Sample records for affinity constant ka

  1. Measurement of the affinity and phosphorylation constants governing irreversible inhibition of cholinesterases by di-isopropyl phosphorofluoridate

    PubMed Central

    Main, A. R.; Iverson, F.

    1966-01-01

    1. A procedure is described for determining the affinity constant Ka and the phosphorylation constant kp for the inhibition by di-isopropyl phosphorofluoridate of erythrocyte acetylcholinesterase and serum cholinesterase. The procedure depends on the use of a specially designed reaction vessel with which incubation times as short as 1·2sec. could be obtained at any convenient temperature. 2. The Ka of acetylcholinesterase decreased from 1·58 (±0·22)×10−3m at 5° to 1·17 (±0·10)×10−3m at 25° and the associated change in enthalpy was 2980 cal. 3. The kp of acetylcholinesterase increased from 11·9 (±0·7)min.−1 at 5° to 40·7 (±1·4)min.−1 at 25°, indicating an activational energy of 9600 cal. The change in entropy associated with Ka was 23·5 cal. degree−1 at 25°. 4. At 5°, the Ka and kp of serum cholinesterase were 9·95 (±1·10)×10−6m and 11·2 (±0·63)min.−1 respectively. 5. The 150-fold difference in the inhibitory power of di-isopropyl phosphorofluoridate for the two cholinesterases was attributed entirely to differences in affinity. PMID:5968549

  2. Revised Model of Calcium and Magnesium Binding to the Bacterial Cell Wall

    PubMed Central

    Thomas, Kieth J.; Rice, Charles V.

    2014-01-01

    Metals bind to the bacterial cell wall yet the binding mechanisms and affinity constants are not fully understood. The cell wall of gram positive bacteria is characterized by a thick layer of peptidoglycan and anionic teichoic acids anchored in the cytoplasmic membrane (lipoteichoic acid) or covalently bound to the cell wall (wall teichoic acid). The polyphosphate groups of teichoic acid provide one-half of the metal binding sites for calcium and magnesium, contradicting previous reports that calcium binding is 100% dependent on teichoic acid. The remaining binding sites are formed with the carboxyl units of peptidoglycan. In this work we report equilibrium association constants and total metal binding capacities for the interaction of calcium and magnesium ions with the bacterial cell wall. Metal binding is much stronger and previously reported. Curvature of Scatchard plots from the binding data and the resulting two regions of binding affinity suggest the presence of negative cooperative binding, meaning that the binding affinity decreases as more ions become bound to the sample. For Ca2+, Region I has a KA = (1.0 ± 0.2) × 106 M−1 and Region II has a KA = (0.075 ± 0.058) × 106 M−1. For Mg2+, KA1 = (1.5 ± 0.1) × 106 and KA2 = (0.17 ± 0.10) × 106. A binding capacity (η) is reported for both regions. However, since binding is still occurring in Region II, the total binding capacity is denoted by η2, which are 0.70 ± 0.04 µmol/mg and 0.67 ± 0.03 µmol/mg for Ca2+ and Mg2+ respectively. These data contradict the current paradigm of there being a single metal affinity value that is constant over a range of concentrations. We also find that measurement of equilibrium binding constants is highly sample dependent, suggesting a role for diffusion of metals through heterogeneous cell wall fragments. As a result, we are able to reconcile many contradictory theories that describe binding affinity and the binding mode of divalent metal cations. PMID:25315444

  3. Residues in the H+ Translocation Site Define the pKa for Sugar Binding to LacY†

    PubMed Central

    Smirnova, Irina; Kasho, Vladimir; Sugihara, Junichi; Choe, Jun-Yong; Kaback, H. Ronald

    2009-01-01

    A remarkably high pKa of approximately 10.5 has been determined for sugar-binding affinity to the lactose permease of Escherichia coli (LacY), indicating that, under physiological conditions, substrate binds to fully protonated LacY. We have now systematically tested site-directed replacements for the residues involved in sugar binding, as well as H+ translocation and coupling, in order to determine which residues may be responsible for this alkaline pKa. Mutations in the sugar-binding site (Glu126, Trp151, Glu269) markedly decrease affinity for sugar but do not alter the pKa for binding. In contrast, replacements for residues involved in H+ translocation (Arg302, Tyr236, His322, Asp240, Glu325, Lys319) exhibit pKa values for sugar binding that are either shifted toward neutral pH or independent of pH. Values for the apparent dissociation constant for sugar binding (Kdapp) increase greatly for all mutants except neutral replacements for Glu325 or Lys319, which are characterized by remarkably high affinity sugar binding (i.e., low Kdapp) from pH 5.5 to pH 11. The pH dependence of the on- and off-rate constants for sugar binding measured directly by stopped-flow fluorometry implicates koff as a major factor for the affinity change at alkaline pH and confirms the effects of pH on Kdapp inferred from steady-state fluorometry. These results indicate that the high pKa for sugar binding by wild-type LacY cannot be ascribed to any single amino acid residue but appears to reside within a complex of residues involved in H+ translocation. There is structural evidence for water bound in this complex, and the water could be the site of protonation responsible for the pH dependence of sugar binding. PMID:19689129

  4. Measurement of radon and xenon binding to a cryptophane molecular host

    PubMed Central

    Jacobson, David R.; Khan, Najat S.; Collé, Ronald; Fitzgerald, Ryan; Laureano-Pérez, Lizbeth; Bai, Yubin; Dmochowski, Ivan J.

    2011-01-01

    Xenon and radon have many similar properties, a difference being that all 35 isotopes of radon (195Rn–229Rn) are radioactive. Radon is a pervasive indoor air pollutant believed to cause significant incidence of lung cancer in many geographic regions, yet radon affinity for a discrete molecular species has never been determined. By comparison, the chemistry of xenon has been widely studied and applied in science and technology. Here, both noble gases were found to bind with exceptional affinity to tris-(triazole ethylamine) cryptophane, a previously unsynthesized water-soluble organic host molecule. The cryptophane–xenon association constant, Ka = 42,000 ± 2,000 M-1 at 293 K, was determined by isothermal titration calorimetry. This value represents the highest measured xenon affinity for a host molecule. The partitioning of radon between air and aqueous cryptophane solutions of varying concentration was determined radiometrically to give the cryptophane–radon association constant Ka = 49,000 ± 12,000 M-1 at 293 K. PMID:21690357

  5. Affinity study on bovine serum albumin's peptides to amphiphilic gold nanoparticles: A test of epitopes and non-epitopes

    NASA Astrophysics Data System (ADS)

    Yuan, Ming; Li, Wanrong; Yang, Mingming; Huang, Xiufeng; Bai, Zhijun; Liu, Yushuang; Cai, Weijun; Wang, Yuqin; Zhang, Feng

    2017-09-01

    It is an inevitable event that nanoparticles (NPs) will encounter proteins/peptides in nano-medicine, so it has been significant to know their interaction mechanism before in vivo applications. Previously, a 105-amino-acid sequence had been reported as the binding site between bovine serum albumin (BSA) and amphiphilic polymer coated gold nanoparticles (AP-AuNPs) along with a mortise-tenon joint hypothesis. This article tested the affinity difference between two epitope peptide sequences such as: LGEYGFQNALIVR (S1), DAFLGSFLYEYSR (S2) and one non-epitope peptide sequence as: FDEHVKLVNELTEF (S3). With the photoluminescent amino acid residues, the fluorescence quenching method based on the nanometal surface energy transfer (NSET) principle was able to study the thermodynamics of the current binding system. The binding constants (Ka) were determined and followed the order as: Ka-S1 > Ka-S2 >> Ka-S3. Moreover, Hill constants indicated that cooperativity only presented in the interactions of AP-AuNP with either S1 or S2, but not for S3. Moreover, gel electrophoresis, surface plasmon resonance, atomic force microscopy and three dimensional fluorescence microscopy were all also used to comprehensively analyse the binding interaction mechanism. These results further provided useful information to better understand the mortise-tenon joint, which might find applications to nanofabrication and biomedicine.

  6. A spectroscopic study of phenylbutazone and aspirin bound to serum albumin in rheumatoid diseases

    NASA Astrophysics Data System (ADS)

    Maciążek-Jurczyk, M.; Sułkowska, A.; Bojko, B.; Równicka-Zubik, J.; Sułkowski, W. W.

    2011-11-01

    Interaction of phenylbutazone (PBZ) and aspirin (ASA), two drugs recommended in rheumatoid diseases (RDs), when binding to human (HSA) and bovine (BSA) serum albumins, has been studied by quenching of fluorescence and proton nuclear magnetic resonance ( 1HNMR) techniques. On the basis of spectrofluorescence measurements high affinity binding sites of PBZ and ASA on albumin as well as their interaction within the binding sites were described. A low affinity binding site has been studied by proton nuclear magnetic resonance spectroscopy. Using fluorescence spectroscopy the location of binding site in serum albumin (SA) for PBZ and ASA was found. Association constants Ka were determined for binary (i.e. PBZ-SA and ASA-SA) and ternary complexes (i.e. PBZ-[ASA]-SA and ASA-[PBZ]-SA). PBZ and ASA change the affinity of each other to the binding site in serum albumin (SA). The presence of ASA causes the increase of association constants KaI of PBZ-SA complex. Similarly, PBZ influences KaI of ASA-SA complex. This phenomenon shows that the strength of binding and the stability of the complexes increase in the presence of the second drug. The decrease of KaII values suggests that the competition between PBZ and ASA in binding to serum albumin in the second class of binding sites occurs. The analysis of 1HNMR spectral parameters i.e. changes of chemical shifts and relaxation times of the drug indicate that the presence of ASA weakens the interaction of PBZ with albumin. Similarly PBZ weakens the interaction of ASA with albumin. This conclusion points to the necessity of using a monitoring therapy owning to the possible increase of uncontrolled toxic effects.

  7. Thermodynamics of Nucleic Acid ‘Shape Readout’ by an Aminosugar†

    PubMed Central

    Xi, Hongjuan; Davis, Erik; Ranjan, Nihar; Xue, Liang; Hyde-Volpe, David; Arya, Dev P.

    2012-01-01

    Recognition of nucleic acids is important for our understanding of nucleic acid structure as well as for our understanding of nucleic acid-protein interactions. In addition to the direct readout mechanisms of nucleic acids such as H-bonding, shape recognition of nucleic acids is being increasingly recognized to play an equally important role in DNA recognition. Competition Dialysis, UV, Flourescent Intercalator displacement (FID), Computational Docking, and calorimetry studies were conducted to study the interaction of neomycin with a variety of nucleic acid conformations (shapes). At pH 5.5, these results suggest: (1) Neomycin binds three RNA structures (16S A site rRNA, poly(rA)•poly(rA), and poly(rA)•poly(rU)) with high affinities, Ka~107M−1. (2) The binding of neomycin to A-form GC-rich oligomer d(A2G15C15T2)2 has comparable affinity to RNA structures. (3) The binding of neomycin to DNA•RNA hybrids shows a three-fold variance attributable to their structural differences (poly(dA) •poly(rU), Ka=9.4×106M−1 and poly(rA)•poly(dT), Ka=3.1×106M−1). (4) The interaction of neomycin with DNA triplex poly(dA)•2poly(dT) yields a binding affinity of Ka=2.4×105M−1. (5) Poly(dA-dT)2 showed the lowest association constant for all nucleic acids studied (Ka=<105). (6) Neomycin binds to G-quadruplexes with Ka~104-105M−1. (7) Computational studies show that the decrease in major groove width in the B to A transition correlates with increasing neomycin affinity. Neomycin’s affinity for various nucleic acid structures can be ranked as follows, RNAs and GC-rich d(A2G15C15T2)2 structures > poly(dA)•poly(rU) > poly(rA)•poly(dT) > T•A-T triplex , G-quadruplexes, B-form AT-rich or GC-rich DNA sequences. The results illustrate the first example of a small molecule based ‘shape readout’ of different nucleic acid conformations. PMID:21863895

  8. Increased thyrotropin binding in hyperfunctioning thyroid nodules.

    PubMed

    Müller-Gärtner, H W; Schneider, C; Bay, V; Tadt, A; Rehpenning, W; de Heer, K; Jessel, M

    1987-08-01

    The object of this study was to investigate TSH receptors in hyperfunctioning thyroid nodules (HFN). In HFN, obtained from seven patients, 125-I-TSH binding as determined by equilibrium binding analysis on particulate membrane preparations, was found to be significantly increased as compared with normal thyroid tissues (five patients; P less than 0.001). Scatchard analysis of TSH-binding revealed two kinds of binding sites for both normal thyroid tissue and HFN, and displayed significantly increased association constants of high- and low-affinity binding sites in HFN (Ka = 11.75 +/- 6.8 10(9) M-1, P less than 0.001 and Ka = 2.1 +/- 1.0 10(7) M-1, P less than 0.025; x +/- SEM) as compared with normal thyroid tissue (Ka = 0.25 +/- 0.06 10(9) M-1, Ka = 0.14 +/- 0.03 10(7) M-1; x +/- SEM). The capacity of the high-affinity binding sites in HFN was found to be decreased (1.8 +/- 1.1 pmol/mg protein, x +/- SEM) in comparison with normal thyroid tissue (4.26 +/- 1.27 pmol/mg protein; x +/- SEM). TSH-receptor autoradiography applied to cryostatic tissue sections confirmed increased TSH binding of the follicular epithelium in HFN. These data suggest that an increased affinity of TSH-receptor sites in HFN in iodine deficient areas may be an important event in thyroid autonomy.

  9. Determination of Acid Dissociation Constants (pKa) of Bicyclic Thiohydantoin-Pyrrolidine Compounds in 20% Ethanol-Water Hydroorganic Solvent

    PubMed Central

    Nural, Yahya; Döndaş, H. Ali; Sarı, Hayati; Atabey, Hasan; Belveren, Samet; Gemili, Müge

    2014-01-01

    The acid dissociation constants of potential bioactive fused ring thiohydantoin-pyrrolidine compounds were determined by potentiometric titration in 20% (v/v) ethanol-water mixed at 25 ± 0.1°C, at an ionic background of 0.1 mol/L of NaCl using the HYPERQUAD computer program. Proton affinities of potential donor atoms of the ligands were calculated by AM1 and PM3 semiempiric methods. We found, potentiometrically, three different acid dissociation constants for 1a–f. We suggest that these acid dissociation constants are related to the carboxyl, enol, and amino groups. PMID:24799905

  10. Experimental testing of Mackay's model for functional antagonism in the isolated costo-uterus of the rat.

    PubMed Central

    Henry, P. J.; Lulich, K. M.; Paterson, J. W.

    1985-01-01

    Several key predictions of a recently developed model for functional antagonism (Mackay, 1981) were experimentally tested using the rat isolated costo-uterine preparation. In the presence of the functional antagonist fenoterol (Fen), the functional constants (KAF) for carbachol and oxotremorine (Oxo) were respectively 9.9 and 3.4 fold greater than their corresponding affinity constants (KA). According to Mackay's model for functional antagonism, the higher KAF/KA ratio for carbachol indicates that this cholinoceptor agonist has a greater efficacy than Oxo. This was confirmed by using conventional pharmacological methods. As predicted from the model of functional antagonism, the plot of KAF/KA-1 against the fraction of cholinoceptors not irreversibly blocked by phenoxybenzamine (Pbz) was linear for both carbachol and Oxo and the lines of best fit crossed the axes at a point not significantly different from the origin. The value of 4.6 for the relative efficacy of carbachol to Oxo estimated from functional antagonism studies was comparable to the value of 5.6 calculated using the method of irreversible antagonism proposed by Furchgott (1966). PMID:3840396

  11. Effect of magnesium complexation by fluoroquinolones on their antibacterial properties.

    PubMed Central

    Lecomte, S; Baron, M H; Chenon, M T; Coupry, C; Moreau, N J

    1994-01-01

    By using infrared and 19F nuclear magnetic resonance spectroscopies, we localized the binding site and measured the affinity of magnesium for six fluoroquinolones. It was proven that magnesium is situated between the ketone and the carboxylate groups. We determined the binding constants for the 1:1 Mg(2+)-drug complex in solution. Sparfloxacin and pefloxacin, with affinity constants (Ka) of (10.1 +/- 0.6) x 10(2) M-1 and (21 +/- 1) x 10(2) M-1, respectively, were the least and the most bound, respectively. The trend of the affinities of the assayed fluoroquinolones for magnesium was correlated with their antimicrobial activities against four bacteria and with their accumulation by these bacteria. The reference strain, Escherichia coli KL16, and two resistant mutants, NalA (gyrase mutation) and NalB (uptake defect), plus Staphylococcus aureus 209P were used. It appeared that, in every case, an impairment of accumulation is responsible for the increase in the MICs observed upon the addition of magnesium. Images PMID:7695267

  12. Quartz crystal microbalance for the cardiac markers/antibodies binding kinetic measurements in the plasma samples

    NASA Astrophysics Data System (ADS)

    Agafonova, L. E.; Shumyantseva, V. V.; Archakov, A. I.

    2014-06-01

    The quartz crystal microbalance (QCM) was exploited for cardiac markers detection and kinetic studies of immunochemical reaction of cardiac troponin I (cTnI) and human heart fatty acid binding protein (H-FABP) with the corresponding monoclonal antibodies in undiluted plasma (serum) and standard solutions. The QCM technique allowed to dynamically monitor the kinetic differences in specific interactions and nonspecific sorption, without multiple labeling procedures and separation steps. The affinity binding process was characterized by the association (ka) and the dissociation (kd) kinetic constants and the equilibrium association (K) constant, all of which were obtained from experimental data.

  13. Influence of affinity on antibody determination in microtiter ELISA systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterman, J.H.; Voss, E.W. Jr.; Butler, J.E.

    1986-03-01

    Theoretically, all immunoassays are affinity (Ka) dependent when the product of the antibody (Ab) Ka and the free epitope concentration is less than 10. Thus, the degree of dependence on Ka depends on the concentration of available antigen in the system. The authors examined the binding of /sup 125/I-anti-fluorescein (a-FLU) monoclonal antibodies of different affinities to FLU-gelatin adsorbed on Immunlon 2 microtiter plates. Data obtained were in general agreement with our theoretical predictions; the percent of /sup 125/I-a-FLU which bound correlated with Ka, as did the shape of the titration curves. Measurement of 5 a-FLU monoclonals by the ELISA showedmore » that the determination of Ab concentrations depends on the FLU-gelatin concentration, epitope density, and on the relationship between the Kas of test samples and the reference standard Ab preparation. Thus the ELISA is Ka dependent and should not be used routinely to estimate the absolute amount to Ab in unknown samples. However, the Ka dependency of the ELISA might provide a convenient assay for the estimation of the relative functional Ka (rfKa) of antibody preparations.« less

  14. Calix[4]pyrrole as a Chloride Anion Receptor: Solvent and Counter-Cation Effects

    PubMed Central

    Sessler, Jonathan L.; Gross, Dustin E.; Cho, Won-Seob; Lynch, Vincent M.; Schmidtchen, Franz P.; Bates, Gareth W.; Light, Mark E.; Gale, Philip A.

    2008-01-01

    The interaction of calixpyrrole with several chloride salts has been studied in the solid state by X-ray crystallography as well as in solution by isothermal titration calorimetry (ITC) and 1H NMR spectroscopic titrations. The titration results in dimethylsulfoxide, acetonitrile, nitromethane, 1,2-dichloroethane and dichloromethane, carried out using various chloride salts, specifically tetraethylammonium (TEA), tetrapropylammonium (TPA), tetrabutylammonium (TBA), tetraethylphosphonium (TEP), tetrabutylphosphonium (TBP), and tetraphenylphosphonium (TPhP) showed no dependence on method of measurement. The resulting affinity constants (Ka's), on the other hand, were found to be highly dependent on the choice of solvent with Ka's ranging from 102−105 being recorded in the test solvents used for this study. In dichloromethane a strong dependence on the counter-cation was also seen, with the Ka's for the interaction with chloride ranging from 102−104. In the case of TPA, TBA and TBP the ITC data could not be fit to a 1:1 binding profile. PMID:16967979

  15. Optimization of reverse chemical ecology method: false positive binding of Aenasius bambawalei odorant binding protein 1 caused by uncertain binding mechanism.

    PubMed

    Li, Q L; Yi, S C; Li, D Z; Nie, X P; Li, S Q; Wang, M-Q; Zhou, A M

    2018-06-01

    Odorant binding proteins (OBPs) are considered as the core molecular targets in reverse chemical ecology, which is a convenient and efficient method by which to screen potential semiochemicals. Herein, we identified a classic OBP, AbamOBP1 from Aenasius bambawalei, which showed high mRNA expression in male antennae. Fluorescence competitive binding assay (FCBA) results demonstrated that AbamOBP1 has higher binding affinity with ligands at acid pH, suggesting the physiologically inconsistent binding affinity of this protein. Amongst the four compounds with the highest binding affinities at acid pH, 2, 4, 4-trimethyl-2-pentene and 1-octen-3-one were shown to have attractant activity for male adults, whereas (-)-limonene and an analogue of 1-octen-3-ol exhibited nonbehavioural activity. Further homology modelling and fluorescence quenching experiments demonstrated that the stoichiometry of the binding of this protein to these ligands was not 1: 1, suggesting that the results of FCBA were false. In contrast, the apparent association constants (Ka) of fluorescence quenching experiments seemed to be more reliable, because 2, 4, 4-trimethyl-2-pentene and 1-octen-3-one had observably higher Ka than (-)-limonene and 1-octen-3-ol at neutral pH. Based on the characteristics of different OBPs, various approaches should be applied to study their binding affinities with ligands, which could modify and complement the results of FCBA and contribute to the application of reverse chemical ecology. © 2018 The Royal Entomological Society.

  16. Characterization of autoantibodies to vasoactive intestinal peptide in asthma.

    PubMed

    Paul, S; Said, S I; Thompson, A B; Volle, D J; Agrawal, D K; Foda, H; de la Rocha, S

    1989-07-01

    Vasoactive intestinal peptide (VIP) is a potent relaxant of the airway smooth muscle. In this study, VIP-binding autoantibodies were observed in the plasma of 18% asthma patients and 16% healthy subjects. Immunoprecipitation studies and chromatography on DEAE-cellulose and immobilized protein G indicated that the plasma VIP-binding activity was largely due to IgG antibodies. Saturation analysis of VIP binding by the plasmas suggested the presence of one or two classes of autoantibodies, distinguished by their apparent equilibrium affinity constants (Ka). The autoantibodies from asthma patients exhibited a larger VIP-binding affinity compared to those from healthy subjects (Ka 7.8 x 10(9) M-1 and 0.13 x 10(9) M-1, respectively; P less than 0.005). The antibodies were specific for VIP, judged by their poor reaction with peptides bearing partial sequence homology with VIP (peptide histidine isoleucine, growth hormone releasing factor and secretin). IgG prepared from the plasma of an antibody-positive asthma patient inhibited the saturable binding of 125I-VIP by receptors in guinea pig lung membranes (by 39-59%; P less than 0.001). These observations are consistent with a role for the VIP autoantibodies in the airway hyperresponsiveness of asthma.

  17. Biomolecular Interaction Analysis Using an Optical Surface Plasmon Resonance Biosensor: The Marquardt Algorithm vs Newton Iteration Algorithm

    PubMed Central

    Hu, Jiandong; Ma, Liuzheng; Wang, Shun; Yang, Jianming; Chang, Keke; Hu, Xinran; Sun, Xiaohui; Chen, Ruipeng; Jiang, Min; Zhu, Juanhua; Zhao, Yuanyuan

    2015-01-01

    Kinetic analysis of biomolecular interactions are powerfully used to quantify the binding kinetic constants for the determination of a complex formed or dissociated within a given time span. Surface plasmon resonance biosensors provide an essential approach in the analysis of the biomolecular interactions including the interaction process of antigen-antibody and receptors-ligand. The binding affinity of the antibody to the antigen (or the receptor to the ligand) reflects the biological activities of the control antibodies (or receptors) and the corresponding immune signal responses in the pathologic process. Moreover, both the association rate and dissociation rate of the receptor to ligand are the substantial parameters for the study of signal transmission between cells. A number of experimental data may lead to complicated real-time curves that do not fit well to the kinetic model. This paper presented an analysis approach of biomolecular interactions established by utilizing the Marquardt algorithm. This algorithm was intensively considered to implement in the homemade bioanalyzer to perform the nonlinear curve-fitting of the association and disassociation process of the receptor to ligand. Compared with the results from the Newton iteration algorithm, it shows that the Marquardt algorithm does not only reduce the dependence of the initial value to avoid the divergence but also can greatly reduce the iterative regression times. The association and dissociation rate constants, ka, kd and the affinity parameters for the biomolecular interaction, KA, KD, were experimentally obtained 6.969×105 mL·g-1·s-1, 0.00073 s-1, 9.5466×108 mL·g-1 and 1.0475×10-9 g·mL-1, respectively from the injection of the HBsAg solution with the concentration of 16ng·mL-1. The kinetic constants were evaluated distinctly by using the obtained data from the curve-fitting results. PMID:26147997

  18. CO Binding and Ligand Discrimination in Human Myeloperoxidase†

    PubMed Central

    Murphy, Emma J.; Maréchal, Amandine; Segal, Anthony W.; Rich, Peter R.

    2015-01-01

    Despite the fact that ferrous myeloperoxidase (MPO) can bind both O2 and NO, its ability to bind CO has been questioned. UV/visible spectroscopy was used to confirm that CO induces small spectral shifts in ferrous MPO, and Fourier transform infrared difference spectroscopy showed definitively that these arose from formation of a heme ferrous–CO compound. Recombination rates after CO photolysis were monitored at 618 and 645 nm as a function of CO concentration and pH. At pH 6.3, kon and koff were 0.14 mM−1·s−1 and 0.23 s−1, respectively, yielding an unusually high KD of 1.6 mM. This affinity of MPO for CO is 10 times weaker than its affinity for O2. The observed rate constant for CO binding increased with increasing pH and was governed by a single protonatable group with a pKa of 7.8. Fourier transform infrared spectroscopy revealed two different conformations of bound CO with frequencies at 1927 and 1942 cm−1. Their recombination rate constants were identical, indicative of two forms of bound CO that are in rapid thermal equilibrium rather than two distinct protein populations with different binding sites. The ratio of bound states was pH-dependent (pKa ≈ 7.4) with the 1927 cm−1 form favored at high pH. Structural factors that account for the ligand-binding properties of MPO are identified by comparisons with published data on a range of other ligand-binding heme proteins, and support is given to the recent suggestion that the proximal His336 in MPO is in a true imidazolate state. PMID:20146436

  19. Evaluation of kinetic constants of biomolecular interaction on optical surface plasmon resonance sensor with Newton Iteration Method

    NASA Astrophysics Data System (ADS)

    Zhao, Yuanyuan; Jiang, Guoliang; Hu, Jiandong; Hu, Fengjiang; Wei, Jianguang; Shi, Liang

    2010-10-01

    In the immunology, there are two important types of biomolecular interaction: antigens-antibodies and receptors-ligands. Monitoring the response rate and affinity of biomolecular interaction can help analyze the protein function, drug discover, genomics and proteomics research. Moreover the association rate constant and dissociation rate constant of receptors-ligands are the important parameters for the study of signal transmission between cells. Recent advances in bioanalyzer instruments have greatly simplified the measurement of the kinetics of molecular interactions. Non-destructive and real-time monitoring the response to evaluate the parameters between antigens and antibodies can be performed by using optical surface plasmon resonance (SPR) biosensor technology. This technology provides a quantitative analysis that is carried out rapidly with label-free high-throughput detection using the binding curves of antigens-antibodies. Consequently, the kinetic parameters of interaction between antigens and antibodies can be obtained. This article presents a low cost integrated SPR-based bioanalyzer (HPSPR-6000) designed by ourselves. This bioanalyzer is mainly composed of a biosensor TSPR1K23, a touch-screen monitor, a microprocessor PIC24F128, a microflow cell with three channels, a clamp and a photoelectric conversion device. To obtain the kinetic parameters, sensorgrams may be modeled using one of several binding models provided with BIAevaluation software 3.0, SensiQ or Autolab. This allows calculation of the association rate constant (ka) and the dissociation rate constant (kd). The ratio of ka to kd can be used to estimate the equilibrium constant. Another kind is the analysis software OriginPro, which can process the obtained data by nonlinear fitting and then get some correlative parameters, but it can't be embedded into the bioanalyzer, so the bioanalyzer don't support the use of OriginPro. This paper proposes a novel method to evaluate the kinetic parameters of biomolecular interaction by using Newton Iteration Method and Least Squares Method. First, the pseudo first order kinetic model of biomolecular interaction was established. Then the data of molecular interaction of HBsAg and HBsAb was obtained by bioanalyzer. Finally, we used the optical SPR bioanalyzer software which was written by ourselves to make nonlinear fit about the association and dissociation curves. The correlation coefficient R-squared is 0.99229 and 0.99593, respectively. Furthermore, the kinetic parameters and affinity constants were evaluated using the obtained data from the fitting results.

  20. A Novel Application for 222Rn Emanation Standards

    PubMed Central

    Laureano-Perez, L.; Collé, R.; Jacobson, D.R.; Fitzgerald, R.; Khan, N.S.; Dmochowski, I.J.

    2013-01-01

    In collaboration with the University of Pennsylvania, a 222Rn emanation source was used for the determination of the binding affinity of radon to a cryptophane molecular host. This source was similar to a 222Rn emanation standard that was developed and disseminated by the National Institute of Standards and Technology (NIST). The novel experimental design involved performing the reactions at femtomole levels, developing exacting gravimetric sampling methods and making precise 222Rn assays by liquid scintillation counting. A cryptophane-radon association constant was determined, KA = (49,000 ± 12,000) L· mol−1 at 293 K, which was the first measurement of radon binding to a molecular host. PMID:22455833

  1. Bilirubin Albumin Binding and Unbound Unconjugated Hyperbilirubinemia in Premature Infants.

    PubMed

    Amin, Sanjiv B; Wang, Hongyue

    2018-01-01

    To evaluate the associations between unbound bilirubin (UB) and total serum bilirubin (TSB), bilirubin:albumin molar ratio (BAMR), and bilirubin albumin binding affinity (Ka) as a function of gestational age (GA) in infants born at 24-33 weeks GA. In a prospective observational study, TSB and UB were measured twice daily at least 8 hours apart during the first postnatal week. Serum albumin was measured to calculate BAMR on each day. The highest UB on each day, corresponding TSB, and serum albumin were used to calculate the Ka on each day. For the 166 infants studied, peak UB significantly correlated with concomitant Ka (r = -0.44, P = .001) but not with concomitant TSB or BAMR after adjusting for GA. On multiple regression analyses, there was a significant association of concomitant Ka (-0.06, 95% CI -0.08 to -0.04, P = .0001), but not concomitant TSB or BAMR with peak UB after controlling for GA, birth weight, race, and sex. GA group was a significant effect modifier for the association between Ka and peak UB (0.03, 95% CI 0.02-0.04, P < .001). Interaction analyses showed the association between concomitant Ka and peak UB was significant for the 24-30 weeks GA group infants, but not for the 30 1/7 -33 weeks GA group infants. Peak UB was primarily associated with a decrease in binding affinity in infants ≤30 weeks GA. Interventions aimed at improving binding affinity may be important in decreasing the risk of bilirubin-induced neurotoxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. High Affinity Macrocycle Threading by a Near-Infrared Croconaine Dye with Flanking Polymer Chains

    PubMed Central

    Liu, Wenqi; Peck, Evan M.; Smith, Bradley D.

    2016-01-01

    Croconaine dyes have narrow and intense absorption bands at ~800 nm, very weak fluorescence, and high photostabilities, which combine to make them very attractive chromophores for absorption-based imaging or laser heating technologies. The physical supramolecular properties of croconaine dyes have rarely been investigated, especially in water. This study focuses on a molecular threading process that encapsulates a croconaine dye inside a tetralactam macrocycle in organic or aqueous solvent. Macrocycle association and rate constant data are reported for a series of croconaine structures with different substituents attached to the ends of the dye. The association constants were highest in water (Ka ~109 M−1), and the threading rate constants (kon) increased in the solvent order H2O > MeOH > CHCl3. Systematic variation of croconaine substituents located just outside the croconaine/macrocycle complexation interface hardly changed Ka but had a strong influence on kon. A croconaine dye with N-propyl groups at each end of the structure exhibited a desirable mixture of macrocycle threading properties; that is, there was rapid and quantitative croconaine/macrocycle complexation at relatively high concentrations in water, and no dissociation of the pre-assembled complex when it was diluted into a solution of fetal bovine serum, even after laser induced photothermal heating of the solution. The combination of favorable near-infrared absorption properties and tunable mechanical stability makes threaded croconaine/macrocycle complexes very attractive as molecular probes or as supramolecular composites for various applications in absorption-based imaging or photothermal therapy. PMID:26807599

  3. Effects of multi-frequency power ultrasound on the enzymolysis of corn gluten meal: Kinetics and thermodynamics study.

    PubMed

    Jin, Jian; Ma, Haile; Qu, Wenjuan; Wang, Kai; Zhou, Cunshan; He, Ronghai; Luo, Lin; Owusu, John

    2015-11-01

    The effects of multi-frequency power ultrasound (MPU) pretreatment on the kinetics and thermodynamics of corn gluten meal (CGM) were investigated in this research. The apparent constant (KM), apparent break-down rate constant (kA), reaction rate constants (k), energy of activation (Ea), enthalpy of activation (ΔH), entropy of activation (ΔS) and Gibbs free energy of activation (ΔG) were determined by means of the Michaelis-Menten equation, first-order kinetics model, Arrhenius equation and transition state theory, respectively. The results showed that MPU pretreatment can accelerate the enzymolysis of CGM under different enzymolysis conditions, viz. substrate concentration, enzyme concentration, pH, and temperature. Kinetics analysis revealed that MPU pretreatment decreased the KM value by 26.1% and increased the kA value by 7.3%, indicating ultrasound pretreatment increased the affinity between enzyme and substrate. In addition, the values of k for ultrasound pretreatment were increased by 84.8%, 41.9%, 28.9%, and 18.8% at the temperature of 293, 303, 313 and 323 K, respectively. For the thermodynamic parameters, ultrasound decreased Ea, ΔH and ΔS by 23.0%, 24.3% and 25.3%, respectively, but ultrasound had little change in ΔG value in the temperature range of 293-323 K. In conclusion, MPU pretreatment could remarkably enhance the enzymolysis of CGM, and this method can be applied to protein proteolysis industry to produce peptides. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Radioiodinated nondegradable gonadotropin-releasing hormone analogs: new probes for the investigation of pituitary gonadotropin-releasing hormone receptors.

    PubMed

    Clayton, R N; Shakespear, R A; Duncan, J A; Marshall, J C; Munson, P J; Rodbard, D

    1979-12-01

    Studies of pituitary plasma membrane gonadotropin-releasing hormone (GnRH) receptors using [125I]-iodo-GnRH suffer major disadvantages. Only a small (less than 25%) proportion of specific tracer binding is to high affinity sites, with more than 70% bound to low affinity sites (Ka = 1 x 10(6) M-1). [125I]Iodo-GnRH is also inactivated during incubation with pituitary plasma membrane preparations. Two superactive analongs of GnRH, substituted in positions 6 and 10, were used as the labeled ligand to overcome these problems. Both analogs bound to the same high affinity sites as GnRH on bovine pituitary plasma membranes, though the affinity of the analogs was higher than that of the natural decapeptide (Ka = 2.0 x 10(9), 6.0 x 10(9), and 3.0 x 10(8) M-1 for [D-Ser(TBu)6]des-Gly10-GnRH ethylamide, [D-Ala6]des-Gly10-GnRH ethylamide, and GnRH, respectively. The labeled analogs bound to a single class of high affinity sites with less than 15% of the specific binding being to low affinity sites (Ka approximately equal to 1 x 10(6) M-1). The labeled analogs were not inactivated during incubation with the pituitary membrane preparations. Using the analogs as tracer, a single class of high affinity sites (K1 = 4.0 x 10(9) M-1) was also demonstrated on crude 10,800 x g rat pituitary membrane preparations. Use of these analogs as both the labeled and unlabeled ligand offers substantial advantages over GnRH for investigation of GnRH receptors, allowing accurate determination of changes in their numbers and affinities under various physiological conditions.

  5. Fluorescence resonance energy-transfer affects the determination of the affinity between ligand and proteins obtained by fluorescence quenching method

    NASA Astrophysics Data System (ADS)

    Xiao, Jianbo; Wei, Xinlin; Wang, Yuanfeng; Liu, Chunxi

    2009-11-01

    The interaction between esculin and serum albumins was investigated to illustrate that the fluorescence resonance energy-transfer (FRET) affects the determination of the binding constants obtained by fluorescence quenching method. The binding constants ( Ka) obtained by the double-logarithm curve for esculin-BSA and esculin-HSA were 1.02 × 10 7 and 2.07 × 10 4 L/mol, respectively. These results from synchronous fluorescence showed that the Tyr and Trp residues of HSA were affected more deeply than those in BSA. The excitation profile of esculin showed that in the presence of BSA and HSA, the S 0 → S 1 transition of esculin ( λexmax≈340 nm) appears, which is similar to the λemmax of BSA and HSA. The critical distance ( R0) between BSA and esculin is higher than that of HSA, which showed that the affinity of esculin and HSA should be higher than that of BSA. After centrifugation, the concentrations of esculin bound to albumins were determined by means of the fluorescence of esculin. It was found that much more esculin was bound to HSA than to BSA. However, the bound models for BSA and HSA are almost the same. The concentration of esculin bound to serum albumin at first decreased with the addition of esculin and then increased. From above results, it can be concluded that the affinity of esculin and HSA should be higher than that of esculin and BSA. This example showed that in the presence of FRET, the binding constants between ligands and proteins based on fluorescence quenching might be deviated.

  6. Fluorescence resonance energy-transfer affects the determination of the affinity between ligand and proteins obtained by fluorescence quenching method.

    PubMed

    Xiao, Jianbo; Wei, Xinlin; Wang, Yuanfeng; Liu, Chunxi

    2009-11-01

    The interaction between esculin and serum albumins was investigated to illustrate that the fluorescence resonance energy-transfer (FRET) affects the determination of the binding constants obtained by fluorescence quenching method. The binding constants (K(a)) obtained by the double-logarithm curve for esculin-BSA and esculin-HSA were 1.02x10(7) and 2.07x10(4)L/mol, respectively. These results from synchronous fluorescence showed that the Tyr and Trp residues of HSA were affected more deeply than those in BSA. The excitation profile of esculin showed that in the presence of BSA and HSA, the S(0)-->S(1) transition of esculin (lambda(ex)(max) approximately 340nm) appears, which is similar to the lambda(em)(max) of BSA and HSA. The critical distance (R(0)) between BSA and esculin is higher than that of HSA, which showed that the affinity of esculin and HSA should be higher than that of BSA. After centrifugation, the concentrations of esculin bound to albumins were determined by means of the fluorescence of esculin. It was found that much more esculin was bound to HSA than to BSA. However, the bound models for BSA and HSA are almost the same. The concentration of esculin bound to serum albumin at first decreased with the addition of esculin and then increased. From above results, it can be concluded that the affinity of esculin and HSA should be higher than that of esculin and BSA. This example showed that in the presence of FRET, the binding constants between ligands and proteins based on fluorescence quenching might be deviated.

  7. Proton and metal ion binding to natural organic polyelectrolytes-I. Studies with synthetic model compounds

    USGS Publications Warehouse

    Marinsky, J.A.; Reddy, M.M.

    1984-01-01

    A unified physico-chemical model, based on a modified Henderson-Hasselbalch equation, for the analysis of ion complexation reactions involving charged polymeric systems is presented and verified. In this model pH = pKa+p(??Ka) + log(??/1 - ??) where Ka is the intrinsic acid dissociation constant of the ionizable functional groups on the polymer, ??Ka is the deviation of the intrinsic constant due to electrostatic interaction between the hydrogen ion and the polyanion, and alpha (??) is the polyacid degree of ionization. Using this approach pKa values for repeating acidic units of polyacrylic (PAA) and polymethacrylic (PMA) acids were found to be 4.25 ?? 0.03 and 4.8 ?? 0.1, respectively. The polyion electrostatic deviation term derived from the potentiometric titration data (i.e. p(??Ka)) is used to calculate metal ion concentration at the complexation site on the surface of the polyanion. Intrinsic cobalt-polycarboxylate binding constants (7.5 for PAA and 5.6 for PMA), obtained using this procedure, are consistent with the range of published binding constants for cobalt-monomer carboxylate complexes. In two phase systems incorporation of a Donnan membrane potential term allows determination of the intrinsic pKa of a cross-linked PMA gel, pKa = 4.83, in excellent agreement with the value obtained for the linear polyelectrolyte and the monomer. Similarly, the intrinsic stability constant for cobalt ion binding to a PMA-gel (??CoPMA+ = 11) was found to be in agreement with the linear polyelectrolyte analogue and the published data for cobalt-carboxylate monodentate complexes. ?? 1984.

  8. Production and characterization of recombinant scFv against digoxin by phage display technology.

    PubMed

    Alirezapour, Behruz; Rajabibazl, Masoumeh; Rasaee, Mohhamad Javad; Omidfar, Kobra

    2013-06-01

    The cardiac glycoside digoxin is widely used for the treatment of congestive heart failure and cardiac arrhythmias. Digoxin is a highly toxic drug and consequently is routinely measured in sera of treated patients. In such cases, antibodies are required against digoxin for detection as well as detoxification purposes. To obtain recombinant single chain antibody against digoxin, RNA was extracted from spleen of BALB/c mice immunized with digoxin-BSA and converted to cDNA. The gene fragment corresponding to the variable regions of the repertoire of antibody genes were amplified by PCR. ScFv construct was generated by randomly joining individual heavy- and light-chain variable domains through gene splicing by overlapping extension PCR. Recombinant phage library expressing scFv polypeptides were produced. Phages with higher affinity toward digoxin were selected in the biopanning process. Sensitivity of produced recombinant MAb (AR85) was determined to be about 100 pg/well, while intact MAb (BBA) produced by hybridoma technology (data not shown) was reported to be around 100 pg/well too. The saturation value for recombinant scFv MAb was found to be 1000 ng/well while that for hybridoma MAb was reported to be 10 ng/well. The affinity constant of recombinant MAb (AR85) towards digoxin was also found to be around ka=3.8×10(7) M(-1) while that for hybridoma MAb (BBA) was reported to be ka=2.6×10(8) M(-1).

  9. A Precise Method for Processing Data to Determine the Dissociation Constants of Polyhydroxy Carboxylic Acids via Potentiometric Titration.

    PubMed

    Huang, Kaixuan; Xu, Yong; Lu, Wen; Yu, Shiyuan

    2017-12-01

    The thermodynamic dissociation constants of xylonic acid and gluconic acid were studied via potentiometric methods, and the results were verified using lactic acid, which has a known pKa value, as a model compound. Solutions of xylonic acid and gluconic acid were titrated with a standard solution of sodium hydroxide. The determined pKa data were processed via the method of derivative plots using computer software, and the accuracy was validated using the Gran method. The dissociation constants associated with the carboxylic acid group of xylonic and gluconic acids were determined to be pKa 1  = 3.56 ± 0.07 and pKa 1  = 3.74 ± 0.06, respectively. Further, the experimental data showed that the second deprotonation constants associated with a hydroxyl group of each of the two acids were pKa 2  = 8.58 ± 0.12 and pKa 2  = 7.06 ± 0.08, respectively. The deprotonation behavior of polyhydroxy carboxylic acids was altered using various ratios with Cu(II) to form complexes in solution, and this led to proposing a hypothesis for further study.

  10. Spectroscopic analysis of the interaction between thiazolo[2,3-b]pyrimidine analogues and bovine serum albumin.

    PubMed

    Yu, Xianyong; Yang, Ying; Yao, Qing; Tao, Hongwen; Lu, Shiyu; Xie, Jian; Zhou, Hu; Yi, Pinggui

    2012-10-01

    The interaction between thiazolo[2,3-b]pyrimidine (TZPM) analogues and bovine serum albumin (BSA) was investigated by fluorescence spectroscopy and UV-Vis spectroscopy at two different temperatures (299 and 307K) under imitated physiological conditions. The results indicate that both static quenching and dynamic quenching contribute to the fluorescence quenching of BSA by TZPM. The binding constant (K(a)) and binding sites (n) were calculated from the obtained spectra. Based on the Förster non-radiation energy transfer theory, the average binding distance between BSA and TZPM was estimated. The synchronous fluorescence spectra indicate that the conformation of BSA has been changed. The comparison of binding potency of TZPM and BSA suggests that the substituents on the benzene ring enhance the binding affinity of TZPM and BSA. We investigated the possible sub-domains on BSA that bind TZPM by displacement experiments. Furthermore, to explore the effect of molecular structure on the binding, a study on quantitative structure-property relationship (QSPR) was performed, the quantitative relationship equation of R(0), r and K(a) were obtained. We observed that R(0), r and K(a) between BSA and TZPM is connected with the margin of the highest and the lowest occupied orbital energy (ΔE), dipole moment (μ), Molar Volume (V(m)), Mole Mass (M). Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Determination of pKa values of alendronate sodium in aqueous solution by piecewise linear regression based on acid-base potentiometric titration.

    PubMed

    Ke, Jing; Dou, Hanfei; Zhang, Ximin; Uhagaze, Dushimabararezi Serge; Ding, Xiali; Dong, Yuming

    2016-12-01

    As a mono-sodium salt form of alendronic acid, alendronate sodium presents multi-level ionization for the dissociation of its four hydroxyl groups. The dissociation constants of alendronate sodium were determined in this work by studying the piecewise linear relationship between volume of titrant and pH value based on acid-base potentiometric titration reaction. The distribution curves of alendronate sodium were drawn according to the determined pKa values. There were 4 dissociation constants (pKa 1 =2.43, pKa 2 =7.55, pKa 3 =10.80, pKa 4 =11.99, respectively) of alendronate sodium, and 12 existing forms, of which 4 could be ignored, existing in different pH environments.

  12. Urban Biomining: Biological Extraction of Metals and Materials from Electronics Waste Using a Synthetic Biology Approach

    NASA Astrophysics Data System (ADS)

    Urbina-Navarrete, J.; Rothschild, L.

    2016-12-01

    End-of-life electronics waste (e-waste) containing toxic and valuable materials is a rapidly progressing human health and environmental issue. Using synthetic biology tools, we have developed a recycling method for e-waste. Our innovation is to use a recombinant version of a naturally-occurring silica-degrading enzyme to depolymerize the silica in metal- and glass- containing e-waste components, and subsequently, to use engineered bacterial surfaces to bind and separate metals from a solution. The bacteria with bound metals can then be used as "bio-ink" to print new circuits using a novel plasma jet electronics printing technology. Here, we present the results from our initial studies that focus on the specificity of metal-binding motifs for a cognate metal. The candidate motifs that show high affinity and specificity will be engineered into bacterial surfaces for downstream applications in biologically-mediated metal recycling. Since the chemistry and role of Cu in metalloproteins is relatively well-characterized, we are using Cu as a proxy to elucidate metal and biological ligand interactions with various metals in e-waste. We assess the binding parameters of 3 representative classes of Cu-binding motifs using isothermal titration calorimetry; 1) natural motifs found in metalloproteins, 2) consensus motifs, and 3) rationally designed peptides that are predicted, in silico, to bind Cu. Our results indicate that naturally-occurring motifs have relative high affinity and specificity for Cu (association constant for Cu Ka 104 M-1, Zn Ka 103 M-1) when competing ions are present in the aqueous milieu. However, motifs developed through rational design by applying quantum mechanical methods that take into account complexation energies of the elemental binding partners and molecular geometry of the cognate metal, not only show high affinity for the cognate metal (Cu Ka 106 M-1), but they show specificity and discrimination against other metal ions that would be competitors for the same binding sites. This is an initial proof-of-concept study that focuses on Cu-binding; however the overall objective of this research is to have peptides that selectively bind many metals from e-waste and this would allow for the separation of the metals from a solution, at ambient temperatures and under non-toxic conditions.

  13. Application of pulsed field gradient NMR techniques for investigating binding of flavor compounds to macromolecules.

    PubMed

    Jung, Da-Mi; De Ropp, Jeffrey S; Ebeler, Susan E

    2002-07-17

    Two diffusion-based NMR techniques are presented and used to investigate the binding of selected flavor compounds to macromolecules. A pulsed field gradient NMR (PFG-NMR) method was applied to measure the apparent diffusion coefficients of four alkanone compounds as they associated with bovine serum albumin (BSA). The change in the apparent diffusion coefficient as a function of the BSA/alkanone ratio was fitted to yield binding constants (K(a)()) and binding stoichiometry (n) for each alkanone. The results showed that the apparent diffusion coefficients of alkanones increased with a decrease in the BSA/alkanone ratios, and the measured values of K(a)() and n were comparable with those obtained with other methods and depended on the alkanone structure. A diffusion-based nuclear Overhauser effect (called diffusion NOE pumping) method was also applied to screen mixtures of flavor compounds and identify those that have a binding affinity to complex macromolecules. Using this technique benzaldehyde and vanillin were observed to bind with bovine serum albumin, whereas 2-phenylethanol was identified as a nonbinding or weakly binding ligand with BSA. The diffusion NOE pumping method was also applied to a hydro alcoholic solution of cacao bean tannin extracts to which a mixture of ethylbenzoate, benzaldehyde, and 2-phenylethanol was added. The diffusion NOE pumping technique clearly indicated that ethylbenzoate had a stronger binding affinity to the polymeric (-)-epicatechin units of the cacao bean tannin extracts than the other two flavor compounds. The results successfully demonstrate the potential applications of diffusion-based NMR techniques for studying flavors and nonvolatile food matrix interactions.

  14. EFFECTIVE ACIDITY CONSTANT BEHAVIOR NEAR ZERO CHARGE CONDITIONS

    EPA Science Inventory

    Surface site (>SOH group) acidity reactions require expressions of the form: Ka = [>SOHn-1(z-1)]aH+EXP(-DG/RT)/[>SOHnz] (where all variables have their usual meaning). One can rearrange this expression to generate an effective acidity constant historically defined as: Qa = Ka...

  15. Component analysis and heavy metal adsorption ability of extracellular polymeric substances (EPS) from sulfate reducing bacteria.

    PubMed

    Yue, Zheng-Bo; Li, Qing; Li, Chuan-chuan; Chen, Tian-hu; Wang, Jin

    2015-10-01

    Extracellular polymeric substances (EPS) play an important role in the treatment of acid mine drainage (AMD) by sulfate-reducing bacteria (SRB). In this paper, Desulfovibrio desulfuricans was used as the test strain to explore the effect of heavy metals on the components and adsorption ability of EPS. Fourier-transform infrared (FTIR) spectroscopy analysis results showed that heavy metals did not influence the type of functional groups of EPS. Potentiometric titration results indicated that the acidic constants (pKa) of the EPS fell into three ranges of 3.5-4.0, 5.9-6.7, and 8.9-9.8. The adsorption site concentrations of the surface functional groups also increased. Adsorption results suggested that EPS had a specific binding affinity for the dosed heavy metal, and that EPS extracted from the Zn(2+)-dosed system had a higher binding affinity for all heavy metals. Additionally, Zn(2+) decreased the inhibitory effects of Cd(2+) and Cu(2+) on the SRB. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Nonquaternary Cholinesterase Reactivators.

    DTIC Science & Technology

    1982-08-30

    c, a plot (not shown) of pKa versus Hammet substituent constant (a )42 is also linear and conforms p to equation (5) pKa - (7.63 ±0.02) - (.63 ±0.05...dissociates to the active oximate form, we have defined an effective bimolecular reactivation rate constant as in equation (6) keff ’ kb [1 + antilog(pKa...type 1 compounds generally exhibit low activity as reactivators. In terms of keff values [see equation (6)] for reactivation of ethyl methylphosphonyl

  17. Functional characterization of the dimerization domain of the ferric uptake regulator (Fur) of Pseudomonas aeruginosa

    PubMed Central

    Bai, Erdeni; Rosell, Federico I.; Lige, Bao; Mauk, Marcia R.; Lelj-Garolla, Barbara; Moore, Geoffrey R.; Mauk, A. Grant

    2006-01-01

    The functional properties of the recombinant C-terminal dimerization domain of the Pseudomonas aeruginosa Fur (ferric uptake regulator) protein expressed in and purified from Escherichia coli have been evaluated. Sedimentation velocity measurements demonstrate that this domain is dimeric, and the UV CD spectrum is consistent with a secondary structure similar to that observed for the corresponding region of the crystallographically characterized wild-type protein. The thermal stability of the domain as determined by CD spectroscopy decreases significantly as pH is increased and increases significantly as metal ions are added. Potentiometric titrations (pH 6.5) establish that the domain possesses a high-affinity and a low-affinity binding site for metal ions. The high-affinity (sensory) binding site demonstrates association constants (KA) of 10(±7)×106, 5.7(±3)×106, 2.0(±2)×106 and 2.0(±3)×104 M−1 for Ni2+, Zn2+, Co2+ and Mn2+ respectively, while the low-affinity (structural) site exhibits association constants of 1.3(±2)×106, 3.2(±2)×104, 1.76(±1)×105 and 1.5(±2)×103 M−1 respectively for the same metal ions (pH 6.5, 300 mM NaCl, 25 °C). The stability of metal ion binding to the sensory site follows the Irving–Williams order, while metal ion binding to the partial sensory site present in the domain does not. Fluorescence experiments indicate that the quenching resulting from binding of Co2+ is reversed by subsequent titration with Zn2+. We conclude that the domain is a reasonable model for many properties of the full-length protein and is amenable to some analyses that the limited solubility of the full-length protein prevents. PMID:16928194

  18. Discovery of a new class of ionotropic glutamate receptor antagonists by the rational design of (2S,3R)-3-(3-carboxyphenyl)-pyrrolidine-2-carboxylic acid.

    PubMed

    Larsen, Ann M; Venskutonytė, Raminta; Valadés, Elena Antón; Nielsen, Birgitte; Pickering, Darryl S; Bunch, Lennart

    2011-02-16

    The kainic acid (KA) receptors belong to the class of glutamate (Glu) receptors in the brain and constitute a promising target for the treatment of neurological and/or psychiatric diseases such as schizophrenia, major depression, and epilepsy. Five KA subtypes have been identified and named GluK1-5. In this article, we present the discovery of (2S,3R)-3-(3-carboxyphenyl)-pyrrolidine-2-carboxylic acid (1) based on a rational design process. Target compound 1 was synthesized by a stereoselective strategy in 10 steps from commercially available starting materials. Binding affinities of 1 at native ionotropic Glu receptors were determined to be in the micromolar range (AMPA, 51 μM; KA, 22 μM; NMDA 6 μM), with the highest affinity for cloned homomeric KA receptor subtypes GluK1,3 (3.0 and 8.1 μM, respectively). Functional characterization of 1 by two electrode voltage clamp (TEVC) electrophysiology at a nondesensitizing mutant of GluK1 showed full competitive antagonistic behavior with a K(b) of 11.4 μM.

  19. Effects of alkyl chain length and solvents on thermodynamic dissociation constants of the ionic liquids with one carboxyl group in the alkyl chain of imidazolium cations.

    PubMed

    Chen, Yuehua; Wang, Huiyong; Wang, Jianji

    2014-05-01

    Thermodynamic dissociation constants of the Brønsted acidic ionic liquids (ILs) are important for their catalytic and separation applications. In this work, a series of imidazolium bromides with one carboxylic acid substitute group in their alkyl chain ([{(CH2)nCOOH}mim]Br, n = 1,3,5,7) have been synthesized, and their dissociation constants (pKa) at different ionic strengths have been determined in aqueous and aqueous organic solvents at 0.1 mole fraction (x) of ethanol, glycol, iso-propanol, and dimethyl sulfoxide by potentiometric titrations at 298.2 K. The standard thermodynamic dissociation constants (pKa(T)) of the ILs in these solvents were calculated from the extended Debye-Hückel equation. It was found that the pKa values increased with the increase of ionic strength of the media and of the addition of organic solvent in water. The pKa(T) values also increased with the increase of the alkyl chain length of cations of the ILs. In addition, the effect of solvent nature on pKa(T) values is interpreted from solvation of the dissociation components and their Gibbs energy of transfer from water to aqueous organic solutions.

  20. A Stopped-Flow Kinetics Experiment for Advanced Undergraduate Laboratories: Formation of Iron(III) Thiocyannate

    NASA Astrophysics Data System (ADS)

    Clark, Charles R.

    1997-10-01

    A series of 15 stopped-flow kinetic experiments relating to the formation of iron(III)- thiocyanate at 25.0 °C and I = 1.0 M (NaClO4) is described. A methodology is given whereby solution preparation and data collection are able to be carried out within the time scale of a single laboratory period (3-4 h). Kinetic data are obtained using constant [SCN-], and at three H+ concentrations (0.10, 0.20, 0.30 M) for varying concentrations of Fe3+ (ca. 0.0025 - 0.020 M). Rate data (450 nm) are consistent with rate laws for the forward and reverse reactions: kf = (k1 + k2Ka1/[H+])[Fe3+] and kr = k-1 + k-2Ka2/[H+] respectively, with k1,k-1 corresponding to the rate constants for formation and decay of FeSCN2+, k2, k-2 to the rate constants for formation and decay of the FeSCN(OH)+ ion and Ka1,Ka2 to the acid dissociation constants (coordinated OH2 ionization) of Fe3+ and FeSCN2+. Using literature values for the latter two quantities ( Ka1 = 2.04 x 10-3 M, Ka2 = 6.5 x 10-5 M) allows values for the four rate constants to be obtained. A typical data set is analyzed to give k1 = 109(10) M-1s-1, k-1 = 0.79(0.10) s-1, k2= 8020(800) M-1s-1, k-2 = 2630(230) s-1. Absorbance change data for reaction (DeltaA) follow the expression: DeltaA = Alim.Kf.[Fe3+]/(1 + Kf.[Fe3+]), with Alim corresponding to the absorbance of fully formed FeSCN2+ (i.e. free SCN- absent) and Kf to the formation constant of this complex (value in the example 112(5) M-1, c.f. 138(29) M-1 from the kinetic data).

  1. Electrophoretically deposited reduced graphene oxide platform for food toxin detection

    NASA Astrophysics Data System (ADS)

    Srivastava, Saurabh; Kumar, Vinod; Ali, Md Azahar; Solanki, Pratima R.; Srivastava, Anchal; Sumana, Gajjala; Saxena, Preeti Suman; Joshi, Amish G.; Malhotra, B. D.

    2013-03-01

    Reduced graphene oxide (RGO) due to its excellent electrochemical properties and large surface area, has recently aroused much interest for electrochemical biosensing application. Here, the chemically active RGO has been synthesized and deposited onto an indium tin oxide (ITO) coated glass substrate by the electrophoretic deposition technique. This novel platform has been utilized for covalent attachment of the monoclonal antibodies of aflatoxin B1 (anti-AFB1) for food toxin (AFB1) detection. The electron microscopy, X-ray diffraction, and UV-visible studies reveal successful synthesis of reduced graphene oxide while the XPS and FTIR studies suggest its carboxylic functionalized nature. The electrochemical sensing results of the anti-AFB1/RGO/ITO based immunoelectrode obtained as a function of aflatoxin concentration show high sensitivity (68 μA ng-1 mL cm-2) and improved detection limit (0.12 ng mL-1). The association constant (ka) for antigen-antibody interaction obtained as 5 × 10-4 ng mL-1 indicates high affinity of antibodies toward the antigen (AFB1).Reduced graphene oxide (RGO) due to its excellent electrochemical properties and large surface area, has recently aroused much interest for electrochemical biosensing application. Here, the chemically active RGO has been synthesized and deposited onto an indium tin oxide (ITO) coated glass substrate by the electrophoretic deposition technique. This novel platform has been utilized for covalent attachment of the monoclonal antibodies of aflatoxin B1 (anti-AFB1) for food toxin (AFB1) detection. The electron microscopy, X-ray diffraction, and UV-visible studies reveal successful synthesis of reduced graphene oxide while the XPS and FTIR studies suggest its carboxylic functionalized nature. The electrochemical sensing results of the anti-AFB1/RGO/ITO based immunoelectrode obtained as a function of aflatoxin concentration show high sensitivity (68 μA ng-1 mL cm-2) and improved detection limit (0.12 ng mL-1). The association constant (ka) for antigen-antibody interaction obtained as 5 × 10-4 ng mL-1 indicates high affinity of antibodies toward the antigen (AFB1). Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr32242d

  2. Mechanistic link between uptake of sulfonamides and bacteriostatic effect: model development and application to experimental data from two soil microorganisms.

    PubMed

    Focks, Andreas; Klasmeier, Jörg; Matthies, Michael

    2010-07-01

    Sulfonamides (SA) are antibiotic compounds that are widely used as human and veterinary pharmaceuticals. They are not rapidly biodegradable and have been detected in various environmental compartments. Effects of sulfonamides on microbial endpoints in soil have been reported from laboratory incubation studies. Sulfonamides inhibit the growth of sensitive microorganisms by competitive binding to the dihydropteroate-synthase (DHPS) enzyme of folic acid production. A mathematical model was developed that relates the extracellular SA concentration to the inhibition of the relative bacterial growth rate. Two factors--the anionic accumulation factor (AAF) and the cellular affinity factor (CAF)--determine the effective concentration of an SA. The AAF describes the SA uptake into bacterial cells and varies with both the extra- and intracellular pH values and with the acidic pKa value of an SA. The CAF subsumes relevant cellular and enzyme properties, and is directly proportional to the DHPS affinity constant for an SA. Based on the model, a mechanistic dose-response relationship is developed and evaluated against previously published data, where differences in the responses of Pseudomonas aeruginosa and Panthoea agglomerans toward changing medium pH values were found, most likely as a result of their diverse pH regulation. The derived dose-response relationship explains the pH and pKa dependency of mean effective concentration values (EC50) of eight SA and two soil bacteria based on AAF and CAF values. The mathematical model can be used to extrapolate sulfonamide effects to other pH values and to calculate the CAF as a pH-independent measure for the SA effects on microbial growth. Copyright (c) 2010 SETAC.

  3. Direct Measurement of Equilibrium Constants for High-Affinity Hemoglobins

    PubMed Central

    Kundu, Suman; Premer, Scott A.; Hoy, Julie A.; Trent, James T.; Hargrove, Mark S.

    2003-01-01

    The biological functions of heme proteins are linked to their rate and affinity constants for ligand binding. Kinetic experiments are commonly used to measure equilibrium constants for traditional hemoglobins comprised of pentacoordinate ligand binding sites and simple bimolecular reaction schemes. However, kinetic methods do not always yield reliable equilibrium constants with more complex hemoglobins for which reaction mechanisms are not clearly understood. Furthermore, even where reaction mechanisms are clearly understood, it is very difficult to directly measure equilibrium constants for oxygen and carbon monoxide binding to high-affinity (KD ≪ 1 μM) hemoglobins. This work presents a method for direct measurement of equilibrium constants for high-affinity hemoglobins that utilizes a competition for ligands between the "target" protein and an array of "scavenger" hemoglobins with known affinities. This method is described for oxygen and carbon monoxide binding to two hexacoordinate hemoglobins: rice nonsymbiotic hemoglobin and Synechocystis hemoglobin. Our results demonstrate that although these proteins have different mechanisms for ligand binding, their affinities for oxygen and carbon monoxide are similar. Their large affinity constants for oxygen, 285 and ∼100 μM−1 respectively, indicate that they are not capable of facilitating oxygen transport. PMID:12770899

  4. Estimation of absorption rate constant (ka) following oral administration by Wagner-Nelson, Loo-Riegelman, and statistical moments in the presence of a secondary peak.

    PubMed

    Mahmood, Iftekhar

    2004-01-01

    The objective of this study was to evaluate the performance of Wagner-Nelson, Loo-Reigelman, and statistical moments methods in determining the absorption rate constant(s) in the presence of a secondary peak. These methods were also evaluated when there were two absorption rates without a secondary peak. Different sets of plasma concentration versus time data for a hypothetical drug following one or two compartment models were generated by simulation. The true ka was compared with the ka estimated by Wagner-Nelson, Loo-Riegelman and statistical moments methods. The results of this study indicate that Wagner-Nelson, Loo-Riegelman and statistical moments methods may not be used for the estimation of absorption rate constants in the presence of a secondary peak or when absorption takes place with two absorption rates.

  5. Determination of acidity constants of curcumin in aqueous solution and apparent rate constant of its decomposition

    NASA Astrophysics Data System (ADS)

    Bernabé-Pineda, Margarita; Ramírez-Silva, María. Teresa; Romero-Romo, Mario; González-Vergara, Enrique; Rojas-Hernández, Alberto

    2004-04-01

    The stability of curcumin (H 3Cur) in aqueous media is improved when the systems in which it is present are at high pH values (higher than 11.7), fitting a model describable by a pseudo-zero order with a rate constant k' for the disappearance of the Cur 3- species of 1.39 (10 -9) M min -1. There were three acidity constants measured for the curcumin as follows: p KA3=10.51±0.01 corresponding to the equilibrium HCur 2-=Cur 3-+H +, a p KA2=9.88±0.02 corresponding to the equilibrium H 2Cur -=HCur -2+H +. These p KA values were attributed to the hydrogen of the phenol part of the curcumin, while the p KA1=8.38±0.04 corresponds to the equilibrium H 3Cur=H 2Cur -+H + and is attributed the acetylacetone type group. Formation of quinoid structures play an important role in the tautomeric forms of the curcumin in aqueous media, which makes the experimental values differ from the theoretically calculated ones, depending on the conditions adopted in the study.

  6. pH-Triggered Molecular Alignment for Reproducible SERS Detection via an AuNP/Nanocellulose Platform

    PubMed Central

    Wei, Haoran; Vikesland, Peter J.

    2015-01-01

    The low affinity of neutral and hydrophobic molecules towards noble metal surfaces hinders their detection by surface-enhanced Raman spectroscopy (SERS). Herein, we present a method to enhance gold nanoparticle (AuNP) surface affinity by lowering the suspension pH below the analyte pKa. We developed an AuNP/bacterial cellulose (BC) nanocomposite platform and applied it to two common pollutants, carbamazepine (CBZ) and atrazine (ATZ) with pKa values of 2.3 and 1.7, respectively. Simple mixing of the analytes with AuNP/BC at pH < pKa resulted in consistent electrostatic alignment of the CBZ and ATZ molecules across the nanocomposite and highly reproducible SERS spectra. Limits of detection of 3 nM and 11 nM for CBZ and ATZ, respectively, were attained. Tests with additional analytes (melamine, 2,4-dichloroaniline, 4-chloroaniline, 3-bromoaniline, and 3-nitroaniline) further illustrate that the AuNP/BC platform provides reproducible analyte detection and quantification while avoiding the uncontrolled aggregation and flocculation of AuNPs that often hinder low pH detection. PMID:26658696

  7. pH-Triggered Molecular Alignment for Reproducible SERS Detection via an AuNP/Nanocellulose Platform

    NASA Astrophysics Data System (ADS)

    Wei, Haoran; Vikesland, Peter J.

    2015-12-01

    The low affinity of neutral and hydrophobic molecules towards noble metal surfaces hinders their detection by surface-enhanced Raman spectroscopy (SERS). Herein, we present a method to enhance gold nanoparticle (AuNP) surface affinity by lowering the suspension pH below the analyte pKa. We developed an AuNP/bacterial cellulose (BC) nanocomposite platform and applied it to two common pollutants, carbamazepine (CBZ) and atrazine (ATZ) with pKa values of 2.3 and 1.7, respectively. Simple mixing of the analytes with AuNP/BC at pH < pKa resulted in consistent electrostatic alignment of the CBZ and ATZ molecules across the nanocomposite and highly reproducible SERS spectra. Limits of detection of 3 nM and 11 nM for CBZ and ATZ, respectively, were attained. Tests with additional analytes (melamine, 2,4-dichloroaniline, 4-chloroaniline, 3-bromoaniline, and 3-nitroaniline) further illustrate that the AuNP/BC platform provides reproducible analyte detection and quantification while avoiding the uncontrolled aggregation and flocculation of AuNPs that often hinder low pH detection.

  8. Sensing of hydrophobic cavity of serum albumin by an adenosine analogue: fluorescence correlation and ensemble spectroscopic studies.

    PubMed

    Nag, Moupriya; Bera, Kallol; Chakraborty, Sandipan; Basak, Soumen

    2013-10-05

    Adenosine is a naturally occurring purine nucleoside that plays important role in various biochemical processes. We have studied the binding of TNP-Ado (trinitrophenylated-adenosine), a fluorescent analogue of adenosine (which itself is a weak fluorophore), with a model transport protein, bovine serum albumin (BSA). The binding affinity was determined using Fluorescence correlation spectroscopy (FCS) and compared with its value obtained from macroscopic fluorescence spectroscopic studies. Fluorescence and circular dichroism (CD) spectroscopies were employed together with molecular docking study to locate the probable binding site of TNP-Ado on BSA and its effect on the conformation and stability of BSA. Fluorescence studies showed that TNP-Ado binds to BSA in 1:1 stoichiometry via an entropically favoured process. Induced CD spectra revealed that a chiro-optical switching of TNP-Ado occurs upon binding to BSA. Results on urea-induced denaturation of BSA and docking study suggested that the binding site for the ligand is in the hydrophobic subdomain IIA of BSA, consistent with the results of other measurements. This study establishes TNP-Ado as a sensor of hydrophobic regions in proteins like serum albumin, having the capability of detecting a minimum concentration of 140ng/ml protein. FCS measurement of binding interaction of rhodamine-labeled TNP-Ado (RTNP-Ado) with BSA yielded an association constant of KFCS=(1.03±0.06) × 10(4)M(-1). The association constants (Ka) obtained for binding of BSA with rhodamine-free (i.e. TNP-Ado) and rhodamine-labeled (RTNP-Ado) ligands, obtained using the ensemble spectroscopic technique, were (2.3±0.06) × 10(5)M(-1) and (3.4±0.03) × 10(4)M(-1), respectively. The difference between the values of Ka for the free and labeled ligands suggests that fluorescent labeling of small molecules perceptibly interferes with the binding process. On the other hand, the difference in Ka obtained by FCS and ensemble techniques is due to the fact that while the former measures the change in the diffusion constant (i.e. size) of RTNP-Ado upon binding to BSA, the latter focuses on the change of tryptophan emission properties of BSA due to the presence of bound RTNP-Ado. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Surface Lewis acid-base properties of polymers measured by inverse gas chromatography.

    PubMed

    Shi, Baoli; Zhang, Qianru; Jia, Lina; Liu, Yang; Li, Bin

    2007-05-18

    Surface Lewis acid-base properties are significant for polymers materials. The acid constant, K(a) and base constant, K(b) of many polymers were characterized by some researchers with inverse gas chromatography (IGC) in recent years. In this paper, the surface acid-base constants, K(a) and K(b) of 20 kinds of polymers measured by IGC in recent years are summarized and discussed, including seven polymers characterized in this work. After plotting K(b) versus K(a), it is found that the polymers can be encircled by a triangle. They scatter in two regions of the triangle. Four polymers exist in region I. K(b)/K(a) of the polymers in region I are 1.4-2.1. The other polymers exist in region II. Most of the polymers are relative basic materials.

  10. Determination of the dissociation constants (pKa) of secondary and tertiary amines in organic media by capillary electrophoresis and their role in the electrophoretic mobility order inversion.

    PubMed

    Cantu, Marcelo Delmar; Hillebranda, Sandro; Carrilho, Emanuel

    2005-03-11

    Non-aqueous capillary electrophoresis (NACE) may provide a selectivity enhancement in separations since the analyte dissociation constants (pKa) in organic media are different from those in aqueous solutions. In this work, we have studied the inversion in mobility order observed in the separation of tertiary (imipramine (IMI) and amitryptiline (AMI)) and secondary amines (desipramine (DES) and nortryptiline (NOR)) in water, methanol, and acetonitrile. We have determined the pKa values in those solvents and the variation of dissociation constants with the temperature. From these data, and applying the Van't Hoff equation, we have calculated the thermodynamic parameters deltaH and deltaS. The pKa values found in methanol for DES, NOR, IMI, and AMI were 10.80, 10.79, 10.38, and 10.33, respectively. On the other hand, in acetonitrile an opposite relation was found since the values were 20.60, 20.67, 20.74, and 20.81 for DES, NOR, IMI, and AMI. This is the reason why a migration order inversion is observed in NACE for these solvents. The thermodynamic parameters were evaluated and presented a tendency that can be correlated with that observed for pKa values.

  11. Design of protonation constant measurement apparatus for carbon dioxide capturing solvents

    NASA Astrophysics Data System (ADS)

    Ma'mun, S.; Amelia, E.; Rahmat, V.; Alwani, D. R.; Kurniawan, D.

    2016-11-01

    Global warming phenomenon has led to world climate change caused by high concentrations of greenhouse gases (GHG), e.g. carbon dioxide (CO2), in the atmosphere. Carbon dioxide is produced in large amount from coal-fired power plants, iron and steel production, cement production, chemical and petrochemical manufacturing, natural gas purification, and transportation. Carbon dioxide emissions seem to rise from year to year; some efforts to reduce the emissions are, therefore, required. Amine-based absorption could be deployed for post-combustion capture. Some parameters, e.g. mass transfer coefficients and chemical equilibrium constants, are required for a vapor-liquid equilibrium modeling. Protonation constant (pKa), as one of those parameters, could then be measured experimentally. Therefore, an experimental setup to measure pKa of CO2 capturing solvents was designed and validated by measuring the pKa of acetic acid at 30 to 70 °C by a potentiometric titration method. The set up was also used to measure the pKa of MEA at 27 °C. Based on the validation results and due to low vapor pressure of CO2 capturing solvents in general, e.g. alkanolamines, the setup could therefore be used for measuring pKa of the CO2 capturing solvents at temperatures up to 70 °C.

  12. Entrapment of alpha1-acid glycoprotein in high-performance affinity columns for drug-protein binding studies.

    PubMed

    Bi, Cong; Jackson, Abby; Vargas-Badilla, John; Li, Rong; Rada, Giana; Anguizola, Jeanethe; Pfaunmiller, Erika; Hage, David S

    2016-05-15

    A slurry-based method was developed for the entrapment of alpha1-acid glycoprotein (AGP) for use in high-performance affinity chromatography to study drug interactions with this serum protein. Entrapment was achieved based on the physical containment of AGP in hydrazide-activated porous silica supports and by using mildly oxidized glycogen as a capping agent. The conditions needed for this process were examined and optimized. When this type of AGP column was used in binding studies, the association equilibrium constant (Ka) measured by frontal analysis at pH 7.4 and 37°C for carbamazepine with AGP was found to be 1.0 (±0.5)×10(5)M(-1), which agreed with a previously reported value of 1.0 (±0.1)×10(5)M(-1). Binding studies based on zonal elution were conducted for several other drugs with such columns, giving equilibrium constants that were consistent with literature values. An entrapped AGP column was also used in combination with a column containing entrapped HSA in a screening assay format to compare the binding of various drugs to AGP and HSA. These results also agreed with previous data that have been reported in literature for both of these proteins. The same entrapment method could be extended to other proteins and to the investigation of additional types of drug-protein interactions. Potential applications include the rapid quantitative analysis of biological interactions and the high-throughput screening of drug candidates for their binding to a given protein. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Entrapment of Alpha1-Acid Glycoprotein in High-Performance Affinity Columns for Drug-Protein Binding Studies

    PubMed Central

    Bi, Cong; Jackson, Abby; Vargas-Badilla, John; Li, Rong; Rada, Giana; Anguizola, Jeanethe; Pfaunmiller, Erika; Hage, David S.

    2015-01-01

    A slurry-based method was developed for the entrapment of alpha1-acid glycoprotein (AGP) for use in high-performance affinity chromatography to study drug interactions with this serum protein. Entrapment was achieved based on the physical containment of AGP in hydrazide-activated porous silica supports and by using mildly oxidized glycogen as a capping agent. The conditions needed for this process were examined and optimized. When this type of AGP column was used in binding studies, the association equilibrium constant (Ka) measured by frontal analysis at pH 7.4 and 37°C for carbamazepine with AGP was found to be 1.0 (± 0.5) × 105 M−1, which agreed with a previously reported value of 1.0 (± 0.1) × 105 M−1. Binding studies based on zonal elution were conducted for several other drugs with such columns, giving equilibrium constants that were consistent with literature values. An entrapped AGP column was also used in combination with a column containing entrapped HSA in a screening assay format to compare the binding of various drugs to AGP and HSA. These results also agreed with previous data that have been reported in literature for both of these proteins. The same entrapment method could be extended to other proteins and to the investigation of additional types of drug-protein interactions. Potential applications include the rapid quantitative analysis of biological interactions and the high-throughput screening of drug candidates for their binding to a given protein. PMID:26627938

  14. Different structural requirements for functional ion pore transplantation suggest different gating mechanisms of NMDA and kainate receptors.

    PubMed

    Villmann, Carmen; Hoffmann, Jutta; Werner, Markus; Kott, Sabine; Strutz-Seebohm, Nathalie; Nilsson, Tanja; Hollmann, Michael

    2008-10-01

    Although considerable progress has been made in characterizing the physiological function of the high-affinity kainate (KA) receptor subunits KA1 and KA2, no homomeric ion channel function has been shown. An ion channel transplantation approach was employed in this study to directly test if homomerically expressed KA1 and KA2 pore domains are capable of conducting currents. Transplantation of the ion pore of KA1 or KA2 into GluR6 generated perfectly functional ion channels that allowed characterization of those electrophysiological and pharmacological properties that are determined exclusively by the ion pore of KA1 or KA2. This demonstrates for the first time that KA1 and KA2 ion pore domains are intrinsically capable of conducting ions even in homomeric pore assemblies. NMDA receptors, similar to KA1- or KA2-containing receptors, function only as heteromeric complexes. They are composed of NR1 and NR2 subunits, which both are non-functional when expressed homomerically. In contrast to NR1, the homomeric NR2B ion pore failed to translate ligand binding into pore opening when transplanted into GluR6. Similarly, heteromeric coexpression of the ion channel domains of both NR1 and NR2 inserted into GluR6 failed to produce functional channels. Therefore, we conclude that the mechanism underlying the ion channel opening in the obligatorily heterotetrameric NMDA receptors differs significantly from that in the facultatively heterotetrameric alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate and KA receptors.

  15. A Chemogenomic Analysis of Ionization Constants - Implications for Drug Discovery

    PubMed Central

    Manallack, David T.; Prankerd, Richard J.; Nassta, Gemma C.; Ursu, Oleg; Oprea, Tudor I.; Chalmers, David K.

    2013-01-01

    Chemogenomics methods seek to characterize the interaction between drugs and biological systems and are an important guide for the selection of screening compounds. The acid/base character of drugs has a profound influence on their affinity for the receptor, on their absorption, distribution, metabolism, excretion and toxicity (ADMET) profile and the way the drug can be formulated. In particular, the charge state of a molecule greatly influences its lipophilicity and biopharmaceutical characteristics. This study investigates the acid/base profile of human small molecule drugs, chemogenomics datasets and screening compounds including a natural products set. We estimate the ionization constants (pKa values) of these compounds and determine the identity of the ionizable functional groups in each set. We find substantial differences in acid/base profiles of the chemogenomic classes. In many cases, these differences can be linked to the nature of the target binding site and the corresponding functional groups needed for recognition of the ligand. Clear differences are also observed between the acid/base characteristics of drugs and screening compounds. For example, the proportion of drugs containing a carboxylic acid was 20%, in stark contrast to a value of 2.4% for the screening set sample. The proportion of aliphatic amines was 27% for drugs and only 3.4% for screening compounds. This suggests that there is a mismatch between commercially available screening compounds and the compounds that are likely to interact with a given chemogenomic target family. Our analysis provides a guide for the selection of screening compounds to better target specific chemogenomic families with regard to the overall balance of acids, bases and pKa distributions. PMID:23303535

  16. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene.

    PubMed

    Lambeck, Kurt; Rouby, Hélène; Purcell, Anthony; Sun, Yiying; Sambridge, Malcolm

    2014-10-28

    The major cause of sea-level change during ice ages is the exchange of water between ice and ocean and the planet's dynamic response to the changing surface load. Inversion of ∼1,000 observations for the past 35,000 y from localities far from former ice margins has provided new constraints on the fluctuation of ice volume in this interval. Key results are: (i) a rapid final fall in global sea level of ∼40 m in <2,000 y at the onset of the glacial maximum ∼30,000 y before present (30 ka BP); (ii) a slow fall to -134 m from 29 to 21 ka BP with a maximum grounded ice volume of ∼52 × 10(6) km(3) greater than today; (iii) after an initial short duration rapid rise and a short interval of near-constant sea level, the main phase of deglaciation occurred from ∼16.5 ka BP to ∼8.2 ka BP at an average rate of rise of 12 m⋅ka(-1) punctuated by periods of greater, particularly at 14.5-14.0 ka BP at ≥40 mm⋅y(-1) (MWP-1A), and lesser, from 12.5 to 11.5 ka BP (Younger Dryas), rates; (iv) no evidence for a global MWP-1B event at ∼11.3 ka BP; and (v) a progressive decrease in the rate of rise from 8.2 ka to ∼2.5 ka BP, after which ocean volumes remained nearly constant until the renewed sea-level rise at 100-150 y ago, with no evidence of oscillations exceeding ∼15-20 cm in time intervals ≥200 y from 6 to 0.15 ka BP.

  17. Development of Methods for the Determination of pKa Values

    PubMed Central

    Reijenga, Jetse; van Hoof, Arno; van Loon, Antonie; Teunissen, Bram

    2013-01-01

    The acid dissociation constant (pKa) is among the most frequently used physicochemical parameters, and its determination is of interest to a wide range of research fields. We present a brief introduction on the conceptual development of pKa as a physical parameter and its relationship to the concept of the pH of a solution. This is followed by a general summary of the historical development and current state of the techniques of pKa determination and an attempt to develop insight into future developments. Fourteen methods of determining the acid dissociation constant are placed in context and are critically evaluated to make a fair comparison and to determine their applications in modern chemistry. Additionally, we have studied these techniques in light of present trends in science and technology and attempt to determine how these trends might affect future developments in the field. PMID:23997574

  18. Stabilities and partitioning of arenonium ions in aqueous media.

    PubMed

    Lawlor, D A; More O'Ferrall, R A; Rao, S N

    2008-12-31

    The phenathrenonium ion is formed as a reactive intermediate in the solvolysis of 9-dichloroacetoxy-9,10-dihydrophenanthrene in aqueous acetonitrile and undergoes competing reactions with water acting as a base and nucleophile. Measurements of product ratios in the presence of azide ion as a trap and 'clock' yield rate constants kp = 3.7 x 10(10) and kH2O = 1.5 x 10(8) s(-1), respectively. Combining these with rate constants for the reverse reactions (protonation of phenanthrene and acid-catalyzed aromatization of its water adduct) gives equilibrium constants pKa = -20.9 and pK(R) = -11.6. For a series of arenonium and benzylic cations, correlation of log kp with pKa, taking account of the limit to kp set by the relaxation of water (10(11) s(-1)), leads to extrapolation of kp = 9.0 x 10(10) s(-1) and pKa = -24.5 for the benzenonium ion and kp = 6.5 x 10(10) s(-1) and pKa = -22.5 for the 1-naphthalenonium ion. Combining these pKa's with estimates of equilibrium constants pKH2O for the hydration of benzene and naphthalene, and the relationship pKR = pKa + pKH2O based on Hess's law, gives pKR = -2.3 and -8.0 respectively, and highlights the inherent stability of the benzenonium ion. A correlation exists between the partitioning ratio, kp/kH2O, for carbocations reacting in water and KH2O the equilibrium constant between the respective reaction products, i.e., log(kp/kH2O) = 0.46pKH2O - 3.7. It implies that kp exceeds kH2O only when KH2O > 10(8). This is consistent with the proton transfer (a) possessing a lower intrinsic reactivity than reaction of the carbocation with water as a nucleophile and (b) being rate-determining in the hydration of alkenes (and dehydration of alcohols) except when the double bond of the alkene is unusually stabilized, as in the case of aromatic molecules.

  19. 1,2,4-Benzothiadiazine-1,1-dioxide derivatives as ionotropic glutamate receptor ligands: synthesis and structure-activity relationships.

    PubMed

    Varano, Flavia; Catarzi, Daniela; Colotta, Vittoria; Squarcialupi, Lucia; Matucci, Rosanna

    2014-11-01

    Ionotropic glutamate receptor (iGluR) modulators, specially AMPA receptor antagonists, are potential tools for numerous therapeutic applications in neurological disorders, including Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, epilepsy, chronic pain, and neuropathology ensuing from cerebral ischemia or cardiac arrest. In this work, the synthesis and binding affinities at the Gly/NMDA, AMPA, and kainic acid (KA) receptors of a new series of 1,2,4-benzothiadiazine-1,1-dioxide derivatives are reported. The results show that 1,2,4-benzothiadiazine-1,1-dioxide is a new scaffold for obtaining iGluR ligands. Moreover, this work has led us to the 7-(3-formylpyrrol-1-yl)-6-trifluoromethyl substituted compound 7, which displays the highest AMPA receptor affinity and high selectivity versus the Gly/NMDA (90-fold) and KA (46-fold) receptors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene

    PubMed Central

    Lambeck, Kurt; Rouby, Hélène; Purcell, Anthony; Sun, Yiying; Sambridge, Malcolm

    2014-01-01

    The major cause of sea-level change during ice ages is the exchange of water between ice and ocean and the planet’s dynamic response to the changing surface load. Inversion of ∼1,000 observations for the past 35,000 y from localities far from former ice margins has provided new constraints on the fluctuation of ice volume in this interval. Key results are: (i) a rapid final fall in global sea level of ∼40 m in <2,000 y at the onset of the glacial maximum ∼30,000 y before present (30 ka BP); (ii) a slow fall to −134 m from 29 to 21 ka BP with a maximum grounded ice volume of ∼52 × 106 km3 greater than today; (iii) after an initial short duration rapid rise and a short interval of near-constant sea level, the main phase of deglaciation occurred from ∼16.5 ka BP to ∼8.2 ka BP at an average rate of rise of 12 m⋅ka−1 punctuated by periods of greater, particularly at 14.5–14.0 ka BP at ≥40 mm⋅y−1 (MWP-1A), and lesser, from 12.5 to 11.5 ka BP (Younger Dryas), rates; (iv) no evidence for a global MWP-1B event at ∼11.3 ka BP; and (v) a progressive decrease in the rate of rise from 8.2 ka to ∼2.5 ka BP, after which ocean volumes remained nearly constant until the renewed sea-level rise at 100–150 y ago, with no evidence of oscillations exceeding ∼15–20 cm in time intervals ≥200 y from 6 to 0.15 ka BP. PMID:25313072

  1. The dextromethorphan analog dimemorfan attenuates kainate-induced seizures via σ1 receptor activation: comparison with the effects of dextromethorphan

    PubMed Central

    Shin, Eun-Joo; Nah, Seung-Yeol; Kim, Won-Ki; Ko, Kwang Ho; Jhoo, Wang-Kee; Lim, Yong-Kwang; Cha, Joo Young; Chen, Chieh-Fu; Kim, Hyoung-Chun

    2005-01-01

    In a previous study, we demonstrated that a dextromethorphan analog, dimemorfan, has neuroprotective effects. Dextromethorphan and dimemorfan are high-affinity ligands at σ1 receptors. Dextromethorphan has moderate affinities for phencyclidine sites, while dimemorfan has very low affinities for such sites, suggesting that these sites are not essential for the anticonvulsant actions of dimemorfan. Kainate (KA) administration (10 mg kg−1, i.p.) produced robust convulsions lasting 4–6 h in rats. Pre-treatment with dimemorfan (12 or 24 mg kg−1) reduced seizures in a dose-dependent manner. Dimemorfan pre-treatment also attenuated the KA-induced increases in c-fos/c-jun expression, activator protein (AP)-1 DNA-binding activity, and loss of cells in the CA1 and CA3 fields of the hippocampus. These effects of dimemorfan were comparable to those of dextromethorphan. The anticonvulsant action of dextromethorphan or dimemorfan was significantly counteracted by a selective σ1 receptor antagonist BD 1047, suggesting that the anticonvulsant action of dextromethorphan or dimemorfan is, at least in part, related to σ1 receptor-activated modulation of AP-1 transcription factors. We asked whether dimemorfan produces the behavioral side effects seen with dextromethorphan or dextrorphan (a phencyclidine-like metabolite of dextromethorphan). Conditioned place preference and circling behaviors were significantly increased in mice treated with phencyclidine, dextrorphan or dextromethorphan, while mice treated with dimemorfan showed no behavioral side effects. Our results suggest that dimemorfan is equipotent to dextromethorphan in preventing KA-induced seizures, while it may lack behavioral effects, such as psychotomimetic reactions. PMID:15723099

  2. A chirality change in XPC- and Sfi1-derived peptides affects their affinity for centrin.

    PubMed

    Grecu, Dora; Irudayaraj, Victor Paul Raj; Martinez-Sanz, Juan; Mallet, Jean-Maurice; Assairi, Liliane

    2016-04-01

    The Ca(2+)-binding protein centrin binds to a hydrophobic motif (W(1)xxL(4)xxxL(8)) included in the sequence of several cellular targets: XPC (xeroderma pigmentosum group C protein), Sfi1 (suppressor of fermentation-induced loss of stress resistance protein1), and Sac3 [the central component of the transcription and mRNA export (TREX-2) complex]. However, centrin binding occurs in a reversed orientation (L(8)xxxL(4)xxW(1)) for Sfi1 and Sac3 compared with XPC. Because D-peptides have been investigated for future therapeutic use, we analyzed their centrin-binding properties. Their affinity for centrin was measured using isothermal titration calorimetry. The chirality change in the target-derived peptides affected their ability to bind centrin in a specific manner depending on the sequence orientation of the centrin-binding motif. In contrast to L-XPC-P10, D-XPC-P10 bound C-HsCen1 in a Ca(2+)-dependent manner and to a lesser extent. D-XPC-P10 exhibited a reduced affinity for C-HsCen1 (Ka=0.064 × 10(6) M(-1)) by a factor of 2000 compared with L-XPC-P10 (Ka=132 × 10(6) M(-1)). D-peptides have a lower affinity than L-peptides for centrin, and the strength of this affinity depends on the sequence orientation of the target-derived peptides. The residual affinity observed for D-XPC suggests that the use of d-peptides represents a promising strategy for inhibiting centrin binding to its targets. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Determination of pK(a) of felodipine using UV-Visible spectroscopy.

    PubMed

    Pandey, M M; Jaipal, A; Kumar, A; Malik, R; Charde, S Y

    2013-11-01

    In the present study, for the first time, experimental pKa value of felodipine is reported. Dissociation constant, pKa, is one of the very important physicochemical properties of drugs. It is of paramount significance from the perspective of pharmaceutical analysis and dosage form design. The method used for the pKa determination of felodipine was essentially a UV-Visible spectrophotometric method. The spectrophotometric method for the pKa determination was opted by acknowledging the established fact that spectrophotometric determination of pKa produces most precise values. The pKa of felodipine was found to be 5.07. Furthermore, the ruggedness of the determined value is also validated in this study in order to produce exact pKa of the felodipine. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Streptococcal adhesin SspA/B analogue peptide inhibits adherence and impacts biofilm formation of Streptococcus mutans

    PubMed Central

    Ito, Tatsuro; Ichinosawa, Takahiro; Shimizu, Takehiko

    2017-01-01

    Streptococcus mutans, the major causative agent of dental caries, adheres to tooth surfaces via the host salivary glycoprotein-340 (gp340). This adherence can be competitively inhibited by peptides derived from the SspA/B adhesins of Streptococcus gordonii, a human commensal microbe that competes for the same binding sites. Ssp(A4K-A11K), a double-lysine substituted SspA/B peptide analogue, has been shown to exhibit superior in vitro binding affinity for a gp340-derived peptide (SRCRP2), suggesting that Ssp(A4K-A11K) may be of clinical interest. In the present work, we tested the inhibitory effects of Ssp(A4K-A11K) on adherence and biofilm formation of S. mutans by reconstructing an artificial oral environment using saliva-coated polystyrene plates and hydroxyapatite disks. Bacterial adherence (adherence period: 1 h) was assessed by an enzyme-linked immunosorbent assay using biotinylated bacterial cells. Biofilm formation (periods: 8, 11, or 14 h) was assessed by staining and imaging of the sessile cells, or by recovering biofilm cells and plating for cell counts. The pH values of the culture media were measured as a biofilm acidogenicity indicator. Bactericidality was measured by loss of optical density during culturing in the presence of the peptide. We observed that 650 μM Ssp(A4K-A11K) significantly inhibited adherence of S. mutans to saliva-coated polystyrene; a similar effect was seen on bacterial affinity for SRCRP2. Ssp(A4K-A11K) had lesser effects on the adherence of commensal streptococci. Pretreatment of polystyrene and hydroxyapatite with 650 μM Ssp(A4K-A11K) significantly attenuated biofilm formation, whether tested with glucose- or sucrose-containing media. The SspA/B peptide’s activity did not reflect bactericidality. Strikingly, pH in Ssp-treated 8-h (6.8 ± 0.06) and 11-h (5.5 ± 0.06) biofilms showed higher values than the critical pH. Thus, Ssp(A4K-A11K) acts by inhibiting bacterial adherence and cariogrnic biofilm formation. We further consider these results in the context of the safety, specificity, and stability properties of the Ssp(A4K-A11K) peptide. PMID:28394940

  5. Synthesis of (nor)tropeine (di)esters and allosteric modulation of glycine receptor binding.

    PubMed

    Maksay, Gábor; Nemes, Péter; Vincze, Zoltán; Bíró, Timea

    2008-02-15

    (Hetero)aromatic mono- and diesters of tropine and nortropine were prepared. Modulation of [3H]strychnine binding to glycine receptors of rat spinal cord was examined with a ternary allosteric model. The esters displaced [3H]strychnine binding with nano- or micromolar potencies and strong negative cooperativity. Coplanarity and distance of the ester moieties of diesters affected the binding affinity being nanomolar for isophthaloyl-bistropane and nortropeines. Nortropisetron had the highest affinity (K(A) approximately 10 nM). Two esters displayed negative cooperativity with glycine in displacement, while three esters of low-affinity and nortropisetron exerted positive cooperativity with glycine.

  6. Thermodynamic linkage between the binding of protons and inhibitors to HIV-1 protease.

    PubMed Central

    Trylska, J.; Antosiewicz, J.; Geller, M.; Hodge, C. N.; Klabe, R. M.; Head, M. S.; Gilson, M. K.

    1999-01-01

    The aspartyl dyad of free HIV-1 protease has apparent pK(a)s of approximately 3 and approximately 6, but recent NMR studies indicate that the aspartyl dyad is fixed in the doubly protonated form over a wide pH range when cyclic urea inhibitors are bound, and in the monoprotonated form when the inhibitor KNI-272 is bound. We present computations and measurements related to these changes in protonation and to the thermodynamic linkage between protonation and inhibition. The Poisson-Boltzmann model of electrostatics is used to compute the apparent pK(a)s of the aspartyl dyad in the free enzyme and in complexes with four different inhibitors. The calculations are done with two parameter sets. One assigns epsilon = 4 to the solute interior and uses a detailed model of ionization; the other uses epsilon = 20 for the solute interior and a simplified representation of ionization. For the free enzyme, both parameter sets agree well with previously measured apparent pK(a)s of approximately 3 and approximately 6. However, the calculations with an internal dielectric constant of 4 reproduce the large pKa shifts upon binding of inhibitors, but the calculations with an internal dielectric constant of 20 do not. This observation has implications for the accurate calculation of pK(a)s in complex protein environments. Because binding of a cyclic urea inhibitor shifts the pK(a)s of the aspartyl dyad, changing the pH is expected to change its apparent binding affinity. However, we find experimentally that the affinity is independent of pH from 5.5 to 7.0. Possible explanations for this discrepancy are discussed. PMID:10210196

  7. Holocene fire, vegetation, and climate dynamics inferred from charcoal and pollen record in the eastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhao, Wenwei; Zhao, Yan; Qin, Feng

    2017-10-01

    Understanding fire history and its driving mechanisms can provide valuable insights into present fire regime (intensity, severity and frequency), the interplay between vegetation and fire, and trigger of fire activities. Here we reconstruct the Holocene fire history in the Zoige Basin on the eastern Tibetan Plateau, on the basis of sedimentary micro-charcoal record over the last 10.0 ka (1 ka = 1000 cal yr BP) and discuss the influences of vegetation and climate on fire dynamics. Our results show that regional fire was active at 10.0-3.3 ka and a significant decrease in fire activity characterized the period after 3.3 ka. The high regional fire frequency at 10.0-3.3 ka is consistent with the forested landscape suggested by high affinity scores of cool mixed forest biome (mainly consisted of spruce), implying that fire dynamics during this period was generally controlled by the variations of arboreal biomass and summer temperature. During 6.3-4.6 ka the prevailing Asian summer monsoon provided increased moisture to this region and thus suppressed fire activities to an extent, despite the availability of abundant biomass. Declined tree biomass after 3.3 ka probably accounted for the decreased fire activities. In addition, two successive fire events at ca. 3.5-3.3 ka were likely responsible for the subsequent abrupt decline of forest components in the landscape.

  8. Structure and assembly mechanism for heteromeric kainate receptors.

    PubMed

    Kumar, Janesh; Schuck, Peter; Mayer, Mark L

    2011-07-28

    Native glutamate receptor ion channels are tetrameric assemblies containing two or more different subunits. NMDA receptors are obligate heteromers formed by coassembly of two or three divergent gene families. While some AMPA and kainate receptors can form functional homomeric ion channels, the KA1 and KA2 subunits are obligate heteromers which function only in combination with GluR5-7. The mechanisms controlling glutamate receptor assembly involve an initial step in which the amino terminal domains (ATD) assemble as dimers. Here, we establish by sedimentation velocity that the ATDs of GluR6 and KA2 coassemble as a heterodimer of K(d) 11 nM, 32,000-fold lower than the K(d) for homodimer formation by KA2; we solve crystal structures for the GluR6/KA2 ATD heterodimer and heterotetramer assemblies. Using these structures as a guide, we perform a mutant cycle analysis to probe the energetics of assembly and show that high-affinity ATD interactions are required for biosynthesis of functional heteromeric receptors. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Constant pH Molecular Dynamics in Explicit Solvent with Enveloping Distribution Sampling and Hamiltonian Exchange

    PubMed Central

    2015-01-01

    We present a new computational approach for constant pH simulations in explicit solvent based on the combination of the enveloping distribution sampling (EDS) and Hamiltonian replica exchange (HREX) methods. Unlike constant pH methods based on variable and continuous charge models, our method is based on discrete protonation states. EDS generates a hybrid Hamiltonian of different protonation states. A smoothness parameter s is used to control the heights of energy barriers of the hybrid-state energy landscape. A small s value facilitates state transitions by lowering energy barriers. Replica exchange between EDS potentials with different s values allows us to readily obtain a thermodynamically accurate ensemble of multiple protonation states with frequent state transitions. The analysis is performed with an ensemble obtained from an EDS Hamiltonian without smoothing, s = ∞, which strictly follows the minimum energy surface of the end states. The accuracy and efficiency of this method is tested on aspartic acid, lysine, and glutamic acid, which have two protonation states, a histidine with three states, a four-residue peptide with four states, and snake cardiotoxin with eight states. The pKa values estimated with the EDS-HREX method agree well with the experimental pKa values. The mean absolute errors of small benchmark systems range from 0.03 to 0.17 pKa units, and those of three titratable groups of snake cardiotoxin range from 0.2 to 1.6 pKa units. This study demonstrates that EDS-HREX is a potent theoretical framework, which gives the correct description of multiple protonation states and good calculated pKa values. PMID:25061443

  10. Multi-site binding of epigallocatechin gallate to human serum albumin measured by NMR and isothermal titration calorimetry

    PubMed Central

    Eaton, Joshua D.

    2017-01-01

    The affinity of epigallocatechin gallate (EGCG) for human serum albumin (HSA) was measured in physiological conditions using NMR and isothermal titration calorimetry (ITC). NMR estimated the Ka (self-dissociation constant) of EGCG as 50 mM. NMR showed two binding events: strong (n1=1.8 ± 0.2; Kd1 =19 ± 12 μM) and weak (n2∼20; Kd2 =40 ± 20 mM). ITC also showed two binding events: strong (n1=2.5 ± 0.03; Kd1 =21.6 ± 4.0 μM) and weak (n2=9 ± 1; Kd2 =22 ± 4 mM). The two techniques are consistent, with an unexpectedly high number of bound EGCG. The strong binding is consistent with binding in the two Sudlow pockets. These results imply that almost all EGCG is transported in the blood bound to albumin and explains the wide tissue distribution and chemical stability of EGCG in vivo. PMID:28424370

  11. Human antibody fragments specific for the epidermal growth factor receptor selected from large non-immunised phage display libraries.

    PubMed

    Souriau, Christelle; Rothacker, Julie; Hoogenboom, Hennie R; Nice, Edouard

    2004-09-01

    Antibodies to EGFR have been shown to display anti-tumour effects mediated in part by inhibition of cellular proliferation and angiogenesis, and by enhancement of apoptosis. Humanised antibodies are preferred for clinical use to reduce complications with HAMA and HAHA responses frequently seen with murine and chimaeric antibodies. We have used depletion and subtractive selection strategies on cells expressing the EGFR to sample two large antibody fragment phage display libraries for the presence of human antibodies which are specific for the EGFR. Four Fab fragments and six scFv fragments were identified, with affinities of up to 2.2nM as determined by BIAcore analysis using global fitting of the binding curves to obtain the individual rate constants (ka and kd). This overall approach offers a generic screening method for the identification of growth factor specific antibodies and antibody fragments from large expression libraries and has potential for the rapid development of new therapeutic and diagnostic reagents.

  12. Rationalizing 5000-Fold Differences in Receptor-Binding Rate Constants of Four Cytokines

    PubMed Central

    Pang, Xiaodong; Qin, Sanbo; Zhou, Huan-Xiang

    2011-01-01

    The four cytokines erythropoietin (EPO), interleukin-4 (IL4), human growth hormone (hGH), and prolactin (PRL) all form four-helix bundles and bind to type I cytokine receptors. However, their receptor-binding rate constants span a 5000-fold range. Here, we quantitatively rationalize these vast differences in rate constants by our transient-complex theory for protein-protein association. In the transient complex, the two proteins have near-native separation and relative orientation, but have yet to form the short-range specific interactions of the native complex. The theory predicts the association rate constant as ka=ka0exp(−ΔGel∗/kBT) where ka0 is the basal rate constant for reaching the transient complex by random diffusion, and the Boltzmann factor captures the rate enhancement due to electrostatic attraction. We found that the vast differences in receptor-binding rate constants of the four cytokines arise mostly from the differences in charge complementarity among the four cytokine-receptor complexes. The basal rate constants (ka0) of EPO, IL4, hGH, and PRL were similar (5.2 × 105 M−1s−1, 2.4 × 105 M−1s−1, 1.7 × 105 M−1s−1, and 1.7 × 105 M−1s−1, respectively). However, the average electrostatic free energies (ΔGe1∗) were very different (−4.2 kcal/mol, −2.4 kcal/mol, −0.1 kcal/mol, and −0.5 kcal/mol, respectively, at ionic strength = 160 mM). The receptor-binding rate constants predicted without adjusting any parameters, 6.2 × 108 M−1s−1, 1.3 × 107 M−1s−1, 2.0 × 105 M−1s−1, and 7.6 × 104 M−1s−1, respectively, for EPO, IL4, hGH, and PRL agree well with experimental results. We uncover that these diverse rate constants are anticorrelated with the circulation concentrations of the cytokines, with the resulting cytokine-receptor binding rates very close to the limits set by the half-lives of the receptors, suggesting that these binding rates are functionally relevant and perhaps evolutionarily tuned. Our calculations also reproduced well-observed effects of mutations and ionic strength on the rate constants and produced a set of mutations on the complex of hGH with its receptor that putatively enhances the rate constant by nearly 100-fold through increasing charge complementarity. To quantify charge complementarity, we propose a simple index based on the charge distribution within the binding interface, which shows good correlation with ΔGe1∗. Together these results suggest that protein charges can be manipulated to tune ka and control biological function. PMID:21889455

  13. Co-solvent effects on reaction rate and reaction equilibrium of an enzymatic peptide hydrolysis.

    PubMed

    Wangler, A; Canales, R; Held, C; Luong, T Q; Winter, R; Zaitsau, D H; Verevkin, S P; Sadowski, G

    2018-04-25

    This work presents an approach that expresses the Michaelis constant KaM and the equilibrium constant Kth of an enzymatic peptide hydrolysis based on thermodynamic activities instead of concentrations. This provides KaM and Kth values that are independent of any co-solvent. To this end, the hydrolysis reaction of N-succinyl-l-phenylalanine-p-nitroanilide catalysed by the enzyme α-chymotrypsin was studied in pure buffer and in the presence of the co-solvents dimethyl sulfoxide, trimethylamine-N-oxide, urea, and two salts. A strong influence of the co-solvents on the measured Michaelis constant (KM) and equilibrium constant (Kx) was observed, which was found to be caused by molecular interactions expressed as activity coefficients. Substrate and product activity coefficients were used to calculate the activity-based values KaM and Kth for the co-solvent free reaction. Based on these constants, the co-solvent effect on KM and Kx was predicted in almost quantitative agreement with the experimental data. The approach presented here does not only reveal the importance of understanding the thermodynamic non-ideality of reactions taking place in biological solutions and in many technological applications, it also provides a framework for interpreting and quantifying the multifaceted co-solvent effects on enzyme-catalysed reactions that are known and have been observed experimentally for a long time.

  14. Affine group formulation of the Standard Model coupled to gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Ching-Yi, E-mail: l2897107@mail.ncku.edu.tw; Ita, Eyo, E-mail: ita@usna.edu; Soo, Chopin, E-mail: cpsoo@mail.ncku.edu.tw

    In this work we apply the affine group formalism for four dimensional gravity of Lorentzian signature, which is based on Klauder’s affine algebraic program, to the formulation of the Hamiltonian constraint of the interaction of matter and all forces, including gravity with non-vanishing cosmological constant Λ, as an affine Lie algebra. We use the hermitian action of fermions coupled to gravitation and Yang–Mills theory to find the density weight one fermionic super-Hamiltonian constraint. This term, combined with the Yang–Mills and Higgs energy densities, are composed with York’s integrated time functional. The result, when combined with the imaginary part of themore » Chern–Simons functional Q, forms the affine commutation relation with the volume element V(x). Affine algebraic quantization of gravitation and matter on equal footing implies a fundamental uncertainty relation which is predicated upon a non-vanishing cosmological constant. -- Highlights: •Wheeler–DeWitt equation (WDW) quantized as affine algebra, realizing Klauder’s program. •WDW formulated for interaction of matter and all forces, including gravity, as affine algebra. •WDW features Hermitian generators in spite of fermionic content: Standard Model addressed. •Constructed a family of physical states for the full, coupled theory via affine coherent states. •Fundamental uncertainty relation, predicated on non-vanishing cosmological constant.« less

  15. Real-time association rate constant measurement using combination tapered fiber-optic biosensor (CTFOB) dip-probes

    NASA Astrophysics Data System (ADS)

    Simmonds, Boris; Wang, Chun-Wei; Kapoor, Rakesh

    2010-02-01

    This document reports a novel method of measuring association rate constant (ka) for antibody-antigen interaction using evanescent wave-based combination tapered fiber-optic biosensor (CTFOB) dip-probes. The method was demonstrated by measuring association rate constant for bovine serum albumin (BSA) and anti-BSA antibody interaction. "Direct method" was used for detection; goat anti-BSA "capture" antibodies were immobilized on the probe surfaces while the antigen (BSA) was directly labeled with Alexa 488 dye. The probes were subsequently submerged in 3nM Labeled BSA in egg albumin (1 mg/ml). The fluorescence signal recorded was proportional to BSA anti-BSA conjugates and continuous signal was acquired suing a fiber optic spectrometer (Ocean Optics, Inc.). A 476 nm diode laser was use as an excitation source. Association constant was estimated from a plot of signal as a function of time. Measured association rate constant ka for the binding of BSA with anti-BSA at room temperature is (8.33 +/- 0.01) x 104 M-1s-1.

  16. Generation of a novel high-affinity monoclonal antibody with conformational recognition epitope on human IgM.

    PubMed

    Sarikhani, Sina; Mirshahi, Manouchehr; Gharaati, Mohammad Reza; Mirshahi, Tooran

    2010-11-01

    As IgM is the first isotype of antibody which appears in blood after initial exposure to a foreign antigen in the pattern of primary response, detection, and quantification of this molecule in blood seems invaluable. To approach these goals, generation, and characterization of a highly specific mAb (monoclonal antibody) against human IgM were investigated. Human IgM immunoglobulins were used to immunize Balb/c mice. Spleen cells taken from the immunized animals were fused with SP2/O myeloma cells using PEG (polyethylene glycol, MW 1450) as fusogen. The hybridomas were cultured in HAT containing medium and supernatants from the growing hybrids were screened by enzyme-linked immunosorbent assay (ELISA) using plates coated with pure human IgM and the positive wells were then cloned at limiting dilutions. The best clone designated as MAN-1, was injected intraperitoneally to some Pristane-injected mice. Anti-IgM mAb was purified from the animals' ascitic fluid by protein-G sepharose followed by DEAE-cellulose ion exchange chromatography. MAN-1 interacted with human IgM with a very high specificity and affinity. The purity of the sample was tested by SDS-PAGE and the affinity constant was measured (K(a) = 3.5 x 10(9)M(-1). Immunoblotting and competitive ELISA were done and the results showed that the harvested antibody recognizes a conformational epitope on the mu chain of human IgM and there was no cross-reactivity with other subclasses of immunoglobulins. Furthermore, isotyping test was done and the results showed the subclass of the obtained mAb which was IgG(1)kappa.

  17. VARIABLE BOUND-SITE CHARGING CONTRIBUTIONS TO SURFACE COMPLEXATION MASS ACTION EXPRESSIONS

    EPA Science Inventory

    One and two pK models of surface complexation reactions between reactive surface sites (>SOH) and the proton (H+) use mass action expressions of the form: Ka={[>SOHn-1z-1]g>SOH(0-1)aH+EXP(-xeY/kT)}/{[>SOHnz]g>SOH(n)} where Ka=the acidity constant, [ ]=reactive species concentrati...

  18. Selective retention of basic compounds by metal aquo-ion affinity chromatography.

    PubMed

    Asakawa, Yoshiki; Yamamoto, Eiichi; Asakawa, Naoki

    2014-10-01

    A novel metal aquo-ion affinity chromatography has been developed for the analysis of basic compounds using heat-treated silica gel containing hydrated metal cations (metal aquo-ions) as the packing material. The packing materials of the metal aquo-ion affinity chromatography were prepared by the immobilization of a single metal component such as Fe(III), Al(III), Ag(I), and Ni(II) on silica gel followed by extensive heat treatment. The immobilized metals form aquo-ions to present cation-exchange ability for basic analytes and the cation-exchange ability for basic analytes depends on pKa of the immobilized metal species. In the present study, to evaluate the retention characteristics of metal aquo-ion affinity chromatography, the on-line solid-phase extraction of drugs was investigated. Obtained data clearly evidence the selective retention capability of metal aquo-ion affinity chromatography for basic analytes with sufficient capacity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Water Sampling While Under Way , Proceedings of a Symposium and Workshops, February 11-12, 1980.

    DTIC Science & Technology

    1980-01-01

    W, and consequently W/R, will be small. To illustrate these points, values of kl, kA , and W are comparedin Table 1 for a typical, round, galvanized...7 TABLE I COMPARISON OF SAMPLER CABLE AND TYPICAL ELECTROMECHANICAL CABLE Characteristic k1 kA k W Electromechanical 0.40 1 0.40 1.5 t 2 Sampler...configurations obviously do not suffer in static (i.e., constant speed) performance since the factors k1 and kA are the same with or without the voids, assuming

  20. Development of a Gd(III)-based receptor-induced magnetization enhancement (RIME) contrast agent for β-glucuronidase activity profiling.

    PubMed

    Chen, Shih-Hsien; Kuo, Yu-Ting; Singh, Gyan; Cheng, Tian-Lu; Su, Yu-Zheng; Wang, Tzu-Pin; Chiu, Yen-Yu; Lai, Jui-Jen; Chang, Chih-Ching; Jaw, Twei-Shiun; Tzou, Shey-Cherng; Liu, Gin-Chung; Wang, Yun-Ming

    2012-11-19

    β-Glucuronidase is a key lysosomal enzyme and is often overexpressed in necrotic tumor masses. We report here the synthesis of a pro receptor-induced magnetization enhancement (pro-RIME) magnetic resonance imaging (MRI) contrast agent ([Gd(DOTA-FPβGu)]) for molecular imaging of β-glucuronidase activity in tumor tissues. The contrast agent consists of two parts, a gadolinium complex and a β-glucuronidase substrate (β-d-glucopyranuronic acid). The binding association constant (KA) of [Gd(DOTA-FPβGu)] is 7.42 × 10(2), which is significantly lower than that of a commercially available MS-325 (KA = 3.0 × 10(4)) RIME contrast agent. The low KA value of [Gd(DOTA-FPβGu)] is due to the pendant β-d-glucopyranuronic acid moiety. Therefore, [Gd(DOTA-FPβGu)] can be used for detection of β-glucuronidase through RIME modulation. The detail mechanism of enzymatic activation of [Gd(DOTA-FPβGu)] was elucidated by LC-MS. The kinetics of β-glucuronidase catalyzed hydrolysis of [Eu(DOTA-FPβGu)] at pH 7.4 best fit the Miechalis-Menten kinetic mode with Km = 1.38 mM, kcat = 3.76 × 10(3), and kcat/Km = 2.72 × 10(3) M(-1) s(-1). The low Km value indicates high affinity of β-glucuronidase for [Gd(DOTA-FPβGu)] at physiological pH. Relaxometric studies revealed that T1 relaxivity of [Gd(DOTA-FPβGu)] changes in response to the concentration of β-glucuronidase. Consistent with the relaxometric studies, [Gd(DOTA-FPβGu)] showed significant change in MR image signal in the presence of β-glucuronidase and HSA. In vitro and in vivo MR images demonstrated appreciable differences in signal enhancement in the cell lines and tumor xenografts in accordance to their expression levels of β-glucuronidase.

  1. PHARMACEUTICAL AND BIOMEDICAL APPLICATIONS OF AFFINITY CHROMATOGRAPHY: RECENT TRENDS AND DEVELOPMENTS

    PubMed Central

    Hage, David S.; Anguizola, Jeanethe A.; Bi, Cong; Li, Rong; Matsuda, Ryan; Papastavros, Efthimia; Pfaunmiller, Erika; Vargas, John; Zheng, Xiwei

    2012-01-01

    Affinity chromatography is a separation technique that has become increasingly important in work with biological samples and pharmaceutical agents. This method is based on the use of a biologically-related agent as a stationary phase to selectively retain analytes or to study biological interactions. This review discusses the basic principles behind affinity chromatography and examines recent developments that have occurred in the use of this method for biomedical and pharmaceutical analysis. Techniques based on traditional affinity supports are discussed, but an emphasis is placed on methods in which affinity columns are used as part of HPLC systems or in combination with other analytical methods. General formats for affinity chromatography that are considered include step elution schemes, weak affinity chromatography, affinity extraction and affinity depletion. Specific separation techniques that are examined include lectin affinity chromatography, boronate affinity chromatography, immunoaffinity chromatography, and immobilized metal ion affinity chromatography. Approaches for the study of biological interactions by affinity chromatography are also presented, such as the measurement of equilibrium constants, rate constants, or competition and displacement effects. In addition, related developments in the use of immobilized enzyme reactors, molecularly imprinted polymers, dye ligands and aptamers are briefly considered. PMID:22305083

  2. Computational chemical analysis of unconjugated bilirubin anions and insights into pKa values clarification

    NASA Astrophysics Data System (ADS)

    Vega-Hissi, Esteban G.; Estrada, Mario R.; Lavecchia, Martín J.; Pis Diez, Reinaldo

    2013-01-01

    The pKa, the negative logarithm of the acid dissociation equilibrium constant, of the carboxylic acid groups of unconjugated bilirubin in water is a discussed issue because there are quite different experimental values reported. Using quantum mechanical calculations we have studied the conformational behavior of unconjugated bilirubin species (in gas phase and in solution modeled implicitly and explicitly) to provide evidence that may clarify pKa values because of its pathophysiological relevance. Our results show that rotation of carboxylate group, which is not restricted, settles it in a suitable place to establish stronger interactions that stabilizes the monoanion and the dianion to be properly solvated, demonstrating that the rationalization used to justify the high pKa values of unconjugated bilirubin is inappropriate. Furthermore, low unconjugated bilirubin (UCB) pKa values were estimated from a linear regression analysis.

  3. Phase Diagram of Kob-Andersen-Type Binary Lennard-Jones Mixtures

    NASA Astrophysics Data System (ADS)

    Pedersen, Ulf R.; Schrøder, Thomas B.; Dyre, Jeppe C.

    2018-04-01

    The binary Kob-Andersen (KA) Lennard-Jones mixture is the standard model for computational studies of viscous liquids and the glass transition. For very long simulations, the viscous KA system crystallizes, however, by phase separating into a pure A particle phase forming a fcc crystal. We present the thermodynamic phase diagram for KA-type mixtures consisting of up to 50% small (B ) particles showing, in particular, that the melting temperature of the standard KA system at liquid density 1.2 is 1.028(3) in A particle Lennard-Jones units. At large B particle concentrations, the system crystallizes into the CsCl crystal structure. The eutectic corresponding to the fcc and CsCl structures is cutoff in a narrow interval of B particle concentrations around 26% at which the bipyramidal orthorhombic PuBr3 structure is the thermodynamically stable phase. The melting temperature's variation with B particle concentration at two constant pressures, as well as at the constant density 1.2, is estimated from simulations at pressure 10.19 using isomorph theory. Our data demonstrate approximate identity between the melting temperature and the onset temperature below which viscous dynamics appears. Finally, the nature of the solid-liquid interface is briefly discussed.

  4. The role of CH/π interactions in the high affinity binding of streptavidin and biotin.

    PubMed

    Ozawa, Motoyasu; Ozawa, Tomonaga; Nishio, Motohiro; Ueda, Kazuyoshi

    2017-08-01

    The streptavidin-biotin complex has an extraordinarily high affinity (Ka: 10 15 mol -1 ) and contains one of the strongest non-covalent interactions known. This strong interaction is widely used in biological tools, including for affinity tags, detection, and immobilization of proteins. Although hydrogen bond networks and hydrophobic interactions have been proposed to explain this high affinity, the reasons for it remain poorly understood. Inspired by the deceased affinity of biotin observed for point mutations of streptavidin at tryptophan residues, we hypothesized that a CH/π interaction may also contribute to the strong interaction between streptavidin and biotin. CH/π interactions were explored and analyzed at the biotin-binding site and at the interface of the subunits by the fragment molecular orbital method (FMO) and extended applications: PIEDA and FMO4. The results show that CH/π interactions are involved in the high affinity for biotin at the binding site of streptavidin. We further suggest that the involvement of CH/π interactions at the subunit interfaces and an extended CH/π network play more critical roles in determining the high affinity, rather than involvement at the binding site. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. High Throughput pharmacokinetic modeling using computationally predicted parameter values: dissociation constants (TDS)

    EPA Science Inventory

    Estimates of the ionization association and dissociation constant (pKa) are vital to modeling the pharmacokinetic behavior of chemicals in vivo. Methodologies for the prediction of compound sequestration in specific tissues using partition coefficients require a parameter that ch...

  6. Characterization of two ammonia-oxidizing bacteria isolated from reactors operated with low dissolved oxygen concentrations.

    PubMed

    Park, H-D; Noguera, D R

    2007-05-01

    To obtain ammonia-oxidizing bacterial (AOB) strains inhabiting low dissolved oxygen (DO) environments and to characterize them to better understand their function and ecology. Using a serial dilution method, two AOB strains (ML1 and NL7) were isolated from chemostat reactors operated with low DO concentrations (0.12-0.24 mg l(-1)). Phylogenetically, strains ML1 and NL7 are affiliated to AOB within the Nitrosomonas europaea and Nitrosomonas oligotropha lineages, respectively. Kinetically, strain ML1 had high affinity for oxygen (0.24 +/- 0.13 mg l(-1)) and low affinity for ammonia (1.62 +/- 0.97 mg N l(-1)), while strain NL7 had high affinity for ammonia (0.48 +/- 0.35 mg l(-1)), but a surprisingly low affinity for oxygen (1.22 +/- 0.43 mg l(-1)). A co-culture experiment was used to iteratively estimate decay constants for both strains. The results indicated that AOB without high affinity for oxygen may have other mechanisms to persist in low DO environments, with high affinity for ammonia being important. This study provides a method to determine AOB growth kinetic parameters without assuming or neglecting decay constant. And, this is the first report on oxygen affinity constant of a N. oligotropha strain.

  7. Deletion of uncharacterized domain from α-1,3-glucanase of Bacillus circulans KA-304 enhances heterologous enzyme production in Escherichia coli.

    PubMed

    Yano, Shigekazu; Suyotha, Wasana; Zanma, Sumika; Konno, Hiroyuki; Cherdvorapong, Vipavee; Wakayama, Mamoru

    2018-05-08

    α-1,3-Glucanase (Agl-KA) of Bacillus circulans KA-304 consists of an N-terminal discoidin domain (DS1), a carbohydrate binding module family 6 (CBM6), threonine and proline repeats (TP), a second discoidin domain (DS2), an uncharacterized conserved domain (UCD), and a C-terminal catalytic domain. Previously, we reported that DS1, CBM6, and DS2 have α-1,3-glucan-binding activity and contribute to α-1,3-glucan hydrolysis. In this study, UCD deletion mutant (AglΔUCD) was constructed, and its properties were compared with those of Agl-KA. α-1,3-Glucan hydrolyzing, α-1,3-glucan binding, and protoplast-forming activities of AglΔUCD were almost the same as those of Agl-KA. k cat /K m values of AgΔUCD and Agl-KA were 11.4 and 11.1 s -1 mg -1 mL, respectively. AglΔUCD and Agl-KA exhibited similar characteristics, such as optimal pH, pH stability, optimal temperature, and thermostability. These results suggest that UCD is not α-1,3-glucan-binding and flexible linker domain, and that deletion of UCD does not affect the affinity of N-terminal binding domains and the catalytic action of the C-terminal domain. Subsequently, heterologous UCenzyme productivity of AglΔD in Escherichia coli was compared with that of Agl-KA. The productivity of AglΔUCD was about 4-fold larger than that of Agl-KA after an 8-h induction at 30°C. In the case of induction at 20°C, the productivity of AglΔUCD was also larger than that of Agl-KA. These findings indicate that deletion of only UCD enhances the enzyme productivity in E. coli.

  8. High affinity kainate receptor subunits are necessary for ionotropic but not metabotropic signaling

    PubMed Central

    Fernandes, Herman B.; Catches, Justin S.; Petralia, Ronald S.; Copits, Bryan A.; Xu, Jian; Russell, Theron A.; Swanson, Geoffrey T.; Contractor, Anis

    2009-01-01

    Summary Kainate receptors are atypical members of the glutamate receptor family which are able to signal through both ionotropic and metabotropic pathways. Of the five individual kainate receptor subunits the high-affinity subunits, GluK4 (KA1) and GluK5 (KA2), are unique in that they do not form functional homomeric receptors in recombinant expression systems, but combine with the primary subunits GluK1-3 (GluR5-7) to form heteromeric assemblies. Here we generated a GluK4 mutant mouse by disrupting the Grik4 gene locus. We found that loss of the GluK4 subunit leads to a significant reduction in synaptic kainate receptor currents. Moreover, ablation of both high-affinity subunits in GluK4/GluK5 double knockout mice leads to a complete loss of pre- and postsynaptic ionotropic function of synaptic kainate receptors. The principal subunits remain at the synaptic plasma membrane, but are distributed away from postsynaptic densities and presynaptic active zones. There is also an alteration in the properties of the remaining kainate receptors, as kainic acid application fails to elicit responses in GluK4/GluK5 knockout neurons. Despite the lack of detectable ionotropic synaptic receptors, the kainate receptor-mediated inhibition of the slow afterhyperpolarization current (IsAHP), which is dependent on metabotropic pathways, was intact in GluK4/GluK5 knockout mice. These results uncover a previously unknown critical role for the high-affinity kainate receptor subunits as obligatory components of ionotropic kainate receptor function, and further, demonstrate that kainate receptor participation in metabotropic signaling pathways does not require their classic role as ion channels. PMID:19778510

  9. A dye-binding assay for measurement of the binding of Cu(II) to proteins.

    PubMed

    Wilkinson-White, Lorna E; Easterbrook-Smith, Simon B

    2008-10-01

    We analysed the theory of the coupled equilibria between a metal ion, a metal ion-binding dye and a metal ion-binding protein in order to develop a procedure for estimating the apparent affinity constant of a metal ion:protein complex. This can be done by analysing from measurements of the change in the concentration of the metal ion:dye complex with variation in the concentration of either the metal ion or the protein. Using experimentally determined values for the affinity constant of Cu(II) for the dye, 2-(5-bromo-2-pyridylaxo)-5-(N-propyl-N-sulfopropylamino) aniline (5-Br-PSAA), this procedure was used to estimate the apparent affinity constants for formation of Cu(II):transthyretin, yielding values which were in agreement with literature values. An apparent affinity constant for Cu(II) binding to alpha-synuclein of approximately 1 x 10(9)M(-1) was obtained from measurements of tyrosine fluorescence quenching by Cu(II). This value was in good agreement with that obtained using 5-Br-PSAA. Our analysis and data therefore show that measurement of changes in the equilibria between Cu(II) and 5-Br-PSAA by Cu(II)-binding proteins provides a general procedure for estimating the affinities of proteins for Cu(II).

  10. The rational design of recognitive polymeric networks for sensing applications

    NASA Astrophysics Data System (ADS)

    Noss, Kimberly Ryanne Dial

    Testosterone recognitive networks were synthesized with varying feed crosslinking percentages and length of the bi-functional crosslinking agent to analyze the effect of changing structural parameters on template binding properties such as affinity, selectivity, capacity, and diffusional transport. The crosslinking percentage of the crosslinking monomer ethylene glycol dimethacrylate was varied from 50% to 90% and associated networks experienced a 2 fold increase in capacity and a 4 fold increase in affinity with the equilibrium association constants, Ka, ranging from 0.32 +/- 0.02 x 10 4 M-1 to 1.3 +/- 0.1 x 104 M -1, respectively. The higher concentration of crosslinking monomer increased the crosslinking points available for inter-chain stabilization creating an increased number of stable cavities for template association. However, by increasing the length of the crosslinking agent and increasing the feed crosslinking percentage from 77% crosslinked poly(methacrylic acid- co-ethylene glycol dimethacrylate) (poly(MAA-co-EGDMA)) to 50% crosslinked poly(methacrylic acid-co-poly(ethylene glycol)200 dimethacrylate) (poly(MAA-co-PEG200DMA)), the mesh size of the network increased resulting in an increased template diffusion coefficient from (2.83 +/- 0.06) x 109 cm2/s to (4.3 +/- 0.06) x 109 cm2/s, respectively, which is approximately a 40% faster template diffussional transport. A 77% crosslinked poly (MAA-co-PEG200DMA) recognitive network had an association constant of (0.20 +/- 0.05) x 104 M -1 and bound (0.72 +/- 0.04) x 10-2 mmol testosterone/g dry polymer, which was less by 6 and 3 fold, respectively, compared to a similarly crosslinked poly(MAA-co-EGDMA) recognitive network. Structural manipulation of the macromolecular architecture illustrates the programmability of recognitive networks for specific template binding parameters and diffusional transport, which may lead to enhanced imprinted sensor materials and successful integration onto sensor platforms.

  11. Resistance of nickel-chromium-aluminum alloys to cyclic oxidation at 1100 C and 1200 C

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.; Lowell, C. E.

    1976-01-01

    Nickel-rich alloys in the Ni-Cr-Al system were evaluated for cyclic oxidation resistance in still air at 1,100 and 1,200 C. A first approximation oxidation attack parameter Ka was derived from specific weight change data involving both a scaling growth constant and a spalling constant. An estimating equation was derived with Ka as a function of the Cr and Al content by multiple linear regression and translated into countour ternary diagrams showing regions of minimum attack. An additional factor inferred from the regression analysis was that alloys melted in zirconia crucibles had significantly greater oxidation resistance than comparable alloys melted otherwise.

  12. Photometric method for determination of acidity constants through integral spectra analysis

    NASA Astrophysics Data System (ADS)

    Zevatskiy, Yuriy Eduardovich; Ruzanov, Daniil Olegovich; Samoylov, Denis Vladimirovich

    2015-04-01

    An express method for determination of acidity constants of organic acids, based on the analysis of the integral transmittance vs. pH dependence is developed. The integral value is registered as a photocurrent of photometric device simultaneously with potentiometric titration. The proposed method allows to obtain pKa using only simple and low-cost instrumentation. The optical part of the experimental setup has been optimized through the exclusion of the monochromator device. Thus it only takes 10-15 min to obtain one pKa value with the absolute error of less than 0.15 pH units. Application limitations and reliability of the method have been tested for a series of organic acids of various nature.

  13. Energetic basis for drug resistance of HIV-1 protease mutants against amprenavir

    NASA Astrophysics Data System (ADS)

    Kar, Parimal; Knecht, Volker

    2012-02-01

    Amprenavir (APV) is a high affinity (0.15 nM) HIV-1 protease (PR) inhibitor. However, the affinities of the drug resistant protease variants V32I, I50V, I54V, I54M, I84V and L90M to amprenavir are decreased 3 to 30-fold compared to the wild-type. In this work, the popular molecular mechanics Poisson-Boltzmann surface area method has been used to investigate the effectiveness of amprenavir against the wild-type and these mutated protease variants. Our results reveal that the protonation state of Asp25/Asp25' strongly affects the dynamics, the overall affinity and the interactions of the inhibitor with individual residues. We emphasize that, in contrast to what is often assumed, the protonation state may not be inferred from the affinities but requires pKa calculations. At neutral pH, Asp25 and Asp25' are ionized or protonated, respectively, as suggested from pKa calculations. This protonation state was thus mainly considered in our study. Mutation induced changes in binding affinities are in agreement with the experimental findings. The decomposition of the binding free energy reveals the mechanisms underlying binding and drug resistance. Drug resistance arises from an increase in the energetic contribution from the van der Waals interactions between APV and PR (V32I, I50V, and I84V mutant) or a rise in the energetic contribution from the electrostatic interactions between the inhibitor and its target (I54M and I54V mutant). For the V32I mutant, also an increased free energy for the polar solvation contributes to the drug resistance. For the L90M mutant, a rise in the van der Waals energy for APV-PR interactions is compensated by a decrease in the polar solvation free energy such that the net binding affinity remains unchanged. Detailed understanding of the molecular forces governing binding and drug resistance might assist in the design of new inhibitors against HIV-1 PR variants that are resistant against current drugs.

  14. Lactose-installed poly(ethylene glycol)-poly(d,l-lactide) block copolymer micelles exhibit fast-rate binding and high affinity toward a protein bed simulating a cell surface. A surface plasmon resonance study.

    PubMed

    Jule, Eduardo; Nagasaki, Yukio; Kataoka, Kazunori

    2003-01-01

    Lactose molecules were installed on the surface of poly(ethylene glycol)-poly(d,l-lactide) (PEG-PLA) block copolymer micelles in the scope of seeking specific recognition by cell surface receptors at hepatic sites. This, in turn, is expected to result in the formation of a complex displaying prolonged retention times and thus enhanced cellular internalization by receptor-mediated endocytosis. The so-obtained particles based on a block copolymer of molecular weight 9400 g/mol (4900/4500 g/mol for the PEG and PLA blocks, respectively) were found to have an average hydrodynamic diameter of 31.8 nm, as measured by dynamic light scattering. Further, the particle size distribution (micro(2)/Gamma(2)) was found to be lower than 0.08. Lactose-PEG-PLA micelles (Lac-micelles) were then injected over a gold surface containing Ricinus communis agglutinin lectins simulating the aforementioned glycoreceptors, and their interaction was studied by surface plasmon resonance. Then, a kinetic evaluation was carried out, by fitting the observed data mathematically. It appears that Lac-micelles bind in a multivalent manner to the lectin protein bed, which logically results in low dissociation constants. Micelles bearing a ligand density of 80% (Lac-micelles 80%: 80 lactose molecules per 100 copolymer chains) exhibit fast association phases (k(a1) = 3.2 x 10(4) M(-)(1) s(-)(1)), but also extremely slow dissociation phases (k(d1) = 1.3 x 10(-)(4) s(-)(1)). Recorded sensorgrams were fitted with a trivalent model, conveying a calculated equilibrium dissociation constant (K(D1) = k(d1)/k(a1)) of about 4 nM. The importance of cooperative binding was also assessed, by preparing Lac-micelles bearing different ligand densities, and by discussing the influence of the latter on kinetic constants. Interestingly enough, whereas Lac-micelles 80% bind in a trivalent manner to the protein bed, Lac-micelles 20% are still capable of forming bivalent complexes with the same protein bed (K(D1) = 1360 nM). Therefore, despite enhanced kinetic values brought about by a supplementary bond, lower ligand densities appear to be more effective on a molecular basis.

  15. Mechanistic Studies of the Yeast Polyamine Oxidase Fms1: Kinetic Mechanism, Substrate Specificity, and pH Dependence†

    PubMed Central

    Adachi, Mariya S.; Torres, Jason M.; Fitzpatrick, Paul F.

    2010-01-01

    The flavoprotein oxidase Fms1 from Saccharomyces cerevisiae catalyzes the oxidation of spermine and N1-acetylspermine to yield spermidine and 3-aminopropanal or N-acetyl-3-aminopropanal. The kinetic mechanism of the enzyme has been determined with both substrates. The initial velocity patterns are ping-pong, consistent with reduction being kinetically irreversible. Reduction of Fms1 by either substrate is biphasic. The rate constant for the rapid phase varies with the substrate concentration, with limiting rates for reduction of the enzyme of 126 and 1410 s−1 and apparent Kd values of 24.3 and 484 μM for spermine and N1-acetylspermine, respectively. The rapid phase is followed by a concentration-independent phase that is slower than turnover. The reaction of the reduced enzyme with oxygen is monophasic, with a rate constant of 402 mM−1 s−1 with spermine at 25 °C, and 204 mM−1 s−1 with N1-acetylspermine at 4 °C, pH 9.0. This step is followed by rate-limiting product dissociation. The kcat/Kamine-pH profiles are bell-shaped, with an average pKa value of 9.3 with spermine and pKa values of 8.3 and 9.6 with N1-acetylspermine. Both profiles are consistent with the active forms of substrates having two charged nitrogens. The pH profiles for the rate constant for flavin reduction show pKa values of 8.3 and 7.2 for spermine and N1-acetylspermine, respectively, for groups that must be unprotonated; these pKa values are assigned to the substrate N4. The kcat/KO2-pH profiles show pKa values of 7.5 for spermine and 6.8 for N1-acetylspermine. With both substrates, the kcat value decreases when a single residue is protonated. PMID:21067138

  16. Investigation of the interaction between berberine and nucleosomes in solution: Spectroscopic and equilibrium dialysis approach

    NASA Astrophysics Data System (ADS)

    Rabbani-Chadegani, Azra; Mollaei, Hossein; Sargolzaei, Javad

    2017-02-01

    Berberine is a natural plant alkaloid with high pharmacological potential. Although its interaction with free DNA has been the subject of several reports, to date there is no work concerning the effect of berberine on nucleoprotein structure of DNA, the nucleosomes. The present study focuses on the binding affinity of berberine to nucleosomes and histone H1 employing various spectroscopic techniques, fluorescence, circular dichroism, thermal denaturation as well as equilibrium dialysis. The results showed that the binding of berberine to nucleosomes is positive cooperative with Ka = 5.57 × 103 M- 1. Berberine quenched with the chromophores of protein moiety of nucleosomes and reduced fluorescence emission intensity at 335 nm with Ksv value of 0.135. Binding of berberine to nucleosomes decreased the absorbance at 210 and 260 nm, produced hypochromicity in thermal denaturation profiles and its affinity to nucleoprotein structure of nucleosomes was much higher than to free DNA. Berberine also exhibited high affinity to histone H1 in solution and the binding was positive cooperative with. Ka = 3.61 × 103 M- 1. Moreover berberine decreased fluorescence emission intensity of H1 by quenching with tyrosine residue in its globular core domain. The circular dichroism profiles demonstrated that the binding of drug induced secondary structural changes in both DNA stacking and histone H1. It is concluded that berberine is genotoxic drug, interacts with nucleosomes and in this process histone H1 is involved to exert its anticancer activity.

  17. Binding affinities of anti-acetylcholine receptor autoantibodies in myasthenia gravis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bray, J.J.; Drachman, D.B.

    1982-01-01

    Antibodies directed against acetylcholine (ACh) receptors are present in the sera of nearly 90% of patients with myasthenia gravis (MG), and are involved in the pathogenesis of this autoimmune disease. However, the antibody titers measured by the standard radioimmunoassay correspond poorly with the clinical severity of the disease. To determine whether this disparity could be accounted for by differences in the binding affinities of anti-ACh receptor antibodies in different patients, we have measured the binding affinities of these autoantibodies in 15 sera from MG patients. The affinity constants (K/sub o/), as determined by Scatchard analysis, were all in the rangemore » of 10/sup 10/ M/sup -1/, comparable to the highest values reported in immunized animals. The affinity constants were truly representative of the population of autoantibodies detected by the radioimmunoassay, as shown by the remarkable linearity of the Scatchard plots (r/sup 2/>0.90) and the close correlation between the antibody titers determined by extrapolation of the Scatchard plots and by saturation analysis (r = 0.99; p < 0.001). There was only a 6-fold variation in affinity constants measured in this series of patients despite widely differing antibody titers and severity of the disease. Factors other than the titer and affinity of anti-ACh receptor antibodies may correlate better with the clinical manifestations of MG.« less

  18. Constant Flux Proxies and Pleistocene Sediment Accumulation Rates on the Juan de Fuca Ridge in the Northeast Pacific

    NASA Astrophysics Data System (ADS)

    Middleton, J. L.; Mukhopadhyay, S.; Langmuir, C. H.; Costa, K.; McManus, J. F.; d'Almeida, M.; Huybers, P. J.; Winckler, G.

    2016-12-01

    Mass accumulation rates of marine sediments are often employed to constrain deposition rates of important proxies such as terrigenous dust, carbonate, and biogenic opal to quantitatively examine variations in continental aridity, atmospheric transport, and biologic productivity across changing climatic conditions. However, deposition rates that are estimated using traditional mass accumulation rates calculated from sediment core age models can be subject to bias from lateral sediment transport and limited age model resolution. Constant flux proxies, such as extraterrestrial helium-3 (3HeET) and excess thorium-230 (230ThXS), can be used to calculate vertical sediment accumulation rates that are independent of age model uncertainties and the effects of lateral sediment transport. While a short half-life limits analyses of 230ThXS to the past 500 ka, 3HeET is stable and could be used to constrain sedimentary fluxes during much of the Cenozoic. Despite the vast paleoceanographic potential of constant flux proxies, few studies have directly compared the behavior of 230ThXS and 3HeET using measurements from the same samples. Sediment grain size fractionation and local scavenging effects may differentially bias one or both proxy systems and complicate the interpretation of 230ThXS or 3HeET data. We will present a new record of vertical sediment accumulation rates spanning the past 600 ka in the Northeast Pacific constrained using analyses of both 3HeET and 230ThXS in two sediment cores from cruise AT26-19 on the Juan de Fuca Ridge. Such a record allows for intercomparison of both constant flux proxies in the mid-ocean ridge environment and examination of sedimentary behavior across multiple glacial cycles. The 230ThXS-derived accumulation rates typically range from 0.5 to 2 g cm-2 ka-1 over the past 450 ka, with periods of maximum deposition coinciding with glacial maxima. Preliminary results of samples analyzed with both 3HeET and 230ThXS indicate relative consistency between vertical sediment accumulation rates computed from each proxy and encourage the use of these constant flux proxies in other sedimentary records.

  19. Structural specificity of chloroquine-hematin binding related to inhibition of hematin polymerization and parasite growth.

    PubMed

    Vippagunta, S R; Dorn, A; Matile, H; Bhattacharjee, A K; Karle, J M; Ellis, W Y; Ridley, R G; Vennerstrom, J L

    1999-11-04

    Considerable data now support the hypothesis that chloroquine (CQ)-hematin binding in the parasite food vacuole leads to inhibition of hematin polymerization and parasite death by hematin poisoning. To better understand the structural specificity of CQ-hematin binding, 13 CQ analogues were chosen and their hematin binding affinity, inhibition of hematin polymerization, and inhibition of parasite growth were measured. As determined by isothermal titration calorimetry (ITC), the stoichiometry data and exothermic binding enthalpies indicated that, like CQ, these analogues bind to two or more hematin mu-oxo dimers in a cofacial pi-pi sandwich-type complex. Association constants (K(a)'s) ranged from 0.46 to 2.9 x 10(5) M(-1) compared to 4.0 x 10(5) M(-1) for CQ. Remarkably, we were not able to measure any significant interaction between hematin mu-oxo dimer and 11, the 6-chloro analogue of CQ. This result indicates that the 7-chloro substituent in CQ is a critical structural determinant in its binding affinity to hematin mu-oxo dimer. Molecular modeling experiments reinforce the view that the enthalpically favorable pi-pi interaction observed in the CQ-hematin mu-oxo dimer complex derives from a favorable alignment of the out-of-plane pi-electron density in CQ and hematin mu-oxo dimer at the points of intermolecular contact. For 4-aminoquinolines related to CQ, our data suggest that electron-withdrawing functional groups at the 7-position of the quinoline ring are required for activity against both hematin polymerization and parasite growth and that chlorine substitution at position 7 is optimal. Our results also confirm that the CQ diaminoalkyl side chain, especially the aliphatic tertiary nitrogen atom, is an important structural determinant in CQ drug resistance. For CQ analogues 1-13, the lack of correlation between K(a) and hematin polymerization IC(50) values suggests that other properties of the CQ-hematin mu-oxo dimer complex, rather than its association constant alone, play a role in the inhibition of hematin polymerization. However, there was a modest correlation between inhibition of hematin polymerization and inhibition of parasite growth when hematin polymerization IC(50) values were normalized for hematin mu-oxo dimer binding affinities, adding further evidence that antimalarial 4-aminoquinolines act by this mechanism.

  20. Study of the hydrolysis and ionization constants of Schiff base from pyridoxal 5'-phosphate and n-hexylamine in partially aqueous solvents. An application to phosphorylase b.

    PubMed Central

    Donoso, J; Muñoz, F; García Del Vado, A; Echevarría, G; García Blanco, F

    1986-01-01

    Formation and hydrolysis rate constants as well as equilibrium constants of the Schiff base derived from pyridoxal 5'-phosphate and n-hexylamine were determined between pH 3.5 and 7.5 in ethanol/water mixtures (3:17, v/v, and 49:1, v/v). The results indicate that solvent polarity scarcely alters the values of these constants but that they are dependent on the pH. Spectrophotometric titration of this Schiff base was also carried out. We found that a pKa value of 6.1, attributed in high-polarity media to protonation of the pyridine nitrogen atom, is independent of solvent polarity, whereas the pKa of the monoprotonated form of the imine falls from 12.5 in ethanol/water (3:17) to 11.3 in ethanol/water (49:1). Fitting of the experimental results for the hydrolysis to a theoretical model indicates the existence of a group with a pKa value of 6.1 that is crucial in the variation of kinetic constant of hydrolysis with pH. Studies of the reactivity of the coenzyme (pyridoxal 5'-phosphate) of glycogen phosphorylase b with hydroxylamine show that this reaction only occurs when the pH value of solution is below 6.5 and the hydrolysis of imine bond has started. We propose that the decrease in activity of phosphorylase b when the pH value is less than 6.2 must be caused by the cleavage of enzyme-coenzyme binding and that this may be related with protonation of the pyridine nitrogen atom of pyridoxal 5'-phosphate. PMID:3099764

  1. Substituent effects and pH profiles for stability constants of arylboronic acid diol esters.

    PubMed

    Martínez-Aguirre, Mayte A; Villamil-Ramos, Raul; Guerrero-Alvarez, Jorge A; Yatsimirsky, Anatoly K

    2013-05-17

    Stability constants of boronic acid diol esters in aqueous solution have been determined potentiometrically for a series of meta-, para-substituted phenylboronic acids and diols of variable acidity. The constants β(11-1) for reactions between neutral forms of reactants producing the anionic ester plus proton follow the Hammett equation with ρ depending on pKa of diol and varying from 2.0 for glucose to 1.29 for 4-nitrocatechol. Observed stability constants (K(obs)) measured by UV-vis and fluorometric titrations at variable pH for esters of 4,5-dihydroxy-1,3-benzenedisulfonate (Tiron) generally agree with those expected on the basis of β(11-1) values, but the direct fitting of K(obs) vs pH profiles gives shifted pKa values both for boronic acids and diol as a result of significant interdependence of fitting parameters. The subsituent effects on absorption and fluorescence spectra of Tiron arylboronate esters are characterized. The K(obs) for Tiron determined by (11)B NMR titrations are approximately 1 order of magnitude smaller than those determined by UV-vis titrations under identical conditions. A general equation, which makes possible an estimate of β(11-1) for any pair of boronic acid and diol from their pKa values, is proposed on the basis of established Brönsted-type correlation of Hammett parameters for β(11-1) with acidity of diols. The equation allows one to calculate stability constants expected only on basis of acid-base properties of the components, thus permitting more strict evaluation of contributions of additional factors such as steric or charge effects to the ester stability.

  2. S-Esters of Thiohydroximic Acid Esters - A Novel Class of Cholinesterase Reactivators.

    DTIC Science & Technology

    1981-01-05

    Hammet substituent constant ( p)63 is also linear and conforms to equation (5) pKa - (7.63 ±0.02) - 0.63 ±0.05) a (5) p These correlations provide an...of AChE reactivation and it is recognized6, 7 that the reaction proceeds as shown in equation (1) EOP + R [EOP9R] kr P EOH + ROP (1) H20 where: EOH is...conforms to equation (4) pKa (25.3 ±2.1) - (1.36 ±0.16) 6 (4) For the aroylthiohydroximates (SR 2458, 2460, and 2461) a plot (not shown) of pKa versus

  3. pKa predictions for proteins, RNAs, and DNAs with the Gaussian dielectric function using DelPhi pKa.

    PubMed

    Wang, Lin; Li, Lin; Alexov, Emil

    2015-12-01

    We developed a Poisson-Boltzmann based approach to calculate the pKa values of protein ionizable residues (Glu, Asp, His, Lys and Arg), nucleotides of RNA and single stranded DNA. Two novel features were utilized: the dielectric properties of the macromolecules and water phase were modeled via the smooth Gaussian-based dielectric function in DelPhi and the corresponding electrostatic energies were calculated without defining the molecular surface. We tested the algorithm by calculating pKa values for more than 300 residues from 32 proteins from the PPD dataset and achieved an overall RMSD of 0.77. Particularly, the RMSD of 0.55 was achieved for surface residues, while the RMSD of 1.1 for buried residues. The approach was also found capable of capturing the large pKa shifts of various single point mutations in staphylococcal nuclease (SNase) from pKa-cooperative dataset, resulting in an overall RMSD of 1.6 for this set of pKa's. Investigations showed that predictions for most of buried mutant residues of SNase could be improved by using higher dielectric constant values. Furthermore, an option to generate different hydrogen positions also improves pKa predictions for buried carboxyl residues. Finally, the pKa calculations on two RNAs demonstrated the capability of this approach for other types of biomolecules. © 2015 Wiley Periodicals, Inc.

  4. Spectrofluorimetric and Potentiometric Determination of Acidity Constants of 4-(4'-Acetyloxy-3'-Methoxybenzylidene)-5-Oxazolone Derivatives.

    PubMed

    Taskiran, Derya Topkaya; Urut, Gulsiye Ozturk; Ayata, Sevda; Alp, Serap

    2017-03-01

    4-(4'-acetyloxy-3'-methoxybenzylidene)-5-oxazolone fluorescent molecules bearing four different aryl groups attached to the 2-position of 5-oxazolone ring have been investigated by spectrophotometric and potentiometric techniques in solution media. The acidity constants (pKa) of the fluorescent molecules were precisely determined in acetone, acetonitrile, dimethylformamide and in 1:1 mixture of toluene-isopropanol. The studied derivatives were titrated with tetrabutylammonium hydroxide and non-aqueous perchloric acid by scanning the basic and acidic region of the pH scale. A computerizable derivative method was used in order to descript precisely the end point and pKa values. The molecules investigated performed well-shaped and stoichiometric potentiometric titration curves.

  5. Arginine: Its pKa value revisited

    PubMed Central

    Fitch, Carolyn A; Platzer, Gerald; Okon, Mark; Garcia-Moreno E, Bertrand; McIntosh, Lawrence P

    2015-01-01

    Using complementary approaches of potentiometry and NMR spectroscopy, we have determined that the equilibrium acid dissociation constant (pKa value) of the arginine guanidinium group is 13.8 ± 0.1. This is substantially higher than that of ∼12 often used in structure-based electrostatics calculations and cited in biochemistry textbooks. The revised intrinsic pKa value helps explains why arginine side chains in proteins are always predominantly charged, even at pH values as great as 10. The high pKa value also reinforces the observation that arginine side chains are invariably protonated under physiological conditions of near neutral pH. This occurs even when the guanidinium moiety is buried in a hydrophobic micro-environment, such as that inside a protein or a lipid membrane, thought to be incompatible with the presence of a charged group. PMID:25808204

  6. Environmental Fate Studies on Certain Munition Wastewater Constituents - Literature Review

    DTIC Science & Technology

    1980-03-01

    gram-negative bacteria , actinaycetes, yeasts, and fungi. They found that TNT at 50 Mgtter severely inhibited the growth of these organisms in wost...i , conditions . I Biodegradation ,. Chambers et al. (1963) reported evidence of degradation of 2,4-DNT with phenol-adapted bacteria and 100 mg/liter...coefficient based on organic carbon contentoc H - Henry’s Law constant kA - Hydrolysis rate constant under acidic conditions k.M - Hydrolysis rate constant

  7. Arginine- and lysine-specific polymers for protein recognition and immobilization.

    PubMed

    Renner, Christian; Piehler, Jacob; Schrader, Thomas

    2006-01-18

    Free radical polymerization of methacrylamide-based bisphosphonates turns weak arginine binders into powerful polymeric protein receptors. Dansyl-labeled homo- and copolymers with excellent water solubility are accessible through a simple copolymerization protocol. Modeling studies point to a striking structural difference between the stiff rodlike densely packed homopolymer 1 and the flexible copolymer 2 with spatially separated bisphosphonate units. Fluorescence titrations in buffered aqueous solution (pH = 7.0) confirm the superior affinity of the homopolymer toward oligoarginine peptides reaching nanomolar K(D) values for the Tat peptide. Basic proteins are bound almost equally well by 1 and 2 with micromolar affinities, with the latter producing much more soluble complexes. The Arg selectivity of the monomer is transferred to the polymer, which binds Arg-rich proteins 1 order of magnitude tighter than lysine-rich pendants of comparable pI, size, and (Arg/Lys vs Glu/Asp) ratio. Noncovalent deposition of both polymers on glass substrates via polyethyleneimine layers results in new materials suitable for peptide and protein immobilization. RIfS measurements allow calculation of association constants K(a) as well as dissociation kinetics k(D). They generally confirm the trends already found in free solution. Close inspection of electrostatic potential surfaces suggest that basic domains favor protein binding on the flat surface. The high specificity of the bisphosphonate polymers toward basic proteins is demonstrated by comparison with polyvinyl sulfate, which has almost no effect in RIfS experiments. Thus, copolymerization of few different comonomer units without cross-linking enables surface recognition of basic proteins in free solution as well as their effective immobilization on surfaces.

  8. Development of Monopole Interaction Models for Ionic Compounds. Part I: Estimation of Aqueous Henry's Law Constants for Ions and Gas Phase pKa Values for Acidic Compounds.

    PubMed

    Hilal, S H; Saravanaraj, A N; Carreira, L A

    2014-02-01

    The SPARC (SPARC Performs Automated Reasoning in Chemistry) physicochemical mechanistic models for neutral compounds have been extended to estimate Henry's Law Constant (HLC) for charged species by incorporating ionic electrostatic interaction models. Combinations of absolute aqueous pKa values, relative pKa values in the gas phase, and aqueous HLC for neutral compounds have been used to develop monopole interaction models that quantify the energy differences upon moving an ionic solute molecule from the gas phase to the liquid phase. Inter-molecular interaction energies were factored into mechanistic contributions of monopoles with polarizability, dipole, H-bonding, and resonance. The monopole ionic models were validated by a wide range of measured gas phase pKa data for 450 acidic compounds. The RMS deviation error and R(2) for the OH, SH, CO2 H, CH3 and NR2 acidic reaction centers (C) were 16.9 kcal/mol and 0.87, respectively. The calculated HLCs of ions were compared to the HLCs of 142 ions calculated by quantum mechanics. Effects of inter-molecular interaction of the monopoles with polarizability, dipole, H-bonding, and resonance on acidity of the solutes in the gas phase are discussed. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. AN ALTERNATIVE METHOD FOR RELATING MACROSCOPIC TO MICROSCOPIC ACIDITY CONSTANTS WITH ZWITTERIONIC SPECIES

    EPA Science Inventory

    Using the notation of Adams (1916. JACS, 38:1503), zwitterionic microscopic acidity constants defined by: ka = [H+] [+H3NRCOO-]/ [+H3NRCOOH]; kb = [H+] [H2NRCOOH]/ [+H3NRCOOH]; kc = [H+] [H2NRCOO-]/ [+H3NRCOO-]; and kd = [H+] [H2NRCOO-]/ [H2NRCOOH] are historically related to th...

  10. Development of Monopole Interaction Models for Ionic Compounds. Part I: Estimation of Aqueous Henry’s Law Constants for Ions and Gas Phase pKa Values for Acidic Compounds

    EPA Science Inventory

    The SPARC (SPARC Performs Automated Reasoning in Chemistry) physicochemical mechanistic models for neutral compounds have been extended to estimate Henry’s Law Constant (HLC) for charged species by incorporating ionic electrostatic interaction models. Combinations of absolute aq...

  11. Kinetics and equilibria of cyanide binding to prostaglandin H synthase.

    PubMed

    MacDonald, I D; Dunford, H B

    1989-09-01

    Cyanide binding to prostaglandin H (PGH) synthase results in a spectral shift in the Soret region. This shift was exploited to determine equilibrium and kinetic parameters of the cyanide binding process. At pH 8.0, ionic strength 0.22 M, 4 degrees C, the cyanide dissociation constant, determined from equilibrium experiments, is (65 +/- 10) microM. The binding rate constant is (2.8 +/- 0.2) x 10(3) M-1 s-1, and the dissociation rate constant is zero within experimental error. Through a kinetic study of the binding process as a function of pH, from pH 3.96 to 8.00, it was possible to determine the pKa of a heme-linked acid group on the enzyme of 4.15 +/- 0.10 with citrate buffer. An apparent pKa of 4.75 +/- 0.03 was determined with acetate buffer; this different value is attributed to complexation of the enzyme with one of the components of the acetate buffer.

  12. Photometric method for determination of acidity constants through integral spectra analysis.

    PubMed

    Zevatskiy, Yuriy Eduardovich; Ruzanov, Daniil Olegovich; Samoylov, Denis Vladimirovich

    2015-04-15

    An express method for determination of acidity constants of organic acids, based on the analysis of the integral transmittance vs. pH dependence is developed. The integral value is registered as a photocurrent of photometric device simultaneously with potentiometric titration. The proposed method allows to obtain pKa using only simple and low-cost instrumentation. The optical part of the experimental setup has been optimized through the exclusion of the monochromator device. Thus it only takes 10-15 min to obtain one pKa value with the absolute error of less than 0.15 pH units. Application limitations and reliability of the method have been tested for a series of organic acids of various nature. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Integration of biotic ligand models (BLM) and bioaccumulation kinetics into a mechanistic framework for metal uptake in aquatic organisms.

    PubMed

    Veltman, Karin; Huijbregts, Mark A J; Hendriks, A Jan

    2010-07-01

    Both biotic ligand models (BLM) and bioaccumulation models aim to quantify metal exposure based on mechanistic knowledge, but key factors included in the description of metal uptake differ between the two approaches. Here, we present a quantitative comparison of both approaches and show that BLM and bioaccumulation kinetics can be merged into a common mechanistic framework for metal uptake in aquatic organisms. Our results show that metal-specific absorption efficiencies calculated from BLM-parameters for freshwater fish are highly comparable, i.e. within a factor of 2.4 for silver, cadmium, copper, and zinc, to bioaccumulation-absorption efficiencies for predominantly marine fish. Conditional affinity constants are significantly related to the metal-specific covalent index. Additionally, the affinity constants of calcium, cadmium, copper, sodium, and zinc are significantly comparable across aquatic species, including molluscs, daphnids, and fish. This suggests that affinity constants can be estimated from the covalent index, and constants can be extrapolated across species. A new model is proposed that integrates the combined effect of metal chemodynamics, as speciation, competition, and ligand affinity, and species characteristics, as size, on metal uptake by aquatic organisms. An important direction for further research is the quantitative comparison of the proposed model with acute toxicity values for organisms belonging to different size classes.

  14. Characterization of solution-phase drug-protein interactions by ultrafast affinity extraction.

    PubMed

    Beeram, Sandya R; Zheng, Xiwei; Suh, Kyungah; Hage, David S

    2018-03-03

    A number of tools based on high-performance affinity separations have been developed for studying drug-protein interactions. An example of one recent approach is ultrafast affinity extraction. This method has been employed to examine the free (or non-bound) fractions of drugs and other solutes in simple or complex samples that contain soluble binding agents. These free fractions have also been used to determine the binding constants and rate constants for the interactions of drugs with these soluble agents. This report describes the general principles of ultrafast affinity extraction and the experimental conditions under which it can be used to characterize such interactions. This method will be illustrated by utilizing data that have been obtained when using this approach to measure the binding and dissociation of various drugs with the serum transport proteins human serum albumin and alpha 1 -acid glycoprotein. A number of practical factors will be discussed that should be considered in the design and optimization of this approach for use with single-column or multi-column systems. Techniques will also be described for analyzing the resulting data for the determination of free fractions, rate constants and binding constants. In addition, the extension of this method to complex samples, such as clinical specimens, will be considered. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Determination of pKa values of new phenacyl-piperidine derivatives by potentiometric titration method in aqueous medium at room temperature (25±0.5oC).

    PubMed

    Zafar, Shaista; Akhtar, Shamim; Tariq, Talat; Mushtaq, Noushin; Akram, Arfa; Ahmed, Ahsaan; Arif, Muhammad; Naeem, Sabahat; Anwar, Sana

    2014-07-01

    Dissociation constant (pKa) of ten novel phenacyl derivatives of piperidine were determined by potentiometric titration method in aqueous medium at room temperature (25 ±0.5°C). The sample solutions were prepared in deionized water with ionic strength 0.01M and titrated with 0.1M NaOH solution. In addition, ΔG values were also calculated. Different prediction software programs were used to calculate pKa values too and compared to the experimentally observed pKa values. The experimental and theoretical values were found in close agreement. The results obtained in this research would help to predict the good absorption of the studied compounds and can be selected as lead molecules for the synthesis of CNS active agents because of their lipophilic nature especially compound VII.

  16. Extreme Basicity of Biguanide Drugs in Aqueous Solutions: Ion Transfer Voltammetry and DFT Calculations.

    PubMed

    Langmaier, Jan; Pižl, Martin; Samec, Zdeněk; Záliš, Stanislav

    2016-09-22

    Ion transfer voltammetry is used to estimate the acid dissociation constants Ka1 and Ka2 of the mono- and diprotonated forms of the biguanide drugs metformin (MF), phenformin (PF), and 1-phenylbiguanide (PB) in an aqueous solution. Measurements gave the pKa1 values for MFH(+), PFH(+), and PBH(+) characterizing the basicity of MF, PF, and PB, which are significantly higher than those reported in the literature. As a result, the monoprotonated forms of these biguanides should prevail in a considerably broader range of pH 1-15 (MFH(+), PFH(+)) and 2-13 (PBH(+)). DFT calculations with solvent correction were performed for possible tautomeric forms of neutral, monoprotonated, and diprotonated species. Extreme basicity of all drugs is confirmed by DFT calculations of pKa1 for the most stable tautomers of the neutral and protonated forms with explicit water molecules in the first solvation sphere included.

  17. Quaternary geologic map of the north-central part of the Salinas River Valley and Arroyo Seco, Monterey County, California

    USGS Publications Warehouse

    Taylor, Emily M.; Sweetkind, Donald S.

    2014-01-01

    Arroyo Seco, a perennial drainage in the central Coast Range of California, records a sequence of strath terraces. These terraces preserve an erosional and depositional history, controlled by both climate change and regional tectonics. These deposits have been mapped and correlated on the basis of field investigations, digital terrain analysis, stream gradient profiles, evaluation of published regional soil maps, and satellite imagery. Seven of the strath terraces and associated alluvial fans have been dated by optically stimulated luminescence (OSL) or infrared stimulated luminescence (IRSL). The OSL and IRSL dates on seven of the strath terraces and associated alluvial fans in Arroyo Seco are approximately >120 ka, >65 ka, 51–46 ka, 36–35 ka, 9 ka, and 2–1 ka. These dates generally fall within the range of ages reported from many well-dated marine terraces on the California coast that are formed during sea-level high stands. Tectonic movements, consistently upward, result in a constantly and slowly emerging coastline, however, the regional effects of climate change and resulting eustatic sea-level rises are interpreted as the driving mechanism for erosion and aggradation in Arroyo Seco.

  18. Determination of pKa values of some antipsychotic drugs by HPLC--correlations with the Kamlet and taft solvatochromic parameters and HPLC analysis in dosage forms.

    PubMed

    Sanli, Senem; Akmese, Bediha; Altun, Yuksel

    2013-01-01

    In this study, ionization constant (pKa) values were determined by using the dependence of the retention factor on the pH of the mobile phase for four ionizable drugs, namely, risperidone (RI), clozapine (CL), olanzapine (OL), and sertindole (SE). The effect of the mobile phase composition on the pKa was studied by measuring the pKa at different acetonitrile-water mixtures in an HPLC-UV method. To explain the variation of the pKa values obtained over the whole composition range studied, the quasi-lattice quasi-chemical theory of preferential solvation was applied. The pKa values of drugs were correlated with the Kamlet and Taft solvatochromic parameters. Kamlet and Taft's general equation was reduced to two terms by using combined factor analysis and target factor analysis in these mixtures: the independent term and the hydrogen-bond donating ability a. The HPLC-UV method was successfully applied for the determination of RI, OL, and SE in pharmaceutical dosage forms. CL was chosen as an internal standard. Additionally, the repeatability, reproducibility, selectivity, precision, and accuracy of the method in all media were investigated and calculated.

  19. Weak acid-concentration Atot and dissociation constant Ka of plasma proteins in racehorses.

    PubMed

    Stampfli, H R; Misiaszek, S; Lumsden, J H; Carlson, G P; Heigenhauser, G J

    1999-07-01

    The plasma proteins are a significant contributor to the total weak acid concentration as a net anionic charge. Due to potential species difference, species-specific values must be confirmed for the weak acid anionic concentrations of proteins (Atot) and the effective dissociation constant for plasma weak acids (Ka). We studied the net anion load Atot of equine plasma protein in 10 clinically healthy mature Standardbred horses. A multi-step titration procedure, using a tonometer covering a titration range of PCO2 from 25 to 145 mmHg at 37 degrees C, was applied on the plasma of these 10 horses. Blood gases (pH, PCO2) and electrolytes required to calculate the strong ion difference ([SID] = [(Na(+) + K(+) + Ca(2+) + Mg(2+))-(Cl(-) + Lac(-) + PO4(2-))]) were simultaneously measured over a physiological pH range from 6.90-7.55. A nonlinear regression iteration to determine Atot and Ka was performed using polygonal regression curve fitting applied to the electrical neutrality equation of the physico-chemical system. The average anion-load Atot for plasma protein of 10 Standardbred horses was 14.89 +/- 0.8 mEq/l plasma and Ka was 2.11 +/- 0.50 x 10(-7) Eq/l (pKa = 6.67). The derived conversion factor (iterated Atot concentration/average plasma protein concentration) for calculation of Atot in plasma is 0.21 mEq/g protein (protein-unit: g/l). This value compares closely with the 0.24 mEq/g protein determined by titration of Van Slyke et al. (1928) and 0.22 mEq/g protein recently published by Constable (1997) for horse plasma. The Ka value compares closely with the value experimentally determined by Constable in 1997 (2.22 x 10(7) Eq/l). Linear regression of a set of experimental data from 5 Thoroughbred horses on a treadmill exercise test, showed excellent correlation with the regression lines not different from identity for the calculated and measured variables pH, HCO3 and SID. Knowledge of Atot and Ka for the horse is useful especially in exercise studies and in clinical conditions to quantify the mechanisms of the acid-base disturbances occurring.

  20. Synthesis and physicochemical characterization of carbon backbone modified [Gd(TTDA)(H2O)]2- derivatives.

    PubMed

    Chang, Ya-Hui; Chen, Chiao-Yun; Singh, Gyan; Chen, Hsing-Yin; Liu, Gin-Chung; Goan, Yih-Gang; Aime, Silvio; Wang, Yun-Ming

    2011-02-21

    The present study was designed to exploit optimum lipophilicity and high water-exchange rate (k(ex)) on low molecular weight Gd(III) complexes to generate high bound relaxivity (r(1)(b)), upon binding to the lipophilic site of human serum albumin (HSA). Two new carbon backbone modified TTDA (3,6,10-tri(carboxymethyl)-3,6,10-triazadodecanedioic acid) derivatives, CB-TTDA and Bz-CB-TTDA, were synthesized. The complexes [Gd(CB-TTDA)(H(2)O)](2-) and [Gd(Bz-CB-TTDA)(H(2)O)](2-) both display high stability constant (log K(GdL) = 20.28 and 20.09, respectively). Furthermore, CB-TTDA (log K(Gd/Zn) = 4.22) and Bz-CB-TTDA (log K(Gd/Zn) = 4.12) exhibit superior selectivity of Gd(III) against Zn(II) than those of TTDA (log K(Gd/Zn) = 2.93), EPTPA-bz-NO(2) (log K(Gd/Zn) = 3.19), and DTPA (log K(Gd/Zn) = 3.76). However, the stability constant values of [Gd(CB-TTDA)(H(2)O)](2-) and [Gd(Bz-CB-TTDA)(H(2)O)](2-) are lower than that of MS-325. The parameters that affect proton relaxivity have been determined in a combined variable temperature (17)O NMR and NMRD study. The water exchange rates are comparable for the two complexes, 232 × 10(6) s(-1) for [Gd(CB-TTDA)(H(2)O)](2-) and 271 × 10(6) s(-1) for [Gd(Bz-CB-TTDA)(H(2)O)](2-). They are higher than those of [Gd(TTDA)(H(2)O)](2-) (146 × 10(6) s(-1)), [Gd(DTPA)(H(2)O)](2-) (4.1 × 10(6) s(-1)), and MS-325 (6.1 × 10(6) s(-1)). Elevated stability and water exchange rate indicate that the presence of cyclobutyl on the carbon backbone imparts rigidity and steric constraint to [Gd(CB-TTDA)(H(2)O)](2-)and [Gd(Bz-CB-TTDA)(H(2)O)](2-). In addition, the major objective for selecting the cyclobutyl is to tune the lipophilicity of [Gd(Bz-CB-TTDA)(H(2)O)](2-). The binding affinity of [Gd(Bz-CB-TTDA)(H(2)O)](2-) to HSA was evaluated by ultrafiltration study across a membrane with a 30 kDa MW cutoff, and the first three stepwise binding constants were determined by fitting the data to a stoichiometric model. The binding association constants (K(A)) for [Gd(CB-TTDA)(H(2)O)](2-) and [Gd(Bz-CB-TTDA)(H(2)O)](2-) are 1.1 × 10(2) and 1.5 × 10(3), respectively. Although the K(A) value for [Gd(Bz-CB-TTDA)(H(2)O)](2-) is lower than that of MS-325 (K(A) = 3.0 × 10(4)), the r(1)(b) value, r(1)(b) = 66.7 mM(-1) s(-1) for [Gd(Bz-CB-TTDA)(H(2)O)](2-), is significantly higher than that of MS-325 (r(1)(b) = 47.0 mM(-1) s(-1)). As measured by the Zn(II) transmetalation process, the kinetic stabilities of [Gd(CB-TTDA)(H(2)O)](2-), [Gd(Bz-CB-TTDA)(H(2)O)](2-), and [Gd(DTPA)(H(2)O)](2-) are similar and are significantly higher than that of [Gd(DTPA-BMA)(H(2)O)](2-). High thermodynamic and kinetic stability and optimized lipophilicity of [Gd(CB-TTDA)(H(2)O)](2-) make it a favorable blood pool contrast agent for MRI.

  1. New insight on the Toba volcano super eruption (Sumatra Island, Indonesia) from BAR-9425 core.

    NASA Astrophysics Data System (ADS)

    Caron, B.; del Manzo, G.; Moreno, E.; Annachiara, B.; Baudin, F.; Bassinot, F. C.; Villemant, B.

    2017-12-01

    The famous 73 ka Toba eruption has produced about 2800 km3 of magma and is considered as one of the largest known eruptions during the Quaternary (Rose and Chesner, 1990). The BAR-9425 piston core collected during the 1994 joint French-Indonesian BARAT Cruise in the north Sumatra Island has recorded the volcano history of Toba from 60 to 100 ka (including the 73 ka Young Toba Tuff (YTT)). Tephra layers within this sediment core have been systematically studied using a combined analysis including stable isotope (δ18O, van der Kaars et al., 2012), high resolution tephrostratigraphic, morphological and a major-trace element studies. Our preliminary results show that not only one major eruption occurred between 60 and 100 ka but probably 11 distinct eruptions occurred. The 11 eruptions display an homogeneous major element composition. The oldest tephra with an estimated age of 101 ka, have a rhyolitic composition and 30% of relative abundance of volcanic glass shards. The other eruptive phases are dated at: 91,5-89,2 ka with a maximum of 16% of volcanic tephra; 85,7-84,8 ka with 64%; 81,8 ka with 22%; 74,4 ka with 43%, 72,3 ka with 89%, 71,4 ka with 92%; 68,9% with 96%; 66,5 ka with 94%; 65,2 ka with 75% and 63,1-60,3 ka with a maximum of 96% of volcanic tephra respectively (ages were calculated with a constant sediment rate of 4,3 cm/ka from data from van der Kaars et al., 2012). Some of these eruptions have had direct effect on regional vegetation as suggested by Van der Kaars et al. (2012) who propose that the gradual expansion of pine cover for the 7000 years following the eruption, is a consequence of the ash deposit from the 89 ka eruption. Our detailed tephrostratigraphy study of Toba eruptions will help to understand the impact on the ecosystems of northern Sumatra and on global climate change. Moreover, we expect to correlate the new tephra layers of Toba volcano to other sites by using AL-ICP-MS traces analyses and to use it as chronological makers.

  2. Comparative Study of Three Methods for Affinity Measurements: Capillary Electrophoresis Coupled with UV Detection and Mass Spectrometry, and Direct Infusion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Mironov, Gleb G.; Logie, Jennifer; Okhonin, Victor; Renaud, Justin B.; Mayer, Paul M.; Berezovski, Maxim V.

    2012-07-01

    We present affinity capillary electrophoresis and mass spectrometry (ACE-MS) as a comprehensive separation technique for label-free solution-based affinity analysis. The application of ACE-MS for measuring affinity constants between eight small molecule drugs [ibuprofen, s-flurbiprofen, diclofenac, phenylbutazone, naproxen, folic acid, resveratrol, and 4,4'-(propane-1,3-diyl) dibenzoic acid] and β-cyclodextrin is described. We couple on-line ACE with MS to combine the separation and kinetic capability of ACE together with the molecular weight and structural elucidation of MS in one system. To understand the full potential of ACE-MS, we compare it with two other methods: Direct infusion mass spectrometry (DIMS) and ACE with UV detection (ACE-UV). After the evaluation, DIMS provides less reliable equilibrium dissociation constants than separation-based ACE-UV and ACE-MS, and cannot be used solely for the study of noncovalent interactions. ACE-MS determines apparent dissociation constants for all reacting small molecules in a mixture, even in cases when drugs overlap with each other during separation. The ability of ACE-MS to interact, separate, and rapidly scan through m/z can facilitate the simultaneous affinity analysis of multiple interacting pairs, potentially leading to the high-throughput screening of drug candidates.

  3. Computational Investigation of the pH Dependence of Loop Flexibility and Catalytic Function in Glycoside Hydrolases*

    PubMed Central

    Bu, Lintao; Crowley, Michael F.; Himmel, Michael E.; Beckham, Gregg T.

    2013-01-01

    Cellulase enzymes cleave glycosidic bonds in cellulose to produce cellobiose via either retaining or inverting hydrolysis mechanisms, which are significantly pH-dependent. Many fungal cellulases function optimally at pH ∼5, and their activities decrease dramatically at higher or lower pH. To understand the molecular-level implications of pH in cellulase structure, we use a hybrid, solvent-based, constant pH molecular dynamics method combined with pH-based replica exchange to determine the pKa values of titratable residues of a glycoside hydrolase (GH) family 6 cellobiohydrolase (Cel6A) and a GH family 7 cellobiohydrolase (Cel7A) from the fungus Hypocrea jecorina. For both enzymes, we demonstrate that a bound substrate significantly affects the pKa values of the acid residues at the catalytic center. The calculated pKa values of catalytic residues confirm their proposed roles from structural studies and are consistent with the experimentally measured apparent pKa values. Additionally, GHs are known to impart a strained pucker conformation in carbohydrate substrates in active sites for catalysis, and results from free energy calculations combined with constant pH molecular dynamics suggest that the correct ring pucker is stable near the optimal pH for both Cel6A and Cel7A. Much longer molecular dynamics simulations of Cel6A and Cel7A with fixed protonation states based on the calculated pKa values suggest that pH affects the flexibility of tunnel loops, which likely affects processivity and substrate complexation. Taken together, this work demonstrates several molecular-level effects of pH on GH enzymes important for cellulose turnover in the biosphere and relevant to biomass conversion processes. PMID:23504310

  4. Transient times in linear metabolic pathways under constant affinity constraints.

    PubMed

    Lloréns, M; Nuño, J C; Montero, F

    1997-10-15

    In the early seventies, Easterby began the analytical study of transition times for linear reaction schemes [Easterby (1973) Biochim. Biophys. Acta 293, 552-558]. In this pioneer work and in subsequent papers, a state function (the transient time) was used to measure the period before the stationary state, for systems constrained to work under both constant and variable input flux, was reached. Despite the undoubted usefulness of this quantity to describe the time-dependent features of these kinds of systems, its application to the study of chemical reactions under other constraints is questionable. In the present work, a generalization of these magnitudes to linear metabolic pathways functioning under a constant-affinity constraint is carried out. It is proved that classical definitions of transient times do not reflect the actual properties of the transition to the steady state in systems evolving under this restriction. Alternatively, a more adequate framework for interpretation of the transient times for systems with both constant and variable input flux is suggested. Within this context, new definitions that reflect more accurately the transient characteristics of constant affinity systems are stated. Finally, the meaning of these transient times is discussed.

  5. Late Neanderthals at Jarama VI (central Iberia)?

    NASA Astrophysics Data System (ADS)

    Kehl, Martin; Burow, Christoph; Hilgers, Alexandra; Navazo, Marta; Pastoors, Andreas; Weniger, Gerd-Christian; Wood, Rachel; Jordá Pardo, Jesús F.

    2013-09-01

    Previous geochronological and archaeological studies on the rock shelter Jarama VI suggested a late survival of Neanderthals in central Iberia and the presence of lithic assemblages of Early Upper Paleolithic affinity. New data on granulometry, mineralogical composition, geochemical fingerprints and micromorphology of the sequence corroborate the previous notion that the archaeological units JVI.2.1 to JVI.2.3 are slackwater deposits of superfloods, which did not experience significant post-depositional changes, whereas the artifact-rich units JVI.3 and JVI.1 mainly received sediment inputs by sheetwash and cave spall. New AMS radiocarbon measurements on three samples of cut-marked bone using the ultrafiltration technique yielded ages close to, or beyond, the limit of radiocarbon dating at ca. 50 14C ka BP, and hence suggest much higher antiquity than assumed previously. Furthermore, elevated temperature post-IR IRSL luminescence measurements on K feldspars yielded burial ages for subunits JVI.2.2 and JVI.2.3 between 50 and 60 ka. Finally, our reappraisal of the stone industry strongly suggests that the whole sequence is of Mousterian affinity. In conclusion, Jarama VI most probably does not document a late survival of Neanderthals nor an Early Upper Paleolithic occupation in central Iberia, but rather indicates an occupation breakdown after the Middle Paleolithic.

  6. Hit-Validation Methodologies for Ligands Isolated from DNA-Encoded Chemical Libraries.

    PubMed

    Zimmermann, Gunther; Li, Yizhou; Rieder, Ulrike; Mattarella, Martin; Neri, Dario; Scheuermann, Jörg

    2017-05-04

    DNA-encoded chemical libraries (DECLs) are large collections of compounds linked to DNA fragments, serving as amplifiable barcodes, which can be screened on target proteins of interest. In typical DECL selections, preferential binders are identified by high-throughput DNA sequencing, by comparing their frequency before and after the affinity capture step. Hits identified in this procedure need to be confirmed, by resynthesis and by performing affinity measurements. In this article we present new methods based on hybridization of oligonucleotide conjugates with fluorescently labeled complementary oligonucleotides; these facilitate the determination of affinity constants and kinetic dissociation constants. The experimental procedures were demonstrated with acetazolamide, a binder to carbonic anhydrase IX with a dissociation constant in the nanomolar range. The detection of binding events was compatible not only with fluorescence polarization methodologies, but also with Alphascreen technology and with microscale thermophoresis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Multivalent interaction based carbohydrate biosensors for signal amplification

    PubMed Central

    Wang, Yanyan; Chalagalla, Srinivas; Li, Tiehai; Sun, Xue-long; Zhao, Wei; Wang, Peng; Zeng, Xiangqun

    2010-01-01

    Multivalent interaction between boronic acids immobilized on Quartz Crystal Microbalance (QCM) sensor surface and the carbohydrates modified Au - nanoparticle (AuNP) has been demonstrated for the development of a sensitive carbohydrate biosensor. Briefly, a boronic acid - containing polymer (boropolymer) as multivalent carbohydrate receptor was oriented immobilized on the cysteamine coated electrode through isourea bond formation. Carbohydrates were conjugated to AuNPs to generate a multivalent carbohydrates moiety to amplify the response signal. Thus, the binding of the carbohydrate conjugated AuNPs to the boropolymer surface are multivalent which could simultaneously increase the binding affinity and specificity. We systematically studied the binding between five carbohydrate conjugated AuNPs and the boropolymer. Our studies show that the associate constant (Ka) was in the order of fucose < glucose < mannose < galactose < maltose. A linear response in the range from 23 µM to 3.83 mM was observed for mannose conjugated AuNPs and the boropolymer recognition elements, with the lower detection limit of 1.5 µM for the carbohydrate analytes. Furthermore, the multivalent binding between carbohydrates and boronic acids are reversible and allow the regeneration of boropolymer surface by using 1M acetic acid so as to sequentially capture and release the carbohydrate analytes. PMID:20863680

  8. High-Affinity Binding of Remyelinating Natural Autoantibodies to Myelin-Mimicking Lipid Bilayers Revealed by Nanohole Surface Plasmon Resonance

    PubMed Central

    Wittenberg, Nathan J.; Im, Hyungsoon; Xu, Xiaohua; Wootla, Bharath; Watzlawik, Jens; Warrington, Arthur E.; Rodriguez, Moses; Oh, Sang-Hyun

    2012-01-01

    Multiple sclerosis is a progressive neurological disorder that results in the degradation of myelin sheaths that insulate axons in the central nervous system. Therefore promotion of myelin repair is a major thrust of multiple sclerosis treatment research. Two mouse monoclonal natural autoantibodies, O1 and O4, promote myelin repair in several mouse models of multiple sclerosis. Natural autoantibodies are generally polyreactive and predominantly of the IgM isotype. The prevailing paradigm is that because they are polyreactive, these antibodies bind antigens with low affinities. Despite their wide use in neuroscience and glial cell research, however, the affinities and kinetic constants of O1 and O4 antibodies have not been measured to date. In this work, we developed a membrane biosensing platform based on surface plasmon resonance in gold nanohole arrays with a series of surface modification techniques to form myelin-mimicking lipid bilayer membranes to measure both the association and dissociation rate constants for O1 and O4 antibodies binding to their myelin lipid antigens. The ratio of rate constants shows that O1 and O4 bind to galactocerebroside and sulfated galactocerebroside, respectively, with unusually small apparent dissociation constants (KD ~0.9 nM) for natural autoantibodies. This is approximately one to two orders of magnitude lower than typically observed for the highest affinity natural autoantibodies. We propose that the unusually high affinity of O1 and O4 to their targets in myelin contributes to the mechanism by which they signal oligodendrocytes and induce central nervous system repair. PMID:22762372

  9. Determine equilibrium dissociation constant of drug-membrane receptor affinity using the cell membrane chromatography relative standard method.

    PubMed

    Ma, Weina; Yang, Liu; Lv, Yanni; Fu, Jia; Zhang, Yanmin; He, Langchong

    2017-06-23

    The equilibrium dissociation constant (K D ) of drug-membrane receptor affinity is the basic parameter that reflects the strength of interaction. The cell membrane chromatography (CMC) method is an effective technique to study the characteristics of drug-membrane receptor affinity. In this study, the K D value of CMC relative standard method for the determination of drug-membrane receptor affinity was established to analyze the relative K D values of drugs binding to the membrane receptors (Epidermal growth factor receptor and angiotensin II receptor). The K D values obtained by the CMC relative standard method had a strong correlation with those obtained by the frontal analysis method. Additionally, the K D values obtained by CMC relative standard method correlated with pharmacological activity of the drug being evaluated. The CMC relative standard method is a convenient and effective method to evaluate drug-membrane receptor affinity. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Predicting the pKa and stability of organic acids and bases at an oil-water interface.

    PubMed

    Andersson, M P; Olsson, M H M; Stipp, S L S

    2014-06-10

    We have used density functional theory and the implicit solvent model, COSMO-RS, to investigate how the acidity constant, pKa, of organic acids and bases adsorbed at the organic compound-aqueous solution interface changes, compared to its value in the aqueous phase. The pKa determine the surface charge density of the molecules that accumulate at the fluid-fluid interface. We have estimated the pKa by comparing the stability of the protonated and unprotonated forms of a series of molecules in the bulk aqueous solution and at an interface where parts of each molecule reside in the hydrophobic phase and the rest remains in the hydrophilic phase. We found that the pKa for acids is shifted by ∼1 pH unit to higher values compared to the bulk water pKa, whereas they are shifted to lower values by a similar amount for bases. Because this pKa shift is similar in magnitude for each of the molecules studied, we propose that the pKa for molecules at a water-organic compound interface can easily be predicted by adding a small shift to the aqueous pKa. This shift is general and correlates with the functional group. We also found that the relative composition of molecules at the fluid-fluid interface is not the same as in the bulk. For example, species such as carboxylic acids are enriched at the interface, where they can dominate surface properties, even when they are a modest component in the bulk fluid. For high surface concentrations of carboxylic acid groups at an interface, such as a self-assembled monolayer, we have demonstrated that the pKa depends on the degree of deprotonation through direct hydrogen bonding between protonated and deprotonated acidic headgroups.

  11. Theory of bi-molecular association dynamics in 2D for accurate model and experimental parameterization of binding rates

    PubMed Central

    Yogurtcu, Osman N.; Johnson, Margaret E.

    2015-01-01

    The dynamics of association between diffusing and reacting molecular species are routinely quantified using simple rate-equation kinetics that assume both well-mixed concentrations of species and a single rate constant for parameterizing the binding rate. In two-dimensions (2D), however, even when systems are well-mixed, the assumption of a single characteristic rate constant for describing association is not generally accurate, due to the properties of diffusional searching in dimensions d ≤ 2. Establishing rigorous bounds for discriminating between 2D reactive systems that will be accurately described by rate equations with a single rate constant, and those that will not, is critical for both modeling and experimentally parameterizing binding reactions restricted to surfaces such as cellular membranes. We show here that in regimes of intrinsic reaction rate (ka) and diffusion (D) parameters ka/D > 0.05, a single rate constant cannot be fit to the dynamics of concentrations of associating species independently of the initial conditions. Instead, a more sophisticated multi-parametric description than rate-equations is necessary to robustly characterize bimolecular reactions from experiment. Our quantitative bounds derive from our new analysis of 2D rate-behavior predicted from Smoluchowski theory. Using a recently developed single particle reaction-diffusion algorithm we extend here to 2D, we are able to test and validate the predictions of Smoluchowski theory and several other theories of reversible reaction dynamics in 2D for the first time. Finally, our results also mean that simulations of reactive systems in 2D using rate equations must be undertaken with caution when reactions have ka/D > 0.05, regardless of the simulation volume. We introduce here a simple formula for an adaptive concentration dependent rate constant for these chemical kinetics simulations which improves on existing formulas to better capture non-equilibrium reaction dynamics from dilute to dense systems. PMID:26328828

  12. NMR structural study of the prototropic equilibrium in solution of Schiff bases as model compounds.

    PubMed

    Ortegón-Reyna, David; Garcías-Morales, Cesar; Padilla-Martínez, Itzia; García-Báez, Efren; Aríza-Castolo, Armando; Peraza-Campos, Ana; Martínez-Martínez, Francisco

    2013-12-31

    An NMR titration method has been used to simultaneously measure the acid dissociation constant (pKa) and the intramolecular NHO prototropic constant ΔKNHO on a set of Schiff bases. The model compounds were synthesized from benzylamine and substituted ortho-hydroxyaldehydes, appropriately substituted with electron-donating and electron-withdrawing groups to modulate the acidity of the intramolecular NHO hydrogen bond. The structure in solution was established by 1H-, 13C- and 15N-NMR spectroscopy. The physicochemical parameters of the intramolecular NHO hydrogen bond (pKa, ΔKNHO and ΔΔG°) were obtained from 1H-NMR titration data and pH measurements. The Henderson-Hasselbalch data analysis indicated that the systems are weakly acidic, and the predominant NHO equilibrium was established using Polster-Lachmann δ-diagram analysis and Perrin model data linearization.

  13. A wave-bending structure at Ka-band using 3D-printed metamaterial

    NASA Astrophysics Data System (ADS)

    Wu, Junqiang; Liang, Min; Xin, Hao

    2018-03-01

    Three-dimensional printing technologies enable metamaterials of complex structures with arbitrary inhomogeneity. In this work, a 90° wave-bending structure at the Ka-band (26.5-40 GHz) based on 3D-printed metamaterials is designed, fabricated, and measured. The wave-bending effect is realized through a spatial distribution of varied effective dielectric constants. Based on the effective medium theory, different effective dielectric constants are accomplished by special, 3D-printable unit cells, which allow different ratios of dielectric to air at the unit cell level. In contrast to traditional, metallic-structure-included metamaterial designs, the reported wave-bending structure here is all dielectric and implemented by the polymer-jetting technique, which features rapid, low-cost, and convenient prototyping. Both simulation and experiment results demonstrate the effectiveness of the wave-bending structure.

  14. Statistical theory of chromatography: new outlooks for affinity chromatography.

    PubMed Central

    Denizot, F C; Delaage, M A

    1975-01-01

    We have developed further the statistical approach to chromatography initiated by Giddings and Eyring, and applied it to affinity chromatography. By means of a convenient expression of moments the convergence towards the Laplace-Gauss distribution has been established. The Gaussian character is not preserved if other causes of dispersion are taken into account, but expressions of moments can be obtained in a generalized form. A simple procedure is deduced for expressing the fundamental constants of the model in terms of purely experimental quantities. Thus, affinity chromatography can be used to determine rate constants of association and dissociation in a range considered as the domain of the stopped-flow methods. PMID:1061072

  15. On the Basicity of 8-Phenylsulfanyl Quipazine Derivatives: New Potential Serotonergic Agents.

    PubMed

    Pieńko, T; Taciak, P P; Mazurek, A P

    2015-07-09

    A protonation state of serotonergic ligands plays a crucial role in their pharmacological activity. In this research, the basicity of 8-phenylsulfanyl quipazine derivatives as new potential serotonergic agents was studied. The most favorable protonation sites were determined in the gas and aqueous phases. In water, a solvation effect promoting the protonation of the N3 atom overcomes a positive charge delocalization phenomenon favoring a N1 atom protonation. The most stable conformations of neutral and protonated molecules in gas and water were found. It was demonstrated that a diprotonation reaction may occur. The most favorable among the diprotonated structures is the molecule with the N1 and N3 atoms protonated. A calculation of the pKa and pKa2 in water of a set of monosubstituted 8-phenylsulfanyl quipazine derivatives was performed using B3LYP/6-31G(d) and the SMD continuum solvation model. Enthalpic and entropic contributions to the pKa and pKa2 in gas and water were separated for a rationalization of a substituent effect on values of the pKa and pKa2. The relationship of the proton affinity and the solvation enthalpy in water with some reactivity descriptors, such as the Fukui function, the molecular electrostatic potential (MEP), and the global softness, was investigated. The order of the pKa values is the most controlled by the entropy. The diprotonation reaction, despite having an unfavorable enthalpy in water, is driven entropically. Final state effects in the diprotonated species were analyzed with the triadic formula. Results of a calculation of the theoretical basicity of the 8-phenylsulfanyl quipazines indicate that they should be monoprotonated on the N3 atom in the CNS environment. Diprotonation of the studied compounds may occur in very acidic body fluids such as the gastric juice.

  16. Physicochemical properties of hydroxylated polychlorinated biphenyls aid in predicting their interactions with rat sulfotransferase 1A1 (rSULT1A1)

    PubMed Central

    Liu, Yungang; Lehmler, Hans-Joachim; Robertson, Larry W.; Duffel, Michael W.

    2010-01-01

    Hydroxylated metabolites of polychlorinated biphenyls (OHPCBs) interact with rat sulfotransferase 1A1 (rSULT1A1) as substrates and inhibitors. Previous studies have shown that there are complex and incompletely understood structure-activity relationships governing the interaction of rSULT1A1 with these molecules. Furthermore, modification of the enzyme with glutathione disulfide (GSSG) results in the conversion of some OHPCBs from inhibitors to substrates. We have now examined estimated values for the acid-dissociation constant (Ka) and the octanol-water distribution coefficient (D), as well as experimentally determined dissociation constants for enzyme complexes, to assist in the prediction of interactions of OHPCBs with rSULT1A1. Under reducing conditions, initial velocities for rSULT1A1-catalyzed sulfation exhibited a positive correlation with pKa and a negative correlation with log D of the OHPCBs. IC50 values of inhibitory OHPCBs decreased with decreasing pKa values for both the glutathione (GSH)-pretreated and GSSG-pretreated forms of rSULT1A1. Comparison of GSH- and GSSG-pretreated forms of rSULT1A1 with respect to binding of OHPCB in the presence and absence of adenosine 3’,5’-diphosphate (PAP) revealed that the dissociation constants with the two redox states of the enzyme were similar for each OHPCB. Thus, pKa and log D values are useful in predicting the binding of OHPCBs to the two redox forms of rSULT1A1 as well as the rates of sulfation of those OHPCBs that are substrates. However, the differences in substrate specificity for OHPCBs that are seen with changes in redox status of the enzyme are not directly related to specific structural effects of individual OHPCBs within inhibitory enzyme-PAP-OHPCB complexes. PMID:21130751

  17. The constant region affects antigen binding of antibodies to DNA by altering secondary structure.

    PubMed

    Xia, Yumin; Janda, Alena; Eryilmaz, Ertan; Casadevall, Arturo; Putterman, Chaim

    2013-11-01

    We previously demonstrated an important role of the constant region in the pathogenicity of anti-DNA antibodies. To determine the mechanisms by which the constant region affects autoantibody binding, a panel of isotype-switch variants (IgG1, IgG2a, IgG2b) was generated from the murine PL9-11 IgG3 autoantibody. The affinity of the PL9-11 antibody panel for histone was measured by surface plasmon resonance (SPR). Tryptophan fluorescence was used to determine wavelength shifts of the antibody panel upon binding to DNA and histone. Finally, circular dichroism spectroscopy was used to measure changes in secondary structure. SPR analysis revealed significant differences in histone binding affinity between members of the PL9-11 panel. The wavelength shifts of tryptophan fluorescence emission were found to be dependent on the antibody isotype, while circular dichroism analysis determined that changes in antibody secondary structure content differed between isotypes upon antigen binding. Thus, the antigen binding affinity is dependent on the particular constant region expressed. Moreover, the effects of antibody binding to antigen were also constant region dependent. Alteration of secondary structures influenced by constant regions may explain differences in fine specificity of anti-DNA antibodies between antibodies with similar variable regions, as well as cross-reactivity of anti-DNA antibodies with non-DNA antigens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Temperature Dependence of Inorganic Nitrogen Uptake: Reduced Affinity for Nitrate at Suboptimal Temperatures in Both Algae and Bacteria

    PubMed Central

    Reay, David S.; Nedwell, David B.; Priddle, Julian; Ellis-Evans, J. Cynan

    1999-01-01

    Nitrate utilization and ammonium utilization were studied by using three algal isolates, six bacterial isolates, and a range of temperatures in chemostat and batch cultures. We quantified affinities for both substrates by determining specific affinities (specific affinity = maximum growth rate/half-saturation constant) based on estimates of kinetic parameters obtained from chemostat experiments. At suboptimal temperatures, the residual concentrations of nitrate in batch cultures and the steady-state concentrations of nitrate in chemostat cultures both increased. The specific affinity for nitrate was strongly dependent on temperature (Q10 ≈ 3, where Q10 is the proportional change with a 10°C temperature increase) and consistently decreased at temperatures below the optimum temperature. In contrast, the steady-state concentrations of ammonium remained relatively constant over the same temperature range, and the specific affinity for ammonium exhibited no clear temperature dependence. This is the first time that a consistent effect of low temperature on affinity for nitrate has been identified for psychrophilic, mesophilic, and thermophilic bacteria and algae. The different responses of nitrate uptake and ammonium uptake to temperature imply that there is increasing dependence on ammonium as an inorganic nitrogen source at low temperatures. PMID:10347046

  19. Increased Antibody Affinity Confers Broad In Vitro Protection against Escape Mutants of Severe Acute Respiratory Syndrome Coronavirus

    PubMed Central

    Rani, Mridula; Bolles, Meagan; Donaldson, Eric F.; Van Blarcom, Thomas; Baric, Ralph; Iverson, Brent

    2012-01-01

    Even though the effect of antibody affinity on neutralization potency is well documented, surprisingly, its impact on neutralization breadth and escape has not been systematically determined. Here, random mutagenesis and DNA shuffling of the single-chain variable fragment of the neutralizing antibody 80R followed by bacterial display screening using anchored periplasmic expression (APEx) were used to generate a number of higher-affinity variants of the severe acute respiratory syndrome coronavirus (SARS-CoV)-neutralizing antibody 80R with equilibrium dissociation constants (KD) as low as 37 pM, a >270-fold improvement relative to that of the parental 80R single-chain variable fragment (scFv). As expected, antigen affinity was shown to correlate directly with neutralization potency toward the icUrbani strain of SARS-CoV. Additionally, the highest-affinity antibody fragment displayed 10-fold-increased broad neutralization in vitro and completely protected against several SARS-CoV strains containing substitutions associated with antibody escape. Importantly, higher affinity also led to the suppression of viral escape mutants in vitro. Escape from the highest-affinity variant required reduced selective pressure and multiple substitutions in the binding epitope. Collectively, these results support the hypothesis that engineered antibodies with picomolar dissociation constants for a neutralizing epitope can confer escape-resistant protection. PMID:22696652

  20. K-Band Latching Switches

    NASA Technical Reports Server (NTRS)

    Piotrowski, W. S.; Raue, J. E.

    1984-01-01

    Design, development, and tests are described for two single-pole-double-throw latching waveguide ferrite switches: a K-band switch in WR-42 waveguide and a Ka-band switch in WR-28 waveguide. Both switches have structurally simple junctions, mechanically interlocked without the use of bonding materials; they are impervious to the effects of thermal, shock, and vibration stresses. Ferrite material for the Ka-band switch with a proper combination of magnetic and dielectric properties was available and resulted in excellent low loss, wideband performance. The high power handling requirement of the K-band switch limited the choice of ferrite to nickel-zinc compositions with adequate magnetic properties, but with too low relative dielectric constant. The relative dielectric constant determines the junction dimensions for given frequency responses. In this case the too low value unavoidably leads to a larger than optimum junction volume, increasing the insertion loss and restricting the operating bandwidth. Efforts to overcome the materials-related difficulties through the design of a composite junction with increased effective dielectric properties efforts to modify the relative dielectric constant of nickel-zinc ferrite are examined.

  1. Mass-transport limitations in spot-based microarrays.

    PubMed

    Zhao, Ming; Wang, Xuefeng; Nolte, David

    2010-09-20

    Mass transport of analyte to surface-immobilized affinity reagents is the fundamental bottleneck for sensitive detection in solid-support microarrays and biosensors. Analyte depletion in the volume adjacent to the sensor causes deviation from ideal association, significantly slows down reaction kinetics, and causes inhomogeneous binding across the sensor surface. In this paper we use high-resolution molecular interferometric imaging (MI2), a label-free optical interferometry technique for direct detection of molecular films, to study the inhomogeneous distribution of intra-spot binding across 100 micron-diameter protein spots. By measuring intra-spot binding inhomogeneity, reaction kinetics can be determined accurately when combined with a numerical three-dimensional finite element model. To ensure homogeneous binding across a spot, a critical flow rate is identified in terms of the association rate k(a) and the spot diameter. The binding inhomogeneity across a spot can be used to distinguish high-affinity low-concentration specific reactions from low-affinity high-concentration non-specific binding of background proteins.

  2. Effect of Dunaliella tertiolecta organic exudates on the Fe(II) oxidation kinetics in seawater.

    PubMed

    González, A G; Santana-Casiano, J M; González-Dávila, M; Pérez-Almeida, N; Suárez de Tangil, M

    2014-07-15

    The role played by the natural organic ligands excreted by the green algae Dunaliella tertiolecta on the Fe(II) oxidation rate constants was studied at different stages of growth. The concentration of dissolved organic carbon increased from 2.1 to 7.1 mg L(-1) over time of culture. The oxidation kinetics of Fe(II) was studied at nanomolar levels and under different physicochemical conditions of pH (7.2-8.2), temperature (5-35 °C), salinity (10-37), and dissolved organic carbon produced by cells (2.1-7.1 mg L(-1)). The experimental rate always decreased in the presence of organic exudates with respect to that in the control seawater. The Fe(II) oxidation rate constant was also studied in the context of Marcus theory, where ΔG° was 39.31-51.48 kJ mol(-1). A kinetic modeling approach was applied for computing the equilibrium and rate constants for Fe(II) and exudates present in solution, the Fe(II) speciation, and the contribution of each Fe(II) species to the overall oxidation rate constant. The best fit model took into account two acidity equilibrium constants for the Fe(II) complexing ligands with pKa,1=9.45 and pKa,2=4.9. The Fe(II) complexing constants were KFe(II)-LH=3×10(10) and KFe(II)-L=10(7), and the corresponding computed oxidation rates were 68±2 and 36±8 M(-1) min(-1), respectively.

  3. All human Na(+)-K(+)-ATPase alpha-subunit isoforms have a similar affinity for cardiac glycosides.

    PubMed

    Wang, J; Velotta, J B; McDonough, A A; Farley, R A

    2001-10-01

    Three alpha-subunit isoforms of the sodium pump, which is the receptor for cardiac glycosides, are expressed in human heart. The aim of this study was to determine whether these isoforms have distinct affinities for the cardiac glycoside ouabain. Equilibrium ouabain binding to membranes from a panel of different human tissues and cell lines derived from human tissues was compared by an F statistic to determine whether a single population of binding sites or two populations of sites with different affinities would better fit the data. For all tissues, the single-site model fit the data as well as the two-site model. The mean equilibrium dissociation constant (K(d)) for all samples calculated using the single-site model was 18 +/- 6 nM (mean +/- SD). No difference in K(d) was found between nonfailing and failing human heart samples, although the maximum number of binding sites in failing heart was only approximately 50% of the number of sites in nonfailing heart. Measurement of association rate constants and dissociation rate constants confirmed that the binding affinities of the different human alpha-isoforms are similar to each other, although calculated K(d) values were lower than those determined by equilibrium binding. These results indicate both that the affinity of all human alpha-subunit isoforms for ouabain is similar and that the increased sensitivity of failing human heart to cardiac glycosides is probably due to a reduction in the number of pumps in the heart rather than to a selective inhibition of a subset of pumps with different affinities for the drugs.

  4. A Kappa Opioid Model of Atypical Altered Consciousness and Psychosis: U50488, DOI, AC90179 Effects on Prepulse Inhibition and Locomotion in Mice.

    PubMed

    Ruderman, Michael A; Powell, Susan B; Geyer, Mark A

    2009-07-01

    Sensorimortor gating and locomotion are behaviors that reflect pre-attentive sensory filtering and higher order, top-down, sensory processing, respectively. These processes are thought to affect either the perception of novelty in an environment (filtering) or cognition (higher order processing), salient features of models of altered states of consciousness (ASC). Drugs with highly selective receptor affinities that produce ASC can help to establish neural correlates, pathways, and mechanisms underlying ASC. Furthermore, screening for substances that selectively reverse drug-induced sensory processing departures is valuable for development of experimental antipsychotics. This study investigated the anomalous opioid sub-type, the kappa opioid (KA) system, within the two ASC models. Significant interaction and reversal effects between KA and the serotonin/2A (5-HT2A) system - the serotonin sub-type associated with classical psychedelics - were observed in three BPM measures. These measures showed that KA activation-induced effects could be reversed by 5-HT2A deactivation. These results suggest that KA could function as an atypical antipsychotic medications and/or as a screening tool for new antipsychotic medicines. The experimental work for this study comprised dose-response and reversal experiments with drugs that activate and deactivate kappa opioid and serotonin systems in the two behavioral models for the first time in mice.

  5. Effects of pH on the association between the inhibitor cystatin and the proteinase chymopapain.

    PubMed

    Reyes-Espinosa, Francisco; Arroyo-Reyna, Alfonso; Garcia-Gutierrez, Ponciano; Serratos, Iris N; Zubillaga, Rafael A

    2014-01-01

    Cysteine proteinases are involved in many aspects of physiological regulation. In humans, some cathepsins have shown another function in addition to their role as lysosomal proteases in intracellular protein degradation; they have been implicated in the pathogenesis of several heart and blood vessel diseases and in cancer development. In this work, we present a fluorometric and computational study of the binding of one representative plant cysteine proteinase, chymopapain, to one of the most studied inhibitors of these proteinases: chicken cystatin. The binding equilibrium constant, Kb, was determined in the pH range between 3.5 and 10.0, revealing a maximum in the affinity at pH 9.0. We constructed an atomic model for the chymopapain-cystatin dimer by docking the individual 3D protein structures; subsequently, the model was refined using a 100 ns NPT molecular dynamics simulation in explicit water. Upon scrutiny of this model, we identified 14 ionizing residues at the interface of the complex using a cutoff distance of 5.0 Å. Using the pKa values predicted with PROPKA and a modified proton-linkage model, we performed a regression analysis on our data to obtain the composite pKavalues for three isoacidic residues. We also calculated the electrostatic component of the binding energy (ΔGb,elec) at different pH values using an implicit solvent model and APBS software. The pH profile of this calculated energy compares well with the experimentally obtained binding energy, ΔGb. We propose that the residues that form an interchain ionic pair, Lys139A from chymopapain and Glu19B from cystatin, as well as Tyr61A and Tyr67A from chymopapain are the main residues responsible for the observed pH dependence in the chymopapain- cystatin affinity.

  6. The production and characterization of novel heavy-chain antibodies against the tandem repeat region of MUC1 mucin.

    PubMed

    Rahbarizadeh, Fatemeh; Rasaee, Mohammad J; Forouzandeh, Mehdi; Allameh, Abdolamir; Sarrami, Ramin; Nasiry, Habib; Sadeghizadeh, Majid

    2005-01-01

    Camelidae are known to produce immunoglobulins (Igs) devoid of light chains and constant heavy-chain domains (CH1). Antigen-specific fragments of these heavy-chain IgGs (VHH) are of great interest in biotechnology applications. This paper describes the first example of successfully raised heavy-chain antibodies in Camelus dromedarius (single-humped camel) and Camelus bactrianus (two-humped camel) against a MUC1 related peptide that is found to be an important epitope expressed in cancerous tissue. Camels were immunized against a synthetic peptide corresponding to the tandem repeat region of MUC1 mucin and cancerous tissue preparation obtained from patients suffering from breast carcinoma. Three IgG subclasses with different binding properties to protein A and G were purified by affinity chromatography. Both conventional and heavy-chain IgG antibodies were produced in response to MUC1-related peptide. The elicited antibodies could react specifically with the tandem repeat region of MUC1 mucin in an enzyme linked immunosorbant assay (ELISA). Anti-peptide antibodies were purified after passing antiserum over two affinity chromatography columns. Using ELISA, immunocytochemistry and Western blotting, the interaction of purified antibodies with different antigens was evaluated. The antibodies were observed to be selectively bound to antigens namely: MUC1 peptide (tandem repeat region), human milk fat globule membrane (HMFG), deglycosylated human milk fat globule membrane (D-HMFG), homogenized cancerous breast tissue and a native MUC1 purified from ascitic fluid. Ka values of specific polyclonal antipeptide antibodies were estimated in C. dromedarius and C. bactrianus, as 7 x 10(10) M(-1) and 1.4 x 10(10) M(-1) respectively.

  7. Analysis of Protein Interactions with Picomolar Binding Affinity by Fluorescence-Detected Sedimentation Velocity

    PubMed Central

    2014-01-01

    The study of high-affinity protein interactions with equilibrium dissociation constants (KD) in the picomolar range is of significant interest in many fields, but the characterization of stoichiometry and free energy of such high-affinity binding can be far from trivial. Analytical ultracentrifugation has long been considered a gold standard in the study of protein interactions but is typically applied to systems with micromolar KD. Here we present a new approach for the study of high-affinity interactions using fluorescence detected sedimentation velocity analytical ultracentrifugation (FDS-SV). Taking full advantage of the large data sets in FDS-SV by direct boundary modeling with sedimentation coefficient distributions c(s), we demonstrate detection and hydrodynamic resolution of protein complexes at low picomolar concentrations. We show how this permits the characterization of the antibody–antigen interactions with low picomolar binding constants, 2 orders of magnitude lower than previously achieved. The strongly size-dependent separation and quantitation by concentration, size, and shape of free and complex species in free solution by FDS-SV has significant potential for studying high-affinity multistep and multicomponent protein assemblies. PMID:24552356

  8. Paleohydrology and paleochemistry of Lake Manitoba, Canada: the isotope and ostracode records

    USGS Publications Warehouse

    Last, W.M.; Teller, J.T.; Forester, R.M.

    1994-01-01

    Lake Manitoba, the largest lake in the Prairie region of North America, contains a fine-grained sequence of late Pleistocene and Holocene sediment that documents a complex postglacial history. This record indicates that differential isostatic rebound and changing climate have interacted with varying drainage basin size and hydrologic budget to create significant variations in lake level and limnological conditions. During the initial depositional period in the basin, the Lake Agassiz phase (???12-9 ka), ??18O of ostracodes ranged from -16??? to -5??? (PDB), implying the lake was variously dominated by cold, dilute glacial meltwater and warm to cold, slightly saline water. Candona subtriangulata, which prefers cold, dilute water, dominates the most negative ??18O intervals, when the basin was part of proglacial Lake Agassiz. At times during this early phase, the ??18O of the lake abruptly shifted to higher values; euryhaline taxa such as C. rawsoni or Limnocythere ceriotuberosa, and halobiont taxa such as L. staplini or L. sappaensis are dominant in these intervals. This positive covariance of isotope and ostracode records implies that the lake level episodically fell, isolating the Lake Manitoba basin from the main glacial lake. ??18O values from inorganic endogenic Mg-calcite in the post-Agassiz phase of Lake Manitoba trend from -4??? at 8 ka to -11??? at 4.5 ka. We interpret that this trend indicates a gradually increasing influence of isotopically low (-20??? SMOW) Paleozoic groundwater inflow, although periods of increased evaporation during this time may account for zones of less negative isotopic values. The ??18O of this inorganic calcite abruptly shifts to higher values (-6???) after ???4.5 ka due to the combined effects of increased evaporative enrichment in a closed basin lake and the increased contribution of isotopically high surface water inflow on the hydrologic budget. After ???2 ka, the ??18O of the Mg-calcite fluctuates between -13??? and -7???, implying short-term variability in the lake's hydrologic budget, with values indicating the lake varied from outflow-dominated to evaporation-dominated. The ??13C values of Mg-calcite remain nearly constant from 8 to 4.5 ka and then trend to higher values upward in the section. This pattern suggests primary productivity in the lake was initially constant but gradually increased after 4.5 ka. ?? 1994 Kluwer Academic Publishers.

  9. pKa values in proteins determined by electrostatics applied to molecular dynamics trajectories.

    PubMed

    Meyer, Tim; Knapp, Ernst-Walter

    2015-06-09

    For a benchmark set of 194 measured pKa values in 13 proteins, electrostatic energy computations are performed in which pKa values are computed by solving the Poisson-Boltzmann equation. In contrast to the previous approach of Karlsberg(+) (KB(+)) that essentially used protein crystal structures with variations in their side chain conformations, the present approach (KB2(+)MD) uses protein conformations from four molecular dynamics (MD) simulations of 10 ns each. These MD simulations are performed with different specific but fixed protonation patterns, selected to sample the conformational space for the different protonation patterns faithfully. The root-mean-square deviation between computed and measured pKa values (pKa RMSD) is shown to be reduced from 1.17 pH units using KB(+) to 0.96 pH units using KB2(+)MD. The pKa RMSD can be further reduced to 0.79 pH units, if each conformation is energy-minimized with a dielectric constant of εmin = 4 prior to calculating the electrostatic energy. The electrostatic energy expressions upon which the computations are based have been reformulated such that they do not involve terms that mix protein and solvent environment contributions and no thermodynamic cycle is needed. As a consequence, conformations of the titratable residues can be treated independently in the protein and solvent environments. In addition, the energy terms used here avoid the so-called intrinsic pKa and can therefore be interpreted without reference to arbitrary protonation states and conformations.

  10. Estimation of hydrolysis rate constants for carbamates ...

    EPA Pesticide Factsheets

    Cheminformatics based tools, such as the Chemical Transformation Simulator under development in EPA’s Office of Research and Development, are being increasingly used to evaluate chemicals for their potential to degrade in the environment or be transformed through metabolism. Hydrolysis represents a major environmental degradation pathway; unfortunately, only a small fraction of hydrolysis rates for about 85,000 chemicals on the Toxic Substances Control Act (TSCA) inventory are in public domain, making it critical to develop in silico approaches to estimate hydrolysis rate constants. In this presentation, we compare three complementary approaches to estimate hydrolysis rates for carbamates, an important chemical class widely used in agriculture as pesticides, herbicides and fungicides. Fragment-based Quantitative Structure Activity Relationships (QSARs) using Hammett-Taft sigma constants are widely published and implemented for relatively simple functional groups such as carboxylic acid esters, phthalate esters, and organophosphate esters, and we extend these to carbamates. We also develop a pKa based model and a quantitative structure property relationship (QSPR) model, and evaluate them against measured rate constants using R square and root mean square (RMS) error. Our work shows that for our relatively small sample size of carbamates, a Hammett-Taft based fragment model performs best, followed by a pKa and a QSPR model. This presentation compares three comp

  11. Novel crown-ether-methylenediphosphonotetrathioate hybrids as Zn(II) chelators.

    PubMed

    Meltzer, Diana; Gottlieb, Hugo E; Amir, Aviran; Shimon, Linda J W; Fischer, Bilha

    2015-12-28

    Hybrids of methylenediphosphonotetrathioate and crown-ether (MDPT-CE) were synthesized forming 7-,8-,9-,10- and 13-membered rings. Both 7- and 13-membered ring-containing compounds were found to be highly stable to air-oxidation for at least four weeks. These hybrids bind Zn(II) by both MDPT and CE moieties, forming a 2 : 1 L : Zn(II) complex. Interestingly, the 13-membered ring MDPT-CE showing a high affinity to Zn(II) (Ka 3 ± 0.5 × 10(6) mol(-2) L(2)) does not bind Li(I) or Na(I). The 13-Membered MDPT-CE hybrid is a promising water-soluble, air-stable, high-affinity Zn(II)-chelator, exhibiting selectivity to Zn(II) vs. Mg(II), Na(I), and Li(I).

  12. Factors influencing the rate of non-enzymatic activation of carboxylic and amino acids by ATP

    NASA Technical Reports Server (NTRS)

    Mullins, D. W., Jr.; Lacey, J. C., Jr.

    1981-01-01

    The nonenzymatic formation of adenylate anhydrides of carboxylic and amino acids is discussed as a necessary step in the origin of the genetic code and protein biosynthesis. Results of studies are presented which have shown the rate of activation to depend on the pKa of the carboxyl group, the pH of the medium, temperature, the divalent metal ion catalyst, salt concentration, and the nature of the amino acid. In particular, it was found that of the various amino acids investigated, phenylalanine had the greatest affinity for the adenine derivatives adenosine and ATP. Results thus indicate that selective affinities between amino acids and nucleotides were important during prebiotic chemical evolution, and may have played a major role in the origin of protein synthesis and genetic coding.

  13. Structure, hydrolysis, and diffusion of aqueous vanadium ions from Car-Parrinello molecular dynamics

    NASA Astrophysics Data System (ADS)

    Jiang, Zhen; Klyukin, Konstantin; Alexandrov, Vitaly

    2016-09-01

    A molecular level understanding of the properties of electroactive vanadium species in aqueous solution is crucial for enhancing the performance of vanadium redox flow batteries. Here, we employ Car-Parrinello molecular dynamics simulations based on density functional theory to investigate the hydration structures, first hydrolysis reaction, and diffusion of aqueous V2+, V3+, VO2+, and VO 2+ ions at 300 K. The results indicate that the first hydration shell of both V2+ and V3+ contains six water molecules, while VO2+ is coordinated to five and VO 2+ to three water ligands. The first acidity constants (pKa) estimated using metadynamics simulations are 2.47, 3.06, and 5.38 for aqueous V3+, VO 2+ , and VO2+, respectively, while V2+ is predicted to be a fairly weak acid in aqueous solution with a pKa value of 6.22. We also show that the presence of chloride ions in the first coordination sphere of the aqueous VO 2+ ion has a significant impact on water hydrolysis leading to a much higher pKa value of 4.8. This should result in a lower propensity of aqueous VO 2+ for oxide precipitation reaction in agreement with experimental observations for chloride-based electrolyte solutions. The computed diffusion coefficients of vanadium species in water at room temperature are found to increase as V 3 + < VO 2 + < V O 2 + < V 2 + and thus correlate with the simulated hydrolysis constants, namely, the higher the pKa value, the greater the diffusion coefficient.

  14. Studies on lectins. XXXII. Application of affinity electrophoresis to the study of the interaction of lectins and their derivatives with sugars.

    PubMed

    Horejsí, V; Tichá, M; Kocourek, J

    1977-09-29

    Affinity electrophoresis was used to study the sugar binding heterogeneity of lectins or their derivatives. Commercial and demetallized preparations of concanavalin A could be resolved by affinity electrophoresis into three components with different affinity to immobilized sugar. Similarly the Vicia cracca lectin obtained by affinity chromatography behaved on affinity gels as a mixture of active and inactive molecular species. Affinity electrophoresis has shown that the nonhemagglutinating acetylated lentil lectin and photo-oxidized or sulfenylated pea lectin retain their sugar binding properties; dissociation constants of saccharide complexes of these derivatives are similar to those of native lectins. The presence of specific immobilized sugar in the affinity gel improved the resolution of isolectins from Dolichos biflorus and Ricinus communis seeds.

  15. A spectrophotometric study of the formation and deprotonation of thioarsenite species in aqueous solution at 22 °C

    NASA Astrophysics Data System (ADS)

    Zakaznova-Herzog, Valentina P.; Seward, Terry M.

    2012-04-01

    The ionization constants of thioarsenous acid have been determined at 22 °C by measuring the ultraviolet and visible spectra of thioarsenite species in dilute, aqueous sulfide solutions having S/As = 4.18, As = 1.1 × 10-4 mol/dm3 and pH ≈ 6-10.4. No oxidized species such as arsenate, thioarsenate or polysulfides were detected in the experimental solutions. The equilibrium constants for the thioarsenous acid ionization reactions were obtained from a principal component analysis treatment of the spectra and are as follows: H3AsS3=H+H2AsS3- for which pKa1=3.77 (±0.15) H2-AsS32-=H+H2AsS3- for which pKa2=6.53 (±0.08) HAsS32-=H+AsS33- for which pKa3=9.29 (±0.08) The pKa’s for the oxythioarsenous ionization reactions have also been estimated by analogy with those for the end member arsenous and thioarsenous acids. The data emphasize the important role of the simple arsenic(III) thioanions in defining the transport and redox chemistry of arsenic in sulfide-containing natural waters.

  16. Glacial terminations and the Last Interglacial in the Okhotsk Sea; Their implication to global climatic changes

    NASA Astrophysics Data System (ADS)

    Gorbarenko, Sergey; Velivetskaya, Tatyana; Malakhov, Mikhail; Bosin, Aleksandr

    2017-05-01

    Paleoclimate data from the Okhotsk Sea (OS) over Terminations II and I (TII, TI), and the Last and Present Interglacial (LIG, PIG) periods were compiled in order to examine Northern Hemisphere climate and sea level changes. Based on records of four AMS 14C-dated OS cores over TI-PIG, it is argued that the OS productivity/climate, IRD (ice-rafted debris), and benthic foraminiferal oxygen isotope (δ18Obf) proxies provide representative and in-phase evidence of the Northern Hemisphere climate and continental ice sheet changes consistent with the LR 04 δ18Obf curve. Chronologies for two central OS cores over TII-LIG-cooling event 23 (C23) were constructed by correlating OS productivity proxies with well-dated δ18O records of Chinese speleothems because OS environment is modulated by East Asian Monsoon; and, as well as correlating measured magnetic paleointensity excursions with those in the dated PISO-1500 paleointensity stack. Results show several OS climatic and environment states, including TII coeval with Asian Weak Monsoon Interval (WMI) II since 136 ka, LIG with a sharp two-step transition (130.2-129 ka) and demise at С25 (116.5 ka), and last glaciation with coolings at C24 (111 ka) and C23. The OS productivity and IRD records demonstrate certain climate amelioration in the middle of WMI-II, and two insignificant cooling events inside the LIG marked by C27 (126 ka) and C26 (120.6 ka). OS δ18Obf records of both cores demonstrate a gradual trend of lighter values since around 131.5 ka BP, continuing from the onset of LIG (129 ka) to minimum values at 126 ka BP (C27), then nearly constant values until 121.5 ka, followed by a slight increase up to 120.6 ka (C26), and a subsequent strong increase up to 116.5 ka (C25). The magnitude of OS δ18Obf oscillations is 1.35‰, which is less than those in the N. Atlantic. It may therefore be suggested that this OS index probably tracks changes in continental ice sheet volume and sea level.

  17. Point mutation increases a form of the NK1 receptor with high affinity for neurokinin A and B and septide

    PubMed Central

    Ciucci, Alessandra; Palma, Carla; Manzini, Stefano; Werge, Thomas M

    1998-01-01

    The binding modalities of substance P and neurokinin A on the wild type and Gly166 to-Cys mutant NK1 receptors expressed on CHO cells were investigated in homologous and heterologous binding experiments using both radiolabelled substance P and neurokinin A.On the wild type NK1 receptor NKA displaces radiolabelled substance P with very low apparent affinity, despite its high-affinity binding constant (determined in homologous binding experiments). The Gly166 to-Cys substitution in the NK1 tachykinin receptor greatly enhances the apparent affinity of neurokinin A in competition for radiolabelled substance P, but it does not change the binding constant of neurokinin A. The mutation, thereby, eliminates the discrepancy between the low apparent affinity and the high binding constant of neurokinin A.On the wild type receptor the binding capacity of neurokinin A is significantly smaller than that of substance P. In contrast, the two tachykinins bind to approximately the same number of sites on the mutant receptor.Simultaneous mass action law analysis of binding data in which multiple radioligands were employed in parallel demonstrated that a one-site model was unable to accommodate all the experimental data, whereas a two-site model provided a dramatically better description.These two receptor-sites display equally high affinity for substance P, while neurokinin A strongly discriminates between a high and a low affinity component. The binding affinities of neurokinin A are not affected by the mutation, which instead specifically alters the distribution between receptor sites in favour of a high affinity neurokinin A binding form.The low apparent affinity and binding capacity of neurokinin A on the wild type receptor results from neurokinin A binding with high affinity only to a fraction of the sites labelled by substance P. The mutation increases the proportion of this site, and consequently enhances the apparent affinity and binding capacity of neurokinin A.The binding modalities of septide-like ligands (i.e. neurokinin B, SP(6-11), SP-methyl ester) are affected similarly to neurokinin A and are better resolved into two sites. The mutation leaves the affinity of these ligands for the two receptor forms unchanged, but increases the fraction of high-affinity sites. On the other hand, the binding of non-peptide and peptide antagonists (SR140.333 and FK888) behaved similarly to substance P with a single high affinity site that is unaffected by the mutation.These findings may suggest that the NK1 receptor exists in two different forms with similar affinity for substance P and NK1 antagonists, but with a high and a low affinity for neurokinin A and septide-like ligands. Hence, the Gly166 in the NK1 receptor would seem to control the distribution between a pan-reactive form and a substance P-selective form of the receptor. PMID:9786514

  18. Agrobacterium Mediated Transient Gene Silencing (AMTS) in Stevia rebaudiana: Insights into Steviol Glycoside Biosynthesis Pathway

    PubMed Central

    Guleria, Praveen; Yadav, Sudesh Kumar

    2013-01-01

    Background Steviol glycoside biosynthesis pathway has emerged as bifurcation from ent-kaurenoic acid, substrate of methyl erythritol phosphate pathway that also leads to gibberellin biosynthesis. However, the genetic regulation of steviol glycoside biosynthesis has not been studied. So, in present study RNA interference (RNAi) based Agrobacterium mediated transient gene silencing (AMTS) approach was followed. SrKA13H and three SrUGTs (SrUGT85C2, SrUGT74G1 and SrUGT76G1) genes encoding ent-kaurenoic acid-13 hydroxylase and three UDP glycosyltransferases of steviol glycoside biosynthesis pathway were silenced in Stevia rebaudiana to understand its molecular mechanism and association with gibberellins. Methodology/Principal Findings RNAi mediated AMTS of SrKA13H and three SrUGTs has significantly reduced the expression of targeted endogenous genes as well as total steviol glycoside accumulation. While gibberellins (GA3) content was significantly enhanced on AMTS of SrUGT85C2 and SrKA13H. Silencing of SrKA13H and SrUGT85C2 was found to block the metabolite flux of steviol glycoside pathway and shifted it towards GA3 biosynthesis. Further, molecular docking of three SrUGT proteins has documented highest affinity of SrUGT76G1 for the substrates of alternate pathways synthesizing steviol glycosides. This could be a plausible reason for maximum reduction in steviol glycoside content on silencing of SrUGT76G1 than other genes. Conclusions SrKA13H and SrUGT85C2 were identified as regulatory genes influencing carbon flux between steviol glycoside and gibberellin biosynthesis. This study has also documented the existence of alternate steviol glycoside biosynthesis route. PMID:24023961

  19. Time Evolution of the Basse Terre Island (Guadeloupe, French West Indies) Effusive Volcanism from New K-Ar Cassignol-Gillot Ages.

    NASA Astrophysics Data System (ADS)

    Samper, A.; Quidelleur, X.; Mollex, D.; Komorowski, J. C.; Boudon, G.

    2004-12-01

    Radiometric dating and geochemistry of effusive volcanics have been combined with geomorphological observations in order to provide a general evolution model of the volcanic island of Basse Terre, Guadeloupe (French West Indies). More than forty new Cassignol-Gillot K-Ar ages distributed within the entire island, together with the twenty ages (Blanc, 1983; Carlut et al., 2000) previously obtained with the same technique, makes the Guadeloupe Island the best place to study the evolution of volcanic processes within the Lesser Antilles Arc. Dating was performed on the carefully separated groundmass in order to avoid K loss due to weathering and excess argon carried by mafic minerals. Ages obtained are relatively younger than previously thought on Basse Terre and range from a few ka to 2.79+-0.04 Ma. When available, the paleomagnetic polarity of the dated flows agree with the GPTS and a very good coherence of ages is observed for each massif. Our results demonstrate the general north to south migration of volcanism through time. It correlates with the main volcanic stages previously identified. The 2.75 Ma Basal Complex, the 1.81+-0.03 _ 1.15+-0.02 Ma Septentrional Chain, the 1.02+-0.02 Ma _ 0.606+-0.02 Ma Axial Chain, the 442+-6 _ 207+-28 ka Mateliane _ Sans Toucher Complex and the < 200 ka Complex of La Grande Decouverte, which outlines a relative continuity in the Basse Terre magmatism. Lavas are mainly basaltic andesites and andesites although a few basalt and dacite have also been dated. All of them are characterized by low MgO values (< 6 %), tholeiitic to calc-alkaline REE chondrite-normalized patterns and are of both low K and medium K affinity. Lavas display geochemical characteristics similar to that of the central islands of the Lesser Antilles arc. Within Basse Terre, geochemical characteristics are relatively constant through time, indicating no major change of volcanic processes during the whole subaerial activity. Finally the detailed chronological framework now available provides new constraints for estimating rates of edification and destruction at the island scale and, more generally, to help better understand the evolution of the still active Guadeloupe island Soufriere volcano.

  20. Mechanistic Studies of Human Spermine Oxidase: Kinetic Mechanism and pH Effects†

    PubMed Central

    Adachi, Maria S.; Juarez, Paul R.; Fitzpatrick, Paul F.

    2009-01-01

    In mammalian cells, the flavoprotein spermine oxidase (SMO) catalyzes the oxidation of spermine to spermidine and 3-aminopropanal. Mechanistic studies have been carried out with the recombinant human enzyme. The initial velocity pattern when the ratio between the concentrations of spermine and oxygen is kept constant establishes the steady-state kinetic pattern as ping-pong. Reduction of SMO by spermine in the absence of oxygen is biphasic. The rate constant for the rapid phase varies with the substrate concentration, with a limiting value (k3) of 49 s−1 and an apparent Kd value of 48 µM at pH 8.3. The rate constant for the slow step is independent of the spermine concentration, with a value of 5.5 s−1, comparable to the kcat value of 6.6 s−1. The kinetics of the oxidative half-reaction depend on the aging time after spermine and enzyme are mixed in a double mixing experiment. At an aging time of 6 s the reaction is monophasic with a second order rate constant of 4.2 mM−1 s−1. At an aging time of 0.3 s the reaction is biphasic with two second order constants equal to 4.0 and 40 mM−1 s−1. Neither is equal to the kcat/KO2 value of 13 mM−1s−1. These results establish the existence of more than one pathway for the reaction of the reduced flavin intermediate with oxygen. The kcat/KM value for spermine exhibits a bell-shaped pH-profile, with an average pKa value of 8.3. This profile is consistent with the active form of spermine having three charged nitrogens. The pH profile for k3 shows a pKa value of 7.4 for a group that must be unprotonated. The pKi-pH profiles for the competitive inhibitors N,N’-dibenzylbutane-1,4-diamine and spermidine show that the fully protonated forms of the inhibitors and the unprotonated form of an amino acid residue with a pKa of about 7.4 in the active site are preferred for binding. PMID:20000632

  1. 2H Kinetic Isotope Effects and pH Dependence of Catalysis as Mechanistic Probes of Rat Monoamine Oxidase A: Comparisons with the Human Enzyme‡

    PubMed Central

    Wang, Jin; Edmondson, Dale E.

    2011-01-01

    Monoamine oxidase A (MAO A) is a mitochondrial outer membrane-bound flavoenzyme important in the regulation of serotonin and dopamine levels. Since the rat is extensively used as an animal model in drug studies, it is important to understand how rat MAO A behaves in comparison with the more extensively studied human enzyme. For many reversible inhibitors, rat MAO A exhibits Ki values similar to those of human MAO A. The pH profile of kcat for rat MAO A shows a pKa of 8.2±0.1 for the benzylamine ES complex and pKa values of 7.5±0.1 and 7.6±0.1 for the respective ES complexes with p-CF3-1H and p-CF3-2H-benzylamine. In contrast to the human enzyme, the rat enzyme exhibits a single pKa value (8.3±0.1) with kcat/Km benzylamine vs. pH and pKa values of 7.8±0.1 and 8.1±0.2 are found for the ascending limbs, respectively, of kcat/Km vs. pH profiles for p-CF3-1H and p-CF3-2H-benzylamine and 9.3±0.1 and 9.1±0.2 for their respective descending limbs. The oxidation of para-substituted benzylamine substrate analogues by rat MAO A exhibit large deuterium kinetic isotope effects on kcat and on kcat/Km. These effects are pH-independent, and range from 7 to 14, demonstrating a rate-limiting α-C-H bond cleavage step in catalysis. Quantitative structure-activity correlations of log kcat with the electronic substituent parameter (σ) at pH 7.5 and at 9.0 show a dominant contribution with positive ρ values (+1.2 – 1.3) and a pH-independent negative contribution from the steric term. Quantitative structure-activity relationship analysis of the binding affinities of the para-substituted benzylamine analogues to rat MAO A show an increased van der Waals volumes (Vw) increases the affinity of the deprotonated amine for the enzyme. These results demonstrate that rat MAO A exhibits similar but not identical functional properties with the human enzyme and provide additional support for C-H bond cleavage via a polar nucleophilic mechanism. PMID:21819071

  2. Contemporaneous alkaline and calc-alkaline series in Central Anatolia (Turkey): Spatio-temporal evolution of a post-collisional Quaternary basaltic volcanism

    NASA Astrophysics Data System (ADS)

    Dogan-Kulahci, Gullu Deniz; Temel, Abidin; Gourgaud, Alain; Varol, Elif; Guillou, Hervé; Deniel, Catherine

    2018-05-01

    This study focuses on spatio-temporal evolution of basaltic volcanism in the Central Anatolian post-collisional Quaternary magmatic province which developed along a NE-SW orientation in Turkey. This magmatic province consists of the stratovolcanoes Erciyes (ES) and Hasandag (HS), and the basaltic volcanic fields of Obruk-Zengen (OZ) and Karapınar (KA). The investigated samples range between basic to intermediate in composition (48-56 wt% SiO2), and exhibit calc-alkaline affinity at ES whereas HS, OZ and KA are alkaline in composition. Based on new Ksbnd Ar ages and major element data, the oldest basaltic rock of ES is 1700 ± 40 ka old and exhibits alkaline character, whereas the youngest basaltic trachyandesite is 12 ± 5 ka old and calc-alkaline in composition. Most ES basaltic rocks are younger than 350 ka. All samples dated from HS are alkaline basalts, ranging from 543 ± 12 ka to 2 ± 7 ka old. With the exception of one basalt, all HS basalts are 100 ka or younger in age. Ksbnd Ar ages range from 797 ± 20 ka to 66 ± 7 ka from OZ. All the basalt samples are alkaline in character and are older than the HS alkaline basalts, with the exception of the youngest samples. The oldest and youngest basaltic samples from KA are 280 ± 7 ka and 163 ± 10 ka, respectively, and are calc-alkaline in character. Based on thermobarometric estimates samples from OZ exhibit the highest cpx-liqidus temperature and pressure. For all centers the calculated crystallization depths are between 11 and 28 km and increase from NE to SW. Multistage crystallization in magma chamber(s) located at different depths can explain this range in pressure. Harker variation diagrams coupled with least-squares mass balance calculations support fractional crystallization for ES and, to lesser extend for HS, OZ and KA. All basaltic volcanic rocks of this study are enriched in large-ion lithophile elements (LILE) and light rare earth elements (LREE). The lack of negative anomalies for high field strength elements (HFSE; Y, Yb) and the La/Nb >1 favor a shallow lithospheric source for ES, HS, OZ and KA basaltic volcanic rocks, whereas some samples bear the trace element signature of an asthenospheric mantle source. The lithospheric mantle beneath Central Anatolia may have not been affected from asthenospheric mantle directly. Negative Nb-Ta-Ti anomalies and a positive Pb spike of ES, HS, OZ and KA may be ascribed to crustal contamination or as the imprints of the previous subduction processes. According to this study, and previous studies, the effect of subduction and/or crustal contamination in Central Anatolia decreased from the Miocene to the Quaternary, and the origin of the Quaternary basaltic rocks mainly derived from subduction-related magmas enriched with sediment input rather than to slab-derived fluids. Our calculated eruption ages for the four basaltic complexes show that spatial differences predominate, whereas temporal trends are difficult to discern due to limited age resolution. According to the available geochronological, petrological and geochemical data, alkaline and calc-alkaline volcanism occurred simultaneously from distinct parental magmas.

  3. Affine theory of gravitation

    NASA Astrophysics Data System (ADS)

    Popławski, Nikodem

    2014-01-01

    We propose a theory of gravitation, in which the affine connection is the only dynamical variable describing the gravitational field. We construct a simple dynamical Lagrangian density that is entirely composed from the connection, via its curvature and torsion, and is a polynomial function of its derivatives. It is given by the contraction of the Ricci tensor with a tensor which is inverse to the symmetric, contracted square of the torsion tensor, . We vary the total action for the gravitational field and matter with respect to the affine connection, assuming that the matter fields couple to the connection only through . We derive the resulting field equations and show that they are identical with the Einstein equations of general relativity with a nonzero cosmological constant if the tensor is regarded as proportional to the metric tensor. The cosmological constant is simply a constant of proportionality between the two tensors, which together with and provides a natural system of units in gravitational physics. This theory therefore provides a physical construction of the metric as a polynomial function of the connection, and explains dark energy as an intrinsic property of spacetime.

  4. The neonatal Fc receptor (FcRn) binds independently to both sites of the IgG homodimer with identical affinity.

    PubMed

    Abdiche, Yasmina Noubia; Yeung, Yik Andy; Chaparro-Riggers, Javier; Barman, Ishita; Strop, Pavel; Chin, Sherman Michael; Pham, Amber; Bolton, Gary; McDonough, Dan; Lindquist, Kevin; Pons, Jaume; Rajpal, Arvind

    2015-01-01

    The neonatal Fc receptor (FcRn) is expressed by cells of epithelial, endothelial and myeloid lineages and performs multiple roles in adaptive immunity. Characterizing the FcRn/IgG interaction is fundamental to designing therapeutic antibodies because IgGs with moderately increased binding affinities for FcRn exhibit superior serum half-lives and efficacy. It has been hypothesized that 2 FcRn molecules bind an IgG homodimer with disparate affinities, yet their affinity constants are inconsistent across the literature. Using surface plasmon resonance biosensor assays that eliminated confounding experimental artifacts, we present data supporting an alternate hypothesis: 2 FcRn molecules saturate an IgG homodimer with identical affinities at independent sites, consistent with the symmetrical arrangement of the FcRn/Fc complex observed in the crystal structure published by Burmeister et al. in 1994. We find that human FcRn binds human IgG1 with an equilibrium dissociation constant (KD) of 760 ± 60 nM (N = 14) at 25°C and pH 5.8, and shows less than 25% variation across the other human subtypes. Human IgG1 binds cynomolgus monkey FcRn with a 2-fold higher affinity than human FcRn, and binds both mouse and rat FcRn with a 10-fold higher affinity than human FcRn. FcRn/IgG interactions from multiple species show less than a 2-fold weaker affinity at 37°C than at 25°C and appear independent of an IgG's variable region. Our in vivo data in mouse and rat models demonstrate that both affinity and avidity influence an IgG's serum half-life, which should be considered when choosing animals, especially transgenic systems, as surrogates.

  5. Population Pharmacokinetics of Oral Topotecan in Infants and Very Young Children with Brain Tumors Demonstrates a Role of ABCG2 rs4148157 on the Absorption Rate Constant

    PubMed Central

    Roberts, Jessica K.; Birg, Anna V.; Lin, Tong; Daryani, Vinay M.; Panetta, John C.; Broniscer, Alberto; Robinson, Giles W.; Gajjar, Amar J.

    2016-01-01

    For infants and very young children with brain tumors, chemotherapy after surgical resection is the main treatment due to neurologic and neuroendocrine adverse effects from whole brain irradiation. Topotecan, an anticancer drug with antitumor activity against pediatric brain tumors, can be given intravenous or orally. However, high interpatient variability in oral drug bioavailability is common in children less than 3 years old. Therefore, this study aimed to determine the population pharmacokinetics of oral topotecan in infants and very young children, specifically evaluating the effects of age and ABCG2 and ABCB1 on the absorption rate constant (Ka), as well as other covariate effects on all pharmacokinetic parameters. A nonlinear mixed effects model was implemented in Monolix 4.3.2 (Lixoft, Orsay, France). A one-compartment model with first-order input and first-order elimination was found to adequately characterize topotecan lactone concentrations with population estimates as [mean (S.E.)]; Ka = 0.61 (0.11) h−1, apparent volume of distribution (V/F) = 40.2 (7.0) l, and apparent clearance (CL/F) = 40.0 (2.9) l/h. After including the body surface area in the V/F and CL/F as a power model centered on the population median, the ABCG2 rs4148157 allele was found to play a significant role in the value of Ka. Patients homozygous or heterozygous for G>A demonstrated a Ka value 2-fold higher than their GG counterparts, complemented with a 2-fold higher maximal concentration as well. These results demonstrate a possible role for the ABCG2 rs4148157 allele in the pharmacokinetics of oral topotecan in infants and very young children, and warrants further investigation. PMID:27052877

  6. Lactoferrin-binding proteins in Shigella flexneri.

    PubMed Central

    Tigyi, Z; Kishore, A R; Maeland, J A; Forsgren, A; Naidu, A S

    1992-01-01

    The ability of Shigella flexneri to interact with lactoferrin (Lf) was examined with a 125I-labeled protein-binding assay. The percent binding of human lactoferrin (HLf) and bovine lactoferrin (BLf) to 45 S. flexneri strains was 19 +/- 3 and 21 +/- 3 (mean +/- standard error of the mean), respectively. 125I-labeled HLf and BLf binding to strain M90T reached an equilibrium within 2 h. Unlabeled HLf and BLf displaced the 125I-HLf-bacteria interaction in a dose-dependent manner. The Lf-bacterium complex was uncoupled by KSCN or urea, but not by NaCl. The interaction was specific, and approximately 4,800 HLf binding sites (affinity constant [Ka], 690 nM) or approximately 5,700 BLf binding sites (Ka, 104 nM) per cell were estimated in strain M90T by a Scatchard plot analysis. The native cell envelope (CE) and outer membrane (OM) did not reveal Lf-binding components in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. However, after being boiled, the CE and OM preparations showed three distinct horseradish peroxidase-Lf reactive bands of about 39, 22, and 16 kDa. The 39-kDa component was also reactive to a monoclonal antibody specific for porin (PoI) proteins of members of the family Enterobacteriaceae. The Lf-binding protein pattern was similar with BLf or HLf, for Crb+ and Crb- strains. The protein-Lf complex was dissociable by KSCN or urea and was stable after treatment with NaCl. Variation (loss) in the O chain of lipopolysaccharide (LPS) markedly enhanced the Lf-binding capacity in the isogenic rough strain SFL1070-15 compared with its smooth parent strain, SFL1070. These data establish that Lf binds to specific components in the bacterial OM; the heat-modifiable, anti-PoI-reactive, and LPS-associated properties suggested that the Lf-binding proteins are porins in S. flexneri. Images PMID:1319403

  7. New insights on the spectrophotometric determination of melatonin pKa values and melatonin-βCD inclusion complex formation constant

    NASA Astrophysics Data System (ADS)

    Zafra-Roldán, A.; Corona-Avendaño, S.; Montes-Sánchez, R.; Palomar-Pardavé, M.; Romero-Romo, M.; Ramírez-Silva, M. T.

    2018-02-01

    Using UV-Vis spectrophotometry a stability study of melatonin at different pH values was done in aqueous media, finding that at acidic pH melatonin is unstable when interacting with the environment, however it becomes stable protecting it from light and oxygen. From the UV-Vis spectra and SQUAD software, melatonin pKa values, in a completely protected aqueous medium, were estimated as 5.777 ± 0.011 and 10.201 ± 0.024. Using the same techniques, the melatonin and β-cyclodextrin inclusion complex formation constants were assessed at pH 3, 7 and 11.5, giving the values of log β = (3.07 ± 0.06), (2.94 ± 0.01) and (3.07 ± 0.06) M- 1, respectively. From the global acidity formation constants and the complexes' formation constants, the molar fractions were determined for each species of MT and MT - βCD, to build the molar fraction-[βCD]-pH 3D diagram and the molar fraction-pH 2D diagrams, where it was possible to observe the predominance of the MT species with and without βCD. A voltammetric study at pH 3, allowed obtaining a value of log β = (3.15 ± 0.01) M- 1, which corroborates that obtained through UV-Vis spectrophotometry, supporting strongly the rationale behind using simple, straightforward techniques.

  8. Piracetam interactions with neuroleptics in psychopharmacological tests.

    PubMed

    Bourin, M; Poisson, L; Larousse, C

    1986-01-01

    Two psychopharmacological tests which usually predict neuroleptic activity were conducted after joint administration of piracetam and three neuroleptics (haloperidol, fluphenazine and sulpiride) chosen for their different chemical classes and dopaminergic affinities. In these tests, specific doses of the neuroleptics were used to determine whether piracetam induced potentiation or antagonism of their action. Overall, piracetam increased neuroleptic action regardless of the administration timetable used, but the interaction of fluphenazine differed from that of the other two substances, because piracetam did not modify its action in a specific test of the presynaptic DA-2 dopaminergic receptors. This variation for fluphenazine may be explained by the fact that its pKa value is closer to that of piracetam, thus preventing better bioavailability of the neuroleptic, or its better affinity for DA-1 dopaminergic receptors. Nevertheless, the variation may have been due to a differing affinity for dopaminergic receptors, although this hypothesis is not completely satisfactory because it does not account for differences due to the administration timetable. It is thus suggested that action occurs on nonspecific sites and has the effect of increasing overall neuroleptic bioavailability.

  9. The Significance of Acid/Base Properties in Drug Discovery

    PubMed Central

    Manallack, David T.; Prankerd, Richard J.; Yuriev, Elizabeth; Oprea, Tudor I.; Chalmers, David K.

    2013-01-01

    While drug discovery scientists take heed of various guidelines concerning drug-like character, the influence of acid/base properties often remains under-scrutinised. Ionisation constants (pKa values) are fundamental to the variability of the biopharmaceutical characteristics of drugs and to underlying parameters such as logD and solubility. pKa values affect physicochemical properties such as aqueous solubility, which in turn influences drug formulation approaches. More importantly, absorption, distribution, metabolism, excretion and toxicity (ADMET) are profoundly affected by the charge state of compounds under varying pH conditions. Consideration of pKa values in conjunction with other molecular properties is of great significance and has the potential to be used to further improve the efficiency of drug discovery. Given the recent low annual output of new drugs from pharmaceutical companies, this review will provide a timely reminder of an important molecular property that influences clinical success. PMID:23099561

  10. A chemical model of seawater including dissolved ammonia and the stoichiometric dissociation constant of ammonia in estuarine water and seawater from -2 to 40°C

    NASA Astrophysics Data System (ADS)

    Clegg, Simon L.; Whitfield, Michael

    1995-06-01

    The calculation of the percentage of un-ionised ammonia in estuarine water and seawater requires values of the stoichiometric dissociation constant of ammonia, defined by: K*a/mol kg -1 = mNH 3mH +/ mNH +4, where m denotes molality. A thermodynamic model of seawater, including dissolved NH 3 and NH +4, is developed using an extended Pitzer formalism parameterised from available data. The model is validated using emf measurements for cells containing artificial seawater with added HCl, and NH 4Cl, and NH 3 over a range of temperatures and salinities. Calculated values of K*a are tabulated from 0 to 40 ppt salinity and -2 to 40°C, on both a free ( mH +) and total ( mH + + mHSO -4) hydrogen ion basis for use with pH measurements made on the corresponding scales. Accuracy (in K*a) is likely to be better than 5% at all temperatures and salinities.

  11. The mechanism and high-free-energy transition state of lac repressor–lac operator interaction

    PubMed Central

    Sengupta, Rituparna; Capp, Michael W.; Shkel, Irina A.

    2017-01-01

    Abstract Significant, otherwise-unavailable information about mechanisms and transition states (TS) of protein folding and binding is obtained from solute effects on rate constants. Here we characterize TS for lac repressor(R)–lac operator(O) binding by analyzing effects of RO-stabilizing and RO-destabilizing solutes on association (ka) and dissociation (kd) rate constants. RO-destabilizing solutes (urea, KCl) reduce ka comparably (urea) or more than (KCl) they increase kd, demonstrating that they destabilize TS relative to reactants and RO, and that TS exhibits most of the Coulombic interactions between R and O. Strikingly, three solutes which stabilize RO by favoring burial/dehydration of amide oxygens and anionic phosphate oxygens all reduce kd without affecting ka significantly. The lack of stabilization of TS by these solutes indicates that O phosphates remain hydrated in TS and that TS preferentially buries aromatic carbons and amide nitrogens while leaving amide oxygens exposed. In our proposed mechanism, DNA-binding-domains (DBD) of R insert in major grooves of O pre-TS, forming most Coulombic interactions of RO and burying aromatic carbons. Nucleation of hinge helices creates TS, burying sidechain amide nitrogens. Post-TS, hinge helices assemble and the DBD-hinge helix-O-DNA module docks on core repressor, partially dehydrating phosphate oxygens and tightening all interfaces to form RO. PMID:29036376

  12. Extraterrestrial 3He in Paleocene sediments from Shatsky Rise: Constraints on sedimentation rate variability

    NASA Astrophysics Data System (ADS)

    Marcantonio, Franco; Thomas, Deborah J.; Woodard, Stella; McGee, David; Winckler, Gisela

    2009-09-01

    We attempt to constrain the variability of the flux of extraterrestrial 3He in the Paleocene by studying sediments from Shatsky Rise (Ocean Drilling Program, ODP Leg 198) that have tight orbital age control. 3He concentrations in Shatsky Rise sediments vary periodically at high frequency by about a factor of 6 over the 800-ka record analyzed. Virtually all of the sedimentary 3He (> 99.98%) is of extraterrestrial origin. The total helium in the sediments can be explained as a binary mixture of terrestrial and extraterrestrial components. We calculate an average 3He/ 4He ratio for the extraterrestrial endmember of 2.41 ± 0.29 × 10 - 4 , which is, remarkably, equal to that measured in present-day interplanetary dust particles. We determine a constant extraterrestrial 3He flux of 5.9 ± 0.9 × 10 - 13 cm 3STP .cm - 2 ka - 1 for our 800-ka Paleocene record at ~ 58 Ma. This value is identical within error to those for the late Paleocene in sediments from the northern Pacific and the Weddell Sea. Bulk sediment MARs (derived using a constant extraterrestrial 3He flux) respond to climate-forced carbonate preservation cycles and changes in eolian flux over the late Paleocene. This is the first direct evidence for significant changes in dust accumulation in response to eccentricity forcing during a greenhouse climate interval.

  13. The accretion rate of extraterrestrial 3He based on oceanic 230Th flux and the relation to Os isotope variation over the past 200,000 years in an Indian Ocean core

    NASA Astrophysics Data System (ADS)

    Marcantonio, Franco; Turekian, Karl K.; Higgins, Sean; Anderson, Robert F.; Stute, Martin; Schlosser, Peter

    1999-07-01

    In the eastern equatorial Indian Ocean, the flux of extraterrestrial 3He, a proxy of interplanetary dust particles (IDPs), has been relatively constant over the past 200 ka. The flux is equal to (1.1±0.4)×10 -12 cm 3 STP cm -2 ka -1, a value obtained using the xs 230Th profiling method. Variations in mass accumulation rates (MARs) derived assuming a constant extraterrestrial 3He flux have a 40-ka periodicity similar to that observed in the δ 18O-derived MARs. This frequency is similar to that of the Earth's obliquity. Measured 187Os/ 188Os ratios are less radiogenic than present-day seawater (0.49-0.98), reflecting the mixing of Os derived from extraterrestrial, terrigenous and hydrogenous sources. When coupled with He data measured on the same samples, Os isotope data yield important information about the terrigenous component supplied to the eastern equatorial Indian Ocean. The amount of Os in the sample derived from the extraterrestrial component can be deduced with the help of the helium systematics. Once corrected for the extraterrestrial component of Os, Os isotope signatures, in conjunction with the 4He concentrations, suggest a supply of terrigenous material from Indonesian ultramafic and Himalayan crustal sources that clearly varies through time.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, M; Lee, V; Wong, M

    Purpose: Following the method of in-phantom measurements of reference air kerma rate (Ka) at 100cm and absorbed water dose rate (Dw1) at 1cm of high-dose-rate 192Ir brachytherapy source using 60Co absorbed-dose-to-water calibrated (ND,w,60Co) ionization chamber (IC), we experimentally determined the in-phantom correction factors (kglob) of the PTW30013 (PTW, Freiburg, Germany) IC by comparing the Monte Carlo (MC)-calculated kglob of the other PTW30016 IC. Methods: The Dw1 formalism of in-phantom measurement is: M*ND,w,60Co*(kglob)Dw1, where M is the collected charges, and (kglob)Dw1 the in-phantom Dw1 correction factor. Similarly, Ka is determined by M*ND,w,60Co*(kglob)ka, where (kglob)ka the in-phantom Ka correction factor. Two thimblemore » ICs PTW30013 and another PTW30016 having a ND,w,60Co from the German primary standard laboratory (PTB) were simultaneously exposed to the microselectron 192Ir v2 source at 8cm in a PMMA phantom. A reference well chamber (PTW33004) with a PTB transfer Ka calibration Nka was used for comparing the in-phantom measurements to derive the experimental (kglob)ka factors. We determined the experimental (kglob)Dw1 of the PTW30013 by comparing the PTW30016 measurements with MC-calculated (kglob)Dw1. Results: Ka results of the PTW30016 based on ND,w,60Co and MC-calculated (kglob)ka differ from the well chamber results based on Nka by 1.6% and from the manufacturer by 1.0%. Experimental (kglob)ka factors for the PTW30016 and two other PTW30013 are 0.00683, 0.00681 and 0.00679, and vary <0.5% with 1mm source positioning uncertainty. Experimental (kglob)Dw1 of the PTW30013 ICs are 75.3 and 75.6, and differ by 1.6% from the conversion by dose rate constant from the AAPM report 229. Conclusion: The 1.7% difference between MC and experimental (kglob)ka for the PTW30016 IC is within the PTB 2.5% expanded uncertainty in Ka calibration standard. Using a single IC with ND,w,60Co to calibrate the brachytherapy source and dose output in external radiotherapy is feasible. MC validation of the PTW30013(kglob)Dw1 is warranted.« less

  15. Removal of micro pollutants using activated biochars and powdered activated carbon in water

    NASA Astrophysics Data System (ADS)

    Kim, E.; Jung, C.; Han, J.; Son, A.; Yoon, Y.

    2015-12-01

    Recent studies have suggested that emerging micropollutants containing endocrine disrupting compounds (EDCs); bisphenol A, 17 α-ethinylestradiol, 17 β-estradiol and pharmaceuticals and personal care products (PPCPs); sulfamethoxazole, carbamazepine, ibuprofen, atenolol, benzophenone, benzotriazole, caffeine, gemfibrozil, primidone, triclocarban in water have been linked to ecological impacts, even at trace concentrations (sub ug/L). Adsorption with adsorbent such as activated carbon having a high-binding affinity has been widely used to eliminate various contaminants in the aqueous phase. Recently, an efficient treatment strategy for EDCs and PPCPs has been considered by using cost effective adsorption particularly with biochar in aqueous environmentIn this study, the objective of this study is to determine the removal of 13 target EDCs/PPCPs having different physicochemical properties by a biochar at various water quality conditions (pH (3.5, 7, and 10.5), background ions (NaCl, CaCl2, Na₂SO₄), ionic strength, natural organic matter (NOM)). The activated biochar produced in a laboratory was also characterized by using conventional analytical methods as well as advanced solid-state nuclear magnetic resonance (NMR) techniques, which answer how these properties determine the competitive adsorption characteristics and mechanisms of EDCs and PPCPs.The primary findings suggest that micropollutants can be removed more effectively by the biochar than the commercially available powdered activated carbon. At pH values below the pKa of each compound, the adsorption affinity toward adsorbents increased significantly with the pH, whereas the adsorption affinity decreased significantly at the pH above the pKa values. Na+ did not significantly impact adsorption, while increasing the concentration of Ca2+lead to increase in the adsorption of these micropollutants. NOM adsorption with humic acids on these adsorbents disturbed adsorption capacity of the target compounds as occupying active adsorption sites and interacting with EDCs/PPCPs. Conclusion that can be drawn thus far is that the biochar shows great physicochemical properties for adsorption to reduce the micropollutants.

  16. Temporal survey of electron number density and electron temperature in the exhaust of a megawatt MPD-arc thruster.

    NASA Technical Reports Server (NTRS)

    Michels, C. J.; Rose, J. R.; Sigman, D. R.

    1972-01-01

    Temporal and radial profiles are obtained 30 cm downstream from the anode for two peak arc currents (11.2 kA and 20 kA) and for various auxiliary magnetic fields (0, 1.0 T, and 2.0 T) using the Thomson scattering technique. Average density and temperature are relatively constant for over 100 microseconds with significant fluctuations. Radial profiles obtained are relatively flat for 4 cm from the axis. Compared to earlier 20 cm data, the exhaust density has decreased significantly, the average temperature has not changed, and the density ?hole' with an auxiliary magnetic field has enlarged.

  17. Microwave spectroscopy of HCOO13CH3 in the second methyl torsional excited state

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kaori; Kuwahara, Takuro; Tachi, Haruka; Urata, Yuki; Tsunekawa, Shozo; Hayashi, Naoto; Higuchi, Hiroyuki; Fujitake, Masaharu; Ohashi, Nobukimi

    2018-01-01

    The new experimental results and analysis of the microwave spectra of HCOO13CH3 in the second methyl torsional excited state are reported. Pseudo-principal axis method (pseudo-PAM) was successfully applied to the normal methyl formate in the second torsional excited state and again applied to this isotopologue. We succeeded to assign 536 A-species transitions up to J = 33 and Ka = 15 and 417 E-species transitions up to J = 32 and Ka = 14. Thirty parameters were used to do the least-squares-analysis by using the pseudo-PAM Hamiltonian consisting of rotational, centrifugal distortion, and internal-rotational constants.

  18. Quantitative interdependence of coeffectors, CcpA and cre in carbon catabolite regulation of Bacillus subtilis.

    PubMed

    Seidel, Gerald; Diel, Marco; Fuchsbauer, Norbert; Hillen, Wolfgang

    2005-05-01

    The phosphoproteins HPrSerP and CrhP are the main effectors for CcpA-mediated carbon catabolite regulation (CCR) in Bacillus subtilis. Complexes of CcpA with HPrSerP or CrhP regulate genes by binding to the catabolite responsive elements (cre). We present a quantitative analysis of HPrSerP and CrhP interaction with CcpA by surface plasmon resonance (SPR) revealing small and similar equilibrium constants of 4.8 +/- 0.4 microm for HPrSerP-CcpA and 19.1 +/- 2.5 microm for CrhP-CcpA complex dissociation. Forty millimolar fructose-1,6-bisphosphate (FBP) or glucose-6-phosphate (Glc6-P) increases the affinity of HPrSerP to CcpA at least twofold, but have no effect on CrhP-CcpA binding. Saturation of binding of CcpA to cre as studied by fluorescence and SPR is dependent on 50 microm of HPrSerP or > 200 microm CrhP. The rate constants of HPrSerP-CcpA-cre complex formation are k(a) = 3 +/- 1 x 10(6) m(-1).s(-1) and k(d) = 2.0 +/- 0.4 x 10(-3).s(-1), resulting in a K(D) of 0.6 +/- 0.3 nm. FBP and Glc6-P stimulate CcpA-HPrSerP but not CcpA-CrhP binding to cre. Maximal HPrSerP-CcpA-cre complex formation in the presence of 10 mm FBP requires about 10-fold less HPrSerP. These data suggest a specific role for FBP and Glc6-P in enhancing only HPrSerP-mediated CCR.

  19. Geochemistry and mineralogy of the older (> 40 ka) ignimbrites in the Campanian Plain, southern Italy

    NASA Astrophysics Data System (ADS)

    Belkin, Harvey E.; Raia, Federica; Rolandi, Giuseppe; Jackson, John C.; de Vivo, Benedetto

    2010-05-01

    The Campanian Plain in southern Italy has been volcanically active during the last 600 ka. The largest and best known eruption at 39 ka formed the Campanian Ignimbrite (CI), which has the largest volume (~310 km3) and the greatest areal extent. However, significant, but scattered deposits of older ignimbrites underlie the CI and document a long history of trachytic eruptions. We examined the geochemistry and mineralogy of 11 older ignimbrite strata by optical petrography, electron microprobe, scanning electron microscope, X-ray diffraction, and various whole-rock geochemical techniques. Strata at Durazzano (116.1 ka), Moschiano (184.7 ka), Seiano Valley A (245.9 ka), Seiano Valley B (289.6 ka), Taurano 7 (205.6 and 210.4 ka), Taurano 9 (183.8 ka), and Taurano 14 (157.4 ka) have been previously dated by the 40Ar/39Ar technique (Rolandi et al., 2003, Min. & Pet., 79) on hand-picked sanidine. The older ignimbrites are trachytic, but are highly altered with LOI from 8 to 17 wt%. Whole-rock compositions reflect variable element mobility during weathering; TiO2, Al2O3, Fe-oxide, and CaO tend to be enriched relative to average CI composition, whereas Na2O and K2O are depleted. X-ray diffraction identified major chabazite, kaolinite, and illite-smectite alteration products in some samples. The phenocryst mineralogy in all of the strata is typical for trachyte magma and consists of plagioclase (~An80 to ~An40), potassium feldspar (~Or50 to ~Or80), biotite (TiO2 = ~4.6 wt%, BaO = ~0.70 wt%, F = ~0.65 wt%), diopside (~Ca47Mg48Fe5 to ~Ca48Mg34Fe18), titanomagnetite, and uncommon Ca-amphibole. Relatively immobile trace elements Zr, Hf, Nb, and Th display similar abundance, linear trends, and ratios as those measured in the Campanian Ignimbrite: Th/Hf = ~4, Zr/Hf = ~50, and Zr/Nb = ~6. The similarity of trace element systematics and phenocryst mineralogy among the Campanian Ignimbrite and the older ignimbrites suggests that the magmagenesis processes and parental source have been relatively constant during the long period of trachyte volcanism in the Campanian Plain.

  20. New synthesis method for 4-MAPBA monomer and using for the recognition of IgM and mannose with MIP-based QCM sensors.

    PubMed

    Diltemiz, Sibel Emir; Hür, Deniz; Keçili, Rüstem; Ersöz, Arzu; Say, Rıdvan

    2013-03-07

    Quartz crystal microbalance (QCM) sensors coated with molecularly imprinted polymers (MIP) have been developed for the recognition of immunoglobulin M (IgM) and mannose. In this method, methacryloylamidophenylboronic acid (MAPBA) was used as a monomer and mannose was used as a template. For this purpose, initially, QCM electrodes were modified with 2-propene-1-thiol to form mannose-binding regions on the QCM sensor surface. In the second step, the methacryloylamidophenylboronic acid-mannose [MAPBA-mannose], pre-organized monomer system, was prepared using the MAPBA monomer. Then, a molecularly imprinted film was coated on to the QCM electrode surface under UV light using ethylene glycol dimethacrylate (EDMA), and azobisisobutyronitrile (AIBN) as a cross-linking agent and an initiator, respectively. The mannose can be simultaneously bound to MAPBA and fitted into the shape-selective cavities. The binding affinity of the mannose-imprinted sensors was investigated using the Langmuir isotherm. The mannose-imprinted QCM electrodes have shown homogeneous binding sites for mannose (K(a): 3.3 × 10(4) M(-1)) and heterogeneous binding sites for IgM (K(a1): 1.0 × 10(4) M(-1); K(a2): 3.3 × 10(3) M(-1)).

  1. Improved Accuracy of Low Affinity Protein-Ligand Equilibrium Dissociation Constants Directly Determined by Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Jaquillard, Lucie; Saab, Fabienne; Schoentgen, Françoise; Cadene, Martine

    2012-05-01

    There is continued interest in the determination by ESI-MS of equilibrium dissociation constants (KD) that accurately reflect the affinity of a protein-ligand complex in solution. Issues in the measurement of KD are compounded in the case of low affinity complexes. Here we present a KD measurement method and corresponding mathematical model dealing with both gas-phase dissociation (GPD) and aggregation. To this end, a rational mathematical correction of GPD (fsat) is combined with the development of an experimental protocol to deal with gas-phase aggregation. A guide to apply the method to noncovalent protein-ligand systems according to their kinetic behavior is provided. The approach is validated by comparing the KD values determined by this method with in-solution KD literature values. The influence of the type of molecular interactions and instrumental setup on fsat is examined as a first step towards a fine dissection of factors affecting GPD. The method can be reliably applied to a wide array of low affinity systems without the need for a reference ligand or protein.

  2. Structure of chymopapain M the late-eluted chymopapain deduced by comparative modelling techniques and active-centre characteristics determined by pH-dependent kinetics of catalysis and reactions with time-dependent inhibitors: the Cys-25/His-159 ion-pair is insufficient for catalytic competence in both chymopapain M and papain.

    PubMed Central

    Thomas, M P; Topham, C M; Kowlessur, D; Mellor, G W; Thomas, E W; Whitford, D; Brocklehurst, K

    1994-01-01

    Chymopapain M, the monothiol cysteine proteinase component of the chymopapain band eluted after chymopapains A and B in cation-exchange chromatography, was isolated from the dried latex of Carica papaya and characterized by kinetic and chromatographic analysis. This late-eluted chymopapain is probably a component of the cysteine proteinase fraction of papaya latex discovered by Schack [(1967) Compt. Rend. Trav. Lab. Carlsberg 36, 67-83], named papaya peptidase B by Lynn [(1979) Biochim. Biophys. Acta 569, 193-201] and partially characterized by Polgár [(1981) Biochim. Biophys. Acta 658, 262-269] and is the enzyme with unusual specificity characteristics (papaya proteinase IV) that Buttle, Kembhavi, Sharp, Shute, Rich and Barrett [Biochem. J. (1989) 261, 469-476] claimed to be a previously undetected cysteine proteinase eluted from a cation-exchange column near to the early-eluted chymopapains. A study of the time-dependent chromatographic consequences of thiol-dependent proteolysis of the components of papaya latex is reported. Chymopapain M was isolated by (i) affinity chromatography followed by separation from papain using cation-exchange f.p.l.c. on a Mono S HR5/5 column and (ii) cation-exchange chromatography followed by an unusual variant of covalent chromatography by thiol-disulphide interchange. The existence in chymopapain M of a nucleophilic interactive Cys/His catalytic-site system analogous to those in papain (EC 3.4.22.2) and other cysteine proteinases was deduced from the characteristics shape of the pH-second-order rate constant (k) profiles for its reactions with 2,2'-dipyridyl disulphide and ethyl 2-pyridyl disulphide. Analysis of the pH-k data for the reactions of chymopapain M with the 2-pyridyl disulphides and with 4,4'-dipyridyl disulphide permits the assignment of molecular pKa values of 3.4 and 8.7 to the formation and subsequent dehydronation of the Cys-S-/His-Im+H state of the catalytic site and reveals three other kinetically influential ionizations with pKa values 3.4, 4.3 and 5.6. The pH-dependences of kcat./Km for the hydrolysis of N-acetyl-L-Phe-Gly-4-nitroanilide at 25.0 degrees C and I0.1 M catalysed by chymopapain M and papain were determined. For both enzymes, little catalytic activity (5-7% of the maximal) develops consequent on formation of the catalytic site Cys-S-/His-Im+H ion-pair state (across pKa 3.4 for both enzymes). For papain, full expression of Kcat./Km for the uncharged substrate requires only the additional hydronic dissociation with pKa 4.2. By contrast, full expression of kcat./Km for chymopapain M requires additional hydronic dissociation with pKa values of 4.3 and 5.6.(ABSTRACT TRUNCATED AT 400 WORDS) Images Figure 6 Figure 7 PMID:8010964

  3. [Cell-ELA-based determination of binding affinity of DNA aptamer against U87-EGFRvIII cell].

    PubMed

    Tan, Yan; Liang, Huiyu; Wu, Xidong; Gao, Yubo; Zhang, Xingmei

    2013-05-01

    A15, a DNA aptamer with binding specificity for U87 glioma cells stably overexpressing the epidermal growth factor receptor variant III (U87-EGFRvIII), was generated by cell systematic evolution of ligands by exponential enrichment (cell-SELEX) using a random nucleotide library. Subsequently, we established a cell enzyme-linked assay (cell-ELA) to detect the affinity of A15 compared to an EGFR antibody. We used A15 as a detection probe and cultured U87-EGFRvIII cells as targets. Our data indicate that the equilibrium dissociation constants (K(d)) for A15 were below 100 nmol/L and had similar affinity compared to an EGFR antibody for U87-EGFRvIII. We demonstrated that the cell-ELA was a useful method to determine the equilibrium dissociation constants (K(d)) of aptamers generated by cell-SELEX.

  4. Estimation of thermodynamic acidity constants of some penicillinase-resistant penicillins.

    PubMed

    Demiralay, Ebru Çubuk; Üstün, Zehra; Daldal, Y Doğan

    2014-03-01

    In this work, thermodynamic acidity constants (pssKa) of methicillin, oxacillin, nafcillin, cloxacilin, dicloxacillin were determined with reverse phase liquid chromatographic method (RPLC) by taking into account the effect of the activity coefficients in hydro-organic water-acetonitrile binary mixtures. From these values, thermodynamic aqueous acidity constants of these drugs were calculated by different approaches. The linear relationships established between retention factors of the species and the polarity parameter of the mobile phase (ET(N)) was proved to predict accurately retention in LC as a function of the acetonitrile content (38%, 40% and 42%, v/v). Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Light-Induced Alterations in Basil Ganglia Kynurenic Acid Levels

    NASA Technical Reports Server (NTRS)

    Sroufe, Angela E.; Whittaker, J. A.; Patrickson, J. W.; Orr, M. C.

    1997-01-01

    The metabolic synthesis, release and breakdown of several known CNS neurotransmitters have been shown to follow a circadian pattern entrained to the environmental light/dark cycle. The levels of excitatory amino acid (EAA) transmitters such as glutamate, have been shown to vary with environmental lighting conditions. Kynurenic Acid (KA), an endogenous tryptophan metabolite and glutamate receptor antagonist, has been reported to have neuroprotective effects against EAA-induced excitotoxic cell damage. Changes in KA's activity within the mammalian basal ganglia has been proposed as being contributory to neurotoxicity in Huntington's Disease. It is not known whether CNS KA levels follow a circadian pattern or exhibit light-induced fluctuations. However, because the symptoms of certain degenerative motor disorders seem to fluctuate with daily 24 hour rhythm, we initiated studies to determine if basal ganglia KA were influenced by the daily light/dark cycle and could influence motor function. Therefore in this study, HPLC-EC was utilized to determine if basal ganglia KA levels in tissue extracts from adult male Long-Evans rats (200-250g) entrained to 24 and 48 hours constant light and dark conditions, respectively. Samples were taken one hour before the onset of the subjective day and one hour prior to the onset of the subjective night in order to detect possible phase differences in KA levels and to allow for accumulation of factors expressed in association with the light or dark phase. Data analysis revealed that KA levels in the basal ganglia vary with environmental lighting conditions; being elevated generally during the dark. Circadian phase differences in KA levels were also evident during the subjective night and subjective day, respectively. Results from these studies are discussed with respect to potential cyclic changes in neuronal susceptibility to excitotoxic damage during the daily 24 hour cycle and its possible relevance to future therapeutic approaches in treating neurodegenerative disorders.

  6. Millennial-scale variations in dustiness recorded in Mid-Atlantic sediments from 0 to 70 ka

    NASA Astrophysics Data System (ADS)

    Middleton, Jennifer L.; Mukhopadhyay, Sujoy; Langmuir, Charles H.; McManus, Jerry F.; Huybers, Peter J.

    2018-01-01

    Sedimentary records of dust deposition in the subtropical Atlantic provide important constraints on millennial- and orbital-scale variability in atmospheric circulation and North African aridity. Constant flux proxies, such as extraterrestrial helium-3, yield dust flux records that are independent of the biases caused by lateral sediment transport and limited resolution that may be associated with age-model-derived mass accumulation rates. However, Atlantic dust records constrained using constant flux proxies are sparsely distributed and generally limited to the past 20 ka. Here we extend the Atlantic record of North African dust deposition to 70 ka using extraterrestrial helium-3 and measurements of titanium, thorium, and terrigenous helium-4 in two sediment cores collected at 26°N and 29°N on the Mid-Atlantic Ridge and compare results to model estimates for dust deposition in the subtropical North Atlantic. Dust proxy fluxes between 26°N and 29°N are well correlated, despite variability in lateral sediment transport, and underscore the utility of extraterrestrial helium-3 for constraining millennial-scale variability in dust deposition. Similarities between Mid-Atlantic dust flux trends and those observed along the Northwest African margin corroborate previous interpretations of dust flux variability over the past 20 ka and suggest that long distance transport and depositional processes do not overly obscure the signal of North African dust emissions. The 70 ka Mid-Atlantic record reveals a slight increase in North African dustiness from Marine Isotope Stage 4 through the Last Glacial Maximum and a dramatic decrease in dustiness associated with the African Humid Period. On the millennial-scale, the new records exhibit brief dust maxima coincident with North Atlantic cold periods such as the Younger Dryas, and multiple Heinrich Stadials. The correlation between Mid-Atlantic dust fluxes and previous constraints on North African aridity is high. However, precipitation exerts less control on dust flux variability prior to the African Humid Period, when wind variability governs dust emissions from consistently dry dust source regions. Thus, the Mid-Atlantic dust record supports the hypothesis that both aridity and wind strength drive dust flux variability across changing climatic conditions.

  7. [Study on intestinal absorption of formononetin in Millettia nitita var. hirsutissima in rats].

    PubMed

    Liu, Ya-Li; Xiong, Xian-Bing; Su, Dan; Song, Yong-Gui; Zhang, Ling; Yang, Shi-Lin

    2013-10-01

    To use the single-pass intestine perfusion (SPIP) model and HPLC to determine the concentration of formononetin, the effect of quality concentrations of formononetin, different intestinal segments and P-glycoprotein inhibitor on intestinal absorption of formononetin, in order to observe the intestinal absorption mechanism of formononetin from Millettia nitita var. hirsutissima in rats. The experimental results showed that the qulaity concentration of formononetin in the perfusate had no significant effect on the absorption rate constant (K(a)) and the apparent absorption coefficient (P(app)); K(a) and P(app) of formononetin in duodenum, jejunum and ileum showed no significant difference. However, K(a) was significantly higher than that in colon (P < 0.05), with significant difference between that in intestinum tenue and colon. P-glycoprotein inhibitor verapamil showed significant difference in K(a) and P(app) in intestinal segments (P < 0.05). This indicated that the absorption mechanism of formononein in rat intestinal tracts passive diffusion, without any saturated absorption. Formononein is absorbed well in all intestines. Their absorption windows were mainly concentrated in the intestinum tenue, without specific absorption sites. Formononein may be the substrate of P-glycoprotein.

  8. Quantum gravity in the Eddington purely affine picture

    NASA Astrophysics Data System (ADS)

    Martellini, M.

    1984-06-01

    It was shown by Kijowski and Tulczjew that pure gravity with a cosmological constant can be obtained by a covariant Legendre transformation of a purely affine Lagrangian "in the manner of Eddington" constructed from a symmetric linear connection. In this paper I prove by explicit calculations that the Eddington Lagrangian is equivalent, in the sense which gives the same field equations, to a polynomial effective Lagrangian which turns out to be power-counting renormalizable. Then a formal proof of the unitarity of this theory is stated in the Kugo-Ojima formalism on the basis of the existence of two local Becchi-Rouet-Stora symmetries. These supertransformations are related to the algebra of the diffeomorphisms of the space-time, as well as to that of the volume-preserving space-time transformations which are not fixed by the gauge fixing used for the diffeomorphism group itself. Furthermore, I find that in the purely affine picture quantum gravity exhibits an infrared freedom. Since now the self-coupling constant is given by the cosmological constant, such a property could explain the observed almost zero value of the cosmological term at very large distances, i.e., to very low energies.

  9. Cold climate deglaciation prior to termination 2 implied by new evidence for high sea-levels at 132 KA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, R.G.

    1992-01-01

    Radioisotope dating of corals from reefs and beaches suggests a high sea stand just prior to termination 2. Lack of precision in the ages, stratigraphic uncertainties, and possible diagenetic alterations in the corals have prevented a widespread acceptance of this sea stand. These disadvantages can be avoided by an approach that uses differential uplift measurements to determine the duration of the interval of generally high sea-levels. The last interglacial terrace on Barbados has features indicating two intervals of constant sea-level: an older wave-cut at the inshore edge of the terrace, and a younger cut formed near present eustatic sea-level, belowmore » the crest, and just before the earliest Wisconsin glacial buildup. The differential uplift between these two features, measured at five locations having uplift rates between 0.18 and 0.39m/ka, yields a eustatic sea-level differences of 5.4m and a minimal duration of 12.1 [+-] 0.6ka between the two still stands. The assigned age of the younger wave-cut is 120 [+-] 0.5ka, based on sea-level regression due to ice sheet buildup implied by a Little Ice Age analog and rapidly falling Milankovitch summer insolation. The resulting minimal age of the first high sea-stand is 132.1 [+-] 1.1ka, about 7ka before termination 2. This age implies a major early deglaciation caused by a deficit of moisture transported to the great ice sheets, and occurring under relatively cold climate conditions.« less

  10. Influence of N-ethylmaleimide on cholinoceptors and responses in longitudinal muscles from guinea-pig ileum.

    PubMed Central

    Aronstam, R. S.; Carrier, G. O.

    1982-01-01

    1 The binding of carbamylcholine to membranes prepared from the longitudinal muscle of guinea-pig ileum was determined from its inhibition of the binding of [3H]-3-quinuclidinyl benzilate. Carbamylcholine binding was resolved into high and low affinity components with apparent dissociation constants of 0.11 +/- 0.02 and 11 +/- 1 microM; 42% of the receptors displayed high affinity carbamylcholine binding. 2 Alkylation of longitudinal muscle membranes with N-ethylmaleimide increased muscarinic receptor affinity for carbamylcholine in a manner consistent with a conversion of low affinity to high affinity receptors. After exposure the muscle membrane fragments to 1 mM N-ethylmaleimide for 20 min at 35 degrees C, carbamylcholine binding was resolved into two components with apparent dissociation constants of 0.11 +/- 0.01 and 9 +/- 2 microM, with 74% of the receptors displaying the higher affinity. 3 Exposure of longitudinal membranes mounted in an organ chamber to 1 mM N-ethylmaleimide for 30s depressed isometric contractions in response to acetylcholine by 80%, while contractions induced by K+ and Ba2+ were reduced by less than 20% and 10%, respectively. Acetylcholine dose-response curves were shifted to the right while Ba2+ curves were unaffected. 4 It is suggested that N-ethylmaleimide has a selective effect on muscarinic responses in the longitudinal muscle by disrupting processes occurring after receptor occupancy but before the induction of phospholipid turnover or calcium influx in the postsynaptic membrane. PMID:7126999

  11. Laboratory detection of the rotational-tunnelling spectrum of the hydroxymethyl radical, CH2OH

    NASA Astrophysics Data System (ADS)

    Bermudez, C.; Bailleux, S.; Cernicharo, J.

    2017-02-01

    Context. Of the two structural isomers of CH3O, methoxy is the only radical whose astronomical detection has been reported through the observation of several rotational lines at 2 and 3 mm wavelengths. Although the hydroxymethyl radical, CH2OH, is known to be thermodynamically the most stable (by 3300 cm-1), it has so far eluded rotational spectroscopy presumably because of its high chemical reactivity. Aims: Recent high-resolution ( 10 MHz) sub-Doppler rovibrationally resolved infrared spectra of CH2OH (symmetric CH stretching a-type band) provided accurate ground vibrational state rotational constants, thus reviving the quest for its millimeter-wave spectrum in laboratory and subsequently in space. Methods: The search and assignment of the rotational spectrum of this fundamental species were guided by our quantum chemical calculations and by using rotational constants derived from high-resolution IR data. The hydroxymethyl radical was produced by hydrogen abstraction from methanol by atomic chlorine. Results: Ninety-six b-type rotational transitions between the v = 0 and v = 1 tunnelling sublevels involving 25 fine-structure components of Q branches (with Ka = 1 ← 0) and 4 fine-structure components of R branches (assigned to Ka = 0 ← 1) were measured below 402 GHz. Hyperfine structure alternations due to the two identical methylenic hydrogens were observed and analysed based on the symmetry and parity of the rotational levels. A global fit including infrared and millimeter-wave lines has been conducted using Pickett's reduced axis system Hamiltonian. The recorded transitions (odd ΔKa) did not allow us to evaluate the Coriolis tunnelling interaction term. The comparison of the experimentally determined constants for both tunnelling levels with their computed values secures the long-awaited first detection of the rotational-tunnelling spectrum of this radical. In particular, a tunnelling rate of 139.73 ± 0.10 MHz (4.6609(32) × 10-3 cm-1) was obtained along with the rotational constants, electron spin-rotation interaction parameters and several hyperfine coupling terms. Conclusions: The laboratory characterization of CH2OH by millimeter-wave spectroscopy now offers the possibility for its astronomical detection for the first time.

  12. Mechanical properties of lipid bilayers from molecular dynamics simulation

    PubMed Central

    Venable, Richard M.; Brown, Frank L.H.; Pastor, Richard W.

    2015-01-01

    Lipid areas (Aℓ), bilayer area compressibilities (KA), bilayer bending constants (KC), and monolayer spontaneous curvatures (c0) from simulations using the CHARMM36 force field are reported for 12 representative homogenous lipid bilayers. Aℓ (or their surrogate, the average deuterium order parameter in the “plateau region” of the chain) agree very well with experiment, as do the KA. Simulated KC are in near quantitative agreement with vesicle flicker experiments, but are somewhat larger than KC from x-ray, pipette aspiration, and neutron spin echo for saturated lipids. Spontaneous curvatures of bilayer leaflets from the simulations are approximately 30% smaller than experimental values of monolayers in the inverse hexagonal phase. PMID:26238099

  13. Study on the interaction mechanism between aromatic amino acids and quercetin

    NASA Astrophysics Data System (ADS)

    Gou, Xingxing; Pu, Xiaohua; Li, Zongxiao

    2017-11-01

    In this paper, we selected quercetin and aromatic amino acids (tryptophan, tyrosine, phenylalanine) as the research objects to investigate the change rules in the reaction process. The thermodynamic functions (Ka, Δ G, and Δ S) of the interactions between quercetin and aromatic amino acids (tryptophan, tyrosine, phenylalanine) were measured by isothermal titration calorimetry. The values of binding constant (Ka) reached maximum at 25°C; the entropies and Gibbs free energies were both negative at different temperatures. The kinetic parameters of quercetin and amino acids in the interaction process was determined by microcalorimetry. The results inferred that the driving force of the reaction was hydrogen bond or van der Waals force.

  14. Temporal survey of electron number density and electron temperature in the exhaust of a megawatt MPD-Arc thruster

    NASA Technical Reports Server (NTRS)

    Michels, C. J.; Rose, J. R.; Sigman, D. R.

    1971-01-01

    Temporal and radial profiles are obtained 30 cm downstream from the anode for two peak arc currents (11.2 kA and 20 kA) and for various auxiliary magnetic fields (0, 1.0 T, and 2.0T) using the Thomson scattering technique. Average density and temperature are relatively constant for over 100 microseconds with significant fluctuations. Radial profiles obtained are relatively flat for 4 cm from the axis. Compared to earlier 20 cm data, the exhaust density has decreased significantly, the average temperature (4.6 eV) has not changed, and the density hole with an auxiliary magnetic field has enlarged.

  15. Quench propagation in the superconducting 6 kA flexible busbars of the LHC

    NASA Astrophysics Data System (ADS)

    Herzog, R.; Calvi, M.; Sonnemann, F.; Pelegrin-Carcelen, J. M.

    2002-05-01

    Flexible superconducting cables with currents up to 6 kA will be used to power magnets individually in the insertion regions of the LHC. In case of a quench, the currents in these circuits will decay very fast (with time constants of about 200 ms) such that relatively small copper cross sections are sufficient for these busbars. Quench propagation experiments on a prototype cable and corresponding simulations led to a detailed understanding of the quench behavior of these busbars and to recommendations for the design and application of the cable. Simulations of the quench process in a multi-strand conductor led to a detailed understanding of the way current crosses from superconducting to pure copper strands and how this affects the quench propagation velocity. At nominal current (6 kA), the quench propagation velocities are high (10 m/s) and the hot spot temperature increases rapidly. In this situation, timely quench detection and energy extraction (current reduction) are vital to prevent damage of circuit components.

  16. Ferroelectric switch for a high-power Ka-band active pulse compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirshfield, Jay L.

    2013-12-18

    Results are presented for design of a high-power microwave switch for operation at 34.3 GHz, intended for use in an active RF pulse compressor. The active element in the switch is a ring of ferroelectric material, whose dielectric constant can be rapidly changed by application of a high-voltage pulse. As envisioned, two of these switches would be built into a pair of delay lines, as in SLED-II at SLAC, so as to allow 30-MW μs-length Ka-band pulses to be compressed in time by a factor-of-9 and multiplied in amplitude to generate 200 MW peak power pulses. Such high-power pulses couldmore » be used for testing and evaluation of high-gradient mm-wave accelerator structures, for example. Evaluation of the switch design was carried out with an X-band (11.43 GHz) prototype, built to incorporate all the features required for the Ka-band version.« less

  17. A surface complexation model of YREE sorption on Ulva lactuca in 0.05-5.0 M NaCl solutions

    NASA Astrophysics Data System (ADS)

    Zoll, Alison M.; Schijf, Johan

    2012-11-01

    We present distribution coefficients, log iKS, for the sorption of yttrium and the rare earth elements (YREEs) on BCR-279, a dehydrated tissue homogenate of a marine macroalga, Ulva lactuca, resembling materials featured in chemical engineering studies aimed at designing renewable biosorbents. Sorption experiments were conducted in NaCl solutions of different ionic strength (0.05, 0.5, and 5.0 M) at T = 25 °C over the pH range 2.7-8.5. Distribution coefficients based on separation of the dissolved and particulate phase by conventional filtration (<0.22 μm) were corrected for the effect of colloid-bound YREEs (>3 kDa) using an existing pH-dependent model. Colloid-corrected values were renormalized to free-cation concentrations by accounting for YREE hydrolysis and chloride complexation. At each ionic strength, the pH dependence of the renormalized values is accurately described with a non-electrostatic surface complexation model (SCM) that incorporates YREE binding to three monoprotic functional groups, previously characterized by alkalimetric titration, as well as binding of YREE-hydroxide complexes (MOH2+) to the least acidic one (pKa ∼ 9.5). In non-linear regressions of the distribution coefficients as a function of pH, each pKa was fixed at its reported value, while stability constants of the four YREE surface complexes were used as adjustable parameters. Data for a single fresh U. lactuca specimen in 0.5 M NaCl show generally the same pH-dependent behavior but a lower degree of sorption and were excluded from the regressions. Good linear free-energy relations (LFERs) between stability constants of the YREE-acetate and YREE-hydroxide solution complex and surface complexes with the first and third functional group, respectively, support their prior tentative identifications as carboxyl and phenol. A similar confirmation for the second group is precluded by insufficient knowledge of the stability of YREE-phosphate complexes and a perceived lack of YREE binding in 0.05 M NaCl; this issue awaits further study. The results indicate that SCMs can be successfully applied to sorbents as daunting as marine organic matter. Despite remnant challenges, for instance resolving the contributions of individual groups to the aggregate sorption signal, our approach helps formalize seaweed’s avowed promise as an ideal biomonitor or biofilter of metal pollution in environments ranging from freshwaters to brines by uncovering what chemical mechanisms underlie its pronounced affinity for YREEs and other surface-reactive elements.

  18. Kinetics of binding of chicken cystatin to papain.

    PubMed

    Björk, I; Alriksson, E; Ylinenjärvi, K

    1989-02-21

    The kinetics of binding of chicken cystatin to papain were studied by stopped-flow fluorometry under pseudo-first-order conditions, i.e., with an excess of inhibitor. All reactions showed first-order behavior, and the observed pseudo-first-order rate constant increased linearly with the cystatin concentration up to the highest concentration that could be studied, 35 microM. The analyses thus provided no evidence for a limiting rate resulting from a conformational change stabilizing an initial encounter complex, in contrast with previous studies of reactions between serine proteinases and their protein inhibitors. The second-order association rate constant for complex formation was 9.9 X 10(6) M-1 s-1 at 25 degrees C, pH 7.4, I = 0.15, for both forms of cystatin, 1 and 2. This value approaches that expected for a diffusion-controlled rate. The temperature dependence of the association rate constant gave an enthalpy of activation at 25 degrees C of 31.5 kJ mol-1 and an entropy of activation at 25 degrees C of -7 J K-1 mol-1, compatible with no appreciable conformational change during the reaction. The association rate constant was independent of pH between pH 6 and 8 but decreased at lower and higher pH in a manner consistent with involvement of an unprotonated acid group with a pKa of 4-4.5 and a protonated basic group with a pKa of 9-9.5 in the interaction. The association rate constant was unaffected by ionic strengths between 0.15 and 1.0 but decreased somewhat at lower ionic strengths. Incubation of the complex between cystatin 2 and papain with an excess of cystatin 1 resulted in slow displacement of cystatin 2 from the complex.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Polyaniline Langmuir-Blodgett film based aptasensor for ochratoxin A detection.

    PubMed

    Prabhakar, Nirmal; Matharu, Zimple; Malhotra, B D

    2011-06-15

    Ochratoxin A (OTA) produced by Aspergillus Ochraceus and Penicillium verrucosum is a very dangerous toxin due to its toxic effects in human beings and its presence in a wide range of food products and cereals. A Langmuir-Blodgett (polyaniline (PANI)-stearic acid (SA)) film based highly sensitive and robust impedimetric aptasensor has been developed for ochratoxin A (OTA) detection. DNA Aptamer (Apt-DNA) specific to OTA has been covalently immobilized onto mixed Langmuir-Blodgett (LB) monolayer comprising of PANI-SA deposited onto indium tin-oxide (ITO) coated glass plates. This Apt-DNA/PANI-SA/ITO aptaelectrode has been characterized using scanning electron microscopy, Fourier transform-infrared spectroscopy, contact angle measurements, cyclic voltammetry and electrochemical impedance spectroscopy, respectively. The Apt-DNA/PANI-SA/ITO aptasensor shows detection of OTA by electrochemical impedance spectroscopy in the linear range of 0.0001 μg/ml (0.1 ng/ml) to 0.01 μg/ml (10 ng/ml) and 1 μg/ml-25 μg/ml with detection limit of 0.1 ng/ml in 15 min. The Apt-DNA/PANI-SA/ITO aptasensor can be reused ∼13 times. The binding or affinity constant (K(a)) of aptamer with OTA, calculated using Langmuir adsorption isotherm, is found be 1.21×10(7) M(-1). Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Kinetic Characterisation of a Single Chain Antibody against the Hormone Abscisic Acid: Comparison with Its Parental Monoclonal

    PubMed Central

    Badescu, George O.; Marsh, Andrew; Smith, Timothy R.; Thompson, Andrew J.; Napier, Richard M.

    2016-01-01

    A single-chain Fv fragment antibody (scFv) specific for the plant hormone abscisic acid (ABA) has been expressed in the bacterium Escherichia coli as a fusion protein. The kinetics of ABA binding have been measured using surface plasmon resonance spectrometry (BIAcore 2000) using surface and solution assays. Care was taken to calculate the concentration of active protein in each sample using initial rate measurements under conditions of partial mass transport limitation. The fusion product, parental monoclonal antibody and the free scFv all have low nanomolar affinity constants, but there is a lower dissociation rate constant for the parental monoclonal resulting in a three-fold greater affinity. Analogue specificity was tested and structure-activity binding preferences measured. The biologically-active (+)-ABA enantiomer is recognised with an affinity three orders of magnitude higher than the inactive (-)-ABA. Metabolites of ABA including phaseic acid, dihydrophaseic acid and deoxy-ABA have affinities over 100-fold lower than that for (+)-ABA. These properties of the scFv make it suitable as a sensor domain in bioreporters specific for the naturally occurring form of ABA. PMID:27023768

  1. Determination of equilibrium dissociation constants for recombinant antibodies by high-throughput affinity electrophoresis.

    PubMed

    Pan, Yuchen; Sackmann, Eric K; Wypisniak, Karolina; Hornsby, Michael; Datwani, Sammy S; Herr, Amy E

    2016-12-23

    High-quality immunoreagents enhance the performance and reproducibility of immunoassays and, in turn, the quality of both biological and clinical measurements. High quality recombinant immunoreagents are generated using antibody-phage display. One metric of antibody quality - the binding affinity - is quantified through the dissociation constant (K D ) of each recombinant antibody and the target antigen. To characterize the K D of recombinant antibodies and target antigen, we introduce affinity electrophoretic mobility shift assays (EMSAs) in a high-throughput format suitable for small volume samples. A microfluidic card comprised of free-standing polyacrylamide gel (fsPAG) separation lanes supports 384 concurrent EMSAs in 30 s using a single power source. Sample is dispensed onto the microfluidic EMSA card by acoustic droplet ejection (ADE), which reduces EMSA variability compared to sample dispensing using manual or pin tools. The K D for each of a six-member fragment antigen-binding fragment library is reported using ~25-fold less sample mass and ~5-fold less time than conventional heterogeneous assays. Given the form factor and performance of this micro- and mesofluidic workflow, we have developed a sample-sparing, high-throughput, solution-phase alternative for biomolecular affinity characterization.

  2. Determination of equilibrium dissociation constants for recombinant antibodies by high-throughput affinity electrophoresis

    PubMed Central

    Pan, Yuchen; Sackmann, Eric K.; Wypisniak, Karolina; Hornsby, Michael; Datwani, Sammy S.; Herr, Amy E.

    2016-01-01

    High-quality immunoreagents enhance the performance and reproducibility of immunoassays and, in turn, the quality of both biological and clinical measurements. High quality recombinant immunoreagents are generated using antibody-phage display. One metric of antibody quality – the binding affinity – is quantified through the dissociation constant (KD) of each recombinant antibody and the target antigen. To characterize the KD of recombinant antibodies and target antigen, we introduce affinity electrophoretic mobility shift assays (EMSAs) in a high-throughput format suitable for small volume samples. A microfluidic card comprised of free-standing polyacrylamide gel (fsPAG) separation lanes supports 384 concurrent EMSAs in 30 s using a single power source. Sample is dispensed onto the microfluidic EMSA card by acoustic droplet ejection (ADE), which reduces EMSA variability compared to sample dispensing using manual or pin tools. The KD for each of a six-member fragment antigen-binding fragment library is reported using ~25-fold less sample mass and ~5-fold less time than conventional heterogeneous assays. Given the form factor and performance of this micro- and mesofluidic workflow, we have developed a sample-sparing, high-throughput, solution-phase alternative for biomolecular affinity characterization. PMID:28008969

  3. Selection of staphylococcal enterotoxin B (SEB)-binding peptide using phage display technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soykut, Esra Acar; Dudak, Fahriye Ceyda; Boyaci, Ismail Hakki

    In this study, peptides were selected to recognize staphylococcal enterotoxin B (SEB) which cause food intoxication and can be used as a biological war agent. By using commercial M13 phage library, single plaque isolation of 38 phages was done and binding affinities were investigated with phage-ELISA. The specificities of the selected phage clones showing high affinity to SEB were checked by using different protein molecules which can be found in food samples. Furthermore, the affinities of three selected phage clones were determined by using surface plasmon resonance (SPR) sensors. Sequence analysis was realized for three peptides showing high binding affinitymore » to SEB and WWRPLTPESPPA, MNLHDYHRLFWY, and QHPQINQTLYRM amino acid sequences were obtained. The peptide sequence with highest affinity to SEB was synthesized with solid phase peptide synthesis technique and thermodynamic constants of the peptide-SEB interaction were determined by using isothermal titration calorimetry (ITC) and compared with those of antibody-SEB interaction. The binding constant of the peptide was determined as 4.2 {+-} 0.7 x 10{sup 5} M{sup -1} which indicates a strong binding close to that of antibody.« less

  4. Binding of resveratrol with sodium caseinate in aqueous solutions.

    PubMed

    Acharya, Durga P; Sanguansri, Luz; Augustin, Mary Ann

    2013-11-15

    The interaction between resveratrol (Res) and sodium caseinate (Na-Cas) has been studied by measuring fluorescence quenching of the protein by resveratrol. Quenching constants were determined using Stern-Volmer equation, which suggests that both dynamic and static quenching occur between Na-Cas and Res. Binding constants for the complexation between Na-Cas and Res were determined at different temperatures. The large binding constants (3.7-5.1×10(5)M(-1)) suggest that Res has strong affinity for Na-Cas. This affinity decreases as the temperature is raised from 25 to 37°C. The binding involves both hydrogen bonding and hydrophobic interaction, as suggested by negative enthalpy change and positive entropy change for the binding reaction. The present study indicates that Na-Cas, a common food protein, may be used as a carrier of Res, a bioactive polyphenol which is insoluble in both water and oils. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Two classes of cholesterol binding sites for the β2AR revealed by thermostability and NMR.

    PubMed

    Gater, Deborah L; Saurel, Olivier; Iordanov, Iordan; Liu, Wei; Cherezov, Vadim; Milon, Alain

    2014-11-18

    Cholesterol binding to G protein-coupled receptors (GPCRs) and modulation of their activities in membranes is a fundamental issue for understanding their function. Despite the identification of cholesterol binding sites in high-resolution x-ray structures of the ?2 adrenergic receptor (β2AR) and other GPCRs, the binding affinity of cholesterol for this receptor and exchange rates between the free and bound cholesterol remain unknown. In this study we report the existence of two classes of cholesterol binding sites in β2AR. By analyzing the β2AR unfolding temperature in lipidic cubic phase (LCP) as a function of cholesterol concentration we observed high-affinity cooperative binding of cholesterol with sub-nM affinity constant. In contrast, saturation transfer difference (STD) NMR experiments revealed the existence of a second class of cholesterol binding sites, in fast exchange on the STD NMR timescale. Titration of the STD signal as a function of cholesterol concentration provided a lower limit of 100 mM for their dissociation constant. However, these binding sites are specific for both cholesterol and β2AR, as shown with control experiments using ergosterol and a control membrane protein (KpOmpA). We postulate that this specificity is mediated by the high-affinity bound cholesterol molecules and propose the formation of transient cholesterol clusters around the high-affinity binding sites.

  6. Fluorescence resonance energy transfer between ZnSe ZnS quantum dots and bovine serum albumin in bioaffinity assays of anticancer drugs

    NASA Astrophysics Data System (ADS)

    Shu, Chang; Ding, Li; Zhong, Wenying

    2014-10-01

    In the current work, using ZnSe ZnS quantum dots (QDs) as representative nanoparticles, the affinities of seven anticancer drugs for bovine serum albumin (BSA) were studied using fluorescence resonance energy transfer (FRET). The FRET efficiency of BSA-QD conjugates can reach as high as 24.87% by electrostatic interaction. The higher binding constant (3.63 × 107 L mol-1) and number of binding sites (1.75) between ZnSe ZnS QDs and BSA demonstrated that the QDs could easily associate to plasma proteins and enhance the transport efficacy of drugs. The magnitude of binding constants (103-106 L mol-1), in the presence of QDs, was between drugs-BSA and drugs-QDs in agreement with common affinities of drugs for serum albumins (104-106 L mol-1) in vivo. ZnSe ZnS QDs significantly increased the affinities for BSA of Vorinostat (SAHA), Docetaxel (DOC), Carmustine (BCNU), Doxorubicin (Dox) and 10-Hydroxycamptothecin (HCPT). However, they slightly reduced the affinities of Vincristine (VCR) and Methotrexate (MTX) for BSA. The recent work will not only provide useful information for appropriately understanding the binding affinity and binding mechanism at the molecular level, but also illustrate the ZnSe ZnS QDs are perfect candidates for nanoscal drug delivery system (DDS).

  7. Tri- and tetra-substituted cyclen based lanthanide(III) ion complexes as ribonuclease mimics: a study into the effect of log Ka, hydration and hydrophobicity on phosphodiester hydrolysis of the RNA-model 2-hydroxypropyl-4-nitrophenyl phosphate (HPNP).

    PubMed

    Fanning, Ann-Marie; Plush, Sally E; Gunnlaugsson, Thorfinnur

    2015-05-28

    A series of tetra-substituted 'pseudo' dipeptide ligands of cyclen (1,4,7,10,-tetraazacyclododecane) and a tri-substituted 3'-pyridine ligand of cyclen, and the corresponding lanthanide(III) complexes were synthesised and characterised as metallo-ribonuclease mimics. All complexes were shown to promote hydrolysis of the phosphodiester bond of 2-hydroxypropyl-4-nitrophenyl phosphate (HPNP, τ1/2 = 5.87 × 10(3) h), a well known RNA mimic. The La(III) and Eu(III) tri-substituted 3'-pyridine lanthanide(III) complexes being the most efficient in promoting such hydrolysis at pH 7.4 and at 37 °C; with τ1/2 = 1.67 h for La(III) and 1.74 h for Eu(III). The series was developed to provide the opportunity to investigate the consequences of altering the lanthanide(III) ion, coordination ability and hydrophobicity of a metallo-cavity on the rate of hydrolysis using the model phosphodiester, HPNP, at 37 °C. To further provide information on the role that the log Ka of the metal bound water plays in phosphodiester hydrolysis the protonation constants and the metal ion stability constants of both a tri and tetra-substituted 3'pyridine complex were determined. Our results highlighted several key features for the design of lanthanide(III) ribonucelase mimics; the presence of two metal bound water molecules are vital for pH dependent rate constants for Eu(III) complexes, optimal pH activity approximating physiological pH (∼7.4) may be achieved if the log Ka values for both MLOH and ML(OH)2 species occur in this region, small changes to hydrophobicity within the metallo cavity influence the rate of hydrolysis greatly and an amide adjacent to the metal ion capable of forming hydrogen bonds with the substrate is required for achieving fast hydrolysis.

  8. Role of the Active Site Guanine in the glmS Ribozyme Self-Cleavage Mechanism: Quantum Mechanical/Molecular Mechanical Free Energy Simulations

    PubMed Central

    2015-01-01

    The glmS ribozyme catalyzes a self-cleavage reaction at the phosphodiester bond between residues A-1 and G1. This reaction is thought to occur by an acid–base mechanism involving the glucosamine-6-phosphate cofactor and G40 residue. Herein quantum mechanical/molecular mechanical free energy simulations and pKa calculations, as well as experimental measurements of the rate constant for self-cleavage, are utilized to elucidate the mechanism, particularly the role of G40. Our calculations suggest that an external base deprotonates either G40(N1) or possibly A-1(O2′), which would be followed by proton transfer from G40(N1) to A-1(O2′). After this initial deprotonation, A-1(O2′) starts attacking the phosphate as a hydroxyl group, which is hydrogen-bonded to deprotonated G40, concurrent with G40(N1) moving closer to the hydroxyl group and directing the in-line attack. Proton transfer from A-1(O2′) to G40 is concomitant with attack of the scissile phosphate, followed by the remainder of the cleavage reaction. A mechanism in which an external base does not participate, but rather the proton transfers from A-1(O2′) to a nonbridging oxygen during nucleophilic attack, was also considered but deemed to be less likely due to its higher effective free energy barrier. The calculated rate constant for the favored mechanism is in agreement with the experimental rate constant measured at biological Mg2+ ion concentration. According to these calculations, catalysis is optimal when G40 has an elevated pKa rather than a pKa shifted toward neutrality, although a balance among the pKa’s of A-1, G40, and the nonbridging oxygen is essential. These results have general implications, as the hammerhead, hairpin, and twister ribozymes have guanines at a similar position as G40. PMID:25526516

  9. 40Ar/39Ar ages for deep (˜3.3 km) samples from the Hawaii Scientific Drilling Project, Mauna Kea volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Jourdan, Fred; Sharp, Warren D.; Renne, Paul R.

    2012-05-01

    The Hawaii Scientific Drilling Project recovered core from a 3.5 km deep hole from the flank of Mauna Kea volcano, providing a long, essentially continuous record of the volcano's physical and petrologic development that has been used to infer the chemical and physical characteristics of the Hawaiian mantle plume. Determining a precise accumulation rate via 40Ar/39Ar dating of the shield-stage tholeiites, which constitute 95-98% of the volcano's volume is challenging. We applied40Ar/39Ar dating using laser- and furnace-heating in two laboratories (Berkeley and Curtin) to samples of two lava flows from deep in the core (˜3.3 km). All determinations yield concordant isochron ages, ranging from 612 ± 159 to 871 ± 302 ka (2σ; with P ≥ 0.90). The combined data yield an age of 681 ± 120 ka (P = 0.77) for pillow lavas near the bottom of the core. This new age, when regressed with 40Ar/39Ar isochron ages previously obtained for tholeiites higher in the core, defines a constant accumulation rate of 8.4 ± 2.6 m/ka that can be used to interpolate the ages of the tholeiites in the HSDP core with a mean uncertainty of about ±83 ka. For example at ˜3300 mbsl, the age of 664 ± 83 ka estimated from the regression diverges at the 95% confidence level from the age of 550 ka obtained from the numerical model of DePaolo and Stolper (1996). The new data have implications for the timescale of the growth of Hawaiian volcanoes, the paleomagnetic record in the core, and the dynamics of the Hawaiian mantle plume.

  10. Biobutanol production in a Clostridium acetobutylicum biofilm reactor integrated with simultaneous product recovery by adsorption

    PubMed Central

    2014-01-01

    Background Clostridium acetobutylicum can propagate on fibrous matrices and form biofilms that have improved butanol tolerance and a high fermentation rate and can be repeatedly used. Previously, a novel macroporous resin, KA-I, was synthesized in our laboratory and was demonstrated to be a good adsorbent with high selectivity and capacity for butanol recovery from a model solution. Based on these results, we aimed to develop a process integrating a biofilm reactor with simultaneous product recovery using the KA-I resin to maximize the production efficiency of biobutanol. Results KA-I showed great affinity for butanol and butyrate and could selectively enhance acetoin production at the expense of acetone during the fermentation. The biofilm reactor exhibited high productivity with considerably low broth turbidity during repeated batch fermentations. By maintaining the butanol level above 6.5 g/L in the biofilm reactor, butyrate adsorption by the KA-I resin was effectively reduced. Co-adsorption of acetone by the resin improved the fermentation performance. By redox modulation with methyl viologen (MV), the butanol-acetone ratio and the total product yield increased. An equivalent solvent titer of 96.5 to 130.7 g/L was achieved with a productivity of 1.0 to 1.5 g · L-1 · h-1. The solvent concentration and productivity increased by 4 to 6-fold and 3 to 5-fold, respectively, compared to traditional batch fermentation using planktonic culture. Conclusions Compared to the conventional process, the integrated process dramatically improved the productivity and reduced the energy consumption as well as water usage in biobutanol production. While genetic engineering focuses on strain improvement to enhance butanol production, process development can fully exploit the productivity of a strain and maximize the production efficiency. PMID:24401161

  11. Use of 2-(/sup 125/I)iodomelatonin to characterize melatonin binding sites in chicken retina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubocovich, M.L.; Takahashi, J.S.

    2-(/sup 125/I)Iodomelatonin binds with high affinity to a site possessing the pharmacological characteristics of a melatonin receptor in chicken retinal membranes. The specific binding of 2-(/sup 125/I)iodomelatonin is stable, saturable, and reversible. Saturation experiments indicated that 2-(/sup 125/I)iodomelatonin labeled a single class of sites with an affinity constant (Kd) of 434 +/- 56 pM and a total number of binding sites (Bmax) of 74.0 +/- 13.6 fmol/mg of protein. The affinity constant obtained from kinetic analysis was in close agreement with that obtained in saturation experiments. Competition experiments showed a monophasic reduction of 2-(/sup 125/I)iodomelatonin binding with a pharmacological ordermore » of indole amine affinities characteristic of a melatonin receptor: 2-iodomelatonin greater than 6-chloromelatonin greater than or equal to melatonin greater than or equal to 6,7-dichloro-2-methylmelatonin greater than 6-hydroxymelatonin greater than or equal to 6-methoxymelatonin much greater than N-acetyltryptamine greater than N-acetyl-5-hydroxytryptamine greater than 5-methoxytryptamine greater than 5-hydroxytryptamine (inactive). The affinities of these melatonin analogs in competing for 2-(/sup 125/I)iodomelatonin binding sites were correlated closely with their potencies for inhibition of the calcium-dependent release of (3H)dopamine from chicken and rabbit retinas, indicating association of the binding site with a functional response regulated by melatonin. The results indicate that 2-(/sup 125/I)iodomelatonin is a selective, high-affinity radioligand for the identification and characterization of melatonin receptor sites.« less

  12. Into the theory of the partial-filling affinity capillary electrophoresis and the determination of apparent stability constants of analyte-ligand complexes.

    PubMed

    Ansorge, Martin; Dubský, Pavel; Ušelová, Kateřina

    2018-03-01

    The partial-filling affinity capillary electrophoresis (pf-ACE) works with a ligand present in a background electrolyte that forms a weak complex with an analyte. In contrast to a more popular mobility-shift affinity capillary electrophoresis, only a short plug of the ligand is introduced into a capillary in the pf-ACE. Both methods can serve for determining apparent stability constants of the formed complexes but this task is hindered in the pf-ACE by the fact that the analyte spends only a part of its migration time in a contact with the ligand. In 1998, Amini and Westerlund published a linearization strategy that allows for extracting an effective mobility of an analyte in the presence of a neutral ligand out of the pf-ACE data. The main purpose of this paper is to show that the original formula is only approximate. We derive a new formula and demonstrate its applicability by means of computer simulations. We further inspect several strategies of data processing in the pf-ACE regarding a risk of an error propagation. This establishes a good practice of determining apparent stability constants of analyte-ligand complexes by means of the pf-ACE. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Interaction between DNA and Drugs Having Protonable Basic Groups: Characterization through Affinity Constants, Drug Release Kinetics, and Conformational Changes

    PubMed Central

    Alarcón, Liliana P.; Baena, Yolima; Manzo, Rubén H.

    2017-01-01

    This paper reports the in vitro characterization of the interaction between the phosphate groups of DNA and the protonated species of drugs with basic groups through the determination of the affinity constants, the reversibility of the interaction, and the effect on the secondary structure of the macromolecule. Affinity constants of the counterionic condensation DNA–drug were in the order of 106. The negative electrokinetic potential of DNA decreased with the increase of the proportion of loading drugs. The drugs were slowly released from the DNA–drug complexes and had release kinetics consistent with the high degree of counterionic condensation. The circular dichroism profile of DNA was not modified by complexation with atenolol, lidocaine, or timolol, but was significantly altered by the more lipophilic drugs benzydamine and propranolol, revealing modifications in the secondary structure of the DNA. The in vitro characterization of such interactions provides a physicochemical basis that would contribute to identify the effects of this kind of drugs in cellular cultures, as well as side effects observed under their clinical use. Moreover, this methodology could also be projected to the fields of intracellular DNA transfection and the use of DNA as a carrier of active drugs. PMID:28054999

  14. Paleoenvironmental events during the last 13,000 years in the central Red Sea as recorded by pteropoda

    NASA Astrophysics Data System (ADS)

    Almogi-Labin, Ahuva; Hemleben, Christoph; Meischner, Dieter; Erlenkeuser, Helmut

    1991-02-01

    A high-resolution record was obtained by investigating a sedimentary sequence from two cores taken in the central Red Sea (R/V Meteor cruise 5, leg 2). The numerical variations between nonmigratory and migratory pteropods and their stable isotopic record were studied together with variations in the carbonate and total organic carbon content in order to estimate changes in the structure of the water column during the last 13 kyr. The results indicate the existence of a highly stratified water column during deglaciation and early Holocene (13-8.5 ka). During this period the depth of the mixed layer varied between less than 50-100 m at most, and productivity was markedly reduced in comparison to the recent situation. The intermediate and deep water were constantly highly depleted in oxygen. A pronounced Younger Dryas event was recognized at 10.4 ka which coincides with an arid phase on the border land. The oxygenation of the intermediate water improved remarkably after 7.5 ka and peaked during the period between 4.6 and 2.0 ka. During this period the mixed layer reached its present depth and the productivity which was maximal during middle Holocene attained present level during the last 4.6 kyr.

  15. The influence of reagent type on the kinetics of ultrafine coal flotation

    USGS Publications Warehouse

    Read, R.B.; Camp, L.R.; Summers, M.S.; Rapp, D.M.

    1989-01-01

    A kinetic study has been conducted to determine the influence of reagent type on flotation rates of ultrafine coal. Two ultrafine coal samples, the Illinois No. 5 (Springfield) and Pittsburgh No. 8, have been evaluated with various reagent types in order to derive the rate constants for coal (kc), ash (ka), and pyrite (kc). The reagents used in the study include anionic surfactants, anionic surfactant-alcohol mixtures, and frothing alcohols. In general, the surfactant-alcohol mixtures tend to float ultrafine coal at a rate three to four times faster than either pure alcohols or pure anionic surfactants. Pine oil, a mixture of terpene alcohols and hydrocarbons, was an exception to this finding; it exhibited higher rate constants than the pure aliphatic alcohols or other pure anionic surfactants studied; this may be explained by the fact that the sample of pine oil used (70% alpha-terpineol) acted as a frother/collector system similar to alcohol/kerosene. The separation efficiencies of ash and pyrite from coal, as evidenced by the ratios of kc/ka or kc/kp, tend to indicate, however, that commercially available surfactant-alcohol mixtures are not as selective as pure alcohols such as 2-ethyl-1-hexanol or methylisobutylcarbinol. Some distinct differences in various rate constants, or their ratios, were noted between the two coals studied, and are possibly attributable to surface chemistry effects. ?? 1989.

  16. Van’t Hoff global analyses of variable temperature isothermal titration calorimetry data

    PubMed Central

    Freiburger, Lee A.; Auclair, Karine; Mittermaier, Anthony K.

    2016-01-01

    Isothermal titration calorimetry (ITC) can provide detailed information on the thermodynamics of biomolecular interactions in the form of equilibrium constants, KA, and enthalpy changes, ΔHA. A powerful application of this technique involves analyzing the temperature dependences of ITC-derived KA and ΔHA values to gain insight into thermodynamic linkage between binding and additional equilibria, such as protein folding. We recently developed a general method for global analysis of variable temperature ITC data that significantly improves the accuracy of extracted thermodynamic parameters and requires no prior knowledge of the coupled equilibria. Here we report detailed validation of this method using Monte Carlo simulations and an application to study coupled folding and binding in an aminoglycoside acetyltransferase enzyme. PMID:28018008

  17. Long-term Quaternary uplift rates inferred from limestone caves in Sarawak, Malaysia

    NASA Astrophysics Data System (ADS)

    Farrant, Andrew R.; Smart, Peter L.; Whitaker, Fiona F.; Tarling, Donald H.

    1995-04-01

    The rate of long-term (2 m.y.) base-level lowering estimated in an extensive sequence of limestone caves in Sarawak, Malaysia, from uranium series, electron spin resonance, and paleomagnetic dating is 0.19 +0.03/-0.04 m/ka. This rate has remained constant over at least the last 700 ka, as shown by comparison of the number and spacing of wall notches formed during phases of interstadial and interglacial aggradation with peaks in the deep-sea oxygen isotope curve. It is argued that base-level lowering occurs in response to epirogenic uplift of the more resistant limestones due to regional denudation of the softer shales, and to flexural isostacy associated with high rates of offshore sedimentation.

  18. An early to mid-Pleistocene deep Arctic Ocean ostracode fauna with North Atlantic affinities

    USGS Publications Warehouse

    DeNinno, Lauren H.; Cronin, Thomas M.; Rodriquez-Lazaro, J.; Brenner, Alec R.

    2015-01-01

    An early to middle Pleistocene ostracode fauna was discovered in sediment core P1-93-AR-23 (P23, 76.95°N, 155.07°W) from 951 meter water depth from the Northwind Ridge, western Arctic Ocean. Piston core P23 yielded more than 30,000 specimens and a total of about 30 species. Several early to mid-Pleistocene species in the genera Krithe,Echinocythereis, Pterygocythereis, and Arcacythere are now extinct in the Arctic and show taxonomic affinities to North Atlantic Ocean species. Our results suggest that there was a major ostracode faunal turnover during the global climate transitions known as the Mid-Pleistocene Transition (MPT, ~ 1.2 to 0.7 Ma) and the Mid-Brunhes Event (MBE, ~ 400 ka) reflecting the development of perennial sea ice during interglacial periods and large ice shelves during glacial periods over the last 400,000 years.

  19. Overcoming hERG affinity in the discovery of maraviroc; a CCR5 antagonist for the treatment of HIV.

    PubMed

    Price, David A; Armour, Duncan; de Groot, Marcel; Leishman, Derek; Napier, Carolyn; Perros, Manos; Stammen, Blanda L; Wood, Anthony

    2008-01-01

    Avoiding cardiac liability associated with blockade of hERG (human ether a go-go) is key for successful drug discovery and development. This paper describes the work undertaken in the discovery of a potent CCR5 antagonist, maraviroc 34, for the treatment of HIV. In particular the use of a pharmacophore model of the hERG channel and a high throughput binding assay for the hERG channel are described that were critical to elucidate SAR to overcome hERG liabilities. The key SAR involves the introduction of polar substituents into regions of the molecule where it is postulated to undergo hydrophobic interactions with the ion channel. Within the CCR5 project there appeared to be no strong correlation between hERG affinity and physiochemical parameters such as pKa or lipophilicity. It is believed that chemists could apply these same strategies early in drug discovery to remove hERG interactions associated with lead compounds while retaining potency at the primary target.

  20. Proton affinity of the histidine-tryptophan cluster motif from the influenza A virus from ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Bankura, Arindam; Klein, Michael L.; Carnevale, Vincenzo

    2013-08-01

    Ab initio molecular dynamics calculations have been used to compare and contrast the deprotonation reaction of a histidine residue in aqueous solution with the situation arising in a histidine-tryptophan cluster. The latter is used as a model of the proton storage unit present in the pore of the M2 proton conducting ion channel. We compute potentials of mean force for the dissociation of a proton from the Nδ and Nɛ positions of the imidazole group to estimate the pKas. Anticipating our results, we will see that the estimated pKa for the first protonation event of the M2 channel is in good agreement with experimental estimates. Surprisingly, despite the fact that the histidine is partially desolvated in the M2 channel, the affinity for protons is similar to that of a histidine in aqueous solution. Importantly, the electrostatic environment provided by the indoles is responsible for the stabilization of the charged imidazolium.

  1. Intrinsic thermodynamics of inhibitor binding to human carbonic anhydrase IX.

    PubMed

    Linkuvienė, Vaida; Matulienė, Jurgita; Juozapaitienė, Vaida; Michailovienė, Vilma; Jachno, Jelena; Matulis, Daumantas

    2016-04-01

    Human carbonic anhydrase 9th isoform (CA IX) is an important marker of numerous cancers and is increasingly interesting as a potential anticancer drug target. Various synthetic aromatic sulfonamide-bearing compounds are being designed as potent inhibitors of CA IX. However, sulfonamide compound binding to CA IX is linked to several reactions, the deprotonation of the sulfonamide amino group and the protonation of the CA active site Zn(II)-bound hydroxide. These linked reactions significantly affect the affinities and other thermodynamic parameters such as enthalpies and entropies of binding. The observed and intrinsic affinities of compound binding to CA IX were determined by the fluorescent thermal shift assay. The enthalpies and entropies of binding were determined by the isothermal titration calorimetry. The pKa of CA IX was determined to be 6.8 and the enthalpy of CA IX-Zn(II)-bound hydroxide protonation was -24 kJ/mol. These values enabled the analysis of intrinsic thermodynamics of a library of compounds binding to CA IX. The most strongly binding compounds exhibited the intrinsic affinity of 0.01 nM and the observed affinity of 2 nM. The intrinsic thermodynamic parameters of compound binding to CA IX helped to draw the compound structure to thermodynamics relationship. It is important to distinguish the intrinsic from observed parameters of any disease target protein interaction with its inhibitors as drug candidates when drawing detailed compound structure to thermodynamics correlations. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Acyclic Cucurbit[n]uril-type Molecular Containers: Influence of Aromatic Walls on their Function as Solubilizing Excipients for Insoluble Drugs

    PubMed Central

    2015-01-01

    We studied the influence of the aromatic sidewalls on the ability of acyclic CB[n]-type molecular containers (1a–1e) to act as solubilizing agents for 19 insoluble drugs including the developmental anticancer agent PBS-1086. All five containers exhibit good water solubility and weak self-association (Ks ≤ 624 M–1). We constructed phase solubility diagrams to extract Krel and Ka values for the container·drug complexes. The acyclic CB[n]-type containers generally display significantly higher Ka values than HP-β-CD toward drugs. Containers 1a–1e bind the steroidal ring system and aromatic moieties of insoluble drugs. Compound 1b displays highest affinity toward most of the drugs studied. Containers 1a and 1b are broadly applicable and can be used to formulate a wider variety of insoluble drugs than was previously possible with cyclodextrin technology. For drugs that are solubilized by both HP-β-CD and 1a–1e, lower concentrations of 1a–1e are required to achieve identical [drug]. PMID:25369565

  3. Acyclic cucurbit[n]uril-type molecular containers: influence of aromatic walls on their function as solubilizing excipients for insoluble drugs.

    PubMed

    Zhang, Ben; Isaacs, Lyle

    2014-11-26

    We studied the influence of the aromatic sidewalls on the ability of acyclic CB[n]-type molecular containers (1a-1e) to act as solubilizing agents for 19 insoluble drugs including the developmental anticancer agent PBS-1086. All five containers exhibit good water solubility and weak self-association (Ks ≤ 624 M(-1)). We constructed phase solubility diagrams to extract Krel and Ka values for the container·drug complexes. The acyclic CB[n]-type containers generally display significantly higher Ka values than HP-β-CD toward drugs. Containers 1a-1e bind the steroidal ring system and aromatic moieties of insoluble drugs. Compound 1b displays highest affinity toward most of the drugs studied. Containers 1a and 1b are broadly applicable and can be used to formulate a wider variety of insoluble drugs than was previously possible with cyclodextrin technology. For drugs that are solubilized by both HP-β-CD and 1a-1e, lower concentrations of 1a-1e are required to achieve identical [drug].

  4. Revisiting the Quinoxalinedione Scaffold in the Construction of New Ligands for the Ionotropic Glutamate Receptors.

    PubMed

    Demmer, Charles S; Rombach, David; Liu, Na; Nielsen, Birgitte; Pickering, Darryl S; Bunch, Lennart

    2017-11-15

    More than two decades ago, the quinoxalinedione scaffold was shown to act as an α-amino acid bioisoster. Following extensive structure-activity relationship (SAR) studies, the antagonists DNQX, CNQX, and NBQX in the ionotropic glutamate receptor field were identified. In this work, we revisit the quinoxalinedione scaffold and explore the incorporation of an acid functionality in the 6-position. The SAR studies disclose that by this strategy it was possible to tune in iGluR selectivity among the AMPA, NMDA, and KA receptors, and to some extent also obtain full receptor subtype selectivity. Highlights of the study of 44 new analogues are compound 2m being a high affinity ligand for native AMPA receptors (IC 50 = 0.48 μM), analogues 2e,f,h,k,v all displayed selectivity for native NMDA receptors, and compounds 2s,t,u are selective ligand for the GluK1 receptor. Most interestingly, compound 2w was shown to be a GluK3-preferring ligand with full selectivity over native AMPA, KA and NMDA receptors.

  5. Early Modern Humans and Morphological Variation in Southeast Asia: Fossil Evidence from Tam Pa Ling, Laos

    PubMed Central

    Demeter, Fabrice; Shackelford, Laura; Westaway, Kira; Duringer, Philippe; Bacon, Anne-Marie; Ponche, Jean-Luc; Wu, Xiujie; Sayavongkhamdy, Thongsa; Zhao, Jian-Xin; Barnes, Lani; Boyon, Marc; Sichanthongtip, Phonephanh; Sénégas, Frank; Karpoff, Anne-Marie; Patole-Edoumba, Elise; Coppens, Yves; Braga, José

    2015-01-01

    Little is known about the timing of modern human emergence and occupation in Eastern Eurasia. However a rapid migration out of Africa into Southeast Asia by at least 60 ka is supported by archaeological, paleogenetic and paleoanthropological data. Recent discoveries in Laos, a modern human cranium (TPL1) from Tam Pa Ling‘s cave, provided the first evidence for the presence of early modern humans in mainland Southeast Asia by 63-46 ka. In the current study, a complete human mandible representing a second individual, TPL 2, is described using discrete traits and geometric morphometrics with an emphasis on determining its population affinity. The TPL2 mandible has a chin and other discrete traits consistent with early modern humans, but it retains a robust lateral corpus and internal corporal morphology typical of archaic humans across the Old World. The mosaic morphology of TPL2 and the fully modern human morphology of TPL1 suggest that a large range of morphological variation was present in early modern human populations residing in the eastern Eurasia by MIS 3. PMID:25849125

  6. RFP tags for labeling secretory pathway proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Liyang; Zhao, Yanhua; Zhang, Xi

    2014-05-09

    Highlights: • Membrane protein Orai1 can be used to report the fusion properties of RFPs. • Artificial puncta are affected by dissociation constant as well as pKa of RFPs. • Among tested RFPs mOrange2 is the best choice for secretory protein labeling. - Abstract: Red fluorescent proteins (RFPs) are useful tools for live cell and multi-color imaging in biological studies. However, when labeling proteins in secretory pathway, many RFPs are prone to form artificial puncta, which may severely impede their further uses. Here we report a fast and easy method to evaluate RFPs fusion properties by attaching RFPs to anmore » environment sensitive membrane protein Orai1. In addition, we revealed that intracellular artificial puncta are actually colocalized with lysosome, thus besides monomeric properties, pKa value of RFPs is also a key factor for forming intracellular artificial puncta. In summary, our current study provides a useful guide for choosing appropriate RFP for labeling secretory membrane proteins. Among RFPs tested, mOrange2 is highly recommended based on excellent monomeric property, appropriate pKa and high brightness.« less

  7. Chromatographic studies of drug interactions with alpha1-acid glycoprotein by ultrafast affinity extraction and peak profiling.

    PubMed

    Beeram, Sandya; Bi, Cong; Zheng, Xiwei; Hage, David S

    2017-05-12

    Interactions with serum proteins such as alpha 1 -acid glycoprotein (AGP) can have a significant effect on the behavior and pharmacokinetics of drugs. Ultrafast affinity extraction and peak profiling were used with AGP microcolumns to examine these processes for several model drugs (i.e., chlorpromazine, disopyramide, imipramine, lidocaine, propranolol and verapamil). The association equilibrium constants measured for these drugs with soluble AGP by ultrafast affinity extraction were in the general range of 10 4 -10 6 M -1 at pH 7.4 and 37°C and gave good agreement with literature values. Some of these values were dependent on the relative drug and protein concentrations that were present when using a single-site binding model; these results suggested a more complex mixed-mode interaction was actually present, which was also then used to analyze the data. The apparent dissociation rate constants that were obtained by ultrafast affinity extraction when using a single-site model varied from 0.14 to 7.0s -1 and were dependent on the relative drug and protein concentrations. Lower apparent dissociation rate constants were obtained by this approach as the relative amount of drug versus protein was decreased, with the results approaching those measured by peak profiling at low drug concentrations. This information should be useful in better understanding how these and other drugs interact with AGP in the circulation. In addition, the chromatographic approaches that were optimized and used in this report to examine these systems can be adapted for the analysis of other solute-protein interactions of biomedical interest. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Identification of a β-lactamase inhibitory protein variant that is a potent inhibitor of Staphylococcus PC1 β-lactamase

    PubMed Central

    Yuan, Ji; Chow, Dar-Chone; Huang, Wanzhi; Palzkill, Timothy

    2011-01-01

    The β-lactamase inhibitory protein (BLIP) binds and inhibits a diverse collection of class A β-lactamases. Widespread resistance to β-lactam antibiotics currently limits treatment strategies for Staphylococcus infections. The goal of this study was to determine the binding affinity of BLIP for S. aureus PC1 β-lactamase and to identify mutants that alter binding affinity. The BLIP inhibition constant (Ki) for the PC1 β-lactamase was measured at 350 nM and isothermal titration calorimetry (ITC) experiments indicated a binding constant (Kd) of 380 nM. A total of 23 residue positions in BLIP that contact β-lactamase were randomized and phage display was used to sort the libraries for tight binders to immobilized PC1 β-lactamase. The BLIP K74G mutant was the dominant clone selected and it was found to inhibit the PC1 β-lactamase with a Ki of 42 nM while calorimetry indicated a Kd of 26 nM. Molecular modeling studies suggested BLIP binds weakly to the PC1 β-lactamase due to the presence of alanine at position 104 of PC1. This position is occupied by glutamate in the TEM-1 enzyme where it forms a salt bridge with BLIP residue Lys74 that is important for the stability of the complex. This hypothesis was confirmed by showing that the A104E PC1 enzyme binds BLIP with 15-fold greater affinity than wild type PC1 β-lactamase. Kinetic measurements indicated similar association rates for all complexes with the variation in affinity due to altered dissociation rate constants suggesting changes in short-range interactions are responsible for the altered binding properties of the mutants. PMID:21238457

  9. Size and molecular flexibility affect the binding of ellagitannins to bovine serum albumin.

    PubMed

    Dobreva, Marina A; Green, Rebecca J; Mueller-Harvey, Irene; Salminen, Juha-Pekka; Howlin, Brendan J; Frazier, Richard A

    2014-09-17

    Binding to bovine serum albumin of monomeric (vescalagin and pedunculagin) and dimeric ellagitannins (roburin A, oenothein B, and gemin A) was investigated by isothermal titration calorimetry and fluorescence spectroscopy, which indicated two types of binding sites. Stronger and more specific sites exhibited affinity constants, K1, of 10(4)-10(6) M(-1) and stoichiometries, n1, of 2-13 and dominated at low tannin concentrations. Weaker and less-specific binding sites had K2 constants of 10(3)-10(5) M(-1) and stoichiometries, n2, of 16-30 and dominated at higher tannin concentrations. Binding to stronger sites appeared to be dependent on tannin flexibility and the presence of free galloyl groups. Positive entropies for all but gemin A indicated that hydrophobic interactions dominated during complexation. This was supported by an exponential relationship between the affinity, K1, and the modeled hydrophobic accessible surface area and by a linear relationship between K1 and the Stern-Volmer quenching constant, K(SV).

  10. Rate constants of agonist binding to muscarinic receptors in rat brain medulla. Evaluation by competition kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreiber, G.; Henis, Y.I.; Sokolovsky, M.

    The method of competition kinetics, which measures the binding kinetics of an unlabeled ligand through its effect on the binding kinetics of a labeled ligand, was employed to investigate the kinetics of muscarinic agonist binding to rat brain medulla pons homogenates. The agonists studied were acetylcholine, carbamylcholine, and oxotremorine, with N-methyl-4-(TH)piperidyl benzilate employed as the radiolabeled ligand. Our results suggested that the binding of muscarinic agonists to the high affinity sites is characterized by dissociation rate constants higher by 2 orders of magnitude than those of antagonists, with rather similar association rate constants. Our findings also suggest that isomerization ofmore » the muscarinic receptors following ligand binding is significant in the case of antagonists, but not of agonists. Moreover, it is demonstrated that in the medulla pons preparation, agonist-induced interconversion between high and low affinity bindings sites does not occur to an appreciable extent.« less

  11. The Cutting Edge of Affinity Electrophoresis Technology

    PubMed Central

    Kinoshita, Eiji; Kinoshita-Kikuta, Emiko; Koike, Tohru

    2015-01-01

    Affinity electrophoresis is an important technique that is widely used to separate and analyze biomolecules in the fields of biology and medicine. Both quantitative and qualitative information can be gained through affinity electrophoresis. Affinity electrophoresis can be applied through a variety of strategies, such as mobility shift electrophoresis, charge shift electrophoresis or capillary affinity electrophoresis. These strategies are based on changes in the electrophoretic patterns of biological macromolecules that result from interactions or complex-formation processes that induce changes in the size or total charge of the molecules. Nucleic acid fragments can be characterized through their affinity to other molecules, for example transcriptional factor proteins. Hydrophobic membrane proteins can be identified by means of a shift in the mobility induced by a charged detergent. The various strategies have also been used in the estimation of association/disassociation constants. Some of these strategies have similarities to affinity chromatography, in that they use a probe or ligand immobilized on a supported matrix for electrophoresis. Such methods have recently contributed to profiling of major posttranslational modifications of proteins, such as glycosylation or phosphorylation. Here, we describe advances in analytical techniques involving affinity electrophoresis that have appeared during the last five years. PMID:28248262

  12. The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz Soil Chronosequence, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maher, K.; Steefel, C. I.; White, A.F.

    2009-02-25

    In order to explore the reasons for the apparent discrepancy between laboratory and field weathering rates and to determine the extent to which weathering rates are controlled by the approach to thermodynamic equilibrium, secondary mineral precipitation and flow rates, a multicomponent reactive transport model (CrunchFlow) was used to interpret soil profile development and mineral precipitation and dissolution rates at the 226 ka marine terrace chronosequence near Santa Cruz, CA. Aqueous compositions, fluid chemistry, transport, and mineral abundances are well characterized (White et al., 2008, GCA) and were used to constrain the reaction rates for the weathering and precipitating minerals inmore » the reactive transport modeling. When primary mineral weathering rates are calculated with either of two experimentally determined rate constants, the nonlinear, parallel rate law formulation of Hellmann and Tisser and [2006] or the aluminum inhibition model proposed by Oelkers et al. [1994], modeling results are consistent with field-scale observations when independently constrained clay precipitation rates are accounted for. Experimental and field rates, therefore, can be reconciled at the Santa Cruz site. Observed maximum clay abundances in the argillic horizons occur at the depth and time where the reaction fronts of the primary minerals overlap. The modeling indicates that the argillic horizon at Santa Cruz can be explained almost entirely by weathering of primary minerals and in situ clay precipitation accompanied by undersaturation of kaolinite at the top of the profile. The rate constant for kaolinite precipitation was also determined based on model simulations of mineral abundances and dissolved Al, SiO{sub 2}(aq) and pH in pore waters. Changes in the rate of kaolinite precipitation or the flow rate do not affect the gradient of the primary mineral weathering profiles, but instead control the rate of propagation of the primary mineral weathering fronts and thus total mass removed from the weathering profile. Our analysis suggests that secondary clay precipitation is as important as aqueous transport in governing the amount of dissolution that occurs within a profile because clay minerals exert a strong control over the reaction affinity of the dissolving primary minerals. The modeling also indicates that the weathering advance rate and the total mass of mineral dissolved is controlled by the thermodynamic saturation of the primary dissolving phases plagioclase and K-feldspar, as is evident from the difference in propagation rates of the reaction fronts for the two minerals despite their very similar kinetic rate laws.« less

  13. Role of Reversible Histidine Coordination in Hydroxylamine Reduction by Plant Hemoglobins (Phytoglobins).

    PubMed

    Athwal, Navjot Singh; Alagurajan, Jagannathan; Andreotti, Amy H; Hargrove, Mark S

    2016-10-18

    Reduction of hydroxylamine to ammonium by phytoglobin, a plant hexacoordinate hemoglobin, is much faster than that of other hexacoordinate hemoglobins or pentacoordinate hemoglobins such as myoglobin, leghemoglobin, and red blood cell hemoglobin. The reason for differences in reactivity is not known but could be intermolecular electron transfer between protein molecules in support of the required two-electron reduction, hydroxylamine binding, or active site architecture favoring the reaction. Experiments were conducted with phytoglobins from rice, tomato, and soybean along with human neuroglobin and soybean leghemoglobin that reveal hydroxylamine binding as the rate-limiting step. For hexacoordinate hemoglobins, binding is limited by the dissociation rate constant for the distal histidine, while leghemoglobin is limited by an intrinsically low affinity for hydroxylamine. When the distal histidine is removed from rice phytoglobin, a hydroxylamine-bound intermediate is formed and the reaction rate is diminished, indicating that the distal histidine imidazole side chain is critical for the reaction, albeit not for electron transfer but rather for direct interaction with the substrate. Together, these results demonstrate that phytoglobins are superior at hydroxylamine reduction because they have distal histidine coordination affinity constants near 1, and facile rate constants for binding and dissociation of the histidine side chain. Hexacoordinate hemoglobins such as neuroglobin are limited by tighter histidine coordination that blocks hydroxylamine binding, and pentacoordinate hemoglobins have intrinsically lower hydroxylamine affinities.

  14. BDflex: A method for efficient treatment of molecular flexibility in calculating protein-ligand binding rate constants from Brownian dynamics simulations

    PubMed Central

    Greives, Nicholas; Zhou, Huan-Xiang

    2012-01-01

    A method developed by Northrup [J. Chem. Phys. 80, 1517 (1984)]10.1063/1.446900 for calculating protein-ligand binding rate constants (ka) from Brownian dynamics (BD) simulations has been widely used for rigid molecules. Application to flexible molecules is limited by the formidable computational cost to treat conformational fluctuations during the long BD simulations necessary for ka calculation. Here, we propose a new method called BDflex for ka calculation that circumvents this problem. The basic idea is to separate the whole space into an outer region and an inner region, and formulate ka as the product of kE and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}\\bar \\eta _{\\rm d}\\end{equation*} \\end{document}η¯d, which are obtained by separately solving exterior and interior problems. kE is the diffusion-controlled rate constant for the ligand in the outer region to reach the dividing surface between the outer and inner regions; in this exterior problem conformational fluctuations can be neglected. \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}\\bar \\eta _{\\rm d}\\end{equation*} \\end{document}η¯d is the probability that the ligand, starting from the dividing surface, will react at the binding site rather than escape to infinity. The crucial step in reducing the determination of \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}\\bar \\eta _{\\rm d}\\end{equation*} \\end{document}η¯d to a problem confined to the inner region is a radiation boundary condition imposed on the dividing surface; the reactivity on this boundary is proportional to kE. By confining the ligand to the inner region and imposing the radiation boundary condition, we avoid multiple-crossing of the dividing surface before reaction at the binding site and hence dramatically cut down the total simulation time, making the treatment of conformational fluctuations affordable. BDflex is expected to have wide applications in problems where conformational fluctuations of the molecules are crucial for productive ligand binding, such as in cases where transient widening of a bottleneck allows the ligand to access the binding pocket, or the binding site is properly formed only after ligand entrance induces the closure of a lid. PMID:23039617

  15. Stratigraphic and technological evidence from the Middle Palaeolithic-Châtelperronian-Aurignacian record at the Bordes-Fitte rockshelter (Roches d'Abilly site, Central France).

    PubMed

    Aubry, Thierry; Dimuccio, Luca Antonio; Almeida, Miguel; Buylaert, Jan-Pieter; Fontana, Laure; Higham, Thomas; Liard, Morgane; Murray, Andrew S; Neves, Maria João; Peyrouse, Jean-Baptiste; Walter, Bertrand

    2012-01-01

    This paper presents a geoarchaeological study of Middle and Upper Palaeolithic (Châtelperronian, Aurignacian and Solutrean) occupations preserved at the Bordes-Fitte rockshelter in Central France. The lithostratigraphic sequence is composed of near-surface sedimentary facies with vertical and lateral variations, in a context dominated by run-off and gravitational sedimentary processes. Field description and micromorphological analysis permit us to reconstruct several episodes of sediment slope-wash and endokarst dynamics, with hiatuses and erosional phases. The archaeostratigraphic succession includes Châtelperronian artefacts, inter-stratified between Middle Palaeolithic and Aurignacian occupations. Systematic refitting and spatial analysis reveal that the Châtelperronian point production and flake blanks retouched into denticulates, all recovered in the same stratigraphic unit, result from distinct and successive occupations and are not a 'transitional' Middle to Upper Palaeolithic assemblage. The ages obtained by (14)C place the Châtelperronian occupation in the 41-48 ka cal BP (calibrated thousands of years before present) interval and are consistent with the quartz optically stimulated luminescence age of 39 ± 2 ka and feldspar infra-red stimulated luminescence age of 45 ± 2 ka of the sediments. The Bordes-Fitte rockshelter sequence represents an important contribution to the debate about the characterization and timing of the Châtelperronian, as well as its affinities to earlier and later industries. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Photolabeling of Tonoplast from Sugar Beet Cell Suspensions by [3H]5-(N-Methyl-N-Isobutyl)-Amiloride, an Inhibitor of the Vacuolar Na+/H+ Antiport 1

    PubMed Central

    Barkla, Bronwyn J.; Charuk, Jeffrey H. M.; Cragoe, Edward J.; Blumwald, Eduardo

    1990-01-01

    The effects of 5-(N-methyl-N-isobutyl)-amiloride (MIA), an amiloride analog, was tested on the Na+/H+ antiport activity of intact vacuoles and tonoplast vesicles isolated from sugar beet (Beta vulgaris L.) cell suspension cultures. MIA inhibited Na+/H+ exchange in a competitive manner with a Ki of 2.5 and 5.9 micromolar for ΔpH-dependent 22Na+ influx in tonoplast vesicles and Na+-dependent H+ efflux in intact vacuoles, respectively. Scatchard analysis of the binding of [3H]MIA to tonoplast membranes revealed a high affinity binding component with a Kd of 1.3 micromolar. The close relationship between the dissociation constant value obtained and the constants of inhibition for MIA obtained by fluorescence quenching and isotope exchange suggests that the high affinity component represents a class of sites associated with the tonoplast Na+/H+ antiport. Photolabeling of the tonoplast with [3H]MIA revealed two sets of polypeptides with a different affinity to amiloride and its analog. Images Figure 7 PMID:16667602

  17. Photolabeling of tonoplast from sugar beet cell suspensions by [h]5-(N-methyl-N-isobutyl)-amiloride, an inhibitor of the vacuolar na/h antiport.

    PubMed

    Barkla, B J; Charuk, J H; Cragoe, E J; Blumwald, E

    1990-07-01

    The effects of 5-(N-methyl-N-isobutyl)-amiloride (MIA), an amiloride analog, was tested on the Na(+)/H(+) antiport activity of intact vacuoles and tonoplast vesicles isolated from sugar beet (Beta vulgaris L.) cell suspension cultures. MIA inhibited Na(+)/H(+) exchange in a competitive manner with a K(i) of 2.5 and 5.9 micromolar for DeltapH-dependent (22)Na(+) influx in tonoplast vesicles and Na(+)-dependent H(+) efflux in intact vacuoles, respectively. Scatchard analysis of the binding of [(3)H]MIA to tonoplast membranes revealed a high affinity binding component with a K(d) of 1.3 micromolar. The close relationship between the dissociation constant value obtained and the constants of inhibition for MIA obtained by fluorescence quenching and isotope exchange suggests that the high affinity component represents a class of sites associated with the tonoplast Na(+)/H(+) antiport. Photolabeling of the tonoplast with [(3)H]MIA revealed two sets of polypeptides with a different affinity to amiloride and its analog.

  18. A global benchmark study using affinity-based biosensors

    PubMed Central

    Rich, Rebecca L.; Papalia, Giuseppe A.; Flynn, Peter J.; Furneisen, Jamie; Quinn, John; Klein, Joshua S.; Katsamba, Phini S.; Waddell, M. Brent; Scott, Michael; Thompson, Joshua; Berlier, Judie; Corry, Schuyler; Baltzinger, Mireille; Zeder-Lutz, Gabrielle; Schoenemann, Andreas; Clabbers, Anca; Wieckowski, Sebastien; Murphy, Mary M.; Page, Phillip; Ryan, Thomas E.; Duffner, Jay; Ganguly, Tanmoy; Corbin, John; Gautam, Satyen; Anderluh, Gregor; Bavdek, Andrej; Reichmann, Dana; Yadav, Satya P.; Hommema, Eric; Pol, Ewa; Drake, Andrew; Klakamp, Scott; Chapman, Trevor; Kernaghan, Dawn; Miller, Ken; Schuman, Jason; Lindquist, Kevin; Herlihy, Kara; Murphy, Michael B.; Bohnsack, Richard; Andrien, Bruce; Brandani, Pietro; Terwey, Danny; Millican, Rohn; Darling, Ryan J.; Wang, Liann; Carter, Quincy; Dotzlaf, Joe; Lopez-Sagaseta, Jacinto; Campbell, Islay; Torreri, Paola; Hoos, Sylviane; England, Patrick; Liu, Yang; Abdiche, Yasmina; Malashock, Daniel; Pinkerton, Alanna; Wong, Melanie; Lafer, Eileen; Hinck, Cynthia; Thompson, Kevin; Primo, Carmelo Di; Joyce, Alison; Brooks, Jonathan; Torta, Federico; Bagge Hagel, Anne Birgitte; Krarup, Janus; Pass, Jesper; Ferreira, Monica; Shikov, Sergei; Mikolajczyk, Malgorzata; Abe, Yuki; Barbato, Gaetano; Giannetti, Anthony M.; Krishnamoorthy, Ganeshram; Beusink, Bianca; Satpaev, Daulet; Tsang, Tiffany; Fang, Eric; Partridge, James; Brohawn, Stephen; Horn, James; Pritsch, Otto; Obal, Gonzalo; Nilapwar, Sanjay; Busby, Ben; Gutierrez-Sanchez, Gerardo; Gupta, Ruchira Das; Canepa, Sylvie; Witte, Krista; Nikolovska-Coleska, Zaneta; Cho, Yun Hee; D’Agata, Roberta; Schlick, Kristian; Calvert, Rosy; Munoz, Eva M.; Hernaiz, Maria Jose; Bravman, Tsafir; Dines, Monica; Yang, Min-Hsiang; Puskas, Agnes; Boni, Erica; Li, Jiejin; Wear, Martin; Grinberg, Asya; Baardsnes, Jason; Dolezal, Olan; Gainey, Melicia; Anderson, Henrik; Peng, Jinlin; Lewis, Mark; Spies, Peter; Trinh, Quyhn; Bibikov, Sergei; Raymond, Jill; Yousef, Mohammed; Chandrasekaran, Vidya; Feng, Yuguo; Emerick, Anne; Mundodo, Suparna; Guimaraes, Rejane; McGirr, Katy; Li, Yue-Ji; Hughes, Heather; Mantz, Hubert; Skrabana, Rostislav; Witmer, Mark; Ballard, Joshua; Martin, Loic; Skladal, Petr; Korza, George; Laird-Offringa, Ite; Lee, Charlene S.; Khadir, Abdelkrim; Podlaski, Frank; Neuner, Phillippe; Rothacker, Julie; Rafique, Ashique; Dankbar, Nico; Kainz, Peter; Gedig, Erk; Vuyisich, Momchilo; Boozer, Christina; Ly, Nguyen; Toews, Mark; Uren, Aykut; Kalyuzhniy, Oleksandr; Lewis, Kenneth; Chomey, Eugene; Pak, Brian J.; Myszka, David G.

    2013-01-01

    To explore the variability in biosensor studies, 150 participants from 20 countries were given the same protein samples and asked to determine kinetic rate constants for the interaction. We chose a protein system that was amenable to analysis using different biosensor platforms as well as by users of different expertise levels. The two proteins (a 50-kDa Fab and a 60-kDa glutathione S-transferase [GST] antigen) form a relatively high-affinity complex, so participants needed to optimize several experimental parameters, including ligand immobilization and regeneration conditions as well as analyte concentrations and injection/dissociation times. Although most participants collected binding responses that could be fit to yield kinetic parameters, the quality of a few data sets could have been improved by optimizing the assay design. Once these outliers were removed, the average reported affinity across the remaining panel of participants was 620 pM with a standard deviation of 980 pM. These results demonstrate that when this biosensor assay was designed and executed appropriately, the reported rate constants were consistent, and independent of which protein was immobilized and which biosensor was used. PMID:19133223

  19. Affine generalization of the Komar complex of general relativity

    NASA Astrophysics Data System (ADS)

    Mielke, Eckehard W.

    2001-02-01

    On the basis of the ``on shell'' Noether identities of the metric-affine gauge approach of gravity, an affine superpotential is derived which comprises the energy- and angular-momentum content of exact solutions. In the special case of general relativity (GR) or its teleparallel equivalent, the Komar or Freud complex, respectively, are recovered. Applying this to the spontaneously broken anti-de Sitter gauge model of McDowell and Mansouri with an induced Euler term automatically yields the correct mass and spin of the Kerr-AdS solution of GR with a (induced) cosmological constant without the factor two discrepancy of the Komar formula.

  20. Comparative analysis on inactivation kinetics of between piezotolerant and piezosensitive mutant strains of Saccharomyces cerevisiae under combinations of high hydrostatic pressure and temperature.

    PubMed

    Nomura, Kazuki; Kuwabara, Yuki; Kuwabara, Wataru; Takahashi, Hiroyuki; Nakajima, Kanako; Hayashi, Mayumi; Iguchi, Akinori; Shigematsu, Toru

    2017-12-01

    We previously obtained a pressure-tolerant (piezotolerant) and a pressure sensitive (piezosensitive) mutant strain, under ambient temperature, from Saccharomyces cerevisiae strain KA31a. The inactivation kinetics of these mutants were analyzed at 150 to 250MPa with 4 to 40°C. By a multiple regression analysis, the pressure and temperature dependency of the inactivation rate constants k values of both mutants, as well as the parent strain KA31a, were well approximated with high correlation coefficients (0.92 to 0.95). For both mutants, as well as strain KA31a, the lowest k value was shown at a low pressure levels with around ambient temperature. The k value approximately increased with increase in pressure level, and with increase and decrease in temperature. The piezosensitive mutant strain a924E1 showed piezosensitivity at all pressure and temperature levels, compared with the parent strain KA31a. In contrast, the piezotolerant mutant strain a2568D8 showed piezotolerance at 4 to 20°C, but did not show significant piezotolerance at 40°C. These results of the variable influence of temperature on pressure inactivation of these strains would be important for better understanding of piezosensitive and piezotolerant mechanisms, as well as the pressure inactivation mechanism of S. cerevisiae. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Exploring 3D structural influences of aliphatic and aromatic chemicals on α-cyclodextrin binding.

    PubMed

    Linden, Lukas; Goss, Kai-Uwe; Endo, Satoshi

    2016-04-15

    Binding of solutes to macromolecules is often influenced by steric effects caused by the 3D structures of both binding partners. In this study, the 1:1 α-cyclodextrin (αCD) binding constants (Ka1) for 70 organic chemicals were determined to explore the solute-structural effects on the αCD binding. Ka1 was measured using a three-part partitioning system with either a headspace or a passive sampler serving as the reference phase. The Ka1 values ranged from 1.08 to 4.97 log units. The results show that longer linear aliphatic chemicals form more stable complexes than shorter ones, and that the position of the functional group has a strong influence on Ka1, even stronger than the type of the functional group. Comparison of linear and variously branched aliphatic chemicals indicates that having a sterically unhindered alkyl chain is favorable for binding. These results suggest that only one alkyl chain can enter the binding cavity. Relatively small aromatic chemicals such as 1,3-dichlorobenzene bind to αCD well, while larger ones like tetrachlorobenzene and 3-ring aromatic chemicals show only a weak interaction with αCD, which can be explained by cavity exclusion. The findings of this study help interpret cyclodextrin binding data and facilitate the understanding of binding processes to macromolecules. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. UV/vis, 1H, and 13C NMR spectroscopic studies to determine mangiferin p Ka values

    NASA Astrophysics Data System (ADS)

    Gómez-Zaleta, Berenice; Ramírez-Silva, María Teresa; Gutiérrez, Atilano; González-Vergara, Enrique; Güizado-Rodríguez, Marisol; Rojas-Hernández, Alberto

    2006-07-01

    The acid constants of mangiferin (a natural xanthonoid) in aqueous solution were determined through an UV/vis spectroscopic study employing the SQUAD program as a computational tool. A NMR study complements the p Ka values assignment and evidences a H-bridge presence on 1-C. The chemical model used was consistent with the experimental data obtained. The p Ka values determined with this procedure were as follows: H 4(MGF) = H 3(MGF) - + H +, pK(6-H) = 6.52 ± 0.06; H 3(MGF) - = H 2(MGF) 2- + H +, pK(3-H) = 7.97 ± 0.06; H 2(MGF) 2- = H(MGF) 3- + H +, pK(7-H) = 9.44 ± 0.04; H(MGF) 3- = (MGF) 4- + H +, pK(1-H) = 12.10 ± 0.01; where it has been considered mangiferin C 19H 18O 11 as H 4(MGF). Mangiferin UV/vis spectral behavior, stability study in aqueous solution as well as NMR spectroscopy studies: one-dimensional 1H, 13C, 2D correlated 1H/ 13C performed by (g)-HSQC and (g)-HMBC methods; are also presented. p Ka values determination of H 4(MGF) in aqueous solution is a necessary contribution to subsequent pharmacokinetic study, and a step towards the understanding of its biological effects.

  3. Differential Mobility Spectrometry: Preliminary Findings on Determination of Fundamental Constants

    NASA Technical Reports Server (NTRS)

    Limero, Thomas; Cheng, Patti; Boyd, John

    2007-01-01

    The electron capture detector (ECD) has been used for 40+ years (1) to derive fundamental constants such as a compound's electron affinity. Given this historical perspective, it is not surprising that differential mobility spectrometry (DMS) might be used in a like manner. This paper will present data from a gas chromatography (GC)-DMS instrument that illustrates the potential capability of this device to derive fundamental constants for electron-capturing compounds. Potential energy curves will be used to provide possible explanation of the data.

  4. Higher Nucleoporin-Importinβ Affinity at the Nuclear Basket Increases Nucleocytoplasmic Import

    PubMed Central

    Azimi, Mohammad; Mofrad, Mohammad R. K.

    2013-01-01

    Several in vitro studies have shown the presence of an affinity gradient in nuclear pore complex proteins for the import receptor Importinβ, at least partially contributing to nucleocytoplasmic transport, while others have historically argued against the presence of such a gradient. Nonetheless, the existence of an affinity gradient has remained an uncharacterized contributing factor. To shed light on the affinity gradient theory and better characterize how the existence of such an affinity gradient between the nuclear pore and the import receptor may influence the nucleocytoplasmic traffic, we have developed a general-purpose agent based modeling (ABM) framework that features a new method for relating rate constants to molecular binding and unbinding probabilities, and used our ABM approach to quantify the effects of a wide range of forward and reverse nucleoporin-Importinβ affinity gradients. Our results indicate that transport through the nuclear pore complex is maximized with an effective macroscopic affinity gradient of 2000 µM, 200 µM and 10 µM in the cytoplasmic, central channel and nuclear basket respectively. The transport rate at this gradient is approximately 10% higher than the transport rate for a comparable pore lacking any affinity gradient, which has a peak transport rate when all nucleoporins have an affinity of 200 µM for Importinβ. Furthermore, this optimal ratio of affinity gradients is representative of the ratio of affinities reported for the yeast nuclear pore complex – suggesting that the affinity gradient seen in vitro is highly optimized. PMID:24282617

  5. Binding site and affinity prediction of general anesthetics to protein targets using docking.

    PubMed

    Liu, Renyu; Perez-Aguilar, Jose Manuel; Liang, David; Saven, Jeffery G

    2012-05-01

    The protein targets for general anesthetics remain unclear. A tool to predict anesthetic binding for potential binding targets is needed. In this study, we explored whether a computational method, AutoDock, could serve as such a tool. High-resolution crystal data of water-soluble proteins (cytochrome C, apoferritin, and human serum albumin), and a membrane protein (a pentameric ligand-gated ion channel from Gloeobacter violaceus [GLIC]) were used. Isothermal titration calorimetry (ITC) experiments were performed to determine anesthetic affinity in solution conditions for apoferritin. Docking calculations were performed using DockingServer with the Lamarckian genetic algorithm and the Solis and Wets local search method (http://www.dockingserver.com/web). Twenty general anesthetics were docked into apoferritin. The predicted binding constants were compared with those obtained from ITC experiments for potential correlations. In the case of apoferritin, details of the binding site and their interactions were compared with recent cocrystallization data. Docking calculations for 6 general anesthetics currently used in clinical settings (isoflurane, sevoflurane, desflurane, halothane, propofol, and etomidate) with known 50% effective concentration (EC(50)) values were also performed in all tested proteins. The binding constants derived from docking experiments were compared with known EC(50) values and octanol/water partition coefficients for the 6 general anesthetics. All 20 general anesthetics docked unambiguously into the anesthetic binding site identified in the crystal structure of apoferritin. The binding constants for 20 anesthetics obtained from the docking calculations correlate significantly with those obtained from ITC experiments (P = 0.04). In the case of GLIC, the identified anesthetic binding sites in the crystal structure are among the docking predicted binding sites, but not the top ranked site. Docking calculations suggest a most probable binding site located in the extracellular domain of GLIC. The predicted affinities correlated significantly with the known EC(50) values for the 6 frequently used anesthetics in GLIC for the site identified in the experimental crystal data (P = 0.006). However, predicted affinities in apoferritin, human serum albumin, and cytochrome C did not correlate with these 6 anesthetics' known experimental EC(50) values. A weak correlation between the predicted affinities and the octanol/water partition coefficients was observed for the sites in GLIC. We demonstrated that anesthetic binding sites and relative affinities can be predicted using docking calculations in an automatic docking server (AutoDock) for both water-soluble and membrane proteins. Correlation of predicted affinity and EC(50) for 6 frequently used general anesthetics was only observed in GLIC, a member of a protein family relevant to anesthetic mechanism.

  6. Binding Site and Affinity Prediction of General Anesthetics to Protein Targets Using Docking

    PubMed Central

    Liu, Renyu; Perez-Aguilar, Jose Manuel; Liang, David; Saven, Jeffery G.

    2012-01-01

    Background The protein targets for general anesthetics remain unclear. A tool to predict anesthetic binding for potential binding targets is needed. In this study, we explore whether a computational method, AutoDock, could serve as such a tool. Methods High-resolution crystal data of water soluble proteins (cytochrome C, apoferritin and human serum albumin), and a membrane protein (a pentameric ligand-gated ion channel from Gloeobacter violaceus, GLIC) were used. Isothermal titration calorimetry (ITC) experiments were performed to determine anesthetic affinity in solution conditions for apoferritin. Docking calculations were performed using DockingServer with the Lamarckian genetic algorithm and the Solis and Wets local search method (https://www.dockingserver.com/web). Twenty general anesthetics were docked into apoferritin. The predicted binding constants are compared with those obtained from ITC experiments for potential correlations. In the case of apoferritin, details of the binding site and their interactions were compared with recent co-crystallization data. Docking calculations for six general anesthetics currently used in clinical settings (isoflurane, sevoflurane, desflurane, halothane, propofol, and etomidate) with known EC50 were also performed in all tested proteins. The binding constants derived from docking experiments were compared with known EC50s and octanol/water partition coefficients for the six general anesthetics. Results All 20 general anesthetics docked unambiguously into the anesthetic binding site identified in the crystal structure of apoferritin. The binding constants for 20 anesthetics obtained from the docking calculations correlate significantly with those obtained from ITC experiments (p=0.04). In the case of GLIC, the identified anesthetic binding sites in the crystal structure are among the docking predicted binding sites, but not the top ranked site. Docking calculations suggest a most probable binding site located in the extracellular domain of GLIC. The predicted affinities correlated significantly with the known EC50s for the six commonly used anesthetics in GLIC for the site identified in the experimental crystal data (p=0.006). However, predicted affinities in apoferritin, human serum albumin, and cytochrome C did not correlate with these six anesthetics’ known experimental EC50s. A weak correlation between the predicted affinities and the octanol/water partition coefficients was observed for the sites in GLIC. Conclusion We demonstrated that anesthetic binding sites and relative affinities can be predicted using docking calculations in an automatic docking server (Autodock) for both water soluble and membrane proteins. Correlation of predicted affinity and EC50 for six commonly used general anesthetics was only observed in GLIC, a member of a protein family relevant to anesthetic mechanism. PMID:22392968

  7. Boronic acid-modified magnetic materials for antibody purification

    PubMed Central

    Dhadge, Vijaykumar L.; Hussain, Abid; Azevedo, Ana M.; Aires-Barros, Raquel; Roque, Ana C. A.

    2014-01-01

    Aminophenyl boronic acids can form reversible covalent ester interactions with cis-diol-containing molecules, serving as a selective tool for binding glycoproteins as antibody molecules that possess oligosaccharides in both the Fv and Fc regions. In this study, amino phenyl boronic acid (APBA) magnetic particles (MPs) were applied for the magnetic separation of antibody molecules. Iron oxide MPs were firstly coated with dextran to avoid non-specific binding and then with 3-glycidyloxypropyl trimethoxysilane to allow further covalent coupling of APBA (APBA_MP). When contacted with pure protein solutions of human IgG (hIgG) and bovine serum albumin (BSA), APBA_MP bound 170 ± 10 mg hIgG g−1 MP and eluted 160 ± 5 mg hIgG g−1 MP, while binding only 15 ± 5 mg BSA g−1 MP. The affinity constant for the interaction between hIgG and APBA_MP was estimated as 4.9 × 105 M−1 (Ka) with a theoretical maximum capacity of 492 mg hIgG adsorbed g−1 MP (Qmax), whereas control particles bound a negligible amount of hIgG and presented an estimated theoretical maximum capacity of 3.1 mg hIgG adsorbed g−1 MP (Qmax). APBA_MPs were also tested for antibody purification directly from CHO cell supernatants. The particles were able to bind 98% of IgG loaded and to recover 95% of pure IgG (purity greater than 98%) at extremely mild conditions. PMID:24258155

  8. Zinc binding in HDAC inhibitors: a DFT study.

    PubMed

    Wang, Difei; Helquist, Paul; Wiest, Olaf

    2007-07-06

    Histone deacetylases (HDACs) are attractive targets for the treatment of cancers and a variety of other diseases. Most currently studied HDAC inhibitors contain hydroxamic acids, which are potentially problematic in the development of practical drugs. DFT calculations of the binding modes and free energies of binding for a variety of other functionalities in a model active site of HDAC are described. The protonation state of hydroxamic acids in the active site and the origin of the high affinity are discussed. These results emphasize the importance of a carefully chosen pKa for zinc binding and provide guidance for the design of novel, non-hydroxamic acid HDAC inhibitors.

  9. Familial secondary erythrocytosis due to increased oxygen affinity is caused by destabilization of the T state of hemoglobin Brigham (α2β2Pro100Leu)

    PubMed Central

    Mollan, Todd L; Abraham, Bindu; Strader, Michael Brad; Jia, Yiping; Lozier, Jay N; Olson, John S; Alayash, Abdu I

    2012-01-01

    Hemoglobin Brigham (β Pro100 to Leu) was first reported in a patient with familial erythrocytosis. Erythrocytes of an affected individual from the same family contain both HbA and Hb Brigham and exhibit elevated O2 affinity compared with normal cells (P50 = 23 mm Hg vs. 31 mmHg at pH 7.4 at 37°C). O2 affinities measured for hemolysates were sensitive to changes in pH or chloride concentrations, indicating little change in the Bohr and Chloride effects. Hb Brigham was separated from normal HbA by nondenaturing cation exchange liquid chromatography, and the amino acid substitution was verified by mass spectrometry. The properties of Hb Brigham isolated from the patient's blood were then compared with those of recombinant Hb Brigham expressed in Escherichia coli. Kinetic experiments suggest that the rate constants for ligand binding and release in the high (R) and low (T) affinity quaternary states of Hb Brigham are similar to those of native hemoglobin. However, the Brigham mutation decreases the T to R equilibrium constant (L) which accelerates the switch to the R state during ligand binding to deoxy-Hb, increasing the rate of association by approximately twofold, and decelerates the switch during ligand dissociation from HbO2, decreasing the rate approximately twofold. These kinetic data help explain the high O2 affinity characteristics of Hb Brigham and provide further evidence for the importance of the contribution of Pro100 to intersubunit contacts and stabilization of the T quaternary structure. PMID:22821886

  10. Transition State Charge Stabilization and Acid-Base Catalysis of mRNA Cleavage by the Endoribonuclease RelE

    PubMed Central

    Dunican, Brian F.; Hiller, David A.; Strobel, Scott A.

    2015-01-01

    The bacterial toxin RelE is a ribosome-dependent endoribonuclease. It is part of a type II toxin-antitoxin system that contributes to antibiotic resistance and biofilm formation. During amino acid starvation RelE cleaves mRNA in the ribosomal A-site, globally inhibiting protein translation. RelE is structurally similar to microbial RNases that employ general acid-base catalysis to facilitate RNA cleavage. The RelE active-site is atypical for acid-base catalysis, in that it is enriched for positively charged residues and lacks the prototypical histidine-glutamate catalytic pair, making the mechanism of mRNA cleavage unclear. In this study we use a single-turnover kinetic analysis to measure the effect of pH and phosphorothioate substitution on the rate constant for cleavage of mRNA by wild-type RelE and seven active-site mutants. Mutation and thio-effects indicate a major role for stabilization of increased negative change in the transition state by arginine 61. The wild-type RelE cleavage rate constant is pH-independent, but the reaction catalyzed by many of the mutants is strongly pH dependent, suggestive of general acid-base catalysis. pH-rate curves indicate that wild-type RelE operates with the pKa of at least one catalytic residue significantly downshifted by the local environment. Mutation of any single active-site residue is sufficient to disrupt this microenvironment and revert the shifted pKa back above neutrality. pH-rate curves are consistent with K54 functioning as a general base and R81 as a general acid. The capacity of RelE to effect a large pKa shift and facilitate a common catalytic mechanism by uncommon means furthers our understanding of other atypical enzymatic active sites. PMID:26535789

  11. Predicting p Ka values from EEM atomic charges

    PubMed Central

    2013-01-01

    The acid dissociation constant p Ka is a very important molecular property, and there is a strong interest in the development of reliable and fast methods for p Ka prediction. We have evaluated the p Ka prediction capabilities of QSPR models based on empirical atomic charges calculated by the Electronegativity Equalization Method (EEM). Specifically, we collected 18 EEM parameter sets created for 8 different quantum mechanical (QM) charge calculation schemes. Afterwards, we prepared a training set of 74 substituted phenols. Additionally, for each molecule we generated its dissociated form by removing the phenolic hydrogen. For all the molecules in the training set, we then calculated EEM charges using the 18 parameter sets, and the QM charges using the 8 above mentioned charge calculation schemes. For each type of QM and EEM charges, we created one QSPR model employing charges from the non-dissociated molecules (three descriptor QSPR models), and one QSPR model based on charges from both dissociated and non-dissociated molecules (QSPR models with five descriptors). Afterwards, we calculated the quality criteria and evaluated all the QSPR models obtained. We found that QSPR models employing the EEM charges proved as a good approach for the prediction of p Ka (63% of these models had R2 > 0.9, while the best had R2 = 0.924). As expected, QM QSPR models provided more accurate p Ka predictions than the EEM QSPR models but the differences were not significant. Furthermore, a big advantage of the EEM QSPR models is that their descriptors (i.e., EEM atomic charges) can be calculated markedly faster than the QM charge descriptors. Moreover, we found that the EEM QSPR models are not so strongly influenced by the selection of the charge calculation approach as the QM QSPR models. The robustness of the EEM QSPR models was subsequently confirmed by cross-validation. The applicability of EEM QSPR models for other chemical classes was illustrated by a case study focused on carboxylic acids. In summary, EEM QSPR models constitute a fast and accurate p Ka prediction approach that can be used in virtual screening. PMID:23574978

  12. Vegetation Response to Climatic Variations in the southern African tropics during the Late- Pleistocene and Holocene

    NASA Astrophysics Data System (ADS)

    Beuning, K. R.; Zimmerman, K. A.; Ivory, S. J.; Cohen, A. S.

    2007-12-01

    Pollen records from Lake Malawi, Africa spanning the last 135 kyr show substantial and abrupt vegetation response to multiple episodes of extreme aridity during the mega-drought period (130-90 ka). In contrast, vegetation composition and relative abundance remained fairly constant throughout the last 75 ka with no significant change during the Last Glacial Maxima (LGM) (35-15 ka). During the extremely arid mega-drought time period, fluctuations in pollen production define three distinct zones. The first zone, from 123-117 ka, is characterized by increasing amounts of grass, and decreasing amounts of both Podocarpus and evergreen forest taxa (i.e. Celtis, Ixora, Myrica, Macaranga), which, when matched with charcoal data, suggests a short period of extreme aridity. The disappearance of Brachystegia in this interval in conjunction with a peak in Amaranthaceae suggests conversion of the surrounding miombo woodland to an open grassland community probably caused by increased seasonality with a more prolonged and arid dry season. Peak amounts of Podocarpus (30-40%) along with diminishing levels of grass distinguish zone two (117-105 ka). This assemblage defines zone 2 as a period marked by a cool, dry climate resulting in expansion of montane forest taxa to lower elevations. Marine palynological records from the Angola Margin and Congo Fan show similar peak Podocarpus percentages at this time (oxygen isotope stage 5d) indicating similar latitudinal climates across the African continent. Zone three (105-75 ka) shows the highest and most consistent levels of Poaceae. This evidence, along with markedly low levels of most other taxa, indicates that this period contained the most sustained long-lasting dry spells during the past 135 ka. This episode in African history was severe enough as to cause the disappearance of forest taxa such as Uapaca and Brachystegia as well as montane taxa ( Podocarpus, Olea spp. and Ericaceae) within the pollen source area of Lake Malawi. The resultant semi-desert vegetation would have been inhospitable for early humans living within or traveling through the Lake Malawi region.

  13. Quantifying Protein-Ligand Binding Constants using Electrospray Ionization Mass Spectrometry: A Systematic Binding Affinity Study of a Series of Hydrophobically Modified Trypsin Inhibitors

    NASA Astrophysics Data System (ADS)

    Cubrilovic, Dragana; Biela, Adam; Sielaff, Frank; Steinmetzer, Torsten; Klebe, Gerhard; Zenobi, Renato

    2012-10-01

    NanoESI-MS is used for determining binding strengths of trypsin in complex with two different series of five congeneric inhibitors, whose binding affinity in solution depends on the size of the P3 substituent. The ligands of the first series contain a 4-amidinobenzylamide as P1 residue, and form a tight complex with trypsin. The inhibitors of the second series have a 2-aminomethyl-5-chloro-benzylamide as P1 group, and represent a model system for weak binders. The five different inhibitors of each group are based on the same scaffold and differ only in the length of the hydrophobic side chain of their P3 residue, which modulates the interactions in the S3/4 binding pocket of trypsin. The dissociation constants (KD) for high affinity ligands investigated by nanoESI-MS ranges from 15 nM to 450 nM and decreases with larger hydrophobic P3 side chains. Collision-induced dissociation (CID) experiments of five trypsin and benzamidine-based complexes show a correlation between trends in KD and gas-phase stability. For the second inhibitor series we could show that the effect of imidazole, a small stabilizing additive, can avoid the dissociation of the complex ions and as a result increases the relative abundance of weakly bound complexes. Here the KD values ranging from 2.9 to 17.6 μM, some 1-2 orders of magnitude lower than the first series. For both ligand series, the dissociation constants (KD) measured via nanoESI-MS were compared with kinetic inhibition constants (Ki) in solution.

  14. Characterization of the proton binding sites of extracellular polymeric substances in an anaerobic membrane bioreactor.

    PubMed

    Liu, Yi; Chang, Sheng; Defersha, Fantahun M

    2015-07-01

    This paper focuses on the characterization of the chemical compositions and acidic constants of the extracellular polymeric substances (EPSs) in an anaerobic membrane bioreactor treating synthetic brewery wastewater by using chemical analysis, linear programming analysis (LPA) of titration data, and FT-IR analysis. The linear programming analysis of titration data revealed that the EPSs have proton binding sites with pKa values from pKa ≤ 6, between 6 and 7, and approximately 9.8. The strong acidic sites (pKa ≤ 6) and some weak acidic sites (7.5 < pKa < 9.0) were found to be readily removed by 0.45-μm membrane filtration. In addition, the FT-IR analysis confirmed the presence of proteins, carbohydrates, nucleic acids, and lipids in the EPS samples. Based on the FT-IR analysis and the main chemical functional groups at the bacterial cell surfaces, the identified proton binding sites were related to carboxyl, phosphate, and hydroxyl/amine groups with pKa values of 4.6 ± 0.7, 6.6 ± 0.01, and 9.7 ± 0.1, respectively, with the corresponding respective intensities of 0.31 ± 0.05, 0.96 ± 0.3, and 1.53 ± 0.3 mmole/g-EPS. The pKa values and intensities of the proton binding sites are the fundamental molecular properties of EPSs that affect the EPS charge, molecular interactions, and metal complexation characteristics. Determination of such properties can advance Derjaguin-Landau-Verwey-Overbeek (DLVO)-based concentration polarization modeling, facilitate the estimation of the osmotic pressure of the EPS concentration polarization layers, and lead to a deeper understanding of the role of metal complexation in membrane fouling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Spatial Patterns of Geomorphic Surface Features and Fault Morphology Based on Diffusion Equation Modeling of the Kumroch Fault Kamchatka Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Heinlein, S. N.

    2013-12-01

    Remote sensing data sets are widely used for evaluation of surface manifestations of active tectonics. This study utilizes ASTER GDEM and Landsat ETM+ data sets with Google Earth images draped over terrain models. This study evaluates 1) the surrounding surface geomorphology of the study area with these data sets and 2) the morphology of the Kumroch Fault using diffusion modeling to estimate constant diffusivity (κ) and estimate slip rates by means of real ground data measured across fault scarps by Kozhurin et al. (2006). Models of the evolution of fault scarp morphology provide time elapsed since slip initiated on a faults surface and may therefore provide more accurate estimates of slip rate than the rate calculated by dividing scarp offset by the age of the ruptured surface. Profile modeling of scarps collected by Kozhurin et al. (2006) formed by several events distributed through time and were evaluated using a constant slip rate (CSR) solution which yields a value A/κ (1/2 slip rate/diffusivity). Time elapsed since slip initiated on the fault is determined by establishing a value for κ and measuring total scarp offset. CSR nonlinear modeling estimated of κ range from 8m2/ka - 14m2/ka on the Kumroch Fault which indicates a slip rates of 0.6 mm/yr - 1.0 mm/yr since 3.4 ka -3.7 ka. This method provides a quick and inexpensive way to gather data for a regional tectonic study and establish estimated rates of tectonic activity. Analyses of the remote sensing data are providing new insight into the role of active tectonics within the region. Results from fault scarp diffusion models of Mattson and Bruhn (2001) and DuRoss and Bruhn (2004) and Kozhurin et al. (2006), Kozhurin (2007), Kozhurin et al. (2008) and Pinegina et al. 2012 trench profiles of the KF as calibrated age fault scarp diffusion rates were estimated. (-) mean that no data could be determined.

  16. Determination of pKa values of benzoxa-, benzothia- and benzoselena-zolinone derivatives by capillary electrophoresis. Comparison with potentiometric titration and spectrometric data.

    PubMed

    Foulon, C; Duhal, N; Lacroix-Callens, B; Vaccher, C; Bonte, J P; Goossens, J F

    2007-07-01

    Acidity constants of benzoxa-, benzothia- and benzoselena-zolinone derivatives were determined by capillary electrophoresis, potentiometry and spectrophotometry experiments. These three analytical techniques gave pK(a) results that were in good agreement. A convenient, accurate and precise method for the determination of pK(a) was developed to measure changes in acidity constants induced by heteroatom or 6-benzoyl substituted derivatives. pK(a) values were determined simultaneously for two compounds characterized by different electrophoretic mobility (micro(e)) and pK(a) value and in the presence of an analogous neutral marker.

  17. AAA-DDD triple hydrogen bond complexes.

    PubMed

    Blight, Barry A; Camara-Campos, Amaya; Djurdjevic, Smilja; Kaller, Martin; Leigh, David A; McMillan, Fiona M; McNab, Hamish; Slawin, Alexandra M Z

    2009-10-07

    Experiment and theory both suggest that the AAA-DDD pattern of hydrogen bond acceptors (A) and donors (D) is the arrangement of three contiguous hydrogen bonding centers that results in the strongest association between two species. Murray and Zimmerman prepared the first example of such a system (complex 3*2) and determined the lower limit of its association constant (K(a)) in CDCl(3) to be 10(5) M(-1) by (1)H NMR spectroscopy (Murray, T. J. and Zimmerman, S. C. J. Am. Chem. Soc. 1992, 114, 4010-4011). The first cationic AAA-DDD pair (3*4(+)) was described by Bell and Anslyn (Bell, D. A. and Anslyn, E. A. Tetrahedron 1995, 51, 7161-7172), with a K(a) > 5 x 10(5) M(-1) in CH(2)Cl(2) as determined by UV-vis spectroscopy. We were recently able to quantify the strength of a neutral AAA-DDD arrangement using a more chemically stable AAA-DDD system, 6*2, which has an association constant of 2 x 10(7) M(-1) in CH(2)Cl(2) (Djurdjevic, S., Leigh, D. A., McNab, H., Parsons, S., Teobaldi, G. and Zerbetto, F. J. Am. Chem. Soc. 2007, 129, 476-477). Here we report on further AA(A) and DDD partners, together with the first precise measurement of the association constant of a cationic AAA-DDD species. Complex 6*10(+)[B(3,5-(CF(3))(2)C(6)H(3))(4)(-)] has a K(a) = 3 x 10(10) M(-1) at RT in CH(2)Cl(2), by far the most strongly bound triple hydrogen bonded system measured to date. The X-ray crystal structure of 6*10(+) with a BPh(4)(-) counteranion shows a planar array of three short (NH...N distances 1.95-2.15 A), parallel (but staggered rather than strictly linear; N-H...N angles 165.4-168.8 degrees), primary hydrogen bonds. These are apparently reinforced, as theory predicts, by close electrostatic interactions (NH-*-N distances 2.78-3.29 A) between each proton and the acceptor atoms of the adjacent primary hydrogen bonds.

  18. Millennial-scale variability to 735 ka: High-resolution climate records from Santa Barbara Basin, CA

    NASA Astrophysics Data System (ADS)

    White, Sarah M.; Hill, Tessa M.; Kennett, James P.; Behl, Richard J.; Nicholson, Craig

    2013-06-01

    Determining the ultimate cause and effect of millennial-scale climate variability remains an outstanding problem in paleoceanography, partly due to the lack of high-resolution records predating the last glaciation. Recent cores from Santa Barbara Basin provide 2500-5700 year "windows" of climate with 10-50 year resolution. Ages for three cores, determined by seismic stratigraphic correlation, oxygen isotope stratigraphy, and biostratigraphy, date to 293 ka (MIS 8), 450 ka (MIS 12), and 735 ka (MIS 18). These records sample the Late Pleistocene, during which the 100 kyr cycle strengthened and the magnitude of glacial-interglacial cyclicity increased. Thus, these records provide a test of the dependence of millennial-scale behavior on variations in glacial-interglacial cyclicity. The stable isotopic (δ18O) composition of planktonic foraminifera shows millennial-scale variability in all three intervals, with similar characteristics (duration, cyclicity) to those previously documented during MIS 3 at this site. Stadial G. bulloides δ18O values are 2.75-1.75‰ (average 2.25‰) and interstadial values are 1.75-0.5‰ (average 1‰), with rapid (decadal-scale) interstadial and stadial initiations of 1-2‰, as in MIS 3. Interstadials lasted 250-1600 years and occurred every 650-1900 years. Stadial paleotemperatures were 3.5-9.5°C and interstadial paleotemperatures were 7.5-13°C. Upwelling, evidenced by planktonic foraminiferal assemblages and δ13C, increased during interstadials, similar to MIS 3; high productivity during some stadials was reminiscent of the Last Glacial Maximum. This study builds upon previous records in showing that millennial-scale shifts were an inherent feature of Northern Hemisphere glacial climates since 735 ka, and they remained remarkably constant in the details of their amplitude, cyclicity, and temperature variability.

  19. Temperature dependence of interfacial structures and acidity of clay edge surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Xiandong; Lu, Xiancai; Cheng, Jun; Sprik, Michiel; Wang, Rucheng

    2015-07-01

    In the pursuit of a microscopic understanding of the effects of temperature on the surface reactivity of clay minerals, we conducted first principles molecular dynamics (FPMD) simulations to study the interfacial structures and acidity of clay edge surfaces at elevated temperatures. The common edge surfaces ((0 1 0) and (1 1 0) types) of phyllosilicates were investigated at 348 K and 423 K, and the results were compared with those previously derived at ambient conditions. We found that the stable surface sites are the same as at ambient conditions, including tbnd Al(OH2)2 (6-fold Al), tbnd Al(OH2) (5-fold Al) and tbnd Si(OH) on the (0 1 0) facet, and tbnd Al(OH2), tbnd Al(OH)Sitbnd and tbnd Si(OH) on the (1 1 0) surface. The FPMD-based vertical energy gap technique was applied to compute the acidity constants of edge sites and the resulting pKa values show a decreasing trend with temperature. The results demonstrate that although changes in the point of zero charge of the entire material are insignificant up to 348 K, the decrease in surface pKa can be 3 pKa units, while it can be as large as 6 pKa units up to 423 K. The derived interface structures and pKa values can be used in future experimental and modeling research, e.g., in interpreting experiments and predicting the surface complexation of metal cations and organics. This study therefore provides a physical basis for investigating the interfacial processes of clay minerals in environments that experience elevated P-T conditions, such as sedimentary basins and geological nuclear waste repositories.

  20. Solubilization and purification of melatonin receptors from lizard brain.

    PubMed

    Rivkees, S A; Conron, R W; Reppert, S M

    1990-09-01

    Melatonin receptors in lizard brain were identified and characterized using 125I-labeled melatonin ([125I]MEL) after solubilization with the detergent digitonin. Saturation studies of solubilized material revealed a high affinity binding site, with an apparent equilibrium dissociation constant of 181 +/- 45 pM. Binding was reversible and inhibited by melatonin and closely related analogs, but not by serotonin or norepinephrine. Treatment of solubilized material with the non-hydrolyzable GTP analog, guanosine 5'-(3-O-thiotriphosphate) (GTP-gamma-S), significantly reduced receptor affinity. Gel filtration chromatography of solubilized melatonin receptors revealed a high affinity, large (Mr 400,000) peak of specific binding. Pretreatment with GTP-gamma-S before solubilization resulted in elution of a lower affinity, smaller (Mr 150,000) peak of specific binding. To purify solubilized receptors, a novel affinity chromatography resin was developed by coupling 6-hydroxymelatonin with Epoxy-activated Sepharose 6B. Using this resin, melatonin receptors were purified approximately 10,000-fold. Purified material retained the pharmacologic specificity of melatonin receptors. These results show that melatonin receptors that bind ligand after detergent treatment can be solubilized and substantially purified by affinity chromatography.

  1. Kinetics of phloretin binding to phosphatidylcholine vesicle membranes

    PubMed Central

    1980-01-01

    The submillisecond kinetics for phloretin binding to unilamellar phosphatidylcholine (PC) vesicles was investigated using the temperature-jump technique. Spectrophotometric studies of the equilibrium binding performed at 328 nm demonstrated that phloretin binds to a single set of independent, equivalent sites on the vesicle with a dissociation constant of 8.0 microM and a lipid/site ratio of 4.0. The temperature of the phloretin-vesicle solution was jumped by 4 degrees C within 4 microseconds producing a monoexponential, concentration-dependent relaxation process with time constants in the 30--200-microseconds time range. An analysis of the concentration dependence of relaxation time constants at pH 7.30 and 24 degrees C yielded a binding rate constant of 2.7 X 10(8) M-1 s-1 and an unbinding constant of 2,900 s-1; approximately 66 percent of total binding sites are exposed at the outer vesicle surface. The value of the binding rate constant and three additional observations suggest that the binding kinetics are diffusion limited. The phloretin analogue, naringenin, which has a diffusion coefficient similar to phloretin yet a dissociation constant equal to 24 microM, bound to PC vesicle with the same rate constant as phloretin did. In addition, the phloretin-PC system was studied in buffers made one to six times more viscous than water by addition of sucrose or glycerol to the differ. The equilibrium affinity for phloretin binding to PC vesicles is independent of viscosity, yet the binding rate constant decreases with the expected dependence (kappa binding alpha 1/viscosity) for diffusion-limited processes. Thus, the binding rate constant is not altered by differences in binding affinity, yet depends upon the diffusion coefficient in buffer. Finally, studies of the pH dependence of the binding rate constant showed a dependence (kappa binding alpha [1 + 10pH-pK]) consistent with the diffusion-limited binding of a weak acid. PMID:7391812

  2. Toxic metals (Ni2+, Pb2+, Hg2+) binding affinity of dissolved organic matter (DOM) derived from different ages municipal landfill leachate

    NASA Astrophysics Data System (ADS)

    Rikta, S. Y.; Tareq, Shafi M.; Uddin, M. Khabir

    2018-03-01

    Solid waste production is rapidly increasing in Bangladesh and landfill leachate is the consequence of the decomposition of this waste. These leachates contain heavy metals and significant amount of dissolved organic matter (DOM). DOM is known to have considerable role in heavy metals speciation. Hence, it is important to characterize DOM/leachate and evaluate toxic metals binding affinity of DOM. The objectives of this study were to characterize the DOM in landfill leachate through physico-chemical and optical analyses and to investigate the toxic metals (Ni2+, Pb2+ and Hg2+) binding affinity of three different ages (fresh sample L-1, young sample L-2 and mature sample L-3) DOM samples. Results suggested that leachate is a potential pollutant which contained very high organic pollutant load. Conditional stability constant (Log K) and percentages of fluorophores that correspond to metal binding (% f) values indicated that young DOM sample (L-2) had the highest binding affinity to all the three metals ions. In general, DOM samples showed the following order affinity to the metal ions; Ni2+ binding affinity: L-2 > L-3 > L-1, Pb2+ binding affinity: L-2 > L-3 > L-1 and Hg2+ binding affinity: L-2 > L-1 > L-3.

  3. Time parameterizations and spin supplementary conditions of the Mathisson-Papapetrou-Dixon equations

    NASA Astrophysics Data System (ADS)

    Lukes-Gerakopoulos, Georgios

    2017-11-01

    The implications of two different time constraints on the Mathisson-Papapetrou-Dixon (MPD) equations are discussed under three spin supplementary conditions (SSCs). For this reason the MPD equations are revisited without specifying the affine parameter and several relations are reintroduced in their general form. The latter allows one to investigate the consequences of combining the Mathisson-Pirani (MP) SSC, the Tulczyjew-Dixon (TD) SSC and the Ohashi-Kyrian-Semerák (OKS) SSC with two affine parameter types: the proper time on one hand and the parameterizations introduced in [Gen. Relativ. Gravit. 8, 197 (1977), 10.1007/BF00763547] on the other. For the MP SSC and the TD SSC it is shown that quantities that are constant of motion for the one affine parameter are not for the other, while for the OKS SSC it is shown that the two affine parameters are the same. To clarify the relation between the two affine parameters in the case of the TD SSC the MPD equations are evolved and discussed.

  4. Label-Free Determination of Protein Binding in Aqueous Solution using Overlayer Enhanced Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (OE-ATR-FTIR)

    NASA Astrophysics Data System (ADS)

    Ruthenburg, Travis; Aweda, Tolulope; Park, Simon; Meares, Claude; Land, Donald

    2009-03-01

    Protein binding/affinity studies are often performed using Surface Plasmon Resonance techniques that don't produce much spectral information. Measurement of protein binding affinity using FTIR is traditionally performed using high protein concentration or deuterated solvent. By immobilizing a protein near the surface of a gold-coated germanium internal reflection element interactions can be measured between an immobilized protein and free proteins or small molecules in aqueous solution. By monitoring the on and off rates of these interactions, the dissociation constant for the system can be determined. The dissociation constant for the molecule Yttrium-DOTA binding to the antibody 2D12.5 system was determined to be 100nM. Results will also be presented from our measurements of Bovine Serum Albumin (BSA) binding to anti-BSA.

  5. Peroxidative oxidation of halides catalysed by myeloperoxidase. Effect of fluoride on halide oxidation.

    PubMed

    Zgliczyński, J M; Stelmaszyńska, T; Olszowska, E; Krawczyk, A; Kwasnowska, E; Wróbel, J T

    1983-01-01

    It was found that all halides can compete with cyanide for binding with myeloperoxidase. The lower is the pH, the higher is the affinity of halides. The apparent dissociation constants (Kd) of myeloperoxidase-cyanide complex were determined in the presence of F-, Cl-, Br- and I- in the pH range of 4 to 7. In slightly acidic pH (4 - 6) fluoride and chloride exhibit a higher affinity towards the enzyme than bromide and iodide. Taking into account competition between cyanide and halides for binding with myeloperoxidase the dissociation constants of halide-myeloperoxidase complexes were calculated. All halides except fluoride can be oxidized by H2O2 in the presence of myeloperoxidase. However, since fluoride can bind with myeloperoxidase, it can competitively inhibit the oxidation of other halides. Fluoride was a competitive inhibitor with respect to other halides as well as to H2O2. Inhibition constants (Ki) for fluoride as a competitive inhibitor with respect to H2O2 increased from iodide oxidation through bromide to chloride oxidation.

  6. Effect of Red Blood Cell Storage on Cardiac Performance. Improved Myocardial Oxygen Delivery and Function during Constant Flow Coronary Perfusion with Low Oxy-Hemoglobin Affinity Human Red Blood Cells in Normothermic and Hypothermic Rabbit Hearts.

    DTIC Science & Technology

    1983-02-01

    with an isovolumic left ven- tricular balloon. Coronary flow was held constant to simulate the physiolog of coronary atherosclerosis and other...erythrocyte DPG content can potentially benefit patients with coronary atherosclerosis , or other states with a limited coronary vasodilator reserve, who...Coronary flow was held constant to simulate the physiology of coronary atherosclerosis and other conditions of limited coronary vasodilator reserve

  7. Holocene dinoflagellate cyst record of climate and marine primary productivity change in the Santa Barbara Basin, southern California.

    NASA Astrophysics Data System (ADS)

    Pospelova, Vera; Mertens, Kenneth N.; Hendy, Ingrid, L.; Pedersen, Thomas F.

    2015-04-01

    High-resolution sedimentary records of dinoflagellate cysts and other marine palynomorphs from the Santa Barbara Basin (Ocean Drilling Program Hole 893A) demonstrate large variability of primary productivity during the Holocene, as the California Current System responded to climate change. Throughout the sequence, dinoflagellate cyst assemblages are characterized by the dominance of cysts produced by heterotrophic dinoflagellates, and particularly by Brigantedinium, accompanied by other upwelling-related taxa such as Echinidinium and cysts of Protoperidinium americanum. During the early Holocene (~12-7 ka), the species richness is relatively low (16 taxa) and genius Brigantedinium reaches the highest relative abundance, thus indicating nutrient-rich and highly productive waters. The middle Holocene (~7-3.5 ka) is characterized by relatively constant cyst concentrations, and dinoflagellate cyst assemblages are indicative of a slight decrease in sea-surface temperature. A noticeable increase and greater range of fluctuations in the cyst concentrations during the late Holocene (~3.5-1 ka) indicate enhanced marine primary productivity and increased climatic variability, most likely related to the intensification of El Niño-like conditions. Keywords: dinoflagellate cysts, Holocene, North Pacific, climate, primary productivity.

  8. Engineering an antibody with picomolar affinity to DOTA chelates of multiple radionuclides for pretargeted radioimmunotherapy and imaging

    PubMed Central

    Orcutt, Kelly Davis; Slusarczyk, Adrian L; Cieslewicz, Maryelise; Ruiz-Yi, Benjamin; Bhushan, Kumar R; Frangioni, John V; Wittrup, K Dane

    2014-01-01

    Introduction In pretargeted radioimmunotherapy (PRIT), a bifunctional antibody is administered and allowed to pre-localize to tumor cells. Subsequently, a chelated radionuclide is administered and captured by cell-bound antibody while unbound hapten clears rapidly from the body. We aim to engineer high-affinity binders to DOTA chelates for use in PRIT applications. Methods We mathematically modeled antibody and hapten pharmacokinetics to analyze hapten tumor retention as a function of hapten binding affinity. Motivated by model predictions, we used directed evolution and yeast surface display to affinity mature the 2D12.5 antibody to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), reformatted as a single chain variable fragment (scFv). Results Modeling predicts that for high antigen density and saturating bsAb dose, a hapten binding affinity of 100 picomolar (pM) is needed for near-maximal hapten retention. We affinity matured 2D12.5 with an initial binding constant of about 10 nanomolar (nM) to DOTA-yttrium chelates. Affinity maturation resulted in a 1000-fold affinity improvement to biotinylated DOTA-yttrium, yielding an 8.2 ± 1.9 picomolar binder. The high-affinity scFv binds DOTA complexes of lutetium and gadolinium with similar picomolar affinity and indium chelates with low nanomolar affinity. When engineered into a bispecific antibody construct targeting carcinoembryonic antigen (CEA), pretargeted high-affinity scFv results in significantly higher tumor retention of a 111In-DOTA hapten compared to pretargeted wild-type scFv in a xenograft mouse model. Conclusions We have engineered a versatile, high-affinity DOTA-chelate-binding scFv. We anticipate it will prove useful in developing pretargeted imaging and therapy protocols to exploit the potential of a variety of radiometals. PMID:21315278

  9. Characterizing low affinity epibatidine binding to α4β2 nicotinic acetylcholine receptors with ligand depletion and nonspecific binding

    PubMed Central

    2011-01-01

    Background Along with high affinity binding of epibatidine (Kd1≈10 pM) to α4β2 nicotinic acetylcholine receptor (nAChR), low affinity binding of epibatidine (Kd2≈1-10 nM) to an independent binding site has been reported. Studying this low affinity binding is important because it might contribute understanding about the structure and synthesis of α4β2 nAChR. The binding behavior of epibatidine and α4β2 AChR raises a question about interpreting binding data from two independent sites with ligand depletion and nonspecific binding, both of which can affect equilibrium binding of [3H]epibatidine and α4β2 nAChR. If modeled incorrectly, ligand depletion and nonspecific binding lead to inaccurate estimates of binding constants. Fitting total equilibrium binding as a function of total ligand accurately characterizes a single site with ligand depletion and nonspecific binding. The goal of this study was to determine whether this approach is sufficient with two independent high and low affinity sites. Results Computer simulations of binding revealed complexities beyond fitting total binding for characterizing the second, low affinity site of α4β2 nAChR. First, distinguishing low-affinity specific binding from nonspecific binding was a potential problem with saturation data. Varying the maximum concentration of [3H]epibatidine, simultaneously fitting independently measured nonspecific binding, and varying α4β2 nAChR concentration were effective remedies. Second, ligand depletion helped identify the low affinity site when nonspecific binding was significant in saturation or competition data, contrary to a common belief that ligand depletion always is detrimental. Third, measuring nonspecific binding without α4β2 nAChR distinguished better between nonspecific binding and low-affinity specific binding under some circumstances of competitive binding than did presuming nonspecific binding to be residual [3H]epibatidine binding after adding a large concentration of cold competitor. Fourth, nonspecific binding of a heterologous competitor changed estimates of high and low inhibition constants but did not change the ratio of those estimates. Conclusions Investigating the low affinity site of α4β2 nAChR with equilibrium binding when ligand depletion and nonspecific binding are present likely needs special attention to experimental design and data interpretation beyond fitting total binding data. Manipulation of maximum ligand and receptor concentrations and intentionally increasing ligand depletion are potentially helpful approaches. PMID:22112852

  10. The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz Soil Chronosequence, California

    USGS Publications Warehouse

    Maher, K.; Steefel, Carl; White, A.F.; Stonestrom, David A.

    2009-01-01

    In order to explore the reasons for the apparent discrepancy between laboratory and field weathering rates and to determine the extent to which weathering rates are controlled by the approach to thermodynamic equilibrium, secondary mineral precipitation, and flow rates, a multicomponent reactive transport model (CrunchFlow) was used to interpret soil profile development and mineral precipitation and dissolution rates at the 226 ka Marine Terrace Chronosequence near Santa Cruz, CA. Aqueous compositions, fluid chemistry, transport, and mineral abundances are well characterized [White A. F., Schulz M. S., Vivit D. V., Blum A., Stonestrom D. A. and Anderson S. P. (2008) Chemical weathering of a Marine Terrace Chronosequence, Santa Cruz, California. I: interpreting the long-term controls on chemical weathering based on spatial and temporal element and mineral distributions. Geochim. Cosmochim. Acta 72 (1), 36-68] and were used to constrain the reaction rates for the weathering and precipitating minerals in the reactive transport modeling. When primary mineral weathering rates are calculated with either of two experimentally determined rate constants, the nonlinear, parallel rate law formulation of Hellmann and Tisserand [Hellmann R. and Tisserand D. (2006) Dissolution kinetics as a function of the Gibbs free energy of reaction: An experimental study based on albite feldspar. Geochim. Cosmochim. Acta 70 (2), 364-383] or the aluminum inhibition model proposed by Oelkers et al. [Oelkers E. H., Schott J. and Devidal J. L. (1994) The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions. Geochim. Cosmochim. Acta 58 (9), 2011-2024], modeling results are consistent with field-scale observations when independently constrained clay precipitation rates are accounted for. Experimental and field rates, therefore, can be reconciled at the Santa Cruz site. Additionally, observed maximum clay abundances in the argillic horizons occur at the depth and time where the reaction fronts of the primary minerals overlap. The modeling indicates that the argillic horizon at Santa Cruz can be explained almost entirely by weathering of primary minerals and in situ clay precipitation accompanied by undersaturation of kaolinite at the top of the profile. The rate constant for kaolinite precipitation was also determined based on model simulations of mineral abundances and dissolved Al, SiO2(aq) and pH in pore waters. Changes in the rate of kaolinite precipitation or the flow rate do not affect the gradient of the primary mineral weathering profiles, but instead control the rate of propagation of the primary mineral weathering fronts and thus total mass removed from the weathering profile. Our analysis suggests that secondary clay precipitation is as important as aqueous transport in governing the amount of dissolution that occurs within a profile because clay minerals exert a strong control over the reaction affinity of the dissolving primary minerals. The modeling also indicates that the weathering advance rate and the total mass of mineral dissolved is controlled by the thermodynamic saturation of the primary dissolving phases plagioclase and K-feldspar, as is evident from the difference in propagation rates of the reaction fronts for the two minerals despite their very similar kinetic rate laws. ?? 2009 Elsevier Ltd.

  11. RNA aptamers that functionally interact with green fluorescent protein and its derivatives

    PubMed Central

    Shui, Bo; Ozer, Abdullah; Zipfel, Warren; Sahu, Nevedita; Singh, Avtar; Lis, John T.; Shi, Hua; Kotlikoff, Michael I.

    2012-01-01

    Green Fluorescent Protein (GFP) and related fluorescent proteins (FPs) have been widely used to tag proteins, allowing their expression and subcellular localization to be examined in real time in living cells and animals. Similar fluorescent methods are highly desirable to detect and track RNA and other biological molecules in living cells. For this purpose, we have developed a group of RNA aptamers that bind GFP and related proteins, which we term Fluorescent Protein-Binding Aptamers (FPBA). These aptamers bind GFP, YFP and CFP with low nanomolar affinity and binding decreases GFP fluorescence, whereas slightly augmenting YFP and CFP brightness. Aptamer binding results in an increase in the pKa of EGFP, decreasing the 475 nm excited green fluorescence at a given pH. We report the secondary structure of FPBA and the ability to synthesize functional multivalent dendrimers. FPBA expressed in live cells decreased GFP fluorescence in a valency-dependent manner, indicating that the RNA aptamers function within cells. The development of aptamers that bind fluorescent proteins with high affinity and alter their function, markedly expands their use in the study of biological pathways. PMID:22189104

  12. 28-ka History of Sea Surface Temperature, Primary Productivity and Planktonic Community Variability in the Western Arabian Sea

    NASA Astrophysics Data System (ADS)

    Pourmand, A.; Marcantonio, F.; Bianchi, T.

    2006-12-01

    Uranium-series radionuclides and organic compounds, which represent major groups of planktonic organisms, have been measured in western Arabian Sea sediments that span the past 28 ka. Variability of the Indian Ocean monsoons and their influence on primary productivity, sea surface temperature (SST), and planktonic community structure has been investigated. The average alkenone-derived SST for the glacial was ~3°C lower than that measured for the Holocene. We also identify, for the first time, an interval of exceptionally low SSTs between 19-18.1 ka BP (15.3°C at 18.5 ka). During this time, the low SSTs coincide with high cumulative biomarker fluxes (CBF). We propose that intensification of winter northeast monsoon winds during the glacial period resulted in cold SSTs, deep convective mixing, and enhanced primary productivity. Following the last termination, and within the Holocene, SSTs vary by ~2°C with high CBFs occurring at times of relatively warmer SSTs. The fluxes of dinoflagellates and zooplankton relative to the total flux of organisms remain constant throughout the record. However, transitioning from the glacial to the Holocene, diatom fluxes comparatively increase relative to the total flux of organisms, while those of coccolithophorids decrease. Considering that the Indian Ocean monsoons are an important component of the global climate system, a shift in the planktonic ecosystem structure in the Arabian Sea may have important implications for the global biogeochemical cycle of carbon.

  13. Timing and process of river and lake terrace formation in the Kyrgyz Tien Shan

    NASA Astrophysics Data System (ADS)

    Burgette, Reed J.; Weldon, Ray J.; Abdrakhmatov, Kanatbek Ye.; Ormukov, Cholponbek; Owen, Lewis A.; Thompson, Stephen C.

    2017-03-01

    Well-preserved flights of river and lake terraces traverse an actively deforming rangefront, and form a link between glaciated mountains and a large intermontane lake in the Issyk-Kul basin of the Kyrgyz Tien Shan. We investigated the history and geometry of these lake and river terraces using geologic mapping, surveying, and radiocarbon and terrestrial cosmogenic nuclide dating. A prominent late Pleistocene highstand of the lake occurred over at least the period of 43-25 ka, followed by a period of deep regression and subsequent rise of the lake to the modern sill level in the late Holocene. Major aggradation of the most prominent latest Quaternary river terrace along the Ak-Terek and Barskaun rivers likely started at ∼70-60 ka, coincident to the local last glacial maximum in this region. In contrast to some models of aggradation and incision, the rivers appear to have stayed near the top of the fill for >20 ka, incising subtly below the top of this fill by ∼37 ka, locally. Deep incision likely did not occur until the peak deglaciation in the latest Pleistocene. Older dated terrace surfaces are consistent with one major terrace-forming event per glacial, constant deformation and incision rates, and typical fluvial gradients lower than the modern incising streams. The dating confirms regional terrace correlations for the most prominent late Quaternary terraces, but correlating higher terraces is complicated by spatially varying uplift rates and preferential terrace preservation between basins in the Tien Shan.

  14. Intracerebroventricular kainic acid administration to neonatal rats alters interneuron development in the hippocampus.

    PubMed

    Dong, Hongxin; Csernansky, Cynthia A; Chu, Yunxiang; Csernansky, John G

    2003-10-10

    The effects of neonatal exposure to excitotoxins on the development of interneurons have not been well characterized, but may be relevant to the pathogenesis of neuropsychiatric disorders. In this study, the excitotoxin, kainic acid (KA) was administered to rats at postnatal day 7 (P7) by intracerebroventricular (i.c.v.) infusion. At P14, P25, P40 and P60, Nissl staining and immunohistochemical studies with the interneuron markers, glutamic acid decarboxylase (GAD-67), calbindin-D28k (CB) and parvalbumin (PV) were performed in the hippocampus. In control animals, the total number of interneurons, as well as the number of interneurons stained with GAD-67, CB and PV, was nearly constant from P14 through P60. In KA-treated rats, Nissl staining, GAD-67 staining, and CB staining revealed a progressive decline in the overall number of interneurons in the CA1 and CA3 subfields from P14 to P60. In contrast, PV staining in KA-treated rats showed initial decreases in the number of interneurons in the CA1 and CA3 subfields at P14 followed by increases that approached control levels by P60. These results suggest that, in general, early exposure to the excitotoxin KA decreases the number of hippocampal interneurons, but has a more variable effect on the specific population of interneurons labeled by PV. The functional impact of these changes may be relevant to the pathogenesis of neuropsychiatric disorders, such as schizophrenia.

  15. Functional kainate-selective glutamate receptors in cultured hippocampal neurons.

    PubMed

    Lerma, J; Paternain, A V; Naranjo, J R; Mellström, B

    1993-12-15

    Glutamate mediates fast synaptic transmission at the majority of excitatory synapses throughout the central nervous system by interacting with different types of receptor channels. Cloning of glutamate receptors has provided evidence for the existence of several structurally related subunit families, each composed of several members. It has been proposed that KA1 and KA2 and GluR-5, GluR-6, and GluR-7 families represent subunit classes of high-affinity kainate receptors and that in vivo different kainate receptor subtypes might be constructed from these subunits in heteromeric assembly. However, despite some indications from autoradiographic studies and binding data in brain membranes, no functional pure kainate receptors have so far been detected in brain cells. We have found that early after culturing, a high percentage of rat hippocampal neurons express functional, kainate-selective glutamate receptors. These kainate receptors show pronounced desensitization with fast onset and very slow recovery and are also activated by quisqualate and domoate, but not by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate. Our results provide evidence for the existence of functional glutamate receptors of the kainate type in nerve cells, which are likely to be native homomeric GluR-6 receptors.

  16. Functional kainate-selective glutamate receptors in cultured hippocampal neurons.

    PubMed Central

    Lerma, J; Paternain, A V; Naranjo, J R; Mellström, B

    1993-01-01

    Glutamate mediates fast synaptic transmission at the majority of excitatory synapses throughout the central nervous system by interacting with different types of receptor channels. Cloning of glutamate receptors has provided evidence for the existence of several structurally related subunit families, each composed of several members. It has been proposed that KA1 and KA2 and GluR-5, GluR-6, and GluR-7 families represent subunit classes of high-affinity kainate receptors and that in vivo different kainate receptor subtypes might be constructed from these subunits in heteromeric assembly. However, despite some indications from autoradiographic studies and binding data in brain membranes, no functional pure kainate receptors have so far been detected in brain cells. We have found that early after culturing, a high percentage of rat hippocampal neurons express functional, kainate-selective glutamate receptors. These kainate receptors show pronounced desensitization with fast onset and very slow recovery and are also activated by quisqualate and domoate, but not by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate. Our results provide evidence for the existence of functional glutamate receptors of the kainate type in nerve cells, which are likely to be native homomeric GluR-6 receptors. PMID:7505445

  17. Hemin/G-quadruplex structure and activity alteration induced by magnesium cations.

    PubMed

    Kosman, J; Juskowiak, B

    2016-04-01

    The influence of metal cations on G-quadruplex structure and peroxidase-mimicking DNAzyme activity was investigated. Experiments revealed a significant role of magnesium ion, which in the presence of potassium cation influenced DNAzyme activity. This ability has been associated with alteration of G-quadruplex topology and consequently affinity to bind hemin molecule. It has been demonstrated that G-quadruplex based on PS2.M sequence under these conditions formed parallel topology, which exhibited lower activity than that observed in standard potassium-containing solution. On the other hand DNAzyme/magnesium ion system based on telomeric sequence, which did not undergo significant structural changes, exhibited higher peroxidase activity upon magnesium ion addition. In both cases, the stabilization effect of magnesium cations on G-quadruplex structure was observed. The mechanism of DNAzyme activity alteration by magnesium ion can be explained by its influence on the pKa value of DNAzyme. Magnesium ion decreased pKa for PS2.M based system but increased it for telomeric DNAzyme. Magnesium cation effect on G-quadruplex structure as well as DNAzyme activity is particularly important since this ion is one of the most common metal cations in biological samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Evaluation of interactions between RAW264.7 macrophages and small molecules by capillary electrophoresis.

    PubMed

    Wang, Feng-Qin; Li, Qiao-Qiao; Zhang, Qian; Wang, Yin-Zhen; Hu, Yuan-Jia; Li, Peng; Wan, Jian-Bo; Yang, Feng-Qing; Xia, Zhi-Ning

    2017-03-01

    In this study, the affinity interactions between RAW 264.7 macrophages and three small molecules including naringin, oleuropein and paeoniflorin were evaluated by affinity capillary electrophoresis (ACE), partial filling affinity capillary electrophoresis (PFACE) and frontal analysis capillary electrophoresis (FACE), respectively. The result indicated that ACE (varying concentrations of cell suspension were filled in the capillary as receptor) may not be suitable for the evaluation of interactions between cell and small molecules due to the high viscosity of cell suspension; PFACE can qualitatively evaluate the interaction, but the difference in viscosity between RAW264.7 suspension and buffer effects on the liner relationship between filling length and injection time, which makes the calculation of binding constant difficult. Furthermore, based on the PFACE results, naringin showed stronger interaction with macrophages than the other two molecules; taking advantage of the aggregation phenomenon of cell induced by electric field, FACE was successfully used to determine the stoichiometry (n = 5×10 9 ) and binding constant (K b = 1×10 4 L/mol) of the interaction between RAW264.7 and naringin. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Protolytic dissociation of cyano derivatives of naphthol, biphenyl and phenol in the excited state: A review

    NASA Astrophysics Data System (ADS)

    Szczepanik, Beata

    2015-11-01

    The excited state proton transfer (ESPT) has been extensively studied for hydroxyarenes, phenols, naphthols, hydroxystilbenes, etc., which undergo large enhancement of acidity upon electronic excitation, thus classified as photoacids. The changes of acidic character in the excited state of cyano-substituted derivatives of phenol, hydroxybiphenyl and naphthol are reviewed in this paper. The acidity constants pKa in the ground state (S0), pKa∗ in the first singlet excited state (S1) and the change of the acidity constant in the excited state ΔpKa for the discussed compounds are summarized and compared. The results of the acidity studies show, that the "electro-withdrawing" CN group in the molecules of naphthol, hydroxybiphenyl and phenol causes dramatic increase of their acidity in the excited state in comparison to the ground state. This effect is greatest for the cyanonaphthols (the doubly substituted CN derivatives are almost as strong as a mineral acid in the excited state), comparable for cyanobiphenyls, and smaller for phenol derivatives. The increase of acidity enables proton transfer to various organic solvents, and the investigation of ESPT can be extended to a variety of solvents besides water. The results of theoretical investigations were also presented and used for understanding the protolytic equilibria of cyano derivatives of naphthol, hydroxybiphenyl and phenol.

  20. Prostaglandin E and F2 alpha receptors in human myometrium during the menstrual cycle and in pregnancy and labor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giannopoulos, G.; Jackson, K.; Kredentser, J.

    The binding of prostaglandins E1 and F2 alpha has been studied in the human myometrium and cervix during the menstrual cycle and in the myometrium of pregnant patients at term before and during labor. Tritium-labeled prostaglandin E1 and F2 alpha binding was saturable and reversible. Scatchard analysis of tritium-labeled prostaglandin E1 binding was linear, which suggests a single class of high-affinity binding sites with an estimated apparent equilibrium dissociation constant of 2.5 to 5.4 nmol/L and inhibitor affinities of 0.9, 273, 273, and 217 nmol/L for prostaglandins E2, A1, B1, and F2 alpha, respectively. Scatchard analysis of tritium-labeled prostaglandin F2more » alpha, binding was also linear, but the affinity of these binding sites was much lower, with an average dissociation constant of 50 nmol/L and inhibitor affinities of 1.6, 2.2, and 11.2 nmol/L for prostaglandins E1, E2, and A1, respectively. In nonpregnant patients, the concentrations and affinities of tritium-labeled prostaglandin E1 binding sites were similar in the myometrium during the proliferative and secretory phases of the menstrual cycle, but the concentration of these sites was much lower in the cervix. The concentration of the tritium-labeled prostaglandin E1 binding sites was significantly lower in the myometrium of pregnant patients at term than in the myometrium of nonpregnant patients. The concentrations and affinities of tritium-labeled prostaglandin E1 binding sites were not significantly different in the upper and lower myometrium of pregnant patients at term or in the myometrium of such patients before and during labor. The concentrations of the tritium-labeled prostaglandin F2 alpha binding sites during the menstrual cycle and in pregnancy at term were similar to those of tritium-labeled prostaglandin E1 binding sites.« less

  1. Late Paleogene terrestrial fauna and paleoenvironments in Eastern Anatolia: New insights from the Kağızman-Tuzluca Basin

    NASA Astrophysics Data System (ADS)

    Métais, Grégoire; Sen, Sevket; Sözeri, Koray; Peigné, Stéphane; Varol, Baki

    2015-08-01

    In Eastern Turkey, relatively little work has been undertaken to characterize the sedimentologic and stratigraphical context of the Kağızman-Tuzluca Basin until now. Extending across the Turkey-Armenian border, this basin documents the syn- and post-collisional evolution of Eastern Anatolia, resulting from the closure of the Neotethyan Seaways and the final collision of the Afro-Arabian and Eurasian plates. From detailed sedimentological and paleontological studies, we propose an interpretation of the lithology and depositional environment of the Late Paleogene Alhan Formation located on the western bank of the Aras River. This sequence of terrestrial clastics rests directly and unconformably onto the ophiolitic mélange, and it documents several depositional sequences deposited in alluvial plain and lacustrine environments. At this stage, the age of the Alhan Formation can only be calibrated by fossil evidence. Several stratigraphic levels yielding fossil data along the section have been identified, but these poor assemblages of fauna and flora hamper extensive comparisons with roughly contemporaneous localities of Central and Southern Asia. Carnivorous and ruminant mammal remains are reported for the first time from the supposed Late Oligocene Güngörmez Formation. The identified fossil mammal taxa reveal biogeographic affinities between Central Anatolia and southern Asia, thus suggesting dispersal between these areas during the Oligocene or earlier. Further studies of the fossil assemblages from the Kağızman-Tuzluca Basin and other basins of Eastern Anatolia and lesser Caucasus regions are needed to better constrain the paleobiogeographic models.

  2. Selection and identification of a DNA aptamer targeted to Vibrio parahemolyticus.

    PubMed

    Duan, Nuo; Wu, Shijia; Chen, Xiujuan; Huang, Yukun; Wang, Zhouping

    2012-04-25

    A whole-bacterium systemic evolution of ligands by exponential enrichment (SELEX) method was applied to a combinatorial library of FAM-labeled single-stranded DNA molecules to identify DNA aptamers demonstrating specific binding to Vibrio parahemolyticus . FAM-labeled aptamer sequences with high binding affinity to V. parahemolyticus were identified by flow cytometric analysis. Aptamer A3P, which showed a particularly high binding affinity in preliminary studies, was chosen for further characterization. This aptamer displayed a dissociation constant (K(d)) of 16.88 ± 1.92 nM. Binding assays to assess the specificity of aptamer A3P showed a high binding affinity (76%) for V. parahemolyticus and a low apparent binding affinity (4%) for other bacteria. Whole-bacterium SELEX is a promising technique for the design of aptamer-based molecular probes for microbial pathogens that does not require the labor-intensive steps of isolating and purifying complex markers or targets.

  3. Muscarinic receptor occupation and receptor activation in the guinea-pig ileum by some acetamides related to oxotremorine.

    PubMed Central

    Ringdahl, B.

    1984-01-01

    The dissociation constants (KD values) and relative efficacies of seven acetamide analogues of oxotremorine, including two enantiomeric pairs, at muscarinic receptors in the guinea-pig isolated ileum were determined. The method used involved analysis of dose-response data before and after fractional inactivation of receptors with propylbenzilylcholine mustard. All of the compounds studied had lower affinities than oxotremorine, but some had substantially higher relative efficacies. Replacement of the pyrrolidine ring of N-methyl-N-(4- pyrrolidino -2- butynyl )acetamide(I), the parent compound in the series, by a dimethylamino or a trimethylammonium group decreased the affinity 32 and 4.5 fold, respectively, whereas the relative efficacy increased 5.7-8.3 times. There was no correlation between relative efficacies and affinities of the compounds. The structural requirements for high affinity and high efficacy appeared to be quite different. PMID:6733356

  4. Constant pH Molecular Dynamics of Proteins in Explicit Solvent with Proton Tautomerism

    PubMed Central

    Goh, Garrett B.; Hulbert, Benjamin S.; Zhou, Huiqing; Brooks, Charles L.

    2015-01-01

    pH is a ubiquitous regulator of biological activity, including protein-folding, protein-protein interactions and enzymatic activity. Existing constant pH molecular dynamics (CPHMD) models that were developed to address questions related to the pH-dependent properties of proteins are largely based on implicit solvent models. However, implicit solvent models are known to underestimate the desolvation energy of buried charged residues, increasing the error associated with predictions that involve internal ionizable residue that are important in processes like hydrogen transport and electron transfer. Furthermore, discrete water and ions cannot be modeled in implicit solvent, which are important in systems like membrane proteins and ion channels. We report on an explicit solvent constant pH molecular dynamics framework based on multi-site λ-dynamics (CPHMDMSλD). In the CPHMDMSλD framework, we performed seamless alchemical transitions between protonation and tautomeric states using multi-site λ-dynamics, and designed novel biasing potentials to ensure that the physical end-states are predominantly sampled. We show that explicit solvent CPHMDMSλD simulations model realistic pH-dependent properties of proteins such as the Hen-Egg White Lysozyme (HEWL), binding domain of 2-oxoglutarate dehydrogenase (BBL) and N-terminal domain of ribosomal L9 (NTL9), and the pKa predictions are in excellent agreement with experimental values, with a RMSE ranging from 0.72 to 0.84 pKa units. With the recent development of the explicit solvent CPHMDMSλD framework for nucleic acids, accurate modeling of pH-dependent properties of both major class of biomolecules – proteins and nucleic acids is now possible. PMID:24375620

  5. Constant-pH Hybrid Nonequilibrium Molecular Dynamics–Monte Carlo Simulation Method

    PubMed Central

    2016-01-01

    A computational method is developed to carry out explicit solvent simulations of complex molecular systems under conditions of constant pH. In constant-pH simulations, preidentified ionizable sites are allowed to spontaneously protonate and deprotonate as a function of time in response to the environment and the imposed pH. The method, based on a hybrid scheme originally proposed by H. A. Stern (J. Chem. Phys.2007, 126, 164112), consists of carrying out short nonequilibrium molecular dynamics (neMD) switching trajectories to generate physically plausible configurations with changed protonation states that are subsequently accepted or rejected according to a Metropolis Monte Carlo (MC) criterion. To ensure microscopic detailed balance arising from such nonequilibrium switches, the atomic momenta are altered according to the symmetric two-ends momentum reversal prescription. To achieve higher efficiency, the original neMD–MC scheme is separated into two steps, reducing the need for generating a large number of unproductive and costly nonequilibrium trajectories. In the first step, the protonation state of a site is randomly attributed via a Metropolis MC process on the basis of an intrinsic pKa; an attempted nonequilibrium switch is generated only if this change in protonation state is accepted. This hybrid two-step inherent pKa neMD–MC simulation method is tested with single amino acids in solution (Asp, Glu, and His) and then applied to turkey ovomucoid third domain and hen egg-white lysozyme. Because of the simple linear increase in the computational cost relative to the number of titratable sites, the present method is naturally able to treat extremely large systems. PMID:26300709

  6. Simple and robust strategy for potentiometric detection of glucose using fluorinated phenylboronic acid self-assembled monolayer.

    PubMed

    Matsumoto, Akira; Matsumoto, Hiroko; Maeda, Yasuhiro; Miyahara, Yuji

    2013-09-01

    Field effect transistor (FET) based signal-transduction (Bio-FET) is an emerging technique for label-free and real-time basis biosensors for a wide range of targets. Glucose has constantly been of interest due to its clinical relevance. Use of glucose oxidase (GOD) and a lectin protein Concanavalin A are two common strategies to generate glucose-dependent electrochemical events. However, these protein-based materials are intolerant of long-term usage and storage due to their inevitable denaturing. A phenylboronic acid (PBA) modified self-assembled monolayer (SAM) on a gold electrode with an optimized disassociation constant of PBA, that is, 3-fluoro-4-carbamoyl-PBA possessing its pKa of 7.1, was prepared and utilized as an extended gate electrode for Bio-FET. The prepared electrode showed a glucose-dependent change in the surface potential under physiological conditions, thus providing a remarkably simple rationale for the glyco-sensitive Bio-FET. Importantly, the PBA modified electrode showed tolerance to relatively severe heat and drying treatments; conditions under which protein based materials would surely be denatured. A PBA modified SAM with optimized disassociation constant (pKa) can exhibit a glucose-dependent change in the surface potential under physiological conditions, providing a remarkably simple but robust method for the glyco-sensing. This protein-free, totally synthetic glyco-sensing strategy may offer cheap, robust and easily accessible platform that may be useful in developing countries. This article is part of a Special Issue entitled Organic Bioelectronics-Novel Applications in Biomedicine. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Modulating Uranium Binding Affinity in Engineered Calmodulin EF-Hand Peptides: Effect of Phosphorylation

    PubMed Central

    Pardoux, Romain; Sauge-Merle, Sandrine; Lemaire, David; Delangle, Pascale; Guilloreau, Luc; Adriano, Jean-Marc; Berthomieu, Catherine

    2012-01-01

    To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T9TKE12 sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from Kd = 25±6 nM to Kd = 5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the subnanomolar range (Kd = 0.25±0.06 nM). FTIR analyses showed that the phosphothreonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the νas(P-O) and νs(P-O) IR modes of phosphothreonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in νas(UO2)2+ vibration (from 923 cm−1 to 908 cm−1) was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH. PMID:22870263

  8. Rate Constants and Mechanisms of Protein–Ligand Binding

    PubMed Central

    Pang, Xiaodong; Zhou, Huan-Xiang

    2017-01-01

    Whereas protein–ligand binding affinities have long-established prominence, binding rate constants and binding mechanisms have gained increasing attention in recent years. Both new computational methods and new experimental techniques have been developed to characterize the latter properties. It is now realized that binding mechanisms, like binding rate constants, can and should be quantitatively determined. In this review, we summarize studies and synthesize ideas on several topics in the hope of providing a coherent picture of and physical insight into binding kinetics. The topics include microscopic formulation of the kinetic problem and its reduction to simple rate equations; computation of binding rate constants; quantitative determination of binding mechanisms; and elucidation of physical factors that control binding rate constants and mechanisms. PMID:28375732

  9. Determination of thermodynamic values of acidic dissociation constants and complexation constants of profens and their utilization for optimization of separation conditions by Simul 5 Complex.

    PubMed

    Riesová, Martina; Svobodová, Jana; Ušelová, Kateřina; Tošner, Zdeněk; Zusková, Iva; Gaš, Bohuslav

    2014-10-17

    In this paper we determine acid dissociation constants, limiting ionic mobilities, complexation constants with β-cyclodextrin or heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin, and mobilities of resulting complexes of profens, using capillary zone electrophoresis and affinity capillary electrophoresis. Complexation parameters are determined for both neutral and fully charged forms of profens and further corrected for actual ionic strength and variable viscosity in order to obtain thermodynamic values of complexation constants. The accuracy of obtained complexation parameters is verified by multidimensional nonlinear regression of affinity capillary electrophoretic data, which provides the acid dissociation and complexation parameters within one set of measurements, and by NMR technique. A good agreement among all discussed methods was obtained. Determined complexation parameters were used as input parameters for simulations of electrophoretic separation of profens by Simul 5 Complex. An excellent agreement of experimental and simulated results was achieved in terms of positions, shapes, and amplitudes of analyte peaks, confirming the applicability of Simul 5 Complex to complex systems, and accuracy of obtained physical-chemical constants. Simultaneously, we were able to demonstrate the influence of electromigration dispersion on the separation efficiency, which is not possible using the common theoretical approaches, and predict the electromigration order reversals of profen peaks. We have shown that determined acid dissociation and complexation parameters in combination with tool Simul 5 Complex software can be used for optimization of separation conditions in capillary electrophoresis. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Thiacarbocyanine as ligand in dye-affinity chromatography for protein purification. II. Dynamic binding capacity using lysozyme as a model.

    PubMed

    Boto, R E F; Anyanwu, U; Sousa, F; Almeida, P; Queiroz, J A

    2009-09-01

    A constant development of dye-affinity chromatography to replace more traditional techniques is verified, with the aim of increasing specificity in the purification of biomolecules. The establishment of a new dye-affinity chromatographic support imposes their complete characterization, namely with relation to the binding capacity for proteins, in order to evaluate its applicability on global purification processes. Following previous studies, the adsorption of lysozyme onto a thiacarbocyanine dye immobilized on beaded cellulose was investigated. The effect of different parameters, such as temperature, ionic strength, pH, protein concentration and flow rate, on the dynamic binding capacity of the support to retain lysozyme was also studied. Increasing the temperature and the lysozyme concentration had a positive effect on the dynamic binding capacity (DBC), whereas increasing the ionic strength and the flow rate resulted in the opposite. It was also discovered that the pH used had an important impact on the lysozyme binding onto the immobilized dye. The maximum DBC value obtained for lysozyme was 8.6 mg/mL, which was achieved at 30 degrees C and pH 9 with a protein concentration of 0.5 mg/mL and a flow rate of 0.05 mL/min. The dissociation constant (K(d)) obtained was 2.61 +/- 0.36 x 10(-5 )m, proving the affinity interaction between the thiacarbocyanine dye ligand and the lysozyme. Copyright (c) 2009 John Wiley & Sons, Ltd.

  11. Influence of heme environment structure on dioxygen affinity for the dual function Amphitrite ornata hemoglobin/dehaloperoxidase. Insights into the evolutional structure-function adaptations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Shengfang; Sono, Masanori; Wang, Chunxue

    Sea worm, Amphitrite ornata, has evolved its globin (an O 2 carrier) also to serves as a dehaloperoxidase (DHP) to detoxify haloaromatic pollutants generated by competing species. A previous mutagenesis study by our groups on both DHP and sperm whale myoglobin (SW Mb) revealed some structural factors that influence the dehaloperoxidase activities (significantly lower for Mb) of both proteins. Using an isocyanide/O 2 partition constant measurement method in this study, we have examined the effects of these structural factors on the O 2 equilibrium constants (K O2) of DHP, SW Mb, and their mutants. A clear trend of decreasing Omore » 2 affinity and increasing catalytic activity along with the increase in the distal His N ε–heme iron distance is observed. An H93K/T95H Mb double mutant mimicking the DHP proximal His positioning exhibited markedly enhanced O 2 affinity, confirming the essential effect of proximal His rotation on the globin function of DHP. For DHP, the L100F, T56G and M86E variants showed the effects of distal volume, distal His flexibility and proximal electronic push, respectively, on the O 2 affinity. This study provides insights into how DHP has evolved its heme environment to gain significantly enhanced peroxidase capability without compromising its primary function as an O 2 carrier.« less

  12. Seasonal changes in plasma androgens, glucocorticoids and glucocorticoid-binding proteins in the marsupial sugar glider Petaurus breviceps.

    PubMed

    Bradley, A J; Stoddart, D M

    1992-01-01

    An investigation spanning two breeding seasons was carried out to examine endocrine changes associated with reproduction in a wild population of the marsupial sugar glider Petaurus breviceps, a small arboreal gliding possum. Using techniques of equilibrium dialysis and polyacrylamide gel electrophoresis at steady-state conditions, a high-affinity, low-capacity glucocorticoid-binding protein was demonstrated in the plasma of Petaurus breviceps. Equilibrium dialysis at 36 degrees C using cortisol gave a high-affinity binding constant of 95 +/- 5.2 litres/mumol for a presumed corticosteroid-binding globulin (CBG) while the binding constant for the cortisol-albumin interaction was 3.5 +/- 0.4 litres/mmol. There was no difference between the sexes in the affinity of binding of cortisol to CBG; however, the cortisol-binding capacity underwent seasonal variation in both sexes. Progesterone was bound strongly to the presumed CBG while neither oestradiol nor aldosterone appeared to be bound with high affinity to P. breviceps plasma. In the males, peaks in the plasma concentration of testosterone coincided with the July-September breeding season in both years. A significant inverse relationship was shown to exist between the plasma testosterone concentration and the CBG-binding capacity. In both sexes an increase occurred in the plasma concentration of free cortisol during the first breeding season, a pattern which was not repeated in the subsequent breeding season, possibly due to a lower population density in that year.

  13. The size of the hydroxyl group and its contribution to the affinity of atropine for muscarine-sensitive acetylcholine receptors.

    PubMed Central

    Barlow, R. B.; Ramtoola, S.

    1980-01-01

    1 From measurements of the affinity constants of hydratropyltropine and its methiodide for muscarine-sensitive acetylcholine receptors in the guinea-pig ileum, the increment in log K for the hydroxyl group in atropine is 2.06 and in the methiodide it is 2.16. These effects are slightly bigger than any so far recorded with these receptors. 2 The estimate of the increment in apparent molal volume for the hydroxyl group is 1.1 cm3/mol in atropine and 1.0 cm3/mol in the methobromide. 3 The large effect of the group on affinity may be linked to its small apparent size in water as suggested in the previous paper. PMID:7470742

  14. Spectroscopic analyses and studies on respective interaction of cyanuric acid and uric acid with bovine serum albumin and melamine

    NASA Astrophysics Data System (ADS)

    Chen, Dandan; Wu, Qiong; Wang, Jun; Wang, Qi; Qiao, Heng

    2015-01-01

    In this work, the fluorescence quenching was used to study the interaction of cyanuric acid (CYA) and uric acid (UA) with bovine serum albumin (BSA) at two different temperatures (283 K and 310 K). The bimolecular quenching constant (Kq), apparent quenching constant (Ksv), effective binding constant (KA) and corresponding dissociation constant (KD), binding site number (n) and binding distance (r) were calculated by adopting Stern-Volmer, Lineweaver-Burk, Double logarithm and overlap integral equations. The results show that CYA and UA are both able to obviously bind to BSA, but the binding strength order is BSA + CYA < BSA + UA. And then, the interactions of CYA and UA with melamine (MEL) under the same conditions were also studied by using similar methods. The results indicates that both CYA and UA can bind together closely with melamine (MEL). It is wished that these research results would facilitate the understanding the formation of kidney stones and gout in the body after ingesting excess MEL.

  15. Solubilization and purification of melatonin receptors from lizard brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivkees, S.A.; Conron, R.W. Jr.; Reppert, S.M.

    Melatonin receptors in lizard brain were identified and characterized using {sup 125}I-labeled melatonin (({sup 125}I)MEL) after solubilization with the detergent digitonin. Saturation studies of solubilized material revealed a high affinity binding site, with an apparent equilibrium dissociation constant of 181 +/- 45 pM. Binding was reversible and inhibited by melatonin and closely related analogs, but not by serotonin or norepinephrine. Treatment of solubilized material with the non-hydrolyzable GTP analog, guanosine 5'-(3-O-thiotriphosphate) (GTP-gamma-S), significantly reduced receptor affinity. Gel filtration chromatography of solubilized melatonin receptors revealed a high affinity, large (Mr 400,000) peak of specific binding. Pretreatment with GTP-gamma-S before solubilization resultedmore » in elution of a lower affinity, smaller (Mr 150,000) peak of specific binding. To purify solubilized receptors, a novel affinity chromatography resin was developed by coupling 6-hydroxymelatonin with Epoxy-activated Sepharose 6B. Using this resin, melatonin receptors were purified approximately 10,000-fold. Purified material retained the pharmacologic specificity of melatonin receptors. These results show that melatonin receptors that bind ligand after detergent treatment can be solubilized and substantially purified by affinity chromatography.« less

  16. Fluorogen-Activating-Proteins as Universal Affinity Biosensors for Immunodetection

    PubMed Central

    Gallo, Eugenio; Vasilev, Kalin V.; Jarvik, Jonathan

    2014-01-01

    Fluorogen-activating-proteins (FAPs) are a novel platform of fluorescence biosensors utilized for protein discovery. The technology currently demands molecular manipulation methods that limit its application and adaptability. Here, we highlight an alternative approach based on universal affinity reagents for protein detection. The affinity reagents were engineered as bi-partite fusion proteins, where the specificity moiety is derived from IgG-binding proteins –Protein-A or Protein-G – and the signaling element is a FAP. In this manner, primary antibodies provide the antigenic selectivity against a desired protein in biological samples, while FAP affinity reagents target the constant region (Fc) of antibodies and provide the biosensor component of detection. Fluorescence results using various techniques indicate minimal background and high target specificity for exogenous and endogenous proteins in mammalian cells. Additionally, FAP-based affinity reagents provide enhanced properties of detection previously absent using conventional affinity systems. Distinct features explored in this report include: (1) unfixed signal wavelengths (excitation and emission) determined by the particular fluorogen chosen, (2) real-time user controlled fluorescence on-set and off-set, (3) signal wavelength substitution while performing live analysis, and (4) enhanced resistance to photobleaching. PMID:24122476

  17. Adaptive data rate control TDMA systems as a rain attenuation compensation technique

    NASA Technical Reports Server (NTRS)

    Sato, Masaki; Wakana, Hiromitsu; Takahashi, Takashi; Takeuchi, Makoto; Yamamoto, Minoru

    1993-01-01

    Rainfall attenuation has a severe effect on signal strength and impairs communication links for future mobile and personal satellite communications using Ka-band and millimeter wave frequencies. As rain attenuation compensation techniques, several methods such as uplink power control, site diversity, and adaptive control of data rate or forward error correction have been proposed. In this paper, we propose a TDMA system that can compensate rain attenuation by adaptive control of transmission rates. To evaluate the performance of this TDMA terminal, we carried out three types of experiments: experiments using a Japanese CS-3 satellite with Ka-band transponders, in house IF loop-back experiments, and computer simulations. Experimental results show that this TDMA system has advantages over the conventional constant-rate TDMA systems, as resource sharing technique, in both bit error rate and total TDMA burst lengths required for transmitting given information.

  18. Complete characterization of the water dimer vibrational ground state and testing the VRT(ASP-W)III, SAPT-5st, and VRT(MCY-5f) surfaces

    NASA Astrophysics Data System (ADS)

    Keutsch, Frank N.; Goldman, Nir; Harker, Heather A.; Leforestier, Claude; Saykally, Richard J.

    We report the observation of extensive a- and c-type rotation-tunnelling (RT) spectra of (H2O)2 for Ka =0-3, and (D2O)2 for Ka =0-4. These data allow a detailed characterization of the vibrational ground state to energies comparable to those of the low-lying (70-80 cm-1) intermolecular vibrations. We present a comparison of the experimentally determined molecular constants and tunnelling splittings with those calculated on the VRT(ASP-W)III, SAPT-5st, and VRT(MCY-5f) intermolecular potential energy surfaces. The SAPT-5st potential reproduces the vibrational ground state properties of the water dimer very well. The VRT(MCY-5f) and especially the VRT(ASP-W)III potentials show larger disagreements, in particular for the bifurcation tunnelling splitting.

  19. pKa values of hyodeoxycholic and cholic acids in the binary mixed micelles sodium-hyodeoxycholate-Tween 40 and sodium-cholate-Tween 40: Thermodynamic stability of the micelle and the cooperative hydrogen bond formation with the steroid skeleton.

    PubMed

    Poša, Mihalj; Pilipović, Ana; Bećarević, Mirjana; Farkaš, Zita

    2017-01-01

    Due to a relatively small size of bile acid salts, their mixed micelles with nonionic surfactants are analysed. Of the special interests are real binary mixed micelles that are thermodynamically more stable than ideal mixed micelles. Thermodynamic stability is expressed with an excess Gibbs energy (G E ) or over an interaction parameter (β ij ). In this paper sodium salts of cholic (C) and hyodeoxycholic acid (HD) in their mixed micelles with Tween 40 (T40) are analysed by potentiometric titration and their pKa values are determined. Examined bile acids in mixed micelles with T40 have higher pKa values than free bile acids. The increase of ΔpKa acid constant of micellary bound C and HD is in a correlation with absolute values of an interaction parameter. According to an interaction parameter and an excess Gibbs energy, mixed micelle HD-T40 are thermodynamically more stable than mixed micelles C-T40. ΔpKa values are higher for mixed micelles with Tween 40 whose second building unit is HD, related to the building unit C. In both micellar systems, ΔpKa increases with the rise of a molar fraction of Tween 40 in binary mixtures of surfactants with sodium salts of bile acids. This suggests that, ΔpKa can be a measure of a thermodynamic stabilization of analysed binary mixed micelles as well as an interaction parameter. ΔpKa values are confirmed by determination of a distribution coefficient of HD and C in systems: water phase with Tween 40 in a micellar concentration and 1-octanol, with a change of a pH value of a water phase. Conformational analyses suggests that synergistic interactions between building units of analysed binary micelles originates from formation of hydrogen bonds between steroid OH groups and polyoxyethylene groups of the T40. Relative similarity and spatial orientation of C 3 and C 6 OH group allows cooperative formation of hydrogen bonds between T40 and HD - excess entropy in formation of mixed micelle. If a water solution of analysed binary mixtures of surfactants contains urea in concentration of 4M significant decreases of an interaction parameter value happens which confirms the importance of hydrogen bonds in synergistic interactions (urea compete in hydrogen bonds). Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Geochronology and Equilibrium Line Altitudes of LLGM through Holocene Glaciations from the Tropical Cordillera Huayhuash, Peru

    NASA Astrophysics Data System (ADS)

    Hall, S. R.; Ramage, J. M.; Rodbell, D. T.; Finkel, R. C.; Smith, J. A.; Mark, B. G.; Farber, D. L.

    2006-12-01

    Geomorphologic relationships and cosmogenic 10Be ages from the Central Peruvian Andes reveal a rich record of glaciations from at least the late Holocene, Late Glacial, Last Local Glacial Maximum (LLGM), and older more extensive glaciations - dated between 50ka and 440ka in both the Cordillera Blanca, to the north and the Junin Region to the south. The Cordillera Huayhuash (10.3°S, 76.9°W) is located between these two well-studied regions. The spine of the range trends nearly north-south and contains a substantial east-west spur which together can be used to evaluate the spatial variation in paleo-ELAs. The range is thus a key location to study changes in ice extent and equilibrium line altitudes (ELAs) between the LLGM and modern periods. Modern glaciers are confined to altitudes >4800 m and the present (1997) ELA is 4800- 5100m. In order to determine the paleo-ice positions of glaciers in different valleys we have developed a new chronology from cosmogenic 10Be ages of moraine boulder and 14C basal bog core ages. Through field mapping of glacial features, analysis of satellite imagery, digital elevation models (DEMs), and geochronology, we have delineated the ice limits associated with the LLGM, Late Glacial, and Late Holocene advances. Ages in the three valleys we have studied cluster at ~29ka, ~13ka, and ~9ka and overall we have identified surfaces with ages that range from 39.9±1.4ka to 0.2ka±0.05ka. Based on these data, we have mapped the extent of the correlative paleo-glaciers in these three drainages and extracted the modern hypsometry for each paleo-glacier from the DEMs. From this data set, we have generated paleo- ELAs using a range of methods: Toe-to-Headwall-Altitude Ratio (THAR), the Accumulation Area Ratio (AAR), and Accumulation Area Balance Ratio (AABR). For each of the LLGM, Late Glacial and Holocene stages, we have calculated both: (1) the temperature depression assuming no moisture variations, and (2) the potential relative moisture gradients assuming a constant temperature depression. Our results suggest that variations in glacial extent (and therefore paleo-ELAs) are strongly correlated with differences in valley orientation and morphology as eastern drainages receive more moisture and have shallower topographic gradients than western drainages. Additionally, while there is an extensive record of older (>39.9±1.4ka) advances to the north (Cordillera Blanca) and to the south (Junin region), the confined morphology of the Cordillera Huayhaush valleys may have inhibited the preservation of older glacial geomorphologic features, thereby explaining the apparent lack of old moraines in this range.

  1. Bromine release during Plinian eruptions along the Central American Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Hansteen, T. H.; Kutterolf, S.; Appel, K.; Freundt, A.; Perez-Fernandez, W.; Wehrmann, H.

    2010-12-01

    Volcanoes of the Central American Volcanic Arc (CAVA) have produced at least 72 highly explosive eruptions within the last 200 ka. The eruption columns of all these “Plinian” eruptions reached well into the stratosphere such that their released volatiles may have influenced atmospheric chemistry and climate. While previous research has focussed on the sulfur and chlorine emissions during such large eruptions, we here present measurements of the heavy halogen bromine by means of synchrotron radiation induced micro-XRF microanalysis (SR-XRF) with typical detection limits at 0.3 ppm (in Fe rich standard basalt ML3B glass). Spot analyses of pre-eruptive glass inclusions trapped in minerals formed in magma reservoirs were compared with those in matrix glasses of the tephras, which represent the post-eruptive, degassed concentrations. The concentration difference between inclusions and matrix glasses, multiplied by erupted magma mass determined by extensive field mapping, yields estimates of the degassed mass of bromine. Br is probably hundreds of times more effective in destroying ozone than Cl, and can accumulate in the stratosphere over significant time scales. Melt inclusions representing deposits of 22 large eruptions along the CAVA have Br contents between 0.5 and 13 ppm. Br concentrations in matrix glasses are nearly constant at 0.4 to 1.5 ppm. However, Br concentrations and Cl/Br ratios vary along the CAVA. The highest values of Br contents (>8 ppm) and lowest Cl/Br ratios (170 to 600) in melt inclusions occur across central Nicaragua and southern El Salvador, and correlate with bulk-rock compositions of high Ba/La > 85 as well as low La/Yb <5. Thus we observe the maximum magmatic Br-concentrations in the segements of the arc. where the input of sediment and water into the subduction system is largest and the melting column is longest. The largest eruptive emissions of Br into the atmosphere, however, occurred in Guatemala due to the large magnitude of eruptions. The most prominent example is the 84 ka Los Chocoyos eruption from Atitlán Caldera, which discharged 700 kilotons of Br. On average, each of the remaining 21 CAVA eruptions studied have discharged c.100 kilotons of bromine. During the past 200 ka, CAVA volcanoes have emitted a cumulative mass of 3.2 Mt of Br through highly explosive eruptions. There are six periods in the past (c. 2ka, 6ka, 25ka, 40ka, 60ka, 75ka) when up to four larger eruptions occurred within only several hundred years. The heavy halogen release of these eruptions may have had a cumulative effect on the atmosphere which is presently investigated by climate/atmosphere models based on our analyses as input data.

  2. Knickpoint formation, rapid propagation, and landscape response following coastal cliff retreat at last-interglacial sea-level highstand: Kaua'i, Hawai'i

    NASA Astrophysics Data System (ADS)

    Lamb, Michael; Mackey, Ben; Scheingross, Joel; Farley, Ken

    2013-04-01

    The propagation of knickpoints through a landscape is recognized as a highly efficient mechanism of channel incision, and exerts a first-order control in communicating changes in base level throughout a landscape. However, few settings allow reconstruction of the long-term rate of knickpoint retreat. Here, we use cosmogenic 3He exposure dating of olivine within basalt to document the retreat rate of a waterfall in Ka'ula'ula Valley, a small catchment on the Na Pali coast of Kaua'i, Hawai'i. We constrained the exposure age of 18 features (in-channel boulders, stable boulders on terraces, and in-channel bedrock) along the length of the channel that allow us to discriminate between models of knickpoint propagation. Cosmogenic exposure ages are oldest near the coast (120 ka) and systematically decrease with upstream distance towards the waterfall (<10 ka). Upstream of the knickpoint, cosmogenic ages are approximately constant (10-20 ka). This data indicates that the waterfall has migrated 4 km up valley over the past 120 ka at an average rate of 33 mm/yr. Steady-state vertical erosion appears to dominate upstream of the waterfall, where the channel has incised ~100 m into the original surface of the shield volcano. Our results indicate the lateral rate of knickpoint retreat exceeds rates of vertical channel incision by three orders of magnitude, and that knickpoints may be the primary driver of relief generation in Hawaiian catchments. Submarine landslides have been proposed as the cause of knickpoints in Kaua'i streams; however, the bathymetry off the northwest Kaua'i coast lacks evidence for large submarine flank collapse. Alternatively, we propose substantial cliff erosion during the last interglacial sea-level highstand generated a waterfall at the coast, which has subsequently propagated inland. Superimposing Kaua'i's subsidence history and Pleistocene sea level fluctuations indicate that the only time waves could have eroded cliffs at Ka'ula'ula Valley's entrance over the past 1.5 Ma was during the last interglacial, ~130-120 ka. Knickpoint generation during sea level high stands, as opposed to the typical case of sea-level fall, may be an important relief-generating mechanism on other ocean islands and stable or subsiding coasts.

  3. Geological evolution of Paniri volcano, Central Andes, northern Chile

    NASA Astrophysics Data System (ADS)

    Godoy, Benigno; Lazcano, José; Rodríguez, Inés; Martínez, Paula; Parada, Miguel Angel; Le Roux, Petrus; Wilke, Hans-Gerhard; Polanco, Edmundo

    2018-07-01

    Paniri volcano, in northern Chile, belongs to a volcanic chain trending across the main orientation of the Central Andean volcanic province. Field work mapping, stratigraphic sequences, and one new 40Ar/39Ar and eleven previous published 40Ar/39Ar, and K/Ar ages, indicate that the evolution of Paniri involved eruption of seven volcanic units (Malku, Los Gordos, Las Lenguas, Las Negras, Viscacha, Laguna, and Llareta) during four main stages occurring over more than 1 Myr: Plateau Shield (>800 ka); Main Edifice (800-400 ka); Old Cone (400-250 ka); and New Cone (250-100 ka). Considering glacial and fluvial action, an estimated 85.3 km3 of volcanic material were erupted during the eruptive history of Paniri volcano, giving a bulk eruption rate of 0.061 km3/ka, with major activity in the last 150 kyr (eruption rate of 0.101 km3/ka). Lava flows from Paniri show abundant plagioclase together with subordinate ortho-, and clino-pyroxene, and amphibole as main phenocrysts. Moreover, although true basalts are scarce in the Central Andes, olivine-bearing lavas were erupted at Paniri at ∼400 ka. Also, scarce phenocrysts of biotite, quartz, rutile, and opaque minerals (Fe-Ti oxides) were identified. The groundmass of these flows is composed mainly of glass along with pyroxene and plagioclase microlites. Consolidated and unconsolidated pyroclastic deposits of dacitic composition are also present. The consolidated deposits correspond to vitreous tuffs, whilst unconsolidated deposits are composed of pumice clasts up to 5 cm in diameter. Both pyroclastic deposits are composed of glassy groundmass (up to 80% vol.), and subordinated plagioclase, hornblende, and biotite phenocrysts up to 1 cm in length. Results of twenty-four new, coupled with previous published compositional analyses show that volcanic products of Paniri vary from 57% (basaltic-andesite) to 71% (rhyolite) vol. SiO2, with significant linear correlations between major element-oxide and trace-element concentrations. 87Sr/86Sr isotope ratios range from 0.7070 to 0.7075, indicating that Paniri, similar to other volcanoes of the San Pedro - Linzor volcanic chain, have undergone significant crustal contamination of its parental magmas. However, the almost constant Sr-isotope compositions of the different volcanic units defined for Paniri volcano, suggested later fractional crystallization of magmas at upper crustal levels.

  4. A possible molecular mechanism of the action of digitalis: ouabain action on calcium binding to sites associated with a purified sodium-potassium-activated adenosine triphosphatase from kidney.

    PubMed

    Gervais, A; Lane, L K; Anner, B M; Lindenmayer, G E; Schwartz, A

    1977-01-01

    Calcium binding at 0 degrees C to a purified sheep kidney Na+,K+-ATPase was described by linear Scatchard plots. Binding at saturating free calcium was 65-80 nmol/mg of protein, or 30-40 mol of calcium/mol of enzyme. Aqueous emulsions of lipids extracted from Na+,K+-ATPase yielded dissociation constants and maximum calcium-binding values that were similar to those for native Na+,K+-ATPase. Phospholipase A treatment markedly reduced calcium binding. Pretreatment of native Na+,K+-ATPase with ouabain increased the dissociation constant for calcium binding from 131 +/- 7 to 192 +/- 7 muM without altering maximum calcium binding. Ouabain pretreatment did not affect calcium binding to extracted phospholipids, ouabain-insensitive ATPases, or heat denatured Na+,K+-ATPase, Na+ and K+ (5-20 mM) increased the dissociation constants for calcium, which suggests competition between the monovalent cations and calcium for the binding sites. At higher concentrations of monovalent cations, ouabain increased the apparent affinity of binding sites for calcium. Extrapolation to physiological cation concentrations revealed that the ouabain-induced increase in apparent affinity for calcium may be as much as 2- to 3-fold. These results suggest: (1) calcium binds to phospholipids associated with Na+,K+-ATPase; (2) ouabain interaction with Na+,K+-ATPase induces a perturbation that is transmitted to adjacent phospholipids, altering their affinity for calcium; and (3) at physiological concentrations of Na+ or K+, or both, ouabain interaction with Na+,K+-ATPase may lead to an increased pool of membrane-bound calcium.

  5. The 5-HT1A Receptor PET Radioligand 11C-CUMI-101 Has Significant Binding to α1-Adrenoceptors in Human Cerebellum, Limiting Its Use as a Reference Region.

    PubMed

    Shrestha, Stal S; Liow, Jeih-San; Jenko, Kimberly; Ikawa, Masamichi; Zoghbi, Sami S; Innis, Robert B

    2016-12-01

    Prazosin, a potent and selective α 1 -adrenoceptor antagonist, displaces 25% of 11 C-CUMI-101 ([O-methyl- 11 C]2-(4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl)-4-methyl-1,2,4-triazine-3,5(2H,4H)dione) binding in monkey cerebellum. We sought to estimate the percentage contamination of 11 C-CUMI-101 binding to α 1 -adrenoceptors in human cerebellum under in vivo conditions. In vitro receptor-binding techniques were used to measure α 1 -adrenoceptor density and the affinity of CUMI-101 for these receptors in human, monkey, and rat cerebellum. Binding potential (maximum number of binding sites × affinity [(1/dissociation constant]) was determined using in vitro homogenate binding assays in human, monkey, and rat cerebellum. 3 H-prazosin was used to determine the maximum number of binding sites, as well as the dissociation constant of 3 H-prazosin and the inhibition constant of CUMI-101. α 1 -adrenoceptor density and the affinity of CUMI-101 for these receptors were similar across species. Cerebellar binding potentials were 3.7 for humans, 2.3 for monkeys, and 3.4 for rats. Reasoning by analogy, 25% of 11 C-CUMI-101 uptake in human cerebellum reflects binding to α 1 -adrenoceptors, suggesting that the cerebellum is of limited usefulness as a reference tissue for quantification in human studies. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  6. The Universal Statistical Distributions of the Affinity, Equilibrium Constants, Kinetics and Specificity in Biomolecular Recognition

    PubMed Central

    Zheng, Xiliang; Wang, Jin

    2015-01-01

    We uncovered the universal statistical laws for the biomolecular recognition/binding process. We quantified the statistical energy landscapes for binding, from which we can characterize the distributions of the binding free energy (affinity), the equilibrium constants, the kinetics and the specificity by exploring the different ligands binding with a particular receptor. The results of the analytical studies are confirmed by the microscopic flexible docking simulations. The distribution of binding affinity is Gaussian around the mean and becomes exponential near the tail. The equilibrium constants of the binding follow a log-normal distribution around the mean and a power law distribution in the tail. The intrinsic specificity for biomolecular recognition measures the degree of discrimination of native versus non-native binding and the optimization of which becomes the maximization of the ratio of the free energy gap between the native state and the average of non-native states versus the roughness measured by the variance of the free energy landscape around its mean. The intrinsic specificity obeys a Gaussian distribution near the mean and an exponential distribution near the tail. Furthermore, the kinetics of binding follows a log-normal distribution near the mean and a power law distribution at the tail. Our study provides new insights into the statistical nature of thermodynamics, kinetics and function from different ligands binding with a specific receptor or equivalently specific ligand binding with different receptors. The elucidation of distributions of the kinetics and free energy has guiding roles in studying biomolecular recognition and function through small-molecule evolution and chemical genetics. PMID:25885453

  7. Analysis of Simulation Tools for the Study of Advanced Marine Power Systems.

    DTIC Science & Technology

    1992-09-01

    model of a steam turbine prime mover which accounts for both plant and servo/steam valve time constants is given in Fig. 14. 41 + Figure 14 Second order...given in Fig. 12 of Chapter VI. The parameters for this device as given by Mayer are [14]: "* KE=l "* KA= 2 0 0 "* KF=0.3 "* TA=0.0 2 seconds 92 " TF1

  8. The computational analysis and modelling of substitution effects on hydrolysis of formanilides in acidic aqueous solutions

    NASA Astrophysics Data System (ADS)

    Lukeš, Vladimír; Škorňa, Peter; Michalík, Martin; Klein, Erik

    2017-11-01

    Various para, meta and ortho substituted formanilides have been theoretically studied. For trans and cis-isomers of non-substituted formanilide, the calculated B3LYP vibration normal modes were analyzed. Substituent effect on the selected normal modes was described and the comparison with the available experimental data is presented. The calculated B3LYP proton affinities were correlated with Hammett constants, Fujita-Nishioka equation and the rate constants of the hydrolysis in 1 M HCl. Found linear dependences allow predictions of dissociation constants (pKBH+) and hydrolysis rate constants. Obtained results indicate that protonation of amide group may represent the rate determining step of acid catalyzed hydrolysis.

  9. High-affinity RNA aptamers to C-reactive protein (CRP): newly developed pre-elution methods for aptamer selection

    NASA Astrophysics Data System (ADS)

    Orito, N.; Umekage, S.; Sato, K.; Kawauchi, S.; Tanaka, H.; Sakai, E.; Tanaka, T.; Kikuchi, Y.

    2012-03-01

    We have developed a modified SELEX (systematic evolution of ligands by exponential enrichment) method to obtain RNA aptamers with high affinity to C-reactive protein (CRP). CRP is a clinical biomarker present in plasma, the level of which increases in response to infections and noninfectious inflammation. The CRP level is also an important prognostic indicator in patients with several syndromes. At present, CRP content in blood is measured immunochemically using antibodies. To develop a more sensitive method using RNA aptamers, we have attempted to obtain high-affinity RNA aptamers to CRP. We succeeded in obtaining an RNA aptamer with high affinity to CRP using a CRP-immobilized Sepharose column and pre-elution procedure. Pre-elution is a method that removes the weak binding portion from a selected RNA population by washing for a short time with buffer containing CRP. By surface plasmon-resonance (SPR) analysis, the affinity constant of this aptamer for CRP was calculated to be KD = 2.25×10-9 (M). The secondary structure, contact sites with CRP protein, and application of this aptamer will be described.

  10. Comparative study of substrate and product binding to the human ABO(H) blood group glycosyltransferases.

    PubMed

    Soya, Naoto; Shoemaker, Glen K; Palcic, Monica M; Klassen, John S

    2009-11-01

    The first comparative thermodynamic study of the human blood group glycosyltransferases, alpha-(1-->3)-N-acetylgalactosaminyltransferase (GTA) and alpha-(1-->3)-galactosyltransferase (GTB), interacting with donor substrates, donor and acceptor analogs, and trisaccharide products in vitro is reported. The binding constants, measured at 24 degrees C with the direct electrospray ionization mass spectrometry (ES-MS) assay, provide new insights into these model GTs and their interactions with substrate and product. Notably, the recombinant forms of GTA and GTB used in this study are shown to exist as homodimers, stabilized by noncovalent interactions at neutral pH. In the absence of divalent metal ion, neither GTA nor GTB exhibits any appreciable affinity for its native donors (UDP-GalNAc, UDP-Gal). Upon introduction of Mn(2+), both donors undergo enzyme-catalyzed hydrolysis in the presence of either GTA or GTB. Hydrolysis of UDP-GalNAc in the presence of GTA proceeds very rapidly under the solution conditions investigated and a binding constant could not be directly measured. In contrast, the rate of hydrolysis of UDP-Gal in the presence of GTB is significantly slower and, utilizing a modified approach to analyze the ES-MS data, a binding constant of 2 x 10(4) M(-1) was established. GTA and GTB bind the donor analogs UDP-GlcNAc, UDP-Glc with affinities similar to those measured for UDP-Gal and UDP-GalNAc (GTB only), suggesting that the native donors and donor analogs bind to the GTA and GTB through similar interactions. The binding constant determined for GTA and UDP-GlcNAc (approximately 1 x 10(4) M(-1)), therefore, provides an estimate for the binding constant for GTA and UDP-GalNAc. Binding of GTA and GTB with the A and B trisaccharide products was also investigated for the first time. In the absence of UDP and Mn(2+), both GTA and GTB recognize their respective trisaccharide products but with a low affinity approximately 10(3) M(-1); the presence of UDP and Mn(2+) has no effect on A trisaccharide binding but precludes B-trisaccharide binding.

  11. Late Miocene to Pleistocene Mineralogy of ODP Site 1146

    NASA Astrophysics Data System (ADS)

    Arnold, E. M.

    2001-12-01

    ODP Site 1146 (19° 27.40'N, 116° 16.37'E, 2092 m depth) was drilled on the continental slope of the South China Sea. A composite section, comprised of three stratigraphic units, extends down to 640 mcd. Unit 1 is late Pliocene to Pleistocene nannofossil clay (0 - 243 mcd); Unit 2, middle Miocene to Late Pliocene foraminifera - nannofossil - clay mixed sediment (243 - 553 mcd); Unit 3, early to middle Miocene nannofossil clay (553 - 642 mcd). This study reports the < 2 μ m mineralogy from the late Miocene through early Pleistocene. Samples were analyzed at approximately 1.5 m intervals from 150 to 225 mcd, and 1 m intervals from 225 to 440 mcd, with an age resolution of ~25 ka and ~35 ka, respectively. Illite, chlorite, quartz and plagioclase concentrations decrease with increasing depth through Unit 1. Kaolinite and calcite concentrations increase with depth, while smectite values are constant in this unit. Illite, quartz and plagioclase show high variability in Unit 1 compared with the underlying Unit 2. Unit 2 has more uniform sediment composition, with constant illite, chlorite, and quartz concentrations. Kaolinite concentration increases with depth, following a drop in concentration across the Unit 1/2 boundary. Plagioclase concentration shows a small, steady decrease throughout this unit. Smectite concentration does not change across the Unit 1/2 boundary, decreases to a steady low value from 310 - 400 mcd, and increases again towards the bottom. The mineralogy of sediments recovered at Site 1146 suggest a classic pattern of source region aridification from the middle Pliocene through the Pleistocene, indicated in Unit 1 mineralogy as a decrease in kaolinite with decreasing depth, concomitant with an increase in quartz, plagioclase, illite and chlorite. The mineral variability in this interval suggests glacial - interglacial control of the terrigenous sedimentation. The sediment sources and source area weathering regimes were relatively constant throughout Unit 2, as indicated by low mineral variability and relatively constant mineral concentrations.

  12. Ligand-receptor binding affinities from saturation transfer difference (STD) NMR spectroscopy: the binding isotherm of STD initial growth rates.

    PubMed

    Angulo, Jesús; Enríquez-Navas, Pedro M; Nieto, Pedro M

    2010-07-12

    The direct evaluation of dissociation constants (K(D)) from the variation of saturation transfer difference (STD) NMR spectroscopy values with the receptor-ligand ratio is not feasible due to the complex dependence of STD intensities on the spectral properties of the observed signals. Indirect evaluation, by competition experiments, allows the determination of K(D), as long as a ligand of known affinity is available for the protein under study. Herein, we present a novel protocol based on STD NMR spectroscopy for the direct measurements of receptor-ligand dissociation constants (K(D)) from single-ligand titration experiments. The influence of several experimental factors on STD values has been studied in detail, confirming the marked impact on standard determinations of protein-ligand affinities by STD NMR spectroscopy. These factors, namely, STD saturation time, ligand residence time in the complex, and the intensity of the signal, affect the accumulation of saturation in the free ligand by processes closely related to fast protein-ligand rebinding and longitudinal relaxation of the ligand signals. The proposed method avoids the dependence of the magnitudes of ligand STD signals at a given saturation time on spurious factors by constructing the binding isotherms using the initial growth rates of the STD amplification factors, in a similar way to the use of NOE growing rates to estimate cross relaxation rates for distance evaluations. Herein, it is demonstrated that the effects of these factors are cancelled out by analyzing the protein-ligand association curve using STD values at the limit of zero saturation time, when virtually no ligand rebinding or relaxation takes place. The approach is validated for two well-studied protein-ligand systems: the binding of the saccharides GlcNAc and GlcNAcbeta1,4GlcNAc (chitobiose) to the wheat germ agglutinin (WGA) lectin, and the interaction of the amino acid L-tryptophan to bovine serum albumin (BSA). In all cases, the experimental K(D) measured under different experimental conditions converged to the thermodynamic values. The proposed protocol allows accurate determinations of protein-ligand dissociation constants, extending the applicability of the STD NMR spectroscopy for affinity measurements, which is of particular relevance for those proteins for which a ligand of known affinity is not available.

  13. Bowl adamanzanes--bicyclic tetraamines: syntheses and crystal structures of complexes with cobalt(III) and chelating coordinated oxo-anions.

    PubMed

    Broge, Louise; Søtofte, Inger; Jensen, Kristian; Jensen, Nicolai; Pretzmann, Ulla; Springborg, Johan

    2007-09-14

    Seven cobalt(III) complexes of the macrobicyclic tetraamine ligand [2(4).3(1)]adamanzane ([2(4).3(1)]adz) are reported along with the crystal structure of six of these complexes. The solid state and solution structures are discussed, and a detailed assignment of the NMR spectra of the sulfato complex is provided. Four of the seven complexes contain a chelate coordinating oxo-anion (sulfate, formiate, nitrate, carbonate). Equilibration of these species with the corresponding diaqua complex is generally slow. The rates of equilibration in 5 mol dm(-3) perchloric acid at 25 degrees C have been measured, yielding half lives of 20 min, 10 min and 3 h for the sulfato, formiato and carbonato species respectively. The corresponding reaction for the nitrato complex occurs with a half life of less than 3 min. The concentration acid dissociation constant for the Co([2(4).3(1)]adz)(HCO(3))(2+) ion has been measured to K(a) = 0.33 mol dm(-3) [25 degrees C, I = 2 mol dm(-3)] and K(a) = 0.15 mol dm(-3) [25 degrees C, I = 5 mol dm(-3)]. The propensity for coordination of sulfate was found to be large enough for a quantitative conversion of the carbonato complex to the sulfato complex to occur in 3 mol dm(-3) triflic acid containing a small sulfate contamination. On this basis the decarboxylation in 5 mol dm(-3) triflic acid of the corresponding cobalt(III) carbonato complex of the larger macrobicyclic tetraamine ligand [3(5)]adz was reinvestigated and found to lead to the sulfato complex as well. The difference in exchange rate of the oxo-anion ligands for the cobalt(III) complexes of the two adamanzane ligands is discussed and attributed to fundamental differences in the molecular structure where an inverted configuration of the secondary non-bridged amine groups is seen for the complexes of the larger [3(5)]adz ligand. The high affinity for chelating coordination of oxo-anions for these two cobalt(iii)-adamanzane-moieties is rationalised on basis of the N-Co-N angles. N-Co-N angles are compared for a series of adamanzane complexes, and the structural consequences are discussed.

  14. Mechanistic and Structural Analyses of the Role of His67 in the Yeast Polyamine Oxidase Fms1†

    PubMed Central

    Adachi, Mariya S.; Taylor, Alexander B.; Hart, P. John; Fitzpatrick, Paul F.

    2012-01-01

    The flavoprotein oxidase Fms1 from Saccharomyces cerevisiae catalyzes the oxidation of spermine and N1-acetylspermine to spermidine and 3-aminopropanal or N-acetyl-3-aminopropanal. Within the active site of Fms1, His67 is positioned to form hydrogen bonds with the polyamine substrate. This residue is also conserved in other polyamine oxidases. The catalytic properties of H67Q, H67N, and H67A Fms1 have been characterized to evaluate the role of this residue in catalysis. With both spermine and N1-acetylspermine as the amine substrate, the value of the first-order rate constant for flavin reduction decreases 2–3 orders of magnitude, with the H67Q mutation having the smallest effect and H67N the largest. The kcat/KO2 value changes very little upon mutation with N1-acetylspermine as the amine substrate and decreases only an order of magnitude with spermine. The kcat/KM-pH profiles with N1-acetylspermine are bell-shaped for all the mutants; the similarity to the profile of the wild-type enzyme rules out His67 as being responsible for either of the pKa values. The pH profiles for the rate constant for flavin reduction for all the mutant enzymes similarly show the same pKa as wild-type Fms1, about ~7.4; this pKa is assigned to the substrate N4. The kcat/KO2-pH profiles for wild-type Fms1 and the H67A enzyme both show a pKa of about ~6.9; this suggests His67 is not responsible for this pH behaviour. With the H67Q, H67N, and H67A enzymes the kcat value decreases when a single residue is protonated, as is the case with the wild-type enzyme. The structure of H67Q Fms1 has been determined at a resolution of 2.4 Å. The structure shows that the mutation disrupts a hydrogen bond network in the active site, suggesting that His67 is important both for direct interactions with the substrate and to maintain the overall active site structure. PMID:22642831

  15. Analysis of Fade Detection and Compensation Experimental Results in a Ka-Band Satellite System. Degree awarded by Akron Univ., May 2000

    NASA Technical Reports Server (NTRS)

    Johnson, Sandra

    2001-01-01

    The frequency bands being used for new satellite communication systems are constantly increasing to accommodate the requirements for additional capacity. At these higher frequencies, propagation impairments that did not significantly affect the signal at lower frequencies begin to have considerable impact. In Ka-band, the next logical commercial frequency band to be used for satellite communication, attenuation of the signal due to rain is a primary concern. An experimental satellite built by NASA, the Advanced Communication Technology Satellite (ACTS), launched in September 1993, is the first US communication satellite operating in the Ka-band. In addition to higher carrier frequencies, a number of other new technologies, including onboard baseband processing, multiple beam antennas, and rain fade detection and compensation techniques, were designed into the ACTS. Verification experiments have been conducted since the launch to characterize the new technologies. The focus of this thesis is to describe and validate the method used by the ACTS Very Small Aperture Terminal (VSAT) ground stations in detecting the presence of fade in the communication signal and to adaptively compensate for it by the addition of burst rate reduction and forward error correction. Measured data obtained from the ACTS program is used to validate the compensation technique. In this thesis, models in MATLAB are developed to statistically characterize the increased availability achieved by the compensation techniques in terms of the bit error rate time enhancement factor. Several improvements to the ACTS technique are discussed and possible implementations for future Ka-band systems are also presented.

  16. High-dimensional statistical inference: From vector to matrix

    NASA Astrophysics Data System (ADS)

    Zhang, Anru

    Statistical inference for sparse signals or low-rank matrices in high-dimensional settings is of significant interest in a range of contemporary applications. It has attracted significant recent attention in many fields including statistics, applied mathematics and electrical engineering. In this thesis, we consider several problems in including sparse signal recovery (compressed sensing under restricted isometry) and low-rank matrix recovery (matrix recovery via rank-one projections and structured matrix completion). The first part of the thesis discusses compressed sensing and affine rank minimization in both noiseless and noisy cases and establishes sharp restricted isometry conditions for sparse signal and low-rank matrix recovery. The analysis relies on a key technical tool which represents points in a polytope by convex combinations of sparse vectors. The technique is elementary while leads to sharp results. It is shown that, in compressed sensing, delta kA < 1/3, deltak A+ thetak,kA < 1, or deltatkA < √( t - 1)/t for any given constant t ≥ 4/3 guarantee the exact recovery of all k sparse signals in the noiseless case through the constrained ℓ1 minimization, and similarly in affine rank minimization delta rM < 1/3, deltar M + thetar, rM < 1, or deltatrM< √( t - 1)/t ensure the exact reconstruction of all matrices with rank at most r in the noiseless case via the constrained nuclear norm minimization. Moreover, for any epsilon > 0, delta kA < 1/3 + epsilon, deltak A + thetak,kA < 1 + epsilon, or deltatkA< √(t - 1) / t + epsilon are not sufficient to guarantee the exact recovery of all k-sparse signals for large k. Similar result also holds for matrix recovery. In addition, the conditions delta kA<1/3, deltak A+ thetak,kA<1, delta tkA < √(t - 1)/t and deltarM<1/3, delta rM+ thetar,rM<1, delta trM< √(t - 1)/ t are also shown to be sufficient respectively for stable recovery of approximately sparse signals and low-rank matrices in the noisy case. For the second part of the thesis, we introduce a rank-one projection model for low-rank matrix recovery and propose a constrained nuclear norm minimization method for stable recovery of low-rank matrices in the noisy case. The procedure is adaptive to the rank and robust against small perturbations. Both upper and lower bounds for the estimation accuracy under the Frobenius norm loss are obtained. The proposed estimator is shown to be rate-optimal under certain conditions. The estimator is easy to implement via convex programming and performs well numerically. The techniques and main results developed in the chapter also have implications to other related statistical problems. An application to estimation of spiked covariance matrices from one-dimensional random projections is considered. The results demonstrate that it is still possible to accurately estimate the covariance matrix of a high-dimensional distribution based only on one-dimensional projections. For the third part of the thesis, we consider another setting of low-rank matrix completion. Current literature on matrix completion focuses primarily on independent sampling models under which the individual observed entries are sampled independently. Motivated by applications in genomic data integration, we propose a new framework of structured matrix completion (SMC) to treat structured missingness by design. Specifically, our proposed method aims at efficient matrix recovery when a subset of the rows and columns of an approximately low-rank matrix are observed. We provide theoretical justification for the proposed SMC method and derive lower bound for the estimation errors, which together establish the optimal rate of recovery over certain classes of approximately low-rank matrices. Simulation studies show that the method performs well in finite sample under a variety of configurations. The method is applied to integrate several ovarian cancer genomic studies with different extent of genomic measurements, which enables us to construct more accurate prediction rules for ovarian cancer survival.

  17. Critical evaluation of methods to incorporate entropy loss upon binding in high-throughput docking.

    PubMed

    Salaniwal, Sumeet; Manas, Eric S; Alvarez, Juan C; Unwalla, Rayomand J

    2007-02-01

    Proper accounting of the positional/orientational/conformational entropy loss associated with protein-ligand binding is important to obtain reliable predictions of binding affinity. Herein, we critically examine two simplified statistical mechanics-based approaches, namely a constant penalty per rotor method, and a more rigorous method, referred to here as the partition function-based scoring (PFS) method, to account for such entropy losses in high-throughput docking calculations. Our results on the estrogen receptor beta and dihydrofolate reductase proteins demonstrate that, while the constant penalty method over-penalizes molecules for their conformational flexibility, the PFS method behaves in a more "DeltaG-like" manner by penalizing different rotors differently depending on their residual entropy in the bound state. Furthermore, in contrast to no entropic penalty or the constant penalty approximation, the PFS method does not exhibit any bias towards either rigid or flexible molecules in the hit list. Preliminary enrichment studies using a lead-like random molecular database suggest that an accurate representation of the "true" energy landscape of the protein-ligand complex is critical for reliable predictions of relative binding affinities by the PFS method. Copyright 2006 Wiley-Liss, Inc.

  18. Mobility-based correction for accurate determination of binding constants by capillary electrophoresis-frontal analysis.

    PubMed

    Qian, Cheng; Kovalchik, Kevin A; MacLennan, Matthew S; Huang, Xiaohua; Chen, David D Y

    2017-06-01

    Capillary electrophoresis frontal analysis (CE-FA) can be used to determine binding affinity of molecular interactions. However, its current data processing method mandate specific requirement on the mobilities of the binding pair in order to obtain accurate binding constants. This work shows that significant errors are resulted when the mobilities of the interacting species do not meet these requirements. Therefore, the applicability of CE-FA in many real word applications becomes questionable. An electrophoretic mobility-based correction method is developed in this work based on the flux of each species. A simulation program and a pair of model compounds are used to verify the new equations and evaluate the effectiveness of this method. Ibuprofen and hydroxypropyl-β-cyclodextrinare used to demonstrate the differences in the obtained binding constant by CE-FA when different calculation methods are used, and the results are compared with those obtained by affinity capillary electrophoresis (ACE). The results suggest that CE-FA, with the mobility-based correction method, can be a generally applicable method for a much wider range of applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Concentration-related response potentiometric titrations to study the interaction of small molecules with large biomolecules.

    PubMed

    Hamidi-Asl, Ezat; Daems, Devin; De Wael, Karolien; Van Camp, Guy; Nagels, Luc J

    2014-12-16

    In the present paper, the utility of a special potentiometric titration approach for recognition and calculation of biomolecule/small-molecule interactions is reported. This approach is fast, sensitive, reproducible, and inexpensive in comparison to the other methods for the determination of the association constant values (Ka) and the interaction energies (ΔG). The potentiometric titration measurement is based on the use of a classical polymeric membrane indicator electrode in a solution of the small-molecule ligand. The biomolecule is used as a titrant. The potential is measured versus a reference electrode and transformed into a concentration-related signal over the entire concentration interval, also at low concentrations, where the millivolt (y-axis) versus log canalyte (x-axis) potentiometric calibration curve is not linear. In the procedure, Ka is calculated for the interaction of cocaine with a cocaine binding aptamer and with an anticocaine antibody. To study the selectivity and cross-reactivity, other oligonucleotides and aptamers are tested, as well as other small ligand molecules such as tetrakis(4-chlorophenyl)borate, metergoline, lidocaine, and bromhexine. The calculated Ka compared favorably to the value reported in the literature using surface plasmon resonance. The potentiometric titration approach called "concentration-related response potentiometry" is used to study molecular interaction for seven macromolecular target molecules and four small-molecule ligands.

  20. Chronology and provenance of last-glacial (Peoria) loess in western Iowa and paleoclimatic implications

    USGS Publications Warehouse

    Muhs, Daniel R.; Bettis, E. Arthur; Roberts, Helen M.; Harlan, Stephen S.; Paces, James B.; Reynolds, Richard L.

    2013-01-01

    Geologic archives show that the Earth was dustier during the last glacial period. One model suggests that increased gustiness (stronger, more frequent winds) enhanced dustiness. We tested this at Loveland, Iowa, one of the thickest deposits of last-glacial-age (Peoria) loess in the world. Based on K/Rb and Ba/Rb, loess was derived not only from glaciogenic sources of the Missouri River, but also distal loess from non-glacial sources in Nebraska. Optically stimulated luminescence (OSL) ages provide the first detailed chronology of Peoria Loess at Loveland. Deposition began after ~ 27 ka and continued until ~ 17 ka. OSL ages also indicate that mass accumulation rates (MARs) of loess were not constant. MARs were highest and grain size was coarsest during the time of middle Peoria Loess accretion, ~ 23 ka, when ~ 10 m of loess accumulated in no more than ~ 2000 yr and possibly much less. The timing of coarsest grain size and highest MAR, indicating strongest winds, coincides with a summer-insolation minimum at high latitudes in North America and the maximum southward extent of the Laurentide ice sheet. These observations suggest that increased dustiness during the last glacial period was driven largely by enhanced gustiness, forced by a steepened meridional temperature gradient.

  1. [Traditional Chinese medicine pairs (III)--effect of extract of Ginseng Radix et Rhizoma and Puerariae Lobatae Radix on intestinal absorption in rats].

    PubMed

    Chen, Yi-hang; Li, Meng-xuan; Meng, Zhao-qing; Yang, Jiao-jiao; Huang, Wen-zhe; Wang, Zhen-zhong; Wang, Yue-sheng; Xiao, Wei

    2015-08-01

    This study focused on the intestinal absorption of traditional Chinese medicines (TCM) to reveal the scientific connotation of the compatibility of TCM pairs. The single pass intestinal perfusion (SPIP) was used in rats to compare the absorption of single extracts from Puerariae Lobatae Radix, single extracts from Ginseng Radix et Rhizoma, combined extracts from Puerariae Lobatae Radix and Ginseng Radix et Rhizoma and Puerariae Lobatae Radix and Ginseng Radix et Rhizoma mixture in rats. The content of puerarin, ginsenoside Rg1, ginsenoside Re and ginsenoside Rb1 in liquid were tested by HPLC. The speed constant (Ka) and apparent permeability coefficients (Papp) were calculated and compared. Specifically, the order of puerarin Ka and Papp values from high to low was Ginseng Radix et Rhizoma and Puerariae Lobatae Radix mixture > single extracts from Puerariae Lobatae Radix > combined extracts from Ginseng Radix et Rhizoma and Puerariae Lobatae Radix; the order of ginsenosides Ka and Papp values from high to low was Ginseng Radix et Rhizoma and Puerariae Lobatae Radix mixture > single extracts from Ginseng Radix et Rhizoma > combined extracts from Ginseng Radix et Rhizoma and Puerariae Lobatae Radix. The combined administration of Ginseng Radix et Rhizoma and Puerariae Lobatae Radix may improve the absorption in the intestinal tract.

  2. Reaction of ferrate (VI)/ferrate (V) with hydrogen peroxide and superoxide anion--a stopped-flow and premix pulse radiolysis study.

    PubMed

    Rush, J D; Zhao, Z; Bielski, B H

    1996-03-01

    The reduction of ferrate(VI) to ferrate(V) by superoxide ions was studied over the pH range 2.6-13.0 using the premix pulse radiolysis technique. The pH dependence indicates that only the unstable protonated forms of ferrate, H2FeO4 (pKa3.5) and HFeO4- (pKa7.3) are reactive, k(HFeO4(-) + O2) = (1.7 +/- 0.2) x 10(7) M-1 s-1. The stable ferrate ion, FeO4(2-), showed no significant reactivity towards either hydrogen peroxide or superoxide anion. The rate constants for the spontaneous dimerization and decomposition of the protonated ferrates, e.g. k(HFeO4(-) + HFe04) approximately 250 M-1s-1, are orders of magnitude slower than their corresponding reduction reduction by superoxide indicating an outer-sphere mode of electron transfer for the latter process. In contrast the ferrate(VI) species H3FeO4+ (pKa = 1.6 +/- 0.2), H2FeO4, and HFeO4- oxidize hydrogen peroxide, e.g. k(HFeO4(-) + H2O2) = 170 M-1 s-1), at rates which correspond closely to their dimerization rates suggesting an inner-sphere controlled mechanism.

  3. A high-resolution photoelectron imaging and theoretical study of CP- and C2P-

    NASA Astrophysics Data System (ADS)

    Czekner, Joseph; Cheung, Ling Fung; Johnson, Eric L.; Fortenberry, Ryan C.; Wang, Lai-Sheng

    2018-01-01

    The discovery of interstellar anions has been a milestone in astrochemistry. In the search for new interstellar anions, CP- and C2P- are viable candidates since their corresponding neutrals have already been detected astronomically. However, scarce data exist for these negatively charged species. Here we report the electron affinities of CP and C2P along with the vibrational frequencies of their anions using high-resolution photoelectron imaging. These results along with previous spectroscopic data of the neutral species are used further to benchmark very accurate quartic force field quantum chemical methods that are applied to CP, CP-, C2P, and two electronic states of C2P-. The predicted electron affinities, vibrational frequencies, and rotational constants are in excellent agreement with the experimental data. The electron affinities of CP (2.8508 ± 0.0007 eV) and C2P (2.6328 ± 0.0006 eV) are measured accurately and found to be quite high, suggesting that the CP- and C2P- anions are thermodynamically stable and possibly observable. The current study suggests that the combination of high-resolution photoelectron imaging and quantum chemistry can be used to determine accurate molecular constants for exotic radical species of astronomical interest.

  4. Interaction of flavonols with human serum albumin: a biophysical study showing structure-activity relationship and enhancement when coated on silver nanoparticles.

    PubMed

    Das, Pratyusa; Chaudhari, Sunil Kumar; Das, Asmita; Kundu, Somashree; Saha, Chabita

    2018-04-24

    Binding affinities of flavonols namely quercetin, myricetin, and kaempferol to human serum albumin (HSA) were determined fluorimetrically and the order was observed to be myricetin > quercetin > kaempferol demonstrating structure-activity relationship. Quercetin-coated silver nanoparticles (AgNPs) show higher binding affinity to HSA compared to free quercetin with binding constants 6.04 × 10 7  M -1 and 4.2 × 10 6  M -1 , respectively. Using site-specific markers it is concluded that free quercetin and that coated on AgNPs bind at different sites. Significant structural changes in circular dichroism (CD) spectra of HSA were recorded with quercetin-coated AgNPs compared to free quercetin. These results were further substantiated by time-resolved fluorescence spectroscopy where fluorescence life time of the tryptophan residue in HSA-quercetin-coated AgNPs complex decreased to 3.63 ns from 4.22 ns in HSA-quercetin complex. Isothermal calorimetric studies reveal two binding modes for quercetin-coated AgNPs and also higher binding constants compared to free quercetin. These higher binding affinities are attributed to altered properties of quercetin when coated on AgNPs enabling it to reach the binding sites other than site II where free quercetin mainly binds.

  5. A high-resolution photoelectron imaging and theoretical study of CP- and C2P.

    PubMed

    Czekner, Joseph; Cheung, Ling Fung; Johnson, Eric L; Fortenberry, Ryan C; Wang, Lai-Sheng

    2018-01-28

    The discovery of interstellar anions has been a milestone in astrochemistry. In the search for new interstellar anions, CP - and C 2 P - are viable candidates since their corresponding neutrals have already been detected astronomically. However, scarce data exist for these negatively charged species. Here we report the electron affinities of CP and C 2 P along with the vibrational frequencies of their anions using high-resolution photoelectron imaging. These results along with previous spectroscopic data of the neutral species are used further to benchmark very accurate quartic force field quantum chemical methods that are applied to CP, CP - , C 2 P, and two electronic states of C 2 P - . The predicted electron affinities, vibrational frequencies, and rotational constants are in excellent agreement with the experimental data. The electron affinities of CP (2.8508 ± 0.0007 eV) and C 2 P (2.6328 ± 0.0006 eV) are measured accurately and found to be quite high, suggesting that the CP - and C 2 P - anions are thermodynamically stable and possibly observable. The current study suggests that the combination of high-resolution photoelectron imaging and quantum chemistry can be used to determine accurate molecular constants for exotic radical species of astronomical interest.

  6. Modelling of the acid-base properties of natural and synthetic adsorbent materials used for heavy metal removal from aqueous solutions.

    PubMed

    Pagnanelli, Francesca; Vegliò, Francesco; Toro, Luigi

    2004-02-01

    In this paper a comparison about kinetic behaviour, acid-base properties and copper removal capacities was carried out between two different adsorbent materials used for heavy metal removal from aqueous solutions: an aminodiacetic chelating resin as commercial product (Lewatit TP207) and a lyophilised bacterial biomass of Sphaerotilus natans. The acid-base properties of a S. natans cell suspension were well described by simplified mechanistic models without electrostatic corrections considering two kinds of weakly acidic active sites. In particular the introduction of two-peak distribution function for the proton affinity constants allows a better representation of the experimental data reproducing the site heterogeneity. A priori knowledge about resin functional groups (aminodiacetic groups) is the base for preliminary simulations of titration curve assuming a Donnan gel structure for the resin phase considered as a concentrated aqueous solution of aminodiacetic acid (ADA). Departures from experimental and simulated data can be interpreted by considering the heterogeneity of the functional groups and the effect of ionic concentration in the resin phase. Two-site continuous model describes adequately the experimental data. Moreover the values of apparent protonation constants (as adjustable parameters found by non-linear regression) are very near to the apparent constants evaluated by a Donnan model assuming the intrinsic constants in resin phase equal to the equilibrium constants in aqueous solution of ADA and considering the amphoteric nature of active sites for the evaluation of counter-ion concentration in the resin phase. Copper removal outlined the strong affinity of the active groups of the resin for this ion in solution compared to the S. natans biomass according to the complexation constants between aminodiacetic and mono-carboxylic groups and copper ions.

  7. Three new defined proton affinities for polybasic molecules in the gas-phase: Proton microaffinity, proton macroaffinity and proton overallaffinity

    NASA Astrophysics Data System (ADS)

    Salehzadeh, Sadegh; Bayat, Mehdi

    2006-08-01

    A theoretical study on complete protonation of a series of tetrabasic molecules with general formula N[(CH 2) nNH 2][(CH 2) mNH 2][(CH 2) pNH 2] (tren, pee, ppe, tpt, epb and ppb) is reported. For first time, three kinds of gas-phase proton affinities for each polybasic molecule are defined as: 'proton microaffinity (PA n, i)', 'proton macroaffinity (PA)' and 'proton overall affinity ( PA)'. The variations of calculated logPA in the series of these molecules is very similar to that of their measured log Kn. There is also a good correlation between the calculated gas-phase proton macroaffinities and proton overallaffinities with corresponding equilibrium macroconstants and overall protonation constants in solution.

  8. Complex high affinity interactions occur between MHCI and superantigens

    NASA Technical Reports Server (NTRS)

    Chapes, S. K.; Herpich, A. R.; Spooner, B. S. (Principal Investigator)

    1998-01-01

    Staphylococcal enterotoxins A and C1 (SEA or SEC1) bound to major histocompatibility-I (MHCI) molecules with high affinity (binding constants ranging from 1.1 microM to 79 nM). SEA and SEC1 directly bound MHCI molecules that had been captured by monoclonal antibodies specific for H-2Kk, H-2Dk, or both. In addition, MHCI-specific antibodies inhibited the binding of SEC1 to LM929 cells and SEA competitively inhibited SEC1 binding; indicating that the superantigens bound to MHCI on the cell surface. The affinity and number of superantigen binding sites differed depending on whether MHCI was expressed in the membrane of LM929 cells or whether it was captured. These data support the hypothesis that MHCI molecules can serve as superantigen receptors.

  9. Alternating carrier models of asymmetric glucose transport violate the energy conservation laws.

    PubMed

    Naftalin, Richard J

    2008-11-01

    Alternating access transporters with high-affinity externally facing sites and low-affinity internal sites relate substrate transit directly to the unliganded asymmetric "carrier" (Ci) distribution. When both bathing solutions contain equimolar concentrations of ligand, zero net flow of the substrate-carrier complex requires a higher proportion of unliganded low-affinity inside sites (proportional, variant 1/KD(in)) and slower unliganded "free" carrier transit from inside to outside than in the reverse direction. However, asymmetric rates of unliganded carrier movement, kij, imply that an energy source, DeltaGcarrier = RT ln (koi/kio) = RT ln (Cin/Cout) = RT ln (KD(in)/KD(out)), where R is the universal gas constant (8.314 Joules/M/K degrees), and T is the temperature, assumed here to be 300 K degrees , sustains the asymmetry. Without this invalid assumption, the constraints of carrier path cyclicity, combined with asymmetric ligand affinities and equimolarity at equilibrium, are irreconcilable, and any passive asymmetric uniporter or cotransporter model system, e.g., Na-glucose cotransporters, espousing this fundamental error is untenable. With glucose transport via GLUT1, the higher maximal rate and Km of net ligand exit compared to net ligand entry is only properly simulated if ligand transit occurs by serial dissociation-association reactions between external high-affinity and internal low-affinity immobile sites. Faster intersite transit rates occur from lower-affinity sites than from higher-affinity sites and require no other energy source to maintain equilibrium. Similar constraints must apply to cotransport.

  10. Imidazole C-2 Hydrogen/Deuterium Exchange Reaction at Histidine for Probing Protein Structure and Function with MALDI Mass Spectrometry

    PubMed Central

    Hayashi, Naoka; Kuyama, Hiroki; Nakajima, Chihiro; Kawahara, Kazuki; Miyagi, Masaru; Nishimura, Osamu; Matsuo, Hisayuki; Nakazawa, Takashi

    2015-01-01

    We present a mass spectrometric method for analyzing protein structure and function, based on the imidazole C-2 or histidine Cε1 hydrogen/deuterium (H/D) exchange reaction, which is intrinsically second order with respect to the concentrations of the imidazolium cation and OD− in D2O. The second-order rate constant (k2) of this reaction was calculated from the pH-dependency of the pseudo-first-order rate constant (kφ) obtained from the change of average mass ΔMr (0 ≤ ΔMr < 1) of a peptide fragment containing a defined histidine residue at incubation time (t) such that kφ = − [ln(1−ΔMr)]/t. We preferred using k2 rather than kφ because k2max (maximal value of k2) was empirically related to pKa as illustrated with a Brønsted plot: logk2max=-0.7pKa+α (α is an arbitrary constant), so that we could analyze the effect of structure on the H/D-exchange rate in terms of log(k2max/k2) representing the deviation of k2 from k2max. In the catalytic site of bovine ribonuclease A, His12 showed much larger change in log(k2max/k2) compared with His119 upon binding with cytidine 3′-monophosphate, as anticipated from the X-ray structures and the possible change in solvent accessibility. However, there is a need of considering the hydrogen bonds of the imidazole group with non-dissociable groups to interpret an extremely slow H/D exchange rate of His48 in partially solvent-exposed situation. PMID:24606199

  11. Constant pH molecular dynamics of proteins in explicit solvent with proton tautomerism.

    PubMed

    Goh, Garrett B; Hulbert, Benjamin S; Zhou, Huiqing; Brooks, Charles L

    2014-07-01

    pH is a ubiquitous regulator of biological activity, including protein-folding, protein-protein interactions, and enzymatic activity. Existing constant pH molecular dynamics (CPHMD) models that were developed to address questions related to the pH-dependent properties of proteins are largely based on implicit solvent models. However, implicit solvent models are known to underestimate the desolvation energy of buried charged residues, increasing the error associated with predictions that involve internal ionizable residue that are important in processes like hydrogen transport and electron transfer. Furthermore, discrete water and ions cannot be modeled in implicit solvent, which are important in systems like membrane proteins and ion channels. We report on an explicit solvent constant pH molecular dynamics framework based on multi-site λ-dynamics (CPHMD(MSλD)). In the CPHMD(MSλD) framework, we performed seamless alchemical transitions between protonation and tautomeric states using multi-site λ-dynamics, and designed novel biasing potentials to ensure that the physical end-states are predominantly sampled. We show that explicit solvent CPHMD(MSλD) simulations model realistic pH-dependent properties of proteins such as the Hen-Egg White Lysozyme (HEWL), binding domain of 2-oxoglutarate dehydrogenase (BBL) and N-terminal domain of ribosomal protein L9 (NTL9), and the pKa predictions are in excellent agreement with experimental values, with a RMSE ranging from 0.72 to 0.84 pKa units. With the recent development of the explicit solvent CPHMD(MSλD) framework for nucleic acids, accurate modeling of pH-dependent properties of both major class of biomolecules-proteins and nucleic acids is now possible. © 2013 Wiley Periodicals, Inc.

  12. Combined ESR/U-series chronology of Acheulian hominid-bearing layers at Trinchera Galería site, Atapuerca, Spain.

    PubMed

    Falguères, Christophe; Bahain, Jean-Jacques; Bischoff, James L; Pérez-González, Alfredo; Ortega, Ana Isabel; Ollé, Andreu; Quiles, Anita; Ghaleb, Bassam; Moreno, Davinia; Dolo, Jean-Michel; Shao, Qingfeng; Vallverdú, Josep; Carbonell, Eudald; Bermúdez de Castro, Jose María; Arsuaga, Juan Luis

    2013-08-01

    The Sierra de Atapuerca, northern Spain, is known from many prehistoric and palaeontological sites documenting human prehistory in Europe. Three major sites, Gran Dolina, Galería and Sima del Elefante, range in age from the oldest hominin of Western Europe dated to 1.1 to 1.3 Ma (millions of years ago) at Sima del Elefante to c.a. 0.2 Ma on the top of the Galería archaeological sequence. Recently, a chronology based on luminescence methods (Thermoluminescence [TL] and Infrared Stimulated Luminescence [IRSL]) applied to cave sediments was published for the Gran Dolina and Galería sites. The authors proposed for Galería an age of 450 ka (thousands of years ago) for the units lower GIII and GII, suggesting that the human occupation there is younger than the hominid remains of Sima de los Huesos (>530 ka) around 1 km away. In this paper, we present new results obtained by combined Electron Spin Resonance/Uranium-series (ESR/U-series) dating on 20 herbivorous teeth from different levels at the Galería site. They are in agreement with the TL results for the upper part of the stratigraphic sequence (GIV and GIIIb), in the range of between 200 and 250 ka. But for the GIIIa to GIIb levels, the TL ages become abruptly older by 200 ka while ESR ages remain relatively constant. Finally, the TL and ESR data agree in the lowest part of the section (GIIa); both fall in the range of around 350-450 ka. Our results suggest a different interpretation for the GII, GIII and GIV units of Galería and the upper part of Gran Dolina (TD10 and TD11) than obtained by TL. The ESR/U-series results are supported by a Bayesian analysis, which allows a better integration between stratigraphic information and radiometric data. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Combined ESR/U-series chronology of Acheulian hominid-bearing layers at Trinchera Galería site, Atapuerca, Spain

    USGS Publications Warehouse

    Falguères, Christophe; Bahain, Jean-Jacques; Bischoff, James L.; Pérez-González, Alfredo; Ortega, Ana Isabel; Ollé, Andreu; Quilles, Anita; Ghaleb, Bassam; Moreno, Davinia; Dolo, Jean-Michel; Shao, Qingfeng; Vallverdú, Josep; Carbonell, Eudald; María Bermúdez de Castro, Jose; Arsuaga, Juan Luis

    2013-01-01

    The Sierra de Atapuerca, northern Spain, is known from many prehistoric and palaeontological sites documenting human prehistory in Europe. Three major sites, Gran Dolina, Galería and Sima del Elefante, range in age from the oldest hominin of Western Europe dated to 1.1 to 1.3 Ma (millions of years ago) at Sima del Elefante to c.a. 0.2 Ma on the top of the Galería archaeological sequence. Recently, a chronology based on luminescence methods (Thermoluminescence [TL] and Infrared Stimulated Luminescence [IRSL]) applied to cave sediments was published for the Gran Dolina and Galería sites. The authors proposed for Galería an age of 450 ka (thousands of years ago) for the units lower GIII and GII, suggesting that the human occupation there is younger than the hominid remains of Sima de los Huesos (>530 ka) around 1 km away. In this paper, we present new results obtained by combined Electron Spin Resonance/Uranium-series (ESR/U-series) dating on 20 herbivorous teeth from different levels at the Galería site. They are in agreement with the TL results for the upper part of the stratigraphic sequence (GIV and GIIIb), in the range of between 200 and 250 ka. But for the GIIIa to GIIb levels, the TL ages become abruptly older by 200 ka while ESR ages remain relatively constant. Finally, the TL and ESR data agree in the lowest part of the section (GIIa); both fall in the range of around 350–450 ka. Our results suggest a different interpretation for the GII, GIII and GIV units of Galería and the upper part of Gran Dolina (TD10 and TD11) than obtained by TL. The ESR/U-series results are supported by a Bayesian analysis, which allows a better integration between stratigraphic information and radiometric data.

  14. Ligand- and cell-dependent determinants of internalization and cAMP modulation by delta opioid receptor (DOR) agonists

    PubMed Central

    Charfi, Iness; Nagi, Karim; Mnie-Filali, Ouissame; Thibault, Dominic; Balboni, Gianfranco; Schiller, Peter W.; Trudeau, Louis-Eric

    2014-01-01

    Signaling bias refers to G protein-coupled receptor ligand ability to preferentially activate one type of signal over another. Bias to evoke signaling as opposed to sequestration has been proposed as a predictor of opioid ligand potential for generating tolerance. Here we measured whether delta opioid receptor agonists preferentially inhibited cyclase activity over internalization in HEK cells. Efficacy (τ) and affinity (KA) values were estimated from functional data and bias was calculated from efficiency coefficients (log τ/KA). This approach better represented the data as compared to alternative methods that estimate bias exclusively from τ values. Log (τ/KA) coefficients indicated that SNC-80 and UFP-512 promoted cyclase inhibition more efficiently than DOR internalization as compared to DPDPE (bias factor for SNC-80: 50 and for UFP-512: 132). Molecular determinants of internalization were different in HEK293 cells and neurons with βarrs contributing to internalization in both cell types, while PKC and GRK2 activities were only involved in neurons. Rank orders of ligand ability to engage different internalization mechanisms in neurons were compared to rank order of Emax values for cyclase assays in HEK cells. Comparison revealed a significant reversal in rank order for cyclase Emax values and βarr-dependent internalization in neurons, indicating that these responses were ligand-specific. Despite this evidence, and because kinases involved in internalization were not the same across cellular backgrounds, it is not possible to assert if the magnitude and nature of bias revealed by rank orders of maximal responses is the same as the one measured in HEK cells. PMID:24022593

  15. Emulsion Solvent Evaporation-Induced Self-Assembly of Block Copolymers Containing pH-Sensitive Block.

    PubMed

    Wu, Yuqing; Wang, Ke; Tan, Haiying; Xu, Jiangping; Zhu, Jintao

    2017-09-26

    A simple yet efficient method is developed to manipulate the self-assembly of pH-sensitive block copolymers (BCPs) confined in emulsion droplets. Addition of acid induces significant variation in morphological transition (e.g., structure and surface composition changes) of the polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) assemblies, due to the hydrophobic-hydrophilic transition of the pH-sensitive P4VP block via protonation. In the case of pH > pKa (P4VP) (pKa (P4VP) = 4.8), the BCPs can self-assemble into pupa-like particles because of the nearly neutral wetting of PS and P4VP blocks at the oil/water interface. As expected, onion-like particles obtained when pH is slightly lower than pKa (P4VP) (e.g., pH = 3.00), due to the interfacial affinity to the weakly hydrophilic P4VP block. Interestingly, when pH was further decreased to ∼2.5, interfacial instability of the emulsion droplets was observed, and each emulsion droplet generated nanoscale assemblies including vesicles, worm-like and/or spherical micelles rather than a nanostructured microparticle. Furthermore, homopolymer with different molecular weights and addition ratio are employed to adjust the interactions among copolymer blocks. By this means, particles with hierarchical structures can be obtained. Moreover, owing to the kinetically controlled processing, we found that temperature and stirring speed, which can significantly affect the kinetics of the evaporation of organic solvent and the formation of particles, played a key role in the morphology of the assemblies. We believe that manipulation of the property for the aqueous phase is a promising strategy to rationally design and fabricate polymeric assemblies with desirable shapes and internal structures.

  16. Simultaneous addition of two ligands: a potential strategy for estimating divalent ion affinities in EF-hand proteins by isothermal titration calorimetry.

    PubMed

    Henzl, Michael T; Markus, Lindsey A; Davis, Meredith E; McMillan, Andrew T

    2013-03-01

    Capable of providing a detailed thermodynamic picture of noncovalent association reactions, isothermal titration calorimetry (ITC) has become a popular method for studying protein-ligand interactions. We routinely employ the technique to study divalent ion-binding by two-site EF-hand proteins from the parvalbumin- and polcalcin lineages. The combination of high Ca(2+) affinity and relatively low Mg(2+) affinity, and the attendant complication of parameter correlation, conspire to make the simultaneous extraction of binding constants and -enthalpies for both ions challenging. Although global analysis of multiple ITC experiments can overcome these hurdles, our current experimental protocol includes upwards of 10 titrations - requiring a substantial investment in labor, machine time, and material. This paper explores the potential for using a smaller suite of experiments that includes simultaneous titrations with Ca(2+) and Mg(2+) at different ratios of the two ions. The results obtained for four proteins, differing substantially in their divalent ion-binding properties, suggest that the approach has merit. The Ca(2+)- and Mg(2+)-binding constants afforded by the streamlined analysis are in reasonable agreement with those obtained from the standard analysis protocol. Likewise, the abbreviated analysis provides comparable values for the Ca(2+)-binding enthalpies. However, the streamlined analysis can yield divergent values for the Mg(2+)-binding enthalpies - particularly those for lower affinity sites. This shortcoming can be remedied, in large measure, by including data from a direct Ca(2+) titration in the presence of a high, fixed Mg(2+) concentration. Copyright © 2013. Published by Elsevier Inc.

  17. Validation of tautomeric and protomeric binding modes by free energy calculations. A case study for the structure based optimization of D-amino acid oxidase inhibitors.

    PubMed

    Orgován, Zoltán; Ferenczy, György G; Steinbrecher, Thomas; Szilágyi, Bence; Bajusz, Dávid; Keserű, György M

    2018-02-01

    Optimization of fragment size D-amino acid oxidase (DAAO) inhibitors was investigated using a combination of computational and experimental methods. Retrospective free energy perturbation (FEP) calculations were performed for benzo[d]isoxazole derivatives, a series of known inhibitors with two potential binding modes derived from X-ray structures of other DAAO inhibitors. The good agreement between experimental and computed binding free energies in only one of the hypothesized binding modes strongly support this bioactive conformation. Then, a series of 1-H-indazol-3-ol derivatives formerly not described as DAAO inhibitors was investigated. Binding geometries could be reliably identified by structural similarity to benzo[d]isoxazole and other well characterized series and FEP calculations were performed for several tautomers of the deprotonated and protonated compounds since all these forms are potentially present owing to the experimental pKa values of representative compounds in the series. Deprotonated compounds are proposed to be the most important bound species owing to the significantly better agreement between their calculated and measured affinities compared to the protonated forms. FEP calculations were also used for the prediction of the affinities of compounds not previously tested as DAAO inhibitors and for a comparative structure-activity relationship study of the benzo[d]isoxazole and indazole series. Selected indazole derivatives were synthesized and their measured binding affinity towards DAAO was in good agreement with FEP predictions.

  18. Validation of tautomeric and protomeric binding modes by free energy calculations. A case study for the structure based optimization of d-amino acid oxidase inhibitors

    NASA Astrophysics Data System (ADS)

    Orgován, Zoltán; Ferenczy, György G.; Steinbrecher, Thomas; Szilágyi, Bence; Bajusz, Dávid; Keserű, György M.

    2018-02-01

    Optimization of fragment size d-amino acid oxidase (DAAO) inhibitors was investigated using a combination of computational and experimental methods. Retrospective free energy perturbation (FEP) calculations were performed for benzo[d]isoxazole derivatives, a series of known inhibitors with two potential binding modes derived from X-ray structures of other DAAO inhibitors. The good agreement between experimental and computed binding free energies in only one of the hypothesized binding modes strongly support this bioactive conformation. Then, a series of 1-H-indazol-3-ol derivatives formerly not described as DAAO inhibitors was investigated. Binding geometries could be reliably identified by structural similarity to benzo[d]isoxazole and other well characterized series and FEP calculations were performed for several tautomers of the deprotonated and protonated compounds since all these forms are potentially present owing to the experimental pKa values of representative compounds in the series. Deprotonated compounds are proposed to be the most important bound species owing to the significantly better agreement between their calculated and measured affinities compared to the protonated forms. FEP calculations were also used for the prediction of the affinities of compounds not previously tested as DAAO inhibitors and for a comparative structure-activity relationship study of the benzo[d]isoxazole and indazole series. Selected indazole derivatives were synthesized and their measured binding affinity towards DAAO was in good agreement with FEP predictions.

  19. Influence of active site location on catalytic activity in de novo-designed zinc metalloenzymes.

    PubMed

    Zastrow, Melissa L; Pecoraro, Vincent L

    2013-04-17

    While metalloprotein design has now yielded a number of successful metal-bound and even catalytically active constructs, the question of where to put a metal site along a linear, repetitive sequence has not been thoroughly addressed. Often several possibilities in a given sequence may exist that would appear equivalent but may in fact differ for metal affinity, substrate access, or protein dynamics. We present a systematic variation of active site location for a hydrolytically active ZnHis3O site contained within a de novo-designed three-stranded coiled coil. We find that the maximal rate, substrate access, and metal-binding affinity are dependent on the selected position, while catalytic efficiency for p-nitrophenyl acetate hydrolysis can be retained regardless of the location of the active site. This achievement demonstrates how efficient, tailor-made enzymes which control rate, pKa, substrate and solvent access (and selectivity), and metal-binding affinity may be realized. These findings may be applied to the more advanced de novo design of constructs containing secondary interactions, such as hydrogen-bonding channels. We are now confident that changes to location for accommodating such channels can be achieved without location-dependent loss of catalytic efficiency. These findings bring us closer to our ultimate goal of incorporating the secondary interactions we believe will be necessary in order to improve both active site properties and the catalytic efficiency to be competitive with the native enzyme, carbonic anhydrase.

  20. Crystal structure and ligand affinity of avidin in the complex with 4‧-hydroxyazobenzene-2-carboxylic acid

    NASA Astrophysics Data System (ADS)

    Strzelczyk, Paweł; Bujacz, Grzegorz

    2016-04-01

    Avidin is a protein found in egg white that binds numerous organic compounds with high affinity, especially biotin and its derivatives. Due to its extraordinary affinity for its ligands, avidin is extensively used in biotechnology. X-ray crystallography and fluorescence-based biophysical techniques were used to show that avidin binds the dye 4‧-hydroxyazobenzene-2-carboxylic acid (HABA) with a lower affinity than biotin. The apparent dissociation constant determined for the avidin complex with HABA by microscale thermophoresis (MST) is 4.12 μM. The crystal structure of avidin-HABA complex was determined at a resolution of 2.2 Å (PDB entry 5chk). The crystals belong to a hexagonal system, in the space group P6422. In that structure, the hydrazone tautomer of HABA is bound at the bottom part of the central calyx near the polar residues. We show interactions of the dye with avidin and compare them with the previously reported avidin-biotin complex.

  1. Interaction of phenolic acids and their derivatives with human serum albumin: Structure-affinity relationships and effects on antioxidant activity.

    PubMed

    Zhang, Yunyue; Wu, Simin; Qin, Yinghui; Liu, Jiaxin; Liu, Jingwen; Wang, Qingyu; Ren, Fazheng; Zhang, Hao

    2018-02-01

    In this study, 111 phenolic acids and their derivatives were chosen to investigate their structure-affinity relationships when binding to human serum albumin (HSA), and effects on their antioxidant activity. A comprehensive mathematical model was employed to calculate the binding constants, using a fluorescence quenching method, and this was corrected for the inner-filter effect to improve accuracy. We found that a hydroxy group at the 2-position of the benzene ring exerted a positive effect on the affinities, while a 4-hydroxy substituent had a negative influence. Both methylation of the hydroxy groups and replacing the hydroxy groups with methyl groups at the 3- and 4-positions of the benzene ring enhanced the binding affinities. Hydrophobic force and hydrogen bonding were binding forces for the phenolic acids, and their methyl esters, respectively. The antioxidant activity of the HSA-phenolic acid interaction compounds was higher than that of the phenolic acids alone. Copyright © 2017. Published by Elsevier Ltd.

  2. PLASS: Protein-ligand affinity statistical score a knowledge-based force-field model of interaction derived from the PDB

    NASA Astrophysics Data System (ADS)

    Ozrin, V. D.; Subbotin, M. V.; Nikitin, S. M.

    2004-04-01

    We have developed PLASS (Protein-Ligand Affinity Statistical Score), a pair-wise potential of mean-force for rapid estimation of the binding affinity of a ligand molecule to a protein active site. This scoring function is derived from the frequency of occurrence of atom-type pairs in crystallographic complexes taken from the Protein Data Bank (PDB). Statistical distributions are converted into distance-dependent contributions to the Gibbs free interaction energy for 10 atomic types using the Boltzmann hypothesis, with only one adjustable parameter. For a representative set of 72 protein-ligand structures, PLASS scores correlate well with the experimentally measured dissociation constants: a correlation coefficient R of 0.82 and RMS error of 2.0 kcal/mol. Such high accuracy results from our novel treatment of the volume correction term, which takes into account the inhomogeneous properties of the protein-ligand complexes. PLASS is able to rank reliably the affinity of complexes which have as much diversity as in the PDB.

  3. Complementary DNA display selection of high-affinity peptides binding the vacuolating toxin (VacA) of Helicobacter pylori.

    PubMed

    Hayakawa, Yumiko; Matsuno, Mitsuhiro; Tanaka, Makoto; Wada, Akihiro; Kitamura, Koichiro; Takei, Osamu; Sasaki, Ryuzo; Mizukami, Tamio; Hasegawa, Makoto

    2015-09-01

    Artificial peptides designed for molecular recognition of a bacterial toxin have been developed. Vacuolating cytotoxin A protein (VacA) is a major virulence factor of Helicobacter pylori, a gram-negative microaerophilic bacterium inhabiting the upper gastrointestinal tract, particularly the stomach. This study attempted to identify specific peptide sequences with high affinity for VacA using systematic directed evolution in vitro, a cDNA display method. A surface plasmon resonance-based biosensor and fluorescence correlation spectroscopy to examine binding of peptides with VacA identified a peptide (GRVNQRL) with high affinity. Cyclization of the peptide by attaching cysteine residues to both termini improved its binding affinity to VacA, with a dissociation constant (Kd ) of 58 nm. This study describes a new strategy for the development of artificial functional peptides, which are promising materials in biochemical analyses and medical applications. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  4. On the binding affinity of macromolecular interactions: daring to ask why proteins interact

    PubMed Central

    Kastritis, Panagiotis L.; Bonvin, Alexandre M. J. J.

    2013-01-01

    Interactions between proteins are orchestrated in a precise and time-dependent manner, underlying cellular function. The binding affinity, defined as the strength of these interactions, is translated into physico-chemical terms in the dissociation constant (Kd), the latter being an experimental measure that determines whether an interaction will be formed in solution or not. Predicting binding affinity from structural models has been a matter of active research for more than 40 years because of its fundamental role in drug development. However, all available approaches are incapable of predicting the binding affinity of protein–protein complexes from coordinates alone. Here, we examine both theoretical and experimental limitations that complicate the derivation of structure–affinity relationships. Most work so far has concentrated on binary interactions. Systems of increased complexity are far from being understood. The main physico-chemical measure that relates to binding affinity is the buried surface area, but it does not hold for flexible complexes. For the latter, there must be a significant entropic contribution that will have to be approximated in the future. We foresee that any theoretical modelling of these interactions will have to follow an integrative approach considering the biology, chemistry and physics that underlie protein–protein recognition. PMID:23235262

  5. Selection is more intelligent than design: improving the affinity of a bivalent ligand through directed evolution.

    PubMed

    Ahmad, Kareem M; Xiao, Yi; Soh, H Tom

    2012-12-01

    Multivalent molecular interactions can be exploited to dramatically enhance the performance of an affinity reagent. The enhancement in affinity and specificity achieved with a multivalent construct depends critically on the effectiveness of the scaffold that joins the ligands, as this determines their positions and orientations with respect to the target molecule. Currently, no generalizable design rules exist for construction of an optimal multivalent ligand for targets with known structures, and the design challenge remains an insurmountable obstacle for the large number of proteins whose structures are not known. As an alternative to such design-based strategies, we report here a directed evolution-based method for generating optimal bivalent aptamers. To demonstrate this approach, we fused two thrombin aptamers with a randomized DNA sequence and used a microfluidic in vitro selection strategy to isolate scaffolds with exceptionally high affinities. Within five rounds of selection, we generated a bivalent aptamer that binds thrombin with an apparent dissociation constant (K(d)) <10 pM, representing a ∼200-fold improvement in binding affinity over the monomeric aptamers and a ∼15-fold improvement over the best designed bivalent construct. The process described here can be used to produce high-affinity multivalent aptamers and could potentially be adapted to other classes of biomolecules.

  6. Behaviour of endocrine disrupting chemicals during the treatment of municipal sewage sludge.

    PubMed

    Ivashechkin, P; Corvini, P F X; Dohmann, M

    2004-01-01

    Agricultural application of municipal sewage sludge has been emotionally discussed in the last decades, because the latter contains endocrine disrupting chemicals (EDCs) and other organic micropollutants with unknown fate and risk potential. Bisphenol A (BPA) was chosen as a model substance to investigate the influence of sludge conditioning on the end-concentration of EDCs in sludge. Adsorption studies with radioactive-labelled BPA showed that more than 75% BPA in anaerobically digested sludge is bound to solids (log Kd = 2.09-2.30; log Koc = 2.72-3.11). Sludge conditioning with polymer or iron (III) chloride alone had no influence on the adsorption of BPA. After conditioning with iron (III) chloride and calcium hydroxide desorption of BPA took place. Apparently, it occurred due to the deprotonation of BPA (pKa= 10.3) as the pH-value reached 12.4 during the process. The same behaviour is expected for other phenolic EDCs with similar pKa (nonylphenol, 17beta-estradiol, estron, estriol, 17alpha-ethinylestradiol). This study shows high affinity of BPA to the anaerobically digested sludge and importance of conditioning in the elimination of EDCs during the sludge treatment. Addition of polymer is favourable in the case of sludge incineration. Conditioning with iron (III) chloride and calcium hydroxide shows advantages for the use of sludge as fertiliser.

  7. Chemical modification and pH dependence of kinetic parameters to identify functional groups in a glucosyltransferase from Strep. Mutans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, J.E.; Leone, A.; Bell, E.T.

    1986-05-01

    A glucosyltransferase, forming a predominantly al-6 linked glucan, was partially purified from the culture filtrate of S. mutans GS-5. The kinetic properties of the enzyme, assessed using the transfer of /sup 14/C glucose from sucrose into total glucan, were studied at pH values from pH 3.5 to 6.5. From the dependence of km on pH, a group with pKa = 5.5 must be protonated to maximize substrate binding. From plots of V/sub max/ vs pH two groups, with pKa's of 4.5 and 5.5 were indicated. The results suggest the involvement of either two carboxyl groups (one protonated, one unprotonated inmore » the native enzyme) or a carboxyl group (unprotonated) and some other protonated group such as histidine, cysteine. Chemical modification studies showed that Diethylyrocarbonate (histidine specific) had no effect on enzyme activity while modification with p-phydroxy-mercuribenzoate or iodoacetic acid (sulfhydryl reactive) and carbodimide reagents (carboxyl specific) resulted in almost complete inactivation. Activity loss was dependent upon time of incubation and reagent concentration. The disaccharide lylose, (shown to be an inhibitor of the enzyme with similar affinity to sucrose) offers no protection against modification by the sulfhydryl reactive reagents.« less

  8. Histidine pKa shifts and changes of tautomeric states induced by the binding of gallium-protoporphyrin IX in the hemophore HasASM

    PubMed Central

    Wolff, Nicolas; Deniau, Clarisse; Létoffé, Sylvie; Simenel, Catherine; Kumar, Veena; Stojiljkovic, Igor; Wandersman, Cécile; Delepierre, Muriel; Lecroisey, Anne

    2002-01-01

    The HasASM hemophore, secreted by Serratia marcescens, binds free or hemoprotein bound heme with high affinity and delivers it to a specific outer membrane receptor, HasR. In HasASM, heme is held by two loops and coordinated to iron by two residues, His 32 and Tyr 75. A third residue His 83 was shown recently to play a crucial role in heme ligation. To address the mechanistic issues of the heme capture and release processes, the histidine protonation states were studied in both apo- and holo-forms of HasASM in solution. Holo-HasASM was formed with gallium-protoporphyrin IX (GaPPIX), giving rise to a diamagnetic protein. By use of heteronuclear correlation NMR spectroscopy, the imidazole side-chain 15N and 1H resonances of the six HasASM histidines were assigned and their pKa values and predominant tautomeric states according to pH were determined. We show that protonation states of the heme pocket histidines can modulate the nucleophilic character of the two axial ligands and, consequently, control the heme binding. In particular, the essential role of the His 83 is emphasized according to its direct interaction with Tyr 75. PMID:11910020

  9. Choosing between atmospheric pressure chemical ionization and electrospray ionization interfaces for the HPLC/MS analysis of pesticides

    USGS Publications Warehouse

    Thurman, E.M.; Ferrer, I.; Barcelo, D.

    2001-01-01

    An evaluation of over 75 pesticides by high-performance liquid chromatography/mass spectrometry (HPLC/MS) clearly shows that different classes of pesticides are more sensitive using either atmospheric pressure chemical ionization (APCI) or electrospray ionization (ESI). For example, neutral and basic pesticides (phenylureas, triazines) are more sensitive using APCI (especially positive ion). While cationic and anionic herbicides (bipyridylium ions, sulfonic acids) are more sensitive using ESI (especially negative ion). These data are expressed graphically in a figure called an ionization-continuum diagram, which shows that protonation in the gas phase (proton affinity) and polarity in solution, expressed as proton addition or subtraction (pKa), is useful in selecting APCI or ESI. Furthermore, sodium adduct formation commonly occurs using positive ion ESI but not using positive ion APCI, which reflects the different mechanisms of ionization and strengthens the usefulness of the ionization-continuum diagram. The data also show that the concept of "wrong-way around" ESI (the sensitivity of acidic pesticides in an acidic mobile phase) is a useful modification of simple pKa theory for mobile-phase selection. Finally, this finding is used to enhance the chromatographic separation of oxanilic and sulfonic acid herbicides while maintaining good sensitivity in LC/MS using ESI negative.

  10. Isolation, biochemical characterization and antibiofilm effect of a lectin from the marine sponge Aplysina lactuca.

    PubMed

    Carneiro, Rômulo Farias; Lima, Paulo Henrique Pinheiro de; Chaves, Renata Pinheiro; Pereira, Rafael; Pereira, Anna Luísa; de Vasconcelos, Mayron Alves; Pinheiro, Ulisses; Teixeira, Edson Holanda; Nagano, Celso Shiniti; Sampaio, Alexandre Holanda

    2017-06-01

    A new lectin was isolated from the marine sponge Aplysina lactuca (ALL) by combining ammonium sulfate precipitation and affinity chromatography on guar gum matrix. ALL showed affinity for the disaccharides α-lactose, β-lactose and lactulose (Ka=12.5, 31.9 and 145.5M -1 , respectively), as well as the glycoprotein porcine stomach mucin. Its hemagglutinating activity was stable in neutral acid pH values and temperatures below 60°C. ALL is a dimeric protein formed by two covalently linked polypeptide chains. The average molecular mass, as determined by Electrospray Ionization Mass Spectrometry (ESI-MS), was 31,810±2Da. ESI-MS data also indicated the presence of three cysteines involved in one intrachain and one interchain disulfide bond. The partial amino acid sequence of ALL was determined by tandem mass spectrometry. Eight tryptic peptides presented similarity with lectin I isolated from Axinella polypoides. Its secondary structure is predominantly β-sheet, as indicated by circular dichroism (CD) spectroscopy. ALL agglutinated gram-positive and gram-negative bacterial cells, and it were able to significantly reduce the biomass of the bacterial biofilm tested at dose- dependent effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Inclusion of fluorophores in cyclodextrins: a closer look at the fluorometric determination of association constants by linear and nonlinear fitting procedures

    NASA Astrophysics Data System (ADS)

    Hutterer, Rudi

    2018-01-01

    The author discusses methods for the fluorometric determination of affinity constants by linear and nonlinear fitting methods. This is outlined in particular for the interaction between cyclodextrins and several anesthetic drugs including benzocaine. Special emphasis is given to the limitations of certain fits, and the impact of such studies on enzyme-substrate interactions are demonstrated. Both the experimental part and methods of analysis are well suited for students in an advanced lab.

  12. Low-affinity FcγR interactions can decide the fate of novel human IgG-sensitised red blood cells and platelets

    PubMed Central

    Armour, Kathryn L; Smith, Cheryl S; Turner, Craig P; Kirton, Christopher M; Wilkes, Anthony M; Hadley, Andrew G; Ghevaert, Cedric; Williamson, Lorna M; Clark, Michael R

    2014-01-01

    G1Δnab is a mutant human IgG1 constant region with a lower ability to interact with FcγR than the natural IgG constant regions. Radiolabelled RBCs and platelets sensitised with specific G1Δnab Abs were cleared more slowly from human circulation than IgG1-sensitised counterparts. However, non-destructive splenic retention of G1Δnab-coated RBCs required investigation and plasma radioactivities now suggest this also occurred for platelets sensitised with an IgG1/G1Δnab mixture. In vitro assays with human cells showed that G1Δnab-sensitised RBCs did not cause FcγRI-mediated monocyte activation, FcγRIIIa-mediated antibody-dependent cell-mediated cytotoxicity (ADCC) or macrophage phagocytosis although they did adhere to macrophages. Thus, FcγRII was implicated in the adhesion despite the Δnab mutation reducing the already low-affinity binding to this receptor class. Additional contacts via P-selectin enhance the interaction of sensitised platelets with monocytes and this system provided evidence of FcγRII-dependent activation by G1Δnab. These results emphasise the physiological relevance of low-affinity interactions: It appears that FcγRII interactions of G1Δnab allowed splenic retention of G1Δnab-coated RBCs with inhibitory FcγRIIb binding preventing RBC destruction and that FcγRIIb engagement by G1Δnab on IgG1/G1Δnab-sensitised platelets overcame activation by IgG1. Considering therapeutic blocking Abs, G1Δnab offers lower FcγR binding and a greater bias towards inhibition than IgG2 and IgG4 constant regions. PMID:24285214

  13. Binding Interactions of Dopamine and Apomorphine in D2High and D2Low States of Human Dopamine D2 Receptor Using Computational and Experimental Techniques.

    PubMed

    Durdagi, Serdar; Salmas, Ramin Ekhteiari; Stein, Matthias; Yurtsever, Mine; Seeman, Philip

    2016-02-17

    We have recently reported G-protein coupled receptor (GPCR) model structures for the active and inactive states of the human dopamine D2 receptor (D2R) using adrenergic crystal structures as templates. Since the therapeutic concentrations of dopamine agonists that suppress the release of prolactin are the same as those that act at the high-affinity state of the D2 receptor (D2High), D2High in the anterior pituitary gland is considered to be the functional state of the receptor. In addition, the therapeutic concentrations of anti-Parkinson drugs are also related to the dissociation constants in the D2High form of the receptor. The discrimination between the high- and low-affinity (D2Low) components of the D2R is not obvious and requires advanced computer-assisted structural biology investigations. Therefore, in this work, the derived D2High and D2Low receptor models (GPCR monomer and dimer three-dimensional structures) are used as drug-binding targets to investigate binding interactions of dopamine and apomorphine. The study reveals a match between the experimental dissociation constants of dopamine and apomorphine at their high- and low-affinity sites of the D2 receptor in monomer and dimer and their calculated dissociation constants. The allosteric receptor-receptor interaction for dopamine D2R dimer is associated with the accessibility of adjacent residues of transmembrane region 4. The measured negative cooperativity between agonist ligand at dopamine D2 receptor is also correctly predicted using the D2R homodimerization model.

  14. Probing the electrostatics and pharmacologic modulation of sequence-specific binding by the DNA-binding domain of the ETS-family transcription factor PU.1: a binding affinity and kinetics investigation

    PubMed Central

    Munde, Manoj; Poon, Gregory M. K.; Wilson, W. David

    2013-01-01

    Members of the ETS family of transcription factors regulate a functionally diverse array of genes. All ETS proteins share a structurally-conserved but sequence-divergent DNA-binding domain, known as the ETS domain. Although the structure and thermodynamics of the ETS-DNA complexes are well known, little is known about the kinetics of sequence recognition, a facet that offers potential insight into its molecular mechanism. We have characterized DNA binding by the ETS domain of PU.1 by biosensor-surface plasmon resonance (SPR). SPR analysis revealed a striking kinetic profile for DNA binding by the PU.1 ETS domain. At low salt concentrations, it binds high-affinity cognate DNA with a very slow association rate constant (≤105 M−1 s−1), compensated by a correspondingly small dissociation rate constant. The kinetics are strongly salt-dependent but mutually balance to produce a relatively weak dependence in the equilibrium constant. This profile contrasts sharply with reported data for other ETS domains (e.g., Ets-1, TEL) for which high-affinity binding is driven by rapid association (>107 M−1 s−1). We interpret this difference in terms of the hydration properties of ETS-DNA binding and propose that at least two mechanisms of sequence recognition are employed by this family of DNA-binding domain. Additionally, we use SPR to demonstrate the potential for pharmacological inhibition of sequence-specific ETS-DNA binding, using the minor groove-binding distamycin as a model compound. Our work establishes SPR as a valuable technique for extending our understanding of the molecular mechanisms of ETS-DNA interactions as well as developing potential small-molecule agents for biotechnological and therapeutic purposes. PMID:23416556

  15. Electrostatic repulsion, compensatory mutations, and long-range non-additive effects at the dimerization interface of the HIV capsid protein.

    PubMed

    del Alamo, Marta; Mateu, Mauricio G

    2005-01-28

    In previous studies, thermodynamic dissection of the dimerization interface in CA-C, the C-terminal domain of the capsid protein of human immunodeficiency virus type 1, revealed that individual mutation to alanine of Ser178, Glu180, Glu187 or Gln192 led to significant increases in dimerization affinity. Four related aspects derived from this observation have been now addressed, and the results can be summarized as follows: (i) thermodynamic analyses indicate the presence of an intersubunit electrostatic repulsion between both Glu180 residues. (ii) The mutation Glu180 to Ala was detected in nearly all type 2 human immunodeficiency virus variants, and in several simian immunodeficiency viruses analyzed. However, this mutation was strictly co-variant with mutations Ser178Asp in a neighboring residue, and Glu187Gln. Thermodynamic analysis of multiple mutants showed that Ser178Asp compensated, alone or together with Glu187Gln, the increase in affinity caused by the mutation Glu180Ala, and restored a lower dimerization affinity. (iii) The increase in the affinity constant caused by the multiple mutation to Ala of Ser178, Glu180, Glu187 and Gln192 was more than one order of magnitude lower than predicted if additivity were present, despite the fact that the 178/180 pair and the two other residues were located more than 10A apart. (iv) Mutations in CA-C that caused non-additive increases in dimerization affinity also caused a non-additive increase in the capacity of the isolated CA-C domain to inhibit the assembly of capsid-like HIV-1 particles in kinetic assays. In summary, the study of a protein-protein interface involved in the building of a viral capsid has revealed unusual features, including intersubunit electrostatic repulsions, co-variant, compensatory mutations that may evolutionarily preserve a low association constant, and long-range, large magnitude non-additive effects on association.

  16. Review: correlations between oxygen affinity and sequence classifications of plant hemoglobins.

    PubMed

    Smagghe, Benoit J; Hoy, Julie A; Percifield, Ryan; Kundu, Suman; Hargrove, Mark S; Sarath, Gautam; Hilbert, Jean-Louis; Watts, Richard A; Dennis, Elizabeth S; Peacock, W James; Dewilde, Sylvia; Moens, Luc; Blouin, George C; Olson, John S; Appleby, Cyril A

    2009-12-01

    Plants express three phylogenetic classes of hemoglobins (Hb) based on sequence analyses. Class 1 and 2 Hbs are full-length globins with the classical eight helix Mb-like fold, whereas Class 3 plant Hbs resemble the truncated globins found in bacteria. With the exception of the specialized leghemoglobins, the physiological functions of these plant hemoglobins remain unknown. We have reviewed and, in some cases, measured new oxygen binding properties of a large number of Class 1 and 2 plant nonsymbiotic Hbs and leghemoglobins. We found that sequence classification correlates with distinct extents of hexacoordination with the distal histidine and markedly different overall oxygen affinities and association and dissociation rate constants. These results suggest strong selective pressure for the evolution of distinct physiological functions. The leghemoglobins evolved from the Class 2 globins and show no hexacoordination, very high rates of O(2) binding ( approximately 250 muM(-1) s(-1)), moderately high rates of O(2) dissociation ( approximately 5-15 s(-1)), and high oxygen affinity (K(d) or P(50) approximately 50 nM). These properties both facilitate O(2) diffusion to respiring N(2) fixing bacteria and reduce O(2) tension in the root nodules of legumes. The Class 1 plant Hbs show weak hexacoordination (K(HisE7) approximately 2), moderate rates of O(2) binding ( approximately 25 muM(-1) s(-1)), very small rates of O(2) dissociation ( approximately 0.16 s(-1)), and remarkably high O(2) affinities (P(50) approximately 2 nM), suggesting a function involving O(2) and nitric oxide (NO) scavenging. The Class 2 Hbs exhibit strong hexacoordination (K(HisE7) approximately 100), low rates of O(2) binding ( approximately 1 muM(-1) s(-1)), moderately low O(2) dissociation rate constants ( approximately 1 s(-1)), and moderate, Mb-like O(2) affinities (P(50) approximately 340 nM), perhaps suggesting a sensing role for sustained low, micromolar levels of oxygen.

  17. Computational modeling approaches to quantitative structure-binding kinetics relationships in drug discovery.

    PubMed

    De Benedetti, Pier G; Fanelli, Francesca

    2018-03-21

    Simple comparative correlation analyses and quantitative structure-kinetics relationship (QSKR) models highlight the interplay of kinetic rates and binding affinity as an essential feature in drug design and discovery. The choice of the molecular series, and their structural variations, used in QSKR modeling is fundamental to understanding the mechanistic implications of ligand and/or drug-target binding and/or unbinding processes. Here, we discuss the implications of linear correlations between kinetic rates and binding affinity constants and the relevance of the computational approaches to QSKR modeling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Interaction of cinnamic acid derivatives with serum albumins: A fluorescence spectroscopic study

    NASA Astrophysics Data System (ADS)

    Singh, T. Sanjoy; Mitra, Sivaprasad

    2011-03-01

    Cinnamic acid (CA) derivatives are known to possess broad therapeutic applications including anti-tumor activity. The present study was designed to determine the underlying mechanism and thermodynamic parameters for the binding of two CA based intramolecular charge transfer (ICT) fluorescent probes, namely, 4-(dimethylamino) cinnamic acid (DMACA) and trans-ethyl p-(dimethylamino) cinnamate (EDAC), with albumins by fluorescence spectroscopy. Stern-Volmer analysis of the tryptophan fluorescence quenching data in presence of the added ligand reveals fluorescence quenching constant ( κq), Stern-Volmer constant ( KSV) and also the ligand-protein association constant ( Ka). The thermodynamic parameters like enthalpy (Δ H) and entropy (Δ S) change corresponding to the ligand binding process were also estimated. The results show that the ligands bind into the sub-domain IIA of the proteins in 1:1 stoichiometry with an apparent binding constant value in the range of 10 4 dm 3 mol -1. In both the cases, the spontaneous ligand binding to the proteins occur through entropy driven mechanism, although the interaction of DMACA is relatively stronger in comparison with EDAC. The temperature dependence of the binding constant indicates the induced change in protein secondary structure.

  19. FORMAL UNCERTAINTY ANALYSIS OF A LAGRANGIAN PHOTOCHEMICAL AIR POLLUTION MODEL. (R824792)

    EPA Science Inventory

    This study applied Monte Carlo analysis with Latin
    hypercube sampling to evaluate the effects of uncertainty
    in air parcel trajectory paths, emissions, rate constants,
    deposition affinities, mixing heights, and atmospheric stability
    on predictions from a vertically...

  20. Affinity interactions between natural pigments and human whole saliva.

    PubMed

    Yao, Jiang-Wu; Lin, Feng; Tao, Tao; Lin, Chang-Jian

    2011-03-01

    The aim of the present study was to assess the null hypothesis that there are no differences of affinity between pigments and human whole saliva (WS), and the affinity is not influenced by the functional groups of pigments, temperatures, pH values, and salt concentrations. The affinity constants of interactions between WS and theaflavin (TF)/curcumin (Cur)/cyanidin (Cy) were determined by surface plasmon resonance (SPR) and fluorescence quenching. Mass-uptake at various temperatures, pH values, and salt concentrations was also carried out. The order of affinity of the pigments binding to WS is TF>Cur>Cy. A large number of complexes and precipitations of pigments/proteins were formed through a quick, strong, and almost irreversible binding process. The mass-uptake of pigments was affected not only by the functional groups, but also by molecular weight of pigments, temperatures, pH values, and salt concentrations. The complex of pigments may easily and rapidly deposit onto the WS film, and are difficult to remove from the WS surface. However, the complex of pigments can be reduced by properly regulating the physicochemical conditions, such as temperatures, pH values, and salt concentrations. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Solitons and the energy-momentum tensor for affine Toda theory

    NASA Astrophysics Data System (ADS)

    Olive, D. I.; Turok, N.; Underwood, J. W. R.

    1993-07-01

    Following Leznov and Saveliev, we present the general solution to Toda field theories of conformal, affine or conformal affine type, associated with a simple Lie algebra g. These depend on a free massless field and on a group element. By putting the former to zero, soliton solutions to the affine Toda theories with imaginary coupling constant result with the soliton data encoded in the group element. As this requires a reformulation of the affine Kac-Moody algebra closely related to that already used to formulate the physical properties of the particle excitations, including their scattering matrices, a unified treatment of particles and solitons emerges. The physical energy—momentum tensor for a general solution is broken into a total derivative plus a part dependent only on the derivatives of the free field. Despite the non-linearity of the field equations and their complex nature the energy and momentum of the N-soliton solution is shown to be real, equalling the sum of contributions from the individual solitons. There are rank-g species of soliton, with masses given by a generalisation of a formula due to Hollowood, being proportional to the components of the left Perron-Frobenius eigenvector of the Cartan matrix of g.

  2. Food sensing: selection and characterization of DNA aptamers to Alicyclobacillus spores for trapping and detection from orange juice.

    PubMed

    Hünniger, Tim; Fischer, Christin; Wessels, Hauke; Hoffmann, Antonia; Paschke-Kratzin, Angelika; Haase, Ilka; Fischer, Markus

    2015-03-04

    The quality of the beverage industry's products has to be constantly monitored to fulfill consumers' high expectations. The thermo-acidophilic Gram-positive Alicyclobacillus spp. are not pathogenic, but their heat-resistant endospores can survive juice-processing conditions and have become a major economic concern for the fruit juice industry. Current detection methods rely on cultivation, isolation, and organism identification, which can take up to a week, resulting in economic loss. This work presents the selection and identification of DNA aptamers targeting Alicyclobacillus spores by spore-SELEX (systematic evolution of ligands by exponential enrichment) in orange-juice-simulating buffer. The selection process was verified by various techniques, including flow cytometric binding assays, radioactive binding assays, and agarose gel electrophoresis. The subsequent aptamer characterization included the determination of dissociations constants and selectivity by different techniques, such as surface plasmon resonance spectroscopy and fluorescence microscopy. In summary, 10 different aptamers with an affinity to Alicyclobacillus spp. have been developed, analyzed, and characterized in terms of affinity and specificity.

  3. Investigation of complexes tannic acid and myricetin with Fe(III)

    NASA Astrophysics Data System (ADS)

    Sungur, Şana; Uzar, Atike

    2008-01-01

    The pH dependence of the complexes was determined by both potentiometric and spectrophotometric studies. Stability constants and stoichiometries of the formed complexes were determined using slope ratio method. Fe(III) was formed complexes with tannic acid of various stoichiometries, which in the 1:1 molar ratio at pH < 3, in the 2:1 molar ratio at pH 3-7 and in the 4:1 molar ratio at pH > 7. Fe(III) was formed complexes with myricetin in the 1:2 molar ratio at pH 4 and 5 and in the 1:1 molar ratio at pH 6. Stability constant values were found to be 10 5 to 10 17 and 10 5 to 10 9 for Fe(III)-tannic acid complexes and Fe(III)-myricetin complexes. Both tannic acid and myricetin were possessed minimum affinities to Cu(II) and Zn(II). They had less affinity for Al(III) than for Fe(III).

  4. Compound Selectivity and Target Residence Time of Kinase Inhibitors Studied with Surface Plasmon Resonance.

    PubMed

    Willemsen-Seegers, Nicole; Uitdehaag, Joost C M; Prinsen, Martine B W; de Vetter, Judith R F; de Man, Jos; Sawa, Masaaki; Kawase, Yusuke; Buijsman, Rogier C; Zaman, Guido J R

    2017-02-17

    Target residence time (τ) has been suggested to be a better predictor of the biological activity of kinase inhibitors than inhibitory potency (IC 50 ) in enzyme assays. Surface plasmon resonance binding assays for 46 human protein and lipid kinases were developed. The association and dissociation constants of 80 kinase inhibitor interactions were determined. τ and equilibrium affinity constants (K D ) were calculated to determine kinetic selectivity. Comparison of τ and K D or IC 50 values revealed a strikingly different view on the selectivity of several kinase inhibitors, including the multi-kinase inhibitor ponatinib, which was tested on 10 different kinases. In addition, known pan-Aurora inhibitors resided much longer on Aurora B than on Aurora A, despite having comparable affinity for Aurora A and B. Furthermore, the γ/δ-selective PI3K inhibitor duvelisib and the δ-selective drug idelalisib had similar 20-fold selectivity for δ- over γ-isoform but duvelisib resided much longer on both targets. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Determination of the parameters of binding between lipopolysaccharide and chitosan and its N-acetylated derivative using a gravimetric piezoquartz biosensor.

    PubMed

    Naberezhnykh, G A; Gorbach, V I; Kalmykova, E N; Solov'eva, T F

    2015-03-01

    The interaction of endotoxin (lipopolysaccharide - LPS) with low molecular weight chitosan (5.5 kDa), its N-acylated derivative and chitoliposomes was studied using a gravimetric piezoelectric quartz crystal microbalance biosensor. The optimal conditions for the formation of a biolayer based on immobilized LPS on the resonator surface and its regeneration were elaborated. The association and dissociation rate constants for LPS binding to chitosans were determined and the affinity constants (Kaf) were calculated based on the data on changes in the oscillation frequency of the quartz crystal resonator. The Kaf values correlated with the ones obtained using other methods. The affinity of N-acylated chitosan binding to LPS was higher than that of the parent chitosan binding to LPS. Based on the results obtained, we suggest that water-soluble N-acylated derivatives of chitosan with low degree of substitution of amino groups could be useful compounds for endotoxin binding and neutralization. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. DLVO Approximation Methods for Predicting the Attachment of Silver Nanoparticles to Ceramic Membranes.

    PubMed

    Mikelonis, Anne M; Youn, Sungmin; Lawler, Desmond F

    2016-02-23

    This article examines the influence of three common stabilizing agents (citrate, poly(vinylpyrrolidone) (PVP), and branched poly(ethylenimine) (BPEI)) on the attachment affinity of silver nanoparticles to ceramic water filters. Citrate-stabilized silver nanoparticles were found to have the highest attachment affinity (under conditions in which the surface potential was of opposite sign to the filter). This work demonstrates that the interaction between the electrical double layers plays a critical role in the attachment of nanoparticles to flat surfaces and, in particular, that predictions of double-layer interactions are sensitive to boundary condition assumptions (constant charge vs constant potential). The experimental deposition results can be explained when using different boundary condition assumptions for different stabilizing molecules but not when the same assumption was assumed for all three types of particles. The integration of steric interactions can also explain the experimental deposition results. Particle size was demonstrated to have an effect on the predicted deposition for BPEI-stabilized particles but not for PVP.

  7. Simulation of weak polyelectrolytes: a comparison between the constant pH and the reaction ensemble method

    NASA Astrophysics Data System (ADS)

    Landsgesell, Jonas; Holm, Christian; Smiatek, Jens

    2017-03-01

    The reaction ensemble and the constant pH method are well-known chemical equilibrium approaches to simulate protonation and deprotonation reactions in classical molecular dynamics and Monte Carlo simulations. In this article, we demonstrate the similarity between both methods under certain conditions. We perform molecular dynamics simulations of a weak polyelectrolyte in order to compare the titration curves obtained by both approaches. Our findings reveal a good agreement between the methods when the reaction ensemble is used to sweep the reaction constant. Pronounced differences between the reaction ensemble and the constant pH method can be observed for stronger acids and bases in terms of adaptive pH values. These deviations are due to the presence of explicit protons in the reaction ensemble method which induce a screening of electrostatic interactions between the charged titrable groups of the polyelectrolyte. The outcomes of our simulation hint to a better applicability of the reaction ensemble method for systems in confined geometries and titrable groups in polyelectrolytes with different pKa values.

  8. Comment on: Negative ions, molecular electron affinity and orbital structure of cata-condensed polycyclic aromatic hydrocarbons by Rustem V. Khatymov, Mars V. Muftakhov and Pavel V. Shchukin.

    PubMed

    Chen, Edward S; Chen, Edward C M

    2018-02-15

    The anion mass spectral lifetimes for several aromatic hydrocarbons reported in the subject article were related to significantly different electron affinities. The different values are rationalized using negative ion mass spectral data. Electron affinities for polycyclic aromatic hydrocarbons are reported from the temperature dependence of unpublished electron capture detector data. These are compared with published values and the largest values are assigned to the ground state. The ground state adiabatic electron affinities: (eV) pentacene, 1.41 (3); tetracene, 1.058 (5); benz(a)pyrene, 0.82 (4); benz(a) anthracene, 0.69 (2) anthracene, 0.68 (2); and pyrene, 0.59 (1) are used to assign excited state adiabatic electron affinities: (eV) tetracene: 0.88 (4); anthracene 0.53 (1); pyrene, 0.41 (1); benz(a)anthracene, 0.39 (10); chrysene, 0.32 (1); and phenanthrene, 0.12 (2) and ground state adiabatic electron affinities: (eV) dibenz(a,j)anthracene, 0.69 (3); dibenz(a,h)anthracene, 0.68 (3); benz(e)pyrene, 0.60 (3); and picene, 0.59 (3) from experimental data. The lifetime of benz(a)pyrene is predicted to be larger than 150 μs and for benzo(c)phenanthrene and picene about 40 μs, from ground state adiabatic electron affinities. The assignments of adiabatic electron affinities of aromatic hydrocarbons determined from electron capture detector and mass spectrometric data to ground and excited states are supported by constant electronegativities. A set of consistent ground state adiabatic electron affinities for 15 polycyclic aromatic hydrocarbons is related to lifetimes from the subject article. Copyright © 2017 John Wiley & Sons, Ltd.

  9. DNA aptamers for the detection of Haemophilus influenzae type b by cell SELEX.

    PubMed

    Bitaraf, F S; Rasooli, I; Mousavi Gargari, S L

    2016-03-01

    Haemophilus influenzae type b (Hib) causes acute bacterial meningitis (ABM) in children, with a mortality rate of about 3-6 % of the affected patients. ABM can lead to death during a period of hours to several days and, hence, rapid and early detection of the infection is crucial. Aptamers, the short single-stranded DNA or RNA with high affinity to target molecules, are selected by a high-flux screening technique known as in vitro screening and systematic evolution of ligands by exponential enrichment technology (SELEX). In this study, whole-cell SELEX was applied for the selection of target-specific aptamers with high affinity to Hib. ssDNA aptamers prepared by lambda exonuclease were incubated with the target cells (Hib). The aptameric binding rate to Hib was characterized for binding affinity after seven SELEX rounds by flow cytometry. The aptamers with higher binding affinity were cloned. Four of 68 aptamer clones were selected for sequencing. The dissociation constant (Kd) of the high-affinity aptamer clones 45 and 63 were 47.10 and 28.46 pM, respectively. These aptamers did not bind to other bacterial species, including the seven meningitis-causing bacteria. They showed distinct affinity to various H. influenzae strains only. These aptamers showed the highest affinity to Hib and the lowest affinity to H. influenzae type c and to other meningitis-causing bacteria. Clone 63 could detect Hib in patients' cerebrospinal fluid (CSF) samples at 60 colony-forming units (CFU)/mL. The results indicate applicability of the aptamers for rapid and early detection of infections brought about by Hib.

  10. Quantitative accuracy of the simplified strong ion equation to predict serum pH in dogs.

    PubMed

    Cave, N J; Koo, S T

    2015-01-01

    Electrochemical approach to the assessment of acid-base states should provide a better mechanistic explanation of the metabolic component than methods that consider only pH and carbon dioxide. Simplified strong ion equation (SSIE), using published dog-specific values, would predict the measured serum pH of diseased dogs. Ten dogs, hospitalized for various reasons. Prospective study of a convenience sample of a consecutive series of dogs admitted to the Massey University Veterinary Teaching Hospital (MUVTH), from which serum biochemistry and blood gas analyses were performed at the same time. Serum pH was calculated (Hcal+) using the SSIE, and published values for the concentration and dissociation constant for the nonvolatile weak acids (Atot and Ka ), and subsequently Hcal+ was compared with the dog's actual pH (Hmeasured+). To determine the source of discordance between Hcal+ and Hmeasured+, the calculations were repeated using a series of substituted values for Atot and Ka . The Hcal+ did not approximate the Hmeasured+ for any dog (P = 0.499, r(2) = 0.068), and was consistently more basic. Substituted values Atot and Ka did not significantly improve the accuracy (r(2) = 0.169 to <0.001). Substituting the effective SID (Atot-[HCO3-]) produced a strong association between Hcal+ and Hmeasured+ (r(2) = 0.977). Using the simplified strong ion equation and the published values for Atot and Ka does not appear to provide a quantitative explanation for the acid-base status of dogs. Efficacy of substituting the effective SID in the simplified strong ion equation suggests the error lies in calculating the SID. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  11. Modeling Bacteria Surface Acid-Base Properties: The Overprint Of Biology

    NASA Astrophysics Data System (ADS)

    Amores, D. R.; Smith, S.; Warren, L. A.

    2009-05-01

    Bacteria are ubiquitous in the environment and are important repositories for metals as well as nucleation templates for a myriad of secondary minerals due to an abundance of reactive surface binding sites. Model elucidation of whole cell surface reactivity simplifies bacteria as viable but static, i.e., no metabolic activity, to enable fits of microbial data sets from models derived from mineral surfaces. Here we investigate the surface proton charging behavior of live and dead whole cell cyanobacteria (Synechococcus sp.) harvested from a single parent culture by acid-base titration using a Fully Optimized ContinUouS (FOCUS) pKa spectrum method. Viability of live cells was verified by successful recultivation post experimentation, whereas dead cells were consistently non-recultivable. Surface site identities derived from binding constants determined for both the live and dead cells are consistent with molecular analogs for organic functional groups known to occur on microbial surfaces: carboxylic (pKa = 2.87-3.11), phosphoryl (pKa = 6.01-6.92) and amine/hydroxyl groups (pKa = 9.56-9.99). However, variability in total ligand concentration among the live cells is greater than those between the live and dead. The total ligand concentrations (LT, mol- mg-1 dry solid) derived from the live cell titrations (n=12) clustered into two sub-populations: high (LT = 24.4) and low (LT = 5.8), compared to the single concentration for the dead cell titrations (LT = 18.8; n=5). We infer from these results that metabolic activity can substantively impact surface reactivity of morphologically identical cells. These results and their modeling implications for bacteria surface reactivities will be discussed.

  12. Spectroscopic analysis of the impact of oxidative stress on the structure of human serum albumin (HSA) in terms of its binding properties

    NASA Astrophysics Data System (ADS)

    Maciążek-Jurczyk, M.; Sułkowska, A.

    2015-02-01

    Oxygen metabolism has an important role in the pathogenesis of rheumatoid arthritis (RA). Reactive oxygen species (ROS) are produced in the course of cellular oxidative phosphorylation and by activated phagocytic cells during oxidative bursts, exceed the physiological buffering capacity and result in oxidative stress. ROS result in oxidation of serum albumin, which causes a number of structural changes in the spatial structure, may influence the binding and cause significant drug interactions, particularly in polytherapy. During the oxidation modification of amino acid residues, particularly cysteine and methionine may occur. The aim of the study was to investigate the influence of oxidative stress on human serum albumin (HSA) structure and evaluate of possible alterations in the binding of the drug to oxidized human serum albumin (oHSA). HSA was oxidized by a chloramine-T (CT). CT reacts rapidly with sulfhydryl groups and at pH 7.4 the reaction was monitored by spectroscopic techniques. Modification of free thiol group in the Cys residue in HSA was quantitatively determined by the use of Ellman's reagent. Changes of albumin conformation were examined by comparison of modified (oHSA) and nonmodified human serum albumin (HSA) absorption spectra, emission spectra, red-edge shift (REES) and synchronous spectroscopy. Studies of absorption spectra indicated that changes in the value of absorbance associated with spectral changes in the region of 200-250 nm involve structural alterations in peptide backbone conformation. Synchronous fluorescence spectroscopy technique confirmed changes of position of tryptophanyl and tyrosyl residues fluorescent band caused by CT. Moreover analysis of REES effect allowed to observe structural changes caused by CT in the region of the hydrophobic pocket containing the tryptophanyl residue. Effect of oxidative stress on binding of anti-rheumatic drugs, sulfasalazine (SSZ) and sulindac (SLD) in the high and low affinity binding sites was investigated by spectrofluorescence, ITC and 1H NMR spectroscopy, respectively. SSZ and SLD change the affinity of each other to the binding site in non- and modified human serum albumin. The presence of SLD causes the increase of association constant (Ka) of SSZ-oHSA system and the strength of binding and the stability of the complexes has been observed while in the presence of SSZ a displacement of SLD from the SLD-HSA has been recorded. The analysis of 1H NMR spectral parameters i.e. changes of chemical shifts of the drug indicate that the presence of SSZ and SLD have a mutual influence on changes in the affinity of human serum albumin binding site and this competition takes place not only due to the additional drug but also to the oxidation of HSA.

  13. KINETIC STUDY ON THE INHIBITION OF HEN BRAIN NEUROTOXIC ESTERASE BY MIPAFOX

    EPA Science Inventory

    A direct method of assaying neurotoxic esterase (NTE) activity, using 4-nitrophenyl valerate, has been described. The technique was used to determine the biomolecular rate (ki), phosphorylation (k2), and affinity (kd) constants for the reaction of hen brain microsomal NTE with mi...

  14. 4-N, 4-S & 4-O Chloroquine Analogues: Influence of Side Chain Length and Quinolyl Nitrogen pKa on Activity vs. Chloroquine Resistant Malaria+, #

    PubMed Central

    Natarajan, Jayakumar K.; Alumasa, John; Yearick, Kimberly; Ekoue-Kovi, Kekeli A.; Casabianca, Leah B.; de Dios, Angel C.; Wolf, Christian; Roepe, Paul D.

    2009-01-01

    Using predictions from heme – quinoline antimalarial complex structures, previous modifications of chloroquine (CQ), and hypotheses for chloroquine resistance (CQR), we synthesize and assay CQ analogues that test structure – function principles. We vary side chain length for both monoethyl and diethyl 4N CQ derivatives. We alter the pKa of the quinolyl N by introducing alkylthio or alkoxy substituents into the 4 position, and vary side chain length for these analogues. We introduce an additional titratable amino group to the side chain of 4O analogues with promising CQR strain selectivity and increase activity while retaining selectivity. We solve atomic resolution structures for complexes formed between representative 4N, 4S and 4O derivatives vs. μ-oxo dimeric heme, measure binding constants for monomeric vs. dimeric heme, and quantify hemozoin (Hz) formation inhibition in vitro. The data provide additional insight for the design of CQ analogues with improved activity vs. CQR malaria. PMID:18512900

  15. 4-N-, 4-S-, and 4-O-chloroquine analogues: influence of side chain length and quinolyl nitrogen pKa on activity vs chloroquine resistant malaria.

    PubMed

    Natarajan, Jayakumar K; Alumasa, John N; Yearick, Kimberly; Ekoue-Kovi, Kekeli A; Casabianca, Leah B; de Dios, Angel C; Wolf, Christian; Roepe, Paul D

    2008-06-26

    Using predictions from heme-quinoline antimalarial complex structures, previous modifications of chloroquine (CQ), and hypotheses for chloroquine resistance (CQR), we synthesize and assay CQ analogues that test structure-function principles. We vary side chain length for both monoethyl and diethyl 4-N CQ derivatives. We alter the pKa of the quinolyl N by introducing alkylthio or alkoxy substituents into the 4 position and vary side chain length for these analogues. We introduce an additional titratable amino group to the side chain of 4-O analogues with promising CQR strain selectivity and increase activity while retaining selectivity. We solve atomic resolution structures for complexes formed between representative 4-N, 4-S, and 4-O derivatives vs mu-oxo dimeric heme, measure binding constants for monomeric vs dimeric heme, and quantify hemozoin (Hz) formation inhibition in vitro. The data provide additional insight for the design of CQ analogues with improved activity vs CQR malaria.

  16. Intrinsic Thermodynamics and Structures of 2,4- and 3,4-Substituted Fluorinated Benzenesulfonamides Binding to Carbonic Anhydrases.

    PubMed

    Zubrienė, Asta; Smirnov, Alexey; Dudutienė, Virginija; Timm, David D; Matulienė, Jurgita; Michailovienė, Vilma; Zakšauskas, Audrius; Manakova, Elena; Gražulis, Saulius; Matulis, Daumantas

    2017-01-20

    The goal of rational drug design is to understand structure-thermodynamics correlations in order to predict the chemical structure of a drug that would exhibit excellent affinity and selectivity for a target protein. In this study we explored the contribution of added functionalities of benzenesulfonamide inhibitors to the intrinsic binding affinity, enthalpy, and entropy for recombinant human carbonic anhydrases (CA) CA I, CA II, CA VII, CA IX, CA XII, and CA XIII. The binding enthalpies of compounds possessing similar chemical structures and affinities were found to be very different, spanning a range from -90 to +10 kJ mol -1 , and are compensated by a similar opposing entropy contribution. The intrinsic parameters of binding were determined by subtracting the linked protonation reactions. The sulfonamide group pK a values of the compounds were measured spectrophotometrically, and the protonation enthalpies were measured by isothermal titration calorimetry (ITC). Herein we describe the development of meta- or ortho-substituted fluorinated benzenesulfonamides toward the highly potent compound 10 h, which exhibits an observed dissociation constant value of 43 pm and an intrinsic dissociation constant value of 1.1 pm toward CA IX, an anticancer target that is highly overexpressed in various tumors. Fluorescence thermal shift assays, ITC, and X-ray crystallography were all applied in this work. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Effect of Cu(II), Cd(II) and Zn(II) on Pb(II) biosorption by algae Gelidium-derived materials.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2008-06-15

    Biosorption of Pb(II), Cu(II), Cd(II) and Zn(II) from binary metal solutions onto the algae Gelidium sesquipedale, an algal industrial waste and a waste-based composite material was investigated at pH 5.3, in a batch system. Binary Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II) solutions have been tested. For the same equilibrium concentrations of both metal ions (1 mmol l(-1)), approximately 66, 85 and 86% of the total uptake capacity of the biosorbents is taken by lead ions in the systems Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II), respectively. Two-metal results were fitted to a discrete and a continuous model, showing the inhibition of the primary metal biosorption by the co-cation. The model parameters suggest that Cd(II) and Zn(II) have the same decreasing effect on the Pb(II) uptake capacity. The uptake of Pb(II) was highly sensitive to the presence of Cu(II). From the discrete model it was possible to obtain the Langmuir affinity constant for Pb(II) biosorption. The presence of the co-cations decreases the apparent affinity of Pb(II). The experimental results were successfully fitted by the continuous model, at different pH values, for each biosorbent. The following sequence for the equilibrium affinity constants was found: Pb>Cu>Cd approximately Zn.

  18. CdTe/CdSe quantum dots improve the binding affinities between α-amylase and polyphenols.

    PubMed

    Ni, Xiaoling

    2012-03-01

    People exposed to engineered nanomaterials have potential health risks associated. Human α-amylase is one of the key enzymes in the digestive system. There are few reports about the influence of quantum dots (QDs) on the digestive enzymes and their inhibition system. This work focused on the toxic effect of CdTe/CdSe QDs on the interactions between α-amylase and its natural inhibitors. Thirty-six dietary polyphenols, natural α-amylase inhibitors from food, were studied for their affinities for α-amylase in the absence and presence of CdTe/CdSe QDs by a fluorescence quenching method. The magnitudes of apparent binding constants of polyphenols for α-amylase were almost in the range of 10(5)-10(7) L mol(-1) in the presence of CdTe/CdSe QDs, which were higher than the magnitudes of apparent binding constants in the absence of CdTe/CdSe QDs (10(4)-10(6) L mol(-1)). CdTe/CdSe QDs obviously improved the affinities of dietary polyphenols for α-amylase up to 389.04 times. It is possible that the binding interaction between polyphenols and α-amylase in the presence of CdTe/CdSe QDs was mainly caused by electrostatic interactions. QDs significantly influence the digestive enzymes and their inhibition system. This journal is © The Royal Society of Chemistry 2012

  19. Constant-pH Molecular Dynamics Study of Kyotorphin in an Explicit Bilayer

    PubMed Central

    Magalhães, Pedro R.; Machuqueiro, Miguel; Baptista, António M.

    2015-01-01

    To our knowledge, we present the first constant-pH molecular dynamics study of the neuropeptide kyotorphin in the presence of an explicit lipid bilayer. The overall conformation freedom of the peptide was found to be affected by the interaction with the membrane, in accordance with previous results using different methodologies. Analysis of the interactions between the N-terminus amine group of the peptide and several lipid atoms shows that the membrane is able to stabilize both ionized and neutral forms of kyotorphin, resulting in a pKa value that is similar to the one obtained in water. This illustrates how a detailed molecular model of the membrane leads to rather different results than would be expected from simply regarding it as a low-dielectric slab. PMID:25954885

  20. The Geology of the Ka'u Desert, Hawaii as a Mars Analog

    NASA Astrophysics Data System (ADS)

    Craddock, R. A.; Irwin, R. P.; Williams, R.; Swanson, D.; Howard, A. D.; Quantin, C.; Kuzmin, R.; Zimbelman, J. R.

    2005-12-01

    The Ka'u Desert is located on the western flank of Kilauea volcano on the Big Island of Hawaii. It is a desert because it receives little annual rainfall (about 150 mm/yr) but also because it is subjected to constant outgassing from Kilauea, which creates a harsh, acidic environment. Near the summit of Kilauea the Ka'u Desert is characterized by the Keanakako'i tephra deposit, which is several meters deep thinning out to a discontinuous deposit 1.5 km (1 mile) towards the center of the desert. The deposit itself has been incised by a number of gullies that are flat-floored and terminate in a series of amphitheater-shaped plunge pools. Most of the interior desert contains undulating weathered lava flows, extensive deposits of sand, and several more recent lava flows and volcanic edifices. The southern portion of the desert is bounded by the Hilina Pali fault scarp, which is 500 m (1,500 ft) above the nearby Pacific Ocean and contains a complex series of outwash plains, alluvial fans, and debris flows. We will present a summary of the geology of the Ka'u Desert. Contrary to published interpretations, we will present evidence that the Keanakako'i was not emplaced by two separate catastrophic eruption events but rather by two distinct eruption episodes that included multiple eruption events often interrupted by long hiatuses. Despite the morphology of the gullies contained on the Keanakako'i we will present evidence that the gullies were formed exclusively by surface runoff and not groundwater sapping, including quantitative estimates about the large amounts of discharge that occur during extreme storms. We will also present analyses of the sand deposits and determine the likely provenance of these materials. For the first time, we will also describe alluvial fans and mass wasting features on Hilina Pali and show evidence that they are part of poorly integrated channel system that originates in the Keanakako'i tephra. The Ka'u Desert represents a good Mars analog because (1) similar to valley networks, the development of channels and gullies in the Ka'u Desert has been interrupted by resurfacing events, (2) associated fluvial deposits have been heavily modified by eolian processes, and (3) the alluvial fans on the Hilina Pali have unusually large source areas.

  1. No surface breaking on the Ecemiş Fault, central Turkey, since Late Pleistocene (~ 64.5 ka); new geomorphic and geochronologic data from cosmogenic dating of offset alluvial fans

    NASA Astrophysics Data System (ADS)

    Sarıkaya, M. A.; Yıldırım, C.; Çiner, A.

    2015-05-01

    The Ecemiş Fault Zone (EF) has been recognized as a major left lateral strike-slip fault in the Central Anatolian Fault Zone (CAFZ) of Turkey. However, its Quaternary slip-rate has been challenging to determine due to the difficulty of dating offset markers. Using high-precision offset measurements and 36Cl cosmogenic nuclide dating, we present the first geochronologically determined Late Quaternary slip-rate for the EF. Our study focuses on the excellent exposures of offset alluvial fan surfaces, originating from the Aladağlar, a Late Quaternary glaciated mountain. Analysis of airborne orthophotogrametry and GNSS (Global Navigation Satellite System) surveys indicates 168 ± 2 m left lateral and 31 ± 1 m vertical displacements. In-situ terrestrial cosmogenic 36Cl geochronology obtained from eleven surface boulders provides a minimum abandonment/incision age of 104.2 ± 16.5 ka for the oldest offset alluvial fan surface. Our geomorphic observations together with Self-potential geophysical surveys revealed the presence of an unfaulted alluvial fan terrace, which allows us to constrain the timing of deformation. The abandonment/incision age of this fan is 64.5 ± 5.6 ka based on thirteen 36Cl depth profile samples. Accordingly, we obtained a geologic fault slip-rate of 4.2 ± 1.9 mm a- 1 horizontally and 0.8 ± 0.3 mm a- 1 vertically for the time frame between 104.2 ± 16.5 ka and 64.5 ± 5.6 ka. Our analysis indicates that the EF has not been producing a major surface breaking earthquake on the main strand at least since 64.5 ± 5.6 ka (mid-Late Pleistocene). This could be the result of abandonment of the main strand and accommodation of deformation by other faults within the EF. Nevertheless, a recently occurred (30 September 2011) low magnitude (ML: 4.3) left lateral strike-slip earthquake indicates recent seismic activity of the EF. Comparison of the recent GPS velocity field with the longer slip history along the CAFZ indicates a constant but low strain release without surface breaking and very long large earthquake recurrence intervals.

  2. Calculating pKa values for substituted phenols and hydration energies for other compounds with the first-order Fuzzy-Border continuum solvation model

    PubMed Central

    Sharma, Ity; Kaminski, George A.

    2012-01-01

    We have computed pKa values for eleven substituted phenol compounds using the continuum Fuzzy-Border (FB) solvation model. Hydration energies for 40 other compounds, including alkanes, alkenes, alkynes, ketones, amines, alcohols, ethers, aromatics, amides, heterocycles, thiols, sulfides and acids have been calculated. The overall average unsigned error in the calculated acidity constant values was equal to 0.41 pH units and the average error in the solvation energies was 0.076 kcal/mol. We have also reproduced pKa values of propanoic and butanoic acids within ca. 0.1 pH units from the experimental values by fitting the solvation parameters for carboxylate ion carbon and oxygen atoms. The FB model combines two distinguishing features. First, it limits the amount of noise which is common in numerical treatment of continuum solvation models by using fixed-position grid points. Second, it employs either second- or first-order approximation for the solvent polarization, depending on a particular implementation. These approximations are similar to those used for solute and explicit solvent fast polarization treatment which we developed previously. This article describes results of employing the first-order technique. This approximation places the presented methodology between the Generalized Born and Poisson-Boltzmann continuum solvation models with respect to their accuracy of reproducing the many-body effects in modeling a continuum solvent. PMID:22815192

  3. Dopamine receptor contribution to the action of PCP, LSD and ketamine psychotomimetics.

    PubMed

    Seeman, P; Ko, F; Tallerico, T

    2005-09-01

    Although phencyclidine and ketamine are used to model a hypoglutamate theory of schizophrenia, their selectivity for NMDA receptors has been questioned. To determine the affinities of phencyclidine, ketamine, dizocilpine and LSD for the functional high-affinity state of the dopamine D2 receptor, D2High, their dissociation constants (Ki) were obtained on [3H]domperidone binding to human cloned dopamine D2 receptors. Phencyclidine had a high affinity for D2High with a Ki of 2.7 nM, in contrast to its low affinity for the NMDA receptor, with a Ki of 313 nM, as labeled by [3H]dizocilpine on rat striatal tissue. Ketamine also had a high affinity for D2High with a Ki of 55 nM, an affinity higher than its 3100 nM Ki for the NMDA sites. Dizocilpine had a Ki of 0.3 nM at D2High, but a Kd of 1.8 nM at the NMDA receptor. LSD had a Ki of 2 nM at D2High. Because the psychotomimetics had higher potency at D2High than at the NMDA site, the psychotomimetic action of these drugs must have a major contribution from D2 agonism. Because these drugs have a combined action on both dopamine receptors and NMDA receptors, these drugs, when given in vivo, test a combined hyperdopamine and hypoglutamate theory of psychosis.

  4. Structural Basis of the High Affinity Interaction between the Alphavirus Nonstructural Protein-3 (nsP3) and the SH3 Domain of Amphiphysin-2.

    PubMed

    Tossavainen, Helena; Aitio, Olli; Hellman, Maarit; Saksela, Kalle; Permi, Perttu

    2016-07-29

    We show that a peptide from Chikungunya virus nsP3 protein spanning residues 1728-1744 binds the amphiphysin-2 (BIN1) Src homology-3 (SH3) domain with an unusually high affinity (Kd 24 nm). Our NMR solution complex structure together with isothermal titration calorimetry data on several related viral and cellular peptide ligands reveal that this exceptional affinity originates from interactions between multiple basic residues in the target peptide and the extensive negatively charged binding surface of amphiphysin-2 SH3. Remarkably, these arginines show no fixed conformation in the complex structure, indicating that a transient or fluctuating polyelectrostatic interaction accounts for this affinity. Thus, via optimization of such dynamic electrostatic forces, viral peptides have evolved a superior binding affinity for amphiphysin-2 SH3 compared with typical cellular ligands, such as dynamin, thereby enabling hijacking of amphiphysin-2 SH3-regulated host cell processes by these viruses. Moreover, our data show that the previously described consensus sequence PXRPXR for amphiphysin SH3 ligands is inaccurate and instead define it as an extended Class II binding motif PXXPXRpXR, where additional positive charges between the two constant arginine residues can give rise to extraordinary high SH3 binding affinity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Supramolecular interaction of 6-shogaol, a therapeutic agent of Zingiber officinale with human serum albumin as elucidated by spectroscopic, calorimetric and molecular docking methods.

    PubMed

    Feroz, S R; Mohamad, S B; Lee, G S; Malek, S N A; Tayyab, S

    2015-06-01

    6-Shogaol, one of the main bioactive constituents of Zingiber officinale has been shown to possess various therapeutic properties. Interaction of a therapeutic compound with plasma proteins greatly affects its pharmacokinetic and pharmacodynamic properties. The present investigation was undertaken to characterize the interaction between 6-shogaol and the main in vivo transporter, human serum albumin (HSA). Various binding characteristics of 6-shogaol-HSA interaction were studied using fluorescence spectroscopy. Thermal stability of 6-shogaol-HSA system was determined by circular dichroism (CD) and differential scanning calorimetric (DSC) techniques. Identification of the 6-shogaol binding site on HSA was made by competitive drug displacement and molecular docking experiments. Fluorescence quench titration results revealed the association constant, Ka of 6-shogaol-HSA interaction as 6.29 ± 0.33 × 10(4) M(-1) at 25 ºC. Values of the enthalpy change (-11.76 kJ mol(-1)) and the entropy change (52.52 J mol(-1) K(-1)), obtained for the binding reaction suggested involvement of hydrophobic and van der Waals forces along with hydrogen bonds in the complex formation. Higher thermal stability of HSA was noticed in the presence of 6-shogaol, as revealed by DSC and thermal denaturation profiles. Competitive ligand displacement experiments along with molecular docking results suggested the binding preference of 6-shogaol for Sudlow's site I of HSA. All these results suggest that 6-shogaol binds to Sudlow's site I of HSA through moderate binding affinity and involves hydrophobic and van der Waals forces along with hydrogen bonds. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Epitope mapping of monoclonal antibody HPT-101: a study combining dynamic force spectroscopy, ELISA and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Stangner, Tim; Angioletti-Uberti, Stefano; Knappe, Daniel; Singer, David; Wagner, Carolin; Hoffmann, Ralf; Kremer, Friedrich

    2015-12-01

    By combining enzyme-linked immunosorbent assay (ELISA) and optical tweezers-assisted dynamic force spectroscopy (DFS), we identify for the first time the binding epitope of the phosphorylation-specific monoclonal antibody (mAb) HPT-101 to the Alzheimer's disease relevant peptide tau[pThr231/pSer235] on the level of single amino acids. In particular, seven tau isoforms are synthesized by replacing binding relevant amino acids by a neutral alanine (alanine scanning). From the binding between mAb HPT-101 and the alanine-scan derivatives, we extract specific binding parameters such as bond lifetime {τ }0, binding length {x}{ts}, free energy of activation {{Δ }}G (DFS) and affinity constant {K}{{a}} (ELISA, DFS). Based on these quantities, we propose criteria to identify essential, secondary and non-essential amino acids, being representative of the antibody binding epitope. The obtained results are found to be in full accord for both experimental techniques. In order to elucidate the microscopic origin of the change in binding parameters, we perform molecular dynamics (MD) simulations of the free epitope in solution for both its parent and modified form. By taking the end-to-end distance {d}{{E}-{{E}}} and the distance between the α-carbons {d}{{C}-{{C}}} of the phosphorylated residues as gauging parameters, we measure how the structure of the epitope depends on the type of substitution. In particular, whereas {d}{{C}-{{C}}} is sometimes conserved between the parent and modified form, {d}{{E}-{{E}}} strongly changes depending on the type of substitution, correlating well with the experimental data. These results are highly significant, offering a detailed microscopic picture of molecular recognition.

  7. Cis→Trans Isomerization of Pro7 in Oxytocin Regulates Zn2+ Binding

    NASA Astrophysics Data System (ADS)

    Fuller, Daniel R.; Glover, Matthew S.; Pierson, Nicholas A.; Kim, DoYong; Russell, David H.; Clemmer, David E.

    2016-08-01

    Ion mobility/mass spectrometry techniques are employed to investigate the binding of Zn2+ to the nine-residue peptide hormone oxytocin (OT, Cys1-Tyr2-Ile3-Gln4-Asn5-Cys6-Pro7-Leu8-Gly9-NH2, having a disulfide bond between Cys1 and Cys6 residues). Zn2+ binding to OT is known to increase the affinity of OT for its receptor [Pearlmutter, A. F., Soloff, M. S.: Characterization of the metal ion requirement for oxytocin-receptor interaction in rat mammary gland membranes. J. Biol. Chem. 254, 3899-3906 (1979)]. In the absence of Zn2+, we find evidence for two primary OT conformations, which arise because the Cys6-Pro7 peptide bond exists in both the trans- and cis-configurations. Upon addition of Zn2+, we determine binding constants in water of KA = 1.43 ± 0.24 and 0.42 ± 0.12 μM-1, for the trans- and cis-configured populations, respectively. The Zn2+ bound form of OT, having a cross section of Ω = 235 Å2, has Pro7 in the trans-configuration, which agrees with a prior report [Wyttenbach, T., Liu, D., Bowers, M. T.: Interactions of the hormone oxytocin with divalent metal ions. J. Am. Chem. Soc. 130, 5993-6000 (2008)], in which it was proposed that Zn2+ binds to the peptide ring and is further coordinated by interaction of the C-terminal, Pro7-Leu8-Gly9-NH2, tail. The present work shows that the cis-configuration of OT isomerizes to the trans-configuration upon binding Zn2+. In this way, the proline residue regulates Zn2+ binding to OT and, hence, is important in receptor binding.

  8. Acidity of edge surface sites of montmorillonite and kaolinite

    NASA Astrophysics Data System (ADS)

    Liu, Xiandong; Lu, Xiancai; Sprik, Michiel; Cheng, Jun; Meijer, Evert Jan; Wang, Rucheng

    2013-09-01

    Acid-base chemistry of clay minerals is central to their interfacial properties, but up to now a quantitative understanding on the surface acidity is still lacking. In this study, with first principles molecular dynamics (FPMD) based vertical energy gap technique, we calculate the acidity constants of surface groups on (0 1 0)-type edges of montmorillonite and kaolinite, which are representatives of 2:1 and 1:1-type clay minerals, respectively. It shows that tbnd Si-OH and tbnd Al-OH2OH groups of kaolinite have pKas of 6.9 and 5.7 and those of montmorillonite have pKas of 7.0 and 8.3, respectively. For each mineral, the calculated pKas are consistent with the experimental ranges derived from fittings of titration curves, indicating that tbnd Si-OH and tbnd Al-OH2OH groups are the major acidic sites responsible to pH-dependent experimental observations. The effect of Mg substitution in montmorillonite is investigated and it is found that Mg substitution increases the pKas of the neighboring tbnd Si-OH and tbnd Si-OH2 groups by 2-3 pKa units. Furthermore, our calculation shows that the pKa of edge tbnd Mg-(OH2)2 is as high as 13.2, indicating the protonated state dominates under common pH. Together with previous adsorption experiments, our derived acidity constants suggest that tbnd Si-O- and tbnd Al-(OH)2 groups are the most probable edge sites for complexing heavy metal cations.

  9. Structure-affinity relationship of the interaction between phenolic acids and their derivatives and β-lactoglobulin and effect on antioxidant activity.

    PubMed

    Wu, Simin; Zhang, Yunyue; Ren, Fazheng; Qin, Yinghui; Liu, Jiaxin; Liu, Jingwen; Wang, Qingyu; Zhang, Hao

    2018-04-15

    In this study, 71 phenolic acids and their derivatives were used to investigate the structure-affinity relationship of β-lactoglobulin binding, and the effect of this interaction on antioxidant activity. Based on a fluorescence quenching method, an improved mathematical model was adopted to calculate the binding constants, with a correction for the inner-filter effect. Hydroxylation at the 3-position increased the affinity of the phenolic acids for β-lactoglobulin, while hydroxylation at the 2- or 4-positions had a negative effect. Complete methylation of all hydroxy groups, except at the 3-position, enhanced the binding affinity. Replacing the hydroxy groups with methyl groups at the 2-position also had a positive effect. Hydrogen bonding was one of the binding forces for the interaction. The antioxidant activity of phenolic acid-β-lactoglobulin complexes was higher than that of phenolic acids alone. These findings provide an understanding of the structure-activity relationship of the interaction between β-lactoglobulin and phenolic acids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Identification of new ligands for the methionine biosynthesis transcriptional regulator (MetJ) by FAC-MS.

    PubMed

    Martí-Arbona, Ricardo; Teshima, Munehiro; Anderson, Penelope S; Nowak-Lovato, Kristy L; Hong-Geller, Elizabeth; Unkefer, Clifford J; Unkefer, Pat J

    2012-01-01

    We have developed a high-throughput approach using frontal affinity chromatography coupled to mass spectrometry (FAC-MS) for the identification and characterization of the small molecules that modulate transcriptional regulator (TR) binding to TR targets. We tested this approach using the methionine biosynthesis regulator (MetJ). We used effector mixtures containing S-adenosyl-L-methionine (SAM) and S-adenosyl derivatives as potential ligands for MetJ binding. The differences in the elution time of different compounds allowed us to rank the binding affinity of each compound. Consistent with previous results, FAC-MS showed that SAM binds to MetJ with the highest affinity. In addition, adenine and 5'-deoxy-5'-(methylthio)adenosine bind to the effector binding site on MetJ. Our experiments with MetJ demonstrate that FAC-MS is capable of screening complex mixtures of molecules and identifying high-affinity binders to TRs. In addition, FAC-MS experiments can be used to discriminate between specific and nonspecific binding of the effectors as well as to estimate the dissociation constant (K(d)) for effector-TR binding. Copyright © 2012 S. Karger AG, Basel.

  11. Magneto-nanosensor platform for probing low-affinity protein–protein interactions and identification of a low-affinity PD-L1/PD-L2 interaction

    PubMed Central

    Lee, Jung-Rok; Bechstein, Daniel J. B.; Ooi, Chin Chun; Patel, Ashka; Gaster, Richard S.; Ng, Elaine; Gonzalez, Lino C.; Wang, Shan X.

    2016-01-01

    Substantial efforts have been made to understand the interactions between immune checkpoint receptors and their ligands targeted in immunotherapies against cancer. To carefully characterize the complete network of interactions involved and the binding affinities between their extracellular domains, an improved kinetic assay is needed to overcome limitations with surface plasmon resonance (SPR). Here, we present a magneto-nanosensor platform integrated with a microfluidic chip that allows measurement of dissociation constants in the micromolar-range. High-density conjugation of magnetic nanoparticles with prey proteins allows multivalent receptor interactions with sensor-immobilized bait proteins, more closely mimicking natural-receptor clustering on cells. The platform has advantages over traditional SPR in terms of insensitivity of signal responses to pH and salinity, less consumption of proteins and better sensitivities. Using this platform, we characterized the binding affinities of the PD-1—PD-L1/PD-L2 co-inhibitory receptor system, and discovered an unexpected interaction between the two known PD-1 ligands, PD-L1 and PD-L2. PMID:27447090

  12. Modeling sorption of divalent metal cations on hydrous manganese oxide using the diffuse double layer model

    USGS Publications Warehouse

    Tonkin, J.W.; Balistrieri, L.S.; Murray, J.W.

    2004-01-01

    Manganese oxides are important scavengers of trace metals and other contaminants in the environment. The inclusion of Mn oxides in predictive models, however, has been difficult due to the lack of a comprehensive set of sorption reactions consistent with a given surface complexation model (SCM), and the discrepancies between published sorption data and predictions using the available models. The authors have compiled a set of surface complexation reactions for synthetic hydrous Mn oxide (HMO) using a two surface site model and the diffuse double layer SCM which complements databases developed for hydrous Fe (III) oxide, goethite and crystalline Al oxide. This compilation encompasses a range of data observed in the literature for the complex HMO surface and provides an error envelope for predictions not well defined by fitting parameters for single or limited data sets. Data describing surface characteristics and cation sorption were compiled from the literature for the synthetic HMO phases birnessite, vernadite and ??-MnO2. A specific surface area of 746 m2g-1 and a surface site density of 2.1 mmol g-1 were determined from crystallographic data and considered fixed parameters in the model. Potentiometric titration data sets were adjusted to a pH1EP value of 2.2. Two site types (???XOH and ???YOH) were used. The fraction of total sites attributed to ???XOH (??) and pKa2 were optimized for each of 7 published potentiometric titration data sets using the computer program FITEQL3.2. pKa2 values of 2.35??0.077 (???XOH) and 6.06??0.040 (???YOH) were determined at the 95% confidence level. The calculated average ?? value was 0.64, with high and low values ranging from 1.0 to 0.24, respectively. pKa2 and ?? values and published cation sorption data were used subsequently to determine equilibrium surface complexation constants for Ba2+, Ca2+, Cd 2+, Co2+, Cu2+, Mg2+, Mn 2+, Ni2+, Pb2+, Sr2+ and Zn 2+. In addition, average model parameters were used to predict additional sorption data for which complementary titration data were not available. The two-site model accounts for variability in the titration data and most metal sorption data are fit well using the pKa2 and ?? values reported above. A linear free energy relationship (LFER) appears to exist for some of the metals; however, redox and cation exchange reactions may limit the prediction of surface complexation constants for additional metals using the LFER. ?? 2003 Elsevier Ltd. All rights reserved.

  13. Mechanism-based pharmacodynamic modeling of the interaction of midazolam, bretazenil, and zolpidem with ethanol.

    PubMed

    Tuk, Bert; van Gool, Toon; Danhof, Meindert

    2002-06-01

    The pharmacokinetic and pharmacodynamic interactions of ethanol with the full benzodiazepine agonist midazolam, the partial agonist bretazenil and the benzodiazepine BZ1 receptor subtype selective agonist zolpidem have been determined in the rat in vivo, using an integrated pharmacokinetic-pharmacodynamic approach. Ethanol was administered as a constant rate infusion resulting in constant plasma concentrations of 0.5 g/l. The pharmacokinetics and pharmacodynamics of midazolam, bretazenil, and zolpidem were determined following an intravenous infusion of 5.0, 2.5, and 18 mg/kg respectively. The amplitude in the 11.5-30 Hz frequency band of the EEG was used as measure of the pharmacological effect. For each of the benzodiazepines the concentration-EEG effect relationship could be described by the sigmoid Emax pharmacodynamic model. Significant differences in both EC50 and Emax were observed. The values of the EC50 were 76 +/- 11, 12 +/- 3, and 512 +/- 116 ng/ml for midazolam, bretazenil, and zolpidem respectively. The values of the Emax were 113 +/- 9, 44 +/- 3, and 175 +/- 10 microV/s. In the presence of ethanol the values of the EC50 of midazolam and zolpidem were reduced to approximately 50% of the original value. The values for Emax and Hill-factor were unchanged Due to a large interindividual variability no significant change in EC50 was observed for bretazenil. Analysis of the data on basis of a mechanism-based model showed only a decrease in the apparent affinity constant KPD for all three drugs, indicating that changes in EC50 can be explained entirely by a change in the apparent affinity constant KPD without concomitant changes in the efficacy parameter ePD and the stimulus-effect relationship. The findings of this study show that the pharmacodynamic interactions with a low dose of ethanol in vivo are qualitatively and quantitatively similar for benzodiazepine receptor full agonists, partial agonists, and benzodiazepine BZ1 receptor subtype selective agonists. This interaction can be explained entirely by a change in the affinity of the biological system for each benzodiazepine.

  14. Relationship of nonreturn rates of dairy bulls to binding affinity of heparin to sperm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marks, J.L.; Ax, R.L.

    1985-08-01

    The binding of the glycosaminoglycan (3H) heparin to bull spermatozoa was compared with nonreturn rates of dairy bulls. Semen samples from five bulls above and five below an average 71% nonreturn rate were used. Samples consisted of first and second ejaculates on a single day collected 1 d/wk for up to 5 consecutive wk. Saturation binding assays using (TH) heparin were performed to quantitate the binding characteristics of each sample. Scatchard plot analyses indicated a significant difference in the binding affinity for (TH) heparin between bulls of high and low fertility. Dissociation constants were 69.0 and 119.3 pmol for bullsmore » of high and low fertility, respectively. In contrast, the number of binding sites for (TH) heparin did not differ significantly among bulls. Differences in binding affinity of (TH) heparin to bull sperm might be used to predict relative fertility of dairy bulls.« less

  15. Synthesis, characterization and binding affinities of rhenium(I) thiosemicarbazone complexes for the estrogen receptor (α/β).

    PubMed

    Núñez-Montenegro, Ara; Carballo, Rosa; Vázquez-López, Ezequiel M

    2014-11-01

    The binding affinities towards estrogen receptors (ERs) α and β of a set of thiosemicarbazone ligands (HL(n)) and their rhenium(I) carbonyl complexes [ReX(HL(n))(CO)3] (X=Cl, Br) were determined by a competitive standard radiometric assay with [(3)H]-estradiol. The ability of the coordinated thiosemicarbazone ligands to undergo deprotonation and the lability of the ReX bond were used as a synthetic strategy to obtain [Re(hpy)(L(n))(CO)3] (hpy=3- or 4-hydroxypyridine). The inclusion of the additional hpy ligand endows the new thiosemicarbazonate complexes with an improved affinity towards the estrogen receptors and, consequently, the values of the inhibition constant (Ki) could be determined for some of them. In general, the values of Ki for both ER subtypes suggest an appreciable selectivity towards ERα. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. The N-Terminal Domain of the Flo1 Flocculation Protein from Saccharomyces cerevisiae Binds Specifically to Mannose Carbohydrates ▿

    PubMed Central

    Goossens, Katty V. Y.; Stassen, Catherine; Stals, Ingeborg; Donohue, Dagmara S.; Devreese, Bart; De Greve, Henri; Willaert, Ronnie G.

    2011-01-01

    Saccharomyces cerevisiae cells possess a remarkable capacity to adhere to other yeast cells, which is called flocculation. Flocculation is defined as the phenomenon wherein yeast cells adhere in clumps and sediment rapidly from the medium in which they are suspended. These cell-cell interactions are mediated by a class of specific cell wall proteins, called flocculins, that stick out of the cell walls of flocculent cells. The N-terminal part of the three-domain protein is responsible for carbohydrate binding. We studied the N-terminal domain of the Flo1 protein (N-Flo1p), which is the most important flocculin responsible for flocculation of yeast cells. It was shown that this domain is both O and N glycosylated and is structurally composed mainly of β-sheets. The binding of N-Flo1p to d-mannose, α-methyl-d-mannoside, various dimannoses, and mannan confirmed that the N-terminal domain of Flo1p is indeed responsible for the sugar-binding activity of the protein. Moreover, fluorescence spectroscopy data suggest that N-Flo1p contains two mannose carbohydrate binding sites with different affinities. The carbohydrate dissociation constants show that the affinity of N-Flo1p for mono- and dimannoses is in the millimolar range for the binding site with low affinity and in the micromolar range for the binding site with high affinity. The high-affinity binding site has a higher affinity for low-molecular-weight (low-MW) mannose carbohydrates and no affinity for mannan. However, mannan as well as low-MW mannose carbohydrates can bind to the low-affinity binding site. These results extend the cellular flocculation model on the molecular level. PMID:21076009

  17. Synthetic cannabinoids: In silico prediction of the cannabinoid receptor 1 affinity by a quantitative structure-activity relationship model.

    PubMed

    Paulke, Alexander; Proschak, Ewgenij; Sommer, Kai; Achenbach, Janosch; Wunder, Cora; Toennes, Stefan W

    2016-03-14

    The number of new synthetic psychoactive compounds increase steadily. Among the group of these psychoactive compounds, the synthetic cannabinoids (SCBs) are most popular and serve as a substitute of herbal cannabis. More than 600 of these substances already exist. For some SCBs the in vitro cannabinoid receptor 1 (CB1) affinity is known, but for the majority it is unknown. A quantitative structure-activity relationship (QSAR) model was developed, which allows the determination of the SCBs affinity to CB1 (expressed as binding constant (Ki)) without reference substances. The chemically advance template search descriptor was used for vector representation of the compound structures. The similarity between two molecules was calculated using the Feature-Pair Distribution Similarity. The Ki values were calculated using the Inverse Distance Weighting method. The prediction model was validated using a cross validation procedure. The predicted Ki values of some new SCBs were in a range between 20 (considerably higher affinity to CB1 than THC) to 468 (considerably lower affinity to CB1 than THC). The present QSAR model can serve as a simple, fast and cheap tool to get a first hint of the biological activity of new synthetic cannabinoids or of other new psychoactive compounds. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Characterization and regulation of glycine transport in Fusarium oxysporum var. lini.

    PubMed

    Castro, I M; Lima, A A; Nascimento, A F; Ruas, M M; Nicoli, J R; Brandão, R L

    1996-08-01

    Glycine was transported in Fusarium oxysporum cells, grown on glycine as the sole source of carbon and nitrogen, by a facilitated diffusion transport system with a half-saturation constant (Ks) of 11 mM and a maximum velocity (Vmax) of 1.2 mM (g dry weight)-1 h-1 at pH 5.0 and 26 degrees C. Under conditions of nitrogen starvation, the same system was present together with a high-affinity one (Ks) of about 47 microM and Vmax of about 60 microM (g dry weight)-1 h-1). The low-affinity system was more specific than the high-affinity system. Cells grown on gelatine showed the same behavior. In cells grown on glucose-gelatine medium, the low-affinity system was poorly expressed even after carbon and nitrogen starvation. Moreover, addition of glucose to cells grown on glycine and resuspended in mineral medium caused an increase of the glycine transport probably due to a boost in protein synthesis. This stimulation did not affect the Ks of the low-affinity system. These results demonstrate that, as is the case for other eukaryotic systems, F. oxysporum glycine transport is under control of nitrogen sources but its regulation by carbon sources appears to be more complex.

  19. Allosteric Models for Cooperative Polymerization of Linear Polymers

    PubMed Central

    Miraldi, Emily R.; Thomas, Peter J.; Romberg, Laura

    2008-01-01

    In the cytoskeleton, unfavorable nucleation steps allow cells to regulate where, when, and how many polymers assemble. Nucleated polymerization is traditionally explained by a model in which multistranded polymers assemble cooperatively, whereas linear, single-stranded polymers do not. Recent data on the assembly of FtsZ, the bacterial homolog of tubulin, do not fit either category. FtsZ can polymerize into single-stranded protofilaments that are stable in the absence of lateral interactions, but that assemble cooperatively. We developed a model for cooperative polymerization that does not require polymers to be multistranded. Instead, a conformational change allows subunits in oligomers to associate with high affinity, whereas a lower-affinity conformation is favored in monomers. We derive equations for calculating polymer concentrations, subunit conformations, and the apparent affinity of subunits for polymer ends. Certain combinations of equilibrium constants produce the sharp critical concentrations characteristic of cooperative polymerization. In these cases, the low-affinity conformation predominates in monomers, whereas virtually all polymers are composed of high-affinity subunits. Our model predicts that the three routes to forming HH dimers all involve unstable intermediates, limiting nucleation. The mathematical framework developed here can represent allosteric assembly systems with a variety of biochemical interpretations, some of which can show cooperativity, and others of which cannot. PMID:18502809

  20. Stimuli Responsive Systems Constructed Using Cucurbit[n]uril-Type Molecular Containers

    PubMed Central

    2015-01-01

    Conspectus This Account focuses on stimuli responsive systems that function in aqueous solution using examples drawn from the work of the Isaacs group using cucurbit[n]uril (CB[n]) molecular containers as key recognition elements. Our entry into the area of stimuli responsive systems began with the preparation of glycoluril derived molecular clips that efficiently distinguish between self and nonself by H-bonds and π–π interactions even within complex mixtures and therefore undergo self-sorting. We concluded that the selectivity of a wide variety of H-bonded supramolecular assemblies was higher than previously appreciated and that self-sorting is not exceptional behavior. This lead us to examine self-sorting within the context of CB[n] host–guest chemistry in water. We discovered that CB[n] homologues (CB[7] and CB[8]) display remarkably high binding affinity (Ka up to 1017 M–1) and selectivity (ΔΔG) toward their guests, which renders CB[n]s prime components for the construction of stimuli responsive host–guest systems. The CB[7]·adamantaneammonium ion complex, which is particularly privileged (Ka = 4.2 × 1012 M–1), was introduced by us as a stimulus to trigger constitutional changes in multicomponent self-sorting systems. For example, we describe how the free energy associated with the formation of host–guest complexes of CB[n]-type receptors can drive conformational changes of included guests like triazene–arylene foldamers and cationic calix[4]arenes, as well as induced conformational changes (e.g., ammonium guest size dependent homotropic allostery, metal ion triggered folding, and heterochiral dimerization) of the hosts themselves. Many guests display large pKa shifts within their CB[n]–guest complexes, which we used to promote pH controlled guest swapping and thermal trans-to-cis isomerization of azobenzene derivatives. We also used the high affinity and selectivity of CB[7] toward its guests to outcompete an enzyme (bovine carbonic anhydrase) for a two-faced inhibitor, which allowed stimuli responsive regulation of enzymatic activity. These results prompted us to examine the use of CB[n]-type receptors in both in vitro and in vivo biological systems. We demonstrated that adamantaneammonium ion can be used to intracellularly sequester CB[7] from gold nanoparticles passivated with hexanediammonium ion·CB[7] complexes and thereby trigger cytotoxicity. CB[7] derivatives bearing a biotin targeting group enhance the cytotoxicity of encapsulated oxaliplatin toward L1210FR cells. Finally, acyclic CB[n]-type receptors function as solubilizing excipients for insoluble drugs for drug delivery purposes and as a broad spectrum reversal agent for the neuromuscular blocking agents rocuronium, vecuronium, and cis-atracurium in rats. The work highlights the great potential for integration of CB[n]-type receptors with biological systems. PMID:24785941

  1. Quantum dot nanocrystals having guanosine imprinted nanoshell for DNA recognition.

    PubMed

    Diltemiz, Sibel Emir; Say, Ridvan; Büyüktiryaki, Sibel; Hür, Deniz; Denizli, Adil; Ersöz, Arzu

    2008-05-30

    Molecular imprinted polymers (MIPs) as a recognition element for sensors are increasingly of interest and MIP nanoparticles have started to appear in the literature. In this study, we have proposed a novel thiol ligand-capping method with polymerizable methacryloylamido-cysteine (MAC) attached to CdS quantum dots (QDs), reminiscent of a self-assembled monolayer and have reconstructed surface shell by synthetic host polymers based on molecular imprinting method for DNA recognition. In this method, methacryloylamidohistidine-platinium (MAH-Pt(II)) is used as a new metal-chelating monomer via metal coordination-chelation interactions and guanosine templates of DNA. Nanoshell sensors with guanosine templates give a cavity that is selective for guanosine and its analogues. The guanosine can simultaneously chelate to Pt(II) metal ion and fit into the shape-selective cavity. Thus, the interaction between Pt(II) ion and free coordination spheres has an effect on the binding ability of the CdS QD nanosensor. The binding affinity of the guanosine imprinted nanocrystals has investigated by using the Langmuir and Scatchard methods, and experiments have shown the shape-selective cavity formation with O6 and N7 of a guanosine nucleotide (K(a) = 4.841x10(6) mol L(-1)) and a free guanine base (K(a) = 0.894x10(6) mol L(-1)). Additionally, the guanosine template of the nanocrystals is more favored for single stranded DNA compared to double stranded DNA.

  2. The significance of the source of zinc and its anti-VSC effect.

    PubMed

    Rölla, G; Jonski, G; Young, A

    2002-06-01

    The anti-VSC (volatile sulphur compounds) effect of zinc is known to be associated with free zinc ions. To examine whether zinc salts with low stability constants were more suitable as sources of zinc in zinc lozenges than zinc salts with high stability constants. The former provide free zinc ions upon dissolution in water, whereas the latter provide few such ions. Identical lozenges were produced which contained either zinc acetate, zinc gluconate (low stability constants), zinc citrate or amino-acid chelated zinc (extremely high stability constants). All the lozenges contained 0.1 per cent of zinc. A test panel of 10 volunteers used the different lozenges randomly. VSC were measured by GC. The lozenge with the highest stability constant was as effective as those with very low stability constants. The anti-VSC effect was thus not related to this constant. These findings may be explained by the possibility that alternative ligands with stronger affinity for zinc than the original ligands in the lozenges may be present in the oral cavity. An in vitro experiment indicated that the sulphide ion (S2-) may be such a ligand.

  3. Neurotrophins and their receptors in human lingual tonsil: an immunohistochemical analysis.

    PubMed

    Artico, Marco; Bronzetti, Elena; Felici, Laura M; Alicino, Valentina; Ionta, Brunella; Bronzetti, Benedetto; Magliulo, Giuseppe; Grande, Claudia; Zamai, Loris; Pasquantonio, Guido; De Vincentiis, Marco

    2008-11-01

    Lymphoid organs are supplied by many nerve endings associated with different kinds of cells and macrophages. The role of this innervation on the release of locally active molecules is still unclear. Lingual tonsils belong to Waldeyer's Ring, in close association with palatine tonsils and nasopharyngeal (adenoids) tonsils, thus constituting part of NALT (nasal-associated lymphoid tissue) together with the tubal tonsils and lateral pharyngeal bands. In this study, we focused our attention on the expression of some neurotrophins (NTs) and their high- and low-affinity receptors in human lingual tonsils. Light immunohistochemistry showed that human tonsillar samples were generally positive for all the NTs investigated (NGF, BDNF, NT-3, NT-4) and their receptors (TrKA, TrKB, TrKC and p75) with some different expression levels. NGF and TrKC were strongly expressed in macrophages, but weakly in lymphocytes. However, BDNF and TrKB was highly expressed in lymphocytes and weaker in macrophages. The low-affinity receptor for NGF, p75, was mainly moderately expressed in the analysed samples. These results suggest the presence of a pattern of neurotrophin innervation in the human lingual tonsil which may play a role in sustaining inflammatory conditions and in modulating a close interaction between the nervous system and the different immune cellular subtypes.

  4. Purification and functional characterisation of the pyruvate (monocarboxylate) carrier from baker's yeast mitochondria (Saccharomyces cerevisiae).

    PubMed

    Nałecz, M J; Nałecz, K A; Azzi, A

    1991-08-09

    Isolated yeast mitochondria were subjected to solubilization by Triton X-114 and the detergent extract was subsequently chromatrographed on dry hydroxyapatite. Purification of the yeast monocarboxylate (pyruvate) carrier was achieved by affinity chromatography on immobilized 2-cyano-4-hydroxycinnamate, as described previously for bovine heart mitochondria (Bolli, R., Nałecz K.A. and Azzi, A. (1989) J. Biol. Chem. 264 18024-18030). The final preparation contained two polypeptides of apparent molecular mass 26 and 50 kDa. The yeast carrier appeared to be less abundant, but more active, than the analogous protein from higher eukaryotes. The carrier was able to catalyse the pyruvate / pyruvate and pyruvate / acetoacetate exchange reactions, both reactions being sensitive to cyanocinnamate and its derivatives, to phenylpyruvate and to mersalyl and p-chloromercuribenzoate. In the pyruvate / acetoacetate exchange reaction (200 mM internal acetoacetate, enzymatic assay), the Km value for external pyruvate was found to be 0.8 mM and the Vmax 135 mumol/min per mg protein. Among other substrates of the yeast carrier, all transported with similar affinity and identical maximal velocity against acetoacetate, we identified 2-oxoisocaproate, 2-oxoisovalerate and 2-oxo-3-methylvalerate. Lactate was not translocated by this carrier with a measurable rate, neither were di- or tricarboxylates.

  5. Favorable Effects of Weak Acids on Negative-Ion Electrospray Ionization Mass Spectrometry

    PubMed Central

    Wu, Zengru; Gao, Wenqing; Phelps, Mitch A.; Wu, Di; Miller, Duane D.; Dalton, James T.

    2007-01-01

    Despite widespread use in pharmacokinetic, drug metabolism, and pesticide residue studies, little is known about the factors governing response during reversed-phase liquid chromatography coupled with negative-ion electrospray ionization (ESI−) mass spectrometry. We examined the effects of various mobile-phase modifiers on the ESI− response of four selective androgen receptor modulators using a postcolumn infusion system. Acetic, propionic, and butyric acid improved the ESI− responses of analytes to varying extents at low concentrations. Formic acid suppressed ionization, as did neutral salts (ammonium formate, ammonium acetate) and bases (ammonium hydroxide, triethylamine) under most conditions. Two modifiers (2,2,2-trifluoroethanol, formaldehyde) that produce anions with high gas-phase proton affinity increased ESI− responses. However, the concentrations of these modifiers required to enhance ESI− response were higher than that of acidic modifiers, which is a phenomenon likely related to their low pKa values. 2,2,2-Trifluoroethanol increased response of more hydrophobic compounds but decreased response of a more hydrophilic compound. Formaldehyde improved response of all the compounds, especially the hydrophilic compound with lower surface activity. In summary, these results suggest that an ideal ESI− modifier should provide cations that can be easily electrochemically reduced and produce anions with small molecular volume and high gas-phase proton affinity. PMID:14750883

  6. Flow to partially penetrating wells in unconfined heterogeneous aquifers: Mean head and interpretation of pumping tests

    NASA Astrophysics Data System (ADS)

    Dagan, G.; Lessoff, S. C.

    2011-06-01

    A partially penetrating well of length Lw and radius Rw starts to pump at constant discharge Qw at t = 0 from an unconfined aquifer of thickness D. The aquifer is of random and stationary conductivity characterized by KG (geometric mean), σY2 (log conductivity variance), and I and Iv (the horizontal and vertical integral scales). The flow problem is solved under a few simplifying assumptions commonly adopted in the literature for homogeneous media: Rw/Lw ≪ 1, linearization of the free surface condition, and constant drainable porosity n. Additionally, it is assumed that Rw/I < 1 and Lw/Iv ≫ 1 (to simplify the well boundary conditions) and that a first-order approximation in σY2 (extended to finite σY2 on a conjectural basis) is adopted. The solution is obtained for the mean head field and the associated water table equation. The main result of the analysis is that the flow domain can be divided into three zones for : (1) the neighborhood of the well R ≪ I, where = (Qw/LwKA)h0(R, z, tKefuv/nD), with h0 being the zero-order solution pertaining to a homogeneous and isotropic aquifer, KA being the conductivity arithmetic mean, and Kefuv being the effective vertical conductivity in mean uniform flow, (2) an exterior zone R ⪆ I in which ?H? = (Qw/LwKefuh)h0(R?, z, tKefuv/nD), with Kefuh being the horizontal effective conductivity, and (3) an intermediate zone in which the solution requires a few numerical quadratures, not carried out here. The application to pumping tests reveals that identification of the aquifer parameters for homogeneous and anisotropic aquifers by commonly used methods can be applied for the drawdown measured in an observation well of length Low?Iv (to ensure exchange of space and ensemble head averages) in the second zone in order to identify Kefuh, Kefuv, and n. In contrast, the use of the drawdown in the well (first zone) leads to an overestimation of Kefuh by the factor KA/Kefuh.

  7. Journal of Superconductivity. Volume 8, Number 4. Special Issue: Miami University Workshop on High-Temperature Superconductivity. Part 1,

    DTIC Science & Technology

    1995-08-01

    Onellion Shadow Bands in Models of Correlated Electrons 475 Adriana Moreo, Stephan Haas, and Elbio Dagotto Electronic Properties of CuO 2 Planes 479...witlh each band, in agreement with experiments. lattice constant a, c(k) = -2t [cos(k/a) + cos(kya)] 3. CALCULATIONS +4t’ cos( ka ) cos(kya). (4) Using...C 170, 291 (1990). Journal of Superconductivity, Vol. 8, No. 4, 1995 Shadow Bands in Models of Correlated Electrons Adriana Moreo’, Stephan Haas

  8. MODELING OF METAL BINDING ON HUMIC SUBSTANCES USING THE NIST DATABASE: AN A PRIORI FUNCTIONAL GROUP APPROACH

    EPA Science Inventory

    Various modeling approaches have been developed for metal binding on humic substances. However, most of these models are still curve-fitting exercises-- the resulting set of parameters such as affinity constants (or the distribution of them) is found to depend on pH, ionic stren...

  9. Detonation engine fed by acetylene-oxygen mixture

    NASA Astrophysics Data System (ADS)

    Smirnov, N. N.; Betelin, V. B.; Nikitin, V. F.; Phylippov, Yu. G.; Koo, Jaye

    2014-11-01

    The advantages of a constant volume combustion cycle as compared to constant pressure combustion in terms of thermodynamic efficiency has focused the search for advanced propulsion on detonation engines. Detonation of acetylene mixed with oxygen in various proportions is studied using mathematical modeling. Simplified kinetics of acetylene burning includes 11 reactions with 9 components. Deflagration to detonation transition (DDT) is obtained in a cylindrical tube with a section of obstacles modeling a Shchelkin spiral; the DDT takes place in this section for a wide range of initial mixture compositions. A modified ka-omega turbulence model is used to simulate flame acceleration in the Shchelkin spiral section of the system. The results of numerical simulations were compared with experiments, which had been performed in the same size detonation chamber and turbulent spiral ring section, and with theoretical data on the Chapman-Jouguet detonation parameters.

  10. Identification of human antibody fragment clones specific for tetanus toxoid in a bacteriophage. lambda. immunoexpression library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullinax, R.L.; Gross, E.A.; Amberg, J.R.

    1990-10-01

    The authors have applied a molecular biology approach to the identification of human monoclonal antibodies. Human peripheral blood lymphocyte mRNA was converted to cDNA and a select subset was amplified by the polymerase chain reaction. These products, containing coding sequences for numerous immunoglobulin heavy- and {kappa} light-chain variable and constant region domains, were inserted into modified bacteriophase {lambda} expression vectors and introduced into Escherichia coli by infection to yield a combinatorial immunoexpression library. Clones with binding activity to tetanus toxoid were identified by filter hybridization with radiolabeled antigen and appeared at a frequency of 0.2{percent} in the library. These humanmore » antigen binding fragments, consisting of a heavy-chain fragment covalently linked to a light chain, displayed high affinity of binding to tetanus toxoid with equilibrium constants in the nanomolar range but did not cross-react with other proteins tested. They estimate that this human immunoexpression library contains 20,000 clones with high affinity and specificity to our chosen antigen.« less

  11. Ca2+ ion permeability properties of (R,S) alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors in isolated interneurons from the olfactory bulb of the rat.

    PubMed

    Jardemark, K; Nilsson, M; Muyderman, H; Jacobson, I

    1997-02-01

    The aim of the study was to investigate the divalent cation permeability of native alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA) receptors expressed in interneurons of the olfactory bulb. Kainic acid (KA) was used as agonist to activate AMPA-receptor-mediated currents, which were recorded with the use of the patch-clamp technique. In interneurons acutely isolated from the olfactory bulb, the current responses to KA showed linear/outwardly rectifying current-voltage (I-V) relationships with a positive average reversal potential of +7 mV in normal external medium (1 mM Ca2+, 1 mM Mg2+). Raising the external Ca2+ concentration to 10 mM suppressed the amplitude, whereas omission of Ca2+ enhanced the amplitude of the current. Spectral analysis of the increase in current variance produced by KA indicated that the decreased amplitude observed in 10 mM Ca2+ was accompanied by a reduction in the apparent single-channel conductance. Raising the concentration of Mg2+ from 1 to 10 mM had a weak depressant effect on the KA-evoked current amplitude. No shift in the reversal potential was observed when the concentration of Ca2+ or Mg2+ was changed from 1 to 10 mM. Increasing the external medium concentration of Ca2+ to 60 mM not only further depressed the amplitudes of the KA-evoked currents but also gave a pronounced leftward shift in the average reversal potential to -32 +/- 9 (SE) mV (N = 7). For neurons in primary culture, current responses to KA also showed linear/outwardly rectifying I-V relationships with a positive average reversal potential in normal external medium. Substituting N-methylglucamine for Na+ and increasing the Ca2+ concentration to 10 mM gave a leftward shift in the average reversal potential from +9 +/- 3 mV to -47 +/- 4 mV (N = 11) and caused a marked reduction in the amplitude of the KA-evoked currents at negative potentials. The permeability properties of the studied AMPA receptors were well predicted by the Eyring rate model (symmetrical, 2 barriers, 1 site). The model gave a pCa2+/pK+ permeability ratio of 0.06 for acutely isolated interneurons and 0.14 for interneurons in primary culture. The constant field theory, which failed to successfully reproduce all the experimental data, gave corresponding low permeability ratios of 0.18 and 0.40 for acutely isolated cells and cells in primary culture, respectively. Thus it is concluded that interneurons in the olfactory bulb mainly express AMPA receptors with low permeability to Ca2+ ions.

  12. The glacial/deglacial history of sedimentation in Bear Lake, Utah and Idaho

    USGS Publications Warehouse

    Rosenbaum, J.G.; Heil, C.W.

    2009-01-01

    Bear Lake, in northeastern Utah and southern Idaho, lies in a large valley formed by an active half-graben. Bear River, the largest river in the Great Basin, enters Bear Lake Valley ???15 km north of the lake. Two 4-m-long cores provide a lake sediment record extending back ???26 cal k.y. The penetrated section can be divided into a lower unit composed of quartz-rich clastic sediments and an upper unit composed largely of endogenic carbonate. Data from modern fluvial sediments provide the basis for interpreting changes in provenance of detrital material in the lake cores. Sediments from small streams draining elevated topography on the east and west sides of the lake are characterized by abundant dolomite, high magnetic susceptibility (MS) related to eolian magnetite, and low values of hard isothermal remanent magnetization (HIRM, indicative of hematite content). In contrast, sediments from the headwaters of the Bear River in the Uinta Mountains lack carbonate and have high HIRM and low MS. Sediments from lower reaches of the Bear River contain calcite but little dolomite and have low values of MS and HIRM. These contrasts in catchment properties allow interpretation of the following sequence from variations in properties of the lake sediment: (1) ca. 26 cal ka-onset of glaciation; (2) ca. 26-20 cal ka-quasicyclical, millennial-scale variations in the concentrations of hematite-rich glacial fl our derived from the Uinta Mountains, and dolomite- and magnetite-rich material derived from the local Bear Lake catchment (reflecting variations in glacial extent); (3) ca. 20-19 cal ka-maximum content of glacial fl our; (4) ca. 19-17 cal ka-constant content of Bear River sediment but declining content of glacial fl our from the Uinta Mountains; (5) ca. 17-15.5 cal ka-decline in Bear River sediment and increase in content of sediment from the local catchment; and (6) ca. 15.5-14.5 cal ka-increase in content of endogenic calcite at the expense of detrital material. The onset of glaciation indicated in the Bear Lake record postdates the initial rise of Lake Bonneville and roughly corresponds to the Stansbury shoreline. The lake record indicates that maximum glaciation occurred as Lake Bonneville reached its maximum extent ca. 20 cal ka and that deglaciation was under way while Lake Bonneville remained at its peak. The transition from siliciclastic to carbonate sedimentation probably indicates increasingly evaporative conditions and may coincide with the climatically driven fall of Lake Bonneville from the Provo shoreline. Although lake levels fluctuated during the Younger Dryas, the Bear Lake record for this period is more consistent with drier conditions, rather than cooler, moister conditions interpreted from many studies from western North America. Copyright ?? 2009 The Geological Society of America.

  13. Spectroscopic analyses on interaction of o-Vanillin- D-Phenylalanine, o-Vanillin- L-Tyrosine and o-Vanillin- L-Levodopa Schiff Bases with bovine serum albumin (BSA)

    NASA Astrophysics Data System (ADS)

    Gao, Jingqun; Guo, Yuwei; Wang, Jun; Wang, Zhiqiu; Jin, Xudong; Cheng, Chunping; Li, Ying; Li, Kai

    2011-04-01

    In this work, three o-Vanillin Schiff Bases (o-VSB: o-Vanillin- D-Phenylalanine (o-VDP), o-Vanillin- L-Tyrosine (o-VLT) and o-Vanillin- L-Levodopa (o-VLL)) with alanine constituent were synthesized by direct reflux method in ethanol solution, and then were used to study the interaction to bovine serum albumin (BSA) molecules by fluorescence spectroscopy. Based on the fluorescence quenching calculation, the bimolecular quenching constant ( Kq), apparent quenching constant ( Ksv), effective binding constant ( KA) and corresponding dissociation constant ( KD) as well as binding site number ( n) were obtained. In addition, the binding distance ( r) was also calculated according to Foster's non-radioactive energy transfer theory. The results show that these three o-VSB can efficiently bind to BSA molecules, but the binding array order is o-VDP-BSA > o-VLT-BSA > o-VLL-BSA. Synchronous fluorescence spectroscopy indicates that the o-VDP is more accessibility to tryptophan (Trp) residues of BSA molecules than to tyrosine (Tyr) residues. Nevertheless, the o-VLT and o-VLL are more accessibility to Tyr residues than to Trp residues.

  14. Spectroscopic analyses on interaction of o-Vanillin-D-Phenylalanine, o-Vanillin-L-Tyrosine and o-Vanillin-L-Levodopa Schiff Bases with bovine serum albumin (BSA).

    PubMed

    Gao, Jingqun; Guo, Yuwei; Wang, Jun; Wang, Zhiqiu; Jin, Xudong; Cheng, Chunping; Li, Ying; Li, Kai

    2011-04-01

    In this work, three o-Vanillin Schiff Bases (o-VSB: o-Vanillin-D-Phenylalanine (o-VDP), o-Vanillin-L-Tyrosine (o-VLT) and o-Vanillin-L-Levodopa (o-VLL)) with alanine constituent were synthesized by direct reflux method in ethanol solution, and then were used to study the interaction to bovine serum albumin (BSA) molecules by fluorescence spectroscopy. Based on the fluorescence quenching calculation, the bimolecular quenching constant (K(q)), apparent quenching constant (K(sv)), effective binding constant (K(A)) and corresponding dissociation constant (K(D)) as well as binding site number (n) were obtained. In addition, the binding distance (r) was also calculated according to Foster's non-radioactive energy transfer theory. The results show that these three o-VSB can efficiently bind to BSA molecules, but the binding array order is o-VDP-BSA>o-VLT-BSA>o-VLL-BSA. Synchronous fluorescence spectroscopy indicates that the o-VDP is more accessibility to tryptophan (Trp) residues of BSA molecules than to tyrosine (Tyr) residues. Nevertheless, the o-VLT and o-VLL are more accessibility to Tyr residues than to Trp residues. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Using the Concept of Transient Complex for Affinity Predictions in CAPRI Rounds 20–27 and Beyond

    PubMed Central

    Qin, Sanbo; Zhou, Huan-Xiang

    2013-01-01

    Predictions of protein-protein binders and binding affinities have traditionally focused on features pertaining to the native complexes. In developing a computational method for predicting protein-protein association rate constants, we introduced the concept of transient complex after mapping the interaction energy surface. The transient complex is located at the outer boundary of the bound-state energy well, having near-native separation and relative orientation between the subunits but not yet formed most of the short-range native interactions. We found that the width of the binding funnel and the electrostatic interaction energy of the transient complex are among the features predictive of binders and binding affinities. These ideas were very promising for the five affinity-related targets (T43–45, 55, and 56) of CAPRI rounds 20–27. For T43, we ranked the single crystallographic complex as number 1 and were one of only two groups that clearly identified that complex as a true binder; for T44, we ranked the only design with measurable binding affinity as number 4. For the nine docking targets, continuing on our success in previous CAPRI rounds, we produced 10 medium-quality models for T47 and acceptable models for T48 and T49. We conclude that the interaction energy landscape and the transient complex in particular will complement existing features in leading to better prediction of binding affinities. PMID:23873496

  16. Determination of dissociation constant of the NFκB p50/p65 heterodimer using fluorescence cross-correlation spectroscopy in the living cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiwari, Manisha; Mikuni, Shintaro; Muto, Hideki

    Highlights: •We used two-laser-beam FCCS to determine the dissociation constant (K{sub d}) of IPT domain of p50/p65 heterodimer in living cell. •Interaction of p50 and p65 was analyzed in the cytoplasm and nucleus of single living cell. •Binding affinity of p50/p65 heterodimer is higher in cytoplasm than that of nucleus. -- Abstract: Two-laser-beam fluorescence cross-correlation spectroscopy (FCCS) is promising technique that provides quantitative information about the interactions of biomolecules. The p50/p65 heterodimer is the most abundant and well understood of the NFκB dimers in most cells. However, the quantitative value of affinity, namely the K{sub d}, for the heterodimer inmore » living cells is not known yet. To quantify the heterodimerization of the IPT domain of p50/p65 in the living cell, we used two-laser-beam FCCS. The K{sub d} values of mCherry{sub 2}- and EGFP-fused p50 and p65 were determined to be 0.46 μM in the cytoplasm and 1.06 μM in the nucleus of the living cell. These results suggest the different binding affinities of the p50/p65 heterodimer in the cytoplasm and nucleus of the living cell and different complex formation in each region.« less

  17. Highly affine and selective aptamers against cholera toxin as capture elements in magnetic bead-based sandwich ELAA.

    PubMed

    Frohnmeyer, Esther; Frisch, Farina; Falke, Sven; Betzel, Christian; Fischer, Markus

    2018-03-10

    Aptamers are single-stranded DNA or RNA oligonucleotides, which have been emerging as recognition elements in disease diagnostics and food control, including the detection of bacterial toxins. In this study, we employed the semi-automated just in time-selection to identify aptamers that bind to cholera toxin (CT) with high affinity and specificity. CT is the main virulence factor of Vibrio cholerae and the causative agent of the eponymous disease. For the selected aptamers, dissociation constants in the low nanomolar range (23-56 nM) were determined by fluorescence-based affinity chromatography and cross-reactivity against related proteins was evaluated by direct enzyme-linked aptamer assay (ELAA). Aptamer CT916 has a dissociation constant of 48.5 ± 0.5 nM and shows negligible binding to Shiga-like toxin 1B, protein A and BSA. This aptamer was chosen to develop a sandwich ELAA for the detection of CT from binding buffer and local tap water. Amine-C6- or biotin-modified CT916 was coupled to magnetic beads to serve as the capture element. Using an anti-CT polyclonal antibody as the reporter, detection limits of 2.1 ng/ml in buffer and 2.4 ng/ml in tap water, with a wide log-linear dynamic range from 1 ng/ml to 1000 ng/ml and 500 ng/ml, respectively, were achieved. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Transport mechanism for lovastatin acid in bovine kidney NBL-1 cells: kinetic evidences imply involvement of monocarboxylate transporter 4.

    PubMed

    Nagasawa, Kazuki; Nagai, Katsuhito; Ishimoto, Atsushi; Fujimoto, Sadaki

    2003-08-27

    We previously indicated that lovastatin acid, a 3-hydroxyl-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, was transported by a monocarboxylate transporter (MCT) in cultured rat mesangial cells. In this study, to identify the MCT isoform(s) responsible for the lovastatin acid uptake, the transport mechanism was investigated using bovine kidney NBL-1 cells, which have been reported to express only MCT4 at the protein level. On RT-PCR analysis, the message of mRNAs for MCT1 and MCT4 was detected in the NBL-1 cells used in this study, which was confirmed by kinetic analysis of [14C]L-lactic acid uptake, consisting of high- and low-affinity components corresponding to MCT1 and MCT4, respectively. The lovastatin acid uptake depended on an inwardly directed H+-gradient, and was inhibited by representative monocarboxylates, but not by inhibitors/substrates for organic anion transporting polypeptides and organic anion transporters. In addition, L-lactic acid competitively inhibited the uptake of lovastatin acid and lovastatin acid inhibited the low affinity component of [14C]L-lactic acid uptake dose dependently. The inhibition constant of L-lactic acid for lovastatin acid uptake was almost the same as the Michaelis constant for [14C]L-lactic acid uptake by the low-affinity component. These kinetic evidences imply that lovastatin acid was taken up into NBL-1 cells via MCT4.

  19. The novel kinetics expression of Cadmium (II) removal using green adsorbent horse dung humic acid (Hd-Ha)

    NASA Astrophysics Data System (ADS)

    Basuki, Rahmat; Santosa, Sri Juari; Rusdiarso, Bambang

    2017-03-01

    Humic acid from dry horse dung powder has been prepared and this horse dung humic acid (HD-HA) was then applied as a sorbent to adsorb Cadmium(II) from a solution. Characterization of HD-HA was conducted by detection of its functional group, UV-Vis spectra, ash level, and total acidity. Result of the work showed that HD-HA had similar character compared with peat soil humic acid (PS-HA) and previous researchers. The adsorption study of this work was investigated by batch experiment in pH 5. The thermodynamics parameters in this work were determined by the Langmuir isotherm model for monolayer sorption and Freundlich isotherm model multilayer sorption. Monolayer sorption capacity (b) for HD-HA was 1.329 × 10-3 mol g-1, equilibrium constant (K) was 5.651 (mol/L)-1, and multilayer sorption capacity was 2.646 × 10-2 mol g-1. The kinetics parameters investigated in this work were determined by the novel kinetics expression resulted from the mathematical derivation the availability of binding sites of sorbent. Adsorption rate constant (ka) from this novel expression was 43.178 min-1 (mol/L)-1 and desorption rate constant (kd) was 1.250 × 10-2 min-1. Application of the kinetics model on sorption Cd(II) onto HD-HA showed the nearly all of models gave a good linearity. However, only this proposed kinetics expression has good relation with Langmuir model. The novel kinetics expression proposed in this paper seems to be more realistic and reasonable and close to the experimental real condition because the value of ka/kd (3452 (mol/L)-1) was fairly close with K from Langmuir isotherm model (5651 (mol/L)-1). Comparison of this novel kinetics expression with well-known Lagergren pseudo-first order kinetics and Ho pseudo-second order kinetics was also critically discussed in this paper.

  20. Effect of a buried ion pair in the hydrophobic core of a protein: An insight from constant pH molecular dynamics study.

    PubMed

    Pathak, Arup K

    2015-03-01

    Constant pH molecular dynamics (CpHMD) is a commonly used sampling method, which incorporates the coupling of conformational flexibility and protonation state of a protein during the simulation by using pH as an external parameter. The effects on the structure and stability of a hyperstable variant of staphylococcal nuclease (Δ+PHS) protein of an artificial charge pair buried in its hydrophobic core are investigated by applying both CpHMD and accelerated molecular dynamics coupled with constant pH (CpHaMD) methods. Generalized Born electrostatics is used to model the solvent water. Two sets of starting coordinates of V23E/L36K variant of Δ+PHS, namely, Maestro generated coordinates from Δ+PHS and crystal structure coordinates of the same are considered for detail investigations. On the basis of root mean square displacement (RMSD) and root mean square fluctuations (RMSF) calculations, it is observed that this variant is stable over a wide range of pH. The calculated pKa values for aspartate and glutamate residues based on both CpHMD and CpHaMD simulations are consistent with the reported experimental values (within ± 0.5 to ± 1.5 pH unit), which clearly indicates that the local chemical environment of the carboxylic acids in V23E/L36K variant are comparable to the parent form. The strong salt bridge interaction between the mutated pair, E23/K36 and additional hydrogen bonds formed in the V23E/L36K variant, may help to compensate for the unfavorable self-energy experienced by the burial of these residues in the hydrophobic core. However, from RMSD, RMSF, and pKa analysis, no significant change in the global conformation of V23E/L36K variant with respect to the parent form, Δ+PHS is noticed. © 2014 Wiley Periodicals, Inc.

  1. Selecting for Fast Protein-Protein Association As Demonstrated on a Random TEM1 Yeast Library Binding BLIP.

    PubMed

    Cohen-Khait, Ruth; Schreiber, Gideon

    2018-04-27

    Protein-protein interactions mediate the vast majority of cellular processes. Though protein interactions obey basic chemical principles also within the cell, the in vivo physiological environment may not allow for equilibrium to be reached. Thus, in vitro measured thermodynamic affinity may not provide a complete picture of protein interactions in the biological context. Binding kinetics composed of the association and dissociation rate constants are relevant and important in the cell. Therefore, changes in protein-protein interaction kinetics have a significant impact on the in vivo activity of the proteins. The common protocol for the selection of tighter binders from a mutant library selects for protein complexes with slower dissociation rate constants. Here we describe a method to specifically select for variants with faster association rate constants by using pre-equilibrium selection, starting from a large random library. Toward this end, we refine the selection conditions of a TEM1-β-lactamase library against its natural nanomolar affinity binder β-lactamase inhibitor protein (BLIP). The optimal selection conditions depend on the ligand concentration and on the incubation time. In addition, we show that a second sort of the library helps to separate signal from noise, resulting in a higher percent of faster binders in the selected library. Fast associating protein variants are of particular interest for drug development and other biotechnological applications.

  2. Impaired binding affinity of electronegative low-density lipoprotein (LDL) to the LDL receptor is related to nonesterified fatty acids and lysophosphatidylcholine content.

    PubMed

    Benítez, Sonia; Villegas, Virtudes; Bancells, Cristina; Jorba, Oscar; González-Sastre, Francesc; Ordóñez-Llanos, Jordi; Sánchez-Quesada, José Luis

    2004-12-21

    The binding characteristics of electropositive [LDL(+)] and electronegative LDL [LDL(-)] subfractions to the LDL receptor (LDLr) were studied. Saturation kinetic studies in cultured human fibroblasts demonstrated that LDL(-) from normolipemic (NL) and familial hypercholesterolemic (FH) subjects had lower binding affinity than their respective LDL(+) fractions (P < 0.05), as indicated by higher dissociation constant (K(D)) values. FH-LDL(+) also showed lower binding affinity (P < 0.05) than NL-LDL(+) (K(D), sorted from lower to higher affinity: NL-LDL(-), 33.0 +/- 24.4 nM; FH-LDL(-), 24.4 +/- 7.1 nM; FH-LDL(+), 16.6 +/- 7.0 nM; NL-LDL(+), 10.9 +/- 5.7 nM). These results were confirmed by binding displacement studies. The impaired affinity binding of LDL(-) could be attributed to altered secondary and tertiary structure of apolipoprotein B, but circular dichroism (CD) and tryptophan fluorescence (TrpF) studies revealed no structural differences between LDL(+) and LDL(-). To ascertain the role of increased nonesterified fatty acids (NEFA) and lysophosphatidylcholine (LPC) content in LDL(-), LDL(+) was enriched in NEFA or hydrolyzed with secretory phospholipase A(2). Modification of LDL gradually decreased the affinity to LDLr in parallel to the increasing content of NEFA and/or LPC. Modified LDLs with a NEFA content similar to that of LDL(-) displayed similar affinity. ApoB structure studies of modified LDLs by CD and TrpF showed no difference compared to LDL(+) or LDL(-). Our results indicate that NEFA loading or phospholipase A(2) lipolysis of LDL leads to changes that affect the affinity of LDL to LDLr with no major effect on apoB structure. Impaired affinity to the LDLr shown by LDL(-) is related to NEFA and/or LPC content rather than to structural differences in apolipoprotein B.

  3. Effects of asparagine mutagenesis of conserved aspartic acids in helix two (D2.50) and three (D3.32) of M1 – M4 muscarinic receptors on the irreversible binding of nitrogen mustard analogs of acetylcholine and McN-A-343

    PubMed Central

    Suga, Hinako; Ehlert, Frederick J.

    2013-01-01

    We investigated how asparagine mutagenesis of conserved aspartic acids in helix two (D2.50) and three (D3.32) of M1 – M4 muscarinic receptors alters the irreversible binding of acetylcholine mustard and BR384 (4-[(2-bromoethyl)methyl-amino]-2-butynyl N-(3-chlorophenyl)carbamate), a nitrogen mustard derivative of McN-A-343 ([4-[[N-(3-chlorophenyl)carbamoyl]oxy]-2-butynyl] trimethylammonium chloride). The D2.50N mutation moderately increased the affinity of the aziridinium ions of acetylcholine mustard and BR384 for M2 – M4 receptors and had little effect on the rate constant for receptor alkylation. The D3.32N mutation greatly reduced the rate constant for receptor alkylation by acetylcholine mustard, but not by BR384, although the affinity of BR384 was reduced. The combination of both mutations (D2.50N/D3.32N) substantially reduced the rate constant for receptor alkylation by BR384 relative to wild type and mutant D2.50N and D3.32N receptors. The change in binding affinity caused by the mutations suggests that the D2.50N mutation alters the interaction of acetylcholine mustard with D3.32 of M1 and M3 receptors, but not that of the M4 receptor. BR384 exhibited the converse relationship. The simplest explanation is that acetylcholine mustard and BR384 alkylate at least two residues on M1 – M4 receptors and that the D2.50N mutation alters the rate of alkylation of D3.32 relative to another residue, perhaps D2.50 itself. PMID:23826889

  4. Low-affinity FcγR interactions can decide the fate of novel human IgG-sensitised red blood cells and platelets.

    PubMed

    Armour, Kathryn L; Smith, Cheryl S; Turner, Craig P; Kirton, Christopher M; Wilkes, Anthony M; Hadley, Andrew G; Ghevaert, Cedric; Williamson, Lorna M; Clark, Michael R

    2014-03-01

    G1Δnab is a mutant human IgG1 constant region with a lower ability to interact with FcγR than the natural IgG constant regions. Radiolabelled RBCs and platelets sensitised with specific G1Δnab Abs were cleared more slowly from human circulation than IgG1-sensitised counterparts. However, non-destructive splenic retention of G1Δnab-coated RBCs required investigation and plasma radioactivities now suggest this also occurred for platelets sensitised with an IgG1/G1Δnab mixture. In vitro assays with human cells showed that G1Δnab-sensitised RBCs did not cause FcγRI-mediated monocyte activation, FcγRIIIa-mediated antibody-dependent cell-mediated cytotoxicity (ADCC) or macrophage phagocytosis although they did adhere to macrophages. Thus, FcγRII was implicated in the adhesion despite the Δnab mutation reducing the already low-affinity binding to this receptor class. Additional contacts via P-selectin enhance the interaction of sensitised platelets with monocytes and this system provided evidence of FcγRII-dependent activation by G1Δnab. These results emphasise the physiological relevance of low-affinity interactions: It appears that FcγRII interactions of G1Δnab allowed splenic retention of G1Δnab-coated RBCs with inhibitory FcγRIIb binding preventing RBC destruction and that FcγRIIb engagement by G1Δnab on IgG1/G1Δnab-sensitised platelets overcame activation by IgG1. Considering therapeutic blocking Abs, G1Δnab offers lower FcγR binding and a greater bias towards inhibition than IgG2 and IgG4 constant regions. © 2013 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Modified high-affinity binding of Ni2+, Ca2+ and Zn2+ to natural mutants of human serum albumin and proalbumin.

    PubMed

    Kragh-Hansen, U; Brennan, S O; Minchiotti, L; Galliano, M

    1994-07-01

    High-affinity binding of radioactive Ni2+, Ca2+ and Zn2+ to six genetic albumin variants and to normal albumin isolated from the same heterozygote carriers was studied by equilibrium dialysis at pH 7.4. The three cations bind differently to albumin. Ni2+ binds to a site in the N-terminal region of the protein which is partially blocked by the presence of a propeptide as in proalbumin (proAlb) Varese (Arg-2-->His), proAlb Christchurch (Arg-1-->Gln) and proAlb Blenheim (Asp1-->Val) and by the presence of only an extra Arg residue (Arg-1) as in Arg-Alb and albumin (Alb) Redhill. The association constants are decreased by more than one order of magnitude in these cases, suggesting biological consequences for the ligand. The additional structural changes in Alb Redhill have no effect on Ni2+ binding. Finally, the modification of Alb Blenheim (Asp1-->Val) reduces the binding constant to 50%. Ca2+ binding is decreased to about 60-80% by the presence of a propeptide and the mutation Asp1-->Val. Arg-1 alone does not affect binding, whereas Alb Redhill binds Ca2+ more strongly than the normal protein (125%). In contrast with binding of Ni2+ and Ca2+, albumin shows heterogeneity with regard to binding of Zn2+, i.e. the number of high-affinity sites was calculated to be, on average, 0.43. The binding constant for Zn2+ is increased to 125% in the case of proAlb Varese, decreased to 50-60% for proAlb Christchurch and Alb Redhill but is normal for proAlb Blenheim, Alb Blenheim and Arg-Alb. The effects of the mutations on binding of Ca2+ and Zn2+ indicate that primary binding, when operative, is to as yet unidentified sites in domain I of the albumin molecule.

  6. Activation of renal ClC-K chloride channels depends on an intact N terminus of their accessory subunit barttin.

    PubMed

    Wojciechowski, Daniel; Thiemann, Stefan; Schaal, Christina; Rahtz, Alina; de la Roche, Jeanne; Begemann, Birgit; Becher, Toni; Fischer, Martin

    2018-06-01

    ClC-K channels belong to the CLC family of chloride channels and chloride/proton antiporters. They contribute to sodium chloride reabsorption in Henle's loop of the kidney and to potassium secretion into the endolymph by the stria vascularis of the inner ear. Their accessory subunit barttin stabilizes the ClC-K/barttin complex, promotes its insertion into the surface membrane, and turns the pore-forming subunits into a conductive state. Barttin mutations cause Bartter syndrome type IV, a salt-wasting nephropathy with sensorineural deafness. Here, studying ClC-K/barttin channels heterologously expressed in MDCK-II and HEK293T cells with confocal imaging and patch-clamp recordings, we demonstrate that the eight-amino-acids-long barttin N terminus is required for channel trafficking and activation. Deletion of the complete N terminus (Δ2-8 barttin) retained barttin and human hClC-Ka channels in intracellular compartments. Partial N-terminal deletions did not compromise subcellular hClC-Ka trafficking but drastically reduced current amplitudes. Sequence deletions encompassing Thr-6, Phe-7, or Arg-8 in barttin completely failed to activate hClC-Ka. Analyses of protein expression and whole-cell current noise revealed that inactive channels reside in the plasma membrane. Substituting the deleted N terminus with a polyalanine sequence was insufficient for recovering chloride currents, and single amino acid substitutions highlighted that the correct sequence is required for proper function. Fast and slow gate activation curves obtained from rat V166E rClC-K1/barttin channels indicated that mutant barttin fails to constitutively open the slow gate. Increasing expression of barttin over that of ClC-K partially recovered this insufficiency, indicating that N-terminal modifications of barttin alter both binding affinities and gating properties. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Origin of increased terrigenous supply to the NE South American continental margin during Heinrich Stadial 1 and the Younger Dryas

    NASA Astrophysics Data System (ADS)

    Zhang, Yancheng; Chiessi, Cristiano M.; Mulitza, Stefan; Zabel, Matthias; Trindade, Ricardo I. F.; Hollanda, Maria Helena B. M.; Dantas, Elton L.; Govin, Aline; Tiedemann, Ralf; Wefer, Gerold

    2015-12-01

    We investigate the redistribution of terrigenous materials in the northeastern (NE) South American continental margin during slowdown events of the Atlantic Meridional Overturning Circulation (AMOC). The compilation of stratigraphic data from 108 marine sediment cores collected across the western tropical Atlantic shows an extreme rise in sedimentation rates off the Parnaíba River mouth (about 2°S) during Heinrich Stadial 1 (HS1, 18-15 ka). Sediment core GeoB16206-1, raised offshore the Parnaíba River mouth, documents relatively constant 143Nd/144Nd values (expressed as εNd(0)) throughout the last 30 ka. Whereas the homogeneous εNd(0) data support the input of fluvial sediments by the Parnaíba River from the same source area directly onshore, the increases in Fe/Ca, Al/Si and Rb/Sr during HS1 indicate a marked intensification of fluvial erosion in the Parnaíba River drainage basin. In contrast, the εNd(0) values from sediment core GeoB16224-1 collected off French Guiana (about 7°N) suggest Amazon-sourced materials within the last 30 ka. We attribute the extremely high volume of terrigenous sediments deposited offshore the Parnaíba River mouth during HS1 to (i) an enhanced precipitation in the catchment region and (ii) a reduced North Brazil Current, which are both associated with a weakened AMOC.

  8. Monitoring Sea Level in the Coastal Zone with Satellite Altimetry and Tide Gauges

    NASA Astrophysics Data System (ADS)

    Cipollini, Paolo; Calafat, Francisco M.; Jevrejeva, Svetlana; Melet, Angelique; Prandi, Pierre

    2017-01-01

    We examine the issue of sustained measurements of sea level in the coastal zone, first by summarizing the long-term observations from tide gauges, then showing how those are now complemented by improved satellite altimetry products in the coastal ocean. We present some of the progresses in coastal altimetry, both from dedicated reprocessing of the radar waveforms and from the development of improved corrections for the atmospheric effects. This trend towards better altimetric data at the coast comes also from technological innovations such as Ka-band altimetry and SAR altimetry, and we discuss the advantages deriving from the AltiKa Ka-band altimeter and the SIRAL altimeter on CryoSat-2 that can be operated in SAR mode. A case study along the UK coast demonstrates the good agreement between coastal altimetry and tide gauge observations, with root mean square differences as low as 4 cm at many stations, allowing the characterization of the annual cycle of sea level along the UK coasts. Finally, we examine the evolution of the sea level trend from the open to the coastal ocean along the western coast of Africa, comparing standard and coastally improved products. Different products give different sea level trend profiles, so the recommendation is that additional efforts are needed to study sea level trends in the coastal zone from past and present satellite altimeters. Further improvements are expected from more refined processing and screening of data, but in particular from the constant improvements in the geophysical corrections.

  9. Non-stabilized nucleophiles in Cu-catalysed dynamic kinetic asymmetric allylic alkylation

    NASA Astrophysics Data System (ADS)

    You, Hengzhi; Rideau, Emeline; Sidera, Mireia; Fletcher, Stephen P.

    2015-01-01

    The development of new reactions forming asymmetric carbon-carbon bonds has enabled chemists to synthesize a broad range of important carbon-containing molecules, including pharmaceutical agents, fragrances and polymers. Most strategies to obtain enantiomerically enriched molecules rely on either generating new stereogenic centres from prochiral substrates or resolving racemic mixtures of enantiomers. An alternative strategy--dynamic kinetic asymmetric transformation--involves the transformation of a racemic starting material into a single enantiomer product, with greater than 50 per cent maximum yield. The use of stabilized nucleophiles (pKa < 25, where Ka is the acid dissociation constant) in palladium-catalysed asymmetric allylic alkylation reactions has proved to be extremely versatile in these processes. Conversely, the use of non-stabilized nucleophiles in such reactions is difficult and remains a key challenge. Here we report a copper-catalysed dynamic kinetic asymmetric transformation using racemic substrates and alkyl nucleophiles. These nucleophiles have a pKa of >=50, more than 25 orders of magnitude more basic than the nucleophiles that are typically used in such transformations. Organometallic reagents are generated in situ from alkenes by hydrometallation and give highly enantioenriched products under mild reaction conditions. The method is used to synthesize natural products that possess activity against tuberculosis and leprosy, and an inhibitor of para-aminobenzoate biosynthesis. Mechanistic studies indicate that the reaction proceeds through a rapidly isomerizing intermediate. We anticipate that this approach will be a valuable complement to existing asymmetric catalytic methods.

  10. Recovery of Uranium from Seawater: Preparation and Development of Polymer-Supported Extractants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spiro, Alexandratos

    2013-12-01

    A new series of polymer-supported extractants is proposed for the removal and recovery of uranium from seawater. The objective is to produce polymers with improved stability, loading capacity, and sorption kinetics compared to what is found with amidoximes. The target ligands are diphosphonates and aminomethyldiphosphonates. Small molecule analogues, especially of aminomethyldiphos-phonates, have exceptionally high stability constants for the uranyl ion. The polymeric diphosphonates will have high affinities due to their ability to form six-membered rings with the uranyl ion while the aminomethyldiphosphonates may have yet higher affinities due to possible tridentate coordination and their greater acidity. A representative set ofmore » the polymers to be prepared are indicated.« less

  11. On the structure of arithmetic sums of Cantor sets with constant ratios of dissection

    NASA Astrophysics Data System (ADS)

    Anisca, Razvan; Chlebovec, Christopher

    2009-09-01

    We investigate conditions which imply that the topological structure of the arithmetic sum of two Cantor sets with constant ratios of dissection at each step is either: a Cantor set, a finite union of closed intervals, or three mixed models (L, R and M-Cantorval). We obtain general results that apply in particular for the case of homogeneous Cantor sets, thus generalizing the results of Mendes and Oliveira. The method used here is new in this context. We also produce results regarding the arithmetic sum of two affine Cantor sets of a special kind.

  12. Perturbative Aspects of Low-Dimensional Quantum Field Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wardaya, Asep Y.; Theoretical Physics Laboratory, Theoretical High Energy Physics and Instrumentation Research Group, FMIPA, Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132; Zen, Freddy P.

    We investigate the low-dimensional applications of Quantum Field Theory (QFT), namely Chern-Simons-Witten Theory (CSWT) and Affine Toda Field Theory (ATFT) in 3- and 2- dimensions. We discuss the perturbative aspects of both theories and compare the results to the exact solutions obtained nonperturbatively. For the three dimensions CSWT case, the perturbative term agree with the nonperturbative polynomial invariants up to third order of the coupling constant 1/k. In the two dimensions ATFT, we investigate the perturbative aspect of S-matrices for A{sub 1}{sup (1)} case in eighth order of the coupling constant {beta}.

  13. 40Ar-39Ar age clustering in the active phonolitic Cadamosto Seamount (Cape Verdes): Indications for periodic magmatic activity

    NASA Astrophysics Data System (ADS)

    Samrock, L. K.; Hansteen, T. H.; Wartho, J. A.

    2017-12-01

    The Cape Verde archipelago is situated 400-800 km off the west coast of Africa and is comprised of a northern and southern chain of islands and seamounts. Morphological observations and previous radiometric dating of the islands indicate a slow age progression, over 22 Ma, from east to west (Holm et al. 2008). We present the first radiometric ages for Cadamosto Seamount, which is composed of complex evolved volcanics and is situated at the southwestern tip of the Cape Verde archipelago (e.g. Barker et al. 2012). We analyzed five different submarine phonolites that were sampled by remotely operated vehicles (ROV) Kiel 6000 and dredging during the RV Meteor (M80/3) and RV Poseidon (POS320/2) cruises. Fresh sanidine, nepheline, and biotite grains were selected and carefully prepared for 40Ar-39Ar single grain total fusion analysis. Sanidine single grain 40Ar-39Ar ages from 5 samples range from 11.5 ± 6.5 ka to 349.0 ± 20.4 ka (2σ errors), and cluster in several age groupings (using the decay constant and atmospheric air ratio of Steiger & Jäger (1977), and age standard TCS2 (27.87 ± 0.04 Ma; 1σ; M.A. Lanphere, pers. comm.)). Three age groups can be identified within the youngest (0-170 ka) sanidines, which are separated by periods of 52-54 ka. Nepheline grains from one sample yielded much older ages of 169.5 ± 16.5 ka to 1521.5 ± 8.3 ka (2σ). Our data suggests young ages for the Cadamosto Seamount, which is in accordance with recorded seismic activity (Grevemeyer et al. 2010), and its position adjacent to the recently active islands of Fogo (last eruption in 2014/2015) and Brava (recent seismic activity). The different sub-groups of sanidine 40Ar-39Ar ages can be used to identify different activity maxima corresponding to cycles of magmatic productivity in a long-lived magmatic system. Ongoing petrologic investigations will be used to identify the relative importance of processes such as mantle melting rates, magma replenishment and magma chamber processes. References:Barker A.K. et al. (2012) Contrib. Mineral. Petrol. 163, 949-965. Grevemeyer I. et al. (2010) Geophys. J. Int. 180, 552-558. Holm P.M. et al. (2008) J. Geophys. Res. 113, doi:10.1029/2007JB005339, 2008. Steiger R.H., Jäger E. (1977) Earth Planet. Sci. Lett. 36, 359-362.

  14. New 40Ar/39Ar age of the Bishop Tuff from multiple sites and sediment rate calibration for the Matuyama-Brunhes boundary

    USGS Publications Warehouse

    Sarna-Wojcicki, A. M.; Pringle, M.S.; Wijbrans, J.

    2000-01-01

    Precise dating of sanidine from proximal ash flow Bishop Tuff and air fall Bishop pumice and ash, California, can be used to derive an absolute age of the Matuyama Reversed-Brunhes Normal (M-B) paleomagnetic transition, identified stratigraphically close beneath the Bishop Tuff and ash at many sites in the western United States. An average age of 758.9 ?? 1.8 ka, standard error of the mean (SEM), was obtained for individual sanidine crystals or groups of several crystals, determined from ???70 individual analyses of sanidine separates from 11 sample groups obtained at five localities. The basal air fall pumice (757.7 ?? 1.8 ka) and overlying ash flow tuff (762.2 ?? 4.7 ka) from near the source yield essentially the same dates within errors of analysis, suggesting that the two units were emplaced close in time. A date on distal Bishop air fall ash bed at Friant, California, ???100 km to the west of the source area, is younger, 750.1 ?? 4.3 ka, but not significantly different within analytical error (??1 standard deviation). Previous dates of the Bishop Tuff, obtained by others using conventional K-Ar and the fission track method on zircons, ranged from ???650 ka to ???1.0 Ma. The most recent, generally accepted date by the K-Ar method on sanidine was 738 ?? 3 ka. We infer, as others before, that many K-Ar dates on sanidine feldspar are too young owing to incomplete degassing of radiogenic Ar during fusion in the K-Ar technique and that many older K-Ar dates are too old owing to detrital or xenocrystic contamination in the larger samples that are necessary for the technique. The new dates are similar to recent 40Ar/39Ar ages of the Bishop Tuff determined on individual samples by others but are derived from a larger proximal sample population and from multiple analysis of each sample. The results provide a definitive and precise age calibration of this widespread chronostratigraphic marker in the western United States and northeastern Pacific Ocean. We calculated the age of the M-B transition at five sites, assuming constant sedimentation rates, the age of the Bishop ash bed and one or more well-dated chronostratigraphic horizons above and below the Bishop Tuff ash bed and M-B transition, and stratigraphic separations between these datum levels. The age of the M-B transition is 774.2 ?? 2.8 ka, based on the average of eight such calculations, close to other recent determinations, and similar to that determined from the astronomically tuned polarity timescale. Our approach provides an alternative and surprisingly precise method for determining the age of the M-B and other chronostratigraphic levels. The above dates, calculated using U.S. Geological Survey values of 27.92 Ma for the Taylor Creek (TC) sanidine can be recalculated to other widely used values for these monitors. For example, using recently published values of 28.34 Ma (TC) and 523.1 Ma (McLure Mountain hornblende, MMhb-1), the resulting ages are ???774 ka for the Bishop Tuff and ash bed and ???789 ka for the M-B transition. Copyright 2000 by the American Geophysical Union.

  15. The mechanism of zinc uptake by cultured rat liver cells.

    PubMed Central

    Taylor, J A; Simons, T J

    1994-01-01

    1. The initial rate of 65Zn uptake into cultured rat hepatocytes has been measured over a range of Zn2+ concentrations from 3 x 10(-10) M to 5 x 10(-6) M. Histidine and albumin were used to buffer Zn2+ ions at concentrations below 1 x 10(-6) M. 2. The results suggest there are two mechanisms for Zn2+ uptake; a high-affinity, saturable pathway, with a maximum velocity (Vmax) of 20-30 pmol (mg protein)-1 min-1 and a Michaelis-Menten constant (Km) of about 2 x 10(-9) M Zn2+ (with histidine), and a low-affinity, linear pathway, that only makes a significant contribution to Zn2+ uptake at Zn2+ concentrations above 1 x 10(-6) M. 3. Transport via the high-affinity pathway is dependent on the concentration of Zn2+ ions and not on the concentrations of Zn(2+)-ligand complexes, suggesting that Zn2+ is the transported species. 4. The affinity of the saturable pathway for Zn2+ is slightly lower in the presence of albumin, with a Km of about 1.3 x 10(-8) M. The reason for this is uncertain. PMID:8014898

  16. The pH dependence of the allosteric response of human liver pyruvate kinase to fructose-1,6-bisphosphate, ATP, and alanine

    PubMed Central

    Fenton, Aron W.; Hutchinson, Myra

    2009-01-01

    The allosteric regulation of human liver pyruvate kinase (hL-PYK) by fructose-1,6-bisphosphate (Fru-1,6-BP; activator), ATP (inhibitor) and alanine (Ala; inhibitor) was monitored over a pH range from 6.5 to 8.0 at 37°C. As a function of increasing pH, hL-PYK's affinity for the substrate phosphoenolpyruvate (PEP), and for Fru-1,6-BP decreases, while affinities for ATP and Ala slightly increases. At pH 6.5, Fru-1,6-BP and ATP elicit only small allosteric impacts on PEP affinity. As pH increases, Fru-1,6-BP and ATP elicit greater allosteric responses, but the response to Ala is relatively constant. Since the magnitudes of the allosteric coupling for ATP and for Ala inhibition are different and the pH dependences of these magnitudes are not similar, these inhibitors likely elicit their responses using different molecular mechanisms. In addition, our results fail to support a general correlation between pH dependent changes in effector affinity and pH dependent changes in the corresponding allosteric response. PMID:19467627

  17. Molecularly Imprinted Polymers with DNA Aptamer Fragments as Macromonomers.

    PubMed

    Zhang, Zijie; Liu, Juewen

    2016-03-01

    Molecularly imprinted polymers (MIPs) are produced in the presence of a template molecule. After removing the template, the cavity can selectively rebind the template. MIPs are attractive functional materials with a low cost and high stability, but traditional MIPs often suffer from low binding affinity. This study employs DNA aptamer fragments as macromonomers to improve MIPs. The DNA aptamer for adenosine was first split into two halves, fluorescently labeled, and copolymerized into MIPs. With a fluorescence quenching assay, the importance of imprinting was confirmed. Further studies were carried out using isothermal titration calorimetry (ITC). Compared to the mixture of the free aptamer fragments, their MIPs doubled the binding affinity. Each free aptamer fragment alone cannot bind adenosine, whereas MIPs containing each fragment are effective binders. We further shortened one of the aptamer fragments, and the DNA length was pushed to as short as six nucleotides, yielding MIPs with a dissociation constant of 27 μM adenosine. This study provides a new method for preparing functional MIP materials by combining high-affinity biopolymer fragments with low-cost synthetic monomers, allowing higher binding affinity and providing a method for signaling binding based on DNA chemistry.

  18. Pharmacokinetics of Chiral Dendrimer-Triamine-Coordinated Gd-MRI Contrast Agents Evaluated by in Vivo MRI and Estimated by in Vitro QCM.

    PubMed

    Miyake, Yuka; Ishikawa, Syungo; Kimura, Yu; Son, Aoi; Imai, Hirohiko; Matsuda, Tetsuya; Yamada, Hisatsugu; Toshimitsu, Akio; Kondo, Teruyuki

    2015-12-18

    Recently, we developed novel chiral dendrimer-triamine-coordinated Gd-MRI contrast agents (Gd-MRI CAs), which showed longitudinal relaxivity (r₁) values about four times higher than that of clinically used Gd-DTPA (Magnevist(®), Bayer). In our continuing study of pharmacokinetic differences derived from both the chirality and generation of Gd-MRI CAs, we found that the ability of chiral dendrimer Gd-MRI CAs to circulate within the body can be directly evaluated by in vitro MRI (7 T). In this study, the association constants (K(a)) of chiral dendrimer Gd-MRI CAs to bovine serum albumin (BSA), measured and calculated with a quartz crystal microbalance (QCM) in vitro, were found to be an extremely easy means for evaluating the body-circulation ability of chiral dendrimer Gd-MRI CAs. The K(a) values of S-isomeric dendrimer Gd-MRI CAs were generally greater than those of R-isomeric dendrimer Gd-MRI CAs, which is consistent with the results of our previous MRI study in vivo.

  19. Pharmacokinetics of Chiral Dendrimer-Triamine-Coordinated Gd-MRI Contrast Agents Evaluated by in Vivo MRI and Estimated by in Vitro QCM

    PubMed Central

    Miyake, Yuka; Ishikawa, Syungo; Kimura, Yu; Son, Aoi; Imai, Hirohiko; Matsuda, Tetsuya; Yamada, Hisatsugu; Toshimitsu, Akio; Kondo, Teruyuki

    2015-01-01

    Recently, we developed novel chiral dendrimer-triamine-coordinated Gd-MRI contrast agents (Gd-MRI CAs), which showed longitudinal relaxivity (r1) values about four times higher than that of clinically used Gd-DTPA (Magnevist®, Bayer). In our continuing study of pharmacokinetic differences derived from both the chirality and generation of Gd-MRI CAs, we found that the ability of chiral dendrimer Gd-MRI CAs to circulate within the body can be directly evaluated by in vitro MRI (7 T). In this study, the association constants (Ka) of chiral dendrimer Gd-MRI CAs to bovine serum albumin (BSA), measured and calculated with a quartz crystal microbalance (QCM) in vitro, were found to be an extremely easy means for evaluating the body-circulation ability of chiral dendrimer Gd-MRI CAs. The Ka values of S-isomeric dendrimer Gd-MRI CAs were generally greater than those of R-isomeric dendrimer Gd-MRI CAs, which is consistent with the results of our previous MRI study in vivo. PMID:26694418

  20. Solute-solvent interactions in chloroform solutions of halogenated symmetric double Schiff bases of 1,1'-bis(4-aminophenyl)cyclohexane at 308.15 K according to ultrasonic and viscosity data

    NASA Astrophysics Data System (ADS)

    Gangani, B. J.; Patel, J. P.; Parsania, P. H.

    2015-12-01

    The density, viscosity and ultrasonic speed (2 MHz) of chloroform solutions of halogenated symmetric double Schiff bases of 1,1'-bis(4-aminophenyl)cyclohexane were investigated at 308.15 K. Various acoustical parameters such as specific acoustical impedance ( Z), adiabatic compressibility ( Ka), Rao's molar sound function ( R m), van der Waals constant ( b), internal pressure (π), free volume ( V f), intermolecular free path length ( L f), classical absorption coefficient (α/ f 2)Cl) and viscous relaxation time (τ) were determine using ultrasonic speed ( U), viscosity (η) and density (ρ) data of Schiff bases solutions and correlated with concentration. Linear increase of Z, b, R, τ, and (α/ f 2)Cl except π (nonlinear) and linear decrease of Ka and L f except V f (nonlinear) with increasing concentration of Schiff bases suggested presence of strong molecular interactions in the solutions. The positive values of solvation number further supported strong molecular interactions in the solutions. The nature and position of halogen substituent also affected the strength of molecular interactions.

  1. Kv11.1 (hERG)-induced cardiotoxicity: a molecular insight from a binding kinetics study of prototypical Kv11.1 (hERG) inhibitors

    PubMed Central

    Yu, Z; IJzerman, A P; Heitman, L H

    2015-01-01

    Background and Purpose Drug-induced arrhythmia due to blockade of the Kv11.1 channel (also known as the hERG K+ channel) is a frequent side effect. Previous studies have primarily focused on equilibrium parameters, i.e. affinity or potency, of drug candidates at the channel. The aim of this study was to determine the kinetics of the interaction with the channel for a number of known Kv11.1 blockers and to explore a possible correlation with the affinity or physicochemical properties of these compounds. Experimental Approach The affinity and kinetic parameters of 15 prototypical Kv11.1 inhibitors were evaluated in a number of [3H]-dofetilide binding assays. The lipophilicity (logKW-C8) and membrane partitioning (logKW-IAM) of these compounds were determined by means of HPLC analysis. Key Results A novel [3H]-dofetilide competition association assay was set up and validated, which allowed us to determine the binding kinetics of the Kv11.1 blockers used in this study. Interestingly, the compounds' affinities (Ki values) were correlated to their association rates rather than dissociation rates. Overall lipophilicity or membrane partitioning of the compounds were not correlated to their affinity or rate constants for the channel. Conclusions and Implications A compound's affinity for the Kv11.1 channel is determined by its rate of association with the channel, while overall lipophilicity and membrane affinity are not. In more general terms, our findings provide novel insights into the mechanism of action for a compound's activity at the Kv11.1 channel. This may help to elucidate how Kv11.1-induced cardiotoxicity is governed and how it can be circumvented in the future. PMID:25296617

  2. Exploring Thermoresponsive Affinity Agents to Enhance Microdialysis Sampling Efficiency of Proteins

    NASA Astrophysics Data System (ADS)

    Vasicek, Thaddeus

    Affinity agents increase microdialysis protein relative recovery, yet they have not seen widespread use within the microdialysis community due to their additional instrumentation requirements and prohibitive cost. This dissertation describes new affinity agents for microdialysis that require no additional instrumentation to use, have nearly 100% particle recovery, are 7 times more cost efficient than alternatives, and have low specificity enabling their use for a wide variety of proteins. Initially gold nanoparticles were chosen as an affinity ligand support due to their high surface area/volume ratio and colloidal stability. Poly (N-isopropylacrylamide) was immobilized to the gold nanoparticles, which served to sterically stabilize the particles and to act as a generic, reversible protein capture agent. A method was developed to reproducibly vary and quantify poly (N-isopropylacrylamide) graft density from 0.09 to 0.40 ligands/nm2 on gold nanoparticles. During characterization of the polymer coated gold nanoparticles, irreversible particle agglomeration was observed at low polymer graft density in ionic solutions, which prevented further development as a protein capture agent. Poly (N-isopropylacrylamide) nanogels, which have low nonspecific adsorption, low interparticle attractive forces owing to the low curvature of the particle, and a low Hamaker constant, were synthesized to overcome the agglomeration problem. A generic protein affinity ligand cibacron blue, was immobilized to the nanogels, which enabled rapid determination of particle recovery. The perfusion of the nanogels through a microdialysis probe was optimized yielding 100% particle recovery using a combination of a syringe and peristaltic pump. The microdialysis collection efficiency of CCL2, a physiologically relevant cytokine, was increased 3-fold with addition of the nanogel to the microdialysis perfusion fluid. The reduction in instrumentation requirements, low cost, and low specificity obtained with the new affinity agents will lead to increased affinity agent use for microdiaylsis protein sampling.

  3. Replacement of Ser108 in Plasmodium falciparum enolase results in weak Mg(II) binding: role of a parasite-specific pentapeptide insert in stabilizing the active conformation of the enzyme.

    PubMed

    Dutta, Sneha; Mukherjee, Debanjan; Jarori, Gotam K

    2015-06-01

    A distinct structural feature of Plasmodium falciparum enolase (Pfeno) is the presence of a five amino acid insert -104EWGWS108- that is not found in host enolases. Its conservation among apicomplexan enolases has raised the possibility of its involvement in some important physiological function(s). Deletion of this sequence is known to lower k(cat)/K(m), increase K(a) for Mg(II) and convert dimer into monomers (Vora HK, Shaik FR, Pal-Bhowmick I, Mout R & Jarori GK (2009) Arch Biochem Biophys 485, 128-138). These authors also raised the possibility of the formation of an H-bond between Ser108 and Leu49 that could stabilize the apo-Pfeno in an active closed conformation that has high affinity for Mg(II). Here, we examined the effect of replacement of Ser108 with Gly/Ala/Thr on enzyme activity, Mg(II) binding affinity, conformational states and oligomeric structure and compared it with native recombinant Pfeno. The results obtained support the view that Ser108 is likely to be involved in the formation of certain crucial H-bonds with Leu49. The presence of these interactions can stabilize apo-Pfeno in an active closed conformation similar to that of Mg(II) bound yeast enolase. As predicted, S108G/A-Pfeno variants (where Ser108-Leu49 H-bonds are likely to be disrupted) were found to exist in an open conformation and had low affinity for Mg(II). They also required Mg(II) induced conformational changes to acquire the active closed conformational state essential for catalysis. The possible physiological relevance of apo-Pfeno being in such an active state is discussed. © 2015 FEBS.

  4. Relative role of astronomical forcings and the atmospheric carbon dioxide during the glacial cycles of the last 1.5 million years

    NASA Astrophysics Data System (ADS)

    Abe-Ouchi, A.; Saito, F.; Chan, W. L.; Kino, K.; Watanabe, Y.; Oishi, R.

    2017-12-01

    Climate change with wax and wane of large Northern Hemisphere ice sheet occurred in the past 800 thousand years characterized by about 100 thousand year cycle with a large amplitude of sawtooth pattern, following a transition from a period of 40 thousand years cycle with small amplitude of ice sheet change at about 1 million years ago. Although the importance of insolation as the ultimate driver is now appreciated, the mechanism what determines the timing and strength of ice age termination as well as the amplitude of glacial cycles are far from clearly understood. Here we simulate the glacial cycles of the last 1.5 Ma and investigate the origin of 100ka periodicity and the role of astronomical forcing and atmospheric carbon dioxide content using a three dimensional ice sheet model with the input examined by the MIROC 4m GCM. The model is forced by astronomical parameters (Berger, 1978) and atmospheric CO2 change obtained from ice cores (Vostok, EPICA and DomeF), where available. Ice age cycles with a saw-tooth shape 100 ka periodicity are simulated at low CO2 levels, with the major NH ice sheet volume as well as geographical distribution and timing of interglacials successfully simulated. The model shows the interglacials at the right timings even under constant CO2 levels, with few exceptions, e.g. MIS11 around 400 thousand years ago (400 kyr BP). Through sensitivity experiments we examine individual factors determining the glacial termination, such as constant and variable CO2 levels, obliquity, precession and eccentricity.

  5. The Effect of Systematics on Polarized Spectral Indices

    NASA Astrophysics Data System (ADS)

    Wehus, I. K.; Fuskeland, U.; Eriksen, H. K.

    2013-02-01

    We study four particularly bright polarized compact objects (Tau A, Vir A, 3C 273, and For A) in the 7 year Wilkinson Microwave Anisotropy Probe (WMAP) sky maps, with the goal of understanding potential systematics involved in the estimation of foreground spectral indices. First, we estimate the spectral index, the polarization angle, the polarization fraction, and the apparent size and shape of these objects when smoothed to a nominal resolution of 1° FWHM. Second, we compute the spectral index as a function of polarization orientation, α. Because these objects are approximately point sources with constant polarization angle, this function should be constant in the absence of systematics. However, for the K and Ka band WMAP data we find strong index variations for all four sources. For Tau A, we find a spectral index of β = -2.59 ± 0.03 for α = 30°, and β = -2.03 ± 0.01 for α = 50°. On the other hand, the spectral index between the Ka and Q bands is found to be stable. A simple elliptical Gaussian toy model with parameters matching those observed in Tau A reproduces the observed signal, and shows that the spectral index is particularly sensitive to the detector polarization angle. Based on these findings, we first conclude that estimation of spectral indices with the WMAP K band polarization data at 1° scales is not robust. Second, we note that these issues may be of concern for ground-based and sub-orbital experiments that use the WMAP polarization measurements of Tau A for calibration of gain and polarization angles.

  6. Acetylcholinesterase-catalyzed acetate - water oxygen exchange studied by /sup 13/C-NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Etten, R.L.; Dayton, B.; Cortes, S.

    1986-05-01

    The kinetics of the oxygen exchange reaction between (l-/sup 13/C,/sup 18/O/sub 2/)acetate and H/sub 2//sup 16/O catalyzed by homogeneous acetyl-cholinesterase from the electric eel, Electrophorus electricus, was studied using the /sup 18/O-isotope-induced shift on /sup 13/C-nuclear magnetic resonance spectra. Pseudo-first-order rate constants for the exchange reactions were determined at pH values from 4.5 to 8. The exchange reaction exhibits a maximum at pH 5.8. The apparent catalytic rate constant for the exchange reaction is 10/sup 2/ to 10/sup 4/ times smaller than that for the deacylation of the acetyl-enzyme intermediate over the pH range tested. Oxygen exchange occurs by amore » random sequential pathway rather than by multiple (coupled) exchange. The inhibition of acetylcholinesterase by sodium acetate showed a sigmoidal dependence on pH, with K/sub i/ increasing 2.5 orders of magnitude over the pH range. Protonation of an active site residue having an apparent pKa of 6.8 is associated with an increase in acetate binding. Deacylation also exhibits a sigmoidal dependence on (H/sup +/). The experimental data fits titration curves with inflection points at 5.0 +/- 0.3 and 6.7 +/-0.1. Results support the role of histidine in acetylation of the active site serine, but the conjugate base of another active site residue with a pKa of 5.0 appears necessary for maximal catalytic activity in both the deacylation and exchange reactions.« less

  7. Measuring Norfloxacin Binding to Trypsin Using a Fluorescence Quenching Assay in an Upper-Division, Integrated Laboratory Course

    ERIC Educational Resources Information Center

    Hicks, Katherine A.

    2016-01-01

    Fluorescence quenching assays are often used to measure dissociation constants that quantify the binding affinity between small molecules and proteins. In an upper-division undergraduate laboratory course, where students work on projects using a guided inquiry-based approach, a binding titration experiment at physiological pH is performed to…

  8. Thermodynamic stability of carbonic anhydrase: measurements of binding affinity and stoichiometry using ThermoFluor.

    PubMed

    Matulis, Daumantas; Kranz, James K; Salemme, F Raymond; Todd, Matthew J

    2005-04-05

    ThermoFluor (a miniaturized high-throughput protein stability assay) was used to analyze the linkage between protein thermal stability and ligand binding. Equilibrium binding ligands increase protein thermal stability by an amount proportional to the concentration and affinity of the ligand. Binding constants (K(b)) were measured by examining the systematic effect of ligand concentration on protein stability. The precise ligand effects depend on the thermodynamics of protein stability: in particular, the unfolding enthalpy. An extension of current theoretical treatments was developed for tight binding inhibitors, where ligand effect on T(m) can also reveal binding stoichiometry. A thermodynamic analysis of carbonic anhydrase by differential scanning calorimetry (DSC) enabled a dissection of the Gibbs free energy of stability into enthalpic and entropic components. Under certain conditions, thermal stability increased by over 30 degrees C; the heat capacity of protein unfolding was estimated from the dependence of calorimetric enthalpy on T(m). The binding affinity of six sulfonamide inhibitors to two isozymes (human type 1 and bovine type 2) was analyzed by both ThermoFluor and isothermal titration calorimetry (ITC), resulting in a good correlation in the rank ordering of ligand affinity. This combined investigation by ThermoFluor, ITC, and DSC provides a detailed picture of the linkage between ligand binding and protein stability. The systematic effect of ligands on stability is shown to be a general tool to measure affinity.

  9. Manipulation of a DNA aptamer-protein binding site through arylation of internal guanine residues.

    PubMed

    Van Riesen, Abigail J; Fadock, Kaila L; Deore, Prashant S; Desoky, Ahmed; Manderville, Richard A; Sowlati-Hashjin, Shahin; Wetmore, Stacey D

    2018-05-23

    Chemically modified aptamers have the opportunity to increase aptamer target binding affinity and provide structure-activity relationships to enhance our understanding of molecular target recognition by the aptamer fold. In the current study, 8-aryl-2'-deoxyguanosine nucleobases have been inserted into the G-tetrad and central TGT loop of the thrombin binding aptamer (TBA) to determine their impact on antiparallel G-quadruplex (GQ) folding and thrombin binding affinity. The aryl groups attached to the dG nucleobase vary greatly in aryl ring size and impact on GQ stability (∼20 °C change in GQ thermal melting (Tm) values) and thrombin binding affinity (17-fold variation in dissociation constant (Kd)). At G8 of the central TGT loop that is distal from the aptamer recognition site, the probes producing the most stable GQ structure exhibited the strongest thrombin binding affinity. However, within the G-tetrad, changes to the electron density of the dG component within the modified nucleobase can diminish thrombin binding affinity. Detailed molecular dynamics (MD) simulations on the modified TBA (mTBA) and mTBA-protein complexes demonstrate how the internal 8-aryl-dG modification can manipulate the interactions between the DNA nucleobases and the amino acid residues of thrombin. These results highlight the potential of internal fluorescent nuclobase analogs (FBAs) to broaden design options for aptasensor development.

  10. Characterization of Gly-D-Phe, Gly-L-Leu, and D-Phe as affinity ligands to thermolysin.

    PubMed

    Yasukawa, Kiyoshi; Kusano, Masayuki; Nakamura, Koji; Inouye, Kuniyo

    2006-04-01

    In this study, glycyl-D-phenylalanine (Gly-D-Phe), glycyl-L-leucine (Gly-L-Leu), and D-phenylalanine (D-Phe) were characterized for their abilities as affinity ligands to thermolysin. Each of the ligands was immobilized to the resin. The optimum pH for adsorption of thermolysin is 5.0-6.0 for each of the ligands. By the affinity column chromatography in which 2mg thermolysin was applied onto 4 ml volume of the resins at pH 5.5, the adsorption ratios based on casein hydrolysis activity were 100% for each of the ligands. However, the adsorption ratios of the resins containing Gly-L-Leu and D-Phe, unlike that of Gly-D-Phe, were progressively decreased with increasing the amounts of thermolysin applied to the column. Measurement of adsorption isotherms showed that the association constant to thermolysin at pH 5.5 of the resins containing Gly-D-Phe was (3.3+/-0.8)x10(5)M(-1), while those of Gly-L-Leu and D-Phe were approximately ten times less. This result is coincident with the observations of performances in affinity column chromatography. On the other hand, maximum thermolysin binding capacities were almost the same among the resins examined. These results indicate that Gly-D-Phe is more suitable than Gly-L-Leu and D-Phe as an affinity ligand for purification of thermolysin.

  11. Modelling large-scale ice-sheet-climate interactions at the last glacial inception

    NASA Astrophysics Data System (ADS)

    Browne, O. J. H.; Gregory, J. M.; Payne, A. J.; Ridley, J. K.; Rutt, I. C.

    2010-05-01

    In order to investigate the interactions between coevolving climate and ice-sheets on multimillenial timescales, a low-resolution atmosphere-ocean general circulation model (AOGCM) has been coupled to a three-dimensional thermomechanical ice-sheet model. We use the FAMOUS AOGCM, which is almost identical in formulation to the widely used HadCM3 AOGCM, but on account of its lower resolution (7.5° longitude × 5° latitude in the atmosphere, 3.75°× 2.5° in the ocean) it runs about ten times faster. We use the community ice-sheet model Glimmer at 20 km resolution, with the shallow ice approximation and an annual degree-day scheme for surface mass balance. With the FAMOUS-Glimmer coupled model, we have simulated the growth of the Laurentide and Fennoscandian ice sheets at the last glacial inception, under constant orbital forcing and atmospheric composition for 116 ka BP. Ice grows in both regions, totalling 5.8 m of sea-level equivalent in 10 ka, slower than proxy records suggest. Positive climate feedbacks reinforce this growth at local scales (order hundreds of kilometres), where changes are an order of magnitude larger than on the global average. The albedo feedback (higher local albedo means a cooler climate) is important in the initial expansion of the ice-sheet area. The topography feedback (higher surface means a cooler climate) affects ice-sheet thickness and is not noticeable for the first 1 ka. These two feedbacks reinforce each other. Without them, the ice volume is ~90% less after 10 ka. In Laurentia, ice expands initially on the Canadian Arctic islands. The glaciation of the islands eventually cools the nearby mainland climate sufficiently to produce a positive mass balance there. Adjacent to the ice-sheets, cloud feedbacks tend to reduce the surface mass balance and restrain ice growth; this is an example of a local feedback whose simulation requires a model that includes detailed atmospheric physics.

  12. Infilling and flooding of the Mekong River incised valley during deglacial sea-level rise

    NASA Astrophysics Data System (ADS)

    Tjallingii, Rik; Stattegger, Karl; Wetzel, Andreas; Van Phach, Phung

    2010-06-01

    The abrupt transition from fluvial to marine deposition of incised-valley-fill sediments retrieved from the southeast Vietnamese shelf, accurately records the postglacial transgression after 14 ka before present (BP). Valley-filling sediments consist of fluvial mud, whereas sedimentation after the transgression is characterized by shallow-marine carbonate sands. This change in sediment composition is accurately marked in high-resolution X-ray fluorescence (XRF) core scanning records. Rapid aggradation of fluvial sediments at the river mouth nearly completely filled the Mekong incised valley prior to flooding. However, accumulation rates strongly reduced in the valley after the river-mouth system flooded and stepped back. This also affected the sediment supply to deeper parts of the southeast Vietnamese shelf. Comparison of the Mekong valley-filling with the East Asian sea-level history of sub- and inter-tidal sediment records shows that the transgressive surface preserved in the incised-valley-fill records is a robust sea-level indicator. The valley was nearly completely filled with fluvial sediments between 13.0 and 9.5 ka BP when sea-level rose rather constantly with approximately 10 mm/yr, as indicated by the East Asian sea-level record. At shallower parts of the shelf, significant sediment reworking and the establishment of estuarine conditions at the final stage of infilling complicates accurate dating of the transgressive surface. Nevertheless, incised-valley-fill records and land-based drill sites indicate a vast and rapid flooding of the shelf from the location of the modern Vietnamese coastline to the Cambodian lowlands between 9.5 ka and 8.5 ka BP. Fast flooding of this part of the shelf is related with the low shelf gradient and a strong acceleration of the East Asian sea-level rise from 34 to 9 meter below modern sea level (mbsl) corresponding to the sea-level jump of melt water pulse (MWP) 1C.

  13. Lysosomotropic properties of weakly basic anticancer agents promote cancer cell selectivity in vitro.

    PubMed

    Ndolo, Rosemary A; Luan, Yepeng; Duan, Shaofeng; Forrest, M Laird; Krise, Jeffrey P

    2012-01-01

    Drug distribution in cells is a fundamentally important, yet often overlooked, variable in drug efficacy. Many weakly basic anticancer agents accumulate extensively in the acidic lysosomes of normal cells through ion trapping. Lysosomal trapping reduces the activity of anticancer drugs, since anticancer drug targets are often localized in the cell cytosol or nucleus. Some cancer cells have defective acidification of lysosomes, which causes a redistribution of trapped drugs from the lysosomes to the cytosol. We have previously established that such differences in drug localization between normal and cancer cells can contribute to the apparent selectivity of weakly basic drugs to cancer cells in vitro. In this work, we tested whether this intracellular distribution-based drug selectivity could be optimized based on the acid dissociation constant (pKa) of the drug, which is one of the determinants of lysosomal sequestration capacity. We synthesized seven weakly basic structural analogs of the Hsp90 inhibitor geldanamycin (GDA) with pKa values ranging from 5 to 12. The selectivity of each analog was expressed by taking ratios of anti-proliferative IC(50) values of the inhibitors in normal fibroblasts to the IC(50) values in human leukemic HL-60 cells. Similar selectivity assessments were performed in a pair of cancer cell lines that differed in lysosomal pH as a result of siRNA-mediated alteration of vacuolar proton ATPase subunit expression. Optimal selectivity was observed for analogs with pKa values near 8. Similar trends were observed with commercial anticancer agents with varying weakly basic pKa values. These evaluations advance our understanding of how weakly basic properties can be optimized to achieve maximum anticancer drug selectivity towards cancer cells with defective lysosomal acidification in vitro. Additional in vivo studies are needed to examine the utility of this approach for enhancing selectivity.

  14. Lysosomotropic Properties of Weakly Basic Anticancer Agents Promote Cancer Cell Selectivity In Vitro

    PubMed Central

    Ndolo, Rosemary A.; Luan, Yepeng; Duan, Shaofeng; Forrest, M. Laird; Krise, Jeffrey P.

    2012-01-01

    Drug distribution in cells is a fundamentally important, yet often overlooked, variable in drug efficacy. Many weakly basic anticancer agents accumulate extensively in the acidic lysosomes of normal cells through ion trapping. Lysosomal trapping reduces the activity of anticancer drugs, since anticancer drug targets are often localized in the cell cytosol or nucleus. Some cancer cells have defective acidification of lysosomes, which causes a redistribution of trapped drugs from the lysosomes to the cytosol. We have previously established that such differences in drug localization between normal and cancer cells can contribute to the apparent selectivity of weakly basic drugs to cancer cells in vitro. In this work, we tested whether this intracellular distribution-based drug selectivity could be optimized based on the acid dissociation constant (pKa) of the drug, which is one of the determinants of lysosomal sequestration capacity. We synthesized seven weakly basic structural analogs of the Hsp90 inhibitor geldanamycin (GDA) with pKa values ranging from 5 to 12. The selectivity of each analog was expressed by taking ratios of anti-proliferative IC50 values of the inhibitors in normal fibroblasts to the IC50 values in human leukemic HL-60 cells. Similar selectivity assessments were performed in a pair of cancer cell lines that differed in lysosomal pH as a result of siRNA-mediated alteration of vacuolar proton ATPase subunit expression. Optimal selectivity was observed for analogs with pKa values near 8. Similar trends were observed with commercial anticancer agents with varying weakly basic pKa values. These evaluations advance our understanding of how weakly basic properties can be optimized to achieve maximum anticancer drug selectivity towards cancer cells with defective lysosomal acidification in vitro. Additional in vivo studies are needed to examine the utility of this approach for enhancing selectivity. PMID:23145164

  15. [Influence of pH on Kinetics of Anilines Oxidation by Permanganate].

    PubMed

    Wang, Hui; Sun, Bo; Guan, Xiao-hong

    2016-02-15

    To investigate the effect of pH on the oxidation of anilines by potassium permanganate, aniline and p-Chloroaniline were taken as the target contaminants, and the experiments were conducted under the condition with potassium permanganate in excess over a wide pH range. The reaction displayed remarkable autocatalysis, which was presumably ascribed to the formation of complexes by the in situ generated MnOx and the target contaminants on its surface, and thereby improved the oxidation rate of the target contaminants by permanganate. The reaction kinetics was fitted with the pseudo-first-order kinetics at different pH to obtain the pseudo-first-order reaction constants (k(obs)). The second-order rate constants calculated from permanganate concentration and k,b, increased with the increase of pH and reached the maximum near their respective pKa, after which they decreased gradually. This tendency is called parabola-like shaped pH-rate profile. The second-order rate constants between permanganate and anilines were well fitted by the proton transfer model proposed by us in previous work.

  16. Aeolian Sediments on the northeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Stauch, G.; Lehmkuhl, F.

    2013-12-01

    The timing and spatial distribution of aeolian sediments on the northeastern Tibetan Plateau have gained increasing interest during the last decades. The formation of the aeolian deposits is often related to cold and dry climate conditions. However, further important parameters are the local geomorphological setting and sediment availability in the source areas of the sediments. Aeolian sediments including loess, sandy loess and sands are widespread in the catchment of the Donggi Cona on the northeastern Tibetan Plateau at around 4000 m asl. Detailed geomorphological mapping of the deposits and geochemical analyses of the sediments revealed varying sources throughout the Holocene. The timing of the sediment deposition is based on 43 OSL (optical stimulated luminescence) ages. Several phases of enhanced aeolian deposition took place during the Holocene. The accumulation of aeolian sands lasted from 10.5 until 7 ka. The main source area of these sands was a large alluvial fan. Parallel to the formation of the dunes loess was deposited on the adjacent slopes from 10.5 until 7.5 ka. These sediments most probably originate in the nearby Qaidam Basin. In contrast to the general linkage of aeolian sediments to dryer climate conditions formation of these aeolian deposits is related to wetter conditions due to a strengthening of the Asian Summer Monsoons. The wetter climate enhanced the trapping and continuous fixation of the aeolian sediments by vegetation. With the further strengthening of the Monsoon fluvial processes eroded the aeolian deposits at least until 6 ka. From about 3 ka to the present a reactivation of aeolian sands and the formation of new dunes took place. This reactivation is related to drier conditions on the north-eastern Tibetan Plateau. Additionally, an increased human influence might have enhanced the aeolian activity. Similar phases of enhanced aeolian activity have been documented in more than 170 available OSL ages from loess and aeolian sands in northeastern Tibet. In the area of the Qinghai Lake enhanced accumulation of sand took place between 16 and 7 ka, while in the Gonghe Basin and the eastern Qaidam Basin sand was deposited between 13 and 7.5 ka. A late Holocene reactivation of sand similar to the Donggi catchment is only known from the Qinghai Lake area. The OSL ages of loess samples are generally younger than the ages of aeolian sand in northeastern Tibet. In the surrounding of the Qinghai Lake loess accumulation took place between 14.5 and 8ka while the loess ages from the eastern Qaidam Basin are mainly between 10.5 and 4.5 ka. In the Gonghe Basin only four ages of late Holocene ages are available. A different picture emerges from the northeastern margin of the study area. Loess accumulation on the northern slopes of the Qilian Shan occurred throughout the Holocene. In this area the nearby desert regions provide a more or less constant supply of silt-sized particles. In all other areas studied on the northeastern Tibetan Plateau the accumulation of aeolian sediments is primarily controlled by environmental conditions in the accumulation areas.

  17. Biochemical properties of Na+/K(+)-ATPase in axonal growth cone particles isolated from fetal rat brain.

    PubMed

    Mercado, R; Hernández, J

    1994-08-01

    Axonal growth cones (AGC) isolated from fetal rat brain have an important specific activity of N+/K(+)-ATPase. Kinetic assays of the enzyme in AGC showed that Km values for ATP or K+ are similar to those reported for the adult brain enzyme. For Na+ the affinity (Km) was lower. Vmax for the three substrates was several times lower in AGC as compared to the adult value. We also observed two apparent inhibition constants of Na+/K(+)-ATPase by ouabain, one of low affinity, possibly corresponding to the alpha 1 isoform and another of high affinity which is different to that described for the alpha 2 isoform of the enzyme. These results support an important role for the sodium pump in the maintainance of volume and cationic balance in neuronal differentiating structures. The functional differences observed also suggest that the enzymatic complex of Na+/K(+)-ATPase in AGC is in a transitional state towards the adult configuration.

  18. A bambusuril macrocycle that binds anions in water with high affinity and selectivity.

    PubMed

    Yawer, Mirza Arfan; Havel, Vaclav; Sindelar, Vladimir

    2015-01-02

    Synthetic receptors that function in water are important for the qualitative and quantitative detection of anions, which may act as pollutants in the environment or play important roles in biological processes. Neutral receptors are particularly appealing because they are often more selective than positively charged receptors; however, their affinity towards anions in pure water is only in range of 1-10(3)  L mol(-1) . The anion-templated synthesis of a water-soluble bambusuril derivative is shown to be an outstanding receptor for various inorganic anions in pure water, with association constants of up to 10(7)  L mol(-1) . Furthermore, the macrocycle discriminates between anions with unprecedented selectivity (up to 500 000-fold). We anticipate that the combination of remarkable affinity and selectivity of this macrocycle will enable the efficient detection and isolation of diverse anions in aqueous solutions, which is not possible with current supramolecular systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Insensitivity of cerebral oxygen transport to oxygen affinity of hemoglobin-based oxygen carriers.

    PubMed

    Koehler, Raymond C; Fronticelli, Clara; Bucci, Enrico

    2008-10-01

    The cerebrovascular effects of exchange transfusion of various cell-free hemoglobins that possess different oxygen affinities are reviewed. Reducing hematocrit by transfusion of a non-oxygen-carrying solution dilates pial arterioles on the brain surface and increases cerebral blood flow to maintain a constant bulk oxygen transport to the brain. In contrast, transfusion of hemoglobins with P50 of 4-34 Torr causes constriction of pial arterioles that offsets the decrease in blood viscosity to maintain cerebral blood flow and oxygen transport. The autoregulatory constriction is dependent on synthesis of 20-HETE from arachidonic acid. This oxygen-dependent reaction is apparently enhanced by facilitated oxygen diffusion from the red cell to the endothelium arising from increased plasma oxygen solubility in the presence of low or high-affinity hemoglobin. Exchange transfusion of recombinant hemoglobin polymers with P50 of 3 and 18 Torr reduces infarct volume from experimental stroke. Cell-free hemoglobins do not require a P50 as high as red blood cell hemoglobin to facilitate oxygen delivery.

  20. A mechanism for the activation of the Na/H exchanger NHE-1 by cytoplasmic acidification and mitogens

    PubMed Central

    Lacroix, Jérôme; Poët, Mallorie; Maehrel, Céline; Counillon, Laurent

    2004-01-01

    Eukaryotic cells constantly have to fight against internal acidification. In mammals, this task is mainly performed by the ubiquitously expressed electroneutral Na+/H+ exchanger NHE-1, which activates in a cooperative manner when cells become acidic. Despite its biological importance, the mechanism of this activation is still poorly understood, the most commonly accepted hypothesis being the existence of a proton-sensor site on the internal face of the transporter. This work uncovers mutations that lead to a nonallosteric form of the exchanger and demonstrates that NHE-1 activation is best described by a Monod–Wyman–Changeux concerted mechanism for a dimeric transporter. During intracellular acidification, a low-affinity form of NHE-1 is converted into a form possessing a higher affinity for intracellular protons, with no requirement for an additional proton-sensor site on the protein. This new mechanism also explains the activation of the exchanger by growth signals, which shift the equilibrium towards the high-affinity form. PMID:14710192

  1. Application of molecularly imprinted polymers to selective removal of clofibric acid from water.

    PubMed

    Dai, Chaomeng; Zhang, Juan; Zhang, Yalei; Zhou, Xuefei; Liu, Shuguang

    2013-01-01

    A new molecularly imprinted polymer (MIP) adsorbent for clofibric acid (CA) was prepared by a non-covalent protocol. Characterization of the obtained MIP was achieved by scanning electron microscopy (SEM) and nitrogen sorption. Sorption experimental results showed that the MIP had excellent binding affinity for CA and the adsorption of CA by MIP was well described by pseudo-second-order model. Scatchard plot analysis revealed that two classes of binding sites were formed in the MIP with dissociation constants of 7.52 ± 0.46 mg L(-1) and 114 ± 4.2 mg L(-1), respectively. The selectivity of MIP demonstrated higher affinity for CA over competitive compound than that of non-imprinted polymers (NIP). The MIP synthesized was used to remove CA from spiked surface water and exhibited significant binding affinity towards CA in the presence of total dissolved solids (TDS). In addition, MIP reusability was demonstrated for at least 12 repeated cycles without significant loss in performance.

  2. Application of Molecularly Imprinted Polymers to Selective Removal of Clofibric Acid from Water

    PubMed Central

    Dai, Chaomeng; Zhang, Juan; Zhang, Yalei; Zhou, Xuefei; Liu, Shuguang

    2013-01-01

    A new molecularly imprinted polymer (MIP) adsorbent for clofibric acid (CA) was prepared by a non-covalent protocol. Characterization of the obtained MIP was achieved by scanning electron microscopy (SEM) and nitrogen sorption. Sorption experimental results showed that the MIP had excellent binding affinity for CA and the adsorption of CA by MIP was well described by pseudo-second-order model. Scatchard plot analysis revealed that two classes of binding sites were formed in the MIP with dissociation constants of 7.52±0.46 mg L−1 and 114±4.2 mg L−1, respectively. The selectivity of MIP demonstrated higher affinity for CA over competitive compound than that of non-imprinted polymers (NIP). The MIP synthesized was used to remove CA from spiked surface water and exhibited significant binding affinity towards CA in the presence of total dissolved solids (TDS). In addition, MIP reusability was demonstrated for at least 12 repeated cycles without significant loss in performance. PMID:24205143

  3. New potentiometric sensor based on molecularly imprinted nanoparticles for cocaine detection.

    PubMed

    Smolinska-Kempisty, K; Ahmad, O Sheej; Guerreiro, A; Karim, K; Piletska, E; Piletsky, S

    2017-10-15

    Here we present a potentiometric sensor for cocaine detection based on molecularly imprinted polymer nanoparticles (nanoMIPs) produced by the solid-phase imprinting method. The composition of polymers with high affinity for cocaine was optimised using molecular modelling. Four compositions were selected and polymers prepared using two protocols: chemical polymerisation in water and UV-initiated polymerisation in organic solvent. All synthesised nanoparticles had very good affinity to cocaine with dissociation constants between 0.6nM and 5.3nM. Imprinted polymers produced in organic solvent using acrylamide as a functional monomer demonstrated the highest yield and affinity, and so were selected for further sensor development. For this, nanoparticles were incorporated within a PVC matrix which was then used to prepare an ion-selective membrane integrated with a potentiometric transducer. It was demonstrated that the sensor was able to quantify cocaine in blood serum samples in the range of concentrations between 1nM and 1mM. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. An integrated catch-and-hold mechanism activates nicotinic acetylcholine receptors.

    PubMed

    Jadey, Snehal; Auerbach, Anthony

    2012-07-01

    In neuromuscular acetylcholine (ACh) receptor channels (AChRs), agonist molecules bind with a low affinity (LA) to two sites that can switch to high affinity (HA) and increase the probability of channel opening. We measured (by using single-channel kinetic analysis) the rate and equilibrium constants for LA binding and channel gating for several different agonists of adult-type mouse AChRs. Almost all of the variation in the equilibrium constants for LA binding was from differences in the association rate constants. These were consistently below the limit set by diffusion and were substantially different even though the agonists had similar sizes and the same charge. This suggests that binding to resting receptors is not by diffusion alone and, hence, that each binding site can undergo two conformational changes ("catch" and "hold") that connect three different structures (apo-, LA-bound, and HA-bound). Analyses of ACh-binding protein structures suggest that this binding site, too, may adopt three discrete structures having different degrees of loop C displacement ("capping"). For the agonists we tested, the logarithms of the equilibrium constants for LA binding and LA↔HA gating were correlated. Although agonist binding and channel gating have long been considered to be separate processes in the activation of ligand-gated ion channels, this correlation implies that the catch-and-hold conformational changes are energetically linked and together comprise an integrated process having a common structural basis. We propose that loop C capping mainly reflects agonist binding, with its two stages corresponding to the formation of the LA and HA complexes. The catch-and-hold reaction coordinate is discussed in terms of preopening states and thermodynamic cycles of activation.

  5. An integrated catch-and-hold mechanism activates nicotinic acetylcholine receptors

    PubMed Central

    Jadey, Snehal

    2012-01-01

    In neuromuscular acetylcholine (ACh) receptor channels (AChRs), agonist molecules bind with a low affinity (LA) to two sites that can switch to high affinity (HA) and increase the probability of channel opening. We measured (by using single-channel kinetic analysis) the rate and equilibrium constants for LA binding and channel gating for several different agonists of adult-type mouse AChRs. Almost all of the variation in the equilibrium constants for LA binding was from differences in the association rate constants. These were consistently below the limit set by diffusion and were substantially different even though the agonists had similar sizes and the same charge. This suggests that binding to resting receptors is not by diffusion alone and, hence, that each binding site can undergo two conformational changes (“catch” and “hold”) that connect three different structures (apo-, LA-bound, and HA-bound). Analyses of ACh-binding protein structures suggest that this binding site, too, may adopt three discrete structures having different degrees of loop C displacement (“capping”). For the agonists we tested, the logarithms of the equilibrium constants for LA binding and LA↔HA gating were correlated. Although agonist binding and channel gating have long been considered to be separate processes in the activation of ligand-gated ion channels, this correlation implies that the catch-and-hold conformational changes are energetically linked and together comprise an integrated process having a common structural basis. We propose that loop C capping mainly reflects agonist binding, with its two stages corresponding to the formation of the LA and HA complexes. The catch-and-hold reaction coordinate is discussed in terms of preopening states and thermodynamic cycles of activation. PMID:22732309

  6. Frequency-constant Q, unity and disorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hargreaves, N.D.

    1995-12-31

    In exploration geophysics we obtain information about the earth by observing its response to different types of applied force. The response can cover the full range of possible Q values (where Q, the quality factor, is a measure of energy dissipation), from close to infinity in the case of deep crustal seismic to close to 0 in the case of many electromagnetic methods. When Q is frequency-constant, however, the various types of response have a common scaling behavior and can be described as being self-affine. The wave-equation then takes on a generalised form, changing from the standard wave-equation at Qmore » = {infinity} to the diffusion equation at Q = 0, via lossy, diffusive, propagation at intermediate Q values. Solutions of this wave-diffusion equation at any particular Q value can be converted to an equivalent set of results for any other Q value. In particular it is possible to convert from diffusive to wave propagation by a mapping from Q < {infinity} to Q = {infinity}. In the context of seismic sounding this is equivalent to applying inverse Q-filtering; in a more general context the mapping integrates different geophysical observations by referencing them to the common result at Q = {infinity}. The self-affinity of the observations for frequency-constant Q is an expression of scale invariance in the fundamental physical properties of the medium of propagation, this being the case whether the mechanism of diffusive propagation is scattering of intrinsic attenuation. Scale invariance, or fractal scaling, is a general property of disordered systems; the assumption of frequency-constant Q not only implies a unity between different geophysical observations, but also suggests that it is the disordered nature of the earth`s sub-surface that is the unifying factor.« less

  7. The complex of hypericin with β-lactoglobulin has antimicrobial activity with potential applications in dairy industry.

    PubMed

    Rodríguez-Amigo, Beatriz; Delcanale, Pietro; Rotger, Gabriel; Juárez-Jiménez, Jordi; Abbruzzetti, Stefania; Summer, Andrea; Agut, Montserrat; Luque, F Javier; Nonell, Santi; Viappiani, Cristiano

    2015-01-01

    Using a combination of molecular modeling and spectroscopic experiments, the naturally occurring, pharmacologically active hypericin compound is shown to form a stable complex with the dimeric form of β-lactoglobulin (β-LG). Binding is predicted to occur at the narrowest cleft found at the interface between monomers in the dimeric β-LG. The complex is able to preserve the fluorescence and singlet oxygen photosensitizing properties of the dye. The equilibrium constant for hypericin binding has been determined as Ka=1.40±0.07µM(-1), equivalent to a dissociation constant, Kd=0.71±0.03µM. The complex is active against Staphylococcus aureus bacteria. Overall, the results are encouraging for pursuing the potential application of the complex between hypericin and β-LG as a nanodevice with bactericidal properties for disinfection. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. An HLA-B27 Homodimer Specific Antibody Recognizes a Discontinuous Mixed-Disulfide Epitope as Identified by Affinity-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Iuraşcu, Marius-Ionuţ; Marroquin Belaunzanar, Osiris; Cozma, Claudia; Petrausch, Ulf; Renner, Christoph; Przybylski, Michael

    2016-06-01

    HLA-B27 homodimer formation is believed to be a hallmark of HLA-B27 associated spondyloarthritides. Recently, we have generated a homodimer-specific monoclonal antibody (HD6) and have demonstrated that HLA-B27 homodimer complexes are present on monocytes of healthy HLA-B27 gene carriers at low levels, with significantly increased levels at active disease. The capability of the HD6 antibody to discriminate between correctly formed HLA-B27 heterotrimers and pathology-associated homodimers is striking and cannot be explained by the primary structure of HLA-B27. We hypothesized that HD6 accesses a unique epitope and used affinity-mass spectrometry for its identification. The HD6 antibody was immobilized on an activated sepharose affinity column, and HLA-B27 homodimer characterized for affinity. The epitope was identified by proteolytic epitope excision and MALDI mass spectrometry, and shown to comprise a discontinuous Cys-203- 257-Cys mixed-disulfide peptide structure that is not accessible in HLA-B27 heterotrimers due to protection by noncovalently linked β2-microglobulin. The epitope peptides were synthesized by solid phase peptide synthesis, and the two monomeric peptide components, HLA-B27(203-219) and HLA-B27(257-273), as well as the homo- and hetero-dimeric disulfide linked combinations prepared. The affinity binding constants KD towards the antibodies were determined using a surface acoustic wave (SAW) biosensor, and showed the highest affinity with a KD of approximately 40 nM to the HD6 antibody for the (203-219)-SS-(257-273) mixed disulfide epitope.

  9. Two classes of binding sites for [3H]substance P in rat cerebral cortex.

    PubMed

    Geraghty, D P; Burcher, E

    1993-01-22

    The binding characteristics of [3H]substance P ([3H]SP) were investigated in membranes prepared from rat cerebral cortex. Binding of [3H]SP reached equilibrium after 50 min at 25 degrees C and was saturable at 8 nM. Saturation data could be resolved into high affinity (equilibrium dissociation constant, Kd, 0.22 nM) and low affinity sites (Kd, 2.65 nM). The low affinity sites were more numerous than the high affinity sites, with a ratio of 4:1. The non-hydrolyzable GTP analogue GppNHp had no effect on binding, indicating that the high and low affinity sites are not guanine nucleotide-regulated states of the same (NK-1) receptor. The low affinity sites are unlikely to represent NK-3 receptors since coincubation with the selective NK-3 receptor agonist senktide did not alter the biphasic nature of [3H]SP binding. The rank order of potency for inhibition of [3H]SP (2 nM) binding was SP > or = [Sar9, Met(O2)11]-SP > or = physalaemin > SP(3-11) > NP gamma = [Ala3]-SP > or = SP(4-11) > or = NPK > or = SP(5-11) > or = NKB approximately NKA > SP(1-9), compatible with binding to an NK-1 site. N-terminal fragments and non-amidated analogues were ineffective competitors for [3H]SP binding. However, competition data for several peptides including substance P (SP) and the NK-1 selective agonist [Sar9, Met(O2)11]-SP could be resolved into two components.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. [Planar molecular arrangements aid the design of MHC class II binding peptides].

    PubMed

    Cortés, A; Coral, J; McLachlan, C; Benítez, R; Pinilla, L

    2017-01-01

    The coupling between peptides and MHC-II proteins in the human immune system is not well understood. This work presents an evidence-based hypothesis of a guiding intermolecular force present in every human MHC-II protein (HLA-II). Previously, we examined the spatial positions of the fully conserved residues in all HLA-II protein types. In each one, constant planar patterns were revealed. These molecular planes comprise of amino acid groups of the same chemical species (for example, Gly) distributed across the protein structure. Each amino acid plane has a unique direction and this directional element offers spatial selectivity. Constant within all planes, too, is the presence of an aromatic residue possessing electrons in movement, leading the authors to consider that the planes generate electromagnetic fields that could serve as an attractive force in a single direction. Selection and attraction between HLA-II molecules and antigen peptides would, therefore, be non-random, resulting in a coupling mechanism as effective and rapid as is clearly required in the immune response. On the basis of planar projections onto the HLA-II groove, modifications were made by substituting the key residues in the class II-associated invariant chain peptide-a peptide with a universal binding affinity-resulting in eight different modified peptides with affinities greater than that of the unmodified peptide. Accurate and reliable prediction of MHC class II-binding peptides may facilitate the design of universal vaccine-peptides with greatly enhanced binding affinities. The proposed mechanisms of selection, attraction and coupling between HLA-II and antigen peptides are explained further in the paper.

  11. Interaction of two-dimensional magnetoexcitons

    NASA Astrophysics Data System (ADS)

    Dumanov, E. V.; Podlesny, I. V.; Moskalenko, S. A.; Liberman, M. A.

    2017-04-01

    We study interaction of the two-dimensional magnetoexcitons with in-plane wave vector k→∥ = 0 , taking into account the influence of the excited Landau levels (ELLs) and of the external electric field perpendicular to the surface of the quantum well and parallel to the external magnetic field. It is shown that the account of the ELLs gives rise to the repulsion between the spinless magnetoexcitons with k→∥ = 0 in the Fock approximation, with the interaction constant g decreasing inverse proportional to the magnetic field strength B (g (0) ∼ 1 / B) . In the presence of the perpendicular electric field the Rashba spin-orbit coupling (RSOC), Zeeman splitting (ZS) and nonparabolicity of the heavy-hole dispersion law affect the Landau quantization of the electrons and holes. They move along the new cyclotron orbits, change their Coulomb interactions and cause the interaction between 2D magnetoexcitons with k→∥ = 0 . The changes of the Coulomb interactions caused by the electrons and by the holes moving with new cyclotron orbits are characterized by some coefficients, which in the absence of the electric field turn to be unity. The differences between these coefficients of the electron-hole pairs forming the magnetoexcitons determine their affinities to the interactions. The interactions between the homogeneous, semihomogeneous and heterogeneous magnetoexcitons forming the symmetric states with the same signs of their affinities are attractive whereas in the case of different sign affinities are repulsive. In the heterogeneous asymmetric states the interactions have opposite signs in comparison with the symmetric states. In all these cases the interaction constant g have the dependence g (0) 1 /√{ B} .

  12. Recombinant glycoprotein G analog for determination of specific immunoglobulins to herpes simplex virus type 2 by ELISA.

    PubMed

    Korshun, Ludmila; Vudmaska, Mariya; Moysa, Larissa; Kovtonjuk, Galina; Mikhalap, Svetlana; Ganova, Larissa; Spivak, Nikolay

    2013-12-01

    In order to the detection of type-specific IgG to herpes simplex virus type 2 (HSV-2) in human serum or plasma the recombinant analog of HSV-2 glycoprotein G (gG2) was created. To construct an expression vector the DNA fragment with a sequence identical to immunodominant regions of HSV-2 gG2 was cloned into modified vector pET28a containing of the glutation-S-transferase sequence (pET28-GST). Escherichia coli BL21 (DE3) were transformed with the recombinant plasmid. The target protein was expressed mainly in soluble form. Chromatographic purification of soluble GST-gG2 protein was performed taking into account the features of its primary structure that are 6His-tag and GST-tag. To determine the affinity constant of the specific IgG to GST-gG2 we used the method proposed by Friguet et al. (1985). The affinity constants were within the range of 10(7)-10(8)M(-1) proving their high-affinity. The purified recombinant HSV-2 antigen was used to design a diagnostic ELISA kit, which was evaluated with referent controls and standard panels of sera containing and/or not containing anti-HSV-2 IgG. Comparative evaluation of this kit and the commercially available "HSV-Type 2 IgG-ELISA" (NovaTec, Dietzenbach, Germany) kit was performed. There was no significant difference (P>0.05). It allows to use developed ELISA kit for clinical diagnosis of HSV-2 infection. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Holocene paleoclimatic evidence and sedimentation rates from a core in southwestern Lake Michigan

    USGS Publications Warehouse

    Colman, Steven M.; Jones, Glenn A.; Forester, R.M.; Foster, D.S.

    1990-01-01

    Preliminary results of a multidisciplinary study of cores in southwestern Lake Michigan suggest that the materials in these cores can be interpreted in terms of both isostatically and climatically induced changes in lake level. Ostracodes and mollusks are well preserved in the Holocene sediments, and they provide paleolimnologic and paleoclimatic data, as well as biogenic carbonate for stable-isotope studies and radiocarbon dating. Pollen and diatom preservation in the cores is poor, which prevents comparison with regional vegetation records. New accelerator-mass spectrometer 14C ages, from both carbon and carbonate fractions, provide basin-wide correlations and appear to resolve the longstanding problem of anomalously old ages that result from detrital organic matter in Great Lakes sediments. Several cores contain a distinct unconformity associated with the abrupt fall in lake level that occurred about 10.3 ka when the isostatically depressed North Bay outlet was uncovered by the retreating Laurentide Ice Sheet. Below the unconformity, ostracode assemblages imply deep, cold water with very low total dissolved solids (TDS), and bivalves have ?? 18O (PDB) values as light as - 10 per mil. Samples from just above the unconformity contain littoral to sublittoral ostracode species that imply warmer, higher-TDS (though still dilute) water than that inferred below the unconformity. Above this zone, another interval with ?? 18O values more negative than - 10 occurs. The isotopic data suggest that two influxes of cold, isotopically light meltwater from Laurentide ice entered the lake, one shortly before 10.3 ka and the other about 9 ka. These influxes were separated by a period during which the lake was warmer, shallower, but still very low in dissolved solids. One or both of the meltwater influxes may be related to discharge from Lake Agassiz into the Great Lakes. Sedimentation rates appear to have been constant from about 10 ka to 5 ka. Bivalve shells formed between about 8 and 5 ka have ?? 18O values that range from-2.3 to-3.3 per mil and appear to decrease toward the end of the interval. The ostracode assemblages and the stable isotopes suggest changes that are climatically controlled, including fluctuating water levels and increasing dissolved solids, although the water remained relatively dilute (TDS < 300 mg/l). A dramatic decrease in sedimentation rates occurred at about 5 ka, about the time of the peak of the Nippissing high lake stage. This decrease in sedimentation rate may be associated with a large increase in effective wave base as the lake approached its present size and fetch. A dramatic reduction in ostracode and mollusk abundances during the late Holocene is probably due to this decrease in sedimentation rates, which would result in increased carbonate dissolution. Ostracode productivity may also have declined due to a reduction in bottom-water oxygen caused by increased epilimnion algal productivity. 

  14. Monoclonal antibodies against human angiotensinogen, their characterization and use in an angiotensinogen enzyme linked immunosorbent assay.

    PubMed

    Rubin, I; Lykkegaard, S; Olsen, A A; Selmer, J; Ballegaard, M

    1988-01-01

    Monoclonal antibodies were produced against human angiotensinogen. An enzyme linked immunosorbent assay (ELISA) was developed using a high affinity monoclonal antibody as catching antibody and a polyclonal rabbit anti human angiotensinogen antibody as detecting antibody in a "sandwich" ELISA. Linear range of the ELISA was 15-450 pmol/l of human angiotensinogen. Intra- and inter- assay variation coefficients were in the range of 2% to 8%. A correlation coefficient, r = 0.97, (n = 20), with values obtained by radioimmunoassay. This correlation coefficient, obtained by using both normal and pregnant sera, confirmed that the ELISA fulfill the requirements for clinical useful assay. Characterization of the antibodies were performed with respect to affinity constant and epitopes.

  15. Evaluation of galectin binding by frontal affinity chromatography (FAC).

    PubMed

    Iwaki, Jun; Hirabayashi, Jun

    2015-01-01

    Frontal affinity chromatography (FAC) is a simple and versatile procedure enabling quantitative determination of diverse biological interactions in terms of dissociation constants (K d), even though these interactions are relatively weak. The method is best applied to glycans and their binding proteins, with the analytical system operating on the basis of highly reproducible isocratic elution by liquid chromatography. Its application to galectins has been successfully developed to characterize their binding specificities in detail. As a result, their minimal requirements for recognition of disaccharides, i.e., β-galactosides, as well as characteristic features of individual galectins, have been elucidated. In this chapter, we describe standard procedures to determine the K d's for interactions between a series of standard glycans and various galectins.

  16. Neutron structures of the Helicobacter pylori 5'-methylthioadenosine nucleosidase highlight proton sharing and protonation states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banco, Michael T.; Mishra, Vidhi; Ostermann, Andreas

    2016-11-16

    MTAN (5'-methylthioadenosine nucleosidase) catalyzes the hydrolysis of the N-ribosidic bond of a variety of adenosine-containing metabolites. The Helicobacter pylori MTAN (HpMTAN) hydrolyzes 6-amino-6-deoxyfutalosine in the second step of the alternative menaquinone biosynthetic pathway. Substrate binding of the adenine moiety is mediated almost exclusively by hydrogen bonds, and the proposed catalytic mechanism requires multiple proton-transfer events. Of particular interest is the protonation state of residue D198, which possesses a pKa above 8 and functions as a general acid to initiate the enzymatic reaction. In this study we present three corefined neutron/X-ray crystal structures of wild-type HpMTAN cocrystallized with S-adenosylhomocysteine (SAH), Formycinmore » A (FMA), and (3R,4S)-4-(4-Chlorophenylthiomethyl)-1-[(9-deaza-adenin-9-yl)methyl]-3-hydroxypyrrolidine (p-ClPh-Thio-DADMe-ImmA) as well as one neutron/X-ray crystal structure of an inactive variant (HpMTAN-D198N) cocrystallized with SAH. These results support a mechanism of D198 pKa elevation through the unexpected sharing of a proton with atom N7 of the adenine moiety possessing unconventional hydrogen-bond geometry. Additionally, the neutron structures also highlight active site features that promote the stabilization of the transition state and slight variations in these interactions that result in 100-fold difference in binding affinities between the DADMe-ImmA and ImmA analogs.« less

  17. Pharmacokinetics and microbiodistribution of 64Cu-labeled collagen binding peptides in chronic myocardial infarction

    PubMed Central

    Kim, Heejung; Lee, Sung-Jin; Kim, Jin Su; Davies-Venn, Cynthia; Cho, Hong-Jun; Won, Samuel Jaeyoon; Dejene, Eden; Yao, Zhengsheng; Kim, Insook; Paik, Chang H.; Bluemke, David A.

    2016-01-01

    Objectives To evaluate the pharmacokinetics and microbiodistribution of 64Cu-labeled collagen binding peptides. Method The affinity constant (KD), association (ka) and dissociation rate constant (kd) for the peptide collagelin or its analogue (named CRPA) binding to collagen were measured by bio-layer interferometric analysis. Rats (n = 4–5) with myocardial infarction or normal were injected IV with the 64Cu-labeled peptides or 64Cu-DOTA as a control. Dynamic PET imaging was performed for 60 min at 7- to 8-week post-infarct. [18F]FDG PET imaging was performed to identify the viable myocardium. To validate the PET images, slices of heart samples from the base to the apex were analyzed using autoradiography and histology. Result The peptides bound to collagen with KD of ~ 0.9 μM. The 64Cu-peptides and 64Cu-DOTA accumulated in the infarct area (confirmed by autoradiography and histology images) within 1 minute of injection and were excreted rapidly via the renal system. The blood clearance curves were bi-phasic with the elimination half-lives, 21.9 ± 2.4, 26.2 ± 4.6 and 21.2 ± 2.1 min for 64Cu-CRPA, 64Cu-collagelin and the control 64Cu-DOTA, respectively. The clearance half-lives from the focal fibrotic tissue (24.1 ± 1.5, 25.6 ± 8.0 and 21.4 ± 1.3 min, respectively) and remote myocardium (20.8 ± 0.7, 21.0 ± 5.5 and 19.1 ± 2.4 min, respectively) were not significantly different. The uptake ratios of infarct-to-remote myocardium (1.93 ± 0.18, 2.15 ± 0.38 and 1.88 ± 0.08, respectively) for 64Cu-CRPA, 64Cu-collagelin and 64Cu-DOTA remained stable for the time period between 10 to 60 min. Conclusion The distribution of the 64Cu-collagelin probes corresponds to the heterogeneous distribution of expanded extracellular space in the setting of myocardial infarction. The overall washout rate from the fibrous tissue was determined by the slow washout rate (t1/2, ≥ 20 min) of the peptides from the extracellular space to the vasculature, not by the dissociation rate (t1/2, ≤ 2 min) of the 64Cu-peptides from collagen. PMID:27623511

  18. When the Hegemony Studies the Minority--An Israeli Jewish Researcher Studies Druze Women: Transformations of Power, Alienation, and Affinity in the Field

    ERIC Educational Resources Information Center

    Weiner-Levy, Naomi

    2009-01-01

    This study describes the positionality and power relations revealed during research on women in Israel's Druze minority, conducted by a Jewish woman in the country's hegemonic society. Although the researcher's position and power appear obvious, changes took place constantly, reflecting her unstable position as a stranger, "outsider" or…

  19. A three-compartment model for micropollutants sorption in sludge: methodological approach and insights.

    PubMed

    Barret, Maialen; Patureau, Dominique; Latrille, Eric; Carrère, Hélène

    2010-01-01

    In sludge resulting from wastewater treatment, organic micropollutants sorb to particles and to dissolved/colloidal matter (DCM). Both interactions may influence their physical and biological fate throughout the wastewater treatment processes. To our knowledge, sludge has never been considered as a three-compartment matrix, in which micropollutants coexist in three states: freely dissolved, sorbed-to-particles and sorbed-to-DCM. A methodology is proposed to concomitantly determine equilibrium constants of sorption to particles (K(part)) and to DCM (K(DCM)). Polycyclic Aromatic Hydrocarbons (PAHs) were chosen as model compounds for the experiments. The logarithm of estimated equilibrium constants ranged from 3.1 to 4.3 and their usual correlation to PAH hydrophobicity was verified. Moreover, PAH affinities for particles and for DCM could be compared. Affinity for particles was found to be stronger, probably due to their physical and chemical characteristics. This work provided a useful tool to assess the freely dissolved, sorbed-to-particles and sorbed-to-DCM concentrations of contaminants, which are necessary to accurately predict their fate. Besides, guidelines to investigate the link between sorption and the fundamental concept of bioavailability were proposed. (c) 2009 Elsevier Ltd. All rights reserved.

  20. Mechanism of Metal Ion Activation of the Diphtheria Toxin Repressor DtxR

    NASA Astrophysics Data System (ADS)

    D'Aquino, J. Alejandro; Ringe, Dagmar

    2006-08-01

    The diphtheria toxin repressor, DtxR, is a metal ion-activated transcriptional regulator that has been linked to the virulence of Corynebacterium diphtheriae. Structure determination has shown that there are two metal ion binding sites per repressor monomer, and site-directed mutagenesis has demonstrated that binding site 2 (primary) is essential for recognition of the target DNA repressor, leaving the role of binding site 1 (ancillary) unclear (1 - 3). Calorimetric techniques have demonstrated that while binding site 1 (ancillary) has high affinity for metal ion with a binding constant of 2 × 10-7, binding site 2 (primary) is a low affinity binding site with a binding constant of 6.3 × 10-4. These two binding sites act independently and their contribution can be easily dissected by traditional mutational analysis. Our results clearly demonstrate that binding site 1 (ancillary) is the first one to be occupied during metal ion activation, playing a critical role in stabilization of the repressor. In addition, structural data obtained for the mutants Ni-DtxR(H79A,C102D), reported here and the previously reported DtxR(H79A) (4) has allowed us to propose a mechanism of metal ion activation for DtxR.

  1. Prediction of selectivity for enantiomeric separations of uncharged compounds by capillary electrophoresis involving dual cyclodextrin systems.

    PubMed

    Abushoffa, Adel M; Fillet, Marianne; Hubert, Phillipe; Crommen, Jacques

    2002-03-01

    The single-isomer polyanionic cyclodextrin (CD) derivative heptakis-6-sulfato-beta-cyclodextrin (HSbetaCD) has been tested as chiral additive for the enantioseparation of non-steroidal anti-inflammatory drugs, such as fenoprofen, flurbiprofen, ibuprofen and ketoprofen, in capillary electrophoresis, using a pH 2.5 phosphoric acid-triethanolamine buffer in the reversed polarity mode. In most cases, the enantiomers of these acidic compounds, present in uncharged form at that pH, were only poorly resolved with HSbetaCD alone. However, the use of HSbetaCD in combination with the neutral CD derivative, heptakis-(2,3,6-tri-O-methyl)-beta-cyclodextrin (TMbetaCD), which has a particularly high enantioselectivity towards these compounds, has led to complete enantioresolution in reasonably low migration times in most cases. Affinity constants for the enantiomers with the two cyclodextrins were determined, using linear regression in a two-step approach. Affinity constants with the charged HSbetaCD were first calculated in single systems while those with the neutral TMbetaCD were determined in dual systems. Selectivity for the enantiomeric separation of these compounds in dual CD systems could be predicted using recently developed mathematical models.

  2. Preliminary selection and evaluation of the binding of aptamers against a Hantavirus antigen using fluorescence spectroscopy and modeling

    NASA Astrophysics Data System (ADS)

    Missailidis, Sotiris; de Oliveira, Renata Carvalho; Silva, Dilson; Cortez, Célia Martins; Guterres, Alexandro; Vicente, Luciana Helena Bassan; de Godoy, Daniela Tupy; Lemos, Elba

    2015-12-01

    In this study we have aimed to develop novel aptamers against the Hantavirus nucleoprotein N, a valid antigen already used in the Hantavirus reference laboratory of the Institute Oswaldo Cruz in Rio de Janeiro, Brazil. Such aptamers, if they are found to bind with high affinity and specificity for the selected hantavirus antigen, they could be translated into novel diagnostic assays with the ability to provide early detection for hantaviroses and their related disease syndromes. In a preliminary screening, we have managed to identify three aptamer species. We have analyzed a short and a long version of these aptamer using fluorescence spectroscopy and modelled their binding. We have identified Stern-Volmer constants for the selected aptamers, which have shown affinity for their target, with a different binding between the short and the long versions of them. Short aptamers have shown to have a higher Stern-Volmer constant and the ability to potentially bind to more than one binding site on the antigen. The information provided by the spectroscopic screening has been invaluable in allowing us to define candidates for further development into diagnostic assays.

  3. Affinity capillary electrophoresis and fluorescence spectroscopy for studying enantioselective interactions between omeprazole enantiomer and human serum albumin.

    PubMed

    Xu, Yujing; Hong, Tingting; Chen, Xueping; Ji, Yibing

    2017-05-01

    Baseline separation of omeprazole (OME) enantiomers was achieved by affinity capillary electrophoresis (ACE), using human serum albumin (HSA) as the chiral selector. The influence of several experimental variables such as HSA concentration, the type and content of organic modifiers, applied voltage and running buffer concentration on the separation was evaluated. The binding of esomeprazole (S-omeprazole, S-OME) and its R-enantiomer (R-omeprazole, R-OME) to HSA under simulated physiological conditions was studied by ACE and fluorescence spectroscopy which was considered as a reference method. ACE studies demonstrated that the binding constants of the two enantiomers and HSA were 3.18 × 10 3 M -1 and 5.36 × 10 3 M -1 , respectively. The binding properties including the fluorescence quenching mechanisms, binding constants, binding sites and the number of binding sites were obtained by fluorescence spectroscopy. Though the ACE method could not get enough data when compared with the fluorescence spectrum method, the separation and binding studies of chiral drugs could be achieved simultaneously via this method. This study is of great significance for the investigation and clinical application of chiral drugs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Rotational spectrum and structure of the T-shaped cyanoacetylene carbon dioxide complex, HCCCN⋯CO2

    NASA Astrophysics Data System (ADS)

    Kang, Lu; Davis, Philip; Dorell, Ian; Li, Kexin; Oncer, Onur; Wang, Lucy; Novick, Stewart E.; Kukolich, Stephen G.

    2017-12-01

    The rotational spectrum of the T-shaped cyanoacetylene carbon dioxide dimer, HCCCN⋯CO2, was measured using two Balle-Flygare Fourier transform microwave (FTMW) spectrometers between 1.4 GHz and 25 GHz. Only the Ka = 0, 2, 4 branches of spectrum from J‧ = 1 ← 0 to J″ = 16 ← 15 transitions were observed. The vanishing of the Ka = 1, 3, … transitions demonstrates a C2v symmetry complex with a T-shaped alignment of the subunits. The spectroscopic constants were fit using Pickett's SPFIT/SPCAT suite of programs obtaining: A0 = 11273(18) MHz, B0 = 764.088(21) MHz, C0 = 716.254(21) MHz, ΔJ = 0.50329(34) kHz, ΔJK = 0.120867(11) MHz, ΔK = -28.17(36) MHz, δJ = 0.0613(21) kHz, δK = 44.25(95) kHz, ΦJ = 0.0053(12) Hz, ΦJK = 9.820(55) Hz, ΦKJ = -0.59325(72) kHz, ΦK = -2.3719(53) MHz, ϕJ = 0.0398(42) Hz, ϕJK = 6.9(9) Hz, and ϕK = -3.592(13) kHz. The 14N nuclear quadrupole coupling constants were fit to χaa = -4.12753(38) MHz and χbb - χcc = 0.103(15) MHz. The small negative inertial defect, Δ0 = -0.66(12) u Å2, indicates a vibrationally averaged planar complex with non-negligible low frequency out-of-plane vibrations. While maintaining near-planar orientation, both binding partners exhibit large-amplitude bending vibrations within the plane. To deal with the intermolecular dynamics, a torsional oscillation model was developed in this work for the structural analysis. According to this model, the vibrational bending amplitude for HCCCN torsional angle is 10.(1)°, with the a-axis of complex; CO2 subtending a 5.4(5)° torsional oscillation angle with the b molecular axis. The van der Waals bond length is 3.0137(3) Å. The stretching force constant, ks = 3.9 N/m, and the stretching frequency, νs = 53 cm-1, for the van der Waals bond were calculated using the pseudo-diatomic model. High-level MP2 and DFT calculations of structural parameters, rotational constants, and 14N quadrupole coupling strengths were made and the results compared with experimental results.

  5. Tautomeric transformation of temozolomide, their proton affinities and chemical reactivities: A theoretical approach.

    PubMed

    Sang-Aroon, Wichien; Ruangpornvisuti, Vithaya; Amornkitbamrung, Vittaya

    2016-05-01

    The gas-phase geometry optimizations of bare, mono- and dihydrated complexes of temozolomide isomers were carried out using density functional calculation at the M06-2X/6-31+G(d,p) level of the theory. The structures and protonation energies of protonated species of temozolomide are reported. Chemical indices of all isomers and protonated species are also reported. Energies, thermodynamic quantities, rate constants and equilibrium constants of tautomeric and rotameric transformations of all isomers I1↔TZM↔HIa↔HIb↔I2↔I3 in bare and hydrated systems were obtained. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Quaternary magnetic excursions recorded in marine sediments.

    NASA Astrophysics Data System (ADS)

    Channell, J. E. T.

    2017-12-01

    This year is the golden (50th) anniversary of the first documentation of a magnetic excursion, the Laschamp excursion in volcanics from the Chaine des Puys (Bonhommet and Babkine, 1967). The first recording of an excursion in sediments was from the Blake Outer Ridge (Smith and Foster, 1969). Magnetic excursions are directional aberrations of the geomagnetic field apparently involving short-lived reversal of the main dipole field. They have durations of a few kyrs, and are therefore rarely recorded in sediments with mean sedimentation rates <10 cm/kyr. Certain Brunhes-aged excursions are now well documented having been recorded in both marine sediments and in lavas (Laschamp excursion, 41 ka). Other excursions have not been adequately recorded in lavas, but have been widely recorded in marine and lake sediments (Iceland Basin excursion, 190 ka). The recording of excursions is fortuitous both in lava sequences and in marine sediments due to their millennial/centennial-scale duration, however, the global recording of the Laschamp and Iceland Basin excursions imply that excursions involve the main dipole field, are recorded synchronously over the globe, and are therefore important in stratigraphic correlation. The marine sediment record includes magnetic excursions at 26 ka (Rockall), 32 ka (Mono Lake), 41 ka (Laschamp), 115 ka (Blake), 190 ka (Iceland Basin), 238 ka (Pringle Falls?), 286 ka (Portuguese Orphan), 495 ka (Bermuda), 540 ka (Big Lost), 590 ka (La Palma), and 670 ka (Osaka Bay), implying at least 11 excursions in the Brunhes Chron. For the Matuyama Chron, excursions have been recorded in marine sediments at 868 ka (Kamikatsura?), 932 ka (Santa Rosa), 1051 ka (Intra-Jaramillo), 1115 ka (Punaruu), 1255 ka (Bjorn), 1476 ka (Gardar), 1580 ka (Gilsa), and 2737 ka (Porcupine). Excursions coincide with minima in relative paleointensity (RPI) records. Ages are from correlation of excursion records to oxygen isotope records in the same cores, and ice-volume calibration of the oxygen isotope template. The marine sediment record of excursions, combined with independent documentation of excursions in lavas with Ar/Ar age control, is progressively strengthening our knowledge of the excursion inventory in the Quaternary, and enhancing the importance of excursions and RPI in Quaternary stratigraphy.

  7. A descriptive systematic review of salivary therapeutic drug monitoring in neonates and infants.

    PubMed

    Hutchinson, Laura; Sinclair, Marlene; Reid, Bernadette; Burnett, Kathryn; Callan, Bridgeen

    2018-06-01

    Saliva, as a matrix, offers many benefits over blood in therapeutic drug monitoring (TDM), in particular for infantile TDM. However, the accuracy of salivary TDM in infants remains an area of debate. This review explored the accuracy, applicability and advantages of using saliva TDM in infants and neonates. Databases were searched up to and including September 2016. Studies were included based on PICO as follows: P: infants and neonates being treated with any medication, I: salivary TDM vs. C: traditional methods and O: accuracy, advantages/disadvantages and applicability to practice. Compounds were assessed by their physicochemical and pharmacokinetic properties, as well as published quantitative saliva monitoring data. Twenty-four studies and their respective 13 compounds were investigated. Four neutral and two acidic compounds, oxcarbazepine, primidone, fluconazole, busulfan, theophylline and phenytoin displayed excellent/very good correlation between blood plasma and saliva. Lamotrigine was the only basic compound to show excellent correlation with morphine exhibiting no correlation between saliva and blood plasma. Any compound with an acid dissociation constant (pKa) within physiological range (pH 6-8) gave a more varied response. There is significant potential for infantile saliva testing and in particular for neutral and weakly acidic compounds. Of the properties investigated, pKa was the most influential with both logP and protein binding having little effect on this correlation. To conclude, any compound with a pKa within physiological range (pH 6-8) should be considered with extra care, with the extraction and analysis method examined and optimized on a case-by-case basis. © 2018 The British Pharmacological Society.

  8. Sub-Doppler infrared spectroscopy of CH2OH radical in a slit supersonic jet: Vibration-rotation-tunneling dynamics in the symmetric CH stretch manifold

    PubMed Central

    Schuder, Michael D.; Wang, Fang; Chang, Chih-Hsuan; Nesbitt, David J.

    2017-01-01

    The sub-Doppler CH-symmetric stretch (ν3) infrared absorption spectrum of a hydroxymethyl (CH2OH) radical is observed and analyzed with the radical formed in a slit-jet supersonic discharge expansion (Trot = 18 K) via Cl atom mediated H atom abstraction from methanol. The high sensitivity of the spectrometer and reduced spectral congestion associated with the cooled expansion enable first infrared spectroscopic observation of hydroxymethyl transitions from both ± symmetry tunneling states resulting from large amplitude COH torsional motion. Nuclear spin statistics due to exchange of the two methyl H-atoms aid in unambiguous rovibrational assignment of two A-type Ka = 0 ← 0 and Ka = 1 ← 1 bands out of each ± tunneling state, with additional spectral information obtained from spin-rotation splittings in P, Q, and R branch Ka = 1 ← 1 transitions that become resolved at low N. A high level ab initio potential surface (CCSD(T)-f12b/cc-pvnzf12 (n = 2,3)/CBS) is calculated in the large amplitude COH torsional and CH2 wag coordinates, which in the adiabatic approximation and with zero point correction predicts ground state tunneling splittings in good qualitative agreement with experiment. Of particular astrochemical interest, a combined fit of the present infrared ground state combination differences with recently reported millimeter-wave frequencies permits the determination of improved accuracy rotational constants for the ground vibrational state, which will facilitate ongoing millimeter/microwave searches for a hydroxymethyl radical in the interstellar medium. PMID:28527463

  9. Designing of MIP based QCM sensor having thymine recognition sites based on biomimicking DNA approach.

    PubMed

    Diltemiz, S Emir; Hür, D; Ersöz, A; Denizli, A; Say, R

    2009-11-15

    Quartz crystal microbalance (QCM) sensors coated with molecular imprinted polymers (MIP) have been developed for the determination of thymine. In this method, methacryloylamidoadenine (MA-Ade) have used as a new monomer and thymine template for inspiration of DNA nucleobases interaction. The thymine can be simultaneously hydrogen binding to MA-Ade and fit into the shape-selective cavities. Thus, the interaction between nucleobases has an effect on the binding ability of the QCM sensors. The binding affinity of the thymine imprinted sensors has investigated by using the Langmuir isotherm. The thymine imprinted QCM electrodes have shown homogeneous binding sites for thymine (K(a): 1.0 x 10(5)M(-1)) while heterogeneous binding sites for uracil. On the other hand, recognition selectivity of the QCM sensor based on thymine imprinted polymer toward to uracil, ssDNA and ssRNA has been reported in this work.

  10. A new boronic acid fluorescent sensor based on fluorene for monosaccharides at physiological pH

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Rahman; Mohadjerani, Maryam; Pooryousef, Mona; Eslami, Abbas; Emami, Saeed

    2015-06-01

    Fluorescent boronic acids are very useful fluorescent sensor for detection of biologically important saccharides. Herein we synthesized a new fluorene-based fluorescent boronic acid that shows significant fluorescence changes upon addition of saccharides at physiological pH. Upon addition of fructose, sorbitol, glucose, galactose, ribose, and maltose at different concentration to the solution of 7-(dimethylamino)-9,9-dimethyl-9H-fluoren-2-yl-2-boronic acid (7-DMAFBA, 1), significant decreases in fluorescent intensity were observed. It was found that this boronic acid has high affinity (Ka = 3582.88 M-1) and selectivity for fructose over glucose at pH = 7.4. The sensor 1 showed a linear response toward D-fructose in the concentrations ranging from 2.5 × 10-5 to 4 × 10-4 mol L-1 with the detection limit of 1.3 × 10-5 mol L-1.

  11. The basics of thiols and cysteines in redox biology and chemistry.

    PubMed

    Poole, Leslie B

    2015-03-01

    Cysteine is one of the least abundant amino acids, yet it is frequently found as a highly conserved residue within functional (regulatory, catalytic, or binding) sites in proteins. It is the unique chemistry of the thiol or thiolate group of cysteine that imparts to functional sites their specialized properties (e.g., nucleophilicity, high-affinity metal binding, and/or ability to form disulfide bonds). Highlighted in this review are some of the basic biophysical and biochemical properties of cysteine groups and the equations that apply to them, particularly with respect to pKa and redox potential. Also summarized are the types of low-molecular-weight thiols present in high concentrations in most cells, as well as the ways in which modifications of cysteinyl residues can impart or regulate molecular functions important to cellular processes, including signal transduction. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. A high affinity monoclonal antibody recognizing the light chain of human coagulating factor VII.

    PubMed

    Sarial, Sheila; Asadi, Farzad; Jeddi-Tehrani, Mahmood; Hadavi, Reza; Bayat, Ali Ahmad; Mahmoudian, Jafar; Taghizadeh-Jahed, Masoud; Shokri, Fazel; Rabbani, Hodjattallah

    2012-12-01

    Factor VII (FVII) is a serine protease-coagulating element responsible for the initiation of an extrinsic pathway of clot formation. Here we generated and characterized a high affinity monoclonal antibody that specifically recognizes human FVII. Recombinant human FVII (rh-FVII) was used for the production of a monoclonal antibody using BALB/c mice. The specificity of the antibody was determined by Western blot using plasma samples from human, mouse, sheep, goat, bovine, rabbit, and rat. Furthermore, the antibody was used to detect transiently expressed rh-FVII in BHK21 cell line using Western blot and sandwich ELISA. A mouse IgG1 (kappa chain) monoclonal antibody clone 1F1-B11 was produced against rh-FVII. The affinity constant (K(aff)) of the antibody was calculated to be 6.4×10(10) M(-1). The antibody could specifically recognize an epitope on the light chain of hFVII, with no reactivity with factor VII from several other animals. In addition, transiently expressed rh-FVII in BHK21 cells was recognized by 1F1-B11. The high affinity as well as the specificity of 1F1-B11 for hFVII will facilitate the affinity purification of hFVII and also production of FVII deficient plasma and minimizes the risk of bovine FVII contamination when fetal bovine serum-supplemented media are used for production and subsequent purification of rh-FVII.

  13. Acid-base properties of humic substances from composted and thermally-dried sewage sludges and amended soils as determined by potentiometric titration and the NICA-Donnan model.

    PubMed

    Fernández, José M; Plaza, César; Senesi, Nicola; Polo, Alfredo

    2007-09-01

    The acid-base properties of humic acids (HAs) and fulvic acids (FAs) isolated from composted sewage sludge (CS), thermally-dried sewage sludge (TS), soils amended with either CS or TS at a rate of 80 t ha(-1)y(-1) for 3y and the corresponding unamended soil were investigated by use of potentiometric titrations. The non-ideal competitive adsorption (NICA)-Donnan model for a bimodal distribution of proton binding sites was fitted to titration data by use of a least-squares minimization method. The main fitting parameters of the NICA-Donnan model obtained for each HA and FA sample included site densities, median affinity constants and widths of affinity distributions for proton binding to low and high affinity sites, which were assumed to be, respectively, carboxylic- and phenolic-type groups. With respect to unamended soil HA and FA, the HAs and FAs from CS, and especially TS, were characterized by smaller acidic functional group contents, larger proton binding affinities of both carboxylic- and phenolic-type groups, and smaller heterogeneity of carboxylic and phenolic-type groups. Amendment with CS or TS led to a decrease of acidic functional group contents and a slight increase of proton binding affinities of carboxylic- and phenolic-type groups of soil HAs and FAs. These effects were more evident in the HA and FA fractions from CS-amended soil than in those from TS-amended soil.

  14. A rhodium(III) complex for high-affinity DNA base-pair mismatch recognition

    PubMed Central

    Junicke, Henrik; Hart, Jonathan R.; Kisko, Jennifer; Glebov, Oleg; Kirsch, Ilan R.; Barton, Jacqueline K.

    2003-01-01

    A rhodium(III) complex, rac-[Rh(bpy)2phzi]3+ (bpy, 2,2′-bipyridine; phzi, benzo[a]phenazine-5,6-quinone diimine) has been designed as a sterically demanding intercalator targeted to destabilized mismatched sites in double-helical DNA. The complex is readily synthesized by condensation of the phenazine quinone with the corresponding diammine complex. Upon photoactivation, the complex promotes direct strand scission at single-base mismatch sites within the DNA duplex. As with the parent mismatch-specific reagent, [Rh(bpy)2(chrysi)]3+ [chrysene-5,6-quinone diimine (chrysi)], mismatch selectivity depends on the helix destabilization associated with mispairing. Unlike the parent chrysi complex, the phzi analogue binds and cleaves with high affinity and efficiency. The specific binding constants for CA, CC, and CT mismatches within a 31-mer oligonucleotide duplex are 0.3, 1, and 6 × 107 M−1, respectively; site-specific photocleavage is evident at nanomolar concentrations. Moreover, the specificity, defined as the ratio in binding affinities for mispaired vs. well paired sites, is maintained. The increase in affinity is attributed to greater stability in the mismatched site associated with stacking by the heterocyclic aromatic ligand. The high-affinity complex is also applied in the differential cleavage of DNA obtained from cell lines deficient in mismatch repair vs. those proficient in mismatch repair. Agreement is found between photocleavage by the mismatch-specific probes and deficiency in mismatch repair. This mismatch-specific targeting, therefore, offers a potential strategy for new chemotherapeutic design. PMID:12610209

  15. Urodilatin: binding properties and stimulation of cGMP generation in rat kidney cells.

    PubMed

    Saxenhofer, H; Fitzgibbon, W R; Paul, R V

    1993-02-01

    Urodilatin (URO) [ANP-(95-126)] is an analogue of atrial natriuretic peptide (alpha-ANP) [ANP-(99-126)] that was first isolated from human urine. In rat mesangial cells, URO competed with high affinity for non-guanylate cyclase-coupled ANPR-C receptors [concentration at which 50% labeled ligand is displaced (IC50) approximately 70 pM], but with lesser affinity to the guanylate cyclase-linked ANPR-A receptors (IC50 approximately 800 pM). alpha-ANP bound to both receptors with similar affinity [dissociation constant (Kd) approximately 150 pM]. In papillary collecting duct homogenates, which possess only ANPR-A receptors, the apparent Kd value averaged 229 pM for alpha-ANP and 2.7 nM for URO. Intravenous URO was at least as potent and effective as alpha-ANP in inducing diuresis and natriuresis in anesthetized rats, but URO was approximately 10-fold less potent in stimulating guanosine 3',5'-cyclic monophosphate generation in mesangial and inner medullary collecting duct cells. We conclude that URO has a lesser affinity than alpha-ANP for guanylate cyclase-coupled ANP receptors in the kidney and that the relative natriuretic potency of URO in vivo cannot be directly attributed to its binding characteristics with ANPR-A receptors.

  16. Low density and high affinity of platelet [3H]paroxetine binding in women with bulimia nervosa.

    PubMed

    Ekman, Agneta; Sundblad-Elverfors, Charlotta; Landén, Mikael; Eriksson, Tomas; Eriksson, Elias

    2006-06-15

    Impaired serotonin transmission has been suggested to be implicated in the pathophysiology of bulimia nervosa. As an indirect measure of brain serotonergic activity, the binding of tritiated ligands to platelet serotonin transporters has been studied in bulimia nervosa as well as in other putatively serotonin-related psychiatric disorders. In this study, the density and affinity of platelet serotonin transporters were assessed in 20 women meeting the DSM-IV criteria for bulimia nervosa and in 14 controls without previous or ongoing eating disorder using [(3)H]paroxetine as a ligand. In comparison to controls, women with bulimia nervosa had a significantly reduced number of platelet binding sites (B(max) = 721 +/- 313 vs. 1145 +/- 293 fmol/mg protein) and an increase in the affinity for the ligand demonstrated by a lower dissociaton constant (K(d) = 33 +/- 10 vs. 44 +/- 10 pM). A significant correlation between B(max) and K(d) values was found in patients but not in controls. Our results support the notion that bulimia nervosa is associated with a reduction in platelet serotonin transporter density. In addition, our study is the first to report that this reduced transporter density in women with bulimia nervosa is accompanied by an increase in the affinity of the transporter for the ligand.

  17. Localization in human interleukin 2 of the binding site to the alpha chain (p55) of the interleukin 2 receptor.

    PubMed Central

    Sauvé, K; Nachman, M; Spence, C; Bailon, P; Campbell, E; Tsien, W H; Kondas, J A; Hakimi, J; Ju, G

    1991-01-01

    Human interleukin 2 (IL-2) analogs with defined amino acid substitutions were used to identify specific residues that interact with the 55-kDa subunit (p55) or alpha chain of the human IL-2 receptor. Analog proteins containing specific substitutions for Lys-35, Arg-38, Phe-42, or Lys-43 were inactive in competitive binding assays for p55. All of these analogs retained substantial competitive binding to the intermediate-affinity p70 subunit (beta chain) of the receptor complex. The analogs varied in ability to interact with the high-affinity p55/p70 receptor. Despite the lack of binding to p55, all analogs exhibited significant biological activity, as assayed on the murine CTLL cell line. The dissociation constants of Arg-38 and Phe-42 analogs for p70 were consistent with intermediate-affinity binding; the Kd values were not significantly affected by the presence of p55 in binding to the high-affinity IL-2 receptor complex. These results confirm the importance of the B alpha-helix in IL-2 as the locus for p55-receptor binding and support a revised model of IL-2-IL-2 receptor interaction. PMID:2052547

  18. The Src SH2 domain interacts dynamically with the focal adhesion kinase binding site as demonstrated by paramagnetic NMR spectroscopy.

    PubMed

    Lindfors, Hanna E; Drijfhout, Jan Wouter; Ubbink, Marcellus

    2012-06-01

    The interaction between the tyrosine kinases Src and focal adhesion kinase (FAK) is a key step in signaling processes from focal adhesions. The phosphorylated tyrosine residue 397 in FAK is able to bind the Src SH2 domain. To establish the extent of the FAK binding motif, the binding affinity of the SH2 domain for phosphorylated and unphosphorylated FAK-derived peptides of increasing length was determined and compared with that of the internal Src SH2 binding site. It is shown that the FAK peptides have higher affinity than the internal binding site and that seven negative residues adjacent to the core SH2 binding motif increase the binding constant 30-fold. A rigid spin-label incorporated in the FAK peptides was used to establish on the basis of paramagnetic relaxation enhancement whether the peptide-protein complex is well defined. A large spread of the paramagnetic effects on the surface of the SH2 domain suggests that the peptide-protein complex exhibits dynamics, despite the high affinity of the peptide. The strong electrostatic interaction between the positive side of the SH2 domain and the negative peptide results in a high affinity but may also favor a dynamic interaction. Copyright © 2012 Wiley Periodicals, Inc.

  19. New Progress in Paleoearthquake Studies of the East Sertengshan Piedmont Fault, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    He, Zhongtai

    2017-04-01

    The two eastern segments of the Sertengshan piedmont fault have moved considerably since the Holocene. Several paleoseismic events have occurred along the fault since 30 ka BP. Paleoearthquake studies have been advanced by digging new trenches and combining the results with the findings of previous studies. Comprehensive analyses of the trenches revealed that 6 paleoseismic events have occurred on the Kuoluebulong segment since approximately 30 ka BP within the following successive time periods: 19.01-37.56 ka, 18.73 ka, 15.03-15.86 ka, 10.96 ka, 5.77-6.48 ka and 2.32 ka BP. The analyses also revealed that 6 paleoseismic events have occurred on the Dashetai segment since approximately 30 ka BP, and the successive occurrence times are 29.07 ka, 19.12-28.23 ka, 13.92-15.22 ka, 9.38-9.83 ka, 6.08-8.36 ka and 3.59 ka BP. The results indicate that quasi-periodic recurrences occurred along the two segments with an approximate 4000 a mean recurrence interval. The consistent timing of the 6 events between the two segments indicates that the segments might conform to the cascade rupturing model between the two segments of the Sertengshan piedmont fault. The latest event on the Kuoluebulong segment of the Sertengshan piedmont fault is the historical M8 earthquake that occurred on November 11, 7 BC, which was recorded by a large number of Chinese historical texts.

  20. Paleomagnetic record determined in cores from deep research wells in the Quaternary Santa Clara basin, California

    USGS Publications Warehouse

    Mankinen, Edward A.; Wentworth, Carl M.

    2016-01-01

    The Mono Lake (ca. 32 ka), Pringle Falls (ca. 210 ka), and Big Lost (ca. 565 ka) geomagnetic excursions all seem to be represented in the Santa Clara Valley wells. Possible correlations to the Laschamp (ca. 40 ka) and Blake (ca. 110 ka) excursions are also noted. Three additional excursions that have apparently not been previously reported from western North America occur within cycle 6 (between 536 and 433 ka), near the base of cycle 5 (after 433 ka), and near the middle of cycle 2 (before ca. 75 ka).

Top