Science.gov

Sample records for affinity column chromatography

  1. Affinity Chromatography.

    ERIC Educational Resources Information Center

    Gray, Gary R.

    1980-01-01

    Presents selected recent advances in immobilization chemistry which have important connections to affinity chromatography. Discusses ligand immobilization and support modification. Cites 51 references. (CS)

  2. Twin-column CaptureSMB: a novel cyclic process for protein A affinity chromatography.

    PubMed

    Angarita, Monica; Müller-Späth, Thomas; Baur, Daniel; Lievrouw, Roel; Lissens, Geert; Morbidelli, Massimo

    2015-04-10

    A twin-column counter-current chromatography processes, CaptureSMB, was used for the protein A affinity capture of a monoclonal antibody (mAb). By means of sequential loading, the process improves the utilization of the stationary phase by achieving loadings much closer to the static binding capacity of the resin in comparison to batch chromatography. Using a mAb capture case study with protein A affinity chromatography, the performance and product quality obtained from CaptureSMB and batch processes were compared. The effect of the flow rate, column length and titer concentration on the process performance and product quality were evaluated. CaptureSMB showed superior performance compared to batch chromatography with respect to productivity, capacity utilization, product concentration and buffer consumption. A simplified economic evaluation showed that CaptureSMB could decrease resin costs of 10-30% depending on the manufacturing scenario. PMID:25748537

  3. Isolation and purification of blood group antigens using immuno-affinity chromatography on short monolithic columns.

    PubMed

    Mönster, Andrea; Hiller, Oliver; Grüger, Daniela; Blasczyk, Rainer; Kasper, Cornelia

    2011-02-01

    Monolithic columns have gained increasing attention as stationary phases for the separation of biomolecules and biopharmaceuticals. In the present work the performance of monolithic convective interaction media (CIM(®)) chromatography for the purification of blood group antigens was established. The proteins employed in this study are derived from blood group antigens Knops, JMH and Scianna, equipped both with a His-tag and with a V5-tag by which they can be purified. In a first step a monoclonal antibody directed against the V5-tag was immobilized on a CIM(®) Disk with epoxy chemistry. After this, the immobilized CIM(®) Disk was used in immuno-affinity chromatography to purify the three blood group antigens from cell culture supernatant. Up-scaling of the applied technology was carried out using CIM(®) Tubes. In comparison to conventional affinity chromatography, blood group antigens were also purified via His-tag using a HiTrap(®) metal-affinity column. The two purifications have been compared regarding purity, yield and purification speed. Using the monolithic support, it was possible to isolate the blood group antigens with a higher flow rate than using the conventional bed-packed column. PMID:21194702

  4. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies

    NASA Astrophysics Data System (ADS)

    Boulet-Audet, Maxime; Kazarian, Sergei G.; Byrne, Bernadette

    2016-07-01

    In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan.

  5. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies

    PubMed Central

    Boulet-Audet, Maxime; Kazarian, Sergei G.; Byrne, Bernadette

    2016-01-01

    In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan. PMID:27470880

  6. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies.

    PubMed

    Boulet-Audet, Maxime; Kazarian, Sergei G; Byrne, Bernadette

    2016-01-01

    In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan. PMID:27470880

  7. The development of mitochondrial membrane affinity chromatography columns for the study of mitochondrial transmembrane proteins.

    PubMed

    Habicht, K-L; Singh, N S; Indig, F E; Wainer, I W; Moaddel, R; Shimmo, R

    2015-09-01

    Mitochondrial membrane fragments from U-87 MG (U87MG) and HEK-293 cells were successfully immobilized onto immobilized artificial membrane (IAM) chromatographic support and surface of activated open tubular (OT) silica capillary, resulting in mitochondrial membrane affinity chromatography (MMAC) columns. Translocator protein (TSPO), located in mitochondrial outer membrane as well as sulfonylurea and mitochondrial permeability transition pore (mPTP) receptors, localized to the inner membrane, were characterized. Frontal displacement experiments with multiple concentrations of dipyridamole (DIPY) and PK-11195 were run on MMAC (U87MG) column, and the binding affinities (Kd) determined were 1.08±0.49 and 0.0086±0.0006μM, respectively, consistent with previously reported values. Furthermore, binding affinities (Ki) for DIPY binding site were determined for TSPO ligands, PK-11195, mesoporphyrin IX, protoporphyrin IX, and rotenone. In addition, the relative ranking of these TSPO ligands based on single displacement studies using DIPY as marker on MMAC (U87MG) was consistent with the obtained Ki values. The immobilization of mitochondrial membrane fragments was also confirmed by confocal microscopy. PMID:26049098

  8. The development of mitochondrial membrane affinity chromatography columns for the study of mitochondrial transmembrane proteins

    PubMed Central

    Habicht, K-L.; Singh, N.S.; Indig, F.E.; Wainer, I.W.; Moaddel, R.; Shimmo, R.

    2015-01-01

    Mitochondrial membrane fragments from U-87 MG (U87MG) and HEK-293 cells were successfully immobilized on to Immobilized Artificial Membrane (IAM) chromatographic support and surface of activated open tubular (OT) silica capillary resulting in mitochondrial membrane affinity chromatography (MMAC) columns. Translocator protein (TSPO), located in mitochondrial outer membrane as well as sulfonylurea and mitochondrial permeability transition pore (mPTP) receptors, localized to the inner membrane, were characterized. Frontal displacement experiments with multiple concentrations of dipyridamole (DIPY) and PK-11195 were run on MMAC-(U87MG) column and the binding affinities (Kd) determined were 1.08 ± 1.49 and 0.0086 ± 0.0006 μM respectively, which was consistent with previously reported values. Further, binding affinities (Ki) for DIPY binding site were determined for TSPO ligands, PK-11195, mesoporphyrin IX, protoporphyrin IX and rotenone. Additionally, the relative ranking of these TSPO ligands based on single displacement studies using DIPY as marker on MMAC-(U87MG) was consistent with the obtained Ki values. The immobilization of mitochondrial membrane fragments was also confirmed by confocal microscopy. PMID:26049098

  9. Comprehensive and Reproducible Phosphopeptide Enrichment Using Iron Immobilized Metal Ion Affinity Chromatography (Fe-IMAC) Columns

    PubMed Central

    Ruprecht, Benjamin; Koch, Heiner; Medard, Guillaume; Mundt, Max; Kuster, Bernhard; Lemeer, Simone

    2015-01-01

    Advances in phosphopeptide enrichment methods enable the identification of thousands of phosphopeptides from complex samples. Current offline enrichment approaches using TiO2, Ti, and Fe immobilized metal ion affinity chromatography (IMAC) material in batch or microtip format are widely used, but they suffer from irreproducibility and compromised selectivity. To address these shortcomings, we revisited the merits of performing phosphopeptide enrichment in an HPLC column format. We found that Fe-IMAC columns enabled the selective, comprehensive, and reproducible enrichment of phosphopeptides out of complex lysates. Column enrichment did not suffer from bead-to-sample ratio issues and scaled linearly from 100 μg to 5 mg of digest. Direct measurements on an Orbitrap Velos mass spectrometer identified >7500 unique phosphopeptides with 90% selectivity and good quantitative reproducibility (median cv of 15%). The number of unique phosphopeptides could be increased to more than 14,000 when the IMAC eluate was subjected to a subsequent hydrophilic strong anion exchange separation. Fe-IMAC columns outperformed Ti-IMAC and TiO2 in batch or tip mode in terms of phosphopeptide identification and intensity. Permutation enrichments of flow-throughs showed that all materials largely bound the same phosphopeptide species, independent of physicochemical characteristics. However, binding capacity and elution efficiency did profoundly differ among the enrichment materials and formats. As a result, the often quoted orthogonality of the materials has to be called into question. Our results strongly suggest that insufficient capacity, inefficient elution, and the stochastic nature of data-dependent acquisition in mass spectrometry are the causes of the experimentally observed complementarity. The Fe-IMAC enrichment workflow using an HPLC format developed here enables rapid and comprehensive phosphoproteome analysis that can be applied to a wide range of biological systems. PMID

  10. The Binding of Biotin to Sepharose-Avidin Column: Demonstration of the Affinity Chromatography Technique

    ERIC Educational Resources Information Center

    Landman, A. D.; Landman, N. N.

    1976-01-01

    Describes a biochemistry experiment that illustrates the methodology of affinity chromatography by attaching avidin, a glycoprotein in egg white, to a Sepharose matrix in order to bind biotin-containing proteins. (MLH)

  11. Column affinity chromatography for bound/free separation in ligand assays. I. Radioimmunoassay of choriomammotropin (human placental lactogen).

    PubMed

    Cornale, P; Bonazzi, M; Multinu, C; Romelli, P; Vancheri, L; Pennisi, F

    1981-06-01

    A method is described for separating antibody-bound from free fractions in ligand assays by column affinity chromatography, and its application to radioimmunoassay of choriomammotropin. In the method, 70 x 10 mm (i.d.) polypropylene columns containing about 150 mg of immunosorbent (goat anti-rabbit gamma-globulins covalently linked to Sepharose CL-4B) are used. Standards or unknowns, tracer and antiserum, pipetted into bottom-capped columns, are kept separated from the immunosorbent bed by a porous polyethylene disc and allowed to react for 15 min at room temperature. The reaction mixture is then allowed to pass through the columns by removing the bottom caps. Free antigen is eluted by washing the column, and discarded; antibody-bound fractions remain bound to the immunosorbent. The radioactivity in the columns is counted. The major advantages of the present technique, arising from the liquid-phase reaction combined with the solid-phase separation by column affinity chromatography, are the very low nonspecific binding (less than 1%), good sensitivity (0.02 mg/L), good precision (CV 3.4%), and simple and fast (30-min) assay. For 50 clinical samples so assayed (gamma) and compared with a polyethylene glycol precipitation technique (x), the regression equation was: y - 0.14 + 0.98x (r = 0.994). The assay method was clinical validated by 3493 determinations. PMID:7237770

  12. Report: Affinity Chromatography.

    ERIC Educational Resources Information Center

    Walters, Rodney R.

    1985-01-01

    Supports, affinity ligands, immobilization, elution methods, and a number of applications are among the topics considered in this discussion of affinity chromatography. An outline of the basic principles of affinity chromatography is included. (JN)

  13. Affinity-based screening of combinatorial libraries using automated, serial-column chromatography

    SciTech Connect

    Evans, D.M.; Williams, K.P.; McGuinness, B.

    1996-04-01

    The authors have developed an automated serial chromatographic technique for screening a library of compounds based upon their relative affinity for a target molecule. A {open_quotes}target{close_quotes} column containing the immobilized target molecule is set in tandem with a reversed-phase column. A combinatorial peptide library is injected onto the target column. The target-bound peptides are eluted from the first column and transferred automatically to the reversed-phase column. The target-specific peptide peaks from the reversed-phase column are identified and sequenced. Using a monoclonal antibody (3E-7) against {beta}-endorphin as a target, we selected a single peptide with sequence YGGFL from approximately 5800 peptides present in a combinatorial library. We demonstrated the applicability of the technology towards selection of peptides with predetermined affinity for bacterial lipopolysaccharide (LPS, endotoxin). We expect that this technology will have broad applications for high throughput screening of chemical libraries or natural product extracts. 21 refs., 4 figs.

  14. Synthesis and characterization of a cellular membrane affinity chromatography column containing histamine 1 and P2Y1 receptors: A multiple G-protein coupled receptor column

    PubMed Central

    Moaddel, Ruin; Musyimi, Harrison K.; Sanghvi, Mitesh; Bashore, Charlene; Frazier, Chester R.; Khadeer, Mohammad; Bhatia, Prateek; Wainer, Irving W.

    2015-01-01

    A cellular membrane affinity chromatography (CMAC) column has been created using cellular membrane fragments from a 1321N1 cell line stably transfected with the P2Y1 receptor. The CMAC(1321N1P2Y1) column contained functional P2Y1 and histamine 1 receptors, which independently bound receptor-specific ligands. The data obtained with the CMAC(1321N1P2Y1) column demonstrate that multiple-G-protein coupled receptor (GPCR) columns can be developed and used to probe interactions with the immobilized receptors and that endogenously expressed GPCRs can be used to create CMAC columns. The results also establish that the histamine 1 receptor can be immobilized with retention of ligand-specific binding. PMID:19608372

  15. Coupling Isotachophoresis with Affinity Chromatography for Rapid and Selective Purification with High Column Utilization, Part 1: Theory

    PubMed Central

    2015-01-01

    We present a novel technique that couples isotachophoresis (ITP) with affinity chromatography (AC) to achieve rapid, selective purification with high column utilization. ITP simultaneously preconcentrates an analyte and purifies it, based on differences in mobility of sample components, excluding species that may foul or compete with the target at the affinity substrate. ITP preconcentration accelerates the affinity reaction, reducing assay time, improving column utilization, and allowing for capture of targets with higher dissociation constants. Furthermore, ITP-AC separates the target and contaminants into nondiffusing zones, thus achieving high resolution in a short distance and time. We present an analytical model for spatiotemporal dynamics of ITP-AC. We identify and explore the effect of key process parameters, including target distribution width and height, ITP zone velocity, forward and reverse reaction constants, and probe concentration on necessary affinity region length, assay time, and capture efficiency. Our analytical approach shows collapse of these variables to three nondimensional parameters. The analysis yields simple analytical relations for capture length and capture time in relevant ITP-AC regimes, and it demonstrates how ITP greatly reduces assay time and improves column utilization. In the second part of this two-part series, we will present experimental validation of our model and demonstrate ITP-AC separation of the target from 10,000-fold more-abundant contaminants. PMID:24937679

  16. Isolation of human beta-interferon receptor by wheat germ lectin affinity and immunosorbent column chromatographies

    SciTech Connect

    Zhang, Z.Q.; Fournier, A.; Tan, Y.H.

    1986-06-15

    Radioiodinated human beta-interferon-Ser 17 (Betaseron) was reversibly cross-linked to Daudi cells by dithiobis(succinimidylpropionate). The radioactive ligand was cross-linked to three macromolecules forming labeled complexes of apparent Mr values of 130,000, 220,000, and 320,000. Betaseron, human alpha-interferon, human interleukin 2 but not recombinant human gamma-interferon competed with the labeled ligand for binding to these putative receptor(s). Human leukocyte-produced gamma-interferon competed weakly with /sup 125/I-Betaseron for binding to Daudi cells. The Betaseron-receptor complex(es) was purified by passage through a wheat germ lectin column followed by chromatography on an anti-interferon immunosorbent column and semipreparative gel electrophoresis. The cross-linked ligand-receptor complex was shown to be highly purified by sodium dodecyl sulfate and acetic acid:urea:Triton X-100 polyacrylamide gel electrophoresis. It can be dissociated into the labeled Betaseron (Mr = 17,000) ligand and a receptor moiety which has an apparent molecular weight of 110,000. The chromatographic behavior of the ligand-receptor complex on wheat germ lectin column suggests that the receptor is a glycoprotein. The described procedure yielded about 1 microgram of Betaseron receptor from 10(10) Daudi cells, estimated to contain a maximum of about 15 micrograms of the receptor.

  17. Affinity chromatography: a historical perspective.

    PubMed

    Hage, David S; Matsuda, Ryan

    2015-01-01

    Affinity chromatography is one of the most selective and versatile forms of liquid chromatography for the separation or analysis of chemicals in complex mixtures. This method makes use of a biologically related agent as the stationary phase, which provides an affinity column with the ability to bind selectively and reversibly to a given target in a sample. This review examines the early work in this method and various developments that have lead to the current status of this technique. The general principles of affinity chromatography are briefly described as part of this discussion. Past and recent efforts in the generation of new binding agents, supports, and immobilization methods for this method are considered. Various applications of affinity chromatography are also summarized, as well as the influence this field has played in the creation of other affinity-based separation or analysis methods. PMID:25749941

  18. Characterization of a multiple endogenously expressed Adenosine triphosphate-Binding Cassette transporters using nuclear and cellular membrane affinity chromatography columns

    PubMed Central

    Khadeer, M.A.; Shimmo, R.; Wainer, I.W.; Moaddel, R.

    2014-01-01

    Glioblastoma multiforme is an aggressive form of human astrocytoma, with poor prognosis due to multi-drug resistance to a number of anticancer drugs. The observed multi-drug resistance is primarily due to the efflux activity of ATP Binding Cassette (ABC) efflux transporters such as Pgp, MRP1 and BCRP. The expression of these transporters has been demonstrated in nuclear and cellular membranes of the LN-229 human glioblastoma cell line. Nuclear membrane and cellular membrane fragments from LN229 cells were immobilized on the IAM stationary phase to create nuclear and cellular membrane affinity chromatography columns, (NMAC(LN229)) and (CMAC(LN229)), respectively. Pgp, MRP1and BCRP transporters co-immobilized on both columns was characterized and compared by establishing the binding affinities for estrone-3-sulfate (3.8 vs 3.7μM), verapamil (0.6 vs 0.7μM) and prazosin (0.099 vs 0.033μM) on each column and no significant differences were observed. Since the marker ligands had overlapping selectivities, the selective characterization of each transporter was carried out by saturation of the binding sites of the non-targeted transporters. The addition of verapamil (Pgp and MRP1 substrate) to the mobile phase allowed the comparative screening of 8 compounds at the nuclear and cellular BCRP using etoposide as the marker ligand. AZT increased the retention of etoposide (+15%), a positive allosteric interaction, on the CMAC(LN229) column and decreased it (−5%) on the NMAC(LN229), while the opposite effect was produced by rhodamine. The results indicate that there are differences between the cellular and nuclear membrane expressed BCRP and that NMAC and CMAC columns can be used to probe these differences. PMID:24642394

  19. Coupling isotachophoresis with affinity chromatography for rapid and selective purification with high column utilization, part 2: experimental study.

    PubMed

    Shkolnikov, Viktor; Santiago, Juan G

    2014-07-01

    We present an experimental study of coupling of isotachophoresis (ITP) and affinity chromatography (AC) to effect rapid, selective purification with high column utilization and high resolution. We provide a detailed protocol for performing ITP-AC and describe the design of a buffer system to perform sequence specific separation of nucleic acids. We describe the synthesis and functionalization of our affinity substrate, poly(glycidyl methacrylate-co-ethylene dimethacrylate) porous polymer monolith (GMA-EDMA PPM). This substrate allows easy immobilization of affinity probes, is nonsieving (even to macromolecules), and exhibits negligible nonspecific binding. We demonstrate ITP-AC with 25 nt, Cy5 labeled DNA target and a DNA probe and study the spatiotemporal dynamics using epifluorescence imaging. We make qualitative and quantitative comparisons between these data and the model presented in the first part of this two-paper series. We vary the target concentration from 1 pg μL(-1) to 100 pg μL(-1) and ITP velocity over the range of 10-50 μm s(-1), and thereby explore over 4 orders of magnitude of scaled target amount. We observe very good agreement between predictions and experimental data for the spatiotemporal behavior of the coupled ITP and affinity process, and for key figures of merit, including scaled capture length and maximum capture efficiency. Lastly, we demonstrate that the resolution of ITP-AC increases linearly with time and purify 25 nt target DNA from 10,000-fold higher abundance background (contaminating) genomic fish sperm DNA. We perform this capture from 200 μL of sample in under 1 mm column length and within <10 min. PMID:24937777

  20. Coupling Isotachophoresis with Affinity Chromatography for Rapid and Selective Purification with High Column Utilization, Part 2: Experimental Study

    PubMed Central

    2015-01-01

    We present an experimental study of coupling of isotachophoresis (ITP) and affinity chromatography (AC) to effect rapid, selective purification with high column utilization and high resolution. We provide a detailed protocol for performing ITP-AC and describe the design of a buffer system to perform sequence specific separation of nucleic acids. We describe the synthesis and functionalization of our affinity substrate, poly(glycidyl methacrylate-co-ethylene dimethacrylate) porous polymer monolith (GMA-EDMA PPM). This substrate allows easy immobilization of affinity probes, is nonsieving (even to macromolecules), and exhibits negligible nonspecific binding. We demonstrate ITP-AC with 25 nt, Cy5 labeled DNA target and a DNA probe and study the spatiotemporal dynamics using epifluorescence imaging. We make qualitative and quantitative comparisons between these data and the model presented in the first part of this two-paper series. We vary the target concentration from 1 pg μL–1 to 100 pg μL–1 and ITP velocity over the range of 10–50 μm s–1, and thereby explore over 4 orders of magnitude of scaled target amount. We observe very good agreement between predictions and experimental data for the spatiotemporal behavior of the coupled ITP and affinity process, and for key figures of merit, including scaled capture length and maximum capture efficiency. Lastly, we demonstrate that the resolution of ITP-AC increases linearly with time and purify 25 nt target DNA from 10 000-fold higher abundance background (contaminating) genomic fish sperm DNA. We perform this capture from 200 μL of sample in under 1 mm column length and within <10 min. PMID:24937777

  1. Special Report: Affinity Chromatography.

    ERIC Educational Resources Information Center

    Parikh, Indu; Cuatrecasas, Pedro

    1985-01-01

    Describes the nature of affinity chromatography and its use in purifying enzymes, studying cell interactions, exploring hormone receptors, and other areas. The potential the technique may have in treating disease is also considered. (JN)

  2. Characterization of a Multiple Ligand-Gated Ion Channel Cellular Membrane Affinity Chromatography Column and Identification of Endogenously Expressed Receptors in Astrocytoma Cell Lines

    PubMed Central

    Kitabatake, T.; Moaddel, R.; Cole, R.; Gandhari, M.; Frazier, C.; Hartenstein, J.; Rosenberg, A.; Bernier, M.; Wainer, I. W.

    2008-01-01

    Cellular membranes obtained from the 1321N1 and A172 astrocytoma cell lines were immobilized on a chromatographic phase to create cellular membrane affinity chromatography (CMAC) columns, CMAC(1321N1) and CMAC(A172). The columns were characterized using frontal affinity chromatography with [3H]-epibatidine as the marker ligand and epibatidine, nicotine, and methyllycaconitine as the displacers. The results indicated that the columns contained homomeric α7 nicotinic acetylcholine receptors (α7 nAChR) and heteromeric nicotinic acetylcholine receptors (αxβy nAChRs), which was confirmed by the addition of subtype-specific inhibitors, κ-bungarotoxin (α7 nAChR) and K-bungarotoxin (αxβy nAChR) to the mobile phase. The presence of two additional ligand-gated ion channels (LGICs), γ-aminobutyric acid (GABAA) and N-methyl-d-aspartic acid (NMDA), was established using frontal affinity chromatography with flunitrazepam and diazepam (GABAA receptor) and MK-801 and NMDA (NMDA receptor). The presence of the four LGICs was confirmed using confocal microscopy and flow cytometry. The results indicate that the CMAC(1321N1) and CMAC(A172) columns contain four independently functioning LGICs, that the columns can be used to characterize binding affinities of small molecules to each of the receptors, and that the CMAC approach can be used to probe the expression of endogenous membrane receptors. PMID:18847217

  3. Characterization of a multiple ligand-gated ion channel cellular membrane affinity chromatography column and identification of endogenously expressed receptors in astrocytoma cell lines.

    PubMed

    Kitabatake, T; Moaddel, R; Cole, R; Gandhari, M; Frazier, C; Hartenstein, J; Rosenberg, A; Bernier, M; Wainer, I W

    2008-11-15

    Cellular membranes obtained from the 1321N1 and A172 astrocytoma cell lines were immobilized on a chromatographic phase to create cellular membrane affinity chromatography (CMAC) columns, CMAC(1321N1) and CMAC(A172). The columns were characterized using frontal affinity chromatography with [(3)H]-epibatidine as the marker ligand and epibatidine, nicotine, and methyllycaconitine as the displacers. The results indicated that the columns contained homomeric alpha7 nicotinic acetylcholine receptors (alpha7 nAChR) and heteromeric nicotinic acetylcholine receptors (alpha(x)beta(y) nAChRs), which was confirmed by the addition of subtype-specific inhibitors, alpha-bungarotoxin (alpha7 nAChR) and kappa-bungarotoxin (alpha(x)beta(y) nAChR) to the mobile phase. The presence of two additional ligand-gated ion channels (LGICs), gamma-aminobutyric acid (GABA(A)) and N-methyl-D-aspartic acid (NMDA), was established using frontal affinity chromatography with flunitrazepam and diazepam (GABA(A) receptor) and MK-801 and NMDA (NMDA receptor). The presence of the four LGICs was confirmed using confocal microscopy and flow cytometry. The results indicate that the CMAC(1321N1) and CMAC(A172) columns contain four independently functioning LGICs, that the columns can be used to characterize binding affinities of small molecules to each of the receptors, and that the CMAC approach can be used to probe the expression of endogenous membrane receptors. PMID:18847217

  4. Column Liquid Chromatography.

    ERIC Educational Resources Information Center

    Majors, Ronald E.; And Others

    1984-01-01

    Reviews literature covering developments of column liquid chromatography during 1982-83. Areas considered include: books and reviews; general theory; columns; instrumentation; detectors; automation and data handling; multidimensional chromatographic and column switching techniques; liquid-solid chromatography; normal bonded-phase, reversed-phase,…

  5. Lectin affinity chromatography of glycolipids

    SciTech Connect

    Torres, B.V.; Smith, D.F.

    1987-05-01

    Since glycolipids (GLs) are either insoluble or form mixed micelles in water, lectin affinity chromatography in aqueous systems has not been applied to their separation. They have overcome this problem by using tetrahydrofuran (THF) in the mobile phase during chromatography. Affinity columns prepared with the GalNAc-specific Helix pomatia agglutinin (HPA) and equilibrated in THF specifically bind the (/sup 3/H)oligosaccharide derived from Forssman GL indicating that the immobilized HPA retained its carbohydrate-binding specificity in this solvent. Intact Forssman GL was bound by the HPA-column equilibrated in THF and was specifically eluted with 0.1 mg/ml GalNAc in THF. Purification of the Forssman GL was achieved when a crude lipid extract of sheep erythrocyte membranes was applied to the HPA-column in THF. Non-specifically bound GLs were eluted from the column using a step gradient of aqueous buffer in THF, while the addition of GalNAc was required to elute the specifically bound GLs. Using this procedure the A-active GLs were purified from a crude lipid extract of type A human erythrocytes in a single chromatographic step. The use of solvents that maintain carbohydrate-binding specificity and lipid solubility will permit the application of affinity chromatography on immobilized carbohydrate-binding proteins to intact GLs.

  6. Displacement phenomena in lectin affinity chromatography.

    PubMed

    Cho, Wonryeon

    2015-10-01

    The work described here examines displacement phenomena that play a role in lectin affinity chromatography and their potential to impact reproducibility. This was achieved using Lycopersicon esculentum lectin (LEL), a lectin widely used in monitoring cancer. Four small identical LEL columns were coupled in series to form a single affinity chromatography system with the last in the series connected to an absorbance detector. The serial affinity column set (SACS) was then loaded with human plasma proteins. At the completion of loading, the column set was disassembled, the four columns were eluted individually, the captured proteins were trypsin digested, the peptides were deglycosylated with PNGase F, and the parent proteins were identified through mass spectral analyses. Significantly different sets of glycoproteins were selected by each column, some proteins appearing to be exclusively bound to the first column while others were bound further along in the series. Clearly, sample displacement chromatography (SDC) occurs. Glycoproteins were bound at different places in the column train, identifying the presence of glycoforms with different affinity on a single glycoprotein. It is not possible to see these phenomena in the single column mode of chromatography. Moreover, low abundance proteins were enriched, which facilitates detection. The great advantage of this method is that it differentiates between glycoproteins on the basis of their binding affinity. Displacement phenomena are concluded to be a significant component of the separation mechanism in heavily loaded lectin affinity chromatography columns. This further suggests that care must be exercised in sample loading of lectin columns to prevent analyte displacement with nonretained proteins. PMID:26348026

  7. Online micro-solid-phase extraction based on boronate affinity monolithic column coupled with high-performance liquid chromatography for the determination of monoamine neurotransmitters in human urine.

    PubMed

    Yang, Xiaoting; Hu, Yufei; Li, Gongke

    2014-05-16

    Quantification of monoamine neurotransmitters is very important in diagnosing and monitoring of patients with neurological disorders. We developed an online analytical method to selectively determine urinary monoamine neurotransmitters, which coupled the boronate affinity monolithic column micro-solid-phase extraction with high-performance liquid chromatography (HPLC). The boronate affinity monolithic column was prepared by in situ polymerization of vinylphenylboronic acid (VPBA) and N,N'-methylenebisacrylamide (MBAA) in a stainless capillary column. The prepared monolithic column showed good permeability, high extraction selectivity and capacity. The column-to-column reproducibility was satisfactory and the enrichment factors were 17-243 for four monoamine neurotransmitters. Parameters that influence the online extraction efficiency, including pH of sample solution, flow rate of extraction and desorption, extraction volume and desorption volume were investigated. Under the optimized conditions, the developed method exhibited low limit of detection (0.06-0.80μg/L), good linearity (with R(2) between 0.9979 and 0.9993). The recoveries in urine samples were 81.0-105.5% for four monoamine neurotransmitters with intra- and inter-day RSDs of 2.1-8.2% and 3.7-10.6%, respectively. The online analytical method was sensitive, accurate, selective, reliable and applicable to analysis of trace monoamine neurotransmitters in human urine sample. PMID:24703360

  8. Rapid Screening of Drug-Protein Binding Using High-Performance Affinity Chromatography with Columns Containing Immobilized Human Serum Albumin

    PubMed Central

    Li, Ying-Fei; Zhang, Xiao-Qiong; Hu, Wei-Yu; Li, Zheng; Liu, Ping-Xia; Zhang, Zhen-Qing

    2013-01-01

    For drug candidates, a plasma protein binding (PPB) more than 90% is more meaningful and deserves further investigation in development. In the study, a high-performance liquid chromatography method employing column containing immobilized human serum albumin (HSA) to screen in vitro PPB of leading compounds was established and successfully applied to tested compounds. Good correlation (a coefficient correlation of 0.96) was attained between the reciprocal values (X) of experimentally obtained retention time of reference compounds eluted through HSA column and the reported PPB values (Y) with a correlation equation of Y = 92.03 − 97.01X. The method was successfully applied to six test compounds, and the result was confirmed by the conventional ultrafiltration technique, and both yielded equal results. However, due to the particular protein immobilized to column, the method cannot be applied for all compounds and should be exploited judiciously based on the value of the logarithmic measure of the acid dissociation constant (pKa) as per the requirement. If α1-acid glycoprotein and other plasma proteins could be immobilized like HSA with their actual ratio in plasma to column simultaneously, the result attained using immobilized column may be more accurate, and the method could be applied to more compounds without pKa limitation. PMID:23607050

  9. On-column entrapment of alpha1-acid glycoprotein for studies of drug-protein binding by high-performance affinity chromatography.

    PubMed

    Anguizola, Jeanethe; Bi, Cong; Koke, Michelle; Jackson, Abby; Hage, David S

    2016-08-01

    An on-column approach for protein entrapment was developed to immobilize alpha1-acid glycoprotein (AGP) for drug-protein binding studies based on high-performance affinity chromatography. Soluble AGP was physically entrapped by using microcolumns that contained hydrazide-activated porous silica and by employing mildly oxidized glycogen as a capping agent. Three on-column entrapment methods were evaluated and compared to a previous slurry-based entrapment method. The final selected method was used to prepare 1.0 cm × 2.1 mm I.D. affinity microcolumns that contained up to 21 (±4) μg AGP and that could be used over the course of more than 150 sample applications. Frontal analysis and zonal elution studies were performed on these affinity microcolumns to examine the binding of various drugs with the entrapped AGP. Site-selective competition studies were also conducted for these drugs. The results showed good agreement with previous observations for these drug-protein systems and with binding constants that have been reported in the literature. The entrapment method developed in this study should be useful for future work in the area of personalized medicine and in the high-throughput screening of drug interactions with AGP or other proteins. Graphical abstract On-column protein entrapment using a hydrazide-activated support and oxidized glycogen as a capping agent. PMID:27289464

  10. Screening and confirmation of thyreostatics in urine by gas chromatography with nitrogen-phosphorus detection and gas chromatography-mass spectrometry after sample clean-up with a mercurated affinity column.

    PubMed

    Schilt, R; Weseman, J M; Hooijerink, H; Korbee, H J; Traag, W A; van Steenbergen, M J; Haasnoot, W

    1989-04-01

    Methods are described for the screening and confirmation of residues of the thyreostatics thiouracil, methylthiouracil and propylthiouracil in urine samples of cattle at levels down to 25 micrograms/l. After a selective preconcentration of the thiol-containing thyreostatics on a mercurated affinity column, the analytes are derivatized by extractive alkylation and analysed by gas chromatography with nitrogen-phosphorus or mass spectrometric detection. PMID:2745644

  11. Improving affinity chromatography resin efficiency using semi-continuous chromatography.

    PubMed

    Mahajan, Ekta; George, Anupa; Wolk, Bradley

    2012-03-01

    Protein A affinity chromatography is widely used for purification of monoclonal antibodies (MAbs) from harvested cell culture fluid (HCCF). At the manufacturing scale, the HCCF is typically loaded on a single Protein A affinity chromatography column in cycles until all of the HCCF is processed. Protein A resin costs are significant, comprising a substantial portion of the raw material costs in MAb manufacturing. Cost can be reduced by operating the process continuously using multiple smaller columns to a higher binding capacity in lieu of one industrial scale column. In this study, a series of experiments were performed using three 1-ml Hi-Trap™ MabSelect SuRe™ columns on a modified ÄKTA™ system operated according to the three Column Periodic Counter Current Chromatography (3C PCC) principle. The columns were loaded individually at different times until the 70% breakthrough point was achieved. The HCCF with unbound protein from the column was then loaded onto the next column to capture the MAb, preventing any protein loss. At any given point, all three columns were in operation, either loading or washing, enabling a reduction in processing time. The product yield and quality were evaluated and compared with a batch process to determine the effect of using the three column continuous process. The continuous operation shows the potential to reduce both resin volume and buffer consumption by ∼40%, however the system hardware and the process is more complex than the batch process. Alternative methods using a single standard affinity column, such as recycling load effluent back to the tank or increasing residence time, were also evaluated to improve Protein A resin efficiency. These alternative methods showed similar cost benefits but required longer processing time. PMID:22265178

  12. Development and characterization of the α3β4α5 nicotinic receptor cellular membrane affinity chromatography column and its application for on line screening of plant extracts.

    PubMed

    Ciesla, L; Okine, M; Rosenberg, A; Dossou, K S S; Toll, L; Wainer, I W; Moaddel, R

    2016-01-29

    The α3β4α5 nAChR has been recently shown to be a useful target for smoking cessation pharmacotherapies. Herein, we report on the development and characterization of the α3β4α5 nicotinic receptor column by frontal displacement chromatography. The binding affinity of the nicotine and minor alkaloids found in tobacco smoke condensates were determined for both the α3β4 and α3β4α5 nicotinic receptors. It was demonstrated that while no subtype selectivity was observed for nicotine and nornicotine, anabasine was selective for the α3β4α5 nicotinic receptor. The non-competitive inhibitor binding site was also studied and it was demonstrated while mecamylamine was not selective between subtypes, buproprion showed subtype selectivity for the α3β4 nicotinic receptor. The application of this methodology to complex mixtures was then carried out by screening aqueous-alcoholic solutions of targeted plant extracts, including Lycopodium clavatum L. (Lycopodiaceae) and Trigonella foenum graecum L. (Fabaceae) against both the α3β4 and α3β4α5 nAChRs. PMID:26774122

  13. Immobilized metal ion affinity chromatography.

    PubMed

    Yip, T T; Hutchens, T W

    1992-01-01

    Immobilized metal ion affinity chromatography (IMAC) (1,2) is also referred to as metal chelate chromatography, metal ion interaction chromatography, and ligand-exchange chromatography. We view this affinity separation technique as an intermediate between highly specific, high-affinity bioaffinity separation methods, and wider spectrum, low-specificity adsorption methods, such as ion exchange. The IMAC stationary phases are designed to chelate certain metal ions that have selectivity for specific groups (e.g., His residues) in peptides (e.g., 3-7) and on protein surfaces (8-13). The number of stationary phases that can be synthesized for efficient chelation of metal ions is unlimited, but the critical consideration is that there must be enough exposure of the metal ion to interact with the proteins, preferably in a biospecific manner. Several examples are presented in Fig. 1. The challenge to produce new immobilized chelating groups, including protein surface metal-binding domains (14,15) is being explored continuously. Table 1 presents a list of published procedures for the synthesis and use of stationary phases with immobilized chelating groups. This is by no means exhaustive, and is intended only to give an idea of the scope and versatility of IMAC. Fig. 1 Schematic illustration of several types of immobilized metal-chelating groups, including, iminodiacetate (IDA), tris(carboxymethyl) ethylenediamine (TED), and the metal-binding peptides (GHHPH)(n)G (where n = 1,2,3, and 5) (14,15). Table 1 Immobilized Chelating Groups and Metal Ions Used for Immobilized Metal Ion Affinity Chromatography Chelating group Suitable metal ions Reference Commercial source Immodiacetate Transitional1,2 Pharmacia LKB Pierce Sigma Boehringer Mannheim TosoHaas 2-Hydroxy-3[N-(2- pyrtdylmethyl) glycme]propyl Transitional3 Not available ?-Alky1 mtrilo triacetic acid Transitional4 Not available Carboxymethylated asparhc acid Ca(II)13 Not available Tris (carboxy- methyl) ethylene Diamme

  14. The synthesis and characterization of cellular membrane affinity chromatography columns for the study of human multidrug resistant proteins MRP1, MRP2 and human breast cancer resistant protein BCRP using membranes obtained from Spodoptera frugiperda (Sf9) insect cells

    PubMed Central

    Bhatia, Prateek A.; Moaddel, Ruin; Wainer, Irving W.

    2010-01-01

    CMAC (cellular membrane affinity chromatography columns) have been developed for the study of the human multidrug transporters MRP1, MRP2 and the breast cancer resistance protein (BCRP). The columns were constructed using the immobilized artificial membrane (IAM) stationary phase and cellular membrane fragments obtained from Spodopetra frugiperda (Sf9) cells that had been stably transfected with human Mrp1, Mrp2 or Bcrp c-DNA, using a baculovirus expression system. The resulting CMAC(Sf9MRP1), CMAC(Sf9MRP2) and CMAC(Sf9BCRP) columns and a control column produced using membrane fragments from non-transfected Sf9 cells, CMAC(Sf9), were characterized using frontal affinity chromatography using [3H]-etoposide as the marker ligand and etoposide, benzbromarone and MK571 as the displacers on the CMAC(Sf9MRP1) column, etoposide and furosemide on the CMAC(Sf9MRP2) column and etoposide and fumitremorgin C on the CMAC(Sf9BCPR) column The binding affinities (Ki values) obtained from the chromatographic studies were consistent with the data obtained using non-chromatographic techniques and the results indicate that the immobilized MRP1, MRP2 and BCRP transporters retained their ability to selectively bind known ligands. (S)-verapamil displaced [3H]-etoposide on the CMAC(Sf9MRP1) column to a greater extent than (R)-verapamil and the relative IC50 values of the enantiomers were calculated using the changes in the retention times of the marker. The observed enantioselectivity and calculated IC50 values were consistent with previously reported data. The results indicated that the CMAC(Sf9MRP1), CMAC(Sf9MRP2) and CMAC(Sf9BCRP) columns can be used for the study of binding to the MRP1, MRP2 and BCRP transporters and that membranes from the Sf9 cell line can be used to prepare CMAC columns. This is the first example of the use of membranes from a non-mammalian cell line in an affinity chromatographic system. PMID:20441926

  15. Self-regenerating column chromatography

    SciTech Connect

    Park, Woo K.

    1994-12-31

    The present invention provides a process for treating both cations and anions by using a self-regenerating, multi-ionic exchange resin column system which requires no separate regeneration steps. The process involves alternation ion-exchange chromatography for cations and anions in a multi-ionic exchange column packed with a mixture of cation and anion exchange resins. The multi-ionic mixed-charge resin column works as a multifunction column, capable of independently processing either cationic or anionic exchange, or simultaneously processing both cationic and anionic exchanges. The major advantage offered by the alternating multifunction ion exchange process is the self-regeneration of the resins. Applications are to separation of nitrogen and sulfur isotopes.

  16. Self-regenerating column chromatography

    DOEpatents

    Park, W.K.

    1995-05-30

    The present invention provides a process for treating both cations and anions by using a self-regenerating, multi-ionic exchange resin column system which requires no separate regeneration steps. The process involves alternating ion-exchange chromatography for cations and anions in a multi-ionic exchange column packed with a mixture of cation and anion exchange resins. The multi-ionic mixed-charge resin column works as a multi-function column, capable of independently processing either cationic or anionic exchange, or simultaneously processing both cationic and anionic exchanges. The major advantage offered by the alternating multi-function ion exchange process is the self-regeneration of the resins.

  17. Prediction of Neutral Salt Elution Profiles for Affinity Chromatography

    NASA Astrophysics Data System (ADS)

    Robinson, Jack B.; Strottmann, James M.; Stellwagen, Earle

    1981-04-01

    Neutral salts exhibit very marked differences as eluants of proteins from affinity columns. We observe: (i) that the relative potencies of neutral salts as eluants are independent of the protein or the affinity ligand in the systems studied, (ii) that the absolute salt concentration necessary to elute any given protein bound to the affinity matrix is proportional to the algebraic sum of a set of elution coefficients defined herein for the separate ions present in the solution, and (iii) that the proportionality between elution potency and elution coefficient is a function of the affinity of the protein for the immobilized ligand. Given the concentration of one neutral salt required for elution of a protein of interest from an affinity column, the elution capability of any neutral salt at any temperature can be quantitatively predicted for that protein. Accordingly, application and elution protocols for affinity chromatography can be designed to optimize the yield and fold purification of proteins.

  18. Kinetic Studies of Biological Interactions By Affinity Chromatography

    PubMed Central

    Schiel, John E.; Hage, David S.

    2009-01-01

    The rates at which biological interactions occur can provide important information on the mechanism and behavior of such processes in living systems. This review will discuss how affinity chromatography can be used as a tool to examine the kinetics of biological interactions. This approach, referred to here as biointeraction chromatography, uses a column with an immobilized binding agent to examine the association or dissociation of this agent with other compounds. The use of HPLC-based affinity columns in kinetic studies has received particular attention in recent years. Advantages of using HPLC with affinity chromatography for this purpose include the ability to reuse the same ligand within a column for a large number of experiments, and the good precision and accuracy of this approach. A number of techniques are available for kinetic studies through the use of affinity columns and biointeraction chromatography. These approaches include plate height measurements, peak profiling, peak fitting, split-peak measurements, and peak decay analysis. The general principles for each of these methods are discussed in this review and some recent applications of these techniques are presented. The advantages and potential limitations of each approach are also considered. PMID:19391173

  19. Open tubular columns containing the immobilized ligand binding domain of peroxisome proliferator-activated receptors α and γ for dual agonists characterization by frontal affinity chromatography with MS detection

    PubMed Central

    Temporini, C.; Pochetti, G.; Fracchiolla, G.; Piemontese, L.; Montanari, R.; Moaddel, R.; Laghezza, A.; Altieri, F.; Cervoni, L.; Ubiali, D.; Prada, E.; Loiodice, F.; Massolini, G.; Calleri, E.

    2013-01-01

    The peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor superfamily. In the last years novel PPARs ligands have been identified and these include PPARα/γ dual agonists. To rapidly identify novel PPARs dual ligands, a robust binding assay amenable to high-throughput screening towards PPAR isoforms would be desirable. In this work we describe a parallel assay based on the principles of Frontal Affinity Chromatography coupled to Mass Spectrometry (FAC-MS) that can be used to characterize dual agonists. For this purpose the ligand binding domain of PPARα receptor was immobilized onto the surface of open tubular capillaries to create new PPAR-alpha-OT columns to be used in parallel with PPAR-gamma-OT columns. The two biochromatographic systems were used in both ranking and Kd experiments towards new ureidofibrate-like dual agonists for subtype selectivity ratio determination. In order to validate the system, the Kd values determined by frontal analysis chromatography were compared to the affinity constants obtained by ITC experiments. The results of this study strongly demonstrate the specific nature of the interaction of the ligands with the two immobilized receptor subtypes. PMID:23466198

  20. [Analysis of rice leaves proteomes by liquid chromatography-tandem, mass spectrometry based on the purification using a novel affinity detergent removal spin column].

    PubMed

    Cao, Xiaolin; Gong, Jiadi; Chen, Mingxue; Yu, Shasha; Bian, Yingfang; Cao, Zhaoyun

    2014-11-01

    A purification method was established for the analysis of proteomes in rice leaves based on a novel detergent removal spin column (DRSC). The proteins were extracted by phenol protein extraction method followed by sodium dodecyl sulfate (SDS) lysis. The lysate was purified by the detergent removal spin column and the enzymolytic peptides were detected by the nanoflow liquid chromatography-hybrid linear trap quadrupole orbitrap mass spectrometry (nanoLC-LTQ/Orbitrap). In terms of SDS removal efficiencies and protein identification, the method of DRSC was compared with those of filter aided sample preparation (FASP) and acetone precipitation. As a result, there were good efficiencies ( > 95%) of SDS removal for the three methods. With the DRSC purification strategy, 563 proteins were identified from rice leaves, while only 196 and 306 proteins were identified by FASP and acetone precipitation procedures respectively, in spite of certain complementarities among these identified proteins by the three methods. DRSC is suitable for proteins with various relative molecular masses and pI values. However, there were similar losses of proteins with different relative molecular masses and pI values with the other two methods. Using the established method, 588 proteins were identified by once injection analysis. According to the molecular functions, 296 proteins with at least two identified peptides can be classified into eight categories with binding activity, enzyme activity, transporter activity, inhibitor activity, structural constitute, catalytic activity, other and unknown functions. The method provides technical reference for conducting rice proteomes. PMID:25764651

  1. Statistical theory of chromatography: new outlooks for affinity chromatography.

    PubMed Central

    Denizot, F C; Delaage, M A

    1975-01-01

    We have developed further the statistical approach to chromatography initiated by Giddings and Eyring, and applied it to affinity chromatography. By means of a convenient expression of moments the convergence towards the Laplace-Gauss distribution has been established. The Gaussian character is not preserved if other causes of dispersion are taken into account, but expressions of moments can be obtained in a generalized form. A simple procedure is deduced for expressing the fundamental constants of the model in terms of purely experimental quantities. Thus, affinity chromatography can be used to determine rate constants of association and dissociation in a range considered as the domain of the stopped-flow methods. PMID:1061072

  2. PHARMACEUTICAL AND BIOMEDICAL APPLICATIONS OF AFFINITY CHROMATOGRAPHY: RECENT TRENDS AND DEVELOPMENTS

    PubMed Central

    Hage, David S.; Anguizola, Jeanethe A.; Bi, Cong; Li, Rong; Matsuda, Ryan; Papastavros, Efthimia; Pfaunmiller, Erika; Vargas, John; Zheng, Xiwei

    2012-01-01

    Affinity chromatography is a separation technique that has become increasingly important in work with biological samples and pharmaceutical agents. This method is based on the use of a biologically-related agent as a stationary phase to selectively retain analytes or to study biological interactions. This review discusses the basic principles behind affinity chromatography and examines recent developments that have occurred in the use of this method for biomedical and pharmaceutical analysis. Techniques based on traditional affinity supports are discussed, but an emphasis is placed on methods in which affinity columns are used as part of HPLC systems or in combination with other analytical methods. General formats for affinity chromatography that are considered include step elution schemes, weak affinity chromatography, affinity extraction and affinity depletion. Specific separation techniques that are examined include lectin affinity chromatography, boronate affinity chromatography, immunoaffinity chromatography, and immobilized metal ion affinity chromatography. Approaches for the study of biological interactions by affinity chromatography are also presented, such as the measurement of equilibrium constants, rate constants, or competition and displacement effects. In addition, related developments in the use of immobilized enzyme reactors, molecularly imprinted polymers, dye ligands and aptamers are briefly considered. PMID:22305083

  3. Triangular Helical Column for Centrifugal Countercurrent Chromatography.

    PubMed

    Ito, Yoichiro; Yu, Henry

    2009-01-01

    Effective column space and stationary phase retention have been improved by changing the configuration of the helical column originally used for toroidal coil countercurrent chromatography. The use of an equilateral triangular core for the helix column doubles effective column space and retains the stationary phase over 40% of the total column capacity without increasing the column pressure. The present results suggest that the stationary phase retention and the peak resolution will be further improved using new column designs fabricated by a new technology called "laser sintering for rapid prototyping." PMID:20046940

  4. Protein purification using PDZ affinity chromatography.

    PubMed

    Walkup, Ward G; Kennedy, Mary B

    2015-01-01

    PDZ domains function in nature as protein-binding domains within scaffold and membrane-associated proteins. They comprise approximately 90 residues and undergo specific, high-affinity interactions with complementary C-terminal peptide sequences, other PDZ domains, and/or phospholipids. We have previously shown that the specific, strong interactions of PDZ domains with their ligands make them well suited for use in affinity chromatography. This unit provides protocols for the PDZ affinity chromatography procedure that are applicable for the purification of proteins that contain PDZ domains or PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We detail the preparation of affinity resins composed of PDZ domains or PDZ domain peptide ligands coupled to solid supports. These resins can be used to purify proteins containing endogenous or genetically introduced PDZ domains or ligands, eluting the proteins with free PDZ domain peptide ligands. PMID:25829303

  5. Affinity Chromatography of Lactate Dehydrogenase: An Experiment for the Undergraduate Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Anderson, Alexander J.

    1988-01-01

    Discusses a laboratory technique of enzyme purification by affinity chromatography as part of an undergraduate biochemical methodology course. Provides preparation details of the rat muscle homogenate and reagents. Proposes column requirements and assaying information. (MVL)

  6. Temperature programmable microfabricated gas chromatography column

    DOEpatents

    Manginell, Ronald P.; Frye-Mason, Gregory C.

    2003-12-23

    A temperature programmable microfabricated gas chromatography column enables more efficient chemical separation of chemical analytes in a gas mixture by the integration of a resistive heating element and temperature sensing on the microfabricated column. Additionally, means are provided to thermally isolate the heated column from their surroundings. The small heat capacity and thermal isolation of the microfabricated column improves the thermal time response and power consumption, both important factors for portable microanalytical systems.

  7. KINETIC STUDIES OF DRUG-PROTEIN INTERACTIONS BY USING PEAK PROFILING AND HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY: EXAMINATION OF MULTI-SITE INTERACTIONS OF DRUGS WITH HUMAN SERUM ALBUMIN COLUMNS

    PubMed Central

    Tong, Zenghan; Schiel, John E.; Papastavros, Efthimia; Ohnmacht, Corey M.; Smith, Quentin R.; Hage, David S.

    2010-01-01

    Carbamazepine and imipramine are drugs that have significant binding to human serum albumin (HSA), the most abundant serum protein in blood and a common transport protein for many drugs in the body. Information on the kinetics of these drug interactions with HSA would be valuable in understanding the pharmacokinetic behavior of these drugs and could provide data that might lead to the creation of improved assays for these analytes in biological samples. In this report, an approach based on peak profiling was used with high-performance affinity chromatography to measure the dissociation rate constants for carbamazepine and imipramine with HSA. This approach compared the elution profiles for each drug and a non-retained species on an HSA column and control column over a board range of flow rates. Various approaches for the corrections of non-specific binding between these drugs and the support were considered and compared in this process. Dissociation rate constants of 1.7 (± 0.2) s-1 and 0.67 (± 0.04) s-1 at pH 7.4 and 37 °C were estimated by this approach for HSA in its interactions with carbamazepine and imipramine, respectively. These results gave good agreement with rate constants that have determined by other methods or for similar solute interactions with HSA. The approach described in this report for kinetic studies is not limited to these particular drugs or HSA but can also be extended to other drugs and proteins. PMID:21067755

  8. Affinity Chromatography in Nonionic Detergent Solutions

    NASA Astrophysics Data System (ADS)

    Robinson, Jack B.; Strottmann, James M.; Wick, Donald G.; Stellwagen, Earle

    1980-10-01

    Anionic dye affinity chromatography is commonly unproductive in the presence of nonionic detergents used to extract particulate proteins. Using lactate dehydrogenase as a model protein, Cibacron blue F3GA as a model dye, and Triton X-100 as a model detergent, we find that the dye is encapsulated in nonionic detergent micelles, rendering the dye incapable of ligation with the enzyme. However, the dye can be liberated from the micelles without altering the nonionic detergent concentration by addition of an anionic detergent, such as deoxycholate or sodium dodecyl sulfate, forming mixed anionic/nonionic micelles that displace the anionic dye. Encapsulation of the anionic detergents prevents their activity as protein denaturants. These observations have been successfully translated to the dye affinity chromatography of a detergent extract of brain particulate cyclic nucleotide phosphodiesterase.

  9. "Dry-column" chromatography of plant pigments

    NASA Technical Reports Server (NTRS)

    Woeller, F. H.; Lehwalt, M. F.; Oyama, V. I.

    1973-01-01

    Separation of plant pigments which can be accomplished on thin-layer silica plates with mixture of petroleum ether, halocarbon, acetone, and polar solvent can be readily translated into dry-column technique that yields reproducible chromatograms after elution in fashion of liquid chromatography with fluorimeter as detector. Best solvent system was found to be mixture of petroleum ether, dichloromethane, acetone, and ethyl acetate.

  10. Non-planar microfabricated gas chromatography column

    DOEpatents

    Lewis, Patrick R.; Wheeler, David R.

    2007-09-25

    A non-planar microfabricated gas chromatography column comprises a planar substrate having a plurality of through holes, a top lid and a bottom lid bonded to opposite surfaces of the planar substrate, and inlet and outlet ports for injection of a sample gas and elution of separated analytes. A plurality of such planar substrates can be aligned and stacked to provide a longer column length having a small footprint. Furthermore, two or more separate channels can enable multi-channel or multi-dimensional gas chromatography. The through holes preferably have a circular cross section and can be coated with a stationary phase material or packed with a porous packing material. Importantly, uniform stationary phase coatings can be obtained and band broadening can be minimized with the circular channels. A heating or cooling element can be disposed on at least one of the lids to enable temperature programming of the column.

  11. Phosphopeptide Enrichment by Immobilized Metal Affinity Chromatography.

    PubMed

    Thingholm, Tine E; Larsen, Martin R

    2016-01-01

    Immobilized metal affinity chromatography (IMAC) has been the method of choice for phosphopeptide enrichment prior to mass spectrometric analysis for many years and it is still used extensively in many laboratories. Using the affinity of negatively charged phosphate groups towards positively charged metal ions such as Fe(3+), Ga(3+), Al(3+), Zr(4+), and Ti(4+) has made it possible to enrich phosphorylated peptides from peptide samples. However, the selectivity of most of the metal ions is limited, when working with highly complex samples, e.g., whole-cell extracts, resulting in contamination from nonspecific binding of non-phosphorylated peptides. This problem is mainly caused by highly acidic peptides that also share high binding affinity towards these metal ions. By lowering the pH of the loading buffer nonspecific binding can be reduced significantly, however with the risk of reducing specific binding capacity. After binding, the enriched phosphopeptides are released from the metal ions using alkaline buffers of pH 10-11, EDTA, or phosphate-containing buffers. Here we describe a protocol for IMAC using Fe(3+) for phosphopeptide enrichment. The principles are illustrated on a semi-complex peptide mixture. PMID:26584922

  12. Exploring Fluorous Affinity by Liquid Chromatography.

    PubMed

    Catani, Martina; Guzzinati, Roberta; Marchetti, Nicola; Pasti, Luisa; Cavazzini, Alberto

    2015-07-01

    Terms such as "fluorous affinity" and "fluorophilicity" have been used to describe the unique partition and sorption properties often exhibited by highly fluorinated organic compounds, that is molecules rich in sp(3) carbon-fluorine bonds. In this work, we made use of a highly fluorinated stationary phase and a series of benzene derivatives to study the effect of one single perfluorinated carbon on the chromatographic behavior and adsorption properties of molecules. For this purpose, the adsorption equilibria of α,α,α-trifluorotoluene, toluene, and other alkylbenzenes have been studied by means of nonlinear chromatography in a variety of acetonitrile/water eluents. Our results reveal that one single perfluorinated carbon is already enough to induce a drastic change in the adsorption properties of molecules on the perfluorinated stationary phase. In particular, it has been found that adsorption is monolayer if the perfluoroalkyl carbon is present but that, when this unit is missing, molecules arrange as multilayer stack structures. These findings can contribute to the understanding of molecular mechanisms of fluorous affinity. PMID:26047527

  13. Affitins as robust tailored reagents for affinity chromatography purification of antibodies and non-immunoglobulin proteins.

    PubMed

    Béhar, Ghislaine; Renodon-Cornière, Axelle; Mouratou, Barbara; Pecorari, Frédéric

    2016-04-01

    Affinity chromatography is a convenient way of purifying proteins, as a high degree of purity can be reached in one step. The use of tags has greatly contributed to the popularity of this technique. However, the addition of tags may not be desirable or possible for the production of biopharmaceuticals. There is thus a need for tailored artificial affinity ligands. We have developed the use of archaeal extremophilic proteins as scaffolds to generate affinity proteins (Affitins). Here, we explored the potential of Affitins as ligand to design affinity columns. Affitins specific for human immunoglobulin G (hIgG), bacterial PulD protein, and chicken egg lysozyme were immobilized on an agarose matrix. The columns obtained were functional and highly selective for their cognate target, even in the presence of exogenous proteins as found in cell culture media, ascites and bacterial lysates, which result in a high degree of purity (∼95%) and recovery (∼100%) in a single step. Anti-hIgG Affitin columns withstand repetitive cycles of purification and cleaning-in-place treatments with 0.25 M NaOH as well as Protein A does. High levels of Affitin productions in Escherichia coli makes it possible to produce these affinity columns at low cost. Our results validate Affitins as a new class of tailored ligands for the affinity chromatography purification of potentially any proteins of interest including biopharmaceuticals. PMID:26952369

  14. Pepsin-modified chiral monolithic column for affinity capillary electrochromatography.

    PubMed

    Hong, Tingting; Chi, Cuijie; Ji, Yibing

    2014-11-01

    Pepsin-modified affinity monolithic capillary electrochromatography, a novel microanalysis system, was developed by the covalent bonding of pepsin on silica monolith. The column was successfully applied in the chiral separation of (±)-nefopam. Furthermore, the electrochromatographic performance of the pepsin-functionalized monolith for enantiomeric analysis was evaluated in terms of protein content, pH of running buffer, sample volume, buffer concentration, applied voltage, and capillary temperature. The relative standard deviation (%RSD) values of retention time (intraday <0.53, n = 10; interday <0.53, n = 10; column-to-column <0.70, n = 20; and batch-to-batch <0.80, n = 20) indicated satisfactory stability of these columns. No appreciable change was observed in retention and resolution for chiral recognition of (±)-nefopam in 50 days with 100 injections. The proteolytic activity of this stationary phase was further characterized with bovine serum albumin as substrate for online protein digestion. As for monolithic immobilized enzyme reactor, successive protein injections confirmed both the operational stability and ability to reuse the bioreactor for at least 20 digestions. It implied that the affinity monolith used in this research opens a new path of exploring particularly versatile class of enzymes to develop enzyme-modified affinity capillary monolith for enantioseparation. PMID:25146884

  15. Frontal affinity chromatography (FAC): theory and basic aspects.

    PubMed

    Kasai, Ken-ichi

    2014-01-01

    Frontal affinity chromatography (FAC) is a versatile analytical tool for determining specific interactions between biomolecules and is particularly useful in the field of glycobiology. This article presents its basic aspects, merits, and theory. PMID:25117240

  16. Affinity monolith chromatography: A review of principles and recent analytical applications

    PubMed Central

    Pfaunmiller, Erika L.; Paulemond, Marie Laura; Dupper, Courtney M.; Hage, David S.

    2012-01-01

    Affinity monolith chromatography (AMC) is a type of liquid chromatography that uses a monolithic support and a biologically-related binding agent as a stationary phase. AMC is a powerful method for the selective separation, analysis or studies of specific target compounds in a sample. This review discusses the basic principles of AMC and recent developments or applications of this method, with particular emphasis being given to work that has appeared in the last five years. Various materials that have been used to prepare columns for AMC are examined, including organic monoliths, silica monoliths, agarose monoliths and cryogels. These supports have been used in AMC for formats that have ranged from traditional columns to disks, microcolumns and capillaries. Many binding agents have also been employed in AMC, such as antibodies, enzymes, proteins, lectins, immobilized metal-ions and dyes. Some applications that have been reported with these binding agents in AMC are bioaffinity chromatography, immunoaffinity chromatography or immunoextraction, immobilized metal-ion affinity chromatography, dye-ligand affinity chromatography, chiral separations and biointeraction studies. Examples are presented from fields that include analytical chemistry, pharmaceutical analysis, clinical testing and biotechnology. Current trends and possible future directions in AMC are also discussed. PMID:23187827

  17. Stable high capacity, F-actin affinity column

    SciTech Connect

    Luna, E.J.; Wang, Y.L.; Voss, E.W. Jr.; Branton, D.; Taylor, D.L.

    1982-11-10

    A high capacity F-actin affinity matrix is constructed by binding fluorescyl-actin to rabbit anti-fluorescein IgG that is covalently bound to Sepharose 4B. When stabilized with phalloidin, the actin remains associated with the Sepharose beads during repeated washes, activates the ATPase activity of myosin subfragment 1, and specifically binds /sup 125/I-heavy meromyosin and /sup 125/I-tropomyosin. The associations between the F-actin-binding proteins are monitored both by affinity chromatography and by a rapid, low speed sedimentation assay. Anti-fluorescein IgG-Sepharose should be generally useful as a matrix for the immobilization of proteins containing accessible, covalently bound fluorescein groups.

  18. Polymer versus monomer as displacer in immobilized metal affinity chromatography.

    PubMed

    Arvidsson, P; Ivanov, A E; Galaev IYu; Mattiasson, B

    2001-04-01

    Successful immobilized metal affinity chromatography (IMAC) of proteins on Cu2+-iminodiacetic acid Sepharose has been carried out in a displacement mode using a synthetic copolymer of vinyl imidazole and vinyl caprolactam [poly(VI-VCL)] as a displacer. Vinyl caprolactam renders the co-polymer with the thermosensitivity, e.g., property of the co-polymer to precipitate nearly quantitatively from aqueous solution on increase of the temperature to 48 degrees C. A thermostable lactate dehydrogenase from the thermophilic bacterium Bacillus stearothermophilus modified with a (His)6-tag [(His)6-LDH] has been purified using an IMAC column. For the first time it was clearly demonstrated that a polymeric displacer [poly(VI-VCL)] was more efficient compared to a monomeric displacer (imidazole) of the same chemical nature, probably due to the multipoint interaction of imidazole groups within the same macromolecule with one Cu2+ ion. Complete elution of bound (His)6-LDH has been achieved at 3.7 mM concentration of imidazole units of the co-polymer (5 mg/ml), while this concentration of free imidazole was sufficient to elute only weakly bound proteins. Complete elution of (His)6-LDH by the free imidazole was achieved only at concentrations as high as 160 mM. Thus, it was clearly demonstrated, that the efficiency of low-molecular-mass displacer could be improved significantly by converting it into a polymeric displacer having interacting groups of the same chemical nature. PMID:11334341

  19. Affinity chromatography of immobilized actin and myosin.

    PubMed Central

    Bottomley, R C; Trayer, I P

    1975-01-01

    Actin and myosin were immobilized by coupling them to agarose matrices. Both immobilized G-actin and immobilized myosin retain most of the properties of the proteins in free solution and are reliable over long periods of time. Sepharose-F-actin, under the conditions used in this study, has proved unstable and variable in its properties. Sepharose-G-actin columns were used to bind heavy meromyosin and myosin subfragment 1 specifically and reversibly. The interaction involved is sensitive to variation in ionic strength, such that myosin itself is not retained by the columns at the high salt concentration required for its complete solubilization. Myosin, rendered soluble at low ionic strength by polyalanylation, will interact successfully with the immobilized actin. The latter can distinguish between active and inactive fractions of the proteolytic and polyalanyl myosin derivatives, and was used in the preparation of these molecules. The complexes formed between the myosin derivatives and Sepharose-G-actin can be dissociated by low concentrations of ATP, ADP and pyrophosphate in both the presence and the absence of Mg2+. The G-actin columns were used to evaluate the results of chemical modifications of myosin subfragments on their interactions with actin. F-Actin in free solution is bound specifically and reversibly to columns of insolubilized myosin. Thus, with elution by either ATP or pyrophosphate, actin has been purified in one step from extracts of acetone-dried muscle powder. PMID:241335

  20. Development of an aptamer-affinity chromatography for efficient single step purification of Concanavalin A from Canavalia ensiformis.

    PubMed

    Ahirwar, Rajesh; Nahar, Pradip

    2015-08-01

    Herein, an aptamer-based affinity chromatography method for rapid and single step purification of Concanavalin A is developed and validated. We have used a 41ntssDNA aptamer of Con A (Con A aptabody) as an affinity reagent in the developed aptamer-affinity chromatography. Stationary phase of the method consists of surface functionalized agarose beads carrying covalently immobilized Con A-aptabody. Affinity purification of Con A from jack bean (Canavalia ensiformis) seed using developed aptamer-affinity columns has resulted in ≥66% recovery with 90% purity and 336-fold purification of Con A. The developed aptamer-affinity chromatography has shown efficient scalability and consistent purification when analysed over 13mm, 20mm and 25mm diameter columns having a bed height of 60mm each. Also, the developed aptamer-agarose columns were found to be reusable with recovery decrease of 12.9% in seven sequential cycles of purification. Therefore, the developed aptamer-affinity chromatography provides a novel, efficient and single-step methodology for isolation and purification of Con A. PMID:26102634

  1. Single-step purification of native miraculin using immobilized metal-affinity chromatography.

    PubMed

    Duhita, Narendra; Hiwasa-Tanase, Kyoko; Yoshida, Shigeki; Ezura, Hiroshi

    2009-06-24

    Miraculin is a taste-modifying protein that can be isolated from miracle fruit ( Richadella dulcifica ), a shrub native to West Africa. It is able to turn a sour taste into a sweet taste. The commercial exploitation of this sweetness-modifying protein is underway, and a fast and efficient purification method to extract the protein is needed. We succeeded in purifying miraculin from miracle fruit in a single-step purification using immobilized metal-affinity chromatography (IMAC). The purified miraculin exhibited high purity (>95%) in reverse-phase high-performance liquid chromatography. We also demonstrated the necessity of its structure for binding to the nickel-IMAC column. PMID:19469504

  2. One-step purification of phosphinothricin acetyltransferase using reactive dye-affinity chromatography.

    PubMed

    Wang, Cunxi; Lee, Thomas C; Crowley, Kathleen S; Bell, Erin

    2015-01-01

    Reactive dye purification is an affinity purification technique offering unique selectivity and high purification potential. Historically, purification of phosphinothricin acetyltransferase (PAT) has involved several steps of precipitation and column chromatography. Here, we describe a novel purification method that is simple, time-saving, inexpensive, and reproducible. The novel method employs a single chromatography step using a reactive dye resin, Reactive brown 10-agarose. Reactive brown 10 preferentially binds the PAT protein, which can then be specifically released by one of its substrates, acetyl-CoA. Using Reactive brown 10-agarose, PAT protein can be purified to homogeneity from E. coli or plant tissue with high recovery efficiency. PMID:25749943

  3. Evaluation and optimization of the metal-binding properties of a complex ligand for immobilized metal affinity chromatography.

    PubMed

    Chen, Bin; Li, Rong; Li, Shiyu; Chen, Xiaoli; Yang, Kaidi; Chen, Guoliang; Ma, Xiaoxun

    2016-02-01

    The simultaneous determination of two binding parameters for metal ions on an immobilized metal affinity chromatography column was performed by frontal chromatography. In this study, the binding parameters of Cu(2+) to l-glutamic acid were measured, the metal ion-binding characteristics of the complex ligand were evaluated. The linear correlation coefficients were all greater than 99%, and the relative standard deviations of two binding parameters were 0.58 and 0.059%, respectively. The experiments proved that the frontal chromatography method was accurate, reproducible, and could be used to determine the metal-binding parameters of the affinity column. The effects of buffer pH, type, and concentration on binding parameters were explored by uniform design experiment. Regression, matching and residual analyses of the models were performed. Meanwhile, the optimum-binding conditions of Cu(2+) on the l-glutamic acid-silica column were obtained. Under these binding conditions, observations and regression values of two parameters were similar, and the observation values were the best. The results demonstrated that high intensity metal affinity column could be effectively prepared by measuring and evaluating binding parameters using frontal chromatography combined with a uniform design experiment. The present work provided a new mode for evaluating and preparing immobilized metal affinity column with good metal-binding behaviors. PMID:26632098

  4. Ion Exchange and Liquid Column Chromatography.

    ERIC Educational Resources Information Center

    Walton, Harold F.

    1980-01-01

    Emphasizes recent advances in principles and methodology in ion exchange and chromatography. Two tables list representative examples for inorganic ions and organic compounds. Cites 544 references. (CS)

  5. Specific capture of uranyl protein targets by metal affinity chromatography.

    PubMed

    Basset, Christian; Dedieu, Alain; Guérin, Philippe; Quéméneur, Eric; Meyer, Daniel; Vidaud, Claude

    2008-03-28

    To improve general understanding of biochemical mechanisms in the field of uranium toxicology, the identification of protein targets needs to be intensified. Immobilized metal affinity chromatography (IMAC) has been widely developed as a powerful tool for capturing metal binding proteins from biological extracts. However uranyl cations (UO2(2+)) have particular physico-chemical characteristics which prevent them from being immobilized on classical metal chelating supports. We report here on the first development of an immobilized uranyl affinity chromatography method, based on the cation-exchange properties of aminophosphonate groups for uranyl binding. The cation distribution coefficient and loading capacity on the support were determined. Then the stability of the uranyl-bonded phase under our chromatographic conditions was optimized to promote affinity mechanisms. The successful enrichment of uranyl binding proteins from human serum was then proven using proteomic and mass spectral analysis. PMID:18308325

  6. Supramolecular Affinity Chromatography for Methylation-Targeted Proteomics.

    PubMed

    Garnett, Graham A E; Starke, Melissa J; Shaurya, Alok; Li, Janessa; Hof, Fraser

    2016-04-01

    Proteome-wide studies of post-translationally methylated species using mass spectrometry are complicated by high sample diversity, competition for ionization among peptides, and mass redundancies. Antibody-based enrichment has powered methylation proteomics until now, but the reliability, pan-specificity, polyclonal nature, and stability of the available pan-specific antibodies are problematic and do not provide a standard, reliable platform for investigators. We have invented an anionic supramolecular host that can form host-guest complexes selectively with methyllysine-containing peptides and used it to create a methylysine-affinity column. The column resolves peptides on the basis of methylation-a feat impossible with a comparable commercial cation-exchange column. A proteolyzed nuclear extract was separated on the methyl-affinity column prior to standard proteomics analysis. This experiment demonstrates that such chemical methyl-affinity columns are capable of enriching and improving the analysis of methyllysine residues from complex protein mixtures. We discuss the importance of this advance in the context of biomolecule-driven enrichment methods. PMID:26973166

  7. Combining micro dry column chromatography and mass spectrometry

    NASA Technical Reports Server (NTRS)

    Bauman, A. J.

    1970-01-01

    Dry column chromatography principles applied in microscale produce technique to minimize time in preparing and analyzing colorless constituents of soluble mixtures. Glass pipette microcolumns filled with finely sieved adsorbents permit capillary attraction and separation in 3 to 15 minutes. Technique is adaptable to gas chromatography.

  8. A Better Method for Filling Pasteur Pipet Chromatography Columns

    ERIC Educational Resources Information Center

    Ruekberg, Ben

    2006-01-01

    An alternative method for the preparation of Pasteur pipet chromatography columns is presented that allows the column to be filled with solvent without bubbles and allows greater control of fluid flow while the materials to be separated are added. Students are required to wear gloves and goggles and caution should be used while handling glass…

  9. Affinity purification of metalloprotease from marine bacterium using immobilized metal affinity chromatography.

    PubMed

    Li, Shangyong; Wang, Linna; Yang, Juan; Bao, Jing; Liu, Junzhong; Lin, Shengxiang; Hao, Jianhua; Sun, Mi

    2016-06-01

    In this study, an efficient affinity purification protocol for an alkaline metalloprotease from marine bacterium was developed using immobilized metal affinity chromatography. After screening and optimization of the affinity ligands and spacer arm lengths, Cu-iminmodiacetic acid was chosen as the optimal affinity ligand, which was coupled to Sepharose 6B via a 14-atom spacer arm. The absorption analysis of this medium revealed a desorption constant Kd of 21.5 μg/mL and a theoretical maximum absorption Qmax of 24.9 mg/g. Thanks to this affinity medium, the enzyme could be purified by only one affinity purification step with a purity of approximately 95% pure when analyzed by high-performance liquid chromatography and reducing sodium dodecyl sulfate polyacrylamide gel electrophoresis. The recovery of the protease activity reached 74.6%, which is much higher than the value obtained by traditional protocols (8.9%). These results contribute to the industrial purifications and contribute a significant reference for the purification of other metalloproteases. PMID:27058973

  10. The Purification of a Blood Group A Glycoprotein: An Affinity Chromatography Experiment.

    ERIC Educational Resources Information Center

    Estelrich, J.; Pouplana, R.

    1988-01-01

    Describes a purification process through affinity chromatography necessary to obtain specific blood group glycoproteins from erythrocytic membranes. Discusses the preparation of erythrocytic membranes, extraction of glycoprotein from membranes, affinity chromatography purification, determination of glycoproteins, and results. (CW)

  11. Affinity Chromatography Purification of Cytochrome c Binding Enzymes

    NASA Astrophysics Data System (ADS)

    Azzi, Angelo; Bill, Kurt; Broger, Clemens

    1982-04-01

    An efficient affinity chromatography procedure for the isolation of mitochondrial cytochrome c oxidase and reductase is described. Saccharomyces cerevisiae cytochrome c was used as a ligand, bound to a thiol-Sepharose 4B gel through cysteine-107. In this way, the site of interaction of cytochrome c with cytochrome oxidase and reductase remained unmodified and available for binding to a number of partner enzymes. The procedure is adequate for the purification of all those proteins having in common the property of binding with high affinity to cytochrome c--e.g., cytochrome c oxidase, reductase, and peroxidase, sulfite oxidase, and reaction centers of photosynthetic bacteria.

  12. Lipodisks integrated with weak affinity chromatography enable fragment screening of integral membrane proteins.

    PubMed

    Duong-Thi, Minh-Dao; Bergström, Maria; Edwards, Katarina; Eriksson, Jonny; Ohlson, Sten; Ying, Janet To Yiu; Torres, Jaume; Hernández, Víctor Agmo

    2016-02-01

    Membrane proteins constitute the largest class of drug targets but they present many challenges in drug discovery. Importantly, the discovery of potential drug candidates is hampered by the limited availability of efficient methods for screening drug-protein interactions. In this work we present a novel strategy for rapid identification of molecules capable of binding to a selected membrane protein. An integral membrane protein (human aquaporin-1) was incorporated into planar lipid bilayer disks (lipodisks), which were subsequently covalently coupled to porous derivatized silica and packed into HPLC columns. The obtained affinity columns were used in a typical protocol for fragment screening by weak affinity chromatography (WAC), in which one hit was identified out of a 200 compound collection. The lipodisk-based strategy, which ensures a stable and native-like lipid environment for the protein, is expected to work also with other membrane proteins and screening procedures. PMID:26673836

  13. Evaluation of capillary chromatographic supports for immobilized human purine nucleoside phosphorylase in frontal affinity chromatography studies.

    PubMed

    de Moraes, Marcela Cristina; Temporini, Caterina; Calleri, Enrica; Bruni, Giovanna; Ducati, Rodrigo Gay; Santos, Diógenes Santiago; Cardoso, Carmen Lucia; Cass, Quezia Bezerra; Massolini, Gabriella

    2014-04-18

    The aim of this work was to optimize the preparation of a capillary human purine nucleoside phosphorylase (HsPNP) immobilized enzyme reactor (IMER) for characterization and affinity screening studies of new inhibitors by frontal affinity chromatography coupled to mass spectrometry (FAC-MS). For this purpose two monolithic supports, a Chromolith Speed Rod (0.1mm I.D.×5cm) and a methacrylate-based monolithic epoxy polymeric capillary column (0.25mm I.D.×5cm) with epoxy reactive groups were considered and compared to an IMER previously developed using an open fused silica capillary. Each HsPNP-IMER was characterized in terms of catalytic activity using Inosine as standard substrate. Furthermore, they were also explored for affinity ranking experiments. Kd determination was carried out with the based fused silica HsPNP-IMER and the results are herein discussed. PMID:24630982

  14. A fullerene C60-based ligand in a stationary phase for affine chromatography of membrane porphyrin-binding proteins

    NASA Astrophysics Data System (ADS)

    Amirshakhi, N.; Alyautdin, R. N.; Orlov, A. P.; Poloznikov, A. A.; Kuznetsov, D. A.

    2008-11-01

    A new affine chromatography technique is suggested for the purification of porphyrin-binding proteins (PBP) from mammal cell membranes. The procedure uses new fullerene-porphyrin ligands immobilized on agarose and bound to the polysaccharide matrix via the epoxycyclohexyl residue. A selective PBP stationary phase was used in a single-column chromatography run for the complete purification of a monomeric protein (17.6 kDa) from mitochondrial membranes of rat myocardium. This protein was characterized by high affinity for porphyrin-related structures. To separate it from other nonspecifically sorbed membrane proteins, synchronous linear pH and ionic strength gradients were used.

  15. Aflatoxin metabolism in humans: detection of metabolites and nucleic acid adducts in urine by affinity chromatography

    SciTech Connect

    Groopman, J.D.; Donahue, P.R.; Zhu, J.Q.; Chen, J.S.; Wogan, G.N.

    1985-10-01

    A high-affinity IgM monoclonal antibody specific for aflatoxins was covalently bound to Sepharose 4B and used as a preparative column to isolate aflatoxin derivatives from the urine of people and experimental animals who had been exposed to the carcinogen environmentally or under laboratory conditions. Aflatoxin levels were quantified by radioimmunoassay and high-performance liquid chromatography after elution from the affinity column. In studies on rats injected with ( UC)aflatoxin B1, the authors identified the major aflatoxin-DNA adduct, 2,3-dihydro-2-(N7-guanyl)-3-hydroxy-aflatoxin B1 (AFB1-N7-Gua), and the oxidative metabolites M1 and P1 as the major aflatoxin species present in the urine. When this methodology was applied to human urine samples obtained from people from the Guangxi Province of China exposed to aflatoxin B1 through dietary contamination, the aflatoxin metabolites detected were also AFB1-N7-Gua and aflatoxins M1 and P1. Therefore, affinity chromatography using a monoclonal antibody represents a useful and rapid technique with which to isolate this carcinogen and its metabolites in biochemical epidemiology and for subsequent quantitative measurements, providing exposure information that can be used for risk assessment.

  16. [Progresses in screening active compounds from herbal medicine by affinity chromatography].

    PubMed

    Feng, Ying-shu; Tong, Shan-shan; Xu, Xi-ming; Yu, Jiang-nan

    2015-03-01

    Affinity chromatography is a chromatographic method for separating molecules using the binding characteristics of the stationary phase with potential drug molecules. This method can be performed as a high throughput screening method and a chromatographic separation method to screen a variety of active drugs. This paper summarizes the history of affinity chromatography, screening technology of affinity chromatography, and application of affinity chromatography in screening bio-active compounds in herbal medicines, and then discusses its application prospects, in order to broaden applications of the affinity chromatography in drug screening. PMID:26226740

  17. Design of affinity tags for one-step protein purification from immobilized zinc columns

    SciTech Connect

    Pasquinelli, R.S.; Shepherd, R.E.; Koepsel, R.R.; Zhao, A.; Ataai, M.M.

    2000-02-01

    Affinity tags are often used to accomplish recombinant protein purification using immobilized metal affinity chromatography. Success of the tag depends on the chelated metal used and the elution profile of the host cell proteins. Zn(II)-iminodiacetic acid (Zn(II)-IDA) may prove to e superior to either immobilized copper or nickel as a result of its relatively low binding affinity for cellular proteins. for example, almost all Escherichia coli proteins elute from Zn(II)-IDA columns between pH 7.5 and 7.0 with very little cellular protein emerging at pH values lower than 7.0. Thus, a large portion of the Zn(II)-IDA elution profile may be free of contaminant proteins, which can be exploited for one-step purification of a target protein from raw cell extract. In this paper the authors have identified several fusion tags that can direct the elution of the target protein to the low background region of the Zn(II)-IDA elution profile. These tags allow targeting of proteins to different regions of the elution profile, facilitating purification under mild conditions.

  18. Determination of the kinetic rate constant of cyclodextrin supramolecular systems by high-performance affinity chromatography.

    PubMed

    Zhang, Jiwen; Li, Haiyan; Sun, Lixin; Wang, Caifen

    2015-01-01

    The kinetics of the association and dissociation are fundamental kinetic processes for the host-guest interactions (such as the drug-target and drug-excipient interactions) and the in vivo performance of supramolecules. With advantages of rapid speed, high precision and ease of automation, the high-performance affinity chromatography (HPAC) is one of the best techniques to measure the interaction kinetics of weak to moderate affinities, such as the typical host-guest interactions of drug and cyclodextrins by using a cyclodextrin-immobilized column. The measurement involves the equilibration of the cyclodextrin column, the upload and elution of the samples (non-retained substances and retained solutes) at different flow rates on the cyclodextrin and control column, and data analysis. It has been indicated that cyclodextrin-immobilized chromatography is a cost-efficient high-throughput tool for the measurement of (small molecule) drug-cyclodextrin interactions as well as the dissociation of other supramolecules with relatively weak, fast, and extensive interactions. PMID:25749964

  19. A novel gigaporous GSH affinity medium for high-speed affinity chromatography of GST-tagged proteins.

    PubMed

    Huang, Yongdong; Zhang, Rongyue; Li, Juan; Li, Qiang; Su, Zhiguo; Ma, Guanghui

    2014-03-01

    Novel GSH-AP (phenoxyl agarose coated gigaporous polystyrene, Agap-co-PSt) microspheres were successfully prepared by introducing GSH ligand into hydrophilic AP microspheres pre-activated with 1,4-butanediol diglycidyl ether. The gigaporous structure and chromatographic properties of GSH-AP medium were evaluated and compared with commercial GSH Sepharose FF (GSH-FF) medium. The macropores (100-500nm) of gigaporous PSt microspheres were well maintained after coating with agarose and functionalized with GSH ligand. Hydrodynamic experiments showed that GSH-AP column had less backpressure and plate height than those of GSH-FF column at high flow velocity, which was beneficial for its use in high-speed chromatography. The presence of flow-through pores in GSH-AP microspheres also accelerated the mass transfer rate of biomolecules induced by convective flow, leading to high protein resolution and high dynamic binding capacity (DBC) of glutathione S-transferase (GST) at high flow velocity. High purity of GST and GST-tagged recombinant human interleukin-1 receptor antagonist (rhIL-1RA) were obtained from crude extract with an acceptable recovery yield within 1.5min at a velocity up to 1400cm/h. GSH-AP medium is promising for high-speed affinity chromatography for the purification of GST and GST-tagged proteins. PMID:24269760

  20. A novel matrix derivatized from hydrophilic gigaporous polystyrene-based microspheres for high-speed immobilized-metal affinity chromatography.

    PubMed

    Qu, Jian-Bo; Huang, Yong-Dong; Jing, Guang-Lun; Liu, Jian-Guo; Zhou, Wei-Qing; Zhu, Hu; Lu, Jian-Ren

    2011-05-01

    Agarose coated gigaporous polystyrene microspheres were evaluated as a novel matrix for immobilized-metal affinity chromatography (IMAC). With four steps, nickel ions were successfully immobilized on the microspheres. The gigaporous structure and chromatographic properties of IMAC medium were characterized. A column packed with the matrix showed low column backpressure and high column efficiency at high flow velocity. Furthermore, this matrix was used for purifying superoxide dismutase (SOD), which was expressed in Escherichia coli (E. coli) in submerged fermentation, on an Äkta purifier 100 system under different flow velocities. The purity of the SOD from this one-step purification was 79% and the recovery yield was about 89.6% under the superficial flow velocity of 3251 cm/h. In conclusion, all the results suggested that the gigaporous matrix has considerable advantages for high-speed immobilized-metal affinity chromatography. PMID:21454141

  1. Procedure for rapid isolation of photosynthetic reaction centers using cytochrome c affinity chromatography

    SciTech Connect

    Brudvig, G.W.; Worland, S.T.; Sauer, K.

    1983-02-01

    Horse heart cytochrome c linked to Sepharose 4B is used to purify reaction centers from Rhodopseudomonas sphaeroides R-26. This procedure allows for an initial recovery of 80-90% of the bacterial reaction centers present in chromatophore membranes. High purity reaction centers (A/sub 280//A/sub 802/ < 1.30) can be obtained with a 30% recovery. Reaction centers from wild-type Rps. sphaeroides and Rps. capsulata also bind to a cytochrome c column. Cytochrome c affinity chromatography can also be used to isolate photosystem I complexes from spinach chloroplasts.

  2. Identification of proteins interacting with ammodytoxins in Vipera ammodytes ammodytes venom by immuno-affinity chromatography.

    PubMed

    Brgles, Marija; Kurtović, Tihana; Kovačič, Lidija; Križaj, Igor; Barut, Miloš; Lang Balija, Maja; Allmaier, Günter; Marchetti-Deschmann, Martina; Halassy, Beata

    2014-01-01

    In order to perform their function, proteins frequently interact with other proteins. Various methods are used to reveal protein interacting partners, and affinity chromatography is one of them. Snake venom is composed mostly of proteins, and various protein complexes in the venom have been found to exhibit higher toxicity levels than respective components separately. Complexes can modulate envenomation activity of a venom and/or potentiate its effect. Our previous data indicate that the most toxic components of the Vipera ammodytes ammodytes (Vaa) venom isolated so far-ammodytoxins (Atxs)-are contributing to the venom's toxicity only moderately; therefore, we aimed to explore whether they have some interacting partner(s) potentiating toxicity. For screening of possible interactions, immuno-affinity chromatography combined with identification by mass spectrometry was used. Various chemistries (epoxy, carbonyldiimidazole, ethylenediamine) as well as protein G functionality were used to immobilize antibodies on monolith support, a Convective Interaction Media disk. Monoliths have been demonstrated to better suit the separation of large biomolecules. Using such approach, several proteins were indicated as potential Atx-binding proteins. Among these, the interaction of Atxs with a Kunitz-type inhibitor was confirmed by far-Western dot-blot and surface plasmon resonance measurement. It can be concluded that affinity chromatography on monolithic columns combined with mass spectrometry identification is a successful approach for screening of protein interactions and it resulted with detection of the interaction of Atx with Kunitz-type inhibitor in Vaa venom for the first time. PMID:24217948

  3. Immobilized Metal Affinity Chromatography Coupled to Multiple Reaction Monitoring Enables Reproducible Quantification of Phospho-signaling.

    PubMed

    Kennedy, Jacob J; Yan, Ping; Zhao, Lei; Ivey, Richard G; Voytovich, Uliana J; Moore, Heather D; Lin, Chenwei; Pogosova-Agadjanyan, Era L; Stirewalt, Derek L; Reding, Kerryn W; Whiteaker, Jeffrey R; Paulovich, Amanda G

    2016-02-01

    A major goal in cell signaling research is the quantification of phosphorylation pharmacodynamics following perturbations. Traditional methods of studying cellular phospho-signaling measure one analyte at a time with poor standardization, rendering them inadequate for interrogating network biology and contributing to the irreproducibility of preclinical research. In this study, we test the feasibility of circumventing these issues by coupling immobilized metal affinity chromatography (IMAC)-based enrichment of phosphopeptides with targeted, multiple reaction monitoring (MRM) mass spectrometry to achieve precise, specific, standardized, multiplex quantification of phospho-signaling responses. A multiplex immobilized metal affinity chromatography- multiple reaction monitoring assay targeting phospho-analytes responsive to DNA damage was configured, analytically characterized, and deployed to generate phospho-pharmacodynamic curves from primary and immortalized human cells experiencing genotoxic stress. The multiplexed assays demonstrated linear ranges of ≥3 orders of magnitude, median lower limit of quantification of 0.64 fmol on column, median intra-assay variability of 9.3%, median inter-assay variability of 12.7%, and median total CV of 16.0%. The multiplex immobilized metal affinity chromatography- multiple reaction monitoring assay enabled robust quantification of 107 DNA damage-responsive phosphosites from human cells following DNA damage. The assays have been made publicly available as a resource to the community. The approach is generally applicable, enabling wide interrogation of signaling networks. PMID:26621847

  4. High-performance affinity monolith chromatography for chiral separation and determination of enzyme kinetic constants.

    PubMed

    Yao, Chunhe; Qi, Li; Qiao, Juan; Zhang, Haizhi; Wang, Fuyi; Chen, Yi; Yang, Gengliang

    2010-09-15

    A new kind of immobilized human serum albumin (HSA) column was developed by using the sub-micron skeletal polymer monolith based on poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) [poly(GMA-EDMA)] as the support of high-performance affinity chromatography. Using the epoxide functional groups presented in GMA, the HSA immobilization procedure was performed by two different means. The affinity columns were successfully adopted for the chiral separation of D,L-amino acids (AAs). Then this method was shown to be applicable to the quantitative analysis of D-tryptophan, with a linear range between 12.0 microM and 979.0 microM, and a correlation coefficient above 0.99. Furthermore, it was used for the analysis of urine sample. This assay is demonstrated to be facile and relatively rapid. So it allows us to measure the enzyme catalytic activity in the incubation of D,L-AAs with D-AA oxidase and to study the kinetics of the enzyme reaction. It implied that the affinity monolithic columns can be a useful tool for studying DAAO enzyme reaction and investigating the potential enzyme mechanism requirement among chiral conversion. PMID:20801337

  5. Design, testing, and simulation of microscale gas chromatography columns

    SciTech Connect

    Hudson, M.L.; Kottenstette, R.; Matzke, C.M.; Frye-Mason, G.C.; Shollenberger, K.A.; Adkins, D.R.; Wong, C.C.

    1998-08-01

    A microscale gas chromatography column is one component in a microscale chemistry laboratory for detecting chemical agents. Several columns were fabricated using the Bosch etch process which allows deep, high aspect ratio channels of rectangular cross-section. A design tool, based on analytical models, was developed to evaluate the effects of operating conditions and column specifications on separation resolution and time. The effects of slip flow, channel configuration, and cross-sectional shape were included to evaluate the differences between conventional round, straight columns and the microscale rectangular, spiral columns. Experimental data were obtained and compared with the predicted flowrates and theoretical number of plates. The design tool was then employed to select more optimum channel dimensions and operating conditions for high resolution separations.

  6. Column Chromatography To Obtain Organic Cation Sorption Isotherms.

    PubMed

    Jolin, William C; Sullivan, James; Vasudevan, Dharni; MacKay, Allison A

    2016-08-01

    Column chromatography was evaluated as a method to obtain organic cation sorption isotherms for environmental solids while using the peak skewness to identify the linear range of the sorption isotherm. Custom packed HPLC columns and standard batch sorption techniques were used to intercompare sorption isotherms and solid-water sorption coefficients (Kd) for four organic cations (benzylamine, 2,4-dichlorobenzylamine, phenyltrimethylammonium, oxytetracycline) with two aluminosilicate clay minerals and one soil. A comparison of Freundlich isotherm parameters revealed isotherm linearity or nonlinearity was not significantly different between column chromatography and traditional batch experiments. Importantly, skewness (a metric of eluting peak symmetry) analysis of eluting peaks can establish isotherm linearity, thereby enabling a less labor intensive means to generate the extensive data sets of linear Kd values required for the development of predictive sorption models. Our findings clearly show that column chromatography can reproduce sorption measures from conventional batch experiments with the benefit of lower labor-intensity, faster analysis times, and allow for consistent sorption measures across laboratories with distinct chromatography instrumentation. PMID:27379799

  7. Molecular modeling of the affinity chromatography of monoclonal antibodies.

    PubMed

    Paloni, Matteo; Cavallotti, Carlo

    2015-01-01

    Molecular modeling is a methodology that offers the possibility of studying complex systems such as protein-ligand complexes from an atomistic point of view, making available information that can be difficultly obtained from experimental studies. Here, a protocol for the construction of molecular models of the interaction between antibodies and ligands that can be used for an affinity chromatography process is presented. The outlined methodology focuses mostly on the description of a procedure that may be adopted to determine the structure and free energy of interaction between the antibody and the affinity ligand. A procedure to extend the proposed methodology to include the effect of the environment (buffer solution, spacer, support matrix) is also briefly outlined. PMID:25749965

  8. Analytical FcRn affinity chromatography for functional characterization of monoclonal antibodies

    PubMed Central

    Schlothauer, Tilman; Rueger, Petra; Stracke, Jan Olaf; Hertenberger, Hubert; Fingas, Felix; Kling, Lothar; Emrich, Thomas; Drabner, Georg; Seeber, Stefan; Auer, Johannes; Koch, Stefan; Papadimitriou, Apollon

    2013-01-01

    The neonatal Fc receptor (FcRn) is important for the metabolic fate of IgG antibodies in vivo. Analysis of the interaction between FcRn and IgG in vitro might provide insight into the structural and functional integrity of therapeutic IgG that may affect pharmacokinetics (PK) in vivo. We developed a standardized pH gradient FcRn affinity liquid chromatography method with conditions closely resembling the physiological mechanism of interaction between IgG and FcRn. This method allows the separation of molecular IgG isoforms, degradation products and engineered molecules based on their affinity to FcRn. Human FcRn was immobilized on the column and a linear pH gradient from pH 5.5 to 8.8 was applied. FcRn chromatography was used in comparison to surface plasmon resonance to characterize different monoclonal IgG preparations, e.g., oxidized or aggregated species. Wild-type and engineered IgGs were compared in vitro by FcRn chromatography and in vivo by PK studies in huFcRn transgenic mice. Analytical FcRn chromatography allows differentiation of IgG samples and variants by peak pattern and retention time profile. The method can distinguish: 1) IgGs with different Fabs, 2) oxidized from native IgG, 3) aggregates from monomer and 4) antibodies with mutations in the Fc part from wild-type IgGs. Changes in the FcRn chromatographic behavior of mutant IgGs relative to the wild-type IgG correlate to changes in the PK profile in the FcRn transgenic mice. These results demonstrate that FcRn affinity chromatography is a useful new method for the assessment of IgG integrity. PMID:23765230

  9. Kinetic analysis of drug-protein interactions by affinity chromatography.

    PubMed

    Bi, Cong; Beeram, Sandya; Li, Zhao; Zheng, Xiwei; Hage, David S

    2015-10-01

    Information on the kinetics of drug-protein interactions is of crucial importance in drug discovery and development. Several methods based on affinity chromatography have been developed in recent years to examine the association and dissociation rates of these processes. These techniques include band-broadening measurements, the peak decay method, peak fitting methods, the split-peak method, and free fraction analysis. This review will examine the general principles and applications of these approaches and discuss their use in the characterization, screening and analysis of drug-protein interactions in the body. PMID:26724332

  10. Enrichment of Phosphopeptides via Immobilized Metal Affinity Chromatography.

    PubMed

    Swaney, Danielle L; Villén, Judit

    2016-03-01

    Immobilized metal affinity chromatography (IMAC) is a frequently used method for the enrichment of phosphorylated peptides from complex, cellular lysate-derived peptide mixtures. Here we outline an IMAC protocol that uses iron-chelated magnetic beads to selectively isolate phosphorylated peptides for mass spectrometry-based proteomic analysis. Under acidic conditions, negatively charged phosphoryl modifications preferentially bind to positively charged metal ions (e.g., Fe(3+), Ga(3+)) on the beads. After washing away nonphosphorylated peptides, a pH shift to basic conditions causes the elution of bound phosphopeptides from the metal ion. Under optimal conditions, very high specificity for phosphopeptides can be achieved. PMID:26933247

  11. Isolation of human lactate dehydrogenase isoenzyme X by affinity chromatography.

    PubMed Central

    Kolk, A H; van Kuyk, L; Boettcher, B

    1978-01-01

    Human isoenzyme LDH-X (lactate dehydrogenase isoenzyme X) was isolated from seminal fluid of frozen semen samples by affinity chromatography by using oxamate-Sepharose and AMP-Sepharose. In the presence of 1.6 mM-NAD+, isoenzyme LDH-X does not bind to AMP-Sepharose, whereas the other lactate dehydrogenase isoenzymes do. This is the crucial point in the isolation of isoenzyme LDH-X from the other isoenzymes. The purified human isoenzyme LDH-X had a specific activity of 146 units/mg of protein. Images Fig. 2. Fig. 3. PMID:213050

  12. Polyimide polymer glass-free capillary columns for gas chromatography.

    PubMed

    Webster, Jackie G; Marine, Susan S; Danielson, Neil D

    2011-01-01

    Polymeric polyimide capillary tubing, both uncoated and coated with stationary phases of two polarities, is explored for use as capillary columns for gas chromatography (GC). These glass-free polyimide columns are flexible and their small winding diameter of less than a cm around a solid support makes them compatible for potential use in portable GC instruments. Polyimide columns with dimensions of 0.32 mm i.d. × 3 m are cleaned, annealed at 300°C, and coated using the static method with phenylmethylsilicone (PMS). Separations of volatile organics are investigated isothermally on duplicate sets of polyimide columns by GC with a flame ionization detector using split injection. Unlike the uncoated ones, the coated polyimide columns successfully separate Grob test mix classes of alkanes, amines, and fatty acid methyl esters. The relative standard deviations for retention time and peak area are 0.5 and 2.5 , respectively. With the 3 m PMS-coated column connected to a retention gap to permit operation at its optimum flow rate of 30 cm/s, a plate count of 3200 or plate height of 1 mm is possible. Lack of retention and tailing peaks are evident for the polyimide polymer capillary columns as compared to that of a 3 m commercial cross-linked PMS fused silica capillary. However, headspace analyses of an aromatic hydrocarbon mix and a Clearcoat automotive paint sample are viable applications on the PMS polyimide polymer column. PMID:21682994

  13. Novel Design for Centrifugal Countercurrent Chromatography: I. Zigzag Toroidal Column.

    PubMed

    Yang, Yi; Aisa, Haji Akber; Ito, Yoichiro

    2009-01-01

    The toroidal coil using an equilateral triangular core has improved both retention of the stationary phase and peak resolution of the conventional toroidal coil in centrifugal countercurrent chromatography. To further improve the retention of stationary phase and peak resolution, a novel zigzag toroidal coil was designed and the performance of the system was evaluated at various flow rates. The results indicated that both retention of stationary phase and peak resolution were improved as the flow rate was decreased. Modification of the tubing by pressing at given intervals with a pair of pliers improved the peak resolution without increasing the column pressure. All these separations were performed under low column pressure indicating the separation can be further improved by increasing the column length and/or revolution speed without damaging the separation column. PMID:20046954

  14. Evaluating two process scale chromatography column header designs using CFD.

    PubMed

    Johnson, Chris; Natarajan, Venkatesh; Antoniou, Chris

    2014-01-01

    Chromatography is an indispensable unit operation in the downstream processing of biomolecules. Scaling of chromatographic operations typically involves a significant increase in the column diameter. At this scale, the flow distribution within a packed bed could be severely affected by the distributor design in process scale columns. Different vendors offer process scale columns with varying design features. The effect of these design features on the flow distribution in packed beds and the resultant effect on column efficiency and cleanability needs to be properly understood in order to prevent unpleasant surprises on scale-up. Computational Fluid Dynamics (CFD) provides a cost-effective means to explore the effect of various distributor designs on process scale performance. In this work, we present a CFD tool that was developed and validated against experimental dye traces and tracer injections. Subsequently, the tool was employed to compare and contrast two commercially available header designs. PMID:24616438

  15. Purification of muscarinic acetylcholine receptors by affinity chromatography.

    PubMed Central

    André, C; De Backer, J P; Guillet, J C; Vanderheyden, P; Vauquelin, G; Strosberg, A D

    1983-01-01

    Calf forebrain homogenates contain 2.8 pM muscarinic acetylcholine receptors per mg of protein. [3H]Antagonist saturation binding experiments under equilibrium conditions revealed a single class of sites with equilibrium dissociation constants of 0.82 nM for [3H]dexetimide and 0.095 nM for [3H]quinuclidinyl benzilate. Displacement binding studies with agonists revealed the presence of low and high affinity sites. Here we describe the solubilization of muscarinic acetylcholine receptors with digitonin and their purification by affinity chromatography using an affinity gel which consisted of dexetimide coupled to Affi-Gel 10 (i.e., carboxy N-hydroxysuccinimide esters linked via a 1 nm spacer arm to agarose beads). Purified proteins were obtained by specific elution with muscarinic drugs, i.e., the antagonist atropine and the irreversible ligand propylbenzilylcholine mustard. SDS-polyacrylamide gel electrophoresis of the radioiodinated purified preparations revealed a major 70-K protein. Images Fig. 3. PMID:6605245

  16. Use of protein-protein interactions in affinity chromatography.

    PubMed

    Muronetz, V I; Sholukh, M; Korpela, T

    2001-10-30

    Biospecific recognition between proteins is a phenomenon that can be exploited for designing affinity-chromatographic purification systems for proteins. In principle, the approach is straightforward, and there are usually many alternative ways, since a protein can be always found which binds specifically enough to the desired protein. Routine immunoaffinity chromatography utilizes the recognition of antigenic epitopes by antibodies. However, forces involved in protein-protein interactions as well the forces keeping the three-dimensional structures of proteins intact are complicated, and proteins are easily unfolded by various factors with unpredictable results. Because of this and because of the generally high association strength between proteins, the correct adjustment of binding forces between an immobilized protein and the protein to be purified as well as the release of bound proteins in biologically active form from affinity complexes are the main problem. Affinity systems involving interactions like enzyme-enzyme, subunit-oligomer, protein-antibody, protein-chaperone and the specific features involved in each case are presented as examples. This article also aims to sketch prospects for further development of the use of protein-protein interactions for the purification of proteins. PMID:11694271

  17. Comparison of Inlet Geometry in Microfluidic Cell Affinity Chromatography

    PubMed Central

    Li, Peng; Tian, Yu; Pappas, Dimitri

    2011-01-01

    Cell separation based on microfluidic affinity chromatography is a widely used methodology in cell analysis research when rapid separations with high purity are needed. Several successful examples have been reported with high separation efficiency and purity; however, cell capture at the inlet area and inlet design has not been extensively described or studied. The most common inlets—used to connect the microfluidic chip to pumps, tubing, etc—are vertical (top-loading) inlets and parallel (in-line) inlets. In this work, we investigated the cell capture behavior near the affinity chip inlet area and compared the different performance of vertical inlet devices and parallel inlet devices. Vertical inlet devices showed significant cell capture capability near the inlet area, which led to the formation of cell blockages as the separation progressed. Cell density near the inlet area was much higher than the remaining channel, while for parallel inlet chips cell density at the inlet area was similar to the rest of the channel. In this paper, we discuss the effects of inlet type on chip fabrication, nonspecific binding, cell capture efficiency, and separation purity. We also discuss the possibility of using vertical inlets in negative selection separations. Our findings show that inlet design is critical and must be considered when fabricating cell affinity microfluidic devices. PMID:21207967

  18. Protein purification by aminosquarylium cyanine dye-affinity chromatography.

    PubMed

    Graça, Vânia C; Sousa, Fani; Santos, Paulo F; Almeida, Paulo S

    2015-01-01

    Affinity chromatography (AC) is one of the most important techniques for the separation and purification of biomolecules, being probably the most selective technique for protein purification. It is based on unique specific reversible interactions between the target molecule and a ligand. In this affinity interaction, the choice of the ligand is extremely important for the success of the purification protocol. The growing interest in AC has motivated an intense research effort toward the development of materials able to overcome the disadvantages of conventional natural ligands, namely their high cost and chemical and biological lability. In this context, synthetic dyes have emerged, in recent decades, as a promising alternative to biological ligands. Herein, detailed protocols for the assembling of a new chromatographic dye-ligand affinity support bearing an immobilized aminosquarylium cyanine dye on an agarose-based matrix (Sepharose CL-6B) and for the separation of a mixture o f three standard proteins: lysozyme, α-chymotrypsin, and trypsin are provided. PMID:25749942

  19. ANALYSIS OF DRUG INTERACTIONS WITH HIGH DENSITY LIPOPROTEIN BY HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY

    PubMed Central

    Chen, Sike; Sobansky, Matthew R.; Hage, David S.

    2009-01-01

    Columns containing immobilized lipoproteins were prepared for the analysis of drug interactions with these particles by high-performance affinity chromatography. This approach was evaluated by using it to examine the binding of high density lipoprotein (HDL) to the drugs propranolol or verapamil. HDL was immobilized by the Schiff base method onto silica and gave HPLC columns with reproducible binding to propranolol over four to five days of continuous operation at pH 7.4. Frontal analysis experiments indicated that two types of interactions were occurring between R/S-propranolol and HDL at 37°C: saturable binding with an association equilibrium constant (Ka) of 1.1–1.9 × 105 M−1, and non-saturable binding with an overall affinity constant (n Ka) of 3.7–4.1 × 104 M−1. Similar results were found at 4 and 27°C. Verapamil also gave similar behavior, with a Ka of 6.0 × 104 M−1 at 37°C for the saturable sites and a n Ka value for the non-saturable sites of 2.5 × 104 M−1. These measured affinities gave good agreement with solution-phase values. The results indicated HPAC can be used to study drug interactions with HDL, providing information that should be valuable in obtaining a better description of how drugs are transported within the body. PMID:19833090

  20. Affinity chromatography based on a combinatorial strategy for rerythropoietin purification.

    PubMed

    Martínez-Ceron, María C; Marani, Mariela M; Taulés, Marta; Etcheverrigaray, Marina; Albericio, Fernando; Cascone, Osvaldo; Camperi, Silvia A

    2011-05-01

    Small peptides containing fewer than 10 amino acids are promising ligand candidates with which to build affinity chromatographic systems for industrial protein purification. The application of combinatorial peptide synthesis strategies greatly facilitates the discovery of suitable ligands for any given protein of interest. Here we sought to identify peptide ligands with affinity for recombinant human erythropoietin (rhEPO), which is used for the treatment of anemia. A combinatorial library containing the octapeptides X-X-X-Phe-X-X-Ala-Gly, where X = Ala, Asp, Glu, Phe, His, Leu, Asn, Pro, Ser, or Thr, was synthesized on HMBA-ChemMatrix resin by the divide-couple-recombine method. For the library screening, rhEPO was coupled to either Texas Red or biotin. Fluorescent beads or beads showing a positive reaction with streptavidin-peroxidase were isolated. After cleavage, peptides were sequenced by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Fifty-seven beads showed a positive reaction. Peptides showing more consensuses were synthesized, and their affinity to rhEPO was assessed using a plasma resonance biosensor. Dissociation constant values in the range of 1-18 μM were obtained. The best two peptides were immobilized on Sepharose, and the resultant chromatographic matrixes showed affinity for rhEPO with dissociation constant values between 1.8 and 2.7 μM. Chinese hamster ovary (CHO) cell culture supernatant was spiked with rhEPO, and the artificial mixture was loaded on Peptide-Sepharose columns. The rhEPO was recovered in the elution fraction with a yield of 90% and a purity of 95% and 97% for P1-Sepharose and P2-Sepharose, respectively. PMID:21495625

  1. Identification by affinity chromatography of the eukaryotic ribosomal proteins that bind to 5.8 S ribosomal ribonucleic acid.

    PubMed

    Ulbrich, N; Lin, A; Wool, I G

    1979-09-10

    The proteins that bind to rat liver 5.8 S ribosomal ribonucleic acid were identified by affinity chromatography. The nucleic acid was oxidized with periodate and coupled by its 3'-terminus to Sepharose 4B through and adipic acid dihydrazide spacer. The ribosomal proteins that associate with the immobilized 5.8 S rRNA were identified by polyacrylamide gel electrophoresiss: they were L19, L8, and L6 from the 60 S subunit; and S13 and S9 from the small subparticle. Small amounts of L14, L17', L18, L27/L27', and L35', and of S11, S15, S23/S24, and S26 also were bound to the affinity column, but whether they associate directly and specifically with 5.8 S rRNA is not known. Escherichia coli ribosomal proteins did not bind to the rat liver 5.8 S rRNA affinity column. PMID:468846

  2. Post Column Derivatization Using Reaction Flow High Performance Liquid Chromatography Columns.

    PubMed

    Jones, Andrew; Pravadali-Cekic, Sercan; Hua, Stanley; Kocic, Danijela; Camenzuli, Michelle; Dennis, Gary; Shalliker, Andrew

    2016-01-01

    A protocol for the use of reaction flow high performance liquid chromatography columns for methods employing post column derivatization (PCD) is presented. A major difficulty in adapting PCD to modern HPLC systems and columns is the need for large volume reaction coils that enable reagent mixing and then the derivatization reaction to take place. This large post column dead volume leads to band broadening, which results in a loss of observed separation efficiency and indeed detection in sensitivity. In reaction flow post column derivatization (RF-PCD) the derivatization reagent(s) are pumped against the flow of mobile phase into either one or two of the outer ports of the reaction flow column where it is mixed with column effluent inside a frit housed within the column end fitting. This technique allows for more efficient mixing of the column effluent and derivatization reagent(s) meaning that the volume of the reaction loops can be minimized or even eliminated altogether. It has been found that RF-PCD methods perform better than conventional PCD methods in terms of observed separation efficiency and signal to noise ratio. A further advantage of RF-PCD techniques is the ability to monitor effluent coming from the central port in its underivatized state. RF-PCD has currently been trialed on a relatively small range of post column reactions, however, there is currently no reason to suggest that RF-PCD could not be adapted to any existing one or two component (as long as both reagents are added at the same time) post column derivatization reaction. PMID:27168419

  3. Glycolipid class profiling by packed-column subcritical fluid chromatography.

    PubMed

    Deschamps, Frantz S; Lesellier, Eric; Bleton, Jean; Baillet, Arlette; Tchapla, Alain; Chaminade, Pierre

    2004-06-18

    The potential of packed-column subcritical fluid chromatography (SubFC) for the separation of lipid classes has been assessed in this study. Three polar stationary phases were checked: silica, diol, and poly(vinyl alcohol). Carbon dioxide (CO2) with methanol as modifier was used as mobile phase and detection performed by evaporative light scattering detection. The influence of methanol content, temperature, and pressure on the chromatographic behavior of sphingolipids and glycolipids were investigated. A complete separation of lipid classes from a crude wheat lipid extract was achieved using a modifier gradient from 10 to 40% methanol in carbon dioxide. Solute selectivity was improved using coupled silica and diol columns in series. Because the variation of eluotropic strength depending on the fluid density changes, a normalized separation factor product (NSP) was used to select the nature, the number and the order of the columns to reach the optimum glycolipid separation. PMID:15248431

  4. Search for Amyloid-Binding Proteins by Affinity Chromatography

    PubMed Central

    Calero, Miguel; Rostagno, Agueda; Ghiso, Jorge

    2013-01-01

    ‘Amyloid binging proteins’ is a generic term used to designate proteins that interact with different forms of amyloidogenic peptides or proteins and that, as a result, may modulate their physiological and pathological functions by altering solubility, transport, clearance, degradation, and fibril formation. We describe a simple affinity chromatography protocol to isolate and characterize amyloid-binding proteins based on the use of sequential elution steps that may provide further information on the type of binding interaction. As an example, we depict the application of this protocol to the study of Alzheimer’s amyloid β (Aβ) peptide-binding proteins derived from human plasma. Biochemical analysis of the proteins eluted under different conditions identified serum amyloid P component (SAP) and apolipoprotein J (clusterin) as the main plasma Aβ-binding proteins while various apolipoproteins (apoA-IV, apoE, and apoA-I), as well as albumin (HSA) and fibulin were identified as minor contributors. PMID:22528093

  5. Advance chromatin extraction improves capture performance of protein A affinity chromatography.

    PubMed

    Nian, Rui; Zhang, Wei; Tan, Lihan; Lee, Jeremy; Bi, Xeuzhi; Yang, Yuansheng; Gan, Hui Theng; Gagnon, Pete

    2016-01-29

    Practical effects of advance chromatin removal on performance of protein A affinity chromatography were evaluated using a caprylic acid-allantoin-based extraction method. Lacking this treatment, the practice of increasing loading residence time to increase capacity was shown to increase host protein contamination of the eluted IgG. Advance chromatin extraction suspended that compromise. Protein A ligand leakage from columns loaded with chromatin-extracted harvest was half the level observed on protein A columns loaded with non-extracted harvest. Columns loaded with chromatin-extracted harvest were cleaned more effectively by 50-100mM NaOH than columns loaded with non-extracted harvest that were cleaned with 250-500mM NaOH. Two protein A media with IgG capacities in excess of 50g/L were loaded with chromatin-extracted harvest, washed with 2.0M NaCl before elution, and the eluted IgG fraction titrated to pH 5.5 before microfiltration. Host protein contamination in the filtrate was reduced to <1ppm, DNA to <1ppb, protein A leakage to 0.5ppm, and aggregates to 1.0%. Caprylic acid and allantoin were both reduced below 5ppm. Step recovery of IgG was 99.4%. Addition of a single polishing step reduced residual protein A beneath the level of detection and aggregates to <0.1%. Overall process recovery including chromatin extraction was 90%. PMID:26774119

  6. Production and Purification of Streptokinase by Protected Affinity Chromatography

    PubMed Central

    Babashamsi, Mohammad; Razavian, Mohammad Hossein; Nejadmoghaddam, Mohammad Reza

    2009-01-01

    Streptokinase is an extracellular protein, extracted from certain strains of beta hemolytic streptococcus. It is a non-protease plasminogen activator that activates plasminogen to plasmin, the enzyme that degrades fibrin cloth through its specific lysine binding site; it is used therefore as a drug in thrombolytic therapy. The rate of bacterial growth and streptokinase production was studied in condition of excess glucose addition to culture media and its pH maintenance. The streptokinase product of the bacterial culture was preliminary extracted by salt precipitation and then purified by affinity chromatography on plasminogen substituted sepharose-4B in a condition that the plasminogen active site was protected from streptokinase-induced activation. The purity of streptokinase was confirmed by SDS-PAGE and its biological activity determined in a specific streptokinase assay. The results showed that in the fed–batch culture, the rate of streptokinase production increased over two times as compared with the batch culture while at the same time, shortening the streptokinase purification to a single step increased the yield over 95% at the chromatography stage. PMID:23407807

  7. Automated hydrophobic interaction chromatography column selection for use in protein purification.

    PubMed

    Murphy, Patrick J M; Stone, Orrin J; Anderson, Michelle E

    2011-01-01

    In contrast to other chromatographic methods for purifying proteins (e.g. gel filtration, affinity, and ion exchange), hydrophobic interaction chromatography (HIC) commonly requires experimental determination (referred to as screening or "scouting") in order to select the most suitable chromatographic medium for purifying a given protein (1). The method presented here describes an automated approach to scouting for an optimal HIC media to be used in protein purification. HIC separates proteins and other biomolecules from a crude lysate based on differences in hydrophobicity. Similar to affinity chromatography (AC) and ion exchange chromatography (IEX), HIC is capable of concentrating the protein of interest as it progresses through the chromatographic process. Proteins best suited for purification by HIC include those with hydrophobic surface regions and able to withstand exposure to salt concentrations in excess of 2 M ammonium sulfate ((NH(4;))(2;)SO(4;)). HIC is often chosen as a purification method for proteins lacking an affinity tag, and thus unsuitable for AC, and when IEX fails to provide adequate purification. Hydrophobic moieties on the protein surface temporarily bind to a nonpolar ligand coupled to an inert, immobile matrix. The interaction between protein and ligand are highly dependent on the salt concentration of the buffer flowing through the chromatography column, with high ionic concentrations strengthening the protein-ligand interaction and making the protein immobile (i.e. bound inside the column) (2). As salt concentrations decrease, the protein-ligand interaction dissipates, the protein again becomes mobile and elutes from the column. Several HIC media are commercially available in pre-packed columns, each containing one of several hydrophobic ligands (e.g. S-butyl, butyl, octyl, and phenyl) cross-linked at varying densities to agarose beads of a specific diameter (3). Automated column scouting allows for an efficient approach for determining

  8. Purification of infective bluetongue virus particles by immuno-affinity chromatography using anti-core antibody.

    PubMed

    Chand, Karam; Biswas, Sanchay K; Mondal, Bimalendu

    2016-03-01

    An immuno-affinity chromatography technique for purification of infective bluetongue virus (BTV) has been descried using anti-core antibodies. BTV anti-core antibodies (prepared in guinea pig) were mixed with cell culture-grown BTV-1 and then the mixture was added to the cyanogens bromide-activated protein-A Sepharose column. Protein A binds to the antibody which in turn binds to the antigen (i.e. BTV). After thorough washing, antigen-antibody and antibody-protein A couplings were dissociated with 4M MgCl2, pH6.5. Antibody molecules were removed by dialysis and virus particles were concentrated by spin column ultrafiltration. Dialyzed and concentrated material was tested positive for BTV antigen by a sandwich ELISA and the infectivity of the chromatography-purified virus was demonstrated in cell culture. This method was applied for selective capture of BTV from a mixture of other viruses. As group-specific antibodies (against BTV core) were used to capture the virus, it is expected that virus of all BTV serotypes could be purified by this method. This method will be helpful for selective capture and enrichment of BTV from concurrently infected blood or tissue samples for efficient isolation in cell culture. Further, this method can be used for small scale purification of BTV avoiding ultracentrifugation. PMID:26925450

  9. Preparation and evaluation of molecularly imprinted polymer liquid chromatography column for the separation of Cathine enantiomers

    PubMed Central

    Balamurugan, Krishnamoorthy; Gokulakrishnan, Kannan; Prakasam, Tangirala

    2011-01-01

    In this study molecular imprinting technology was employed to prepare a specific affinity sorbent for the resolution of Cathine, a chiral drug product. The molecularly imprinted polymer (MIP) was prepared by non-covalent molecular imprinting with either (+) or (−)-Cathine (threo-2-amino-1-hydroxy-1-phenyl propane; norpseudoephedrine) as the template. Methacrylic acid and ethylene glycol di-methacrylate were copolymerized in the presence of the template molecule. The bulk polymerization was carried out in chloroform with 2,2′-azobisisobutyronitrile as the initiator, at 5 °C and under UV radiation. The resulting MIP was ground into powders, which were slurry packed into analytical columns. After removal of template molecules, the MIP-packed columns were found to be effective for the resolution of (±)-Cathine racemates. The separation factor for the enantiomers ranged between 1.5 and 2.4 when the column was packed with MIP prepared with (+)-Cathine as the template. A separation factor ranging from 1.6 to 2.9 could be achieved from the column packed with MIP, prepared with (−)-Cathine as the template. Although the separation factor was higher with that previously obtained from reversed-phase column chromatography following derivatization with a chiral agent, elution peaks were broader due to the heterogeneity of binding sites on MIP particles and the possible non-specific interaction. PMID:23960776

  10. Direct probing of chromatography columns by laser-induced fluorescence

    SciTech Connect

    McGuffin, V.L.

    1992-12-07

    This report summarizes the progress and accomplishments of this research project from September 1, 1989 to February 28, 1993. During this period, we have accomplished all of the primary scientific objectives of the research proposal: (1) constructed and evaluated a laser-induced fluorescence detection system that allows direct examination of the chromatographic column, (2) examined nonequilibrium processes that occur upon solute injection and elution, (3) examined solute retention in liquid chromatography as a function of temperature and pressure, (4) examined solute zone dispersion in liquid chromatography as a function of temperature and pressure, and (5) developed appropriate theoretical models to describe these phenomena. In each of these studies, substantial knowledge has been gained of the fundamental processes that are responsible for chromatographic separations. In addition to these primary research objectives, we have made significant progress in three related areas: (1) examined pyrene as a fluorescent polarity probe insupercritical fluids and liquids as a function of temperature and pressure, (2) developed methods for the class-selective identification of polynuclear aromatic hydrocarbons in coal-derived fluids by microcolumn liquid chromatography with fluorescence quenching detection, and (3) developed methods for the determination of saturated and unsaturated (including omega-3) fatty acids in fish oil extracts by microcolumn liquid chromatography with laser-induced fluorescence detection. In these studies, the advanced separation and detection techniques developed in our laboratory are applied to practical problems of environmental and biomedical significance.

  11. Direct probing of chromatography columns by laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    McGuffin, V. L.

    1992-12-01

    This report summarizes the progress and accomplishments of this research project from 1 Sep. 1989 to 28 Feb. 1993. During this period, we have accomplished all of the primary scientific objectives of the research proposal: (1) constructed and evaluated a laser-induced fluorescence detection system that allows direct examination of the chromatographic column, (2) examined nonequilibrium processes that occur upon solute injection and elution, (3) examined solute retention in liquid chromatography as a function of temperature and pressure, (4) examined solute zone dispersion in liquid chromatography as a function of temperature and pressure, and (5) developed appropriate theoretical models to describe these phenomena. In each of these studies, substantial knowledge has been gained of the fundamental processes that are responsible for chromatographic separations. In addition to these primary research objectives, we have made significant progress in three related areas: (1) examined pyrene as a fluorescent polarity probe in supercritical fluids and liquids as a function of temperature and pressure, (2) developed methods for the class-selective identification of polynuclear aromatic hydrocarbons in coal-derived fluids by microcolumn liquid chromatography with fluorescence quenching detection, and (3) developed methods for the determination of saturated and unsaturated (including omega-3) fatty acids in fish oil extracts by microcolumn liquid chromatography with laser-induced fluorescence detection. In these studies, the advanced separation and detection techniques developed in our laboratory are applied to practical problems of environmental and biomedical significance.

  12. Fibulin-1 purification from human plasma using affinity chromatography on Factor H-Sepharose.

    PubMed

    DiScipio, Richard G; Liddington, Robert C; Schraufstatter, Ingrid U

    2016-05-01

    A method is reported to purify Fibulin-1 from human plasma resulting in a 36% recovery. The steps involve removal of the cryoglobulin and the vitamin K dependent proteins followed by polyethylene glycol and ammonium sulfate precipitations, DEAE-Sephadex column chromatography and finally Factor H-Sepharose affinity purification. The procedure is designed to be integrated into an overall scheme for the isolation of over 30 plasma proteins from a single batch of human plasma. Results from mass spectroscopy, SDS-PAGE, and Western blotting indicate that human plasma Fibulin-1 is a single chain of the largest isotype. Functional binding assays demonstrated calcium ion dependent interaction of Fibulin-1 for fibrinogen, fibronectin, and Factor H. The procedure described is the first to our knowledge that enables a large scale purification of Fibulin-1 from human plasma. PMID:26826315

  13. Purification of human copper, zinc superoxide dismutase by copper chelate affinity chromatography

    SciTech Connect

    Weslake, R.J.; Chesney, S.L.; Petkau, A.; Friesen, A.D.

    1986-05-15

    Copper, zinc superoxide dismutase was isolated from human red blood cell hemolysate by DEAE-Sepharose and copper chelate affinity chromatography. Enzyme preparations had specific activities ranging from 3400 to 3800 U/mg and recoveries were approximately 60% of the enzyme activity in the lysate. Copper chelate affinity chromatography resulted in a purification factor of about 60-fold. The homogeneity of the superoxide dismutase preparation was analyzed by sodium dodecyl sulfate-gel electrophoresis, analytical gel filtration chromatography, and isoelectric focusing.

  14. If You Were a Molecule in a Chromatography Column, What Would You See?

    ERIC Educational Resources Information Center

    Mattice, John

    2008-01-01

    To visualize what takes place in a chromatography column, enlarge the molecules to human size and expand the columns to keep the ratio of size of molecule to size of column the same. If we were molecules, what would the columns be like? A typical gas chromatography (GC) capillary column would be 50 x 10 [superscript 6] 6 km (31 million mi) long,…

  15. A high-capacity RNA affinity column for the purification of human IRP1 and IRP2 overexpressed in Pichia pastoris

    PubMed Central

    ALLERSON, CHARLES R.; MARTINEZ, ALAN; YIKILMAZ, EMINE; ROUAULT, TRACEY A.

    2003-01-01

    Regulated expression of proteins involved in mammalian iron metabolism is achieved in part through the interaction of the iron regulatory proteins IRP1 and IRP2 with highly conserved RNA stem-loop structures, known as iron-responsive elements (IREs), that are located within the 5′ or 3′ untranslated regions of regulated transcripts. As part of an effort to determine the structures of the IRP–IRE complexes using crystallographic methods, we have developed an efficient process for obtaining functionally pure IRP1 and IRP2 that relies upon the improved overexpression (>10 mg of soluble IRP per liter of culture) of each human IRP in the yeast Pichia pastoris and large-scale purification using RNA affinity chromatography. Despite the utility of RNA affinity chromatography in the isolation of RNA-binding proteins, current methods for preparing RNA affinity matrices produce columns of low capacity and limited stability. To address these limitations, we have devised a simple method for preparing stable, reusable, high-capacity RNA affinity columns. This method utilizes a bifunctional linker to covalently join a 5′-amino tethered RNA with a thiol-modified Sepharose, and can be used to load 150 nmole or more of RNA per milliliter of solid support. We demonstrate here the use of an IRE affinity column in the large-scale purification of IRP1 and IRP2, and suggest that the convenience of this approach will prove attractive in the analysis of other RNA-binding proteins. PMID:12592010

  16. Mining the soluble chloroplast proteome by affinity chromatography.

    PubMed

    Bayer, Roman G; Stael, Simon; Csaszar, Edina; Teige, Markus

    2011-04-01

    Chloroplasts are fundamental organelles enabling plant photoautotrophy. Besides their outstanding physiological role in fixation of atmospheric CO(2), they harbor many important metabolic processes such as biosynthesis of amino acids, vitamins or hormones. Technical advances in MS allowed the recent identification of most chloroplast proteins. However, for a deeper understanding of chloroplast function it is important to obtain a complete list of constituents, which is so far limited by the detection of low-abundant proteins. Therefore, we developed a two-step strategy for the enrichment of low-abundant soluble chloroplast proteins from Pisum sativum and their subsequent identification by MS. First, chloroplast protein extracts were depleted from the most abundant protein ribulose-1,5-bisphosphate carboxylase/oxygenase by SEC or heating. Further purification was carried out by affinity chromatography, using ligands specific for ATP- or metal-binding proteins. By these means, we were able to identify a total of 448 proteins including 43 putative novel chloroplast proteins. Additionally, the chloroplast localization of 13 selected proteins was confirmed using yellow fluorescent protein fusion analyses. The selected proteins included a phosphoglycerate mutase, a cysteine protease, a putative protein kinase and an EF-hand containing substrate carrier protein, which are expected to exhibit important metabolic or regulatory functions. PMID:21365755

  17. Mining the soluble chloroplast proteome by affinity chromatography

    PubMed Central

    Bayer, Roman G; Stael, Simon; Csaszar, Edina; Teige, Markus

    2011-01-01

    Chloroplasts are fundamental organelles enabling plant photoautotrophy. Besides their outstanding physiological role in fixation of atmospheric CO2, they harbor many important metabolic processes such as biosynthesis of amino acids, vitamins or hormones. Technical advances in MS allowed the recent identification of most chloroplast proteins. However, for a deeper understanding of chloroplast function it is important to obtain a complete list of constituents, which is so far limited by the detection of low-abundant proteins. Therefore, we developed a two-step strategy for the enrichment of low-abundant soluble chloroplast proteins from Pisum sativum and their subsequent identification by MS. First, chloroplast protein extracts were depleted from the most abundant protein ribulose-1,5-bisphosphate carboxylase/oxygenase by SEC or heating. Further purification was carried out by affinity chromatography, using ligands specific for ATP- or metal-binding proteins. By these means, we were able to identify a total of 448 proteins including 43 putative novel chloroplast proteins. Additionally, the chloroplast localization of 13 selected proteins was confirmed using yellow fluorescent protein fusion analyses. The selected proteins included a phosphoglycerate mutase, a cysteine protease, a putative protein kinase and an EF-hand containing substrate carrier protein, which are expected to exhibit important metabolic or regulatory functions. PMID:21365755

  18. Fragment screening of cyclin G-associated kinase by weak affinity chromatography.

    PubMed

    Meiby, Elinor; Knapp, Stefan; Elkins, Jonathan M; Ohlson, Sten

    2012-11-01

    Fragment-based drug discovery (FBDD) has become a new strategy for drug discovery where lead compounds are evolved from small molecules. These fragments form low affinity interactions (dissociation constant (K(D)) = mM - μM) with protein targets, which require fragment screening methods of sufficient sensitivity. Weak affinity chromatography (WAC) is a promising new technology for fragment screening based on selective retention of fragments by a drug target. Kinases are a major pharmaceutical target, and FBDD has been successfully applied to several of these targets. In this work, we have demonstrated the potential to use WAC in combination with mass spectrometry (MS) detection for fragment screening of a kinase target-cyclin G-associated kinase (GAK). One hundred seventy fragments were selected for WAC screening by virtual screening of a commercial fragment library against the ATP-binding site of five different proteins. GAK protein was immobilized on a capillary HPLC column, and compound binding was characterized by frontal affinity chromatography. Compounds were screened in sets of 13 or 14, in combination with MS detection for enhanced throughput. Seventy-eight fragments (46 %) with K(D) < 200 μM were detected, including a few highly efficient GAK binders (K(D) of 2 μM; ligand efficiency = 0.51). Of special interest is that chiral screening by WAC may be possible, as two stereoisomeric fragments, which both contained one chiral center, demonstrated twin peaks. This ability, in combination with the robustness, sensitivity, and simplicity of WAC makes it a new method for fragment screening of considerable potential. PMID:22918538

  19. Group type analysis of asphalt by column liquid chromatography

    SciTech Connect

    Zhang, C.; Yang, J.; Xue, Y.; Li, Y.

    2008-07-01

    An improved analysis method for characterization of asphalt was established. The method is based on column chromatography technique. The asphalts were separated into four groups: saturates, aromatics, resins, and asphaltenes, quantitatively. About 0.1 g of sample was required in each analysis. About 20 mL of n-heptanes was used to separate out saturates first. Then about 35 mL of n-heptanes/dichloromethane (.5, v/v) mixture was used to separate out aromatics. About 30 mL of dichloromethane/tetrahydrofuran (1/3, v/v) mixture was used to separate out resin. The quality of the separation was confirmed by infrared spectra (IR) and {sup 1}H NMR analysis. The model compounds, tetracosan for saturates, dibenz(o)anthracen for aromatics, and acetanilide for resins were used for verification. The IR and {sup 1}H NMR analysis of the prepared fractions from the column liquid chromatography were in good agreement that of pure reagents.

  20. SwellGel: a sample preparation affinity chromatography technology for high throughput proteomic applications.

    PubMed

    Haney, Paul J; Draveling, Connie; Durski, Wendy; Romanowich, Kathryn; Qoronfleh, M Walid

    2003-04-01

    Development of high throughput systems for purification and analysis of proteins is essential for the success of today's proteomic research. We have developed an affinity chromatography technology that allows the customization of high capacity/high throughput chromatographic separation of proteins. This technology utilizes selected chromatography media that are dehydrated to form uniform SwellGel discs. Unlike wet resin slurries, these discs are easily adaptable to a variety of custom formats, eliminating problems associated with resin dispensing, equilibration, or leakage. Discs can be made in assorted sizes (resin volume 15 microl-3 ml) dispensed in various formats (384-, 96-, 48-, and 24-well microplates or columns) and different ligands can be attached to the matrix. SwellGel discs rapidly hydrate upon addition of either water or the protein sample, providing dramatically increased capacity compared to coated plates. At the same time, the discs offer greater stability, reproducibility, and ease of handling than standard wet chromatography resins. We previously reported the development of SwellGel for the purification of 6x His- and glutathione-S-transferase (GST)-tagged fusion proteins [Prot. Exp. Purif. 22 (2001) 359-366]. In this paper, we discuss an expanded list of SwellGel stabilized chromatographic methods that have been adapted to high throughput formats for processing protein samples ranging from 10 microl to 10 ml (1 microg to 50 mg protein). Data are presented applying SwellGel discs to high throughput proteomic applications such as affinity tag purification, protein desalting, the removal of abundant proteins from serum including albumin and immunoglobulin, and the isolation of phosphorylated peptides for mass spectrometry. PMID:12699691

  1. Methodology for optimally sized centrifugal partition chromatography columns.

    PubMed

    Chollet, Sébastien; Marchal, Luc; Jérémy Meucci; Renault, Jean-Hugues; Legrand, Jack; Foucault, Alain

    2015-04-01

    Centrifugal Partition Chromatography (CPC) is a separation process based on the partitioning of solutes between two partially miscible liquid phases. There is no solid support for the stationary phase. The centrifugal acceleration is responsible for both stationary phase retention and mobile phase dispersion. CPC is thus a process based on liquid-liquid mass transfer. The separation efficiency is mainly influenced by the hydrodynamics of the phases in each cell of the column. Thanks to a visualization system, called "Visual CPC", it was observed that the mobile phase can flow through the stationary phase as a sheet, or a spray. Hydrodynamics, which directly governs the instrument efficiency, is directly affected during scale changes, and non-linear phenomena prevent the successful achievement of mastered geometrical scale changes. In this work, a methodology for CPC column sizing is proposed, based on the characterization of the efficiency of advanced cell shapes, taking into account the hydrodynamics. Knowledge about relationship between stationary phase volume, cell efficiency and separation resolution in CPC allowed calculating the optimum cell number for laboratory and industrial scale CPC application. The methodology is highlighted with results on five different geometries from 25 to 5000 mL, for two applications: the separation of alkylbenzene by partitioning with heptane/methanol/water biphasic system; and the separation of peptides by partitioning with n-butanol/acetic acid/water (4/1/5) biphasic system. With this approach, it is possible to predict the optimal CPC column length leading to highest productivity. PMID:25744547

  2. Colorful Column Chromatography: A Classroom Demonstration of a Three-Component Separation

    NASA Astrophysics Data System (ADS)

    Heumann, Lars V.

    2008-04-01

    A classroom demonstration detailing the procedure for the separation of a ternary mixture consisting of intensely colored compounds using silica gel column chromatography is described. The audience can follow the compounds during their passage through the column as individual, colored bands while learning about different tools and techniques used in conjunction with column chromatography. Detailed instructions for column preparation and the elution and collection process are provided and permit the easy replication of this demonstration.

  3. Removal of PCR Error Products and Unincorporated Primers by Metal-Chelate Affinity Chromatography

    PubMed Central

    Kanakaraj, Indhu; Jewell, David L.; Murphy, Jason C.; Fox, George E.; Willson, Richard C.

    2011-01-01

    Immobilized Metal Affinity Chromatography (IMAC) has been used for decades to purify proteins on the basis of amino acid content, especially surface-exposed histidines and “histidine tags” genetically added to recombinant proteins. We and others have extended the use of IMAC to purification of nucleic acids via interactions with the nucleotide bases, especially purines, of single-stranded RNA and DNA. We also have demonstrated the purification of plasmid DNA from contaminating genomic DNA by IMAC capture of selectively-denatured genomic DNA. Here we describe an efficient method of purifying PCR products by specifically removing error products, excess primers, and unincorporated dNTPs from PCR product mixtures using flow-through metal-chelate affinity adsorption. By flowing a PCR product mixture through a Cu2+-iminodiacetic acid (IDA) agarose spin column, 94–99% of the dNTPs and nearly all the primers can be removed. Many of the error products commonly formed by Taq polymerase also are removed. Sequencing of the IMAC-processed PCR product gave base-calling accuracy comparable to that obtained with a commercial PCR product purification method. The results show that IMAC matrices (specifically Cu2+-IDA agarose) can be used for the purification of PCR products. Due to the generality of the base-specific mechanism of adsorption, IMAC matrices may also be used in the purification of oligonucleotides, cDNA, mRNA and micro RNAs. PMID:21264292

  4. Affinity chromatography of Drosophila melanogaster ribosomal proteins to 5S rRNA.

    PubMed

    Stark, B C; Chooi, W Y

    1985-02-20

    The binding of Drosophila melanogaster ribosomal proteins to D. melanogaster 5S rRNA was studied using affinity chromatography of total ribosomal proteins (TP80) on 5S rRNA linked via adipic acid dihydrazide to Sepharose 4B. Ribosomal proteins which bound 5S rRNA at 0.3 M potassium chloride and were eluted at 1 M potassium chloride were identified as proteins 1, L4, 2/3, L14/L16, and S1, S2, S3, S4, S5, by two-dimensional polyacrylamide gel electrophoresis. Using poly A-Sepharose 4B columns as a model of non-specific binding, we found that a subset of TP80 proteins is also bound. This subset, while containing some of the proteins bound by 5S rRNA columns, was distinctly different from the latter subset, indicating that the binding to 5S rRNA was specific for that RNA species. PMID:3923010

  5. MEASUREMENT OF DRUG-PROTEIN DISSOCIATION RATES BY HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY AND PEAK PROFILING

    PubMed Central

    Schiel, John E.; Ohnmacht, Corey M.; Hage, David S.

    2012-01-01

    The rate at which a drug or other small solute interacts with a protein is important in understanding the biological and pharmacokinetic behavior of these agents. One approach that has been developed for examining these rates involves the use of high-performance affinity chromatography (HPAC) and estimates of band-broadening through peak profiling. Previous work with this method has been based on a comparison of the statistical moments for a retained analyte versus non-retained species at a single, high flow rate to obtain information on stationary phase mass transfer. In this study an alternative approach was created that allows a broad range of flow rates to be used for examining solute-protein dissociation rates. Chromatographic theory was employed to derive equations that could be used with this approach on a single column, as well as with multiple columns to evaluate and correct for the impact of stagnant mobile phase mass transfer. The interaction of L-tryptophan with human serum albumin was used as a model system to test this method. A dissociation rate constant of 2.7 (± 0.2) s−1 was obtained by this approach at pH 7.4 and 37°C, which was in good agreement with previous values determined by other methods. The techniques described in this report can be applied to other biomolecular systems and should be valuable for the determination of drug-protein dissociation rates. PMID:19422253

  6. Affinity chromatography and affinity labeling of rat liver succinyl-CoA synthetase.

    PubMed

    Ball, D J; Nishimura, J S

    1980-11-25

    Succinyl-CoA synthetase has been purified to apparent homogeneity from rat liver. The key step in the purification procedure involved adsorption on a GDP dialdehyde (dial-GDP)-adipic dihydrazide-Sepharose 4B column and elution by GDP-Mg2+. Like the pig heart enzyme (Brownie, E. R., and Bridger, W. A. (1972) Can. J. Biochem. 50, 719--724), the rat liver enzyme was an alpha beta heterodimer and only the alpha subunit was phosphorylated by [gamma-32P]GTP. The A 280(0.1%) of the enzyme was determined to be 0.5. Amino acid analyses revealed significant similarities in 50% of the amino acid residues of rat liver and Escherichia coli succinyl-CoA synthetases. However, immunodiffusion analysis failed to reveal any antigenic identity between the two enzymes. Incubation with the affinity label, dial-GDP, in the presence of Mg2+ resulted in a biphasic inactivation of the enzyme. The extent of the rapid phase of inactivation appeared to be related to the extent of dephosphorylation of the enzyme and was prevented by preincubation of the enzyme with GTP-Mg2+. The presence of GDP-Mg2+ in the incubation medium prevented the slow phase of the inactivation and retarded the rapid phase. Dephosphorylated enzyme was approximately 2 orders of magnitude more susceptible to inactivation by dial-GDP than phosphorylated enzyme. Labeling of succinyl-CoA synthetase with [3H]dial-GDP gave a linear relationship between inactivation and incorporation of radioactivity with an extrapolated value of less than 1.2 mol of analog/mol of enzyme at 100% inactivation. The distribution of the label in enzyme that was inactivated 40% was approximately 60% in the alpha subunit and 40% in the beta subunit. Thus, while phosphorylation of the enzyme occurs exclusively in the alpha subunit, the nucleotide binding site appears to include components from both alpha and beta subunits. PMID:7430155

  7. CHARACTERIZATION OF THE BINDING OF SULFONYLUREA DRUGS TO HSA BY HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY

    PubMed Central

    Joseph, K.S.; Hage, David S.

    2010-01-01

    Sulfonylurea drugs are often prescribed as a treatment for type II diabetes to help lower blood sugar levels by stimulating insulin secretion. These drugs are believed to primarily bind in blood to human serum albumin (HSA). This study used high-performance affinity chromatography (HPAC) to examine the binding of sulfonylureas to HSA. Frontal analysis with an immobilized HSA column was used to determine the association equilibrium constants (Ka) and number of binding sites on HSA for the sulfonylurea drugs acetohexamide and tolbutamide. The results from frontal analysis indicated HSA had a group of relatively high affinity binding regions and weaker binding sites for each drug, with average Ka values of 1.3 (± 0.2) × 105 M−1 and 3.5 (± 3.0) × 102 M−1 for acetohexamide and values of 8.7 (± 0.6) × 104 and 8.1 (± 1.7) × 103 M−1 for tolbutamide. Zonal elution and competition studies with site-specific probes were used to further examine the relatively high affinity interactions of these drugs by looking directly at the interactions that were occurring at Sudlow sites I and II of HSA (i.e., the major drug binding sites on this protein). It was found that acetohexamide was able to bind at both Sudlow sites I and II, with Ka values of 1.3 (± 0.1) × 105 and 4.3 (± 0.3) × 104 M−1, respectively, at 37°C. Tolbutamide also appeared to interact with both Sudlow sites I and II, with Ka values of 5.5 (± 0.2) × 104 and 5.3 (± 0.2) × 104 M−1, respectively. The results provide a more quantitative picture of how these drugs bind with HSA and illustrate how HPAC and related tools can be used to examine relatively complex drug-protein interactions. PMID:20435530

  8. Purification of CD47-streptavidin fusion protein from bacterial lysate using biotin-agarose affinity chromatography.

    PubMed

    Salehi, Nasrin; Peng, Ching-An

    2016-07-01

    CD47 is a widely expressed transmembrane glycoprotein that modulates the activity of a plethora of immune cells via its extracellular domain. Therefore, CD47 plays important roles in the regulation of immune responses and may serve as targets for the development of immunotherapeutic agents. To make sure CD47 functionality is intact under the process of protein conjugation, CD47-streptavidin fusion protein was expressed and purified because it can easily bind to biotin-tagged materials via the unique biotin-streptavidin affinity. In this study, gene sequences of CD47 extracellular domain (CD47ECD) and core streptavidin (coreSA) with a total 834 bp were inserted into pET20b plasmid to construct recombinant plasmid encoding CD47-SA fusion gene. After bacteria transformation, the CD47-SA fusion protein was expressed by isopropyl-β-d-thiogalactopyranoside (IPTG) induction. The collected bacteria lysate was loaded on biotinylated agarose to proceed the purification of CD47-SA fusion protein. Due to the unexpected high affinity between biotin and coreSA, standard washing and elution approaches (e.g., varying pH, using biotin, and applying guanidine hydrochloride) reported for biotin-streptavidin affinity chromatography were not able to separate the target fusion protein. Instead, using low concentration of the non-ionic detergent Triton X-100 followed with alkaline buffer could efficiently weaken the binding between biotin and coreSA, thereby eluting out CD47-SA fusion protein from the biotin agarose column. The purified CD47-SA fusion protein was further characterized by molecular biology methods and its antiphagocytic functionality was confirmed by the phagocytosis assay. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:949-958, 2016. PMID:27110670

  9. Determination of residual fluoroquinolones in honey by liquid chromatography using metal chelate affinity chromatography.

    PubMed

    Yatsukawa, Yoh-Ichi; Ito, Hironobu; Matsuda, Takahiro; Nakamura, Munetomo; Watai, Masatoshi; Fujita, Kazuhiro

    2011-01-01

    A new analytical method for the simultaneous determination of seven fluoroquinolones, namely, norfloxacin, ciprofloxacin, danofloxacin, enrofloxacin, orbifloxacin, sarafloxacin, and difloxacin, especially in dark-colored honey, has been developed. Fluoroquinolone antibiotics were extracted from samples with MacIlvaine buffer solution (pH 4.0) containing EDTA disodium salt dihydrate. The extracts were treated with both a polymeric cartridge and a metal chelate affinity column preloaded with ferric ion (Fe3+). LC separation with fluorescence detection was performed at 40 degrees C using an Inertsil ODS-4 analytical column (150 x 4.6 mm, 3 microm). The mobile phase was composed of 20 mM/L citrate buffer solution (pH 3.1)-acetonitrile mixture (70 + 30, v/v) containing 1 mM/L sodium dodecyl sulfate. Lomefloxacin was used as an internal standard. The developed method was validated according to the criteria of European Commission Decision 2002/657/EC. Decision limits and detection capabilities were below 2.9 and 4.4 microg/kg, respectively. PMID:21919363

  10. Isolation of Three Components from Spearmint Oil: An Exercise in Column and Thin-Layer Chromatography

    ERIC Educational Resources Information Center

    Davies, Don R.; Johnson, Todd M.

    2007-01-01

    A simple experiment for undergraduate organic chemistry students to separate a colorless mixture using column chromatography and then monitor the outcome of the separation using thin-layer chromatography (TLC) and infrared spectroscopy(IR) is described. The experiment teaches students the principle and techniques of column and thin-layer…

  11. Frontal affinity chromatography: A unique research tool for biospecific interaction that promotes glycobiology

    PubMed Central

    KASAI, Kenichi

    2014-01-01

    Combination of bioaffinity and chromatography gave birth to affinity chromatography. A further combination with frontal analysis resulted in creation of frontal affinity chromatography (FAC). This new versatile research tool enabled detailed analysis of weak interactions that play essential roles in living systems, especially those between complex saccharides and saccharide-binding proteins. FAC now becomes the best method for the investigation of saccharide-binding proteins (lectins) from viewpoints of sensitivity, accuracy, and efficiency, and is contributing greatly to the development of glycobiology. It opened a door leading to deeper understanding of the significance of saccharide recognition in life. The theory is also concisely described. PMID:25169774

  12. Frontal affinity chromatography: a unique research tool for biospecific interaction that promotes glycobiology.

    PubMed

    Kasai, Kenichi

    2014-01-01

    Combination of bioaffinity and chromatography gave birth to affinity chromatography. A further combination with frontal analysis resulted in creation of frontal affinity chromatography (FAC). This new versatile research tool enabled detailed analysis of weak interactions that play essential roles in living systems, especially those between complex saccharides and saccharide-binding proteins. FAC now becomes the best method for the investigation of saccharide-binding proteins (lectins) from viewpoints of sensitivity, accuracy, and efficiency, and is contributing greatly to the development of glycobiology. It opened a door leading to deeper understanding of the significance of saccharide recognition in life. The theory is also concisely described. PMID:25169774

  13. Direct capture of His₆-tagged proteins using megaporous cryogels developed for metal-ion affinity chromatography.

    PubMed

    Singh, Naveen Kumar; DSouza, Roy N; Bibi, Noor Shad; Fernández-Lahore, Marcelo

    2015-01-01

    Immobilized metal-ion affinity chromatography (IMAC) has been developed for the rapid isolation and purification of recombinant proteins. In this chapter, megaporous cryogels were synthesized having metal-ion affinity functionality, and their adsorptive properties were investigated. These cryogels have large pore sizes ranging from 10 to 100 μm with corresponding porosities between 80 and 90%. The synthesized IMAC-cryogel had a total ligand density of 770 μmol/g. Twelve milligram of a His6-tagged protein (NAD(P)H-dependent 2-cyclohexen-1-one-reductase) can be purified from a crude cell extract per gram of IMAC-cryogels. The protein binding capacity is increased with higher degrees of grafting, although a slight decrease in column efficiency may result. This chapter provides methodologies for a rapid single-step purification of recombinant His6-tagged proteins from crude cell extracts using IMAC-cryogels. PMID:25749956

  14. Affinity Chromatography of Native and Recombinant Proteins from Receptors for Insulin and IGF-I to Recombinant Single Chain Antibodies.

    PubMed

    Fujita-Yamaguchi, Yoko

    2015-01-01

    Affinity chromatography is an efficient method to isolate proteins by taking advantage of their affinities for specific molecules such as substrates, inhibitors, antigens, ligands, antibodies, and other interacting molecules, including subunits. Nowadays, we take the effectiveness and excellence of this technology for granted. This essay will mainly cover the use of affinity chromatography based on my experience. PMID:26579073

  15. Affinity Chromatography of Native and Recombinant Proteins from Receptors for Insulin and IGF-I to Recombinant Single Chain Antibodies

    PubMed Central

    Fujita-Yamaguchi, Yoko

    2015-01-01

    Affinity chromatography is an efficient method to isolate proteins by taking advantage of their affinities for specific molecules such as substrates, inhibitors, antigens, ligands, antibodies, and other interacting molecules, including subunits. Nowadays, we take the effectiveness and excellence of this technology for granted. This essay will mainly cover the use of affinity chromatography based on my experience. PMID:26579073

  16. PDZ Affinity Chromatography: A general method for affinity purification of proteins based on PDZ domains and their ligands

    PubMed Central

    Walkup, Ward G.; Kennedy, Mary B.

    2014-01-01

    PDZ (PSD-95, DiscsLarge, ZO1) domains function in nature as protein binding domains within scaffold and membrane-associated proteins. They comprise ~ 90 residues and make specific, high affinity interactions with complementary C-terminal peptide sequences, with other PDZ domains, and with phospholipids. We hypothesized that the specific, strong interactions of PDZ domains with their ligands would make them well suited for use in affinity chromatography. Here we describe a novel affinity chromatography method applicable for the purification of proteins that contain PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We created a series of affinity resins comprised of PDZ domains from the scaffold protein PSD-95, or from neuronal nitric oxide synthase (nNOS), coupled to solid supports. We used them to purify heterologously expressed neuronal proteins or protein domains containing endogenous PDZ domain ligands, eluting the proteins with free PDZ domain peptide ligands. We show that Proteins of Interest (POIs) lacking endogenous PDZ domain ligands can be engineered as fusion products containing C-terminal PDZ domain ligand peptides or internal, N- or C-terminal PDZ domains and then can be purified by the same method. Using this method, we recovered recombinant GFP fused to a PDZ-domain ligand in active form as verified by fluorescence yield. Similarly, chloramphenicol acetyltransferase (CAT) and β-Galactosidase (LacZ) fused to a C-terminal PDZ domain ligand or an N-terminal PDZ domain were purified in active form as assessed by enzymatic assay. In general, PDZ domains and ligands derived from PSD-95 were superior to those from nNOS for this method. PDZ Domain Affinity Chromatography promises to be a versatile and effective method for purification of a wide variety of natural and recombinant proteins. PMID:24607360

  17. Purification of phage display-modified bacteriophage T4 by affinity chromatography

    PubMed Central

    2011-01-01

    Background Affinity chromatography is one of the most efficient protein purification strategies. This technique comprises a one-step procedure with a purification level in the order of several thousand-fold, adaptable for various proteins, differentiated in their size, shape, charge, and other properties. The aim of this work was to verify the possibility of applying affinity chromatography in bacteriophage purification, with the perspective of therapeutic purposes. T4 is a large, icosahedral phage that may serve as an efficient display platform for foreign peptides or proteins. Here we propose a new method of T4 phage purification by affinity chromatography after its modification with affinity tags (GST and Histag) by in vivo phage display. As any permanent introduction of extraneous DNA into a phage genome is strongly unfavourable for medical purposes, integration of foreign motifs with the phage genome was not applied. The phage was propagated in bacteria expressing fusions of the phage protein Hoc with affinity tags from bacterial plasmids, independently from the phage expression system. Results Elution profiles of phages modified with the specific affinity motifs (compared to non-specific phages) document their binding to the affinity resins and effective elution with standard competitive agents. Non-specific binding was also observed, but was 102-105 times weaker than the specific one. GST-modified bacteriophages were also effectively released from glutathione Sepharose by proteolytic cleavage. The possibility of proteolytic release was designed at the stage of expression vector construction. Decrease in LPS content in phage preparations was dependent on the washing intensity; intensive washing resulted in preparations of 11-40 EU/ml. Conclusions Affinity tags can be successfully incorporated into the T4 phage capsid by the in vivo phage display technique and they strongly elevate bacteriophage affinity to a specific resin. Affinity chromatography can be

  18. CHARACTERIZATION OF DRUG INTERACTIONS WITH SERUM PROTEINS BY USING HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY

    PubMed Central

    Hage, David S.; Anguizola, Jeanethe; Barnaby, Omar; Jackson, Abby; Yoo, Michelle J.; Papastavros, Efthimia; Pfaunmiller, Erika; Sobansky, Matt; Tong, Zenghan

    2011-01-01

    The binding of drugs with serum proteins can affect the activity, distribution, rate of excretion, and toxicity of pharmaceutical agents in the body. One tool that can be used to quickly analyze and characterize these interactions is high-performance affinity chromatography (HPAC). This review shows how HPAC can be used to study drug-protein binding and describes the various applications of this approach when examining drug interactions with serum proteins. Methods for determining binding constants, characterizing binding sites, examining drug-drug interactions, and studying drug-protein dissociation rates will be discussed. Applications that illustrate the use of HPAC with serum binding agents such as human serum albumin, α1-acid glycoprotein, and lipoproteins will be presented. Recent developments will also be examined, such as new methods for immobilizing serum proteins in HPAC columns, the utilization of HPAC as a tool in personalized medicine, and HPAC methods for the high-throughput screening and characterization of drug-protein binding. PMID:21395530

  19. Analysis of Drug Interactions with Lipoproteins by High-Performance Affinity Chromatography

    PubMed Central

    Sobansky, Matthew R.; Hage, David S.

    2013-01-01

    Lipoproteins such as high-density lipoprotein (HDL) and low-density lipoprotein (LDL) are known to interact with drugs and other solutes in blood. These interactions have been examined in the past by methods such as equilibrium dialysis and capillary electrophoresis. This chapter describes an alternative approach that has recently been developed for examining these interactions by using high-performance affinity chromatography. In this method, lipoproteins are covalently immobilized to a solid support and used within a column as a stationary phase for binding studies. This approach allows the same lipoprotein preparation to be used for a large number of binding studies, leading to precise estimates of binding parameters. This chapter will discuss how this technique can be applied to the identification of interaction models and be used to differentiate between systems that have interactions based on partitioning, adsorption or mixed-mode interactions. It is also shown how this approach can then be used for the measurement of binding parameters for HDL and LDL with drugs. Examples of these studies are provided, with particular attention being given to the use of frontal analysis to examine the interactions of R- and S-propranolol with HDL and LDL. The advantages and possible limitations of this method are described. The extension of this approach to other types of drug-lipoprotein interactions is also considered. PMID:25392741

  20. Entrapment of alpha1-acid glycoprotein in high-performance affinity columns for drug-protein binding studies.

    PubMed

    Bi, Cong; Jackson, Abby; Vargas-Badilla, John; Li, Rong; Rada, Giana; Anguizola, Jeanethe; Pfaunmiller, Erika; Hage, David S

    2016-05-15

    A slurry-based method was developed for the entrapment of alpha1-acid glycoprotein (AGP) for use in high-performance affinity chromatography to study drug interactions with this serum protein. Entrapment was achieved based on the physical containment of AGP in hydrazide-activated porous silica supports and by using mildly oxidized glycogen as a capping agent. The conditions needed for this process were examined and optimized. When this type of AGP column was used in binding studies, the association equilibrium constant (Ka) measured by frontal analysis at pH 7.4 and 37°C for carbamazepine with AGP was found to be 1.0 (±0.5)×10(5)M(-1), which agreed with a previously reported value of 1.0 (±0.1)×10(5)M(-1). Binding studies based on zonal elution were conducted for several other drugs with such columns, giving equilibrium constants that were consistent with literature values. An entrapped AGP column was also used in combination with a column containing entrapped HSA in a screening assay format to compare the binding of various drugs to AGP and HSA. These results also agreed with previous data that have been reported in literature for both of these proteins. The same entrapment method could be extended to other proteins and to the investigation of additional types of drug-protein interactions. Potential applications include the rapid quantitative analysis of biological interactions and the high-throughput screening of drug candidates for their binding to a given protein. PMID:26627938

  1. BIOINTERACTION ANALYSIS BY HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY: KINETIC STUDIES OF IMMOBILIZED ANTIBODIES

    PubMed Central

    Nelson, Mary Anne; Moser, Annette; Hage, David S.

    2009-01-01

    A system based on high-performance affinity chromatography was developed for characterizing the binding, elution and regeneration kinetics of immobilized antibodies and immunoaffinity supports. This information was provided by using a combination of frontal analysis, split-peak analysis and peak decay analysis to determine the rate constants for antibody-antigen interactions under typical sample application and elution conditions. This technique was tested using immunoaffinity supports that contained monoclonal antibodies for 2,4-dichlorophenoxyacetic acid (2,4-D). Association equilibrium constants measured by frontal analysis for 2,4-D and related compounds with the immobilized antibodies were 1.7–12 × 106 M−1 at pH 7.0 and 25°C. Split-peak analysis gave association rate constants of 1.4–12 × 105 M−1s−1 and calculated dissociation rate constants of 0.01–0.4 s−1 under the application conditions. Elution at pH 2.5 for the analytes from the antibodies was examined by peak decay analysis and gave dissociation rate constants of 0.056–0.17 s−1. A comparison of frontal analysis results after various periods of column regeneration allowed the rate of antibody regeneration to be examined, with the results giving a first-order regeneration rate constant of 2.4 × 10−4 s−1. This combined approach and the information it provides should be useful in the design and optimization of immunoaffinity chromatography and other analytical methods that employ immobilized antibodies. The methods described are not limited to the particular analytes and antibodies employed in this study but should be useful in characterizing other targets, ligands and supports. PMID:19394281

  2. Cellufine sulfate column chromatography as a simple, rapid, and effective method to purify dengue virus.

    PubMed

    Kanlaya, Rattiyaporn; Thongboonkerd, Visith

    2016-08-01

    Conventional method to purify/concentrate dengue virus (DENV) is time-consuming with low virus recovery yield. Herein, we applied cellufine sulfate column chromatography to purify/concentrate DENV based on the mimicry between heparan sulfate and DENV envelope protein. Comparative analysis demonstrated that this new method offered higher purity (as determined by less contamination of bovine serum albumin) and recovery yield (as determined by greater infectivity). Moreover, overall duration used for cellufine sulfate column chromatography to purify/concentrate DENV was approximately 1/20 of that of conventional method. Therefore, cellufine sulfate column chromatography serves as a simple, rapid, and effective alternative method for DENV purification/concentration. PMID:27155240

  3. PRECISION AND ACCURACY IN THE DETERMINATION OF ORGANICS IN WATER BY FUSED SILICA CAPILLARY COLUMN GAS CHROMOTOGRAPHY/MASS SPECTROMETRY AND PACKED COLUMN GAS CHROMATOGRAPHY/MASS SPECTROMETRY

    EPA Science Inventory

    Two general methods for the identification and measurement of organic compounds in water are compared. One method employs packed column chromatography and the other fused silica capillary column chromatography. The two gas chromatography/mass spectrometry (GC/MS) methods use diff...

  4. Analysis of free drug fractions in human serum by ultrafast affinity extraction and two-dimensional affinity chromatography.

    PubMed

    Zheng, Xiwei; Podariu, Maria; Matsuda, Ryan; Hage, David S

    2016-01-01

    Ultrafast affinity extraction and a two-dimensional high performance affinity chromatographic system were used to measure the free fractions for various drugs in serum and at typical therapeutic concentrations. Pooled samples of normal serum or serum from diabetic patients were utilized in this work. Several drug models (i.e., quinidine, diazepam, gliclazide, tolbutamide, and acetohexamide) were examined that represented a relatively wide range of therapeutic concentrations and affinities for human serum albumin (HSA). The two-dimensional system consisted of an HSA microcolumn for the extraction of a free drug fraction, followed by a larger HSA analytical column for the further separation and measurement of this fraction. Factors that were optimized in this method included the flow rates, column sizes, and column switching times that were employed. The final extraction times used for isolating the free drug fractions were 333-665 ms or less. The dissociation rate constants for several of the drugs with soluble HSA were measured during system optimization, giving results that agreed with reference values. In the final system, free drug fractions in the range of 0.7-9.5% were measured and gave good agreement with values that were determined by ultrafiltration. Association equilibrium constants or global affinities were also estimated by this approach for the drugs with soluble HSA. The results for the two-dimensional system were obtained in 5-10 min or less and required only 1-5 μL of serum per injection. The same approach could be adapted for work with other drugs and proteins in clinical samples or for biomedical research. PMID:26462924

  5. Negative Enrichment of Target Cells by Microfluidic Affinity Chromatography

    PubMed Central

    Li, Peng; Gao, Yan; Pappas, Dimitri

    2011-01-01

    A three-dimensional microfluidic channel was developed for high purity cell separations. This system featured high capture affinity using multiple vertical inlets to an affinity surface. In cell separations, positive selection (capture of the target cell) is usually employed. Negative enrichment, the capture of non-target cells and elution of target cells, has distinct advantages over positive selection. In negative enrichment, target cells are not labeled, and are not subjected to strenuous elution conditions or dilution. As a result, negative enrichment systems are amenable to multi-step processes in microfluidic systems. In previous work, we reported cell capture enhancement effects at vertical inlets to the affinity surface. In this study, we designed a chip that has multiple vertical and horizontal channels, forming a three-dimensional separation system. Enrichment of target cells showed separation purities of 92-96%, compared with straight-channel systems (77% purity). A parallelized chip was also developed for increased sample throughput. A two-channel showed similar separation purity with twice the sample flow rate. This microfluidic system, featuring high separation purity, ease of fabrication and use, is suitable for cell separations when subsequent analysis of target cells is required. PMID:21939198

  6. Development of an on-column affinity smart polymer gel glucose sensor.

    PubMed

    Thammakhet, Chongdee; Thavarungkul, Panote; Kanatharana, Proespichaya

    2011-06-10

    An on-column affinity smart polymer gel glucose sensor was developed as a non-enzymatic glucose sensor. A copolymer of 3-acrylamidophenylboronic acid and acrylamide, the so called "smart polymer", was synthesized in situ in a 5 cm long capillary tube with a detection window to provide the on-column detection. The optical density of this semitransparent affinity smart polymer gel, coated inside the tube, decreased with increasing glucose concentration and was detected using a UV-vis detector at 500 nm. The capillary tube was incorporated into a flow injection system. Under optimum conditions, a linear dynamic range of 0.5-16.0mM with a limit of detection of 0.5mM (S/N ≥ 3) was obtained. A single coated affinity smart polymer gel had good stability for up to 250 consecutive injections with relative standard deviation of less than 5%. The analysis time for each injection was 6 min. Ten glucose samples prepared in distilled water were analyzed by the developed method and the results compared well with those obtained from the conventional dinitrosalicylic acid (DNS) method (P>0.05). Real urine samples with known glucose levels were analyzed and the developed sensor provided comparable results to those from the normal strip test technique. Acceptable percentage recoveries, ranging from 88 ± 2% to 103 ± 4% from the spiked urine sample, were obtained. PMID:21601037

  7. Purification of a Recombinant Polyhistidine-Tagged Glucosyltransferase Using Immobilized Metal-Affinity Chromatography (IMAC).

    PubMed

    de Costa, Fernanda; Barber, Carla J S; Pujara, Pareshkumar T; Reed, Darwin W; Covello, Patrick S

    2016-01-01

    Short peptide tags genetically fused to recombinant proteins have been widely used to facilitate detection or purification without the need to develop specific procedures. In general, an ideal affinity tag would allow the efficient purification of tagged proteins in high yield, without affecting its function. Here, we describe the purification steps to purify a recombinant polyhistidine-tagged glucosyltransferase from Centella asiatica using immobilized metal affinity chromatography. PMID:26843168

  8. Mixed-bed affinity chromatography: principles and methods.

    PubMed

    Boschetti, Egisto; Righetti, Pier Giorgio

    2015-01-01

    Mixed-bed chromatography is far from being a well-established technology within the panoply of bioseparation tools. Composed of an assembly of distinct sorbents that are mixed in a single bed, they have been mostly developed in the last decade for the reduction of dynamic concentration range where they allowed discovering many low-copy proteins within very complex proteomes. Other interesting preparative applications of mixed-bed chromatography have since been developed. In this chapter the basic concepts first and then detailed application recipes are described for (1) the reduction of protein dynamic concentration range, (2) the removal of impurity traces at the last stage of a biopurification process, and (3) the selection and use of sorbents as mixed bed in protein purification. PMID:25749952

  9. Dimerization Capacities of FGF2 Purified with or without Heparin-Affinity Chromatography

    PubMed Central

    Chiu, Liang-Yuan; Taouji, Said; Moroni, Elisabetta; Colombo, Giorgio; Chevet, Eric; Sue, Shih-Che; Bikfalvi, Andreas

    2014-01-01

    Fibroblast growth factor-2 (FGF2) is a pleiotropic growth factor exhibiting a variety of biological activities. In this article, we studied the capacity of FGF2 purified with or without heparin affinity chromatography to self-associate. Analyzing the NMR HSQC spectra for different FGF2 concentrations, heparin-affinity purified FGF2 showed perturbations that indicate dimerization and are a higher-order oligomerization state. HSQC perturbation observed with different FGF2 concentrations revealed a heparin-binding site and two dimer interfaces. Thus, with increasing protein concentrations, FGF2 monomers make contacts with each other and form dimers or higher order oligomers. On the contrary, FGF2 purified with ion-exchange chromatography did not show similar perturbation indicating that self-association of FGF2 is eliminated if purification is done without heparin-affinity chromatography. The HSQC spectra of heparin-affinity purified FGF2 can be reproduced to some extent by adding heparin tetra-saccharide to ion exchange chromatography purified FGF2. Heparin-affinity purified FGF2 bound to acceptor and donor beads in a tagged form using His-tagged or GST-tagged proteins, also dimerized in the AlphaScreen™ assay. This assay was further validated using different experimental conditions and competitors. The assay constitutes an interesting tool to study dimerization of other FGF forms as well. PMID:25299071

  10. Membrane affinity chromatography used for the separation of trypsin inhibitor.

    PubMed

    Guo, W; Shang, Z; Yu, Y; Guan, Y; Zhou, L

    1992-01-01

    Polysulphone (PS) was chemically modified by acrylation-amination and by chloromethylation-amination, respectively. An ultrafiltration membrane of chemically modified polysulphone (CMPS) was prepared by the phase inversion method. Trypsin was then covalently bonded onto the CMPS membrane by diazotization. The activity of immobilized trypsin reaches up to 10200 U/g; 15 mg trypsin was immobilized on 1 g CMPS membrane. Separation of soybean trypsin inhibitor was carried out on the affinity membrane, yielding 6.5 mg pure trypsin inhibitor in one run. The enzyme membrane has good activity and stability. PMID:1638098

  11. The development of an evaluation method for capture columns used in two-dimensional liquid chromatography.

    PubMed

    Cao, Liwei; Yu, Danhua; Wang, Xinliang; Ke, Yanxiong; Jin, Yu; Liang, Xinmiao

    2011-11-01

    Capture columns are important interface tools for on line two-dimensional liquid chromatography (2D-LC). In this study, a systematic method was developed to evaluate and optimize the capture ability of capture columns by off-line method. First, the parameter Δt(R) (Δt(R)=t(2)-t(1)-t(0)-W) was introduced to quantitatively represent the capture ability of the capture column by connecting a capture column behind the first dimensional column. Based on the value of Δt(R), an appropriate capture column was selected after the first dimensional column was fixed. Then, the capture ability of the selected column was promoted by adjusting the mobile phase of the first dimensional column. Capture ability was also optimized using complex sample analysis software system (CSASS) software. Second, the elution mode of the trapped compounds on the capture column was investigated by connecting the capture column before the second dimensional column. More specifically, in mode I, capture column was connected to the second dimension without changing the flow rate direction and the trapped compounds must pass through the capture column and be eluted into the second dimensional column. The contrary connection mode was mode II. It was found that mode I is more suitable method for 2D-LC. Finally, an off-line reversed-phase/hydrophilic interaction liquid chromatography two-dimensional liquid chromatography (RP/HILIC 2D-LC) system with a C18 capture column was developed to demonstrate the practical application of this method. PMID:21995927

  12. Fundamental and practical studies on high-performance liquid affinity chromatography of biopolymers with novel stationary phases

    SciTech Connect

    Bacolod, M.D.

    1992-01-01

    Rigid microparticulate stationary phases having surface-bound metal chelating functions were developed and evaluated in high performance metal chelate affinity chromatography of proteins. Silica- and polystyrene-divinylbenzene-based metal chelate sorbents were produced in wide pore and in non-porous type of column packings. A major effort has been placed on development of non-porous highly crosslinked polystyrene-divinylbenzene (PSDVB). These PSDVB microparticles were produced by a two-step swelling polymerization, and exhibited excellent mechanical strength over a wide range of flow-rates and composition used in high performance liquid chromatography (HPLC). Simple and reproducible hydrophilic coatings were developed for the surface modification of hydrophobic PSDVB supports. A tetradentate metal chelating ligand, ethylenediamine-N, N[prime]-diacetic acid (EDDA), was covalently bound to the surface of the various supports. Sorbents having iminodiacetic acid (IDA) metal chelating functions were also evaluated. The hydrophilic character and surface coverage of various stationary phases were assessed chromatographically. Studies concerning the effects of eluent pH as well as the nature and concentration of salts on retention and selectivity with different metal chelate stationary phases having various immobilized metal ions were carried out. Elution schemes were developed for rapid separation of proteins in metal chelate affinity chromatography. EDDA stationary phases in metal forms can be viewed as complementary to IDA stationary phases since they afforded different selectivity and retentivity toward proteins. Hydrophilic PSDVB could be functionalized with IDA or EDDA metal chelating ligands or lectins. The non-porous metal chelate stationary phases afforded rapid separation of proteins by the development of multiple gradient systems, which permitted higher column peak capacity, enabling the separation of a greater number of proteins in a single chromatographic run.

  13. Pressure-dependent boron isotopic fractionation observed by column chromatography

    NASA Astrophysics Data System (ADS)

    Musashi, M.; Oi, T.; Matsuo, M.; Nomura, M.

    2007-12-01

    Boron isotopic fractionation factor ( S ) between boron taken up in strongly basic anion exchange resin and boron in aqueous solution was determined by breakthrough column chromatography at 5 and 17 MPa at 25°C, using 0.1 mmol/L boric acid solution as feed solution. The S values obtained were 1.018 and 1.012, respectively, which were smaller than the value reported by using the same chromatographic method at atmospheric pressure at 25°C with the boron concentration of 10 mmol/L, but were larger than the values at the same condition with much higher concentration of 100 and 501 mmol/L, indicating that borate-polymerization reducing the isotopic fractionation was negligible. However, calculations based on the theory of isotope distribution between two phases estimated that 21% (5MPa) and 47% (17MPa) of boron taken up in the resin phase was in the three-coordinated B(OH)3-form, instead of in the four-coordinated B(OH)4--form, at high pressures even with the very diluted solution. We discussed this discrepancy by introducing (1) hydration or (2) a partial molar volume difference between isotopic molecules. It was inferred that borate ions were partially dehydrated upon transfer from the solution phase to the resin phase at high pressures, which resulted in smaller S values compared with those at the atmospheric pressure. Alternatively, it was likely that the S value decreased with increasing pressure, because the difference of the partial isotopic molar volumes between 10B(OH)3 and 11B(OH)3 was larger than that between 10B(OH)4- and 11B(OH)4-. If either will be the case, the influence of a pressure upon the isotope effect may not be negligible for boron isotopic exchange equilibrium. This knowledge is crucial for the principle of the boron isotopic pH-metry reconstructing a chemical variation at the paleo-deep oceanic environment where the early life may have been evolved.

  14. Purification of antibodies to O antigen of Salmonella Typhimurium from human serum by affinity chromatography.

    PubMed

    O'Shaughnessy, Colette M; Micoli, Francesca; Gavini, Massimiliano; Goodall, Margaret; Cobbold, Mark; Saul, Allan; Maclennan, Calman A

    2013-01-31

    Nontyphoidal Salmonellae (NTS) are a common cause of bacteraemia in children and HIV-infected adults in Sub-Saharan Africa. We have previously shown that antibodies play a key role in both bactericidal and cellular mechanisms of immunity to NTS, but found that high concentrations of antibody to Salmonella Typhimurium O antigen (OAg) in the serum of some HIV-infected African adults is associated with impaired killing of NTS. To further investigate the function of antibodies to the OAg of NTS, we developed a method to purify these antibodies from human serum by affinity chromatography. Purified Salmonella Typhimurium OAg was activated with adipic acid dihydrazide (ADH) via two different chemistries before linking to N-hydroxysuccinamide-Sepharose resin: one ADH molecule was introduced per OAg chain on its terminal 3-deoxy-D-manno-octulosonic acid sugar (OAg-ADH), or multiple ADH molecules were attached along the OAg chain after oxidation with sodium periodate (OAgoxADH). Both resulting columns worked well when tested with commercial polyclonal anti-O:4,5 antibodies from rabbit serum. Over 90% of the applied antibodies bound to the resin and 89% of these antibodies were then eluted as detected by ELISA. OAg-ADH was preferred as the method for OAg derivatisation as it does not modify the saccharide chain and can be applied to OAg from different bacteria. Both columns were able to bind OAg-specific antibodies in human serum, but antibody recovery was initially low. Different elution buffers were tested and different amounts of OAg-ADH were linked to the resin to improve the yield. Optimal recovery (51%) was obtained by loading 1mg of activated OAg per ml of resin and eluting with 0.1M glycine, 0.1M NaCl pH2.4. The column matrix could be regenerated following elution with no detectable loss in performance for over ten uses. This method offers the potential to purify antibodies to Salmonella OAg from polyclonal serum following vaccination or natural exposure to Salmonella

  15. A strategy of designing the ligand of antibody affinity chromatography based on molecular dynamics simulation.

    PubMed

    Dai, Lu; Li, Weikang; Sun, Fei; Li, Baizhi; Li, Hongrui; Zhang, Hongxing; Zheng, Qingchuan; Liang, Chongyang

    2016-09-01

    Designing affinity ligands has always been the development focus of affinity chromatography. Previous antibody affinity ligand designs were mostly based on the crystal structure of protein A (UniProt code number: P38507), and the antibody-binding domains were modified according to the properties of amino acid residues. Currently, more effective bioinformatic prediction and experimental validation has been used to improve the design of antibody affinity ligands. In the present study, the complex crystal structure (the domain D of protein A and the Fab segment of IgM, PDB code: 1DEE) was used as the model. The vital site that inhibits the binding between domain D and IgM was estimated by means of molecular dynamics (MD) simulation, then MM-GBSA calculations were used to design a mutant of domain D (K46E) for improving affinity on the above vital site. The binding analysis using Biacore showed the association and dissociation parameters of K46E mutant that were optimized with IgM. The affinity increase of K46E mutant preferred for IgM, the affinity order is K46E tetramer (KD=6.02×10(-9)M)>K46E mutant (KD=6.66×10(-8)M)>domain D (KD=2.17×10(-7)M). Similar results were obtained when the optimized ligands were immobilized to the chromatography medium. A complete designing strategy was validated in this study, which will provide a novel insight into designing new ligands of antibody affinity chromatography media. PMID:27524303

  16. Colorful Column Chromatography: A Classroom Demonstration of a Three-Component Separation

    ERIC Educational Resources Information Center

    Heumann, Lars V.

    2008-01-01

    A classroom demonstration detailing the procedure for the separation of a ternary mixture consisting of intensely colored compounds using silica gel column chromatography is described. The audience can follow the compounds during their passage through the column as individual, colored bands while learning about different tools and techniques used…

  17. Planar gas chromatography column on aluminum plate with multi-walled carbon nanotubes as stationary phase

    NASA Astrophysics Data System (ADS)

    Platonov, I. A.; Platonov, V. I.; Pavelyev, V. S.

    2016-04-01

    The high selectivity of the adsorption layer for low-boiling alkanes is shown, the separation factor (α) couple iso-butane / butane is 1.9 at a column temperature of 50 °C.The paper presents sorption and selective properties of planar gas chromatography column on aluminum plate with multi-walled carbon nanotubes as the stationary phase.

  18. Selective retention of basic compounds by metal aquo-ion affinity chromatography.

    PubMed

    Asakawa, Yoshiki; Yamamoto, Eiichi; Asakawa, Naoki

    2014-10-01

    A novel metal aquo-ion affinity chromatography has been developed for the analysis of basic compounds using heat-treated silica gel containing hydrated metal cations (metal aquo-ions) as the packing material. The packing materials of the metal aquo-ion affinity chromatography were prepared by the immobilization of a single metal component such as Fe(III), Al(III), Ag(I), and Ni(II) on silica gel followed by extensive heat treatment. The immobilized metals form aquo-ions to present cation-exchange ability for basic analytes and the cation-exchange ability for basic analytes depends on pKa of the immobilized metal species. In the present study, to evaluate the retention characteristics of metal aquo-ion affinity chromatography, the on-line solid-phase extraction of drugs was investigated. Obtained data clearly evidence the selective retention capability of metal aquo-ion affinity chromatography for basic analytes with sufficient capacity. PMID:25044622

  19. Glycan-specific whole cell affinity chromatography: a versatile microbial adhesion platform

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have constructed a C-glycoside ketohydrazide affinity chromatography resin that interacts with viable whole-cell microbial populations with biologically appropriate stereo-specificity in a carbohydrate-defined manner. It readily allows for the quantification, selection, and manipulation of target...

  20. Phosphatidylglycerol biosynthesis in Bacillus licheniformis Resolution of membrane-bound enzymes by affinity chromatography on cytidinediphospho-sn-1,2-diacylglycerol Sepharose.

    PubMed

    Larson, T J; Hirabayshi, T; Dowhan, W

    1976-03-01

    Cytidinediphospho-sn-1,2-diaclglycerol (CDP-diglyceride) has been covalently linked to Sephrose 4B via adipic acid dihydrazide spacer arm forming an effective affinity chromatography column. This liponucleo-tide ligand and sn-glycero-3-phosphate are subtracts for the formation of 3-sn-phoshatidyl-1'-sn-glycero-3'-phosphate (PGP) catalyzed in both eukaryotic and prokaryotic organisms by sn-glycero-3-phosphate: CMP phosphatidlytranferase (PGP synthetase). Using this CDP-diglyceride Sephrose affinity column we were able to resolve the membrane associated 3-sn-phosphatidyl'1-sn-glycerol (PG) synthesizing system present in Bacillus licheniformis into two activities. A PGP synthetase activity was adsorbed to the affinity column and was eluted using buffer containg CDP-diglyceride; a PGP phosphatease acactivity had no affinity for the column. Both PGP synthase and PGP phosphatase of B. licheniformis were associated with a membrane component of the cell as evidenced by sucrose gradient centrifugation, differential centrifugation, and solubilization by buffers containing detergent... PMID:175832

  1. Rapid Microscale Isolation and Purification of Yeast Alcohol Dehydrogenase Using Cibacron Blue Affinity Chromatography

    NASA Astrophysics Data System (ADS)

    Morgan, Chad; Moir, Neil

    1996-11-01

    A rapid microscale procedure has been developed for the isolation and purification of yeast alcohol dehydrogenase. Glass beads are used for cytolysis, PEG precipitation for partial purification and a cibacron blue affinity column for the final step. A 27.5 fold purification can be achieved in 2 - 3 hours.

  2. Novel Designs for Centrifugal Countercurrent chromatography: V. Comparative Studies on Performance of Various Column Configurations.

    PubMed

    Yang, Yi; Gu, Dongyu; Aisa, Haji Akber; Ito, Yoichiro

    2010-01-01

    The conventional toroidal coil in centrifugal countercurrent chromatography has a low level of stationary phase retention, since a half of each helical turn is entirely occupied by the mobile phase. In order to cope with this problem, several new column designs including zigzag, saw-tooth and figure-8 patterns have been introduced and their performance was compared in terms of retention of the stationary phase (Sf), peak resolution (Rs), theoretical plate number (N) and column pressures. Overall results of experiments indicate that the figure-8 column yields the highest Rs when the lower phase is used as the mobile phase. Since the column pressure of all these new columns are much lower than that in the traditional toroidal coil column, the separation efficiency can be improved using a long separation column without a risk of column damage by high back pressure. PMID:21057664

  3. The quest for affinity chromatography ligands: are the molecular libraries the right source?

    PubMed

    Perret, Gérald; Santambien, Patrick; Boschetti, Egisto

    2015-08-01

    Affinity chromatography separations of proteins call for highly specific ligands. Antibodies are the most obvious approach; however, except for specific situations, technical and economic reasons are arguments against this choice especially for preparative purposes. With this in mind, the rationale is to select the most appropriate ligands from collections of pre-established molecules. To reach the objective of having a large structural coverage, combinatorial libraries have been proposed. These are classified according to their nature and origin. This review presents and discusses the most common affinity ligand libraries along with the most appropriate screening methods for the identification of the right affinity chromatography selective structure according to the type of library; a side-by-side comparison is also presented. PMID:26033846

  4. NON-COMPETITIVE PEAK DECAY ANALYSIS OF DRUG-PROTEIN DISSOCIATION BY HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY

    PubMed Central

    Chen, Jianzhong; Schiel, John E.; Hage, David S.

    2009-01-01

    The peak decay method is an affinity chromatographic technique that has been used to examine the dissociation of solutes from immobilized ligands in the presence of excess displacing agent. However, it can be difficult to find a displacing agent that does not interfere with detection of the eluting analyte. In this study, a non-competitive peak decay method was developed in which no displacing agent was required for analyte elution. This method was evaluated for the study of drug-protein interactions by using it along with high-performance affinity chromatography to measure the dissociation rate constants for R- and S-warfarin from columns containing immobilized human serum albumin (HSA). Several factors were considered in the optimization of this method, including the amount of applied analyte, the column size, and the flow rate. The dissociation rate constants for R- and S-warfarin from HSA were measured at several temperatures by this approach, giving values of 0.56 (± 0.01) and 0.66 (± 0.01) s−1 at pH 7.4 and 37°C. These results were in good agreement with previous values obtained by other methods. This approach is not limited to warfarin and HSA but could be employed in studying additional drug-protein interactions or other systems with weak-to-moderate binding. PMID:19472288

  5. Selective isolation of G-quadruplexes by affinity chromatography.

    PubMed

    Chang, Tianjun; Liu, Xiangjun; Cheng, Xiaohong; Qi, Cui; Mei, Hongcheng; Shangguan, Dihua

    2012-07-13

    G-quadruplex (G4) is a characteristic secondary structure of nucleic acids containing repetitive tandem guanines. G4-forming sequences are found prevalent in the human genome by bioinformatics analysis. Accumulating evidence has suggested that G4s are involved in many biological processes. Selective isolation of G4s would be an effective tool in the study of G4s. In this paper, we prepared four affinity matrixes using hemin or a perylene derivative (N,N'-Bis-(2-(amino)ethyl)-3,4,9,10-perylenetetracarboxylic acid diimide, Pery01) as ligand, and investigated the retention behaviors of different G4s on these matrixes. Our experimental results suggest that the π-π stacking interaction between ligand and G-tetrad plays a key role in the selective isolation of G4s, whereas the electrostatic interaction between DNA and matrix causes the nonspecific binding. One matrix prepared by immobilizing Pery01 on polyglycidylmethacrylate (PGMA) beads through an aminocaproic acid spacer exhibits good selectivity for parallel structure G4s and has been successfully used to directly isolate a spiked parallel G4 from plasma. PMID:22398385

  6. Displacement affinity chromatography of protein phosphatase one (PP1) complexes

    PubMed Central

    Moorhead, Greg BG; Trinkle-Mulcahy, Laura; Nimick, Mhairi; De Wever, Veerle; Campbell, David G; Gourlay, Robert; Lam, Yun Wah; Lamond, Angus I

    2008-01-01

    Background Protein phosphatase one (PP1) is a ubiquitously expressed, highly conserved protein phosphatase that dephosphorylates target protein serine and threonine residues. PP1 is localized to its site of action by interacting with targeting or regulatory proteins, a majority of which contains a primary docking site referred to as the RVXF/W motif. Results We demonstrate that a peptide based on the RVXF/W motif can effectively displace PP1 bound proteins from PP1 retained on the phosphatase affinity matrix microcystin-Sepharose. Subsequent co-immunoprecipitation experiments confirmed that each identified binding protein was either a direct PP1 interactor or was in a complex that contains PP1. Our results have linked PP1 to numerous new nuclear functions and proteins, including Ki-67, Rif-1, topoisomerase IIα, several nuclear helicases, NUP153 and the TRRAP complex. Conclusion This modification of the microcystin-Sepharose technique offers an effective means of purifying novel PP1 regulatory subunits and associated proteins and provides a simple method to uncover a link between PP1 and additional cellular processes. PMID:19000314

  7. Stationary phase modulation in liquid chromatography through the serial coupling of columns: A review.

    PubMed

    Alvarez-Segura, T; Torres-Lapasió, J R; Ortiz-Bolsico, C; García-Alvarez-Coque, M C

    2016-06-01

    Liquid chromatography with single columns often does not succeed in the analysis of complex samples, in terms of resolution and analysis time. A relatively simple solution to enhance chromatographic resolution is the modulation of the stationary phase through the serial coupling of columns. This can be implemented with any type of column using compatible elution conditions and conventional instruments. This review describes the key features of column coupling and published procedures, where two or more columns were coupled in series to solve separation problems. In all reports, the authors could not resolve their samples with single columns, whereas significant enhancement in chromatographic performance was obtained when the columns were combined. Particularly interesting is the reduction in the analysis time in the isocratic mode, which alleviates the "general elution problem" of liquid chromatography, and may represent a stimulus for the proposal of new procedures, especially in combination with mass spectrometric, electrochemical and refractometric detection. Developments proposed to make the serial coupling of columns useful in routine and research laboratories are outlined, including optimisation strategies that facilitate the selection of the appropriate column combination and elution conditions (solvent content, flow rate or temperature) in both isocratic and gradient modes. The availability of zero dead volume couplers, able to connect standard columns, and the commercialisation of short columns with multiple lengths, have expanded the possibilities of success. PMID:27155298

  8. Optimization of human serum albumin monoliths for chiral separations and high-performance affinity chromatography.

    PubMed

    Pfaunmiller, Erika L; Hartmann, Mahli; Dupper, Courtney M; Soman, Sony; Hage, David S

    2012-12-21

    Various organic-based monoliths were prepared and optimized for immobilization of the protein human serum albumin (HSA) as a binding agent for chiral separations and high-performance affinity chromatography. These monoliths contained co-polymers based on glycidyl methacrylate (GMA) and ethylene glycol dimethacrylate (EDMA) or GMA and trimethylolpropane trimethacrylate (TRIM). A mixture of cyclohexanol and 1-dodecanol was used as the porogen, with the ratio of these solvents being varied along with the polymerization temperature to generate a library of monoliths. These monoliths were used with both the Schiff base and epoxy immobilization methods and measured for their final content of HSA. Monoliths showing the highest protein content were further evaluated in chromatographic studies using R/S-warfarin and d/l-tryptophan as model chiral solutes. A 2.6-2.7-fold increase in HSA content was obtained in the final monoliths when compared to similar HSA monoliths prepared according to the literature. The increased protein content made it possible for the new monoliths to provide higher retention and/or two-fold faster separations for the tested solutes when using 4.6mm i.d.× 50 mm columns. These monoliths were also used to create 4.6mm i.d.× 10 mm HSA microcolumns that could separate the same chiral solutes in only 1.5-6.0 min. The approaches used in this study could be extended to the separation of other chiral solutes and to the optimization of organic monoliths for use with additional proteins as binding agents. PMID:23010249

  9. Optimization of human serum albumin monoliths for chiral separations and high-performance affinity chromatography

    PubMed Central

    Pfaunmiller, Erika L.; Hartmann, Mahli; Dupper, Courtney M.; Soman, Sony; Hage, David S.

    2012-01-01

    Various organic-based monoliths were prepared and optimized for immobilization of the protein human serum albumin (HSA) as a binding agent for chiral separations and high-performance affinity chromatography. These monoliths contained co-polymers based on glycidyl methacrylate (GMA) and ethylene glycol dimethacrylate (EDMA) or GMA and trimethylolpropane trimethacrylate (TRIM). A mixture of cyclohexanol and 1-dodecanol was used as the porogen, with the ratio of these solvents being varied along with the polymerization temperature to generate a library of monoliths. These monoliths were used with both the Schiff base and epoxy immobilization methods and measured for their final content of HSA. Monoliths showing the highest protein content were further evaluated in chromatographic studies using R/S-warfarin and d/l-tryptophan as model chiral solutes. A 2.6–2.7-fold increase in HSA content was obtained in the final monoliths when compared to similar HSA monoliths prepared according to the literature. The increased protein content made it possible for the new monoliths to provide higher retention and/or two-fold faster separations for the tested solutes when using 4.6 mm i.d. × 50 mm columns. These monoliths were also used to create 4.6 mm i.d. × 10 mm HSA microcolumns that could separate the same chiral solutes in only 1.5–6.0 min. The approaches used in this study could be extended to the separation of other chiral solutes and to the optimization of organic monoliths for use with additional proteins as binding agents. PMID:23010249

  10. Efficiency of supercritical fluid chromatography columns in different thermal environments.

    PubMed

    Kaczmarski, Krzysztof; Poe, Donald P; Tarafder, Abhijit; Guiochon, Georges

    2013-05-24

    The efficiency of a packed column eluted with supercritical carbon dioxide at 323K and outlet pressures from 90 to 150bar was studied with the column in two different thermal environments. The 150mm×2.0mm ID stainless steel column was packed with spherical 5-μm porous silica particles with a covalently bonded nonpolar stationary phase, and the test solutes were normal alkanes. When operated in a convective air bath the column exhibited severe efficiency losses when its outlet pressure was below 120bar. The efficiency of the same column enclosed in a shell made of foam insulation was restored at low outlet pressures down to 100bar. The van Deemter plots showed an abnormal dependence of the plate height (HETP) on the flow rate at low outlet pressures, exhibiting a maximum in the HETP at flow rates around 1mL/min and a 20-bar pressure drop. The large efficiency losses at low outlet pressures are due to radial temperature gradients associated with enthalpic expansion and cooling of the mobile phase. The separations were simulated by a numerical model that accounts for axial and radial gradients in the temperature and density along the column. The abnormal van Deemter plots arise from competing processes affecting the radial distribution of the solute migration velocity along the column. The negative impact on efficiency is greatest when the density profile of the mobile phase along the column is close to the critical isopycnic line. The efficiency improves at increased flow rates because of increased cooling at larger pressure drops and increased density along the entire length of the column. The model predicts the unusual trends in the van Deemter plots, but the calculated results at low outlet pressures are strongly influenced by small variations in the porosity distribution in the column, limiting the accuracy of the predicted HETP values. In spite of these difficulties, the model has enabled a detailed analysis of the effects of temperature, pressure and flow

  11. Generator for ionic gallium-68 based on column chromatography

    DOEpatents

    Neirinckx, Rudi D.; Davis, Michael A.

    1981-01-01

    A physiologically acceptable solution of gallium-68 fluorides, having an activity of 0.1 to 50 millicuries per milliliter of solution is provided. The solution is obtained from a generator comprising germanium-68 hexafluoride bound to a column of an anion exchange resin which forms gallium-68 in situ by eluting the column with an acid solution to form a solution containing .sup.68 Ga-fluorides. The solution then is neutralized prior to administration.

  12. Orthogonal separation on one beta-cyclodextrin column by switching reversed-phase liquid chromatography and hydrophilic interaction chromatography.

    PubMed

    Feng, Jia-tao; Guo, Zhi-mou; Shi, Hui; Gu, Jiang-ping; Jin, Yu; Liang, Xin-miao

    2010-06-15

    A dual retention combined with reversed-phase liquid chromatography (RP-LC) and hydrophilic interaction chromatography (HILIC) has been observed on beta-cyclodextrin (beta-CD) bonded stationary phase. A typical U-shaped retention curve was achieved owing to dual retention mechanism. Based on this observation, a beta-CD column can be operated under reversed-phase liquid chromatography (RP-LC) and hydrophilic interaction chromatography (HILIC) modes. Two-dimensional liquid chromatography (2D-LC) analysis can be realized on just a beta-CD column by switching these two different separation modes. In this study, off-line 2D-LC analysis for a natural product was carried out to prove the orthogonal separation between RP-LC and HILIC modes on a Click beta-CD column. Herba Hedyotis Diffusae, the whole grass of Hedyotis Diffusae wild was extracted with water, pretreated with macroporous resin and then first separated at RP-LC mode on the Click beta-CD column to obtain successive fractions, which were then reanalyzed at HILIC mode on the same Click beta-CD column. The result proved that both separation modes on the Click beta-CD column have good retention and peak shape, and these two separation modes have good orthogonality. 2D-LC analysis revealed abundant information in the natural product. Especially numerous minor components were enriched and separated. The mobile phase used in RP-LC and HILIC modes can be same and the switch between these two separation modes is easily realized by changing the ratio of the acetonitrile and water. Hence the mobile phase in this 2D-LC system is completely compatible. This advantage makes this combination is an appropriate 2D-LC method for the solutes having retention at both separation modes. PMID:20441989

  13. Preparing titania aerogel monolithic chromatography columns using supercritical carbon dioxide.

    PubMed

    Sui, Ruohong; Liu, Suya; Lajoie, Gilles A; Charpentier, Paul A

    2010-06-01

    The search for a method to fabricate monolithic inorganic columns has attracted significant recent attention due to their unique ability in separation applications of various biomolecules. Silica and polymer based monolithic columns have been prepared, but titania and other metal oxide monoliths have been elusive, primarily due to their fragility. This article describes a new approach for preparing nanostructured titania based columns, which offer better performance over conventional particle packed columns for separating a wide variety of biomolecules including phosphopeptides. TiO(2) monolithic aerogels were synthesized in separation columns using in situ sol-gel reactions in supercritical carbon dioxide (scCO(2)) followed by calcination, and compared to those prepared in heptanes. The characterization results show that scCO(2) is a better solvent for the sol-gel reactions, providing lower shrinkage with the anatase TiO(2) monolith composed of nanofibers with very high surface areas. The monolithic columns show the ability to isolate phosphopeptides with little flow resistance compared to conventional titania particle based microcolumns. PMID:20373296

  14. Novel highly hydrophilic zwitterionic monolithic column for hydrophilic interaction chromatography.

    PubMed

    Jiang, Zhengjin; Smith, Norman W; Ferguson, Paul D; Taylor, Mark R

    2009-08-01

    A novel zwitterionic hydrophilic porous poly(SPV-co-MBA) monolithic column was prepared by thermal co-polymerisation of 1-(3-sulphopropyl)-4-vinylpyridinium-betaine (4-SPV) and N,N'-methylenebisacrylamide (MBA). An HILIC/RP dual separation mechanism was observed on this optimised poly(SPV-co-MBA) monolithic column and the composition of the mobile phase corresponding to the transition from the HILIC to the RP mode was around 30% ACN in water. Higher hydrophilicity was achieved on this novel monolithic column compared to the poly(N,N-dimethyl-N-methacryloxyethyl-N-(3-sulphopropyl)ammonium betaine-co-ethylene dimethacrylate) monolithic column. Permeability studies showed slight swelling and/or shrinking with mobile phases of different polarity. As might be anticipated, a weak electrostatic interaction for charged analytes was also observed by studying the influence of mobile phase pH and salt concentration on their retention on the poly(SPV-co-MBA) monolithic column. The final optimised poly(SPV-co-MBA) monolith showed comparable selectivities to commercial ZIC-pHILIC phases for polar test analytes. Fast separation of five pyrimidines and purines was achieved in less than 1 min due to the high permeability of the monolithic column. Additionally, baseline separation of nine benzoic acid derivatives was also observed using either a pH or ACN gradient. PMID:19606441

  15. Polymeric Cryogel-Based Boronate Affinity Chromatography for Separation of Ribonucleic Acid from Bacterial Extracts.

    PubMed

    Shakya, Akhilesh Kumar; Srivastava, Akshay; Kumar, Ashok

    2015-01-01

    Three-dimensional monolithic columns are preferred stationary phase in column chromatography. Conventional columns based on silica or particles are efficient in bioseparation though associated with limitations of nonspecific interaction and uneven porosity that causes high mass transfer resistance for the movement of big molecules. Cryogels as a monolith column have shown promising application in bioseparation. Cryogels column can be synthesized in the form of a monolith at sub-zero temperature through gelation of pre-synthesized polymers or polymerization of monomers. Cryogels are macroporous and mechanically stable materials. They have open interconnected micron-sized pores with a wide range of porosity (10-200 μm). Current protocol demonstrated the ability of poly(hydroxymethyl methacrylate)-co-vinylphenyl boronic acid p(HEMA-co-VPBA) cryogel matrix for selective separation of RNA from the bacterial crude extract. PMID:26623972

  16. Arginine as an eluent overcomes the hindrance of monoclonal antibody quantification by dextran sulfate in protein A affinity chromatography.

    PubMed

    Kim, Bong Gyun; Park, Hong Woo

    2015-01-01

    Analytical chromatography using protein A affinity columns was employed for the fast and simple quantitative analysis of monoclonal antibodies (mAb) from suspension cultures of recombinant Chinese hamster ovary (rCHO) cells. Reliable results could not be obtained from analysis of rCHO cell culture supernatants containing dextran sulfate using elution buffers such as phosphate, glycine, or MgCl2 . These problems increased as the number of analysis and the concentration of dextran sulfate in samples increased. Arginine was identified as an alternative eluent to overcome the hindrance by dextran sulfate. When the samples contain dextran sulfate up to 100 mg/L, the elution buffer containing 0.6-1.0 M arginine at pH 3.0-3.8 is useful for the effective analysis. Reproducible results in the mAb quantification could be obtained by this developed arginine elution buffer from rCHO cell culture supernatants containing dextran sulfate. PMID:26363185

  17. Preparation and Characterization of a Polymeric Monolithic Column for Use in High-Performance Liquid Chromatography (HPLC)

    ERIC Educational Resources Information Center

    Bindis, Michael P.; Bretz, Stacey Lowery; Danielson, Neil D.

    2011-01-01

    The high-performance liquid chromatography (HPLC) experiment, most often done in the undergraduate analytical instrumentation laboratory course, generally illustrates reversed-phase chromatography using a commercial C[subscript]18 silica column. To avoid the expense of periodic column replacement and introduce a choice of columns with different…

  18. Surface modification of polytetrafluoroethylene column for two-stationary phase separations by counter-current chromatography.

    PubMed

    Quan, Kai-jun; Huang, Xin-yi; Li, Xiao-ting; Wang, Gao-hong; Liu, Yan-juan; Duan, Wen-da; Di, Duo-long

    2015-11-27

    To improve the separation capability of CCC, a novel solid-liquid two-stationary phases CCC (ASP-CCC) column was prepared employing graphene oxide (GO) conjugated poly-dopamine (PD) coating (GO/PD) as auxiliary stationary phase (ASP). The results of Scanning electron microscopy (SEM), contact angle and X-ray photoelectron spectroscopy (XPS) indicated that nanostructured GO and PD were successfully grafted on the inner wall of the PTFE column. Three alkaloid compounds were selected as the target analytes to evaluate the performance of the novel column. Because of the intermolecular force (hydrogen bond, electrostatic interaction and π-π interaction) between the ASP and model compounds, three analytes were well separated with this novel ASP-CCC column. Additionally, the novel column exhibited higher stationary phase retention ratio, about 8%, than original column without changing the chromatographic condition. Furthermore, the eluotropic sequence of analytes on novel column was in accordance with that in the original column. This suggested that the novel column is a CCC column with auxiliary stationary phase (ASP) in its own right, and the present separation mode is the combination of partition chromatography and adsorption chromatography. PMID:26518492

  19. Sum of ranking differences to rank stationary phases used in packed column supercritical fluid chromatography.

    PubMed

    West, Caroline; Khalikova, Maria A; Lesellier, Eric; Héberger, Károly

    2015-08-28

    The identification of a suitable stationary phase in supercritical fluid chromatography (SFC) is a major source of difficulty for those with little experience in this technique. Several protocols have been suggested for column classification in high-performance liquid chromatography (HPLC), gas chromatography (GC), and SFC. However, none of the proposed classification schemes received general acceptance. A fair way to compare columns was proposed with the sum of ranking differences (SRD). In this project, we used the retention data obtained for 86 test compounds with varied polarity and structure, analyzed on 71 different stationary phases encompassing the full range in polarity of commercial packed columns currently available to the SFC chromatographer, with a single set of mobile phase and operating conditions (carbon dioxide-methanol mobile phase, 25°C, 150bar outlet pressure, 3ml/min). First, a reference column was selected and the 70 remaining columns were ranked based on this reference column and the retention data obtained on the 86 analytes. As these analytes previously served for the calculation of linear solvation energy relationships (LSER) on the 71 columns, SRD ranks were compared to LSER methodology. Finally, an external comparison based on the analysis of 10 other analytes (UV filters) related the observed selectivity to SRD ranking. Comparison of elution orders of the UV filters to the SRD rankings is highly supportive of the adequacy of SRD methodology to select similar and dissimilar columns. PMID:26228853

  20. Liver- and bone-derived isoenzymes of alkaline phosphatase in serum as determined by high-performance affinity chromatography.

    PubMed

    Anderson, D J; Branum, E L; O'Brien, J F

    1990-02-01

    To separate liver and bone alkaline phosphatase (ALP) isoenzymes in human serum, we used high-performance affinity chromatography (HPAC) on a column of wheat-germ lectin conjugated to 7-microns-diameter silica particles and an eluent containing N-acetyl-D-glucosamine (NAG). On-line spectrophotometric detection of ALP involved pumping diethanolamine-buffered p-nitrophenyl phosphate solution post-column. Bone and liver isoenzymes could be separated into two peaks with only 10% overlap when an exponential gradient was used. A linear-step gradient separated 80.9% of liver ALP and 91.6% of bone ALP in two distinct peaks. True bone and liver ALP peak areas for the linear-step gradient were determined by using correction factors, because each peak contained a co-eluted portion of the other ALP isoenzyme. The detection limit improved 10-fold over those of other techniques for ALP isoenzymes, owing to the relatively large sample that could be applied to the column. Correlation with a urea-inactivation procedure was reasonable for patients' serum samples (r = 0.98 and 0.79 for liver ALP and bone ALP, respectively). PMID:2302767

  1. Routes to improve binding capacities of affinity resins demonstrated for Protein A chromatography.

    PubMed

    Müller, Egbert; Vajda, Judith

    2016-05-15

    Protein A chromatography is a well-established platform in downstream purification of monoclonal antibodies. Dynamic binding capacities are continuously increasing with almost every newly launched Protein A resin. Nevertheless, binding capacities of affinity chromatography resins cannot compete with binding capacities obtained with modern ion exchange media. Capacities of affinity resins are roughly 50% lower. High binding capacities of ion exchange media are supported by spacer technologies. In this article, we review existing spacer technologies of affinity chromatography resins. A yet known effective approach to increase the dynamic binding capacity of Protein A resins is oligomerization of the particular Protein A motifs. This resembles the tentacle technology used in ion exchange chromatography. Dynamic binding capacities of a hexameric ligand are roughly twice as high compared to capacities obtained with a tetrameric ligand. Further capacity increases up to 130mg/ml can be realized with the hexamer ligand, if the sodium phosphate buffer concentration is increased from 20 to 100mM. Equilibrium isotherms revealed a BET shape for the hexamer ligand at monoclonal antibody liquid phase concentrations higher than 9mg/ml. The apparent multilayer formation may be due to hydrophobic forces. Other quality attributes such as recovery, aggregate content, and overall purity of the captured monoclonal antibody are not affected. PMID:26830536

  2. Highly crosslinked silicon polymers for gas chromatography columns

    NASA Technical Reports Server (NTRS)

    Shen, Thomas C. (Inventor)

    1994-01-01

    A new highly crosslinked silicone polymer particle for gas chromatography application and a process for synthesizing such copolymer are described. The new copolymer comprises vinyltriethoxysilane and octadecyltrichlorosilane. The copolymer has a high degree of crosslinking and a cool balance of polar to nonpolar sites in the porous silicon polymer assuring fast separation of compounds of variable polarity.

  3. Developing Inquiry-Based Labs Using Micro-Column Chromatography

    ERIC Educational Resources Information Center

    Barden-Gabbei, Laura M.; Moffitt, Deborah L.

    2006-01-01

    Chromatography is a process by which mixtures can be separated or substances can be purified. Biological and chemical laboratories use many different types of chromatographic processes. For example, the pharmaceutical industry uses chromatographic techniques to purify drugs, medical labs use them to identify blood components such as cholesterol,…

  4. The derivatization of oxidized polysaccharides for protein immobilization and affinity chromatography.

    PubMed

    Junowicz, E; Charm, S E

    1976-03-25

    The present report describes the preparation of modified polysaccharides matrices useful for the synthesis of affinity adsorbents and immobilized proteins. Hydrazido-matrices were synthesized by condensing an excess of the bifunctional reagent, adipic acid dihydrazide, with periodate oxidized cellulose paper, Sephadex, or Sepharose matrices. Ribonucleotide dialdehyde cofactors, glyceraldehyde 3-phosphate, pyridoxal 5'-phosphate and oxidized DNAase B were separately bound to the hydrazido-polymers. Azido-matrices obtained by modification of the hydrazido-derivatives were coupled to specific amino ligands such as amino acids and proteins. Several adsorbents were prepared and used as models for affinity chromatography. PMID:1260016

  5. IDENTIFICATION AND ANALYSIS OF STEREOSELECTIVE DRUG INTERACTIONS WITH LOW DENSITY LIPOPROTEIN BY HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY

    PubMed Central

    Sobansky, Matthew R.; Hage, David S.

    2012-01-01

    Columns containing immobilized low density lipoprotein (LDL) were prepared for the analysis of drug interactions with this agent by high-performance affinity chromatography (HPAC). R/S-Propranolol was used as a model drug for this study. The LDL columns gave reproducible binding to propranolol over 60 h of continuous use in the presence of pH 7.4, 0.067 M potassium phosphate buffer. Experiments conducted with this type of column through frontal analysis indicated that two types of interactions were occurring between R-propranolol and LDL, while only a single type of interaction was observed between S-propranolol and LDL. The first type of interaction, which was seen for both enantiomers, involved non-saturable binding; this interaction had an overall affinity (nKa) of 1.9 (± 0.1) × 105 M-1 for R-propranolol and 2.7 (± 0.2) × 105 M-1 for S-propranolol at 37 °C. The second type of interaction was observed only for R-propranolol and involved saturable binding that had an association equilibrium constant (Ka) of 5.2 (± 2.3) × 105 M-1 at 37 °C. Similar differences in binding behavior were found for the two enantiomers at 20 °C and 27 °C. This is the first known example of stereoselective binding of drugs by LDL or other lipoproteins. This work also illustrates the ability of HPAC to be used as a tool for characterizing mixed-mode interactions that involve LDL and related binding agents. PMID:22354572

  6. Evaluation of SDS depletion using an affinity spin column and IMS-MS detection

    SciTech Connect

    Hengel, Shawna M.; Floyd, Erica A.; Baker, Erin Shammel; Zhao, Rui; Wu, Si; Pasa-Tolic, Ljiljana

    2012-11-01

    While the use of detergents is necessary for a variety of protein isolation preparation protocols, often prior to mass spectral (MS) analysis, they are not compatible with MS analysis due to ion suppression and adduct formation. This manuscript describes optimization of detergent removal, using commercially available SDS depletion spin columns containing an affinity resin, providing for both increased protein recovery and thorough SDS removal. Ion mobility spectrometry coupled with mass spectrometry (IMS-MS) allowed for a concurrent analysis of both analyte and detergent. In the case of both proteins and peptides, higher detergent concentrations than previously reported provided an increase of sample recovery; however there was a limit as SDS was detected by IMS-MS at higher levels of SDS indicating incomplete detergent depletion. The results also suggest optimal conditions for SDS removal are dependent on the sample concentration. Overall, this study provides a useful guide for proteomic studies where SDS is required for efficient sample preparation.

  7. Antibody purification using affinity chromatography: a case study with a monoclonal antibody to ractopamine.

    PubMed

    Wang, Zhanhui; Liang, Qi; Wen, Kai; Zhang, Suxia; Shen, Jianzhong

    2014-11-15

    The application of antibodies to small molecules in the field of bioanalytics requires antibodies with stable biological activity and high purity; thus, there is a growing interest in developing rapid, inexpensive and effective procedures to obtain such antibodies. In this work, a ractopamine (RAC) derivative, N-4-aminobutyl ractopamine (ABR), was synthesized for preparing new specific affinity chromatography to purify a murine monoclonal antibody (mAb) against RAC from ascites. The performance of the new specific chromatography was compared with four other purification methods in terms of recovery, purity and biological activity of mAb. These four purification methods were prepared by using specific ligands (RAC and RAC-ovalbumin) and commercial ligands (protein G and protein A), respectively. The results showed that the highest recovery (88.1%) was achieved using the new chromatography; in comparison, the recoveries from the other methods were all below 70%. The purity of the mAbs from the new chromatography was 88.3%, while, the highest purity of 97.6% was from protein G chromatography and the lowest purity of 84.7% was from protein A chromatography. The biological activity of the purified mAb from all of the chromatography methods was comparable in enzyme-linked immunosorbent immunoassay (ELISA). PMID:25261834

  8. Affinity chromatography of nicotinamide–adenine dinucleotide-linked dehydrogenases on immobilized derivatives of the dinucleotide

    PubMed Central

    Barry, Standish; O'Carra, Pádraig

    1973-01-01

    1. Three established methods for immobilization of ligands through primary amino groups promoted little or no attachment of NAD+ through the 6-amino group of the adenine residue. Two of these methods (coupling to CNBr-activated agarose and to carbodi-imide-activated carboxylated agarose derivatives) resulted instead in attachment predominantly through the ribosyl residues. Other immobilized derivatives were prepared by azolinkage of NAD+ (probably through the 8 position of the adenine residue) to a number of different spacer-arm–agarose derivatives. 2. The effectiveness of these derivatives in the affinity chromatography of a variety of NAD-linked dehydrogenases was investigated, applying rigorous criteria to distinguish general or non-specific adsorption effects from truly NAD-specific affinity (bio-affinity). The ribosyl-attached NAD+ derivatives displayed negligible bio-affinity for any of the NAD-linked dehydrogenases tested. The most effective azo-linked derivative displayed strong bio-affinity for glycer-aldehyde 3-phosphate dehydrogenase, weaker bio-affinity for lactate dehydrogenase and none at all for malate dehydrogenase, although these three enzymes have very similar affinities for soluble NAD+. Alcohol dehydrogenase and xanthine dehydrogenase were subject to such strong non-specific interactions with the hydrocarbon spacer-arm assembly that any specific affinity was completely eclipsed. 3. It is concluded that, in practice, the general effectiveness of a general ligand may be considerably distorted and attenuated by the nature of the immobilization linkage. However, this attenuation can result in an increase in specific effectiveness, allowing dehydrogenases to be separated from one another in a manner unlikely to be feasible if the general effectiveness of the ligand remained intact. 4. The bio-affinity of the various derivatives for lactate dehydrogenase is correlated with the known structure of the NAD+-binding site of this enzyme. Problems

  9. Robust naphthyl methacrylate monolithic column for high performance liquid chromatography of a wide range of solutes.

    PubMed

    Jonnada, Murthy; El Rassi, Ziad

    2015-08-28

    An organic monolithic column based on the co-polymerization of 2-naphthyl methacrylate (NAPM) as the functional monomer and trimethylolpropane trimethacrylate (TRIM) as the crosslinker was introduced for high performance reversed-phase liquid chromatography (RPC). The co-polymerization was performed in situ in a stainless steel column of 4.6mm i.d. in the presence of a ternary porogen consisting of 1-dodecanol and cyclohexanol. This monolithic column (referred to as naphthyl methacrylate monolithic column or NMM column) showed high mechanical stability at relatively high mobile phase flow velocity indicating that the column has excellent hydrodynamic characteristics. To characterize the NMM column, different probe molecules including alkyl benzenes, and aniline, benzene, toluene and phenol derivatives were chromatographed on the column and the results in terms of k, selectivity and plate counts were compared to those obtained on an octadecyl silica (ODS) column in order to assess the presence of π-π and hydrophobic interactions on the NMM column under otherwise the same elution conditions. The NMM column offered additional π-π interactions with aromatic molecules in addition to hydrophobic interactions under RPC elution conditions. Run-to-run and column-to-column reproducibility of solute k values were evaluated, and percent relative standard deviation of <1% and ∼2-3.5%, respectively, were obtained. Six standard proteins were readily separated on the NMM column using shallow (30min at 1.0mL/min), steep (10min at 1.0mL/min) and ultra steep (1min at 3.0mL/min) linear gradient elution at increasing ACN concentration in the mobile phase using a 10cm×4.6mm i.d. column in case of shallow and steep linear gradients and a 3cm×4.6mm i.d. column for ultra steep linear gradient. PMID:26228852

  10. Specific recognition of supercoiled plasmid DNA by affinity chromatography using a synthetic aromatic ligand.

    PubMed

    Caramelo-Nunes, Catarina; Tomaz, Cândida T

    2015-01-01

    Liquid chromatography is the method of choice for the purification of plasmid DNA (pDNA), since it is simple, robust, versatile, and highly reproducible. The most important features of a chromatographic procedure are the use of suitable stationary phases and ligands. As conventional purification protocols are being replaced by more sophisticated and selective procedures, the focus changes toward designing and selecting ligands of high affinity and specificity. In fact, the chemical composition of the chromatographic supports determines the interactions established with the target molecules, allowing their preferential retention over the undesirable ones. Here it is described the selective recognition and purification of supercoiled pDNA by affinity chromatography, using an intercalative molecule (3,8-diamino-6-phenylphenanthridine) as ligand. PMID:25749945

  11. Use of quantitative affinity chromatography for characterizing high-affinity interactions: binding of heparin to antithrombin III.

    PubMed

    Hogg, P J; Jackson, C M; Winzor, D J

    1991-02-01

    The versatility of quantitative affinity chromatography (QAC) for evaluating the binding of macromolecular ligands to macromolecular acceptors has been increased substantially as a result of the derivation of the equations which describe the partitioning of acceptor between matrix-bound and soluble forms in terms of total, rather than free, ligand concentrations. In addition to simplifying the performance of the binding experiments, this development makes possible the application of the technique to systems characterized by affinities higher than those previously amenable to investigation by QAC. Addition of an on-line data acquisition system to monitor the concentration of partitioning solute in the liquid phase as a function of time has permitted the adoption of an empirical approach for determining the liquid-phase concentration of acceptor in the system at partition equilibrium, a development which decreases significantly the time required to obtain a complete binding curve by QAC. The application of these new QAC developments is illustrated by the determination of binding constants for the interactions of high-affinity heparin (Mr 20,300) with antithrombin III at three temperatures. Association constants of 8.0 +/- 2.2 x 10(7), 3.4 +/- 0.3 x 10(7), and 1.0 +/- 0.2 x 10(7) M-1 were observed at 15, 25, and 35 degrees C, respectively. The standard enthalpy change of -4.2 +/- 0.6 kcal/mol that is calculated from these data is in good agreement with a reported value obtained from fluorescence quenching measurements. PMID:2035830

  12. Method for trapping affinity chromatography of transcription factors using aldehyde-hydrazide coupling to agarose.

    PubMed

    Jia, Yinshan; Jarrett, Harry W

    2015-08-01

    The use of a method of coupling DNA was investigated for trapping and purifying transcription factors. Using the GFP-C/EBP (CAAT/enhancer binding protein) fusion protein as a model, trapping gives higher purity and comparable yield to conventional affinity chromatography. The chemistry used is mild and was shown to have no detrimental effect on GFP fluorescence or GFP-C/EBP DNA binding. The method involves introducing a ribose nucleotide to the 3' end of a DNA sequence. Reaction with mM NaIO4 (sodium metaperiodate) produces a dialdehyde of ribose that couples to hydrazide-agarose. The DNA is combined at nM concentration with a nuclear extract or other protein mixture, and DNA-protein complexes form. The complex is then coupled to hydrazide-agarose for trapping the DNA-protein complex and the protein eluted by increasing NaCl concentration. Using a different oligonucleotide with the proximal E-box sequence from the human telomerase promoter, USF-2 transcription factor was purified by trapping, again with higher purity than results from conventional affinity chromatography and similar yield. Other transcription factors binding E-boxes, including E2A, c-Myc, and Myo-D, were also purified, but myogenin and NFκB were not. Therefore, this approach proved to be valuable for both affinity chromatography and the trapping approach. PMID:25935261

  13. Method for trapping affinity chromatography of transcription factors using aldehyde-hydrazide coupling to agarose

    PubMed Central

    Jia, Yinshan; Jarrett, Harry W.

    2015-01-01

    The uses of a method of coupling DNA is investigated for trapping and purifying transcription factors. Using the GFP-C/EBP fusion protein as a model, trapping gives higher purity and comparable yield to conventional affinity chromatography. The chemistry utilized is mild and was shown to have no detrimental effect on GFP fluorescence or GFP-C/EBP DNA-binding. The method involves introducing a ribose nucleotide to the 3′ end of a DNA sequence. Reaction with mM NaIO4 (sodium metaperiodate) produces a dialdehyde of ribose which couples to hydrazide-agarose. The DNA is combined at nM concentration with a nuclear extract or other protein mixture and DNA-protein complexes form. The complex is then coupled to hydrazide-agarose for trapping the DNA-protein complex and the protein eluted by increasing NaCl concentration. Using a different oligonucleotide with the proximal E-box sequence from the human telomerase promoter, USF-2 transcription factor was purified by trapping, again with higher purity than results from conventional affinity chromatography and similar yield. Other transcription factors binding E-boxes including E2A, c-myc, and myo-D were also purified but myogenenin and NFκB were not. Therfore, this approach proved valuable for both affinity chromatography and for the trapping approach. PMID:25935261

  14. Synthesis and application of a new cleavable linker for "click"-based affinity chromatography.

    PubMed

    Landi, Felicetta; Johansson, Conny M; Campopiano, Dominic J; Hulme, Alison N

    2010-01-01

    A new chemically-cleavable linker has been synthesised for the affinity-independent elution of biomolecules by classical affinity chromatography. This azo-based linker is shown to couple efficiently with "click" derivatised ligands such as biotin propargyl amide through a copper(I)-catalysed Huisgen 1,3-dipolar cycloaddition reaction. Binding to Affi-Gel matrices displaying ligands coupled to the new linker is both efficient and selective. The captured material may be readily released from the resin upon treatment with sodium dithionite. These mild elution conditions have allowed for the efficient isolation of the affinity partner from complex protein mixtures such as those found in fetal bovine serum. PMID:20024132

  15. A novel approach for separating bacteriophages from other bacteriophages using affinity chromatography and phage display

    PubMed Central

    Ceglarek, Izabela; Piotrowicz, Agnieszka; Lecion, Dorota; Miernikiewicz, Paulina; Owczarek, Barbara; Hodyra, Katarzyna; Harhala, Marek; Górski, Andrzej; Dąbrowska, Krystyna

    2013-01-01

    Practical applications of bacteriophages in medicine and biotechnology induce a great need for technologies of phage purification. None of the popular methods offer solutions for separation of a phage from another similar phage. We used affinity chromatography combined with competitive phage display (i) to purify T4 bacteriophage from bacterial debris and (ii) to separate T4 from other contaminating bacteriophages. In ‘competitive phage display’ bacterial cells produced both wild types of the proteins (expression from the phage genome) and the protein fusions with affinity tags (expression from the expression vectors). Fusion proteins were competitively incorporated into the phage capsid. It allowed effective separation of T4 from a contaminating phage on standard affinity resins. PMID:24225840

  16. Purification of proteins containing zinc finger domains using Immobilized Metal Ion Affinity Chromatography

    PubMed Central

    Voráčková, Irena; Suchanová, Šárka; Ulbrich, Pavel; Diehl, William E.; Ruml, Tomáš

    2011-01-01

    Heterologous proteins are frequently purified by Immobilized Metal Ion Affinity Chromatography (IMAC) based on their modification with a hexa-histidine affinity tag (His-tag). The terminal His-tag can, however, alter functional properties of the tagged protein. Numerous strategies for the tag removal have been developed including chemical treatment and insertion of protease target sequences in the protein sequence. Instead of using these approaches, we took an advantage of natural interaction of zinc finger domains with metal ions to purify functionally similar retroviral proteins from two different retroviruses. We found that these proteins exhibited significantly different affinities to the immobilized metal ions, despite that both contain the same type of zinc finger motif (i.e. CCHC). While zinc finger proteins may differ in biochemical properties, the multitude of IMAC platforms should allow relatively simple yet specific method for their isolation in native state. PMID:21600288

  17. Protecting group-free immobilization of glycans for affinity chromatography using glycosylsulfonohydrazide donors.

    PubMed

    Hernandez Armada, Daniel; Santos, Jobette T; Richards, Michele R; Cairo, Christopher W

    2015-11-19

    A variety of applications in glycobiology exploit affinity chromatography through the immobilization of glycans to a solid support. Although several strategies are known, they may provide certain advantages or disadvantages in how the sugar is attached to the affinity matrix. Additionally, the products of some methods may be hard to characterize chemically due to non-specific reactions. The lack of specificity in standard immobilization reactions makes affinity chromatography with expensive oligosaccharides challenging. As a result, methods for specific and efficient immobilization of oligosaccharides remain of interest. Herein, we present a method for the immobilization of saccharides using N'-glycosylsulfonohydrazide (GSH) carbohydrate donors. We have compared GSH immobilization to known strategies, including the use of divinyl sulfone (DVS) and cyanuric chloride (CC), for the generation of affinity matrices. We compared immobilization methods by determining their immobilization efficiency, based on a comparison of the mass of immobilized carbohydrate and the concentration of active binding sites (determined using lectins). Our results indicate that immobilization using GSH donors can provide comparable amounts of carbohydrate epitopes on solid support while consuming almost half of the material required for DVS immobilization. The lectin binding capacity observed for these two methods suggests that GSH immobilization is more efficient. We propose that this method of oligosaccharide immobilization will be an important tool for glycobiologists working with precious glycan samples purified from biological sources. PMID:26454791

  18. Affinity chromatography purification of angiotensin II reactor using photoactivable biotinylated probes

    SciTech Connect

    Marie, J.; Seyer, R.; Lombard, C.; Desarnaud, F.; Aumelas, A.; Jard, A.; Bonnafous, J.C. )

    1990-09-25

    The authors have developed biotinylated photoactivable probes that are suitable for covalent labeling of angiotensin II (AII) receptors and the subsequent purification of covalent complexes through immobilized avidin or streptavidin. One of these probes, biotin-NH(CH{sub 2}){sub 2}SS(CH{sub 2}){sub 2}CO-(Ala{sup 1}, Phe(4N{sub 3}){sup 8})AII, which contains a cleavage disulfide bridge in its spacer arm and which displays, in its radioiodinated form, very high affinity for AII receptors (K{sub d}{approximately}1 nM), proved to be suitable for indirect affinity chromatography of rate liver receptor with facilitated recovery from avidin gels by use of reducing agents. This constituted the central step of an efficient partial purification scheme involving hydroxylapatite chromatography, streptavidin chromatography, and thiopropyl-Sepharose chromatography. SDS-PAGE analysis and autoradiography established the identity of the purified entity (molecular weight 65K) as the AII receptor. Possible ways of completing purification to homogeneity and extrapolation of the protocols to a preparative scale are discussed, as well as the potential contribution of our new probes to the study of the structural properties of angiotensin receptors.

  19. Improved micromachined column design and fluidic interconnects for programmed high-temperature gas chromatography separations.

    PubMed

    Gaddes, David; Westland, Jessica; Dorman, Frank L; Tadigadapa, Srinivas

    2014-07-01

    This work focuses on the development and experimental evaluation of micromachined chromatographic columns for use in a commercial gas chromatography (GC) system. A vespel/graphite ferrule based compression sealing technique is presented using which leak-proof fluidic interconnection between the inlet tubing and the microchannel was achieved. This sealing technique enabled separation at temperatures up to 350°C on a μGC column. This paper reports the first high-temperature separations in microfabricated chromatographic columns at these temperatures. A 2m microfabricated column using a double Archimedean spiral design with a square cross-section of 100μm×100μm has been developed using silicon microfabrication techniques. The microfabricated column was benchmarked against a 2m 100μm diameter commercial column and the performance between the two columns was evaluated in tests performed under identical conditions. High temperature separations of simulated distillation (ASTM2887) and polycyclic aromatic hydrocarbons (EPA8310) were performed using the μGC column in temperature programmed mode. The demonstrated μGC column along with the high temperature fixture offers one more solution toward potentially realizing a portable μGC device for the detection of semi-volatile environmental pollutants and explosives without the thermal limitations reported to date with μGC columns using epoxy based interconnect technology. PMID:24866564

  20. Immobilized palladium(II) ion affinity chromatography for recovery of recombinant proteins with peptide tags containing histidine and cysteine.

    PubMed

    Kikot, Pamela; Polat, Aise; Achilli, Estefania; Fernandez Lahore, Marcelo; Grasselli, Mariano

    2014-11-01

    Fusion of peptide-based tags to recombinant proteins is currently one of the most used tools for protein production. Also, immobilized metal ion affinity chromatography (IMAC) has a huge application in protein purification, especially in research labs. The combination of expression systems of recombinant tagged proteins with this robust chromatographic system has become an efficient and rapid tool to produce milligram-range amounts of proteins. IMAC-Ni(II) columns have become the natural partners of 6xHis-tagged proteins. The Ni(II) ion is considered as the best compromise of selectivity and affinity for purification of a recombinant His-tagged protein. The palladium(II) ion is also able to bind to side chains of amino acids and form ternary complexes with iminodiacetic acid and free amino acids and other sulfur-containing molecules. In this work, we evaluated two different cysteine- and histidine-containing six amino acid tags linked to the N-terminal group of green fluorescent protein (GFP) and studied the adsorption and elution conditions using novel eluents. Both cysteine-containing tagged GFPs were able to bind to IMAC-Pd(II) matrices and eluted successfully using a low concentration of thiourea solution. The IMAC-Ni(II) system reaches less than 20% recovery of the cysteine-containing tagged GFP from a crude homogenate of recombinant Escherichia coli, meanwhile the IMAC-Pd(II) yields a recovery of 45% with a purification factor of 13. PMID:25277090

  1. Purification to homogeneity of an active opioid receptor from rat brain by affinity chromatography.

    PubMed

    Loukas, S; Mercouris, M; Panetsos, F; Zioudrou, C

    1994-05-10

    Active opioid binding proteins were solubilized from rat brain membranes in high yield with sodium deoxycholate in the presence of NaCl. Purification of opioid binding proteins was accomplished by opioid antagonist affinity chromatography. Chromatography using the delta-opioid antagonist N,N-diallyl-Tyr-D-Leu-Gly-Tyr-Leu attached to omega-aminododecyl-agarose (Affi-G) (procedure A) yielded a partially purified protein that binds selectively the delta-opioid agonist [3H]Tyr-D-Ser-Gly-Phe-Leu-Thr ([3H]DSLET), with a Kd of 19 +/- 3 nM and a Bmax of 5.1 +/- 0.4 nmol/mg of protein. Subsequently, Lens culinaris agglutinin-Sepharose 4B chromatography of the Affi-G eluate resulted in isolation of an electrophoretically homogeneous protein of 58 kDa that binds selectively [3H]DSLET with a Kd of 21 +/- 3 nM and a Bmax of 16.5 +/- 1.0 nmol/mg of protein. Chromatography using the nonselective antagonist 6-aminonaloxone coupled to 6-aminohexanoic acid-Sepharose 4B (Affi-NAL) (procedure B) resulted in isolation of a protein that binds selectively [3H]DSLET with a Kd of 32 +/- 2 nM and a Bmax of 12.4 +/- 0.5 nmol/mg of protein, and NaDodSO4/PAGE revealed a major band of apparent molecular mass 58 kDa. Polyclonal antibodies (Anti-R IgG) raised against the Affi-NAL protein inhibit the specific [3H]DSLET binding to the Affi-NAL eluate and to the solubilized membranes. Moreover, the Anti-R IgG inhibits the specific binding of radiolabeled Tyr-D-Ala-Gly-N-methyl-Phe-Gly-ol (DAMGO; mu-agonist), DSLET (delta-agonist), and naloxone to homogenates of rat brain membranes with equal potency. Furthermore, immunoaffinity chromatography of solubilized membranes resulted in the retention of a major protein of apparent molecular mass 58 kDa. In addition, immunoblotting of solubilized membranes and purified proteins from the Affi-G and Affi-NAL matrices revealed that the Anti-R IgG interacts with a protein of 58 kDa. PMID:8183950

  2. Sub-to super-ambient temperature programmable microfabricated gas chromatography column

    DOEpatents

    Robinson, Alex L.; Anderson, Lawrence F.

    2004-03-16

    A sub- to super-ambient temperature programmable microfabricated gas chromatography column enables more efficient chemical separation of chemical analytes in a gas mixture by combining a thermoelectric cooler and temperature sensing on the microfabricated column. Sub-ambient temperature programming enables the efficient separation of volatile organic compounds and super-ambient temperature programming enables the elution of less volatile analytes within a reasonable time. The small heat capacity and thermal isolation of the microfabricated column improves the thermal time response and power consumption, both important factors for portable microanalytical systems.

  3. Evaluation of the secondary consolidation of columns for liquid chromatography by ultrasonic irradiation.

    PubMed

    Shalliker, R A; Broyles, B S; Guiochon, G

    2000-05-12

    The consolidation of packed analytical chromatography columns was carried out under ultrasonic irradiation. Columns were first packed using a conventional high pressure downward slurry method. Then, they were subjected to further bed consolidation in the presence of ultrasonic vibration. This process of further bed consolidation is referred to as secondary consolidation. Secondary consolidation was observed to occur more readily in solvents of low viscosity and at low flow-rates (low pressures). Column efficiency was not observed to be a factor affecting the process of secondary consolidation of the packed bed. PMID:10866062

  4. Technical advance: identification of plant actin-binding proteins by F-actin affinity chromatography

    NASA Technical Reports Server (NTRS)

    Hu, S.; Brady, S. R.; Kovar, D. R.; Staiger, C. J.; Clark, G. B.; Roux, S. J.; Muday, G. K.

    2000-01-01

    Proteins that interact with the actin cytoskeleton often modulate the dynamics or organization of the cytoskeleton or use the cytoskeleton to control their localization. In plants, very few actin-binding proteins have been identified and most are thought to modulate cytoskeleton function. To identify actin-binding proteins that are unique to plants, the development of new biochemical procedures will be critical. Affinity columns using actin monomers (globular actin, G-actin) or actin filaments (filamentous actin, F-actin) have been used to identify actin-binding proteins from a wide variety of organisms. Monomeric actin from zucchini (Cucurbita pepo L.) hypocotyl tissue was purified to electrophoretic homogeneity and shown to be native and competent for polymerization to actin filaments. G-actin, F-actin and bovine serum albumin affinity columns were prepared and used to separate samples enriched in either soluble or membrane-associated actin-binding proteins. Extracts of soluble actin-binding proteins yield distinct patterns when eluted from the G-actin and F-actin columns, respectively, leading to the identification of a putative F-actin-binding protein of approximately 40 kDa. When plasma membrane-associated proteins were applied to these columns, two abundant polypeptides eluted selectively from the F-actin column and cross-reacted with antiserum against pea annexins. Additionally, a protein that binds auxin transport inhibitors, the naphthylphthalamic acid binding protein, which has been previously suggested to associate with the actin cytoskeleton, was eluted in a single peak from the F-actin column. These experiments provide a new approach that may help to identify novel actin-binding proteins from plants.

  5. Biotin-functionalized poly(ethylene terephthalate) capillary-channeled polymer fibers as HPLC stationary phase for affinity chromatography.

    PubMed

    Jiang, Liuwei; Marcus, R Kenneth

    2015-01-01

    Native poly(ethylene terephthalate) (PET) capillary-channeled polymer (C-CP) fibers have been used as the stationary phase for high-performance liquid chromatography (HPLC) of proteins via reversed-phase and ion-exchange processes. Functionalization can be used to bring about greater selectivity through surface modification. PET fibers were treated with ethylenediamine to generate primary amine groups on the fiber surface, enabling subsequent covalent attachment of ligands. The ninhydrin test for primary amines revealed surface densities of 13.9-60.0 μmol m(-2) for PET fibers exposed for periods of 3-12 min. Here, 8-amino-3,6-dioxaoctanoic acid was linked to the EDA-treated PET fiber surface as a hydrophilic spacer, and then D-biotin was attached on the end of the spacer as an affinity ligand. The streptavidin binding capacity and binding homogeneity were studied on the biotin-functionalized PET C-CP fiber microbore column. The selectivity of the biotin surface functionalization was assessed by spiking lysate with Texas Red-labeled streptavidin and enhanced green fluorescent protein. Greater than 99% selectivity was realized. This ligand-coupling strategy from standard solid-phase peptide synthesis used in stationary phase functionalization creates great potential for PET C-CP fiber-packed HPLC columns to perform a variety of chromatographic separations. PMID:25410640

  6. ANALYSIS OF DRUG INTERACTIONS WITH MODIFIED PROTEINS BY HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY: BINDING OF GLIBENCLAMIDE TO NORMAL AND GLYCATED HUMAN SERUM ALBUMIN

    PubMed Central

    Matsuda, Ryan; Anguizola, Jeanethe; Joseph, K.S.; Hage, David S.

    2012-01-01

    High-performance affinity chromatography (HPAC) was used to examine the changes in binding that occur for the sulfonylurea drug glibenclamide with human serum albumin (HSA) at various stages of glycation for HSA. Frontal analysis on columns containing normal HSA or glycated HSA indicated glibenclamide was interacting through both high affinity sites (association equilibrium constant, Ka, 1.4–1.9 × 106 M−1 at pH 7.4 and 37°C) and lower affinity sites (Ka, 4.4–7.2 × 104 M−1). Competition studies were used to examine the effect of glycation at specific binding sites of HSA. An increase in affinity of 1.7- to 1.9-fold was seen at Sudlow site I with moderate to high levels of glycation. An even larger increase of 4.3- to 6.0-fold in affinity was noted at Sudlow site II for all of the tested samples of glycated HSA. A slight decrease in affinity may have occurred at the digitoxin site, but this change was not significant for any individual glycated HSA sample. These results illustrate how HPAC can be used as tool for examining the interactions of relatively non-polar drugs like glibenclamide with modified proteins and should lead to a more complete understanding of how glycation can alter the binding of drugs in blood. PMID:23092871

  7. Novel Design for Centrifugal Counter-Current Chromatography: III. Saw Tooth Column.

    PubMed

    Yang, Yi; Aisa, Haji Akber; Ito, Yoichiro

    2010-01-01

    The toroidal coil using an equilateral triangular core and zigzag pattern column have improved both retention of the stationary phase and peak resolution of the conventional toroidal coil in centrifugal counter-current chromatography. To further improve the retention of stationary phase and peak resolution, a novel saw tooth column was designed and the performance of the system was evaluated at various flow rates. The results indicated that both retention of the stationary phase and peak resolution were improved as the flow rate was decreased and at a flow rate of 0.005 ml/min the resolution is remarkably increased. Modification of the tubing called flat-twisted tubing further improved the peak resolution without increasing the column pressure. With a decreased column length at a capacity of about 0.2 ml, resolution of the saw tooth column was 1.02. PMID:20543965

  8. Separation of the Carotenoid Bixin from Annatto Seeds Using Thin-Layer and Column Chromatography

    ERIC Educational Resources Information Center

    McCullagh, James V.; Ramos, Nicholas

    2008-01-01

    In this experiment the carotenoid bixin is isolated from annatto ("Bixa orellana") seeds using column chromatography. The experiment has several key advantages over previous pigment separation experiments. First, unlike other experiments significant quantities of the carotenoid (typically 20 to 25 mg) can be isolated from small quantities of plant…

  9. A Computer-Interfaced Drop Counter as an Inexpensive Fraction Collector for Column Chromatography

    ERIC Educational Resources Information Center

    Nash, Barbara T.

    2008-01-01

    A computer-interfaced drop counter is described that serves as an inexpensive alternative to a fraction collector for column chromatography experiments. Undergraduate biochemistry laboratories frequently do not have the budget to purchase fraction collectors. Protocols that call for the manual measurement of fraction volumes as well as the manual…

  10. Characteristics of the interaction of calcium with casein submicelles as determined by analytical affinity chromatography

    SciTech Connect

    Jang, H.D.; Swaisgood, H.E. )

    1990-12-01

    Interaction of calcium with casein submicelles was investigated in CaCl2 and calcium phosphate buffers and with synthetic milk salt solutions using the technique of analytical affinity chromatography. Micelles that had been prepared by size exclusion chromatography with glycerolpropyl controlled-pore glass from fresh raw skim milk that had never been cooled, were dialyzed at room temperature against calcium-free imidazole buffer, pH 6.7. Resulting submicelles were covalently immobilized on succinamidopropyl controlled-pore glass (300-nm pore size). Using 45Ca to monitor the elution retardation, the affinity of free Ca2+ and calcium salt species was determined at temperatures of 20 to 40 degrees C and pH 6.0 to 7.5. Increasing the pH in this range or increasing the temperature strengthened the binding of calcium to submicelles, similar to previous observations with individual caseins. However, the enthalpy change obtained from the temperature dependence was considerably greater than that reported for alpha s1- and beta-caseins. Furthermore, the elution profiles for 45Ca in milk salt solutions were decidedly different from those in CaCl2 or calcium phosphate buffers and the affinities were also greater. For example, at pH 6.7 and 30 degrees C the average dissociation constant for the submicelle-calcium complex is 0.074 mM for CaCl2 and calcium phosphate buffers, vs 0.016 mM for the milk salt solution. The asymmetric frontal boundaries and higher average affinities observed with milk salts may be due to binding of calcium salts with greater affinity in addition to the binding of free Ca2+ in these solutions.

  11. The fabrication of all-silicon micro gas chromatography columns using gold diffusion eutectic bonding

    NASA Astrophysics Data System (ADS)

    Radadia, A. D.; Salehi-Khojin, A.; Masel, R. I.; Shannon, M. A.

    2010-01-01

    Temperature programming of gas chromatography (GC) separation columns accelerates the elution rate of chemical species through the column, increasing the speed of analysis, and hence making it a favorable technique to speedup separations in microfabricated GCs (micro-GC). Temperature-programmed separations would be preferred in an all-silicon micro-column compared to a silicon-Pyrex® micro-column given that the thermal conductivity and diffusivity of silicon is 2 orders of magnitude higher than Pyrex®. This paper demonstrates how to fabricate all-silicon micro-columns that can withstand the temperature cycling required for temperature-programmed separations. The columns were sealed using a novel bonding process where they were first bonded using a gold eutectic bond, then annealed at 1100 °C to allow gold diffusion into silicon and form what we call a gold diffusion eutectic bond. The gold diffusion eutectic-bonded micro-columns when examined using scanning electron microscopy (SEM), scanning acoustic microscopy (SAM) and blade insertion techniques showed bonding strength comparable to the previously reported anodic-bonded columns. Gas chromatography-based methane injections were also used as a novel way to investigate proper sealing between channels. A unique methane elution peak at various carrier gas inlet pressures demonstrated the suitability of gold diffusion eutectic-bonded channels as micro-GC columns. The application of gold diffusion eutectic-bonded all-silicon micro-columns to temperature-programmed separations (120 °C min-1) was demonstrated with the near-baseline separation of n-C6 to n-C12 alkanes in 35 s.

  12. Use of differential dye-ligand chromatography with affinity elution for enzyme purification: 2-keto-3-deoxy-6-phosphogluconate aldolase from Zymomonas mobilis.

    PubMed

    Scopes, R K

    1984-02-01

    2-Keto-3-deoxy-6-phosphogluconate aldolase (EC 4.1.2.14) has been isolated from extracts of Zymomonas mobilis using differential dye-ligand chromatography and affinity elution with product/product analog. The one-step procedure gives an enzyme with specific activity 600 units mg-1. Only 1 out of 47 dyes, Procion Yellow MX-GR, bound the enzyme completely in 20 mM phosphate buffer, pH 6.5. A column of Navy HE-R adsorbent was used first to remove most of the potentially adsorbing proteins. PMID:6326622

  13. Evaluation of column hardware on liquid chromatography-mass spectrometry of phosphorylated compounds.

    PubMed

    Sakamaki, Hiroshi; Uchida, Takeharu; Lim, Lee Wah; Takeuchi, Toyohide

    2015-02-13

    The influences of column hardware, such as chromatographic tubes and frits, on liquid chromatography-mass spectrometry (LC-MS) analysis of phosphorylated compounds were evaluated. The signal to noise ratio (S/N) and the intensity of flavin adenine dinucleotide (FAD) using a glass lined tube and polyethylene frit (GL-PE) column was approximately 170 and 90 times higher, respectively, than those using conventional stainless steel tube and stainless steel frit (S-S) column. In addition, the retention time of FAD using GL-PE column was the shortest compared to other columns. Interaction between phosphorylated compounds and metal ions in the flow path in the S-S column was stronger than that between them and the GL-PE column. Thus, the metal ions in the flow path in GL-PE column were low. Since the specific surface area of a pair of frits was 70 times larger than that of a chromatographic tube (150 mm×2.1 mm), the frits were found to have more effective improvement of the S/N as well as the intensity than the chromatographic tubes, when phosphorylated compounds were analyzed by LC-MS. When the evaluated phosphorylated compounds were analyzed by LC-MS(/MS) using a GL-PE column, the intensity and S/N were increased. PMID:25604270

  14. Modeling Transport in Gas Chromatography Columns for the Micro-ChemLab

    SciTech Connect

    ADKINS,DOUGLAS R.; FRYE-MASON,GREGORY CHARLES; HUDSON,MARY L.; KOTTENSTETTE,RICHARD; MATZKE,CAROLYN M.; SALINGER,ANDREW G.; SHADID,JOHN N.; WONG, CHUNGNIN CHANN

    1999-09-01

    The gas chromatography (GC) column is a critical component in the microsystem for chemical detection ({mu}ChemLab{trademark}) being developed at Sandia. The goal is to etch a meter-long GC column onto a 1-cm{sup 2} silicon chip while maintaining good chromatographic performance. Our design strategy is to use a modeling and simulation approach. We have developed an analytical tool that models the transport and surface interaction process to achieve an optimized design of the GC column. This analytical tool has a flow module and a separation module. The flow module considers both the compressibility and slip flow effects that may significantly influence the gas transport in a long and narrow column. The separation module models analyte transport and physico-chemical interaction with the coated surface in the GC column. It predicts the column efficiency and performance. Results of our analysis will be presented in this paper. In addition to the analytical tool, we have also developed a time-dependent adsorption/desorption model and incorporated this model into a computational fluid dynamics (CFD) code to simulate analyte transport and separation process in GC columns. CFD simulations can capture the complex three-dimensional flow and transport dynamics, whereas the analytical tool cannot. Different column geometries have been studied, and results will be presented in this paper. Overall we have demonstrated that the modeling and simulation approach can guide the design of the GC column and will reduce the number of iterations in the device development.

  15. Octapeptide-based affinity chromatography of human immunoglobulin G: comparisons of three different ligands.

    PubMed

    Zhao, Wei-Wei; Liu, Fu-Feng; Shi, Qing-Hong; Sun, Yan

    2014-09-12

    In an earlier work, we have developed a biomimetic design strategy based on the human IgG (hIgG)-Protein A interactions and identified an affinity ligand for hIgG, FYWHCLDE, which ranked top one in a pool of 14 potential candidates. Herein, two more octapeptides, FYCHWALE and FYCHTIDE, were identified, and the binding and purification of hIgG on the affinity columns packed with the three octapeptide-modified Sepharose gels were extensively studied and compared to find more effective octapeptide-based affinity ligands. It was found that all the three ligands bound hIgG and Fc fragment but barely bound Fab fragment, and the binding to hIgG and Fc was mainly by electrostatic interactions. The optimum binding pH values for the three ligands were different from each other, but kept in the range of 5.0-6.0. Ligand binding competition revealed that the binding sites on hIgG for the three octapeptides were similar to those for Protein A. Adsorption isotherms revealed that hIgG binding capacity was in the range of 64-104mg/mL drained gel in the order of FYWHCLDE>FYCHWALE>FYCHTIDE. Then, purifications of hIgG and human monoclonal antibody from human serum and cell culture supernatant, respectively, were achieved with the three affinity columns at high purities and recovery yields. Finally, the molecular basis for the binding affinity of the peptides for the Fc fragment of hIgG was elucidated by molecular dynamics simulations. PMID:25064536

  16. TiO2-ZrO2 affinity chromatography polymeric microchip for phosphopeptide enrichment and separation.

    PubMed

    Tsougeni, Katerina; Zerefos, Panagiotis; Tserepi, Angeliki; Vlahou, Antonia; Garbis, Spiros D; Gogolides, Evangelos

    2011-09-21

    We fabricated a TiO(2)-ZrO(2) affinity chromatography micro-column on 2 mm PMMA plates, and demonstrated the enrichment and separation of (a) a standard mono- and tetra-phosphopeptide, and (b) phosphopeptides contained in a tryptic digest of β-Casein. The chromatography column consisted of 32 parallel microchannels with common input and output ports and was fabricated by lithography directly on the polymeric substrate followed by plasma etching (i.e. standard MEMS processing) and sealed with lamination. The liquid deposited TiO(2)-ZrO(2) stationary phase was characterized by X-ray diffraction and was found to be mostly TiO(2) and ZrO(2) in crystalline phases. Off-chip UV detection and MALDI MS identification of the separated effluents were used. The chip had a capacity of >1.4 μg (0.7 nmol) of a prototype mono-phosphopeptide and a recovery of 94 ± 3%, and can be used with small samples (less than 0.1 μL depending on the syringe pump used). The chip design allows an expansion of its capacity by means of increasing the number of parallel microchannels at a constant sample volume. Our approach provided an alternative to off-line extraction tips (with typical capacities of 1-2 μg and sample volumes of 1-10 μL), and to on-chip efforts based on packed bed and frit formats. PMID:21796280

  17. Affinity chromatography using 2' fluoro-substituted RNAs for detection of RNA-protein interactions in RNase-rich or RNase-treated extracts.

    PubMed

    Hovhannisyan, Ruben; Carstens, Russ

    2009-02-01

    Use of RNA affinity chromatography is commonly used to identify RNA binding proteins that interact with specific RNA cis-elements that function in post-transcriptional gene regulation. These purifications can be complicated by residual RNase activity in cellular extracts that can degrade the RNAs on these affinity columns. Furthermore, some proteins may associate indirectly with the column as a component of multi-protein complexes that are "tethered" through the binding of cellular RNAs. We present a protocol for an RNA affinity procedure that can be used in conjunction with RNase-rich or RNase-treated extracts by using RNAs synthesized with 2' fluoro-substituted cytidine triphosphate (CTP) and uridine triphosphate (UTP). The resulting RNAs are shown to be RNase A-resistant and capable of direct coupling to adipic acid dihydrazide agarose beads. Using an RNA cis-element previously shown to bind hnRNP M, we demonstrated that the substituted RNAs preserve binding capability by a common class of RNA binding proteins. Our results provide a method that may be used more generally for RNA affinity purification or as a validation step to verify more direct binding of a given RNA binding protein to a target RNA. PMID:19317654

  18. Post-column labeling techniques in amino acid analysis by liquid chromatography.

    PubMed

    Rigas, Pantelis G

    2013-10-01

    Amino acid analysis (AAA) has always presented an analytical challenge in terms of sample preparation, separation, and detection. Because of the vast number of amino acids, various separation methods have been applied taking into consideration the large differences in their chemical structures, which span from nonpolar to highly polar side chains. Numerous separation methods have been developed in the past 60 years, and impressive achievements have been made in the fields of separation, derivatization, and detection of amino acids (AAs). Among the separation methods, liquid chromatography (LC) prevailed in the AAA field using either pre-column or post-column labeling techniques in order to improve either separation of AAs or selectivity and sensitivity of AAA. Of the two approaches, the post-column technique is a more rugged and reproducible method and provides excellent AAs separation relatively free from interferences. This review considers current separations combined with post-column labeling techniques for AAA, comparison with the pre-column methods, and the strategies used to develop effective post-column methodology. The focus of the article is on LC methods coupled with post-column labeling techniques and studying the reactions to achieve optimum post-column derivatization (PCD) conditions in order to increase sensitivity and selectivity using various types of detectors (UV-Vis, fluorescence, electrochemical etc.) and illustrating the versatility of the PCD methods for practical analysis. PMID:24013667

  19. Purification of recombinant proteins from mammalian cell culture using a generic double-affinity chromatography scheme.

    PubMed

    Cass, Brian; Pham, Phuong Lan; Kamen, Amine; Durocher, Yves

    2005-03-01

    Transient transfection of mammalian cells has proven to be a useful technique for the rapid production of recombinant proteins because of its ability to produce milligram quantities within 2 weeks following cloning of their corresponding cDNA. This rapid production also requires a fast and efficient purification scheme that can be applied generically, typically through the use of affinity tags such as the polyhistidine-tag for capture by immobilized metal-affinity chromatography (IMAC) or the Strep-tag II, which binds to the StrepTactin affinity ligand. However, one-step purification using either of these tags has disadvantages in terms of yield, elution conditions, and purity. Here, we show that the addition of both Strep-tag-II and (His)(8) to the C-terminal of r-proteins allows efficient purification by consecutive IMAC and StrepTactin affinity. This approach has been successfully demonstrated using the intracellular protein DsRed, as well as two secreted proteins, secreted alkaline phosphatase (SEAP) and vascular endothelial growth factor (VEGF), all produced by transient transfection of HEK293-EBNA1 cells in medium supplemented with bovine calf serum. All proteins were purified to >99% homogeneity with yields varying from 29 to 81%. PMID:15721774

  20. Development and Validation of an Affinity Chromatography-Protein G Method for IgG Quantification

    PubMed Central

    Paradina Fernández, Lesly; Calvo, Loany; Viña, Lisel

    2014-01-01

    Nimotuzumab, an IgG that recognizes the epidermal growth factor receptor (EGF-R) overexpressed in some tumors, is used in the treatment of advanced head and neck cancer. For the quantification of this protein in cell culture supernatants, protein G-HPLC affinity chromatography is used due to its high affinity and specificity for antibodies of this class. The technique relies on the comparison of the area under the curve of the elution peak of the samples to be evaluated versus to a calibration curve of well-known concentrations and was validated by assessment of its robustness, specificity, repeatability, intermediate precision, accuracy, linearity, limit of detection, limit of quantification, and range. According to results of the study all validation parameters fulfilled the preestablished acceptance criteria and demonstrated the feasibility of the assay for the analysis of samples of cell culture supernatant as well as drug product. PMID:27379284

  1. Fractionation of Aspergillus niger cellulases by combined ion exchange affinity chromatography

    SciTech Connect

    Boyer, R.F.; Allen, T.L.; Dykema, P.A.

    1987-02-05

    Eight chemically modified cellulose supports were tested for their ability to adsorb components of the Aspergillus niger cellulase system. At least two of the most effective adsorbents, aminoethyl cellulose and carboxymethyl cellulose, were shown to be useful for the fractionation of cellulases. These supports apparently owe their resolving capacity to both ion exchange and biospecific binding effects; however, the relative importance of each effect is unknown. These observations form the basis for a new cellulase fractionation technique, combined ion exchange-affinity chromatography. 22 references.

  2. Ni2+-based immobilized metal ion affinity chromatography of lactose operon repressor protein from Escherichia coli.

    PubMed

    Velkov, Tony; Jones, Alun; Lim, Maria L R

    2008-01-01

    A two-step chromatographic sequence is described for the purification of native lactose operon repressor protein from Escherichia coli cells. The first step involves Ni(2+)-based immobilized metal ion affinity chromatography of the soluble cytoplasmic extract. This method provides superior speed, resolution and yield than the established phosphocellulose cation-exchange chromatographic procedure. Anion-exchange chromatography is used for further purification to >95% purity. The identity and purity of the lactose repressor protein were demonstrated using sodium dodecylsulphate polyacrylamide electrophoresis, crystallization, tryptic finger-printing mass spectrometry, and inducer binding assays. The purified lac repressor exhibited inducer sensitivity for operator DNA binding and undergoes a conformational change upon inducer binding. By all these extensive biochemical criteria, the purified protein behaves exactly as that described for the Escherichia coli lactose operon repressor. PMID:18800304

  3. Development of a novel affinity chromatography resin for platform purification of lambda fabs.

    PubMed

    Eifler, Nora; Medaglia, Giovanni; Anderka, Oliver; Laurin, Linus; Hermans, Pim

    2014-01-01

    Antigen-binding fragments (Fabs) are novel formats in the growing pipeline of biotherapeutics. Sharing similar features to monoclonal antibodies (mAbs) with regard to expression, Fabs are considered as unchallenging for upstream development. Yet for downstream processing, the mature mAb downstream purification platform is not directly applicable. New approaches need to be found to achieve a lean purification process that maintains quality, productivity, and timelines while being generically applicable independent of the expression system. In a successful collaboration, BAC BV, GE Healthcare, and Novartis Pharma AG have developed a new affinity chromatography medium (resin) suitable to support cGMP manufacturing of lambda Fabs. We show that using this novel chromatography medium for the capture step, a purification platform for lambda Fabs can be established. PMID:25082738

  4. Regenerated silica gel as stationary phase on vacuum column chromatography to purify temulawak’s extracts

    SciTech Connect

    Cahyono, Bambang; Maduwu, Ratna Dewi; Widayat,; Suzery, Meiny

    2015-12-29

    Commercial silica gel only used once by many researchers and affected high cost for purification process, also less support the green chemistry program. This research focused in regeneration silica gel that used purification of temulawak’s extracts (Curcuma xanthorrhiza Roxb) by vacuum column chromatography. Sample extracts (contains 10.1195±0.5971% of curcuminoids) was purified by vacuum column chromatography (pressure: 45 kPa, column: 100mm on length and 16mm on diameter). Ethanol 96% and acetone were compared as eluent. The amount of solvent and yield of curcuminoids used as indicator purification. The silica gel was regenerated with heating in 600°C for 8 hours The silica gels were analyzed by IR spectroscopy and X-ray diffraction. Furthermore, regenerated silica gel was used as the stationary phase in vacuum column chromatography under the same conditions with the previous purification. All the purification experiments were performed in three repetitions. Based on regression equation, y=0.132x+0.0011 (r{sup 2}=0.9997) the yield of curcuminoids on purified products using ethanol as the eluent was improved 4.26% (to 14.3724±0.5749%) and by acetone was improved 3,03% (to 13.1450 ±0.6318%). The IR spectrum of both silica gel showed the same vibration profile and also there were three crystallinity peaks missing on its X-ray diffraction. Regenerated silica gel has the same performance with new silica gel in purification of temulawak’s extract: by ethanol has increased 4.08% (14.1947±0.7415%) and 2.93% (13.0447±0.4822) by acetone. In addition, all purification products showed similar TLC profiles. Purification using regenerated silica gel as the adsorbent on vacuum column chromatography has exactly same potential with the new silica gel.

  5. Regenerated silica gel as stationary phase on vacuum column chromatography to purify temulawak's extracts

    NASA Astrophysics Data System (ADS)

    Cahyono, Bambang; Maduwu, Ratna Dewi; Widayat, Suzery, Meiny

    2015-12-01

    Commercial silica gel only used once by many researchers and affected high cost for purification process, also less support the green chemistry program. This research focused in regeneration silica gel that used purification of temulawak's extracts (Curcuma xanthorrhiza Roxb) by vacuum column chromatography. Sample extracts (contains 10.1195±0.5971% of curcuminoids) was purified by vacuum column chromatography (pressure: 45 kPa, column: 100mm on length and 16mm on diameter). Ethanol 96% and acetone were compared as eluent. The amount of solvent and yield of curcuminoids used as indicator purification. The silica gel was regenerated with heating in 600°C for 8 hours The silica gels were analyzed by IR spectroscopy and X-ray diffraction. Furthermore, regenerated silica gel was used as the stationary phase in vacuum column chromatography under the same conditions with the previous purification. All the purification experiments were performed in three repetitions. Based on regression equation, y=0.132x+0.0011 (r2=0.9997) the yield of curcuminoids on purified products using ethanol as the eluent was improved 4.26% (to 14.3724±0.5749%) and by acetone was improved 3,03% (to 13.1450 ±0.6318%). The IR spectrum of both silica gel showed the same vibration profile and also there were three crystallinity peaks missing on its X-ray diffraction. Regenerated silica gel has the same performance with new silica gel in purification of temulawak's extract: by ethanol has increased 4.08% (14.1947±0.7415%) and 2.93% (13.0447±0.4822) by acetone. In addition, all purification products showed similar TLC profiles. Purification using regenerated silica gel as the adsorbent on vacuum column chromatography has exactly same potential with the new silica gel.

  6. Determination of zearalenone in cereal grains, animal feed, and feed ingredients using immunoaffinity column chromatography and liquid chromatography: interlaboratory study.

    PubMed

    Campbell, Harold M; Armstrong, J Fred

    2007-01-01

    A method using immunoaffinity column chromatography (IAC) and liquid chromatography (LC) for determination of zearalenone in cereal grains, animal feed, and feed ingredients was collaboratively studied. The test portion is extracted by shaking with acetonitrile-water (90 + 10, v/v) and sodium chloride. The extract is diluted and applied to an immunoaffinity column, the column is washed with water or phosphate-buffered saline or methanol-water (30 + 70, v/v), and zearalenone is eluted with methanol. The eluate is evaporated, the residue is dissolved in mobile phase and analyzed by reversed-phase LC with fluorescence detection. The presence of zearalenone can be confirmed using an alternate excitation wavelength or diode array detection. Twenty samples were sent to 13 collaborators (8 in Europe, 2 in the United States, one in Japan, one in Uruguay, and one in Canada). Eighteen samples of naturally contaminated corn, barley, wheat, dried distillers grains, swine feed, and dairy feed were analyzed as blind duplicates, along with blank corn and wheat samples. The analyses were done in 2 sample sets with inclusion of a spiked wheat control sample (0.1 mg/kg) in each set. Spiked samples recoveries were 89-116%, and for the 18 naturally contaminated samples, RSDr values (within-laboratory repeatability) ranged from 6.67 to 12.1%, RSDR values (among-laboratory reproducibility) ranged from 12.5 to 19.7%, and HorRat values ranged from 0.61 to 0.90. PMID:18193738

  7. Affinity chromatography of yeast alpha-glucosidase using ligand-mediated chromatography on immobilized phenylboronic acids.

    PubMed Central

    Myöhänen, T A; Bouriotis, V; Dean, P D

    1981-01-01

    The synthesis of 3-nitro-4-(6-aminohexylamido)phenylboronic acid is described. The properties of two novel forms of immobilized phenylboronate agarose adsorbents [m-aminophenylboronic acid-Matrex Gel and 3-nitro-4-(6-aminohexylamido)phenylboronic acid-Sepharose CL-6B] were investigated. Both gels bind and selectively retard the glycoprotein alpha-glucosidase from yeast. The retardation is affected by following parameters: (i) pH, (ii) presence of sugar, (iii) concentration of sugar and (iv) buffer species (especially triethanolamine). Five sugars were studied, namely sorbitol, fructose, ribose, glucose and maltose. The concentration of sugar required to produce significant retardation increased in the above order, whereas the ability of sugar to form a complex with boron decreases in the same order. These effects were observed with crude as well as pure enzyme. Since alpha-glucosidase is a glycoprotein, it is proposed that this protein is mainly bound to these immobilized phenylboronates via sugar (glyco) residues. Displacement of the enzyme from the column is effected by the sugar in the buffer (or in a preincubation mixture). However, the marked pH-dependence (this retardation effect could only be observed at pH 7.4) suggests that these results are not due solely to hydrophobic or ionic mechanisms and are more complex than simple sugar-phenylboronic acid interactions. PMID:7034722

  8. High Pressure Size Exclusion Chromatography (HPSEC) of humic substances: molecular sizes, analytical parameters, and column performance

    PubMed

    Conte; Piccolo

    1999-02-01

    High Pressure Size Exclusion chromatography (HPSEC) is increasingly used to evaluate molecular sizes of humic substances from different sources. Asymmetry factors (As), number of theoretical plates (N), coefficient of distribution (k(d)), and column resolution (Rs) were determined for two different HPSEC columns (TSK G3000SW and Biosep S2000) and polysaccharides of known molecular weights were used as standards. Calibration curves were equivalent for both columns whereas analytical parameters revealed that the TSK column was only slightly more efficient in separating polysaccharide standards. Mw and Mn values for humic substances differed according to the molecular weight range of each column but relative standard deviation never exceeded 5% for both columns. Variations between columns were attributed to intrinsic humic properties such as the stability of conformational structures. These results suggested that humic substances in solutions are loosely-bound association of small molecules that may be consistently dispersed by diffusion through size-exclusion pores. HPSEC is confirmed to represent a highly precise method to evaluate the relative molecular-size distribution of dissolved humic substances. PMID:10901671

  9. Group-type separation of diesel fuels using packed capillary column supercritical fluid chromatography

    SciTech Connect

    Li, W.; Malik, A.; Lee, M.L. ); Jones, B.A.; Porter, N.L.; Richter, B.E. )

    1995-02-01

    Determination of the aromatic hydrocarbon content of diesel fuels by supercritical fluid chromatography (SFC) has been approved as an American Standard Test Method. Commercially available microbore columns usually used in this application suffer from poor stability and low resolution. In this work, 200 [mu]m i.d. packed capillary SFC columns were prepared, and their chromatographic performances were compared with commercial microbore columns. Various packing materials with different pore sizes were evaluated, and the effects of column temperature and pressure were carefully examined. It was found that the pore size of the packing material and, therefore, the surface area had a significant effect on elution order. Using a 1 m long column, a resolution of as high as 15 for n-hexadecane and toluene was achieved within 5 min at 45[degree]C. The column performance was very reproducible; day-to-day and month-to-month resolution variations were less than 3%, and retention time variations were less than 1%. In this method, no additional columns and valve switching were involved. The method is simple, fast (approximately 10 min), and very suitable for quality control analysis. 35 refs., 5 figs., 7 tabs.

  10. Column chromatography as a useful step in purification of diatom pigments.

    PubMed

    Tokarek, Wiktor; Listwan, Stanisław; Pagacz, Joanna; Leśniak, Piotr; Latowski, Dariusz

    2016-01-01

    Fucoxanthin, diadinoxanthin and diatoxanthin are carotenoids found in brown algae and most other heterokonts. These pigments are involved in photosynthetic and photoprotective reactions, and they have many potential health benefits. They can be extracted from diatom Phaeodactylum tricornutum by sonication, extraction with chloroform : methanol and preparative thin layer chromatography. We assessed the utility of an additional column chromatography step in purification of these pigments. This novel addition to the isolation protocol increased the purity of fucoxanthin and allowed for concentration of diadinoxanthin and diatoxanthin before HPLC separation. The enhanced protocol is useful for obtaining high purity pigments for biochemical studies. PMID:27486920

  11. Stereoselective Binding of Chiral Ligands to Single Nucleotide Polymorphs (SNPs) of the Human Organic Cation Transporter-1 Determined Using Cellular Membrane Affinity Chromatography

    PubMed Central

    Moaddel, R.; Bighi, F.; Yamaguchi, R.; Patel, S.; Ravichandran, S.; Wainer, I.W.

    2010-01-01

    Membranes from stably transfected cell lines that expresses two point mutations of the human organic cation 1 transporter (hOCT1), R488M and G465R, have been immobilized on the immobilized artificial membrane (IAM) liquid chromatographic stationary phase to form the Cellular Membrane Affinity Chromatography (CMAC) (hOCT1G465R) and CMAC(hOCT1R488M). Columns were created using both stationary phases and frontal displacement chromatography experiments were conducted using [3H]-methyl phenyl pyridinium, [3H]-MPP+, as the marker ligand and various displacers, including the single enantiomers of verapamil, fenoterol and isoproterenol. The chromatographic data obtained was used to refine a previously developed pharmacophore for the hOCT1 transporter. PMID:20206116

  12. Affinity chromatography reveals RuBisCO as an ecdysteroid-binding protein.

    PubMed

    Uhlik, Ondrej; Kamlar, Marek; Kohout, Ladislav; Jezek, Rudolf; Harmatha, Juraj; Macek, Tomas

    2008-12-22

    The aim of this work was to isolate plant ecdysteroid-binding proteins using affinity chromatography. Ecdysteroids as insect hormones have been investigated thoroughly but their function and the mechanism of action in plants and other organisms is still unknown although ecdysteroids occur in some plants in a relatively large amount. Therefore, 20-hydroxyecdysone was immobilized on a polymeric carrier as a ligand for affinity chromatography in order to isolate plant ecdysteroid-binding proteins from the cytosolic extract of New Zealand spinach (Tetragonia tetragonoides). Non-specifically bound proteins were eluted with a rising gradient of concentration of sodium chloride, and 3% (v/v) acetic acid was used for the elution of the specifically bound proteins. Using this method, ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) was isolated. The influence of ecdysteroids on RuBisCO was further studied. Our results show that ecdysteroids are able to increase the yield of RuBisCO-mediated reaction in which CO(2) is fixed into organic matter by more than 10%. PMID:18761365

  13. Purification of 3-phosphoglycerate kinase from diverse sources by affinity elution chromatography.

    PubMed Central

    Fifis, T; Scopes, R K

    1978-01-01

    1. Affinity elution chromatography was used to purify phosphoglycerate kinase from a variety of sources. The choice of buffer pH for the chromatography was made according to the relative electrophoretic mobility of the enzyme from the species concerned. 2. Outlines of the methods used to isolate the enzyme from over 20 sources are presented. The enzyme was purified from the muscle tissue of a variety of mammals, fish and birds, from liver of several animals, from yeast, Escherichia coli, and plant leaves. The more acidic varieties of the enzymes were purified by conventional gradient elution from ion-exchangers as affinity elution procedures were not applicable. 3. The structural and kinetic parameters investigated show that phosphoglycerate kinase is evolutionarily a highly conservative enzyme; there were few differences in properties regardless of source or function (glycolytic, gluconeogenic or photosynthetic). 4. A detailed comparison of the enzyme preparations purified from bovine muscle and bovine liver failed to detect any significant differences between them; the evidence indicates that they are genetically identical. PMID:367367

  14. Characterization of Murine Brain Membrane Glycoproteins by Detergent Assisted Lectin Affinity Chromatography (DALAC)

    PubMed Central

    Wei, Xin; Dulberger, Charles; Li, Lingjun

    2010-01-01

    Membrane glycoproteins play vital roles in many fundamental physiological and pathophysiological processes in the central nervous system and represent important targets for pharmaceuticals and biomarker discovery. However, their isolation and characterization has been greatly limited. Lectin affinity chromatography (LAC) has evolved as a powerful method to enrich glycoproteins in biofluid and cell/tissue lysate. However, its use in the hydrophobic fraction of the samples has rarely been explored. In this study, we have conducted a systematic investigation on the lectin binding efficiency in the presence of four commonly used detergents. We have found that under certain concentrations, detergents can minimize the nonspecific bindings and facilitate the elution of hydrophobic glycoproteins. With the Detergent Assisted Lectin Affinity Chromatography (DALAC), a total of 1491 proteins were identified with low numbers of false positives from two lectins. 699 proteins were identified with at least two unique peptides, of which 219 are membrane glycoproteins. Compared to the traditional methods, the DALAC approach significantly increased the recovery of plasma membrane and glycoproteins. NP-40 is recommended as a well rounded detergent for DALAC, but the conditions for enriching certain target proteins need to be empirically determined. This study represents the first global identification of the murine brain glycoproteome. PMID:20700909

  15. p53-Encoding pDNA Purification by Affinity Chromatography for Cancer Therapy.

    PubMed

    Sousa, Ângela; Queiroz, João A; Sousa, Fani

    2015-01-01

    The gene therapy approach based on reestablishment of p53 tumor suppressor, which acts as a prevailing guardian against malignant cell transformation, is raising new prospects on the outcome of an effective anticancer treatment. It is well known that the success of gene transfer to cells and subsequent expression is strictly affected by the vector manufacturing process. Therefore, several downstream methods have been proposed to achieve high quantities of supercoiled plasmid DNA with pharmaceutical grade purity. Affinity chromatography with amino acids as ligands has recently yielded interesting results because these ligands take advantage of their biological function or chemical structure to promote specific interactions with different nucleic acids. Here, we describe detailed procedures for the preparation and purification of supercoiled plasmid DNA, with the purity degree required by regulatory agencies, by using arginine affinity chromatography. With this methodology pure pDNA is obtained, efficient on eukaryotic cell transfection and biologically active, resulting in the reestablishment of the p53 protein levels in cancer cell lines. PMID:26072404

  16. Size exclusion chromatography of synthetic polymers and biopolymers on common reversed phase and hydrophilic interaction chromatography columns.

    PubMed

    Caltabiano, Anna M; Foley, Joe P; Barth, Howard G

    2016-03-11

    This work describes the applicability of common reversed phase and HILIC columns for size exclusion chromatography of synthetic and natural polymers. Depending on the nature of the solute and column stationary phase, a "non-retention" condition must be created with the aid of the mobile phase to achieve a unique size-based separation in isocratic mode. The various bonded phases show remarkable differences in size separations that are controlled by mobile phase conditions. Polymer-mobile phase and column-mobile phase solvation interactions determine polymer hydrodynamic volume (or solute bulkiness) and polymer-column steric interaction. Solvation interactions in turn depend on polymer, mobile phase and stationary phase polarities. Column-mobile phase solvation interactions determine the structural order of the bonded ligands that can vary from ordered (extended, aligned away from the silica substrate) to disordered (folded, pointing toward the silica substrate). Chain order increases with increased solvent penetration into the bonded phase. Increased chain order reduces pore volume, and therefore decreases the size-separation efficiency of a column. Conversely, decreased chain order increases pore volume and therefore increases the size-separation efficiency. The thermodynamic quality of the mobile phase also plays a significant role in the separation of polymers. "Poor" solvents can significantly reduce the hydrodynamic diameter of a solute and thus change their retention behavior. Medium polarity stationary phases, such as fluoro-phenyl and cyano, exhibit a unique retention behavior. With an appropriate polarity mobile phase, polar and non-polar synthetic polymers of the same molecular masses can be eluted at the same retention volumes. PMID:26877177

  17. [Analysis of oxygenates from fischer-Tropsch synthesis oil using column liquid chromatography and gas chromatography-mass spectrography].

    PubMed

    Fan, Gaixian; Xu, Yuanyuan; Li, Ying; Li, Ying; Xiang, Hongwei; Li, Yongwang

    2007-11-01

    A liquid chromatographic column filled with silica gel of 100 - 200 mesh was used to separate cold trap oil from Fischer-Tropsch synthesis with dimethylsulfoxide (DMSO) as eluent. With this pretreatment method, the cold trap oil was separated into two major classes, namely, hydrocarbons and oxygenates. Minor components were also enriched and determined, and small peaks adjacent to big peaks and tailings were also well solved. The oxygenates were then analyzed with gas chromatography-mass spectrometry (GC-MS), and 139 components were identified. PMID:18257312

  18. High performance mini-gas chromatography-flame ionization detector system based on micro gas chromatography column

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaofeng; Sun, Jianhai; Ning, Zhanwu; Zhang, Yanni; Liu, Jinhua

    2016-04-01

    Monitoring Volatile organic compounds (VOCs) was a very important measure for preventing environmental pollution, therefore, a mini gas chromatography (GC) flame ionization detector (FID) system integrated with a mini H2 generator and a micro GC column was developed for environmental VOC monitoring. In addition, the mini H2 generator was able to make the system explode from far away due to the abandoned use of a high pressure H2 source. The experimental result indicates that the fabricated mini GC FID system demonstrated high repeatability and very good linear response, and was able to rapidly monitor complicated environmental VOC samples.

  19. High performance mini-gas chromatography-flame ionization detector system based on micro gas chromatography column.

    PubMed

    Zhu, Xiaofeng; Sun, Jianhai; Ning, Zhanwu; Zhang, Yanni; Liu, Jinhua

    2016-04-01

    Monitoring Volatile organic compounds (VOCs) was a very important measure for preventing environmental pollution, therefore, a mini gas chromatography (GC) flame ionization detector (FID) system integrated with a mini H2 generator and a micro GC column was developed for environmental VOC monitoring. In addition, the mini H2 generator was able to make the system explode from far away due to the abandoned use of a high pressure H2 source. The experimental result indicates that the fabricated mini GC FID system demonstrated high repeatability and very good linear response, and was able to rapidly monitor complicated environmental VOC samples. PMID:27131686

  20. Metal-Organic Framework Thin Films as Stationary Phases in Microfabricated Gas-Chromatography Columns.

    SciTech Connect

    Read, Douglas; Sillerud, Colin Halliday

    2016-01-01

    The overarching goal of this project is to integrate Sandia's microfabricated gas-chromatography ( GC) columns with a stationary phase material that is capable of retaining high-volatility chemicals and permanent gases. The successful integration of such a material with GCs would dramatically expand the repertoire of detectable compounds for Sandia's various microanalysis systems. One such promising class of candidate materials is metal-organic frameworks (MOFs). In this report we detail our methods for controlled deposition of HKUST-1 MOF stationary phases within GC columns. We demonstrate: the chromatographic separation of natural gas; a method for determining MOF film thickness from chromatography alone; and the first-reported GC x GC separation of natural gas -- in general -- let alone for two disparate MOF stationary phases. In addition we determine the fundamental thermodynamic constant for mass sorption, the partition coefficient, for HKUST-1 and several light hydrocarbons and select toxic industrial chemicals.

  1. Affinity chromatography of chaperones based on denatured proteins: Analysis of cell lysates of different origin.

    PubMed

    Marchenko, N Yu; Sikorskaya, E V; Marchenkov, V V; Kashparov, I A; Semisotnov, G V

    2016-03-01

    Molecular chaperones are involved in folding, oligomerization, transport, and degradation of numerous cellular proteins. Most of chaperones are heat-shock proteins (HSPs). A number of diseases of various organisms are accompanied by changes in the structure and functional activity of chaperones, thereby revealing their vital importance. One of the fundamental properties of chaperones is their ability to bind polypeptides lacking a rigid spatial structure. Here, we demonstrate that affinity chromatography using sorbents with covalently attached denatured proteins allows effective purification and quantitative assessment of their bound protein partners. Using pure Escherichia coli chaperone GroEL (Hsp60), the capacity of denatured pepsin or lysozyme-based affinity sorbents was evaluated as 1 mg and 1.4 mg of GroEL per 1 ml of sorbent, respectively. Cell lysates of bacteria (E. coli, Thermus thermophilus, and Yersinia pseudotuberculosis), archaea (Halorubrum lacusprofundi) as well as the lysate of rat liver mitochondria were analyzed using affinity carrier with denatured lysozyme. It was found that, apart from Hsp60, other proteins with a molecular weight of about 100, 50, 40, and 20 kDa are able to interact with denatured lysozyme. PMID:26644295

  2. Purification of Bovine Carbonic Anhydrase by Affinity Chromatography: An Undergraduate Biochemistry Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Bering, C. Larry; Kuhns, Jennifer J.; Rowlett, Roger

    1998-08-01

    We have developed a rapid and inexpensive experiment utilizing affinity chromatography to isolate carbonic anhydrase (CA) from bovine blood. The more specific an affinity gel is the better the purification, but the greater the cost. Some costs would be prohibitive in the undergraduate biochemistry laboratory. Less specific resins may be more affordable but may bind a number of closely related proteins. One alternative would be to couple a specific ligand to an inexpensive resin such as an ion exchanger. We describe a simple procedure for preparing a sulfonamide-coupled resin which specifically binds CA from a blood hemolysate. The CA is eluted and analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). It was found that only a single band of 31 kD was obtained. The instructor can readily prepare the affinity gel prior to the lab, and the students, beginning with packed red blood cells can carry out the lysis, binding to the gel, elution, enzymatic assays, and electrophoresis.

  3. Weak affinity chromatography as a new approach for fragment screening in drug discovery.

    PubMed

    Duong-Thi, Minh-Dao; Meiby, Elinor; Bergström, Maria; Fex, Tomas; Isaksson, Roland; Ohlson, Sten

    2011-07-01

    Fragment-based drug design (FBDD) is currently being implemented in drug discovery, creating a demand for developing efficient techniques for fragment screening. Due to the intrinsic weak or transient binding of fragments (mM-μM in dissociation constant (K(D))) to targets, methods must be sensitive enough to accurately detect and quantify an interaction. This study presents weak affinity chromatography (WAC) as an alternative tool for screening of small fragments. The technology was demonstrated by screening of a selected 23-compound fragment collection of documented binders, mostly amidines, using trypsin and thrombin as model target protease proteins. WAC was proven to be a sensitive, robust, and reproducible technique that also provides information about affinity of a fragment in the range of 1 mM-10 μM. Furthermore, it has potential for high throughput as was evidenced by analyzing mixtures in the range of 10 substances by WAC-MS. The accessibility and flexibility of the technology were shown as fragment screening can be performed on standard HPLC equipment. The technology can further be miniaturized and adapted to the requirements of affinity ranges of the fragment library. All these features of WAC make it a potential method in drug discovery for fragment screening. PMID:21352794

  4. Signal analysis of NEMS sensors at the output of a chromatography column

    SciTech Connect

    Bertholon, François; Harant, Olivier; Bourlon, Bertrand; Gerfault, Laurent; Grangeat, Pierre; Jutten, Christian

    2015-01-13

    This article introduces a joined Bayesian estimation of gas samples issued from a gas chromatography column (GC) coupled with a NEMS sensor based on Giddings Eyring microscopic molecular stochastic model. The posterior distribution is sampled using a Monte Carlo Markov Chain and Gibbs sampling. Parameters are estimated using the posterior mean. This estimation scheme is finally applied on simulated and real datasets using this molecular stochastic forward model.

  5. Amine Gradient Stationary Phases on In-House Built Monolithic Columns for Liquid Chromatography.

    PubMed

    Dewoolkar, Veeren C; Jeong, Lena N; Cook, Daniel W; Ashraf, Kayesh M; Rutan, Sarah C; Collinson, Maryanne M

    2016-06-01

    Stationary phase gradients on monolithic silica columns have been successfully and reproducibly prepared and characterized with comparisons made to uniformly modified stationary phases. Stationary phase gradients hold great potential for use in liquid chromatography (LC), both in terms of simplifying analysis as well as providing novel selectivity. In this work, we demonstrate the creation of a continuous stationary phase gradient on in-house synthesized monolithic columns by infusing an aminoalkoxysilane solution through the silica monoliths via controlled rate infusion. The presence of amine and its distribution along the length of gradient and uniformly modified columns were assessed via X-ray photoelectron spectroscopy (XPS). XPS showed a clear gradient in surface coverage along the length of the column for the gradient stationary phases while a near uniform distribution on the uniformly modified stationary phases. To demonstrate the application of these gradient stationary phases, the separations of both nucleobases and weak acids/weak bases on these gradient stationary phases have been compared to uniformly modified and unmodified silica columns. Of particular note, the retention characteristics of 11 gradient columns, 5 uniformly modified columns, and 5 unmodified columns have been tested to establish the reproducibility of the synthetic procedures. Standard deviations of the retention factors were in the range from 0.06 to 0.5, depending on the analyte species. We show that selectivity is achieved with the stationary phase gradients that are significantly different from either uniformly modified amine or unmodified columns. These results indicate the significant promise of this strategy for creating novel stationary phases for LC. PMID:27203513

  6. Preparation of a high-performance multi-lectin affinity chromatography (HP-M-LAC) adsorbent for the analysis of human plasma glycoproteins.

    PubMed

    Kullolli, Majlinda; Hancock, William S; Hincapie, Marina

    2008-08-01

    We report on the preparation of an improved multi-lectin affinity support for HPLC separations. We combined the selectivity of three different lectins: concanavalin A (ConA), wheat germ agglutinin (WGA), and jacalin (JAC). Each lectin was first covalently immobilized onto a polymeric matrix and then the three lectin media were combined in equal ratios. The beads were packed into a column to produce a mixed-bed multi-lectin HPLC column (high-performance multi-lectin affinity chromatography (HP-M-LAC)) for fast chromatographic affinity separations. The support was characterized with respect to kinetics of immobilization, ligand density, and binding capacity for human plasma glycoproteins. A high lectin density (15 mg/mL of beads) was found to be optimal for the binding of glycoproteins from human plasma. A single clinical sample can be fractionated in less than 10 min per run, making this a useful sample preparation tool for proteomics/glycoproteomics studies associated with disease abnormalities. PMID:18693314

  7. Purification of His6-organophosphate hydrolase using monolithic supermacroporous polyacrylamide cryogels developed for immobilized metal affinity chromatography.

    PubMed

    Efremenko, E; Votchitseva, Y; Plieva, F; Galaev, I; Mattiasson, B

    2006-05-01

    Organophosphate hydrolase containing hexahistidine tag at the N-terminus of recombinant protein (His6-OPH) and expressed in Escherichia coli cells was purified using supermacroporous polyacrylamide-based monolith columns with immobilized metal affinity matrices [Me2+-iminodiacetic acid (IDA)-polyacrylamide cryogel (PAA) and Me2+-N,N,N'-tris (carboxymethyl) ethylendiamine (TED)-PAA]. Enzyme preparation with 50% purity was obtained by direct chromatography of nonclarified cell homogenate, whereas the combination of addition of 10 mM imidazole to buffers for cell sonication and sample loading, the use of precolumn with IDA-PAA matrix noncharged with metal ions, and the application of high flow rate provided the 99% purity of enzyme isolated directly from crude cell homogenate. Co2+-IDA-PAA provided the highest level of selectivity for His6-OPH. Comparative analysis of purification using Co2+-IDA-PAA and Ni-nitrilotriacetic acid-agarose showed obvious advantages of the former in process time, specific activity of purified enzyme, and simplicity of adsorbent regeneration. PMID:16088350

  8. Wide Range of Biotin (Vitamin H) Content in Foodstuffs and Powdered Milks as Assessed by High-performance Affinity Chromatography

    PubMed Central

    Hayakawa, Kou; Katsumata, Noriyuki; Abe, Kiyomi; Hirano, Masahiko; Yoshikawa, Kazuyuki; Ogata, Tsutomu; Horikawa, Reiko; Nagamine, Takeaki

    2009-01-01

    The biotin (vitamin H) contents of various foodstuffs were determined by using a newly developed high-performance affinity chromatography with a trypsin-treated avidin-bound column. Biotin was derivatized with 9-anthryldiazomethane (ADAM) to fluorescent biotin-ADAM ester. A wide range of biotin contents were found in various foodstuffs depending upon the species (strain), season, organ (of plants and animals), geography, freshness, preparation method and storage method. Among the foodstuffs and fermented foods tested, it was found that wide distributions of biotin content were observed in powdered milk, natto, sake (rice wine), beer, edible oil and sea weed. Since powdered milk is important for child health and development, 14 kinds of powdered and special milks for use in children’s diseases were intensively measured. We found that several special milk powders for children with allergies contained low levels of free biotin. Use of these powdered milks caused skin diseases and alopecia in some patients possessing thermolabile serum biotinidase, and administration of free biotin improved their symptoms dramatically. Therefore, it is essential to estimate the total and free biotin contents on each foodstuff in order to improve effective biotin intake and support better health and quality of life for people. PMID:24790379

  9. Monolith immuno-affinity enrichment liquid chromatography tandem mass spectrometry for quantitative protein analysis of recombinant bovine somatotropin in serum.

    PubMed

    Smits, Nathalie G E; Blokland, Marco H; Wubs, Klaas L; Nessen, Merel A; van Ginkel, Leen A; Nielen, Michel W F

    2015-08-01

    The use of recombinant bovine somatotropin (rbST) to enhance milk production is approved in several countries, but it is prohibited in the European Union. According to EU legislation, it is necessary to confirm positive screening results prior to enforcement. Although adequate screening assays are available nowadays, development of liquid chromatography tandem mass spectrometry (LC-MS/MS) confirmatory methods to detect low levels of rbST is still a challenge. Here, we present a novel approach using immuno-affinity enrichment on monolithic micro-columns in combination with state-of-the-art ultra-high pressure LC-MS/MS (UHPLC-MS/MS) detection. The developed approach enables detection and confirmation of rbST in serum at a decision limit (CCα) concentration of 0.8 ng mL(-1). Furthermore, the method is easy to handle, robust and reproducible. We successfully applied the confirmatory method to serum samples from rbST treated cows that were found suspect after immunoassay-based screening. The use of rbST could be confirmed over 1 week after treatment, and the developed method demonstrated the sensitivity needed for effective control. Graphical Abstract Graphical summary of the workflow, for serum preparation, enrichment with monolith microcolumns and LC-MS/MS measurement of rbST. PMID:26077745

  10. Proteomic analysis of human O {sup 6}-methylguanine-DNA methyltransferase by affinity chromatography and tandem mass spectrometry

    SciTech Connect

    Niture, Suryakant K.; Doneanu, Catalin E.; Velu, Chinavenmeni S.; Bailey, Nathan I.; Srivenugopal, Kalkunte S. . E-mail: Kalkunte.srivenugopal@ttuhsc.edu

    2005-12-02

    Recent evidence suggests that human O {sup 6}-methylguanine-DNA methyltransferase (MGMT), a DNA repair protein that protects the genome against mutagens and accords tumor resistance to many anticancer alkylating agents, may have other roles besides repair. Therefore, we isolated MGMT-interacting proteins from extracts of HT29 human colon cancer cells using affinity chromatography on MGMT-Sepharose. Specific proteins bound to this column were identified by electrospray ionization tandem mass spectrometry and/or Western blotting. These procedures identified >60 MGMT-interacting proteins with diverse functions including those involved in DNA replication and repair (MCM2, PCNA, ORC1, DNA polymerase {delta}, MSH-2, and DNA-dependent protein kinase), cell cycle progression (CDK1, cyclin B, CDK2, CDC7, CDC10, 14-3-3 protein, and p21{sup waf1/cip1}), RNA processing and translation (poly(A)-binding protein, nucleolin, heterogeneous nuclear ribonucleoproteins, A2/B1, and elongation factor-1{alpha}), several histones (H4, H3.4, and H2A.1), and topoisomerase I. The heat shock proteins, HSP-90{alpha} and {beta}, also bound strongly with MGMT. The DNA repair activity of MGMT was greatly enhanced in the presence of interacting proteins or histones. These data, for the first time, suggest that human MGMT is likely to have additional functions, possibly, in sensing and integrating the DNA damage/repair-related signals with replication, cell cycle progression, and genomic stability.

  11. Core-Shell Columns in High-Performance Liquid Chromatography: Food Analysis Applications

    PubMed Central

    Preti, Raffaella

    2016-01-01

    The increased separation efficiency provided by the new technology of column packed with core-shell particles in high-performance liquid chromatography (HPLC) has resulted in their widespread diffusion in several analytical fields: from pharmaceutical, biological, environmental, and toxicological. The present paper presents their most recent applications in food analysis. Their use has proved to be particularly advantageous for the determination of compounds at trace levels or when a large amount of samples must be analyzed fast using reliable and solvent-saving apparatus. The literature hereby described shows how the outstanding performances provided by core-shell particles column on a traditional HPLC instruments are comparable to those obtained with a costly UHPLC instrumentation, making this novel column a promising key tool in food analysis. PMID:27143972

  12. A micro gas chromatography column with a micro thermal conductivity detector for volatile organic compound analysis.

    PubMed

    Sun, J H; Cui, D F; Chen, X; Zhang, L L; Cai, H Y; Li, H

    2013-02-01

    In this paper, a micro gas chromatography (μGC) system contained a μGC column and a micro thermal conductivity detector (μTCD) was proposed. In order to reduce the volume of the system, some micro heaters were integrated on the surface and backside of the GC column, which could provide a robust temperature programming capability and rapidly increase the temperature of the μGC column. In addition, a silicon-glass μTCD with four-thermistor thermal conductivity cells that can offer significant advantages over previously reported designs including low dead volume, good thermal isolation, and elimination of the thermal noise was proposed in this paper. Experimental results have indicated that the μGC system with a detection limit of several ppm concentration levels separated and detected the benzene, toluene, and styrene in less than 3 min, and the μGC system also exhibited a good linear response in the test range. PMID:23464240

  13. A micro gas chromatography column with a micro thermal conductivity detector for volatile organic compound analysis

    NASA Astrophysics Data System (ADS)

    Sun, J. H.; Cui, D. F.; Chen, X.; Zhang, L. L.; Cai, H. Y.; Li, H.

    2013-02-01

    In this paper, a micro gas chromatography (μGC) system contained a μGC column and a micro thermal conductivity detector (μTCD) was proposed. In order to reduce the volume of the system, some micro heaters were integrated on the surface and backside of the GC column, which could provide a robust temperature programming capability and rapidly increase the temperature of the μGC column. In addition, a silicon-glass μTCD with four-thermistor thermal conductivity cells that can offer significant advantages over previously reported designs including low dead volume, good thermal isolation, and elimination of the thermal noise was proposed in this paper. Experimental results have indicated that the μGC system with a detection limit of several ppm concentration levels separated and detected the benzene, toluene, and styrene in less than 3 min, and the μGC system also exhibited a good linear response in the test range.

  14. Novel design for centrifugal counter-current chromatography: VI. Ellipsoid column.

    PubMed

    Gu, Dongyu; Yang, Yi; Xin, Xuelei; Aisa, Haji Akber; Ito, Yoichiro

    2015-01-01

    A novel ellipsoid column was designed for centrifugal counter-current chromatography. Performance of the ellipsoid column with a capacity of 3.4 mL was examined with three different solvent systems composed of 1-butanol-acetic acid-water (4:1:5, v/v) (BAW), hexane-ethyl acetate-methanol-0.1 M HCl (1:1:1:1, v/v) (HEMH), and 12.5% (w/w) PEG1000 and 12.5% (w/w) dibasic potassium phosphate in water (PEG-DPP) each with suitable test samples. In dipeptide separation with BAW system, both stationary phase retention (Sf) and peak resolution (Rs) of the ellipsoid column were much higher at 0° column angle (column axis parallel to the centrifugal force) than at 90° column angle (column axis perpendicular to the centrifugal force), where elution with the lower phase at a low flow rate produced the best separation yielding Rs at 2.02 with 27.8% Sf at a flow rate of 0.07 ml/min. In the DNP-amino acid separation with HEMW system, the best results were obtained at a flow rate of 0.05 ml/min with 31.6% Sf yielding high Rs values at 2.16 between DNP-DL-glu and DNP-β-ala peaks and 1.81 between DNP-β-ala and DNP-L-ala peaks. In protein separation with PEG-DPP system, lysozyme and myolobin were resolved at Rs of 1.08 at a flow rate of 0.03 ml/min with 38.9% Sf. Most of those Rs values exceed those obtained from the figure-8 column under similar experimental conditions previously reported. PMID:25309116

  15. Determination of zearalenone content in cereals and feedstuffs by immunoaffinity column coupled with liquid chromatography.

    PubMed

    Fazekas, B; Tar, A

    2001-01-01

    The zearalenone content of maize, wheat, barley, swine feed, and poultry feed samples was determined by immunoaffinity column cleanup followed by liquid chromatography (IAC-LC). Samples were extracted in methanol-water (8 + 2, v/v) solution. The filtered extract was diluted with distilled water and applied to immunoaffinity columns. Zearalenone was eluted with methanol, dried by evaporation, and dissolved in acetonitrile-water (3 + 7, v/v). Zearalenone was separated by isocratic elution of acetonitrile-water (50 + 50, v/v) on reversed-phase C18 column. The quantitative analysis was performed by fluorescence detector and confirmation was based on the UV spectrum obtained by a diode array detector. The mean recovery rate of zearalenone was 82-97% (RSD, 1.4-4.1%) on the original (single-use) immunoaffinity columns. The limit of detection of zearalenone by fluorescence was 10 ng/g at a signal-to-noise ratio of 10:1 and 30 ng/g by spectral confirmation in UV. A good correlation was found (R2 = 0.89) between the results obtained by IAC-LC and by the official AOAC-LC method. The specificity of the method was increased by using fluorescence detection in parallel with UV detection. This method was applicable to the determination of zearalenone content in cereals and other kinds of feedstuffs. Reusability of immunoaffinity columns was examined by washing with water after sample elution and allowing columns to stand for 24 h at room temperature. The zearalenone recovery rate of the regenerated columns varied between 79 and 95% (RSD, 3.2-6.3%). Columns can be regenerated at least 3 times without altering their performance and without affecting the results of repeated determinations. PMID:11601464

  16. Engineering Escherichia coli BL21(DE3) Derivative Strains To Minimize E. coli Protein Contamination after Purification by Immobilized Metal Affinity Chromatography ▿ † ‡

    PubMed Central

    Robichon, Carine; Luo, Jianying; Causey, Thomas B.; Benner, Jack S.; Samuelson, James C.

    2011-01-01

    Recombinant His-tagged proteins expressed in Escherichia coli and purified by immobilized metal affinity chromatography (IMAC) are commonly coeluted with native E. coli proteins, especially if the recombinant protein is expressed at a low level. The E. coli contaminants display high affinity to divalent nickel or cobalt ions, mainly due to the presence of clustered histidine residues or biologically relevant metal binding sites. To improve the final purity of expressed His-tagged protein, we engineered E. coli BL21(DE3) expression strains in which the most recurring contaminants are either expressed with an alternative tag or mutated to decrease their affinity to divalent cations. The current study presents the design, engineering, and characterization of two E. coli BL21(DE3) derivatives, NiCo21(DE3) and NiCo22(DE3), which express the endogenous proteins SlyD, Can, ArnA, and (optionally) AceE fused at their C terminus to a chitin binding domain (CBD) and the protein GlmS, with six surface histidines replaced by alanines. We show that each E. coli CBD-tagged protein remains active and can be efficiently eliminated from an IMAC elution fraction using a chitin column flowthrough step, while the modification of GlmS results in loss of affinity for nickel-containing resin. The “NiCo” strains uniquely complement existing methods for improving the purity of recombinant His-tagged protein. PMID:21602383

  17. ENANTIOMER SEPARATION OF POLYCHLORINATED BIPHENYL ATROPISOMERS AND POLYCHLORINATED BIPHENYL RETENTION BEHAVIOR ON MODIFIED CYCLODEXTRIN CAPILLARY GAS CHROMATOGRAPHY COLUMNS

    EPA Science Inventory

    Seven commercially-available chiral capillary gas chromatography columns containing modified cyclodextrins were evaluated for their ability to separate enantiomers of the 19 stable chiral polychlorinated biphenyl (PCB) atropisomers, and for their ability to separate these enantio...

  18. Protein Affinity Chromatography with Purified Yeast DNA Polymerase α Detects Proteins that Bind to DNA Polymerase

    NASA Astrophysics Data System (ADS)

    Miles, Jeff; Formosa, Tim

    1992-02-01

    We have overexpressed the POL1 gene of the yeast Saccharomyces cerevisiae and purified the resulting DNA polymerase α polypeptide in an apparently intact form. We attached the purified DNA polymerase covalently to an agarose matrix and used this matrix to chromatograph extracts prepared from yeast cells. At least six proteins bound to the yeast DNA polymerase α matrix that did not bind to a control matrix. We speculate that these proteins might be DNA polymerase α accessory proteins. Consistent with this interpretation, one of the binding proteins, which we have named POB1 (polymerase one binding), is required for normal chromosome transmission. Mutations in this gene cause increased chromosome loss and an abnormal cell morphology, phenotypes that also occur in the presence of mutations in the yeast α or δ polymerase genes. These results suggest that the interactions detected by polymerase affinity chromatography are biologically relevant and may help to illuminate the architecture of the eukaryotic DNA replication machinery.

  19. A generic approach to post-column refocusing in liquid chromatography.

    PubMed

    De Vos, Jelle; Desmet, Gert; Eeltink, Sebastiaan

    2014-09-19

    To increase detection sensitivity in liquid chromatography, a generic post-column refocusing strategy has been developed to enrich (target) analytes prior to detection. In this strategy, after separation on the analytical column, the analytes are led to a trap column preferably containing a stationary phase with strong retentive properties (e.g. silica C30). They are then eluted using a strong solvent in a backward-elution mode. A first key element of the proposed strategy is that the trapping time should be at least equal to the time the front of the remobilization solvent needs to cover the entire length of the trap column, divided by the ratio of the flow rates used for trapping and remobilization. This condition is independent of the retention properties of the analytes in the trapping and remobilization solvent. Another essential element is the addition of a third solvent (isopropanol in the present case) to the remobilization solvent to overcome viscous-fingering effects caused by the viscosity difference between the trap and the remobilization solvents. The potential of the proposed post-column refocusing strategy is demonstrated for an isocratic separation of KI (t0 marker), an antibiotic (sulfamethazine), and acetophenone as a case study. Using optimized remobilization conditions a maximum signal-enhancement factor of 8 was achieved. Higher enhancement factors using a remobilization solvent with slightly higher elution strength were prohibited by disturbances of the UV background signal. PMID:25127691

  20. Affinity chromatography, two-dimensional electrophoresis, adapted immunodepletion and mass spectrometry used for detection of porcine and piscine heparin-binding human plasma proteins.

    PubMed

    Bjarnadóttir, Stefanía Guðrún; Flengsrud, Ragnar

    2014-01-01

    Heparin-binding proteins in human plasma were studied using affinity chromatography columns with porcine (2mL, 10.7mg capacity) and piscine heparin (5mL, 2.7mg capacity). Two-dimensional electrophoresis (Bio-Rad Protean II gel system with 16cm×16cm gels using isoelectric focusing (IEF) and nonequilibrium pH-gradient gel electrophoresis (NEPHGE)), Bruker Ultraflex MALDI-TOF mass spectrometry and immunoblotting (NovaBlot semidry discontinuous blotting) were used for unfractionated plasma. This revealed electropherograms with differences between porcine and piscine heparin-binding and totally 17 different fibrinogen variants from all 3 chains. Immunodepletion was used to remove fibrinogen (42.1mg anti-human fibrinogen in 8.4mL resin) and serum albumin (0.42mg binding capacity in 14mL resin) and porcine and piscine heparin-binding proteins were identified using liquid chromatography-mass spectrometry (Ultimate 3000 NanoLC with Acclaim PepMap 100 column (50cm×75μm)-LTQ Orbitrap Mass XL). In total, the binding of 76 putative or acknowledged biomarkers are shown. Of the identified proteins, 14 are not previously shown to be heparin-binding, such as the low concentration proteins lipocalin-1 and tropomyosin and a hitherto not detected protein in plasma, zinc finger protein 483. The putative heparin-binding sequences were analyzed. The results suggest that the combination of group specific affinity and adapted immunodepletion chromatography could be useful in the study of the plasma proteome. PMID:24316520

  1. A versatile noninvasive method for adsorber quantification in batch and column chromatography based on the ionic capacity.

    PubMed

    Huuk, Thiemo C; Briskot, Till; Hahn, Tobias; Hubbuch, Jürgen

    2016-05-01

    Within the Quality by Design (QbD) framework proposed by the International Conference on Harmonisation (ICH), high-throughput process development (HTPD) and mechanistic modeling are of outstanding importance for future biopharmaceutical chromatography process development. In order to compare the data derived from different column scales or batch chromatographies, the amount of adsorber has to be quantified with the same noninvasive method. Similarly, an important requirement for the implementation of mechanistic modeling is the reliable determination of column characteristics such as the ionic capacity Λ for ion-exchange chromatography with the same method at all scales and formats. We developed a method to determine the ionic capacity in column and batch chromatography, based on the adsorption/desorption of the natural, uv-detectable amino acid histidine. In column chromatography, this method produces results comparable to those of classical acid-base titration. In contrast to acid-base titration, this method can be adapted to robotic batch chromatographic experiments. We are able to convert the adsorber volumes in batch chromatography to the equivalent volume of a compressed column. In a case study, we demonstrate that this method increases the quality of SMA parameters fitted to batch adsorption isotherms, and the capability to predict column breakthrough experiments. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:666-677, 2016. PMID:27324662

  2. Extending the limits of operating pressure of narrow-bore column liquid chromatography instrumentation.

    PubMed

    Pauw, Ruben De; Degreef, Bart; Ritchie, Harald; Eeltink, Sebastiaan; Desmet, Gert; Broeckhoven, Ken

    2014-06-20

    The increase of the operating pressure in Liquid Chromatography, has been one of the crucial steps toward faster and more efficient separations. In the present contribution, it was investigated if the pressure limits for narrow-bore columns (2.1mm ID) could be increased beyond those of commercially available (1300bar) instrumentation without performance loss. Whereas previous studies applying pressures higher than 2000bar were limited to the use of columns with a diameter smaller or equal to 1mm, it is a difficult feat to expand this to 2.1mm ID given that viscous-heating effects increase according to the fifth power of the column radius. A prototype LC set-up was realized, allowing to operate at pressures up to 2600bar (260MPa) for large separation volumes (>5mL). The performance of an in-house-built injector was compared at 800bar to commercially available injectors, yielding equal performance but twice the maximum pressure rating. The performance of (coupled) custom columns packed with fully porous and superficially porous particles were assessed at ultra-high-pressure conditions. Increasing the inlet pressure from 800 to 2400bar and scaling the column length proportionally (from 150mm to 450mm), resulted in the theoretically expected linear increase in plate count from 20,000 to 59,000. A maximum plate number of 81,000 was realized using a 600mm long (coupled) column at 2600bar. Viscous-heating effects were diminished by insulating coupled columns and applying an intermediate-cooling strategy in a forced-air oven. PMID:24797393

  3. HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY AND THE ANALYSIS OF DRUG INTERACTIONS WITH MODIFIED PROTEINS: BINDING OF GLICLAZIDE WITH GLYCATED HUMAN SERUM ALBUMIN

    PubMed Central

    Matsuda, Ryan; Anguizola, Jeanethe; Joseph, K.S.; Hage, David S.

    2011-01-01

    This study used high-performance affinity chromatography (HPAC) to examine the binding of gliclazide (i.e., a sulfonylurea drug used to treat diabetes) with the protein human serum albumin (HSA) at various stages of modification due to glycation. Frontal analysis conducted with small HPAC columns was first used to estimate the number of binding sites and association equilibrium constants (Ka) for gliclazide with normal HSA and glycated HSA. Both normal and glycated HSA interacted with gliclazide according to a two-site model, with a class of high affinity sites (average Ka, 7.1-10 × 104 M−1) and a group of lower affinity sites (average Ka, 5.7-8.9 × 103 M−1) at pH 7.4 and 37°C. Competition experiments indicated that Sudlow sites I and II of HSA were both involved in these interactions, with the Ka values for gliclazide at these sites being 1.9 × 104 M−1 and 6.0 × 104 M−1, respectively, for normal HSA. Two samples of glycated HSA had similar affinities to normal HSA for gliclazide at Sudlow site I, but one sample had a 1.9-fold increase in affinity at this site. All three glycated HSA samples differed from normal HSA in their affinity for gliclazide at Sudlow site II. This work illustrated how HPAC can be used to examine both the overall binding of a drug with normal or modified proteins and the site-specific changes that can occur in these interactions as a result of protein modification. PMID:21922305

  4. A new type of metal chelate affinity chromatography using trivalent lanthanide ions for phosphopeptide enrichment.

    PubMed

    Mirza, Munazza R; Rainer, Matthias; Messner, Christoph B; Güzel, Yüksel; Schemeth, Dieter; Stasyk, Taras; Choudhary, Muhammad I; Huber, Lukas A; Rode, Bernd M; Bonn, Günther K

    2013-05-21

    In this study, a new type of immobilized metal-ion affinity chromatography (IMAC) resin for the isolation of phosphopeptides was synthesized which is based on the specific interaction between phosphate groups and chelated lanthanide metal ions. In this regard trivalent lanthanum, holmium and erbium ions were chelated to a highly porous phosphonate polymer which was prepared by radical polymerization of vinylphosphonic acid (VPA) and divinylbenzene (DVB). The developed method was evaluated with peptide mixtures from digested standard proteins (α-casein, β-casein and ovalbumin) as well as with bovine milk, egg white and a spiked HeLa cell lysate. Compared to the commonly used TiO2 approach, the presented method showed higher selectivity for phosphorylated peptides. This can be explained by the strong preference of trivalent lanthanide ions for phosphates with which they form very tight ionic bonds. Mono- and multiply phosphorylated peptides could be enriched and released in a single basic elution step, while non-phosphorylated peptides remained on the resin. Ab initio quantum mechanical energy minimizations of model complexes for polymer-ion-ligand interactions provided geometries, binding energies and charges which are discussed in conjunction with the observed experimental properties, leading to the most satisfying agreement. The presented lanthanide-IMAC resins represent promising affinity materials for the selective isolation of phosphopeptides from biological samples. PMID:23552617

  5. High-Performance Affinity Chromatography: Applications in Drug-Protein Binding Studies and Personalized Medicine.

    PubMed

    Li, Zhao; Beeram, Sandya R; Bi, Cong; Suresh, D; Zheng, Xiwei; Hage, David S

    2016-01-01

    The binding of drugs with proteins and other agents in serum is of interest in personalized medicine because this process can affect the dosage and action of drugs. The extent of this binding may also vary with a given disease state. These interactions may involve serum proteins, such as human serum albumin or α1-acid glycoprotein, or other agents, such as lipoproteins. High-performance affinity chromatography (HPAC) is a tool that has received increasing interest as a means for studying these interactions. This review discusses the general principles of HPAC and the various approaches that have been used in this technique to examine drug-protein binding and in work related to personalized medicine. These approaches include frontal analysis and zonal elution, as well as peak decay analysis, ultrafast affinity extraction, and chromatographic immunoassays. The operation of each method is described and examples of applications for these techniques are provided. The type of information that can be obtained by these methods is also discussed, as related to the analysis of drug-protein binding and the study of clinical or pharmaceutical samples. PMID:26827600

  6. ANALYSIS OF DRUG INTERACTIONS WITH VERY LOW DENSITY LIPOPROTEIN BY HIGH PERFORMANCE AFFINITY CHROMATOGRAPHY

    PubMed Central

    Sobansky, Matthew R.; Hage, David S.

    2014-01-01

    High-performance affinity chromatography (HPAC) was utilized to examine the binding of very low density lipoprotein (VLDL) with drugs, using R/S-propranolol as a model. These studies indicated that two mechanisms existed for the binding of R- and S-propranolol with VLDL. The first mechanism involved non-saturable partitioning of these drugs with VLDL, which probably occurred with the lipoprotein's non-polar core. This partitioning was described by overall affinity constants of 1.2 (± 0.3) × 106 M-1 for R-propranolol and 2.4 (± 0.6) × 106 M-1 for S-propranolol at pH 7.4 and 37 °C. The second mechanism occurred through saturable binding by these drugs at fixed sites on VLDL, such as represented by apolipoproteins on the surface of the lipoprotein. The association equilibrium constants for this saturable binding at 37 °C were 7.0 (± 2.3) × 104 M-1 for R-propranolol and 9.6 (± 2.2) × 104 M-1 for S-propranolol. Comparable results were obtained at 20 °C and 27 °C for the propranolol enantiomers. This work provided fundamental information on the processes involved in the binding of R- and S-propranolol to VLDL, while also illustrating how HPAC can be used to evaluate relatively complex interactions between agents such as VLDL and drugs or other solutes. PMID:25103529

  7. Binding of angiogenesis inhibitor kringle 5 to its specific ligands by frontal affinity chromatography.

    PubMed

    Bian, Liujiao; Li, Qian; Ji, Xu

    2015-07-01

    The interactions between angiogenesis inhibitor Kringle 5 and its five specific ligands were investigated by frontal affinity chromatography in combination with fluorescence spectra and site-directed molecular docking. The binding constants of trans-4-(aminomethyl) cyclohexane carboxylic acid (AMCHA), epsilon-aminocaproic acid (EACA), benzylamine, 7-aminoheptanoic acid (7-AHA) and L-lysine to Kringle 5 were 19.0×10(3), 7.97×10(3), 6.45×10(3), 6.07×10(3) and 4.04×10(3) L/mol, respectively. The five ligands bound to Kringle 5 on the lysine binding site in equimolar amounts, which was pushed mainly by hydrogen bond and Van der Waals force. This binding affinity was believed to be dependent on the functional group and flexible feature in ligands. This study will provide an important insight into the binding mechanism of angiogenesis inhibitor Kringle 5 to its specific ligands. PMID:25981289

  8. DETECTION OF HETEROGENEOUS DRUG-PROTEIN BINDING BY FRONTAL ANALYSIS AND HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY

    PubMed Central

    Tong, Zenghan; Joseph, K.S.; Hage, David S.

    2011-01-01

    This study examined the use of frontal analysis and high-performance affinity chromatography for detecting heterogeneous binding in biomolecular interactions, using the binding of acetohexamide with human serum albumin (HSA) as a model. It was found through the use of this model system and chromatographic theory that double-reciprocal plots could be used more easily than traditional isotherms for the initial detection of binding site heterogeneity. The deviations from linearity that were seen in double-reciprocal plots as a result of heterogeneity were a function of the analyte concentration, the relative affinities of the binding sites in the system and the amount of each type of site that was present. The size of these deviations was determined and compared under various conditions. Plots were also generated to show what experimental conditions would be needed to observe these deviations for general heterogeneous systems or for cases in which some preliminary information was available on the extent of binding heterogeneity. The methods developed in this work for the detection of binding heterogeneity are not limited to drug interactions with HSA but could be applied to other types of drug-protein binding or to additional biological systems with heterogeneous binding. PMID:21612784

  9. Glycan-specific whole cell affinity chromatography: A versatile microbial adhesion platform

    PubMed Central

    Van Tassell, Maxwell L.; Price, Neil P.J.; Miller, Michael J.

    2014-01-01

    We have sought a universal platform for elucidating and exploiting specificity of glycan-mediated adhesion by potentially uncharacterized microorganisms. Several techniques exist to explore microbial interactions with carbohydrate structures. Many are unsuitable for investigating specific mechanisms or uncharacterized organisms, requiring pure cultures, labeling techniques, expensive equipment, or other limitations such as questionable stability, stereospecificity, or scalability. We have adapted an affinity chromatography resin as a model to overcome these drawbacks, among others. It readily allows for the quantification, selection, and manipulation of target organisms based on interactions with glycan ligands. To maximize its utility as a selective screening method, we have constructed the tool such that it:•Promotes whole-cell interactions using viable, unaltered cells.•Provides robust spatial interactions with target glycans, presented with controlled stereo-specificity, for high affinity/avidity interactions that reflect a complex in vivo matrix.•Has the ability to utilize any reducing glycan, is quick, efficient, safe, and affordable to construct, and is scalable and reusable for multiple applications. PMID:26150959

  10. Necator americanus secretory acetylcholinesterase and its purification from excretory-secretory products by affinity chromatography.

    PubMed

    Pritchard, D I; Leggett, K V; Rogan, M T; McKean, P G; Brown, A

    1991-03-01

    Acetylcholinesterase (AChE) secretion by adult N. americanus was enhanced in vitro by incorporating insoluble collagen rafts into culture dishes. Enzyme produced in this way had preferential substrate specificity for acetylthiocholine iodide (ATC), and its activity was inhibited by eserine (1.1 x 10(-8) M). Ancylostoma ceylanicum, another hookworm species, failed to produce comparable amounts of AChE in culture. AChE was efficiently purified from culture medium by affinity chromatography on edrophonium sepharose; 81% of the AChE activity was retained by the affinity matrix, although this fraction contained only 4.3% of the protein loaded. Antisera raised against purified AChE in rabbits immunohistochemically stained the oesophageal glands of the parasite, and reacted with molecules of 32, 60, 80, 140 and 220 kDa in reduced adult ES products on Western blotting, although differential activity was observed against worm homogenates and earlier developmental stages. On IEF, purified AChE resolved predominantly with a pl of 3.55; proteins with a similar pl were recognized by rabbit anti-AChE. IgG preparations of this antiserum inhibited AChE activity in ES products, and inhibited AChE secretion by adult worms in culture. The availability of this immunological probe will allow definitive experiments to be conducted on the role of this enigmatic enzyme in the host-parasite relationship. PMID:2052405

  11. ANALYSIS OF DRUG-PROTEIN BINDING BY ULTRAFAST AFFINITY CHROMATOGRAPHY USING IMMOBILIZED HUMAN SERUM ALBUMIN

    PubMed Central

    Mallik, Rangan; Yoo, Michelle J.; Briscoe, Chad J.; Hage, David S.

    2010-01-01

    Human serum albumin (HSA) was explored for use as a stationary phase and ligand in affinity microcolumns for the ultrafast extraction of free drug fractions and the use of this information for the analysis of drug-protein binding. Warfarin, imipramine, and ibuprofen were used as model analytes in this study. It was found that greater than 95% extraction of all these drugs could be achieved in as little as 250 ms on HSA microcolumns. The retained drug fraction was then eluted from the same column under isocratic conditions, giving elution in less than 40 s when working at 4.5 mL/min. The chromatographic behavior of this system gave a good fit with that predicted by computer simulations based on a reversible, saturable model for the binding of an injected drug with immobilized HSA. The free fractions measured by this method were found to be comparable to those determined by ultrafiltration, and equilibrium constants estimated by this approach gave good agreement with literature values. Advantages of this method include its speed and the relatively low cost of microcolumns that contain HSA. The ability of HSA to bind many types of drugs also creates the possibility of using the same affinity microcolumn to study and measure the free fractions for a variety of pharmaceutical agents. These properties make this technique appealing for use in drug binding studies and in the high-throughput screening of new drug candidates. PMID:20227701

  12. High resolution capillary column development for selective separations in gas chromatography

    SciTech Connect

    Przybyciel, M.

    1985-01-01

    A review of techniques for the preparation of high resolution capillary columns for gas chromatography is presented. Surface roughing, surface deactivation, stationary phase coating, and stationary phase crosslinking are discussed. Criteria for the selection of GC stationary phases and procedures for column evaluation are presented. A method is proposed for the isolation and determination of crude oil contamination in tropical plants and sediments. The method uses Florisil (TM) chromatography for the simultaneous clean-up and fractionation of aliphatic and aromatic hydrocarbons. Crosslinked SE-54 fused silica capillary columns prepared in our laboratory were employed for all GC separations. Mass spectrometry was used to help locate and identify specific oil components despite the intense background of the chromatogram. Crude oil components were identified in extracts of mangrove plant samples collected from the Peck Slip oil spill site at Media Munda, Puerto Rico. Crude oil components were also identified in sediment samples from controlled oil spill of Prudhoe Bay oil at Laguna de Chiriqui, Panama.

  13. Separation of TFIIIC into two functional components by sequence specific DNA affinity chromatography.

    PubMed Central

    Dean, N; Berk, A J

    1987-01-01

    Recently, it has been shown that mammalian transcription factor IIIC (TFIIIC) activity can be separated by anion exchange FPLC chromatography into two functional components (1), both of which are required for transcription of tRNA and the adenovirus VA RNA genes. Here we show that these two functional components, designated TFIIIC1 and TFIIIC2, can also be separated by sequence specific DNA affinity chromatography. These results confirm the observation that TFIIIC can be fractionated into two components, which are both required for transcription of VA I and tRNA genes in vitro. Thus in the mammalian reconstituted system, a minimum of three proteins, in addition to RNA polymerase III, are required for the transcription of the VA and tRNA genes in vitro. The DNA binding component, TFIIIC2, binds specifically to the 3' segment of the internal promoter (the B block), demonstrated by its ability to protect this region from digestion by DNase I. TFIIIC2 is the limiting, titratable component in the phosphocellulose C fraction required for the formation of a stable pre-initiation complex on the VAI RNA gene in vitro, as demonstrated with a template competition and rescue assay. Images PMID:3697084

  14. Use of entrapment and high-performance affinity chromatography to compare the binding of drugs and site-specific probes with normal and glycated human serum albumin

    PubMed Central

    Jackson, Abby J.; Anguizola, Jeanethe; Pfaunmiller, Erika L.; Hage, David S.

    2013-01-01

    Protein entrapment and high-performance affinity chromatography were used with zonal elution to examine the changes in binding that occurred for site-specific probes and various sulfonylurea drugs with normal and glycated forms of human serum albumin (HSA). Samples of this protein in a soluble form were physically entrapped within porous silica particles by using glycogen-capped hydrazide-activated silica; these supports were then placed into 1.0 cm × 2.1 mm inner diameter columns. Initial zonal elution studies were performed using (R)-warfarin and L-tryptophan as probes for Sudlow sites I and II (i.e., the major drug binding sites of HSA), giving quantitative measures of binding affinities in good agreement with literature values. It was also found for solutes with multisite binding to the same proteins, such as many sulfonylurea drugs, that this method could be used to estimate the global affinity of the solute for the entrapped protein. This entrapment and zonal approach provided retention information with precisions of ±0.1–3.3% (± one standard deviation) and elution within 0.50–3.00 min for solutes with binding affinities of 1 × 104–3 × 105 M−1. Each entrapped-protein column was used for many binding studies, which decreased the cost and amount of protein needed per injection (e.g., the equivalent of only 125–145 pmol of immobilized HSA or glycated HSA per injection over 60 sample application cycles). This method can be adapted for use with other proteins and solutes and should be valuable in high-throughput screening or quantitative studies of drug–protein binding or related biointeractions. PMID:23657448

  15. Extraction of antibiotic zwittermicin A from Bacillus thuringiensis by macroporous resin and silica gel column chromatography.

    PubMed

    Hao, Zaibin; Yan, Li; Liu, Jianguo; Song, Fuping; Zhang, Jie; Li, Xia

    2015-01-01

    To establish a production process capable of providing refined zwittermicin A (ZwA) on a large scale, the macroporous resin and silica gel column chromatography were used to separate and purify the antibiotic ZwA from the fermentation broth of Bacillus thuringiensis HD-1. The result of high-performance liquid chromatography-mass spectrometry after purification suggests that the samples of ZwA were of high purity, 89%, and the average yield was 20 mg L(-1). Erwinia herbicola LS005, Escherichia coli, Staphylococcus aureus, and Bacillus subtilis were used to assess the toxicity of ZwA. The antibiotic had strong antibacterial activity against E. herbicola LS005 and a color reaction with ninhydrin. PMID:25099664

  16. Characterization of Extracellular Proteins in Tomato Fruit using Lectin Affinity Chromatography and LC-MALDI-MS/MS analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The large-scale isolation and analysis of glycoproteins by lectin affinity chromatography coupled with mass spectrometry has become a powerful tool to monitor changes in the “glycoproteome” of mammalian cells. Thus far, however, this approach has not been used extensively for the analysis of plant g...

  17. Determination of free bile acids in pharmaceutical preparations by packed column supercritical fluid chromatography.

    PubMed

    Scalia, S; Games, D E

    1993-01-01

    A method was developed for the baseline separation of common free bile acids by supercritical fluid chromatography. A phenylbonded silica column, with UV detection at 210 nm, and carbon dioxide modified with methanol as the mobile phase were used. The influence of the stationary phase, modifier concentration, temperature, column pressure, and modifier identity on retention was studied. The separation obtained is at least eight times faster than those achieved for similar mixtures by the existing chromatographic techniques. This new procedure is applicable to the assay of ursodeoxycholic acid and chenodeoxycholic acid in capsule and tablet formulations. Individual dosage forms were disintegrated in methanol and an aliquot of the resulting suspension was filtered for the supercritical fluid chromatographic analysis. The method is rapid, accurate, and reproducible. PMID:8429490

  18. Application of Pre-Column Labeling Liquid Chromatography for Canine Plasma-Free Amino Acid Analysis.

    PubMed

    Azuma, Kazuo; Hirao, Yoshiko; Hayakawa, Yoshihiro; Murahata, Yusuke; Osaki, Tomohiro; Tsuka, Takeshi; Imagawa, Tomohiro; Okamoto, Yoshiharu; Ito, Norihiko

    2016-01-01

    Plasma-free amino acid (PFAA) levels are a useful metric for diagnosing cancer and providing a prognosis. However, the use of analysis of PFAA levels has been limited in the veterinary medicine field. We addressed the application of liquid chromatography (LC) using a pre-column labeling technique for analysis of canine PFAA levels. This method significantly shortened the analysis time relative to conventional methods. No diurnal fluctuations were detected at 9:00 AM in most PFAA levels, and food intake increased the levels of some PFAAs, including valine, leucine, tyrosine, phenylalanine, and proline. These results indicate that LC with pre-column labeling is useful for measuring canine PFAA levels, for which time of day and interval after food intake must be taken into consideration. PMID:26771650

  19. Electrochemically-modulated liquid chromatography (EMLC): Column design, retention processes, and applications

    SciTech Connect

    Ting, E.Y.

    1997-10-08

    This work describes the continued development of a new separation technique, electrochemically-modulated liquid chromatography (EMLC), from column design, retention mechanisms to pharmaceutical applications. The introduction section provides a literature review of the technique as well as a brief overview of the research in each of the chapters. This section is followed by four chapters which investigate the issues of EMLC column design, the retention mechanism of monosubstituted aromatic compounds, and the EMLC-based applications to two important classes of pharmaceutical compounds (i.e., corticosteroids and benzodiazepines). These four sections have been removed to process separately for inclusion on the database. The dissertation concludes with a general summary, a prospectus, and a list of references cited in the General Introduction. 32 refs.

  20. Packed column supercritical fluid chromatography of sodium stearyl fumarate aqueous suspension.

    PubMed

    Gyllenhaal, Olle

    2006-03-01

    A method for the determination of sodium stearyl fumarate aqueous suspension is described. This straightforward method is based on homogenisation of the sample, dilution of a known aliquot with methanol to a suitable clear solution and mixing with an internal standard; (S)-naproxen. Separation and quantification is performed by packed column supercritical fluid chromatography on a commercial tartaric acid network polymeric column (tertbutylbenzoyl) with UV-detection at 214 nm. The precision of the presented method upon repeated analysis of a 20 mg/ml suspension is 0.5% (n = 8), and the yield is near 100%. Less than 5 min is required for the chromatographic separation with a resolution of about 3 to the internal standard. With some modification of the chromatographic conditions water samples can also be analysed. PMID:16174559

  1. Using the column wall itself as resistive heater for fast temperature gradients in liquid chromatography.

    PubMed

    De Pauw, Ruben; Pursch, Matthias; Desmet, Gert

    2015-11-13

    A new system is proposed for applying fast temperature gradients in liquid chromatography. It consists of a 0.7 mm × 150 mm fused-silica column coated with a 50 μm Nickel-layer, which is connecting with a power source and a temperature control system to perform fast and reproducible temperature gradients using the column wall itself as a resistive heater. Applying a current of 4A and passive cooling results in a maximal heating and cooling rate of, respectively, 71 and -21 °C/min. Multi-segment temperature gradients were superimposed on mobile phase gradients to enhance the selectivity for three sets of mixtures (pharmaceutical compounds, a highly complex mixture and an insecticide sample). This resulted in a higher peak count or better selectivities for the various mixtures. PMID:26476853

  2. Application of Pre-Column Labeling Liquid Chromatography for Canine Plasma-Free Amino Acid Analysis

    PubMed Central

    Azuma, Kazuo; Hirao, Yoshiko; Hayakawa, Yoshihiro; Murahata, Yusuke; Osaki, Tomohiro; Tsuka, Takeshi; Imagawa, Tomohiro; Okamoto, Yoshiharu; Ito, Norihiko

    2016-01-01

    Plasma-free amino acid (PFAA) levels are a useful metric for diagnosing cancer and providing a prognosis. However, the use of analysis of PFAA levels has been limited in the veterinary medicine field. We addressed the application of liquid chromatography (LC) using a pre-column labeling technique for analysis of canine PFAA levels. This method significantly shortened the analysis time relative to conventional methods. No diurnal fluctuations were detected at 9:00 AM in most PFAA levels, and food intake increased the levels of some PFAAs, including valine, leucine, tyrosine, phenylalanine, and proline. These results indicate that LC with pre-column labeling is useful for measuring canine PFAA levels, for which time of day and interval after food intake must be taken into consideration. PMID:26771650

  3. Measurement of bromate in bread by liquid chromatography with post-column flow reactor detection.

    PubMed

    Himata, K; Noda, M; Ando, S; Yamada, Y

    2000-01-01

    This method is suitable for the determination of bromate residues in a variety of baked goods. The peer-verified method trial was performed on white bread, multigrain bread, and coffee cake spiked with known levels of potassium bromate. The analytical portion is extracted with deionized water to remove bromate from the bulk of the baked product. The aqueous extract is carried through a series of steps to remove co-extractives that would interfere with the liquid chromatography (LC) in the determinative step or hasten the deterioration of the LC column. The extract is filtered before passing it through a reversed-phase solid-phase extraction (SPE) column and a cation-exchange column in the silver form to remove lipids and chloride, respectively. Ultrafiltration is then used to remove proteins with molecular weights of >30,000 daltons. Finally, a cation-exchange column in the sodium form is used to remove silver ions from the extract. The determinative step uses LC with a reversed-phase column and an ion-pairing agent in the mobile phase. Detection is based on the post-column reaction of bromate with o-dianisidine to form an oxidation product that is quantitated spectrophotometrically at 450 nm. Overall agreement between the submitting and peer laboratories was quite good. For bromate levels of 10-52 ppb, overall mean recoveries were 76.9 and 78.8% for the submitting and peer laboratories, respectively. The standard deviations were higher for the results of the peer laboratory, probably because of the generally higher level of baseline noise present in the chromatograms. The results demonstrate that the method provides adequate accuracy with low-fat as well as high-fat foods. Bromate at levels as low as 5 ppb (ng/g) can be detected with the method. PMID:10772172

  4. Analysis of isoamylase debranched starches with size exclusion chromatography utilizing PFG columns.

    PubMed

    Ciric, Jelena; Woortman, Albert J J; Loos, Katja

    2014-11-01

    Debranched starches were tested with a previously developed method for size exclusion chromatography (SEC) with multi detection utilizing different columns than usually used for the separation of starch in DMSO. A number of debranched starches were analyzed. This system allows good separation of amylose and amylopectin after debranching of starch, and provides quantitative information on the amylose content. Additionally molar mass versus hydrodynamic radii (Rh) distributions of various debranched starches show that the debranching was not 100% and that the differences in the structure of various starches can be followed. PMID:25129767

  5. Simple, specific analysis of organophosphorus and carbamate pesticides in sediments using column extraction and gas chromatography

    USGS Publications Warehouse

    Belisle, A.A.; Swineford, D.M.

    1988-01-01

    A simple, specific procedure was developed for the analysis of organophosphorus and carbamate pesticides in sediment. The wet soil was mixed with anhydrous sodium sulfate to bind water and the residues were column extracted in acetone:methylene chloride (1:l,v/v). Coextracted water was removed by additional sodium sulfate packed below the sample mixture. The eluate was concentrated and analyzed directly by capillary gas chromatography using phosphorus and nitrogen specific detectors. Recoveries averaged 93 % for sediments extracted shortly after spiking, but decreased significantly as the samples aged.

  6. Evaluation of microextraction/capillary column gas chromatography for monitoring industrial outfalls

    SciTech Connect

    Thielen, D.R.; Olsen, G.; Davis, A.; Bajor, E.; Stefanovski, J.; Chodkowski, J.

    1987-01-01

    Microextraction and capillary-column gas chromatography techniques are applied to plant discharge streams for repetitive wastewater discharge permit analyses. This combination allows the analyst to reduce sample preparation since microextraction replaces both purge-and-trap for volatiles and microextraction for semi-volatiles. An additional advantage is the elimination of a concentration step, which is ,ften a major contributor to low method recoveries. The overall procedure is shown to be more precise than purge-and-trap but slightly less precise than conventional extraction. The results of each method are shown to be equivalent.

  7. Inverse gas chromatography. V - Computer simulation of diffusion processes on the column

    NASA Technical Reports Server (NTRS)

    Hattam, Paul; Munk, Petr

    1988-01-01

    The elution behavior of low molecular weight probes on inverse gas chromatography (IGC) columns is simulated using a computer. The IGC model is based on a polymer stationary phase of uniform thickness with a nonnegligible resitance to probe penetration. Three characteristic numbers are found to determine the whole process: Z(p) characterizing the distribution of the probe between phases, Z(f) describing the diffusion in the polymer phase, and Z(g) related to diffusion in the gaseous phase. For situations when Z(p)/Z(f) is less than 2, the standard evaluation procedures are virtually useless. The actual behavior of such systems is described.

  8. Blind column selection protocol for two-dimensional high performance liquid chromatography.

    PubMed

    Burns, Niki K; Andrighetto, Luke M; Conlan, Xavier A; Purcell, Stuart D; Barnett, Neil W; Denning, Jacquie; Francis, Paul S; Stevenson, Paul G

    2016-07-01

    The selection of two orthogonal columns for two-dimensional high performance liquid chromatography (LC×LC) separation of natural product extracts can be a labour intensive and time consuming process and in many cases is an entirely trial-and-error approach. This paper introduces a blind optimisation method for column selection of a black box of constituent components. A data processing pipeline, created in the open source application OpenMS®, was developed to map the components within the mixture of equal mass across a library of HPLC columns; LC×LC separation space utilisation was compared by measuring the fractional surface coverage, fcoverage. It was found that for a test mixture from an opium poppy (Papaver somniferum) extract, the combination of diphenyl and C18 stationary phases provided a predicted fcoverage of 0.48 and was matched with an actual usage of 0.43. OpenMS®, in conjunction with algorithms designed in house, have allowed for a significantly quicker selection of two orthogonal columns, which have been optimised for a LC×LC separation of crude extractions of plant material. PMID:27154652

  9. Ionic liquid-based zwitterionic organic polymer monolithic column for capillary hydrophilic interaction chromatography.

    PubMed

    Wang, Tingting; Chen, Yihui; Ma, Junfeng; Zhang, Xiaodan; Zhang, Lihua; Zhang, Yukui

    2015-08-21

    In the current study, a novel ionic liquid-based zwitterionic organic polymer monolithic column was developed by copolymerizing 1-vinyl-3-(butyl-4-sulfonate) imidazolium, acrylamide and N,N'-methylenebisacrylamide in a quaternary porogenic solvent consisting of formamide, dimethyl sulphoxide, polyethylene glycol 8000 and polyethylene glycol 10,000 for capillary hydrophilic interaction chromatography. The monolithic stationary phase was optimized by adjusting the amount of monomer in the polymerization solution along with the composition of porogenic solvent. The optimized monolith exhibited excellent selectivity and favorable retention for nucleosides and benzoic acid derivatives. The primary factors affecting the separation efficiency of the monolithic column (including acetonitrile content, pH, and buffer salt concentration in the mobile phase) have been thoroughly evaluated. Excellent reproducibility of the retention times for five nucleosides was achieved, with relative standard deviations of run-to-run (n = 3), column-to-column (n = 3) and batch-to-batch (n = 3) in the range of 0.18-0.48%, 2.33-4.20% and 3.07-6.50%, respectively. PMID:26114194

  10. Surfactant-Bound Monolithic Columns for Separation of Proteins in Capillary High Performance Liquid Chromatography

    PubMed Central

    Gu, Congying; He, Jun; Jia, Jinping; Fang, Nenghu; Simmons, Robert; Shamsi, Shahab A.

    2011-01-01

    A surfactant bound monolithic stationary phase based on the co-polymerization of 11-acrylamino-undecanoic acid (AAUA) is designed for capillary high performance liquid chromatography (HPLC). Using D-optimal design, the effect of the polymerization mixture (concentrations of monomer, crosslinker and porogens) on the chromatographic performance (resolution and analysis time) of the AAUA-EDMA monolithic column was evaluated. The polymerization mixture was optimized using three proteins as model test solutes. The D-optimal design indicates a strong dependence of chromatographic parameters on the concentration of porogens (1,4-butanediol and water) in the polymerization mixture. Optimized solutions for fast separation and high resolution separation, respectively, were obtained using the proposed multivariate optimization. Differences less than 6.8% between the predicted and the experimental values in terms of resolution and retention time indeed confirmed that the proposed approach is practical. Using the optimized column, fast separation of proteins could be obtained in 2.5 min, and a tryptic digest of myoglobin was successfully separated on the high resolution column. The physical properties (i.e. morphology, porosity and permeability) of the optimized monolithic column were thoroughly investigated. It appears that this surfactant-bound monolith may have a great potential as a new generation of capillary HPLC stationary phase. PMID:20031139

  11. High-performance liquid chromatography method for ferric iron chelators using a post-column reaction with Calcein Blue.

    PubMed

    Ariga, Tomoko; Ito, Kyoko; Imura, Yuki; Yoshimura, Etsuro

    2015-03-15

    Iron (Fe) is an essential element for higher plants, which take it up from the soil at the root surface and transport it to shoots through the xylem. Fe(III) chelators, such as organic acids and phytosiderophores, play important roles in the acquisition and transportation of Fe(III). Therefore, a selective and sensitive method for analyzing Fe(III) chelators is required to study the many Fe-related physiological mechanisms in plants. A novel analytical approach employing a high-performance liquid chromatography post-column method with fluorescence detection was developed to separate and detect Fe(III) chelators. This method takes advantage of the quenching of the fluorescence of Calcein Blue (CB) that occurs with the formation of an Fe(III)-CB complex and the dequenching that occurs with the release of CB as a result of competition for Fe(III) between CB and an Fe(III) chelator. This simple experimental method does not require complicated pretreatments and can selectively detect Fe(III) chelators according to their Fe(III)-chelating ability. The detection limit for citric acid using this method was 72pmol. Furthermore, this method can also detect unknown Fe(III) chelators that exhibit a high affinity for Fe(III). The method was evaluated with xylem sap of barley, which was shown to contain several Fe(III) chelators. PMID:25658515

  12. An Oligonucleotide Affinity Column for RNA-Dependent DNA Polymerase from RNA Tumor Viruses

    PubMed Central

    Gerwin, Brenda I.; Milstien, Julie B.

    1972-01-01

    Columns of (dT)12-18-cellulose provide a one-step enrichment procedure for RNA-dependent DNA polymerase. The enzyme of the virus from RD-114 cells, as well as that from Rauscher murine leukemia virus, have been purified in this way. The preference of viral as compared to cellular DNA polymerases for (dT)12-18 as a primer is reflected in the fact that the DNA polymerases of uninfected cells do not bind to this column. Viral enzymes have been purified and identified from crude cellular extracts. PMID:4506781

  13. Comparing multistep immobilized metal affinity chromatography and multistep TiO2 methods for phosphopeptide enrichment.

    PubMed

    Yue, Xiaoshan; Schunter, Alissa; Hummon, Amanda B

    2015-09-01

    Phosphopeptide enrichment from complicated peptide mixtures is an essential step for mass spectrometry-based phosphoproteomic studies to reduce sample complexity and ionization suppression effects. Typical methods for enriching phosphopeptides include immobilized metal affinity chromatography (IMAC) or titanium dioxide (TiO2) beads, which have selective affinity and can interact with phosphopeptides. In this study, the IMAC enrichment method was compared with the TiO2 enrichment method, using a multistep enrichment strategy from whole cell lysate, to evaluate their abilities to enrich for different types of phosphopeptides. The peptide-to-beads ratios were optimized for both IMAC and TiO2 beads. Both IMAC and TiO2 enrichments were performed for three rounds to enable the maximum extraction of phosphopeptides from the whole cell lysates. The phosphopeptides that are unique to IMAC enrichment, unique to TiO2 enrichment, and identified with both IMAC and TiO2 enrichment were analyzed for their characteristics. Both IMAC and TiO2 enriched similar amounts of phosphopeptides with comparable enrichment efficiency. However, phosphopeptides that are unique to IMAC enrichment showed a higher percentage of multiphosphopeptides as well as a higher percentage of longer, basic, and hydrophilic phosphopeptides. Also, the IMAC and TiO2 procedures clearly enriched phosphopeptides with different motifs. Finally, further enriching with two rounds of TiO2 from the supernatant after IMAC enrichment or further enriching with two rounds of IMAC from the supernatant TiO2 enrichment does not fully recover the phosphopeptides that are not identified with the corresponding multistep enrichment. PMID:26237447

  14. Simulation of the dynamic packing behavior of preparative chromatography columns via discrete particle modeling.

    PubMed

    Dorn, Martin; Hekmat, Dariusch

    2016-03-01

    Preparative packed-bed chromatography using polymer-based, compressible, porous resins is a powerful method for purification of macromolecular bioproducts. During operation, a complex, hysteretic, thus, history-dependent packed bed behavior is often observed but theoretical understanding of the causes is limited. Therefore, a rigorous modeling approach of the chromatography column on the particle scale has been made which takes into account interparticle micromechanics and fluid-particle interactions for the first time. A three-dimensional deterministic model was created by applying Computational Fluid Dynamics (CFD) coupled with the Discrete Element Method (DEM). The column packing behavior during either flow or mechanical compression was investigated in-silico and in laboratory experiments. A pronounced axial compression-relaxation profile was identified that differed for both compression strategies. Void spaces were clearly visible in the packed bed after compression. It was assumed that the observed bed inhomogeneity was because of a force-chain network at the particle scale. The simulation satisfactorily reproduced the measured behavior regarding packing compression as well as pressure-flow dependency. Furthermore, the particle Young's modulus and particle-wall friction as well as interparticle friction were identified as crucial parameters affecting packing dynamics. It was concluded that compaction of the chromatographic bed is rather because of particle rearrangement than particle deformation. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:363-371, 2016. PMID:26588806

  15. [Determination of major carbonyls in mainstream smoke by rapid column high performance liquid chromatography].

    PubMed

    Huang, Yun; Wang, Yigeng; Miao, Mingming; Zhao, Qihua; Yang, Guangyu

    2007-03-01

    Abstract: The determination of major carbonyl compounds in mainstream cigarette smoke by rapid column high performance liquid chromatography was investigated. The cigarette smoke was collected using a Cambridge filter treated with acidic solution of 2, 4-dinitrophenyl-hydrazine. Formaldehyde, acetaldehyde, acetone, acrolein, propionaldehyde, crotonaldehyde, 2-butanone and butyraldehyde were extracted from the Cambridge filter with 50 mL of 2% pyridine acetonitrile solution. The carbonyl compounds in samples were separated on a ZORBAX Stable Bound rapid column (50 mm x 4. 6 mm, 1. 8 microm) in approximately seven minutes and then determined by high performance liquid chromatography with a diode array detector. The average recoveries were in the range of 89. 1% to 99. 2% and the relative standard deviations (RSDs) were generally below 6. 0%. The eight carbonyl compounds in the mainstream smoke of five brands of cigarettes were determined using this method. This method is faster, simpler and consumes less solvent. It is suitable for rapid analysis of carbonyl compounds in mainstream cigarette smoke. PMID:17580693

  16. Reaction flow chromatography for rapid post column derivatisations: the analysis of antioxidants in natural products.

    PubMed

    Camenzuli, M; Ritchie, H J; Dennis, G R; Shalliker, R A

    2013-08-16

    The analysis of antioxidants from complex samples is conveniently achieved using liquid chromatography, which provides sample fraction, coupled with an on-line antioxidant assay, which provides detection. One particularly useful on-line antioxidant assay that has routinely been coupled with HPLC involves the diphenylpicrylhydrazyl radical (DPPH), which provides a positive test for phenolic antioxidants through a decolorisation of the DPPH reagent. A limitation of this assay, however, is the need to employ a reaction coil, which is often large with respect to the peak volume, consequently adding substantial band broadening to the separation. In this study we introduce a new concept that can be employed for systems requiring post column derivatisations, such as the DPPH assay. We have termed this 'reaction flow' chromatography, whereby, the derivatisation reagent can be added directly into one of the outlet ports of a parallel segmented flow column. Subsequently, the mixing between the derivatising reagent and the solute is very efficient removing the need to employ reaction coils. The concept is tested here using the DPPH assay for the analysis of antioxidants in samples derived from natural origin. PMID:23849586

  17. Preparation of high capacity affinity adsorbents using new hydrazino-carriers and their use for low and high performance affinity chromatography of lectins.

    PubMed

    Ito, Y; Yamasaki, Y; Seno, N; Matsumoto, I

    1986-04-01

    Two kinds of carriers with high concentrations of hydrazino groups were prepared by simple and convenient procedures. Hydrazino-carriers (I) and (II) were obtained on incubation of epoxy-activated carriers with hydrazine hydrate and adipic acid dihydrazide, respectively. Disaccharides were coupled to the hydrazino carriers through reductive amination in the presence of sodium cyanoborohydride. The reaction time was much shorter (24 h) than that in the case of the method involving amino-Sepharose 6B (800 h) [Matsumoto, I., Kitagaki, H., Akai, Y., Ito, Y., & Seno, N. (1981) Anal. Biochem. 116, 103-110]. The glycamyl-Sepharose thus obtained showed high adsorption capacities for lectins. Glycamyl-TSKgel G3000 PW obtained by the same method with TSKgel G3000 PW, which is a hydrophobic vinyl polymer matrix for high performance gel permeation liquid chromatography, could be successfully used for the high performance liquid affinity chromatography of lectins. N-Acetylglutamic acid was coupled to hydrazino-Sepharose 4B (I) in the presence of N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline. The adsorbent obtained was used for the affinity chromatography of Japanese horseshoe crab lectin. PMID:3711062

  18. Recombinant Passenger Proteins Can Be Conveniently Purified by One-Step Affinity Chromatography.

    PubMed

    Wang, Hua-zhen; Chu, Zhi-zhan; Chen, Chang-chao; Cao, Ao-cheng; Tong, Xin; Ouyang, Can-bin; Yuan, Qi-hang; Wang, Mi-nan; Wu, Zhong-kun; Wang, Hai-hong; Wang, Sheng-bin

    2015-01-01

    Fusion tag is one of the best available tools to date for enhancement of the solubility or improvement of the expression level of recombinant proteins in Escherichia coli. Typically, two consecutive affinity purification steps are often necessitated for the purification of passenger proteins. As a fusion tag, acyl carrier protein (ACP) could greatly increase the soluble expression level of Glucokinase (GlcK), α-Amylase (Amy) and GFP. When fusion protein ACP-G2-GlcK-Histag and ACP-G2-Amy-Histag, in which a protease TEV recognition site was inserted between the fusion tag and passenger protein, were coexpressed with protease TEV respectively in E. coli, the efficient intracellular processing of fusion proteins was achieved. The resulting passenger protein GlcK-Histag and Amy-Histag accumulated predominantly in a soluble form, and could be conveniently purified by one-step Ni-chelating chromatography. However, the fusion protein ACP-GFP-Histag was processed incompletely by the protease TEV coexpressed in vivo, and a large portion of the resulting target protein GFP-Histag aggregated in insoluble form, indicating that the intracellular processing may affect the solubility of cleaved passenger protein. In this context, the soluble fusion protein ACP-GFP-Histag, contained in the supernatant of E. coli cell lysate, was directly subjected to cleavage in vitro by mixing it with the clarified cell lysate of E. coli overexpressing protease TEV. Consequently, the resulting target protein GFP-Histag could accumulate predominantly in a soluble form, and be purified conveniently by one-step Ni-chelating chromatography. The approaches presented here greatly simplify the purification process of passenger proteins, and eliminate the use of large amounts of pure site-specific proteases. PMID:26641240

  19. Recombinant Passenger Proteins Can Be Conveniently Purified by One-Step Affinity Chromatography

    PubMed Central

    Wang, Hua-zhen; Chu, Zhi-zhan; Chen, Chang-chao; Cao, Ao-cheng; Tong, Xin; Ouyang, Can-bin; Yuan, Qi-hang; Wang, Mi-nan; Wu, Zhong-kun; Wang, Hai-hong; Wang, Sheng-bin

    2015-01-01

    Fusion tag is one of the best available tools to date for enhancement of the solubility or improvement of the expression level of recombinant proteins in Escherichia coli. Typically, two consecutive affinity purification steps are often necessitated for the purification of passenger proteins. As a fusion tag, acyl carrier protein (ACP) could greatly increase the soluble expression level of Glucokinase (GlcK), α-Amylase (Amy) and GFP. When fusion protein ACP-G2-GlcK-Histag and ACP-G2-Amy-Histag, in which a protease TEV recognition site was inserted between the fusion tag and passenger protein, were coexpressed with protease TEV respectively in E. coli, the efficient intracellular processing of fusion proteins was achieved. The resulting passenger protein GlcK-Histag and Amy-Histag accumulated predominantly in a soluble form, and could be conveniently purified by one-step Ni-chelating chromatography. However, the fusion protein ACP-GFP-Histag was processed incompletely by the protease TEV coexpressed in vivo, and a large portion of the resulting target protein GFP-Histag aggregated in insoluble form, indicating that the intracellular processing may affect the solubility of cleaved passenger protein. In this context, the soluble fusion protein ACP-GFP-Histag, contained in the supernatant of E. coli cell lysate, was directly subjected to cleavage in vitro by mixing it with the clarified cell lysate of E. coli overexpressing protease TEV. Consequently, the resulting target protein GFP-Histag could accumulate predominantly in a soluble form, and be purified conveniently by one-step Ni-chelating chromatography. The approaches presented here greatly simplify the purification process of passenger proteins, and eliminate the use of large amounts of pure site-specific proteases. PMID:26641240

  20. Penetrable silica microspheres for immobilization of bovine serum albumin and their application to the study of the interaction between imatinib mesylate and protein by frontal affinity chromatography.

    PubMed

    Ma, Liyun; Li, Jing; Zhao, Juan; Liao, Han; Xu, Li; Shi, Zhi-guo

    2016-01-01

    In the current study, novel featured silica, named penetrable silica, simultaneously containing macropores and mesopores, was immobilized with bovine serum albumin (BSA) via Schiff base method. The obtained BSA-SiO2 was employed as the high-performance liquid chromatographic (HPLC) stationary phase. Firstly, D- and L-tryptophan were used as probes to investigate the chiral separation ability of the BSA-SiO2 stationary phase. An excellent enantioseparation factor was obtained up to 4.3 with acceptable stability within at least 1 month. Next, the BSA-SiO2 stationary phase was applied to study the interaction between imatinib mesylate (IM) and BSA by frontal affinity chromatography. A single type of binding site was found for IM with the immobilized BSA, and the hydrogen-bonding and van der Waals interactions were expected to be contributing interactions based on the thermodynamic studies, and this was a spontaneous process. Compared to the traditional silica for HPLC stationary phase, the proposed penetrable silica microsphere possessed a larger capacity to bond more BSA, minimizing column overloading effects and enhancing enantioseparation ability. In addition, the lower running column back pressure and fast mass transfer were meaningful for the column stability and lifetime. It was a good substrate to immobilize biomolecules for fast chiral resolution and screening drug-protein interactions. PMID:26573171

  1. Advantages of core-shell particle columns in Sequential Injection Chromatography for determination of phenolic acids.

    PubMed

    Chocholouš, Petr; Vacková, Jana; Srámková, Ivana; Satínský, Dalibor; Solich, Petr

    2013-01-15

    Currently, for Sequential Injection Chromatography (SIC), only reversed phase C18 columns have been used for chromatographic separations. This article presents the first use of three different stationary phases: three core-shell particle-packed reversed phase columns in flow systems. The aim of this work was to extend the chromatographic capabilities of the SIC system. Despite the particle-packed columns reaching system pressures of ≤ 610 PSI, their conditions matched those of a commercially produced and optimised SIC system (SIChrom™ (FIAlab(®), USA)) with a 8-port high-pressure selection valve and medium-pressure Sapphire™ syringe pump with a 4 mL reservoir and maximum system pressure of ≤ 1000 PSI. The selectivity of each of the tested columns, Ascentis(®) Express RP-Amide, Ascentis(®) Express Phenyl-Hexyl and Ascentis(®) Express C18 (30 mm × 4.6mm, core-shell particle size 2.7 μm), was compared by their ability to separate seven phenolic acids that are secondary metabolite substances widely distributed in plants. The separations of all of the components were performed by isocratic elution using binary mobile phases composed of acetonitrile and 0.065% phosphoric acid at pH 2.4 (a specific ratio was used for each column) at a flow-rate of 0.60 mL/min. The volume of the mobile phase was 3.8 mL for each separation. The injection volume of the sample was 10 μL for each separation. The UV detection wavelengths were set to 250, 280 and 325 nm. The RP-Amide column provided the highest chromatographic resolution and allowed for complete baseline separation of protocatechuic, syringic, vanillic, ferulic, sinapinic, p-coumaric and o-coumaric acids. The Phenyl-Hexyl and C18 columns were unable to completely separate the tested mixture, syringic and vanillic acid and ferulic and sinapinic acids could not be separated from one another. The analytical parameters were a LOD of 0.3 mg L(-1), a LOQ of 1.0 mg L(-1), a calibration range of 1.0-50.0 (100.0) mg L(-1

  2. Direct coupling of packed column supercritical fluid chromatography to continuous corona discharge ion mobility spectrometry.

    PubMed

    Rahmanian, A; Ghaziaskar, H S; Khayamian, T

    2013-01-11

    In this study, packed column supercritical fluid chromatography (SFC) was directly coupled to a continuous corona discharge (CD) ion mobility spectrometer (IMS) with several modifications. The main advantage of the developed detector is its capability to introduce full column effluent up to 2000 mL min(-1) CO(2) gas directly into the IMS cell relative to 40 mL min(-1) CO(2) gas as a maximum tolerance, reported for the previous IMS detectors. This achievement was made possible because of using corona discharge instead of (63)Ni as an ionization source and locating the inlet and outlet of the CO(2) gas in the counter electrode of the CD in opposite direction. In addition, a heated interface was placed between back pressure regulator (BPR) and the IMS cell to heat the output of the BPR for introducing sample as the gas phase into the IMS cell. Furthermore, a make-up methanol flow was introduced between the column outlet and BPR to provide a more uniform flow through the BPR and also to prevent freezing and deposition of the analytes in the BPR. The performance of the SFC-CD-IMS was evaluated by analysis of testosterone, medroxyprogesterone, caffeine, and theophylline as test compounds and figures of merit for these compounds have been calculated. PMID:23261285

  3. Separation of uremic toxins from urine with resorcinarene-based ion chromatography columns.

    PubMed

    Panahi, Tayyebeh; Weaver, Douglas J; Lamb, John D; Harrison, Roger G

    2015-01-01

    People with chronic kidney disease suffer from uremic toxins which accumulate in their bodies. Detection and quantification of uremic toxins help diagnose kidney problems and start patient care. The aim of this research was to seek a new method to assist this diagnosis by trace level detection and separation of guanidine containing uremic toxins in water and urine. To detect and quantify the uremic toxins, new stationary phases for ion chromatography (IC) columns based on glutamic acid functionalized resorcinarenes bound to divinylbenzene macroporous resin were prepared. The new column packing material afforded separation of the five compounds: guanidinoacetic acid, guanidine, methylguanidine, creatinine, and guanidinobenzoic acid in 30min. Peak resolutions ranged from 7.6 to 1.3. Gradient elutions at ambient temperature with methanesulfonic acid (MSA) solution as eluent resulted in detection levels in water from 10 to 47ppb and in synthetic urine from 28 to 180ppb. Limits of quantification for the analytes using pulsed amperometric detection were 30-160ppb in water and 93-590ppb in urine. Trace levels of creatinine (1ppm) were detected in the urine of a healthy individual using the columns. PMID:25537175

  4. Retention behavior of hydrophobic organic chemicals as a function of temperature in soil leaching column chromatography.

    PubMed

    Liang, Xinmiao; Xu, Feng; Lin, Bingcheng; Su, Fan; Schramm, Karl-Werner; Kettrup, Antonius

    2002-11-01

    To study the transport mechanism of hydrophobic organic chemicals (HOCs) and the energy change in soil/solvent system, a soil leaching column chromatographic (SLCC) experiment at an environmental temperature range of 20-40 degrees C was carried out, which utilized a reference soil (SP 14696) packed column and a methanol-water (1:4 by volume ratio) eluent. The transport process quickens with the increase of column temperature. The ratio of retention factors at 30 and 40 degrees C (k'30/k'40) ranged from 1.08 to 1.36. The lower enthalpy change of the solute transfer in SLCC (from eluent to soil) than in conventional reversed-phase liquid chromatography (e.g., from eluent to C18) is consistent with the hypothesis that HOCs were dominantly and physically partitioned between solvent and soil. The results were also verified by the linear solvation energy relationships analysis. The chief factor controlling the retention was found to be the solute solvophobic partition, and the second important factor was the solute hydrogen-bond basicity, while the least important factors were the solute polarizability-dipolarity and hydrogen-bond acidity. With the increase of temperature, the contributions of the solute solvophobic partition and hydrogen-bond basicity gradually decrease, and the latter decreases faster than the former. PMID:12430644

  5. Analysis of fifteen estrogen metabolites using packed column supercritical fluid chromatography-mass spectrometry.

    PubMed

    Xu, Xia; Roman, John M; Veenstra, Timothy D; Van Anda, Jennifer; Ziegler, Regina G; Issaq, Haleem J

    2006-03-01

    Packed column supercritical fluid chromatography with tandem mass spectrometry was used for the separation of estrone, estradiol, estriol, 16-epiestriol, 17-epiestriol, 16-ketoestradiol, 16alpha-hydroxyestrone, 2-methoxyestrone, 4-methoxyestrone, 2-hydroxyestrone-3-methyl ether, 2-methoxyestradiol, 4-methoxyestradiol, 2-hydroxyestrone, 4-hydroxyestrone, and 2-hydroxyestradiol. A gradient of methanol in carbon dioxide (0-30% methanol in 15 min, 2% change/min) at a flow rate of 2 mL/min and cyanopropyl silica column connected in series with a diol column, both 2.1 mm i.d. x 150 mm long, packed with 5-mum spherical silica-based particles, resulted in the separation and quantification of all 15 estrogens in less than 10 min. The limit of detection (LOD) and limit of quantitation (LOQ) of this pSFC MS/MS method was determined to be 0.5 (S/N = 3), and 5 pg, respectively. Compared with RP-HPLC MS analysis of the same mixture in terms of speed of analysis and sensitivity, pSFC MS is much faster, 10 versus 70 min, with comparable LOD and LOQ. PMID:16503607

  6. Ligand affinity chromatography, an indispensable method for the purification of soluble cytokine receptors and binding proteins.

    PubMed

    Novick, Daniela; Rubinstein, Menachem

    2012-01-01

    Ligand affinity chromatography separation is based on unique interaction between the target analyte and a ligand, which is coupled covalently to a resin. It is a simple, rapid, selective, and efficient purification procedure of proteins providing tens of thousands fold purification in one step. The biological activity of the isolated proteins is retained in most cases thus function is revealed concomitantly with the isolation. Prior to the completion of the genome project this method facilitated rapid and reliable cloning of the corresponding gene. Upon completion of this project, a partial protein sequence is enough for retrieving its complete mRNA and hence its complete protein sequence. This method is indispensable for the isolation of both expected (e.g. receptors) but mainly unexpected, unpredicted and very much surprising binding proteins. No other approach would yield the latter. This chapter provides examples for both the expected target proteins, isolated from rich sources of human proteins, as well as the unexpected binding proteins, found by serendipity. PMID:22131033

  7. Immobilized metal affinity chromatography without chelating ligands: purification of soybean trypsin inhibitor on zinc alginate beads.

    PubMed

    Gupta, Munishwar N; Jain, Sulakshana; Roy, Ipsita

    2002-01-01

    Immobilized metal affinity chromatography (IMAC) is a widely used technique for bioseparation of proteins in general and recombinant proteins with polyhistidine fusion tags in particular. An expensive and critical step in this process is coupling of a chelating ligand to the chromatographic matrix. This chelating ligand coordinates metal ions such as Cu(2+), Zn(2+), and Ni(2+), which in turn bind proteins. The toxicity of chemicals required for coupling and their slow release during the separation process are of considerable concern. This is an important issue in the context of purification of proteins/enzymes which are used in food processing or pharmaceutical purposes. In this work, a simpler IMAC design is described which should lead to a paradigm shift in the application of IMAC in separation. It is shown that zinc alginate beads (formed by chelating alginate with Zn(2+) directly) can be used for IMAC. As "proof of concept", soybean trypsin inhibitor was purified 18-fold from its crude extract with 90% recovery of biological activity. The dynamic binding capacity of the packed bed was 3919 U mL(-1), as determined by frontal analysis. The media could be regenerated with 8 M urea and reused five times without any appreciable loss in its binding capacity. PMID:11822903

  8. CHARACTERIZATION OF DRUG-PROTEIN INTERACTIONS IN BLOOD USING HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY

    PubMed Central

    Hage, David S.; Jackson, Abby; Sobansky, Matt; Schiel, John E.; Yoo, Michelle J.; Joseph, K. S.

    2009-01-01

    The binding of drugs with proteins in blood, serum or plasma is an important process in determining the activity, distribution, rate of excretion, and toxicity of drugs in the body. High-performance affinity chromatography (HPAC) has received a great deal of interest as a means for studying these interactions. This review examines the various techniques that have been used in HPAC to examine drug-protein binding and discusses the types of information that can be obtained through this approach. A comparison of these techniques with traditional methods for binding studies (e.g., equilibrium dialysis and ultrafiltration) will also be presented. The use of HPAC with specific serum proteins and binding agents will then be discussed, including human serum albumin and α1-acid glycoprotein. Several examples from the literature are provided to illustrate the applications of such research. Recent developments in this field are also described, such as the use of improved immobilization techniques, new data analysis methods, techniques for working for directly with complex biological samples, and work with immobilized lipoproteins. The relative advantages and limitations of the methods that are described will be considered and the possible use of these techniques in the high-throughput screening or characterization of drug-protein binding will be discussed. PMID:19278006

  9. Analysis of the Glycoproteome of Toxoplasma gondii using Lectin Affinity Chromatography and Tandem Mass Spectrometry

    PubMed Central

    Luo, Qilie; Upadhya, Rajendra; Zhang, Hong; Madrid-Aliste, Carlos; Nieves, Edward; Kim, Kami; Angeletti, Ruth Hogue; Weiss, Louis M.

    2011-01-01

    Glycoproteins are involved in many important molecular recognition processes including invasion, adhesion, differentiation, and development. To identify the glycoproteins of Toxoplasma gondii, a proteomic analysis was undertaken. T. gondii proteins were prepared and fractioned using lectin affinity chromatography. The proteins in each fraction were then separated using SDS-PAGE and identified by tryptic in gel digestion followed by tandem mass spectrometry. Utilizing these methods 132 proteins were identified. Among the identified proteins were 17 surface proteins, 9 microneme proteins, 15 rhoptry proteins, 11 heat shock proteins (HSP), and 32 hypothetical proteins. Several proteins had 1 to 5 transmembrane domains (TMD) with some being as large as 608.3 kDa. Both lectin-fluorescence labeling and lectin blotting were employed to confirm the presence of carbohydrates on the surface or cytoplasm of T. gondii parasites. PCR demonstrated that selected hypothetical proteins were expressed in T. gondii tachyzoites. This is data provides a large scale analysis of the T. gondii glycoproteome. Studies of the function of glycosylation of these proteins may help elucidate mechanism(s) involved in invasion improving drug therapy as well as identify glycoproteins that may prove to be useful as vaccine candidates. PMID:21920448

  10. Studies of drug interactions with glycated human serum albumin by high-performance affinity chromatography

    PubMed Central

    Matsuda, Ryan; Kye, So-Hwang; Anguizola, Jeanethe; Hage, David S.

    2015-01-01

    Diabetes is a health condition associated with elevated levels of glucose in the bloodstream and affects 366 million people worldwide. Type II diabetes is often treated with sulfonylurea drugs, which are known to bind tightly in blood to the transport protein human serum albumin (HSA). One consequence of the elevated levels of glucose in diabetes is the non-enzymatic glycation of proteins such as HSA. Several areas of HSA are now known to be affected by glycation-related modifications, which may in turn affect the binding of sulfonylurea drugs and other solutes to this protein. This review discusses some recent studies that have examined these changes in drug-protein binding by employing high-performance affinity chromatography (HPAC). A description of the theoretical and experimental techniques that were used in these studies is given. The information on drug interactions with glycated HSA, as obtained through this method, is also summarized. In addition, the potential advantages of this approach in the areas of biointeraction analysis and personalized medicine are considered. PMID:26526139

  11. Dynamic affinity chromatography in the separation of sulfated lignins binding to thrombin

    PubMed Central

    Liang, Aiye; Thakkar, Jay N.; Hindle, Michael; Desai, Umesh R.

    2013-01-01

    Sulfated low molecular weight lignins (LMWLs), a mixture of chemo-enzymatically prepared oligomers, have been found to be potent antagonists of coagulation. However, structures that induce anticoagulation remain unidentified. The highly polar sulfate groups on these molecules and the thousands of different structures present in these mixtures make traditional chromatographic resolution of sulfated LMWLs difficult. We performed dynamic thrombin affinity chromatography monitored using chromogenic substrate hydrolysis assay to isolate sulfated LMWL fractions that differed significantly in their biophysical and biochemical properties. Three fractions, I35, I55 and Peak II, were isolated from the starting complex mixture. Independent plasma clotting assays suggested that I35 possessed good anticoagulation potential (APTT = 4.2 μM; PT = 6.8 μM), while I55 and Peak II were approximately 10- and 100-fold less potent. The ESI-MS spectrum of this oligomeric fraction showed multiple peaks at 684.8, 610.6, 557.4, 541.4, 536.5, and 519.4 m/z, which most probably arise from variably functionalized (β-O4—β-β-linked trimers and/or a β-O4—β-O4-linked dimers. The first direct observation of these structures in sulfated LMWLs will greatly assist in the discovery of more potent sulfated LMWL-based anticoagulants. PMID:23122400

  12. Analysis of Lidocaine Interactions with Serum Proteins Using High-Performance Affinity Chromatography

    PubMed Central

    Soman, Sony; Yoo, Michelle J.; Jang, Yoon Jeong; Hage, David S.

    2010-01-01

    High-performance affinity chromatography was used to study binding by the drug lidocaine to human serum albumin (HSA) and α1–acid glycoprotein (AGP). AGP had strong binding to lidocaine, with an association equilibrium constant (Ka) of 1.1-1.7 × 105 M-1 at 37 °C and pH 7.4. Lidocaine had weak-to-moderate binding to HSA, with a Ka in the range of 103 to 104 M-1. Competitive experiments with site selective probes showed that lidocaine was interacting with Sudlow site II of HSA and the propranolol site of AGP. These results agree with previous observations in the literature and provide a better quantitative understanding of how lidocaine binds to these serum proteins and is transported in the circulation. This study also demonstrates how HPAC can be used to examine the binding of a drug with multiple serum proteins and provide detailed information on the interaction sites and equilibrium constants that are involved in such processes. PMID:20138813

  13. Immobilized metal-affinity chromatography protein-recovery screening is predictive of crystallographic structure success

    PubMed Central

    Choi, Ryan; Kelley, Angela; Leibly, David; Nakazawa Hewitt, Stephen; Napuli, Alberto; Van Voorhis, Wesley

    2011-01-01

    The recombinant expression of soluble proteins in Escherichia coli continues to be a major bottleneck in structural genomics. The establishment of reliable protocols for the performance of small-scale expression and solubility testing is an essential component of structural genomic pipelines. The SSGCID Protein Production Group at the University of Washington (UW-PPG) has developed a high-throughput screening (HTS) protocol for the measurement of protein recovery from immobilized metal-affinity chromatography (IMAC) which predicts successful purification of hexahistidine-tagged proteins. The protocol is based on manual transfer of samples using multichannel pipettors and 96-well plates and does not depend on the use of robotic platforms. This protocol has been applied to evaluate the expression and solubility of more than 4000 proteins expressed in E. coli. The UW-PPG also screens large-scale preparations for recovery from IMAC prior to purification. Analysis of these results show that our low-cost non-automated approach is a reliable method for the HTS demands typical of large structural genomic projects. This paper provides a detailed description of these protocols and statistical analysis of the SSGCID screening results. The results demonstrate that screening for proteins that yield high recovery after IMAC, both after small-scale and large-scale expression, improves the selection of proteins that can be successfully purified and will yield a crystal structure. PMID:21904040

  14. Characterization of glycoproteins in pancreatic cyst fluid using a high performance multiple lectin affinity chromatography platform

    PubMed Central

    Gbormittah, Francisca Owusu; Haab, Brian B.; Partyka, Katie; Garcia-Ott, Carolina; Hancapie, Marina; Hancock, William S.

    2014-01-01

    Currently, pancreatic cancer is the fourth cause of cancer death. In 2013, it is estimated that approximately 38,460 people will die of pancreatic cancer. Early detection of malignant cyst (pancreatic cancer precursor) is necessary to help prevent late diagnosis of the tumor. In this study, we characterized glycoproteins and non-glycoproteins on pooled mucinous (n=10) and non-mucinous (n=10) pancreatic cyst fluid to identify ‘proteins of interest’ to differentiate between mucinous cyst from non-mucinous cyst and investigate these proteins as potential biomarker targets. An automated multi-lectin affinity chromatography (M-LAC) platform was utilized for glycoprotein enrichment followed by nano-LC-MS/MS analysis. Spectral count quantitation allowed for the identification of proteins with significant differential levels in mucinous cysts from non-mucinous cysts of which one protein (periostin) was confirmed via immunoblotting. To exhaustively evaluate differentially expressed proteins, we used a number of proteomic tools including; gene ontology classification, pathway and network analysis, Novoseek data mining and chromosome gene mapping. Utilization of complementary proteomic tools, revealed that several of the proteins such as mucin 6 (MUC6), bile salt-activated lipase (CEL) and pyruvate kinase lysozyme M1/M2 with significant differential expression have strong association with pancreatic cancer. Further, chromosome gene mapping demonstrated co-expressions and co-localization of some proteins of interest including 14-3-3 protein epsilon (YWHAE), pigment epithelium derived factor (SERPINF1) and oncogene p53. PMID:24303806

  15. Studies of drug interactions with glycated human serum albumin by high-performance affinity chromatography.

    PubMed

    Matsuda, Ryan; Kye, So-Hwang; Anguizola, Jeanethe; Hage, David S

    2014-08-01

    Diabetes is a health condition associated with elevated levels of glucose in the bloodstream and affects 366 million people worldwide. Type II diabetes is often treated with sulfonylurea drugs, which are known to bind tightly in blood to the transport protein human serum albumin (HSA). One consequence of the elevated levels of glucose in diabetes is the non-enzymatic glycation of proteins such as HSA. Several areas of HSA are now known to be affected by glycation-related modifications, which may in turn affect the binding of sulfonylurea drugs and other solutes to this protein. This review discusses some recent studies that have examined these changes in drug-protein binding by employing high-performance affinity chromatography (HPAC). A description of the theoretical and experimental techniques that were used in these studies is given. The information on drug interactions with glycated HSA, as obtained through this method, is also summarized. In addition, the potential advantages of this approach in the areas of biointeraction analysis and personalized medicine are considered. PMID:26526139

  16. The Lectin Frontier Database (LfDB), and data generation based on frontal affinity chromatography.

    PubMed

    Hirabayashi, Jun; Tateno, Hiroaki; Shikanai, Toshihide; Aoki-Kinoshita, Kiyoko F; Narimatsu, Hisashi

    2015-01-01

    Lectins are a large group of carbohydrate-binding proteins, having been shown to comprise at least 48 protein scaffolds or protein family entries. They occur ubiquitously in living organisms-from humans to microorganisms, including viruses-and while their functions are yet to be fully elucidated, their main underlying actions are thought to mediate cell-cell and cell-glycoconjugate interactions, which play important roles in an extensive range of biological processes. The basic feature of each lectin's function resides in its specific sugar-binding properties. In this regard, it is beneficial for researchers to have access to fundamental information about the detailed oligosaccharide specificities of diverse lectins. In this review, the authors describe a publicly available lectin database named "Lectin frontier DataBase (LfDB)", which undertakes the continuous publication and updating of comprehensive data for lectin-standard oligosaccharide interactions in terms of dissociation constants (Kd's). For Kd determination, an advanced system of frontal affinity chromatography (FAC) is used, with which quantitative datasets of interactions between immobilized lectins and >100 fluorescently labeled standard glycans have been generated. The FAC system is unique in its clear principle, simple procedure and high sensitivity, with an increasing number (>67) of associated publications that attest to its reliability. Thus, LfDB, is expected to play an essential role in lectin research, not only in basic but also in applied fields of glycoscience. PMID:25580689

  17. Rapid purification of cytosolic epoxide hydrolase from normal and clofibrate-treated animals by affinity chromatography.

    PubMed Central

    Prestwich, G D; Hammock, B D

    1985-01-01

    Epoxide hydrolase from liver cytosol (cEH) of both normal and clofibrate-treated mice can be bioselectively adsorbed onto an affinity column prepared from epoxy-activated Sepharose and 7-methoxycitronellyl thiol. The free ligand is a modest inhibitor of cEH (I50, approximately equal to 3 X 10(-4) M) and lacks the epoxide function necessary for it to be turned over as a substrate. This study demonstrates that a methoxy group can be used to mimic an oxirane in a vertebrate system. Bioselective elution of cEH can be accomplished with several chalcone oxides, which are selective potent inhibitors (I50, 1-50 X 10(-7) M), and activity can be recovered by dialysis. This procedure thus enhances the purification by offering independent opportunities for selective binding and selective elution. Conservatively, a 40%-80% recovery of partially inhibited enzyme activity can be achieved in 4-48 hr with a 30- to 90-fold purification. The purified cEH from clofibrate-induced animals was essentially homogeneous by NaDodSO4/PAGE and had an apparent subunit molecular weight of 58,000. The cEHs from normal and clofibrate-induced animals appeared identical by NaDodSO4/PAGE. Since the cEH activity in normal and clofibrate-treated animals is due to the same enzyme, the increase in cEH activity caused by selected hypolipidemic agents appears to be true induction. Images PMID:3856846

  18. Affinity chromatography of trypsin and related enzymes. III. Purification of Streptomyces griseus trypsin using an affinity adsorbent containing a tryptic digest of protamine as a ligand.

    PubMed

    Yokosawa, H; Hanba, T; Ishii, S

    1976-04-01

    A new, simple method has been developed for the purification of Streptomyces griseus trypsin [EC 3.4.21.4] from Pronase. Only a single operation of affinity chromatography on an agarose derivative, which was easily prepared by coupling a tryptic digest of salmine to cyanogen bromide-activated Sepharose 4B, was required. A high degree of homogeneity was demonstrated for the purified enzyme by disc electrophoresis, SDS-polyacrylamide gel electrophoresis and gel filtration, as well as by active-site titration. The behavior of a carboxypeptides B [EC 3.4.12.3]-like enzyme present in Pronase is also discussed. PMID:819428

  19. Efficiency of short, small-diameter columns for reversed-phase liquid chromatography under practical operating conditions.

    PubMed

    Ma, Yan; Chassy, Alexander W; Miyazaki, Shota; Motokawa, Masanori; Morisato, Kei; Uzu, Hideyuki; Ohira, Masayoshi; Furuno, Masahiro; Nakanishi, Kazuki; Minakuchi, Hiroyoshi; Mriziq, Khaled; Farkas, Tivadar; Fiehn, Oliver; Tanaka, Nobuo

    2015-02-27

    Prototype small-size (1.0mm I.D., 5cm long) columns for reversed-phase HPLC were evaluated in relation to instrument requirements. The performance of three types of columns, monolithic silica and particulate silica (2μm, totally porous and 2.6μm, core-shell particles) was studied in the presence of considerable or minimal extra-column effects, while the detector contribution to band broadening was minimized by employing a small size UV-detector cell (6- or 90nL). A micro-LC instrument having small system volume (<1μL) provided extra-column band variance of only 0.01-0.02μL(2). The three columns generated about 8500 theoretical plates for solutes with retention factor, k>1-3 (depending on the column), in acetonitrile/water mobile phase (65/35=vol/vol) at 0.05mL/min, with the instrument specified above. The column efficiency was lower by up to 30% than that observed with a 2.1mm I.D. commercial column. The small-size columns also provided 8000-8500 theoretical plates for well retained solutes with a commercial ultrahigh-pressure liquid chromatography (UHPLC) instrument when extra-column contributions were minimized. While a significant extra-column effect was observed for early eluting solutes (k<2-4, depending on column) with methanol/water (20/80=vol/vol) as weak-wash solvent, the use of methanol/water=50/50 as wash solvent affected the column efficiency for most analytes. The results suggest that the band compression effect by the weak-wash solvent associated with partial-loop injection may provide a practical means to reducing the extra-column effect for small-size columns, while the use of an instrument with minimum extra-column effect is highly desirable. PMID:25648581

  20. Gas chromatography using a resistively heated column with mass spectrometric detection for rapid analysis of pyridine released from Bacillus spores.

    PubMed

    Smith, Philip A; MacDonald, Stephen

    2004-05-21

    Gas chromatography using a resistively heated analytical column with full scan electron impact mass spectrometry (EI-MS) was used to detect pyridine generated from heating Bacillus spores in a custom designed furnace inlet, along with gasoline range aromatic (GRA) hydrocarbons representing an environmental contaminant that could interfere with detection of the biologically-derived compound. Gas phase materials from the furnace inlet were collected onto a section of cooled open tubular column, and carrier gas flow was then routed through the trapping column onto the analytical column. Both sections of column were contained within low thermal mass tubular metal sheaths, with each independently and resistively heated allowing rapid temperature ramps and cooling. An analysis time of 2 min resolved spore-derived pyridine from the other organics, and allowed identification by mass spectrum match. Throughput of 20 analyses per hour was shown to be possible with a 1-min column cool-down time between analyses. PMID:15146930

  1. Nanoengineered analytical immobilized metal affinity chromatography stationary phase by atom transfer radical polymerization: Separation of synthetic prion peptides

    PubMed Central

    McCarthy, P.; Chattopadhyay, M.; Millhauser, G.L.; Tsarevsky, N.V.; Bombalski, L.; Matyjaszewski, K.; Shimmin, D.; Avdalovic, N.; Pohl, C.

    2010-01-01

    Atom transfer radical polymerization (ATRP) was employed to create isolated, metal-containing nanoparticles on the surface of non-porous polymeric beads with the goal of developing a new immobilized metal affnity chromatography (IMAC) stationary phase for separating prion peptides and proteins. Transmission electron microscopy was used to visualize nanoparticles on the substrate surface. Individual ferritin molecules were also visualized as ferritin–nanoparticle complexes. The column's resolving power was tested by synthesizing peptide analogs to the copper binding region of prion protein and injecting mixtures of these analogs onto the column. As expected, the column was capable of separating prion-related peptides differing in number of octapeptide repeat units (PHGGGWGQ), (PHGGGWGQ)2, and (PHGGGWGQ)4. Unexpectedly, the column could also resolve peptides containing the same number of repeats but differing only in the presence of a hydrophilic tail, Q → A substitution, or amide nitrogen methylation. PMID:17481564

  2. Intrinsic advantages of packed capillaries over narrow-bore columns in very high-pressure gradient liquid chromatography.

    PubMed

    Gritti, Fabrice; McDonald, Thomas; Gilar, Martin

    2016-06-17

    250μm×100mm fused silica glass capillaries were packed with 1.8μm high-strength silica (HSS) fully porous particles. They were prepared without bulky stainless steel endfittings and metal frits, which both generate significant sample dispersion. The isocratic efficiencies and gradient peak capacities of these prototype capillary columns were measured for small molecules (n-alkanophenones) using a home-made ultra-low dispersive micro-HPLC instrument. Their resolution power was compared to that of standard 2.1mm×100mm very high-pressure liquid chromatography (vHPLC) narrow-bore columns packed with the same particles. The results show that, for the same column efficiency (25000 plates) and gradient steepness (0.04min(-1)), the peak capacity of the 250μm i.d. capillary columns is systematically 15-20% higher than that of the 2.1mm i.d. narrow-bore columns. A validated model of gradient chromatography enabled one to predict accurately the observed peak capacities of the capillary columns for non-linear solvation strength retention behavior and under isothermal conditions. Thermodynamics applied to the eluent quantified the temperature difference for the thermal gradients in both capillary and narrow-bore columns. Experimental data revealed that the gradient peak capacity is more affected by viscous heating than the column efficiency. Unlike across 2.1mm i.d. columns, the changes in eluent composition across the 250μm i.d. columns during the gradient is rapidly relaxed by transverse dispersion. The combination of (1) the absence of viscous heating and (2) the high uniformity of the eluent composition across the diameter of capillary columns explains the intrinsic advantage of capillary over narrow-bore columns in gradient vHPLC. PMID:27185055

  3. Residual on column host cell protein analysis during lifetime studies of protein A chromatography.

    PubMed

    Lintern, Katherine; Pathak, Mili; Smales, C Mark; Howland, Kevin; Rathore, Anurag; Bracewell, Daniel G

    2016-08-26

    Capacity reduction in protein A affinity chromatography with extended cycling during therapeutic antibody manufacture is well documented. Identification of which residual proteins remain from previous cycles during the lifetime of these adsorbent materials is required to understand their role in this ageing process, but represents a significant metrological challenge. Scanning electron microscopy (SEM) and liquid chromatography mass spectrometry (LC-MS/MS) are combined to detect and map this phenomenon of protein carry-over. We show that there is a morphological change at the surface of the agarose resin, revealing deposits on the polymer fibres increasing with cycle number. The amount of residual host cell proteins (HCPs) by LC-MS/MS present on the resin is shown to increase 10-fold between 50 and 100 cycles. During this same period the functional class of the predominant HCPs associated with the resin increased in diversity, with number of proteins identified increasing 5-fold. This ageing is observed in the context of the product quality of the eluate HCP and protein A leachate concentration remaining constant with cycle number. PMID:27473513

  4. Comprehensive profiling of ribonucleosides modification by affinity zirconium oxide-silica composite monolithic column online solid-phase microextraction - Mass spectrometry analysis.

    PubMed

    Jiang, Han-Peng; Chu, Jie-Mei; Lan, Meng-Dan; Liu, Ping; Yang, Na; Zheng, Fang; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-09-01

    More than 140 modified ribonucleosides have been identified in RNA. Determination of endogenous modified ribonucleosides in biological fluids may serve as non-invasive disease diagnostic strategy. However, detection of the modified ribonucleosides in biological fluids is challenging, especially for the low abundant modified ribonucleosides due to the serious matrix interferences of biological fluids. Here, we developed a facile preparation strategy and successfully synthesized zirconium oxide-silica (ZrO2/SiO2) composite capillary monolithic column that exhibited excellent performance for the selective enrichment of cis-diol-containing compounds. Compared with the boronate-based affinity monolith, the ZrO2/SiO2 monolith showed ∼2 orders of magnitude higher extraction capacity and can be used under physiological pH (pH 6.5-7.5). Using the prepared ZrO2/SiO2 composite monolith as the trapping column and reversed-phase C18 column as the analytical column, we further established an online solid-phase microextraction (SPME) in combination with liquid chromatography-mass spectrometry (online SPME-LC-MS/MS) analysis for the comprehensive profiling of ribonucleosides modification in human urine. Our results showed that 68 cis-diol-containing ribosylated compounds were identified in human urine, which is, to the best of our knowledge, the highest numbers of cis-diol-containing compounds were determined in a single analysis. It is worth noting that four modified ribonucleosides were discovered in the human urine for the first time. In addition, the quantification results from the pooled urine samples showed that compared to healthy controls, the contents of sixteen ribose conjugates in the urine of gastric cancer, eleven in esophagus cancer and seven in lymphoma increased more than two folds. Among these ribose conjugates, four ribose conjugates increased more than two folds in both gastric cancer and esophagus cancer; three ribose conjugates increased more than two

  5. Preparative separation and purification of rosmarinic acid from perilla seed meal via combined column chromatography.

    PubMed

    Tang, Weizhuo; Sun, Baoshan; Zhao, Yuqing

    2014-02-01

    In this study, the preparative separation and purification of rosmarinic acid (RA) from perilla seed meal (PSM), which is a by-product of edible oil production, was achieved using combined column chromatography over macroporous and polyamide resins. To optimize the RA enrichment process, the performance and separation characteristics of nine selected macroporous resins with different chemical and physical properties were investigated. SP825 resin was the most effective: the content of RA increased from 0.27% in the original extract to 16.58% in the 50% ethanol fraction (a 61.4-fold increase). During further purification treatment on polyamide resin, 90.23% pure RA could be obtained in the 70% ethanol fraction. RA with a higher purity (>95%) could also be easily obtained using one crystallization operation. The proposed method is simple, easily operated, cost-effective, and environmentally friendly and is suitable for both large-scale RA production and waste management. PMID:24381020

  6. Separation of Be and Al for AMS using single-step column chromatography

    NASA Astrophysics Data System (ADS)

    Binnie, Steven A.; Dunai, Tibor J.; Voronina, Elena; Goral, Tomasz; Heinze, Stefan; Dewald, Alfred

    2015-10-01

    With the aim of simplifying AMS target preparation procedures for TCN measurements we tested a new extraction chromatography approach which couples an anion exchange resin (WBEC) to a chelating resin (Beryllium resin) to separate Be and Al from dissolved quartz samples. Results show that WBEC-Beryllium resin stacks can be used to provide high purity Be and Al separations using a combination of hydrochloric/oxalic and nitric acid elutions. 10Be and 26Al concentrations from quartz samples prepared using more standard procedures are compared with results from replicate samples prepared using the coupled WBEC-Beryllium resin approach and show good agreement. The new column procedure is performed in a single step, reducing sample preparation times relative to more traditional methods of TCN target production.

  7. Physicochemical and Biological Characterization of Fucoidan from Fucus vesiculosus Purified by Dye Affinity Chromatography

    PubMed Central

    Zayed, Ahmed; Muffler, Kai; Hahn, Thomas; Rupp, Steffen; Finkelmeier, Doris; Burger-Kentischer, Anke; Ulber, Roland

    2016-01-01

    A comparative study concerning the physicochemical, monomeric composition and biological characters among different fucoidan fractions is presented. Common purification techniques for fucoidan usually involve many steps. During these steps, the important structural features might be affected and consequently alter its biological activities. Three purified fractions were derived from Fucus vesiculosus water extract which, afterwards, were purified by a recently-developed dye affinity chromatography protocol. This protocol is based on dye-sulfated polysaccharide interactions. The first two fractions were obtained from crude precipitated fucoidan at different pH values of the adsorption phase: pH 1 and 6. This procedure resulted in fucoidan_1 and 6 fractions. The other, third, fraction: fucoidan_M, however, was obtained from a buffered crude extract at pH 1, eliminating the ethanol precipitation step. All of the three fractions were then further evaluated. Results revealed that fucoidan_M showed the highest sulfur content (S%), 12.11%, with the lowest average molecular weight, 48 kDa. Fucose, galactose, and uronic acid/glucose dimers were detected in all fractions, although, xylose was only detected in fucoidan_1 and 6. In a concentration of 10 µg·mL−1, Fucoidan_6 showed the highest heparin-like anticoagulant activity and could prolong the APTT and TT significantly to 66.03 ± 2.93 and 75.36 ± 1.37 s, respectively. In addition, fucoidan_M demonstrated the highest potency against HSV-1 with an IC50 of 2.41 µg·mL−1. The technique proved to be a candidate for fucoidan purifaction from its crude extract removing the precipitation step from common purification protocols and produced different fucoidan qualities resulted from the different incubation conditions with the immobilized thiazine toluidine blue O dye. PMID:27092514

  8. Physicochemical and Biological Characterization of Fucoidan from Fucus vesiculosus Purified by Dye Affinity Chromatography.

    PubMed

    Zayed, Ahmed; Muffler, Kai; Hahn, Thomas; Rupp, Steffen; Finkelmeier, Doris; Burger-Kentischer, Anke; Ulber, Roland

    2016-04-01

    A comparative study concerning the physicochemical, monomeric composition and biological characters among different fucoidan fractions is presented. Common purification techniques for fucoidan usually involve many steps. During these steps, the important structural features might be affected and consequently alter its biological activities. Three purified fractions were derived from Fucus vesiculosus water extract which, afterwards, were purified by a recently-developed dye affinity chromatography protocol. This protocol is based on dye-sulfated polysaccharide interactions. The first two fractions were obtained from crude precipitated fucoidan at different pH values of the adsorption phase: pH 1 and 6. This procedure resulted in fucoidan_1 and 6 fractions. The other, third, fraction: fucoidan_M, however, was obtained from a buffered crude extract at pH 1, eliminating the ethanol precipitation step. All of the three fractions were then further evaluated. Results revealed that fucoidan_M showed the highest sulfur content (S%), 12.11%, with the lowest average molecular weight, 48 kDa. Fucose, galactose, and uronic acid/glucose dimers were detected in all fractions, although, xylose was only detected in fucoidan_1 and 6. In a concentration of 10 µg·mL(-1), Fucoidan_6 showed the highest heparin-like anticoagulant activity and could prolong the APTT and TT significantly to 66.03 ± 2.93 and 75.36 ± 1.37 s, respectively. In addition, fucoidan_M demonstrated the highest potency against HSV-1 with an IC50 of 2.41 µg·mL(-1). The technique proved to be a candidate for fucoidan purifaction from its crude extract removing the precipitation step from common purification protocols and produced different fucoidan qualities resulted from the different incubation conditions with the immobilized thiazine toluidine blue O dye. PMID:27092514

  9. Glycoproteomic analysis of embryonic stem cells: identification of potential glycobiomarkers using lectin affinity chromatography of glycopeptides

    PubMed Central

    Alvarez-Manilla, Gerardo; Warren, Nicole L.; Atwood, James; Orlando, Ron; Dalton, Stephen; Pierce, Michael

    2011-01-01

    Numerous studies have recently focused on the identification of specific glycan biomarkers; given the important roles that protein linked glycans play, for example, during development and disease progression. The identification of protein glycobiomarkers, which are part of a very complex proteome, has involved the use of fractionation techniques such as lectin affinity chromatography. In this study, the glycoproteomic characterization of pluripotent murine embryonic stem cells (ES) and from ES cells that were differentiated into embroid bodies (EB) was performed using immobilized Concanavalin A (ConA). This procedure allowed the isolation of glycopeptides that express biantennary and hybrid N-linked structures (ConA2 fraction) as well as high mannose glycans (ConA3 fraction), that were abundant in both ES and EB stages. A total of 293 unique N-linked glycopeptide sequences (from 180 glycoproteins) were identified in the combined data sets from ES and EB cells. Of these glycopeptides, a total of 119 sequences were identified exclusively in only one of the lectin bound fractions, (24 in the ES-ConA2, 15 in the ES-ConA3, 16 in the EB-ConA2 and 64 in the EB-ConA3). Results from this study allowed the identification of individual N-glycosylation sites of proteins that express specific glycan types. The absence of some of these lectin bound glycopeptides in a cell stage suggested that they were derived from proteins that were either expressed exclusively on a defined developmental stage, or were expressed in both cell stages but carried the lectin bound oligosaccharides in only one of them. Therefore, these lectin bound glycopeptides can be considered as stage specific glycobiomarkers. PMID:19545112

  10. 5'-S-(2-aminoethyl)-N6-(4-nitrobenzyl)-5'-thioadenosine (SAENTA), a novel ligand with high affinity for polypeptides associated with nucleoside transport. Partial purification of the nitrobenzylthioinosine-binding protein of pig erythrocytes by affinity chromatography.

    PubMed Central

    Agbanyo, F R; Vijayalakshmi, D; Craik, J D; Gati, W P; McAdam, D P; Asakura, J; Robins, M J; Paterson, A R; Cass, C E

    1990-01-01

    Derivatives of N6-(4-aminobenzyl)adenosine (substituted at the aminobenzyl group) and 5'-linked derivatives of N6-(4-nitrobenzyl)adenosine (NBAdo) were evaluated as inhibitors of site-specific binding of [3H]nitrobenzylthioinosine (NBMPR) to pig erythrocyte membranes. Potent inhibitors were SAENTA [5'-S-(2-aminoethyl)-N6-(4-nitrobenzyl)-5'-thioadenosine] and acetyl-SAENTA (the 2-acetamidoethyl derivative of SAENTA). SAENTA was coupled to derivatized agarose-gel beads (Affi-Gel 10) to form an affinity matrix for chromatographic purification of NBMPR-binding polypeptides, which in pig erythrocytes are part of, or are associated with, the equilibrative nucleoside transporter. When pig erythrocyte membranes were solubilized with octyl glucoside (n-octyl beta-D-glucopyranoside) and applied to SAENTA-Affi-Gel 10 (SAENTA-AG10), polypeptides that migrated as a broad band on SDS/PAGE with an apparent molecular mass of 58-60 kDa were selectively retained by the affinity gel. These polypeptides were identified as components of the nucleoside transporter of pig erythrocytes by reactivity with a monoclonal antibody (mAb 11C4) that recognizes the NBMPR-binding protein of pig erythrocytes. Retention of the immunoreactive polypeptides by SAENTA-AG10 was blocked by NBAdo. The immunoreactive polypeptides were released from SAENTA-AG10 by elution under denaturing conditions with 1% SDS or by elution with detergent solutions containing competitive ligands (NBAdo or NBMPR). A 72-fold enrichment of the immunoreactive polypeptides was achieved by a single passage of solubilized, protein-depleted membranes through a column of SAENTA-AG10, followed by elution with detergent solutions containing NBAdo. These results demonstrate that polypeptide components of NBMPR-sensitive nucleoside-transport systems may be partly purified by affinity chromatography using gel media bearing SAENTA groups. Images Fig. 5. Fig. 6. Fig. 7. PMID:2241896

  11. Temperature-assisted On-column Solute Focusing: A General Method to Reduce Pre-column Dispersion in Capillary High Performance Liquid Chromatography

    PubMed Central

    Groskreutz, Stephen R.; Weber, Stephen G.

    2014-01-01

    Solvent-based on-column focusing is a powerful and well known approach for reducingthe impact of pre-column dispersion in liquid chromatography. Here we describe an orthogonal temperature-based approach to focusing called temperature-assisted on-column solute focusing (TASF). TASF is founded on the same principles as the more commonly used solvent-based method wherein transient conditions are created thatlead to high solute retention at the column inlet. Combining the low thermal mass of capillary columns and the temperature dependence of solute retentionTASF is used effectivelyto compress injection bands at the head of the column through the transient reduction in column temperature to 5 °C for a defined 7 mm segment of a 6 cm long 150 μm I.D. column. Following the 30 second focusing time, the column temperature is increased rapidly to the separation temperature of 60 °C releasing the focused band of analytes. We developed a model tosimulate TASF separations based on solute retention enthalpies, focusing temperature, focusing time, and column parameters. This model guides the systematic study of the influence of sample injection volume on column performance.All samples have solvent compositions matching the mobile phase. Over the 45 to 1050 nL injection volume range evaluated, TASF reducesthe peak width for all soluteswith k’ greater than or equal to 2.5, relative to controls. Peak widths resulting from injection volumes up to 1.3 times the column fluid volume with TASF are less than 5% larger than peak widths from a 45 nL injection without TASF (0.07 times the column liquid volume). The TASF approach reduced concentration detection limits by a factor of 12.5 relative to a small volume injection for low concentration samples. TASF is orthogonal to the solvent focusing method. Thus, it canbe used where on-column focusing is required, but where implementation of solvent-based focusing is difficult. PMID:24973805

  12. Optimization of preparative separation and purification of total polyphenols from Sargassum tenerrimum by column chromatography

    NASA Astrophysics Data System (ADS)

    Haider, Samee; Li, Zhenxing; Lin, Hong; Jamil, Khalid

    2009-12-01

    Polyphenols from the ethanol extracts of Sargassum tenerrimum (ST) with potent antiallergic effects were studied to optimize separation process through column chromatography. The adsorption and desorption characteristics of three widely used adsorbents: macroporous resin, silica gel, and polyvinylpolypyrrolidone (PVPP), were critically evaluated respectively and studied for the optimization of preparative separation of polyphenols. Static operations on these adsorbents showed that macroporous resin had the best adsorption and desorption capability among the three adsorbents. Dynamic adsorption and desorption with macroporous resin packed column were also conducted to optimize the parameters such as: with the optimal values shown in brackets, the concentration of extract solution (4 times diluted), pH value (6-7), adsorption speed (3 BV h-1, bed volumes/per hour), concentration of ethanol (80%), elution speed (3 BV h-1) and elution volume (7 BV). The chromatographic process so optimized gave a purity of 62.43% from the crude polyphenols, providing a promising basis for large scale preparation of bioactive polyphenols upon further scaling up tests.

  13. Rapid separation of polysaccharides using a novel spiral coil column by high-speed countercurrent chromatography.

    PubMed

    Li, Weili; Wu, Tao

    2016-04-01

    The separation of polysaccharides is time consuming. We developed and optimized a type-J counter-current chromatography system with a novel tri-rotor spiral coil column for the rapid separation of polysaccharides. The optimal composition of an aqueous PEG1000/K2 HPO4 /KH2 PO4 system was found to be 14:16:14 w/w/w where the lower phase was the mobile phase. Optimal performance was achieved at a column rotational speed, temperature, and flow rate of 1200 rpm, 45°C, and 3.0 mL/min, respectively. The mobile phase was pumped from the inner terminal in a ''head-to-tail'' elution mode. Polysaccharide LCP-1 (10.7 mg) was successfully obtained in high purity in one step from 50.0 mg of a crude polysaccharide extracted from the lychee fruit (Litchi chinensis) within 100 min. LCP-1 possess a number-average molecular weight and weight-average molecular weight of 1.05 × 10(5) and 1.59 × 10(5) kDa, respectively. The monosaccharide composition consists of the molar ratio of glucose, galactose, and arabinose of 1.3:3.5:1. PMID:26857207

  14. Separation of proteins by cation-exchange sequential injection chromatography using a polymeric monolithic column.

    PubMed

    Masini, Jorge Cesar

    2016-02-01

    Since sequential injection chromatography (SIC) emerged in 2003, it has been used for separation of small molecules in diverse samples, but separations of high molar mass compounds such as proteins have not yet been described. In the present work a poly(glycidyl methacrylate-co-ethylene dimethacrylate) (GMA-co-EDMA) monolithic column was prepared by free radical polymerization inside a 2.1-mm-i.d. activated fused silica-lined stainless steel tubing and modified with iminodiacetic acid (IDA). The column was prepared from a mixture of 24% GMA, 16% EDMA, 20% cyclohexanol, and 40% 1-dodecanol (all% as w/w) containing 1% of azobisisobutyronitrile (AIBN) (in relation to monomers). Polymerization was done at 60 °C for 24 h. The polymer was modified with 1.0 M IDA (in 2 M Na2CO3, pH 10.5) at 80 °C for 16 h. Separation of myoglobin, ribonuclease A, cytochrome C, and lysozyme was achieved at pH 7.0 (20 mM KH2PO4/K2HPO4) using a salt gradient (NaCl). Myoglobin was not retained, and the other proteins were separated by a gradient of NaCl created inside the holding coil (4 m of 0.8-mm-i.d. PTFE tubing) by sequential aspiration of 750 and 700 μL of 0.2 and 0.1 M NaCl, respectively. As the flow was reversed toward the column (5 μL s(-1)) the interdispersion of these solutions created a reproducible gradient which separated the proteins in 10 min, with the following order of retention: ribonuclease A < cytochrome C < lysozyme. The elution order was consistent with a cation-exchange mechanism as the retention increased with the isoelectric points. PMID:26677024

  15. Understanding and diminishing the extra-column band broadening effects in supercritical fluid chromatography.

    PubMed

    De Pauw, Ruben; Shoykhet Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken

    2015-07-17

    Supercritical fluid chromatography, where a low-viscosity mobile phase such as carbon dioxide is used, proves to be an excellent technique for fast and efficient separations, especially when sub-2μm particles are used. However, to achieve high velocities when using these small particles, and in order to stay within the flow rate range of current SFC-instruments, narrow columns (e.g. 2.1mm ID) must be used. Unfortunately, state-of-the-art instrumentation is limiting the full separation power of these narrower columns due to significant extra-column band broadening effects. The present work identifies and quantifies the different contributions to extra-column band broadening in SFC such as the influence of the sample solvent, injection volume, extra-column volumes and detector cell volume/design. When matching the sample solvent to the mobile phase in terms of elution strength and polarity (e.g. using hexane/ethanol/isopropanol 85/10/5vol%) and lowering the injection volume to 0.4μL, the plate count can be increased from 7600 to 21,300 for a low-retaining compound (k'=2.3) on a 2.1mm×150mm column (packed with 1.8μm particles). The application of a water/acetonitrile mixture as sample solvent was also investigated. It was found that when the volumetric ratio of water/acetonitrile was optimized, only a slightly lower plate count was measured compared to the hexane-based solvent when minimizing injection and extra-column volume. This confirms earlier results that water/acetonitrile can be used if water-soluble samples are considered or when a less volatile solvent is preferred. Minimizing the ID of the connection capillaries from 250 to 65μm, however, gives no further improvement in obtained efficiency for early-eluting compounds when a standard system configuration with optimized sample solvent was used. When switching to a state-of-the-art detector design with reduced (dispersion) volume (1.7-0.6μL), an increase in plate count is observed (from 11,000 to 14

  16. Effect of pre- and post-column band broadening on the performance of high-speed chromatography columns under isocratic and gradient conditions.

    PubMed

    Vanderlinden, Kim; Broeckhoven, Ken; Vanderheyden, Yoachim; Desmet, Gert

    2016-04-15

    We report on the results of an experimental and theoretical study of the effect of the extra-column band broadening (ECBB) on the performance of narrow-bore columns filled with the smallest particles that are currently commercially available. Emphasis is on the difference between the effect of ECBB under gradient and isocratic conditions, as well as on the ability to model and predict the ECBB effects using well-established band broadening expressions available from the theory of chromatography. The fine details and assumptions that need to be taken into account when using these expressions are discussed. The experiments showed that, the steeper the gradient, the more pronounced the extra-column band broadening losses become. Whereas the pre-column band broadening can in both isocratic and gradient elution be avoided by playing on the possibilities to focus the analytes on top of the column (e.g. by using the POISe injection method when running isocratic separations), the post-column extra-column band broadening is inescapable in both cases. Inducing extra-column band broadening by changing the inner diameter of the post-column tubing from 65 to 250 μm, we found that all peaks in the chromatogram are strongly affected (around a factor of 1.9 increase in relative peak width) when running steep gradients, while usually only the first eluting peak was affected in the isocratic mode or when running shallow gradients (factor 1.6-1.8 increase in relative peak width for the first eluting analyte). PMID:26987413

  17. Analytical high-performance affinity chromatography: evaluation by studies of neurophysin self-association and neurophysin-peptide hormone interaction using glass matrices

    SciTech Connect

    Swaisgood, H.E.; Chaiken, I.M.

    1986-07-01

    Bovine neurophysin II (BNP II) was covalently immobilized on both nonporous and porous (200-nm pore diameter) glass beads and incorporated in a high-performance liquid chromatograph to evaluate analytical high-performance affinity chromatography as a microscale method for characterizing biomolecular interactions. The self-association of neurophysin and its binding of the peptide hormone vasopressin were characterized by using a single chromatograhic column containing immobilized neurophysin predominantly in the monomer form. Both (/sup 3/H)(Arg/sup 8/)vasopressin (AVP) and /sup 125/I-BNP II were rapidly eluted (<25 min). The relatively symmetrical elution peaks obtained allowed calculation of both equilibrium dissociation constants and kinetic dissociation rate constants. In contrast to the agreement of chromatographic equilibrium binding constants with those measured in solution, the dissociation rate, k..sqrt../sub 3/, determined from the variance of the affinity chromatographic elution profile with nonporous beads, was several orders of magnitude smaller than the solution counterpart. This latter difference may reflect the probability of rebinding to contiguous sites immobilized on a surface, a feature which would be related to that for contiguous sites on a membrane.

  18. Characterization of column packing materials in high-performance liquid chromatography by charge-detection quadrupole ion trap mass spectrometry.

    PubMed

    Xiong, Caiqiao; Zhou, Xiaoyu; Chen, Rui; Zhang, Yiming; Peng, Wen-Ping; Nie, Zongxiu; Chang, Huan-Cheng; Liu, Huwei; Chen, Yi

    2011-07-01

    This article reports an application of charge-detection quadrupole ion trap mass spectrometry (CD-ITMS) to characterize the column packing materials in high-performance liquid chromatography (HPLC). Both the mean mass and the mass distribution of the packing materials are obtained and used to calculate the specific surface area of unbonded silica, the carbon load of the bonded silica, and their particle size distributions. The obtained specific surface areas and carbon loads are consistent with those measured independently by nitrogen sorption and elemental analysis respectively, whereas the derived size distributions show better resolution than that measured by a laser particle size analyzer. Furthermore, we evaluate the uniformity of particle size, which is the key parameter for column efficiency of the liquid chromatography by analyzing the mass distribution of the packing materials at the top and bottom of the column. A broader mass distribution, which yields decreased column efficiency, is observed for the column top because of the excessive use of the column. Our results suggest that CD-ITMS can serve as an alternative means for the characterization of the packing materials in HPLC and is potentially useful for column quality control. PMID:21612293

  19. A protocol for the measurement of all the parameters of the mass transfer kinetics in columns used in liquid chromatography

    SciTech Connect

    Gritti, Fabrice; Guiochon, Georges A

    2010-01-01

    Band broadening in chromatography results from the combination of the dispersive effects that are associated with the different steps involved in the migration of compound bands along the column. These steps include longitudinal diffusion, trans-particle mass transfer, external film mass transfer, overall eddy diffusion, including trans-column, short-range inter-channel, trans-channel eddy diffusion, and the possible, additional mass transfer contributions arising from heat friction and the thermal heterogeneity of the column. We describe a series of experiments that provide the data needed to determine the coefficients of the contributions to band broadening of each one of these individual mass transfer steps. This specifically designed protocol can provide key information regarding the kinetic performance of columns used in liquid chromatography and explain why different columns behave so differently. The limitations, accuracy and precision of these methods are discussed. Further avenues of research that could improve the characterization of the mass transfer mechanisms in chromatographic columns, possibly contributing to the development of better columns, are suggested.

  20. Simplifying the synthesis of SIgA: combination of dIgA and rhSC using affinity chromatography

    PubMed Central

    Moldt, Brian; Saye-Francisco, Karen; Schultz, Niccole; Burton, Dennis R.; Hessell, Ann J.

    2013-01-01

    The mucosal epithelia together with adaptive immune responses, such as local production and secretion of dimeric and polymeric immunoglobulin A (IgA), are a crucial part of the first line of defense against invading pathogens. IgA is primarily secreted as SIgA and plays multiply roles in mucosal defense. The study of SIgA-mediated protection is an important area of research in mucosal immunity but an easy, fast and reproducible method to generate pathogen-specific SIgA in vitro has not been available. We report here a new method to produce SIgA by co-purification of dimeric IgA, containing J chain, and recombinant human SC expressed in CHO cells. We previously reported the generation, production and characterization of the human recombinant monoclonal antibody IgA2 b12. This antibody, derived from the variable regions of the neutralizing anti-HIV-1 mAb IgG1 b12, blocked viral attachment and uptake by epithelial cells in vitro. We used a cloned CHO cell line that expresses monomeric, dimeric and polymeric species of IgA2 b12 for large-scale production of dIgA2 b12. Subsequently, we generated a CHO cell line to express recombinant human secretory component (rhSC). Here, we combined dIgA2 b12 and CHO-expressed rhSC via column chromatography to produce SIgA2 b12 that remains fully intact upon elution with 0.1M Citric acid, pH 3.0. We have performed biochemical analysis of the synthesized SIgA to confirm the species is of the expected size and retains the functional properties previously described for IgA2 b12. We show that SIgA2 b12 binds to the HIV-1 gp120 glycoprotein with similar apparent affinity to that of monomeric and dimeric forms of IgA2 b12 and neutralizes HIV-1 isolates with similar potency. An average yield of 6 mg of SIgA2 b12 was achieved from the combination of 20 mg of purified dIgA2 b12 and 2 L of rhSC-containing CHO cell supernatant. We conclude that synthesized production of stable SIgA can be generated by co-purification. This process introduces a

  1. Using Artificial Soil and Dry-Column Flash Chromatography to Simulate Organic Substance Leaching Process: A Colorful Environmental Chemistry Experiment

    ERIC Educational Resources Information Center

    de Avellar, Isa G. J.; Cotta, Tais A. P. G.; Neder, Amarilis de V. Finageiv

    2012-01-01

    Soil is an important and complex environmental compartment and soil contamination contributes to the pollution of aquifers and other water basins. A simple and low-cost experiment is described in which the mobility of three organic compounds in an artificial soil is examined using dry-column flash chromatography. The compounds were applied on top…

  2. Optimal performance of single-column chromatography and simulated moving bed processes for the separation of optical isomers

    NASA Astrophysics Data System (ADS)

    Medi, Bijan; Kazi, Monzure-Khoda; Amanullah, Mohammad

    2013-06-01

    Chromatography has been established as the method of choice for the separation and purification of optically pure drugs which has a market size of about 250 billion USD. Single column chromatography (SCC) is commonly used in the development and testing phase of drug development while multi-column Simulated Moving Bed (SMB) chromatography is more suitable for large scale production due to its continuous nature. In this study, optimal performance of SCC and SMB processes for the separation of optical isomers under linear and overloaded separation conditions has been investigated. The performance indicators, namely productivity and desorbent requirement have been compared under geometric similarity for the separation of a mixture of guaifenesin, and Tröger's base enantiomers. SCC process has been analyzed under equilibrium assumption i.e., assuming infinite column efficiency, and zero dispersion, and its optimal performance parameters are compared with the optimal prediction of an SMB process by triangle theory. Simulation results obtained using actual experimental data indicate that SCC may compete with SMB in terms of productivity depending on the molecules to be separated. Besides, insights into the process performances in terms of degree of freedom and relationship between the optimal operating point and solubility limit of the optical isomers have been ascertained. This investigation enables appropriate selection of single or multi-column chromatographic processes based on column packing properties and isotherm parameters.

  3. Trend analysis of performance parameters of pre-packed columns for protein chromatography over a time span of ten years.

    PubMed

    Scharl, Theresa; Jungreuthmayer, Christian; Dürauer, Astrid; Schweiger, Susanne; Schröder, Tim; Jungbauer, Alois

    2016-09-23

    Pre-packed small scale chromatography columns are increasingly used for process development, for determination of design space in bioprocess development, and for post-licence process verifications. The packing quality of 30,000 pre-packed columns delivered to customers over a period 10 years has been analyzed by advanced statistical tools. First, the data were extracted and checked for inconsistencies, and then were tabulated and made ready for statistical processing using the programming language Perl (https://www.perl.org/) and the statistical computing environment R (https://www.r-project.org/). Reduced HETP and asymmetry were plotted over time to obtain a trend of packing quality over 10 years. The obtained data were used as a visualized coefficient of variation analysis (VCVA), a process that has often been applied in other industries such as semiconductor manufacturing. A typical fluctuation of reduced HETP was seen. A Tsunami effect in manufacturing, the effect of propagation of manufacturing deviations leading to out-of-specification products, was not observed with these pre-packed columns. Principal component analysis (PCA) showed that all packing materials cluster. Our data analysis showed that the current commercially available chromatography media used for biopharmaceutical manufacturing can be reproducibly and uniformly packed in polymer-based chromatography columns, which are designed for ready-to-use purposes. Although the number of packed columns has quadrupled over one decade the packing quality has remained stable. PMID:27575920

  4. A proteomics platform combining depletion, multi-lectin affinity chromatography (M-LAC), and isoelectric focusing to study the breast cancer proteome.

    PubMed

    Zeng, Zhi; Hincapie, Marina; Pitteri, Sharon J; Hanash, Samir; Schalkwijk, Joost; Hogan, Jason M; Wang, Hong; Hancock, William S

    2011-06-15

    The discovery of breast cancer associated plasma/serum biomarkers is important for early diagnosis, disease mechanism elucidation, and determination of treatment strategy for the disease. In this study of serum samples, a multidimensional fractionation platform combined with mass spectrometric analysis were used to achieve the identification of medium to lower abundance proteins, as well as to simultaneously detect glycan and abundance changes. Immuno-affinity depletion and multi-lectin chromatography (M-LAC) were integrated into an automated HPLC platform to remove high abundance protein and fractionate glycoproteins. The collected glycoproteomes were then subjected to isoelectric focusing (IEF) separation by a digital ProteomeChip (dPC), followed by in-gel digestion and LC-MS analysis using an Orbitrap mass spectrometer. As a result, the total number of identified proteins increased significantly when the IEF fractionation step was included as part of the platform. Relevant proteins with biological and disease significance were observed and the dynamic range of the serum proteome measurement was extended. In addition, potential glycan changes were indicated by comparing proteins in control and cancer samples in terms of their affinity to the multi-lectin column (M-LAC) and the pI profiles in IEF separation. In conclusion, a proteomics platform including high abundance protein depletion, lectin affinity fractionation, IEF separation, and LC-MS analysis has been applied to discover breast cancer-associated proteins. The following candidates, thrombospondin-1 and 5, alpha-1B-glycoprotein, serum amyloid P-component, and tenascin-X, were selected as promising examples of the use of this platform. They show potential abundance and glycan changes and will be further investigated in future studies. PMID:21513341

  5. A Proteomics Platform Combining Depletion, Multi-lectin Affinity Chromatography (M-LAC) and Isoelectric Focusing to Study the Breast Cancer Proteome

    PubMed Central

    Zeng, Zhi; Hincapie, Marina; Pitteri, Sharon J.; Hanash, Samir; Schalkwijk, Joost; Hogan, Jason M.; Wang, Hon; Hancock, William S.

    2011-01-01

    The discovery of breast cancer associated plasma/serum biomarkers is important for early diagnosis, disease mechanism elucidation and determination of treatment strategy for the disease. In this study of serum samples, a multidimensional fractionation platform combined with mass spectrometric analysis were used to achieve the identification of medium to lower abundance proteins, as well as simultaneously detecting glycan and abundance changes. Immuno-affinity depletion and multi-lectin chromatography (M-LAC) were integrated into an automated HPLC platform to remove high abundance protein and fractionate glycoproteins. The collected glycoproteomes were then subjected to isoelectric focusing (IEF) separation by a digital ProteomeChip (dPC), followed by in-gel digestion and LC-MS analysis using an Orbitrap mass spectrometer. As a result, the total number of identified proteins increased significantly when the IEF fractionation step was included as part of the platform. Relevant proteins with biological and disease significance were observed and the dynamic range of the serum proteome measurement was extended. In addition, potential glycan changes were indicated by comparing proteins in control and cancer samples in terms of their affinity to the multi-lectin column (M-LAC) and the pI profiles in IEF separation. In conclusion, a proteomics platform including high abundance protein depletion, lectin affinity fractionation, IEF separation and LC-MS analysis has been applied to discover breast cancer associated proteins. The following candidates, thrombospondin-1 and 5, alpha-1B-glycoprotein, serum amyloid P-component and tenascin-X, were selected as promising examples of the use of this platform. They show potential abundance and glycan changes and will be further investigated in future studies. PMID:21513341

  6. Analysis of drugs in plasma samples from schizophrenic patients by column-switching liquid chromatography-tandem mass spectrometry with organic-inorganic hybrid cyanopropyl monolithic column.

    PubMed

    Domingues, Diego Soares; Souza, Israel Donizeti de; Queiroz, Maria Eugênia Costa

    2015-07-01

    This study reports on the development of a rapid, selective, and sensitive column-switching liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to analyze sixteen drugs (antidepressants, anticonvulsants, anxiolytics, and antipsychotics) in plasma samples from schizophrenic patients. The developed organic-inorganic hybrid monolithic column with cyanopropyl groups was used for the first dimension of the column-switching arrangement. This arrangement enabled online pre-concentration of the drugs (monolithic column) and their subsequent analytical separation on an XSelect SCH C18 column. The drugs were detected on a triple quadrupole tandem mass spectrometer (multiple reactions monitoring mode) with an electrospray ionization source in the positive ion mode. The developed method afforded adequate linearity for the sixteen target drugs; the coefficients of determination (R(2)) lay above 0.9932, the interassay precision had coefficients of variation lower than 6.5%, and the relative standard error values of the accuracy ranged from -14.0 to 11.8%. The lower limits of quantification in plasma samples ranged from 63 to 1250pgmL(-1). The developed method successfully analyzed the target drugs in plasma samples from schizophrenic patients for therapeutic drug monitoring (TDM). PMID:25984963

  7. Identification of Novel in vivo MAP Kinase Substrates in Arabidopsis thaliana Through Use of Tandem Metal Oxide Affinity Chromatography*

    PubMed Central

    Hoehenwarter, Wolfgang; Thomas, Martin; Nukarinen, Ella; Egelhofer, Volker; Röhrig, Horst; Weckwerth, Wolfram; Conrath, Uwe; Beckers, Gerold J. M.

    2013-01-01

    Mitogen-activated protein kinase (MPK) cascades are important for eukaryotic signal transduction. They convert extracellular stimuli (e.g. some hormones, growth factors, cytokines, microbe- or damage-associated molecular patterns) into intracellular responses while at the same time amplifying the transmitting signal. By doing so, they ensure proper performance, and eventually survival, of a given organism, for example in times of stress. MPK cascades function via reversible phosphorylation of cascade components MEKKs, MEKs, and MPKs. In plants the identity of most MPK substrates remained elusive until now. Here, we provide a robust and powerful approach to identify and quantify, with high selectivity, site-specific phosphorylation of MPK substrate candidates in the model plant Arabidopsis thaliana. Our approach represents a two-step chromatography combining phosphoprotein enrichment using Al(OH)3-based metal oxide affinity chromatography, tryptic digest of enriched phosphoproteins, and TiO2-based metal oxide affinity chromatography to enrich phosphopeptides from complex protein samples. When applied to transgenic conditional gain-of-function Arabidopsis plants supporting in planta activation of MPKs, the approach allows direct measurement and quantification ex vivo of site-specific phosphorylation of several reported and many yet unknown putative MPK substrates in just a single experiment. PMID:23172892

  8. Synthesis and characterization of a SIRT6 open tubular column: predicting deacetylation activity using frontal chromatography.

    PubMed

    Singh, Nagendra; Ravichandran, Sarangan; Norton, Darrell D; Fugmann, Sebastian D; Moaddel, Ruin

    2013-05-15

    SIRT6 is a histone deacetylase that has been proposed as a potential therapeutic target for metabolic disorders and the prevention of age-associated diseases. Thus the identification of compounds that modulate SIRT6 activity could be of great therapeutic importance. We have previously reported on the identification of quercetin and vitexin as SIRT6 inhibitors, using SIRT6-coated magnetic beads. In this study, we have immobilized SIRT6 onto the surface of an open tubular capillary and characterized the quercetin binding site using frontal displacement chromatography. Structurally related flavonoids were tested for their activity on SIRT6, including apigenin, naringenin, luteolin, and kaempferol. In addition to obtaining their binding activity using frontal affinity chromatographic techniques, we also ranked the compounds based on their ability to displace quercetin. The data suggest that a single displacement curve is representative of the enzymatic activity of the tested ligand. In addition, using the inhibition data obtained in this study, we developed a preliminary pharmacophore model that confirmed the experimental data. PMID:23376017

  9. Synthesis and Characterization of a SIRT6 Open Tubular Column: Predicting Deacetylation Activity using Frontal Chromatography

    PubMed Central

    Singh, Nagendra; Ravichandran, Sarangan; Norton, Darrell D.; Fugmann, Sebastian D.; Moaddel, Ruin

    2014-01-01

    SIRT6 is a histone deacetylase that has been proposed as a potential therapeutic target for metabolic disorders and the prevention of age-associated diseases. Thus the identification of compounds that modulate SIRT6 activity could be of great therapeutic importance. We have previously reported on the identification of quercetin and vitexin as SIRT6 inhibitors, using SIRT6-coated magnetic beads. In this study, we have immobilized SIRT6 onto the surface of an open tubular capillary and characterized the quercetin binding site using frontal displacement chromatography. Structurally related flavonoids were tested for their activity on SIRT6, including apigenin, naringenin, luteolin and kaempferol. In addition to obtaining their binding activity using frontal affinity chromatographic techniques, we also ranked the compounds based on their ability to displace quercetin. The data suggest that a single displacement curve is representative of the enzymatic activity of the tested ligand. In addition, using the inhibition data obtained in this study, we developed a preliminary pharmacophore model that confirmed the experimental data. PMID:23376017

  10. Analysis of free drug fractions in serum by ultrafast affinity extraction and two-dimensional affinity chromatography using α1-acid glycoprotein microcolumns.

    PubMed

    Bi, Cong; Zheng, Xiwei; Hage, David S

    2016-02-01

    In the circulatory system, many drugs are reversibly bound to serum proteins such as human serum albumin (HSA) and alpha1-acid glycoprotein (AGP), resulting in both free and protein-bound fractions for these drugs. This report examined the use of microcolumns containing immobilized AGP for the measurement of free drug fractions by ultrafast affinity extraction and a two-dimensional affinity system. Several drugs known to bind AGP were used as models to develop and evaluate this approach. Factors considered during the creation of this method included the retention of the drugs on the microcolumns, the injection flow rate, the microcolumn size, and the times at which a second AGP column was placed on-line with the microcolumn. The final system had residence times of only 110-830ms during sample passage through the AGP microcolumns and allowed free drug fractions to be determined within 10-20min when using only 3-10μL of sample per injection. This method was used to measure the free fractions of the model drugs at typical therapeutic levels in serum, giving good agreement with the results obtained by ultrafiltration. This approach was also used to estimate the binding constants for each drug with AGP in serum, even for drugs that had significant interactions with both AGP and HSA in such samples. These results indicated that AGP microcolumns could be used with ultrafast affinity extraction to measure free drug fractions in a label-free manner and to study the binding of drugs with AGP in complex samples such as serum. PMID:26797422

  11. Affinity column for purification of the human platelet thromboxane A/sub 2//prostaglandin H/sub 2/ (TXA/sub 2//PGH/sub 2/) receptor

    SciTech Connect

    Venton, D.L.; Arora, S.K.; Kim, S.O.; Lim, C.T.; Le Breton, G.C.

    1987-05-01

    The TXA/sub 2//PGH/sub 2/ receptor antagonist, 13-azaprostanoic acid (13-APA), was synthesized and used as the immobilized ligand in the affinity column purification of the 13-APA/U46619 binding component in human platelets. Diazo coupling of the ligand to the phenol of this tyr-gly-gly-NH-(CO)-O-Sepharose gave the affinity column material. Isolated platelet membranes were solubilized with detergent, applied directly to the affinity column and the eluate collected as 6 x 70 ml fractions. For each fraction, protein concentration and specific /sup 3/H-13-APA/numberH-U46619 binding were determined. The majority of the applied protein (>98%) eluted in fraction number1. However, the specific 13-APA/U46619 binding per mg of protein was localized in fractions number4 and number5, representing approximately a 500-fold purification of this binding component. These results suggest that the platelet TXA/sub 2//PGH/sub 2/ receptor protein is retarded by this column, and that starting from crude, solubilized platelet membranes, a single pass through the column provides a 500-fold purification of the receptor.

  12. Use of Tandem Affinity Chromatography for Purification of Cannabinoid Receptor CB2

    PubMed Central

    Locatelli-Hoops, Silvia C.; Yeliseev, Alexei A.

    2016-01-01

    Tandem affinity purification has been increasingly applied to isolation of recombinant proteins. It relies on two consecutive chromatographic steps that take advantage of the affinity tags placed at opposing ends of the target protein. This allows for efficient removal of contaminating proteins, including products of proteolytic degradation of the fusion that lack either N- or C-terminal tags. Here, we describe the use of two small affinity tags, a poly-histidine tag and a Strep-tag for expression and purification of the human cannabinoid receptor CB2, an integral membrane G protein-coupled receptor. PMID:24943318

  13. EVALUATION OF ALTERNATIVES TO WARFARIN AS PROBES FOR SUDLOW SITE I OF HUMAN SERUM ALBUMIN CHARACTERIZATION BY HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY

    PubMed Central

    Joseph, K.S.; Moser, Annette C.; Basiaga, Sara; Schiel, John E.; Hage, David S.

    2009-01-01

    Warfarin is often used as a site-specific probe for examining the binding of drugs and other solutes to Sudlow site I of human serum albumin (HSA). However, warfarin has strong binding to HSA and the two chiral forms of warfarin have slightly different binding affinities for this protein. Warfarin also undergoes a slow change in structure when present in common buffers used for binding studies. This report examined the use of four related, achiral compounds (i.e., coumarin, 7-hydroxycoumarin, 7-hydroxy-4-methylcoumarin, and 4-hydroxycoumarin) as possible alternative probes for Sudlow site I in drug binding studies. High-performance affinity chromatography and immobilized HSA columns were used to compare and evaluate the binding properties of these probe candidates. Binding for each of the tested probe candidates to HSA was found to give a good fit to a two-site model. The first group of sites had moderate-to-high affinities for the probe candidates with association equilibrium constants that ranged from 6.4 × 103 M−1 (coumarin) to 5.5 × 104 M−1 (4-hydroxycoumarin) at pH 7.4 and 37°C. The second group of weaker, and probably non-specific, binding regions, had association equilibrium constants that ranged from 3.8 × 101 M−1 (7-hydroxy-4-methylcoumarin) to 7.3 × 102 M−1 (coumarin). Competition experiments based on zonal elution indicated that all of these probe candidates competed with warfarin at their high affinity regions. Warfarin also showed competition with coumarin, 7-hydroxycoumarin and 7-hydroxy-4-methycoumarin for their weak affinity sites but appeared to not bind and or compete for all of the weak sites of 4-hydroxycoumarin. It was found from this group that 4-hydroxycoumarin was the best alternative to warfarin for examining the interactions of drugs at Sudlow site I on HSA. These results also provided information on how the major structural components of warfarin contribute to the binding of this drug at Sudlow site I. PMID:18926542

  14. A reduced order model for the study of asymmetries in linear gas chromatography for homogeneous tubular columns.

    SciTech Connect

    Whiting, Joshua J.; Romero, Louis Anthony; Parks, Michael L.

    2005-08-01

    In gas chromatography, a chemical sample separates into its constituent components as it travels along a long thin column. As the component chemicals exit the column they are detected and identified, allowing the chemical makeup of the sample to be determined. For correct identification of the component chemicals, the distribution of the concentration of each chemical along the length of the column must be nearly symmetric. The prediction and control of asymmetries in gas chromatography has been an active research area since the advent of the technique. In this paper, we develop from first principles a general model for isothermal linear chromatography. We use this model to develop closed-form expressions for terms related to the first, second, and third moments of the distribution of the concentration, which determines the velocity, diffusion rate, and asymmetry of the distribution. We show that for all practical experimental situations, only fronting peaks are predicted by this model, suggesting that a nonlinear chromatography model is required to predict tailing peaks. For situations where asymmetries arise, we analyze the rate at which the concentration distribution returns to a normal distribution. Numerical examples are also provided.

  15. Fabrication of electrolytic cell for online post-column electrochemical derivatization in ion chromatography.

    PubMed

    Wu, Shuchao; Xu, Wei; Yang, Bingcheng; Ye, Mingli; Zhang, Peimin; Shen-Tu, Chao; Zhu, Yan

    2012-07-20

    An electrolytic cell (EC), composed of two ruthenium-plated titanium electrodes separated by cation-exchange membranes, was fabricated and evaluated for online postcolumn derivatization in ion chromatography (IC). Folic acid (FA) and methotrexate (MTX) were preliminarily used as prototype analytes to test the performance of EC. After separation by an anion exchange column, FA and MTX, which emit very weak fluorescence when excited, were electrochemically oxidized online in the anode chamber of the EC. The compounds with strong fluorescence, which are oxidation products, were detected by the fluorescence detector. The phosphate buffer solution (100 mM KH(2)PO(4)) served as an optimal eluent for anion exchange chromatographic separation and a suitable supporting electrolyte for electro-oxidation, leading to ideal compatibility between IC separation and the postcolumn electrochemical derivatization. For the presently proposed method, the linear ranges were from 0.01 mg L(-1) to 5 mg L(-1) for both FA and MTX. The detection limits of FA and MTX were 1.8 and 2.1 μg L(-1), and the relative standard deviations (RSD, n=7) were 2.9% and 3.6%, respectively. The method was applied for the simultaneous determination of FA and MTX in the plasma of patients being treated for rheumatoid arthritis. The determination of MTX in the urine of the patients of diffuse large B cell lymphoma was also demonstrated. PMID:22713918

  16. High purity isolation and quantification of semiconducting carbon nanotubes via column chromatography.

    PubMed

    Tulevski, George S; Franklin, Aaron D; Afzali, Ali

    2013-04-23

    The isolation of semiconducting carbon nanotubes (CNTs) to ultrahigh (ppb) purity is a prerequisite for their integration into high-performance electronic devices. Here, a method employing column chromatography is used to isolate semiconducting nanotubes to 99.9% purity. The study finds that by modifying the solution preparation step, both the metallic and semiconducting fraction are resolved and elute using a single surfactant system, allowing for multiple iterations. Iterative processing enables a far more rapid path to achieving the level of purities needed for high performance computing. After a single iteration, the metallic peak in the absorption spectra is completely attenuated. Although absorption spectroscopy is typically used to characterize CNT purity, it is found to be insufficient in quantifying solutions of high purity (>98 to 99%) due to low signal-to-noise in the metallic region of ultrahigh purity solutions. Therefore, a high throughput electrical testing method was developed to quantify the degree of separation by characterizing ∼4000 field-effect transistors fabricated from the separated nanotubes after multiple iterations of the process. The separation and characterization methods described here provide a path to produce the ultrahigh purity semiconducting CNT solutions needed for high performance electronics. PMID:23484490

  17. Use of differential dye-ligand chromatography with affinity elution for enzyme purification: 6-phosphogluconate dehydratase from Zymomonas mobilis.

    PubMed

    Scopes, R K; Griffiths-Smith, K

    1984-02-01

    Using differential dye-ligand chromatography and affinity elution with a substrate analog, 6-phosphogluconate dehydratase (EC 4.2.1.12) has been isolated from extracts of Zymomonas mobilis in a one-step procedure with 50% recovery. The specific activity of freshly isolated enzyme was 245 units mg-1. The enzyme contains iron, and it is rapidly inactivated in oxidizing conditions. It is inhibited by glycerophosphates, most strongly by the D-alpha-isomer which structurally corresponds to half of the substrate molecule. PMID:6326623

  18. Isolation and purification of cat albumin from cat serum by copper ion affinity chromatography: further analysis of its primary structure.

    PubMed

    Dandeu, J P; Rabillon, J; Guillaume, J L; Camoin, L; Lux, M; David, B

    1991-02-22

    Proteins, regardless of their origin, have to be highly purified, particularly from the immunochemical point of view, if they are to be used to study their allergenicity. It is shown that cat albumin, a highly potent allergen for cat-sensitive humans, can be isolated and purified from cat serum using immobilized metal ion affinity chromatography (copper ions) instead of a salting-out process or precipitation with alcohol, techniques generally used for the preparation of serum proteins. During the process described, immunoglobulins are concomitantly isolated in a relatively pure form. Cat albumin amino acid composition and sequence were analysed after an ultimate purification by ion-exchange chromatography. The highest homology (greater than 80%) was found with the rat serum albumin. PMID:2045457

  19. Studies on the Performance of Different Coiled Column Configurations for Compact Type-I Counter-current Chromatography

    PubMed Central

    Yang, Yi; Gu, Dongyu; Aisa, Haji Akber; Ito, Yoichiro

    2011-01-01

    Three types of novel coiled column configurations, i.e., a triangular coiled column and elliptical coiled columns I and II, were designed for type-I countercurrent chromatography and their performances were evaluated with two solvent systems each with suitable test samples. Three DNP-amino acids (DNP-DL-glu, DNP-β-ala and DNP-L-ala) were separated with a moderately hydrophobic two-phase solvent system composed of hexane-ethyl acetate-metanol-0.1M hydrochloric acid (1:1:1:1, v/v), while two dipeptides (tryptophyl tyrosine and valyl-tyrosine) were separated with a polar solvent system composed of 1-butanol-acetic acid-water (4.75:0.25:5, v/v). The overall results indicated that the performance of compact type-I counter-current chromatography was improved by elliptical coiled column II which was mounted with its maximum coil diameter perpendicular to the surface of the column holder. Hydrodynamic effects involved in these separations were discussed. PMID:21491597

  20. Detection and Identification of Heme c-Modified Peptides by Histidine Affinity Chromatography, High-Performance Liquid Chromatography-Mass Spectrometry, and Database Searching

    SciTech Connect

    Merkley, Eric D.; Anderson, Brian J.; Park, Jea H.; Belchik, Sara M.; Shi, Liang; Monroe, Matthew E.; Smith, Richard D.; Lipton, Mary S.

    2012-12-07

    Multiheme c-type cytochromes (proteins with covalently attached heme c moieties) play important roles in extracellular metal respiration in dissimilatory metal-reducing bacteria. Liquid chromatography-tandem mass spectrometry-(LC-MS/MS) characterization of c-type cytochromes is hindered by the presence of multiple heme groups, since the heme c modified peptides are typically not observed, or if observed, not identified. Using a recently reported histidine affinity chromatography (HAC) procedure, we enriched heme c tryptic peptides from purified bovine heart cytochrome c, a bacterial decaheme cytochrome, and subjected these samples to LC-MS/MS analysis. Enriched bovine cytochrome c samples yielded three- to six-fold more confident peptide-spectrum matches to heme-c containing peptides than unenriched digests. In unenriched digests of the decaheme cytochrome MtoA from Sideroxydans lithotrophicus ES-1, heme c peptides for four of the ten expected sites were observed by LC-MS/MS; following HAC fractionation, peptides covering nine out of ten sites were obtained. Heme c peptide spiked into E. coli lysates at mass ratios as low as 10-4 was detected with good signal-to-noise after HAC and LC-MS/MS analysis. In addition to HAC, we have developed a proteomics database search strategy that takes into account the unique physicochemical properties of heme c peptides. The results suggest that accounting for the double thioether link between heme c and peptide, and the use of the labile heme fragment as a reporter ion, can improve database searching results. The combination of affinity chromatography and heme-specific informatics yielded increases in the number of peptide-spectrum matches of 20-100-fold for bovine cytochrome c.

  1. Study on the Alkaloids in Tibetan Medicine Aconitum pendulum Busch by HPLC-MSn Combined with Column Chromatography.

    PubMed

    Wang, Beibei; Dong, Jie; Ji, Jiaojiao; Yuan, Jiang; Wang, Jiali; Wu, Jiarui; Tan, Peng; Liu, Yonggang

    2016-01-01

    A rapid, convenient and effective identification method of alkaloids was established and an attempt on isolating and analyzing the alkaloids in Aconitum pendulum Busch was conducted successfully. In this article, four high-content components including deoxyaconitine, benzoylaconine, aconine and neoline were isolated by using column chromatography. HPLC-MS(n)was employed to deduce the regulations of fragmentation of diterpenoid alkaloids which displayed a characteristic behavior of loss of CO(28u), CH3COOH(60u), CH3OH(32u), H2O(18u) and C6H5COOH(122u). Then, according to fragmentation regulation of mass spectrometry, 42 alkaloids were found inA. pendulum Among them, 38 compounds were identified and 29 alkaloids were reported for the first time for this herb. Therefore, this means that HPLC-MS(n)combined with column chromatography could work as an effective and reliable tool for rapid identification of the chemical components of herbal medicine. PMID:26896350

  2. Synthesis and application of a macroporous boronate affinity monolithic column using a metal-organic gel as a porogenic template for the specific capture of glycoproteins.

    PubMed

    Yang, Fan; Lin, Zian; He, Xiwen; Chen, Langxing; Zhang, Yukui

    2011-12-23

    A macroporous boronate affinity monolithic column was prepared and applied to specifically capture glycoproteins using metal-organic gels (MOGs) as a porogenic template. This newly explored application of MOGs has proven to be a more convenient method for the formation of macropores in contrast to traditional porogenic methods. The poly (3-acrylamidophenylboronic acid-co-ethylene dimethacrylate) monolithic columns were synthesized in stainless columns by in situ polymerization. To fabricate the macroporous formation with a uniformed open-channel network, the preparation conditions, such as reaction temperature, the concentration of the MOGs and the ratio of monomers were systematically investigated. The prepared macroporous monoliths were characterized by scanning electron microscope (SEM) and mercury intrusion porosimetry. Furthermore, horseradish peroxidase (HRP) and transferrin (TF) were chosen as test glycoproteins, and the chromatographic analysis demonstrated that the macroporous boronate affinity monoliths exhibited a higher selectivity and better dynamic binding capacity toward glycoproteins compared with non-glycoproteins. The resulted affinity monolithic column was successfully employed to specifically capture TF from a bovine serum sample. PMID:22078233

  3. A Highly Selective Hsp90 Affinity Chromatography Resin with a Cleavable Linker

    PubMed Central

    Hughes, Philip F; Barrott, Jared J; Carlson, David A; Loiselle, David R; Speer, Brittany L; Bodoor, Khaldon; Rund, Lauretta A; Haystead, Timothy A J

    2012-01-01

    Over 200 proteins have been identified that interact with the protein chaperone Hsp90, a recognized therapeutic target thought to participate in non-oncogene addiction in a variety of human cancers. However, defining Hsp90 clients is challenging because interactions between Hsp90 and its physiologically relevant targets involve low affinity binding and are thought to be transient. Using a chemo-proteomic strategy, we have developed a novel orthogonally cleavable Hsp90 affinity resin that allows purification of the native protein and is quite selective for Hsp90 over its immediate family members, GRP94 and TRAP 1. We show that the resin can be used under low stringency conditions for the rapid, unambiguous capture of native Hsp90 in complex with a native client. We also show that the choice of linker used to tether the ligand to the insoluble support can have a dramatic effect on the selectivity of the affinity media. PMID:22520629

  4. An optimized approach for enrichment of glycoproteins from cell culture lysates using native multi-lectin affinity chromatography.

    PubMed

    Lee, Ling Y; Hincapie, Marina; Packer, Nicolle; Baker, Mark S; Hancock, William S; Fanayan, Susan

    2012-09-01

    Lectins are capable of recognizing specific glycan structures and serve as invaluable tools for the separation of glycosylated proteins from nonglycosylated proteins in biological samples. We report on the optimization of native multi-lectin affinity chromatography, combining three lectins, namely, concanavalin A, jacalin, and wheat germ agglutinin for fractionation of cellular glycoproteins from MCF-7 breast cancer lysate. We evaluated several conditions for optimum recovery of total proteins and glycoproteins such as low pH and saccharide elution buffers, and the inclusion of detergents in binding and elution buffers. Optimum recovery was observed with overnight incubation of cell lysate with lectins at 4°C, and inclusion of detergent in binding and saccharide elution buffers. Total protein and bound recoveries were 80 and 9%, respectively. Importantly, we found that high saccharide strength elution buffers were not necessary to release bound glycoproteins. This study demonstrates that multi-lectin affinity chromatography can be extended to total cell lysate to investigate the cellular glycoproteome. PMID:22997032

  5. Enrichment and Analysis of Nonenzymatically Glycated Peptides: Boronate Affinity Chromatography Coupled with Electron-Transfer Dissociation Mass Spectrometry

    SciTech Connect

    Zhang, Qibin; Tang, Ning; Brock, Jonathan W.; Mottaz, Heather M.; Ames, Jennifer M.; Baynes, John; Smith, Richard D.; Metz, Thomas O.

    2007-06-01

    Non-enzymatic glycation of peptides and proteins by D-glucose has important implications in the pathogenesis of diabetes mellitus, particularly in the development of diabetic complications. However, no effective high-throughput methods exist for identifying proteins containing this low abundance post-translational modification in bottom-up proteomic studies. In this report, phenylboronate affinity chromatography was used in a two-step enrichment scheme to selectively isolate first glycated proteins and then glycated, tryptic peptides from human serum glycated in vitro. Enriched peptides were subsequently analyzed by alternating electron transfer dissociation (ETD) and collision induced dissociation (CID) tandem mass spectrometry. It was observed that ETD fragmentation mode resulted in a significantly higher number of glycated peptide identifications (87.6% of all identified peptides) versus CID mode (17.0% of all identified peptides), when utilizing dual glycation enrichment on both the protein and peptide level. This study illustrates that phenylboronate affinity chromatography coupled with LC-MS/MS with ETD as the fragmentation mode is an efficient approach for analyses of glycated proteins and can have broad applications in studies of diabetes mellitus.

  6. Characterization of the human submandibular/sublingual saliva glycoproteome using lectin affinity chromatography coupled to Multidimensional Protein Identification Technology

    PubMed Central

    Gonzalez-Begne, Mireya; Lu, Bingwen; Liao, Lujian; Xu, Tao; Bedi, Gurrinder; Melvin, James E.; Yates, John R.

    2011-01-01

    In-depth analysis of the salivary proteome is fundamental to understanding the functions of salivary proteins in the oral cavity and to reveal disease biomarkers involved in different pathophysiological conditions, with the ultimate goal of improving patient diagnosis and prognosis. Submandibular and sublingual glands contribute saliva rich in glycoproteins to the total saliva output, making them valuable sources for glycoproteomic analysis. Lectin-affinity chromatography coupled to mass spectrometry-based shotgun proteomics was used to explore the submandibular/sublingual (SM/SL) saliva glycoproteome. A total of 262 N- and O-linked glycoproteins were identified by multidimensional protein identification technology (MudPIT). Only 38 were previously described in SM and SL salivas from the human salivary N-linked glycoproteome, while 224 were unique. Further comparison analysis with SM/SL saliva of the human saliva proteome, revealed 125 glycoproteins not formerly reported in this secretion. KEGG pathway analyses demonstrated that many of these glycoproteins are involved in processes such as complement and coagulation cascades, cell communication, glycosphingolipid biosynthesis neo-lactoseries, O-glycan biosynthesis, glycan structures-biosynthesis 2, starch and sucrose metabolism, peptidoglycan biosynthesis or others pathways. In summary, lectin-affinity chromatography coupled to MudPIT mass spectrometry identified many novel glycoproteins in SM/SL saliva. These new additions to the salivary proteome may prove to be a critical step for providing reliable biomarkers in the diagnosis of a myriad of oral and systemic diseases. PMID:21936497

  7. Analysis of phytochelatins in plant matrices by pre-column derivatization, high-performance liquid chromatography and fluorescence-detection.

    PubMed

    Döring, S; Korhammer, S; Oetken, M; Markert, B

    2000-02-01

    A sensitive method for the determination of phytochelatins in plant matrices by pre-column derivatization with monobromobimane (mBrB) and high-performance liquid chromatography (HPLC) on reversed phases and fluorescence-detection has been developed and applied to cucumber sprouts (Cucumis sativus) treated with cadmium and to the water moss Fontinalis antipyretica (Cd in environmentally-relevant concentrations). Whereas phytochelatins were found in the Cd-treated sprouts, no phytochelatins were detected in Fontinalis anitipyretica. PMID:11225681

  8. Preparative purification and desalting of bases and nucleosides labeled with tritium by column chromatography on sephadex G-10

    SciTech Connect

    Yalovleva, L.A.; Kaminskii, Y.L.; Kozyreva, O.I.; Nagorskii, A.I.; Patokina, N.A.; Sosnova, L.P.

    1986-03-01

    The authors demonstrate the application of column chromatography on Sephadex G-10 and elution with water for the isolation of tritium labeled components of nucleic acids from reaction mixtures after catalytic dehalogenation or enzymic desoxyribosylation and simultaneous removal from inorganic salts. Distribution constants of 16 bases and nucleosides on elution with water were determined. Comparison of the sorbents with Sephadex G-20 disclosed the undoubted advantages of the latter in processes of desalting and separation of mixtures of bases and nucleosides.

  9. Determination of chlorophylls in Taraxacum formosanum by high-performance liquid chromatography-diode array detection-mass spectrometry and preparation by column chromatography.

    PubMed

    Loh, Chin Hoe; Inbaraj, Baskaran Stephen; Liu, Man Hai; Chen, Bing Huei

    2012-06-20

    Taraxacum formosanum, a well-known Chinese herb shown to be protective against hepatic cancer as well as liver and lung damage, may be attributed to the presence of abundant carotenoids and chlorophylls. However, the variety and content of chlorophylls remain uncertain. The objectives of this study were to develop an high-performance liquid chromatography-diode array detection-mass spectrometry method for determination of chlorophylls in T. formosanum and preparation by column chromatography. An HyPURITY C18 column and a gradient mobile phase of water (A), methanol (B), acetonitrile (C), and acetone (D) could resolve 10 chlorophylls and an internal standard Fast Green FCF within 30 min with a flow rate at 1 mL/min and detection at 660 nm. Both chlorophylls a and a' were present in the largest amount (1389.6 μg/g), followed by chlorophylls b and b' (561.2 μg/g), pheophytins a and a' (31.7 μg/g), hydroxychlorophyll b (26.5 μg/g), hydroxychlorophylls a and a' (9.8 μg/g), and chlorophyllides a and a' (0.35 μg/g). A glass column containing 52 g of magnesium oxide-diatomaceous earth (1:3, w/w) could elute chlorophylls with 800 mL of acetone containing 50% ethanol at a flow rate of 10 mL/min. Some new chlorophyll derivatives including chlorophyllide b, pyropheophorbide b, hydroxypheophytin a, and hydroxypheophytin a' were generated during column chromatography but accompanied by a 63% loss in total chlorophylls. Thus, the possibility of chlorophyll fraction prepared from T. formosanum as a raw material for future production of functional food needs further investigation. PMID:22656126

  10. Simple automated generation of gradient elution conditions in sequential injection chromatography using monolithic column.

    PubMed

    Koblová, Petra; Sklenářová, Hana; Chocholouš, Petr; Polášek, Miroslav; Solich, Petr

    2011-06-15

    The paper deals with the concept of simple automated creation of gradient profile of the mobile phase for gradient-elution sequential injection chromatography (GE-SIC). The feasibility and merits of this concept are demonstrated on the separation and simultaneous assay of indomethacin as active principle and of its two degradation products (5-methoxy-2-methylindoleacetic acid and 4-chloro-benzoic acid) in a topical pharmaceutical formulation. The GE-SIC separation was performed with a FIAlab(®) 3000 SIC set-up (USA) equipped with an Onyx™ Monolithic C18 (25 mm × 4.6mm, Phenomenex(®)) column, a six-port selection valve, a 5-mL syringe pump and a fiber-optics UV CCD detector. Ketoprofen was used as an internal standard (IS). The gradient elution was achieved by automated reproducible mixing of acetonitrile and aqueous 0.2% phosphoric acid in the holding coil of the SIC system. Different profiles of the gradient elution were tested. The optimal gradient using two mobile phases 30:70 and 50:50 of acetonitrile/0.2% phosphoric acid (v/v) was achieved under the optimum flow rate 1.2 mL min(-1). The chromatographic resolution R between the peaks of all solutes (including the IS) was >2.00. The repeatability of retention times was characterized by the RSD values 0.18-0.30% (n=6). Net separation time was 3.5 min and the mobile phase consumption was 4.5 mL for a single GE-SIC assay. The figures of merit of the novel GE-SIC method compared well with those of conventional HPLC. PMID:21641437

  11. Research on the separation properties of empty-column gas chromatography (EC-GC) and conditions for simulated distillation (SIMDIS).

    PubMed

    Boczkaj, Grzegorz; Kamiński, Marian

    2013-10-01

    Previous studies have revealed it is possible to separate a high-boiling mixture by gas chromatography in empty fused-silica capillary tubing rather than in columns coated with stationary phase. Chromatographic separation occurs solely on the basis of the different boiling points of the substances separated. The high similarity of such separations to those in classic distillation seems advantageous when gas chromatography is used for simulated distillation. This paper presents results from further research on the separation properties of empty fused silica tubing. The efficiency of this chromatographic system has been examined. The usefulness of such conditions has been studied for simulated distillation, i.e. to determine the boiling-point distribution of complex mixtures, mainly petroleum fractions and products, on the basis of their retention relative to reference substances. The results obtained by use of empty-column gas chromatography (EC-GC) and by use of classical simulated distillation columns have been compared for solutes of different polarity. Studies revealed boiling points determined by EC-GC were more accurate than those obtained by the standard method of simulated distillation. PMID:23925798

  12. Simultaneous determination of methamphetamine and its metabolite, amphetamine, in urine using a high performance liquid chromatography column-switching method.

    PubMed

    Kumihashi, Mitsuru; Ameno, Kiyoshi; Shibayama, Takayuki; Suga, Keisuke; Miyauchi, Hiroshi; Jamal, Mostofa; Wang, Weihuan; Uekita, Ikuo; Ijiri, Iwao

    2007-01-01

    We describe here a simple, precise, and highly sensitive method for the simultaneous determination of methamphetamine (MA) and amphetamine (AM) in urine using a high performance liquid chromatography (HPLC) column-switching method. A PK-2A (Shodex) column was used for extraction and deproteinization, and a CAPCELL PAK SCX semi-micro, polymer-coated cation-exchange column was employed for separation. The urine sample was mixed with an equal volume of borate buffer (0.1M, pH 9.4), and then 100 microl of the mixture was injected into the HPLC column. The column was switched for 6 min, and then 10 min later detection was performed at 210 nm. Recovery yields of the MA and AM spiked in the urine were 93.0-100.4% with a coefficient of variation of less than 1%. The calibration curves of MA and AM were in the range of 0.1-10 microg/ml with good linearity (r(2)=0.999), with the limit of qualification being 0.005 microg/ml. This method of using HPLC with column-switching can be used for both qualification and quantification of MA and its metabolite, AM, in urine, especially in forensic cases. PMID:16916628

  13. Radial heterogeneity of some analytical columns used in high-performance liquid chromatography

    SciTech Connect

    Mriziq, Khaled S; Guiochon, Georges A

    2009-01-01

    An on-column electrochemical microdetector was used to determine accurately the radial distribution of the mobile phase velocity and of the column efficiency at the exit of three common analytical columns, namely a 100 mm x 4.6 mm C18 bonded silica-based monolithic column, a 150 mm x 4.6 mm column packed with 2.7 {micro}m porous shell particles of C18 bonded silica (HALO), and a 150 mm x 4.6 mm column packed with 3 {micro}m fully porous C18 bonded silica particles (LUNA). The results obtained demonstrate that all three columns are not radially homogeneous. In all three cases, the efficiency was found to be lower in the wall region of the column than in its core region (the central core with a radius of 1/3 the column inner radius). The decrease in local efficiency from the core to the wall regions was lower in the case of the monolith (ca. 25%) than in that of the two particle-packed columns (ca. 35-50%). The mobile phase velocity was found to be ca. 1.5% higher in the wall than in the core region of the monolithic column while, in contrast, it was ca. 2.5-4.0% lower in the wall region for the two particle-packed columns.

  14. Production of Capsular Polysaccharide of Streptococcus pneumoniae Type 14 and Its Purification by Affinity Chromatography

    PubMed Central

    Suárez, Norma; Fraguas, Laura Franco; Texeira, Esther; Massaldi, Hugo; Batista-Viera, Francisco; Ferreira, Fernando

    2001-01-01

    We describe a rapid and efficient method for producing the capsular polysaccharide of Streptococcus pneumoniae by fermentation on tryptic soy broth and purification of this compound by using immobilized soybean lectin as an affinity adsorbent. In principle, the same strategy can be used to produce purified capsular polysaccharides from other streptococcal serotypes by selecting the appropriate lectin adsorbents. PMID:11157270

  15. Production of capsular polysaccharide of Streptococcus pneumoniae type 14 and its purification by affinity chromatography.

    PubMed

    Suárez, N; Fraguas, L F; Texeira, E; Massaldi, H; Batista-Viera, F; Ferreira, F

    2001-02-01

    We describe a rapid and efficient method for producing the capsular polysaccharide of Streptococcus pneumoniae by fermentation on tryptic soy broth and purification of this compound by using immobilized soybean lectin as an affinity adsorbent. In principle, the same strategy can be used to produce purified capsular polysaccharides from other streptococcal serotypes by selecting the appropriate lectin adsorbents. PMID:11157270

  16. Purification of C70 using charcoal as a stationary phase in a flash chromatography column. Technical report

    SciTech Connect

    Scrivens, W.A.; Cassell, A.M.; Kinsey, K.E.; Tour, J.M.

    1995-06-07

    Described is a method for the purification of C60 and C70 using a flash chromatography column that contains charcoal as the stationary phase. A number of functionalized aromatic solvents are studied and their efficacy for extraction, NMR spectral acquisition, and chromatographic purification of fullerenes is discussed. Ortho-dichlorobenzene was chosen as the best solvent for these applications and examples of its use in the extraction of higher fullerenes (>C84) and in the rapid acquisition of (13)C NMR spectra are given. Finally, single column purification of both C60 and C70 is discussed. Starting with a typical arc-derived mixture of soluble fullerenes, 5.97 g of C60 at >99.9% purity and 1.58 g of C70 at >97% purity were produced in a single column pass.

  17. Quantitative Phosphoproteome Analysis of Lysophosphatidic Acid Induced Chemotaxis applying Dual-step ¹⁸O Labeling Coupled with Immobilized Metal-ion Affinity Chromatography

    SciTech Connect

    Ding, Shi-Jian; Wang, Yingchun; Jacobs, Jon M.; Qian, Weijun; Yang, Feng; Tolmachev, Aleksey V.; Du, Xiuxia; Wang, Wei; Moore, Ronald J.; Monroe, Matthew E.; Purvine, Samuel O.; Waters, Katrina M.; Heibeck, Tyler H.; Adkins, Joshua N.; Camp, David G.; Klemke, Richard L.; Smith, Richard D.

    2008-10-01

    Reversible protein phosphorylation is a central cellular regulatory mechanism in modulating protein activity and propagating signals within cellular pathways and networks. Development of more effective methods for the simultaneous identification of phosphorylation sites and quantification of temporal changes in protein phosphorylation could provide important insights into molecular signaling mechanisms in a variety of different cellular processes. Here we present an integrated quantitative phosphoproteomics approach and its applications for comparative analysis of Cos-7 cells in response to lysophosphatidic acid (LPA) gradient stimulation. The approach combines trypsin-catalyzed 16O/18O labeling plus 16O/18O-methanol esterification labeling for quantitation, a macro- Immobilized Metal-ion Affinity Chromatography trap for phosphopeptide enrichment, and a monolithic capillary column with integrated electrospray emitter. LC separation and MS/MS is followed by neutral loss-dependent MS/MS/MS for phosphopeptide identification using a linear ion trap (LTQ)-FT mass spectrometer and complementary searching algorithms for interpreting MS/MS spectra. Protein phosphorylation involved in various signaling pathways of cell migration were identified and quantified, such as mitogen-activated protein kinase 1, dual-specificity mitogen-activated protein kinase kinase 2, and dual-specificity tyrosine-phosphorylation regulated kinase 1b, and a number of Rho GTPase-activating proteins. These results demonstrate the efficiency of this quantitative phosphoproteomics approach and its application for rapid discovery of phosphorylation events associated with gradient sensing and cell chemotaxis.

  18. Rapid chemical profiling of saponins in the flower buds of Panax notoginseng by integrating MCI gel column chromatography and liquid chromatography/mass spectrometry analysis.

    PubMed

    Yang, Wen-Zhi; Bo, Tao; Ji, Shuai; Qiao, Xue; Guo, De-An; Ye, Min

    2013-08-15

    The flower buds of Panax notoginseng (Notoginseng flower, FBP) are used as the traditional Chinese medicine San-Qi-Hua. In this study, we conducted column chromatography fractionation and liquid chromatography/mass spectrometry (LC/MS) analysis to comprehensively profile bioactive notoginseng saponins (ginsenosides) in FBP. MCI gel column chromatography allowed separation and enrichment of minor saponins. Electrospray ionization tandem mass spectrometry of [M-H](-) and [M+Na](+) precursor ions of the saponins provided reliable structural information for the sapogenin, and sequence of sugar chains. Confirmed by high-accuracy Q-TOF analysis, 170 notoginseng saponins were characterized from FBP, and 91 of them were reported from Panax species for the first time. The new ginsenosides contain acyl groups on α-chain, malonyl group at 20-OH, or di-malonyl groups. This study also indicated that the flower buds of P. notoginseng contained more protopanaxadiol-type but less protopanaxatriol-type ginsenosides than the roots. PMID:23561171

  19. Isolation of new pregnancy-associated glycoproteins from water buffalo (Bubalus bubalis) placenta by Vicia villosa affinity chromatography.

    PubMed

    Barbato, O; Sousa, N M; Klisch, K; Clerget, E; Debenedetti, A; Barile, V L; Malfatti, A; Beckers, J F

    2008-12-01

    The present study describes the isolation and characterization of new pregnancy-associated glycoprotein molecules (PAG) from midpregnancy and late-pregnancy placentas in the water buffalo (Bubalus bubalis). After extraction, the homogenates are subjected to acid and ammonium sulfate precipitations followed by DEAE chromatography. Subsequently, the water buffalo PAG (wbPAG) from these solutions are enriched by Vicia villosa agarose (VVA) affinity chromatography. As determined by western blotting with anti-PAG sera, the apparent molecular masses of the immunoreactive bands from the VVA peaks range from 59.5 to 75.8kDa and from 57.8 to 73.3kDa in the midpregnancy and late-pregnancy placentas, respectively. Amino-terminal microsequencing of the immunoreactive proteins has allowed the identification of three distinct wbPAG sequences, which have been deposited in the SwissProt database: RGSXLTIHPLRNIRDFFYVG (acc. no. P85048), RGSXLTILPLRNIID (acc. no. P85049), and RGSXLTHLPLRNI (acc. no. P85050). Their comparison to previously identified proteins has shown that two of them are new because they have not been described before. Our results confirm the suitability of VVA chromatography for the enrichment of the multiple PAG molecules expressed in buffalo placenta. PMID:18308351

  20. Purification of F plasmid-encoded native TraC from Escherichia coli by affinity chromatography on calmodulin Sepharose.

    PubMed

    Hellstern, Simon; Mutzel, Rupert

    2016-06-01

    We have enriched several native bacterial proteins from Escherichia coli by chromatography on the immobilized eukaryotic Ca(2+)-binding protein, calmodulin. These bacterial proteins bound in a Ca(2+)-dependent manner to calmodulin, and were released by the addition of the Ca(2+)-chelator, EGTA, similar to many eukaryotic calmodulin-binding proteins. One of the bacterial proteins, F factor-encoded TraC, was purified to apparent homogeneity by an additional chromatographic step, anion exchange chromatography on MonoQ. Experiments with four chemically distinct calmodulin antagonists (R24571, Compound 48/80, melittin, and W7) showed that all of these substances inhibited the binding of purified TraC to calmodulin at effective concentrations comparable to those required for inhibiting in vitro binding of eukaryotic calmodulin-binding proteins. Three further bacterial proteins were identified as calmodulin-binding proteins: SecA, GlpD, and GlpC. We suggest that also these native bacterial proteins might be isolated by the unusual purification procedure including affinity chromatography on calmodulin Sepharose. Whether the identified proteins bind to, and are regulated by, putative bacterial calmodulin-like proteins in Escherichia coli remains to be established. PMID:26892535

  1. Fingerprinting of traditional Chinese medicines on the C18-Diol mixed-mode column in online or offline two-dimensional liquid chromatography on the single column modes.

    PubMed

    Wang, Qing; Tong, Ling; Yao, Lin; Zhang, Peng; Xu, Li

    2016-06-01

    In the present study, a mixed-mode stationary phase, C18-Diol, was applied for fingerprint analysis of traditional Chinese medicines. Hydrophobic, hydrogen bonding and electrostatic interactions were demonstrated to contribute the retention separately or jointly, which endowed the C18-Diol stationary phase with distinct selectivity compared to the bare C18 one. The separation of total alkaloids extracted from Fritillaria hupehensis was compared on the C18-Diol and conventional C18 column with the greater resolving power and better symmetry responses on the former one. Besides, a novel two-dimensional liquid chromatography on the single column (2D-LC-1C) was realized on C18-Diol with the offline mode for the alcohol extract of Fritillaria hupehensis and online mode for Ligusticum chuanxiong Hort. The early co-eluted extracted components with great polarity on the first dimension were reinjected on the same column and well separated on the second dimension. The results exhibited that the two complementary RPLC and HILIC modes on C18-Diol stationary phase enhanced the separation capacity and revealed more abundant chemical information of the sample, which was a powerful tool in analyzing complex herbal medicines. PMID:27031576

  2. 3D printed titanium micro-bore columns containing polymer monoliths for reversed-phase liquid chromatography.

    PubMed

    Gupta, Vipul; Talebi, Mohammad; Deverell, Jeremy; Sandron, Sara; Nesterenko, Pavel N; Heery, Brendan; Thompson, Fletcher; Beirne, Stephen; Wallace, Gordon G; Paull, Brett

    2016-03-01

    The potential of 3D selective laser melting (SLM) technology to produce compact, temperature and pressure stable titanium alloy chromatographic columns is explored. A micro bore channel (0.9 mm I.D. × 600 mm long) was produced within a 5 × 30 × 30 mm titanium alloy (Ti-6Al-4V) cuboid, in form of a double handed spiral. A poly(butyl methacrylate-co-ethyleneglycoldimethacrylate) (BuMA-co-EDMA) monolithic stationary phase was thermally polymerised within the channel for application in reversed-phase high-performance liquid chromatography. The prepared monolithic column was applied to the liquid chromatographic separation of intact proteins and peptides. Peak capacities of 69-76 (for 6-8 proteins respectively) were observed during isothermal separation of proteins at 44 °C which were further increased to 73-77 using a thermal step gradient with programmed temperature from 60 °C to 35 °C using an in-house built direct-contact heater/cooler platform based upon matching sized Peltier thermoelectric modules. Rapid temperature gradients were possible due to direct-contact between the planar metal column and the Peltier module, and the high thermal conductivity of the titanium column as compared to a similar stainless steel printed column. The separation of peptides released from a digestion of E.coli was also achieved in less than 35 min with ca. 40 distinguishable peaks at 210 nm. PMID:26873472

  3. Simple column-switching ion chromatography method for determining eight monosaccharides and oligosaccharides in honeydew and nectar.

    PubMed

    Ni, Chengzhu; Zhu, Binhe; Wang, Nani; Wang, Muhua; Chen, Suqing; Zhang, Jiajie; Zhu, Yan

    2016-03-01

    Honeydew is excreted by aphids as a sweet waste and nectar is floral honey. Honeydew and nectar are complicated samples which consist of various sugars and amino acids. In this work, a simple ion chromatography with column-switching method was developed for the simultaneous analysis of 8 monosaccharides and oligosaccharides in honeydew and nectar. A reversed-phase column was used as a pretreatment column to eliminate organics on-line and sugars were eluted from a collection loop to analytical column by using column-switching technique. This method showed good linearity (r⩾0.9994) and afforded low limits of detection ranging from 1.55 to 10.17μgL(-1) for all the analytes. Recoveries ranged from 95% to 105% and repeatability results were acceptable with relative standard deviation of less than 3.21% (n=6). This method was successfully applied to quantification of these sugars in honeydew and nectar. These results showed honeydew had much more oligosaccharides than nectar. PMID:26471592

  4. Purification of Hemoglobin from Red Blood Cells using Tangential Flow Filtration and Immobilized Metal Ion Affinity Chromatography

    PubMed Central

    Elmer, Jacob; Harris, David; Palmer, Andre F.

    2011-01-01

    Two methods for purifying hemoglobin (Hb) from red blood cells (RBCs) are examined and compared. In the first method, red blood cell lysate is clarified with a 50 nm tangential flow filter and hemoglobin is purified using immobilized metal ion affinity chromatography (IMAC). In the second method, RBC lysate is processed with 50 nm, 500 kDa, and 50-100 kDa tangential flow filters, then hemoglobin is purified with IMAC. Our results show that the hemoglobins from both processes produce identical Hb products that are ultrapure and retain their biophysical properties (except for chicken hemoglobin, which shows erratic oxygen binding behavior after purification). Therefore, the most efficient method for Hb purification appears to be clarification with a 50 nm tangential flow filter, followed by purification with IMAC, and sample concentration/polishing on a 10-50 kDa tangential flow filter. PMID:21195679

  5. Separation of Binding Protein of Celangulin V from the Midgut of Mythimna separata Walker by Affinity Chromatography

    PubMed Central

    Lu, Lina; Qi, Zhijun; Zhang, Jiwen; Wu, Wenjun

    2015-01-01

    Celangulin V, an insecticidal compound isolated from the root bark of Chinese bittersweet, can affect the digestive system of insects. However, the mechanism of how Celangulin V induces a series of symptoms is still unknown. In this study, affinity chromatography was conducted through coupling of Celangulin V-6-aminoacetic acid ester to the CNBr-activated Sepharose 4B. SDS-PAGE was used to analyze the collected fraction eluted by Celangulin V. Eight binding proteins (Zinc finger protein, Thioredoxin peroxidase (TPx), Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), SUMO E3 ligase RanBP2, Transmembrane protein 1, Actin, APN and V-ATPase) were obtained and identified by LC/Q-TOF-MS from the midgut of Mythimna separata larvae. The potential of these proteins to serve as target proteins involved in the insecticidal activity of Celangulin V is discussed. PMID:25996604

  6. Evaluation of immobilized metal affinity chromatography kits for the purification of histidine-tagged recombinant CagA protein.

    PubMed

    Karakus, Cebrail; Uslu, Merve; Yazici, Duygu; Salih, Barik A

    2016-05-15

    Immobilized metal affinity chromatography (IMAC) technique is used for fast and reliable purification of histidine(His)-tagged recombinant proteins. The technique provides purification under native and denaturing conditions. The aim of this study is to evaluate three commercially available IMAC kits (Thermo Scientific, GE Healthcare and Qiagen) for the purification of a 6xHis-tagged recombinant CagA (cytotoxin-associated gene A) protein from IPTG-induced Escherichia coli BL21(DE3) culture. The kits were tested according to the manufacturer instructions and the protein was purified with only GE Healthcare and Qiagen kits under denaturing conditions. 1% (w/v) SDS was used as denaturing agent in PBS instead of extraction reagent of Thermo Scientific kit to lyse bacterial cells from 100ml culture. The 6xHis-tagged recombinant protein was purified by the three kits equally. PMID:26657801

  7. Imidazole-free purification of His3-tagged recombinant proteins using ssDNA aptamer-based affinity chromatography.

    PubMed

    Bartnicki, Filip; Kowalska, Ewa; Pels, Katarzyna; Strzalka, Wojciech

    2015-10-30

    Immobilized metal ion affinity chromatography (IMAC) is widely used for the purification of many different His6-tagged recombinant proteins. On the one hand, it is a powerful technique but on the other hand it has its disadvantages. In this report, we present the development of a unique ssDNA aptamer for the purification of His3-tagged recombinant proteins. Our study shows that stability of the His3-tag/H3T aptamer complex can be controlled by the sodium ion concentration. Based on this feature, we demonstrate that H3T aptamer resin was successfully employed for the purification of three out of four tested His3-tagged recombinant proteins from an E. coli total protein extract using imidazole-free buffers. Finally, we show that the purity of His3-tagged proteins is superior when purified with the help of the H3T aptamer in comparison with Ni-NTA resin. PMID:26427325

  8. Separation of Binding Protein of Celangulin V from the Midgut of Mythimna separata Walker by Affinity Chromatography.

    PubMed

    Lu, Lina; Qi, Zhijun; Zhang, Jiwen; Wu, Wenjun

    2015-05-01

    Celangulin V, an insecticidal compound isolated from the root bark of Chinese bittersweet, can affect the digestive system of insects. However, the mechanism of how Celangulin V induces a series of symptoms is still unknown. In this study, affinity chromatography was conducted through coupling of Celangulin V-6-aminoacetic acid ester to the CNBr-activated Sepharose 4B. SDS-PAGE was used to analyze the collected fraction eluted by Celangulin V. Eight binding proteins (Zinc finger protein, Thioredoxin peroxidase (TPx), Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), SUMO E3 ligase RanBP2, Transmembrane protein 1, Actin, APN and V-ATPase) were obtained and identified by LC/Q-TOF-MS from the midgut of Mythimna separata larvae. The potential of these proteins to serve as target proteins involved in the insecticidal activity of Celangulin V is discussed. PMID:25996604

  9. Multi-Parameter Cell Affinity Chromatography: Separation and Analysis in a Single Microfluidic Channel

    PubMed Central

    Li, Peng; Gao, Yan; Pappas, Dimitri

    2012-01-01

    The ability to sort and capture more than one cell type from a complex sample will enable a wide variety of studies of cell proliferation, death, and the analysis of disease states. In this work, we integrated a pneumatic actuated control layer to an affinity separation layer to create different antibody coating regions on the same fluidic channel. The comparison of different antibody capture capabilities to the same cell line was demonstrated by flowing Ramos cells through anti-CD19 and anti-CD71 coated regions in the same channel, respectively. It was determined that cell capture density on anti-CD19 region was 2.44±0.13 times higher than on anti-CD71 coated region. This approach can be used to test different affinity molecules for selectivity and capture efficiency using a single cell line in one separation. Selective capture of Ramos and HuT 78 cells from a mixture was also demonstrated using two antibody regions in the same channel. Greater than 90% purity was obtained on both capture areas in both continuous flow and stop flow separation modes. A four-region antibody coated device was then fabricated to study the simultaneous, serial capture of three different cell lines. In this case the device showed effective capture of cells in a single separation channel, opening up the possibility of multiple cell sorting. Multi-parameter sequential blood sample analysis was also demonstrated with high capture specificity (>97% for both CD19+ and CD4+ leukocytes). The chip can also be used to selectively treat cells after affinity separation. PMID:22958145

  10. Displacement chromatography of proteins using a retained pH front in a hydrophobic charge induction chromatography column.

    PubMed

    Pinto, N D S; Frey, Douglas D

    2015-03-27

    The chromatographic separation of two proteins into a displacement train of two adjoined rectangular bands was accomplished using a novel method for hydrophobic charge induction chromatography (HCIC) which employs a self-sharpening pH front as the displacer. This method exploits the fact that protein elution in HCIC is promoted by a pH change, but is relatively independent of salt effects, so that a retained pH front can be used in place of a traditional displacer in displacement chromatography. The retained pH front was produced using the two adsorbed buffering species tricine and acetic acid. The separation of lysozyme and α-chymotrypsinogen A into adjoined, rectangular bands was accomplished with overall recoveries based on the total mass injected greater than 90 and 70%, respectively. The addition of urea to the buffer system increased the sharpness of the pH front by 36% while the yields of lysozyme and α-chymotrypsinogen A based on the total mass eluted increased from 76% to 99% and from 37% to 85%, respectively, when the purities of both proteins in their product fractions were fixed at 85%. The results demonstrate that the method developed in this study is a useful variant of HCIC and is also a useful alternative to other displacement chromatography methods. PMID:25702080

  11. Hydrophilic interaction chromatography of seized drugs and related compounds with sub 2 μm particle columns.

    PubMed

    Lurie, Ira S; Li, Li; Toske, Steven G

    2011-12-30

    The use of hydrophilic interaction chromatography (HILIC) with sub 2 μm particle columns for the analysis of drugs and related compounds of forensic interest is described. This technique uses a high organic/low aqueous buffered mobile phase with a polar stationary phase, and is excellent for the separation of many of the charged solutes that are found in forensic drug exhibits. In this study, HILIC is investigated for 11 solutes of forensic interest, including weak bases, weak acids, and a neutral solute. In addition, for columns containing either ethylene bridged hybrid particles with or without an amide bonded phase, the effects of acetonitrile concentration, buffer type, buffer concentration, linear velocity, and sample concentration were studied. Based on these studies, HILIC with sub 2 μm particle columns can offer highly efficient, selective, and rapid isocratic separations of drugs and related compounds of forensic interest, with excellent peak shapes and low back pressures. This is in contrast to reverse phase chromatography (RPLC), where gradient elution is usually required, which can result in extensive overlap between acidic, neutral, and basic solutes. In addition, since HILIC exhibits a much greater loading capacity than RPLC, it could be a preferred technique for drug profiling. Furthermore, because high organic content mobile phases are highly amenable to mass spectrometric detection, the use of HILIC with tandem mass spectrometric detection for the analysis of seized drugs is described. PMID:22098930

  12. Quasi-adiabatic vacuum-based column housing for very high-pressure liquid chromatography.

    PubMed

    Gritti, Fabrice; Gilar, Martin; Jarrell, Joseph A

    2016-07-22

    A prototype vacuum-based (10(-6)Torr) column housing was built to thermally isolate the chromatographic column from the external air environment. The heat transfer mechanism is solely controlled by surface radiation, which was minimized by wrapping the column with low-emissivity aluminum tape. The adiabaticity of the column housing was quantitatively assessed from the measurement of the operational pressure and fluid temperature at the outlet of a 2.1mm×100mm column (sub-2 μm particles). The pressure drop along the column was raised up to 1kbar. The enthalpy balance of the eluent (water, acetonitrile, and one water/acetonitrile mixture, 70/30, v/v) showed that less than 1% of the viscous heat generated by friction of the fluid against the packed bed was lost to the external air environment. Such a vacuum-based column oven minimizes the amplitude of the radial temperature gradients across the column diameter and maximizes its resolving power. PMID:27324623

  13. Planar gas chromatography column on glass plate with nanodispersed silica as the stationary phase

    NASA Astrophysics Data System (ADS)

    Platonov, I. A.; Platonov, V. I.; Pavelyev, V. S.; Agafonov, A. N.

    2016-04-01

    The paper presents the GC column in the plane of the glass plate with the adsorption layer nanodispersed silica. Created gas chromatographic column allows to separate a mixture of five alkanes from pentane to nonane in isothermal (90 ° C) mode less than one minute.

  14. Purification of the proprotein convertase furin by affinity chromatography based on PC-specific inhibitors

    PubMed Central

    Kuester, Miriam; Becker, Gero L.; Hardes, Kornelia; Lindberg, Iris; Steinmetzer, Torsten; Than, Manuel E.

    2013-01-01

    In eucaryotes, many secreted proteins and peptides are proteolytically excised from larger precursor proteins by a specific class of serine proteases, the proprotein/prohormone convertases (PCs). This cleavage is essential for substrate activation, making the PCs very interesting pharmacological targets in cancer and infectious disease research. Correspondingly, their structure, function and inhibition are intensely studied – studies that require the respective target proteins in large amounts and at high purity. Here we describe the development of a novel purification protocol of furin, the best-studied member of the PC family. We combined the heterologous expression of furin from CHO cells with a novel purification scheme employing an affinity step that efficiently extracts only active furin from the conditioned medium by using furin-specific inhibitor moieties as bait. Several potential affinity tags were synthesized and their binding to furin characterized. The best compound, Biotin-(Adoa)2-Arg-Pro-Arg-4-Amba coupled to streptavidin-Sepharose beads, was used in a three-step chromatographic protocol and routinely resulted in a high yield of a homogeneous furin preparation with a specific activity of ~60 units/mg protein. This purification and the general strategy can easily be adapted to the efficient purification of other PC family members. PMID:21875402

  15. The Plasma Membrane Ca(2+) ATPase: Purification by Calmodulin Affinity Chromatography, and Reconstitution of the Purified Protein.

    PubMed

    Niggli, Verena; Carafoli, Ernesto

    2016-01-01

    Plasma membrane Ca(2+) ATPases (PMCA pumps) are key regulators of cytosolic Ca(2+) in eukaryotes. They extrude Ca(2+) from the cytosol, using the energy of ATP hydrolysis and operate as Ca(2+)-H(+) exchangers. They are activated by the Ca(2+)-binding protein calmodulin, by acidic phospholipids and by other mechanisms, among them kinase-mediated phosphorylation. Isolation of the PMCA in pure and active form is essential for the analysis of its structure and function. In this chapter, the purification of the pump, as first achieved from erythrocyte plasma membranes by calmodulin-affinity chromatography, is described in detail. The reversible, high-affinity, Ca(2+)-dependent interaction of the pump with calmodulin is the basis of the procedure. Either phospholipids or glycerol have to be present in the isolation buffers to keep the pump active during the isolation procedure. After the isolation of the PMCA pump from human erythrocytes the pump was purified from other cell types, e.g., heart sarcolemma, plant microsomal fractions, and cells that express it ectopically. The reconstitution of the purified pump into phospholipid vesicles using the cholate dialysis method will also be described. It allows studies of transport mechanism and of regulation of pump activity. The purified pump can be stored in the reconstituted form for several days at 4 °C with little loss of activity, but it rapidly loses activity when stored in the detergent-solubilized form. PMID:26695022

  16. Analysis of glipizide binding to normal and glycated human serum albumin by high-performance affinity chromatography.

    PubMed

    Matsuda, Ryan; Li, Zhao; Zheng, Xiwei; Hage, David S

    2015-07-01

    In diabetes, the elevated levels of glucose in the bloodstream can result in the nonenzymatic glycation of proteins such as human serum albumin (HSA). This type of modification has been shown to affect the interactions of some drugs with HSA, including several sulfonylurea drugs that are used to treat type II diabetes. This study used high-performance affinity chromatography (HPAC) to examine the interactions of glipizide (i.e., a second-generation sulfonylurea drug) with normal HSA or HSA that contained various levels of in vitro glycation. Frontal analysis indicated that glipizide was interacting with both normal and glycated HSA through two general groups of sites: a set of relatively strong interactions and a set of weaker interactions with average association equilibrium constants at pH 7.4 and 37 °C in the range of 2.4-6.0 × 10(5) and 1.7-3.7 × 10(4) M(-1), respectively. Zonal elution competition studies revealed that glipizide was interacting at both Sudlow sites I and II, which were estimated to have affinities of 3.2-3.9 × 10(5) and 1.1-1.4 × 10(4) M(-1). Allosteric effects were also noted to occur for this drug between the tamoxifen site and the binding of R-warfarin at Sudlow site I. Up to an 18% decrease in the affinity for glipizide was observed at Sudlow site I ongoing from normal HSA to glycated HSA, while up to a 27% increase was noted at Sudlow site II. This information should be useful in indicating how HPAC can be used to investigate other drugs that have complex interactions with proteins. These results should also be valuable in providing a better understanding of how glycation may affect drug-protein interactions and the serum transport of drugs such as glipizide during diabetes. PMID:25912461

  17. Detection of radiation-induced hydrocarbons in Camembert irradiated before and after the maturing process-comparison of florisil column chromatography and on-line coupled liquid chromatography-gas chromatography

    SciTech Connect

    Schulzki, G.; Spiegelberg, A.; Schreiber, G.A.

    1995-02-01

    The influence of the maturing process on the detection of radiation-induced volatile hydrocarbons in the fat of Camembert has been investigated. Two analytical methods for separation of the hydrocarbon fraction from the lipid were applied: Florisil column chromatography with subsequent gas chromatographic-mass spectrometric (GC-MS) determination as well as on-line coupled liquid chromatography-GC-MS. The maturing process had no influence on the detection of radiation-induced volatiles. Comparable results were achieved with both analytical methods. However, preference is given to the more effective on-line coupled LC-GC method. 17 refs., 5 figs., 2 tabs.

  18. Identification of uranyl binding proteins from human kidney-2 cell extracts by immobilized uranyl affinity chromatography and mass spectrometry.

    PubMed

    Dedieu, Alain; Bérenguer, Frédéric; Basset, Christian; Prat, Odette; Quéméneur, Eric; Pible, Olivier; Vidaud, Claude

    2009-07-10

    To improve our knowledge on protein targets of uranyl ion (UO(2)(2+)), we set up a proteomic strategy based on immobilized metal-affinity chromatography (IMAC). The successful enrichment of UO(2)(2+)-interacting proteins from human kidney-2 (HK-2) soluble cell extracts was obtained using an ion-exchange chromatography followed by a dedicated IMAC process previously described and designed for the uranyl ion. By mass spectrometry analysis we identified 64 proteins displaying varied functions. The use of a computational screening algorithm along with the particular ligand-based properties of the UO(2)(2+) ion allowed the analysis and categorization of the protein collection. This profitable approach demonstrated that most of these proteins fulfill criteria which could rationalize their binding to the UO(2)(2+)-loaded phase. The obtained results enable us to focus on some targets for more in-depth studies and open new insights on its toxicity mechanisms at molecular level. PMID:19501829

  19. Chromatography.

    ERIC Educational Resources Information Center

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities on chromatography. Directions for preparing leaf pigment extracts using alcohol are given, and paper chromatography and thin-layer chromatography are described as modifications of the basic principles of chromatography. (KHR)

  20. Interaction of L-glutamate oxidase with triazine dyes: selection of ligands for affinity chromatography.

    PubMed

    Katsos, N E; Labrou, N E; Clonis, Y D

    2004-08-01

    Glutamate oxidase (GOX, EC 1.4.3.11) from Streptomyces catalyses the oxidation of L-glutamate to alpha-ketoglutarate. Its kinetic constants for L-glutamate were measured equal to 2 mM for Km and 85.8 s(-1) for kcat. BLAST search and amino acid sequence alignments revealed low homology to other L-amino acid oxidases (18-38%). Threading methodology, homology modeling and CASTp analysis resulted in certain conclusions concerning the structure of catalytic alpha-subunit and led to the prediction of a binding pocket that provides favorable conditions of accommodating negatively charged aromatic ligands, such as sulphonated triazine dyes. Eleven commercial textile dyes and four biomimetic dyes or minodyes, bearing a ketocarboxylated-structure as their terminal biomimetic moiety, immobilized on cross-linked agarose gel. The resulted mini-library of affinity adsorbents was screened for binding and eluting L-glutamate oxidase activity. All but Cibacron Blue 3GA (CB3GA) affinity adsorbents were able to bind GOX at pH 5.6. One immobilized minodye-ligand, bearing as its terminal biomimetic moiety p-aminobenzyloxanylic acid (BM1), displayed the higher affinity for GOX. Kinetic inhibition studies showed that BM1 inhibits GOX in a non-competitive manner with a Ki of 10.5 microM, indicating that the dye-enzyme interaction does not involve the substrate-binding site. Adsorption equilibrium data, obtained from a batch system with BM1 adsorbent, corresponded well to the Freundlich isotherm with a rate constant k of 2.7 mg(1/2)ml(1/2)/g and Freundlich isotherm exponent n of 1. The interaction of GOX with the BM1 adsorbent was further studied with regards to adsorption and elution conditions. The results obtained were exploited in the development of a facile purification protocol for GOX, which led to 335-fold purification in a single step with high enzyme recovery (95%). The present purification procedure is the most efficient reported so far for L-glutamate oxidase. PMID:15203041

  1. Overloading study of basic compounds with a positively charged C18 column in liquid chromatography.

    PubMed

    Wang, Chaoran; Guo, Zhimou; Long, Zhen; Zhang, Xiuli; Liang, Xinmiao

    2013-03-15

    While tailing and overloading of basic compounds remain problematic on most RP columns, a new kind of positively charged RP column named XCharge C18 was found to be superior good for the separation of alkaloids in our practical use. In this work, the surface charge property of the XCharge C18 column was evaluated by the retention of NO(3)(-) under different pH values and buffer concentrations. A considerable and pH-dependent positive charge was confirmed on the column. Then overloading behaviors of bases were systematically studied using amitriptyline as a basic probe. Good peak shapes (Tf<1.5) and extra high loadability with a C(0.5) of about 30,000 mg/L were observed on the column, with commonly used 0.1% formic acid as mobile phase additive. However, increasing the ionic strength of buffer with phosphates led to tailing peaks at high sample amount and sharp decline in loadability (C(0.5) of 2000-3000 mg/L), although it brought higher column efficiency at low sample amount. Higher pH also induced worse performance and lower loadability. The overall results demonstrated the importance of an appropriate level of ionic repulsion for the XCharge C18 column to achieve the good performance for bases, which could be explained by the multiple-site adsorption theory as ionic repulsion would shield the solute from occupying high-energy sites deeper in C18 layer. PMID:23411141

  2. Electrically heated, air-cooled thermal modulator and at-column heating for comprehensive two-dimensional gas chromatography.

    PubMed

    Libardoni, Mark; Waite, J Hunter; Sacks, Richard

    2005-05-01

    An instrument for comprehensive two-dimensional gas chromatography (GCxGC) is described using an electrically heated and air-cooled thermal modulator requiring no cryogenic materials or compressed gas for modulator operation. In addition, at-column heating is used to eliminate the need for a convection oven and to greatly reduce the power requirements for column heating. The single-stage modulator is heated by current pulses from a dc power supply and cooled by a conventional two-stage refrigeration unit. The refrigeration unit, together with a heat exchanger and a recirculating pump, cools the modulator to about -30 degrees C. The modulator tube is silica-lined stainless steel with an internal film of dimethylpolysiloxane. The modulator tube is 0.18 mm i.d. x 8 cm in length. The modulator produces an injection plug width as small as 15 ms. PMID:15859594

  3. Direct probing of chromatography columns by laser-induced fluorescence. Technical progress report, September 1, 1989--February 28, 1993

    SciTech Connect

    McGuffin, V.L.

    1992-12-07

    This report summarizes the progress and accomplishments of this research project from September 1, 1989 to February 28, 1993. During this period, we have accomplished all of the primary scientific objectives of the research proposal: (1) constructed and evaluated a laser-induced fluorescence detection system that allows direct examination of the chromatographic column, (2) examined nonequilibrium processes that occur upon solute injection and elution, (3) examined solute retention in liquid chromatography as a function of temperature and pressure, (4) examined solute zone dispersion in liquid chromatography as a function of temperature and pressure, and (5) developed appropriate theoretical models to describe these phenomena. In each of these studies, substantial knowledge has been gained of the fundamental processes that are responsible for chromatographic separations. In addition to these primary research objectives, we have made significant progress in three related areas: (1) examined pyrene as a fluorescent polarity probe insupercritical fluids and liquids as a function of temperature and pressure, (2) developed methods for the class-selective identification of polynuclear aromatic hydrocarbons in coal-derived fluids by microcolumn liquid chromatography with fluorescence quenching detection, and (3) developed methods for the determination of saturated and unsaturated (including omega-3) fatty acids in fish oil extracts by microcolumn liquid chromatography with laser-induced fluorescence detection. In these studies, the advanced separation and detection techniques developed in our laboratory are applied to practical problems of environmental and biomedical significance.

  4. Ion-Exclusion High-Performance Liquid Chromatography of Aliphatic Organic Acids Using a Surfactant-Modified C18 Column.

    PubMed

    Fasciano, Jennifer M; Mansour, Fotouh R; Danielson, Neil D

    2016-07-01

    Ion exclusion chromatography (IELC) of short chain aliphatic carboxylic acids is normally done using a cation exchange column under standard HPLC conditions but not in the ultra-HPLC (UHPLC) mode. A novel IELC method for the separation of this class of carboxylic acids by either HPLC or UHPLC utilizing a C18 column dynamically modified with sodium dodecyl sulfate has been developed. The sample capacity is estimated to be near 10 mM for a 20 µL injection or 0.2 µmol using a 150 × 4.6 mm column. The optimum mobile phase determined for three standard mixtures of organic acids is 1.84 mM sulfuric acid at pH 2.43 and a flow rate of 0.6 mL/min. Under optimized conditions, a HPLC separation of four aliphatic carboxylic acids such as tartaric, malonic, lactic and acetic can be achieved in under 4 min and in <2 min in the UHPLC mode at 2.1 mL/min. A variety of fruit juice and soft drink samples are analyzed. Stability of the column as measured by the retention order of maleic and fumaric acid is estimated to be ∼4,000 column volumes using HPLC and 600 by UHPLC. Reproducible chromatograms are achieved over at least a 2-month period. This study shows that the utility of a C18 column can be easily extended when needed to IELC under either standard or UHPLC conditions. PMID:27006111

  5. Separation of beta-human chorionic gonadotropin and immunoglobulin G by a miniaturized size exclusion chromatography column

    NASA Astrophysics Data System (ADS)

    Yang, Yongmo; Chae, Junseok

    2009-04-01

    This report describes a miniaturized size exclusion chromatography column that effectively preseparates raw samples for medical point-of-care testing (POCT) devices. The minicolumn is constructed of polydimethylsiloxane fabricated on a glass slide. The minicolumn separates 300 ng/ml of beta-human chorionic gonadotropin (β-hCG) from an immunoglobulin G (IgG)-rich solution (100 μg/ml) in 7.7 min, with 2.23 resolution and 0.018 mm plate height. The complete analyte discrimination shows potential for the sample preparation stage of POCT devices for cancer screening, prognosis, and monitoring.

  6. [Rapid determination of trace iodate using monolithic column ion-pair chromatography coupled with direct conductivity detection].

    PubMed

    Liu, Yuzhen; Yu, Hong; Li, Siwen

    2011-10-01

    A method was developed on a monolithic column for the fast determination of trace iodate (IO(3)- ) by ion-pair chromatography with direct conductivity detection. The analytes were separated using a mobile phase of tetrabutylammonium hydroxide (TBA)-phthalic acid-acetonitrile on a reversed-phase silica-based monolithic column. The effects of eluent, flow rate and column temperature on the retention of iodate were investigated. The optimized chromatographic conditions for the determination of the anion were as follows: 0. 25 mmol/L TBA-0. 18 mmol/L phthalic acid-3% acetonitrile (pH 5.5) as mobile phase, a flow rate of 4.0 mL/min and a column temperature of 30 degrees C. Under the optimal conditions, retention time of iodate was less than 0. 5 min and the baseline separation of iodate was achieved without any interference by other anions (Cl-, NO , SO4(2)-, I- ). The detection limit (S/N= 3) was 0.36 mg/L for IO(3)- . Relative standard deviation (RSD, n = 5) of chromatographic peak area and retention time were 0. 35% and 0. 28%, respectively. The proposed method was applied to the determination of trace iodate in iodized medicine. The spiked recovery of iodate was 96. 4%. The method is rapid, simple, accurate, reliable, and practical. PMID:22268363

  7. Direct enantioseparation of nitrogen-heterocyclic pesticides on cellulose-based chiral column by high-performance liquid chromatography.

    PubMed

    Chai, Tingting; Yang, Wenwen; Qiu, Jing; Hou, Shicong

    2015-01-01

    The enantiomeric separation of eight pesticides including bitertanol (), diclobutrazol (), fenbuconazole (), triticonazole (), imazalil (), triapenthenol (), ancymidol (), and carfentrazone-ethyl () was achieved, using normal-phase high-performance liquid chromatography on two cellulosed-based chiral columns. The effects of isopropanol composition from 2% to 30% in the mobile phase and column temperature from 5 to 40 °C were investigated. Satisfactory resolutions were obtained for bitertanol (), triticonazole (), imazalil () with the (+)-enantiomer eluted first and fenbuconazole () with the (-)-enantiomer eluted first on Lux Cellulose-2 and Lux Cellulose-3. (+)-Enantiomers of diclobutrazol () and triapenthenol () were first eluted on Lux Cellulose-2. (-)-Carfentrazone-ethyl () were eluted first on Lux Cellulose-2 and Lux Cellulose-3 with incomplete separation. Reversed elution orders were obtained for ancymidol (7). (+)-Ancymidol was first eluted on Lux Cellulose-2 while on Lux Cellulose-3 (-)-ancymidol was first eluted. The results of the elution order at different column temperatures suggested that column temperature did not affect the optical signals of the enantiomers. These results will be helpful to prepare and analyze individual enantiomers of chiral pesticides. PMID:25331721

  8. Automated Immobilized Metal Affinity Chromatography System for Enrichment of Escherichia coli Phosphoproteome

    SciTech Connect

    Qu, Yi; Wu, Si; Zhao, Rui; Zink, Erika M.; Orton, Daniel J.; Moore, Ronald J.; Meng, Da; Clauss, Therese RW; Aldrich, Joshua T.; Lipton, Mary S.; Pasa-Tolic, Ljiljana

    2013-06-05

    Enrichment of bacterial phosphopeptides is an essential step prior to bottom-up mass spectrometry-based analysis of the phosphoproteome, which is fundamental to understanding the role of phosphoproteins in cell signaling and regulation of protein activity. We developed an automated IMAC system to enrich strong cation exchange-fractionated phosphopeptides from the soluble proteome of Escherichia coli MG1655 grown on minimal medium. Initial demonstration of the system resulted in identification of 75 phosphopeptides covering 52 phosphoproteins. Consistent with previous studies, many of these phosphoproteins are involved in the carbohydrate portion of central metabolism. The automated system utilizes a large capacity IMAC column that can effectively enrich phosphopeptides from a bacterial sample by increasing peptide loading and reducing the wash time. An additional benefit of the automated IMAC system is reduced labor and associated costs.

  9. Polymethacrylate monolithic columns for hydrophilic interaction liquid chromatography prepared using a secondary surface polymerization.

    PubMed

    Currivan, Sinéad; Macak, Jan M; Jandera, Pavel

    2015-07-10

    Zwitterionic methacrylate based polymeric monolithic columns were prepared in two-step polymerizations, with reduced polymerization times. Characteristic properties such as hydrodynamic permeability, porosity, retention factors, and pore size distribution charts were used for column evaluation. A scaffold column was fabricated by polymerization of poly(lauryl methacrylate-co-tetraethyleneglycol dimethacrylate) and was used without further modification as a support for a poly(N,N-dimethyl-N-methacryloxyethyl-N-(3-sulfopropyl)ammonium betaine-co-bisphenol A glycerolate dimethacrylate) second monolith layer with zwitterionic functionality, for HILIC separations. An additional internal structure was formed by the second monolithic layer. The fabrication procedure was reproducible with RSD<5%. Field emission scanning electron microscopy has also been used to investigate column pore morphology, using a novel technique where the polymeric material is imaged directly, without coverage with a conducting film or particles. The new polar monolithic columns were used for HILIC separations of phenolic acids, flavones, nucleosides, and bases of nucleic acids, with similar efficiencies but different selectivities for zwitterionic methacrylate monolithic columns recently prepared by single step polymerization. PMID:26022313

  10. Characteristics of a column suitable for capacity gradient chromatography with a borate eluent.

    PubMed

    Yamamoto, A; Kodama, S; Matsunaga, A; Inoue, Y; Aoyama, T; Kumagai, Y

    2001-04-01

    In capacity gradient elution, the gradient separation of ionic species is achieved by decreasing the ion-exchange capacity of a column during the course of the separation. Diol-type hydroxy groups on the resin surface form anionic complexes with borate as an eluting reagent. Thus, a chemically bonded anion-exchange column enriched with residual hydroxy groups allows the creation of a capacity gradient. An increase in the amount of the complex formed gradually brings about a decrease in the ion-exchange capacity of the column, and strongly bound analyte ions are eluted. We investigated the characteristics of a column suitable for this eluent system. The concentration of borate eluent required to remove the ion-exchange capacity depended inversely on the ratio of the residual hydroxy groups to functional groups. On a column in which this ratio was approximately 100, the ion-exchange capacity could easily be adjusted by using a low concentration of mannitol as a competing reagent. Use of this column led to very small baseline shifts during the borate-mannitol gradients, and to the simultaneous determination of anions with widely varying retention times. PMID:11340979

  11. Integrated bioprocess for the production and purification of recombinant proteins by affinity chromatography in Escherichia coli.

    PubMed

    Beshay, Usama; Miksch, Gerhard; Friehs, Karl; Flaschel, Erwin

    2009-02-01

    In order to improve the effectiveness of the production of recombinant proteins in E. coli, integrated fermentation processes were developed. Therefore, expression vectors were constructed containing a strongly expressed gene for a beta-glucanase fused with a metal-chelating affinity tag and a leader peptide for directing the fusion protein into the periplasmic space. Its export into the medium was achieved by means of co-expression of a bacteriocin-release protein, the Kil protein from pColE1. Bioreactors were modified so that special devices containing metal chelate pentadentate chelator PDC resins were located within the bioreactor. Using the bioreactor with an internal device the Zn2+-PDC had a 4.3-fold higher binding capacity than metal-free PDC (12.3 and 2.6 kU ml(-1) PDC, respectively. Using the bioreactor with charged PDC in an external circuit revealed even higher beta-glucanase concentration (65.6 kU ml(-1)), i.e. 1.5-fold compared to the internal adsorbent system. PMID:18481103

  12. Chromatographic behavior of 12 polar pteridines in hydrophilic interaction chromatography using five different HILIC columns coupled with tandem mass spectrometry.

    PubMed

    Xiong, Xin; Liu, Yanmeng

    2016-04-01

    Retention characteristic of 5 hydrophilic interaction chromatography (HILIC) columns, containing neutral and possibly negatively charged support (silica, diol and amide), cationic phase (triazole) and zwitterionic phase (sulfobetaine), that are commercially available were studied for the separation of a group of 12 polar pteridines. The main factors influencing the retention and selectivity of pteridines for these different HILIC systems have been studied in liquid chromatography-tandem mass spectrometry (LC-MS/MS) conditions: mobile phase composition, buffer type, pH and concentration and the separation mechanism was also investigated. Results of the effects of organic modifier, buffer pH and ion strength indicate that the retention mechanism is a mixed-mode of adsorption and ion exchange, and optimization of HILIC analyses depends on the ionization state of the analytes. For silica, diol, amide and sulfobetaine phases, hydrophilic partitioning mainly contributes to the retention, while electrostatic interactions and hydrogen-bonding should be considered to understand the elution orders for triazole phase. An zwitterionic phase (ZIC-HILIC) provided the stronger retention for all pteridines than other tested columns. PMID:26838435

  13. Comparison of chromatographic band profiles obtained under microwave irradiated and non-irradiated reversed-phase liquid chromatography column

    SciTech Connect

    Galinada, Wilmer; Guiochon, Georges A

    2005-08-01

    The possible influence of the application of microwave energy to a reversed-phase liquid chromatography column on the mass transfer kinetics and the thermodynamics of equilibrium between mobile and stationary phases was examined. Chromatograms of propylbenzene and phenol were recorded under the same experimental conditions, on the same column, successively irradiated and not. The effect of microwave irradiation on the mass transfer kinetics was determined by measuring the second moment of small pulses of propylbenzene in a 70:30 (v/v) solution of methanol in water and microwave outputs of 15 and 30 W. The effect of microwave irradiation on the equilibrium thermodynamics was determined by measuring the elution time of breakthrough curves of phenol at high concentrations in a 20:80 (v/v) solution of methanol and water and microwave outputs of 15, 50, and 150 W. A qualitative comparison of the profiles of the propylbenzene peaks obtained with and without irradiation suggests that this irradiation affects significantly the peak shapes. However, a qualitative comparison of the profiles of the breakthrough curves of phenol obtained with and without irradiation suggests that this irradiation has no significant effect on their shapes. The peak sharpening observed may be due to an increase in the diffusivity, resulting from the dielectric polarization under microwave irradiation. This effect is directly related to an increase of the rate of mass transfers in the column. In contrast, the similarity of the overloaded band profiles at high concentrations suggests that the equilibrium thermodynamics is unaffected by microwave irradiation. This may be explained by the transparence of the stationary phase to microwaves at 2.45 GHz. The column temperature was measured at the column outlet under irradiation powers of 15, 30, 50, and 150 W. It increases with increasing power, the corresponding effluent temperatures being 25 {+-} 1, 30 {+-} 1, 35 {+-} 1, and 45 {+-} 1 C, respectively.

  14. Generating multiple independent retention index data in dual-secondary column comprehensive two-dimensional gas chromatography.

    PubMed

    Bieri, Stefan; Marriott, Philip J

    2006-12-01

    A method producing simultaneously three retention indexes for compounds has been developed for comprehensive two-dimensional gas chromatography by using a dual secondary column approach (GC x 2GC). For this purpose, the primary flow of the first dimension column was equally diverted into two secondary microbore columns of identical geometry by means of a three-way flow splitter positioned after the longitudinally modulated cryogenic system. This configuration produced a pair of comprehensive two-dimensional chromatograms and generated retention data on three different stationary phases in a single run. First dimension retention indexes were determined on a polar SolGel-Wax column under linear programmed-temperature conditions according to the van den Dool approach using primary alcohol homologues as the reference scale. Calculation of pseudoisothermal retention indexes in both second dimensions was performed on low-polarity 5% phenyl equivalent polysilphenylene/siloxane (BPX5) and 14% cyanopropylphenyl/86% dimethylpolysiloxane (BP10) columns. To construct a retention correlation map in the second dimension separation space upon which KovAts indexes can be derived, two methods exploiting "isovolatility" relationships of alkanes were developed. The first involved 15 sequential headspace samplings of selected n-alkanes by solid-phase microextraction (SPME), with each sampling followed by their injection into the GC at predetermined times during the chromatographic run. The second method extended the second dimension retention map and consisted of repetitive introduction of SPME-sampled alkane mixtures at various isothermal conditions incremented over the temperature program range. Calculated second dimension retention indexes were compared with experimental values obtained in conventional one-dimensional GC. A case study mixture including 24 suspected allergens (i.e., fragrance ingredients) was used to demonstrate the feasibility and potential of retention index

  15. 32P-postlabeling detection of thymine glycols: evaluation of adduct recoveries after enhancement with affinity chromatography, nuclease P1, nuclease S1, and polynucleotide kinase.

    PubMed

    Reddy, M V; Bleicher, W T; Blackburn, G R

    1991-04-01

    Thymine glycol (Tg) is a product of DNA damage by oxygen radicals generated by oxidative mutagens and carcinogens and ionizing radiation. The highly sensitive 32P-postlabeling assay was validated and optimized for the measurement of Tg generated in vitro by the reaction of dTp or calf thymus DNA with osmium tetroxide (OsO4). Adduct detection was enhanced by purification of Tg adducts using phenylboronate affinity chromatography or by preferential dephosphorylation of unmodified 3'-nucleotides with nuclease P1, nuclease S1, or polynucleotide kinase; Tg nucleotides were found to be resistant to limited enzymatic 3'-dephosphorylation. Two adducts were seen with OsO4-modified dTp, which may have been cis-Tg adducts, because they were retained on a phenylboronate column, and because OsO4 selectively forms cis-Tg adducts. With OsO4-modified DNA, several adducts were detected, two major derivatives of which coincided chromatographically with those seen in OsO4-modified dTp. The recoveries of major adducts were similar before and after enrichment by different methods, indicating that Tg adducts were resistant to enzymatic dephosphorylation. The efficacy of labeling of the two major Tg adducts by polynucleotide kinase was optimal at 60 microM ATP and higher, whereas it was about 3%, 50%, and 80% of the optimal rate at 2, 10, and 30 microM, respectively. This was in contrast to our previous finding that only 0.25 microM ATP was needed for optimal labeling of benzoquinone-DNA adducts.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2025496

  16. Characterization of aquatic humic substances and their metal complexes by immobilized metal-chelate affinity chromatography on iron(III)-loaded ion exchangers.

    PubMed

    Burba, P; Jakubowski, B; Kuckuk, R; Küllmer, K; Heumann, K G

    2000-12-01

    The analytical fractionation of aquatic humic substances (HS) by means of immobilized metal-chelate affinity chromatography (IMAC) on metal-loaded chelating ion exchangers is described. The cellulose HYPHAN, loaded with different trivalent ions, and the chelate exchanger Chelex 100, loaded to 90% of its capacity with Fe(III), were used. The cellulose HYPHAN, loaded with 2% Fe(III), resulted in HS distribution coefficients Kd of up to 10(3.7) mL/g at pH 4.0 continuously decreasing down to 10(1.5) at pH 12, which were appropriate for HS fractionation by a pH-depending chromatographic procedure. Similar distribution coefficients Kd were obtained for HS sorption onto Fe(III)-loaded Chelex 100. On the basis of Fe-loaded HYPHAN both, a low-pressure and high-pressure IMAC technique, were developed for the fractionation of dissolved HS applying a buffer-based pH gradient for their gradual elution between pH 4.0 and 12.0. By coupling the Chelex 100 column under high-pressure conditions with an inductively coupled plasma mass spectrometer an on-line characterization of HS metal species could be achieved. Using these fractionation procedures a number of reference HS were characterized. Accordingly, the HA (humic acids) and FA (fulvic acids) studied could be discriminated into up to 6 fractions by applying cellulose HYPHAN, significantly differing in their Cu(II) complexation capacity but hardly in their substructures assessed by conventional FTIR. In the case of using Chelex 100 exchanger resin two major UV active HS fractions were obtained, which significantly differ in their complexation properties for Cu(II) and Pb(II), respectively. PMID:11227549

  17. [Determination of the interaction kinetics between meloxicam and β-cyclodextrin using the quantitative high-performance affinity chromatography coupled with mass spectrometry].

    PubMed

    Wang, Cai-fen; Li, Zhuo; Wang, Xiao-bo; Li, Hai-yan; Zhang, Ji-wen; Sun, Li-xin

    2015-09-01

    The association rate constant and dissociation rate constant are important parameters of the drug-cyclodextrin supermolecule systems, which determine the dissociation of drugs from the complex and the further in vivo absorption of drugs. However, the current studies of drug-cyclodextrin interactions mostly focus on the thermodynamic parameter of equilibrium constants (K). In this paper, a method based on quantitative high performance affinity chromatography coupled with mass spectrometry was developed to determine the apparent dissociation rate constant (k(off,app)) of drug-cyclodextrin supermolecule systems. This method was employed to measure the k(off,app) of meloxicam and acetaminophen. Firstly, chromatographic peaks of drugs and non-retained solute (uracil) on β-cyclodextrin column at different flow rates were acquired, and the retention time and variance values were obtained via the fitting the peaks. Then, the plate heights of drugs (H(R)) and uracil (H(M,C)) were calculated. The plate height of theoretical non-retained solute (H(M,T)) was calculated based on the differences of diffusion coefficient and the stagnant mobile phase mass transfer between drugs and uracil. Finally, the k(off,app) was calculated from the slope of the regression equation between (H(R)-H(M,T)) and uk/(1+k)2, (0.13 ± 0.00) s(-1) and (4.83 ± 0.10) s(-1) for meloxicam and acetaminophen (control drug), respectively. In addition, the apparent association rate constant (k(on,app)) was also calculated through the product of K (12.53 L x mol(-1)) and k(off,app). In summary, it has been proved that the method established in our study was simple, efficiently fast and reproducible for investigation on the kinetics of drug-cyclodextrin interactions. PMID:26757555

  18. Determination of a highly selective mixed-affinity sigma receptor ligand, in rat plasma by ultra performance liquid chromatography mass spectrometry and its application to a pharmacokinetic study

    PubMed Central

    Jamalapuram, Seshulatha; Vuppala, Pradeep K.; Mesangeau, Christophe; McCurdy, Christopher R.; Avery, Bonnie A.

    2014-01-01

    A selective, rapid and sensitive ultra performance liquid chromatography mass spectrometry (UPLC/MS) method was developed and validated to quantitate a highly selective mixed-affinity sigma receptor ligand, CM156 (3-(4-(4-cyclohexylpiperazin-1-yl)butyl)benzo[d] thiazole-2(3H)-thione), in rat plasma. CM156 and the internal standard (aripiprazole) were extracted from plasma samples by a single step liquid–liquid extraction using chloroform. The analysis was carried out on an ACQUITY UPLCTM BEH HILIC column (1.7 µm, 2.1 mm × 50 mm) with isocratic elution at flow rate of 0.2 mL/min using 10 mM ammonium formate in 0.1% formic acid and acetonitrile (10:90) as the mobile phase. The detection of the analyte was performed on a mass spectrometer operated in selected ion recording (SIR) mode with positive electrospray ionization (ESI). The validated analytical method resulted in a run time of 4 min and the retention times observed were 2.6 ± 0.1 and 2.1 ± 0.1 min for CM156 and the IS, respectively. The calibration curve exhibited excellent linearity over a concentration range of 5–4000 ng/mL with the lower limit of quantification of 5 ng/mL. The intra- and inter-day precision values were below 15% and accuracy ranged from −6.5% to 5.0%. The mean recovery of CM156 from plasma was 96.8%. The validated method was applied to a pilot intravenous pharmacokinetic study in rats. PMID:22406103

  19. sup 32 P-postlabeling detection of thymine glycols: evaluation of adduct recoveries after enhancement with affinity chromatography, nuclease P1, nuclease S1, and polynucleotide kinase

    SciTech Connect

    Reddy, M.V.; Bleicher, W.T.; Blackburn, G.R. )

    1991-04-01

    Thymine glycol (Tg) is a product of DNA damage by oxygen radicals generated by oxidative mutagens and carcinogens and ionizing radiation. The highly sensitive {sup 32}P-postlabeling assay was validated and optimized for the measurement of Tg generated in vitro by the reaction of dTp or calf thymus DNA with osmium tetroxide (OsO{sub 4}). Adduct detection was enhanced by purification of Tg adducts using phenylboronate affinity chromatography or by preferential dephosphorylation of unmodified 3'-nucleotides with nuclease P1, nuclease S1, or polynucleotide kinase; Tg nucleotides were found to be resistant to limited enzymatic 3'-dephosphorylation. Two adducts were seen with OsO{sub 4}-modified dTp, which may have been cis-Tg adducts, because they were retained on a phenylboronate column, and because OsO{sub 4} selectively forms cis-Tg adducts. With OsO{sub 4}-modified DNA, several adducts were detected, two major derivatives of which coincided chromatographically with those seen in OsO{sub 4}-modified dTp. The recoveries of major adducts were similar before and after enrichment by different methods, indicating that Tg adducts were resistant to enzymatic dephosphorylation. The efficacy of labeling of the two major Tg adducts by polynucleotide kinase was optimal at 60 microM ATP and higher, whereas it was about 3%, 50%, and 80% of the optimal rate at 2, 10, and 30 microM, respectively. This was in contrast to our previous finding that only 0.25 microM ATP was needed for optimal labeling of benzoquinone-DNA adducts.

  20. Gas chromatography-mass spectrometry in the investigation of on-column dehydration of steroid hormones during gas-liquid chromatography.

    PubMed

    Trafford, D J; Coldwell, R D; Makin, H L

    1991-01-01

    Some underivatized steroids when injected onto conventional packed columns for gas-liquid chromatography underwent varying degrees of dehydration. This problem was traced to the presence of small pieces of broken glass on the top of the column at the point of injection. This observation provoked an examination of the effect of pre-column dehydration on a number of different types of steroids. Powdered aluminium was placed in the injection liner of a Hewlett-Packard gas chromatograph fitted with an HP1 capillary column connected to a mass selective detector, and injections were made using a new high temperature septumless injection system at temperatures between 200 and 400 degrees C. 5 alpha-androstan-3 alpha-ol, a simple monofunctional C19 steroid chosen as a model to establish optimum conditions, underwent dehydration at injection temperatures greater than 250 degrees C and the product reached a maximum at 400 degrees C when no unchanged steroid was present. Monohydroxylated androgens and oestrogens underwent dehydration at 400 degrees C producing products whose mass spectra indicated they were monenes, although the position of the double bond could not be assigned. Polyfunctional androgens and oestrogens and corticosteroids underwent complex changes producing a number of products some of whose structures could not be determined. The dehydration products had the advantage that they had relatively intense high mass ions and for suitable steroids this might provide enhanced sensitivity of detection during mass fragmentography. In such cases dehydration was reproducible and straight line standard curves were obtained. C27 and C28 secosteroids (vitamins D2 and D3) and some of their metabolites (e.g. 25-hydroxyvitamin D) underwent efficient dehydration, again producing products with intense molecular ions. In the case of 24,25-dihydroxyvitamin D3 and 25,26-dihydroxyvitamin D3, dehydration produced different products which were easily resolved in the chromatographic

  1. "Old" metal oxide affinity chromatography as "novel" strategy for specific capture of cis-diol-containing compounds.

    PubMed

    Wang, Shao-Ting; Huang, Wei; Deng, Yi-Fan; Gao, Qiang; Yuan, Bi-Feng; Feng, Yu-Qi

    2014-09-26

    The metal oxide affinity chromatography (MOAC) materials have been extensively used for extraction of phosphate compounds in the past decade. Actually, some of these materials also possess adsorption affinity towards cis-diol-containing compounds, which was seldom explored in separation field so far. Here we present the proof-of-concept study to evaluate the feasibility of expanding MOAC for specific capture of cis-diol biomolecules. Benefitting from the high commercialisation of the metal oxide materials, such MOAC strategy possesses several advantages, like synthesis-free, low cost and high expandability. Firstly, the recognition of adenosine against 2'-deoxyadenosine was performed using zirconium oxide and cerium oxide, two typical commercial MOAC materials. The results showed that efficient adsorption and elution could be achieved easily by pH switching from basic to acidic. The isotherm curves demonstrated the adsorption process fitted well with Freundlich isotherm model and was spontaneous at room temperature (ΔG(0)<0) with an exothermic nature (ΔH(0)<0). Afterwards, the highly efficient and selective enrichment of various model cis-diol biomolecules, including ribonucleosides, glycopeptides and glycoproteins, was achieved using this MOAC strategy. Finally, the endogenous ribonucleosides and modified ribonucleosides were successfully purified from human urine sample, which demonstrated the potential application of MOAC materials in the enrichment of target compounds from complex biological samples. Besides the excellent performance of extraction for cis-diol-containing compounds, equally important is that these materials are commercially available with low cost, which makes the MOAC a promising strategy for the study of cis-diol biomolecules in metabolomics and proteomics. PMID:25138708

  2. Problems in the size exclusion chromatography of poly( N-isopropylacrylamide) on styragel columns

    NASA Astrophysics Data System (ADS)

    Estrin, Ya. I.; Perepelitsina, E. O.; Grishchuk, A. A.

    2016-07-01

    The molecular weights of poly( N-isopropylacrylamide) (PNIPA), calculated according to polystyrene calibration standards upon the elution of THF on styragel columns, appear to be much lower than their actual values determined using independent approaches. This is likely due to interactions between the nitrogen-containing units of PNIPA polymer chains and the sorbent, so the polymer is eluted in the mode intermediate between exclusion and critical. An effective exclusion mode during the elution of PNIPA on a styragel column can be achieved by using an eluent more polar than tetrahydrofuran (particularly, 1-methylpyrrolidone).

  3. Conformational plasticity of IgG during protein A affinity chromatography.

    PubMed

    Gagnon, Pete; Nian, Rui

    2016-02-12

    Single step elution of a protein A column with 100mM acetate pH 3.5 produced a curvilinear gradient with pH dropping steeply at first then more gradually as it approached endpoint. IgG with a native hydrodynamic diameter of 11.5 nm began to elute at pH 6.0 with a size of 9.4 nm. IgG size continued to decrease across the peak, reaching a minimum of 2.2 nm at pH 3.9. Secondary structure of early eluting IgG was only mildly affected but later eluting fractions became increasingly non-native with the 2.2 nm population exhibiting the highest proportion of β-sheet and lowest random coil of all conformations. Size reduction and structural change of IgG through this portion of the elution peak were attributed dominantly to a pre-existing tendency of highly concentrated IgG to adopt reduced size conformations at low pH and conductivity, facilitated by the known conformational relaxation of IgG by its interaction with protein A. IgG size increased to 10.4 nm as elution pH approached 3.5 across the tailing fractions. Major loss of β-sheet and increase of α-helix and random coil were observed in parallel. Late elution of this population was attributed to it being eluted from interactions with 2 distinct protein A domains, one bound to each side of the Fc region, creating a higher dissociation constant than single-site Fc-protein A interactions, and requiring more severely disruptive conditions for elution. The high degree of conformational disruption was attributed to simultaneous interaction of both heavy chains with protein A. PMID:26805601

  4. Examination of Glycan Profiles from IgG-Depleted Human Immunoglobulins Facilitated by Microscale Affinity Chromatography

    PubMed Central

    Svoboda, Martin; Mann, Benjamin F.; Goetz, John A.; Novotny, Milos V.

    2012-01-01

    Among the most important proteins involved in the disease and healing processes are the immunoglobulins (Igs). Although many of the Igs have been studied through proteomics, aside from IgG, immunoglobulin carbohydrates have not been extensively characterized in different states of health. It seems valuable to develop techniques that permit us to understand changes in the structures and abundances of Ig glycans in the context of disease onset and progression. We have devised a strategy for characterization of the glycans for the Ig classes other than IgG (i.e. A, D, E, and M) that contain kappa light chains, while using only a few microliters of biological material. First, we designed a microcolumn containing the recombinant Protein L that was immobilized on macroporous silica particles. A similarly designed Protein G microcolumn was utilized to first perform an on-line depletion of the IgG from the sample, human blood serum, and thereby facilitate enrichment of the other Igs. While only 3 μL of serum were used in these analyses, we were able to recover a significantly-enriched fraction of non-IgG immunoglobulins. The enrichment properties of the Protein L column were characterized using a highly sensitive label-free quantitative proteomics LC-MS/MS approach, and the glycomic profiles of enriched immunoglobulins were measured by MALDI-TOF-MS. As a proof-of-principle, a comparative study was conducted using blood serum from a small group of lung cancer patients and a group of age-matched cancer-free individuals to demonstrate that the method is suitable for investigation of glycosylation changes in disease. The results were in agreement with a glycomic investigation of whole blood serum from a much larger lung cancer cohort. PMID:22360417

  5. Semi-Automated Hydrophobic Interaction Chromatography Column Scouting Used in the Two-Step Purification of Recombinant Green Fluorescent Protein

    PubMed Central

    Murphy, Patrick J. M.

    2014-01-01

    Background Hydrophobic interaction chromatography (HIC) most commonly requires experimental determination (i.e., scouting) in order to select an optimal chromatographic medium for purifying a given target protein. Neither a two-step purification of untagged green fluorescent protein (GFP) from crude bacterial lysate using sequential HIC and size exclusion chromatography (SEC), nor HIC column scouting elution profiles of GFP, have been previously reported. Methods and Results Bacterial lysate expressing recombinant GFP was sequentially adsorbed to commercially available HIC columns containing butyl, octyl, and phenyl-based HIC ligands coupled to matrices of varying bead size. The lysate was fractionated using a linear ammonium phosphate salt gradient at constant pH. Collected HIC eluate fractions containing retained GFP were then pooled and further purified using high-resolution preparative SEC. Significant differences in presumptive GFP elution profiles were observed using in-line absorption spectrophotometry (A395) and post-run fluorimetry. SDS-PAGE and western blot demonstrated that fluorometric detection was the more accurate indicator of GFP elution in both HIC and SEC purification steps. Comparison of composite HIC column scouting data indicated that a phenyl ligand coupled to a 34 µm matrix produced the highest degree of target protein capture and separation. Conclusions Conducting two-step protein purification using the preferred HIC medium followed by SEC resulted in a final, concentrated product with >98% protein purity. In-line absorbance spectrophotometry was not as precise of an indicator of GFP elution as post-run fluorimetry. These findings demonstrate the importance of utilizing a combination of detection methods when evaluating purification strategies. GFP is a well-characterized model protein, used heavily in educational settings and by researchers with limited protein purification experience, and the data and strategies presented here may aid in

  6. Human plasma alpha-cysteine proteinase inhibitor. Purification by affinity chromatography, characterization and isolation of an active fragment.

    PubMed Central

    Gounaris, A D; Brown, M A; Barrett, A J

    1984-01-01

    Human plasma alpha-cysteine proteinase inhibitor (alpha CPI) was purified by a two-stage method: affinity chromatography on S-carboxymethyl-papain-Sepharose, and high-resolution anion-exchange chromatography. The protein was obtained as a form of Mr about 64 000 and material of higher Mr (about 100 000). In sodium dodecyl sulphate/polyacrylamide-gel electrophoresis with reduction, both forms showed a major component of Mr 64 000. An antiserum was raised against alpha CPI, and 'rocket' immunoassays showed the mean concentration in sera from 19 individuals to be 35.9 mg/dl. Both low-Mr and high-Mr forms of alpha CPI were confirmed to be sialoglycoproteins by the decrease in electrophoretic mobility after treatment with neuraminidase. alpha CPI was shown immunologically to be distinct from antithrombin III and alpha 1-antichymotrypsin, two serine proteinase inhibitors from plasma with somewhat similar Mr values. alpha CPI was also distinct from cystatins A and B, the two intracellular low-Mr cysteine proteinase inhibitors from human liver. Complexes of alpha CPI with papain were detectable in immunoelectrophoresis, but dissociated to free enzyme and intact inhibitor in sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The stoichiometry of binding of papain was close to 1:1 for both low-Mr and high-Mr forms. alpha CPI was found to be a tight-binding inhibitor of papain and human cathepsins H and L (Ki 34 pM, 1.1 nM and 62 pM respectively). By contrast, inhibition of cathepsin B was much weaker, Ki being about 35 microM. Dipeptidyl peptidase I also was weakly inhibited. Digestion of alpha CPI with bromelain gave rise to an inhibitory fragment of Mr about 22 000, which was isolated. Images Fig. 2. Fig. 3. Fig. 4. PMID:6548132

  7. Studies on human pregnancy-associated plasma protein A. Purification by affinity chromatography and structural comparisons with alpha 2-macroglobulin.

    PubMed Central

    Sutcliffe, R G; Kukulska-Langlands, B M; Coggins, J R; Hunter, J B; Gore, C H

    1980-01-01

    Pregnancy-associated plasma protein-A (PAPP-A) has been purified by a combination of methods including antibody-affinity chromatography. The resultant protein, obtained in 16% yield from maternal serum, appeared as a single major component on non-denaturing polyacrylamide and SDS/polyacrylamide gel electrophoresis. The protein showed a single component when analysed by isoelectric focusing under denaturing conditions in the presence and absence of reduction and had a pI of 4.34 and 4.42 respectively. These pI values were indistinguishable from those of alpha 2-macroglobulin (alpha 2M). The molecular weight of the PAPP-A polypeptide as shown by SDS/polyacrylamide-gel electrophoresis was 187000, with a minor component of mol.wt. 82500 that was attributed to proteolysis. Since native PAPP-A had a molecular weight on gel chromatography very similar to that of alpha 2M (620000--820000), it was concluded that PAPP-A was a homotetramer. In the absence of reduction, a high-molecular-weight (420000) protomer of PAPP-A was found. It was deduced that PAPP-A, like alpha 2M, is a dinner, whose protomers are composed of disulphide-linked polypeptide chains. It was found that the molecular weight of the PAPP-A polypeptide exceeded that of alpha 2M by 3.3%, but that the total carbohydrate content of PAPP-A exceeded that of alpha 2M by 10% and that its neutral carbohydrate content exceeded that of alpha 2M by between 7.4 and 9.0%. The significance of the estimated molecular weights of alpha 2M (181000) and its major tryptic fragments is discussed in the light of published values. A tryptic fragment alpha 2M (82500 mol.wt.) was apparently the same size as the major tryptic fragment of PAPP-A. Images Fig. 1. Fig. 4. Fig. 6. PMID:6169340

  8. Sugar Determination in Foods with a Radially Compressed High Performance Liquid Chromatography Column.

    ERIC Educational Resources Information Center

    Ondrus, Martin G.; And Others

    1983-01-01

    Advocates use of Waters Associates Radial Compression Separation System for high performance liquid chromatography. Discusses instrumentation and reagents, outlining procedure for analyzing various foods and discussing typical student data. Points out potential problems due to impurities and pump seal life. Suggests use of ribose as internal…

  9. [Determination of trace carbaryl and carbofuran in water by online column enrichment-ultra high performance liquid chromatography].

    PubMed

    Wang, Enzhi; Yang, Xinlei; Ye, Mingli; Wang, Qiong; Cai, Xiaojun

    2011-11-01

    An online column enrichment-ultra high performance liquid chromatography (UHPLC) method was developed to determine trace carbaryl and carbofuran in water. The sample was injected into a UHPLC system directly after filtration with 0.22 microm membrane, and then enriched by online solid phase extraction (SPE) column. The analyte was back-flushed into the analytical column Acclaim RSLC C18 (100 mm x 2.1 mm, 2.2 microm) by valve switching method. The mobile phases were 10 mmol/L ammonium acetate buffer (pH 5.0, adjusted by acetic acid) and acetonitrile in a gradient elution mode with a flow rate of 0.8 mL/min, and detected by a diode array detector with the detection wavelength of 280 nm. The good linear ranges of carbaryl and carbofuran were 1.0 - 100 microg/L with the correlation coefficients (r2) larger than 0.9999, and the limits of detection (S/N = 3) were 0.5 microg/L and 0.25 microg/L, respectively. The average spiked recoveries were in the range of 76.0% - 120.0%. The method has been applied to determine trace carbaryl and carbofuran in water samples with satisfactory results. PMID:22393707

  10. On-column nitrosation of amines observed in liquid chromatography impurity separations employing ammonium hydroxide and acetonitrile as mobile phase.

    PubMed

    Myers, David P; Hetrick, Evan M; Liang, Zhongming; Hadden, Chad E; Bandy, Steven; Kemp, Craig A; Harris, Thomas M; Baertschi, Steven W

    2013-12-01

    The availability of high performance liquid chromatography (HPLC) columns capable of operation at pH values up to 12 has allowed a greater selectivity space to be explored for method development in pharmaceutical analysis. Ammonium hydroxide is of particular value in the mobile phase because it is compatible with direct interfacing to electrospray mass spectrometers. This paper reports an unexpected N-nitrosation reaction that occurs with analytes containing primary and secondary amines when ammonium hydroxide is used to achieve the high pH and acetonitrile is used as the organic modifier. The nitrosation reaction has generality. It has been observed on multiple columns from different vendors and with multiple amine-containing analytes. Ammonia was established to be the source of the nitroso nitrogen. The stainless steel column frit and metal ablated from the frit have been shown to be the sites of the reactions. The process is initiated by removal of the chromium oxide protective film from the stainless steel by acetonitrile. It is hypothesized that the highly active, freshly exposed metals catalyze room temperature oxidation of ammonia to NO but that the actual nitrosating agent is likely N(2)O(3). PMID:24182763

  11. Determination of a major metabolite of tipredane in rat urine by high-performance liquid chromatography with column switching.

    PubMed

    Baker, P R; Bayliss, M A; Wilkinson, D

    1997-06-20

    An automated method, based on column-switching reversed-phase high-performance liquid chromatography, has been developed for the determination of a major metabolite of tipredane in rat urine. Samples are injected directly onto a cyanopropyl extraction column. The portion of eluate containing the metabolite is switched, via an injection loop, onto an octadecylsilane analytical column. The limit of quantification of the method was 25 ng/ml for a 20 microl injection volume of urine. The intra-assay precision (0.7-4.8%) and accuracy (94-105%), and the inter-assay precision (2.7-12.6%) and accuracy (94-105%), were acceptable. The analyte was found to be stable in rat urine when stored at room temperature for six days, in a freezer at or below -20 degrees C for twelve weeks, and when the samples were subjected to two freeze-thaw cycles. No significant interference was observed from tipredane and its major human metabolites, or urine constituents in male and female rats. The method was successfully used to analyse samples from a long-term toxicology study. PMID:9234863

  12. Evaluation of column carryover of phosphorylated peptides and fumonisins by duplicated solvent gradient method in liquid chromatography/tandem mass spectrometry.

    PubMed

    Sakamaki, Hiroshi; Uchida, Takeharu; Lim, Lee Wah; Takeuchi, Toyohide

    2015-01-01

    Columns made of three different materials were evaluated with regard to the carryover of phosphorylated peptides and fumonisins in liquid chromatography/tandem mass spectrometry (LC/MS/MS). In order to eliminate carryover caused by the injection operation in the autosampler, the column carryover was calculated using the duplicated solvent gradient method. A column made of a glass-lined stainless-steel tube and polyethylene frits (GL-PE column) yielded the most significant improvements in the peak shape and the carryover as compared to the other columns. The carryover of fumonisin B1 (FB1) and HLADLSpK (T19p) in the GL-PE column could be reduced; the lower limit of quantitation of T19p, and the range of the calibration curve were also improved. Since carryover peaks with the GL-PE column were symmetrical peaks of the samples, carryover in the column did not occur. The carryover calculated by the duplicated solvent gradient method corresponded to those in the flow path from the injection port to the inlet frit of the column. The carryover value of FB1 in the column with a stainless-steel tube and stainless-steel frits (S-S column) was 1.70%, and that of the flow path was 0.23%. We found that the majority of the carryover in our system occurred in the S-S column. PMID:25746806

  13. Determination of picogram nitroglycerin plasma concentrations using capillary gas chromatography with on-column injection.

    PubMed

    Noonan, P K; Kanfer, I; Riegelman, S; Benet, L Z

    1984-07-01

    A specific, sensitive, and precise capillary gas chromatographic (GC) assay capable of analyzing picogram concentrations of nitroglycerin in human plasma was developed. The analytical procedure involves a double extraction of 1 mL of plasma with pentane, after the addition of internal standard (1 ng of 2,6-dinitrotoluene), followed by evaporation and reconstitution in 50 microL of heptane. The extract (1 microL) was injected onto a capillary column using the on-column injection technique. The GC oven temperature was programmed from 120 degrees C to 180 degrees C at a rate of 5 degrees C/min. The oven temperature was then programmed to 250 degrees C and was maintained for 10 min. The nitroglycerin and internal standard retention times were 8.6 and 11.4 min, respectively. The position of the end of the capillary column inside the detector is a critical determinant of sensitivity: the column exit must be positioned such that nitroglycerin adsorption to the detector is minimized (i.e., sensitivity maximized). The assay limit of quantitation was 25 pg/mL (CV = 7.6%) using 1 mL of plasma. This GC assay, specific for nitroglycerin in the presence of its metabolites, isosorbide dinitrate, and several other drugs, may be used to quantitate plasma levels obtained after therapeutic nitroglycerin doses. PMID:6432997

  14. Tandem column for the simultaneous determination of arginine, ibuprofen and related impurities by liquid chromatography.

    PubMed

    Huidobro, A L; Rupérez, F J; Barbas, C

    2006-06-30

    Ibuprofen arginate is a rapidly absorbed salt designed to promote more rapid onset of analgesia than commercially available forms of ibuprofen. Ibuprofen and arginine have very different polarities and this becomes in a chromatographic problem, further complicated with the determination of related compounds, which is necessary in stability assays of the pharmaceutical forms. The common solution is the employment of two separate methods, but this is time consuming. A LC method has been developed to determinate both compounds and related impurities in one run. Ibuprofen, arginine and three ibuprofen related impurities (B, E and J) have been baseline separated with isocratic conditions at pH 3.0 and run time under 20 min by employing a tandem combination of two different stationary phases: first a ZORBAX SB-C18 column from Agilent (250 mm x 4.6 mm and 5 microm) and downstream a SUPELCOSIL LC-NH2 column from Supelco (150 mm x 4.6 mm and 3 microm). The octadecyldiisobutylsilane column provides the separation of ibuprofen and its impurities by a hydrophobic mechanism, whereas aminopropyl column offers selective retention of arginine by dipolar interaction mechanism. Method has been successfully validated following ICH guidelines and it has been demonstrated to be reliable for arginine, ibuprofen and related impurities determination in sachets of two different dosages as pharmaceutical forms. Moreover, stress test has proved the selectivity of the method for degradation products, such as those that can emerge throughout long-term stability assays. PMID:16364348

  15. Glycopeptide Site Heterogeneity and Structural Diversity Determined by Combined Lectin Affinity Chromatography/IMS/CID/MS Techniques

    NASA Astrophysics Data System (ADS)

    Zhu, Feifei; Trinidad, Jonathan C.; Clemmer, David E.

    2015-07-01

    Glycopeptides from a tryptic digest of chicken ovomucoid were enriched using a simplified lectin affinity chromatography (LAC) platform, and characterized by high-resolution mass spectrometry (MS) as well as ion mobility spectrometry (IMS)-MS. The LAC platform effectively enriched the glycoproteome, from which a total of 117 glycopeptides containing 27 glycan forms were identified for this protein. IMS-MS analysis revealed a high degree of glycopeptide site heterogeneity. Comparison of the IMS distributions of the glycopeptides from different charge states reveals that higher charge states allow more structures to be resolved. Presumably the repulsive interactions between charged sites lead to more open configurations, which are more readily separated compared with the more compact, lower charge state forms of the same groups of species. Combining IMS with collision induced dissociation (CID) made it possible to determine the presence of isomeric glycans and to reconstruct their IMS profiles. This study illustrates a workflow involving hybrid techniques for determining glycopeptide site heterogeneity and evaluating structural diversity of glycans and glycopeptides.

  16. Process characterization for metal-affinity chromatography of an Fc fusion protein: a design-of-experiments approach.

    PubMed

    Shukla, A A; Sorge, L; Boldman, J; Waugh, S

    2001-10-01

    The utility of a design-of-experiments approach was investigated for process characterization of a metal-affinity chromatographic purification process for an Fc fusion protein. This approach gave a better understanding of some of the key process variables as well as robustness for this step in the purification process. Single-variable experiments were employed to screen some of the potentially important variables in this step. Ranges for these variables were set based on prior experience in clinical manufacturing with similar processes. Following these experiments, a fractional factorial study was employed to further investigate the most important variables and their interactions. Key operational variables that had an impact on step yield and eluate purity were identified. In addition, the study helped identify a worst-case scenario for the step purity and helped assure that the rest of the process would successfully purify the product. This paper demonstrates the utility of a design-of-experiments approach for the characterization and validation of process chromatography steps in downstream processing. In addition, this study emphasizes the utility of robustness studies early in process development and establishes a strategy for future robustness studies. PMID:11592911

  17. The identification by affinity chromatography of the rat liver ribosomal proteins that bind to elongator and initiator transfer ribonucleic acids.

    PubMed

    Ulbrich, N; Wool, I G; Ackerman, E; Sigler, P B

    1980-07-25

    Mixed yeast elongator-tRNAs (bulk tRNA lacking fRNAm,fMet), pure isoaccepting species of elongator-tRNAs (tRNAmMet and tRNAPhe), and purified initiator-tRNA (tRNAfMet) were each oxidized with periodate and the 3' terminus was coupled to Sepharose 4B through an adipic acid dihydrazide spacer. The rat liver ribosomal proteins that associated with the tRNAs were isolated by affinity chromatography and identified by electrophoresis in polyacrylamide gels. The rat liver ribosomal proteins that were bound to the elongator-tRNA preparations were L6, L35a, and S15; small amounts of a number of other proteins also associated with the nucleic acid. When initiator-tRNA (tRNAfMet) was immobilized on Sepharose, only L6 and L35a were bound; no 40 S subunit proteins associated with initiator-tRNA. No Escherichia coli proteins formed a complex with either eukaryotic initiator- or elongator-tRNAs. PMID:7391064

  18. Inosine 5'-monophosphate dehydrogenase of Escherichia coli. Purification by affinity chromatography, subunit structure and inhibition by guanosine 5'-monophosphate.

    PubMed Central

    Gilbert, H J; Lowe, C R; Drabble, W T

    1979-01-01

    Escherichia coli IMP dehydrogenase (EC 1.2.1.14) was purified by affinity chromatography on immobilized nucleotides. The enzyme binds to agarose-bound 8-(6-aminohexyl)-AMP, N6-(6-aminohexyl)-AMP and 8-(8-amino-octyl)-IMP but not to immobilized NAD+ or Cibacron Blue F3G-A. AMP proved to be an effective eluent. A large-scale purification scheme in which 8-(6-aminohexyl)-AMP-agarose was used resulted in a homogeneous preparation of IMP dehydrogenase. The enzyme was also purified by immunoprecipitation with monospecific antisera. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, N-terminal amino acid analysis and tryptic 'finger-printing' demonstrated that IMP dehydrogenase comprises identical subunits of mol.wt. 58000. Trypsin and Pronase cleave the 58000-mol.wt. subunit into peptides of mol.wts. 42000 and 14000, with a concomitant decrease in enzyme activity. These observations rationalize much of the contradictory data on the subunit composition of the enzyme found in the literature. GMP appears to be a competitive inhibitor with respect to IMP, with no evidence for regulatory behaviour being found. The two purification procedures were also used to purify inactive mutant enzymes from guaB mutant strains of E. coli. PMID:44191

  19. Serodiagnosis of human neurocysticercosis using antigenic components of Taenia solium metacestodes derived from the unbound fraction from jacalin affinity chromatography

    PubMed Central

    Machado, Gleyce Alves; de Oliveira, Heliana Batista; Gennari-Cardoso, Margareth Leitão; Mineo, José Roberto; Costa-Cruz, Julia Maria

    2013-01-01

    The aim of the present study was to analyse Taenia solium metacestode antigens that were derived from the unbound fraction of jacalin affinity chromatography and subsequent tert-octylphenoxy poly (oxyethylene) ethanol Triton X-114 (TX-114) partitioning in the diagnosis of human neurocysticercosis (NCC). Immunoassays were designed to detect T. solium-specific IgG antibodies by ELISA and immunoblot. Serum samples were collected from 132 individuals who were categorised as follows: 40 had NCC, 62 presented Taenia spp or other parasitic diseases and 30 were healthy individuals. The jacalin-unbound (Junbound) fraction presented higher sensitivity and specificity rates than the jacalin-bound fraction and only this fraction was subjected to subsequent TX-114 partitioning, resulting in detergent (DJunbound) and aqueous (AJunbound) fractions. The ELISA sensitivity and specificity were 85% and 84.8% for Junbound, 92.5% and 93.5% for DJunboundand 82.5% and 82.6% for AJunbound. By immunoblot, the DJunboundfraction showed 100% sensitivity and specificity and only serum samples from patients with NCC recognised the 50-70 kDa T. solium-specific components. We conclude that the DJunboundfraction can serve as a useful tool for the differential immunodiagnosis of NCC by immunoblot. PMID:23778661

  20. [Affinity chromatography and proteomic screening as the effective method for S100A4 new protein targets discovery].

    PubMed

    Koshelev, Iu A

    2014-01-01

    Affinity chromatography followed by a selective binding proteins identification can be using as effective method for a biological impotent interactions discovery. The molecular structure and their surface charge as and conformational regulation possibilities, which change their surface hydrophobic properties, all they should to taken in account during method optimization process. With the same' method we had identify some new S100A4 target proteins such as cytoskeleton proteins Sept2, Sept7, Sept11 and this interaction would can to highlight as S100A4 would regulate cell motility. Even we had identify the transcription cofactor Ddx5 and through such complex formation a S100A4 protein would can to regulate E-cadherin, p21 Waf1/Cip1), Bnip3 gene expression. The same protocol can be using for a target proteins search with another S100 protein family members, because their molecules demonstrate a high homology level in amino aside sequences and 3D structures. PMID:25842873

  1. LC–MS/MS Quantitation of Esophagus Disease Blood Serum Glycoproteins by Enrichment with Hydrazide Chemistry and Lectin Affinity Chromatography

    PubMed Central

    2015-01-01

    Changes in glycosylation have been shown to have a profound correlation with development/malignancy in many cancer types. Currently, two major enrichment techniques have been widely applied in glycoproteomics, namely, lectin affinity chromatography (LAC)-based and hydrazide chemistry (HC)-based enrichments. Here we report the LC–MS/MS quantitative analyses of human blood serum glycoproteins and glycopeptides associated with esophageal diseases by LAC- and HC-based enrichment. The separate and complementary qualitative and quantitative data analyses of protein glycosylation were performed using both enrichment techniques. Chemometric and statistical evaluations, PCA plots, or ANOVA test, respectively, were employed to determine and confirm candidate cancer-associated glycoprotein/glycopeptide biomarkers. Out of 139, 59 common glycoproteins (42% overlap) were observed in both enrichment techniques. This overlap is very similar to previously published studies. The quantitation and evaluation of significantly changed glycoproteins/glycopeptides are complementary between LAC and HC enrichments. LC–ESI–MS/MS analyses indicated that 7 glycoproteins enriched by LAC and 11 glycoproteins enriched by HC showed significantly different abundances between disease-free and disease cohorts. Multiple reaction monitoring quantitation resulted in 13 glycopeptides by LAC enrichment and 10 glycosylation sites by HC enrichment to be statistically different among disease cohorts. PMID:25134008

  2. Glycopeptide Site Heterogeneity and Structural Diversity Determined by Combined Lectin Affinity Chromatography/IMS/CID/MS Techniques.

    PubMed

    Zhu, Feifei; Trinidad, Jonathan C; Clemmer, David E

    2015-07-01

    Glycopeptides from a tryptic digest of chicken ovomucoid were enriched using a simplified lectin affinity chromatography (LAC) platform, and characterized by high-resolution mass spectrometry (MS) as well as ion mobility spectrometry (IMS)-MS. The LAC platform effectively enriched the glycoproteome, from which a total of 117 glycopeptides containing 27 glycan forms were identified for this protein. IMS-MS analysis revealed a high degree of glycopeptide site heterogeneity. Comparison of the IMS distributions of the glycopeptides from different charge states reveals that higher charge states allow more structures to be resolved. Presumably the repulsive interactions between charged sites lead to more open configurations, which are more readily separated compared with the more compact, lower charge state forms of the same groups of species. Combining IMS with collision induced dissociation (CID) made it possible to determine the presence of isomeric glycans and to reconstruct their IMS profiles. This study illustrates a workflow involving hybrid techniques for determining glycopeptide site heterogeneity and evaluating structural diversity of glycans and glycopeptides. PMID:25840811

  3. A Continuous Procedure Based on Column Chromatography to Purify Anthocyanins from Schisandra chinensis by a Macroporous Resin plus Gel Filtration Chromatography.

    PubMed

    Yue, Daran; Yang, Lei; Liu, Shouxin; Li, Jian; Li, Wei; Ma, Chunhui

    2016-01-01

    In our previous study, as natural food colorants and antioxidants, the color and content stabilities of Schisandra chinensis (S. chinensis) anthocyanins were investigated. In this work, the purification process parameters of S. chinensis anthocyanins using a macroporous resin and gel filtration chromatography were evaluated. The optimized parameters of static adsorption and desorption were as follows. The selected resin is HPD-300 (nonpolar copolymer styrene type resin), and the anthocyanins adsorption saturation capacity of HPD-300 resin was 0.475 mg/g dry resin. Adsorption time was 4 h, and 0.517 mg/mL of S. chinensis anthocyanins was adsorbed on the resin column with a flow rate of 39 mL/h (3 BV/h). After adsorption, the anthocyanins were completely desorpted with 2.5 BV of 90% (v/v) ethanol solution, and the desorption flow rate was 13 mL/h (1 BV/h). After purification by dynamic adsorption and desorption, the anthocyanins content in the effluent increased from 47.6 mg/g to 128.4 mg/g, the purity of anthocyanins increased six-fold from 5.08% to 30.43%, and the anthocyanins recovery was 96.5%. The major constituent of S. chinensis anthocyanins was isolated with Bio-Gel P2 gel filtration chromatography, and it was detected by liquid chromatography electrospray ionisation tandem mass spectrometry (LC-ESI-MS) as cyanidin-3-O-xylosylrutinoside. Moreover, the antioxidant activities of S. chinensis anthocyanins were investigated. After purification using the HPD-300 resin, the antioxidant activities of anthocyanins were increased 1.2-fold (FRAP) and 1.7-fold (ABTS). PMID:26861279

  4. Dielectrophoretic Assembly of Semiconducting Carbon Nanotubes Separated and Enriched by Spin Column Chromatography and Its Application to Gas Sensing

    NASA Astrophysics Data System (ADS)

    Nakano, Michihiko; Fujioka, Masahiro; Mai, Kaori; Watanabe, Hideaki; Martin, Yul; Suehiro, Junya

    2012-04-01

    The present authors have previously demonstrated the electrokinetic fabrication of a single-walled carbon nanotube (SWCNT) gas sensor by employing dielectrophoresis. Because this method employs mass-produced SWCNTs, it can realize cheaper and more flexible SWCNT gas sensor fabrication than that based on the on-site synthesis of SWCNTs. In this study, a new protocol was proposed and tested for the separation and enrichment of semiconducting SWCNTs, aiming to improve the SWCNT gas sensor sensitivity. The protocol employed a spin column filled with size-exclusion dextran-based gel beads as well as two surfactants (sodium dodecyl sulfate and sodium deoxycholate), which had different affinities to metallic and semiconducting SWCNTs. The separation and enrichment of the semiconducting SWCNTs were confirmed by measuring their optical and electrical properties. The CNT gas sensor fabricated using enriched semiconducting SWCNTs was highly sensitive to nitrogen dioxide (NO2) gas, - more sensitive by 10 times than that fabricated using the pristine SWCNT mixture.

  5. Tailoring the macroporous structure of monolithic silica-based capillary columns with potential for liquid chromatography.

    PubMed

    Laschober, Stefan; Sulyok, Michael; Rosenberg, Erwin

    2007-03-01

    The present work aims at the optimisation of the synthesis of methyl-silsesquioxane monolithic capillary columns using a sol-gel based protocol. The influence of reaction conditions such as temperature, reaction mixture composition and catalyst concentration has been examined. The morphology of the products was studied by scanning electron microscopy and nitrogen adsorption. Monolithic capillary columns were obtained with a skeleton-like structure with open pores. Pore diameters vary from 0.8 to 15 microm, diameters of the xerogel network vary from 0.4 to 12 microm, respectively. Specific surface areas up to 334 m2/g have been observed, however, many materials did not possess areas above few m2/g which represents the limit of detection of the nitrogen porosimetry measurements. Excellent adhesion to the capillary wall was observed in all cases, and drying was possible at ambient conditions without the formation of cracks. PMID:17241639

  6. Chemical synthesis of the hexanucleotide d(A-C-C-A-G-C) required to isolate fibroin mRNA on an affinity column.

    PubMed Central

    Cashion, P; Notman, H; Sathe, G; Cadger, T; Porter, K; Jay, E

    1977-01-01

    The synthesis of the hexanucleotide d)A-C-C-A-G-C), complementary to the 2 major triplets of fibroin mRNA, using the phosphotriester methodology is described. The protected dinucleotides ((MeO)2Tr)dbzA.anC, ((MeO)2Tr)danC.bzA and ((meO)2Tr)dacG.anC were synthesized; the latter two were detritylated and joined in stepwize fashion to the 1st to form the protected hexanucleotide ((MeO)2Tr)dbzA.anC.anC.bzA.acG.anC. The latter was deblocked with NH3 and acid to form the hexanucleotide d(A-C-C-A-G-C). In view of the ability of a prototype affinity column, oligo dC-cellulose, to isolate fibroin mRNA, prospects appear excellent for the d(A-C-C-A-G-C)-cellulose affinity column isolation of fibroin mRNA. PMID:909785

  7. [Simultaneous determination of iodide and thiocyanate powdered milk using ion chromatography with mixed-mode column].

    PubMed

    Li, Jing; Wang, Yu; Liang, Lina

    2010-04-01

    The contents of iodide and thiocyanate are important detection items in powdered milk quality testing. Due to the complexity of the powdered milk matrix, chromatographic analysis is easily subjected to interference. Acclaim Mixed-Mode WAX-1 column incorporated both hydrophobic and weak anion-exchange properties was used to separate iodide and thiocyanate from interfering substances in powdered milk matrix, and detected by Ultraviolet (UV) detection. After powdered milk was dissolved in water, the protein was precipitated by acetonitrile. Then OnGuard RP pre-treatment column was used to remove the organic matters which might pollute the column. The eluent was acetonitrile-100 mmol/L phosphate buffer (pH 6)-water (45:5:50,v/v/v). The UV detection wavelength was 226 nm. The limits of detection of iodide and thiocyanate were 4.6 microg/L and 13.8 microg/L respectively, and the relative standard deviations of peak areas were 1.2% (n = 6) and 1.7% (n = 6) for 0.2 mg/L iodide and thiocyanate standard solutions. The method is accurate and reliable, and has wide linear range, low limit of detection. This method provides a viable approach for powdered milk quality dairy products. PMID:20712128

  8. Behavior of short silica monolithic columns in high pressure gas chromatography.

    PubMed

    Maniquet, Adrien; Bruyer, Nicolas; Raffin, Guy; Baco-Antoniali, Franck; Demesmay, Claire; Dugas, Vincent; Randon, Jérôme

    2016-08-19

    In order to analyze light hydrocarbons mixtures with silica monolithic columns, a conventional gas chromatograph was modified to work with carrier gas pressure as high as 60bar. To understand hydrodynamic flow and retention with short columns (less than 30cm), special attention was required due to the temperature difference between the oven area and the FID detector which contain a significant length of the column. Efficiency and selectivity using various carrier gases (helium, nitrogen and carbon dioxide) at different inlet pressure for different oven temperature were studied. Carrier gas nature was a very significant parameter: on one side, linked to adsorption mechanism for gases like nitrogen and carbon dioxide onto the stationary phase modifying retention and selectivity, on the other side in relation to the minimum theoretical plate height which was as low as 15μm (66 000 platem(-1)) using carbon dioxide as carrier gas. The chromatographic system was then used to separate methane, ethane, ethylene, acetylene, propane, cyclopropane, and butane in less than 30s. PMID:27432790

  9. Determination of nutrients in the presence of high chloride concentrations by column-switching ion chromatography.

    PubMed

    Bruno, P; Caselli, M; de Gennaro, G; De Tommaso, B; Lastella, G; Mastrolitti, S

    2003-06-27

    Determination of inorganic anions in waters of high salinity is one of the most difficult task in analytical chemistry. A simple column-switching method, based on an original chromatographic set-up, for the determination of nutrients (nitrate, nitrite and phosphate) in chloride rich aqueous matrices is presented. A pre-separation system (made of two in line pre-columns, Dionex AG9-HC 4 mm) connected to an analytical column (Dionex AS9-HC 4 mm) by a four way pneumatic valve, allows chloride to be eluted off into the waste and nutrients to be separated and detected by a conductimeter and/or a UV spectrophotometer. Neither chemical pre-treatment nor sample dilution are required; sample matrices presenting a large range of chloride concentrations can be investigated. Moreover by using this technology, automation for routine analysis, low analysis time and low costs can be achieved. LODs of 100, 300, 1000 microg/l for nitrate, nitrite and phosphate, respectively, have been obtained by spiking a synthetic sea water sample containing 20,000 mg/l of chloride and 3000 mg/l of sulphate. Analyte calibration curves of analytes are linear (r>0.99) in the range between the LODs and 60 mg/l. This method was applied to nutrients determination in sea water samples collected near a river outlet. PMID:12899303

  10. Simple determination of terbutaline in dog plasma by column-switching liquid chromatography.

    PubMed

    Zhang, Y; Zhang, Z R

    2004-06-15

    Terbutaline is a beta-adrenergic receptor antagonist that acts as a bronchodilator in the treatment of asthma and chronic bronchitis. In the present work, a column-switching high-performance liquid chromatographic method was developed to monitor terbutaline sulphate in dog plasma. The system consists of a C2 pre-column (PC) and a C18 analytical column connected in series via a switching valve. Atenolol was used as the internal standard. Good linearity was achieved in the range of 5-800 ng/ml plasma. The mean intra- and inter-assay variation coefficients for this analysis were 2.3 and 4.7%, respectively. The average recovery for terbutaline was 87.4% from plasma. The mean concentration after three freeze-thaw cycles was 99.4% of the normal value. The analytical sensitivity and accuracy of this assay is adequate for characterisation of the pharmacokinetics of oral administration of terbutaline to dogs and has been successfully used to provide pharmacokinetic data using pulsatile and immediate-release tablets. PMID:15135092

  11. Study of an electroosmotic pump for liquid delivery and its application in capillary column liquid chromatography.

    PubMed

    Chen, Lingxin; Ma, Jiping; Guan, Yafeng

    2004-03-01

    A packed-bed electroosmotic pump (EOP) was constructed and evaluated. The EOP consisted of three capillary columns packed in parallel, a gas-releasing device, Pt electrodes and a high-voltage power supply. The EOP could generate output pressure above 5.0 MPa and constant flow rate in the range of nl/min to a few microl/min for pure water, pure methanol, 2 mM potassium dihydrogenphosphate buffer, the buffer-methanol mixture and the pure water-methanol mixture at applied potentials less than 20 kV. The composition of solvent before/after pumping was quantitatively determined by using a gas chromatograph equipped with both flame ionization detector and thermal conductivity detector. It was found that there were no apparent changes in composition and relative concentrations after pumping process for a methanol-ethanol-acetonitrile mixture and a methanol-water mixture. Theoretical aspect of the EOP was discussed in detail. An capillary HPLC system consisting of the EOP, an injection valve, a 15 cm x 320 microm i.d., 5 microm Spherigel C18 stainless steel analytical column, and an on-column UV detector was connected to evaluate the performance of the EOP. A comparative study was also carried out with a mechanical capillary HPLC pump on the same system. The results demonstrated that the reproducibility of flow rate and the pulsation-free flow property of the EOP are superior to that of mechanical pump in capillary HPLC application. PMID:14989475

  12. Evolution in miniaturized column liquid chromatography instrumentation and applications: An overview.

    PubMed

    Nazario, Carlos E D; Silva, Meire R; Franco, Maraíssa S; Lanças, Fernando M

    2015-11-20

    The purpose of this article is to underline the miniaturized LC instrumental system and describe the evolution of commercially available systems by discussing their advantages and drawbacks. Nowadays, there are already many miniaturized LC systems available with a great variety of pump design, interface and detectors as well as efficient columns technologies and reduced connections devices. The solvent delivery systems are able to drive the mobile phase without flow splitters and promote gradient elution using either dual piston reciprocating or syringe-type pumps. The mass spectrometry as detection system is the most widely used detection system; among many alternative ionization sources direct-EI LC-MS is a promising alternative to APCI. In addition, capillary columns are now available showing many possibilities of stationary phases, inner diameters and hardware materials. This review provides a discussion about miniaturized LC demonstrating fundamentals and instrumentals' aspects of the commercially available miniaturized LC instrumental system mainly nano and micro LC formats. This review also covers the recent developments and trends in instrumentation, capillary and nano columns, and several applications of this very important and promising field. PMID:26381569

  13. Modern analytical supercritical fluid chromatography using columns packed with sub-2 μm particles: a tutorial.

    PubMed

    Nováková, Lucie; Perrenoud, Alexandre Grand-Guillaume; Francois, Isabelle; West, Caroline; Lesellier, Eric; Guillarme, Davy

    2014-05-01

    This tutorial provides an overview of the possibilities, limitations and analytical conditions of modern analytical supercritical fluid chromatography (SFC) using columns packed with sub-2 μm particles. In particular, it gives a detailed overview of commercially available modern SFC instrumentation and the detectors that can be employed (UV, MS, ELSD, FID, etc.). Some advice on the choice of the stationary phase dimensions and chemistries, the nature of the mobile phase (choice of organic modifier and additives) and its flow rate as well as the backpressure and temperature are also provided. Finally, several groups of potentially problematic compounds, including lipophilic compounds, hydrophilic substances and basic drugs, are discussed in detail. All these families of analytes can be resolved with SFC but require specific analytical conditions. PMID:24759745

  14. Five-column chromatography separation for simultaneous determination of hard-to-detect radionuclides in water and swipe samples.

    PubMed

    Dai, Xiongxin; Kramer-Tremblay, Sheila

    2014-06-01

    There is a growing demand for the rapid determination of hard-to-detect radionuclides in environmental and biological samples for environmental monitoring, radiological protection, and nuclear forensic reasons. A new method using five-column chromatography separation has been developed for the simultaneous determination of Pu, Np, Th, U, Am, Cm, Pm, Y, and Sr isotopes, as well as iron-55, by inductively coupled mass spectrometry (ICPMS), α spectrometry, Čerenkov and liquid scintillation (LS) counting. Spiked swipe and water samples as well as proficient testing water standards were analyzed to validate the separation procedure, and the results are in good agreement with the expected values. The method provides quick sample turnaround time and high analysis throughput with low analysis cost. The flexibility of the method also allows for its easy adaptation to various emergency and routine radioassays. PMID:24802776

  15. Removal of BPA model compounds and related substances by means of column chromatography using Octolig®.

    PubMed

    Alessio, Rachael J; Li, Xiao; Martin, Dean F

    2012-01-01

    Octolig®, a polyethylenediimine ligand covalently attached to high-surface area silica gel, was used to study the removal of phenolic compounds from aqueous samples by column chromatography. Model phenolic compounds of Bisphenol A (BPA), 4-isopropylphenol and 4-(t-butyl) phenol, were selected for this study due to their similarities in pKa and log P values. The percent removal of these compounds by Octolig® was 26 ± 2 and 22 ± 2, respectively. Furthermore, the three isomers of nitrophenol were investigated as well as additional phenolic compounds, such as amoxicillin and five phenolic dyes. These compounds have a pKa range of 2-10.2. The compounds that have pKa values less than 8.3 were able to be completely removed by Octolig®, yet compounds with pKa values of 8.3 and higher resulted in approximately 20-26% removal. PMID:22934990

  16. Preparation of cyclodextrin-modified monolithic hybrid columns for the fast enantioseparation of hydroxy acids in capillary liquid chromatography.

    PubMed

    Szwed, Kamila; Ou, Junjie; Huang, Guang; Lin, Hui; Liu, Zhongshan; Wang, Hongwei; Zou, Hanfa

    2016-03-01

    Cyclodextrins and their derivatives are one of the most common and successful chiral selectors. However, there have been few publications about the use of cyclodextrin-modified monoliths. In this study, organic hybrid monoliths were prepared by the immobilization of derivatized β-cyclodextrin alone or with l-2-allylglycine hydrochloride to the polyhedral oligomeric silsesquioxane methacryl substituted monolith. The main topic of this study is a combined system with dual chiral selectors (l-2-allylglycine hydrochloride and β-cyclodextrin) as monolithic chiral stationary phase. The effect of l-2-allylglycine hydrochloride concentration on enantioseparation was investigated. The enantioseparation of the four acidic compounds with resolutions up to 2.87 was achieved within 2.5 min on the prepared chiral monolithic column in capillary liquid chromatography. Moreover, the possible mechanism of enantioseparation was discussed. PMID:27027591

  17. Determination of aflatoxins and ochratoxin A in high-sugar-content traditional Turkish foods by affinity column cleanup and LC fluorescence detection.

    PubMed

    Senyuva, Hamide Z; Cimen, Dilek; Gilbert, John

    2009-01-01

    The effectiveness of an affinity column cleanup procedure followed by LC with fluorescence detection was established for the determination of aflatoxins and ochratoxin A in high-sugar-content traditional Turkish foods. Traditional foods, such as baklava (finely layered pastry filled with nuts and steeped in syrup), halvah (containing sesame paste and pistachios), cevizli sucuk (a confection made of grape juice boiled and dried on strings of nuts), Turkish delight (containing hazelnuts, pistachios, or walnuts), and pişmaniye (candy made of sugar, butter, and flour), were tested, and the performance of the method was established with spiked samples. To examine the robustness of the methodology, baklava was prepared from raw materials and spiked at the initial stage of dry ingredients and through subsequent stages of preparation of dough, after cooking, and after addition of syrup and nuts. For all products, the analytical method required grinding the composite foodstuff under liquid nitrogen to form a fine powder, which was then thoroughly mixed before subsampling. After vortex extraction into methanol-water (aflatoxins) and aqueous sodium bicarbonate (ochratoxin A), the sample was filtered, diluted with phosphate-buffered saline, and then passed through either an aflatoxin or ochratoxin A affinity column before HPLC analysis with fluorescence detection (using post-column bromination for the aflatoxins). In all the traditional Turkish products, the recovery of aflatoxin B1 ranged from 77 to 98%, and LODs were <0.1 microg/kg. For ochratoxin A, the recoveries were from 88 to 93% and LODs were similarly <0.1 microLg/kg. Despite the complex nature of these traditional Turkish foods, which frequently contain products from sugar caramelization, there was no evidence of any interfering co-extractives, and the method has proved to be robust enough to be used for food control purposes. PMID:19714981

  18. pH Transients in hydroxyapatite chromatography columns-experimental evidence and phenomenological modeling.

    PubMed

    Bankston, Theresa E; Dattolo, Laura; Carta, Giorgio

    2010-04-01

    Hydroxyapatite (HAP) columns, widely used for chromatographic separation of proteins and other biomolecules because of their unique selectivity and ability to resolve complex mixtures, exhibit limited stability at acidic conditions requiring careful control of pH. Even with buffered solutions, however, unintended pH transients can occur when the salt concentration varies. For example, the pH temporarily decreases below the feed value when the salt concentration increases and increases above the feed value when the salt concentration is decreased. The intensity and duration of these transients depend on the particular buffer used and the magnitude of the salt concentration step, but in extreme cases the pH can drop by as much as 1.5 pH units creating conditions where the HAP stability is potentially compromised. This work examines the mechanisms leading to pH transients in HAP columns generated by salt steps. The pH excursions are similar to those observed for weak cation exchange columns, but are accompanied by a transient evolution of phosphate which temporarily decreases below the feed value when the salt concentration is increased and increases sharply when the salt concentration is reduced before returning to the feed value. A phenomenological model is developed to describe this behavior by considering the reversible uptake of sodium ions by the P-sites and binding of phosphate ions by the C-sites. The interplay of these two adsorption mechanisms results in complex pH patterns that are consistent with those observed experimentally. In addition to helping understand the underlying mechanisms, the model also provides a useful tool to predict the effects of different buffers and salt concentration and develop corrective measures that can reduce the intensity and duration of the pH transients such as the addition of unretained co-buffers. PMID:20193952

  19. Reversed-phase liquid chromatography column testing: robustness study of the test.

    PubMed

    Le Mapihan, K; Vial, J; Jardy, A

    2004-12-24

    Choosing the right RPLC column for an actual separation among the more than 600 commercially available ones still represents a real challenge for the analyst particularly when basic solutes are involved. Many tests dedicated to the characterization and the classification of stationary phases have been proposed in the literature and some of them highlighted the need of a better understanding of retention properties to lead to a rational choice of columns. However, unlike classical chromatographic methods, the problem of their robustness evaluation has often been left unaddressed. In the present study, we present a robustness study that was applied to the chromatographic testing procedure we had developed and optimized previously. A design of experiment (DoE) approach was implemented. Four factors, previously identified as potentially influent, were selected and subjected to small controlled variations: solvent fraction, temperature, pH and buffer concentration. As our model comprised quadratic terms instead of a simple linear model, we chose a D-optimal design in order to minimize the experiment number. As a previous batch-to-batch study [K. Le Mapihan, Caractérisation et classification des phases stationnaires utilisées pour l'analyse CPL de produits pharmaceutiques, Ph.D. Thesis, Pierre and Marie Curie University, 2004] had shown a low variability on the selected stationary phase, it was then possible to split the design into two parts, according to the solvent nature, each using one column. Actually, our testing procedure involving assays both with methanol and with acetonitrile as organic modifier, such an approach enabled to avoid a possible bias due to the column ageing considering the number of experiments required (16 + 6 center points). Experimental results were computed thanks to a Partial Least Squares regression procedure, more adapted than the classical regression to handle factors and responses not completely independent. The results showed the

  20. Application of isothermal titration calorimetry and column chromatography for identification of biomolecular targets.

    PubMed

    Zhou, Xingding; Kini, R Manjunatha; Sivaraman, J

    2011-02-01

    This protocol describes a method for identifying unknown target proteins from a mixture of biomolecules for a given drug or a lead compound. This method is based on a combination of chromatography and isothermal titration calorimetry (ITC) where ITC is used as a tracking tool. The first step involves the use of ITC to confirm the binding of ligand to a component in the biomolecular mixture. Subsequently, the biomolecular mixture is fractionated by chromatography, and the binding of the ligand with individual fractions (or subfractions) is verified by ITC. The iteration of chromatographic purification on the fractions combined with ITC results in identifying the target protein. This method is useful when the target protein or ligand is unknown and/or not amenable to labeling, chemical modification or immobilization. This protocol has been successfully used by our team and by others to identify both low-abundance and highly abundant target proteins present in biomolecular mixtures. With this protocol, it takes approximately 3-5 d to identify the target protein from a mixture. PMID:21293457

  1. Closed-loop optimization of chromatography column sizing strategies in biopharmaceutical manufacture

    PubMed Central

    Allmendinger, Richard; Simaria, Ana S; Turner, Richard; Farid, Suzanne S

    2014-01-01

    BACKGROUND This paper considers a real-world optimization problem involving the identification of cost-effective equipment sizing strategies for the sequence of chromatography steps employed to purify biopharmaceuticals. Tackling this problem requires solving a combinatorial optimization problem subject to multiple constraints, uncertain parameters, and time-consuming fitness evaluations. RESULTS An industrially-relevant case study is used to illustrate that evolutionary algorithms can identify chromatography sizing strategies with significant improvements in performance criteria related to process cost, time and product waste over the base case. The results demonstrate also that evolutionary algorithms perform best when infeasible solutions are repaired intelligently, the population size is set appropriately, and elitism is combined with a low number of Monte Carlo trials (needed to account for uncertainty). Adopting this setup turns out to be more important for scenarios where less time is available for the purification process. Finally, a data-visualization tool is employed to illustrate how user preferences can be accounted for when it comes to selecting a sizing strategy to be implemented in a real industrial setting. CONCLUSION This work demonstrates that closed-loop evolutionary optimization, when tuned properly and combined with a detailed manufacturing cost model, acts as a powerful decisional tool for the identification of cost-effective purification strategies. © 2013 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:25506115

  2. Comparison of antioxidant and antiproliferative activity between Kunlun Chrysanthemum flowers polysaccharides (KCCP) and fraction PII separated by column chromatography.

    PubMed

    Jing, Siqun; Chai, Wenjie; Guo, Gai; Zhang, Xiaoming; Dai, Jun; Yan, Liang-Jun

    2016-04-15

    The aim of the present study was to compare the antioxidant and antiproliferative effects on cancer cells between Kunlun Chrysanthemum flowers polysaccharides (KCCP) and its fraction PII that were separated by Biologic low pressure (LP) chromatography system followed by DEAE cellulose column chromatography. Results of in vitro experiments showed that the reducing power and the scavenging capacity of KCCP towards hydroxyl radicals (OH) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals increased in a concentration dependent manner and were stronger than that of fraction PII. Results of the antiproliferative effect of KCCP and fraction PII on cervical cancer HeLa cells, esophagus cancer Eca109 cells, and mouse ascites hepatomas H22 cells indicated that both KCCP and its fraction PII possessed inhibitory activity on all the tested cancer cells at a dose- and time-dependent manner, with KCCP showing higher inhibitory activity than that of fraction PII. The present study demonstrates that KCCP and its fraction PII have antioxidant properties that may help fight cancers. PMID:26809376

  3. Kinetic performance of a 50mm long 1.8μm chiral column in supercritical fluid chromatography.

    PubMed

    Berger, Terry A

    2016-08-12

    Reduced plate heights (hr) of <2 were observed for the first time during the chiral separation of enantiomers, on sub-2μm particles with supercritical fluid chromatography (SFC). The enantiomers of trans-stilbene oxide, were separated on a 4.6×50mm, 1.8μm R,R-Whelk-O1 column, with hr as low as 1.93. The plumbing of a commercial SFC instrument was modified to create a low dispersion version. Without the modification performance was considerably worse. vanDeemter like plots of reduced plate height vs. flow rate, for trans-stilbene oxide, indicate that the optimum flow varied with% modifier. On a 4.6×250mm, 5μm R,R- Whelk-O1 column, the optimum flow was >4mL/min for 5% methanol in CO2, decreasing to <2mL/min for 40% methanol (more than a factor of 2). For a 4.6×50mm column packed with 1.8μm particles the optimum appeared to be near, or >5mL/min with 2.5%, 5%, and 10% methanol, decreasing to between 3 and 3.5mL/min at 40% methanol. This is the first time such shifts have been characterized. Since the solutes were the same in all cases, the differences are likely due to changes in solute diffusion coefficients caused by changes in modifier concentration, and pressure. Pump pressure requirements sometimes exceeded 500bar. It is shown that a 5mL/min flow rate is inadequate for use with 1.8μm particles in a 4.6mm ID column format. Instead, it is suggested to decrease the ID of the column to 3mm, where the optimum flow rates are on the order of 2mL/min with decreased tubing variance. Nevertheless, a number of sub-1min chromatograms are presented. PMID:27423775

  4. Detailed kinetic performance analysis of micromachined radially elongated pillar array columns for liquid chromatography.

    PubMed

    Callewaert, Manly; Desmet, Gert; Ottevaere, Heidi; De Malsche, Wim

    2016-02-12

    The individual factors that determine the kinetic performance (B- and C-term band broadening and bed permeability Kv) of radially elongated pillar (REP) columns are studied. To this end, columns with REPs having 4 different aspect ratios (AR=9, 12, 15, 20) were characterized experimentally and by means of numerical simulations. A tortuosity and retention based plate height equation was established, enabling a good global fit for all studied conditions. The B-term plate height contribution appears to decrease with a factor equaling the square of the flow path tortuosity τ. Going from AR=12 to AR=20 (τ=5.7 and τ=9.0 respectively), this resulted in a shift in plate height expressed in axial coordinates from Hmin=0.42 μm to Hmin=0.25 for non-retained conditions and from H=0.77 μm to H=0.57 μm for a component with k=1.0. The obtained parameters were combined to predict optimal time-efficiency combinations for all possible channel lengths. This revealed an efficiency limit of N=10(7) plates for a non-retained component and N=7-8 × 10(6) for k=1 for a channel with an AR=20, corresponding to a channel length of 2.5m and a void time of 2.4h. PMID:26795281

  5. Measurement of free thyroid hormones in serum by column adsorption chromatography and radioimmunoassay.

    PubMed

    Romelli, P B; Pennisi, F; Vancheri, L

    1979-01-01

    A new method for the assay of free thyroid hormones in human serum is described. This method is based on a chromatographic adsorption process of thyroid hormones onto a Sephadex LH-20 resin column. Protein fractions are eliminated by washing columns, adsorbed hormones are eluted with methanol and determined by radioimmunoassay. It was demonstrated that under the experimental conditions adopted the presence of the resin R does not significantly change the free hormone level in the serum, and the amount of hormone adsorbed onto the resin HR is exclusively in function of the free hormone concentration [H], according to a linear relationship: HR = phi [H], where phi is the resin adsorption constant K ads multiplied by the number of resin binding sites nR. The phi value, experimentally determined, was 32 ml for T3 and 58 ml for T4, when 150 mg resin were used. The method sensitivity was 0.3 pg/ml for FT3 and 0.6 pg/ml for FT4. The within-assay reproducibility was about 5% (CV) and the between-assay reproducibility was about 6% (CV), both for FT3 and FT4. FT3 and FT4 levels, in 96 normal subjects, were 3.9 +/- 0.7 pg/ml (mean +/- SD) and 11.1 +/- 1.9 pg/ml (mean +/- SD) respectively. PMID:489914

  6. Analysis of metal ions in crude oil by reversed-phase high performance liquid chromatography using short column.

    PubMed

    Salar Amoli, H; Porgam, A; Bashiri Sadr, Z; Mohanazadeh, F

    2006-06-16

    In this study a rapid, simultaneous analysis of V, Ni, Fe and Cu in crude oil was achieved by high performance liquid chromatography using 10 cm length reversed-phase C18 column. Since the amount of metal ions is at a very low level, in this work, solvent extraction of metals by a ligand such as 8-hydroxyquinoline from acidic media was investigated with some modification to previous procedures. Average extraction recoveries were 99, 85, 94 and 96 for V, Ni, Fe and Cu, respectively. The proposed method was successfully applied to the crude oil which was obtained from Koshk area in southern Iran. Fast analysis of metal ion in reversed-phase short column was achieved with methanol/water (55/45, v/v) and the detection limits measured as three times the background noise were obtained. Also it was shown that if small amount of 8-hydroxyquinoline was added to the mobile phase, the peak height and the peak symmetry were improved. A typical chromatogram for the separation of the 8-hydroxyquinoline complexes of V (V), Ni (II), Fe (III) and Cu (II) in crude oil was obtained in less than 4 min. PMID:16723133

  7. Preparative separation of gallocatechin gallate from Camellia ptilophylla using macroporous resins followed by sephadex LH-20 column chromatography.

    PubMed

    Li, Kaikai; Zhou, Xuelin; Liu, Cheuk-Lun; Yang, Xiaorong; Han, Xiaoqiang; Shi, Xianggang; Song, Xiaohong; Ye, Chuangxing; Ko, Chun-hay

    2016-02-01

    Gallocatechin gallate (GCG) possesses multiple potential biological activities. However, the content of GCG in traditional green tea is too low which limits its in-depth pharmacological research and application. In the present study, a simple, efficient and environment-friendly chromatographic separation method was developed for preparative enrichment and separation of GCG from cocoa tea (Camellia ptilophylla) which contains high content of GCG. In the first step, the adsorption properties of selected resins were evaluated, and XAD-7HP resin was chosen by its adsorption and desorption properties for GCG. In order to maximize column efficiency for GCG collection, the operating parameters (e.g., flow rate, ethanol concentration, and bed height) were optimized. We found that the best combination was the feed concentration at 20mg/mL, flow rate at 0.75 BV/h and the ratio of diameter to bed heights as 1:12. Under these conditions, the purity of GCG was 45% with a recovery of 89%. In order to obtain pure target, a second step was established using column chromatography with sephadex LH-20 gel and 55% ethanol-water solution as eluent. After this step, the purity of the GCG was 91% with a recovery of 68% finally. PMID:26744789

  8. Packing of large-scale chromatography columns with irregularly shaped glass based resins using a stop-flow method

    PubMed Central

    Siu, Sun Chau; Chia, Celeste; Mok, Yanglin; Pattnaik, Priyabrata

    2014-01-01

    Rigid chromatography resins, such as controlled pore glass based adsorbents, offer the advantage of high permeability and a linear pressure-flow relationship irrespective of column diameter which improves process time and maximizes productivity. However, the rigidity and irregularly shaped nature of these resins often present challenges in achieving consistent and uniform packed beds as formation of bridges between resin particles can hinder bed consolidation. The standard flow-pack method when applied to irregularly shaped particles does not yield well-consolidated packed beds, resulting in formation of a head space and increased band broadening during operation. Vibration packing methods requiring the use of pneumatically driven vibrators are recommended to achieve full packed bed consolidation but limitations in manufacturing facilities and equipment may prevent the implementation of such devices. The stop-flow packing method was developed as an improvement over the flow-pack method to overcome these limitations and to improve bed consolidation without the use of vibrating devices. Transition analysis of large-scale columns packed using the stop-flow method over multiple cycles has shown a two- to three-fold reduction of change in bed integrity values as compared to a flow-packed bed demonstrating an improvement in packed bed stability in terms of the height equivalent to a theoretical plate (HETP) and peak asymmetry (As). PMID:25080096

  9. Packing of large-scale chromatography columns with irregularly shaped glass based resins using a stop-flow method.

    PubMed

    Siu, Sun Chau; Chia, Celeste; Mok, Yanglin; Pattnaik, Priyabrata

    2014-01-01

    Rigid chromatography resins, such as controlled pore glass based adsorbents, offer the advantage of high permeability and a linear pressure-flow relationship irrespective of column diameter which improves process time and maximizes productivity. However, the rigidity and irregularly shaped nature of these resins often present challenges in achieving consistent and uniform packed beds as formation of bridges between resin particles can hinder bed consolidation. The standard flow-pack method when applied to irregularly shaped particles does not yield well-consolidated packed beds, resulting in formation of a head space and increased band broadening during operation. Vibration packing methods requiring the use of pneumatically driven vibrators are recommended to achieve full packed bed consolidation but limitations in manufacturing facilities and equipment may prevent the implementation of such devices. The stop-flow packing method was developed as an improvement over the flow-pack method to overcome these limitations and to improve bed consolidation without the use of vibrating devices. Transition analysis of large-scale columns packed using the stop-flow method over multiple cycles has shown a two- to three-fold reduction of change in bed integrity values as compared to a flow-packed bed demonstrating an improvement in packed bed stability in terms of the height equivalent to a theoretical plate (HETP) and peak asymmetry (As ). PMID:25080096

  10. [Determination of 14 sulfonamide residues in shrimps by high performance liquid chromatography coupled with post-column derivatization].

    PubMed

    Huang, Dongmei; Huang, Xuanyun; Gu, Runrun; Hui, Yunhua; Tian, Liangliang; Feng, Bing; Zhang, Xuan; Yu, Huijuan

    2014-08-01

    A method for the determination of 14 sulfonamide residues in shrimps by high performance liquid chromatography coupled with post-column derivatization was established. The sulfonamide residues were extracted with ethyl acetate after adding sulfapyridine as internal standard. The extracts were vacuum-concentrated and reverse-extracted by 2 mol/L hydrochloric acid solution for clean-up, and then the hydrochloric acid solution was defatted with n-hex- ane. The solution after filtration was blended with a mixed solution of methanol, acetonitrile and 3. 5 mol/L sodium acetate solution (5:5:20, v/v/v). The sulfonamides were separated on a C18 column by RP-HPLC and on-line derivatized with a fluorescamine and detected with a fluorescence detector. The standard addition method was used for quantitative analysis. The parameters of post-column derivatization system, such as concentration of fluorescamine solution, velocity of reagent solution and reaction temperature, were optimized. The calibration curves of the method showed good linearity in the range of 5 - 200 μg/L. The limits of quantification (LOQ, S/N= 10) were 1.0-5.0 μg/kg for the 14 sulfonamides. The recoveries were 77.8%- 103. 6% in the spiked range of 1. 0-100.0 μg/kg in shrimps with the relative standard deviations of 2.9%-9.1% (n= 6). The results indicated that the method is sensitive, efficient and more accurate. It is suitable for the simultaneous determination of the 14 sulfonamide residues in shrimps. PMID:25434125

  11. Immunoaffinity column cleanup with liquid chromatography for determination of aflatoxin B1 in corn samples: interlaboratory study.

    PubMed

    Brera, Carlo; Debegnach, Francesca; Minardi, Valentina; Pannunzi, Elena; De Santis, Barbara; Miraglia, Marina

    2007-01-01

    An interlaboratory study was conducted to evaluate the effectiveness of an immunoaffinity column cleanup liquid chromatography (LC) method for the determination of aflatoxin B1 levels in corn samples, enforced by European Union legislation. A test portion was extracted with methanol-water (80 + 20); the extract was filtered, diluted with phosphate-buffered saline solution, filtered on a microfiber glass filter, and applied to an immunoaffinity column. The column was washed with deionized water to remove interfering compounds, and the purified aflatoxin B1 was eluted with methanol. Aflatoxin B1 was separated and determined by reversed-phase LC with fluorescence detection after either pre- or postcolumn derivatization. Precolumn derivatization was achieved by generating the trifluoroacetic acid derivative, used by 8 laboratories. The postcolumn derivatization was achieved either with pyridinium hydrobromide perbromide, used by 16 laboratories, or with an electrochemical cell by the addition of bromide to the mobile phase, used by 5 laboratories. The derivatization techniques used were not significantly different when compared by the Student's t-test; the method was statistically evaluated for all the laboratories. Five corn sample materials, both spiked and naturally contaminated, were sent to 29 laboratories (22 Italian and 7 European). Test portions were spiked with aflatoxin B1 at levels of 2.00 and 5.00 ng/g. The mean values for recovery were 82% for the low level and 84% for the high contamination level. Based on results for spiked samples (blind pairs at 2 levels) as well as naturally contaminated samples (blind pairs at 3 levels), the values for relative standard deviation for repeatability (RSDr) ranged from 9.9 to 28.7%. The values for relative standard deviation for reproducibility (RSDR) ranged from 18.6 to 36.8%. The method demonstrated acceptable within- and between-laboratory precision for this matrix, as evidenced by the HorRat values. PMID:17580628

  12. Determination of sulfathiazole in type C medicated swine feed by reversed-phase liquid chromatography with post-column derivatization.

    PubMed

    Albert, Kendrick; Riter, Ken L; Smallidge, Robert L

    2003-01-01

    A convenient method was developed for determination of sulfathiazole (STZ) in Type C medicated swine feed by reversed-phase liquid chromatography (LC) with post-column derivatization. Addition of extractant solution (0.2N HCl and 1.5% diethylamine in 25% methanol) and an internal standard (IS), sulfamethylthiazole (SMZ), to 5 g sample was followed by mechanical shaking for 1 h. The extract was clarified by chilling, centrifugation, and filtering before injection onto a C18 reversed-phase column. The mobile phase components were 2% acetic acid and 1:1 acetonitrile-methanol (83 + 17%, v/v). Run time was about 20 min. Determination and, largely, the method's selectivity were based on detection at 450 nm of the derivative formed by the post-column reaction of dimethylaminobenzaldehyde with the primary amine of the analyte and IS. The IS, SMZ, differs from STZ by a single substituent methyl group, is stable, and is readily resolved from STZ. Although SMZ is not commercially available, it can be synthesized with relative ease from purchased reagents and will be supplied by the authors to interested laboratories. In single-laboratory validation, linearity was demonstrated over the range of 0.055-550 microg/mL, well beyond the target concentration of 5.5 microg/mL. The estimated limit of detection was 0.04 microg/mL; the calculated limit of quantitation was 0.13 microg/mL (feed concentration of 2.4 g/T or 2.7 mg/kg). Wet-spiking trials with a variety of swine feed matrixes showed recovery to be 100-102% for the intended concentration range, 50-200 g/T, with coefficient of variation (CV) < 2%. The method ruggedness was verified with an overall CV of 2.9%. PMID:14509417

  13. Purification of human immunoglobulins A, G and M from Cohn fraction II/III by small peptide affinity chromatography.

    PubMed

    Liu, Zhuo; Gurgel, Patrick V; Carbonell, Ruben G

    2012-11-01

    This work describes attempts to purify human IgG, IgA and IgM from Cohn fraction II/III using HWRGWV affinity peptide resin. The effects of peptide density and different elution additives on recovery of the three antibodies were investigated. At low peptide density, salting-in salts such as magnesium chloride and calcium chloride facilitated antibody elution. Ethylene glycol, urea and arginine also facilitated elution because of their ability to decrease hydrophobic interactions, hydrogen bonding and electrostatic interactions. However, at high peptide density, no recovery improvements were observed because of increased non-specific hydrophobic interactions. The final elution conditions for each antibody were chosen based on the resulting yields and purities when a 10:2:1mg/mL mixture of human IgG, IgA and IgM was used as starting material. Different pretreatment methods were employed in order to improve the purity of antibodies from Cohn fraction II/III. After pretreatment with caprylic acid precipitation or combination of caprylic acid and polyethylene glycol precipitation, purities over 95% and yields of about 60% were obtained for hIgG, which are comparable to current chromatographic purification methods involving two chromatography steps when hIgG is isolated from plasma fractions. A hIgA-enriched fraction with 42% hIgA and 56% hIgG, as well as a hIgM enriched fraction with 46% hIgM, 28% hIgA and 24% hIgG, were obtained as the by-products. PMID:23026261

  14. Immobilized Metal Affinity Chromatography Co-Purifies TGF-β1 with Histidine-Tagged Recombinant Extracellular Proteins

    PubMed Central

    Kaur, Jasvir; Reinhardt, Dieter P.

    2012-01-01

    Extracellular recombinant proteins are commonly produced using HEK293 cells as histidine-tagged proteins facilitating purification by immobilized metal affinity chromatography (IMAC). Based on gel analyses, this one-step purification typically produces proteins of high purity. Here, we analyzed the presence of TGF-β1 in such IMAC purifications using recombinant extracellular fibrillin-1 fragments as examples. Analysis of various purified recombinant fibrillin-1 fragments by ELISA consistently revealed the presence of picomolar concentrations of active and latent TGF-β1, but not of BMP-2. These quantities of TGF-β1 were not detectable by Western blotting and mass spectrometry. However, the amounts of TGF-β1 were sufficient to consistently trigger Smad2 phosphorylation in fibroblasts. The purification mechanism was analyzed to determine whether the presence of TGF-β1 in these protein preparations represents a specific or non-specific co-purification of TGF-β1 with fibrillin-1 fragments. Control purifications using conditioned medium from non-transfected 293 cells yielded similar amounts of TGF-β1 after IMAC. IMAC of purified TGF-β1 and the latency associated peptide showed that these proteins bound to the immobilized nickel ions. These data clearly demonstrate that TGF-β1 was co-purified by specific interactions with nickel, and not by specific interactions with fibrillin-1 fragments. Among various chromatographic methods tested for their ability to eliminate TGF-β1 from fibrillin-1 preparations, gel filtration under high salt conditions was highly effective. As various recombinant extracellular proteins purified in this fashion are frequently used for experiments that can be influenced by the presence of TGF-β1, these findings have far-reaching implications for the required chromatographic schemes and quality controls. PMID:23119075

  15. Affinity chromatography of alpha/sub 2/-adrenergic receptors (. cap alpha. /sub 2/AR) from pig cerebral cortex

    SciTech Connect

    Repaske, M.G.; Limbird, L.E.

    1986-03-01

    A high capacity, ..cap alpha../sub 2/AR-selective affinity resin (YOH. ag) has been prepared by coupling yohimbinic acid to diaminodipropylamine agarose with 1,3 dicyclohexylcarbodiimide. Unreacted amino groups on the agarose matrix are blocked subsequently by acetylation. One volume of YOH. ag adsorbs 75% of the ..cap alpha../sub 2/AR from 50 volumes of digitonin-solubilized preparation containing 0.2 pmol ..cap alpha../sub 2/AR/mg protein. Digitonin-solubilized preparations are derived from cholate extracts of porcine cerebral cortex containing approx. 0.075 pmol ..cap alpha../sub 2/AR/mg protein. Adsorption of ..cap alpha../sub 2/AR to YOH. ag is selective and thus is blocked by the ..cap alpha..-adrenergic antagonist phentolamine. Adsorbed ..cap alpha../sub 2/AR are eluted with 10 ..mu..M phentolamine (20% yield) after removal of non-related proteins with NaCl gradients. Following hydroxylapatite chromatography to concentrate ..cap alpha..''AR and to remove phentolamine, the ..cap alpha..AR is present at 200-400 pmol/mg protein, assayed using sub-saturating concentrations of (/sup 3/H)-yohimbine. (It is estimated that the specific activity of a homogeneous ..cap alpha../sub 2/AR preparation would be 12,000-16,000 pmol/mg protein.) The availability of large quantities of cortical ..cap alpha../sub 2/AR and a resin easily prepared from commercially-supplied reagents suggests that purification of quantities of ..cap alpha../sub 2/AR sufficient for subsequent biochemical studies is feasible.

  16. Using Affinity Chromatography to Investigate Novel Protein–Protein Interactions in an Undergraduate Cell and Molecular Biology Lab Course

    PubMed Central

    2009-01-01

    Inquiry-driven lab exercises require students to think carefully about a question, carry out an investigation of that question, and critically analyze the results of their investigation. Here, we describe the implementation and assessment of an inquiry-based laboratory exercise in which students obtain and analyze novel data that contribute to our understanding of macromolecular trafficking between the nucleus and cytoplasm in eukaryotic cells. Although many of the proteins involved in nucleocytoplasmic transport are known, the physical interactions between some of these polypeptides remain uncharacterized. In this cell and molecular biology lab exercise, students investigate novel protein–protein interactions between factors involved in nuclear RNA export. Using recombinant protein expression, protein extraction, affinity chromatography, SDS-polyacrylamide gel electrophoresis, and Western blotting, undergraduates in a sophomore-level lab course identified a previously unreported association between the soluble mRNA transport factor Mex67 and the C-terminal region of the yeast nuclear pore complex protein Nup1. This exercise immersed students in the process of investigative science, from proposing and performing experiments through analyzing data and reporting outcomes. On completion of this investigative lab sequence, students reported enhanced understanding of the scientific process, increased proficiency with cellular and molecular methods and content, greater understanding of data analysis and the importance of appropriate controls, an enhanced ability to communicate science effectively, and an increased enthusiasm for scientific research and for the lab component of the course. The modular nature of this exercise and its focus on asking novel questions about protein–protein interactions make it easily transferable to undergraduate lab courses performed in a wide variety of contexts. PMID:19723816

  17. Engineering foot-and-mouth disease virus serotype O IND R2/1975 for one-step purification by immobilized metal affinity chromatography.

    PubMed

    Biswal, Jitendra K; Bisht, Punam; Subramaniam, Saravanan; Ranjan, Rajeev; Sharma, Gaurav K; Pattnaik, Bramhadev

    2015-09-01

    Immobilized metal affinity chromatography (IMAC) allows for the efficient protein purification via metal affinity tag such as hexa-histidine (His6) sequence. To develop a new chromatography strategy for the purification and concentration of foot-and-mouth disease virus (FMDV) particles, we inserted the His6-tag at the earlier reported site in the VP1 G-H loop of the FMD virus serotype O vaccine strain IND R2/1975. Display of the His6-tag on the capsid surface, endowed the virus with an increased affinity for immobilized nickel ions. We demonstrated that the His6-tagged FMDV could be produced to high titre and purified from the infected BHK-21 cell lysates by IMAC efficiently. Further, a 1150-fold reduction in protein contaminant level and an 8400-fold reduction in DNA contaminant level were achieved in the IMAC purification of His6-tagged FMDV. Through various functional assays it has been found that the tagged virus retains its functionality and infectivity similar to the non-tagged virus. The affinity purification of the His6-tagged FMDV may offer a feasible, alternative approach to the current methods of FMDV antigen purification, concentration and process scalability. PMID:26123433

  18. Chromatography

    MedlinePlus

    Chromatography is a way of separating two or more chemical compounds. Chemical compounds are chemicals that are ... of chemical compound. There are different kinds of chromatography. These include gas, high pressure liquid, or ion ...

  19. Separation of the Components of a Commercial Analgesic Tablet: A Two-Week Sequence Comparing Purification by Two-Base Extraction and Column Chromatography

    ERIC Educational Resources Information Center

    Revell, Kevin D.

    2011-01-01

    A new laboratory experiment is described in which students compare two benchtop separation methods to isolate the three active components of the commercial analgesic Excedrin. In the two-week sequence, aspirin, acetaminophen, and caffeine are separated using either a two-base liquid-liquid extraction or silica column chromatography. Students then…

  20. Determination of citrus limonoid glucosides by high performance liquid chromatography coupled to post-column reaction with Ehrlich’s Reagent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method for the identification and quantification of citrus limonoid glucosides in juices based upon high performance liquid chromatography (HPLC) separation coupled to post-column reaction with Ehrlichs’s reagent has been developed. This method utilizes a phenyl stationary phase and an isocratic ...

  1. The Trace Analysis of DEET in Water using an On-line Preconcentration Column and Liquid Chromatography with UV Photodiode Array Detection

    EPA Science Inventory

    A method for the detection of trace levels of N,N-diethyl-m-toluamide (DEET) in water is discussed. The method utilizes an on-line preconcentration column in series with high performance liquid chromatography (HPLC) and UV photodiode array detection. DEET, a common insect repel...

  2. Simultaneous high-throughput determination of interaction kinetics for drugs and cyclodextrins by high performance affinity chromatography with mass spectrometry detection.

    PubMed

    Wang, Caifen; Wang, Xiaobo; Xu, Xiaonan; Liu, Botao; Xu, Xu; Sun, Lixin; Li, Haiyan; Zhang, Jiwen

    2016-02-25

    The individual determination of the apparent dissociation rate constant (kd,app) using high performance affinity chromatography (HPAC) is a tedious process requiring numerous separate tests and massive data fitting, unable to provide the apparent association rate constant (ka) and equilibrium binding constant (Ka). In this study, a HPAC with mass spectrometry detection (HPAC-MS/MS) was employed to determine the drug-cyclodextrin (CD) interaction kinetics with low sample loading quantity (<10 ng per injection for single compound) and high-throughput yield as twenty drugs determined in one injection. The kd,app measured by HPAC-MS/MS approach were 0.89 ± 0.07, 4.34 ± 0.01, 1.48 ± 0.01 and 7.77 ± 0.04 s(-1) for ketoprofen, trimethoprim, indapamide and acetaminophen, with kd,app for acetaminophen consistent with that from the HPAC method with UV detector in our previous studies. For twenty drugs with diverse structures and chemical properties, good correlationship was found between kd,app measured by single compound analysis method and high-throughput HPAC-MS/MS approach, with the correlation coefficient of 0.987 and the significance F less than 0.001. Comprehensive quantification of ka,app, kd,app and Ka values was further performed based on the measurement of kd,app by peak profiling method and Ka by the peak fitting method. And the investigation of the drug-CD interaction kinetics under different conditions indicated that the column temperature and mobile phase composition significantly affected the determination of ka,app, kd,app and Ka while also dependent on the acidity and basicity of drugs. In summary, the high-throughput HPAC-MS/MS approach has been demonstrated high efficiency in determination of the drug-CD primary interaction kinetic parameter, especially, kd,app, being proven as a novel tool in screening the right CD for the solubilization of the right drug. PMID:26851087

  3. Application of gas-liquid chromatography to the analysis of essential oils. Part XVII. Fingerprinting of essential oils by temperature-programmed gas-liquid chromatography using capillary columns with non-polar stationary phases. Analytical methods committee.

    PubMed

    1997-10-01

    Problems in obtaining reproducible results when 'fingerprinting' essential oils by temperature-programmed gas-liquid chromatography have been reported on in Parts VII and VIII of this series. Those reports were concerned with the general problems and the use of packed columns. This report is concerned with the use of capillary columns and non-polar stationary phases. A collaborative study using capillary columns with non-polar stationary phases has resulted in a method which specifies the 'g-pack value' of a column and gives reproducible relative retention indices for the test compounds limonene, acetophenone, linalol, naphthalene, linalyl acetate and cinnamyl alcohol. The method has been applied successfully to the examination of oil of rosemary. A recommended method is given for the reproducible temperature-programmed gas-liquid chromatographic fingerprinting of essential oils using capillary columns with non-polar stationary phases. PMID:9463975

  4. Affinity Monolith-Integrated Microchips for Protein Purification and Concentration.

    PubMed

    Gao, Changlu; Sun, Xiuhua; Wang, Huaixin; Qiao, Wei; Hu, Bo

    2016-01-01

    Affinity chromatography is a valuable method to purify and concentrate minute amount of proteins. Monoliths with epoxy groups for affinity immobilization were prepared by direct in-situ photopolymerization of glycidyl methacrylate and ethylene glycol dimethacrylate in porogenic solvents consisting of 1-dodecanol and cyclohexanol. By integrating affinity monoliths onto a microfluidic system, targeted biomolecules can be captured and retained on affinity column, while other biomolecules having no specific interactions toward the immobilized ligands flow through the microchannel. Therefore, proteins which remain on the affinity column are purified and concentrated, and then eluted by appropriate solutions and finally, separated by microchip capillary electrophoresis. This integrated microfluidic device has been applied to the purification and separation of specific proteins (FITC-labeled human serum albumin and IgG) in a mixture. PMID:27473483

  5. Application of ultra-performance columns in high-performance liquid chromatography for determination of albendazole and its metabolites in turkeys.

    PubMed

    Grabowski, Tomasz; Jaroszewski, Jerzy Jan; Swierczewska, Anna; Sawicka, Renata; Maślanka, Tomasz; Markiewicz, Włodzimierz; Ziółkowski, Hubert

    2011-10-01

    Methods for determination of albendazole (ALB), albendazole sulfoxide (SOX) and albendazole sulfone (SON) in turkey blood plasma, using high-performance liquid chromatography (HPLC) with fluorescence detection, were developed. Moreover, comparison of HPLC columns with ultra-performance liquid chromatography (UPLC) columns was performed. Albendazol was administered orally in 5-week-old birds (n = 18) at a dose of 25 mg/kg b.w. Accuracy and precision of the developed method were satisfactory and stability studies showed acceptable variation (below 15%) in ALB, SOX and SON concentrations when the samples were stored at -75°C for 15 days. UPLC(®) columns gave higher peaks from typical HPLC columns retaining high quality of analysis. Pharmacokinetic analysis indicated quick elimination of ALB from turkey blood plasma. The mean residence time of SON was at least two times longer than that of SOX and four times longer than that of ALB. The elimination half-lives for ALB, SOX and SON were 0.7 ± 0.27, 5.37 ± 6.03, 9.17 ± 5.12 h, respectively. The obtained results indicate that the described method allows for precise determination of albendazole and its metabolites in turkey plasma. Moreover, using UPLC columns in HPLC apparatus results in higher sensitivity as compared with the classical HPLC columns. PMID:21294142

  6. Scale-up protein separation on stainless steel wide bore toroidal columns in the type-J counter-current chromatography.

    PubMed

    Guan, Yue Hugh; Hewitson, Peter; van den Heuvel, Remco N A M; Zhao, Yan; Siebers, Rick P G; Zhuang, Ying-Ping; Sutherland, Ian

    2015-12-11

    Manufacturing high-value added biotech biopharmaceutical products (e.g. therapeutic proteins) requires quick-to-develop, GMP-compliant, easy-to-scale and cost effective preparatory chromatography technologies. In this work, we describe the construction and testing of a set of 5-mm inner diameter stainless steel toroidal columns for use on commercially available preparatory scale synchronous J-type counter-current chromatography (CCC) machinery. We used a 20.2m long column with an aqueous two-phase system containing 14% (w/w) PEG1000 and 14% (w/w) potassium phosphate at pH 7, and tested a sample loading of 5% column volume and a mobile phase flow rate of 20ml/min. We then satisfactorily demonstrated the potential for a weekly protein separation and preparation throughput of ca. 11g based on a normal weekly routine for separating a pair of model proteins by making five stacked injections on a single portion of stationary phase with no stripping. Compared to our previous 1.6mm bore PTFE toroidal column, the present columns enlarged the nominal column processing throughput by nearly 10. For an ideal model protein injection modality, we observed a scaling up factor of at least 21. The 2 scales of protein separation and purification steps were realized on the same commercial CCC device. PMID:25818556

  7. Integrated system for temperature-controlled fast protein liquid chromatography. II. Optimized adsorbents and 'single column continuous operation'.

    PubMed

    Cao, Ping; Müller, Tobias K H; Ketterer, Benedikt; Ewert, Stephanie; Theodosiou, Eirini; Thomas, Owen R T; Franzreb, Matthias

    2015-07-17

    Continued advance of a new temperature-controlled chromatography system, comprising a column filled with thermoresponsive stationary phase and a travelling cooling zone reactor (TCZR), is described. Nine copolymer grafted thermoresponsive cation exchangers (thermoCEX) with different balances of thermoresponsive (N-isopropylacrylamide), hydrophobic (N-tert-butylacrylamide) and negatively charged (acrylic acid) units were fashioned from three cross-linked agarose media differing in particle size and pore dimensions. Marked differences in grafted copolymer composition on finished supports were sourced to base matrix hydrophobicity. In batch binding tests with lactoferrin, maximum binding capacity (qmax) increased strongly as a function of charge introduced, but became increasingly independent of temperature, as the ability of the tethered copolymer networks to switch between extended and collapsed states was lost. ThermoCEX formed from Sepharose CL-6B (A2), Superose 6 Prep Grade (B2) and Superose 12 Prep Grade (C1) under identical conditions displayed the best combination of thermoresponsiveness (qmax,50°C/qmax,10°C ratios of 3.3, 2.2 and 2.8 for supports 'A2', 'B2' and 'C1' respectively) and lactoferrin binding capacity (qmax,50°C∼56, 29 and 45mg/g for supports 'A2', 'B2' and 'C1' respectively), and were selected for TCZR chromatography. With the cooling zone in its parked position, thermoCEX filled columns were saturated with lactoferrin at a binding temperature of 35°C, washed with equilibration buffer, before initiating the first of 8 or 12 consecutive movements of the cooling zone along the column at 0.1mm/s. A reduction in particle diameter (A2→B2) enhanced lactoferrin desorption, while one in pore diameter (B2→C1) had the opposite effect. In subsequent TCZR experiments conducted with thermoCEX 'B2' columns continuously fed with lactoferrin or 'lactoferrin+bovine serum albumin' whilst simultaneously moving the cooling zone, lactoferrin was

  8. Isolation of a new ssDNA aptamer against staphylococcal enterotoxin B based on CNBr-activated sepharose-4B affinity chromatography.

    PubMed

    Hedayati Ch, Mojtaba; Amani, Jafar; Sedighian, Hamid; Amin, Mohsen; Salimian, Jafar; Halabian, Raheleh; Imani Fooladi, Abbas Ali

    2016-09-01

    Staphylococcus aureus are potent human pathogens possessing arsenal of virulence factors. Staphylococcal food poisoning (SFP) and respiratory infections mediated by staphylococcal enterotoxin B (SEB) are common clinical manifestations. Many diagnostic techniques are based on serological detection and quantification of SEB in different food and clinical samples. Aptamers are known as new therapeutic and detection tools which are available in different ssDNA, dsDNA and protein structures. In this study, we used a new set of ssDNA aptamers against SEB. The methods used included preparation of a dsDNA library using standard SEB protein as the target analyte, affinity chromatography matrix in microfuge tubes, SELEX procedures to isolate specific ssDNA-aptamer as an affinity ligand, aptamer purification using ethanol precipitation method, affinity binding assay using ELISA, aptamer cloning and specificity test. Among 12 readable sequences, three of them were selected as the most appropriate aptamer because of their affinity and specificity to SEB. This study presents a new set of ssDNA aptamer with favorable selectivity to SEB through 12 rounds of SELEX. Selected aptamers were used to detect SEB in infected serum samples. Results showed that SEB c1 aptamer (2 µg SEB/100 nM aptamer) had favorable specificity to SEB (kd  = 2.3 × 10(-11) ). In conclusion, aptamers can be considered as useful tools for detecting and evaluating SEB. The results showed that affinity chromatography was an affordable assay with acceptable accuracy to isolate sensitive and selective novel aptamers. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27091327

  9. [Determination of free formaldehyde in cosmetics by pre-column derivatization, extraction inhibition and high performance liquid chromatography].

    PubMed

    Lü, Chunhua; Huang, Chaoqun; Chen, Mei; Xie, Wen; Chen, Xiaomei

    2012-12-01

    Pre-column derivatization and inhibition by solvent extraction were applied to determine free formaldehyde in cosmetics by high performance liquid chromatography (HPLC). Due to the rapid decomposition of formaldehyde donors in the derivatization, it is hard to detect the amount of the free formaldehyde in cosmetics. The formaldehyde directly reacted with 2,4-dinitrophenylhydrazine in acetonitrile-phosphate buffer (pH 2) (1:1, v/v) solution for 2 min, then dichloromethane extraction was used to induce the decomposition of formaldehyde donors. The extract was diluted with acetonitrile and then determined by HPLC. The formaldehyde derivative was separated on an Agilent C18 column (250 mm x 4.6 mm, 5 microm) at 30 degrees C with acetonitrile-water (60:40, v/v) as mobile phase at a flow rate of 1.0 mL/min, and detected at the wavelength of 355 nm. The recoveries were from 81% to 106% at the spiked levels of 50, 100, 500, 1 000 microg/g of formaldehyde in shampoo, milk, cream, hand cleaner, toothpaste, nail polish, powder separately, and the relative standard deviations (n = 6) were less than 5.0%. The limit of quantification of the formaldehyde in cosmetics was 50 microg/g. The method has been applied to the determination of free formaldehyde in real samples and the results showed that the release by formaldehyde donors was inhibited. The method has the advantages of simple operation, good accuracy and meets the requirement of determination of free formaldehyde in cosmetics. PMID:23593888

  10. FYWHCLDE-based affinity chromatography of IgG: effect of ligand density and purifications of human IgG and monoclonal antibody.

    PubMed

    Zhao, Wei-Wei; Shi, Qing-Hong; Sun, Yan

    2014-08-15

    This work reports the development of an octapeptide-based affinity adsorbent for the purification of human IgG (hIgG) and monoclonal antibody (mAb). The octapeptide was FYWHCLDE selected earlier by the biomimetic design of affinity peptide ligands for hIgG. The ligand was coupled to Sepharose gel at four densities from 10.4 to 31.0μmol/mL, and the effect of peptide density on the adsorption of hIgG and bovine serum albumin (BSA) was first investigated. The binding capacity of hIgG increased from 104.2 to 176.4mg/mL within the ligand density range, and the binding affinity (dissociation constant) kept at 2.4-3.7μM. Batch adsorption revealed that the selectivity of FYWHCLDE-Sepharose for IgG was 30-40 times over BSA. The effective pore diffusivity of IgG decreased somewhat with increasing ligand density, but the dynamic binding capacity at 10% breakthrough, measured by using 10-fold diluted human serum as feedstock, doubled with increasing ligand density from 10.4 to 31.0μmol/mL due to the remarkable increase of static binding capacity. By using the affinity column with a ligand density of 23.9μmol/mL, hIgG and humanized mAb purifications from human serum and cell culture supernatant, respectively, were achieved at high purities and recovery yields. Finally, the robustness of the peptide gel was demonstrated by recycled use of the affinity column in 20 breakthrough cycles. PMID:24947889

  11. Quantitation of triacylglycerols in edible oils by off-line comprehensive two-dimensional liquid chromatography-atmospheric pressure chemical ionization mass spectrometry using a single column.

    PubMed

    Wei, Fang; Hu, Na; Lv, Xin; Dong, Xu-Yan; Chen, Hong

    2015-07-24

    In this investigation, off-line comprehensive two-dimensional liquid chromatography-atmospheric pressure chemical ionization mass spectrometry using a single column has been applied for the identification and quantification of triacylglycerols in edible oils. A novel mixed-mode phenyl-hexyl chromatographic column was employed in this off-line two-dimensional separation system. The phenyl-hexyl column combined the features of traditional C18 and silver-ion columns, which could provide hydrophobic interactions with triacylglycerols under acetonitrile conditions and can offer π-π interactions with triacylglycerols under methanol conditions. When compared with traditional off-line comprehensive two-dimensional liquid chromatography employing two different chromatographic columns (C18 and silver-ion column) and using elution solvents comprised of two phases (reversed-phase/normal-phase) for triacylglycerols separation, the novel off-line comprehensive two-dimensional liquid chromatography using a single column can be achieved by simply altering the mobile phase between acetonitrile and methanol, which exhibited a much higher selectivity for the separation of triacylglycerols with great efficiency and rapid speed. In addition, an approach based on the use of response factor with atmospheric pressure chemical ionization mass spectrometry has been developed for triacylglycerols quantification. Due to the differences between saturated and unsaturated acyl chains, the use of response factors significantly improves the quantitation of triacylglycerols. This two-dimensional liquid chromatography-mass spectrometry system was successfully applied for the profiling of triacylglycerols in soybean oils, peanut oils and lord oils. A total of 68 triacylglycerols including 40 triacylglycerols in soybean oils, 50 triacylglycerols in peanut oils and 44 triacylglycerols in lord oils have been identified and quantified. The liquid chromatography-mass spectrometry data were analyzed

  12. Gas Chromatography.

    ERIC Educational Resources Information Center

    Karasek, Francis W.; And Others

    1984-01-01

    This review covers fundamental developments in gas chromatography during 1982 and 1983. Literature is considered under these headings: columns; liguid phases; solid supports; sorption processes and solvents; open tubular column gas chromatography; instrumentation; high-resolution columns and applications; other techniques; qualitative and…

  13. Effect of pressure pulses at the interface valve on the stability of second dimension columns in online comprehensive two-dimensional liquid chromatography.

    PubMed

    Talus, Eric S; Witt, Klaus E; Stoll, Dwight R

    2015-01-23

    Users of online comprehensive two-dimensional liquid chromatography (LCxLC) frequently acknowledge that the mechanical instability of HPLC columns installed in these systems, particularly in the second dimension, is a significant impediment to its use. Such instability is not surprising given the strenuous operating environment to which these columns are subjected, including the large number (thousands per day) of fast and large pressure pulses resulting from interface valve switches (on the timescale of tens of milliseconds) associated with very fast second dimension separations. There appear to be no published reports of systematic studies of the relationship between second dimension column lifetime and any of these variables. In this study we focused on the relationship between the lifetimes of commercially available columns and the pressure pulses observed at the inlet of the second dimension column that occur during the switching of the valve that interfaces the two dimensions of a LCxLC system. We find that the magnitude of the pressure drop at the inlet of the second dimension column during the valve switch, which may vary between 10 and 95% of the column inlet pressure, is dependent on valve switching speed and design, and has a dramatic impact on column lifetime. In the worst case, columns fail within the first few hours of use in an LCxLC system. In the best case, using a valve that exhibits much smaller pressure pulses, the same columns exhibit much improved lifetimes and have been used continuously under LCxLC conditions for several days with no degradation in performance. This result represents a first step in understanding the factors that affect second dimension column lifetime, and will significantly improve the usability of the LCxLC technique in general. PMID:25553909

  14. Implementation of high slurry concentration and sonication to pack high-efficiency, meter-long capillary ultrahigh pressure liquid chromatography columns.

    PubMed

    Godinho, Justin M; Reising, Arved E; Tallarek, Ulrich; Jorgenson, James W

    2016-09-01

    Slurry packing capillary columns for ultrahigh pressure liquid chromatography is complicated by many interdependent experimental variables. Previous results have suggested that combination of high slurry concentration and sonication during packing would create homogeneous bed microstructures and yield highly efficient capillary columns. Herein, the effect of sonication while packing very high slurry concentrations is presented. A series of six, 1m×75μm internal diameter columns were packed with 200mg/mL slurries of 2.02μm bridged-ethyl hybrid silica particles. Three of the columns underwent sonication during packing and yielded highly efficient separations with reduced plate heights as low as 1.05. PMID:27499108

  15. Tracing novel hemostatic compounds from heating products of total flavonoids in Flos Sophorae by spectrum-effect relationships and column chromatography.

    PubMed

    Chen, Yeqing; Yu, Hongli; Wu, Hao; Pan, Yaozong; Wang, Kuilong; Liu, Liping; Jin, Yangping; Zhang, Chenchao

    2015-05-01

    Flos Sophorae and its processed product have been clinically used to treat hemorrhage. In this study, the total ion chromatographic fingerprints of the heating products of total flavonoids in Flos Sophorae were established by high-performance liquid chromatography with tandem mass spectrometry and the hemostatic activities were studied by hemostatic screening tests in vivo. The spectrum-effect relationships between fingerprints and hemostatic activities were investigated using canonical correlation analysis to trace the peaks responsible for the hemostatic effects. The predicted active peaks in fingerprints were isolated by column chromatography and their structures were identified by NMR spectroscopy and mass spectrometry. The hemostatic activities of them were verified by platelet aggregation and procoagulation assays in vitro. Canonical correlation analysis results showed that peak 8 and peak 11 were correlated most closely, thus probably being the main hemostatic compounds. Through column chromatography separation, peak 8 (compound I) and peak 11 (compound II) were obtained with purities of 95.61 and 93.38%, respectively, and were discovered new hemostatic compounds named as huaicarbon A (I) and huaicarbon B (II), respectively. This study provides a universal model to trace the active compounds of other herbs which have bioactivity enhancement after processing by spectrum-effect relationships and column chromatography. PMID:25764522

  16. Separation and purification of phosphatidylcholine and phosphatidylethanolamine from soybean degummed oil residues by using solvent extraction and column chromatography.

    PubMed

    Zhang, Weinong; He, Haibo; Feng, Yuqi; Da, Shilu

    2003-12-25

    Natural phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were separated and purified from soybean degummed oil residues in this work. Crude PC and PE were first separated from degummed oil residues by extraction with 95% ethanol, and then the crude PC and PE were used as raw materials to prepare high purity PC and PE by using column chromatography of silica gel (100-200 mesh) with different eluents and elution modes. The high purity PC (content > 90%) was obtained from the crude PC by using isocratic elution with methanol as eluent. Compared with the methods reported by using isocratic elution with mixed solvents as eluent or gradient elution, the procedure proposed exhibits low cost and industry potentialities because of some advantages, such as operation simplicity, cheap equipment and solvent to be recovered easily. The purity of the PE product prepared from the crude PE was more than 75%. The gradient elution was preferable to isocratic elution for reducing the elution time and eluent consumption when to prepare PE from the crude PE. The effects of loading amount and the flow-rate on separation efficiency were also investigated. For obtaining high separation efficiency, the loading amount should be less than 2.0 g crude PC or PE/100 g silica gel, and the flow-rate should be controlled under 4 ml/min for crude PC and 3 ml/min for crude PE, respectively. PMID:14643513

  17. Determination of sulfonamides by packed column supercritical fluid chromatography with atmospheric pressure chemical ionisation mass spectrometric detection.

    PubMed

    Dost, K; Jones, D C; Davidson, G

    2000-07-01

    Sulfonamide antibiotics are widely used to prevent bacterial infections in livestock, and residues are commonly found in milk and meat. Packed column supercritical fluid chromatography (pSFC) with detection using ultra violet (UV) and atmospheric pressure chemical ionisation (APCI) mass spectrometry (MS) provides a versatile method for the detection and quantification of six major sulfonamides. The APCI mass spectra for all the sulfonamides consisted of protonated molecules at low cone voltages. Increasing the cone voltage led to informative fragmentation patterns, which provided structural information for identification purposes. The pSFC-APCI-MS technique was shown to be linear (r2 > or = 0.999) over the concentration range 0.1-50 micrograms ml-1 using total ion current. The precision and the accuracy of the system and validation of sample preparation are acceptable, with RSD < 2% and relative error 8%. Selected ion monitoring gave detection limits as follows: sulfadiazine 41, sulfamethoxazole 45, sulfamerazine 47, sulfamethizole 59, sulfamethazine 181 and sulfadimethoxine 96 micrograms l-1, which are lower than the amounts permitted in milk products. The APCI pSFC-MS system was shown to have a high degree of reproducibility. The technique was then applied to determine the above sulfonamides in milk. The results obtained show that there are no matrix effects from the milk and that the detection limits remained as stated for the standard solutions. PMID:10984919

  18. Quantification of monosaccharides through multiple-reaction monitoring liquid chromatography/mass spectrometry using an aminopropyl column.

    PubMed

    Hammad, Loubna A; Derryberry, Dakota Z; Jmeian, Yazen R; Mechref, Yehia

    2010-06-15

    A simple, sensitive, and reproducible quantitative liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was designed for the simultaneous quantification of monosaccharides derived from glycoprotein and blood serum using a multiple-reaction monitoring (MRM) approach. Sialic acids and neutral monosaccharides were efficiently separated using an amino-bonded silica phase column. Neutral monosaccharide molecules were detected as their aldol acetate anion adducts [M + CH(3)CO(2)](-) using electrospray ionization in negative ion MRM mode, while sialic acids were detected as deprotonated ions [M-H](-). The new method did not require a reduction step, and exhibited very high sensitivity to carbohydrates with limits of detection of 1 pg for the sugars studied. The linearity of the described approach spanned over three orders of magnitude (pg to ng). The method was validated for monosaccharides originating from N-linked glycans attached to glycoproteins and glycoproteins found in human blood serum. The method effectively quantified monosaccharides originating from as little as 1 microg of glycoprotein and 5 microL of blood serum. The method was robust, reproducible, and highly sensitive. It did not require reduction, derivatization or postcolumn addition of reagents. PMID:20486252

  19. Investigation of the preparation and use of low-capacity anion exchangers in single-column ion chromatography

    SciTech Connect

    Barron, R.E.

    1984-01-01

    The preparation and uses of strong-base anion exchangers of low capacity are reviewed. A new adaptation of known reactions is presented for the reproducible preparation of Type I anion exchangers of low capacity and it is explored in some detail. The resins are based on the macroreticular copolymer known as XAD-1. It is shown that the same reaction scheme may be used on any porous styrene-divinylbenzene copolymer. Procedures are described for the preparation of twelve other strong-base resins with various structural differences in the quaternary ammonium functional group. These resins are then evaluated to determine the effect of chemical structure on selectivity for a number of common monovalent and divalent anions. It is shown that the structure of the quaternary ammonium ion has a definite effect on selectivity. It is also shown that surface modification can affect selectivity. The implications for single-column ion chromatography are discussed and some examples are given where a change in the chemical structure of the functional group is of practical value in the separation of anions. The factors influencing the choice of an eluent acid are outlined and it is shown that some acids are better than others on the basis on their lack of interaction with the copolymer matrix.

  20. A soil-column gas chromatography (SCGC) approach to explore the thermal desorption behavior of hydrocarbons from soils.

    PubMed

    Yu, Ying; Liu, Liang; Shao, Ziying; Ju, Tianyu; Sun, Bing; Benadda, Belkacem

    2016-01-01

    A soil-column gas chromatography approach was developed to simulate the mass transfer process of hydrocarbons between gas and soil during thermally enhanced soil vapor extraction (T-SVE). Four kinds of hydrocarbons-methylbenzene, n-hexane, n-decane, and n-tetradecane-were flowed by nitrogen gas. The retention factor k' and the tailing factor T f were calculated to reflect the desorption velocities of fast and slow desorption fractions, respectively. The results clearly indicated two different mechanisms on the thermal desorption behaviors of fast and slow desorption fractions. The desorption velocity of fast desorption fraction was an exponential function of the reciprocal of soil absolute temperature and inversely correlated with hydrocarbon's boiling point, whereas the desorption velocity of slow desorption fraction was an inverse proportional function of soil absolute temperature, and inversely proportional to the log K OW value of the hydrocarbons. The higher activation energy of adsorption was found on loamy soil with higher organic content. The increase of carrier gas flow rate led to a reduction in the apparent activation energy of adsorption of slow desorption fraction, and thus desorption efficiency was significantly enhanced. The obtained results are of practical interest for the design of high-efficiency T-SVE system and may be used to predict the remediation time. PMID:26335523