptation are less well understood. Interspecific differences in thermal stability of lactate dehydrogenase (LDH) in porcelain crabs (genus Petrolisthes) are related to intrinsic differences among LDH molecules and by interactions with other stabilizing proteins. Here, we identified proteins that interact with LDH in porcelain crab claw muscle tissue using co-immunoprecipitation, and showed LDH exists in high molecular weight complexes using size exclusion chromatography and Western blot analyses. Co-immunoprecipitated proteins were separated using 2D SDS PAGE and analyzed by LC/ESI using peptide MS/MS. Peptide MS/MS ions were compared to an EST database for Petrolisthes cinctipes to identify proteins. Identified proteins included cytoskeletal elements, glycolytic enzymes, a phosphagen kinase, and the respiratory protein hemocyanin. Our results support the hypothesis that LDH interacts with glycolytic enzymes in a metabolon structured by cytoskeletal elements that may also include the enzyme for transfer of the adenylate charge in glycolytically produced ATP. Those interactions may play specific roles in biochemical adaptation of glycolytic enzymes. PMID:21968246

  6. High sensibility to reactivation by acidic lipids of the recombinant human plasma membrane Ca2+-ATPase isoform 4xb purified from Saccharomyces cerevisiae.

    PubMed

    Cura, Carolina I; Corradi, Gerardo R; Rinaldi, Débora E; Adamo, Hugo P

    2008-12-01

    The human plasma membrane Ca2+ pump (isoform 4xb) was expressed in Saccharomyces cerevisiae and purified by calmodulin-affinity chromatography. Under optimal conditions the recombinant enzyme (yPMCA) hydrolyzed ATP in a Ca2+ dependent manner at a rate of 15 micromol/mg/min. The properties of yPMCA were compared to those of the PMCA purified from human red cells (ePMCA). The mobility of yPMCA in SDS-PAGE was the expected for the hPMCA4xb protein but slightly lower than that of ePMCA. Both enzymes achieved maximal activity when supplemented with acidic phospholipids. However, while ePMCA in mixed micelles of phosphatidylcholine-detergent had 30% of its maximal activity, the yPMCA enzyme was nearly inactive. Increasing the phosphatidylcholine content of the micelles did not increase the activity of yPMCA but the activity in the presence of phosphatidylcholine improved by partially removing the detergent. The reactivation of the detergent solubilized yPMCA required specifically acidic lipids and, as judged by the increase in the level of phosphoenzyme, it involved the increase in the amount of active enzyme. These results indicate that the function of yPMCA is highly sensitive to delipidation and the restitution of acidic lipids is needed for a functional enzyme.

  7. Optimization of pretreatment and fermentation conditions for production of extracellular cellulase complex using sugarcane bagasse.

    PubMed

    Ashfaque, Mohammad; Solomon, Sushil; Pathak, Neelam

    2014-01-01

    Sugarcane bagasse (SCB), a lignocellulosic byproduct of juice extraction from sugarcane, is rich in cellulose (40-42%). This could be used as a substrate for the production of cellulase complex. Fermentation conditions were optimized for production of cellulase complex (CMCase, Cellulobiase and FPase) by wild type Trichoderma sp. using sugarcane bagasse as sole carbon source. Alkaline treatment (2% NaOH) of bagasse (AlSCB) was found suitable for the production of reducing sugar over the acidic pretreatment method. After 5 days of incubation period, 5% substrate concentration at pH 5.0 and 400C resulted in maximum production of CMCase (0.622 U), while maximum (3.388 U) production of cellulobiase was obtained at 300C. The CMCase was precipitated and purified to the extent of 59.06 fold by affinity chromatography with 49.09% recovery. On 12% SDS-PAGE, a single band corresponding to 33 kDa was observed. The Km and Vmax for CMCase from Trichoderma was found 507.04 mg/ml and 65.32 mM/min, respectively. The enzyme exhibited maximum activity at 300C at pH-5.0 (0.363 U) and was stable over range of 20-60°C and pH 5.0-7.5.

  8. Large Scale Generation and Characterization of Anti-Human CD34 Monoclonal Antibody in Ascetic Fluid of Balb/c Mice

    PubMed Central

    Aghebati Maleki, Leili; Majidi, Jafar; Baradaran, Behzad; Abdolalizadeh, Jalal; Kazemi, Tohid; Aghebati Maleki, Ali; Sineh sepehr, Koushan

    2013-01-01

    Purpose: Monoclonal antibodies or specific antibodies are now an essential tool of biomedical research and are of great commercial and medical value. The purpose of this study was to produce large scale of monoclonal antibody against CD34 in order to diagnostic application in leukemia and purification of human hematopoietic stem/progenitor cells. Methods: For large scale production of monoclonal antibody, hybridoma cells that produce monoclonal antibody against human CD34 were injected into the peritoneum of the Balb/c mice which have previously been primed with 0.5 ml Pristane. 5 ml ascitic fluid was harvested from each mouse in two times. Evaluation of mAb titration was assessed by ELISA method. The ascitic fluid was examined for class and subclasses by ELISA mouse mAb isotyping Kit. mAb was purified from ascitic fluid by affinity chromatography on Protein A-Sepharose. Purity of monoclonal antibody was monitored by SDS -PAGE and the purified monoclonal antibody was conjugated with FITC. Results: Monoclonal antibodies with high specificity and sensitivity against human CD34 by hybridoma technology were prepared. The subclass of antibody was IgG1 and its light chain was kappa. Conclusion: The conjugated monoclonal antibody could be a useful tool for isolation, purification and characterization of human hematopoietic stem cells. PMID:24312838

  9. Cytoplasmic expression of a thermostable invertase from Thermotoga maritima in Lactococcus lactis.

    PubMed

    Pek, Han Bin; Lim, Pei Yu; Liu, Chengcheng; Lee, Dong-Yup; Bi, Xuezhi; Wong, Fong Tian; Ow, Dave Siak-Wei

    2017-05-01

    To evaluate the secretory and cytoplasmic expression of a thermostable Thermogata maritima invertase in Lactococcus lactis. The thermostable invertase from T. maritima was cloned with and without the USP45 secretory peptide into the pNZ8148 vector for nisin-inducible expression in L. lactis. The introduction of an USP45 secretion peptide at the N-terminal of the enzyme led to a loss of protein solubility. Computational homology modeling and hydrophobicity studies indicated that the USP45 peptide exposes a stretch of hydrophobic amino acids on the protein surface resulting in lower solubility. Removal of the USP45 secretion peptide allowed a soluble and functional invertase to be expressed intracellularly in L. lactis. Immobilized metal affinity chromatography purification of the cell lysate with nickel-NTA gave a single protein band on SDS-PAGE, while E. coli-expressed invertase consistently co-purified with an additional band. The yields of the purified invertase from E. coli and L. lactis were 14.1 and 6.3 mg/l respectively. Invertase can be expressed in L. lactis and purified in a functional form. L. lactis is a suitable host for the production of food-grade invertase for use in the food and biotechnology industries.

  10. [Prokaryotic expression of vp3 gene of Muscovy duck parvovirus, and its antiserum preparation for detection of virus multiplication].

    PubMed

    Huang, Yu; Zhu, Yumin; Dong, Shijuan; Yu, Ruisong; Zhang, Yuanshu; Li, Zhen

    2015-01-01

    New epidemic broke out in recent year which was suspected to be caused by variant Muscovy duck parvovirus (MDPV). For this reason, new MDPV detection methods are needed for the new virus strains. In this study, a pair of primers were designed according to the full-length genome of MDPV strain SAAS-SHNH, which were identified in 2012, and were used to amplify the vp3 gene of MDPV by polymerase chain reaction. After being sequenced, the vp3 gene was subcloned into the prokaryotic expression vector PET28a. The recombinant plasmid was transformed into E. coli BL21 and induced with IPTG. SDS-PAGE and Western blotting analysis showed the MDPV vp3 gene was successfully expressed. After being purified by Ni2+ affinity chromatography system, the recombinant protein was used as antigen to immunize rabbits to obtain antiserum. Western blotting analysis showed that the acquired antiserum could react specifically with VP3 protein of J3D6 strain and MDPV vaccine strain. The antiserum could also be used for detection of cultured MDPV from primary duck embryo fibroblasts by immune fluorescence assay (IFA). It could be concluded that the VP3 protein and its antibody prepared in the research could be used for detection of VP3 antiserum and antigen respectively.

  11. [Prokaryotic expression and immunological activity of human neutrophil gelatinase associated lipocalin].

    PubMed

    Wu, Jianwei; Cai, Lei; Qian, Wei; Jiao, Liyuan; Li, Jiangfeng; Song, Xiaoli; Wang, Jihua

    2015-07-01

    To construct a prokaryotic expression vector of human neutrophil gelatinase associated lipocalin (NGAL) and identify the bioactivity of the fusion protein. The cDNA of human NGAL obtained from GenBank was linked to a cloning vector to construct the prokaryotic expression vector pCold-NGAL. Then the vector was transformed into E.coli BL21(DE3) plysS. Under the optimal induction condition, the recombinant NGAL (rNGAL) was expressed and purified by Ni Sepharose 6 Fast Flow affinity chromatography. The purity and activity of the rNGAL were respectively identified by SDS-PAGE and Western blotting combined with NGAL reagent (Latex enhanced immunoturbidimetry). Restriction enzyme digestion and nucleotide sequencing proved that the expression vector pCold-NGAL was successfully constructed. Under the optimal induction condition that we determined, the rNGAL was expressed in soluble form in E.coli BL21(DE3) plysS. The relative molecular mass of the rNGAL was 25 000, and its purity was more than 98.0%. Furthermore, Western blotting and immunoturbidimetry indicated that the rNGAL reacted with NGAL mAb specifically. Human rNGAL of high purity and bioactivity was successfully constructed in E.coli BL21(DE3) plysS using the expression vector pCold-NGAL.

  12. Isolation and characterization of chicken bile matrix metalloproteinase.

    PubMed

    Packialakshmi, B; Liyanage, R; Rasaputra, K S; Lay, Jackson O; Rath, N C

    2014-06-01

    Avian bile is rich in matrix metalloproteinases (MMP), the enzymes that cleave extracellular matrix proteins such as collagens and proteoglycans. Changes in bile MMP expression have been correlated with hepatic and gall bladder pathologies, but the significance of their expression in normal, healthy bile is not understood. We hypothesized that the MMP in bile may aid the digestion of native collagens that are resistant to conventional gastric proteases. Hence, the objective of this study was to characterize the bile MMP and check its regulation in association with dietary factors. We used substrate zymography, azocoll protease assay, and gelatin affinity chromatography to identify and purify the MMP from chicken bile. Using zymography and SDS PAGE, 5 bands at 70, 64, 58, 50, and 42 kDa were detected. The bands corresponding to 64, 50, and 42 kDa were identified as MMP2 using trypsin in-gel digestion and matrix-assisted laser desorption time-of-flight mass spectrometry and peptide mass fingerprinting. Chickens fed diets containing gelatin supplements showed higher levels of MMP expression in the bile by both azocoll assay and zymography. We conclude that the bile MMP may be associated with the digestion of collagens and other extracellular matrix proteins in avian diets. Poultry Science Association Inc.

  13. Study of the interaction of proteins with curcumin and SDS and its analytical application

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Yang, Jinghe; Wu, Xia; Liu, Shufang

    2005-09-01

    It is found that protein and sodium dodecyl sulphonate (SDS) can enhance resonance light scattering (RLS) of curcumin (CU). Based on this phenomenon, a new quantitative method for protein in aqueous solution has been developed. In the BR (pH 3.5) buffer, the RLS intensity of CU-SDS system is greatly enhanced by protein. The enhanced RLS is proportional to the concentration of protein in the range of 0.00020-20.0 μg ml -1 for bovine serum albumin (BSA) and 0.00040-1.0 μg ml -1 for human serum albumin (HSA) and their detection limits are 0.16 and 0.041 ng ml -1, respectively. An actual sample is satisfactorily determined. In addition, the interaction mechanism between protein and CU-SDS is also studied by using multi-techniques such as RLS, absorption spectroscopy and fluorescence, zeta potential assay measurement.

  14. The Kringle-like Domain Facilitates Post-endoplasmic Reticulum Changes to Premelanosome Protein (PMEL) Oligomerization and Disulfide Bond Configuration and Promotes Amyloid Formation*

    PubMed Central

    Ho, Tina; Watt, Brenda; Spruce, Lynn A.; Seeholzer, Steven H.; Marks, Michael S.

    2016-01-01

    The formation of functional amyloid must be carefully regulated to prevent the accumulation of potentially toxic products. Premelanosome protein (PMEL) forms non-toxic functional amyloid fibrils that assemble into sheets upon which melanins ultimately are deposited within the melanosomes of pigment cells. PMEL is synthesized in the endoplasmic reticulum but forms amyloid only within post-Golgi melanosome precursors; thus, PMEL must traverse the secretory pathway in a non-amyloid form. Here, we identified two pre-amyloid PMEL intermediates that likely regulate the timing of fibril formation. Analyses by non-reducing SDS-PAGE, size exclusion chromatography, and sedimentation velocity revealed two native high Mr disulfide-bonded species that contain Golgi-modified forms of PMEL. These species correspond to disulfide bond-containing dimeric and monomeric PMEL isoforms that contain no other proteins as judged by two-dimensional PAGE of metabolically labeled/immunoprecipitated PMEL and by mass spectrometry of affinity-purified complexes. Metabolic pulse-chase analyses, small molecule inhibitor treatments, and evaluation of site-directed mutants suggest that the PMEL dimer forms around the time of endoplasmic reticulum exit and is resolved by disulfide bond rearrangement into a monomeric form within the late Golgi or a post-Golgi compartment. Mutagenesis of individual cysteine residues within the non-amyloid cysteine-rich Kringle-like domain stabilizes the disulfide-bonded dimer and impairs fibril formation as determined by electron microscopy. Our data show that the Kringle-like domain facilitates the resolution of disulfide-bonded PMEL dimers and promotes PMEL functional amyloid formation, thereby suggesting that PMEL dimers must be resolved to monomers to generate functional amyloid fibrils. PMID:26694611

  15. Bowman-Birk proteinase inhibitor from Cajanus cajan seeds: purification, characterization, and insecticidal properties.

    PubMed

    Prasad, Elaprolu R; Merzendorfer, H; Madhurarekha, C; Dutta-Gupta, A; Padmasree, K

    2010-03-10

    A red gram proteinase inhibitor (RgPI) was purified from red gram ( Cajanus cajan ) seeds by using ammonium sulfate precipitation and ion-exchange, affinity, and gel filtration chromatography. SDS-PAGE under nonreducing condition revealed two protein bands with molecular masses of approximately 8.5 and approximately 16.5 kDa corresponding to monomeric and dimeric forms of RgPI, respectively. Similarly, matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry also confirmed the presence of dimer as well as other oligomeric forms: trimer, tetramer, and pentamer. Reduction of RgPI with dithiothreitol (DTT) led to the dissociation of the dimeric and oligomeric forms. Native-PAGE and two-dimensional gel electrophoresis indicated the existence of isoinhibitors with pI values of 5.95, 6.25, 6.50, 6.90, and 7.15, respectively. The MALDI-TOF-TOF mass spectrum and N-terminal sequence 'DQHHSSKACC' suggested that the isolated RgPI is a member of the Bowman-Birk inhibitor family. RgPI exhibited noncompetitive type inhibitory activity against bovine pancreatic trypsin and chymotrypsin, with inhibition constants of 292 and 2265 nM, respectively. It was stable up to a temperature of 80 degrees C and was active over a wide pH range between 2 and 12. However, reduction with DTT or 2-mercaptoethanol resulted in loss of inhibitory activity against trypsin and chymotrypsin. It also decreased the activity of larval midgut trypsin-like proteinases in Manduca sexta . Its insecticidal property was further confirmed by reduction in the growth and development of these larvae, when supplemented in the diet.

  16. Bio-inorganic synthesis of ZnO powders using recombinant His-tagged ZnO binding peptide as a promoter.

    PubMed

    Song, Lei; Liu, Yingying; Zhang, Zhifang; Wang, Xi; Chen, Jinchun

    2010-10-01

    Inorganic-binding peptides termed as genetically engineered polypeptides for inorganics (GEPIs), are small peptide sequences selected via combinatorial biology-based protocols of phage or cell surface display technologies. Recent advances in nanotechnology and molecular biology allow the engineering of these peptides with specific affinity to inorganics, often used as molecular linkers or assemblers, to facilitate materials synthesis, which provides a new insight into the material science and engineering field. As a case study on this biomimetic application, here we report a novel biosynthetic ZnO binding protein and its application in promoting bio-inorganic materials synthesis. In brief, the gene encoding a ZnO binding peptide(ZBP) was genetically fused with His(6)-tag and GST-tag using E.coli expression vector pET-28a (+) and pGEX-4T-3. The recombinant protein GST-His-ZBP was expressed, purified with Ni-NTA system, identified by SDS-PAGE electrophoresis and Western blot analysis and confirmed by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) analysis. Affinity adsorption test demonstrated that the fusion protein had a specific avidity for ZnO nanoparticles (NPs). Results from the bio-inorganic synthesis experiment indicated that the new protein played a promoting part in grain refinement and accelerated precipitation during the formation of the ultra-fine precursor powders in the Zn(OH)(2) sol. X-ray diffraction (XRD) analysis on the final products after calcining the precursor powders showed that hexagonal wurtzite ZnO crystals were obtained. Our work suggested a novel approach to the application about the organic-inorganic interactions.

  17. Characterization of major allergens of royal jelly Apis mellifera.

    PubMed

    Rosmilah, M; Shahnaz, M; Patel, G; Lock, J; Rahman, D; Masita, A; Noormalin, A

    2008-12-01

    Royal jelly is widely consumed in the community and has perceived benefits ranging from promoting growth in children and improvement of general health status to enhancement of longevity for the elderly. However, royal jelly consumption has been linked to contact dermatitis, acute asthma, anaphylaxis and death. High prevalence of positive skin tests to royal jelly have been reported among atopic populations in countries with a high rate of royal jelly consumption. The present study is aimed to identify the major allergens of royal jelly. Royal jelly extract was separated by sodium dodecyl polyacrylamide gel electrophoresis (SDS-PAGE) and 2-dimensional electrophoresis (2-D). Immunoblotting of the SDS-PAGE and 2-D profiles were performed to identify the allergenic spots. Spots were then excised from the 2-D gel, digested with trypsin and analyzed by mass spectrometry. The SDS-PAGE of royal jelly extract revealed 18 bands between 10 to 167 kD. Western blot of the fractionated proteins detected 15 IgE-binding bands between 14 to 127 kD with seven major allergens of 32, 40, 42, 49, 55, 60 and 67 kD using serum from 53 subjects with royal jelly allergy. The 2-D gel fractionated the royal jelly proteins to more than 50 different protein spots. Out of these, 30 spots demonstrated specific IgE affinity to the sera tested. Eight spots of the major royal jelly allergens were selected for mass-spectrometry analysis. Digested tryptic peptides of the spots were compared to the amino acid sequence search in protein databases which identified the fragments of royal jelly homologus to major royal jelly protein 1 (MRJ1) and major royal jelly protein 2 (MRJ2). In conclusion, the major allergens of royal jelly are MRJ1 and MRJ2 in our patients' population.

  18. The changes of serum proteome and tissular pathology in mouse induced by botulinum toxin E injection.

    PubMed

    Wang, J F; Mao, X Y; Zhao, C

    2014-01-01

    The experiment were performed to investigate the poisoning-related proteins and main pathological changes after mouse suffered from injection of botulinum toxin serotype E. Dose of 0.75 LD50 botulinum toxin serotype E per mice were administrated by intraperitoneal injection. Survival mouse were picked as experimental group. The blood were collected from orbital blood and serum sample was separated by centrifugation. The heart, liver, spleen, lung, kidney were fixed in 10 % neutral buffered formalin and then developed paraffin sections. Serum protein components were analyzed by SDS-PAGE gel electrophoresis coupled with 2-DE SDS-PAGE gel electrophoresis. Differentially expressed proteins were analyzed by PDQUest8.0 software and subjected to ion trap mass spectrometry equipped with a high performance liquid chromatography system. The observation of pathological section showed that heart, liver, spleen, lung, kidney exhibited pathological changes in different degree, especially in heart, liver and lung tissues. Heart muscle tissue display serious inflammatory response, heart muscle fiber compulsively expanded and filled with erythrocyte and inflammatory exudates, some heart muscle fiber ruptured, even necrosis; hepatic cell in edge of liver occur apoptosis and some hepatic cell have disintegrated, and even died; pulmonary alveoli broken and partial vein filled with blood. Serum proteins component present a significant changes between control serum and botulism in 24 h by SDS-PAGE gel electrophoresis and 2-DE-SDS-PAGE gel electrophoresis. Twenty differentially expressed protein spots were observed in 2-DE profiles, in which 14 protein spots were undetectable in serum proteome under botulism, 3 protein spots exclusively expressed in state of botulism, 3 protein spots were low-expressed in serum proteome under botulism. Fourteen proteins have been identified among 20 spots elected on two-dimensional electrophoresis gels. Crystal proteins family exclusively expressed in

  19. Enrichment of high affinity subclasses and glycoforms from serum-derived IgG using FcγRs as affinity ligands.

    PubMed

    Boesch, Austin W; Kappel, James H; Mahan, Alison E; Chu, Thach H; Crowley, Andrew R; Osei-Owusu, Nana Y; Alter, Galit; Ackerman, Margaret E

    2018-05-01

    As antibodies continue to gain predominance in drug discovery and development pipelines, efforts to control and optimize their activity in vivo have matured to incorporate sophisticated abilities to manipulate engagement of specific Fc binding partners. Such efforts to promote diverse functional outcomes include modulating IgG-Fc affinity for FcγRs to alternatively potentiate or reduce effector functions, such as antibody-dependent cellular cytotoxicity and phagocytosis. While a number of natural and engineered Fc features capable of eliciting variable effector functions have been demonstrated in vitro and in vivo, elucidation of these important functional relationships has taken significant effort through use of diverse genetic, cellular and enzymatic techniques. As an orthogonal approach, we demonstrate use of FcγR as chromatographic affinity ligands to enrich and therefore simultaneously identify favored binding species from a complex mixture of serum-derived pooled polycloncal human IgG, a load material that contains the natural repertoire of Fc variants and post-translational modifications. The FcγR-enriched IgG was characterized for subclass and glycoform composition and the impact of this bioseparation step on antibody activity was measured in cell-based effector function assays including Natural Killer cell activation and monocyte phagocytosis. This work demonstrates a tractable means to rapidly distinguish complex functional relationships between two or more interacting biological agents by leveraging affinity chromatography followed by secondary analysis with high-resolution biophysical and functional assays and emphasizes a platform capable of surveying diverse natural post-translational modifications that may not be easily produced with high purity or easily accessible with recombinant expression techniques. © 2018 Wiley Periodicals, Inc.

  20. Rapid recovery of dilute copper from a simulated Cu-SDS solution with low-cost steel wool cathode reactor.

    PubMed

    Chang, Shih-Hsien; Wang, Kai-Sung; Hu, Pei-I; Lui, I-Chun

    2009-04-30

    Copper-surfactant wastewaters are often encountered in electroplating, printed circuit boards manufacturing, and metal finishing industries, as well as in retentates from micellar-enhanced ultrafiltration process. A low-cost three-dimensional steel wool cathode reactor was evaluated for electrolytic recovery of Cu ion from dilute copper solution (0.2mM) in the presence of sodium dodecyl sulfate (SDS), octylphenol poly (ethyleneglycol) 9.5 ether (TX), nonylphenol poly (oxyethylene) 9 ether (NP9) and polyoxyethylene (20) sorbitan monooleate (TW) and also mixed surfactants (anionic/nonionic). The reactor showed excellent copper recovery ability in comparison to a parallel-plate reactor. The reactor rapidly recovered copper with a reasonable current efficiency. 93% of copper was recovered at current density of 1 A m(-2) and pH 4 in the presence of 8.5mM SDS. Initial solution pH, cathodic current density, solution mixing condition, SDS concentration, and initial copper concentrations significantly influenced copper recovery. The copper recovery rate increased with an increase in aqueous SDS concentrations between 5 and 8.5mM. The influences of nonionic surfactants on Cu recovery from SDS-Cu solution depended not only on the type of surfactants used, but also on applied concentrations. From the copper recovery perspective, TX at 0.1mM or NP should be selected rather than TW, because they did not inhibit copper recovery from SDS-Cu solution.

  1. Impact of the underlying etiology of growth hormone deficiency on serum IGF-I SDS levels during GH treatment in children.

    PubMed

    Léger, Juliane; Mohamed, Damir; Dos Santos, Sophie; Ben Azoun, Myriam; Zénaty, Delphine; Simon, Dominique; Paulsen, Anne; Martinerie, Laetitia; Chevenne, Didier; Alberti, Corinne; Carel, Jean-Claude; Guilmin-Crepon, Sophie

    2017-09-01

    Regular monitoring of serum IGF-I levels during growth hormone (GH) therapy has been recommended, for assessing treatment compliance and safety. To investigate serum IGF-I SDS levels during GH treatment in children with GH deficiency, and to identify potential determinants of these levels. This observational cohort study included all patients ( n  = 308) with childhood-onset non-acquired or acquired GH deficiency (GHD) included in the database of a single academic pediatric care center over a period of 10 years for whom at least one serum IGF-I SDS determination during GH treatment was available. These determinations had to have been carried out centrally, with the same immunoradiometric assay. Serum IGF-I SDS levels were determined as a function of sex, age and pubertal stage, according to our published normative data. Over a median of 4.0 (2-5.8) years of GH treatment per patient, 995 serum IGF-I SDS determinations were recorded. In addition to BMI SDS, height SDS and GH dose ( P  < 0.01), etiological group ( P  < 0.01) had a significant effect on serum IGF-I SDS levels, with patients suffering from acquired GHD having higher serum IGF-I SDS levels than those with non-acquired GHD, whereas sex, age, pubertal stage, treatment duration, hormonal status (isolated GHD (IGHD) vs multiple pituitary hormone deficiency (MPHD)) and initial severity of GHD, had no effect. These original findings have important clinical implications for long-term management and highlight the need for careful and appropriate monitoring of serum IGF-I SDS and GH dose, particularly in patients with acquired GHD, to prevent the unnecessary impact of potential comorbid conditions. © 2017 European Society of Endocrinology.

  2. Comparison of EDTA and SDS as potential surface impregnation agents for lead adsorption by activated carbon

    NASA Astrophysics Data System (ADS)

    Chen, Wei-fang; Pan, Ling; Chen, Li-fang; Yu, Zhe; Wang, Qiong; Yan, Chang-cheng

    2014-08-01

    Ethylene diamine tetraacetic acid (EDTA) and sodium dodecyl sulfate (SDS) were employed to impregnate activated carbons for the purpose of lead removal. The mechanisms of surface impregnation and lead adsorption method of chemical regeneration were investigated. Results showed that the highest impregnation of EDTA and SDS on activated carbon was 0.33 and 0.96 mmol/g, respectively. Adsorption capacities for lead of EDTA and SDS impregnated activated carbons reached 0.29 and 0.24 mmol/g. Rapid small scale column tests of adsorption and regeneration were conducted. Lead adsorption was greatly enhanced by EDTA impregnation. In addition, EDTA impregnated adsorbent was able to be successful regenerated by HNO3 and thus reused.

  3. Vertical two-phase flow regimes and pressure gradients under the influence of SDS surfactant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duangprasert, Tanabordee; Sirivat, Anuvat; Siemanond, Kitipat

    2008-01-15

    Two-phase gas/liquid flows in vertical pipes have been systematically investigated. Water and SDS surfactant solutions at various concentrations were used as the working fluids. In particular, we focus our work on the influence of surfactant addition on the flow regimes, the corresponding pressure gradients, and the bubble sizes and velocity. Adding the surfactant lowers the air critical Reynolds numbers for the bubble-slug flow and the slug flow transitions. The pressure gradients of SDS solutions are lower than those of pure water especially in the slug flow and the slug-churn flow regimes, implying turbulent drag reduction. At low Re{sub air}, themore » bubble sizes of the surfactant solution are lower than those of pure water due to the increase in viscosity. With increasing and at high Re{sub air}, the bubble sizes of the SDS solution become greater than those of pure water which is attributed to the effect of surface tension. (author)« less

  4. Temperature dependency of double material gate oxide (DMGO) symmetric dual-k spacer (SDS) wavy FinFET

    NASA Astrophysics Data System (ADS)

    Pradhan, K. P.; Priyanka; Sahu, P. K.

    2016-01-01

    Symmetric Dual-k Spacer (SDS) Trigate Wavy FinFET is a novel hybrid device that combines three significant and advanced technologies i.e., ultra-thin-body (UTB), FinFET, and symmetric spacer engineering on a single silicon on insulator (SOI) platform. This innovative architecture promises to enhance the device performance as compared to conventional FinFET without increasing the chip area. For the first time, we have incorporated two different dielectric materials (SiO2, and HfO2) as gate oxide to analyze the effect on various performance metrics of SDS wavy FinFET. This work evaluates the response of double material gate oxide (DMGO) on parameters like mobility, on current (Ion), transconductance (gm), transconductance generation factor (TGF), total gate capacitance (Cgg), and cutoff frequency (fT) in SDS wavy FinFET. This work also reveals the presence of biasing point i.e., zero temperature coefficient (ZTC) bias point. The ZTC bias point is that point where the device parameters become independent of temperature. The impact of operating temperature (T) on above said various performances are also subjected to extensive analysis. This further validates the reliability of DMGO-SDS FinFET and its application opportunities involved in modeling analog/RF circuits for a broad range of temperature applications. From extensive 3-D device simulation, we have determined that the inclusion of DMGO in SDS wavy FinFET is superior in performance.

  5. [Molecular cloning, expression and characterization of lysine decarboxylase gene of endophytic fungus Shiraia sp. Slf14 from Huperzia serrata].

    PubMed

    Peng, Silu; Yang, Huilin; Zhu, Du; Zhang, Zhibin; Yan, Riming; Wang, Ya

    2016-04-14

    Huperzine A (HupA) was approved as a drug for the treatment of Alzheimer's disease. The HupA biosynthetic pathway was started from lysine decarboxylase (LDC), which catalyzes lysine to cadaverine. In this study, we cloned and expressed an LDC gene from a HupA-producing endophytic fungus, and tested LDC activities. An endophytic fungus Shiraia sp. Slf14 from Huperzia serrata was used. LDC gene was obtained by RT-PCR, and cloned into pET-22b(+) and pET-32a(+) vectors to construct recombinant plasmids pET- 22b-LDC and pET-32a-LDC. These two recombinant plasmids were transformed into E. coli BL21, cultured for 8 h at 24 °C, 200 r/min with 1×10–3 mol/L IPTG into medium to express the LDC proteins, respectively. LDC proteins were purified by Ni2+ affinity chromatography. Catalytic activities were measured by Thin Layer Chromatography. At last, the physicochemical properties and structures of these two LDCs were obtained by bioinformatics software. LDC and Trx-LDC were expressed in E. coli BL21 successfully. SDS-PAGE analysis shows that the molecular weight of LDC and Trx-LDC were 24.4 kDa and 42.7 kDa respectively, which are consistent with bioinformatics analysis. In addition, TLC analysis reveals that both LDC and Trx-LDC had catalytic abilities. This work can provide fundamental data for enriching LDC molecular information and reveal the HupA biosynthetic pathway in endophytic fungi.

  6. Affinity chromatographic purification of tetrodotoxin by use of tetrodotoxin-binding high molecular weight substances in the body fluid of shore crab (Hemigrapsus sanguineus) as ligands.

    PubMed

    Shiomi, K; Yamaguchi, S; Shimakura, K; Nagashima, Y; Yamamori, K; Matsui, T

    1993-12-01

    A purification method for tetrodotoxin (TTX), based on affinity chromatography using the TTX-binding high mol. wt substances in the body fluid of shore crab (Hemigrapsus sanguineus) as ligands, was developed. This method was particularly useful for analysis of TTX in biological samples with low concentrations of TTX. The affinity gel prepared was highly specific for TTX, having no ability to bind 4-epi-TTX and anhydro-TTX as well as saxitoxin.

  7. Technical advance: identification of plant actin-binding proteins by F-actin affinity chromatography

    NASA Technical Reports Server (NTRS)

    Hu, S.; Brady, S. R.; Kovar, D. R.; Staiger, C. J.; Clark, G. B.; Roux, S. J.; Muday, G. K.

    2000-01-01

    Proteins that interact with the actin cytoskeleton often modulate the dynamics or organization of the cytoskeleton or use the cytoskeleton to control their localization. In plants, very few actin-binding proteins have been identified and most are thought to modulate cytoskeleton function. To identify actin-binding proteins that are unique to plants, the development of new biochemical procedures will be critical. Affinity columns using actin monomers (globular actin, G-actin) or actin filaments (filamentous actin, F-actin) have been used to identify actin-binding proteins from a wide variety of organisms. Monomeric actin from zucchini (Cucurbita pepo L.) hypocotyl tissue was purified to electrophoretic homogeneity and shown to be native and competent for polymerization to actin filaments. G-actin, F-actin and bovine serum albumin affinity columns were prepared and used to separate samples enriched in either soluble or membrane-associated actin-binding proteins. Extracts of soluble actin-binding proteins yield distinct patterns when eluted from the G-actin and F-actin columns, respectively, leading to the identification of a putative F-actin-binding protein of approximately 40 kDa. When plasma membrane-associated proteins were applied to these columns, two abundant polypeptides eluted selectively from the F-actin column and cross-reacted with antiserum against pea annexins. Additionally, a protein that binds auxin transport inhibitors, the naphthylphthalamic acid binding protein, which has been previously suggested to associate with the actin cytoskeleton, was eluted in a single peak from the F-actin column. These experiments provide a new approach that may help to identify novel actin-binding proteins from plants.

  8. Technical advance: identification of plant actin-binding proteins by F-actin affinity chromatography.

    PubMed

    Hu, S; Brady, S R; Kovar, D R; Staiger, C J; Clark, G B; Roux, S J; Muday, G K

    2000-10-01

    Proteins that interact with the actin cytoskeleton often modulate the dynamics or organization of the cytoskeleton or use the cytoskeleton to control their localization. In plants, very few actin-binding proteins have been identified and most are thought to modulate cytoskeleton function. To identify actin-binding proteins that are unique to plants, the development of new biochemical procedures will be critical. Affinity columns using actin monomers (globular actin, G-actin) or actin filaments (filamentous actin, F-actin) have been used to identify actin-binding proteins from a wide variety of organisms. Monomeric actin from zucchini (Cucurbita pepo L.) hypocotyl tissue was purified to electrophoretic homogeneity and shown to be native and competent for polymerization to actin filaments. G-actin, F-actin and bovine serum albumin affinity columns were prepared and used to separate samples enriched in either soluble or membrane-associated actin-binding proteins. Extracts of soluble actin-binding proteins yield distinct patterns when eluted from the G-actin and F-actin columns, respectively, leading to the identification of a putative F-actin-binding protein of approximately 40 kDa. When plasma membrane-associated proteins were applied to these columns, two abundant polypeptides eluted selectively from the F-actin column and cross-reacted with antiserum against pea annexins. Additionally, a protein that binds auxin transport inhibitors, the naphthylphthalamic acid binding protein, which has been previously suggested to associate with the actin cytoskeleton, was eluted in a single peak from the F-actin column. These experiments provide a new approach that may help to identify novel actin-binding proteins from plants.

  9. Production of capsular polysaccharide of Streptococcus pneumoniae type 14 and its purification by affinity chromatography.

    PubMed

    Suárez, N; Fraguas, L F; Texeira, E; Massaldi, H; Batista-Viera, F; Ferreira, F

    2001-02-01

    We describe a rapid and efficient method for producing the capsular polysaccharide of Streptococcus pneumoniae by fermentation on tryptic soy broth and purification of this compound by using immobilized soybean lectin as an affinity adsorbent. In principle, the same strategy can be used to produce purified capsular polysaccharides from other streptococcal serotypes by selecting the appropriate lectin adsorbents.

  10. Removal of xylenol orange from its aqueous solution using SDS self-microemulsifying systems: optimization by Box-Behnken statistical design.

    PubMed

    Shakeel, Faiyaz; Haq, Nazrul; Alanazi, Fars K; Alsarra, Ibrahim A

    2014-04-01

    The aim of present study was to develop and evaluate sodium dodecyl sulfate (SDS) self-microemulsifying systems (SMES) for the removal of an anionic dye xylenol orange (XO) from its bulk aqueous media via liquid-liquid adsorption. The composition of SDS SMES was optimized by Box-Behnken statistical design for the maximum removal of XO from its aqueous solution. Various SDS formulations were prepared by spontaneous emulsification method and characterized for thermodynamic stability, self-microemulsification efficiency, droplet size, and viscosity. Adsorption studies were conducted at 8, 16, and 24 h by mixing small amounts of SDS formulations with relatively large amounts of bulk aqueous solution of XO. Droplet size and viscosity of SDS formulations were significantly influenced by oil phase concentration (triacetin), while surfactant concentration had little impact on droplet size and viscosity. However, the percentage of removal of XO was influenced by triacetin concentration, surfactant concentration, and adsorption time. Based on lowest droplet size (35.97 nm), lowest viscosity (29.62 cp), and highest percentage of removal efficiency (89.77 %), formulation F14, containing 2 % w/w of triacetin and 40 % w/w of surfactant mixture (20 % w/w of SDS and 20 % w/w of polyethylene glycol 400), was selected as an optimized formulation for the removal of XO from its bulk aqueous media after 16 h. These results indicated that SDS SMES could be suitable alternates of solid-liquid adsorption for the removal of toxic dyes such as XO from its aqueous solution through liquid-liquid adsorption.

  11. Magnetic poly(2-hydroxyethyl methacrylate) microspheres for affinity purification of monospecific anti-p46 kDa/Myo1C antibodies for early diagnosis of multiple sclerosis patients

    PubMed Central

    Hlídková, Helena; Kit, Yurii; Antonyuk, Volodymyr; Myronovsky, Severyn; Stoika, Rostyslav

    2017-01-01

    The aim of the present study is to develop new magnetic polymer microspheres with functional groups available for easy protein and antibody binding. Monodisperse macroporous poly(2-hydroxyethyl methacrylate) (PHEMA-COOH) microspheres ~4 µm in diameter and containing ∼1 mmol COOH/g were synthesized by multistep swelling polymerization of 2-hydroxyethyl methacrylate (HEMA), ethylene dimethacrylate (EDMA), and 2-[(methoxycarbonyl)methoxy]ethyl methacrylate (MCMEMA), which was followed by MCMEMA hydrolysis. The microspheres were rendered magnetic by precipitation of iron oxide inside the pores, which made them easily separable in a magnetic field. Properties of the resulting magnetic poly(2-hydroxyethyl methacrylate) (mgt.PHEMA) particles with COOH functionality were examined by scanning and transmission electron microscopy (SEM and TEM), static volumetric adsorption of helium and nitrogen, mercury porosimetry, Fourier transform infrared (FTIR) and atomic absorption spectroscopy (AAS), and elemental analysis. Mgt.PHEMA microspheres were coupled with p46/Myo1C protein purified from blood serum of multiple sclerosis (MS) patients, which enabled easy isolation of monospecific anti-p46/Myo1C immunoglobulin G (IgG) antibodies from crude antibody preparations of mouse blood serum. High efficiency of this approach was confirmed by SDS/PAGE, Western blot, and dot blot analyses. The newly developed mgt.PHEMA microspheres conjugated with a potential disease biomarker, p46/Myo1C protein, are thus a promising tool for affinity purification of antibodies, which can improve diagnosis and treatment of MS patients. PMID:28351895

  12. Biochemical characterization of a phospholipase A2 from Photobacterium damselae subsp. piscicida.

    PubMed

    Hsu, Po-Yuan; Lee, Kuo-Kau; Lee, Pei-Shan; Hu, Chih-Chuang; Lin, Cheng-Hui; Liu, Ping-Chung

    2013-01-01

    Photobacterium damselae subsp. piscicida (Phdp) is the causative agent of fish photobacteriosis (pasteurellosis) in cultured cobia (Rachycentron canadum) in Taiwan. A component was purified from the extracellular products (ECP) of the bacterium strain 9205 by fast protein liquid chromatography (FPLC) and identified as a phospholipase. An N-terminal sequence of 10 amino acid residues, QDQPNLDPGK, was determined by mass spectroscopy (MS) and found to be identical with that of another Phdp phospholipase (GenBank accession no. BAB85814) at positions 21 to 30. The corresponding gene sequence of the phospholipase (GenBank accession no. AB071137) was employed to design primers for amplification of the sequence by the polymerase chain reaction (PCR). The PCR products were transformed into Escherichia coli, and a recombinant protein product was obtained which was purified as a His-tag fusion protein by Ni-metal affinity chromatography. A single 43-kDa band was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Phosphatidylcholine was degraded by this protein to lysophosphatidylcholine and a fatty acid. These products were characterized by thin-layer (TLC) and gas chromatography (GC), respectively, allowing the identification of the protein as a phospholipase A2. The recombinant protein had maximum enzymatic activity between pH 4 and 7, and at 40 degrees C. The activity was inhibited by Zn(2+) and Cu(2+), activated by Ca(2+) and Mg(2+), and completely inactivated by dexamethasone and p-bromophenacyl bromide. A rabbit antiserum against the recombinant protein neutralized the phospholipase A2 activity in the ECP of Phdp strain 9205 and the recombinant protein itself. The recombinant protein was toxic to cobia of about 5 g weight with an LD50 value between 2 and 4 microg protein/g fish. The results revealed phospholipase A2 as a fish toxin in the ECP of Phdp strain 9205.

  13. Bone Matrix Proteins: Isolation and Characterization of a Novel Cell-binding Keratan Sulfate Proteoglycan (Osteoadherin) from Bovine Bone

    PubMed Central

    Wendel, Mikael; Sommarin, Yngve; Heinegård, Dick

    1998-01-01

    A small cell-binding proteoglycan for which we propose the name osteoadherin was extracted from bovine bone with guanidine hydrochloride–containing EDTA. It was purified to homogeneity using a combination of ion-exchange chromatography, hydroxyapatite chromatography, and gel filtration. The Mr of the proteoglycan was 85,000 as determined by SDS-PAGE. The protein is rich in aspartic acid, glutamic acid, and leucine. Two internal octapeptides from the proteoglycan contained the sequences Glu-Ile-Asn-Leu-Ser-His-Asn-Lys and Arg-Asp-Leu-Tyr-Phe-Asn-Lys-Ile. These sequences are not previously described, and support the notion that osteoadherin belongs to the family of leucine-rich repeat proteins. A monospecific antiserum was raised in rabbits. An enzyme-linked immunosorbent assay was developed, and showed the osteoadherin content of bone extracts to be 0.4 mg/g of tissue wet weight, whereas none was found in extracts of various other bovine tissues. Metabolic labeling of primary bovine osteoblasts followed by immunoprecipitation showed the cells to synthesize and secrete the proteoglycan. Digesting the immunoprecipitated osteoadherin with N-glycosidase reduced its apparent size to 47 kD, thus showing the presence of several N-linked oligosaccharides. Digestion with keratanase indicated some of the oligosaccharides to be extended to keratan sulfate chains. In immunohistochemical studies of the bovine fetal rib growth plate, osteoadherin was exclusively identified in the primary bone spongiosa. Osteoadherin binds to hydroxyapatite. A potential function of this proteoglycan is to bind cells, since we showed it to be as efficient as fibronectin in promoting osteoblast attachment in vitro. The binding appears to be mediated by the integrin αvβ3, since this was the only integrin isolated by osteoadherin affinity chromatography of surface-iodinated osteoblast extracts. PMID:9566981

  14. Hydroquinone: O-glucosyltransferase from cultivated Rauvolfia cells: enrichment and partial amino acid sequences.

    PubMed

    Arend, J; Warzecha, H; Stöckigt, J

    2000-01-01

    Plant cell suspension cultures of Rauvolfia are able to produce a high amount of arbutin by glucosylation of exogenously added hydroquinone. A four step purification procedure using anion exchange, hydrophobic interaction, hydroxyapatite-chromatography and chromatofocusing delivered in a yield of 0.5%, an approximately 390 fold enrichment of the involved glucosyltransferase. SDS-PAGE showed a M(r) for the enzyme of 52 kDa. Proteolysis of the pure enzyme with endoproteinase LysC revealed six peptide fragments with 9-23 amino acids which were sequenced. Sequence alignment of the six peptides showed high homologies to glycosyltransferases from other higher plants.

  15. [Laser Raman and infrared spectrum analysis of low-density lipoproteins purified from hen egg yolk].

    PubMed

    Xue, Hui-jun; Sun, Run-guang; Wang, Xiao-mei; Chang, Yi-guang

    2010-11-01

    During the experiment, diversified proteins were separated from hen egg yolk by ammonium sulphate rapid fractionation, and pure LDL was obtained after filtrating through Sephadex G-200 chromatography. After the qualitative detection of SDS-PAGE, the authors discovered that LDL consists of five major apoprotein. The Raman and infrared spectrum showed CH2 asymmetric stretching and symmetric stretching mode. However, the authors found C==O stretching vibrations of protein peptide bonds and N+ (CH3)3 asymmetric stretching vibration from the choline group in phospholipids. Laser Raman and infrared spectrum analysis of LDL provided useful information for studying their structure.

  16. Evidence of land plant affinity for the Devonian fossil Protosalvinia (Foerstia)

    USGS Publications Warehouse

    Romankiw, L.A.; Hatcher, P.G.; Roen, J.B.

    1988-01-01

    The Devonian plant fossil Protosalvinia (Foerstia) has been examined by solid-state 13C nuclear magnetic resonance spectroscopy (NMR) and pyrolysis-gas chromatography-mass spectrometry (PY-GC-MS). Results of these studies reveal that the chemical structure of Protosalvinia is remarkably similar to that of coalified wood. A well-defined phenolic carbon peak in the NMR spectra and the appearance of phenol and alkylated phenols in pyrolysis products are clearly indicative of lignin-like compounds. These data represent significant new information on the chemical nature of Protosalvinia and provide the first substantial organic geochemical evidence for land plant affinity. -Authors

  17. Production of Capsular Polysaccharide of Streptococcus pneumoniae Type 14 and Its Purification by Affinity Chromatography

    PubMed Central

    Suárez, Norma; Fraguas, Laura Franco; Texeira, Esther; Massaldi, Hugo; Batista-Viera, Francisco; Ferreira, Fernando

    2001-01-01

    We describe a rapid and efficient method for producing the capsular polysaccharide of Streptococcus pneumoniae by fermentation on tryptic soy broth and purification of this compound by using immobilized soybean lectin as an affinity adsorbent. In principle, the same strategy can be used to produce purified capsular polysaccharides from other streptococcal serotypes by selecting the appropriate lectin adsorbents. PMID:11157270

  18. Evaluation of a combinatorial approach to prion inactivation using an oxidizing agent, SDS, and proteinase K.

    PubMed

    Smith, Jodi D; Nicholson, Eric M; Greenlee, Justin J

    2013-07-25

    Prions demonstrate an unusual resistance to methods effective at inactivating conventional microorganisms. This has resulted in a very tangible and difficult infection control challenge to the medical and veterinary communities, as well as animal agriculture and related industries. Currently accepted practices of harsh chemical treatments such as prolonged exposure to sodium hydroxide or sodium hypochlorite, or autoclaving are not suitable in many situations. Less caustic and more readily applicable treatments to contaminated environments are therefore desirable. We recently demonstrated that exposure of the RML scrapie agent to a commercial product containing sodium percarbonate (SPC-P) with or without sodium dodecyl sulfate (SDS) rendered PrP(Sc) sensitive to proteinase K (PK), but did not eliminate infectivity. The current study was designed to evaluate the efficacy of a combinatorial approach to inactivating prions by exposing RML-positive brain homogenate to SPC-P and SDS followed by PK. Treated samples were evaluated for PrP(Sc)-immunoreactivity by western blot, and residual infectivity by mouse bioassay. Treatment of infected brain homogenate with SPC-P and SDS followed by PK exposure resulted in a 4-5 log10 reduction in infectivity when bioassayed in tga20 mice. This study demonstrates that exposure of the RML scrapie agent to SPC-P and SDS followed by PK markedly reduces, but does not eliminate infectivity. The results of this study encourage further investigation into whether consecutive or concomitant exposure to sodium percarbonate, SDS, and a protease may serve as a viable and non-caustic option for prion inactivation.

  19. Sample displacement chromatography as a method for purification of proteins and peptides from complex mixtures

    PubMed Central

    Gajdosik, Martina Srajer; Clifton, James; Josic, Djuro

    2012-01-01

    Sample displacement chromatography (SDC) in reversed-phase and ion-exchange modes was introduced approximately twenty years ago. This method takes advantage of relative binding affinities of components in a sample mixture. During loading, there is a competition among different sample components for the sorption on the surface of the stationary phase. SDC was first used for the preparative purification of proteins. Later, it was demonstrated that this kind of chromatography can also be performed in ion-exchange, affinity and hydrophobic-interaction mode. It has also been shown that SDC can be performed on monoliths and membrane-based supports in both analytical and preparative scale. Recently, SDC in ion-exchange and hydrophobic interaction mode was also employed successfully for the removal of trace proteins from monoclonal antibody preparations and for the enrichment of low abundance proteins from human plasma. In this review, the principals of SDC are introduced, and the potential for separation of proteins and peptides in micro-analytical, analytical and preparative scale is discussed. PMID:22520159

  20. Flagellin diversity in Clostridium botulinum groups I and II: a new strategy for strain identification.

    PubMed

    Paul, Catherine J; Twine, Susan M; Tam, Kevin J; Mullen, James A; Kelly, John F; Austin, John W; Logan, Susan M

    2007-05-01

    Strains of Clostridium botulinum are traditionally identified by botulinum neurotoxin type; however, identification of an additional target for typing would improve differentiation. Isolation of flagellar filaments and analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that C. botulinum produced multiple flagellin proteins. Nano-liquid chromatography-tandem mass spectrometry (nLC-MS/MS) analysis of in-gel tryptic digests identified peptides in all flagellin bands that matched two homologous tandem flagellin genes identified in the C. botulinum Hall A genome. Designated flaA1 and flaA2, these open reading frames encode the major structural flagellins of C. botulinum. Colony PCR and sequencing of flaA1/A2 variable regions classified 80 environmental and clinical strains into group I or group II and clustered isolates into 12 flagellar types. Flagellar type was distinct from neurotoxin type, and epidemiologically related isolates clustered together. Sequencing a larger PCR product, obtained during amplification of flaA1/A2 from type E strain Bennett identified a second flagellin gene, flaB. LC-MS analysis confirmed that flaB encoded a large type E-specific flagellin protein, and the predicted molecular mass for FlaB matched that observed by SDS-PAGE. In contrast, the molecular mass of FlaA was 2 to 12 kDa larger than the mass predicted by the flaA1/A2 sequence of a given strain, suggesting that FlaA is posttranslationally modified. While identification of FlaB, and the observation by SDS-PAGE of different masses of the FlaA proteins, showed the flagellin proteins of C. botulinum to be diverse, the presence of the flaA1/A2 gene in all strains examined facilitates single locus sequence typing of C. botulinum using the flagellin variable region.

  1. Flagellin Diversity in Clostridium botulinum Groups I and II: a New Strategy for Strain Identification▿

    PubMed Central

    Paul, Catherine J.; Twine, Susan M.; Tam, Kevin J.; Mullen, James A.; Kelly, John F.; Austin, John W.; Logan, Susan M.

    2007-01-01

    Strains of Clostridium botulinum are traditionally identified by botulinum neurotoxin type; however, identification of an additional target for typing would improve differentiation. Isolation of flagellar filaments and analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that C. botulinum produced multiple flagellin proteins. Nano-liquid chromatography-tandem mass spectrometry (nLC-MS/MS) analysis of in-gel tryptic digests identified peptides in all flagellin bands that matched two homologous tandem flagellin genes identified in the C. botulinum Hall A genome. Designated flaA1 and flaA2, these open reading frames encode the major structural flagellins of C. botulinum. Colony PCR and sequencing of flaA1/A2 variable regions classified 80 environmental and clinical strains into group I or group II and clustered isolates into 12 flagellar types. Flagellar type was distinct from neurotoxin type, and epidemiologically related isolates clustered together. Sequencing a larger PCR product, obtained during amplification of flaA1/A2 from type E strain Bennett identified a second flagellin gene, flaB. LC-MS analysis confirmed that flaB encoded a large type E-specific flagellin protein, and the predicted molecular mass for FlaB matched that observed by SDS-PAGE. In contrast, the molecular mass of FlaA was 2 to 12 kDa larger than the mass predicted by the flaA1/A2 sequence of a given strain, suggesting that FlaA is posttranslationally modified. While identification of FlaB, and the observation by SDS-PAGE of different masses of the FlaA proteins, showed the flagellin proteins of C. botulinum to be diverse, the presence of the flaA1/A2 gene in all strains examined facilitates single locus sequence typing of C. botulinum using the flagellin variable region. PMID:17351097

  2. A dual protease approach for expression and affinity purification of recombinant proteins.

    PubMed

    Raran-Kurussi, Sreejith; Waugh, David S

    2016-07-01

    We describe a new method for affinity purification of recombinant proteins using a dual protease protocol. Escherichia coli maltose binding protein (MBP) is employed as an N-terminal tag to increase the yield and solubility of its fusion partners. The MBP moiety is then removed by rhinovirus 3C protease, prior to purification, to yield an N-terminally His6-tagged protein. Proteins that are only temporarily rendered soluble by fusing them to MBP are readily identified at this stage because they will precipitate after the MBP tag is removed by 3C protease. The remaining soluble His6-tagged protein, if any, is subsequently purified by immobilized metal affinity chromatography (IMAC). Finally, the N-terminal His6 tag is removed by His6-tagged tobacco etch virus (TEV) protease to yield the native recombinant protein, and the His6-tagged contaminants are removed by adsorption during a second round of IMAC, leaving only the untagged recombinant protein in the column effluent. The generic strategy described here saves time and effort by removing insoluble aggregates at an early stage in the process while also reducing the tendency of MBP to "stick" to its fusion partners during affinity purification. Published by Elsevier Inc.

  3. A Dual Protease Approach for Expression and Affinity Purification of Recombinant Proteins

    PubMed Central

    Raran-Kurussi, Sreejith; Waugh, David S.

    2016-01-01

    We describe a new method for affinity purification of recombinant proteins using a dual protease protocol. Escherichia coli maltose binding protein (MBP) is employed as an N-terminal tag to increase the yield and solubility of its fusion partners. The MBP moiety is then removed by rhinovirus 3C protease, prior to purification, to yield an N-terminally His6-tagged protein. Proteins that are only temporarily rendered soluble by fusing them to MBP are readily identified at this stage because they will precipitate after the MBP tag is removed by 3C protease. The remaining soluble His6-tagged protein, if any, is subsequently purified by immobilized metal affinity chromatography (IMAC). Finally, the N-terminal His6 tag is removed by His6-tagged tobacco etch virus (TEV) protease to yield the native recombinant protein, and the His6-tagged contaminants are removed by adsorption during a second round of IMAC, leaving only the untagged recombinant protein in the column effluent. The generic strategy described here saves time and effort by removing insoluble aggregates at an early stage in the process while also reducing the tendency of MBP to “stick” to its fusion partners during affinity purification. PMID:27105777

  4. Gel electrophoretic isolation, in the hundred microgram range, of recombinant SDS-syntaxin from sea urchin egg cortical vesicles.

    PubMed

    Li, Y M; Chrambach, A

    2001-11-01

    %. S1, isolated from SDS-PAGE, exhibits an apparent Mr of 22.7 kDa, S2 one of 34.5 kDa, similar to the value of 32.6 kDa expected from the structure of syntaxin. The absence of S2 from the electroeluate re-electrophoresed at 0 degrees C and their molecular weight relationship suggest a proteolytic transformation of S2 to S1.

  5. Free radicals impair the anti-oxidative stress activity of DJ-1 through the formation of SDS-resistant dimer.

    PubMed

    Yasuda, Tatsuki; Niki, Takeshi; Ariga, Hiroyoshi; Iguchi-Ariga, Sanae M M

    2017-04-01

    DJ-1 is a causative gene for familial Parkinson's disease (PD). Loss-of-function of DJ-1 protein is suggested to contribute to the onset of PD, but the causes of DJ-1 dysfunction remain insufficiently elucidated. In this study, we found that the SDS-resistant irreversible dimer of DJ-1 protein was formed in human dopaminergic neuroblastoma SH-SY5Y cells when the cells were exposed to massive superoxide inducers such as paraquat and diquat. The dimer was also formed in vitro by superoxide in PQ redox cycling system and hydroxyl radical produced in Fenton reaction. We, thus, found a novel phenomenon that free radicals directly affect DJ-1 to form SDS-resistant dimers. Moreover, the formation of the SDS-resistant dimer impaired anti-oxidative stress activity of DJ-1 both in cell viability assay and H 2 O 2 -elimination assay in vitro. Similar SDS-resistant dimers were steadily formed with several mutants of DJ-1 found in familial PD patients. These findings suggest that DJ-1 is impaired due to the formation of SDS-resistant dimer when the protein is directly attacked by free radicals yielded by external and internal stresses and that the DJ-1 impairment is one of the causes of sporadic PD.

  6. Development of the Space Debris Sensor (SDS)

    NASA Technical Reports Server (NTRS)

    Hamilton, Joe; Liou, J. -C.; Anz-Meador, P.; Matney, M.; Christiansen, E.

    2017-01-01

    Debris Resistive/Acoustic Grid Orbital Navy-NASA Sensor (DRAGONS) is an impact sensor designed to detect and characterize collisions with small orbital debris: from 50 microns to greater than 1millimeter debris size detection; Characterizes debris size, speed, direction, and density. The Space Debris Sensor (SDS) is a flight demonstration of DRAGONS on the International Space Station: Approximately 1 square meter of detection area facing the ISS velocity vector; Minimum two year mission on Columbus External Payloads Facility (EPF); Minimal obstruction from ISS hardware; Development is nearing final checkout and integration with the ISS; Current launch schedule is SpaceX13, about September 2017, or SpaceX14, about Jan 2018.

  7. A rapid method for isolation and purification of an anticoagulant from Whitmania pigra.

    PubMed

    Zhong, Shan; Cui, Zheng; Sakura, Naoki; Wang, Dong; Li, Jianlin; Zhai, Yan

    2007-05-01

    Whitmania pigra is common in China and has been used as a traditional Chinese anticoagulant medicine for years, but its effective components are unknown to scientists. In this article we report a rapid method for isolation and purification of an anticoagulant from W. pigra for the first time. An acetone-water extract of W. pigra was subjected to anion-exchange chromatography on a Sephadex DEAE A-50 column, and gel permeation chromatography on Sephadex G-25 and Sephadex LH-20 columns successively, which afforded a fraction with potent anticoagulant activity. An anticoagulant was isolated and purified from this fraction by reversed-phase high-performance liquid chromatography (RP-HPLC). It was identified as a single pure substance by RP-HPLC and sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE). This component was named whitmanin and its molecular weight was determined as 8608 Da by matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI-TOF-MS). (c) 2006 John Wiley & Sons, Ltd.

  8. A Streamlined Western Blot Exercise: An Efficient and Greener Approach in the Laboratory Classroom

    ERIC Educational Resources Information Center

    Ness, Traci L.; Robinson, Rebekah L.; Mojadedi, Wais; Peavy, Lydia; Weiland, Mitch H.

    2015-01-01

    SDS-PAGE and western blotting are two commonly taught protein detection techniques in biochemistry and molecular biology laboratory classrooms. A pitfall associated with incorporating these techniques into the laboratory is the significant wait times that do not allow students to obtain timely results. The waiting associated with SDS-PAGE comes…

  9. High-throughput SISCAPA quantitation of peptides from human plasma digests by ultrafast, liquid chromatography-free mass spectrometry.

    PubMed

    Razavi, Morteza; Frick, Lauren E; LaMarr, William A; Pope, Matthew E; Miller, Christine A; Anderson, N Leigh; Pearson, Terry W

    2012-12-07

    We investigated the utility of an SPE-MS/MS platform in combination with a modified SISCAPA workflow for chromatography-free MRM analysis of proteotypic peptides in digested human plasma. This combination of SISCAPA and SPE-MS/MS technology allows sensitive, MRM-based quantification of peptides from plasma digests with a sample cycle time of ∼7 s, a 300-fold improvement over typical MRM analyses with analysis times of 30-40 min that use liquid chromatography upstream of MS. The optimized system includes capture and enrichment to near purity of target proteotypic peptides using rigorously selected, high affinity, antipeptide monoclonal antibodies and reduction of background peptides using a novel treatment of magnetic bead immunoadsorbents. Using this method, we have successfully quantitated LPS-binding protein and mesothelin (concentrations of ∼5000 ng/mL and ∼10 ng/mL, respectively) in human plasma. The method eliminates the need for upstream liquid-chromatography and can be multiplexed, thus facilitating quantitative analysis of proteins, including biomarkers, in large sample sets. The method is ideal for high-throughput biomarker validation after affinity enrichment and has the potential for applications in clinical laboratories.

  10. Purification and Characterization of a Mucin Specific Mycelial Lectin from Aspergillus gorakhpurensis: Application for Mitogenic and Antimicrobial Activity

    PubMed Central

    Singh, Ram Sarup; Kaur, Hemant Preet; Singh, Jatinder

    2014-01-01

    Background Lectins are carbohydrate binding proteins or glycoproteins that bind reversibly to specific carbohydrates present on the apposing cells, which are responsible for their ability to agglutinate red blood cells, lymphocytes, fibroblasts, etc. Interest in lectins has been intensified due to their carbohydrate specificity as they can be valuable reagents for the investigation of cell surface sugars, purification and characterization of glycoproteins. The present study reports the purification, characterization and evaluation of mitogenic and antimicrobial potential of a mycelial lectin from Aspergillus gorakhpurensis. Methods Affinity chromatography on mucin-sepharose column was carried out for purification of Aspergillus gorakhpurensis lectin. The lectin was characterized for physico-chemical parameters. Mitogenic potential of the lectin was evaluated against splenocytes of Swiss albino mice by MTT assay. Antimicrobial activity of the purified lectin has also been evaluated by disc diffusion assay. Results Single-step affinity purification resulted in 18.6-fold purification of the mycelial lectin. The molecular mass of the lectin was found to be 70 kDa and it was composed of two subunits of 34.8 kDa as determined by gel filtration chromatography, SDS-PAGE and MALDI-TOF analysis. pH optima of the lectin was found to be 6.5–9.5, while optimum temperature for lectin activity was 20–30°C. Lectin was stable within a pH range of 7.0–10.5 and showed fair thermostability. EDTA did not affect lectin activity whereas it was found susceptible to the denaturants tested. MTT assay revealed strong mitogenic potential of A. gorakhpurensis lectin at a concentration upto 150 µg/mL. Antimicrobial activity assay showed its potent antibacterial activity against Bacillus cereus, Staphylococcous aureus and Escherichia coli and marginal antifungal activity against Saccharomyces cerevisiae. Conclusion This is the first report on the mitogenic and antimicrobial potential of

  11. Purification and characterization of a mucin specific mycelial lectin from Aspergillus gorakhpurensis: application for mitogenic and antimicrobial activity.

    PubMed

    Singh, Ram Sarup; Kaur, Hemant Preet; Singh, Jatinder

    2014-01-01

    Lectins are carbohydrate binding proteins or glycoproteins that bind reversibly to specific carbohydrates present on the apposing cells, which are responsible for their ability to agglutinate red blood cells, lymphocytes, fibroblasts, etc. Interest in lectins has been intensified due to their carbohydrate specificity as they can be valuable reagents for the investigation of cell surface sugars, purification and characterization of glycoproteins. The present study reports the purification, characterization and evaluation of mitogenic and antimicrobial potential of a mycelial lectin from Aspergillus gorakhpurensis. Affinity chromatography on mucin-sepharose column was carried out for purification of Aspergillus gorakhpurensis lectin. The lectin was characterized for physico-chemical parameters. Mitogenic potential of the lectin was evaluated against splenocytes of Swiss albino mice by MTT assay. Antimicrobial activity of the purified lectin has also been evaluated by disc diffusion assay. Single-step affinity purification resulted in 18.6-fold purification of the mycelial lectin. The molecular mass of the lectin was found to be 70 kDa and it was composed of two subunits of 34.8 kDa as determined by gel filtration chromatography, SDS-PAGE and MALDI-TOF analysis. pH optima of the lectin was found to be 6.5-9.5, while optimum temperature for lectin activity was 20-30 °C. Lectin was stable within a pH range of 7.0-10.5 and showed fair thermostability. EDTA did not affect lectin activity whereas it was found susceptible to the denaturants tested. MTT assay revealed strong mitogenic potential of A. gorakhpurensis lectin at a concentration upto 150 µg/mL. Antimicrobial activity assay showed its potent antibacterial activity against Bacillus cereus, Staphylococcous aureus and Escherichia coli and marginal antifungal activity against Saccharomyces cerevisiae. This is the first report on the mitogenic and antimicrobial potential of Aspergillus gorakhpurensis lectin. The

  12. Sequence-Specific Affinity Chromatography of Bacterial Small Regulatory RNA-Binding Proteins from Bacterial Cells.

    PubMed

    Gans, Jonathan; Osborne, Jonathan; Cheng, Juliet; Djapgne, Louise; Oglesby-Sherrouse, Amanda G

    2018-01-01

    Bacterial small RNA molecules (sRNAs) are increasingly recognized as central regulators of bacterial stress responses and pathogenesis. In many cases, RNA-binding proteins are critical for the stability and function of sRNAs. Previous studies have adopted strategies to genetically tag an sRNA of interest, allowing isolation of RNA-protein complexes from cells. Here we present a sequence-specific affinity purification protocol that requires no prior genetic manipulation of bacterial cells, allowing isolation of RNA-binding proteins bound to native RNA molecules.

  13. Web Page Design.

    ERIC Educational Resources Information Center

    Lindsay, Lorin

    Designing a web home page involves many decisions that affect how the page will look, the kind of technology required to use the page, the links the page will provide, and kinds of patrons who can use the page. The theme of information literacy needs to be built into every web page; users need to be taught the skills of sorting and applying…

  14. Thermodynamics of Sodium Dodecyl Sulfate (SDS) Micellization: An Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Marcolongo, Juan P.; Mirenda, Martin

    2011-01-01

    An undergraduate laboratory experiment is presented that allows a thermodynamic characterization of micelle formation of sodium dodecyl sulfate (SDS) in aqueous solutions. The critical micelle concentration (CMC) and the degree of micelle ionization (alpha) are obtained at different temperatures by conductimetry. The molar standard free energy…

  15. Antimicrobial activity of a 48-kDa protease (AMP48) from Artocarpus heterophyllus latex.

    PubMed

    Siritapetawee, J; Thammasirirak, S; Samosornsuk, W

    2012-01-01

    Artocarpus heterophyllus (jackfruit) is a latex producing plant. Plant latex is produced from secretory cells and contains many intergradients. It also has been used in folk medicine. This study aimed to purify and characterize the biological activities of a protease from jackfruit latex. A protease was isolated and purified from crude latex of a jackfruit tree by acid precipitation and ion exchange chromatography. The proteolytic activities of protein were tested using gelatin- and casein-zymography. The molecular weight and isoelectric point (pl) of protein were analysed by SDS/12.5% PAGE and 2D-PAGE, respectively. Antimicrobial activity of protein was analysed by broth microdilution method. In addition, the antibacterial activity of protein against Pseudomonas aeruginosa ATCC 27853 was observed and measured using atomic force microscopy (AFM) technique. The purified protein contained protease activity by digesting gelatin- and casein-substrates. The protease was designated as antimicrobial protease-48 kDa or AMP48 due to its molecular mass on SDS-PAGE was approximately 48 kDa. The isoelectric point (pl) of AMP48 was approximately 4.2. In addition, AMP48 contained antimicrobial activities by it could inhibit the growths of Pseudomonas aeruginosa ATCC 27853 and clinical isolated Candida albicans at minimum inhibitory concentration (MIC) 2.2 mg/ml and Minimum microbicidal concentration (MMC) 8.8 mg/ml. AFM image also supported the antimicrobial activities of AMP48 by the treated bacterial morphology and size were altered from normal.

  16. A comparative evaluation of software for the analysis of liquid chromatography-tandem mass spectrometry data from isotope coded affinity tag experiments.

    PubMed

    Moulder, Robert; Filén, Jan-Jonas; Salmi, Jussi; Katajamaa, Mikko; Nevalainen, Olli S; Oresic, Matej; Aittokallio, Tero; Lahesmaa, Riitta; Nyman, Tuula A

    2005-07-01

    The options available for processing quantitative data from isotope coded affinity tag (ICAT) experiments have mostly been confined to software specific to the instrument of acquisition. However, recent developments with data format conversion have subsequently increased such processing opportunities. In the present study, data sets from ICAT experiments, analysed with liquid chromatography/tandem mass spectrometry (MS/MS), using an Applied Biosystems QSTAR Pulsar quadrupole-TOF mass spectrometer, were processed in triplicate using separate mass spectrometry software packages. The programs Pro ICAT, Spectrum Mill and SEQUEST with XPRESS were employed. Attention was paid towards the extent of common identification and agreement of quantitative results, with additional interest in the flexibility and productivity of these programs. The comparisons were made with data from the analysis of a specifically prepared test mixture, nine proteins at a range of relative concentration ratios from 0.1 to 10 (light to heavy labelled forms), as a known control, and data selected from an ICAT study involving the measurement of cytokine induced protein expression in human lymphoblasts, as an applied example. Dissimilarities were detected in peptide identification that reflected how the associated scoring parameters favoured information from the MS/MS data sets. Accordingly, there were differences in the numbers of peptides and protein identifications, although from these it was apparent that both confirmatory and complementary information was present. In the quantitative results from the three programs, no statistically significant differences were observed.

  17. Chiral separation of vinpocetine using cyclodextrin-modified micellar electrokinetic chromatography.

    PubMed

    Wan Ibrahim, Wan Aini; Abd Wahib, Siti Munirah; Hermawan, Dadan; Sanagi, Mohd Marsin; Aboul-Enein, Hassan Y

    2012-03-01

    A cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC) technique has been developed for enantioseparation of vinpocetine using an inexpensive 2-hydroxypropyl-β-CD (HP-β-CD) as the chiral selector (CS). The best chiral separation was achieved using 40 mM HP-β-CD as the CS in 50 mM phosphate buffer (pH 7.0) consisting of 40 mM sodium dodecyl sulfate (SDS) at a separation temperature and separation voltage of 25°C and 25 kV, respectively. To the author's best knowledge, this is the first CD-MEKC study able to successfully separate the four stereoisomer of vinpocetine in separation time of 9.5 min and resolution of 1.04-3.87. Copyright © 2012 Wiley Periodicals, Inc.

  18. ANALYSIS OF DRUG-PROTEIN BINDING BY ULTRAFAST AFFINITY CHROMATOGRAPHY USING IMMOBILIZED HUMAN SERUM ALBUMIN

    PubMed Central

    Mallik, Rangan; Yoo, Michelle J.; Briscoe, Chad J.; Hage, David S.

    2010-01-01

    Human serum albumin (HSA) was explored for use as a stationary phase and ligand in affinity microcolumns for the ultrafast extraction of free drug fractions and the use of this information for the analysis of drug-protein binding. Warfarin, imipramine, and ibuprofen were used as model analytes in this study. It was found that greater than 95% extraction of all these drugs could be achieved in as little as 250 ms on HSA microcolumns. The retained drug fraction was then eluted from the same column under isocratic conditions, giving elution in less than 40 s when working at 4.5 mL/min. The chromatographic behavior of this system gave a good fit with that predicted by computer simulations based on a reversible, saturable model for the binding of an injected drug with immobilized HSA. The free fractions measured by this method were found to be comparable to those determined by ultrafiltration, and equilibrium constants estimated by this approach gave good agreement with literature values. Advantages of this method include its speed and the relatively low cost of microcolumns that contain HSA. The ability of HSA to bind many types of drugs also creates the possibility of using the same affinity microcolumn to study and measure the free fractions for a variety of pharmaceutical agents. These properties make this technique appealing for use in drug binding studies and in the high-throughput screening of new drug candidates. PMID:20227701

  19. Can we beat the biotin-avidin pair?: cucurbit[7]uril-based ultrahigh affinity host-guest complexes and their applications.

    PubMed

    Shetty, Dinesh; Khedkar, Jayshree K; Park, Kyeng Min; Kim, Kimoon

    2015-12-07

    The design of synthetic, monovalent host-guest molecular recognition pairs is still challenging and of particular interest to inquire into the limits of the affinity that can be achieved with designed systems. In this regard, cucurbit[7]uril (CB[7]), an important member of the host family cucurbit[n]uril (CB[n], n = 5-8, 10, 14), has attracted much attention because of its ability to form ultra-stable complexes with multiple guests. The strong hydrophobic effect between the host cavity and guests, ion-dipole and dipole-dipole interactions of guests with CB portals helps in cooperative and multiple noncovalent interactions that are essential for realizing such strong complexations. These highly selective, strong yet dynamic interactions can be exploited in many applications including affinity chromatography, biomolecule immobilization, protein isolation, biological catalysis, and sensor technologies. In this review, we summarize the progress in the development of high affinity guests for CB[7], factors affecting the stability of complexes, theoretical insights, and the utility of these high affinity pairs in different challenging applications.

  20. Lp-dual affine surface area

    NASA Astrophysics Data System (ADS)

    Wei, Wang; Binwu, He

    2008-12-01

    According to the notion of Lp-affine surface area by Lutwak, in this paper, we introduce the concept of Lp-dual affine surface area. Further, we establish the affine isoperimetric inequality and the Blaschke-Santaló inequality for Lp-dual affine surface area. Besides, the dual Brunn-Minkowski inequality for Lp-dual affine surface area is presented.

  1. Conformational stability of pGEX-expressed Schistosoma japonicum glutathione S-transferase: a detoxification enzyme and fusion-protein affinity tag.

    PubMed Central

    Kaplan, W.; Hüsler, P.; Klump, H.; Erhardt, J.; Sluis-Cremer, N.; Dirr, H.

    1997-01-01

    A glutathione S-transferase (Sj26GST) from Schistosoma japonicum, which functions in the parasite's Phase II detoxification pathway, is expressed by the Pharmacia pGEX-2T plasmid and is used widely as a fusion-protein affinity tag. It contains all 217 residues of Sj26GST and an additional 9-residue peptide linker with a thrombin cleavage site at its C-terminus. Size-exclusion HPLC (SEC-HPLC) and SDS-PAGE studies indicate that purification of the homodimeric protein under nonreducing conditions results in the reversible formation of significant amounts of 160-kDa and larger aggregates without a loss in catalytic activity. The basis for oxidative aggregation can be ascribed to the high degree of exposure of the four cysteine residues per subunit. The conformational stability of the dimeric protein was studied by urea- and temperature-induced unfolding techniques. Fluorescence-spectroscopy, SEC-HPLC, urea- and temperature-gradient gel electrophoresis, differential scanning microcalorimetry, and enzyme activity were employed to monitor structural and functional changes. The unfolding data indicate the absence of thermodynamically stable intermediates and that the unfolding/refolding transition is a two-state process involving folded native dimer and unfolded monomer. The stability of the protein was found to be dependent on its concentration, with a delta G degree (H2O) = 26.0 +/- 1.7 kcal/mol. The strong relationship observed between the m-value and the size of the protein indicates that the amount of protein surface area exposed to solvent upon unfolding is the major structural determinant for the dependence of the protein's free energy of unfolding on urea concentration. Thermograms obtained by differential scanning microcalorimetry also fitted a two-state unfolding transition model with values of delta Cp = 7,440 J/mol per K, delta H = 950.4 kJ/mol, and delta S = 1,484 J/mol. PMID:9041642

  2. Conformational stability of pGEX-expressed Schistosoma japonicum glutathione S-transferase: a detoxification enzyme and fusion-protein affinity tag.

    PubMed

    Kaplan, W; Hüsler, P; Klump, H; Erhardt, J; Sluis-Cremer, N; Dirr, H

    1997-02-01

    A glutathione S-transferase (Sj26GST) from Schistosoma japonicum, which functions in the parasite's Phase II detoxification pathway, is expressed by the Pharmacia pGEX-2T plasmid and is used widely as a fusion-protein affinity tag. It contains all 217 residues of Sj26GST and an additional 9-residue peptide linker with a thrombin cleavage site at its C-terminus. Size-exclusion HPLC (SEC-HPLC) and SDS-PAGE studies indicate that purification of the homodimeric protein under nonreducing conditions results in the reversible formation of significant amounts of 160-kDa and larger aggregates without a loss in catalytic activity. The basis for oxidative aggregation can be ascribed to the high degree of exposure of the four cysteine residues per subunit. The conformational stability of the dimeric protein was studied by urea- and temperature-induced unfolding techniques. Fluorescence-spectroscopy, SEC-HPLC, urea- and temperature-gradient gel electrophoresis, differential scanning microcalorimetry, and enzyme activity were employed to monitor structural and functional changes. The unfolding data indicate the absence of thermodynamically stable intermediates and that the unfolding/refolding transition is a two-state process involving folded native dimer and unfolded monomer. The stability of the protein was found to be dependent on its concentration, with a delta G degree (H2O) = 26.0 +/- 1.7 kcal/mol. The strong relationship observed between the m-value and the size of the protein indicates that the amount of protein surface area exposed to solvent upon unfolding is the major structural determinant for the dependence of the protein's free energy of unfolding on urea concentration. Thermograms obtained by differential scanning microcalorimetry also fitted a two-state unfolding transition model with values of delta Cp = 7,440 J/mol per K, delta H = 950.4 kJ/mol, and delta S = 1,484 J/mol.

  3. A Light-Responsive Self-Assembly Formed by a Cationic Azobenzene Derivative and SDS as a Drug Delivery System

    NASA Astrophysics Data System (ADS)

    Geng, Shengyong; Wang, Yuzhu; Wang, Liping; Kouyama, Tsutomu; Gotoh, Toshiaki; Wada, Satoshi; Wang, Jin-Ye

    2017-01-01

    The structure of a self-assembly formed from a cationic azobenzene derivative, 4-cholesterocarbonyl-4‧-(N,N,N-triethylamine butyloxyl bromide) azobenzene (CAB) and surfactant sodium dodecyl sulfate (SDS) in aqueous solution was studied by cryo-TEM and synchrotron radiation small-angle X-ray scattering (SAXS). Both unilamellar and multilamellar vesicles could be observed. CAB in vesicles were capable to undergo reversible trans-to-cis isomerization upon UV or visible light irradiation. The structural change upon UV light irradiation could be catched by SAXS, which demonstrated that the interlamellar spacing of the cis-multilamellar vesicles increased by 0.2-0.3 nm. Based on this microstructural change, the release of rhodamine B (RhB) and doxorubicin (DOX) could be triggered by UV irradiation. When incubated NIH 3T3 cells and Bel 7402 cells with DOX-loaded CAB/SDS vesicles, UV irradiation induced DOX release decreased the viability of both cell lines significantly compared with the non-irradiated cells. The in vitro experiment indicated that CAB/SDS vesicles had high efficiency to deliver loaded molecules into cells. The in vivo experiment showed that CAB/SDS vesicles not only have high drug delivery efficiency into rat retinas, but also could maintain high drug concentration for a longer time. CAB/SDS catanionic vesicles may find potential applications as a smart drug delivery system for controlled release by light.

  4. Introduction of structural affinity handles as a tool in selective nucleic acid separations

    NASA Technical Reports Server (NTRS)

    Willson, III, Richard Coale (Inventor); Cano, Luis Antonio (Inventor)

    2011-01-01

    The method is used for separating nucleic acids and other similar constructs. It involves selective introduction, enhancement, or stabilization of affinity handles such as single-strandedness in the undesired (or desired) nucleic acids as compared to the usual structure (e.g., double-strandedness) of the desired (or undesired) nucleic acids. The undesired (or desired) nucleic acids are separated from the desired (or undesired) nucleic acids due to capture by methods including but not limited to immobilized metal affinity chromatography, immobilized single-stranded DNA binding (SSB) protein, and immobilized oligonucleotides. The invention is useful to: remove contaminating genomic DNA from plasmid DNA; remove genomic DNA from plasmids, BACs, and similar constructs; selectively separate oligonucleotides and similar DNA fragments from their partner strands; purification of aptamers, (deoxy)-ribozymes and other highly structured nucleic acids; Separation of restriction fragments without using agarose gels; manufacture recombinant Taq polymerase or similar products that are sensitive to host genomic DNA contamination; and other applications.

  5. Foam capacity and stability of Sodium Dodecyl Sulfate (SDS) on the presence of contaminant coffee and Cd ions in solution

    NASA Astrophysics Data System (ADS)

    Haryanto, B.; Chang, C. H.; Kuo, A. T.; Siswarni, M. Z.; Sinaga, T. M. A.

    2018-02-01

    In this study, the effect of the coffee colloidal particle and Cd ion contaminant on the foam capacity and stability of sodium dodecyl sulfate (SDS) solution was investigated. The foam was generated by using a foam generator. The foam capacity of SDS was first evaluated at different concentrations. After the foam capacity reaching a constant value, the foam stability was then measured by flowing to a column. The results showed that the presence the coffee colloidal particles or Cd ions in the solution would decrease the foam capacity and stability of SDS. In addition, the decreased foam capacity and stability was more pronounced in the presence of coffee colloidal particles than Cd ions. The colloidal particles may have stronger interaction with SDS and thus reduce the formation of the foam.

  6. Quantitation of yeast total proteins in sodium dodecyl sulfate-polyacrylamide gel electrophoresis sample buffer for uniform loading.

    PubMed

    Sheen, Hyukho

    2016-04-01

    Proteins in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) sample buffer are difficult to quantitate due to SDS and reducing agents being in the buffer. Although acetone precipitation has long been used to clean up proteins from detergents and salts, previous studies showed that protein recovery from acetone precipitation varies from 50 to 100% depending on the samples tested. Here, this article shows that acetone precipitates proteins highly efficiently from SDS-PAGE sample buffer and that quantitative recovery is achieved in 5 min at room temperature. Moreover, precipitated proteins are resolubilized with urea/guanidine, rather than with SDS. Thus, the resolubilized samples are readily quantifiable with Bradford reagent without using SDS-compatible assays. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. What reaches the antenna? How to calibrate odor flux and ligand-receptor affinities.

    PubMed

    Andersson, Martin N; Schlyter, Fredrik; Hill, Sharon Rose; Dekker, Teun

    2012-06-01

    Physiological studies on olfaction frequently ignore the airborne quantities of stimuli reaching the sensory organ. We used a gas chromatography-calibrated photoionization detector to estimate quantities released from standard Pasteur pipette stimulus cartridges during repeated puffing of 27 compounds and verified how lack of quantification could obscure olfactory sensory neuron (OSN) affinities. Chemical structure of the stimulus, solvent, dose, storage condition, puff interval, and puff number all influenced airborne quantities. A model including boiling point and lipophilicity, but excluding vapor pressure, predicted airborne quantities from stimuli in paraffin oil on filter paper. We recorded OSN responses of Drosophila melanogaster, Ips typographus, and Culex quinquefasciatus, to known quantities of airborne stimuli. These demonstrate that inferred OSN tuning width, ligand affinity, and classification can be confounded and require stimulus quantification. Additionally, proper dose-response analysis shows that Drosophila AB3A OSNs are not promiscuous, but highly specific for ethyl hexanoate, with other earlier proposed ligands 10- to 10 000-fold less potent. Finally, we reanalyzed published Drosophila OSN data (DoOR) and demonstrate substantial shifts in affinities after compensation for quantity and puff number. We conclude that consistent experimental protocols are necessary for correct OSN classification and present some simple rules that make calibration, even retroactively, readily possible.

  8. Interaction of SDS with β-galactosidase. A FT-IR study of the influence of detergent concentration and temperature.

    NASA Astrophysics Data System (ADS)

    Muga, A.; Castresana, J.; Arrondo, J. L. R.; López, S.; Bernabeu, C.

    1988-05-01

    The major structure of the enzyme β-galactosidase as studied by FT-IR is β-sheet with maxima in the amide I band at 1639 and 1655 cm -1 in H 2O and 1634 in D 2O. α-helix structure is also present with contribution from β-turns and less-ordered structure. Temperature induces a rearrangement of the structure producing a β-sheet-like conformation. In the presence of the surfactant SDS no big difference in structure is seen at 1% SDS (w:ww) concentration but there is a decrease of 5°C in the midpoint thermal denaturation. In the presence of 10% SDS a different picture is obtained with a higher random structure content.

  9. Approaches to High-Performance Preparative Chromatography of Proteins

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Liu, Fu-Feng; Shi, Qing-Hong

    Preparative liquid chromatography is widely used for the purification of chemical and biological substances. Different from high-performance liquid chromatography for the analysis of many different components at minimized sample loading, high-performance preparative chromatography is of much larger scale and should be of high resolution and high capacity at high operation speed and low to moderate pressure drop. There are various approaches to this end. For biochemical engineers, the traditional way is to model and optimize a purification process to make it exert its maximum capability. For high-performance separations, however, we need to improve chromatographic technology itself. We herein discuss four approaches in this review, mainly based on the recent studies in our group. The first is the development of high-performance matrices, because packing material is the central component of chromatography. Progress in the fabrication of superporous materials in both beaded and monolithic forms are reviewed. The second topic is the discovery and design of affinity ligands for proteins. In most chromatographic methods, proteins are separated based on their interactions with the ligands attached to the surface of porous media. A target-specific ligand can offer selective purification of desired proteins. Third, electrochromatography is discussed. An electric field applied to a chromatographic column can induce additional separation mechanisms besides chromatography, and result in electrokinetic transport of protein molecules and/or the fluid inside pores, thus leading to high-performance separations. Finally, expanded-bed adsorption is described for process integration to reduce separation steps and process time.

  10. Use of T-2 toxin-immobilized amine-activated beads as an efficient affinity purification matrix for the isolation of specific IgY.

    PubMed

    Edupuganti, Soujanya Ratna; Edupuganti, Om Prakash; O'Kennedy, Richard; Defrancq, Eric; Boullanger, Stéphanie

    2013-04-01

    An affinity purification method that isolates T-2 toxin-specific IgY utilizing a T-2-toxin-immobilized column was developed. The T-2 toxin was covalently coupled via a carbonyldiimidazole-activated hydroxyl functional group to amine-activated sepharose beads. The affinity-purified IgY was characterized by gel electrophoresis, fast protein liquid chromatography, enzyme-linked immunosorbant assay, surface plasmon resonance and mass spectrometry. A competitive inhibition ELISA (CI-ELISA) was performed using affinity-purified IgY with a T-2 toxin detection sensitivity of 30 ng/mL, which falls within the maximum permissible limit of 100 ng/mL. The cross reactivity of IgY towards deoxynivalenol, zearalenone, fumonisin B1 and HT-2 was significantly reduced after affinity purification. A surface plasmon resonance (SPR)-based inhibition assay was also applied for quantitative determination of T-2 toxin in spiked wheat samples. The results obtained indicate the feasibility of utilizing this IgY-based assay for the detection of T-2 toxin in food samples.

  11. Physiological and Molecular Biological Characterization of Intracellular Carbonic Anhydrase from the Marine Diatom Phaeodactylum tricornutum1

    PubMed Central

    Satoh, Dan; Hiraoka, Yasutaka; Colman, Brian; Matsuda, Yusuke

    2001-01-01

    A single intracellular carbonic anhydrase (CA) was detected in air-grown and, at reduced levels, in high CO2-grown cells of the marine diatom Phaeodactylum tricornutum (UTEX 642). No external CA activity was detected irrespective of growth CO2 conditions. Ethoxyzolamide (0.4 mm), a CA-specific inhibitor, severely inhibited high-affinity photosynthesis at low concentrations of dissolved inorganic carbon, whereas 2 mm acetazolamide had little effect on the affinity for dissolved inorganic carbon, suggesting that internal CA is crucial for the operation of a carbon concentrating mechanism in P. tricornutum. Internal CA was purified 36.7-fold of that of cell homogenates by ammonium sulfate precipitation, and two-step column chromatography on diethylaminoethyl-sephacel and p-aminomethylbenzene sulfone amide agarose. The purified CA was shown, by SDS-PAGE, to comprise an electrophoretically single polypeptide of 28 kD under both reduced and nonreduced conditions. The entire sequence of the cDNA of this CA was obtained by the rapid amplification of cDNA ends method and indicated that the cDNA encodes 282 amino acids. Comparison of this putative precursor sequence with the N-terminal amino acid sequence of the purified CA indicated that it included a possible signal sequence of up to 46 amino acids at the N terminus. The mature CA was found to consist of 236 amino acids and the sequence was homologous to β-type CAs. Even though the zinc-ligand amino acid residues were shown to be completely conserved, the amino acid residues that may constitute a CO2-binding site appeared to be unique among the β-CAs so far reported. PMID:11500545

  12. Affinity purification of seminalplasmin and characterization of its interaction with calmodulin.

    PubMed Central

    Comte, M; Malnoë, A; Cox, J A

    1986-01-01

    Bull seminalplasmin antagonizes with high potency and selectivity the activating effect of calmodulin on target enzymes [Gietzen & Galla (1985) Biochem. J. 230, 277-280]. In the present paper we establish that seminalplasmin forms a 1:1, Ca2+-dependent and urea-resistant complex with calmodulin. The dissociation constant equals 1.6 nM. In the absence of Ca2+ a low-affinity complex is formed that is disrupted by 4 M-urea. On the basis of these properties, a fast affinity purification of seminalplasmin was developed. The high specificity of seminalplasmin as a calmodulin antagonist was demonstrated for the multipathway-regulated adenylate cyclase of bovine cerebellum. Far-u.v. c.d. properties are consistent with a random form of seminalplasmin in aqueous solution; 23% alpha-helix is induced on interaction with calmodulin. The fluorescence properties of the single tryptophan residue of seminalplasmin are markedly changed on formation of the complex. These studies allowed us to locate tentatively the peptide segment that interacts with calmodulin, and to ascertain the structural homology between seminalplasmin and other calmodulin-binding peptides. Additional material, showing the inhibition of calmodulin-mediated activation of bovine brain phosphodiesterase by melittin and seminalplasmin and also the near-u.v. spectrum of affinity-purified seminalplasmin, has been deposited as supplement SUP 50135 (4 pages) at the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies may be obtained on the terms indicated in Biochem. J. (1986) 233, 5. Images Fig. 2. PMID:3814096

  13. Low molecular weight α-galactosidase from black gram (Vigna mungo): Purification, characterization, and insights towards thermal denaturation.

    PubMed

    M, Ramadevi; Panwar, Deepesh; Joseph, Juby Elsa; Kaira, Gaurav Singh; Kapoor, Mukesh

    2018-06-20

    A hitherto unknown low molecular weight form of α-galactosidase (VM-αGal) from germinating black gram (Vigna mungo) seeds was purified to homogeneity (432 U/mg specific activity, 1542-fold purification) using ion-exchange (DEAE-cellulose, CM-sepharose) and affinity (Con-A Sepharose 4B) chromatography. VM-αGal appeared as a single band ~ 45 kDa on SDS-PAGE and showed optimal activity at pH 5 and 55 °C. Hg 2+ and SDS completely inhibited VM-αGal activity. The K m, V max and catalytic efficiency (k cat /K m ) of VM-αGal for pNPG and raffinose was found to be 0.99, 17.23 mM, 0.413 s -1  mM -1 and 1.66, 0.146 mM ml -1  min -1 , 0.0026 s -1  mM -1 , respectively. VM-αGal was competitively inhibited by galactose (K i 7.70 mM). Thermodynamic parameters [activation enthalpy (ΔH), activation entropy (ΔS) and free energy (ΔG)] of VM-αGal at 45-51 °C showed that the enzyme was in a less energetic state and had susceptibility towards denaturation. Temperature-induced structural unfolding studies of VM-αGal probed by fluorescence, and far-UV CD spectroscopy revealed significant loss in tertiary structure and a steep decline in β-sheet content at 45-65 °C, and above 55 °C, respectively. VM-αGal improved the nutritional quality of soymilk by hydrolyzing the flatulence-causing raffinose family oligosaccharides (26.5% and 18.45% decrease in stachyose and raffinose, respectively). Copyright © 2018. Published by Elsevier B.V.

  14. Automated Hydrophobic Interaction Chromatography Column Selection for Use in Protein Purification

    PubMed Central

    Murphy, Patrick J. M.; Stone, Orrin J.; Anderson, Michelle E.

    2011-01-01

    In contrast to other chromatographic methods for purifying proteins (e.g. gel filtration, affinity, and ion exchange), hydrophobic interaction chromatography (HIC) commonly requires experimental determination (referred to as screening or "scouting") in order to select the most suitable chromatographic medium for purifying a given protein 1. The method presented here describes an automated approach to scouting for an optimal HIC media to be used in protein purification. HIC separates proteins and other biomolecules from a crude lysate based on differences in hydrophobicity. Similar to affinity chromatography (AC) and ion exchange chromatography (IEX), HIC is capable of concentrating the protein of interest as it progresses through the chromatographic process. Proteins best suited for purification by HIC include those with hydrophobic surface regions and able to withstand exposure to salt concentrations in excess of 2 M ammonium sulfate ((NH4)2SO4). HIC is often chosen as a purification method for proteins lacking an affinity tag, and thus unsuitable for AC, and when IEX fails to provide adequate purification. Hydrophobic moieties on the protein surface temporarily bind to a nonpolar ligand coupled to an inert, immobile matrix. The interaction between protein and ligand are highly dependent on the salt concentration of the buffer flowing through the chromatography column, with high ionic concentrations strengthening the protein-ligand interaction and making the protein immobile (i.e. bound inside the column) 2. As salt concentrations decrease, the protein-ligand interaction dissipates, the protein again becomes mobile and elutes from the column. Several HIC media are commercially available in pre-packed columns, each containing one of several hydrophobic ligands (e.g. S-butyl, butyl, octyl, and phenyl) cross-linked at varying densities to agarose beads of a specific diameter 3. Automated column scouting allows for an efficient approach for determining which HIC media

  15. Polyurethane foam loaded with SDS for the adsorption of cationic dyes from aqueous medium: Multivariate optimization of the loading process.

    PubMed

    Robaina, Nicolle F; Soriano, Silvio; Cassella, Ricardo J

    2009-08-15

    This paper reports the development of a new procedure for the adsorption of four cationic dyes (Rhodamine B, Methylene Blue, Crystal Violet and Malachite Green) from aqueous medium employing polyurethane foam (PUF) loaded with sodium dodecylsulfate (SDS) as solid phase. PUF loading process was based on the stirring of 200mg PUF cylinders with acidic solutions containing SDS. The conditions for loading were optimized by response surface methodology (RSM) using a Doehlert design with three variables that were SDS and HCl concentrations and stirring time. Results obtained in the optimization process showed that the stirring time is not a relevant parameter in the PUF loading, evidencing that the transport of SDS from solution to PUF surface is fast. On the other hand, both SDS and HCl concentrations were important parameters causing significant variation in the efficiency of the resulting solid phase for the removal of dyes from solution. At optimized conditions, SDS and HCl concentrations were 4.0 x 10(-4) and 0.90 mol L(-1), respectively. The influence of stirring time was evaluated by univariate methodology. A 20 min stirring time was established in order to make the PUF loading process fast and robust without losing efficiency. The procedure was tested for the removal of the four cationic dyes from aqueous solutions and removal efficiencies always better than 90% were achieved for the two concentrations tested (2.0 x 10(-5) and 1.0 x 10(-4)mol L(-1)).

  16. The first trimeric Galanthus nivalis agglutinin-related lectin of Orchidaceae was found in Dendrobium pendulum: purification, characterization, and effects of stress factors.

    PubMed

    Siripipatthana, Patthraporn; Phaonakrop, Narumon; Roytrakul, Sittiruk; Senawong, Gulsiri; Mudalige-Jayawickrama, Rasika G; Sattayasai, Nison

    2015-07-01

    Trimeric Galanthus nivalis agglutinin-related lectin of Orchidaceae with two conformational forms was first studied in Dendrobium pendulum . It was highly expressed by stress factors. Using mannan-agarose column chromatography, a mannose-binding protein was purified from Dendrobium pendulum Roxb. pseudobulb. After heating in the presence of sodium dodecyl sulfate (SDS) with or without 2-mercaptoethanol, the protein showed one band with molecular mass of 14.0 kDa on SDS-polyacrylamide gel electrophoresis (PAGE). Without heating, three bands were found at positions of 14.0, 39.4, and 41.5 kDa, but a higher amount of 39.4 and 41.5 kDa protein bands were seen in the presence of 2-mercaptoethanol. Liquid chromatography-tandem mass spectrometry and database search indicated that the 14.0 kDa protein band contained three peptide fragments identical to parts of a lectin precursor from Dendrobiu m findleyanum Parish & Rchb.f. Native-PAGE and Ferguson plot showed that the purified protein had two native forms with molecular masses of 44.2 and 45.3 kDa, indicating three 14.0 kDa polypeptide subunits. The purified protein exhibited the agglutination activity with trypsinized chicken erythrocytes. It was then recognized as a Galanthus nivalis agglutinin-related lectin and named D. pendulum agglutinin (DPA). Using reverse transcription-polymerase chain reaction and DNA sequencing, the deduced amino acid sequence of DPA precursor showed the highest homology (96.4%) with a lectin precursor of D. findleyanum and contained three mannose-binding sites. Greater amounts of DPA were found when the pseudobulbs were treated with stress factors including ultraviolet light, abscisic acid, hydrogen peroxide, and acetylene gas.

  17. Recognition and binding of β-lactam antibiotics to bovine serum albumin by frontal affinity chromatography in combination with spectroscopy and molecular docking.

    PubMed

    Li, Qian; Zhang, Tianlong; Bian, Liujiao

    2016-03-01

    Serum albumins are the most abundant carrier proteins in blood plasma and participate in the binding and transportation of various exogenous and endogenous compounds in the body. This work was designed to investigate the recognition and binding of three typical β-lactam antibiotics including penicillin G (Pen G), penicillin V (Pen V) and cefalexin (Cef) with bovine serum albumin (BSA) by frontal affinity chromatography in combination with UV-vis absorption spectra, fluorescence emission spectra, binding site marker competitive experiment and molecular docking under simulated physiological conditions. The results showed that a BSA only bound with one antibiotic molecule in the binding process, and the binding constants for Pen G-BSA, Pen V-BSA and Cef-BSA complexes were 4.22×10(1), 4.86×10(2) and 3.32×10(3) (L/mol), respectively. All the three β-lactam antibiotics were mainly inserted into the subdomain IIA (binding site 1) of BSA by hydrogen bonds and Van der Waals forces. The binding capacity between the antibiotics and BSA was closely related to the functional groups and flexibility of side chains in antibiotics. This study provided an important insight into the molecular recognition and binding interaction of BSA with β-lactam antibiotics, which may be a useful guideline for the innovative clinical medications and new antibiotic designs with effective pharmacological properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Molecular cloning, expression and first antigenic characterization of human astrovirus VP26 structural protein and a C-terminal deleted form.

    PubMed

    Royuela, Enrique; Sánchez-Fauquier, Alicia

    2010-01-01

    The open reading frame 2 (ORF2) of human astrovirus (HAstV) encodes the structural VP26 protein that seems to be the main antigenic viral protein. However, its functional role remains unclear. Bioinformatic predictions revealed that VP29 and VP26 proteins could be involved in virus-cell interaction. In this study, we describe for the first time the cloning and expression in Escherichia coli (E. coli) of a recombinant VP26 (rVP26) protein and a VP26 C-terminal truncated form (VP26 Delta C), followed by purification by NTA-Ni(2+) agarose affinity chromatography. Protein expression and purification were evaluated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot (WB). Then, the purified proteins were evaluated for antigenic properties in enzyme linked immunosorbent assay (ELISA) using a polyclonal antibody (PAb) and a neutralizing monoclonal antibody (nMAb) named PL2, both of them directed to HAstV. The results presented herein indicate that the C-terminal end of the VP26 protein is essential to maintain the neutralizing epitope recognized by nMAb PL2 and that the N-terminus of VP26 protein may contain antigenic lineal-epitopes recognized by PAb. Thus, these recombinant proteins can be ideal tools for further antigenic, biochemical, structural and functional VP26 protein characterization, in order to evaluate its potential role in immunodiagnosis and vaccine studies.

  19. [Identification of NMDA receptor in normal bovine ovary and ovum].

    PubMed

    Tachibana, Naoko; Ikeda, Shu-ichi

    2014-01-01

    To clarify the pathogenesis of anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis in patients without ovarian teratoma, we investigate normal human ovary, normal bovine ovary and bovine ova. On the basis of immunohistochemical studies, normal human ovary expressed NR2B epitope in primordial oocytes. The results of SDS-PAGE and immunoblotting using bovine ovarian tissues and ova, we identified two bands of NR1 and NR2B. Moreover, reverse phase liquid chromatography coupled to tandem mass spectrometry showed peptides fractions of NR1, NR2A, NR2B and NR2C. Immunocytochemical study disclosed that normal bovine oocyte has a strong affinity for a patient's disease-specific IgG. Anti-NMDAR encephalitis involves mainly young women who are in their reproductive age. Ovarian teratoma is important as simultaneous tumor, the percentage of patients with ovarian teratoma is less than 40%. It is obvious that the origin of ovarian teratoma is oocyte. So the existence of NMDAR in normal oocytes is very important to assert that ovary itself is the antigen presenting tissue. And also it is helpful to explain why young women are mainly affected from this disease. It seems to conclude that anti-NMDAR encephalitis is one form of autoimmune synaptic encephalitis and that the antigen presenting tissue is ovary itself.

  20. [Nuclease activity of the recombinant plancitoxin-1-like proteins with mutations in the active site from Trichinella spiralis].

    PubMed

    Liao, Chengshui; Wang, Xiaoli; Tian, Wenjing; Zhang, Mengke; Zhang, Chunjie; Li, Yinju; Wu, Tingcai; Cheng, Xiangchao

    2017-08-25

    Although there are 125 predicted DNase Ⅱ-like family genes in the Trichinella spiralis genome, plancitoxin-1-like (Ts-Pt) contains the HKD motif, a typical conserved region of DNase Ⅱ, in N- and C-terminal. It is generally believed that histidine is the active site in DNase Ⅱ. To study the nuclease activity of recombinant Ts-Pt with mutations in the active site from T. spiralis, different fragments of the mutated Ts-Pt genes were cloned using overlap PCR technique and inserted into the expressing vector pET-28a(+), and transformed into Escherichia coli Rosseta (DE3). The fusion proteins were purified by Ni-NTA affinity chromatography and SDS-PAGE. Nuclease activity of the recombinant proteins was detected by agarose gel electrophoresis and nuclease-zymography. The recombinant plasmids harboring the mutated Ts-Pt genes were constructed and expressed as inclusive body in a prokaryotic expression system. After renaturation in vitro, the recombinant proteins had no nuclease activity according to agarose gel electrophoresis. However, the expressed proteins as inclusive body displayed the ability to degrade DNA after renaturation in gel. And the nuclease activity was not affected after subjected to mutation of active site in N- and C-termini of Ts-Pt. These results provide the basis to study the relationship between DNase Ⅱ-like protein family and infection of T. spiralis.

  1. Purification and biochemical characterization of a D-galactose binding lectin from Japanese sea hare (Aplysia kurodai) eggs.

    PubMed

    Kawsar, S M A; Matsumoto, R; Fujii, Y; Yasumitsu, H; Dogasaki, C; Hosono, M; Nitta, K; Hamako, J; Matsui, T; Kojima, N; Ozeki, Y

    2009-07-01

    A lectin was purified from Japanese sea hare Aplysia kurodai by lactosyl-agarose affinity chromatography. The molecular mass of the lectin was determined to be 56 and 32 kDa by SDS-PAGE under non-reducing and reducing conditions, respectively. It was found to agglutinate trypsinized and glutaraldehyde-fixed rabbit and human erythrocytes in the absence of divalent cations. The lectin exhibited stable thermo-tolerance as it retained hemagglutinating activity for 1 h even at 80 degrees C and showed stability at pH 10. By contrast, it was very sensitive at pH less than 5 and in the presence of the sulfhydryl-group preserving reagent, beta-mercaptoethanol. The hemagglutinating activity by the lectin was specifically inhibited by D-galactose, galacturonic acid, methyl-alpha- and methyl-beta-D-galactopyranoside, lactose, melibiose, and asialofetuin. The association rate constant (k(ass)) and dissociation rate constant (k(diss)) were determined for the lectin to be 4.3 x 10(5) M(-1) x sec(-1) and 2.2 x 10(-3) sec(-1), respectively, using a surface plasmon resonance biosensor. The lectin moderately inhibited cell proliferation in the P388 cell line dose dependently. Interestingly, lectin-treated cells did not show a fragmented DNA ladder as is caused by apoptosis, suggesting that the cell proliferation inhibition was caused by another unknown mechanism.

  2. The belonging of gpMuc, a glycoprotein from Mucuna pruriens seeds, to the Kunitz-type trypsin inhibitor family explains its direct anti-snake venom activity.

    PubMed

    Scirè, Andrea; Tanfani, Fabio; Bertoli, Enrico; Furlani, Emiliano; Nadozie, Hope-Onyekwere N; Cerutti, Helena; Cortelazzo, Alessio; Bini, Luca; Guerranti, Roberto

    2011-07-15

    In Nigeria, Mucuna pruriens seeds are locally prescribed as an oral prophylactic for snake bite and it is claimed that when two seeds are swallowed they protect the individual for a year against snake bites. In order to understand the Mucuna pruriens antisnake properties, the proteins from the acqueous extract of seeds were purified by three chromatographic steps: ConA affinity chromatography, tandem anionic-cationic exchange and gel filtration, obtaining a fraction conventionally called gpMucB. This purified fraction was analysed by SDS-PAGE obtaining 3 bands with apparent masses ranging from 20 to 24 kDa, and by MALDI-TOF which showed two main peaks of 21 and 23 kDa and another small peak of 19 kDa. On the other hand, gel filtration analysis of the native protein indicated a molecular mass of about 70 kDa suggesting that in its native form, gpMucB is most likely an oligomeric multiform protein. Infrared spectroscopy of gpMucB indicated that the protein is particularly thermostable both at neutral and acidic pHs and that it is an all beta protein. All data suggest that gpMucB belongs to the Kunitz-type trypsin inhibitor family explaining the direct anti-snake venom activity of Mucuna pruriens seeds. Copyright © 2011 Elsevier GmbH. All rights reserved.

  3. [Production of recombinant human interleukin-38 and its inhibitory effect on the expression of proinflammatory cytokines in THP-1 cells].

    PubMed

    Yuan, X L; Li, Y; Pan, X H; Zhou, M; Gao, Q Y; Li, M C

    2016-01-01

    Interleukin (IL)-38 is the latest member of the IL-1 cytokine family. However, as a result of lacking efficient method to generate relatively large quantity of IL-38, its precise functions are poorly understood. In the present study, the cloning, expression, purification, and activity analysis of recombinant human IL-38 was described. Human IL-38 cDNA was cloned into the prokaryotic expression vector pET-44. The recombinant IL-38 containing a C-hexahistidine tag was expressed in Escherichia coli BL21 (DE3) which induced by isopropyl-β-D-thiogalactoside. The expressed fusion protein was purified by Ni-NTA affinity chromatography. IL-38 protein was largely found in the soluble fraction. The purified IL-38 appeared a single band on SDS-PAGE, the yield of IL-38 was 4 mg from 1 L of bacterial culture, and the purity was more than 98% with low endotoxin level (<0.1 EU/μg). Western blotting confirmed the identity of the purified protein. Activity analysis showed that IL-38 can inhibit effectively the expression of proinflammatory cytokines, such as tumor necrosis factor-α, IL-1β, IL-17, and monocyte chemoattractant protein-1 in lipopolysaccharide-activated THP-1 cells. The production and characterization of biologically active IL-38 will be beneficial for its potential role in clinical applications.

  4. Molecular cloning, characterization and differential expression of novel phytocystatin gene during tropospheric ozone stress in maize (Zea mays) leaves.

    PubMed

    Ahmad, Rafiq; Zuily-Fodil, Yasmine; Passaquet, Chantal; Ali Khan, Sabaz; Repellin, Anne

    2015-03-01

    In this study, a full-length cDNA encoding a novel phytocystatin gene, designated CC14, was identified in maize leaves. The CC14 gene sequence reported in this study has been deposited in the GenBank database (accession number JF290478). The CC14 gene was cloned into an expression vector pET30 EK/LIC and was then transformed into Escherichia coli strain BL21 (DE3) pLysS to produce a recombinant CC14 protein. The recombinant protein was purified by nickel nitrilotriacetic acid affinity chromatography after induction with 1 mM IPTG. The purified CC14 protein was electrophoresed on SDS-PAGE and a protein 25 kDa in size was observed. Antiprotease activities of the purified recombinant CC14 protein against cysteine proteases and commercially available papain were tested. The results showed that CC14 purified protein suppressed 100% activity of papain and 57-86% plant cysteine protease activity. Moreover, an upregulation of CC14 gene expression was observed after 20 days of ozone stress in maize leaves. Together, these observations concurred to conclude that CC14 gene could potentially be used as a basis for the development of transgenic crops and natural pesticides that resist biotic and abiotic stresses. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  5. Expression, purification and renaturation of truncated human integrin β1 from inclusion bodies of Escherichia coli.

    PubMed

    Shi, Tonglin; Zhang, Lichao; Li, Zhuoyu; Newton, Ian P; Zhang, Quanbin

    2015-03-01

    Integrins are a family of transmembrane receptors and among their members, integrin β1 is one of the best known. It plays a very important role in cell adhesion/migration and in cancer metastasis. Preparation of integrin β1 has a great potential value especially in studies focused on its function. To this end, recombinant plasmids were constructed containing DNA segments representing 454 amino acids of the N-terminal of integrin β1. The recombinant plasmid was transformed into Escherichiacoli BL21 (DE3) cells and after induction by isopropyl-β-D-thiogalactopyranoside (IPTG), the recombinant protein (molecular weight: 53 kD) was expressed, mainly in the form of inclusion bodies. The inclusion bodies were solubilized by 8M urea solution then purified by nickel affinity chromatography. The recombinant protein was renatured by a stepwise dialysis and finally dissolved in phosphate buffered saline. The final yield was approximately 5.4 mg/L of culture and the purity of the renatured recombinant protein was greater than 98% as assessed by SDS-PAGE. The integrity of the protein was shown by Western blot using monoclonal antibodies against his-tag and integrin β1. Its secondary structure was verified as native by circular dichroism spectra and the bioactivity of the recombinant protein was displayed through the conformation switch under Mn(2+) stimulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. The identification of a naturally occurring cell surface growth inhibitor related to a previously described bovine sialoglycopeptide

    NASA Technical Reports Server (NTRS)

    Fattaey, H. K.; Enebo, D. J.; Moos, P. J.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    A 66-kDa sialoglycoprotein has been identified as the parental membrane molecule of an earlier described sialoglycopeptide (SGP), an 18-kDa molecule released by protease treatment of intact bovine cerebral cortex cells that was shown to be a potent inhibitor of cellular proliferation. The 66-kDa parental sialoglycoprotein (p-SGP) was purified approximately 2,400-fold, to apparent homogeneity, from bovine cerebral cortex cell membranes by its release during incubation with 3 M NaCl, preparative isoelectric focusing and lectin affinity chromatography. Although a membrane-associated molecule, the p-SGP appeared to be tightly bound to the cell membrane, since it was not released during incubations in the absence of 3 M NaCl. Incubation of the membrane preparations with 3 M urea proved to be too harsh, and the antigenicity required to follow the purification of the p-SGP was abolished. Analyses by SDS-PAGE, under reducing and nonreducing conditions, suggested that the p-SGP membrane component was a single polypeptide without subunit structure. The p-SGP was shown to be structurally related to the SGP fragment by immunoblots with IgG raised to the SGP inhibitor, and functionally related to the SGP by its ability to inhibit Swiss 3T3 proliferation at concentrations strikingly similar to that previous measured with the SGP fragment.

  7. High-level soluble expression of a thermostable xylanase from thermophilic fungus Thermomyces lanuginosus in Escherichia coli via fusion with OsmY protein.

    PubMed

    Le, Yilin; Wang, Huilei

    2014-07-01

    A thermostable xylanase is encoded by xynA from fungus Thermomyces lanuginosus. The problem emerged from overexpression of xynA in Escherichia coli has been the formation of inclusion bodies. Here we describe the xynA was fused with the hyperosmotically inducible periplasmic protein of E. coli, OsmY. The fusion protein OsmY-xynA was expressed as almost all soluble form. The soluble expression level of fusion protein reached 98±6U/ml when cells containing pET-OsmY-xynA were expressed without IPTG induction at 37°C. The induction is probably due to auto-induction due to lactose in the medium (Studier (2005) [21]). The cells harboring pET-OsmY-xynA expressed an activity level about 24 times higher than that expressed from pET-20b-xynA. Xylanase activity was observed in the extracellular (36±1.3U/ml) and the periplasmic (42±4U/ml) when cells containing pET-OsmY-xynA were induced without IPTG addition. After the cold osmotic shock procedure followed by nickel affinity chromatography, the purified fusion protein showed a single band on SDS-PAGE gel with a molecular mass of 44kDa. The purified fusion enzyme exhibited the highest activity at 65°C and pH 6.0. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Tropine dehydrogenase: purification, some properties and an evaluation of its role in the bacterial metabolism of tropine.

    PubMed

    Bartholomew, B A; Smith, M J; Long, M T; Darcy, P J; Trudgill, P W; Hopper, D J

    1995-04-15

    Tropine dehydrogenase was induced by growth of Pseudomonas AT3 on atropine, tropine or tropinone. It was NADP(+)-dependent and gave no activity with NAD+. The enzyme was very unstable but a rapid purification procedure using affinity chromatography that gave highly purified enzyme was developed. The enzyme gave a single band on isoelectric focusing with an isoelectric point at approximately pH 4. The native enzyme had an M(r) of 58,000 by gel filtration and 28,000 by SDS/PAGE and therefore consists of two subunits of equal size. The enzyme displayed a narrow range of specificity and was active with tropine and nortropine but not with pseudotropine, pseudonortropine, or a number of related compounds. The apparent Kms were 6.06 microM for tropine and 73.4 microM for nortropine with the specificity constant (Vmax/Km) for tropine 7.8 times that for pseudotropine. The apparent Km for NADP+ was 48 microM. The deuterium of [3-2H]tropine and [3-2H]pseudotropine was retained when these compounds were converted into 6-hydroxycyclohepta-1,4-dione, an intermediate in tropine catabolism, showing that the tropine dehydrogenase, although induced by growth on tropine, is not involved in the catabolic pathway for this compound. 6-Hydroxycyclohepta-1,4-dione was also implicated as an intermediate in the pathways for pseudotropine and tropinone catabolism.

  9. Membrane proteins from the cyanobacterium Synechocystis sp. PCC 6803 interacting with thioredoxin.

    PubMed

    Mata-Cabana, Alejandro; Florencio, Francisco J; Lindahl, Marika

    2007-11-01

    Cysteine dithiol/disulphide exchange forms the molecular basis for regulation of a wide variety of enzymatic activities and for transduction of cellular signals. Thus, the search for proteins with reactive, accessible cysteines is expected to contribute to the unravelling of new molecular mechanisms for enzyme regulation and signal transduction. Several methods have been designed for this purpose taking advantage of the interactions between thioredoxins and their protein substrates. Thioredoxins comprise a family of redox-active enzymes, which catalyse reduction of protein disulphides and sulphenic acids. Due to the inherent practical difficulties associated with studies of membrane proteins these have been largely overlooked in the many proteomic studies of thioredoxin-interacting proteins. In the present work, we have developed a procedure to isolate membrane proteins interacting with thioredoxin by binding in situ to a monocysteinic His-tagged thioredoxin added directly to the intact membranes. Following fractionation and solubilisation of the membranes, thioredoxin target proteins were isolated by Ni-affinity chromatography and 2-DE SDS-PAGE under nonreducing/reducing conditions. Applying this method to total membranes, including thylakoid and plasma membranes, from the cyanobacterium Synechocystis sp. PCC 6803 we have identified 50 thioredoxin-interacting proteins. Among the 38 newly identified thioredoxin targets are the ATP-binding subunits of several transporters and members of the AAA-family of ATPases.

  10. Quality of original and biosimilar epoetin products.

    PubMed

    Brinks, Vera; Hawe, Andrea; Basmeleh, Abdul H H; Joachin-Rodriguez, Liliana; Haselberg, Rob; Somsen, Govert W; Jiskoot, Wim; Schellekens, Huub

    2011-02-01

    To compare the quality of therapeutic erythropoietin (EPO) products, including two biosimilars, with respect to content, aggregation, isoform profile and potency. Two original products, Eprex (epoetin alpha) and Dynepo (epoetin delta), and two biosimilar products, Binocrit (epoetin alpha) and Retacrit (epoetin zeta), were compared using (1) high performance size exclusion chromatography, (2) ELISA, (3) SDS-PAGE, (4) capillary zone electrophoresis and (5) in-vivo potency. Tested EPO products differed in content, isoform composition, and potency. Of the tested products, the biosimilars have the same or even better quality as the originals. Especially, the potency of originals may significantly differ from the value on the label.

  11. Modulating Uranium Binding Affinity in Engineered Calmodulin EF-Hand Peptides: Effect of Phosphorylation

    PubMed Central

    Pardoux, Romain; Sauge-Merle, Sandrine; Lemaire, David; Delangle, Pascale; Guilloreau, Luc; Adriano, Jean-Marc; Berthomieu, Catherine

    2012-01-01

    To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T9TKE12 sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from Kd = 25±6 nM to Kd = 5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the subnanomolar range (Kd = 0.25±0.06 nM). FTIR analyses showed that the phosphothreonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the νas(P-O) and νs(P-O) IR modes of phosphothreonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in νas(UO2)2+ vibration (from 923 cm−1 to 908 cm−1) was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH. PMID:22870263

  12. Removal of fluoride, SDS, ammonia and turbidity from semiconductor wastewater by combined electrocoagulation-electroflotation.

    PubMed

    Aoudj, S; Khelifa, A; Drouiche, N

    2017-08-01

    Semiconductor industry effluents contain organic and inorganic pollutants, such as sodium dodecyl sulfate (SDS), fluoride and ammonia, at high levels which consists a major environmental issue. A combined EC-EF process is proposed as a post-treatment after precipitation for simultaneous clarification and removal of pollutants. In EC step, a hybrid Fe-Al was used as the soluble anode in order to avoid supplementary EC step. EC-Fe is more suitable for SDS removal; EC-Al is more suitable for fluoride removal, while EC with hybrid Al-Fe makes a good compromise. Clarification and ammonia oxidation were achieved in the EF step. Effects of anodic material, initial pH, current, anion nature, chloride concentration and initial pollutant concentration were studied. The final concentrations may reach 0.27, 6.23 and 0.22 mg L -1 for SDS, fluoride and ammonia respectively. These concentrations are far lower than the correspondent discharge limits. Similarly, the final turbidity was found 4.35 NTU which is lower than 5NTU and the treated water does not need further filtration before discharge. Furthermore, the EC-EF process proves to be sufficiently energy-efficient with less soluble electrode consumption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A highly selective dispersive liquid-liquid microextraction approach based on the unique fluorous affinity for the extraction and detection of per- and polyfluoroalkyl substances coupled with high performance liquid chromatography tandem-mass spectrometry.

    PubMed

    Wang, Juan; Shi, Yali; Cai, Yaqi

    2018-04-06

    In the present study, a highly selective fluorous affinity-based dispersive liquid-liquid microextraction (DLLME) technique was developed for the extraction and analysis of per- and polyfluoroalkyl substances (PFASs) followed by high performance liquid chromatography tandem-mass spectrometry. Perfluoro-tert-butanol with multiple C-F bonds was chosen as the extraction solvent, which was injected into the aqueous samples with a dispersive solvent (acetonitrile) in a 120:800 (μL, v/v) mixture for PFASs enrichment. The fluorous affinity-based extraction mechanism was confirmed by the significantly higher extraction recoveries for PFASs containing multiple fluorine atoms than those for compounds with fewer or no fluorine atoms. The extraction recoveries of medium and long-chain PFASs (CF 2  > 5) exceeded 70%, except perfluoroheptanoic acid, while those of short-chain PFASs were lower than 50%, implying that the proposed DLLME may not be suitable for their extraction due to weak fluorous affinity. This highly fluoroselective DLLME technique can greatly decrease the matrix effect that occurs in mass spectrometry detection when applied to the analysis of urine samples. Under the optimum conditions, the relative recoveries of PFASs with CF 2  > 5 ranged from 80.6-121.4% for tap water, river water and urine samples spiked with concentrations of 10, 50 and 100 ng/L. The method limits of quantification for PFASs in water and urine samples were in the range of 0.6-8.7 ng/L. Furthermore, comparable concentrations of PFASs were obtained via DLLME and solid-phase extraction, confirming that the developed DLLME technique is a promising method for the extraction of PFASs in real samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. SDS-binding assay based on tyrosine fluorescence as a tool to determine binding properties of human serum albumin in blood plasma

    NASA Astrophysics Data System (ADS)

    Zhdanova, Nadezda; Shirshin, Evgeny; Fadeev, Victor; Priezzhev, Alexander

    2016-04-01

    Among all plasma proteins human serum albumin (HSA) is the most studied one as it is the main transport protein and can bind a wide variety of ligands especially fatty acids (FAs). The concentration of FAs bound to HSA in human blood plasma differs by three times under abnormal conditions (fasting, physical exercises or in case of social important diseases). In the present study a surfactant sodium dodecyl sulfate (SDS) was used to simulate FAs binding to HSA. It was shown that the increase of Tyr fluorescence of human blood plasma due to SDS addition can be completely explained by HSA-SDS complex formation. Binding parameters of SDS-HSA complex (average number of sites and apparent constant of complex formation) were determined from titration curves based on tyrosine (Tyr) fluorescence.

  15. Affinity and Efficacy Studies of Tetrahydrocannabinolic Acid A at Cannabinoid Receptor Types One and Two.

    PubMed

    McPartland, John M; MacDonald, Christa; Young, Michelle; Grant, Phillip S; Furkert, Daniel P; Glass, Michelle

    2017-01-01

    Introduction: Cannabis biosynthesizes Δ 9 -tetrahydrocannabinolic acid (THCA-A), which decarboxylates into Δ 9 -tetrahydrocannabinol (THC). There is growing interest in the therapeutic use of THCA-A, but its clinical application may be hampered by instability. THCA-A lacks cannabimimetic effects; we hypothesize that it has little binding affinity at cannabinoid receptor 1 (CB 1 ). Materials and Methods: Purity of certified reference standards were tested with high performance liquid chromatography (HPLC). Binding affinity of THCA-A and THC at human (h) CB 1 and hCB 2 was measured in competition binding assays, using transfected HEK cells and [ 3 H]CP55,940. Efficacy at hCB 1 and hCB 2 was measured in a cyclic adenosine monophosphase (cAMP) assay, using a Bioluminescence Resonance Energy Transfer (BRET) biosensor. Results: The THCA-A reagent contained 2% THC. THCA-A displayed small but measurable binding at both hCB 1 and hCB 2 , equating to approximate K i values of 3.1μM and 12.5μM, respectively. THC showed 62-fold greater affinity at hCB 1 and 125-fold greater affinity at hCB 2 . In efficacy tests, THCA-A (10μM) slightly inhibited forskolin-stimulated cAMP at hCB 1 , suggestive of weak agonist activity, and no measurable efficacy at hCB 2 . Discussion: The presence of THC in our THCA-A certified standard agrees with decarboxylation kinetics (literature reviewed herein), which indicate contamination with THC is nearly unavoidable. THCA-A binding at 10μM approximated THC binding at 200nM. We therefore suspect some of our THCA-A binding curve was artifact-from its inevitable decarboxylation into THC-and the binding affinity of THCA-A is even weaker than our estimated values. We conclude that THCA-A has little affinity or efficacy at CB 1 or CB 2 .

  16. A Peptide/MHCII conformer generated in the presence of exchange peptide is substrate for HLA-DM editing

    PubMed Central

    Ferrante, Andrea; Gorski, Jack

    2012-01-01

    The mechanism of HLA-DM (DM) activity is still unclear. We have shown that DM-mediated peptide release from HLA-DR (DR) is dependent on the presence of exchange peptide. However, DM also promotes a small amount of peptide release in the absence of exchange peptide. Here we show that SDS-PAGE separates purified peptide/DR1 complexes (pDR1) into two conformers whose ratio is peptide Kd-dependent. In the absence of exchange peptide, DM only releases peptide from the slower migrating conformer. Addition of exchange peptide converts the DM-resistant conformer to the slower migrating conformer, which is DM labile. Thus, exchange peptide generates a conformer of pDR1 which constitutes the intermediate for peptide exchange and the substrate for DM activity. The resolution of the intermediate favors the highest affinity peptide. However, once folded into the DM-resistant conformer, even low affinity peptides can be presented in the absence of free peptide, broadening the repertoire available for presentation. PMID:22545194

  17. Quantitative trait loci underlying resistance to sudden death syndrome (SDS) in MD96-5722 by 'Spencer' recombinant inbred line population of soybean.

    PubMed

    Anderson, J; Akond, M; Kassem, M A; Meksem, K; Kantartzi, S K

    2015-04-01

    The best way to protect yield loss of soybean [Glycine max (L.) Merr.] due to sudden death syndrome (SDS), caused by Fusarium virguliforme (Aoki, O'Donnel, Homma & Lattanzi), is the development and use of resistant lines. Mapping quantitative trait loci (QTL) linked to SDS help developing resistant soybean germplasm through molecular marker-assisted selection strategy. QTL for SDS presented herein are from a high-density SNP-based genetic linkage map of MD 96-5722 (a.k.a 'Monocacy') by 'Spencer' recombinant inbred line using SoySNP6K Illumina Infinium BeadChip genotyping array. Ninety-four F 5:7 lines were evaluated for 2 years (2010 and 2011) at two locations (Carbondale and Valmeyer) in southern Illinois, USA to identify QTL controlling SDS resistance using disease index (DX). Composite interval mapping identified 19 SDS controlling QTL which were mapped on 11 separate linkage group (LG) or chromosomes (Chr) out of 20 LG or Chr of soybean genome. Many of these significant QTL identified in one environment/year were confirmed in another year or environment, which suggests a common genetic effects and modes of the pathogen. These new QTL are useful sources for SDS resistance studies in soybean breeding, complementing previously reported loci.

  18. Affinity in electrophoresis.

    PubMed

    Heegaard, Niels H H

    2009-06-01

    The journal Electrophoresis has greatly influenced my approaches to biomolecular affinity studies. The methods that I have chosen as my main tools to study interacting biomolecules--native gel and later capillary zone electrophoresis--have been the topic of numerous articles in Electrophoresis. Below, the role of the journal in the development and dissemination of these techniques and applications reviewed. Many exhaustive reviews on affinity electrophoresis and affinity CE have been published in the last few years and are not in any way replaced by the present deliberations that are focused on papers published by the journal.

  19. Affinity-based precipitation via a bivalent peptidic hapten for the purification of monoclonal antibodies.

    PubMed

    Handlogten, Michael W; Stefanick, Jared F; Deak, Peter E; Bilgicer, Basar

    2014-09-07

    In a previous study, we demonstrated a non-chromatographic affinity-based precipitation method, using trivalent haptens, for the purification of mAbs. In this study, we significantly improved this process by using a simplified bivalent peptidic hapten (BPH) design, which enables facile and rapid purification of mAbs while overcoming the limitations of the previous trivalent design. The improved affinity-based precipitation method (ABP(BPH)) combines the simplicity of salt-induced precipitation with the selectivity of affinity chromatography for the purification of mAbs. The ABP(BPH) method involves 3 steps: (i) precipitation and separation of protein contaminants larger than immunoglobulins with ammonium sulfate; (ii) selective precipitation of the target-antibody via BPH by inducing antibody-complex formation; (iii) solubilization of the antibody pellet and removal of BPH with membrane filtration resulting in the pure antibody. The ABP(BPH) method was evaluated by purifying the pharmaceutical antibody trastuzumab from common contaminants including CHO cell conditioned media, DNA, ascites fluid, other antibodies, and denatured antibody with >85% yield and >97% purity. Importantly, the purified antibody demonstrated native binding activity to cell lines expressing the target protein, HER2. Combined, the ABP(BPH) method is a rapid and scalable process for the purification of antibodies with the potential to improve product quality while decreasing purification costs.

  20. Influence of water-insoluble nonionic copolymer E(6)P(39)E(6) on the microstructure and self-aggregation dynamics of aqueous SDS solution-NMR and SANS investigations.

    PubMed

    Prameela, G K S; Phani Kumar, B V N; Aswal, V K; Mandal, Asit Baran

    2013-10-28

    The influence of water-insoluble nonionic triblock copolymer PEO-PPO-PEO [poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)] i.e., E6P39E6 with molecular weight 2800, on the microstructure and self-aggregation dynamics of anionic surfactant sodium dodecylsulfate (SDS) in aqueous solution (D2O) were investigated using high resolution nuclear magnetic resonance (NMR) and small-angle neutron scattering (SANS) measurements. Variable concentration and temperature proton ((1)H), carbon ((13)C) NMR chemical shifts, (1)H self-diffusion coefficients, (1)H spin-lattice and spin-spin relaxation rates data indicate that the higher hydrophobic nature of copolymer significantly influenced aggregation characteristics of SDS. The salient features of the NMR investigations include (i) the onset of mixed micelles at lower SDS concentrations (<3 mM) relative to the copolymer-free case and their evolution into SDS free micelles at higher SDS concentrations (~30 mM), (ii) disintegration of copolymer-SDS mixed aggregate at moderate SDS concentrations (~10 mM) and still binding of a copolymer with SDS and (iii) preferential localization of the copolymer occurred at the SDS micelle surface. SANS investigations indicate prolate ellipsoidal shaped mixed aggregates with an increase in SDS aggregation number, while a contrasting behavior in the copolymer aggregation is observed. The aggregation features of SDS and the copolymer, the sizes of mixed aggregates and the degree of counterion dissociation (α) extracted from SANS data analysis corroborate reasonably well with those of (1)H NMR self-diffusion and sodium ((23)Na) spin-lattice relaxation data.

  1. Retention of bile salts in micellar electrokinetic chromatography: relation of capacity factor to octanol-water partition coefficient and critical micellar concentration.

    PubMed

    Lucangioli, S E; Carducci, C N; Tripodi, V P; Kenndler, E

    2001-12-25

    The capacity factors of 16 anionic cholates (from six bile salts, including their glyco- and tauro-conjugates) were determined in a micellar electrokinetic chromatography (MEKC) system consisting of buffer, pH 7.5 (phosphate-boric acid; 20 mmol/l) with 50 mmol/l sodium dodecyl sulfate (SDS) as micelle former and 10% acetonitrile as organic modifier. The capacity factors of the fully dissociated, negatively charged analytes (ranging between 0.2 and 60) were calculated from their mobilities, with a reference background electrolyte (BGE) without SDS representing "free" solution. For comparison, the capacity factors were derived for a second reference BGE where the SDS concentration (5 mmol/l) is close to the critical micellar concentration (CMC). The capacity factors are compared with the logarithm of the octanol-water partition coefficient, log Pow, as measure for lipophilicity. Clear disagreement between these two parameters is found especially for epimeric cholates with the hydroxy group in position 7. In contrast, fair relation between the capacity factor of the analytes and their CMC is observed both depending strongly on the orientation of the OH groups, and tauro-conjugation as well. In this respect the retention behaviour of the bile salts in MEKC seems to reflect their role as detergents in living systems, and might serve as model parameter beyond lipophilicity.

  2. Monodisperse magnetic poly(glycidyl methacrylate) microspheres for isolation of autoantibodies with affinity for the 46 kDa form of unconventional Myo1C present in autoimmune patients.

    PubMed

    Zasońska, Beata A; Hlídková, Helena; Petrovský, Eduard; Myronovskij, Severyn; Nehrych, Tetyana; Negrych, Nazar; Shorobura, Mariya; Antonyuk, Volodymyr; Stoika, Rostyslav; Kit, Yuriy; Horák, Daniel

    2018-04-23

    Monodisperse nonmagnetic macroporous poly(glycidyl methacrylate) (PGMA) microspheres were synthesized by multistep swelling polymerization of glycidyl methacrylate, ethylene dimethacrylate and 2-[(methoxycarbonyl)methoxy]ethyl methacrylate (MCMEMA). This was followed (a) by ammonolysis to modify the microspheres with amino groups, and (b) by incorporation of iron oxide (γ-Fe 2 O 3 ) into the pores to render the particles magnetic. The resulting porous and magnetic microspheres were characterized by scanning and transmission electron microscopy (SEM and TEM), atomic absorption and Fourier transform infrared spectroscopy (AAS and FTIR), elemental analysis, vibrating magnetometry, mercury porosimetry and Brunauer-Emmett-Teller adsorption/desorption isotherms. The microspheres are meso- and macroporous, typically 5 μm in diameter, contain 0.9 mM · g -1 of amino groups and 14 wt.% of iron according to elemental analysis and AAS, respectively. The particles were conjugated to p46/Myo1C protein, a potential biomarker of autoimmune diseases, to isolate specific autoantibodies in the blood of patients suffering from multiple sclerosis (MS). The p46/Myo1C loaded microspheres are shown to enable the preconcentration of minute quantities of specific immunoglobulins prior to their quantification via SDS-PAGE. The immunoglobulin M (IgM) with affinity to Myo1C was detected in MS patients. Graphical abstract Monodisperse magnetic poly(glycidyl methacrylate) microspheres were synthesized, conjugated with 46 kDa form of unconventional Myo1C protein (p46/Myo1C) via carbodiimide (DIC) chemistry, and specific autoantibodies isolated from blood of multiple sclerosis (MS) patients; immunoglobulin M (IgM) level increased in MS patients.

  3. Identification and measurement of chlorinated organic pesticides in water by electron-capture gas chromatography

    USGS Publications Warehouse

    Lamar, William L.; Goerlitz, Donald F.; Law, LeRoy M.

    1965-01-01

    Pesticides, in minute quantities, may affect the regimen of streams, and because they may concentrate in sediments, aquatic organisms, and edible aquatic foods, their detection and their measurement in the parts-per-trillion range are considered essential. In 1964 the U.S. Geological Survey at Menlo Park, Calif., began research on methods for monitoring pesticides in water. Two systems were selected--electron-capture gas chromatography and microcoulometric-titration gas chromatography. Studies on these systems are now in progress. This report provides current information on the development and application of an electron-capture gas chromatographic procedure. This method is a convenient and extremely sensitive procedure for the detection and measurement of organic pesticides having high electron affinities, notably the chlorinated organic pesticides. The electron-affinity detector is extremely sensitive to these substances but it is not as sensitive to many other compounds. By this method, the chlorinated organic pesticide may be determined on a sample of convenient size in concentrations as low as the parts-per-trillion range. To insure greater accuracy in the identifications, the pesticides reported were separated and identified by their retention times on two different types of gas chromatographic columns.

  4. Determination of lysergic acid diethylamide (LSD) in mouse blood by capillary electrophoresis/ fluorescence spectroscopy with sweeping techniques in micellar electrokinetic chromatography.

    PubMed

    Fang, Ching; Liu, Ju-Tsung; Chou, Shiu-Huey; Lin, Cheng-Huang

    2003-03-01

    The separation and on-line concentration of lysergic acid diethylamide (LSD) in mouse blood was achieved by means of capillary electrophoresis/fluorescence spectroscopy using sodium dodecyl sulfate (SDS) as the surfactant. Techniques involving on-line sample concentration, including sweeping micellar electrokinetic chromatography (sweeping-MEKC) and cation-selective exhaustive injection-sweep-micellar electrokinetic chromatography (CSEI-sweep-MEKC) were applied; the optimum on-line concentration and separation conditions were determined. In the analysis of an actual sample, LSD was found in a blood sample from a test mouse (0.1 mg LSD fed to a 20 g mouse; approximately 1/10 to the value of LD(50)). As a result, 120 and 30 ng/mL of LSD was detected at 20 and 60 min, respectively, after ingestion of the doses.

  5. Identification of fibroblast growth factor 1 (FGF-1) in a black market product.

    PubMed

    Walpurgis, Katja; Thomas, Andreas; Laussmann, Tim; Horta, Luis; Metzger, Sabine; Schänzer, Wilhelm; Thevis, Mario

    2011-01-01

    The use of growth factors for accelerated healing of sports injuries is restricted under the terms of the World Anti-Doping Agency (WADA) anti-doping code. Cheating athletes have used the black market as a source of performance-enhancing substances. Drugs that currently undergo clinical trials are frequently offered--despite the unknown health risks associated with the administration of unapproved pharmaceuticals. Recently, a new growth factor (referred to as fibroblast growth factor 1/FGF-1) with known effects on the repair and regeneration of damaged tissue was detected in an unlabelled black market product confiscated by the German customs. The identification of the protein was achieved by one- and two-dimensional polyacrylamide gel electrophoresis (SDS-PAGE and 2D-PAGE), different proteolytic digestions, immunological methods and nano-liquid chromatography high-resolution/high-accuracy Orbitrap mass spectrometry. The SDS-PAGE analysis revealed slight differences concerning the molecular weight of recombinant human and black market FGF-1. Using in-gel proteolysis, a truncation or modification located at the N-terminus of the protein was suggested. These findings demonstrate that drug candidates without clinical approval can be readily obtained from the black market, regardless of potential dangerous consequences for the consumer, which corroborates the necessity of proactive and preventive doping control approaches. In that regard, physiological concentrations of blood and urine specimens collected from healthy individuals were analyzed and were found to range below 28 pg/ml in urine, while there was no detectable FGF-1 in plasma. Copyright © 2011 John Wiley & Sons, Ltd.

  6. Adjoint affine fusion and tadpoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urichuk, Andrew, E-mail: andrew.urichuk@uleth.ca; Walton, Mark A., E-mail: walton@uleth.ca; International School for Advanced Studies

    2016-06-15

    We study affine fusion with the adjoint representation. For simple Lie algebras, elementary and universal formulas determine the decomposition of a tensor product of an integrable highest-weight representation with the adjoint representation. Using the (refined) affine depth rule, we prove that equally striking results apply to adjoint affine fusion. For diagonal fusion, a coefficient equals the number of nonzero Dynkin labels of the relevant affine highest weight, minus 1. A nice lattice-polytope interpretation follows and allows the straightforward calculation of the genus-1 1-point adjoint Verlinde dimension, the adjoint affine fusion tadpole. Explicit formulas, (piecewise) polynomial in the level, are writtenmore » for the adjoint tadpoles of all classical Lie algebras. We show that off-diagonal adjoint affine fusion is obtained from the corresponding tensor product by simply dropping non-dominant representations.« less

  7. Antimicrobial activity of gamma-thionin-like soybean SE60 in E. coli and tobacco plants.

    PubMed

    Choi, Yeonhee; Choi, Yang Do; Lee, Jong Seob

    2008-10-17

    The SE60, a low molecular weight, sulfur-rich protein in soybean, is known to be homologous to wheat gamma-purothionin. To elucidate the functional role of SE60, we expressed SE60 cDNA in Escherichia coli and in tobacco plants. A single protein band was detected by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) after anti-FLAG affinity purification of the protein from transformed E. coli. While the control E. coli cells harboring pFLAG-1 showed standard growth with Isopropyl beta-d-1-thiogalactopyranoside (IPTG) induction, E. coli cells expressing the SE60 fusion protein did not grow at all, suggesting that SE60 has toxic effects on E. coli growth. Genomic integration and the expression of transgene in the transgenic tobacco plants were confirmed by Southern and Northern blot analysis, respectively. The transgenic plants demonstrated enhanced resistance against the pathogen Pseudomonas syringae. Taken together, these results strongly suggest that SE60 has antimicrobial activity and play a role in the defense mechanism in soybean plants.

  8. iSDS: a self-configurable software-defined storage system for enterprise

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Shyen Eric; Huang, Chun-Fang; Huang, Ming-Jen

    2018-01-01

    Storage is one of the most important aspects of IT infrastructure for various enterprises. But, enterprises are interested in more than just data storage; they are interested in such things as more reliable data protection, higher performance and reduced resource consumption. Traditional enterprise-grade storage satisfies these requirements at high cost. It is because traditional enterprise-grade storage is usually designed and constructed by customised field-programmable gate array to achieve high-end functionality. However, in this ever-changing environment, enterprises request storage with more flexible deployment and at lower cost. Moreover, the rise of new application fields, such as social media, big data, video streaming service etc., makes operational tasks for administrators more complex. In this article, a new storage system called intelligent software-defined storage (iSDS), based on software-defined storage, is described. More specifically, this approach advocates using software to replace features provided by traditional customised chips. To alleviate the management burden, it also advocates applying machine learning to automatically configure storage to meet dynamic requirements of workloads running on storage. This article focuses on the analysis feature of iSDS cluster by detailing its architecture and design.

  9. Current advances in screening for bioactive components from medicinal plants by affinity ultrafiltration mass spectrometry.

    PubMed

    Chen, Guilin; Huang, Bill X; Guo, Mingquan

    2018-05-21

    Medicinal plants have played an important role in maintaining human health for thousands of years. However, the interactions between the active components in medicinal plants and some certain biological targets during a disease are still unclear in most cases. To conduct the high-throughput screening for small active molecules that can interact with biological targets, which is of great theoretical significance and practical value. The ultrafiltration mass spectrometry (UF-LC/MS) is a powerful bio-analytical method by combining affinity ultrafiltration and liquid chromatography-mass spectrometry (LC/MS), which could rapidly screen and identify small active molecules that bind to biological targets of interest at the same time. Compared with other analytical methods, affinity UF-LC/MS has the characteristics of fast, sensitive and high throughput, and is especially suitable for the complicated extracts of medicinal plants. In this review, the basic principle, characteristics and some most recent challenges in UF-LC/MS have been demonstrated. Meanwhile, the progress and applications of affinity UF-LC/MS in the discovery of the active components from natural medicinal plants and the interactions between small molecules and biological target proteins are also briefly summarised. In addition, the future directions for UF-LC/MS are also prospected. Affinity UF-LC/MS is a powerful tool in studies on the interactions between small active molecules and biological protein targets, especially in the high-throughput screening of active components from the natural medicinal plants. Copyright © 2018 John Wiley & Sons, Ltd.

  10. Purification of bone morphogenetic protein-2 from refolding mixtures using mixed-mode membrane chromatography.

    PubMed

    Gieseler, Gesa; Pepelanova, Iliyana; Stuckenberg, Lena; Villain, Louis; Nölle, Volker; Odenthal, Uwe; Beutel, Sascha; Rinas, Ursula; Scheper, Thomas

    2017-01-01

    In this study, we present the development of a process for the purification of recombinant human bone morphogenetic protein-2 (rhBMP-2) using mixed-mode membrane chromatography. RhBMP-2 was produced as inclusion bodies in Escherichia coli. In vitro refolding using rapid dilution was carried out according to a previously established protocol. Different membrane chromatography phases were analyzed for their ability to purify BMP-2. A membrane phase with salt-tolerant properties resulting from mixed-mode ligand chemistry was able to selectively purify BMP-2 dimer from refolding mixtures. No further purification or polishing steps were necessary and high product purity was obtained. The produced BMP-2 exhibited a biological activity of 7.4 × 10 5  U/mg, comparable to commercial preparations. Mixed-mode membrane chromatography can be a valuable tool for the direct purification of proteins from solutions with high-conductivity, for example refolding buffers. In addition, in this particular case, it allowed us to circumvent the use of heparin-affinity chromatography, thus allowing the design of an animal-component-free process.

  11. [Construction of recombinant adenovirus and mediated reported gene expression in the guinea pig cochlea].

    PubMed

    Liu, Yingpeng; Wang, Guopeng; Shen, Anmin; Wang, Jianting; Chen, Pei; Li, Zeweng; Gong, Shusheng

    2007-08-01

    To purify P0 protein from guinea pig's inner ear by preparative SDS-PAGE and study the possible role it may play in the etiology of autoimmune inner ear disease. A mixture of membraneous proteins of inner ear was separated by preparative SDS-PAGE. The corresponding band at 30kd was cut and electrically eluted. The protein collected was identified by analytical SDS-PAGE and Western blot assay. A group of 20 guinea pigs were immunized with P0 protein emulsified in complete Freund's adjuvant, another 10 guinea pigs were immunized with complete Freund 's adjuvant only as control. The guinea pigs' hearing thresholds, serum IgG level and morphological changes in the inner ear were investigated. The distribution of P0 protein in the cochlear was detected by immunohistochemical technique. The purity of the protein was demonstrated by a single band at the 30 kD site in SDS-PAGE, which was identified as P0 protein by western blot analysis assay. About 17.5% P0-immunized guinea pigs showed increased hearing thresholds, elevated IgG level (F =6.48, P <0. 01), as well as a decreased number of spiral ganglion cells and inflammatory cell infiltration in the cochlear nerve region. The P0 protein is distributed in the cochlear nerve and spiral ganglion only. P0 protein from guinea pig's inner ear can be successfully purified by preparative SDS-PAGE and an animal model of experimental autoimmune inner ear disease induced by P0 protein is successfully established.

  12. Physicochemical parameters optimization, and purification of phycobiliproteins from the isolated Nostoc sp.

    PubMed

    Johnson, Eldin M; Kumar, Kanhaiya; Das, Debabrata

    2014-08-01

    The present study investigated the effects of several physicochemical parameters on the improvement of phycobiliproteins (especially phycocyanin) synthesis in a newly isolated species of Nostoc sp. Standard BG11₀ medium was modified to enhance the biomass productivity in different photobioreactors. The initial pH of 8, light intensity of 40 μmol m(-2)s(-1), temperature of 35 °C, diurnal cycle of 16:8 h (light:dark regime), 75.48 μM Na₂CO₃ and 17.65 mM NaNO₃ were found most suitable for the phycobiliproteins synthesis. Cyanobacteria exhibited chromatic adaptation, causing overexpression of phycocyanin in red and phycoerythrin in green light. The maximum phycobiliproteins yield of 0.13 gg(-1) dry cell weight was obtained in green light. Phycocyanin was further purified using thin layer chromatography (TLC), anion exchange chromatography and SDS-PAGE (denaturing gel) electrophoresis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Isolation and purification of ILS, an interleukin 1 inhibitor produced by human gingival epithelial cells.

    PubMed Central

    Walsh, L J; Lander, P E; Seymour, G J; Powell, R N

    1987-01-01

    Recent studies have described the presence of an interleukin 1 (IL-1) inhibitor (ILS) in supernatants from human gingival organ cultures. This report describes the isolation and purification of ILS. ILS was produced in serum-free medium and purified to apparent homogeneity by ion exchange chromatography and high pressure liquid chromatography. IL-1 and ILS eluted as discrete proteins using this system, with ILS appearing as a single protein band of 97,400 molecular weight on SDS-PAGE. ILS inhibited the effects of both murine IL-1 and IL-2 on thymocyte proliferation, and was heat resistant, moderately resistant to freeze-thawing and stable for 2 years at 0-4 degrees C or -20 degrees C. Production of ILS by gingival epithelial cell cultures was not affected by depletion of Langerhans cells, implying that ILS is primarily a keratinocyte product. Images Fig. 5 PMID:3498574

  14. Purification and characterization of a strong fibrinolytic enzyme (nattokinase) in the vegetable cheese natto, a popular soybean fermented food in Japan.

    PubMed

    Fujita, M; Nomura, K; Hong, K; Ito, Y; Asada, A; Nishimuro, S

    1993-12-30

    A strong fibrinolytic enzyme (nattokinase) was purified from the vegetable cheese natto. Nattokinase was extracted from natto with saline and isolated by sequential use of hydrophobic chromatography on Butyl-Toyopearl, ion-exchange chromatography on CM-Toyopearl, and gel-filtration on Sephadex G-50. The isolated protein gave a single sharp band on SDS-PAGE either before or after reduction. The sequence, as determined by automated Edman degradation of the uncleaved molecule and its enzymatically derived peptide, consisted of a total 275 amino acid residues (M.W = 27,728) and exhibited a high homology with the subtilisins. The purified nattokinase digested not only fibrin but also several synthetic substrates. Among the synthetic substrates, the most sensitive substrate was Suc-Ala-Ala-Pro-Phe-pNA for subtilisin. PMSF inhibited both the fibrinolytic activity and the amidolytic activity. The results indicate that nattokinase is a subtilisin-like serine protease.

  15. Quantifying protein microstructure and electrostatic effects on the change in Gibbs free energy of binding in immobilized metal affinity chromatography.

    PubMed

    Pathange, Lakshmi P; Bevan, David R; Zhang, Chenming

    2008-03-01

    Electrostatic forces play a major role in maintaining both structural and functional properties of proteins. A major component of protein electrostatics is the interactions between the charged or titratable amino acid residues (e.g., Glu, Lys, and His), whose pK(a) (or the change of the pK(a)) value could be used to study protein electrostatics. Here, we report the study of electrostatic forces through experiments using a well-controlled model protein (T4 lysozyme) and its variants. We generated 10 T4 lysozyme variants, in which the electrostatic environment of the histidine residue was perturbed by altering charged and neutral amino acid residues at various distances from the histidine (probe) residue. The electrostatic perturbations were theoretically quantified by calculating the change in free energy (DeltaDeltaG(E)) using Coulomb's law. On the other hand, immobilized metal affinity chromatography (IMAC) was used to quantify these perturbations in terms of protein binding strength or change in free energy of binding (DeltaDeltaG(B)), which varies from -0.53 to 0.99 kcal/mol. For most of the variants, there is a good correlation (R(2) = 0.97) between the theoretical DeltaDeltaG(E) and experimental DeltaDeltaG(B) values. However, there are three deviant variants, whose histidine residue was found to be involved in site-specific interactions (e.g., ion pair and steric hindrance), which were further investigated by molecular dynamics simulation. This report demonstrates that the electrostatic (DeltaDeltaG(Elec)) and microstructural effects (DeltaDeltaG(Micro)) in a protein can be quantified by IMAC through surface histidine mediated protein-metal ion interaction and that the unique microstructure around a histidine residue can be identified by identifying the abnormal binding behaviors during IMAC.

  16. Non-affine deformations in polymer hydrogels

    PubMed Central

    Wen, Qi; Basu, Anindita; Janmey, Paul A.; Yodh, A. G.

    2012-01-01

    Most theories of soft matter elasticity assume that the local strain in a sample after deformation is identical everywhere and equal to the macroscopic strain, or equivalently that the deformation is affine. We discuss the elasticity of hydrogels of crosslinked polymers with special attention to affine and non-affine theories of elasticity. Experimental procedures to measure non-affine deformations are also described. Entropic theories, which account for gel elasticity based on stretching out individual polymer chains, predict affine deformations. In contrast, simulations of network deformation that result in bending of the stiff constituent filaments generally predict non-affine behavior. Results from experiments show significant non-affine deformation in hydrogels even when they are formed by flexible polymers for which bending would appear to be negligible compared to stretching. However, this finding is not necessarily an experimental proof of the non-affine model for elasticity. We emphasize the insights gained from experiments using confocal rheoscope and show that, in addition to filament bending, sample micro-inhomogeneity can be a significant alternative source of non-affine deformation. PMID:23002395

  17. Selection of a high-affinity and in vivo bioactive ssDNA aptamer against angiotensin II peptide.

    PubMed

    Heiat, Mohammad; Ranjbar, Reza; Latifi, Ali Mohammad; Rasaee, Mohammad Javad

    2016-08-01

    Unique features of aptamers have attracted interests for a broad range of applications. Aptamers are able to specifically bind to targets and inhibit their functions. This study, aimed to isolate the high affinity ssDNA aptamers against bio-regulator peptide angiotensin II (Ang II) and investigate their bioactivity in cellular and animal models. To isolate ssDNA aptamers, 12 rounds of affinity chromatography SELEX (Systematic Evolution of Ligands by EXponential enrichment) procedure were carried out. The SPR (surface plasmon resonance) and ELONA (enzyme linked oligonucleotide assay) analysis were used to determine the affinity and specificity of aptamers. The ability of selected aptamers to inhibit the proliferative effect of Ang II on human aortic vascular smooth muscle cells (HA-VSMCs) and their performance on Wistar rat urinary system and serum electrolyte levels were investigated. Two full-length aptamers (FLC112 and FLC125) with high affinity of respectively 7.52±2.44E-10 and 5.87±1.3E-9M were isolated against Ang II. The core regions of these aptamers (CRC112 and CRC125) also showed affinity of 5.33±1.15E-9 and 4.11±1.09E-9M. In vitro analysis revealed that FLC112 and FLC125 can inhibit the proliferative effect of Ang II on HA-VSMCs (P<0.05). They also significantly reduced the serum sodium level and increased the urine volume (P<0.05). The core regions of aptamers did not show high inhibitory potential against Ang II. It can be a spotlight that ssDNA aptamers have high potential for blocking Ang II. In conclusion, it appears that the researches focusing on high affinity and bioactive aptamers may lead to excellent results in blocking Ang II activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Comparison and validation of methods to quantify Cry1Ab toxin from Bacillus thuringiensis for standardization of insect bioassays.

    PubMed

    Crespo, André L B; Spencer, Terence A; Nekl, Emily; Pusztai-Carey, Marianne; Moar, William J; Siegfried, Blair D

    2008-01-01

    Standardization of toxin preparations derived from Bacillus thuringiensis (Berliner) used in laboratory bioassays is critical for accurately assessing possible changes in the susceptibility of field populations of target pests. Different methods were evaluated to quantify Cry1Ab, the toxin expressed by 80% of the commercially available transgenic maize that targets the European corn borer, Ostrinia nubilalis (Hübner). We compared three methods of quantification on three different toxin preparations from independent sources: enzyme-linked immunosorbent assay (ELISA), sodium dodecyl sulfate-polyacrylamide gel electrophoresis and densitometry (SDS-PAGE/densitometry), and the Bradford assay for total protein. The results were compared to those obtained by immunoblot analysis and with the results of toxin bioassays against susceptible laboratory colonies of O. nubilalis. The Bradford method resulted in statistically higher estimates than either ELISA or SDS-PAGE/densitometry but also provided the lowest coefficients of variation (CVs) for estimates of the Cry1Ab concentration (from 2.4 to 5.4%). The CV of estimates obtained by ELISA ranged from 12.8 to 26.5%, whereas the CV of estimates obtained by SDS-PAGE/densitometry ranged from 0.2 to 15.4%. We standardized toxin concentration by using SDS-PAGE/densitometry, which is the only method specific for the 65-kDa Cry1Ab protein and is not confounded by impurities detected by ELISA and Bradford assay for total protein. Bioassays with standardized Cry1Ab preparations based on SDS-PAGE/densitometry showed no significant differences in LC(50) values, although there were significant differences in growth inhibition for two of the three Cry1Ab preparations. However, the variation in larval weight caused by toxin source was only 4% of the total variation, and we conclude that standardization of Cry1Ab production and quantification by SDS-PAGE/densitometry may improve data consistency in monitoring efforts to identify changes in

  19. Transfer in SDS of biotinylated proteins from acrylamide gels to an avidin-coated membrane filter.

    PubMed

    Karlin, Arthur; Wang, Chaojian; Li, Jing; Xu, Qiang

    2004-06-01

    Avidin was covalently linked to aldehyde-derivatized polyethersulfone membrane filters. These filters were used in Western blot analysis of proteins reacted with biotinylation reagents and electrophoresed in sodium dodecyl sulfate (SDS) on polyacrylamide gels. Electrophoretic transfer from the gels to these filters was in 0.1% SDS, in which the covalently bound avidin retained its biotin-binding capacity. We compared Western blots on avidin-coated membrane filters of biotinylated and nonbiotinylated forms of mouse immunoglobulin G (IgG), mouse IgG heavy chain, muscle-type acetylcholine receptor alpha subunit, and fused alpha and beta subunits of receptor. Biotinylated proteins were captured with high specificity compared to their nonbiotinylated counterparts and sensitively detected on the avidin-coated membranes.

  20. Molecular Level Understanding of Sodium Dodecyl Sulfate (SDS) Induced Sol-Gel Transition of Pluronic F127 Using Fisetin as a Fluorescent Molecular Probe.

    PubMed

    Mishra, Jhili; Swain, Jitendriya; Mishra, Ashok Kumar

    2018-01-11

    The thermoreversible sol-gel transition of pluronic F127 is markedly altered even with addition of submicellar concentration of sodium dodecyl sulfate (SDS) surfactant. Multiple fluorescence parameters like fluorescence intensity, fluorescence anisotropy and fluorescence lifetime of both the prototropic forms (anion (A - *) and phototautomer FT*) of the photoprototropic fluorescent probe fisetin has been efficiently used to understand the molecular level properties like polarity and microviscosity of the PF127-SDS system as a function of temperature. The SDS-induced increase in the interfacial hydrophobicity level is seen to affect the sol-gel phase transition of PF127 (21-18 °C). The E T (30) polarity parameter value of anionic emission of fisetin suggests that there is a considerable decrease in the polarity of the PF127 medium with increase in temperature and with the addition of SDS. The microviscosity progressively increases from ∼5 mPa s (sol state, 10 °C) to ∼22.01 mPa s (gel state 35 °C) in aqueous solution of PF127. The variation in microviscosity with addition of SDS in PF127-SDS mixed system is significant in sol phase whereas in gel phase this variation is significantly less. Temperature dependent fluorescence lifetime of FT* indicates that there is heterogeneity in distribution of fisetin molecules at different domains of PF127. This work also show-cases the sensitivity of fisetin toward change in polarity and change in sol-gel transition temperature of copolymer PF127 with variation in temperature (both forward and reverse directions) and SDS.