Science.gov

Sample records for affinity fluorescent znii

  1. Cyclam-based "clickates": homogeneous and heterogeneous fluorescent sensors for Zn(II).

    PubMed

    Tamanini, Emiliano; Flavin, Kevin; Motevalli, Majid; Piperno, Silvia; Gheber, Levi A; Todd, Matthew H; Watkinson, Michael

    2010-04-19

    In an effort to improve upon the recently reported cyclam based zinc sensor 1, the "click"-generated 1,8-disubstituted analogue 2 has been prepared. The ligand shows a 2-fold increase in its fluorescence emission compared to 1 exclusively in the presence of Zn(II) that is typical of switch-on PET fluorescent sensors. Single crystal X-ray diffraction of complexes of model ligand 10 reveals that the configuration adopted by the macrocyclic framework is extremely sensitive to the metal ion to which it coordinates. For Zn(II), Mg(II), and Li(I) the metal ions adopt an octahedral geometry with a trans III configuration of the cyclam ring. In contrast for Ni(II) the ligand adopts the rare cis V configuration, while for Cu(II) a clear preference for five-coordinate geometry is displayed with a trans I configuration of the macrocyclic ring being observed in two essentially isostructural compounds prepared via different routes. The ligand displays an increased selectivity for Zn(II) compared to 1 in the majority of cases with excellent selectivity upheld over Na(I), Mg(II), Ca(II), Mn(II), Ni(II), Co(II), and Fe(III). In contrast for Cu(II) and Hg(II) little improvement was observed for 2 compared to 1 and for Cd(II) the selectivity of the new ligand was inferior. In the light of these findings and the slower response times for ligand 2, our original "click"-generated cyclam sensor system 1 was employed in a proof of concept study to prepare a heterogeneous sol-gel based material which retains its PET response to Zn(II). The versatile nature of the sol-gel process importantly allows the simple preparation of a variety of nanostructured materials displaying high surface area-volume ratio using fabrication methods such as soft lithography, electrospinning, and nanopipetting.

  2. A fluorescent chemosensor for Zn(II). Exciplex formation in solution and the solid state.

    PubMed

    Bencini, Andrea; Berni, Emanuela; Bianchi, Antonio; Fornasari, Patrizia; Giorgi, Claudia; Lima, Joao C; Lodeiro, Carlos; Melo, Maria J; de Melo, J Seixas; Parola, Antonio Jorge; Pina, Fernando; Pina, Joao; Valtancoli, Barbara

    2004-07-21

    The macrocyclic phenanthrolinophane 2,9-[2,5,8-triaza-5-(N-anthracene-9-methylamino)ethyl]-[9]-1,10-phenanthrolinophane (L) bearing a pendant arm containing a coordinating amine and an anthracene group forms stable complexes with Zn(II), Cd(II) and Hg(II) in solution. Stability constants of these complexes were determined in 0.10 mol dm(-3) NMe(4)Cl H(2)O-MeCN (1:1, v/v) solution at 298.1 +/- 0.1 K by means of potentiometric (pH metric) titration. The fluorescence emission properties of these complexes were studied in this solvent. For the Zn(II) complex, steady-state and time-resolved fluorescence studies were performed in ethanol solution and in the solid state. In solution, intramolecular pi-stacking interaction between phenanthroline and anthracene in the ground state and exciplex emission in the excited state were observed. From the temperature dependence of the photostationary ratio (I(Exc)/I(M)), the activation energy for the exciplex formation (E(a)) and the binding energy of the exciplex (-DeltaH) were determined. The crystal structure of the [ZnLBr](ClO(4)).H(2)O compound was resolved, showing that in the solid state both intra- and inter-molecular pi-stacking interactions are present. Such interactions were also evidenced by UV-vis absorption and emission spectra in the solid state. The absorption spectrum of a thin film of the solid complex is red-shifted compared with the solution spectra, whereas its emission spectrum reveals the unique featureless exciplex band, blue shifted compared with the solution. In conjunction with X-ray data the solid-state data was interpreted as being due to a new exciplex where no pi-stacking (full overlap of the pi-electron cloud of the two chromophores - anthracene and phenanthroline) is observed. L is a fluorescent chemosensor able to signal Zn(II) in presence of Cd(II) and Hg(II), since the last two metal ions do not give rise either to the formation of pi-stacking complexes or to exciplex emission in solution.

  3. Zn(II)-coordination modulated ligand photophysical processes – the development of fluorescent indicators for imaging biological Zn(II) ions

    PubMed Central

    Yuan, Zhao; Simmons, J. Tyler; Sreenath, Kesavapillai

    2014-01-01

    Molecular photophysics and metal coordination chemistry are the two fundamental pillars that support the development of fluorescent cation indicators. In this article, we describe how Zn(II)-coordination alters various ligand-centered photophysical processes that are pertinent to developing Zn(II) indicators. The main aim is to show how small organic Zn(II) indicators work under the constraints of specific requirements, including Zn(II) detection range, photophysical requirements such as excitation energy and emission color, temporal and spatial resolutions in a heterogeneous intracellular environment, and fluorescence response selectivity between similar cations such as Zn(II) and Cd(II). In the last section, the biological questions that fluorescent Zn(II) indicators help to answer are described, which have been motivating and challenging this field of research. PMID:25071933

  4. Determination of stability constants of Cu(I), Cd(II) & Zn(II) complexes with thiols using fluorescent probes.

    PubMed

    Walsh, Michael J; Ahner, Beth A

    2013-11-01

    Fluorometric competing-ligand titrations were used to measure stability constants of Zn(II), Cd(II) and Cu(I) complexes of cysteine and glutathione (GSH). Cu(I)-stability constants were also determined for the dipeptides Arg-Cys and Gln-Cys which are produced by a marine alga under copper stress. The fluorescent ion indicators FluoZin-1 and BTC (Invitrogen) were used as competing ligands in titrations involving Zn(II) and Cd(II). Phen Green SK (Invitrogen) was likewise used in Cu(I) titrations. Conditional and cumulative general stability constants were determined using a least squares fit of the titration data to speciation models. The measured stability constants of Cd(II) and Zn(II) complexes were consistent with previous work, validating our method and assumptions. Our results also include the first general stability constants for Cu(I)-cysteine complexes and an alternative set for Cu(I)-GSH complexes. While these stability constants indicate that Cu(I) forms strong complexes with thiols, they are not strong enough to effectively buffer Cu(I) in seawater.

  5. High-sensitivity determination of Zn(II) and Cu(II) in vitro by fluorescence polarization

    NASA Astrophysics Data System (ADS)

    Thompson, Richard B.; Maliwal, Badri P.; Feliccia, Vincent; Fierke, Carol A.

    1998-04-01

    Recent work has suggested that free Cu(II) may play a role in syndromes such as Crohn's and Wilson's diseases, as well as being a pollutant toxic at low levels to shellfish and sheep. Similarly, Zn(II) has been implicated in some neural damage in the brain resulting from epilepsy and ischemia. Several high sensitivity methods exist for determining these ions in solution, including GFAAS, ICP-MS, ICP-ES, and electrochemical techniques. However, these techniques are generally slow and costly, require pretreatment of the sample, require complex instruments and skilled personnel, and are incapable of imaging at the cellular and subcellular level. To address these shortcomings we developed fluorescence polarization (anisotropy) biosensing methods for these ions which are very sensitivity, highly selective, require simple instrumentation and little pretreatment, and are inexpensive. Thus free Cu(II) or Zn(II) can be determined at picomolar levels by changes in fluorescence polarization, lifetime, or wavelength ratio using these methods; these techniques may be adapted to microscopy.

  6. High kinetic stability of Zn(II) coordinated by the tris(histidine) unit of carbonic anhydrase towards solvolytic dissociation studied by affinity capillary electrophoresis.

    PubMed

    Sato, Yosuke; Hoshino, Hitoshi; Iki, Nobuhiko

    2016-08-01

    Solvolytic dissociation rate constants (kd) of bovine carbonic anhydrase II (CA) and its metallovariants (M-CAs, M=Co(II), Ni(II), Cu(II), Zn(II), and Cd(II)) were estimated by a ligand substitution reaction, which was monitored by affinity capillary electrophoresis to selectively detect the undissociated CAs in the reaction mixture. Using EDTA as the competing ligand for Zn-CA, the dissociation followed the unimolecular nucleophilic substitution (SN1) mechanism with kd=1.0×10(-7)s(-1) (pH7.4, 25°C). The corresponding solvolysis half-life (t1/2) was 80days, showing the exceptionally high kinetic stability of t Zn-CA, in contrast to the highly labile [Zn(II)(H2O)6](2+), where the water exchange rate (kex) is high. This behavior is attributed to the tetrahedral coordination geometry supported by the tris(histidine) unit (His3) of CA. In the case of Co-CA, it showed a somewhat larger kd value (5.7×10(-7)s(-1), pH7.4, 25°C) even though it shares the same tetrahedral coordination environment with Zn-CA, suggesting that the d(7) electronic configuration of Co(II) in the transition state of the dissociation is stabilized by the ligand field. Among M-CAs, only Ni-CA showed a bimolecular nucleophilic substitution (SN2) reaction path in its reaction with EDTA, implying that the large coordination number (6) of Ni(II) in Ni-CA allows EDTA to form an EDTA-Ni-CA intermediate. Overall, kd values roughly correlated with kex values among M-CAs, with the kd value of Zn-CA deviating strongly from the trend and highlighting the exceptionally high kinetic stabilization of Zn-CA by the His3 unit.

  7. Synthesis, Characterization and Fluorescence Properties of Zn(II) and Cu(II) Complexes: DNA Binding Study of Zn(II) Complex.

    PubMed

    Lavaee, Parirokh; Eshtiagh-Hosseini, Hossein; Housaindokht, Mohammad Reza; Mague, Joel T; Esmaeili, Abbas Ali; Abnous, Khalil

    2016-01-01

    Zinc(II) and copper(II) complexes containing Schiff base, 2- methoxy-6((E)-(phenylimino) methyl) phenol ligand (HL) were synthesized and characterized by elemental analysis, IR, NMR, and single crystal X-ray diffraction technique. The fluorescence properties and quantum yield of zinc complex were studied. Our data showed that Zn complex could bind to DNA grooves with Kb = 10(4) M(-1). Moreover, Zn complex could successfully be used in staining of DNA following agarose gel electrophoresis. MTT assay showed that Zn complex was not cytotoxic in MCF-7 cell line. Here, we introduce a newly synthesized fluorescence probe that can be used for single and double stranded DNA detection in both solution and agarose gels.

  8. An assay to measure the affinity of proteins for microtubules by quantitative fluorescent microscopy.

    PubMed

    Graczyk, Beth; Davis, Trisha N

    2011-03-15

    We report a fluorescence-based assay for measuring the affinity of microtubule binding proteins for microtubules. The affinity of any fluorescently tagged protein for taxol-stabilized microtubules can be measured with this assay. We describe the assay and provide a detailed protocol. Using this assay, we found that the affinity of the Dam1 complex for microtubules is decreased by the presence of free unpolymerized tubulin and is sensitive to the salt concentration in the binding buffer. These effects may account for the previous differences in binding affinities reported. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. RNA containing pyrrolocytidine base analogs: good binding affinity and fluorescence that responds to hybridization.

    PubMed

    Wahba, Alexander S; Damha, Masad J; Hudson, Robert H E

    2008-01-01

    6-Phenylpyrrolocytidine and 6-methoxymethylene-pyrrolocytidine are base-modified nucleosides with remarkable fluorescence properties. When incorporated into RNA, these analogs enhance binding affinity towards RNA and DNA targets with a concomitant change in their fluorescence upon duplex formation. The fluorescence response depends on the nature of the 6-substituent and the sequence position of the modified nucleoside. The fluorescence response of these structurally conservative, well-tolerated fluorescent nucleosides may be exploited as probes in the study of nucleic acid processing enzymes.

  10. RNA containing pyrrolocytidine base analogs: increased binding affinity and fluorescence that responds to hybridization.

    PubMed

    Wahba, Alexander S; Damha, Masad J; Hudson, Robert H E

    2008-01-01

    6-Phenylpyrrolocytidine and 6-methoxymethylene-pyrrolocytidine are base-modified nucleosides with remarkable fluorescence properties. These analogs produce increased binding affinity to both RNA and DNA targets when incorporated into oligoribonucleotides. The fluorescence observed for the single-stranded oligomers is quenched upon duplex formation with either RNA or DNA targets. The fluorescence response depends on the nature of the 6-substituent and the sequence position of the modified nucleoside.

  11. Membranes affinity of promising anticancer agent DB-67 determined by fluorescence spectra analysis

    NASA Astrophysics Data System (ADS)

    Ziomkowska, Blanka; Cyrankiewicz, Michał; Kruszewski, Stefan; Siuda, Ryszard

    2005-08-01

    Camptothecins are fluorescent compounds which exhibit anticancer properties. A disadvantage which seriously limits application of camptothecins in antitumor chemotherapy is the hydrolysis of these compounds. They convert into inactive carboxylate forms. The process of hydrolysis is inhibited when the molecules of camptothecin are bound to cell membranes. So it is desirable that camptothecins molecules bind easily to membranes. A quantitative measure of drugs affinity to membranes is the association constant. To determine the association constant to membranes the lipid bilayers i.e. liposomes are used as model membranes. In this work affinity of hydroxycamptothecin DB-67 to model membranes is determined. Fluorescence spectra of this analogue change in presence of liposomes: the fluorescence intensity is bigger and besides green band the blue band appears. The spectra of hydroxycamptothecins change over lipids concentration. On the basis of this changes the association constant to membranes is calculated.

  12. High affinity truncated DNA aptamers for the development of fluorescence based progesterone biosensors.

    PubMed

    Alhadrami, Hani A; Chinnappan, Raja; Eissa, Shimaa; Rahamn, Anas Abdel; Zourob, Mohammed

    2017-02-24

    Aptamers have shown a number of potential applications in sensing and therapeutic due to the high affinity and specificity towards their target molecules. Not all the nucleotides in the full length aptamers are involved in the binding with their targets. The non-binding domain of the aptamer may affect the binding affinity of the aptamer-target complex. Mapping the aptamer binding region could increase the affinity and the specificity. In this paper, we designed aptamer-based fluorescence sensors from a truncated progesterone (P4) aptamer. Then, fluorescein and quencher labelled aptamer complementary oligonucleotide sequences were hybridized to the truncated aptamer at different sites to form duplex structures. We used fluorescence-quencher pair displacement assay upon progesterone binding for the determination of P4. One of the truncated sequences has shown high binding affinity with 16 fold increase in the dissociation constant, Kd (2.1 nM) compared to the original aptamer. The aptasensor was highly selective for P4 against similar compounds such as 17-β estradiol, bisphenol-A and vitamin D. The sensor has been applied for the detection of P4 in spiked tap water and in urine samples showing good recovery. This new developed aptamer-based fluorescence biosensor can be applied in food, pharmaceutical, and clinical industries.

  13. Bodilisant-a novel fluorescent, highly affine histamine h3 receptor ligand.

    PubMed

    Tomasch, Miriam; Schwed, J Stephan; Paulke, Alexander; Stark, Holger

    2013-02-14

    A piperidine-based lead structure for the human histamine H3 receptor (hH3R) was coupled with the BODIPY fluorophore and resulted in a strong green fluorescent (quantum yield, 0.92) hH3R ligand with affinity in the nanomolar concentration range (K i hH3R = 6.51 ± 3.31 nM), named Bodilisant. Screening for affinities at histamine and dopamine receptor subtypes showed high hH3R preference. Bodilisant was used for visualization of hH3R in hH3R overexpressing HEK-293 cells with fluorescence confocal laser scanning microscopy. In addition, in native human brain tissues, Bodilisant showed clear and displaceable images of labeled hH3R.

  14. Determination of hydroxycamptothecin affinities to albumin and membranes by steady-state fluorescence anisotropy measurements.

    PubMed

    Ziomkowska, Blanka; Cyrankiewicz, Michal; Kruszewski, Stefan

    2007-07-01

    Camptothecin (CPT) and its hydroxycamptothecin analogs are fluorescent compounds exhibiting strong anticancer properties. They exist in two forms: active lactone and inactive carboxylate. The deactivation proceeds via hydrolysis in neutral and base solutions. A serious limitation to the clinical application of CPT is the strong affinity of its carboxylate form to human serum albumin (HSA) which destabilizes its active lactone form. However, binding to membranes in blood improves the stability of the lactone form of CPT and its analogs. A high-throughput screening assay based on the steady-state fluorescence anisotropy method was used to determine the protein- and membrane-binding properties of 10 hydroxycamptothecin (10-OH-CPT), 7-ethyl-10-hydroxycamptothecin (SN-38) and 7-tert-butyldimethylsil-10-hydroxycamptothecin (DB-67). The relative affinities of hydroxycamptothecins to HSA and model membranes in the form of DMPC liposomes were determined, and DB-67 exhibited the most desirable properties including the highest affinity to membranes in its lactone form and low affinity to HSA in its carboxylate form.

  15. Fluorescence resonance energy-transfer affects the determination of the affinity between ligand and proteins obtained by fluorescence quenching method

    NASA Astrophysics Data System (ADS)

    Xiao, Jianbo; Wei, Xinlin; Wang, Yuanfeng; Liu, Chunxi

    2009-11-01

    The interaction between esculin and serum albumins was investigated to illustrate that the fluorescence resonance energy-transfer (FRET) affects the determination of the binding constants obtained by fluorescence quenching method. The binding constants ( Ka) obtained by the double-logarithm curve for esculin-BSA and esculin-HSA were 1.02 × 10 7 and 2.07 × 10 4 L/mol, respectively. These results from synchronous fluorescence showed that the Tyr and Trp residues of HSA were affected more deeply than those in BSA. The excitation profile of esculin showed that in the presence of BSA and HSA, the S 0 → S 1 transition of esculin ( λexmax≈340 nm) appears, which is similar to the λemmax of BSA and HSA. The critical distance ( R0) between BSA and esculin is higher than that of HSA, which showed that the affinity of esculin and HSA should be higher than that of BSA. After centrifugation, the concentrations of esculin bound to albumins were determined by means of the fluorescence of esculin. It was found that much more esculin was bound to HSA than to BSA. However, the bound models for BSA and HSA are almost the same. The concentration of esculin bound to serum albumin at first decreased with the addition of esculin and then increased. From above results, it can be concluded that the affinity of esculin and HSA should be higher than that of esculin and BSA. This example showed that in the presence of FRET, the binding constants between ligands and proteins based on fluorescence quenching might be deviated.

  16. Syntheses, structures, and fluorescent properties of 2-(1H-imidazol-2-yl)phenols and their neutral Zn(II) complexes.

    PubMed

    Eseola, Abiodun Omokehinde; Li, Wen; Gao, Rong; Zhang, Min; Hao, Xiang; Liang, Tongling; Obi-Egbedi, Nelson Okpako; Sun, Wen-Hua

    2009-10-05

    A series of 2-(imidazole-2-yl)phenol ligands L1-L6 with the general composition 4-R(4)-5-R(3)-6-R(2)-2-(4,5-R(1),R(1)-1H-imidazole-2-yl)phenol (L1: R(1) = C(2)H(5), R(2) = R(3) = R(4) = H; L2: R(1) = C(6)H(5), R(2) = R(3) = R(4) = H; L3: R(1) = C(6)H(5), R(3) = OCH(3), R(2) = R(4) = H; L4: R(1) = C(6)H(5), R(4) = OCH(3), R(2) = R(3) = H; L5: R(1) = C(6)H(5), R(3) = H, R(2) = R(4) = CH(3); L6: R(1) = C(6)H(5), R(3) = H, R(2) = R(4) = t-Bu) and L7 (2,4-di-tert-butyl-6-(1H-phenanthro[9,10-d]imidazol-2-yl)phenol) and their neutral Zn(II) complexes (Z1-Z7) were synthesized and characterized by spectroscopic and elemental analyses. Molecular structures of L1, L5, Z1, and Z2 were confirmed by single-crystal X-ray diffraction. L1 crystallized in the monoclinic Cc space group, while L5, Z1, and Z2 all crystallized in the triclinic P1 space group. One-dimensional arrays based on continuous pi-pi stacking interactions and hydrogen bonding were observed for L1 and Z1, while L5 existed as discrete dimeric stack units. Z2 formed hydrogen-bonded 1D network structures but was completely devoid of pi-pi stacking interactions. Emission processes were found to be more dependent on the substituents on phenol as well as condensed media. In contrast to general conclusions on closely related systems in the literature, significant photorelaxation from the excited enol state was observed in the cases of L1 in methanol and L4 in both THF and methanol. Therefore, there exists a certain unusual hindering factor to keto-enol phototautomerism in the ligand-solvent systems. The sensing property of zinc(II) complexes was explored regarding the effects of substituents in their ligands. It was observed that coordination to the zinc(II) ion led to emission quenching for L1 and L2 while causing an enhancement of fluorescent intensity for L3, L4, L5, and L6. A linear relationship was observed between the emission intensity and the concentration of the zinc ion at the 10(-8) M level. Compared to other

  17. Use of fluorescence-detected sedimentation velocity to study high-affinity protein interactions.

    PubMed

    Chaturvedi, Sumit K; Ma, Jia; Zhao, Huaying; Schuck, Peter

    2017-09-01

    Sedimentation velocity (SV) analytical ultracentrifugation (AUC) is a classic technique for the real-time observation of free macromolecular migration in solution driven by centrifugal force. This enables the analysis of macromolecular mass, shape, size distribution, and interactions. Although traditionally limited to determination of the sedimentation coefficient and binding affinity of proteins in the micromolar range, the implementation of modern detection and data analysis techniques has resulted in marked improvements in detection sensitivity and size resolution during the past decades. Fluorescence optical detection now permits the detection of recombinant proteins with fluorescence excitation at 488 or 561 nm at low picomolar concentrations, allowing for the study of high-affinity protein self-association and hetero-association. Compared with other popular techniques for measuring high-affinity protein-protein interactions, such as biosensing or calorimetry, the high size resolution of complexes at picomolar concentrations obtained with SV offers a distinct advantage in sensitivity and flexibility of the application. Here, we present a basic protocol for carrying out fluorescence-detected SV experiments and the determination of the size distribution and affinity of protein-antibody complexes with picomolar KD values. Using an EGFP-nanobody interaction as a model, this protocol describes sample preparation, ultracentrifugation, data acquisition, and data analysis. A variation of the protocol applying traditional absorbance or an interference optical system can be used for protein-protein interactions in the micromolar KD value range. Sedimentation experiments typically take ∼3 h of preparation and 6-12 h of run time, followed by data analysis (typically taking 1-3 h).

  18. Monochromatic multicomponent fluorescence sedimentation velocity for the study of high-affinity protein interactions.

    PubMed

    Zhao, Huaying; Fu, Yan; Glasser, Carla; Andrade Alba, Eric J; Mayer, Mark L; Patterson, George; Schuck, Peter

    2016-07-20

    The dynamic assembly of multi-protein complexes underlies fundamental processes in cell biology. A mechanistic understanding of assemblies requires accurate measurement of their stoichiometry, affinity and cooperativity, and frequently consideration of multiple co-existing complexes. Sedimentation velocity analytical ultracentrifugation equipped with fluorescence detection (FDS-SV) allows the characterization of protein complexes free in solution with high size resolution, at concentrations in the nanomolar and picomolar range. Here, we extend the capabilities of FDS-SV with a single excitation wavelength from single-component to multi-component detection using photoswitchable fluorescent proteins (psFPs). We exploit their characteristic quantum yield of photo-switching to imprint spatio-temporal modulations onto the sedimentation signal that reveal different psFP-tagged protein components in the mixture. This novel approach facilitates studies of heterogeneous multi-protein complexes at orders of magnitude lower concentrations and for higher-affinity systems than previously possible. Using this technique we studied high-affinity interactions between the amino-terminal domains of GluA2 and GluA3 AMPA receptors.

  19. Monochromatic multicomponent fluorescence sedimentation velocity for the study of high-affinity protein interactions

    PubMed Central

    Zhao, Huaying; Fu, Yan; Glasser, Carla; Andrade Alba, Eric J; Mayer, Mark L; Patterson, George; Schuck, Peter

    2016-01-01

    The dynamic assembly of multi-protein complexes underlies fundamental processes in cell biology. A mechanistic understanding of assemblies requires accurate measurement of their stoichiometry, affinity and cooperativity, and frequently consideration of multiple co-existing complexes. Sedimentation velocity analytical ultracentrifugation equipped with fluorescence detection (FDS-SV) allows the characterization of protein complexes free in solution with high size resolution, at concentrations in the nanomolar and picomolar range. Here, we extend the capabilities of FDS-SV with a single excitation wavelength from single-component to multi-component detection using photoswitchable fluorescent proteins (psFPs). We exploit their characteristic quantum yield of photo-switching to imprint spatio-temporal modulations onto the sedimentation signal that reveal different psFP-tagged protein components in the mixture. This novel approach facilitates studies of heterogeneous multi-protein complexes at orders of magnitude lower concentrations and for higher-affinity systems than previously possible. Using this technique we studied high-affinity interactions between the amino-terminal domains of GluA2 and GluA3 AMPA receptors. DOI: http://dx.doi.org/10.7554/eLife.17812.001 PMID:27436096

  20. Fluorescent Boronic Acid Polymer Grafted on Silica Particles for Affinity Separation of Saccharides

    PubMed Central

    2014-01-01

    Boronic acid affinity gels are important for effective separation of biological active cis-diols, and are finding applications both in biotech industry and in biomedical research areas. To increase the efficacy of boronate affinity separation, it is interesting to introduce repeating boronic acid units in flexible polymer chains attached on solid materials. In this work, we synthesize polymer brushes containing boronic acid repeating units on silica gels using surface-initiated atom transfer radical polymerization (ATRP). A fluorescent boronic acid monomer is first prepared from an azide-tagged fluorogenic boronic acid and an alkyne-containing acrylate by Cu(I)-catalyzed 1,3-dipolar cycloaddition reaction (the CuAAC click chemistry). The boronic acid monomer is then grafted to the surface of silica gel modified with an ATRP initiator. The obtained composite material contains boronic acid polymer brushes on surface and shows favorable saccharide binding capability under physiological pH conditions, and displays interesting fluorescence intensity change upon binding fructose and glucose. In addition to saccharide binding, the flexible polymer brushes on silica also enable fast separation of a model glycoprotein based on selective boronate affinity interaction. The synthetic approach and the composite functional material developed in this work should open new opportunities for high efficiency detection, separation, and analysis of not only simple saccharides, but also glycopeptides and large glycoproteins. PMID:24444898

  1. Fluorescence measurements of the binding of cations to high-affinity and low-affinity sites on ATP-G-actin.

    PubMed

    Carlier, M F; Pantaloni, D; Korn, E D

    1986-08-15

    The binding of cations to ATP-G-actin has been assessed by measuring the kinetics of the increase in fluorescence of N-acetyl-N'-(5-sulfo-1-naphthyl)-ethylenediamine-labeled actin. Ca2+ and Mg2+ compete for a single high-affinity site on ATP-G-actin with KD values of 1.5-15 nM for Ca2+ and 0.1-1 microM for Mg2+, i.e. with affinities 3-4 orders of magnitude higher than previously reported (Frieden, C., Lieberman, D., and Gilbert, H. R. (1980) J. Biol. Chem. 255, 8991-8993). As proposed by Frieden (Frieden, C. (1982) J. Biol. Chem. 257, 2882-2886), the Mg-actin complex undergoes a slow isomerization (Kis = 0.03-0.1) to a higher affinity state (K'D = 4-40 nM). The replacement of Ca2+ by Mg2+ at this high-affinity site causes a slow 10% increase in fluorescence that is 90% complete in about 200 s at saturating concentrations of Mg2+. Independently, Ca2+, Mg2+, and K+ bind to low-affinity sites (KD values of 0.15 mM for Ca2+ and Mg2+ and 10 mM for K+) which causes a rapid 6-8% increase in fluorescence (complete in less than 5 s). We propose that the activation step that converts Ca-G-actin to a polymerizable species upon addition of Mg2+ is the binding of Mg2+ to the low-affinity sites and not the replacement of Ca2+ by Mg2+ at the high-affinity site.

  2. Determining the Ice-binding Planes of Antifreeze Proteins by Fluorescence-based Ice Plane Affinity

    PubMed Central

    Basu, Koli; Garnham, Christopher P.; Nishimiya, Yoshiyuki; Tsuda, Sakae; Braslavsky, Ido; Davies, Peter

    2014-01-01

    Antifreeze proteins (AFPs) are expressed in a variety of cold-hardy organisms to prevent or slow internal ice growth. AFPs bind to specific planes of ice through their ice-binding surfaces. Fluorescence-based ice plane affinity (FIPA) analysis is a modified technique used to determine the ice planes to which the AFPs bind. FIPA is based on the original ice-etching method for determining AFP-bound ice-planes. It produces clearer images in a shortened experimental time. In FIPA analysis, AFPs are fluorescently labeled with a chimeric tag or a covalent dye then slowly incorporated into a macroscopic single ice crystal, which has been preformed into a hemisphere and oriented to determine the a- and c-axes. The AFP-bound ice hemisphere is imaged under UV light to visualize AFP-bound planes using filters to block out nonspecific light. Fluorescent labeling of the AFPs allows real-time monitoring of AFP adsorption into ice. The labels have been found not to influence the planes to which AFPs bind. FIPA analysis also introduces the option to bind more than one differently tagged AFP on the same single ice crystal to help differentiate their binding planes. These applications of FIPA are helping to advance our understanding of how AFPs bind to ice to halt its growth and why many AFP-producing organisms express multiple AFP isoforms. PMID:24457629

  3. High-Affinity Functional Fluorescent Ligands for Human β-Adrenoceptors.

    PubMed

    Mitronova, Gyuzel Y; Lukinavičius, Gražvydas; Butkevich, Alexey N; Kohl, Tobias; Belov, Vladimir N; Lehnart, Stephan E; Hell, Stefan W

    2017-09-26

    Visualization of the G-protein coupled receptor (GPCR) is of great importance for studying its function in a native cell. We have synthesized a series of red-emitting fluorescent probes targeting β-adrenergic receptor (βAR) that are compatible with confocal and Stimulated Emission Depletion (STED) microscopy as well as with Time-Resolved Fluorescence Resonance Energy Transfer (TR-FRET) binding assay in living cells. The probe based on the agonist BI-167107 and fluorescent dye KK114 demonstrates nanomolar binding affinity and up to nine-fold β2AR selectivity over β1AR. Carazolol-derived probes are fluorogenic and allow no-wash imaging experiments. STED microscopy of β2ARs stained at the native expression level on pancreatic CAPAN cells provides two-fold improvement in lateral optical resolution over confocal mode and reveals the formation of receptor microdomains. These probes retain their functional (agonist or antagonist) properties, allowing simultaneous modulation of cyclic adenosine monophosphate (cAMP) levels and receptor internalization as well as imaging receptor localization.

  4. A High Affinity Red Fluorescence and Colorimetric Probe for Amyloid β Aggregates

    NASA Astrophysics Data System (ADS)

    Rajasekhar, K.; Narayanaswamy, Nagarjun; Murugan, N. Arul; Kuang, Guanglin; Ågren, Hans; Govindaraju, T.

    2016-04-01

    A major challenge in the Alzheimer’s disease (AD) is its timely diagnosis. Amyloid β (Aβ) aggregates have been proposed as the most viable biomarker for the diagnosis of AD. Here, we demonstrate hemicyanine-based benzothiazole-coumarin (TC) as a potential probe for the detection of highly toxic Aβ42 aggregates through switch-on, enhanced (~30 fold) red fluorescence (Emax = 654 nm) and characteristic colorimetric (light red to purple) optical outputs. Interestingly, TC exhibits selectivity towards Aβ42 fibrils compared to other abnormal protein aggregates. TC probe show nanomolar binding affinity (Ka = 1.72 × 107 M-1) towards Aβ42 aggregates and also displace ThT bound to Aβ42 fibrils due to its high binding affinity. The Aβ42 fibril-specific red-shift in the absorption spectra of TC responsible for the observed colorimetric optical output has been attributed to micro-environment change around the probe from hydrophilic-like to hydrophobic-like nature. The binding site, binding energy and changes in optical properties observed for TC upon interaction with Aβ42 fibrils have been further validated by molecular docking and time dependent density functional theory studies.

  5. Affinity fluorescence-labeled peptides for the early detection of cancer in Barrett's esophagus

    NASA Astrophysics Data System (ADS)

    Li, Meng; Lu, Shaoying; Piraka, Cyrus; Appelman, Henry; Kwon, Rich; Soetikno, Roy; Kaltenbach, Tonya; Wang, Thomas D.

    2009-02-01

    Fluorescence-labeled peptides that affinity bind to neoplastic mucsosa are promising for use as a specific contrast agent in the detection of pre-malignant tissue in the esophagus. This method is can be used to identify expression of biological markers associated with dysplasia on endoscopic imaging as a guide for biopsy and represents a novel method for the early detection and prevention of cancer. We demonstrate the use of phage display to select affinity peptides and identify the sequence "ASYNYDA" that binds with high target-to-background ratio to dysplastic esophageal mucosa compared to that of intestinal metaplasia. Validation of preferential binding is demonstrated for neoplasia in the setting of Barrett's esophagus. An optimal tradeoff between sensitivity and specificity of 82% and 85% was found at the relative threshold of 0.60 with a target-to-background ratio of 1.81 and an area under the ROC curve of 0.87. Peptides are a novel class of ligand for targeted detection of pre-malignant mucosa for purposes of screening and surveillance.

  6. Nanofluidic Fluorescence Microscopy (NFM) for real-time monitoring of protein binding kinetics and affinity studies.

    PubMed

    Teerapanich, Pattamon; Pugnière, Martine; Henriquet, Corinne; Lin, Yii-Lih; Chou, Chia-Fu; Leïchlé, Thierry

    2017-02-15

    Kinetic monitoring of protein interactions offers insights to their corresponding functions in cellular processes. Surface plasmon resonance (SPR) is the current standard tool used for label-free kinetic assays; however, costly and sophisticated setups are required, decreasing its accessibility to research laboratories. We present a cost-effective nanofluidic-based immunosensor for low-noise real-time kinetic measurement of fluorescent-labeled protein binding. With the combination of fluorescence microscopy and reversed buffer flow operation, association and dissociation kinetics can be accessed in one single experiment without extra buffer loading step, which results in a simplified operation and reduced time of analysis compared to typical microfluidic immunoassays. Kinetic constants of two representative protein-ligand binding pairs (streptavidin/biotin; IgG/anti-IgG) were quantified. The good agreement of extracted rate constants with literature values and analogous SPR measurements indicates that this approach is applicable to study protein interactions of medium- and high-affinities with a limit of detection down to 1 pM, regardless of the analyte size.

  7. Quantitative Affinity Determination by Fluorescence Anisotropy Measurements of Individual Nanoliter Droplets

    PubMed Central

    2017-01-01

    Fluorescence anisotropy measurements of reagents compartmentalized into individual nanoliter droplets are shown to yield high-resolution binding curves from which precise dissociation constants (Kd) for protein–peptide interactions can be inferred. With the current platform, four titrations can be obtained per minute (based on ∼100 data points each), with stoichiometries spanning more than 2 orders of magnitude and requiring only tens of microliters of reagents. In addition to affinity measurements with purified components, Kd values for unpurified proteins in crude cell lysates can be obtained without prior knowledge of the concentration of the expressed protein, so that protein purification can be avoided. Finally, we show how a competition assay can be set up to perform focused library screens, so that compound labeling is not required anymore. These data demonstrate the utility of droplet compartments for the quantitative characterization of biomolecular interactions and establish fluorescence anisotropy imaging as a quantitative technique in a miniaturized droplet format, which is shown to be as reliable as its macroscopic test tube equivalent. PMID:28192993

  8. Analysis of high affinity self-association by fluorescence optical sedimentation velocity analytical ultracentrifugation of labeled proteins: opportunities and limitations.

    PubMed

    Zhao, Huaying; Lomash, Suvendu; Glasser, Carla; Mayer, Mark L; Schuck, Peter

    2013-01-01

    Sedimentation velocity analytical ultracentrifugation (SV) is a powerful first-principle technique for the study of protein interactions, and allows a rigorous characterization of binding stoichiometry and affinities. A recently introduced commercial fluorescence optical detection system (FDS) permits analysis of high-affinity interactions by SV. However, for most proteins the attachment of an extrinsic fluorophore is an essential prerequisite for analysis by FDS-SV. Using the glutamate receptor GluA2 amino terminal domain as a model system for high-affinity homo-dimerization, we demonstrate how the experimental design and choice of fluorescent label can impact both the observed binding constants as well as the derived hydrodynamic parameter estimates for the monomer and dimer species. Specifically, FAM (5,6-carboxyfluorescein) was found to create different populations of artificially high-affinity and low-affinity dimers, as indicated by both FDS-SV and the kinetics of dimer dissociation studied using a bench-top fluorescence spectrometer and Förster Resonance Energy Transfer. By contrast, Dylight488 labeled GluA2, as well as GluA2 expressed as an EGFP fusion protein, yielded results consistent with estimates for unlabeled GluA2. Our study suggests considerations for the choice of labeling strategies, and highlights experimental designs that exploit specific opportunities of FDS-SV for improving the reliability of the binding isotherm analysis of interacting systems.

  9. Monitoring water supplies for weaponized bacteria and bacterial toxins using rapid fluorescence-based viability and affinity assays

    NASA Astrophysics Data System (ADS)

    Van Tassell, Roger L.; Evans, Mishell

    2004-03-01

    The rapid detection of weaponized bacteria and toxins is a major problem during a biological attack. Although sensitive detection formats exist for many biowarfare agents, they often require advanced training and complex procedures. Luna has developed simple, rapid means for determining the presence of pathogens and bacterial toxins in water supplies using fluorescence-based assays that can be adapted for field use. The batteries of rapid assays are designed for i) determining cell viability and bacterial loads by exploiting metabolic markers (e.g., acid-production, redox potentials, etc) and ii) detecting bacterial toxins using fluorescent, polymerized affinity liposomes (fluorosomes). The viability assays were characterized using E. coli, S. aureus and the anthrax simulant, B. globigii. The viability assays detected bacterial loads of ~ 104 CFU/ml and with simple filtration ~ 100CFU/ml could be detected. The affinity fluorosomes were characterized using cholera toxin (CT). Affinity liposomes displaying GM1 and anti-CT antibodies could detect CT at <μg/ml levels. Stability studies showed that affinity vesicles could be stored for weeks at 4°C or freeze-dried with no significant loss of binding capacity. Using an in-house fiber optic fluorescence system, Luna characterized the binding of affinity fluorosomes to respective targets and determined the responses of bacterial loads in the fluorescent viability assays. Using this two-tiered approach, Luna demonstrated that water susceptible to sabotage could be easily monitored and confirmed for specific agents using simple, general and specific fluorescence-based detection schemes based on metabolism and ligand-target interactions.

  10. A Human Pilot Study of the Fluorescence Affinity Sensor for Continuous Glucose Monitoring in Diabetes

    PubMed Central

    Dutt-Ballerstadt, Ralph; Evans, Colton; Pillai, Arun P.; Orzeck, Eric; Drabek, Rafal; Gowda, Ashok; McNichols, Roger

    2012-01-01

    Objective We report results of a pilot clinical study of a subcutaneous fluorescence affinity sensor (FAS) for continuous glucose monitoring conducted in people with type 1 and type 2 diabetes. The device was assessed based on performance, safety, and comfort level under acute conditions (4 h). Research Design and Methods A second-generation FAS (BioTex Inc., Houston, TX) was subcutaneously implanted in the abdomens of 12 people with diabetes, and its acute performance to excursions in blood glucose was monitored over 4 h. After 30–60 min the subjects, who all had fasting blood glucose levels of less than 200 mg/dl, received a glucose bolus of 75 g/liter dextrose by oral administration. Capillary blood glucose samples were obtained from the finger tip. The FAS data were retrospectively evaluated by linear least squares regression analysis and by the Clarke error grid method. Comfort levels during insertion, operation, and sensor removal were scored by the subjects using an analog pain scale. Results After retrospective calibration of 17 sensors implanted in 12 subjects, error grid analysis showed 97% of the paired values in zones A and B and 1.5% in zones C and D, respectively. The mean absolute relative error between sensor signal and capillary blood glucose was 13% [±15% standard deviation (SD), 100–350 mg/dl] with an average correlation coefficient of 0.84 (±0.24 SD). The actual average “warm-up” time for the FAS readings, at which highest correlation with glucose readings was determined, was 65 (±32 SD) min. Mean time lag was 4 (±5 SD) min during the initial operational hours. Pain levels during insertion and operation were modest. Conclusions The in vivo performance of the FAS demonstrates feasibility of the fluorescence affinity technology to determine blood glucose excursions accurately and safely under acute dynamic conditions in humans with type 1 and type 2 diabetes. Specific engineering challenges to sensor and instrumentation robustness

  11. A high-affinity near-infrared fluorescent probe to target bombesin receptors.

    PubMed

    Shrivastava, Ajay; Ding, Haiming; Kothandaraman, Shankaran; Wang, Shu-Huei; Gong, Li; Williams, Michelle; Milum, Keisha; Zhang, Song; Tweedle, Michael F

    2014-10-01

    This study aimed to create new optical surgical navigation NIRF probes for prostate and breast cancers. IR800-linker-QWAVGHLM-NH2 with linker = GSG, GGG, and G-Abz4 were synthesized and characterized. IC50 for bombesin receptors (BBN-R) in PC-3 prostate and T47D breast cancer cells, fluorescence microscopy in PC-3 cells, and NIRF imaging in mice PC-3 tumor xenografts were studied. GGG, GSG, and G-Abz4 derivatives had IC50 (nM) for BBN-R+ PC-3 cells = 187 ± 31, 56 ± 5, and 2.6 ± 0.2 and T47D cells = 383 ± 1, 57.4 ± 1.2, and 3.1 ± 1.1, respectively. By microscopy the Abz4 derivative showed the highest uptake, was competed with by BBN, and had little to no binding to BBN-R- cells. In NIRF imaging the G-Abz4 probe was brighter than GGG probe in BBN-R+ tissues in vivo and tissues, tumors, and tumor slices ex vivo. Uptake could be partially blocked in BBN-R+ pancreas but not visibly in tumor. Linker choice can dominate peptidic BBN-R binding. The G-Abz4 linker yields a higher affinity and specific BBN-R binder in this series of molecules.

  12. Electrochemical immobilization of Fluorescent labelled probe molecules on a FTO surface for affinity detection based on photo-excited current

    NASA Astrophysics Data System (ADS)

    Haruyama, Tetsuya; Wakabayashi, Ryo; Cho, Takeshi; Matsuyama, Sho-taro

    2011-10-01

    Photo-excited current can be generated at a molecular interface between a photo-excited molecules and a semi-conductive material in appropriate condition. The system has been recognized for promoting photo-energy devices such as an organic dye sensitized solar-cell. The photo-current generated reactions are totally dependent on the interfacial energy reactions, which are in a highly fluctuated interfacial environment. The authors investigated the photo-excited current reaction to develop a smart affinity detection method. However, in order to perform both an affinity reaction and a photo-excited current reaction at a molecular interface, ordered fabrications of the functional (affinity, photo-excitation, etc.) molecules layer on a semi-conductive surface is required. In the present research, we would like to present the fabrication and functional performance of photo-excited current-based affinity assay device and its application for detection of endocrine disrupting chemicals. On the FTO surface, fluorescent pigment labelled affinity peptide was immobilized through the EC tag (electrochemical-tag) method. The modified FTO produced a current when it was irradiated with diode laser light. However, the photo current decreased drastically when estrogen (ES) coexisted in the reaction solution. In this case, immobilized affinity probe molecules formed a complex with ES and estrogen receptor (ER). The result strongly suggests that the photo-excited current transduction between probe molecule-labelled cyanine pigment and the FTO surface was partly inhibited by a complex that formed at the affinity oligo-peptide region in a probe molecule on the FTO electrode. The bound bulky complex may act as an impediment to perform smooth transduction of photo-excited current in the molecular interface. The present system is new type of photo-reaction-based analysis. This system can be used to perform simple high-sensitive homogeneous assays.

  13. ON-OFF mechanism of a fluorescent sensor for the detection of Zn(II), Cd(II), and Cu(II)transition metal ions.

    PubMed

    Su, Huizhen; Chen, Xuebo; Fang, Weihai

    2014-01-07

    An ab initio multiconfigurational (CASPT2//CASSCF) approach has been employed to map radiative and nonradiative relaxation pathways for a cyclam-methylbenzimidazole fluorescent sensor and its metal ion (Zn(2+), Cd(2+), and Cu(2+)) complexes to provide an universal understanding of ON-OFF fluorescent mechanisms for the selective identification of these metal ions. The photoinduced electron transfer (PET) between the receptor and the signaling unit is quantitatively attributed for the first time to a newly generated transition of S0→SCT((1)nπ*), which is a typical (1)nπ* excitation but exhibits a significant charge transfer character and zwitterionic radical configuration. The present study contributes the two theoretical models of the competitive coexistence of radiative/nonradiative decay channel in (1)ππ*/SCT((1)nπ*) states for the detection of metal ions with d(10) configuration (i.e., Zn(2+), Cd(2+), etc.) and a downhill ladder relaxation pathway through multi nona-diabatic relays for the probing of d(9) cations (Cu(2+), etc.). These computational results will establish a benchmark for ON-OFF mechanisms of a fluorescent sensor that coordinates various transition metal ions with different electron configuration and radius.

  14. A homogeneous assay for relative affinity of binding proteins using a green fluorescent protein tag and membrane disk.

    PubMed

    Aoki, Takashi; Kazama, Hitoshi; Satoh, Marie; Mizuki, Kazuhiro; Watabe, Hiroyuki

    2005-09-01

    When the association between a ligand immobilized on a membrane disk and a fluorescence-labeled analyte was monitored with a fluorescent microplate reader, the time-dependent increase in fluorescence intensity of the reaction mixture was observed. A novel assay system for the specific interaction based on this phenomenon was designated the homogeneous assay for fluorescence concentrated on membrane (HAFCOM). In this study, streptococcal protein G (SpG) and glycogen-binding subunit R5 of protein phosphatase 1 (PPP1R5) tagged by green fluorescent protein (GFP) were used as the fluorescence-labeled analytes, and the affinity change caused by various amino acid substitutions was measured with HAFCOM. From the site-directed mutagenesis of SpG and PPP1R5, it was clarified that (i) the association rate constant of the Lys454Pro/Glu456Gln mutant of SpG to goat immunoglobulin G was almost equivalent to that of the wild-type but its dissociation rate constant was about 2.7 times that of the wild-type and (ii) the amino acid substitutions of Phe180 in PPP1R5 reduced glycogen-binding by 30-50%. Since HAFCOM using the GFP-tagged analyte requires no special chemicals and instruments, this system can easily and economically assay the specific interaction between target protein and ligand.

  15. Selective fluorescence sensing of Cu(II) and Zn(II) using a simple Schiff base ligand: Naked eye detection and elucidation of photoinduced electron transfer (PET) mechanism

    NASA Astrophysics Data System (ADS)

    Ganguly, Aniruddha; Ghosh, Soumen; Kar, Samiran; Guchhait, Nikhil

    2015-05-01

    A simple Schiff base compound 2-((cyclohexylmethylimino)-methyl)-naphthalen-1-ol (2CMIMN1O) has been synthesized and characterized by 1H NMR, 13C NMR and FT-IR spectroscopic techniques. A significantly low emission yield of the compound has been rationalized in anticipation with photo-induced electron transfer (PET) from the imine receptor moiety to the naphthalene fluorophore unit. Consequently, an evaluation of the transition metal ion-induced modification of the fluorophore-receptor communication reveals the promising prospect of the title compound to function as a chemosensor for Cu2+ and Zn2+ ions selectively, through remarkable fluorescence enhancement as well as visual changes. While perturbation of the PET process has been argued to be the plausible mechanism behind the fluorescence enhancement, the selectivity for these two metal ions has been interpreted on the grounds of an appreciably strong binding interaction. Particularly notable aspects regarding the chemosensory activity of the compound is its ability to detect the aforesaid transition metal ions down to the level of micromolar concentration (detection limit being 2.74 and 2.27 ppm respectively), along with a simple and efficient synthetic procedure.

  16. A fluorescence nanosensor for glycoproteins with activity based on the molecularly imprinted spatial structure of the target and boronate affinity.

    PubMed

    Zhang, Wei; Liu, Wei; Li, Ping; Xiao, Haibin; Wang, Hui; Tang, Bo

    2014-11-10

    Glycoproteins are closely associated with the occurrence of diverse diseases, and they have been used as biomarkers and therapeutic targets in clinical diagnostics. Currently, mass spectrometry has proven to be a powerful tool for glycoprotein analysis, but it is almost impossible to directly identify glycoproteins without the preparation and pretreatment of samples. Furthermore, biological samples, especially proteins, are damaged by this process. Herein, we describe a novel fluorescence nanosensor based on a molecularly imprinted spatial structure and boronate affinity that is well-suited for monitoring glycoproteins selectively. Results showed that the recognition performance of the nanosensor for glycoproteins was regulated by controlling the pH value and temperature. Moreover, the nanosensor was successfully applied to the detection of HRP in biological fluids. This study provides a facile and efficient fluorescence tool for glycoprotein detection in clinical diagnostics.

  17. Affinity capillary electrophoresis and fluorescence spectroscopy for studying enantioselective interactions between omeprazole enantiomer and human serum albumin.

    PubMed

    Xu, Yujing; Hong, Tingting; Chen, Xueping; Ji, Yibing

    2017-02-23

    Baseline separation of omeprazole (OME) enantiomers was achieved by affinity capillary electrophoresis (ACE), using human serum albumin (HSA) as the chiral selector. The influence of several experimental variables such as HSA concentration, the type and content of organic modifiers, applied voltage and running buffer concentration on the separation was evaluated. The binding of esomeprazole (S-omeprazole, S-OME) and its R-enantiomer (R-omeprazole, R-OME) to HSA under simulated physiological conditions was studied by ACE and fluorescence spectroscopy which was considered as a reference method. ACE studies demonstrated that the binding constants of the two enantiomers and HSA were 3.18×10(3) M(-1) and 5.36×10(3) M(-1) , respectively. The binding properties including the fluorescence quenching mechanisms, binding constants, binding sites and the number of binding sites were obtained by fluorescence spectroscopy. Though the ACE method could not get enough data when compared with the fluorescence spectrum method, the separation and binding studies of chiral drugs could be achieved simultaneously via this method. This study is of great significance for the investigation and clinical application of chiral drugs. This article is protected by copyright. All rights reserved.

  18. Synthesis of a Targeted Biarsenical Cy3-Cy5 Affinity Probe for Superresolution Fluorescence Imaging

    SciTech Connect

    Fu, Na; Xiong, Yijia; Squier, Thomas C.

    2012-11-01

    Photoswitchable fluorescent probes capable of the targeted labeling of tagged proteins are of significant interest due to their ability to enable in situ imaging of protein complexes within native biomolecular assemblies. Here we describe the synthesis of a fluorescent probe (AsCy3Cy5), and demonstrate the targeted labeling and super-resolution imaging of a tagged protein within a supramolecular protein complex.

  19. Detection of human neutrophil elastase by aptamer affinity capillary electrophoresis coupled with laser-induced fluorescence using specified site fluorescently labeled aptamer.

    PubMed

    Bai, Yunlong; Wang, Hailin; Zhao, Qiang

    2017-09-29

    As a multifunctional serine protease, human neutrophil elastase (HNE) plays critical roles in a variety of physiopathological processes, such as acute lung injury, emphysema, atherosclerosis, and arthritis. The quantification of HNE is important in many applications. In this paper, we report an aptamer affinity capillary electrophoresis coupled with laser-induced fluorescence (CE-LIF) assay for detection of HNE using a tetramethylrhodamine (TMR)-labeled DNA aptamer probe. The affinity complex of HNE and DNA aptamer probe was well separated from the unbound aptamer probe in CE separation based on the difference of electrophoretic mobility. Broad complex peaks appeared due to possible multiple binding. The 45-mer aptamer having TMR labeling on the 40th T base was used as affinity probe, as larger complex peaks were obtained. We investigated the effects of various metal cations (Na(+), K(+), and Mg(2+)) in sample buffer on the binding of HNE and the aptamer in CE-LIF analysis. The presence of Na(+), K(+), or Mg(2+) in sample buffer caused a decrease of complex peaks, and Mg(2+) showed a larger effect. Under optimized conditions, this aptamer CE-LIF assay enabled the detection of HNE at 0.5 nM. This assay showed good specificity and allowed for detection of HNE spiked in diluted human serum sample. Graphical abstract The complex of HNE and DNA aptamer probe was isolated from the unbound aptamer probe in CE separation due to difference of electrophoretic mobility, allowing a CE-LIF assay for HNE.

  20. Discovery of PF-06928215 as a high affinity inhibitor of cGAS enabled by a novel fluorescence polarization assay

    PubMed Central

    Brault, Amy; Vincent, Fabien; Weng, Shawn; Wang, Hong; Dumlao, Darren; Aulabaugh, Ann; Aivazian, Dikran; Castro, Dana; Chen, Ming; Culp, Jeffrey; Dower, Ken; Gardner, Joseph; Hawrylik, Steven; Golenbock, Douglas; Hepworth, David; Horn, Mark; Jones, Lyn; Jones, Peter; Latz, Eicke; Li, Jing; Lin, Lih-Ling; Lin, Wen; Lin, David; Lovering, Frank; Niljanskul, Nootaree; Nistler, Ryan; Pierce, Betsy; Plotnikova, Olga; Schmitt, Daniel; Shanker, Suman; Smith, James; Snyder, William; Subashi, Timothy; Trujillo, John; Tyminski, Edyta; Wang, Guoxing; Wong, Jimson; Lefker, Bruce; Dakin, Leslie; Leach, Karen

    2017-01-01

    Cyclic GMP-AMP synthase (cGAS) initiates the innate immune system in response to cytosolic dsDNA. After binding and activation from dsDNA, cGAS uses ATP and GTP to synthesize 2′, 3′ -cGAMP (cGAMP), a cyclic dinucleotide second messenger with mixed 2′-5′ and 3′-5′ phosphodiester bonds. Inappropriate stimulation of cGAS has been implicated in autoimmune disease such as systemic lupus erythematosus, thus inhibition of cGAS may be of therapeutic benefit in some diseases; however, the size and polarity of the cGAS active site makes it a challenging target for the development of conventional substrate-competitive inhibitors. We report here the development of a high affinity (KD = 200 nM) inhibitor from a low affinity fragment hit with supporting biochemical and structural data showing these molecules bind to the cGAS active site. We also report a new high throughput cGAS fluorescence polarization (FP)-based assay to enable the rapid identification and optimization of cGAS inhibitors. This FP assay uses Cy5-labelled cGAMP in combination with a novel high affinity monoclonal antibody that specifically recognizes cGAMP with no cross reactivity to cAMP, cGMP, ATP, or GTP. Given its role in the innate immune response, cGAS is a promising therapeutic target for autoinflammatory disease. Our results demonstrate its druggability, provide a high affinity tool compound, and establish a high throughput assay for the identification of next generation cGAS inhibitors. PMID:28934246

  1. Discovery of PF-06928215 as a high affinity inhibitor of cGAS enabled by a novel fluorescence polarization assay.

    PubMed

    Hall, Justin; Brault, Amy; Vincent, Fabien; Weng, Shawn; Wang, Hong; Dumlao, Darren; Aulabaugh, Ann; Aivazian, Dikran; Castro, Dana; Chen, Ming; Culp, Jeffrey; Dower, Ken; Gardner, Joseph; Hawrylik, Steven; Golenbock, Douglas; Hepworth, David; Horn, Mark; Jones, Lyn; Jones, Peter; Latz, Eicke; Li, Jing; Lin, Lih-Ling; Lin, Wen; Lin, David; Lovering, Frank; Niljanskul, Nootaree; Nistler, Ryan; Pierce, Betsy; Plotnikova, Olga; Schmitt, Daniel; Shanker, Suman; Smith, James; Snyder, William; Subashi, Timothy; Trujillo, John; Tyminski, Edyta; Wang, Guoxing; Wong, Jimson; Lefker, Bruce; Dakin, Leslie; Leach, Karen

    2017-01-01

    Cyclic GMP-AMP synthase (cGAS) initiates the innate immune system in response to cytosolic dsDNA. After binding and activation from dsDNA, cGAS uses ATP and GTP to synthesize 2', 3' -cGAMP (cGAMP), a cyclic dinucleotide second messenger with mixed 2'-5' and 3'-5' phosphodiester bonds. Inappropriate stimulation of cGAS has been implicated in autoimmune disease such as systemic lupus erythematosus, thus inhibition of cGAS may be of therapeutic benefit in some diseases; however, the size and polarity of the cGAS active site makes it a challenging target for the development of conventional substrate-competitive inhibitors. We report here the development of a high affinity (KD = 200 nM) inhibitor from a low affinity fragment hit with supporting biochemical and structural data showing these molecules bind to the cGAS active site. We also report a new high throughput cGAS fluorescence polarization (FP)-based assay to enable the rapid identification and optimization of cGAS inhibitors. This FP assay uses Cy5-labelled cGAMP in combination with a novel high affinity monoclonal antibody that specifically recognizes cGAMP with no cross reactivity to cAMP, cGMP, ATP, or GTP. Given its role in the innate immune response, cGAS is a promising therapeutic target for autoinflammatory disease. Our results demonstrate its druggability, provide a high affinity tool compound, and establish a high throughput assay for the identification of next generation cGAS inhibitors.

  2. Ca transients in cardiac myocytes measured with a low affinity fluorescent indicator, furaptra.

    PubMed Central

    Konishi, M; Berlin, J R

    1993-01-01

    Intracellular calcium ion ([Ca2+]i) transients were measured in single rat ventricular myocytes with the fluorescent indicator furaptra. Cells were voltage clamped with a single patch electrode containing the K+ salt of furaptra and fluorescence at 500 nm was measured during illumination with 350 and 370 nm light. Depolarizing voltage-clamp pulses elicited [Ca2+]-dependent fluorescent transients in 30 of 33 cells tested. The peak change in [Ca2+]i elicited by 50-ms depolarizations from -70 to +10 mV was 1.52 +/- 0.25 microM (mean +/- SEM, n = 7). The size of the [Ca2+]i transient increased in response to 10 microM isoproterenol, prolongation of the depolarization, and increasing pipette [Na+]. Because furaptra is sensitive to Ca2+ and Mg2+, changes in [Mg2+]i during the [Ca2+]i transient could not be measured. Instead, a single-compartment model was developed to simulate changes in [Mg2+] during [Ca2+] transients. The simulations predicted that a 2 microM [Ca2+] transient was accompanied by a slow increase in [Mg2+] (14-29 microM), which became larger as basal [Mg2+] increased (0.5-2.0 mM). The [Mg2+] transient reached a peak approximately 1 s after the peak of the [Ca2+] transient with the slow changes in [Mg2+] dominated by competition at the Ca2+/Mg2+ sites of Troponin. These changes in [Mg2+], however, were so small and slow that they were unlikely to affect the furaptra fluorescence signal at the peak of the [Ca2+]i transient. The [Ca2+]i transient reported by furaptra appears to be larger than that reported by other Ca2+ indicators; however, we conclude this larger transient is at least as accurate as [Ca2+]i transients reported by the other indicators. PMID:8494988

  3. A Fluorescent Protein Scaffold for Presenting Structurally Constrained Peptides Provides an Effective Screening System to Identify High Affinity Target-Binding Peptides

    PubMed Central

    Kadonosono, Tetsuya; Yabe, Etsuri; Furuta, Tadaomi; Yamano, Akihiro; Tsubaki, Takuya; Sekine, Takuya; Kuchimaru, Takahiro; Sakurai, Minoru; Kizaka-Kondoh, Shinae

    2014-01-01

    Peptides that have high affinity for target molecules on the surface of cancer cells are crucial for the development of targeted cancer therapies. However, unstructured peptides often fail to bind their target molecules with high affinity. To efficiently identify high-affinity target-binding peptides, we have constructed a fluorescent protein scaffold, designated gFPS, in which structurally constrained peptides are integrated at residues K131–L137 of superfolder green fluorescent protein. Molecular dynamics simulation supported the suitability of this site for presentation of exogenous peptides with a constrained structure. gFPS can present 4 to 12 exogenous amino acids without a loss of fluorescence. When gFPSs presenting human epidermal growth factor receptor type 2 (HER2)-targeting peptides were added to the culture medium of HER2-expressing cells, we could easily identify the peptides with high HER2-affinity and -specificity based on gFPS fluorescence. In addition, gFPS could be expressed on the yeast cell surface and applied for a high-throughput screening. These results demonstrate that gFPS has the potential to serve as a powerful tool to improve screening of structurally constrained peptides that have a high target affinity, and suggest that it could expedite the one-step identification of clinically applicable cancer cell-binding peptides. PMID:25084350

  4. Comparative study of affinity and selectivity of ligands targeting abasic and mismatch sites in DNA using a fluorescence-melting assay.

    PubMed

    Kotera, Naoko; Granzhan, Anton; Teulade-Fichou, Marie-Paule

    2016-01-01

    Recently, several families of small-molecule ligands have been developed to selectively target DNA pairing defects, such as abasic sites and mismatched base pairs, with the aim to interfere with the DNA repair and the template function of the DNA. However, the affinity and selectivity (with respect to well-matched DNA) of these ligands has barely been evaluated in a systematic way. Herein, we report a comparative study of binding affinity and selectivity of a representative panel of 16 ligands targeting abasic sites and a T-T mismatch in DNA, using a fluorescence-monitored melting assay. We demonstrate that bisintercalator-type macrocyclic ligands are characterized by moderate affinity but exceptionally high selectivity with respect to well-matched DNA, whereas other reported ligands show either modest selectivity or rather low affinity in identical conditions.

  5. A set of robust fluorescent peptide probes for quantification of Cu(ii) binding affinities in the micromolar to femtomolar range.

    PubMed

    Young, Tessa R; Wijekoon, Chathuri J K; Spyrou, Benjamin; Donnelly, Paul S; Wedd, Anthony G; Xiao, Zhiguang

    2015-03-01

    Reliable quantification of copper binding affinities and identification of the binding sites provide a molecular basis for an understanding of the nutritional roles and toxic effects of copper ions. Sets of chromophoric probes are now available that can quantify Cu(i) binding affinities from nanomolar to attomolar concentrations on a unified scale under in vitro conditions. Equivalent probes for Cu(ii) are lacking. This work reports development of a set of four fluorescent dansyl peptide probes (DP1-4) that can quantify Cu(ii) binding affinities from micromolar to femtomolar concentrations, also on a unified scale. The probes were constructed by conjugation of a dansyl group to four short peptides of specific design. Each was characterised by its dissociation constant KD, its pH dependence and the nature of its binding site. One equivalent of Cu(ii) is bound by the individual probes that display different and well-separated affinities at pH 7.4 (log KD = -8.1, -10.1, -12.3 and -14.1, respectively). Intense fluorescence is emitted at λmax ∼ 550 nm upon excitation at ∼330 nm. Binding of Cu(ii) quenches the fluorescence intensity linearly until one equivalent of Cu(ii) is bound. Multiple approaches and multiple affinity standards were employed to ensure reliability. Selected examples of application to well-characterised Cu(ii) binding peptides and proteins are presented. These include Aβ16 peptides, two naturally occurring Cu(ii)-chelating motifs in human serum and cerebrospinal fluid with sequences GHK and DAHK and two copper binding proteins, CopC from Pseudomonas syringae and PcoC from Escherichia coli. Previously reported affinities are reproduced, demonstrating that peptides DP1-4 form a set of robust and reliable probes for Cu(ii) binding to peptides and protein targets.

  6. Effect of biofilm coatings at metal-oxide/water interfaces I: Pb(II) and Zn(II) partitioning and speciation at Shewanella oneidensis/metal-oxide/water interfaces

    NASA Astrophysics Data System (ADS)

    Wang, Yingge; Gélabert, Alexandre; Michel, F. Marc; Choi, Yongseong; Gescher, Johannes; Ona-Nguema, Georges; Eng, Peter J.; Bargar, John R.; Farges, Francois; Spormann, Alfred M.; Brown, Gordon E.

    2016-09-01

    Microbial biofilms are often present as coatings on metal-oxide surfaces in natural and industrial environments and may induce significant changes in the partitioning behavior and speciation of aqueous metal ions, which in turn can impact their transport and fate. In this study, long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy was used to measure under in situ conditions the partitioning of aqueous Pb(II) and Zn(II) between multilayer Shewanella oneidensis MR-1 biofilms and highly polished, oriented single-crystal surfaces of α-Al2O3 and α-Fe2O3 as a function of metal-ion concentration and time at pH 6.0. We show that after 3-h exposure time, Pb(II) binds preferentially to the α-Al2O3 (1-102) and α-Fe2O3 (0 0 0 1) surfaces at low Pb concentration ([Pb] = 10-7 M) and then increasingly partitions into the biofilm coatings at higher concentrations (10-6 to 10-4 M). In contrast, Zn(II) partitions preferentially into the biofilm coating for both surfaces at all Zn concentrations studied (10-7 to 10-4 M). In comparison, the α-Al2O3 (0 0 0 1) surface has a low affinity for both Pb(II) and Zn(II), and the biofilm coatings are the dominant sink for both ions. These findings suggest that in the presence of S. oneidensis biofilm coatings, α-Al2O3 (0 0 0 1) is the least reactive surface for Pb(II) and Zn(II) compared to α-Al2O3 (1-102) and α-Fe2O3 (0 0 0 1). They also show that Zn(II) has a lower affinity than Pb(II) for reactive sites on α-Al2O3 (1-102) and α-Fe2O3 (0 0 0 1) at [Me(II)] of 10-7 M; at 10-5 M, the bulk of the metal ions partition into the biofilm coatings. At longer exposure times (20-24 h), both Pb(II) and Zn(II) increasingly partition to the metal-oxide surfaces at [Me(II)] = 10-5 M and pH 6.0, indicating possible reaction/diffusion-controlled sorption processes. Pb LIII-edge and Zn K-edge grazing-incidence extended X-ray absorption fine structure (GI-EXAFS) measurements suggest that both Pb(II) and Zn(II) ions may be

  7. Effect of biofilm coatings at metal-oxide/water interfaces I: Pb(II) and Zn(II) partitioning and speciation at Shewanella oneidensis/metal-oxide/water interfaces

    DOE PAGES

    Wang, Yingge; Gelabert, Alexandre; Michel, F. Marc; ...

    2016-05-30

    Microbial biofilms are often present as coatings on metal-oxide surfaces in natural and industrial environments and may induce significant changes in the partitioning behavior and speciation of aqueous metal ions, which in turn can impact their transport and fate. In this study, long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy was used to measure under in situ conditions the partitioning of aqueous Pb(II) and Zn(II) between multilayer Shewanella oneidensis MR-1 biofilms and highly polished, oriented single-crystal surfaces of α-Al2O3 and α-Fe2O3 as a function of metal-ion concentration and time at pH 6.0. We show that after 3-h exposure time, Pb(II) bindsmore » preferentially to the alpha-Al2O3 (1-102) and α-Fe2O3 (0001) surfaces at low Pb concentration ([Pb] = 10–7 M) and then increasingly partitions into the biofilm coatings at higher concentrations (10–6 to 10–4 M). In contrast, Zn(II) partitions preferentially into the biofilm coating for both surfaces at all Zn concentrations studied (10–7 to 10–4 M). In comparison, the α-Al2O3 (0001) surface has a low affinity for both Pb(II) and Zn(II), and the biofilm coatings are the dominant sink for both ions. These findings suggest that in the presence of S. oneidensis biofilm coatings, α-Al2O3 (0001) is the least reactive surface for Pb(II) and Zn(II) compared to α-Al2O3 (1-102) and α-Fe2O3 (0001). They also show that Zn(II) has a lower affinity than Pb(II) for reactive sites on α-Al2O3 (1-102) and α-Fe2O3 (0001) at [Me(II)] of 10–7 M; at 10–5 M, the bulk of the metal ions partition into the biofilm coatings. At longer exposure times (20-24 h), both Pb(II) and Zn(II) increasingly partition to the metal-oxide surfaces at [Me(II)] = 10–5 M and pH 6.0, indicating possible reaction/diffusion-controlled sorption processes. Pb L-III-edge and Zn K-edge grazing-incidence extended X-ray absorption fine structure (GI-EXAFS) measurements suggest that both Pb(II) and Zn(II

  8. Zn(II) ions substantially perturb Cu(II) ion coordination in amyloid-β at physiological pH.

    PubMed

    Silva, K Ishara; Saxena, Sunil

    2013-08-15

    The interaction of Cu(II) and Zn(II) ions with amyloid-β (Aβ) plays an important role in the etiology of Alzheimer's disease. We describe the use of electron spin resonance (ESR) to measure metal-binding competition between Cu(II) and Zn(II) in amyloid-β at physiological pH. Continuous wave ESR measurements show that the affinity of Cu(II) toward Aβ(1-16) is significantly higher than that of Zn(II) at physiological pH. Importantly, of the two known Cu(II) coordination modes in Aβ, component I and component II, Zn(II) displaces Cu(II) only from component I. Our results indicate that at excess amounts of Zn(II) component II becomes the most dominant coordination mode. This observation is important as Aβ aggregates in the brain contain a high Zn(II) ion concentration. In order to determine details of the metal ion competition, electron spin echo envelope modulation experiments were carried out on Aβ variants that were systematically (15)N labeled. In the presence of Zn(II), most peptides use His 14 as an equatorial ligand to bind Cu(II) ions. Interestingly, Zn(II) ions completely substitute Cu(II) ions that are simultaneously coordinated to His 6 and His 13. Furthermore, in the presence of Zn(II), the proportion of Cu(II) ions that are simultaneously coordinated to His 13 and His 14 is increased. On the basis of our results we suggest that His 13 plays a critical role in modulating the morphology of Aβ aggregates.

  9. Role of Bound Zn(II) in the CadC Cd(II)/Pb(II)/Zn(II)-Responsive Repressor

    SciTech Connect

    Kandegedara, A.; Thiyagarajan, S; Kondapalli, K; Stemmler, T; Rosen, B

    2009-01-01

    The Staphylococcus aureus plasmid pI258 cadCA operon encodes a P-type ATPase, CadA, that confers resistance to Cd(II)/Pb(II)/Zn(II). Expression is regulated by CadC, a homodimeric repressor that dissociates from the cad operator/promoter upon binding of Cd(II), Pb(II), or Zn(II). CadC is a member of the ArsR/SmtB family of metalloregulatory proteins. The crystal structure of CadC shows two types of metal binding sites, termed Site 1 and Site 2, and the homodimer has two of each. Site 1 is the physiological inducer binding site. The two Site 2 metal binding sites are formed at the dimerization interface. Site 2 is not regulatory in CadC but is regulatory in the homologue SmtB. Here the role of each site was investigated by mutagenesis. Both sites bind either Cd(II) or Zn(II). However, Site 1 has higher affinity for Cd(II) over Zn(II), and Site 2 prefers Zn(II) over Cd(II). Site 2 is not required for either derepression or dimerization. The crystal structure of the wild type with bound Zn(II) and of a mutant lacking Site 2 was compared with the SmtB structure with and without bound Zn(II). We propose that an arginine residue allows for Zn(II) regulation in SmtB and, conversely, a glycine results in a lack of regulation by Zn(II) in CadC. We propose that a glycine residue was ancestral whether the repressor binds Zn(II) at a Site 2 like CadC or has no Site 2 like the paralogous ArsR and implies that acquisition of regulatory ability in SmtB was a more recent evolutionary event.

  10. Acute In Vivo Performance Evaluation of the Fluorescence Affinity Sensor in the Intravascular and Interstitial Space in Swine

    PubMed Central

    Dutt-Ballerstadt, Ralph; Evans, Colton; Pillai, Arun P.; Gowda, Ashok; McNichols, Roger; Rios, Jesse; Cohn, William

    2013-01-01

    Objective We assessed and compared the performance levels of a fiber-coupled fluorescence affinity sensor (FAS) for glucose detection in the intradermal tissue and intravascular bed during glucose clamping and insulin administration in a large animal model. Research Design and Methods The FAS (BioTex Inc., Houston, TX) was implanted in interstitial tissue and in the intravenous space in nondiabetic, anesthetized pigs over 6–7 h. For intradermal assessment, a needle-type FAS was implanted in the upper back using a hypodermic needle. For intravenous assessment, the FAS was inserted through a catheter into the femoral artery and vein. Blood glucose changes were induced by infusion of dextrose and insulin through a catheterized ear or jugular vein. Results Based on retrospective analysis, the mean absolute relative error (MARE) of the sensor in blood and interstitial tissue was 11.9% [standard deviation (SD) = ±9.6%] and 23.8% (SD = ±19.4%), respectively. When excluding data sets from sensors that were affected by exogenous insulin, the MARE for those sensors tested in interstitial tissue was reduced to 16.3% (SD = ±12.5%). Conclusions The study demonstrated that the performance level of the FAS device implanted in interstitial tissue and blood can be very high. However, under certain circumstances, exogenous insulin caused the glucose concentration in interstitial tissue to be lower than in blood, which resulted in an overall lower level of accuracy of the FAS device. How significant this physiological effect is in insulin-treated persons with diabetes remains to be seen. In contrast, the level of accuracy of the FAS device in blood was very high because of high mass transfer conditions in blood. While the use of the FAS in both body sites will need further validation, its application in critically ill patients looks particularly promising. PMID:23439158

  11. A study of the static and dynamic adsorption of Zn(II) ions on carbon materials from aqueous solutions.

    PubMed

    Alvarez-Merino, Miguel A; López-Ramón, Victoria; Moreno-Castilla, Carlos

    2005-08-15

    The effect of surface oxidation, solution pH, and ionic strength on the adsorption of Zn(II) ions from aqueous solution under static conditions was studied using commercial activated carbons in the form of grains and cloth. In addition, the effects of surface oxidation and the presence of dissolved natural organic matter (tannic acid) were studied under dynamic conditions using activated carbon cloth column beds. Under static conditions, surface oxidation largely increased Zn2+ uptake and two H+ ions were displaced from the oxidized carbon surface per Zn(II) ion adsorbed. It is proposed that adsorption of Zn(II) on the as-received basic carbons was due to C(pi)-cation interactions. An increase in solution pH in the range 3-6 increased Zn(II) uptake, whereas an increase in ionic strength decreased Zn(II) uptake because of the screening effect of the added salt. In the experiments carried out with carbon column beds, the oxidized activated carbon cloth was also more effective than the as-received carbon to remove Zn(II) ions. In this case, the presence of tannic acid decreased the efficiency of the oxidized activated carbon cloth bed to remove Zn(II) ions. An increase in the tannic acid initial concentration had a greater effect on the removal of tannic acid than on the removal of Zn(II) by the column bed. This may be a consequence of the greater size of tannic acid molecules and their low affinity for oxidized carbon surfaces.

  12. Investigation on the interaction of newly designed potential antibacterial Zn(II) complexes with CT-DNA and HSA.

    PubMed

    Mansouri-Torshizi, Hassan; Khosravi, Fatemeh; Ghahghaei, Arezou; Shahraki, Somaye; Zareian-Jahromi, Sareh

    2017-08-22

    Two Zn(II) complexes of formula [Zn(bpy)(Gly)]NO3 (I) and [Zn(phen)(Gly)]NO3 (II) (where bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline and Gly = glycine) were synthesized and characterized by elemental analysis, molar conductance measurements, UV-vis, FT-IR, and (1)H NMR spectra. The interaction ability of these complexes with calf thymus DNA was monitored using spectroscopic methods, including UV-vis absorption spectroscopy, ethidium bromide displacement, Fourier transform infrared, and electrophoretic mobility assay. Further, the human serum albumin interactions of complexes I and II were investigated using UV-vis absorption spectroscopy, fluorescence quenching, circular dichroism, and Fourier transform infrared. The results obtained from these analyses indicated that both complexes interact effectively with CT-DNA and HSA. The binding constant (Kb), the Stern-Volmer constant (Ksv), and the number of binding sites (n) at different temperatures were determined for CT-DNA and HSA. Also, the negative ΔH° and ΔS° values showed that both hydrogen bonds and van der Waals forces played major roles in the association of CT-DNA-Zn(II) and HSA-Zn(II) complex formation. The displacement experiments suggested that Zn(II)-complexes primarily bound to Sudlow's site II of HSA. The distance between the donor (HSA) and the acceptor (Zn(II) complexes) was estimated on the basis of the Forster resonance energy transfer (FRET) and the alteration of HSA secondary structure induced by the compounds were confirmed by FT-IR spectroscopy. The complexes follow the binding affinity order of I > II with DNA and II > I with HSA. Finally, Antibacterial activity of complexes I and II have been screened against gram positive and gram negative bacteria.

  13. Development of new peptide-based receptor of fluorescent probe with femtomolar affinity for Cu(+) and detection of Cu(+) in Golgi apparatus.

    PubMed

    Jung, Kwan Ho; Oh, Eun-Taex; Park, Heon Joo; Lee, Keun-Hyeung

    2016-11-15

    Developing fluorescent probes for monitoring intracellular Cu(+) is important for human health and disease, whereas a few types of their receptors showing a limited range of binding affinities for Cu(+) have been reported. In the present study, we first report a novel peptide receptor of a fluorescent probe for the detection of Cu(+). Dansyl-labeled tripeptide probe (Dns-LLC) formed a 1:1 complex with Cu(+) and showed a turn-on fluorescent response to Cu(+) in aqueous buffered solutions. The dissociation constant of Dns-LLC for Cu(+) was determined to be 12 fM, showing that Dns-LLC had more potent binding affinity for Cu(+) than those of previously reported chemical probes for Cu(+). The binding mode study showed that the thiol group of the peptide receptor plays a critical role in potent binding with Cu(+) and the sulfonamide and amide groups of the probe might cooperate to form a complex with Cu(+). Dns-LLC detected Cu(+) selectively by a turn-on response among various biologically relevant metal ions, including Cu(2+) and Zn(2+). The selectivity of the peptide-based probe for Cu(+) was strongly dependent on the position of the cysteine residue in the peptide receptor part. The fluorescent peptide-based probe penetrated the living RKO cells and successfully detected Cu(+) in the Golgi apparatus in live cells by a turn-on response. Given the growing interest in imaging Cu(+) in live cells, a novel peptide receptor of Cu(+) will offer the potential for developing a variety of fluorescent probes for Cu(+) in the field of copper biochemistry.

  14. Biotin as acylating agent in the Friedel-Crafts reaction. Avidin affinity of biotinyl derivatives of ferrocene, ruthenocene and pyrene and fluorescence properties of 1-biotinylpyrene.

    PubMed

    Plażuk, Damian; Zakrzewski, Janusz; Salmain, Michèle

    2011-01-21

    (D)-Biotin was used for Friedel-Crafts acylation of electron-rich aromatic molecules--ferrocene, ruthenocene and pyrene. The reaction carried out in the presence of trifluoroacetic anhydride and trifluoromethanesulfonic acid afforded the corresponding biotinylarenes in moderate yields. These compounds, although lacking an amide bond, exhibited high affinity for avidin, with the ability to displace 2-(4'-hydroxyphenylazo)-benzoic acid (HABA) in its complex with avidin. Their affinity for avidin was determined by a solid-phase competitive enzymatic assay, which gave IC(50) values in the range of 33-58 nM (under the same conditions biotin showed IC(50) = 24 ± 7 nM). 1-Biotinylpyrene (1c) excited at 355 nm displayed fluorescence emission in aqueous solutions with λ(max) = 461 nm. The fluorescence maximum was shifted to 425 nm upon binding of 1c to avidin. Formation of the avidin-1c complex was also evidenced by quenching of the fluorescence from the protein tryptophan residues (342 nm) and appearance of the emission band of the avidin-bound 1c at 430 nm as a result of a Förster resonance energy transfer (FRET) phenomenon.

  15. Zn(II) transport and distribution in rat spermatids.

    PubMed

    Reyes, J G; Arrate, M P; Santander, M; Guzman, L; Benos, D J

    1993-10-01

    Zn(II) is an essential trace element. In spermatozoa, Zn(II) modulates metabolism and chromatin condensation. The mechanisms of uptake and distribution of this ion in sperm cells have not been explored. In rat spermatids, our results indicate that 1) 65Zn(II) binds with fast kinetics to a labile, presumably extracellular, compartment. This binding is temperature insensitive and not modified by metabolic inhibitors. 2) Entry of 65Zn(II) in the absence of externally added proteins occurs through a mediated transport system that allows exchange to reach steady state in approximately 15 min at 34 degrees C. 3) Upon entering the cells, 65Zn(II) binds tightly to cellular organelles. 4) Exchangeable Zn(II) bound to cytoplasmic proteins plus free intracellular Zn(II) appears to be < 20% of total exchangeable Zn(II). 5) The intracellular exchangeable Zn(II) compartment is decreased by metabolic inhibitors, showing a direct or indirect link between energy metabolism and cellular Zn(II) levels. 6) 65Zn(II) efflux from rat spermatids is a process with a rate constant of 0.16 +/- 0.13 min-1 at 34 degrees C. This exit rate of Zn(II) is likely to be affected by Zn(II) release from cytoplasmic binding sites or organelles.

  16. CdS/TiO2-fluorescein isothiocyanate nanoparticles as fluorescence resonance energy transfer probe for the determination of trace alkaline phosphatase based on affinity adsorption assay.

    PubMed

    Liu, Jia-Ming; Lin, Li-ping; Jiao, Li; Cui, Ma-Lin; Wang, Xin-Xing; Zhang, Li-Hong; Zheng, Zhi-Yong

    2012-08-30

    The CdS/TiO(2)-fluorescein isothiocyanate (FITC) luminescent nanoparticles (CdS/TiO(2)-FITC) with the particle size of 20 nm have been synthesized by sol-gel method. CdS/TiO(2)-FITC could emit the fluorescence of both FITC and CdS/TiO(2). The fluorescence resonance energy transfer (FRET) occurred between the donor CdS/TiO(2) and the acceptor FITC in the CdS/TiO(2)-FITC. Taking advantages of the excellent characteristics of FRET, a new CdS/TiO(2)-FITC FRET labeling reagent and a CdS/TiO(2)-FITC-wheat germ agglutinin (CdS/TiO(2)-FITC-WGA) fluorescent probe have been developed. The FRET occurring between the donor CdS/TiO(2) and the acceptor FITC in the labelled product CdS/TiO(2)-FITC-WGA-AP, formed in the affinity adsorption reaction between the WGA in this CdS/TiO(2)-FITC-WGA fluorescent probe and alkaline phosphatase (AP), sharply enhanced the fluorescence signal of FITC and quench the fluorescence signal of CdS/TiO(2). Moreover, the ΔF (the change of the fluorescence signal) of FITC and CdS/TiO(2) were proportional to the content of AP, respectively. Thus, a new method that CdS/TiO(2)-fluorescein isothiocyanate nanoparticles for the determination of trace AP based on FRET-affinity adsorption assay has been established. The limit of quantification (LOQ) of the method was 1.3×10(-17) g AP mL(-1) for CdS/TiO(2) and 1.1×10(-17) g AP mL(-1) for FITC, respectively. This sensitive, rapid, high selective and precise method has been applied to the determination of AP in human serum and the prediction of human disease with the results agreed well with enzyme-linked immunosorbent assay (ELISA) in Zhangzhou Municipal Hospital of Fujian Province. Simultaneously, the reaction mechanism for the determination of AP was also discussed.

  17. Zinc-sensitive MRI contrast agent detects differential release of Zn(II) ions from the healthy vs. malignant mouse prostate

    PubMed Central

    Clavijo Jordan, M. Veronica; Lo, Su-Tang; Chen, Shiuhwei; Preihs, Christian; Chirayil, Sara; Zhang, Shanrong; Kapur, Payal; Li, Wen-Hong; De Leon-Rodriguez, Luis M.; Lubag, Angelo J. M.; Rofsky, Neil M.; Sherry, A. Dean

    2016-01-01

    Many secretory tissues release Zn(II) ions along with other molecules in response to external stimuli. Here we demonstrate that secretion of Zn(II) ions from normal, healthy prostate tissue is stimulated by glucose in fasted mice and that release of Zn(II) can be monitored by MRI. An ∼50% increase in water proton signal enhancement is observed in T1-weighted images of the healthy mouse prostate after infusion of a Gd-based Zn(II) sensor and an i.p. bolus of glucose. Release of Zn(II) from intracellular stores was validated in human epithelial prostate cells in vitro and in surgically exposed prostate tissue in vivo using a Zn(II)-sensitive fluorescent probe known to bind to the extracellular surface of cells. Given the known differences in intracellular Zn(II) stores in healthy versus malignant prostate tissues, the Zn(II) sensor was then evaluated in a transgenic adenocarcinoma of the mouse prostate (TRAMP) model in vivo. The agent proved successful in detecting small malignant lesions as early as 11 wk of age, making this noninvasive MR imaging method potentially useful for identifying prostate cancer in situations where it may be difficult to detect using current multiparametric MRI protocols. PMID:27562169

  18. Zinc-sensitive MRI contrast agent detects differential release of Zn(II) ions from the healthy vs. malignant mouse prostate.

    PubMed

    Clavijo Jordan, M Veronica; Lo, Su-Tang; Chen, Shiuhwei; Preihs, Christian; Chirayil, Sara; Zhang, Shanrong; Kapur, Payal; Li, Wen-Hong; De Leon-Rodriguez, Luis M; Lubag, Angelo J M; Rofsky, Neil M; Sherry, A Dean

    2016-09-13

    Many secretory tissues release Zn(II) ions along with other molecules in response to external stimuli. Here we demonstrate that secretion of Zn(II) ions from normal, healthy prostate tissue is stimulated by glucose in fasted mice and that release of Zn(II) can be monitored by MRI. An ∼50% increase in water proton signal enhancement is observed in T1-weighted images of the healthy mouse prostate after infusion of a Gd-based Zn(II) sensor and an i.p. bolus of glucose. Release of Zn(II) from intracellular stores was validated in human epithelial prostate cells in vitro and in surgically exposed prostate tissue in vivo using a Zn(II)-sensitive fluorescent probe known to bind to the extracellular surface of cells. Given the known differences in intracellular Zn(II) stores in healthy versus malignant prostate tissues, the Zn(II) sensor was then evaluated in a transgenic adenocarcinoma of the mouse prostate (TRAMP) model in vivo. The agent proved successful in detecting small malignant lesions as early as 11 wk of age, making this noninvasive MR imaging method potentially useful for identifying prostate cancer in situations where it may be difficult to detect using current multiparametric MRI protocols.

  19. Detection of copper(II) and zinc(II) binding to humic acids from pig slurry and amended soils by fluorescence spectroscopy.

    PubMed

    Hernández, Diana; Plaza, César; Senesi, Nicola; Polo, Alfredo

    2006-09-01

    The effect of the consecutive annual additions of pig slurry at rates of 0 (control), 90 and 150 m3 ha(-1) yr(-1) after a 7-year period on the Cu(II) and Zn(II) binding behavior of soil HAs was investigated in a field experiment. A fluorescence titration method and a single site model were used for determining metal ion complexing capacities and stability constants of metal ion complexes of HAs isolated from pig slurry and unamended and amended soils. With respect to control soil HA, pig-slurry HA featured much smaller Cu(II) and Zn(II) binding capacities and stability constants. Pig-slurry application to soil decreased Cu(II) and Zn(II) complexing capacities and binding affinities of soil HA. These effects increased with increasing the rate per year of PS application to soil, and are expected to have a large impact on bioavailability, mobilization, and transport of Cu(II) and Zn(II) ions in pig slurry-amended soils.

  20. Quenching of Single-Walled Carbon Nanotube Fluorescence by Dissolved Oxygen Reveals Selective Single-Stranded DNA Affinities.

    PubMed

    Zheng, Yu; Bachilo, Sergei M; Weisman, R Bruce

    2017-04-13

    The selective interactions between short oligomers of single-stranded DNA (ssDNA) and specific structures of single-walled carbon nanotubes have been exploited in powerful methods for nanotube sorting. We report here that nanotubes coated with ssDNA also display selective interactions through the selective quenching of nanotube fluorescence by dissolved oxygen. In aqueous solutions equilibrated under 1 atm of O2, emission intensity from semiconducting nanotubes is reduced by between 9 and 40%, varying with the combination of ssDNA sequence and nanotube structure. This quenching reverses promptly and completely on removal of dissolved O2 and may be due to physisorption on nanotube surfaces. Fluorescence quenching offers a simple, nondestructive approach for studying the structure-selective interactions of ssDNA with single-walled carbon nanotubes and identifying recognition sequences.

  1. Unravelling the Binding Mechanism of a Poly(cationic) Anthracenyl Fluorescent Probe with High Affinity toward Double-Stranded DNA.

    PubMed

    Deiana, Marco; Mettra, Bastien; Matczyszyn, Katarzyna; Pitrat, Delphine; Olesiak-Banska, Joanna; Monnereau, Cyrille; Andraud, Chantal; Samoc, Marek

    2016-11-14

    We report the synthesis, spectroscopy, and the DNA binding properties of a biocompatible, water-soluble, polycationic two-photon absorbing anthracenyl derivative (Ant-PIm) specifically designed for biorelated applications. Detailed insights into the Ant-PIm-DNA binding interaction are provided by using several spectroscopic approaches, including UV-vis absorption, circular dichroism (CD), Fourier-transform infrared spectroscopy (FTIR), steady-state, and time-resolved fluorescence techniques. Absorption and fluorescence quantitative data analysis show a strong Ant-PIm-duplex interaction with binding constants of Kf = 4.7 ± 0.2 × 10(5) M(-1), 7.1 ± 0.3 × 10(5) M(-1), and 1.0 ± 0.1 × 10(6) M(-1) at 298, 304, and 310 K, respectively. Spectral changes observed upon DNA binding provide evidence for a complex formation with off-on fluorescence pattern, which can be related to two consecutive binding equilibria. Results of DNA binders displacement and iodide quenching experimental assays unambiguously point to the groove binding mode of Ant-PIm to the DNA-helicate. Thermodynamic and chemical denaturation studies suggest that long-range interactions of hydrophobic nature regulate the association of Ant-PIm with the biopolymer. The ionic strength dependence of the binding constant shows that electrostatic component has an important contribution to the overall Gibbs free energy. FTIR and CD data provide evidence of partial modification of the B-DNA secondary structure, while the increase in the melting temperature clearly indicates the enhancement of the thermal stability of the duplex. Furthermore, the two-photon absorption cross section spectrum determined using the two-photon excited fluorescence (TPEF) technique shows a strong 2PA maximum at 820 nm with a σ2 > 800 GM, which emphasizes the advantageous combination of biological and optical properties possessed by this positively charged bioprobe.

  2. Structures, Metal Ion Affinities, and Fluorescence Properties of Soluble Derivatives of Tris((6-phenyl-2-pyridyl)methyl)amine

    PubMed Central

    Liang, Jian; Zhang, Jing; Zhu, Lei; Duarandin, Alexander; Young, Victor G.; Geacintov*, Nicholas; Canary, James W.

    2009-01-01

    Metal complexes of tris((6-phenyl-2-pyridyl)methyl)amine (2) have hydrophobic cavities that potentially accommodate small molecules. However, the utility of this attractive motif has been hampered by the poor solubility of such complexes in many common solvents. In this study, two tripodal ligands (3, tris-[6-(3,4,5-trimethoxy-phenyl)-pyridin-2-ylmethyl]-amine, and 4, tris((6-(3,4,5-tris(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)phenyl)pyridin-2-yl)methyl)amine) derived from 2 were prepared with enhanced solubility in organic and aqueous solvents. The X-ray crystallographic analyses of selected ligands and complexes revealed that the hydrophobic cavities inside the zinc complexes were retained after derivatization. Fluorescence, NMR, and potentiometric titration studies, which were enabled by the improved solubility, were performed to investigate the binding properties of the soluble ligands (3, 4) with metal ions such as Zn2+ and Cu2+. When saturating quantities of Zn2+ ions are added to ligand 3 in acetonitrile, the fluorescence emission maximum exhibits a pronounced red shift of ~ 80 nm (from 376 to 457 nm) and is enhanced by a factor of > 100 when measured at 520 nm. The fluorescence properties of the Zn2+ ion-coordinated ligands in the Zn(3) complex are consistent with a charge-transfer character in the excited state, with possible contributions from a planarization of the pyridyl-trimethoxyphenyl groups in the excited state, and from excitonic interactions. PMID:19877674

  3. Spectroscopic, DNA binding ability, biological activity, DFT calculations and non linear optical properties (NLO) of novel Co(II), Cu(II), Zn(II), Cd(II) and Hg(II) complexes with ONS Schiff base

    NASA Astrophysics Data System (ADS)

    Abdel Aziz, Ayman A.; Elantabli, Fatma M.; Moustafa, H.; El-Medani, Samir M.

    2017-08-01

    The reaction of Co(II), Cu(II), Zn(II), Cd(II) and Hg(II) with the synthesized N-(2-hydroxy-1-naphthylidene)-2-aminothiophenol Schiff base ligand (H2L) at room temperature resulted in the formation of the five complexes; [Co(HL)2]H2O, 1; [M(HL)2] (M = Cu, Zn and Cd), (2-4) and [Hg(HL)Cl], 5. The ligand and its complexes were characterized based on elemental analyses, IR, 1H NMR, magnetic measurement, molar conductance, and thermal analysis. Coats and Redfern method was used to compute the kinetic and thermodynamic parameters. Antimicrobial activities of H2L and its complexes have been studied. The binding of Co(II), Cu(II) and Zn(II) complexes to calf thymus DNA (CT-DNA) has been investigated using UV-Vis and fluorescence absorption spectra. The results indicated that the ligand and its complexes may bind to DNA by intercalation modes, with a much higher binding affinity of the complexes than that of the ligand. The equilibrium geometries of the studied complexes are investigated theoretically at the B3LYP/LANL2DZ level of theory, and it was found that these geometries are non-linear. The calculated EHOMO and ELUMO energies of the studied complexes can be used to calculate the global properties. The calculated nonlinear optical parameters (NLO); first order hyperpolarizibility (β) of the studied complexes show promising optical properties.

  4. Determination of aflatoxins and ochratoxin A in high-sugar-content traditional Turkish foods by affinity column cleanup and LC fluorescence detection.

    PubMed

    Senyuva, Hamide Z; Cimen, Dilek; Gilbert, John

    2009-01-01

    The effectiveness of an affinity column cleanup procedure followed by LC with fluorescence detection was established for the determination of aflatoxins and ochratoxin A in high-sugar-content traditional Turkish foods. Traditional foods, such as baklava (finely layered pastry filled with nuts and steeped in syrup), halvah (containing sesame paste and pistachios), cevizli sucuk (a confection made of grape juice boiled and dried on strings of nuts), Turkish delight (containing hazelnuts, pistachios, or walnuts), and pişmaniye (candy made of sugar, butter, and flour), were tested, and the performance of the method was established with spiked samples. To examine the robustness of the methodology, baklava was prepared from raw materials and spiked at the initial stage of dry ingredients and through subsequent stages of preparation of dough, after cooking, and after addition of syrup and nuts. For all products, the analytical method required grinding the composite foodstuff under liquid nitrogen to form a fine powder, which was then thoroughly mixed before subsampling. After vortex extraction into methanol-water (aflatoxins) and aqueous sodium bicarbonate (ochratoxin A), the sample was filtered, diluted with phosphate-buffered saline, and then passed through either an aflatoxin or ochratoxin A affinity column before HPLC analysis with fluorescence detection (using post-column bromination for the aflatoxins). In all the traditional Turkish products, the recovery of aflatoxin B1 ranged from 77 to 98%, and LODs were <0.1 microg/kg. For ochratoxin A, the recoveries were from 88 to 93% and LODs were similarly <0.1 microLg/kg. Despite the complex nature of these traditional Turkish foods, which frequently contain products from sugar caramelization, there was no evidence of any interfering co-extractives, and the method has proved to be robust enough to be used for food control purposes.

  5. Quantum dot immunoassays in renewable surface column and 96-well plate formats for the fluorescence detection of Botulinum neurotoxin using high-affinity antibodies

    SciTech Connect

    Warner, Marvin G.; Grate, Jay W.; Tyler, Abby J.; Ozanich, Richard M.; Miller, Keith D.; Lou, Jianlong; Marks, James D.; Bruckner-Lea, Cindy J.

    2009-09-01

    A fluorescence sandwich immunoassay using high affinity antibodies and quantum dot (QD) reporters has been developed for detection of botulinum toxin serotype A (BoNT/A). For the development of the assay, a nontoxic recombinant fragment of the holotoxin (BoNT/A-HC-fragment) has been used as a structurally valid simulant for the full toxin molecule. The antibodies used, AR4 and RAZ1, bind to nonoverlapping epitopes present on both the full toxin and on the recombinant fragment. In one format, the immunoassay is carried out in a 96-well plate with detection in a standard plate reader. Detection down to 31 pM of the BoNT/Hc-fragment was demonstrated with a total incubation time of 3 hours, using AR4 as the capture antibody and QD-coupled RAZ1 as the reporter. In a second format, the AR4 capture antibody was coupled to Sepharose beads, and the immunochemical reactions were carried out in microcentrifuge tubes with an incubation time of 1 hour. These beads were subsequently captured and concentrated in a rotating rod “renewable surface” flow cell as part of a sequential injection fluidic system. This flow cell was equipped with a fiber optic system for fluorescence measurements. In PBS buffer solution matrix, the BoNT/A-HC-fragment was detected to concentrations as low as 5 pM using the fluidic measurement approach.

  6. A "turn-on" fluorescent chemosensor for zinc ion with facile synthesis and application in live cell imaging.

    PubMed

    Li, Kai; Wang, Xiaoyan; Tong, Aijun

    2013-05-07

    Compound 1 was facilely synthesized through a one step reaction from commercially available materials. As a sensitive and selective "turn-on" fluorescent chemosensor for Zn(II), 1 exhibits a 40-fold fluorescence enhancement response to Zn(II) over other physiological relevant metal ions in aqueous solution at neutral pH. Furthermore, 1 could be efficiently delivered to live cells for bioimaging of Zn(II). Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Structural elucidation of estrus urinary lipocalin protein (EULP) and evaluating binding affinity with pheromones using molecular docking and fluorescence study

    PubMed Central

    Rajesh, Durairaj; Muthukumar, Subramanian; Saibaba, Ganesan; Siva, Durairaj; Akbarsha, Mohammad Abdulkader; Gulyás, Balázs; Padmanabhan, Parasuraman; Archunan, Govindaraju

    2016-01-01

    Transportation of pheromones bound with carrier proteins belonging to lipocalin superfamily is known to prolong chemo-signal communication between individuals belonging to the same species. Members of lipocalin family (MLF) proteins have three structurally conserved motifs for delivery of hydrophobic molecules to the specific recognizer. However, computational analyses are critically required to validate and emphasize the sequence and structural annotation of MLF. This study focused to elucidate the evolution, structural documentation, stability and binding efficiency of estrus urinary lipocalin protein (EULP) with endogenous pheromones adopting in-silico and fluorescence study. The results revealed that: (i) EULP perhaps originated from fatty acid binding protein (FABP) revealed in evolutionary analysis; (ii) Dynamic simulation study shows that EULP is highly stable at below 0.45 Å of root mean square deviation (RMSD); (iii) Docking evaluation shows that EULP has higher binding energy with farnesol and 2-iso-butyl-3-methoxypyrazine (IBMP) than 2-naphthol; and (iv) Competitive binding and quenching assay revealed that purified EULP has good binding interaction with farnesol. Both, In-silico and experimental studies showed that EULP is an efficient binding partner to pheromones. The present study provides impetus to create a point mutation for increasing longevity of EULP to develop pheromone trap for rodent pest management. PMID:27782155

  8. The chemical cell biology of zinc: structure and intracellular fluorescence of a zinc-quinolinesulfonamide complex.

    PubMed

    Nasir, M S; Fahrni, C J; Suhy, D A; Kolodsick, K J; Singer, C P; O'Halloran, T V

    1999-12-01

    Fluorescent cell-permeant compounds based on 6-methoxy-8-p-toluenesulfonamido-quinoline, TSQ, are potentially powerful probes of intracellular zinc chemistry; however, the structure, thermodynamics, and stoichiometry of the metal complexes, and the molecular basis of Zn(II) recognition, remain open issues. To address these, we report the first structural characterization of a Zn(II) complex of a TSQ derivative, namely 2-methyl-6-methoxy-8-p-toluenesulfonamido-quinoline (3) and describe its unusual coordination chemistry. The crystal structure of the fluorescent complex of 3 with zinc reveals a 2:1 stoichiometry wherein bidentate coordination of two nitrogens from each ligand gives rise to a highly distorted tetrahedral Zn(II) center. Both sulfonamido groups in the zinc complex are tilted away from zinc to make room for coordination of the amide nitrogens. Zn-O(2) and Zn-O(4) distances are essentially nonbonding (3.06 and 3.10 A, respectively). The bond angles [N(1)-Zn-N(2) 83.5 degrees and N(3)-Zn-N(4) 83.0 degrees] are quite small relative to the 109 degrees angle of an ideal tetrahedral center. This result provides an insight into the zinc-binding mode of the TSQ derivative zinquin, in which a methyl group replaces the hydrogen in the 2-position of the quinoline ring. The methyl group and sulfonamide oxygen atoms clearly hinder formation of both square planar and octahedral complexes. We also show here that the Zn(II) complex of 3 in DMSO-water (80/20 w/w) exhibits an overall binding stability (log beta 2 = 18.24 +/- 0.02) similar to zinquin. Fluorescence microscopy suggests that each of these members of this family demarks a similar set of Zn(II)-enriched compartments that are common to all eukaryotic cells examined to date, and further shows that the ester function is not required for observation of these ubiquitous Zn-loaded compartments. The combined structural, thermodynamic, and physiological results provide a basis for design of other Zn

  9. Synthesis and Characterization of High-Affinity 4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene-Labeled Fluorescent Ligands for Human β-Adrenoceptors

    PubMed Central

    2011-01-01

    The growing practice of exploiting noninvasive fluorescence-based techniques to study G protein-coupled receptor pharmacology at the single cell and single molecule level demands the availability of high-quality fluorescent ligands. To this end, this study evaluated a new series of red-emitting ligands for the human β-adrenoceptor family. Upon the basis of the orthosteric ligands propranolol, alprenolol, and pindolol, the synthesized linker-modified congeners were coupled to the commercially available fluorophore BODIPY 630/650-X. This yielded high-affinity β-adrenoceptor fluorescent ligands for both the propranolol and alprenolol derivatives; however, the pindolol-based products displayed lower affinity. A fluorescent diethylene glycol linked propranolol derivative (18a) had the highest affinity (log KD of −9.53 and −8.46 as an antagonist of functional β2- and β1-mediated responses, respectively). Imaging studies with this compound further confirmed that it can be employed to selectively label the human β2-adrenoceptor in single living cells, with receptor-associated binding prevented by preincubation with the nonfluorescent β2-selective antagonist 3-(isopropylamino)-1-[(7-methyl-4-indanyl)oxy]butan-2-ol (ICI 118551) (J. Cardiovasc. Pharmacol.1983, 5, 430–437.) PMID:21870877

  10. Photoluminescence properties of new Zn(II) complexes with 8-hydroxyquinoline ligands: Dependence on volume and electronic effect of substituents

    NASA Astrophysics Data System (ADS)

    Huo, Yanping; Lu, Jiguo; Hu, Sheng; Zhang, Liming; Zhao, Fenghua; Huang, Huarong; Huang, Baohua; Zhang, Li

    2015-03-01

    A series of 2-arylethenyl-8-hydroxyquinoline ligands (A1-A4) with a trimethoxyphenyl, naphthyl, 2-fluoro-4-bromophenyl and anthracenyl group and their corresponding Zn(II) complexes (B1-B4) were synthesized and characterized by means of 1H NMR, ESI-MS, FT-IR and elemental analysis. A1 and A4 were characterized by single-crystal X-ray crystallography. The aggregation behavior of zinc salt and ligands in solution was investigated by several techniques, containing 1H NMR, UV-vis and photoluminescence (PL). The electronic nature and volume of arylethenyl substituents affect the absorption wavelength, the emission color, fluorescence lifetime, fluorescence quantum yield and thermostability of Zn(II) complexes. The experiments corroborated that the properties of Zinc(II) complexes can be tuned by introducing different functional substituents.

  11. In-line coupling of an aptamer based miniaturized monolithic affinity preconcentration unit with capillary electrophoresis and Laser Induced Fluorescence detection.

    PubMed

    Marechal, A; Jarrosson, F; Randon, J; Dugas, V; Demesmay, C

    2015-08-07

    A composite 30-cm capillary was prepared. The head of the capillary was a 1.5-cm original and miniaturized aptamer-based monolithic affinity support that was in-line coupled to the end of the capillary used for capillary electrophoresis (CE) with laser induced fluorescence (LIF) detection. The device was used for the preconcentration, separation and quantification of ochratoxin A (OTA) as a test solute. The 1.5-cm preconcentration unit consists of a fritless affinity monolithic bonded with 5'-SH-modified oligonucleotide aptamers. A vinyl spacer was used for thiol-ene photoclick chemistry with a 5min irradiation at 365nm. Photografting allowed to confine the binding reaction to the desired silica monolithic segment, upstream the empty section of the CE capillary using an UV mask. The photografting procedure was optimized preparing 10-cm capillary monoliths for nano-LC. The retention factors of cationic solutes in ion-exchange nano-LC allowed to follow the aptamer binding on the monolith. The reproducibility of the photografting process was satisfactory with inter-capillary variation lower than 10%. The aptamer bonding density can be increased by successive graftings of 100μM aptamer concentration solution (5pmol/cm/grafting). The optimal conditions to successfully perform the in-line coupling (preconcentration, elution and separation of OTA) with the composite capillary were adjusted depending on individual requirements of each step but also insuring compatibility. Under optimized conditions, OTA was successfully preconcentrated and quantified down to 0.1pg (percolation of 2.65μL of a 40ng/L OTA solution). A quantitative recovery of OTA (93±2%) was achieved in a single elution of 30pg percolated OTA amount. The reproducibility of the overall process was satisfactory with a relative standard deviation lower than 10% with negligible non-specific adsorption. This device was applied for the preconcentration and analysis of OTA in beer and wine at the ppb level within

  12. Evaluation of adsorption properties of sulphurised activated carbon for the effective and economically viable removal of Zn(II) from aqueous solutions.

    PubMed

    Anoop Krishnan, K; Sreejalekshmi, K G; Vimexen, V; Dev, Vinu V

    2016-02-01

    The prospective application of sulphurised activated carbon (SAC) as an ecofriendly and cost-effective adsorbent for Zinc(II) removal from aqueous phase is evaluated, with an emphasis on kinetic and isotherm aspects. SAC was prepared from sugarcane bagasse pith obtained from local juice shops in Sree Bhadrakali Devi Temple located at Ooruttukala, Neyyattinkara, Trivandrum, India during annual festive seasons. Activated carbon modified with sulphur containing ligands was opted as the adsorbent to leverage on the affinity of Zn(II) for sulphur. We report batch-adsorption experiments for parameter optimisations aiming at maximum removal of Zn(II) from liquid-phase using SAC. Adsorption of Zn(II) onto SAC was maximum at pH 6.5. For initial concentrations of 25 and 100mgL(-1), maximum of 12.3mgg(-1) (98.2%) and 23.7mgg(-1) (94.8%) of Zn(II) was adsorbed onto SAC at pH 6.5. Kinetic and equilibrium data were best described by pseudo-second-order and Langmuir models, respectively. A maximum adsorption capacity of 147mgg(-1) was obtained for the adsorption of Zn(II) onto SAC from aqueous solutions. The reusability of the spent adsorbent was also determined.

  13. Enhancing the Photostability of Arylvinylenebipyridyl Compounds as Fluorescent Indicators for Intracellular Zinc(II) Ions

    PubMed Central

    Yuan, Zhao; Younes, Ali H.; Allen, John R.; Davidson, Michael W.; Zhu, Lei

    2015-01-01

    Arylvinylenebipyridyl (AVB) ligands are bright, zinc(II)-sensitive fluoroionophores. The applicability of AVBs as fluorescent indicators for imaging cellular zinc(II), however, is limited by low photostability, partially attributable to the photoisomerization of the vinylene functionality. Two configurationally immobilized (i.e., “locked”) AVB analogues are prepared in this work. The zinc(II)-sensitive photophysical properties and zinc(II) affinities of both AVBs and their locked analogues are characterized in organic and aqueous media. The zinc(II) sensitivity of the emission is attributed to the zinc(II)-dependent energies of the charge transfer excited states of these compounds. The configurationally locked ligands have improved photostability, while maintaining the brightness and zinc(II) sensibility of their AVB progenitors. The feasibility of the “locked” AVB analogues with improved photostability for imaging intracellular Zn(II) of eukaryotic cells using laser confocal fluorescence microscopy is demonstrated. PMID:25942357

  14. Zn(II) adsorption from synthetic solution and kaolin wastewater onto vermicompost.

    PubMed

    Jordão, Cláudio Pereira; Fernandes, Raphael Bragança Alves; de Lima Ribeiro, Kamilla; de Souza Nascimento, Bruna; de Barros, Priscila Martins

    2009-03-15

    The adsorption of Zn(II) from both synthetic solution and kaolin industry wastewater by cattle manure vermicompost was studied. The adsorption process was dependent on the various operating variables, viz., solution pH, particle size of the vermicompost, mass of vermicompost/volume of the Zn(II) solution ratio, contact time and temperature. The optimum conditions for Zn adsorption were pH 6.0, particle size of < or = 250 microm, 1 g per 10 mL adsorbent dose, contact time of 4h and temperature of 25 degrees C. Langmuir and Freundlich adsorption isotherms fit well in the experimental data and their constants were evaluated, with R(2) values from 0.95 to 0.99. In synthetic solution, the maximum adsorption capacity of the vermicompost for Zn(2+) ions was 20.48 mg g(-1) at 25 degrees C when the vermicompost dose was 1 g 10 mL(-1) and the initial adjusted pH was 2. The batch adsorption studies of Zn(II) on vermicompost using kaolin wastewater have shown the maximum adsorption capacity was 2.49 mg g(-1) at pH 2 (natural pH of the wastewater). The small values of the constant related to the energy of adsorption (from 0.07 to 0.163 L mg(-1)) indicated that Zn(2+) ions were binded strongly to vermicompost. The values of the separation factor, R(L), which has been used to predict affinity between adsorbate and adsorbent were between 0 and 1, indicating that sorption was very favorable for Zn(II) in synthetic solution and kaolin wastewater. The thermodynamic parameter, the Gibbs free energy, was calculated for each system and the negative values obtained confirm that the adsorption processes are spontaneous. The DeltaG degrees values were -19.656 kJ mol(-1) and -16.849 kJ mol(-1) for Zn(II) adsorption on vermicompost in synthetic solution at pH 6 and 2, respectively, and -13.275 kJ mol(-1) in kaolin wastewater at pH 2.

  15. Synthesis, spectral and electrochemical properties of Al(III) and Zn(II) complexes with flavonoids

    NASA Astrophysics Data System (ADS)

    Souza, Rubens F. V. de; De Giovani, Wagner F.

    2005-07-01

    The synthesis, electrochemical and spectral (UV-vis, 1H NMR, IR, fluorescence) properties as well as thermal behaviors of Al(III) and Zn(II) complexes with the flavonoids quercetin (H 2L 1), rutin (H 2L 2) and galangin (HL 3) are presented. The complexes may be formulated as [Al 2(L 1)(H 2O) 8]Cl 4, [Al 3(L 2) 2(H 2O) 12]Cl 5, [Al(L 3)(H 2O) 4]Cl 2, [Zn 2(L 1)(H 2O) 4]Cl 2, [Zn 3(L 2) 2(H 2O) 6]Cl 2 and [Zn(L 3)(H 2O) 2]Cl. The higher fluorescence intensities of the complexes related to the free flavonoids, are attributed to the coordination of the ligands to the small, highly charged Al(III) and Zn(II) ions. The coordination effectively increases the rigidity of the ligand structure and increases the fluorescence quantum yield by reducing the probability of non-radiative energy dissipation process. Antioxidant activities of the compounds were also investigated under an electrochemical point of view. The cyclic voltammetric data show a considerable decrease of the oxidation potentials of the complexes related to that of the free flavonoids. Thus, the flavonoid-metal complexes are more effective antioxidants than the free flavonoids.

  16. Rapid screening method for quinolone residues in livestock and fishery products using immobilised metal chelate affinity chromatographic clean-up and liquid chromatography-fluorescence detection.

    PubMed

    Takeda, N; Gotoh, M; Matsuoka, T

    2011-09-01

    An efficient LC method was developed for screening the presence of quinolones (QLs)--comprising fluoroquinolones (FQs) and acidic quinolones (AQs)--residues in various livestock and fishery products. Targeted analytes were for nine FQs of marbofloxacin (MAR), ofloxacin (OFL), norfloxacin (NOR), ciprofloxacin (CIP), enrofloxacin (ENR), danofloxacin (DAN), orbifloxacin (ORB), difloxacin (DIF) and sarafloxacin (SAR), and three AQs of oxolinic acid (OXA), nalidixic acid (NAL) and flumequine (FMQ). Samples comprised ten different food products covering five matrices: muscle (cattle, swine and chicken), liver (chicken), raw fish (shrimp and salmon), egg (chicken), and processed food (ham, sausage and fish sausage). This method involved a simple extraction with (1:1) acetonitrile-methanol, a highly selective clean-up with an immobilised metal chelate affinity column charged with Fe(3+), a fast isocratic LC analysis using a short column (20 mm × 4.6 mm, 3 µm) with a mobile phase of (15:85:0.1) methanol/water/formic acid, and fluorescence detection (excitation/emission wavelengths of 295 nm/455 nm for FQs (495 nm for MAR), and 320 nm/365 nm for AQs). Among FQs, pairs of NOR/OFL, ORB/DIF and ENR/DAN were incompletely resolved. A confirmatory LC run with a Mg(2+) containing methanolic mobile phase was also proposed for the samples suspected of being positive. The optimised method gave satisfactory recoveries of 88.5% (56.1-108.6%) and 78.7% (44.1-99.5%) for intra- and inter-day assays with relative standard deviations of 7.2% (0.7-18.4%) and 6.8% (1.4-16.6%), respectively. Limits of quantitation ranged from 0.8 µg kg(-1) (DAN) to 6.5 µg kg(-1) (SAR). This method was successfully employed to analyse 113 real samples and two positive samples were found: fish sausage (CIP 990 µg kg(-1)) and shrimp (ENR 20 µg kg(-1)). © 2011 Taylor & Francis

  17. Effect of biofilm coatings at metal-oxide/water interfaces I: Pb(II) and Zn(II) partitioning and speciation at Shewanella oneidensis/metal-oxide/water interfaces

    SciTech Connect

    Wang, Yingge; Gelabert, Alexandre; Michel, F. Marc; Choi, Yongseong; Gescher, Johannes; Ona-Nguema, Georges; Eng, Peter J.; Bargar, John R.; Farges, Francois; Spormann, Alfred M.; Brown, Jr., Gordon E.

    2016-05-30

    Microbial biofilms are often present as coatings on metal-oxide surfaces in natural and industrial environments and may induce significant changes in the partitioning behavior and speciation of aqueous metal ions, which in turn can impact their transport and fate. In this study, long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy was used to measure under in situ conditions the partitioning of aqueous Pb(II) and Zn(II) between multilayer Shewanella oneidensis MR-1 biofilms and highly polished, oriented single-crystal surfaces of α-Al2O3 and α-Fe2O3 as a function of metal-ion concentration and time at pH 6.0. We show that after 3-h exposure time, Pb(II) binds preferentially to the alpha-Al2O3 (1-102) and α-Fe2O3 (0001) surfaces at low Pb concentration ([Pb] = 10–7 M) and then increasingly partitions into the biofilm coatings at higher concentrations (10–6 to 10–4 M). In contrast, Zn(II) partitions preferentially into the biofilm coating for both surfaces at all Zn concentrations studied (10–7 to 10–4 M). In comparison, the α-Al2O3 (0001) surface has a low affinity for both Pb(II) and Zn(II), and the biofilm coatings are the dominant sink for both ions. These findings suggest that in the presence of S. oneidensis biofilm coatings, α-Al2O3 (0001) is the least reactive surface for Pb(II) and Zn(II) compared to α-Al2O3 (1-102) and α-Fe2O3 (0001). They also show that Zn(II) has a lower affinity than Pb(II) for reactive sites on α-Al2O3 (1-102) and α-Fe2O3 (0001) at [Me(II)] of 10–7 M; at 10–5 M, the bulk of the metal ions partition into the biofilm coatings. At longer exposure times (20-24 h), both Pb(II) and Zn(II

  18. Effect of biofilm coatings at metal-oxide/water interfaces I: Pb(II) and Zn(II) partitioning and speciation at Shewanella oneidensis/metal-oxide/water interfaces

    SciTech Connect

    Wang, Yingge; Gelabert, Alexandre; Michel, F. Marc; Choi, Yongseong; Gescher, Johannes; Ona-Nguema, Georges; Eng, Peter J.; Bargar, John R.; Farges, Francois; Spormann, Alfred M.; Brown, Jr., Gordon E.

    2016-05-30

    Microbial biofilms are often present as coatings on metal-oxide surfaces in natural and industrial environments and may induce significant changes in the partitioning behavior and speciation of aqueous metal ions, which in turn can impact their transport and fate. In this study, long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy was used to measure under in situ conditions the partitioning of aqueous Pb(II) and Zn(II) between multilayer Shewanella oneidensis MR-1 biofilms and highly polished, oriented single-crystal surfaces of α-Al2O3 and α-Fe2O3 as a function of metal-ion concentration and time at pH 6.0. We show that after 3-h exposure time, Pb(II) binds preferentially to the alpha-Al2O3 (1-102) and α-Fe2O3 (0001) surfaces at low Pb concentration ([Pb] = 10–7 M) and then increasingly partitions into the biofilm coatings at higher concentrations (10–6 to 10–4 M). In contrast, Zn(II) partitions preferentially into the biofilm coating for both surfaces at all Zn concentrations studied (10–7 to 10–4 M). In comparison, the α-Al2O3 (0001) surface has a low affinity for both Pb(II) and Zn(II), and the biofilm coatings are the dominant sink for both ions. These findings suggest that in the presence of S. oneidensis biofilm coatings, α-Al2O3 (0001) is the least reactive surface for Pb(II) and Zn(II) compared to α-Al2O3 (1-102) and α-Fe2O3 (0001). They also show that Zn(II) has a lower affinity than Pb(II) for reactive sites on α-Al2O3 (1-102) and α-Fe2O3 (0001) at [Me(II)] of 10–7 M; at 10–5 M, the bulk of the metal ions partition into the biofilm coatings. At longer exposure times (20-24 h), both Pb(II) and Zn(II

  19. Synthesis, spectroscopic, photoluminescence properties and biological evaluation of novel Zn(II) and Al(III) complexes of NOON tetradentate Schiff bases.

    PubMed

    Abdel Aziz, Ayman A; Badr, Ibrahim H A; El-Sayed, Ibrahim S A

    2012-11-01

    Novel mononuclear Zn(II) and Al(III) complexes were synthesized from the reactions of Zn(OAc)(2).2H(2)O and anhydrous AlCl(3) with neutral N2O2 donor tetradentate Schiff bases; N,N'bis(salicylaldehyde)4,5-dimethyl-1,2-phenylenediamine (H(2)L(1)) and N,N'bis(salicylaldehyde)4,5-dichloro-1,2-phenylenediamine (H(2)L(2)). The new complexes were fully characterized by using micro analyses (CHN), FT-IR, (1)H NMR, UV-Vis spectra and thermal analysis. The analytical data have been showed that, the stoichiometry of the complexes is 1:1. Spectroscopic data suggested tetrahedral and square pyramidal geometries for Zn(II) and Al(III) complexes, respectively. The synthesized Zn(II), and Al(III) complexes exhibited intense fluorescence emission in the visible region upon UV-excitation in methylene chloride solution at ambient temperature. This high fluorescence emission was assigned to the strong coordination of the ligands to the small and the highly charged Zn(II) and Al(III) ions. Such strong coordination seems to extend the π-conjugation of the complexes. Thermal analysis measurements indicated that the complexes have good thermal stability. As a potential application the biological activity (e.g., antimicrobial action) of the prepared ligands and complexes was assessed by in-vitro testing of their effect on the growth of various strains of bacteria and fungi.

  20. In vitro and in vivo evaluation of Alexa Fluor 680-bombesin[7-14]NH2 peptide conjugate, a high-affinity fluorescent probe with high selectivity for the gastrin-releasing peptide receptor.

    PubMed

    Ma, Lixin; Yu, Ping; Veerendra, Bhadrasetty; Rold, Tammy L; Retzloff, Lauren; Prasanphanich, Adam; Sieckman, Gary; Hoffman, Timothy J; Volkert, Wynn A; Smith, Charles J

    2007-01-01

    Gastrin-releasing peptide (GRP) receptors are overexpressed on several types of human cancer cells, including breast, prostate, small cell lung, and pancreatic cancers. Bombesin (BBN), a 14-amino acid peptide that is an analogue of human GRP, binds to GRP receptors with very high affinity and specificity. The aim of this study was to develop a new fluorescent probe based on BBN having high tumor uptake and optimal pharmacokinetics for specific targeting and optical imaging of human breast cancer tissue. In this study, solid-phase peptide synthesis was used to produce H(2)N-glycylglycylglycine-BBN[7-14]NH(2) peptide with the following general sequence: H(2)N-G-G-G-Q-W-A-V-G-H-L-M-(NH(2)). This conjugate was purified by reversed-phase high-performance liquid chromatography and characterized by electrospray-ionization mass spectra. The fluorescent probe Alexa Fluor 680-G-G-G-BBN[7-14]NH(2) conjugate was prepared by reaction of Alexa Fluor 680 succinimidyl ester to H(2)N-G-G-G-BBN[7-14]NH(2) in dimethylformamide (DMF). In vitro competitive binding assays, using (125)I-Tyr(4)-BBN as the radiolabeling gold standard, demonstrated an inhibitory concentration 50% value of 7.7 +/- 1.4 nM in human T-47D breast cancer cells. Confocal fluorescence microscopy images of Alexa Fluor 680-G-G-G-BBN[7-14]NH(2) in human T-47D breast cancer cells indicated specific uptake, internalization, and receptor blocking of the fluorescent bioprobe in vitro. In vivo investigations in SCID mice bearing xenografted T-47D breast cancer lesions demonstrated the ability of this new conjugate to specifically target tumor tissue with high selectivity and affinity.

  1. Fluorescent zinc indicators for neurobiology.

    PubMed

    Thompson, R B; Peterson, Dwight; Mahoney, William; Cramer, Michele; Maliwal, Badri P; Suh, Sang Won; Frederickson, Chris; Fierke, Carol; Herman, Petr

    2002-07-30

    Mounting evidence indicates that zinc has multiple roles in cell biology, viz. as a part of metalloenzyme catalytic sites, as a structural component of gene regulatory proteins, and (like calcium) as a free signal ion, particularly in the cortex of the brain. While most Zn(II) in the brain is tightly bound, such that free Zn(II) levels extracellularly and intracellularly are likely to be picomolar, a subset of glutamatergic neurons possess weakly bound zinc in presynaptic boutons which is released at micromolar levels in response to a variety of stimuli. Key to further progress in understanding the multiple roles of zinc will be the availability of fluorescent indicator systems that will permit quantitative determination and imaging of zinc fluxes and levels over a broad concentration range both intracellularly and extracellularly using fluorescence microscopy. Towards that end, we have compared a variety of fluorescent indicators for their sensitivity to Zn(II) and Cu(II), selectivity for Zn(II) in the presence of potential interferents such as Ca(II) or Mg(II), and potential for quantitative imaging. The commercially available probes Fura-2, Mag-Fura-5, Newport Green DCF, and FuraZin-1 were compared with the carbonic anhydrase-based indicator systems for selectivity and sensitivity. In addition, intracellular levels of Zn following excitotoxic insult were determined by single pixel fluorescence lifetime microscopy of Newport Green DCF, and extracellular levels of free zinc following stimulus of rat hippocampal slices were determined ratiometrically with a carbonic anhydrase-based indicator system. These results suggest that zinc ion at high nM to microM levels can be accurately quantitated by FuraZin-1 ratiometrically or by Newport Green DCF by fluorescence lifetime; and at levels down to pM by intensity ratio, lifetime, or polarization using carbonic anhydrase-based systems. Copyright 2002 Elsevier Science B.V.

  2. Adsorption behavior of Zn(II) on calcinated Chinese loess.

    PubMed

    Tang, Xiaowu; Li, Zhenze; Chen, Yunmin

    2009-01-30

    Chinese loess has proven to be effective in removing Zn(II) from aqueous solutions, but the resultant adsorbent-water slurry is difficult to separate. In this paper, the crude loess was calcinated to improve the separation efficiency of slurries in terms of sedimentary rate by increasing the particle sizes of the adsorbent. The sorption capacities of different sorbents, including crude loess, calcinated loess, de-organic crude loess and acid-treated calcinated loess, were obtained and sequenced. The adsorption capacity of the calcinated loess towards Zn(II) was found to be as high as 113.6 mg g(-1). The adsorption isotherms and kinetics of calcinated loess were best-fit with the Freundlich isotherm and the pseudo-second order kinetics, respectively. The thermodynamic analysis revealed that the adsorption was exothermic and spontaneous with a high preference for Zn(II) removal. The adsorption of Zn(II) on calcinated loess implies an ion exchange of the solute with calcite and goethite due to the observed FT-IR and XRD patterns as well as the predicted mean free energies (-11.58 to -9.28 kJ mol(-1) by D-R model). The byproduct of adsorption can be purified and refreshed by using a 0.01 M HCl solution.

  3. High affinity receptor labeling based on basic leucine zipper domain peptides conjugated with pH-sensitive fluorescent dye: Visualization of AMPA-type glutamate receptor endocytosis in living neurons.

    PubMed

    Hayashi, Ayako; Asanuma, Daisuke; Kamiya, Mako; Urano, Yasuteru; Okabe, Shigeo

    2016-01-01

    Techniques to visualize receptor trafficking in living neurons are important, but currently available methods are limited in their labeling efficiency, specificity and reliability. Here we report a method for receptor labeling with a basic leucine zipper domain peptide (ZIP) and a binding cassette specific to ZIP. Receptors are tagged with a ZIP-binding cassette at their extracellular domain. Tagged receptors expressed in cultured cells were labeled with exogenously applied fluorescently labeled ZIP with low background and high affinity. To test if ZIP labeling is useful in monitoring endocytosis and intracellular trafficking, we next conjugated ZIP with a pH-sensitive dye RhP-M (ZIP-RhP-M). ZIP binding to its binding cassette was pH-resistant and RhP-M fluorescence dramatically increased in acidic environment. Thus AMPA-type glutamate receptors (AMPARs) labeled by ZIP-RhP-M can report receptor endocytosis and subsequent intracellular trafficking. Application of ZIP-RhP-M to cultured hippocampal neurons expressing AMPARs tagged with a ZIP-binding cassette resulted in appearance of fluorescent puncta in PSD-95-positive large spines, suggesting local endocytosis and acidification of AMPARs in individual mature spines. This spine pool of AMPARs in acidic environment was distinct from the early endosomes labeled by transferrin uptake. These results suggest that receptor labeling by ZIP-RhP-M is a useful technique for monitoring endocytosis and intracellular trafficking. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'.

  4. Synthesis, characterization, crystal structure, DNA- and HSA-binding studies of a dinuclear Schiff base Zn(II) complex derived from 2-hydroxynaphtaldehyde and 2-picolylamine

    NASA Astrophysics Data System (ADS)

    Kazemi, Zahra; Rudbari, Hadi Amiri; Mirkhani, Valiollah; Sahihi, Mehdi; Moghadam, Majid; Tangestaninejad, Sharam; Mohammadpoor-Baltork, Iraj

    2015-09-01

    A tridentate Schiff base ligand NNO donor (HL: 1-((E)-((pyridin-2-yl)methylimino)methyl)naphthalen-2-ol was synthesized from condensation of 2-hydroxynaphtaldehyde and 2-picolylamine. Zinc complex, Zn2L2(NO3)2, was prepared from reaction of Zn(NO3)2 and HL at ambient temperature. The ligand and complex were characterized by FT-IR, 1H NMR, 13C NMR and elemental analysis (CHN). Furthermore, the structure of dinuclear Zn(II) complex was determined by single crystal X-ray analysis. The complex, Zn2L2(NO3)2, is centrosymmetric dimer in which deprotonated phenolates bridge the two Zn(II) atoms and link the two halves of the dimer. In the structure, Zinc(II) ions have a highly distorted six-coordinate structure bonded to two oxygen atoms from a bidentate nitrate group, the pyridine nitrogen, an amine nitrogen and phenolate oxygens. The interaction of dinuclear Zn(II) complex with fish sperm DNA (FS-DNA) and HSA was investigated under physiological conditions using fluorescence quenching, UV-Vis spectroscopy, molecular dynamics simulation and molecular docking methods. The estimated binding constants for the DNA-complex and HSA-complex were (3.60 ± 0.18) × 104 M-1 and (1.35 ± 0.24) × 104 M-1, respectively. The distance between dinuclear Zn(II) complex and HSA was obtained based on the Förster's theory of non-radiative energy transfer. Molecular docking studies revealed the binding of dinuclear Zn(II) complex to the major groove of FS-DNA and IIA site of protein by formation of hydrogen bond, π-cation and hydrophobic interactions.

  5. Fluorescent detection of apoptotic cells using a family of zinc coordination complexes with selective affinity for membrane surfaces that are enriched with phosphatidylserine.

    SciTech Connect

    Smith, Bradley D.; Lambert, Timothy N.; Lakshmi, C.; Hanshaw, Roger, G.

    2005-03-01

    The appearance of phosphatidylserine on the membrane surface of apoptotic cells (Jurkat, CHO, HeLa) is monitored by using a family of bis(Zn{sup 2+}-2,2{prime}-dipicolylamine) coordination compounds with appended fluorescein or biotin groups as reporter elements. The phosphatidylserine affinity group is also conjugated directly to a CdSe/CdS quantum dot to produce a probe suitable for prolonged observation without photobleaching. Apoptosis can be detected under a wide variety of conditions, including variations in temperature, incubation time, and binding media. Binding of each probe appears to be restricted to the cell membrane exterior, because no staining of organelles or internal membranes is observed.

  6. Enzyme-amplified protein micorarray and a fluidic renewable surface fluorescence immunoassay for botulinum neurotoxin detection using high-affinity recombinant antibodies

    SciTech Connect

    Varnum, Susan M.; Warner, Marvin G.; Dockendorff, Brian P.; Anheier, Norman C.; Lou, Jianlong; Marks, James D.; Smith, Leonard A.; Feldhaus, Michael J.; Grate, Jay W.; Bruckner-Lea, Cindy J.

    2006-06-16

    With the use of high-affinity recombinant monoclonal antibodies against the receptor binding domain of botulinum neurotoxin A (BoNT/A), two separate immunoassay platforms were developed for either the sensitive or the rapid detection of BoNT/A. An enzyme-linked immunosorbent assay (ELISA) microarray was developed for the specific and sensitive detection of BoNT in buffer and clinical fluids. This assay has the sensitivity to detect BoNT in diverse samples down to 14 fM (1.4 pg/mL). Using the recombinant monoclonal antibodies, a renewable surface microcolumn sensor was developed for the rapid detection of BoNT/A in an automated fluidic system. While the ELISA microarray assay, because of its sensitivity, offers an alternative to the mouse bioassay, the renewable surface assay has potential as a rapid screening assay for the analysis of complex environmental samples.

  7. A ryanodine fluorescent derivative reveals the presence of high-affinity ryanodine binding sites in the Golgi complex of rat sympathetic neurons, with possible functional roles in intracellular Ca(2+) signaling.

    PubMed

    Cifuentes, F; González, C E; Fiordelisio, T; Guerrero, G; Lai, F A; Hernández-Cruz, A

    2001-05-01

    The plant alkaloid ryanodine (Ry) is a high-affinity modulator of ryanodine receptor (RyR) Ca(2+) release channels. Although these channels are present in a variety of cell types, their functional role in nerve cells is still puzzling. Here, a monosubstituted fluorescent Ry analogue, B-FL-X Ry, was used to reveal the distribution of RyRs in cultured rat sympathetic neurons. B-FL-X Ry competitively inhibited the binding of [3H]Ry to rabbit skeletal muscle SR membranes, with an IC(50) of 150 nM, compared to 7 nM of unlabeled Ry. Binding of B-FL-X Ry to the cytoplasm of sympathetic neurons is saturable, reversible and of high affinity. The pharmacology of B-FL-X Ry showed marked differences with unlabeled Ry, which are partially explained by its lower affinity: (1) use-dependent reversible inhibition of caffeine-induced intracellular Ca(2+) release; (2) diminished voltage-gated Ca(2+) influx, due to a positive shift in the activation of voltage gated Ca(2+) currents. B-FL-X Ry-stained sympathetic neurons, viewed under confocal microscopy, showed conspicuous labeling of crescent-shaped structures pertaining to the Golgi complex, a conclusion supported by experiments showing co-localization with Golgi-specific fluorescent probes and the breaking up of crescent-shaped staining after treatment with drugs that disassemble Golgi complex. The presence of RyRs to the Golgi could be confirmed with specific anti-RyR(2) antibodies, but evidence of caffeine-induced Ca(2+) release from this organelle could not be obtained using fast confocal microscopy. Rather, an apparent decrease of the cytosolic Ca(2+) signal was detected close to this organelle. In spite of that, short-term incubation with brefeldin A (BFA) suppressed the fast component of caffeine-induced Ca(2+) release, and the Ca(2+) release process lasted longer and appeared less organized. These observations, which suggest a possible role of the Golgi complex in Ca(2+) homeostasis and signaling in nerve cells, could be

  8. Adsorption of aqueous Zn(II) species on synthetic zeolites

    NASA Astrophysics Data System (ADS)

    Badillo-Almaraz, Véronica; Trocellier, Patrick; Dávila-Rangel, Ignacio

    2003-09-01

    To supply a good quality drinkable water tends to become a strategic task in both developed and under development countries in the world due to the number of potential contamination sources. One of the major problems is derived from the presence of heavy toxic metals like zinc or lead resulting from industrial activities. Zeolites are known as very efficient mineral substrates for fixing aqueous ionic species through their wide range of channels present in the crystalline structure and due to their strong surface reactivity. MicroPIXE coupled with microRBS (3.05 MeV 4He + ions) have been used to quantify the incorporation of zinc within two commercial zeolites containing alkali elements (zeolite X and clinoptilolite) in the concentration range of: 0.0002-0.05 M at neutral pH. At the beginning of the interaction between zeolite and Zn(II) solution, the adsorption process exhibits a direct proportionality between the content of zinc fixed on the mineral substrate and the aqueous concentration up to 0.01 M. Beyond this point a saturation effect seems to occur, indicating the strong decrease of available adsorption sites. Sodium or potassium ions are probably exchanged with Zn(II) ions during this process. The compared behaviour of the two zeolites is then discussed in terms of kinetic effects based on ionic radius values. A co-adsorption test carried on with a 50-50% Zn(II) 0.001 M-Pb(II) 0.001 M solution shows that lead does not occupy the same sites as zinc because the content of zinc fixed on the zeolite sample exactly corresponds to the result obtained with a pure 0.001 M Zn(II) solution. All these data clearly showed that zeolite surface reactivity is greatly influenced by the mineral cage-like structure and particularly the presence of pockets, spaces and channels.

  9. Recognition of thymine in DNA bulges by a Zn(II) macrocyclic complex.

    PubMed

    del Mundo, Imee Marie A; Fountain, Matthew A; Morrow, Janet R

    2011-08-14

    A Zn(II) macrocyclic complex with appended quinoline is a bifunctional recognition agent that uses both the Zn(II) center and the pendent aromatic group to bind to thymine in bulges with good selectivity over DNA containing G, C or A bulges. Spectroscopic studies show that the stem containing the bulge stays largely intact in a DNA hairpin with the Zn(II) complex bound to the thymine bulge. This journal is © The Royal Society of Chemistry 2011

  10. Monoligand Zn(II) Complexes:  Ab Initio Benchmark Calculations and Comparison with Density Functional Theory Methodologies.

    PubMed

    Rayón, Víctor M; Valdés, Haydee; Díaz, Natalia; Suárez, Dimas

    2008-02-01

    A systematic theoretical study on several models of Zn(II) complexes has been carried out employing both ab initio correlated wave function and density functional methods. The performance of five different functionals namely PW91, PBE, B3LYP, MPWLYP1M, and TPSS in the prediction of metal-ligand bond distances, binding energies, and proton affinities has been assessed comparing the results to those obtained with the MP2 and CCSD(T) wave function methodologies. Several basis sets ranging from double-ζ up to quintuple-ζ quality have been used, including the recently developed all-electron correlation consistent basis sets for zinc. It is shown that all the tested functionals overestimate both the metal-ligand bond distances and the binding energies, being that the B3LYP and TPSS functionals are the ones that perform the best. An analysis of the metal-ligand interaction energy shows that induction and charge-transfer effects play a prominent role in the bonding of these systems, even for those complexes with the less polarizable ligands. This finding highlights the importance of a correct description of the polarization of the monomers' charge densities by any theoretical method which aims to be applied to the study of Zn(II) complexes.

  11. Adsorption of Zn(II) and Cd(II) ions in batch system by using the Eichhornia crassipes.

    PubMed

    Módenes, A N; Espinoza-Quiñones, F R; Borba, C E; Trigueros, D E G; Lavarda, F L; Abugderah, M M; Kroumov, A D

    2011-01-01

    In this work, the displacement effects on the sorption capacities of zinc and cadmium ions of the Eichornia crassipes-type biosorbent in batch binary system has been studied. Preliminary single metal sorption experiments were carried out. An improvement on the Zn(II) and Cd(II) ions removal was achieved by working at 30 °C temperature and with non-uniform biosorbent grain sizes. A 60 min equilibrium time was achieved for both Zn(II) and Cd(II) ions. Furthermore, it was found that the overall kinetic data were best described by the pseudo second-order kinetic model. Classical multi-component adsorption isotherms have been tested as well as a modified extended Langmuir isotherm model, showing good agreement with the equilibrium binary data. Around 0.65 mequiv./g maximum metal uptake associated with the E. crassipes biosorbent was attained and the E. crassipes biosorbent has shown higher adsorption affinity for the zinc ions than for the cadmium ones in the binary system.

  12. Exceptional sensitivity to the synthetic approach and halogen substituent for Zn(II) coordination assemblies with 5-halonicotinic acids.

    PubMed

    Li, Cheng-Peng; Chen, Jing; Mu, Yu-Hai; Du, Miao

    2015-06-28

    Seven Zn(II) coordination complexes with 5-halonicotinic acids (HL-X, X = F, Cl, or Br) have been synthesized with different synthetic approaches, including layer diffusion or stirring method in an ambient environment and solvothermal synthesis at 100 °C. Assembly of HL-F with Zn(II) under different conditions will yield the same 2D network of [Zn(L-F)2]n (1). Interestingly, three distinct complexes, a 3D framework {[Zn2(L-Cl)4(H2O)](H2O)6}n (2) and two 2D pseudo-polymorphic isomers {[Zn(L-Cl)2](H2O)1.5}n (3) and {[Zn2(L-Cl)4](H2O)}n (4) can be obtained by reacting HL-Cl with Zn(II) under layer diffusion, stirring, and solvothermal conditions, respectively. Furthermore, replacing the -Cl substituent with -Br on the HL-X ligand will also afford three diverse coordination assemblies of 3D {[Zn2(L-Br)4(H2O)](CH3OH)2.5}n (5), mononuclear [Zn(HL-Br)2(H2O)4][L-Br]2 (6), and 2D {[Zn(L-Br)2](H2O)1.15}n (7) depending on the synthetic pathways. Beyond the significant influence of the synthetic approach, which will lead to the formation of various crystalline products, the halogen substitution effect of HL-X ligands on the coordination motifs has also been demonstrated. In addition, thermal stability and fluorescence for these crystalline materials will be presented.

  13. Effect of Cu(II), Cd(II) and Zn(II) on Pb(II) biosorption by algae Gelidium-derived materials.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2008-06-15

    Biosorption of Pb(II), Cu(II), Cd(II) and Zn(II) from binary metal solutions onto the algae Gelidium sesquipedale, an algal industrial waste and a waste-based composite material was investigated at pH 5.3, in a batch system. Binary Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II) solutions have been tested. For the same equilibrium concentrations of both metal ions (1 mmol l(-1)), approximately 66, 85 and 86% of the total uptake capacity of the biosorbents is taken by lead ions in the systems Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II), respectively. Two-metal results were fitted to a discrete and a continuous model, showing the inhibition of the primary metal biosorption by the co-cation. The model parameters suggest that Cd(II) and Zn(II) have the same decreasing effect on the Pb(II) uptake capacity. The uptake of Pb(II) was highly sensitive to the presence of Cu(II). From the discrete model it was possible to obtain the Langmuir affinity constant for Pb(II) biosorption. The presence of the co-cations decreases the apparent affinity of Pb(II). The experimental results were successfully fitted by the continuous model, at different pH values, for each biosorbent. The following sequence for the equilibrium affinity constants was found: Pb>Cu>Cd approximately Zn.

  14. The interaction of native DNA with Zn(II) and Cu(II) complexes of 5-triethyl ammonium methyl salicylidene orto-phenylendiimine.

    PubMed

    Silvestri, Arturo; Barone, Giampaolo; Ruisi, Giuseppe; Anselmo, Daniele; Riela, Serena; Liveri, Vincenzo Turco

    2007-05-01

    The interaction of native calf thymus DNA with the Zn(II) and Cu(II) complexes of 5-triethyl ammonium methyl salicylidene orto-phenylendiimine (ZnL(2+) and CuL(2+)), in 1 mM Tris-HCl aqueous solutions at neutral pH, has been monitored as a function of the metal complex-DNA molar ratio by UV absorption spectrophotometry, circular dichroism (CD) and fluorescence spectroscopy. The results support for an intercalative interaction of both ZnL(2+) and CuL(2+) with DNA, showing CuL(2+) an affinity of approximately 10 times higher than ZnL(2+). In particular, the values of the binding constant, determined by UV spectrophotometric titration, equal to 7.3x10(4) and 1.3x10(6)M(-1), for ZnL(2+) and CuL(2+), respectively, indicate the occurrence of a marked interaction with a binding size of about 0.7 in base pairs. The temperature dependence of the absorbance at 258 nm suggests that both complexes strongly increase the DNA melting temperature (Tm) already at metal complex-DNA molar ratios equal to 0.1. As evidenced by the quenching of the fluorescence of ethidium bromide-DNA solutions in the presence of increasing amounts of metal complex, ZnL(2+) and CuL(2+) are able to displace the ethidium cation intercalated into DNA. A tight ZnL(2+)-DNA and CuL(2+)-DNA binding has been also proven by the appearance, in both metal complex-DNA solutions, of a broad induced CD band in the range 350-450 nm. In the case of the CuL(2+)-DNA system, the shape of the CD spectrum, at high CuL(2+) content, is similar to that observed for psi-DNA solutions. Such result allowed us to hypothesize that CuL(2+) induces the formation of supramolecular aggregates of DNA in aqueous solutions.

  15. Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution

    NASA Astrophysics Data System (ADS)

    Wang, Hou; Yuan, Xingzhong; Wu, Yan; Huang, Huajun; Zeng, Guangming; Liu, Yan; Wang, Xueli; Lin, Ningbo; Qi, Yu

    2013-08-01

    In this study, graphene oxide (GO) was synthesized via modified Hummers’ method, and characterized by scanning electron microscopy (SEM), atomic force microscope (AFM), X-ray diffraction (XRD), and Fourier transform infrared spectrum (FT-IR), X-ray photoelectron spectroscopy (XPS). The adsorption of Zn(II) on GO as a function of pH, adsorbent dosage, foreign ions, contact time, and temperature was investigated using batch technique. Results showed that the suitable pH for Zn(II) removal was about 7.0, and the optimal dosage was 2 mg. The adsorption of Zn(II) onto GO increased sharply within 20 min and obtained equilibrium gradually. Meanwhile, foreign ion and temperature also affected the adsorption performance of GO. The adsorption process was found to be well described by the pseudo-second-order rate model. Equilibrium studies indicated that the data of Zn(II) adsorption followed the Langmuir model. The maximum adsorption capacity for Zn(II) was up to 246 mg/g with a Langmuir adsorption equilibrium constant of 5.7 L/g at 20 °C. The thermodynamic parameters calculated from temperature-dependent sorption isotherms suggested that Zn(II) sorption on GO was an exothermic and spontaneous process in nature. The possibility of Zn(II) recovery was investigated and the result revealed that the maximum Zn(II) recovery yield was achieved with hydrochloric acid.

  16. Computer simulation of Zn(II) speciation and effect of Gd(III) on Zn(II) speciation in human blood plasma.

    PubMed

    Wang, Jinping; Zhang, Haiyuan; Yang, Kuiyue; Niu, Chunji; Ni, Jiazuan

    2003-01-01

    The speciation and distribution of Zn(II) and the effect of Gd(III) on Zn(II) speciation in human blood plasma were studied by computer simulation. The results show that, in normal blood plasma, the most predominant species of Zn(II) are [Zn(HSA)] (58.2%), [Zn(IgG)](20.1%), [Zn(Tf)] (10.4%), ternary complexes of [Zn(Cit)(Cys)] (6.6%) and of [Zn(Cys)(His)H] (1.6%), and the binary complex of [Zn(Cys)2H] (1.2%). When zinc is deficient, the distribution of Zn(II) species is similar to that in normal blood plasma. Then, the distribution changes with increasing zinc(II) total concentration. Overloading Zn(II) is initially mainly bound to human serum albumin (HSA). As the available amount of HSA is exceeded, phosphate metal and carbonate metal species are established. Gd(III) entering human blood plasma predominantly competes for phosphate and carbonate to form precipitate species. However, Zn(II) complexes with phosphate and carbonate are negligible in normal blood plasma, so Gd(III) only have a little effect on zinc(II) species in human blood plasma at a concentration above 1.0 x 10(-4) M.

  17. Fluorescent derivatives of nucleotides. Metal ion interactions and pH dependency.

    PubMed Central

    Vanderkooi, J M; Weiss, C J; Woodrow, G V

    1979-01-01

    The fluorescence parameters of ethenoadenosine derivatives are influenced by metal cations and pH, as summarized here. The pH profile of ethenoadenosine determined by fluorescence intensity gives a normal titration curve and is not affected by ionic strength. In contrast, the pH titration curves of etheno-ATP, etheno ADP, and etheno AMP depend upon ionic strength. At high ionic strength normal curves are obtained, whereas at low ionic strength anomalies are obtained; this suggests that the phosphates can interact with the ring, possibly by hydrogen binding to the ring nitrogens. The room temperature fluorescence of ethenoadenosine occurs from the base form, although excitation of either the acid or base forms can contribute to the emission. This result can be explained if the excited state pK is lower than the ground state pK, and if deprotonation occurs within the time scale of the excited state. At low pH values the fluorescence lifetime of the base form is dependent upon the buffer concentration, indicating that the reverse reaction, protonation, occurs. The affinity constants for the binding of metals to the ethenoadenosine phosphates resemble those for the corresponding adenosine phosphates. Ni(II) and Co(II) are more effective than Mn(II) in quenching the fluorescence of ethenoadenosine phosphates; this result is predicted by Förster's theory for energy transfer based upon the overlap between donor emission spectrum and acceptor absorption spectrum. The diamagnetic ions Mg(II), Ca(II), and Zn(II) do not appear to affect the fluorescence of the ethenoadenosine phosphates directly, but rather to affect the conformation of the molecule, thereby affecting the quantum yield. PMID:45395

  18. Syntheses, structures and properties of Zn(II) and Cu(II) complexes based on N2-2-methylenepyridinyl 1,2,3-triazole ligand

    NASA Astrophysics Data System (ADS)

    Chen, Yunfeng; Wu, Jun; Ma, Shan; Zhou, Shilei; Meng, Xianggao; Jia, Lihui; Pan, Zhiquan

    2015-06-01

    Four new Zn(II) and Cu(II) coordinated polymers ([ZnL2N3]ClO4 (1), [Cu2L2(CH3CN)]Cl4 (2) [CuL](NO3)2 (3), [Cu(H2O)L](SO4) (4) L = 2-((4-phenyl-2H-1,2,3-triazol-2-yl)methyl) pyridine (ptmp)) have been reported. All the compounds have been characterized by IR spectrum, elemental analyses and X-ray crystallography diffraction. Single-crystal X-ray diffraction analyses show that one-dimensional polymers are formed in these four complexes. Chain-like structures are formed in complex 1, 2 and 3, which are connected by azide, chloride and nitrate anions, respectively. In complex 4, one-dimensional left-handed polymer is formed by a μ2-SO4 bridge. The fluorescent and electrochemical properties of these four complexes were investigated. It was found that these three Cu(II) complexes displayed a quenching of fluorescence, while Zn(II) complex exhibited a clear enhanced fluorescence.

  19. Impacts of aqueous Mn(II) on the sorption of Zn(II) by hexagonal birnessite.

    PubMed

    Lefkowitz, Joshua P; Elzinga, Evert J

    2015-04-21

    We used a combination of batch studies and spectroscopic analyses to assess the impacts of aqueous Mn(II) on the solubility and speciation of Zn(II) in anoxic suspensions of hexagonal birnessite at pH 6.5 and 7.5. Introduction of aqueous Mn(II) into pre-equilibrated Zn(II)-birnessite suspensions leads to desorption of Zn(II) at pH 6.5, but enhances Zn(II) sorption at pH 7.5. XAS results show that Zn(II) adsorbs as tetrahedral and octahedral triple-corner-sharing complexes at layer vacancy sites when reacted with birnessite in the absence of Mn(II). Addition of aqueous Mn(II) causes no discernible change in Zn(II) surface speciation at pH 6.5, but triggers conversion of adsorbed Zn(II) into spinel Zn(II)1-xMn(II)xMn(III)2O4 precipitates at pH 7.5. This conversion is driven by electron transfer from adsorbed Mn(II) to structural Mn(IV) generating Mn(III) surface species that coprecipitate with Zn(II) and Mn(II). Our results demonstrate substantial production of these reactive Mn(III) surface species within 30 min of contact of the birnessite substrate with aqueous Mn(II). Their importance as a control on the sorption and redox reactivity of Mn-oxides toward Zn(II) and other trace metal(loid)s in environments undergoing biogeochemical manganese redox cycling requires further study.

  20. Crystal structures and thermodynamics/kinetics of Zn(II) coordination polymers with helical chains

    NASA Astrophysics Data System (ADS)

    He, Tian; Yue, Ke-Fen; Zhao, Yi-xing; Chen, San-Ping; Zhou, Chun-sheng; Yan, Ni

    2016-07-01

    Solvothermal reactions of Zn(II) acetates and four V-shaped carboxylates ligands in the presence of 1,4-Bis(2-methyl-imidazol-1-yl)butane afforded four interesting Zn(II) coordination polymers with helical chains, namely, {[Zn(bib)(atibdc)]·2H2O}n (1), {[Zn(bib)(atbip)]·H2O}n (2), [Zn(bib)(2,2‧-tda)]}n (3) and {[Zn(bib)(5-tbipa)]·EtOH}n (4), (H2atibdc=5-amino-2,4,6-triiodoisophthalic acid, H2atbip=5-amino-2,4,6-tribromoisophthalic acid, 2,2‧-H2tad=2,2‧-thiodiacetic acid, 5-H2tbipa=5-tert-butyl-isophthalic acid). 1 reveals a 3D chiral framework with three kinds of helical chains along a, b and c axis. 2 shows a 2D step-type chiral framework with right-handed helical chains. 3 displays a wavelike 2D layer network possessing alternate left- and right-handed helical chains. 4 presents a four-connected 3D framework with zigzag and meso-helical chains. The different spacers and substituent group of carboxylic acid ligands may lead to the diverse network structures of 1-4. The fluorescent properties of complexes 1-4 were studied. In addition, the thermal decompositions properties of 1-4 were investigated by simultaneous TG/DTG-DSC technique. The apparent activation energy E and the pre-exponential factor (A) of skeleton collapse for the complexes 1-4 are calculated by the integral Kissinger's method and Ozawa-Doyle's method. The activation energy E (E1=209.658 kJ·mol-1, E2=250.037 kJ mol-1, E3=225.300 kJ mol-1, E4=186.529 kJ·mol-1) demonstrates that the reaction rate of the melting decomposition is slow. The thermodynamic parameters (ΔH‡, ΔG‡ and ΔS‡) at the peak temperatures of the DTG curves were also calculated. ΔG‡>0 indicates that the skeleton collapse is not spontaneous. ΔHd>0 suggests that the skeleton collapse is endothermic, corresponding to the intense endothermic peak of the DSC curve. The structural stability could be illustrated from the point of thermodynamics and kinetics.

  1. Synthesis, molecular structure, biological properties and molecular docking studies on Mn(II), Co(II) and Zn(II) complexes containing bipyridine-azide ligands.

    PubMed

    Thamilarasan, Vijayan; Jayamani, Arumugam; Sengottuvelan, Nallathambi

    2015-01-07

    Metal complexes of the type Mn(bpy)2(N3)2 (1), Co(bpy)2(N3)2·3H2O (2) and Zn2(bpy)2(N3)4 (3) (Where bpy = 2,2-bipyridine) have been synthesized and characterized by elemental analysis and spectral (FT-IR, UV-vis) studies. The structure of complexes (1-3) have been determined by single crystal X-ray diffraction studies and the configuration of ligand-coordinated metal(II) ion was well described as distorted octahedral coordination geometry for Mn(II), Co(II) and distorted square pyramidal geometry for Zn(II) complexes. DNA binding interaction of these complexes (1-3) were investigated by UV-vis absorption, fluorescence circular dichroism spectral and molecular docking studies. The intrinsic binding constants Kb of complexes 1, 2 and 3 with CT-DNA obtained from UV-vis absorption studies were 8.37 × 10(4), 2.23 × 10(5) and 5.52 × 10(4) M(-1) respectively. The results indicated that the three complexes are able to bind to DNA with different binding affinity, in the order 2 > 1 > 3. Complexes (1-3) exhibit a good binding propensity to bovine serum albumin (BSA) proteins having relatively high binding constant values. Gel electrophoresis assay demonstrated the ability of the complexes 1-3 promote the cleavage ability of the pBR322 plasmid DNA in the presence of the reducing agent 3-mercaptopropionic acid (MPA) but with different cleavage mechanisms: the complex 3 cleaves DNA via hydrolytic pathway (T4 DNA ligase assay), while the DNA cleavage by complexes 1 and 2 follows oxidative pathway. The chemical nuclease activity follows the order: 2 > 1 > 3. The effects of various activators were also investigated and the nuclease activity efficacy followed the order MPA > GSH > H2O2 > Asc. The cytotoxicity studies of complexes 1-3 were tested in vitro on breast cancer cell line (MCF-7) and they found to be active.

  2. Crystal structures and thermodynamics/kinetics of Zn(II) coordination polymers with helical chains

    SciTech Connect

    He, Tian; Yue, Ke-Fen; Zhao, Yi-xing; Chen, San-Ping; Zhou, Chun-sheng; Yan, Ni

    2016-07-15

    Solvothermal reactions of Zn(II) acetates and four V-shaped carboxylates ligands in the presence of 1,4-Bis(2-methyl-imidazol-1-yl)butane afforded four interesting Zn(II) coordination polymers with helical chains, namely, {[Zn(bib)(atibdc)]·2H_2O}{sub n} (1), {[Zn(bib)(atbip)]·H_2O}{sub n} (2), {[Zn(bib)(2,2′-tda)]}{sub n} (3) and {[Zn(bib)(5-tbipa)]·EtOH}{sub n} (4), (H{sub 2}atibdc=5-amino-2,4,6-triiodoisophthalic acid, H{sub 2}atbip=5-amino-2,4,6-tribromoisophthalic acid, 2,2′-H{sub 2}tad=2,2′-thiodiacetic acid, 5-H{sub 2}tbipa=5-tert-butyl-isophthalic acid). 1 reveals a 3D chiral framework with three kinds of helical chains along a, b and c axis. 2 shows a 2D step-type chiral framework with right-handed helical chains. 3 displays a wavelike 2D layer network possessing alternate left- and right-handed helical chains. 4 presents a four-connected 3D framework with zigzag and meso-helical chains. The different spacers and substituent group of carboxylic acid ligands may lead to the diverse network structures of 1–4. The fluorescent properties of complexes 1−4 were studied. In addition, the thermal decompositions properties of 1–4 were investigated by simultaneous TG/DTG–DSC technique. The apparent activation energy E and the pre-exponential factor (A) of skeleton collapse for the complexes 1–4 are calculated by the integral Kissinger's method and Ozawa–Doyle's method. The activation energy E (E{sub 1}=209.658 kJ·mol{sup −1}, E{sub 2}=250.037 kJ mol{sup −1}, E{sub 3}=225.300 kJ mol{sup −1}, E{sub 4}=186.529 kJ·mol{sup −1}) demonstrates that the reaction rate of the melting decomposition is slow. The thermodynamic parameters (ΔH{sup ‡}, ΔG{sup ‡} and ΔS{sup ‡}) at the peak temperatures of the DTG curves were also calculated. ΔG{sup ‡}>0 indicates that the skeleton collapse is not spontaneous. ΔH{sub d}>0 suggests that the skeleton collapse is endothermic, corresponding to the intense endothermic peak of the DSC curve. The

  3. Two-photon absorption of Zn(II) octupolar molecules.

    PubMed

    Mazzucato, Simone; Fortunati, Ilaria; Scolaro, Sara; Zerbetto, Michele; Ferrante, Camilla; Signorini, Raffaella; Pedron, Danilo; Bozio, Renato; Locatelli, Danika; Righetto, Stefania; Roberto, Dominique; Ugo, Renato; Abbotto, Alessandro; Archetti, Graziano; Beverina, Luca; Ghezzi, Sergio

    2007-06-21

    In this work we present an investigation of the non-linear optical (NLO) properties of two octupolar chromophores: [Zn(4,4'-bis(dibutylaminostyryl)-[2,2']-bipyridine)(3)](2+) and [Zn(4,4'-bis((E)-2-(N-(TEG)pyrrol-2-yl)vinyl)-[2,2']-bipyridine)(3)](2+) with Zn(ii) as the coordination center, using two-photon emission technique (TPE) in fs-pulse temporal regime. Compared to the free ligands, our results do not show a net increase in the two-photon absorption (TPA) cross-section for the octupolar complexes, once normalized to the ligand unit. This is in partial disagreement with a previous theoretical study investigating the first molecule where a significant increase of the TPA cross-section was predicted (X. J. Liu, et al., J. Chem. Phys., 2004, 120, 11 493).

  4. Calcium ion gradients modulate the zinc affinity and antibacterial activity of human calprotectin.

    PubMed

    Brophy, Megan Brunjes; Hayden, Joshua A; Nolan, Elizabeth M

    2012-10-31

    Calprotectin (CP) is an antimicrobial protein produced and released by neutrophils that inhibits the growth of pathogenic microorganisms by sequestering essential metal nutrients in the extracellular space. In this work, spectroscopic and thermodynamic metal-binding studies are presented to delineate the zinc-binding properties of CP. Unique optical absorption and EPR spectroscopic signatures for the interfacial His(3)Asp and His(4) sites of human calprotectin are identified by using Co(II) as a spectroscopic probe. Zinc competition titrations employing chromophoric Zn(II) indicators provide a 2:1 Zn(II):CP stoichiometry, confirm that the His(3)Asp and His(4) sites of CP coordinate Zn(II), and reveal that the Zn(II) affinity of both sites is calcium-dependent. The calcium-insensitive Zn(II) competitor ZP4 affords dissociation constants of K(d1) = 133 ± 58 pM and K(d2) = 185 ± 219 nM for CP in the absence of Ca(II). These values decrease to K(d1) ≤ 10 pM and K(d2) ≤ 240 pM in the presence of excess Ca(II). The K(d1) and K(d2) values are assigned to the His(3)Asp and His(4) sites, respectively. In vitro antibacterial activity assays indicate that the metal-binding sites and Ca(II)-replete conditions are required for CP to inhibit the growth of both Gram-negative and -positive bacteria. Taken together, these data provide a working model whereby calprotectin responds to physiological Ca(II) gradients to become a potent Zn(II) chelator in the extracellular space.

  5. Removal of Zn(II) from simulated wastewater using an algal biofilm.

    PubMed

    Liu, Cuixia; Hu, Zhiquan; Zuo, Jiaolan; Hu, Mian; Xiao, Bo

    2014-01-01

    An algal biofilm was employed as a novel kind of adsorbing material to remove Zn(II) from simulated wastewater. The algal biofilm system formed by Oedogonium sp. was operated in a dynamic mode for a period of 14 days with an initial Zn(II) concentration of 10 mg/L. The average effluent Zn(II) concentration was 0.247 mg/L and the average removal efficiency reached 97.7%. The effects of Zn(II) on key algal physiological and biochemical indices such as chlorophyll content, nitrate reductase and superoxide dismutase activity, extracellular polysaccharides (EPS), and soluble protein levels were studied. Our results showed that the algal biofilm could adapt to the simulated wastewater containing Zn(II). Scanning electron microscope and Fourier transform infrared spectroscopy analyses of algal biofilm revealed the presence of carboxyl, amino, and sulphonate groups, which were the main functional groups of EPS and proteins, and these were likely responsible for biosorption of the Zn(II) ions.

  6. Design and synthesis of a novel fluorescent protein probe for easy and rapid electrophoretic gel staining by using a commonly available UV-based fluorescent imaging system.

    PubMed

    Suzuki, Yoshio; Takagi, Nobuyuki; Sano, Takuma; Chimuro, Tomoyuki

    2013-09-01

    A new fluorescent molecular probe, methyl 3-(3,5-bis((bis(pyridin-2-ylmethyl)amino)-methyl)-4-hydroxyphenyl)-2-(5-(dimethylamino)naphthalene-1-sulfonamido) propanoate, dizinc(II) chloride salt (Dansyl-1-Zn(II)), which possesses Zn(II) complexes and a dansyl group, was designed and synthesized to enable the detection of proteins in solution and in high-throughput electrophoresis by using a UV-based detection system. Dansyl-1-Zn(II) exhibited weak fluorescence in the absence of proteins and strong green fluorescence at approximately 510 nm in the presence of BSA upon irradiation with light at a wavelength of 345 nm. Compared with conventional protocols for in-gel SDS-PAGE protein staining (e.g. silver staining, SYPRO Ruby, and Oriole), the operating times of which range from 90 min to overnight, Dansyl-1-Zn(II) allowed 1-step protein staining (SDS-PAGE →Staining →Detection) and shortened the operating time (35 min) with high sensitivity (LOD: 1 ng or less) under 312-nm or 365-nm light excitation with orange or red emission filters, respectively. Moreover, Dansyl-1-Zn(II) was successfully applied to protein identification by MS via in-gel tryptic digestion, Western blotting, and Native-PAGE. Accordingly, Dansyl-1-Zn(II) may facilitate highly sensitive and high-throughput protein detection, and it may be widely applicable as a convenient tool in various scientific and medical fields. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Synthesis, spectral and third-order nonlinear optical properties of terpyridine Zn(II) complexes based on carbazole derivative with polyether group

    NASA Astrophysics Data System (ADS)

    Kong, Ming; Liu, Yanqiu; Wang, Hui; Luo, Junshan; Li, Dandan; Zhang, Shengyi; Li, Shengli; Wu, Jieying; Tian, Yupeng

    2015-01-01

    Four novel Zn(II) terpyridine complexes (ZnLCl2, ZnLBr2, ZnLI2, ZnL(SCN)2) based on carbazole derivative group were designed, synthesized and fully characterized. Their photophysical properties including absorption and one-photon excited fluorescence, two-photon absorption (TPA) and optical power limiting (OPL) were further investigated systematically and interpreted on the basis of theoretical calculations (TD-DFT). The influences of different solvents on the absorption and One-Photon Excited Fluorescence (OPEF) spectral behavior, quantum yields and the lifetime of the chromophores have been investigated in detail. The third-order nonlinear optical (NLO) properties were investigated by open/closed aperture Z-scan measurements using femtosecond pulse laser in the range from 680 to 1080 nm. These results revealed that ZnLCl2 and ZnLBr2 exhibited strong two-photon absorption and ZnLCl2 showed superior optical power limiting property.

  8. Competitive adsorption of Cd(II), Zn(II) and Ni(II) from their binary and ternary acidic systems using tourmaline.

    PubMed

    Liu, Haibin; Wang, Cuiping; Liu, Jingting; Wang, Baolin; Sun, Hongwen

    2013-10-15

    The adsorption of Cd(II), Zn(II) and Ni(II) from aqueous solutions in binary and ternary component systems by tourmaline was investigated. Kinetic data were accurately fitted to pseudo-second order and internal diffusion models, which indicated that the adsorption of heavy metals occurred on the interior surface of the sorbent and internal diffusion was the controlling mechanism during heavy metal ion adsorption but was not the only rate-controlling step. Additionally, tourmaline had a very good adsorption capacity for Cd(II), Zn(II) and Ni(II) in multi-component aqueous solutions at strongly acidic pH values (in contrast to industrial wastewater pH values). This good adsorption capacity is attributed to the fact that tourmaline can automatically adjust the pH values of acidic (except pH 2.0 and 3.0), neutral or alkaline aqueous solutions to 6.0. Adsorption isotherms and separation factors showed that tourmaline displays a high selectivity toward one metal in a two-component or a three-component system with an affinity order of Cd(II) > Zn(II) > Ni(II). Thermodynamic parameters indicated that heavy metal adsorption was feasible, spontaneous, and endothermic. Therefore, tourmaline should be explored as a material for removing pollutants from the strongly acidic wastewater. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  9. Facile synthesis of 2D Zn(II) coordination polymer and its crystal structure, selective removal of methylene blue and molecular simulations

    NASA Astrophysics Data System (ADS)

    Sezer, Güneş Günay; Yeşilel, Okan Zafer; Şahin, Onur; Arslanoğlu, Hasan; Erucar, İlknur

    2017-09-01

    A new coordination polymer {[Zn(μ3-ppda)(H2O)(μ-bpa)Zn(μ-ppda)(μ-bpa)]·4H2O}n (1) (ppda = 1,4-phenylenediacetate, bpa = 1,2-bis(4-pyridyl)ethane) has been synthesized by microwave-assisted reaction and characterized by elemental analysis, IR spectroscopy, single-crystal and powder X-ray diffractions. The asymmetric unit of 1 consists of two Zn(II) ions, two bpa ligands, two ppda ligands, one coordinated and four non-coordinated water molecules. In 1, ppda2- anions are linked the adjacent Zn(II) centers to generate 1D double-stranded chains. These chains are connected into 2D sheets by the bridging bpa ligands. Atomically detailed modeling was performed to compute single and binary component adsorption isotherms of H2, CO2, CH4 and N2 in complex 1. Results showed that 1 exhibits a high adsorption selectivity towards CO2 due to its high affinity for CO2. Results of this study will be helpful to guide the microwave-assisted reaction of coordination polymers to design promising adsorbents for gas storage and gas separation applications. The luminescent property of 1 and the selective removal of dyes in 1 have been also discussed. Results showed that 1 can be a potential candidate for luminescence applications and can selectively adsorb methylene blue (MB) dye molecules.

  10. [Biosorption of Cd(II), Cu(II), Pb(II) and Zn(II) in aqueous solutions by fruiting bodies of macrofungi (Auricularia polytricha and Tremella fuciformis)].

    PubMed

    Mo, Yu; Pan, Rong; Huang, Hai-wei; Cao, Li-xiang; Zhang, Ren-duo

    2010-07-01

    Batch experiments were conducted to study the ability of fruiting bodies of Auricularia polytricha and Tremella fuciformis to adsorb Cd(II), Cu(II), Pb(II) and Zn(II) from aqueous solutions, including biosorption ability of the biomass to remove heavy metals from solutions with different concentrations, kinetics of adsorption, influence of co-cations, and biosorption affinity in multi-metalsystem. Results showed that in the solutions with individual metal, the maximum biosorption amounts of Cd(II), Cu(II), Pb(II), Zn(II) by A. polytricha were 18.91, 18.69, 20.33, 12.42 mg x g(-1), respectively, and the highest removal rates for all cases were more than 85%. The maximum biosorption amounts of Cd(II), Cu(II), Pb(II), Zn(II) by T. fuciformis were 19.98, 20.15, 19.16, 16.41 mg x g(-1), respectively, and highest removal rates for all cases were more than 75%. In the solutions with initial concentrations of 10, 50 and 100 mg x L(-1), the biosorption amounts increased but the removal rates decreased as the initial concentrations increasing. The pseudo-second-order reaction model described adsorption kinetics of heavy metal ions by fruiting bodies of A. polytricha and T. fuciformis better than the pseudo-first-order reaction model. In the solutions with multi metals, the biosorption amounts of heavy metals by two biosorbent were in the order of Ph(II) > Cd(II) > Cu(II) > Zn(II). The ions with more negative charges were preferential to be sorbed. The biosorption ability of A. polytricha was inhibited in multi-metal solutions. In multi-metal solutions, T. fuciformis sorbed a higher amount of Pb(II) but lower amounts of other three ions than that in the individual metal solutions. The results indicated that both fruiting bodies of A. polytricha and T. fuciformis were potential biosorbents.

  11. Isolation and spectroscopic characterization of Zn(II), Cu(II), and Pd(II) complexes of 1,3,4-thiadiazole-derived ligand

    NASA Astrophysics Data System (ADS)

    Karcz, Dariusz; Matwijczuk, Arkadiusz; Boroń, Bożena; Creaven, Bernadette; Fiedor, Leszek; Niewiadomy, Andrzej; Gagoś, Mariusz

    2017-01-01

    A series of complexes incorporating Zn(II), Cu(II), and Pd(II) ions, and 4-(5-heptyl-1,3,4-thiadiazol-2-yl)benzene-1,3-diol (L1) as model ligand, was synthesized in order to examine the nature of potential interactions between biologically active ligands, 1,3,4-thiadiazoles and metal ions with proven biological relevance. The structures of the compounds isolated were characterized using a number of spectroscopic methods including IR, Uv-vis, AAS, steady state and time-resolved fluorescence (TRF). The results obtained suggest that the L1-Zn(II) and L1-Pd(II) complexes consist of one molecule of L1 and one acetate ion acting as ligands, while the L1-Cu(II) complex adapts a 2:1 (L1: metal) stoichiometry. The coordination of L1 to metal ions occurs most likely via one of the deprotonated hydroxyl groups of the resorcinyl moiety and one of the N atoms of the thiadiazole heterocycle.

  12. Light-induced oxidation of the telomeric G4 DNA in complex with Zn(II) tetracarboxymethyl porphyrin

    PubMed Central

    Beniaminov, Artemy D.; Novikov, Roman A.; Mamaeva, Olga K.; Mitkevich, Vladimir A.; Smirnov, Igor P.; Livshits, Mikhail A.; Shchyolkina, Anna K.; Kaluzhny, Dmitry N.

    2016-01-01

    Structure-specific ligands are convenient tools for the recognition, targeting or probing of non-canonical DNA structures. Porphyrin derivatives exhibit a preference for interaction with G-quadruplex (G4) structures over canonical duplex DNA and are able to cause photoinducible damage to nucleic acids. Here, we show that Zn(II) 5,10,15,20-tetrakis(N-carboxymethyl-4-pyridinium)porphyrin (ZnP1) interacts with different conformations of the telomeric sequence d(TAGGG(TTAGGG)3) at submicromolar concentrations without any detectible disturbance of the particular fold. Among different folds, potassium (3+1) hybrid G4-structure. reveal the highest affinity to ZnP1. The pattern of guanine oxidation is specific for each telomeric DNA conformation and may serve as an additional tool for probing the G4 topology. The potassium (3+1) and parallel G4 conformations are more susceptible to light-induced oxidation than the sodium G4 conformation or double helix of the telomeric DNA. The major products of the guanine modifications are spiroiminodihydantoin (Sp) and 8-oxoguanine (8-oxoG). ZnP1-induced oxidation of guanines results in the structural rearrangement of parallel and (3+1) G4 conformations yielding an antiparallel-like G4 conformation. The mechanism of the observed light-induced conformational changes is discussed. PMID:27915287

  13. Light-induced oxidation of the telomeric G4 DNA in complex with Zn(II) tetracarboxymethyl porphyrin.

    PubMed

    Beniaminov, Artemy D; Novikov, Roman A; Mamaeva, Olga K; Mitkevich, Vladimir A; Smirnov, Igor P; Livshits, Mikhail A; Shchyolkina, Anna K; Kaluzhny, Dmitry N

    2016-12-01

    Structure-specific ligands are convenient tools for the recognition, targeting or probing of non-canonical DNA structures. Porphyrin derivatives exhibit a preference for interaction with G-quadruplex (G4) structures over canonical duplex DNA and are able to cause photoinducible damage to nucleic acids. Here, we show that Zn(II) 5,10,15,20-tetrakis(N-carboxymethyl-4-pyridinium)porphyrin ( ZNP1: ) interacts with different conformations of the telomeric sequence d(TAGGG(TTAGGG)3) at submicromolar concentrations without any detectible disturbance of the particular fold. Among different folds, potassium (3+1) hybrid G4-structure. reveal the highest affinity to ZNP1: The pattern of guanine oxidation is specific for each telomeric DNA conformation and may serve as an additional tool for probing the G4 topology. The potassium (3+1) and parallel G4 conformations are more susceptible to light-induced oxidation than the sodium G4 conformation or double helix of the telomeric DNA. The major products of the guanine modifications are spiroiminodihydantoin (Sp) and 8-oxoguanine (8-oxoG). ZNP1: -induced oxidation of guanines results in the structural rearrangement of parallel and (3+1) G4 conformations yielding an antiparallel-like G4 conformation. The mechanism of the observed light-induced conformational changes is discussed.

  14. Dihydroorotase from Escherichia coli. Substitution of Co(II) for the active site Zn(II).

    PubMed

    Brown, D C; Collins, K D

    1991-01-25

    Treatment of Escherichia coli dihydroorotase (a homodimer of subunit molecular weight 38,729) containing only the 1 active site Zn(II) ion per subunit with the sulfhydryl reagent N-(ethyl)-maleimide (NEM) blocks the two external Zn(II) sites per subunit and dramatically lessens the precipitation caused by high concentrations of Zn(II); stabilizes the enzyme partially against air oxidation and dilution inactivation; makes the active site Zn(II) easier to remove; and lowers Km and increases kcat. Treatment of NEM-blocked dihydroorotase ((NEM)dihydroorotase) with the chelator 2,6-pyridinedicarboxylic acid at pH 5.0 in the absence of oxygen and trace metal ions removes the active site Zn(II) with a half-life of 15 min, allowing the production of milligram amounts of moderately stable apo-(NEM)dihydroorotase in about 80% yield. Treatment of apo-(NEM)dihydroorotase with Co(II) at pH 7.0 produces (NEM)dihydroorotase completely substituted at the active site with Co(II) in 100% yield: analysis gives 0.95-1.1 g atoms of Co(II) per active site and 0.03-0.05 g atoms of Zn(II) per active site. This Co(II)-(NEM)dihydroorotase is hyperactive at pH 8. The electronic absorption spectrum of Co(II)-(NEM)dihydroorotase at pH 6.5 implicates an active site thiol group as a ligand to the metal ion. The spectrum is inconsistent with tetrahedral coordination of the active site metal ion and is most consistent with a pentacoordinate structure.

  15. Adsorption and Precipitation of Aqueous Zn(II) on Hematite Nano- and Microparticles

    SciTech Connect

    Ha, Juyong; Farges, Francois; Brown, Gordon E., Jr.; /SLAC, SSRL

    2006-12-13

    As part of a study of the effect of particle size on reactivity of hematite to aqueous metal ions, the sorption of Zn(II) on hematite nanoparticles and microparticles was examined over a wide range of Zn(II) concentrations using Zn K-edge EXAFS. When reacted with nanoparticles at pH 5.5 and low Zn(II) sorption densities (0.04 {le} {Lambda} < 2.76 imol/m{sup 2}), Zn(II) formed five-coordinated or a mixture of four- and six-coordinated surface complexes with an average Zn-O distance of 2.04({+-}0.02){angstrom}. At pH 5.5 and high Zn(II) sorption densities (2.76 {ge} {Lambda} {le} 3.70 mol/m{sup 2}), formation of surface precipitates is suggested based on the presence of second-shell Zn and multiple scattering features in the Fourier transform (FT) of the EXAFS spectra. EXAFS fitting of these high {Lambda} samples yielded an average first-shell Zn-O distance of 2.10({+-}0.02){angstrom}, with second-shell Zn-Fe and Zn-Zn distances of 3.23({+-}0.03){angstrom} and 3.31({+-}0.03){angstrom}, respectively. Qualitative comparison between the EXAFS spectra of these sorption samples and that of amorphous zinc hydroxide and Zn-bearing hydrotalcite indicates the development of surface precipitates with increasing {Lambda}. EXAFS spectra of Zn(II) sorbed on hematite microparticles under similar experimental conditions showed no evidence for surface precipitates even at the highest Zn surface coverage ({Lambda} = 4 {micro}mol/m{sup 2}). These results indicate that reactivities of hematite nanoparticles and macroparticles differ with respect to Zn(II)aq, depending on Zn(II) sorption density. We suggest that the degree of hematite crystallinity affects the reactivity of hematite surfaces toward Zn(II)aq and the formation of the Zn(II) surface complexes.

  16. 8-aminoquinoline functionalized silica nanoparticles: a fluorescent nanosensor for detection of divalent zinc in aqueous and in yeast cell suspension.

    PubMed

    Rastogi, Shiva K; Pal, Parul; Aston, D Eric; Bitterwolf, Thomas E; Branen, A Larry

    2011-05-01

    Zinc is one of the most important transition metal of physiological importance, existing primarily as a divalent cation. A number of sensors have been developed for Zn(II) detection. Here, we present a novel fluorescent nanosensor for Zn(II) detection using a derivative of 8-aminoquinoline (N-(quinolin-8-yl)-2-(3 (triethoxysilyl)propylamino)acetamide (QTEPA) grafted on silica nanoparticles (SiNPs). These functionalized SiNPs were used to demonstrate specific detection of Zn(II) in tris-HCl buffer (pH 7.22), in yeast cell (Saccharomyces cerevisiae) suspension, and in tap water. The silane QTEPA, SiNPs and final product were characterized using solution and solid state nuclear magnetic resonance, Fourier transform infrared, ultraviolet-visible absorption spectroscopy, transmission electron microscopy, elemental analysis, thermogravimetric techniques, and fluorescence spectroscopy. The nanosensor shows almost 2.8-fold fluorescence emission enhancement and about 55 nm red-shift upon excitation with 330 ± 5 nm wavelength in presence of 1 μM Zn(II) ions in tris-HCl (pH 7.22). The presence of other metal ions has no observable effect on the sensitivity and selectivity of nanosensor. This sensor selectively detects Zn(II) ions with submicromolar detection to a limit of 0.1 μM. The sensor shows good applicability in the determination of Zn(II) in tris-HCl buffer and yeast cell environment. Further, it shows enhancement in fluorescence intensity in tap water samples.

  17. Affine projective Osserman structures

    NASA Astrophysics Data System (ADS)

    Gilkey, P.; Nikčević, S.

    2013-08-01

    By considering the projectivized spectrum of the Jacobi operator, we introduce the concept of projective Osserman manifold in both the affine and in the pseudo-Riemannian settings. If M is an affine projective Osserman manifold, then the deformed Riemannian extension metric on the cotangent bundle is both spacelike and timelike projective Osserman. Since any rank-1-symmetric space is affine projective Osserman, this provides additional information concerning the cotangent bundle of a rank-1 Riemannian symmetric space with the deformed Riemannian extension metric. We construct other examples of affine projective Osserman manifolds where the Ricci tensor is not symmetric and thus the connection in question is not the Levi-Civita connection of any metric. If the dimension is odd, we use methods of algebraic topology to show the Jacobi operator of an affine projective Osserman manifold has only one non-zero eigenvalue and that eigenvalue is real.

  18. Affinity in electrophoresis.

    PubMed

    Heegaard, Niels H H

    2009-06-01

    The journal Electrophoresis has greatly influenced my approaches to biomolecular affinity studies. The methods that I have chosen as my main tools to study interacting biomolecules--native gel and later capillary zone electrophoresis--have been the topic of numerous articles in Electrophoresis. Below, the role of the journal in the development and dissemination of these techniques and applications reviewed. Many exhaustive reviews on affinity electrophoresis and affinity CE have been published in the last few years and are not in any way replaced by the present deliberations that are focused on papers published by the journal.

  19. A dielectric affinity microbiosensor

    NASA Astrophysics Data System (ADS)

    Huang, Xian; Li, Siqi; Schultz, Jerome S.; Wang, Qian; Lin, Qiao

    2010-01-01

    We present an affinity biosensing approach that exploits changes in dielectric properties of a polymer due to its specific, reversible binding with an analyte. The approach is demonstrated using a microsensor comprising a pair of thin-film capacitive electrodes sandwiching a solution of poly(acrylamide-ran-3-acrylamidophenylboronic acid), a synthetic polymer with specific affinity to glucose. Binding with glucose induces changes in the permittivity of the polymer, which can be measured capacitively for specific glucose detection, as confirmed by experimental results at physiologically relevant concentrations. The dielectric affinity biosensing approach holds the potential for practical applications such as long-term continuous glucose monitoring.

  20. Synthesis, characterization, photoluminescence, and electrochemical studies of novel mononuclear Cu(II) and Zn(II) complexes with the 1-benzylimidazolium ligand

    NASA Astrophysics Data System (ADS)

    Bibi, Sherino; Mohammad, Sharifah; Manan, Ninie Suhana Abdul; Ahmad, Jimmy; Kamboh, Muhammad Afzal; Khor, Sook Mei; Yamin, Bohari M.; Abdul Halim, Siti Nadiah

    2017-08-01

    Two new mononuclear coordination complexes [Cu(bim)4Cl2]ṡ2H2O (1) and [Zn(bim)2Cl2] (2) containing the 1-benzylimidazole (bim) ligand were successfully synthesized. Both complexes were characterized by IR, UV-vis, and fluorescence spectroscopies, single crystal and powder X-ray diffraction measurements, and thermogravimetric analysis. Self-assembly during the recrystallization process resulted in the formation of octahedral and tetrahedral Cu(II) and Zn(II) complexes, respectively. The single crystals obtained are representative of the bulk material, as shown by the powder X-ray diffraction patterns. Cyclic voltammetry measurements showed that complex 1 undergoes a quasi-reversible redox reaction, while complex 2 undergoes reduction alone, and no oxidation peak was observed; this is due to the stability of the reduced form of complex 2.

  1. A saponification-triggered gelation of ester-based Zn(II) complex through conformational transformations.

    PubMed

    Kumar, Ashish; Dubey, Mrigendra; Kumar, Amit; Pandey, Daya Shankar

    2014-09-11

    Novel saponification-triggered gelation in an ester-based bis-salen Zn(II) complex (1) is described. Strategic structural modifications induced by NaOH in 1 tune the dipolar-/π-interactions leading to J-aggregation and the creation of an inorganic gel material (IGM), which has been established by photophysical, DFT and rheological studies.

  2. Cu(II) and Zn(II) adsorption capacity of three different clay liner materials.

    PubMed

    Musso, T B; Parolo, M E; Pettinari, G; Francisca, F M

    2014-12-15

    Sorption of Cu(II) and Zn(II) on three natural clays meeting the international requirements for use as liners was evaluated by means of batch tests. The purpose of this research was to determine the retention capacities of the clays for metal cations commonly present in urban solid waste leachates. The pH and ionic strength conditions were set at values frequently found in real leachates. The changes observed in the XRD patterns and FTIR spectra upon adsorption can be considered an evidence of clay-metal electrostatic interaction. The Langmuir model was found to best describe the sorption processes, offering maximum sorption capacities from 8.16 to 56.89 mg/g for Cu(II) and from 49.59 to 103.83 mg/g for Zn(II). All samples remove more Zn(II) than Cu(II), which may be related to the different geometry of the hydrated Cu(II) cation. The total amount of metal sorption was strongly influenced by the total specific surface area, the presence of carbonates and the smectite content of the clays. In addition to their known quality as physical barriers, the adsorbed amounts obtained indicate the suitability of the tested clays to contribute to the retardation of Cu(II) and Zn(II) transport through clay liners.

  3. Affine dynamics with torsion

    NASA Astrophysics Data System (ADS)

    Gültekin, Kemal

    2016-03-01

    In this study, we give a thorough analysis of a general affine gravity with torsion. After a brief exposition of the affine gravities considered by Eddington and Schrödinger, we construct and analyze different affine gravities based on the determinants of the Ricci tensor, the torsion tensor, the Riemann tensor, and their combinations. In each case we reduce equations of motion to their simplest forms and give a detailed analysis of their solutions. Our analyses lead to the construction of the affine connection in terms of the curvature and torsion tensors. Our solutions of the dynamical equations show that the curvature tensors at different points are correlated via non-local, exponential rescaling factors determined by the torsion tensor.

  4. Lectin affinity electrophoresis.

    PubMed

    Kobayashi, Yuka

    2014-01-01

    An interaction or a binding event typically changes the electrophoretic properties of a molecule. Affinity electrophoresis methods detect changes in the electrophoretic pattern of molecules (mainly macromolecules) that occur as a result of biospecific interactions or complex formation. Lectin affinity electrophoresis is a very effective method for the detection and analysis of trace amounts of glycobiological substances. It is particularly useful for isolating and separating the glycoisomers of target molecules. Here, we describe a sensitive technique for the detection of glycoproteins separated by agarose gel-lectin affinity electrophoresis that uses antibody-affinity blotting. The technique is tested using α-fetoprotein with lectin (Lens culinaris agglutinin and Phaseolus vulgaris agglutinin)-agarose gels.

  5. Zn(II) coordination polymers with flexible V-shaped dicarboxylate ligand: Syntheses, helical structures and properties

    SciTech Connect

    Li, Lin; Liu, Chong-Bo; Yang, Gao-Shan; Xiong, Zhi-Qiang; Liu, Hong; Wen, Hui-Liang

    2015-11-15

    Hydrothermal reactions of 2,2′-[hexafluoroisopropylidenebis(p-phenyleneoxy)]diacetic acid (H{sub 2}L) and zinc ions in the presence of N-donor ancillary ligands afford four novel coordination polymers, namely, [Zn{sub 2}(μ{sub 2}-OH)(μ{sub 4}-O){sub 0.5}(L)]·0.5H{sub 2}O (1), [Zn(L)(2,2′-bipy)(H{sub 2}O)] (2), [Zn{sub 3}(L){sub 3}(phen){sub 2}]·H{sub 2}O (3) and [Zn{sub 2}(L){sub 2}(4,4′-bipy)] (4) (2,2′-bipy=2,2′-bipyridine; 4,4′-bipy=4,4′-bipyridine; phen=1,10-phenanthroline). Their structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra, powder X-ray diffraction (PXRD), and thermogravimetric (TG) analyses. Complex 1 shows a 3-D clover framework consisting of [Zn{sub 4}(µ{sub 4}-O)(µ{sub 2}-OH){sub 2}]{sup 4+} clusters, and exhibits a novel (3,8)-connected topological net with the Schläfli symbol of {3·4·5}{sub 2}{3"4·4"4·5"2·6"6·7"1"0·8"2}, and contains double-stranded and two kinds of meso-helices. 2 displays a helical chain structure, which is further extended via hydrogen bonds into a 3-D supramolecular structure with meso-helix chains. 3 displays a 2-D {4"4·6"2} parallelogram structure, which is further extended via hydrogen bonds into a 3-D supramolecular structure with single-stranded helical chains. 4 shows a 2-D {4"4·6"2} square structure with left- and right-handed helical chains. Moreover, the luminescent properties of 1–4 have been investigated. - Graphical abstract: Four new Zn(II) coordination polymers with helical structures based on flexible V-shaped dicarboxylate ligand have been synthesized and structurally characterized. Photoluminescent properties have been investigated. - Highlights: • Four novel Zn(II) coordination polymers with V-shaped ligand were characterized. • Complexes 1–4 show diverse intriguing helical characters. • Fluorescence properties of complexes 1–4 were investigated.

  6. BIOCHEMISTRY OF MOBILE ZINC AND NITRIC OXIDE REVEALED BY FLUORESCENT SENSORS

    PubMed Central

    Pluth, Michael D.; Tomat, Elisa; Lippard, Stephen J.

    2010-01-01

    Biologically mobile zinc and nitric oxide (NO) are two prominent examples of inorganic compounds involved in numerous signaling pathways in living systems. In the past decade, a synergy of regulation, signaling, and translocation of these two species has emerged in several areas of human physiology, providing additional incentive for developing adequate detection systems for Zn(II) ions and NO in biological specimens. Fluorescent probes for both of these bioinorganic analytes provide excellent tools for their detection, with high spatial and temporal resolution. We review the most widely used fluorescent sensors for biological zinc and nitric oxide, together with promising new developments and unmet needs of contemporary Zn(II) and NO biological imaging. The interplay between zinc and nitric oxide in the nervous, cardiovascular, and immune systems is highlighted to illustrate the contributions of selective fluorescent probes to the study of these two important bioinorganic analytes. PMID:21675918

  7. Zn(II) coordination to polyamine macrocycles containing dipyridine units. New insights into the activity of dinuclear Zn(II) complexes in phosphate ester hydrolysis.

    PubMed

    Bazzicalupi, Carla; Bencini, Andrea; Berni, Emanuela; Bianchi, Antonio; Fornasari, Patrizia; Giorgi, Claudia; Valtancoli, Barbara

    2004-10-04

    Zn(II) binding by the dipyridine-containing macrocycles L1-L3 has been analyzed by means of potentiometric measurements in aqueous solutions. These ligands contain one (L1, L2) or two (L3) 2,2'-dipyridine units as an integral part of a polyamine macrocyclic framework having different dimensions and numbers of nitrogen donors. Depending on the number of donors, L1-L3 can form stable mono- and/or dinuclear Zn(II) complexes in a wide pH range. Facile deprotonation of Zn(II)-coordinated water molecules gives mono- and dihydroxo-complexes from neutral to alkaline pH values. The ability of these complexes as nucleophilic agents in hydrolytic processes has been tested by using bis(p-nitrophenyl) phosphate (BNPP) as a substrate. In the dinuclear complexes the two metals play a cooperative role in BNPP cleavage. In the case of the L2 dinuclear complex [Zn(2)L2(OH)(2)](2+), the two metals act cooperatively through a hydrolytic process involving a bridging interaction of the substrate with the two Zn(II) ions and a simultaneous nucleophilic attack of a Zn-OH function at phosphorus; in the case of the dizinc complex with the largest macrocycle L3, only the monohydroxo complex [Zn(2)L3(OH)](3+) promotes BNPP hydrolysis. BNPP interacts with a single metal, while the hydroxide anion may operate a nucleophilic attack. Both complexes display high rate enhancements in BNPP cleavage with respect to previously reported dizinc complexes, due to hydrophobic and pi-stacking interactions between the nitrophenyl groups of BNPP and the dipyridine units of the complexes.

  8. Intracellular distribution of fluorescent copper and zinc bis(thiosemicarbazonato) complexes measured with fluorescence lifetime spectroscopy.

    PubMed

    Hickey, James L; James, Janine L; Henderson, Clare A; Price, Katherine A; Mot, Alexandra I; Buncic, Gojko; Crouch, Peter J; White, Jonathan M; White, Anthony R; Smith, Trevor A; Donnelly, Paul S

    2015-10-05

    The intracellular distribution of fluorescently labeled copper and zinc bis(thiosemicarbazonato) complexes was investigated in M17 neuroblastoma cells and primary cortical neurons with a view to providing insights into the neuroprotective activity of a copper bis(thiosemicarbazonato) complex known as Cu(II)(atsm). Time-resolved fluorescence measurements allowed the identification of the Cu(II) and Zn(II) complexes as well as the free ligand inside the cells by virtue of the distinct fluorescence lifetime of each species. Confocal fluorescent microscopy of cells treated with the fluorescent copper(II)bis(thiosemicarbazonato) complex revealed significant fluorescence associated with cytoplasmic puncta that were identified to be lysosomes in primary cortical neurons and both lipid droplets and lysosomes in M17 neuroblastoma cells. Fluorescence lifetime imaging microscopy confirmed that the fluorescence signal emanating from the lipid droplets could be attributed to the copper(II) complex but also that some degree of loss of the metal ion led to diffuse cytosolic fluorescence that could be attributed to the metal-free ligand. The accumulation of the copper(II) complex in lipid droplets could be relevant to the neuroprotective activity of Cu(II)(atsm) in models of amyotrophic lateral sclerosis and Parkinson's disease.

  9. Adsorption of Zn(II) on the kaolinite(001) surfaces in aqueous environment: A combined DFT and molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Kong, Xiang-Ping; Zhang, Bao-Hua; Wang, Juan

    2017-08-01

    Adsorption of Zn(II) on two types of neutral (001) surfaces of kaolinite, tetrahedral Si(t) and octahedral Al(o), was studied by means of DFT calculations and classical molecular dynamics simulations. The position and structure for both outer-sphere and mono-/bi-dentate inner-sphere complexes of Zn(II) in aqueous environment were examined, with binding energy and radial distribution function calculated. Outer-sphere complex on the Si(t) surface, monodentate inner-sphere complex of ;Ou; (surface oxygen with ;upright; hydrogen) site and bidentate complex of ;Ou-Ou; site of neighboring Al centers on the Al(o) surface are considered to be the dominant adsorption species. The outer-sphere complex is found six-coordinated with distorted octahedral geometry, while both the inner-sphere complexes exhibit the tetrahedral structure with coordination number of four. Hydrogen bonding interactions between oxygen or hydrogen of the kaolinite(001) surfaces and the aqua ligands of Zn(II) act as the key role for the structure and stability of adsorption complexes. Upon the Mulliken population analysis and partial density of states, both Zn(II) and surface oxygen accept electrons from aqua oxygens, and coupling of O 2p with the sp3d2 or sp3 hybridization states of Zn(II) is the primary bonding nature of Zn(II) with oxygen in outer- and inner-sphere complexes, respectively.

  10. Two new Zn(II) and Cd(II) coordinastion polymers based on amino-tetrazole and phenylcarboxylate: Syntheses, topological structures and photoluminescent properties

    SciTech Connect

    Liu, Dong-Sheng; Sui, Yan; Chen, Weng-Tong; Huang, Jian-Gen; Chen, Jian-Zhong; Huang, Chang-Cang

    2012-12-15

    Two Zn(II) and Cd(II) compounds with the in-situ generated ligand of 5-amino-tetrazolate (atz{sup -}) were prepared from the hydrothermal reactions of the corresponding Cd or Zn(II) salts with phenylcarboxylate, and characterized by elemental analysis, IR spectroscopy, and TGA. The results of X-ray crystallographic analysis reveal that compound [Zn{sub 2}(BZA)(atz){sub 2}(OH)]{sub n} (1) (BZA=benzoic acid) presents a two-dimensional (2D) 'hcb' topological network constructed from the ZnN{sub 2}O{sub 2} tetrahedra. In compound [Cd{sub 6}(atz){sub 6}(PTA){sub 3}]{sub n} (2) (PTA=terephthalic acid), the identical [Cd{sub 3}(atz){sub 3})]{sup 3+}{sub n} clusters are connected by atz ligands to generate a 2D cationic layer, and the neighboring cationic layers are pillared by PTA giving birth to 3D network. After simplifying, the complicated 3D network of 2 can be presented as an unprecedented (4, 4, 10)-connected trinodal topology. The formations of the structures show a good example that using the combination of the in-situ generated ligand and other coligand synthetic strategy can construct interesting topological structures. The thermal stabilities and fluorescent properties of the complexes have also been studied. - Graphical abstract: Two d{sup 10} metal complexes have been synthesized by employing mixed-ligand synthetic approach. Complex 1 presents a 2D 'hcb' topological network. Complex 2 shows an unprecedented (4, 4, 10)-connected trinodal topology. Highlights: Black-Right-Pointing-Pointer Coligand synthetic strategy was applied to obtain new MOFs with useful properties. Black-Right-Pointing-Pointer Two new Zn(II) and Cd(II) complexes were constructed from the mixed-ligand. Black-Right-Pointing-Pointer Topologically, compound 2 presented an unprecedented (4, 4, 10)-connected trinodal topology. Black-Right-Pointing-Pointer The two compounds may be excellent candidates for potential photoactive material.

  11. Affine Sphere Relativity

    NASA Astrophysics Data System (ADS)

    Minguzzi, E.

    2017-03-01

    We investigate spacetimes whose light cones could be anisotropic. We prove the equivalence of the structures: (a) Lorentz-Finsler manifold for which the mean Cartan torsion vanishes, (b) Lorentz-Finsler manifold for which the indicatrix (observer space) at each point is a convex hyperbolic affine sphere centered on the zero section, and (c) pair given by a spacetime volume and a sharp convex cone distribution. The equivalence suggests to describe (affine sphere) spacetimes with this structure, so that no algebraic-metrical concept enters the definition. As a result, this work shows how the metric features of spacetime emerge from elementary concepts such as measure and order. Non-relativistic spacetimes are obtained replacing proper spheres with improper spheres, so the distinction does not call for group theoretical elements. In physical terms, in affine sphere spacetimes the light cone distribution and the spacetime measure determine the motion of massive and massless particles (hence the dispersion relation). Furthermore, it is shown that, more generally, for Lorentz-Finsler theories non-differentiable at the cone, the lightlike geodesics and the transport of the particle momentum over them are well defined, though the curve parametrization could be undefined. Causality theory is also well behaved. Several results for affine sphere spacetimes are presented. Some results in Finsler geometry, for instance in the characterization of Randers spaces, are also included.

  12. Mapping Protein–Protein Interactions of the Resistance-Related Bacterial Zeta Toxin–Epsilon Antitoxin Complex (ε2ζ2) with High Affinity Peptide Ligands Using Fluorescence Polarization

    PubMed Central

    Fernández-Bachiller, María Isabel; Brzozowska, Iwona; Odolczyk, Norbert; Zielenkiewicz, Urszula; Zielenkiewicz, Piotr; Rademann, Jörg

    2016-01-01

    Toxin–antitoxin systems constitute a native survival strategy of pathogenic bacteria and thus are potential targets of antibiotic drugs. Here, we target the Zeta–Epsilon toxin–antitoxin system, which is responsible for the stable maintenance of certain multiresistance plasmids in Gram-positive bacteria. Peptide ligands were designed on the basis of the ε2ζ2 complex. Three α helices of Zeta forming the protein–protein interaction (PPI) site were selected and peptides were designed conserving the residues interacting with Epsilon antitoxin while substituting residues binding intramolecularly to other parts of Zeta. Designed peptides were synthesized with an N-terminal fluoresceinyl-carboxy-residue for binding assays and provided active ligands, which were used to define the hot spots of the ε2ζ2 complex. Further shortening and modification of the binding peptides provided ligands with affinities <100 nM, allowing us to determine the most relevant PPIs and implement a robust competition binding assay. PMID:27438853

  13. Rational Conversion of Affinity Reagents into Label-Free Sensors for Peptide Motifs by Designed Allostery

    SciTech Connect

    Huang, Jin; Koide, Shohei

    2010-05-25

    Optical biosensors for short peptide motifs, an important class of biomarkers, have been developed based on 'affinity clamps', a new class of recombinant affinity reagents. Affinity clamps are engineered by linking a peptide-binding domain and an antibody mimic domain based on the fibronectin type III scaffold, followed by optimization of the interface between the two. This two-domain architecture allows for the design of allosteric coupling of peptide binding to fluorescence energy transfer between two fluorescent proteins attached to the affinity clamp. Coupled with high affinity and specificity of the underlying affinity clamps and rationally designed mutants with different sensitivity, peptide concentrations in crude cell lysate were determined with a low nanomolar detection limit and over 3 orders of magnitude. Because diverse affinity clamps can be engineered, our strategy provides a general platform to generate a repertoire of genetically encoded, label-free sensors for peptide motifs.

  14. New hybrid materials as Zn(II) sorbents in water samples

    SciTech Connect

    Perez-Quintanilla, Damian

    2010-09-15

    Mesoporous silicas have been chemically modified with 5-mercapto-1-methyltetrazole (MTTZ) obtaining hybrid materials denominated MTTZ-MSU-2 and MTTZ-HMS. These materials were employed as Zn(II) sorbents from aqueous media at room temperature. The effect of several variables (stirring time, pH, presence of other metals) has been studied using batch and column techniques. Flame atomic absorption spectrometry (FAAS) was used to determinate Zn(II) concentration in the filtrate or in the eluted solution after the adsorption process. The results indicate that under pH 8, the maximum adsorption value was 0.94 {+-} 0.01 and 0.72 {+-} 0.01 mmol Zn(II)/g for MTTZ-MSU-2 and MTTZ-HMS, respectively. In tap water samples, a preconcentration factor of 200 was obtained. On the basis of these results, it can be concluded that it is possible to modify chemically MSU-2 and HMS with 5-mercapto-1-methyltetrazole and to use the resulting modified mesoporous silica as an effective adsorbent for Zn(II) in aqueous media.

  15. Intracellular Zn(II) Intoxication Leads to Dysregulation of the PerR Regulon Resulting in Heme Toxicity in Bacillus subtilis

    PubMed Central

    2016-01-01

    Transition metal ions (Zn(II), Cu(II)/(I), Fe(III)/(II), Mn(II)) are essential for life and participate in a wide range of biological functions. Cellular Zn(II) levels must be high enough to ensure that it can perform its essential roles. Yet, since Zn(II) binds to ligands with high avidity, excess Zn(II) can lead to protein mismetallation. The major targets of mismetallation, and the underlying causes of Zn(II) intoxication, are not well understood. Here, we use a forward genetic selection to identify targets of Zn(II) toxicity. In wild-type cells, in which Zn(II) efflux prevents intoxication of the cytoplasm, extracellular Zn(II) inhibits the electron transport chain due to the inactivation of the major aerobic cytochrome oxidase. This toxicity can be ameliorated by depression of an alternate oxidase or by mutations that restrict access of Zn(II) to the cell surface. Conversely, efflux deficient cells are sensitive to low levels of Zn(II) that do not inhibit the respiratory chain. Under these conditions, intracellular Zn(II) accumulates and leads to heme toxicity. Heme accumulation results from dysregulation of the regulon controlled by PerR, a metal-dependent repressor of peroxide stress genes. When metallated with Fe(II) or Mn(II), PerR represses both heme biosynthesis (hemAXCDBL operon) and the abundant heme protein catalase (katA). Metallation of PerR with Zn(II) disrupts this coordination, resulting in depression of heme biosynthesis but continued repression of catalase. Our results support a model in which excess heme partitions to the membrane and undergoes redox cycling catalyzed by reduced menaquinone thereby resulting in oxidative stress. PMID:27935957

  16. Intracellular Zn(II) Intoxication Leads to Dysregulation of the PerR Regulon Resulting in Heme Toxicity in Bacillus subtilis.

    PubMed

    Chandrangsu, Pete; Helmann, John D

    2016-12-01

    Transition metal ions (Zn(II), Cu(II)/(I), Fe(III)/(II), Mn(II)) are essential for life and participate in a wide range of biological functions. Cellular Zn(II) levels must be high enough to ensure that it can perform its essential roles. Yet, since Zn(II) binds to ligands with high avidity, excess Zn(II) can lead to protein mismetallation. The major targets of mismetallation, and the underlying causes of Zn(II) intoxication, are not well understood. Here, we use a forward genetic selection to identify targets of Zn(II) toxicity. In wild-type cells, in which Zn(II) efflux prevents intoxication of the cytoplasm, extracellular Zn(II) inhibits the electron transport chain due to the inactivation of the major aerobic cytochrome oxidase. This toxicity can be ameliorated by depression of an alternate oxidase or by mutations that restrict access of Zn(II) to the cell surface. Conversely, efflux deficient cells are sensitive to low levels of Zn(II) that do not inhibit the respiratory chain. Under these conditions, intracellular Zn(II) accumulates and leads to heme toxicity. Heme accumulation results from dysregulation of the regulon controlled by PerR, a metal-dependent repressor of peroxide stress genes. When metallated with Fe(II) or Mn(II), PerR represses both heme biosynthesis (hemAXCDBL operon) and the abundant heme protein catalase (katA). Metallation of PerR with Zn(II) disrupts this coordination, resulting in depression of heme biosynthesis but continued repression of catalase. Our results support a model in which excess heme partitions to the membrane and undergoes redox cycling catalyzed by reduced menaquinone thereby resulting in oxidative stress.

  17. Structural characterization of 1,8-naphthalimides and in vitro microbiological activity of their Cu(II) and Zn(II) complexes

    NASA Astrophysics Data System (ADS)

    Grabchev, Ivo; Yordanova, Stanislava; Bosch, Paula; Vasileva-Tonkova, Evgenia; Kukeva, Rositsa; Stoyanov, Stanimir; Stoyanova, Radostina

    2017-02-01

    Two new 1,8-naphthalimide derivatives (NI1 and NI2) have been synthesized and characterized. The photophysical properties of the new compounds have been investigated in organic solvents of different polarity. It has been shown that both compounds are solvent depended. Cu(II) and Zn(II) complexes of NI2 were obtained and characterized by IR-NMR, fluorescence and EPR spectroscopy. The influence of different metal cations on the fluorescence intensity has been investigated in acetonitrile solution. Antimicrobial composite PLA-metal complexes materials have been obtained for the first time. Microbiological activity of both metal complexes has been investigated in vitro against different Gram-positive and Gram-negative bacteria and two yeasts. The various antimicrobial activities and the minimum inhibitory concentrations (MICs) of both complexes have been determined. The microbiological activity of composite materials PLA-metal complexes in thin polymeric film has also been investigated. The results suggest that the new metal complexes could find application in designing new antimicrobial preparations to control the spread of infections.

  18. Fluorogen-activating-proteins as universal affinity biosensors for immunodetection.

    PubMed

    Gallo, Eugenio; Vasilev, Kalin V; Jarvik, Jonathan

    2014-03-01

    Fluorogen-activating-proteins (FAPs) are a novel platform of fluorescence biosensors utilized for protein discovery. The technology currently demands molecular manipulation methods that limit its application and adaptability. Here, we highlight an alternative approach based on universal affinity reagents for protein detection. The affinity reagents were engineered as bi-partite fusion proteins, where the specificity moiety is derived from IgG-binding proteins-Protein A or Protein G-and the signaling element is a FAP. In this manner, primary antibodies provide the antigenic selectivity against a desired protein in biological samples, while FAP affinity reagents target the constant region (Fc) of antibodies and provide the biosensor component of detection. Fluorescence results using various techniques indicate minimal background and high target specificity for exogenous and endogenous proteins in mammalian cells. Additionally, FAP-based affinity reagents provide enhanced properties of detection previously absent using conventional affinity systems. Distinct features explored in this report include: (1) unfixed signal wavelengths (excitation and emission) determined by the particular fluorogen chosen, (2) real-time user controlled fluorescence on-set and off-set, (3) signal wavelength substitution while performing live analysis, and (4) enhanced resistance to photobleaching. © 2013 Wiley Periodicals, Inc.

  19. Fluorescent properties of some transition metals complexes with the new podand containing hydrazide groups

    NASA Astrophysics Data System (ADS)

    Tsvirko, M.; Meshkova, S.; Chebotarska, I.; Kiriiak, G.; Gorodnyuk, V.

    2007-08-01

    The influence of some transition metal ions— Mn(II), Cu(II), Zn(II), Ga(III), Ag(I), Cd(II), In(III), Hg(II), Tl(I,III), Au(I) on spectral-fluorescent properties of their complexes with new podand 1,17-bis-[(2-hydrazinocarbo)phenoxy]-3,6,9,12,15-pentaoxaheptadecane in solution was studied.

  20. Removal of Pb(II) and Zn(II) from Aqueous Solutions by Raw Crab Shell: A Comparative Study.

    PubMed

    Zhou, Chuanqiang; Gong, Xiangxiang; Han, Jie; Guo, Rong

    2016-04-01

    Removals of Pb(II) and Zn(II) ions from water using crab (Clistocoeloma sinensis) shell particles as biosorbent have been compared in this study. Uptake equilibriums for two ions well described by Langmuir isotherm revealed that crab shell possessed higher uptake capacity for Pb(II) (709 mg/g) than that for Zn(II) (117 mg/g). Kinetics data for the uptake of the two metals were successfully modeled using the pseudo-second-order model, where the initial uptake rate of Pb(II) was much faster than that of Zn(II). Dubinin-Radushkevick modeling and thermodynamic parameters hinted at different uptake mechanisms of Pb(II) and Zn(II) removal by crab shell, attested by FTIR, XRD, FESEM analysis. Pb(II) ion was removed mainly through the chemical reaction, while the uptake of Zn(II) ion onto crab shell was attributed to the chelation and coordination interactions. The polluted river water and laboratory wastewater both satisfied the standards for drinking and irrigation/fishery water, respectively, after being treated with crab shell particles.

  1. A three-dimensional Zn(II) coordination polymer constructed from 1,1'-biphenyl-2,2',4,4'-tetracarboxylate and 1,4-bis(1H-imidazol-1-yl)benzene ligands exhibiting photoluminescence.

    PubMed

    Su, Feng; Lu, Liping; Zhou, Chengyong; Wang, Xiaoxia; Sun, Long; Han, Chun

    2017-02-01

    Ligands based on polycarboxylic acids are excellent building blocks for the construction of coordination polymers; they may bind to a variety of metal ions and form clusters, as well as extended chain or network structures. Among these building blocks, biphenyltetracarboxylic acids (H4bpta) with C2 symmetry have recently attracted attention because of their variable bridging and multidentate chelating modes. The new luminescent three-dimensional coordination polymer poly[(μ5-1,1'-biphenyl-2,2',4,4'-tetracarboxylato)bis[μ2-1,4-bis(1H-imidazol-1-yl)benzene]dizinc(II)], [Zn2(C16H6O8)(C12H10N4)]n, was synthesized solvothermally and characterized by single-crystal X-ray diffraction, elemental analysis and IR spectroscopy. The crystal structure contains two crystallographically independent Zn(II) cations. Both metal cations are located on twofold axes and display distorted tetrahedral coordination geometries. Neighbouring Zn(II) centres are bridged by carboxylate groups in the syn-anti mode to form one-dimensional chains. Adjacent chains are linked through 1,1'-biphenyl-2,2',4,4'-tetracarboxylate and 1,4-bis(1H-imidazol-1-yl)benzene ligands to form a three-dimensional network. In the solid state, the compound exhibits blue photoluminescence and represents a promising candidate for a thermally stable and solvent-resistant blue fluorescent material.

  2. The ligand effect on the hydrolytic reactivity of Zn(II) complexes toward phosphate diesters.

    PubMed

    Bonfá, Lodovico; Gatos, Maddalena; Mancin, Fabrizio; Tecilla, Paolo; Tonellato, Umberto

    2003-06-16

    The catalytic effects of the Zn(II) complexes of a series of poliaminic ligands in the hydrolysis of the activated phosphodiesters bis-p-nitrophenyl phosphate (BNP) and 2-hydroxypropyl-p-nitrophenyl phosphate (HPNP) have been investigated. The reactions show first-order rate dependency on both substrate and metal ion complex and a pH dependence which is diagnostic of the acid dissociation of the reactive species. The mechanism of the metal catalyzed transesterification of HPNP has been assessed by solvent isotopic kinetic effect studies and involves the intramolecular nucleophilic attack of the substrate alcoholic group, activated by metal ion coordination. The intrinsic reactivity of the different complexes is controlled by the nature and structure of the ligand: complexes of tridentate ligands, particularly if characterized by a facial coordination mode, are more reactive than those of tetradentate ligands which can hardly allow binding sites for the substrate. In the case of tridentate ligands that form complexes with a facial coordination mode, a linear Brønsted correlation between the reaction rate (log k) and the pK(a) of the active nucleophile is obtained. The beta(nuc) values are 0.75 for the HPNP transesterification and 0.20 for the BNP hydrolysis. These values are indicated as the result of the combination of two opposite Lewis acid effects of the Zn(II) ion: the activation of the substrate and the efficiency of the metal coordinated nucleophile. The latter factor apparently prevails in determining the intrinsic reactivity of the Zn(II) complexes.

  3. Methods for quantifying T cell receptor binding affinities and thermodynamics

    PubMed Central

    Piepenbrink, Kurt H.; Gloor, Brian E.; Armstrong, Kathryn M.; Baker, Brian M.

    2013-01-01

    αβ T cell receptors (TCRs) recognize peptide antigens bound and presented by class I or class II major histocompatibility complex (MHC) proteins. Recognition of a peptide/MHC complex is required for initiation and propagation of a cellular immune response, as well as the development and maintenance of the T cell repertoire. Here we discuss methods to quantify the affinities and thermodynamics of interactions between soluble ectodomains of TCRs and their peptide/MHC ligands, focusing on titration calorimetry, surface plasmon resonance, and fluorescence anisotropy. As TCRs typically bind ligand with weak-to-moderate affinities, we focus the discussion on means to enhance the accuracy and precision of low affinity measurements. In addition to further elucidating the biology of the T cell mediated immune response, more reliable low affinity measurements will aid with more probing studies with mutants or altered peptides that can help illuminate the physical underpinnings of how TCRs achieve their remarkable recognition properties. PMID:21609868

  4. Chelation-enhanced fluorescence detection of metal and nonmetal ions in aqueous solution

    NASA Astrophysics Data System (ADS)

    Czarnik, Anthony W.

    1992-04-01

    Our group has previously described large chelation-enhanced fluorescence (CHEF) effects upon the binding of metal ions, phosphates, and carboxylates to conjugate probes, providing large, readily measurable signals to these molecular recognition events. In understanding the structural requirements for CHEF, it is now possible to use the vast body of information on selective binding by azacrowns and cryptands in the synthesis of selective fluorescence probes. For example, a conjugate probe that allows for the selective, simultaneous assay of Zn(II) and Cd(II) ions has been synthesized and is described. In the homologous series of anthrylazamacrocycles that demonstrate chelation-enhanced fluorescence (CHEF) upon Zn(II) or Cd(II) binding in water, the pentacyclen derivative uniquely complexes Cd(II) with perturbation of the emission spectrum. The binding of anions such as phosphate and citrate give rise to fluorescence enhancements as large as six-fold; an observed pH dependence on the magnitude of fluorescence enhancements upon phosphate binding points to intracomplex protonation of the benzylic nitrogen by the HPO42- ion as the origin of this CHEF effect. Anthrylpolyamine conjugate probes yield large (up to 80-fold) changes in fluorescence upon binding to biological polyanions (e.g., DNA, heparin, and polyglutamate) at 1 M concentrations. These fluorescence changes have been used as the basis for a fluorometric assay of heparinase activity; the enzymatic hydrolysis of ATP can also be monitored conveniently using anthrylpolyamine fluoroionophores.

  5. Analysis of solvation and structural contributions in spectral characteristics of dipyrrin Zn(II) complexes

    NASA Astrophysics Data System (ADS)

    Marfin, Yu. S.; Rumyantsev, E. V.

    2014-09-01

    Photophysical characteristics of several alkylated dipyrrin Zn(II) complexes in organic solvents were analyzed. Relations between spectral properties of complexes and physical-chemical parameters of solvents were determined with the use of linear regression analysis method. Each solvent parameter contribution in investigated spectral characteristics was estimated. Spectral properties of complexes under study depend on the specific interactions of zinc with the solvent molecules by specific axial coordination. Increasing of alkyl substitution lead to the bathochromic shifts in spectra due to the positive induction effect of alkyl groups.

  6. Multifunctional Zn(II) Complexes: Photophysical Properties and Catalytic Transesterification toward Biodiesel Synthesis.

    PubMed

    Gupta, Abhishek Kumar; Dhir, Abhimanew; Pradeep, Chullikkattil P

    2016-08-01

    Using 4-substituted derivatives of phenol-based compartmental Schiff-base hydroxyl-rich ligand, four multifunctional binuclear Zn(II) complexes have been synthesized and characterized. The photophysical properties of these complexes were explored in the solid state, in solutions, and in poly(methyl methacrylate) (PMMA) matrix, which revealed their good potential as tunable solid state emitters. Some of these complexes acted as efficient catalysts for the transesterification of esters and canola oil showing their potential in biodiesel generation. Mechanistic investigations using ESI-MS revealed that the transesterification catalyzed by these complexes proceeds through two types of acyl intermediates.

  7. High oxygen affinity hemoglobins.

    PubMed

    Mangin, O

    2017-02-01

    High oxygen affinity hemoglobins are responsible for rare and heterogeneous autosomic dominant genetic diseases. They cause pure erythrocytosis, sometimes accountable for hyperviscosity and thrombosis, or hemolysis. Differential diagnoses must be first ruled out. The diagnosis is based on the identification of a decreased P50, and their possible characterization by cation exchange-high performance liquid chromatography and capillary electrophoresis. Finally, genetic studies of the responsible globin chain gene will confirm the mutation. The prognosis mainly relies on the P50 decrease rate and on the hemoglobin cooperativity impairment. Disease management should be personalized, and it should primarily depend on smoking cessation and physical activity. Phlebotomy and platelet aggregation inhibitors' prescriptions can be discussed. There is no contraindication to flights, high-altitude conditions, or pregnancy. Nevertheless, blood donation must be prohibited. Copyright © 2016 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  8. Kernel Affine Projection Algorithms

    NASA Astrophysics Data System (ADS)

    Liu, Weifeng; Príncipe, José C.

    2008-12-01

    The combination of the famed kernel trick and affine projection algorithms (APAs) yields powerful nonlinear extensions, named collectively here, KAPA. This paper is a follow-up study of the recently introduced kernel least-mean-square algorithm (KLMS). KAPA inherits the simplicity and online nature of KLMS while reducing its gradient noise, boosting performance. More interestingly, it provides a unifying model for several neural network techniques, including kernel least-mean-square algorithms, kernel adaline, sliding-window kernel recursive-least squares (KRLS), and regularization networks. Therefore, many insights can be gained into the basic relations among them and the tradeoff between computation complexity and performance. Several simulations illustrate its wide applicability.

  9. Adjoint affine fusion and tadpoles

    SciTech Connect

    Urichuk, Andrew; Walton, Mark A.

    2016-06-15

    We study affine fusion with the adjoint representation. For simple Lie algebras, elementary and universal formulas determine the decomposition of a tensor product of an integrable highest-weight representation with the adjoint representation. Using the (refined) affine depth rule, we prove that equally striking results apply to adjoint affine fusion. For diagonal fusion, a coefficient equals the number of nonzero Dynkin labels of the relevant affine highest weight, minus 1. A nice lattice-polytope interpretation follows and allows the straightforward calculation of the genus-1 1-point adjoint Verlinde dimension, the adjoint affine fusion tadpole. Explicit formulas, (piecewise) polynomial in the level, are written for the adjoint tadpoles of all classical Lie algebras. We show that off-diagonal adjoint affine fusion is obtained from the corresponding tensor product by simply dropping non-dominant representations.

  10. Noncompetitive affinity assays of glucagon and amylin using mirror-image aptamers as affinity probes.

    PubMed

    Yi, Lian; Wang, Xue; Bethge, Lucas; Klussmann, Sven; Roper, Michael G

    2016-03-21

    The ability to detect picomolar concentrations of glucagon and amylin using fluorescently labeled mirror-image aptamers, so-called Spiegelmers, is demonstrated. Spiegelmers rival the specificity of antibodies and overcome the problem of biostability of natural aptamers in a biological matrix. Using Spiegelmers as affinity probes, noncompetitive capillary electrophoresis affinity assays of glucagon and murine amylin were developed and optimized. The detection limit for glucagon was 6 pM and for amylin was 40 pM. Glucagon-like peptide-1 and -2 did not interfere with the glucagon assay, while the amylin assay showed cross-reactivity to calcitonin gene related peptide. The developed assays were combined with a competitive immunoassay for insulin to measure glucagon, amylin, and insulin secretion from batches of islets after incubation with different glucose concentrations. The development of these assays is an important step towards incorporation into an online measurement system for monitoring dynamic secretion from single islets.

  11. Coordination structure of adsorbed Zn(II) at Water-TiO2 interfaces

    SciTech Connect

    He, G.; Pan, G.; Zhang, M.; Waychunas, G.A.

    2011-01-15

    The local structure of aqueous metal ions on solid surfaces is central to understanding many chemical and biological processes in soil and aquatic environments. Here, the local coordination structure of hydrated Zn(II) at water-TiO{sub 2} interfaces was identified by extended X-ray absorption fine structure (EXAFS) and X-ray absorption near-edge structure (XANES) spectroscopy combined with density functional theory (DFT) calculations. A nonintegral coordination number of average {approx}4.5 O atoms around a central Zn atom was obtained by EXAFS analysis. DFT calculations indicated that this coordination structure was consistent with the mixture of 4-coordinated bidentate binuclear (BB) and 5-coordinated bidentate mononuclear (BM) metastable equilibrium adsorption (MEA) states. The BB complex has 4-coordinated Zn, while the monodentate mononuclear (MM) complex has 6-coordinated Zn, and a 5-coordinated adsorbed Zn was found in the BM adsorption mode. DFT calculated energies showed that the lower-coordinated BB and BM modes were thermodynamically more favorable than the higher-coordinated MM MEA state. The experimentally observed XANES fingerprinting provided additional direct spectral evidence of 4- and 5-coordinated Zn-O modes. The overall spectral and computational evidence indicated that Zn(II) can occur in 4-, 5-, and 6-oxygen coordinated sites in different MEA states due to steric hindrance effects, and the coexistence of different MEA states formed the multiple coordination environments.

  12. Adsorption of Cu(II), Ni(II) and Zn(II) on modified jute fibres.

    PubMed

    Shukla, S R; Pai, Roshan S

    2005-09-01

    The potential of a lignocellulosic fibre, jute, was assessed for adsorption of heavy metal ions like Cu(II), Ni(II) and Zn(II) from their aqueous solutions. The fibre was also used as adsorbent after chemically modifying it by two different techniques viz, loading of a dye with specific structure, C.I. Reactive Orange 13, and oxidising with hydrogen peroxide. Both the modified jute fibres gave higher metal ion adsorption. Thus, the dye loaded jute fibres showed metal ion uptake values of 8.4, 5.26 and 5.95 mg/g for Cu(II), Ni(II) and Zn(II), respectively, while the corresponding values for oxidised jute fibres were 7.73, 5.57 and 8.02 mg/g, as against 4.23, 3.37 and 3.55 mg/g for unmodified jute fibres. Adsorption isotherm models indicated best fit for Langmuir model for the modified jute fibres. The adsorption values decreased with lowering of pH. The desorption efficiency, regenerative and reuse capacity of these adsorbents were also assessed for three successive adsorption-desorption cycles. The adsorptive capacity was retained only when the caustic soda regeneration is carried out as an intermediate step after desorption. Possible mechanism has been given.

  13. Synthesis, Structural Characterization, and Biological Activity Studies of Ni(II) and Zn(II) Complexes

    PubMed Central

    Kavitha, Palakuri; Laxma Reddy, K.

    2014-01-01

    Ni(II) and Zn(II) complexes were synthesized from tridentate 3-formyl chromone Schiff bases such as 3-((2-hydroxyphenylimino)methyl)-4H-chromen-4-one (HL1), 2-((4-oxo-4H-chromen-3-yl)methylneamino)benzoic acid (HL2), 3-((3-hydroxypyridin-2-ylimino)methyl)-4H-chromen-4-one (HL3), and 3-((2-mercaptophenylimino)methyl)-4H-chromen-4-one (HL4). All the complexes were characterized in the light of elemental analysis, molar conductance, FTIR, UV-VIS, magnetic, thermal, powder XRD, and SEM studies. The conductance and spectroscopic data suggested that, the ligands act as neutral and monobasic tridentate ligands and form octahedral complexes with general formula [M(L1–4)2]·nH2O (M = Ni(II) and Zn(II)). Metal complexes exhibited pronounced activity against tested bacteria and fungi strains compared to the ligands. In addition metal complexes displayed good antioxidant and moderate nematicidal activities. The cytotoxicity of ligands and their metal complexes have been evaluated by MTT assay. The DNA cleavage activity of the metal complexes was performed using agarose gel electrophoresis in the presence and absence of oxidant H2O2. All metal complexes showed significant nuclease activity in the presence of H2O2. PMID:24948904

  14. Fluorescent Aptamer Sensors

    NASA Astrophysics Data System (ADS)

    Chen, Hui William; Kim, Youngmi; Meng, Ling; Mallikaratchy, Prabodhika; Martin, Jennifer; Tang, Zhiwen; Shangguan, Dihua; O'Donoghue, Meghan; Tan, Weihong

    Aptamers are single-stranded nucleic acid probes that can be evolved to have high specificity and affinity for different targets. These targets include biomar-ker proteins, small molecules, and even whole live cells that express a variety of surface proteins of interest. Aptamers offer several advantages over protein-based molecular probes such as low immunogenic activity, flexible modification, and in vitro synthesis. In addition, aptamers used as molecular probes can be made with easy signaling for binding with their corresponding targets. There are a few different fluorescence-based signal transduction mechanisms, such as direct fluorophore labeling, fluorescence resonance energy transfer (FRET), fluorescence quenching, fluorescence anisotropy, and light-switching excimers. These signaling processes in combination with various labeling strategies of nucleic acid aptamers contribute to simple, rapid, sensitive, and selective biological assays. In this chapter, we discuss the optical signaling of aptamers for single proteins such as α-thrombin and platelet-derived growth factor (PDGF). We also present detailed discussion about fluorescent aptamers developed from cell-based systematic evolution of ligands by exponential enrichment (SELEX) for the recognition of different target tumor cells.

  15. Trace analysis of cefotaxime at carbon paste electrode modified with novel Schiff base Zn(II) complex.

    PubMed

    Nigam, Preeti; Mohan, Swati; Kundu, Subir; Prakash, Rajiv

    2009-02-15

    Cefotaxime a third generation cephalosporin drug estimation in nanomolar concentration range is demonstrated for the first time in aqueous and human blood samples using novel Schiff base octahedral Zn(II) complex. The cefotaxime electrochemistry is studied over graphite paste and Zn(II) complex modified graphite paste capillary electrodes in H(2)SO(4) (pH 2.3) using cyclic voltammetry and differential pulse voltammetry. Cefotaxime enrichment is observed over Zn(II) complex modified graphite paste electrode probably due to interaction of functional groups of cefotaxime with Zn(II) complex. Possible interactions between metal complex and cefotaxime drug is examined by UV-vis and electrochemical quartz crystal microbalance (EQCM) techniques and further supported by voltammetric analysis. Differential pulse voltammetry (DPV) with modified electrode is applied for the determination of cefotaxime in acidified aqueous and blood samples. Cefotaxime estimation is successfully demonstrated in the range of 1-500 nM for aqueous samples and 0.1-100 microM in human blood samples. Reproducibility, accuracy and repeatability of the method are checked by triplicate reading for large number of samples. The variation in the measurements is obtained less than 10% without any interference of electrolyte or blood constituents.

  16. A comparative study for the ion exchange of Fe(III) and Zn(II) on zeolite NaY.

    PubMed

    Ostroski, Indianara C; Barros, Maria A S D; Silva, Edson A; Dantas, João H; Arroyo, Pedro A; Lima, Oswaldo C M

    2009-01-30

    The uptake capacity of Fe(III) and Zn(II) ions in NaY zeolite was investigated. Experiments were carried out in a fixed bed column at 30 degrees C, pH 3.5 and 4.5 for Fe(III) and Zn(II), respectively, and an average particle size of 0.180 mm. In order to minimize the diffusional resistances the influence of flow rate on the breakthrough curves at feed concentrations of 1.56 meq/L for Fe(III) and 0.844 meq/L for Zn(II) was investigated. Flow rate of the minimal resistance in the bed according to mass transfer parameter were 2.0 mL/min for iron and 8.0 mL/min for zinc ions. Freundlich and Langmuir isotherm models have been used to represent the column equilibrium data. The iron dynamic isotherm was successfully modeled by the Langmuir equation and this mathematical model described well the experimental breakthrough curves for feed concentrations from 0.1 up to 3.5 meq/L. The zinc dynamic isotherm was successfully modeled by the Freundlich equation. This equilibrium model was applied to mathematical model. Experimental breakthrough curves could be predicted. Experiments were also carried out in a batch reactor to investigate the kinetics adsorption of the ions Fe(III) and Zn(II). Langmuir kinetic model fit well both experimental data.

  17. Chelation of Cu(II), Zn(II), and Fe(II) by tannin constituents of selected edible nuts.

    PubMed

    Karamać, Magdalena

    2009-12-22

    The tannin fractions isolated from hazelnuts, walnuts and almonds were characterised by colorimetric assays and by an SE-HPLC technique. The complexation of Cu(II) and Zn(II) was determined by the reaction with tetramethylmurexide, whereas for Fe(II), ferrozine was employed. The walnut tannins exhibited a significantly weaker reaction with the vanillin/HCl reagent than hazelnut and almond tannins, but the protein precipitation capacity of the walnut fraction was high. The SE-HPLC chromatogram of the tannin fraction from hazelnuts revealed the presence of oligomers with higher molecular weights compared to that of almonds. Copper ions were most effectively chelated by the constituents of the tannin fractions of hazelnuts, walnuts and almonds. At a 0.2 mg/assay addition level, the walnut tannins complexed almost 100% Cu(II). The Fe(II) complexation capacities of the tannin fractions of walnuts and hazelnuts were weaker in comparison to that of the almond tannin fraction, which at a 2.5 mg/assay addition level, bound Fe(II) by approximately 90%. The capacity to chelate Zn(II) was quite varied for the different nut tannin fractions: almond tannins bound as much as 84% Zn(II), whereas the value for walnut tannins was only 8.7%; and for hazelnut tannins, no Zn(II) chelation took place at the levels tested.

  18. Removal of Zn(II) from electroplating effluent using yeast biofilm formed on gravels: batch and column studies

    PubMed Central

    2014-01-01

    Background Present study deals with the removal of Zn(II) ions from effluent using yeast biofilm formed on gravels. Methods The biofilm forming ability of Candida rugosa and Cryptococcus laurentii was evaluated using XTT (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide) reduction assay and monitored by scanning electron microscopy (SEM), and Confocal laser scanning microscopy (CLSM). Copious amount of extracellular polymeric substances (EPS) produced by yeast species was quantified and characterized by Fourier transform infrared spectroscopy (FT-IR). Results Yeast biofilm formed on gravels by C. rugosa and C. laurentii showed 88% and 74.2% removal of Zn(II) ions respectively in batch mode. In column mode, removal of Zn(II) ions from real effluent was found to be 95.29% by C. rugosa biofilm formed on gravels. Conclusion The results of the present study showed that there is a scope to develop a cost effective method for the efficient removal of Zn(II) from effluent using gravels coated with yeast biofilm. PMID:24397917

  19. Determination of metal ions by fluorescence anisotropy exhibits a broad dynamic range

    NASA Astrophysics Data System (ADS)

    Thompson, Richard B.; Maliwal, Badri P.; Fierke, Carol A.

    1998-05-01

    Recently, we have shown that metal ions free in solution may be determined at low levels by fluorescence anisotropy (polarization) measurements. Anisotropy measurements enjoy the advantages of wavelength ratiometric techniques for determining metal ions such as calcium, because anisotropy measurements are ratiometric as well. Furthermore, fluorescence anisotropy may be imaged in the microscope. An advantage of anisotropy not demonstrated for wavelength ratiometric approaches using indicators such as Fura-2 and Indo-1 is that under favorable circumstances anisotropy-based determinations exhibit a much broader dynamic range in metal ion concentration. Determinations of free Zn(II) in the picomolar range are demonstrated.

  20. Integrated Fluorescence

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret (Inventor); Gruhlke, Russell W. (Inventor)

    1998-01-01

    A detection method is integrated with a filtering method and an enhancement method to create a fluorescence sensor that can be miniaturized. The fluorescence sensor comprises a thin film geometry including a waveguide layer, a metal film layer and sensor layer. The thin film geometry of the fluorescence sensor allows the detection of fluorescent radiation over a narrow wavelength interval. This enables wavelength discrimination and eliminates the detection of unwanted light from unknown or spurious sources.

  1. Electron Affinity Calculations for Thioethers

    NASA Technical Reports Server (NTRS)

    Sulton, Deley L.; Boothe, Michael; Ball, David W.; Morales, Wilfredo

    1997-01-01

    Previous work indicated that polyphenyl thioethers possessed chemical properties, related to their electron affinities, which could allow them to function as vapor phase lubricants (VPL). Indeed, preliminary tribological tests revealed that the thioethers could function as vapor phase lubricants but not over a wide temperature and hertzian pressure range. Increasing the electron affinity of the thioethers may improve their VPL properties over this range. Adding a substituent group to the thioether will alter its electron affinity in many cases. Molecular orbital calculations were undertaken to determine the effect of five different substituent groups on the electron affinity of polyphenyl thioethers. It was found that the NO2, F, and I groups increased the thioethers electron affinity by the greatest amount. Future work will involve the addition of these groups to the thioethers followed by tribological testing to assess their VPL properties.

  2. Effect of zinc cations on the kinetics of supramolecular assembly and the chirality of porphyrin J-aggregates† †Electronic supplementary information (ESI) available: UV/Vis spectral changes during metallation (SI1) and demetallation (SI2) of TPPS, RLS profiles (SI3), fluorescence emission decay and time resolved and fluorescence anisotropy (SI4), m and n kinetic parameters as a function of Zn(ii) (SI5), ICP-OES analysis experimental conditions (Table SI1), and acquisition parameters for ICP-OES analysis (Table SI2). See DOI: 10.1039/c6sc02686a Click here for additional data file.

    PubMed Central

    Romeo, A.; Zagami, R.; Pollicino, G.; Pasternack, R. F.

    2017-01-01

    Dilute aqueous solutions of anionic meso-4-sulfonatophenyl-porphyrin (TPPS) extract zinc(ii) ions from glass or quartz surfaces at room temperature and efficiently form the corresponding metal complex (ZnTPPS). The partial or complete formation of ZnTPPS has been probed by UV/Vis spectroscopy and both static and time-resolved fluorescence. The source of zinc(ii) ions has been clearly identified through inductively coupled plasma optical emission spectrometry. The presence of increasing amounts of ZnTPPS slows down the rate of TPPS J-aggregate formation in acid solution. This influences the nucleation step and has a profound impact on the onset of chirality in these species. This evidence indicates the important role of this adventitious metal ion in the interpretation of various spectroscopic and kinetic data for the self-assembly of the TPPS porphyrin and provides some insights into controversial findings on their chirality. The use of this metal derivative as the starting compound for in situ formation of monomeric TPPS is suggested. PMID:28451233

  3. Interactions of Zn(II) Ions with Humic Acids Isolated from Various Type of Soils. Effect of pH, Zn Concentrations and Humic Acids Chemical Properties

    PubMed Central

    Boguta, Patrycja; Sokołowska, Zofia

    2016-01-01

    The main aim of this study was the analysis of the interaction between humic acids (HAs) from different soils and Zn(II) ions at wide concentration ranges and at two different pHs, 5 and 7, by using fluorescence and FTIR spectroscopy, as well as potentiometric measurements. The presence of a few areas of HAs structures responsible for Zn(II) complexing was revealed. Complexation at α-sites (low humified structures of low-molecular weight and aromatic polycondensation) and β-sites (weakly humified structures) was stronger at pH 7 than 5. This trend was not observed for γ-sites (structures with linearly-condensed aromatic rings, unsaturated bonds and large molecular weight). The amount of metal complexed at pH5 and 7 by α and γ-structures increased with a decrease in humification and aromaticity of HAs, contrary to β-areas where complexation increased with increasing content of carboxylic groups. The stability of complexes was higher at pH 7 and was the highest for γ-structures. At pH 5, stability decreased with C/N increase for α-areas and -COOH content increase for β-sites; stability increased with humification decrease for γ-structures. The stability of complexes at α and β-areas at pH 7 decreased with a drop in HAs humification. FTIR spectra at pH 5 revealed that the most-humified HAs tended to cause bidentate bridging coordination, while in the case of the least-humified HAs, Zn caused bidentate bridging coordination at low Zn additions and bidentate chelation at the highest Zn concentrations. Low Zn doses at pH 7 caused formation of unidentate complexes while higher Zn doses caused bidentate bridging. Such processes were noticed for HAs characterized by high oxidation degree and high oxygen functional group content; where these were low, HAs displayed bidentate bridging or even bidentate chelation. To summarize, the above studies have showed significant impact of Zn concentration, pH and some properties of HAs on complexation reactions of humic

  4. Interactions of Zn(II) Ions with Humic Acids Isolated from Various Type of Soils. Effect of pH, Zn Concentrations and Humic Acids Chemical Properties.

    PubMed

    Boguta, Patrycja; Sokołowska, Zofia

    2016-01-01

    The main aim of this study was the analysis of the interaction between humic acids (HAs) from different soils and Zn(II) ions at wide concentration ranges and at two different pHs, 5 and 7, by using fluorescence and FTIR spectroscopy, as well as potentiometric measurements. The presence of a few areas of HAs structures responsible for Zn(II) complexing was revealed. Complexation at α-sites (low humified structures of low-molecular weight and aromatic polycondensation) and β-sites (weakly humified structures) was stronger at pH 7 than 5. This trend was not observed for γ-sites (structures with linearly-condensed aromatic rings, unsaturated bonds and large molecular weight). The amount of metal complexed at pH5 and 7 by α and γ-structures increased with a decrease in humification and aromaticity of HAs, contrary to β-areas where complexation increased with increasing content of carboxylic groups. The stability of complexes was higher at pH 7 and was the highest for γ-structures. At pH 5, stability decreased with C/N increase for α-areas and -COOH content increase for β-sites; stability increased with humification decrease for γ-structures. The stability of complexes at α and β-areas at pH 7 decreased with a drop in HAs humification. FTIR spectra at pH 5 revealed that the most-humified HAs tended to cause bidentate bridging coordination, while in the case of the least-humified HAs, Zn caused bidentate bridging coordination at low Zn additions and bidentate chelation at the highest Zn concentrations. Low Zn doses at pH 7 caused formation of unidentate complexes while higher Zn doses caused bidentate bridging. Such processes were noticed for HAs characterized by high oxidation degree and high oxygen functional group content; where these were low, HAs displayed bidentate bridging or even bidentate chelation. To summarize, the above studies have showed significant impact of Zn concentration, pH and some properties of HAs on complexation reactions of humic

  5. Competitive sorption of Pb(II) and Zn(II) on polyacrylic acid-coated hydrated aluminum-oxide surfaces.

    PubMed

    Wang, Yingge; Michel, F Marc; Levard, Clement; Choi, Yong; Eng, Peter J; Brown, Gordon E

    2013-01-01

    Natural organic matter (NOM) often forms coatings on minerals. Such coatings are expected to affect metal-ion sorption due to abundant sorption sites in NOM and potential modifications to mineral surfaces, but such effects are poorly understood in complex multicomponent systems. Using poly(acrylic acid) (PAA), a simplified analog of NOM containing only carboxylic groups, Pb(II) and Zn(II) partitioning between PAA coatings and α-Al2O3 (1-102) and (0001) surfaces was investigated using long-period X-ray standing wave-florescence yield spectroscopy. In the single-metal-ion systems, PAA was the dominant sink for Pb(II) and Zn(II) for α-Al2O3(1-102) (63% and 69%, respectively, at 0.5 μM metal ions and pH 6.0). In equi-molar mixed-Pb(II)-Zn(II) systems, partitioning of both ions onto α-Al2O3(1-102) decreased compared with the single-metal-ion systems; however, Zn(II) decreased Pb(II) sorption to a greater extent than vice versa, suggesting that Zn(II) outcompeted Pb(II) for α-Al2O3(1-102) sorption sites. In contrast, >99% of both metal ions sorbed to PAA when equi-molar Pb(II) and Zn(II) were added simultaneously to PAA/α-Al2O3(0001). PAA outcompeted both α-Al2O3 surfaces for metal sorption but did not alter their intrinsic order of reactivity. This study suggests that single-metal-ion sorption results cannot be used to predict multimetal-ion sorption at NOM/metal-oxide interfaces when NOM is dominated by carboxylic groups.

  6. Antifungal Activity of Ag(I) and Zn(II) Complexes of Sulfacetamide Derivatives

    PubMed Central

    Supuran, Claudiu T.

    2000-01-01

    Reaction of sulfacetamide with arylsulfonyl isocyanates afforded a series of derivatives which were used as ligands (as conjugate bases) for the preparation of metal complexes containing Ag(I) and Zn(II). The newly synthesized complexes, unlike the free ligands, act as effective antifungal agents against Aspergillus and Candida spp., some of them showing activities comparable to ketoconazole, with minimum inhibitory concentrations in the range of 0.3 – 0.5 μg/mL. The mechanism of antifungal action of these complexes seems to be not connected with the inhibition of lanosterol-14-α-demethylase, since the levels of sterols assessed in the fungi cultures were equal in the absence or in the presence of the tested compounds. Probably the new complexes act as inhibitors of phosphomannose isomerase, a key enzyme in the biosynthesis of yeast cell walls. PMID:18475922

  7. Phenoxy-bridged binuclear Zn(II) complex holding salen ligand: Synthesis and structural characterization

    NASA Astrophysics Data System (ADS)

    Azam, Mohammad; Al-Resayes, Saud I.

    2016-03-01

    A novel binuclear phenoxo-bridged zinc complex obtained from the interaction of ligand, 2,2-(1E,1E)-(2,2-dimethylpropane-1,3-diyl)bis(azanylylidene) bis(methanylylidene)diphenol with zinc chloride is reported. The synthesized and isolated zinc complex has been characterized by FT-IR, 1H- and 13C- NMR, ESI-MS, TGA/DTA and single crystal X-ray diffraction studies. The phenoxo-bridge in this binuclear Zn(II) complex is due to the phenolic oxygen of the salen liagnd. The complex crystallizes in monoclinic P-1 space group, and different geometry has been assigned for both zinc ions in the complex.

  8. Tandem affinity purification vectors for use in gram positive bacteria.

    PubMed

    Yang, Xiao; Doherty, Geoff P; Lewis, Peter J

    2008-01-01

    Tandem affinity purification has become a valuable tool for the isolation of protein complexes. Here we describe the construction and use of a series of plasmid vectors for Gram positive bacteria. The vectors utilize the SPA tag as well as variants containing a 3C rather than the TEV protease site as 3C protease has been shown to work efficiently at the low temperatures (4 degrees C) used to isolate protein complexes. In addition, a further vector incorporates a GST moiety in place of the 3xFLAG of the SPA tag which provides an additional tagging option for situations where SPA binding may be inefficient. The vectors are all compatible with previously constructed fluorescent protein fusion vectors enabling construction of a suite of affinity and fluorescently tagged genes using a single PCR product.

  9. Contractions of affine spherical varieties

    SciTech Connect

    Arzhantsev, I V

    1999-08-31

    The language of filtrations and contractions is used to describe the class of G-varieties obtainable as the total spaces of the construction of contraction applied to affine spherical varieties, which is well-known in invariant theory. These varieties are local models for arbitrary affine G-varieties of complexity 1 with a one-dimensional categorical quotient. As examples, reductive algebraic semigroups and three-dimensional SL{sub 2}-varieties are considered.

  10. Glucocorticoids: binding affinity and lipophilicity.

    PubMed

    Ponec, M; Kempenaar, J; Shroot, B; Caron, J C

    1986-10-01

    The relative binding affinity of 35 steroids for the glucocorticoid receptor was determined in experiments in which the competition of various unlabeled steroids with either [6,7-3H]dexamethasone or [1,2-3H]hydrocortisone for the cytosolic glucocorticoid receptor of cultured human keratinocytes was measured. The data obtained were correlated with steroid lipophilicity, measured as the partition coefficient of the steroid between 1-octanol and pH 7.4 aqueous buffer. The introduction of various substituents on the steroid molecule induced changes in the binding affinity and was associated in some cases with concomitant changes in steroid lipophilicity. The substitution by a 17 alpha-OH or 21-OH group leads in all cases to a decrease in steroid lipophilicity and to an increase in affinity. In contrast, 17 alpha-OAc and especially 21-OAc substitution on hydrocortisone and betamethasone causes a decrease in the steroid affinity for the receptor and an increase in steroid lipophilicity. The elongation of the ester chain from acetate to valerate in both position C-17 and C-21 leads to the increase in both the binding affinity for the receptor and the lipophilicity of steroids. However, all 21-esters showed lower binding affinity than the parent alcohol. The binding affinity of the highly lipophilic 17 alpha, 21-diester was found to be lower than that of the 17 alpha-ester but higher than that of the 21-ester or of the parent alcohol. Only in the series of 17 alpha- and 21-esters is there a correlation between the binding affinity of steroids for the glucocorticoid receptor and their lipophilicity.

  11. Sol-gel encapsulation of binary Zn(II) compounds in silica nanoparticles. Structure-activity correlations in hybrid materials targeting Zn(II) antibacterial use.

    PubMed

    Halevas, E; Nday, C M; Kaprara, E; Psycharis, V; Raptopoulou, C P; Jackson, G E; Litsardakis, G; Salifoglou, A

    2015-10-01

    In the emerging issue of enhanced multi-resistant properties in infectious pathogens, new nanomaterials with optimally efficient antibacterial activity and lower toxicity than other species attract considerable research interest. In an effort to develop such efficient antibacterials, we a) synthesized acid-catalyzed silica-gel matrices, b) evaluated the suitability of these matrices as potential carrier materials for controlled release of ZnSO4 and a new Zn(II) binary complex with a suitably designed well-defined Schiff base, and c) investigated structural and textural properties of the nanomaterials. Physicochemical characterization of the (empty-loaded) silica-nanoparticles led to an optimized material configuration linked to the delivery of the encapsulated antibacterial zinc load. Entrapment and drug release studies showed the competence of hybrid nanoparticles with respect to the a) zinc loading capacity, b) congruence with zinc physicochemical attributes, and c) release profile of their zinc load. The material antimicrobial properties were demonstrated against Gram-positive (Staphylococcus aureus, Bacillus subtilis, Bacillus cereus) and negative (Escherichia coli, Pseudomonas aeruginosa, Xanthomonas campestris) bacteria using modified agar diffusion methods. ZnSO4 showed less extensive antimicrobial behavior compared to Zn(II)-Schiff, implying that the Zn(II)-bound ligand enhances zinc antimicrobial properties. All zinc-loaded nanoparticles were less antimicrobially active than zinc compounds alone, as encapsulation controls their release, thereby attenuating their antimicrobial activity. To this end, as the amount of loaded zinc increases, the antimicrobial behavior of the nano-agent improves. Collectively, for the first time, sol-gel zinc-loaded silica-nanoparticles were shown to exhibit well-defined antimicrobial activity, justifying due attention to further development of antibacterial nanotechnology.

  12. Synthesis and characterization of VO(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes of chromone based azo-linked Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Anitha, C.; Sheela, C. D.; Tharmaraj, P.; Johnson Raja, S.

    2012-12-01

    Azo-Schiff-base complexes of VO(II), Co(II), Ni(II), Cu(II) and Zn(II) have been synthesized and characterized by elemental analysis, IR, UV-Vis, 1H NMR, mass spectra, molar conductance, magnetic susceptibility measurement, electron spin resonance (EPR), CV, fluorescence, NLO and SEM. The conductance data indicate the nonelectrolytic nature of the complexes, except VO(II) complex which is electrolytic in nature. On the basis of electronic spectra and magnetic susceptibility octahedral geometry has been proposed for the complexes. The EPR spectra of copper and oxovanadium complexes in DMSO at 300 and 77 K were recorded and its salient features are reported. The redox behavior of the copper(II) complex was studied using cyclic voltammetry. The in vitro antimicrobial activity against Staphylococcus aureus, Escherichia coli, Salmonella enterica typhi, Bacillus subtilis and Candida strains was studied and compared with that of free ligand by well-diffusion technique. The azo Schiff base exhibited fluorescence properties originating from intraligand (π-π∗) transitions and metal-mediated enhancement is observed on complexation and so the synthesized complexes can serve as potential photoactive materials as indicated from their characteristic fluorescence properties. On the basis of the optimized structures, the second-order nonlinear optical properties (NLO) are calculated by using second-harmonic generation (SHG) and also the surface morphology of the complexes was studied by SEM.

  13. Relationship between Ni(II) and Zn(II) Coordination and Nucleotide Binding by the Helicobacter pylori [NiFe]-Hydrogenase and Urease Maturation Factor HypB*

    PubMed Central

    Sydor, Andrew M.; Lebrette, Hugo; Ariyakumaran, Rishikesh; Cavazza, Christine; Zamble, Deborah B.

    2014-01-01

    The pathogen Helicobacter pylori requires two nickel-containing enzymes, urease and [NiFe]-hydrogenase, for efficient colonization of the human gastric mucosa. These enzymes possess complex metallocenters that are assembled by teams of proteins in multistep pathways. One essential accessory protein is the GTPase HypB, which is required for Ni(II) delivery to [NiFe]-hydrogenase and participates in urease maturation. Ni(II) or Zn(II) binding to a site embedded in the GTPase domain of HypB modulates the enzymatic activity, suggesting a mechanism of regulation. In this study, biochemical and structural analyses of H. pylori HypB (HpHypB) revealed an intricate link between nucleotide and metal binding. HpHypB nickel coordination, stoichiometry, and affinity were modulated by GTP and GDP, an effect not observed for zinc, and biochemical evidence suggests that His-107 coordination to nickel toggles on and off in a nucleotide-dependent manner. These results are consistent with the crystal structure of HpHypB loaded with Ni(II), GDP, and Pi, which reveals a nickel site distinct from that of zinc-loaded Methanocaldococcus jannaschii HypB as well as subtle changes to the protein structure. Furthermore, Cys-142, a metal ligand from the Switch II GTPase motif, was identified as a key component of the signal transduction between metal binding and the enzymatic activity. Finally, potassium accelerated the enzymatic activity of HpHypB but had no effect on the other biochemical properties of the protein. Altogether, this molecular level information about HpHypB provides insight into its cellular function and illuminates a possible mechanism of metal ion discrimination. PMID:24338018

  14. Syntheses, crystal structures and DNA-binding studies of Cu(II) and Zn(II) complexes bearing asymmetrical aroylhydrazone ligand

    NASA Astrophysics Data System (ADS)

    Li, Yueqin; Yang, Zhiwei; Zhou, Minya; He, Jing; Wang, Xuehong; Wu, Yanlong; Wang, Zhuye

    2017-02-01

    Zn(II) and Cu(II) complexes with benzophenone benzoyl hydrazone (HBBH) and benzophenone salicylylhydrazone (HBSH) have been synthesized and characterized by different physico-chemical and spectroscopic techniques (UV-vis, IR and NMR). The molecular structures of these complexes [Zn(BBH)2, Cu(BBH)2 and Cu(BSH)2Cl2H2O] have also been determined by single X-ray diffraction technique. In Zn(BBH)2 and Cu(BBH)2 complexes, each ligand coordinates to metal through enol tautomeric form by azomethine-N and carbonylate-O resulting a 4-coordinate distorted tetrahedral geometry. While in Cu(BSH)2Cl2H2O, each ligand coordinates to metal through keto tautomeric form resulting distorted octahedral geometry in which two chlorine atoms occupy the axial positions. The DNA interaction propensity of the complexes with Herring sperm DNA, studied at physiological pH by spectrophotometric, spectrofluorometric, viscometric techniques and cyclic voltammetry, revealed intercalation as the possible binding mode. Fascinatingly, Cu(BSH)2Cl2H2O was found to exhibit greater binding strength than the others. A strong hyperchromism effect and a slight red shift were exhibited by all complexes. The intrinsic binding constants are of moderate values and are about 3.28 × 104 M-1, 4.73 × 104 M-1 and 5.80 × 104 M-1, respectively. Cyclic voltammetry studies of the complexes binding with DNA indicate quasireversible oxidation and reduction potentials. The results suggest that the binding affinity of complexes lies in the order Cu(BSH)2Cl2H2O > Cu(BBH)2 > Zn(BBH)2.

  15. Batch and fixed-bed column studies for biosorption of Zn(II) ions onto pongamia oil cake (Pongamia pinnata) from biodiesel oil extraction.

    PubMed

    Shanmugaprakash, M; Sivakumar, V

    2015-12-01

    The present work, analyzes the potential of defatted pongamia oil cake (DPOC) for the biosorption of Zn(II) ions from aqueous solutions in the both batch and column mode. Batch experiments were conducted to evaluate the optimal pH, effect of adsorbent dosage, initial Zn(II) ions concentration and contact time. The biosorption equilibrium and kinetics data for Zn(II) ions onto the DPOC were studied in detail, using several models, among all it was found to be that, Freundlich and the second-order model explained the equilibrium data well. The calculated thermodynamic parameters had shown that the biosorption of Zn(II) ions was exothermic and spontaneous in nature. Batch desorption studies showed that the maximum Zn(II) recovery occurred, using 0.1 M EDTA. The Bed Depth Service Time (BDST) and the Thomas model was successfully employed to evaluate the model parameters in the column mode. The results indicated that the DPOC can be applied as an effective and eco-friendly biosorbent for the removal of Zn(II) ions in polluted wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Interaction of natural polyphenols with α-amylase in vitro: molecular property-affinity relationship aspect.

    PubMed

    Xiao, Jianbo; Kai, Guoyin; Ni, Xiaoling; Yang, Fan; Chen, Xiaoqing

    2011-06-01

    The relationship between the structural properties of natural polyphenols and their affinities for α-amylase were investigated by fluorescence titration analysis. The binding process with α-amylase was strongly influenced by the structural differences of the compounds under study. For instance, the methylation of the hydroxyl group in flavonoids increased their binding affinities for α-amylase by 2.14 to 7.76 times. The hydroxylation on rings A, B, and C of flavonoids also significantly affected their affinities for α-amylase. The glycosylation of isoflavones and flavanones reduced their affinities for α-amylase and the glycosylation of flavones and flavonols enhanced their affinities for α-amylase. Hydrogenation of the C2=C3 double bond of flavonoids decreased the binding affinities. The galloylated catechins had higher binding affinities with α-amylase than non-galloylated catechins and the pyrogallol-type catechins had higher affinities than the catechol-type catechins. The presence of the galloyl moiety is the most decisive factor. The glycosylation of resveratrol decreased its affinity for α-amylase. The esterification of gallic acid significantly reduced the affinity for α-amylase. The binding interaction between polyphenols and α-amylase was mainly caused by hydrophobic forces.

  17. Picomolar affinity fibronectin domains engineered utilizing loop length diversity, recursive mutagenesis, and loop shuffling.

    PubMed

    Hackel, Benjamin J; Kapila, Atul; Wittrup, K Dane

    2008-09-19

    The 10th type III domain of human fibronectin (Fn3) has been validated as an effective scaffold for molecular recognition. In the current work, it was desired to improve the robustness of selection of stable, high-affinity Fn3 domains. A yeast surface display library of Fn3 was created in which three solvent-exposed loops were diversified in terms of amino acid composition and loop length. The library was screened by fluorescence-activated cell sorting to isolate binders to lysozyme. An affinity maturation scheme was developed to rapidly and broadly diversify populations of clones by random mutagenesis as well as homologous recombination-driven shuffling of mutagenized loops. The novel library and affinity maturation scheme combined to yield stable, monomeric Fn3 domains with 3 pM affinity for lysozyme. A secondary affinity maturation identified a stable 1.1 pM binder, the highest affinity yet reported for an Fn3 domain. In addition to extension of the affinity limit for this scaffold, the results demonstrate the ability to achieve high-affinity binding while preserving stability and the monomeric state. This library design and affinity maturation scheme is highly efficient, utilizing an initial diversity of 2x10(7) clones and screening only 1x10(8) mutants (totaled over all affinity maturation libraries). Analysis of intermediate populations revealed that loop length diversity, loop shuffling, and recursive mutagenesis of diverse populations are all critical components.

  18. Enhanced removal of ethylbenzene from gas streams in biotrickling filters by Tween-20 and Zn(II).

    PubMed

    Wang, Lu; Yang, Chunping; Cheng, Yan; Huang, Jian; Yang, Haining; Zeng, Guangming; Lu, Li; He, Shanying

    2014-12-01

    The effects of Tween-20 and Zn(II) on ethylbenzene removal were evaluated using two biotrickling filters (BTFs), BTF1 and BTF2. Only BTF1 was fed with Tween-20 and Zn(II). Results show that ethylbenzene removal decreased from 94% to 69% for BTF1 and from 74% to 54% for BTF2 with increased organic loading from 64.8 to 189.0 g ethylbenzene/(m³·hr) at EBRT of 40 sec. The effect of EBRT (60-15 sec) at a constant ethylbenzene inlet concentration was more significant than that of EBRT (30-10 sec) at a constant organic loading. Biomass accumulation rate within packing media was reduced significantly.

  19. The frontline antibiotic vancomycin induces a zinc starvation response in bacteria by binding to Zn(II)

    PubMed Central

    Zarkan, Ashraf; Macklyne, Heather-Rose; Truman, Andrew W.; Hesketh, Andrew R.; Hong, Hee-Jeon

    2016-01-01

    Vancomycin is a front-line antibiotic used for the treatment of nosocomial infections, particularly those caused by methicillin-resistant Staphylococcus aureus. Despite its clinical importance the global effects of vancomycin exposure on bacterial physiology are poorly understood. In a previous transcriptomic analysis we identified a number of Zur regulon genes which were highly but transiently up-regulated by vancomycin in Streptomyces coelicolor. Here, we show that vancomycin also induces similar zinc homeostasis systems in a range of other bacteria and demonstrate that vancomycin binds to Zn(II) in vitro. This implies that vancomycin treatment sequesters zinc from bacterial cells thereby triggering a Zur-dependent zinc starvation response. The Kd value of the binding between vancomycin and Zn(II) was calculated using a novel fluorometric assay, and NMR was used to identify the binding site. These findings highlight a new biologically relevant aspect of the chemical property of vancomycin as a zinc chelator. PMID:26797186

  20. Adsorption and desorption of Zn(II) and Cu(II) on Ca- alginate immobilized activated rice bran

    NASA Astrophysics Data System (ADS)

    Suratman, A.; Kamalia, N. Z.; Kusumawati, W. A.

    2016-02-01

    Ca-alginate immobilized activated rice bran has been used for adsorption of Zn(II) and Cu(II) from aqueous solution. The effect of the pH, kinetics model, adsorption isotherm and desorption on the adsorption performance was investigated. Activated rice bran was immobilized by the entrapment in alginate beads. The adsorption strength of Ca-alginate immobilized activated rice bran was compared to Ca-alginate and non-immobilized activated rice bran. The concentrations of adsorbed ions were analyzed using Atomic Absorption Spectrophotometer (AAS). The result showed that pH of 4.0 and the contact time of 120 min are the optimum condition for adsorption of Zn(II) and Cu(II). The adsorption kinetic of Zn(II) and Cu(II) followed the pseudo-second-order model with adsorption rate constant 4.9 x 10-2 and 3.14 g.mg-1.min-1, respectively. The both adsorption processes obeyed Langmuir isotherm with adsorption capacity of 2.03 and 2.42 mg.g-1 of adsorbent, respectively. The strength of Zn adsorption on Ca-alginate immobilized activated rice bran (86.63%) was more effective compared to Ca-alginate beads (60.96%) and activated rice bran (43.85%). The strength of Cu adsorption was 80.00%, 61.50% and 22.10%, respectively. The desorption of Zn(II) and Cu(II) showed that recovery percentage of the adsorption was 76.56% and 57.80% with the condition of using HCl 0.1 M as desorption agent for 1 hour.

  1. A tetrahedron in a cube: a dodecanuclear Zn(II) benzoate cluster from the use of 2-pyridinealdoxime.

    PubMed

    Konidaris, Konstantis F; Katsoulakou, Eugenia; Kaplanis, Michalis; Bekiari, Vlasoula; Terzis, Aris; Raptopoulou, Catherine P; Manessi-Zoupa, Evy; Perlepes, Spyros P

    2010-05-21

    The reactions of 2-pyridinealdoxime with Zn(O(2)CPh)(2)·2H(2)O have led to a mononuclear complex and a dodecanuclear cluster; the Zn(12) compound, whose metallic skeleton describes a tetrahedron encapsulated in a distorted cube, is the biggest Zn(II) oxime cluster discovered to date and displays photoluminescence with a maximum at 354 nm upon maximum excitation at 314 nm.

  2. Adsorptive removal of Zn(II) ion from aqueous solution using rice husk-based activated carbon

    NASA Astrophysics Data System (ADS)

    Taha, Mohd F.; Ibrahim, Muhammad H. C.; Shaharun, Maizatul S.; Chong, F. K.

    2012-09-01

    The study of rice husk-based activated carbon as a potential low-cost adsorbent for the removal of Zn(II) ion from aqueous solution was investigated. Rice husk, an agricultural waste, is a good alternative source for cheap precursor of activated carbon due to its abundance and constant availability. In this work, rice husk-based activated carbon was prepared via chemical treatment using NaOH as an activation agent prior the carbonization process. Three samples, i.e. raw rice husk, rice husk treated with NaOH and rice husk-based activated carbon carbonized at 650°C, were analyzed for their morphological characteristics using field-emission scanning electron microscope/energy dispersive X-ray (FESEM/EDX). Other analyses were also conducted on these samples using fourier transmitter infrared spectroscopy (FTIR), CHN elemental analyzer and X-ray diffraction (XRD) for characterization study. The porous properties of rice husk-based activated carbon were determined by Brunauer-Emmett-Teller (BET) surface area analyzer, and its surface area and pore volume were found to be 255 m2/g and 0.17 cm2/g, respectively. The adsorption studies for the removal of Zn(II) ion from aqueous solution were carried out as a function of varied contact time at room temperature. The concentration of Zn(II) ion was analyzed using atomic absorption spectrophotometer (AAS). The results obtained from adsorption studies indicate the potential of rice husk as an economically promising precursor for the preparation of activated carbon for removal of Zn(II) ion from aqueous solution.

  3. Differential Binding of Co(II) and Zn(II) to Metallo-beta-Lactamase Bla2 from Bacillus anthracis

    SciTech Connect

    Hawk, M.; Breece, R; Hajdin, C; Bender, K; Hu, Z; Costello, A; Bennett, B; Tierney, D; Crowder, M

    2009-01-01

    In an effort to probe the structure, mechanism, and biochemical properties of metallo-{beta}-lactamase Bla2 from Bacillus anthracis, the enzyme was overexpressed, purified, and characterized. Metal analyses demonstrated that recombinant Bla2 tightly binds 1 equiv of Zn(II). Steady-state kinetic studies showed that mono-Zn(II) Bla2 (1Zn-Bla2) is active, while di-Zn(II) Bla2 (ZnZn-Bla2) was unstable. Catalytically, 1Zn-Bla2 behaves like the related enzymes CcrA and L1. In contrast, di-Co(II) Bla2 (CoCo-Bla2) is substantially more active than the mono-Co(II) analogue. Rapid kinetics and UV-vis, 1H NMR, EPR, and EXAFS spectroscopic studies show that Co(II) binding to Bla2 is distributed, while EXAFS shows that Zn(II) binding is sequential. To our knowledge, this is the first documented example of a Zn enzyme that binds Co(II) and Zn(II) via distinct mechanisms, underscoring the need to demonstrate transferability when extrapolating results on Co(II)-substituted proteins to the native Zn(II)-containing forms.

  4. Dinuclear Zn(II) and mixed Cu(II)-Zn(II) complexes of artificial patellamides as phosphatase models.

    PubMed

    Comba, Peter; Eisenschmidt, Annika; Gahan, Lawrence R; Hanson, Graeme R; Mehrkens, Nina; Westphal, Michael

    2016-12-21

    The patellamides (cyclic pseudo-octapeptides) are produced by Prochloron, a symbiont of the ascidians, marine invertebrate filter feeders. These pseudo-octapeptides are present in the cytoplasm and a possible natural function of putative metal complexes of these compounds is hydrolase activity, however the true biological role is still unknown. The dinuclear Cu(II) complexes of synthetic patellamide derivatives have been shown in in vitro experiments to be efficient hydrolase model catalysts. Many hydrolase enzymes, specifically phosphatases and carboanhydrases, are Zn(II)-based enzymes and therefore, we have studied the Zn(II) and mixed Zn(II)/Cu(II) solution chemistry of a series of synthetic patellamide derivatives, including solution structural and computational work, with the special focus on model phosphatase chemistry with bis-(2,4-dinitrophenyl)phosphate (BDNPP) as the substrate. The Zn(II) complexes of a series of ligands are shown to form complexes of similar structure and stability compared to the well-studied Cu(II) analogues and the phosphatase reactivities are also similar. Since the complex stabilities and phosphatase activities are generally a little lower compared to those of Cu(II) and since the concentration of Zn(II) in Prochloron cells is slightly smaller, we conclude that the Cu(II) complexes of the patellamides are more likely to be of biological importance.

  5. The Effect of Hydrogen Bonding in Enhancing the Ionic Affinities of Immobilized Monoprotic Phosphate Ligands

    PubMed Central

    Alexandratos, Spiro D.; Zhu, Xiaoping

    2017-01-01

    Environmental remediation requires ion-selective polymers that operate under a wide range of solution conditions. In one example, removal of trivalent and divalent metal ions from waste streams resulting from mining operations before they enter the environment requires treatment at acidic pH. The monoethyl ester phosphate ligands developed in this report operate from acidic solutions. They have been prepared on polystyrene-bound ethylene glycol, glycerol, and pentaerythritol, and it is found that intra-ligand hydrogen bonding affects their metal ion affinities. The affinity for a set of trivalent (Fe(III), Al(III), La(III), and Lu(III)) and divalent (Pb(II), Cd(II), Cu(II), and Zn(II)) ions is greater than that of corresponding neutral diethyl esters and phosphonic acid. In an earlier study, hydrogen bonding was found important in determining the metal ion affinities of immobilized phosphorylated polyol diethyl ester coordinating ligands; their Fourier transform infrared (FTIR) band shifts indicated that the basicity of the phosphoryl oxygen increased by hydrogen bonding to auxiliary –OH groups on the neighboring polyol. The same mechanism is operative with the monoprotic resins along with hydrogen bonding to the P–OH acid site. This is reflected in the FTIR spectra: the neutral phosphate diethyl ester resins have the P=O band at 1265 cm−1 while the monoethyl ester resins have the band shifted to 1230 cm−1; hydrogen bonding is further indicated by the broadness of this region down to 900 cm−1. The monoprotic pentaerythritol has the highest metal ion affinities of the polymers studied. PMID:28820489

  6. The electron affinity of tungsten

    NASA Astrophysics Data System (ADS)

    Lindahl, A. O.; Andersson, P.; Diehl, C.; Forstner, O.; Klason, P.; Hanstorp, D.

    2010-11-01

    The electron affinity of tungsten has been measured using laser photodetachment threshold spectroscopy in a collinear geometry. The electron affinity was determined to 6583.6(6) cm-1 by observing the onset of the process when W- ions in the 5d^56s^2 6S5/2 ground state are photodetached producing neutral W atoms in the 5d^46s^2 5D0 ground state. The measured value is in agreement with previous measurements and improves the accuracy by almost two orders of magnitude. Further, a photodetachment signal below the ground state photodetachment threshold was found, which indicates the existence of a bound excited state in W-.

  7. Synthesis and luminescence properties of polymeric complexes of Cu(II), Zn(II) and Al(III) with 8-hydroxyquinoline side group-containing polystyrene

    NASA Astrophysics Data System (ADS)

    Gao, Baojiao; Wei, Xiaopeng; Zhang, Yanyan

    2013-01-01

    Three kinds of metalloquinolate-containing polystyrene were prepared via a polymer reaction and a coordination reaction. 5-Chloromethyl-8-hydroxyquinoline (CHQ) was first prepared through the chloromethylation reaction of 8-hydroxyquinoline (HQ) with 1,4-bichloromethoxy-butane as chloromethylation reagent. A polymer reaction, Friedel-Crafts alkylation reaction, was carried out between polystyrene (PS) and CHQ in the presence of Lewis catalyst, and HQ was bonded onto the side chains of PS, obtaining 8-hydroxyquinoline-functionalized Polystyrene, HQ-PS. And then, by using one-pot method with two-stage procedures, the coordination reaction of HQ-PS and small molecule HQ with metal ions including Al(III), Zn(II) and Cu(II) ions, was allowed to be carried out, and three polymeric metalloquinolates, AlQ3-PS, ZnQ2-PS and CuQ2-PS, were successfully prepared, respectively. In the chemical structures of these polymeric metalloquinolates, metalloquinolates were chemically attached onto the side chains of PS. HQ-PS and three polymeric metalloquinolates were fully characterized by FTIR, 1H NMR and TGA. The luminescence properties of the three polymeric metalloquinolates were mainly investigated by UV/Vis absorption spectra and fluorescence emission spectra in solutions and in solid film states. When excited by the ray at about 365 nm, the three polymeric metalloquinolates have blue-green luminescence, and the main emission peaks in the DMF solutions are located at 490, 482 and 502 nm for AlQ3-PS, ZnQ2-PS and CuQ2-PS, respectively. As compared with their emissions in solutions, the emissions in solid film states are red-shifted to some extent, and the main emission peaks are located at 500, 488 and 510 nm for AlQ3-PS, ZnQ2-PS and CuQ2-PS, respectively. Besides, these polymeric metalloquinolates have higher thermal stability than PS as polymeric skeleton.

  8. Comparative Study on the Efficiency of the Photodynamic Inactivation of Candida albicans Using CdTe Quantum Dots, Zn(II) Porphyrin and Their Conjugates as Photosensitizers.

    PubMed

    Viana, Osnir S; Ribeiro, Martha S; Rodas, Andréa C D; Rebouças, Júlio S; Fontes, Adriana; Santos, Beate S

    2015-05-18

    The application of fluorescent II-VI semiconductor quantum dots (QDs) as active photosensitizers in photodymanic inactivation (PDI) is still being evaluated. In the present study, we prepared 3 nm size CdTe QDs coated with mercaptosuccinic acid and conjugated them electrostatically with Zn(II) meso-tetrakis (N-ethyl-2-pyridinium-2-yl) porphyrin (ZnTE-2-PyP or ZnP), thus producing QDs-ZnP conjugates. We evaluated the capability of the systems, bare QDs and conjugates, to produce reactive oxygen species (ROS) and applied them in photodynamic inactivation in cultures of Candida albicans by irradiating the QDs and testing the hypothesis of a possible combined contribution of the PDI action. Tests of in vitro cytotoxicity and phototoxicity in fibroblasts were also performed in the presence and absence of light irradiation. The overall results showed an efficient ROS production for all tested systems and a low cytotoxicity (cell viability >90%) in the absence of radiation. Fibroblasts incubated with the QDs-ZnP and subjected to irradiation showed a higher cytotoxicity (cell viability <90%) depending on QD concentration compared to the bare groups. The PDI effects of bare CdTe QD on Candida albicans demonstrated a lower reduction of the cell viability (~1 log10) compared to bare ZnP which showed a high microbicidal activity (~3 log10) when photoactivated. The QD-ZnP conjugates also showed reduced photodynamic activity against C. albicans compared to bare ZnP and we suggest that the conjugation with QDs prevents the transmembrane cellular uptake of the ZnP molecules, reducing their photoactivity.

  9. The meloxicam complexes of Co(II) and Zn(II): Synthesis, crystal structures, photocleavage and in vitro DNA-binding

    NASA Astrophysics Data System (ADS)

    Sanatkar, Tahereh Hosseinzadeh; Hadadzadeh, Hassan; Simpson, Jim; Jannesari, Zahra

    2013-10-01

    Two neutral mononuclear complexes of Co(II) and Zn(II) with the non-steroidal anti-inflammatory drug meloxicam (H2mel, 4-hydroxy-2-methyl-N-(5-methyl-2-thiazolyl)-2H-1,2-benzothiazine-3-carboxammide-1,1-dioxide), [Co(Hmel)2(EtOH)2] (1), and [Zn(Hmel)2(EtOH)2] (2), were synthesized and characterized by elemental analysis, IR and UV-Vis spectroscopy and their solid-state structures were studied by single-crystal diffraction. The complexes have a distorted octahedral geometry around the metal atom. The experimental data indicate that the meloxicam acts as a deprotonated bidentate ligand (through the amide oxygen and the nitrogen atom of the thiazolyl ring) in the complexes, and a strong intramolecular hydrogen bond between the amide N-H function and the enolate O atom stabilizes the ZZZ conformation of meloxicam ligands. Absorption, fluorescence spectroscopy and cyclic voltammetry have been used to investigate the binding of the complexes with fish sperm DNA (FS-DNA). Additionally, the photocleavage studies have been also used to investigate the binding of the complexes with plasmid DNA. The interaction of the complexes with DNA was monitored by a blue shift and hyperchromism in the UV-Vis spectra attributed to an electrostatic binding mode. A competitive study with ethidium bromide (EB) has shown that the complexes can displace the DNA-bound EB indicating that they bind to DNA in strong competition with EB. The experimental results show that the complexes can cleave pUC57 plasmid DNA.

  10. Interaction with biomacromolecules and antiproliferative activities of Mn(II), Ni(II), Zn(II) complexes of demethylcantharate and 2,2'-bipyridine

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Lin, Qiu-Yue; Hu, Wan-Li; Song, Wen-Ji; Shen, Shu-Ting; Gui, Pan

    2013-06-01

    Three new transition metal complexes [Mn2(DCA)2(bipy)2]·5H2O (1), [M2(DCA)2(bipy)2(H2O)]·10H2O(M = Ni(II)(2);Zn(II)(3)), (DCA = demethylcantharate, 7-oxabicyclo[2,2,1]heptane-2,3-dicarboxylate, C8H8O5) were synthesized and characterized by elemental analysis, molar conductance, infrared spectra and X-ray diffraction techniques. Each metal ion was six-coordinated in complexes. Complex 1 has a Mn2O2 center. Complexes 2 and 3 have asymmetric binuclear structure. Great amount of intermolecular hydrogen-bonding and π-π* stacking interactions were formed in these complex structures. The DNA-binding properties of complexes were investigated by electronic absorption spectra and viscosity measurements. The DNA binding constants Kb/(L mol-1) were 1.71 × 104 (1), 2.62 × 104 (2) and 1.59 × 104 (3) at 298 K. The complexes could quench the intrinsic fluorescence of bovine serum albumin (BSA) strongly through static quenching. The protein binding constants Ka/(L mol-1) were 7.27 × 104 (1), 4.55 × 104 (2) and 7.87 × 104 L mol-1 (3) and binding site was one. The complexes bind more tightly with DNA and BSA than with ligands. Complexes 1 and 3 had stronger inhibition ratios than Na2(DCA) against human hepatoma cells (SMMC-7721) lines and human gastric cancer cells (MGC80-3) lines in vitro. Complex 3 showed the strongest antiproliferative activity against SMMC-7721 (IC50 = 29.46 ± 2.12 μmol L-1) and MGC80-3 (IC50 = 27.02 ± 2.38 μmol L-1), which shows potential in anti-cancer drug development.

  11. Chemical binding affinity estimation using MSB

    NASA Astrophysics Data System (ADS)

    Weaver, John B.; Rauwerdink, Adam M.

    2011-03-01

    Binding affinity can be estimated in several ways in the laboratory but there is no viable way to estimate binding affinity in vivo without assumptions on the number of binding sites. Magnetic spectroscopy of nanoparticle Brownian motion, MSB, measures the rotational Brownian motion. The MSB signal is affected by nanoparticle binding affinity so it provides a mechanism to measure the chemical binding affinity. We present a possible mechanism to quantify the binding affinity and test that mechanism using viscous solutions.

  12. Bioinspired fluorescent dipeptide nanoparticles for targeted cancer cell imaging and real-time monitoring of drug release.

    PubMed

    Fan, Zhen; Sun, Leming; Huang, Yujian; Wang, Yongzhong; Zhang, Mingjun

    2016-04-01

    Peptide nanostructures are biodegradable and are suitable for many biomedical applications. However, to be useful imaging probes, the limited intrinsic optical properties of peptides must be overcome. Here we show the formation of tryptophan-phenylalanine dipeptide nanoparticles (DNPs) that can shift the peptide's intrinsic fluorescent signal from the ultraviolet to the visible range. The visible emission signal allows the DNPs to act as imaging and sensing probes. The peptide design is inspired by the red shift seen in the yellow fluorescent protein that results from π-π stacking and by the enhanced fluorescence intensity seen in the green fluorescent protein mutant, BFPms1, which results from the structure rigidification by Zn(II). We show that DNPs are photostable, biocompatible and have a narrow emission bandwidth and visible fluorescence properties. DNPs functionalized with the MUC1 aptamer and doxorubicin can target cancer cells and can be used to image and monitor drug release in real time.

  13. Bioinspired fluorescent dipeptide nanoparticles for targeted cancer cell imaging and real-time monitoring of drug release

    NASA Astrophysics Data System (ADS)

    Fan, Zhen; Sun, Leming; Huang, Yujian; Wang, Yongzhong; Zhang, Mingjun

    2016-04-01

    Peptide nanostructures are biodegradable and are suitable for many biomedical applications. However, to be useful imaging probes, the limited intrinsic optical properties of peptides must be overcome. Here we show the formation of tryptophan-phenylalanine dipeptide nanoparticles (DNPs) that can shift the peptide's intrinsic fluorescent signal from the ultraviolet to the visible range. The visible emission signal allows the DNPs to act as imaging and sensing probes. The peptide design is inspired by the red shift seen in the yellow fluorescent protein that results from π-π stacking and by the enhanced fluorescence intensity seen in the green fluorescent protein mutant, BFPms1, which results from the structure rigidification by Zn(II). We show that DNPs are photostable, biocompatible and have a narrow emission bandwidth and visible fluorescence properties. DNPs functionalized with the MUC1 aptamer and doxorubicin can target cancer cells and can be used to image and monitor drug release in real time.

  14. Synthesis and spectral characterization of Zn(II) microsphere series for antimicrobial application

    NASA Astrophysics Data System (ADS)

    Singh, Ajay K.; Pandey, Sarvesh K.; Pandey, O. P.; Sengupta, S. K.

    2014-09-01

    Microsphere series have been synthesized by reacting zinc(II) acetate dihydrate with Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole/oxadiazole/triazole with salicylaldehyde. Elemental analysis suggests that the complexes have 1:2 and 1:1 stoichiometry of the type [Zn(L)2(H2O)2] and [Zn(L‧)(H2O)2]; LH = Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thia/oxadiazole with salicylaldehyde; L‧H2 = Schiff bases derived from 3-(substituted phenyl)-4-amino-5-hydrazino-1,2,4-triazole and salicylaldehyde and were characterized by elemental analyses, IR, 1H NMR and 13C NMR spectral data. Scanning electron microscopy (SEM) showed that synthesized materials have microsphere like structure and there EDX analysis comparably matches with elemental analysis. For the antimicrobial application Schiff bases and their zinc(II) complexes were screened for four bacteria e.g. Bacillus subtilis, Pseudomonas aeruginosa, Salmonella typhi, Streptococcus pyogenes and four fungi e.g. Cyrtomium falcatum, Aspergillus niger, Fusarium oxysporium and Curvularia pallescence by the reported method. Schiff base and Zn(II) compounds showed significant antimicrobial activities. However, activities increase upon chelation. Thermal analysis (TGA) data of compound (10) showed its stability up to 300 °C.

  15. Affine Contractions on the Plane

    ERIC Educational Resources Information Center

    Celik, D.; Ozdemir, Y.; Ureyen, M.

    2007-01-01

    Contractions play a considerable role in the theory of fractals. However, it is not easy to find contractions which are not similitudes. In this study, it is shown by counter examples that an affine transformation of the plane carrying a given triangle onto another triangle may not be a contraction even if it contracts edges, heights or medians.…

  16. Gravity theory through affine spheres

    NASA Astrophysics Data System (ADS)

    Minguzzi, E.

    2017-08-01

    In this work it is argued that in order to improve our understanding of gravity and spacetime our most successful theory, general relativity, must be destructured. That is, some geometrical assumptions must be dropped and recovered just under suitable limits. Along this line of thought we pursue the idea that the roundness of the light cone, and hence the isotropy of the speed of light, must be relaxed and that, in fact, the shape of light cones must be regarded as a dynamical variable. Mathematically, we apply some important results from affine differential geometry to this problem, the idea being that in the transition we should preserve the identification of the spacetime continuum with a manifold endowed with a cone structure and a spacetime volume form. To that end it is suggested that the cotangent indicatrix (dispersion relation) must be described by an equation of Monge-Ampère type determining a hyperbolic affine sphere, at least whenever the matter content is negligible. Non-relativistic spacetimes fall into this description as they are recovered whenever the center of the affine sphere is at infinity. In the more general context of Lorentz-Finsler theories it is shown that the lightlike unparametrized geodesic flow is completely determined by the distribution of light cones. Moreover, the transport of lightlike momenta is well defined though there could be no notion of affine parameter. Finally, we show how the perturbed indicatrix can be obtained from the perturbed light cone.

  17. Affinity-aware checkpoint restart

    DOE PAGES

    Saini, Ajay; Rezaei, Arash; Mueller, Frank; ...

    2014-12-08

    Current checkpointing techniques employed to overcome faults for HPC applications result in inferior application performance after restart from a checkpoint for a number of applications. This is due to a lack of page and core affinity awareness of the checkpoint/restart (C/R) mechanism, i.e., application tasks originally pinned to cores may be restarted on different cores, and in case of non-uniform memory architectures (NUMA), quite common today, memory pages associated with tasks on a NUMA node may be associated with a different NUMA node after restart. Here, this work contributes a novel design technique for C/R mechanisms to preserve task-to-core mapsmore » and NUMA node specific page affinities across restarts. Experimental results with BLCR, a C/R mechanism, enhanced with affinity awareness demonstrate significant performance benefits of 37%-73% for the NAS Parallel Benchmark codes and 6-12% for NAMD with negligible overheads instead of up to nearly four times longer an execution times without affinity-aware restarts on 16 cores.« less

  18. ELECTRON AFFINITIES OF INORGANIC RADICALS.

    DTIC Science & Technology

    energy in the latter compound is 110 kcals/mole, distinctly higher than in ammonia. Cyanogen (CN)2 and hydrocyanic acid (HCN) yield values for the...ions very readily, and the electron affinity is 49 kcals/mole. A comparison with the results from thiocyanic acid (HNCS) indicates that the H-N bond

  19. Affine Contractions on the Plane

    ERIC Educational Resources Information Center

    Celik, D.; Ozdemir, Y.; Ureyen, M.

    2007-01-01

    Contractions play a considerable role in the theory of fractals. However, it is not easy to find contractions which are not similitudes. In this study, it is shown by counter examples that an affine transformation of the plane carrying a given triangle onto another triangle may not be a contraction even if it contracts edges, heights or medians.…

  20. Quantifying Affinity among Chinese Dialects.

    ERIC Educational Resources Information Center

    Cheng, Chin-Chuan

    A study of the relationships between Chinese dialects based on a quantitative measure of dialect affinity is summarized. First, tone values in all the dialect localities available in the early 1970s were used to calculate the dialectal differences in terms of tone height with respect to the "yin and yang" split. In the late 1970s, calculations of…

  1. Affinity-aware checkpoint restart

    SciTech Connect

    Saini, Ajay; Rezaei, Arash; Mueller, Frank; Hargrove, Paul; Roman, Eric

    2014-12-08

    Current checkpointing techniques employed to overcome faults for HPC applications result in inferior application performance after restart from a checkpoint for a number of applications. This is due to a lack of page and core affinity awareness of the checkpoint/restart (C/R) mechanism, i.e., application tasks originally pinned to cores may be restarted on different cores, and in case of non-uniform memory architectures (NUMA), quite common today, memory pages associated with tasks on a NUMA node may be associated with a different NUMA node after restart. Here, this work contributes a novel design technique for C/R mechanisms to preserve task-to-core maps and NUMA node specific page affinities across restarts. Experimental results with BLCR, a C/R mechanism, enhanced with affinity awareness demonstrate significant performance benefits of 37%-73% for the NAS Parallel Benchmark codes and 6-12% for NAMD with negligible overheads instead of up to nearly four times longer an execution times without affinity-aware restarts on 16 cores.

  2. Fluorescent refrigeration

    DOEpatents

    Epstein, Richard I.; Edwards, Bradley C.; Buchwald, Melvin I.; Gosnell, Timothy R.

    1995-01-01

    Fluorescent refrigeration is based on selective radiative pumping, using substantially monochromatic radiation, of quantum excitations which are then endothermically redistributed to higher energies. Ultimately, the populated energy levels radiatively deexcite emitting, on the average, more radiant energy than was initially absorbed. The material utilized to accomplish the cooling must have dimensions such that the exciting radiation is strongly absorbed, but the fluorescence may exit the material through a significantly smaller optical pathlength. Optical fibers and mirrored glasses and crystals provide this requirement.

  3. Exploring high-affinity binding properties of octamer peptides by principal component analysis of tetramer peptides.

    PubMed

    Kume, Akiko; Kawai, Shun; Kato, Ryuji; Iwata, Shinmei; Shimizu, Kazunori; Honda, Hiroyuki

    2017-02-01

    To investigate the binding properties of a peptide sequence, we conducted principal component analysis (PCA) of the physicochemical features of a tetramer peptide library comprised of 512 peptides, and the variables were reduced to two principal components. We selected IL-2 and IgG as model proteins and the binding affinity to these proteins was assayed using the 512 peptides mentioned above. PCA of binding affinity data showed that 16 and 18 variables were suitable for localizing IL-2 and IgG high-affinity binding peptides, respectively, into a restricted region of the PCA plot. We then investigated whether the binding affinity of octamer peptide libraries could be predicted using the identified region in the tetramer PCA. The results show that octamer high-affinity binding peptides were also concentrated in the tetramer high-affinity binding region of both IL-2 and IgG. The average fluorescence intensity of high-affinity binding peptides was 3.3- and 2.1-fold higher than that of low-affinity binding peptides for IL-2 and IgG, respectively. We conclude that PCA may be used to identify octamer peptides with high- or low-affinity binding properties from data from a tetramer peptide library. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Fluorescence Analysis of Sulfonamide Binding to Carbonic Anhydrase

    ERIC Educational Resources Information Center

    Wang, Sheila C.; Zamble, Deborah B.

    2006-01-01

    A practical laboratory experiment is described that illustrates the application of fluorescence resonance energy transfer to the study of protein-ligand binding. The affinities of wild-type and mutant human carbonic anhydrase II for dansylamide were determined by monitoring the increase in ligand fluorescence that occurs due to energy transfer…

  5. Fluorescence Analysis of Sulfonamide Binding to Carbonic Anhydrase

    ERIC Educational Resources Information Center

    Wang, Sheila C.; Zamble, Deborah B.

    2006-01-01

    A practical laboratory experiment is described that illustrates the application of fluorescence resonance energy transfer to the study of protein-ligand binding. The affinities of wild-type and mutant human carbonic anhydrase II for dansylamide were determined by monitoring the increase in ligand fluorescence that occurs due to energy transfer…

  6. Theoretical proton affinity and fluoride affinity of nerve agent VX.

    PubMed

    Bera, Narayan C; Maeda, Satoshi; Morokuma, Keiji; Viggiano, Al A

    2010-12-23

    Proton affinity and fluoride affinity of nerve agent VX at all of its possible sites were calculated at the RI-MP2/cc-pVTZ//B3LYP/6-31G* and RI-MP2/aug-cc-pVTZ//B3LYP/6-31+G* levels, respectively. The protonation leads to various unique structures, with H(+) attached to oxygen, nitrogen, and sulfur atoms; among which the nitrogen site possesses the highest proton affinity of -ΔE ∼ 251 kcal/mol, suggesting that this is likely to be the major product. In addition some H(2), CH(4) dissociation as well as destruction channels have been found, among which the CH(4) + [Et-O-P(═O)(Me)-S-(CH(2))(2)-N(+)(iPr)═CHMe] product and the destruction product forming Et-O-P(═O)(Me)-SMe + CH(2)═N(+)(iPr)(2) are only 9 kcal/mol less stable than the most stable N-protonated product. For fluoridization, the S-P destruction channel to give Et-O-P(═O)(Me)(F) + [S-(CH(2))(2)-N-(iPr)(2)](-) is energetically the most favorable, with a fluoride affinity of -ΔE ∼ 44 kcal. Various F(-) ion-molecule complexes are also found, with the one having F(-) interacting with two hydrogen atoms in different alkyl groups to be only 9 kcal/mol higher than the above destruction product. These results suggest VX behaves quite differently from surrogate systems.

  7. pH-dependence of the specific binding of Cu(II) and Zn(II) ions to the amyloid-{beta} peptide

    SciTech Connect

    Ghalebani, Leila; Wahlstroem, Anna; Danielsson, Jens; Waermlaender, Sebastian K.T.S.; Graeslund, Astrid

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Cu(II) and Zn(II) display pH-dependent binding to the A{beta}(1-40) peptide. Black-Right-Pointing-Pointer At pH 7.4 both metal ions display residue-specific binding to the A{beta} peptide. Black-Right-Pointing-Pointer At pH 5.5 the binding specificity is lost for Zn(II). Black-Right-Pointing-Pointer Differential Cu(II) and Zn(II) binding may help explain metal-induced AD toxicity. -- Abstract: Metal ions like Cu(II) and Zn(II) are accumulated in Alzheimer's disease amyloid plaques. The amyloid-{beta} (A{beta}) peptide involved in the disease interacts with these metal ions at neutral pH via ligands provided by the N-terminal histidines and the N-terminus. The present study uses high-resolution NMR spectroscopy to monitor the residue-specific interactions of Cu(II) and Zn(II) with {sup 15}N- and {sup 13}C,{sup 15}N-labeled A{beta}(1-40) peptides at varying pH levels. At pH 7.4 both ions bind to the specific ligands, competing with one another. At pH 5.5 Cu(II) retains its specific histidine ligands, while Zn(II) seems to lack residue-specific interactions. The low pH mimics acidosis which is linked to inflammatory processes in vivo. The results suggest that the cell toxic effects of redox active Cu(II) binding to A{beta} may be reversed by the protective activity of non-redox active Zn(II) binding to the same major binding site under non-acidic conditions. Under acidic conditions, the protective effect of Zn(II) may be decreased or changed, since Zn(II) is less able to compete with Cu(II) for the specific binding site on the A{beta} peptide under these conditions.

  8. Electrochemical affinity biosensors for detection of mycotoxins: A review.

    PubMed

    Vidal, Juan C; Bonel, Laura; Ezquerra, Alba; Hernández, Susana; Bertolín, Juan R; Cubel, Carlota; Castillo, Juan R

    2013-11-15

    This review discusses the current state of electrochemical biosensors in the determination of mycotoxins in foods. Mycotoxins are highly toxic secondary metabolites produced by molds. The acute toxicity of these results in serious human and animal health problems, although it has been only since early 1960s when the first studied aflatoxins were found to be carcinogenic. Mycotoxins affect a broad range of agricultural products, most important cereals and cereal-based foods. A majority of countries, mentioning especially the European Union, have established preventive programs to control contamination and strict laws of the permitted levels in foods. Official methods of analysis of mycotoxins normally requires sophisticated instrumentation, e.g. liquid chromatography with fluorescence or mass detectors, combined with extraction procedures for sample preparation. For about sixteen years, the use of simpler and faster analytical procedures based on affinity biosensors has emerged in scientific literature as a very promising alternative, particularly electrochemical (i.e., amperometric, impedance, potentiometric or conductimetric) affinity biosensors due to their simplicity and sensitivity. Typically, electrochemical biosensors for mycotoxins use specific antibodies or aptamers as affinity ligands, although recombinant antibodies, artificial receptors and molecular imprinted polymers show potential utility. This article deals with recent advances in electrochemical affinity biosensors for mycotoxins and covers complete literature from the first reports about sixteen years ago. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Peptide affinity chromatography based on combinatorial strategies for protein purification.

    PubMed

    Camperi, Silvia Andrea; Martínez-Ceron, María Camila; Giudicessi, Silvana Laura; Marani, Mariela Mirta; Albericio, Fernando; Cascone, Osvaldo

    2014-01-01

    We describe a method to develop affinity chromatography matrices with short peptide ligands for protein purification. The method entitles the following: (a) synthesis of a combinatorial library on the hydromethylbenzoyl (HMBA)-ChemMatrix resin by the divide-couple-recombine (DCR) method using the Fmoc chemistry, (b) library screening with the protein of interest labeled with a fluorescent dye or biotin, (c) identification of peptides contained on positive beads by tandem matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS/MS), (d) solid-phase peptide ligand synthesis and immobilization in chromatographic supports, and (e) evaluation of protein adsorption on peptide affinity matrices from the equilibrium isotherms and breakthrough curves.

  10. Fluorescent refrigeration

    DOEpatents

    Epstein, R.I.; Edwards, B.C.; Buchwald, M.I.; Gosnell, T.R.

    1995-09-05

    Fluorescent refrigeration is based on selective radiative pumping, using substantially monochromatic radiation, of quantum excitations which are then endothermically redistributed to higher energies. Ultimately, the populated energy levels radiatively deexcite emitting, on the average, more radiant energy than was initially absorbed. The material utilized to accomplish the cooling must have dimensions such that the exciting radiation is strongly absorbed, but the fluorescence may exit the material through a significantly smaller optical pathlength. Optical fibers and mirrored glasses and crystals provide this requirement. 6 figs.

  11. Encapsulation of a (H3O2)- unit in the aromatic core of a calix[6]arene closed by two Zn(II) ions at the small and large rims.

    PubMed

    Coquière, David; Marrot, Jérôme; Reinaud, Olivia

    2006-10-01

    The coordination of a first Zn(II) ion to a calix[6]arene presenting three imidazolyl arms at the small rim and three aniline moieties at the large rim allows the binding of a second Zn(II) ion while hosting a (H3O2)- unit in the aromatic cavity.

  12. Potential application of sludge produced from coal mine drainage treatment for removing Zn(II) in an aqueous phase.

    PubMed

    Cui, Mingcan; Jang, Min; Cho, Sang-Hyun; Khim, Jeehyeong

    2011-01-01

    Various analyses of physico-chemical characteristics and batch tests were conducted with the sludge obtained from a full-scale electrolysis facility for treating coal mine drainage in order to find the applicability of sludge as a material for removing Zn(II) in an aqueous phase. The physico-chemical analysis results indicated that coal mine drainage sludge (CMDS) had a high specific surface area and also satisfied the standard of toxicity characteristic leaching procedure (TCLP) because the extracted concentrations of certain toxic elements such as Pb, Cu, As, Hg, Zn, and Ni were much less than their regulatory limits. The results of X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) showed that the CMDS mainly consists of goethite (70%) and calcite (30%) as a weight basis. However, the zeta potential analysis represented that the CMDS had a lower isoelectric point of pH (pH(IEP)) than that of goethite or calcite. This might have been caused by the complexation of negatively charged anions, especially sulfate, which usually exists with a high concentration in coal mine drainage. The results of Fourier transform infrared (FT-IR) spectrometry analysis revealed that Zn(II) was dominantly removed as a form of precipitation by calcite, such as smithsonite [ZnCO₃] or hydrozincite [Zn₅(CO₃)₂(OH)₆]. Recycling sludge, originally a waste material, for the removal process of Zn(II), as well as other heavy metals, could be beneficial due to its high and speedy removal capability and low economic costs.

  13. Effects of surface structural disorder and surface coverage on isotopic fractionation during Zn(II) adsorption onto quartz and amorphous silica surfaces

    NASA Astrophysics Data System (ADS)

    Nelson, Joey; Wasylenki, Laura; Bargar, John R.; Brown, Gordon E.; Maher, Kate

    2017-10-01

    Metal ion-mineral surface interactions and the attendant isotopic fractionation depend on the properties of the mineral surface and the local atomic-level chemical environment. However, these factors have not been systematically examined for phases of the same composition with different levels of surface disorder. We present pH-dependent adsorption edges, X-ray absorption spectra, and isotopic measurements to illustrate the effects of surface structural disorder and surface coverage on zinc(II) (Zn(II)) surface complexation and isotope fractionation. Our results demonstrate that Zn(II) surface complexes on quartz and amorphous silica (SiO2(am)) transition from octahedral to tetrahedral coordination by oxygen as surface coverage increases. In low ionic strength solutions (I = 0.004 M) and at low surface loadings (Γ < 0.6 μmol m-2), Zn(II) adsorbs to the quartz surface predominantly as outer-sphere octahedral complexes (RZn-O = 2.05 Å) with no significant isotopic fractionation (Δ66/64Znaqueous-sorbed = -0.01 ± 0.06‰) from aqueous Zn(II). In contrast, under similar chemical conditions and surface loading, outer-sphere Zn(II) adsorption complexes are not observed on SiO2(am) surfaces. At high ionic strength (I = 0.1 M) and low surface loading (Γ < 0.2 μmol m-2), inner-sphere, monodentate octahedral Zn(II) complexes (RZn-O = 2.05-2.07 Å) are observed on both quartz and SiO2(am) surfaces. At the same ionic strength (I = 0.1 M) and higher surface loading (Γ = 0.6-1.4 μmol m-2), Zn(II) forms inner-sphere, monodentate tetrahedral complexes (RZn-O = 1.98 Å) at the quartz surface. On the SiO2(am) surface under similar chemical conditions and surface loading, Zn(II) forms dominantly inner-sphere, monodentate tetrahedral complexes with shorter Znsbnd O bond distances (RZn-O = 1.94 Å). Despite different coordination numbers, the measured equilibrium isotope fractionation factors for inner-sphere octahedral and tetrahedral complexes versus dissolved Zn, under the

  14. Synthesis and spectroscopic studies of novel Cu(II), Co(II), Ni(II) and Zn(II) mixed ligand complexes with saccharin and nicotinamide

    NASA Astrophysics Data System (ADS)

    Çakır, S.; Bulut, İ.; Naumov, P.; Biçer, E.; Çakır, O.

    2001-01-01

    Four novel mixed ligand complexes of Cu(II), Co(II), Ni(II) and Zn(II) with saccharin and nicotinamide were synthesised and characterised on the basis of elemental analysis, FT-IR spectroscopic study, UV-Vis spectrometric and magnetic susceptibility data. The structure of the Cu (II) complex is completely different from those of the Co(II), Ni(II) and Zn(II) complexes. From the frequencies of the saccharinato CO and SO2 modes, it has been proven that the saccharinato ligands in the structure of the Cu complex are coordinated to the metal ion ([Cu(NA)2(Sac)2(H2O)], where NA - nicotinamide, Sac - saccharinato ligand or ion), whilst in the Co(II), Ni(II) and Zn(II) complexes are uncoordinated and exist as ions ([M(NA)2(H2O)4](Sac)2).

  15. Porous pcu-type Zn(II) framework material with high adsorption selectivity for CO2 over N2

    NASA Astrophysics Data System (ADS)

    Lu, Yiping; Dong, Yanli; Qin, Jing

    2016-03-01

    Reported here is a new Zn(II) compound, namely [Zn2(tdc)2(MA)]n (H2tdc = 2,5-thiophenedicarboxylic acid, MA = melamine), which has been constructed by the self-assembly reaction of Zn(NO3)2, H2tdc and MA under solvothermal conditions. Single crystal X-ray diffraction analysis reveals that this compound features a 3D porous framework with 6-connected pcu topology. Notably, this compound exhibits high CO2 sorption capacity and high sorption selectivity for CO2 over N2 at 298 K.

  16. Fluorescent microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, A.

    1978-01-01

    Latex particles with attached antibodies have potential biochemical and environmental applications. Human red blood cells and lymphocytes have been labeled with fluorescent microspheres by either direct or indirect immunological technique. Immunolatex spheres can also be used for detecting and localizing specific cell surface receptors. Hormones and toxins may also be bondable.

  17. Affinity Spaces and 21st Century Learning

    ERIC Educational Resources Information Center

    Gee, James Paul

    2017-01-01

    This article discusses video games as "attractors" to "affinity spaces." It argues that affinity spaces are key sites today where people teach and learn 21st Century skills. While affinity spaces are proliferating on the Internet as interest-and-passion-driven sites devoted to a common set of endeavors, they are not new, just…

  18. Active Site Metal Ion in UDP-3-O-((R)-3-Hydroxymyristoyl)-N-acetylglucosamine Deacetylase (LpxC) Switches between Fe(II) and Zn(II) Depending on Cellular Conditions*

    PubMed Central

    Gattis, Samuel G.; Hernick, Marcy; Fierke, Carol A.

    2010-01-01

    UDP-3-O-((R)-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) catalyzes the deacetylation of UDP-3-O-((R)-3-hydroxymyristoyl)-N-acetylglucosamine to form UDP-3-O-myristoylglucosamine and acetate in Gram-negative bacteria. This second, and committed, step in lipid A biosynthesis is a target for antibiotic development. LpxC was previously identified as a mononuclear Zn(II) metalloenzyme; however, LpxC is 6–8-fold more active with the oxygen-sensitive Fe(II) cofactor (Hernick, M., Gattis, S. G., Penner-Hahn, J. E., and Fierke, C. A. (2010) Biochemistry 49, 2246–2255). To analyze the native metal cofactor bound to LpxC, we developed a pulldown method to rapidly purify tagged LpxC under anaerobic conditions. The metal bound to LpxC purified from Escherichia coli grown in minimal medium is mainly Fe(II). However, the ratio of iron/zinc bound to LpxC varies with the metal content of the medium. Furthermore, the iron/zinc ratio bound to native LpxC, determined by activity assays, has a similar dependence on the growth conditions. LpxC has significantly higher affinity for Zn(II) compared with Fe(II) with KD values of 60 ± 20 pm and 110 ± 40 nm, respectively. However, in vivo concentrations of readily exchangeable iron are significantly higher than zinc, suggesting that Fe(II) is the thermodynamically favored metal cofactor for LpxC under cellular conditions. These data indicate that LpxC expressed in E. coli grown in standard medium predominantly exists as the Fe(II)-enzyme. However, the metal cofactor in LpxC can switch between iron and zinc in response to perturbations in available metal ions. This alteration may be important for regulating the LpxC activity upon changes in environmental conditions and may be a general mechanism of regulating the activity of metalloenzymes. PMID:20709752

  19. PDZ Affinity Chromatography: A general method for affinity purification of proteins based on PDZ domains and their ligands

    PubMed Central

    Walkup, Ward G.; Kennedy, Mary B.

    2014-01-01

    PDZ (PSD-95, DiscsLarge, ZO1) domains function in nature as protein binding domains within scaffold and membrane-associated proteins. They comprise ~ 90 residues and make specific, high affinity interactions with complementary C-terminal peptide sequences, with other PDZ domains, and with phospholipids. We hypothesized that the specific, strong interactions of PDZ domains with their ligands would make them well suited for use in affinity chromatography. Here we describe a novel affinity chromatography method applicable for the purification of proteins that contain PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We created a series of affinity resins comprised of PDZ domains from the scaffold protein PSD-95, or from neuronal nitric oxide synthase (nNOS), coupled to solid supports. We used them to purify heterologously expressed neuronal proteins or protein domains containing endogenous PDZ domain ligands, eluting the proteins with free PDZ domain peptide ligands. We show that Proteins of Interest (POIs) lacking endogenous PDZ domain ligands can be engineered as fusion products containing C-terminal PDZ domain ligand peptides or internal, N- or C-terminal PDZ domains and then can be purified by the same method. Using this method, we recovered recombinant GFP fused to a PDZ-domain ligand in active form as verified by fluorescence yield. Similarly, chloramphenicol acetyltransferase (CAT) and β-Galactosidase (LacZ) fused to a C-terminal PDZ domain ligand or an N-terminal PDZ domain were purified in active form as assessed by enzymatic assay. In general, PDZ domains and ligands derived from PSD-95 were superior to those from nNOS for this method. PDZ Domain Affinity Chromatography promises to be a versatile and effective method for purification of a wide variety of natural and recombinant proteins. PMID:24607360

  20. PDZ affinity chromatography: a general method for affinity purification of proteins based on PDZ domains and their ligands.

    PubMed

    Walkup, Ward G; Kennedy, Mary B

    2014-06-01

    PDZ (PSD-95, DiscsLarge, ZO1) domains function in nature as protein binding domains within scaffold and membrane-associated proteins. They comprise ∼90 residues and make specific, high affinity interactions with complementary C-terminal peptide sequences, with other PDZ domains, and with phospholipids. We hypothesized that the specific, strong interactions of PDZ domains with their ligands would make them well suited for use in affinity chromatography. Here we describe a novel affinity chromatography method applicable for the purification of proteins that contain PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We created a series of affinity resins comprised of PDZ domains from the scaffold protein PSD-95, or from neuronal nitric oxide synthase (nNOS), coupled to solid supports. We used them to purify heterologously expressed neuronal proteins or protein domains containing endogenous PDZ domain ligands, eluting the proteins with free PDZ domain peptide ligands. We show that Proteins of Interest (POIs) lacking endogenous PDZ domain ligands can be engineered as fusion products containing C-terminal PDZ domain ligand peptides or internal, N- or C-terminal PDZ domains and then can be purified by the same method. Using this method, we recovered recombinant GFP fused to a PDZ domain ligand in active form as verified by fluorescence yield. Similarly, chloramphenicol acetyltransferase (CAT) and β-Galactosidase (LacZ) fused to a C-terminal PDZ domain ligand or an N-terminal PDZ domain were purified in active form as assessed by enzymatic assay. In general, PDZ domains and ligands derived from PSD-95 were superior to those from nNOS for this method. PDZ Domain Affinity Chromatography promises to be a versatile and effective method for purification of a wide variety of natural and recombinant proteins.

  1. Fluorescent gallium and indium bis(thiosemicarbazonates) and their radiolabelled analogues: synthesis, structures and cellular confocal fluorescence imaging investigations.

    PubMed

    Arrowsmith, Rory L; Waghorn, Philip A; Jones, Michael W; Bauman, Andreas; Brayshaw, Simon K; Hu, Zhiyuan; Kociok-Köhn, Gabriele; Mindt, Thomas L; Tyrrell, Rex M; Botchway, Stanley W; Dilworth, Jonathan R; Pascu, Sofia I

    2011-06-21

    New fluorescent and biocompatible aromatic Ga(III)- and In(III)-bis(thiosemicarbazonato) complexes for dual mode optical and PET or SPECT molecular imaging have been synthesised via a synthetic method based on transmetallation reactions from Zn(II) precursors. Complexes have been fully characterised in the solid state by single crystal X-ray diffraction and in solution by spectroscopic methods (UV/Vis, fluorescence, (1)H and (13)C{(1)H} NMR). The bis(thiosemicarbazones) radiolabelled rapidly in high yields under mild conditions with (111)In (a gamma and Auger emitter for SPECT imaging and radiotherapy with t(1/2) = 2.8 d) and (68)Ga (a generator-available positron emitter for PET imaging with t(1/2) = 68 min). Cytotoxicity and biolocalisation studies using confocal fluorescence imaging and fluorescence lifetime imaging (FLIM) techniques have been used to study their in vitro activities and stabilities in HeLa and PC-3 cells to ascertain their suitability as synthetic scaffolds for future multimodality molecular imaging in cancer diagnosis and therapy. The observation that the indium complexes show certain nuclear uptake could be of relevance towards developing (111)In therapeutic agents based on Auger electron emission to induce DNA damage.

  2. A Zn(II)2Cys6 DNA binding protein regulates the sirodesmin PL biosynthetic gene cluster in Leptosphaeria maculans

    PubMed Central

    Fox, Ellen M.; Gardiner, Donald M.; Keller, Nancy P.; Howlett, Barbara J.

    2008-01-01

    A gene, sirZ, encoding a Zn(II)2Cys6 DNA binding protein is present in a cluster of genes responsible for the biosynthesis of the epipolythiodioxopiperazine (ETP) toxin, sirodesmin PL in the ascomycete plant pathogen, Leptosphaeria maculans. RNA-mediated silencing of sirZ gives rise to transformants that produce only residual amounts of sirodesmin PL and display a decrease in the transcription of several sirodesmin PL biosynthetic genes. This indicates that SirZ is a major regulator of this gene cluster. Proteins similar to SirZ are encoded in the gliotoxin biosynthetic gene cluster of Aspergillus fumigatus (gliZ) and in an ETP-like cluster in Penicillium lilacinoechinulatum (PlgliZ). Despite its high level of sequence similarity to gliZ, PlgliZ is unable to complement the gliotoxin-deficiency of a mutant of gliZ in A. fumigatus. Putative binding sites for these regulatory proteins in the promoters of genes in these clusters were predicted using bioinformatic analysis. These sites are similar to those commonly bound by other proteins with Zn(II)2Cys6 DNA binding domains. PMID:18023597

  3. Competitive effect of Cu(II) and Zn(II) on the biosorption of lead(II) by Myriophyllum spicatum.

    PubMed

    Yan, Changzhou; Li, Guoxin; Xue, Peiying; Wei, Qunshan; Li, Qingzhao

    2010-07-15

    Batch experiments were conducted to assess the effects of Cu(II) and Zn(II) on the biosorption of Pb(II) ions by fresh tissues of Myriophyllum spicatum. The biosorption of Pb(II) was examined for single, binary and ternary solutions at different initial concentrations and different pH values. The experimental results showed that the biosorption capacity increased with increasing pH from 2.0 to 6.0. Both Cu(II) and Zn(II) ions were found to have an adverse effect on the biosorption of Pb(II). The biosorption equilibrium data for single-metal solution were fitted to three isotherm models: Langmuir, Freundlich and Sips, and the Sips isotherm model gave the best fit for the experimental data. The maximum biosorption of Pb(II) in Pb-Cu binary system decreased with increasing concentration of copper ions, and the biosorption equilibrium data for the binary metal solution fitted the Langmuir competitive model well. Comparison between biosorption of Pb(II) and Cu(II) by M. spicatum in the binary solution could lead to the conclusion that the biosorbent (M. spicatum) has no preference of Pb(II) over Cu(II). Fourier transform infrared (FT-IR) spectroscopy was used to characterize the interaction between M. spicatum and Pb(II) ions. The results revealed that the carboxyl, hydroxyl and carbonyl groups are the main binding sites for Pb(II). 2010 Elsevier B.V. All rights reserved.

  4. Specific light exposure of galactosylated Zn(II) phthalocyanines for selective PDT effects on breast cancer cells

    NASA Astrophysics Data System (ADS)

    Mantareva, V. N.; Kril, A.; Angelov, I.; Avramov, L.

    2013-03-01

    Photodynamic therapy (PDT) is a clinically approved non-invasive and curative procedure for different oncological and non-oncological applications. PDT is still under development due to several limitations which lead to partially successful photodynamic response. The crucial steps in PDT procedure are binding of the photosensitizer to outer cell membrane, its penetration and subcellular localization which envisage the target sites of reactive oxygen species generated during irradiation. Since the surrounding normal cells are also exposed to the photosensitizer and the ambient daylight can be harmful for healthy tissues after therapeutic light application, the challenging task in PDT research is to optimize the procedure in a way to reach tumor cell selectivity. The present study outlines the influence of a light exposure pre-treatment (prior therapeutic light) with specific wavelengths (365 nm and 635 nm) on the uptake, the localization and further re-localization of galactose-substituted Zn(II) phthalocyanines into MDA-MB-231 breast cancer cells. The in vitro photodynamic effect towards tumor cells was studied in comparison to the normal cell line Balb/c 3T3 (clone 31) after pre-irradiation with UV light (365 nm) and red LED (635 nm). The results suggest that the galactose functional groups of Zn(II) phthalocyanine and the harmless UV light at 365 nm favor the selective PDT response.

  5. Nuclear-translocated endostatin downregulates hypoxia inducible factor-1α activation through interfering with Zn(II) homeostasis.

    PubMed

    Guo, Lifang; Chen, Yang; He, Ting; Qi, Feifei; Liu, Guanghua; Fu, Yan; Rao, Chunming; Wang, Junzhi; Luo, Yongzhang

    2015-05-01

    Hypoxia‑inducible factor‑1α (HIF‑1α) is key in tumor progression and aggressiveness as it regulates a series of genes involved in angiogenesis and anaerobic metabolism. Previous studies have shown that the transcriptional levels of HIF‑1α may be downregulated by endostatin. However, the molecular mechanism by which endostatin represses HIF‑1α expression remains unknown. The current study investigated the mechanism by which nuclear‑translocated endostatin suppresses HIF‑1α activation by disrupting Zn(II) homeostasis. Endostatin was observed to downregulate HIF‑1α expression at mRNA and protein levels. Blockage of endostatin nuclear translocation by RNA interference of importin α1/β1 or ectopic expression of NLS‑deficient mutant nucleolin in human umbilical vein endothelial cells co‑transfected with small interfering (si)‑nucleolin siRNA compromises endostatin‑reduced HIF‑1α expression. Nuclear‑translocated apo‑endostatin, but not holo‑endostatin, significantly disrupts the interaction between CBP/p300 and HIF‑1α by disturbing Zn(II) homeostasis, which leads to the transcriptional inactivation of HIF‑1α. The results reveal mechanistic insights into the method by which nuclear‑translocated endostatin downregulates HIF‑1α activation and provides a novel way to investigate the function of endostatin in endothelial cells.

  6. Quantum-chemical, NMR, FT IR, and ESI MS studies of complexes of colchicine with Zn(II).

    PubMed

    Jankowski, Wojciech; Kurek, Joanna; Barczyński, Piotr; Hoffmann, Marcin

    2017-04-01

    Colchicine is a tropolone alkaloid from Colchicinum autumnale. It shows antifibrotic, antimitotic, and anti-inflammatory activities, and is used to treat gout and Mediterranean fever. In this work, complexes of colchicine with zinc(II) nitrate were synthesized and investigated using DFT, (1)H and (13)C NMR, FT IR, and ESI MS. The counterpoise-corrected and uncorrected interaction energies of these complexes were calculated. We also calculated their (1)H, (13)C NMR, and IR spectra and compared them with the corresponding experimentally obtained data. According to the ESI MS mass spectra, colchicine forms stable complexes with zinc(II) nitrate that have various stoichiometries: 2:1, 1:1:1, and 2:1:1 with respect to colchichine, Zn(II), and nitrate ion. All of the complexes were investigated using the quantum theory of atoms in molecules (QTAIM). The calculated and the measured spectra showed differences before and after the complexation process. Calculated electron densities and bond critical points indicated the presence of bonds between the ligands and the central cation in the investigated complexes that satisfied the quantum theory of atoms in molecules. Graphical Abstract DFT, NMR, FT IR, ESI MS, QTAIM and puckering studies of complexes of colchicine with Zn(II).

  7. Indian Craniometric Variability and Affinities

    PubMed Central

    Raghavan, Pathmanathan; Bulbeck, David; Pathmanathan, Gayathiri; Rathee, Suresh Kanta

    2013-01-01

    Recently published craniometric and genetic studies indicate a predominantly indigenous ancestry of Indian populations. We address this issue with a fuller coverage of Indian craniometrics than any done before. We analyse metrical variability within Indian series, Indians' sexual dimorphism, differences between northern and southern Indians, index-based differences of Indian males from other series, and Indians' multivariate affinities. The relationship between a variable's magnitude and its variability is log-linear. This relationship is strengthened by excluding cranial fractions and series with a sample size less than 30. Male crania are typically larger than female crania, but there are also shape differences. Northern Indians differ from southern Indians in various features including narrower orbits and less pronounced medial protrusion of the orbits. Indians resemble Veddas in having small crania and similar cranial shape. Indians' wider geographic affinities lie with “Caucasoid” populations to the northwest, particularly affecting northern Indians. The latter finding is confirmed from shape-based Mahalanobis-D distances calculated for the best sampled male and female series. Demonstration of a distinctive South Asian craniometric profile and the intermediate status of northern Indians between southern Indians and populations northwest of India confirm the predominantly indigenous ancestry of northern and especially southern Indians. PMID:24455409

  8. Selective extraction of histidine derivatives by metal affinity with a copper(II)-chelating ligand complex in an aqueous two-phase system.

    PubMed

    Oshima, Tatsuya; Oshima, Chinatsu; Baba, Yoshinari

    2015-05-15

    Affinity extraction based on the interaction between a target molecule and a specific affinity ligand offers a novel separation system for biomolecules in an aqueous two-phase system, however, most of affinity ligands are expensive. In the present study, metal affinity extraction of histidine (His) derivatives using a complex between Cu(II) and a commercially available chelating ligand was studied in a poly(ethylene glycol) (PEG)/Li2SO4 ATPS. Alizarin complexone (3-[N,N-bis(carboxymethyl)amino methyl]-1,2-dihydroxy anthraquinone, AC) was selected as the chelating ligand because of the good extractability of Cu(II) into the upper PEG-rich phase. On the basis of coordinate bonding with Cu(II), the extraction of His in the presence of the Cu(II)-AC complex under neutral condition was 73%, which was much higher than that under Cu(II) free condition (13%). Among a series of divalent transition metal ions (Cu(II), Ni(II), Co(II), and Zn(II)), Cu(II) was the most effective for the extraction of His. Derivatives of His were selectively extracted in the presence of many other amino acids because of the specificity of the interaction between Cu(II) and imidazole group of His. Extracted His was quantitatively stripped from the Cu(II)-AC complex using competitive complexation with agents such as iminodiacetic acid and imidazole. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Capillary-based lectin affinity electrophoresis for interaction analysis between lectins and glycans.

    PubMed

    Kinoshita, Mitsuhiro; Kakehi, Kazuaki

    2014-01-01

    Capillary affinity electrophoresis (CAE) is a powerful technique for glycan analysis, and one of the analytical approaches for analyzing the interaction between lectins and glycans. The method is based on the high-resolution separation of fluorescently labeled glycans by capillary electrophoresis (CE) with laser-induced fluorescence detection (LIF) in the presence of lectins (or glycan binding proteins). CAE allows simultaneous determination of glycan structures in a complex mixture of glycans. In addition, we can calculate the binding kinetics on a specific glycan in the complex mixture of glycans with a lectin. Here, we show detailed procedures for capillary affinity electrophoresis of fluorescently labeled glycans with lectins using CE-LIF apparatus. Its application to screening a sialic acid binding protein in plant barks is also shown.

  10. Syntheses, structures, luminescent and photocatalytic properties of two Zn(II) coordination polymers assembled with mixed bridging N-donors and 2-(4-carboxyphenyl)-4,5-imidazole dicarboxylic acid ligand

    NASA Astrophysics Data System (ADS)

    Yuan, Gang; Shao, Kui-Zhan; Hao, Xiang-Rong; Zhan, Pei-Ying; Su, Zhong-Min

    2017-04-01

    Two new Zn(II) coordination polymers with the formulas of {[Zn3(HCpIDC)2(4,4‧-bipy)(H2O)]·4H2O}n (1) and {[Zn2(CpIDC)(BIMB)]·H2O}n (2) [H4CpIDC = 2-(4-carboxyphenyl)-4,5-imidazole dicarboxylic acid, 4,4‧-bipy = 4,4‧-bipyridine, and BIMB = 1,4-bis(1-imidazolyl)benzene] have been successfully synthesized. Both complexes 1 and 2 feature 3D frameworks in which the IDC groups of HCpIDC3- and CpIDC4- ligands link metal nodes leading to infinite 21 helical chains. The HCpIDC3- and CpIDC4- anions exhibit two coordination modes (μ4-kN,O: kN‧,O‧: kO″,O‴: kO″″ and μ5-kN,O: kN‧,O‧: kO″,O‴: kO″″: kO) in different coordination environments. Further structural analyses show that 1 and 2 are topologically bimodal 4-connected net and trinodal (3,4,6)-connected net, respectively. As is expected, two complexes with good thermal stability displayed strong fluorescence emissions in the solid state at the room temperature. Moreover, complex 1 has some extent of photocatalytic activities for RhB.

  11. Multiphoton fluorescence microscopy in biology

    NASA Astrophysics Data System (ADS)

    Heikal, Ahmed A.; Webb, Watt W.

    2002-11-01

    The inherent advantages of nonlinear excitation make multiphoton fluorescence microscopy (MPFM) awell-suited imaging technique for extracting valuable information from turbid and thick biological samples. These advantages include high three-dimensional spatial resolution, large penetration depth, minimum out-of-focus cellular photodamage, and high signal-to-noise contrast. We have investigated the nonlinear spectroscopy of biologically important molecules such as NADH, flavins, and intrinsically fluorescent proteins. Fundamental understanding of the molecular spectroscopy and dynamics of these biomolecules is essential for advancing their applications in biological research. MPFM has been utilized for monitoring a large spectrum of biological processes including metabolic activity and exocytosis. We will discuss two-photon (2P) redox fluorescence microscopy of NADH, which gives a quantitative measure of the respiratory chain activity, thus allowing functional imaging of energy metabolism in neurons and native brain tissue. Finally, a rational design strategy, based on donor-acceptor-donor configuration, will be elucidated for fluorescent probes with large 2P-excitation cross-section. These dyes are water-soluble, yet possess a high affinity to organic phases with site-specific labeling and Ca+2 sensitivity (Kd ~ 350 nM). A brief account on the biological application of nanocrystals and second harmonic imaging will be reviewed.

  12. Improving the separation of Cu(II) from Zn(II) based on an anion exchanger for the preparation a 62Zn/62Cu generator.

    PubMed

    El-Azony, K M

    2011-09-01

    A separation procedure of (64,67)Cu(II) from (65)Zn(II) was studied for serving (62)Zn/(62)Cu generator preparation. The distribution coefficients of (65)Zn(II) and (64,67)Cu(II) ions from homogeneous medium of hydrochloric acid and acetone onto De-Acidite FF anion exchanger were investigated. Both hydrochloric acid and acetone concentrations are important factors that affect the separation process. Effects of decreasing the HCl concentration from 0.2 to 0.04 M, increasing the acetone concentration from 5% to 80% and different acetone concentrations (5-97%) in 0.2M HCl were also studied on the separation of (64,67)Cu(II) from (65)Zn(II). The exchange capacity of Zn(II) on the De-Acidite FF matrix was obtained as 3.8 meq/g and the(64,67)Cu(II) elution efficiency was 92.5% using 20 ml of 0.2M HCl-60% acetone with flow rate of 2 ml/min.The radionuclidic purity and radiochemical purity of the eluted (64,67)Cu(II) were examined.

  13. Co-sequestration of Zn(II) and phosphate by γ-Al2O3: From macroscopic to microscopic investigation.

    PubMed

    Ren, Xuemei; Tan, Xiaoli; Hayat, Tasawar; Alsaedi, Ahmed; Wang, Xiangke

    2015-10-30

    Little information is available concerning co-sorbing oxyanion and metal contaminants in the environment, yet in most metal-contaminated areas, co-contamination by phosphate is common. In this study, the mutual effects of phosphate and Zn(II) on their interaction with γ-Al2O3 are investigated by batch experiments and X-ray absorption fine structure spectroscopy (XAFS) technique. The results show that the co-sorption of phosphate on γ-Al2O3 modifies both the extent of Zn(II) sorption and the local atomic structures of sorbed Zn(II) ions. Multiple mechanisms are involved in Zn(II) retention in the presence of phosphate, including electrostatic interaction, binary and ternary surface complexation, and the formation of Zn(II)-phosphate polynuclear complexes. At pH 6.5, type III ternary surface complexation occurs concurrently with binary Zn-alumina surface complexation at low phosphate concentrations, whereas the formation of type III ternary surface complexes is promoted as the phosphate concentration increases. With further increasing phosphate concentration, Zn(II)-phosphate polynuclear complexes are formed. At pH 8.0, Zn dominantly forms type III ternary surface complexes in the presence of phosphate. The results of this study indicate the variability of Zn complexation on oxide surface and the importance of combining macroscopic observations with XAFS capable of determining metal complex formation mechanism for ternary system. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Affinity membrane introduction mass spectrometry

    SciTech Connect

    Xu, C.; Patrick, J.S.; Cooks, R.G. )

    1995-02-15

    A new technique, affinity membrane introduction mass spectrometry, is described. In this method, a chemically modified membrane is used to selectively adsorb analytes bearing a particular functional group and concentrate them from solution. Release of the bound analyte results in its transfer across the membrane and allows it to be monitored mass spectrometrically, using, in the present case, a benchtop ion trap instrument. Alkylamine-modified cellulose membranes are used to bind substituted benzaldehydes through imine formation at high pH. Release of the bound aldehyde is achieved by acid hydrolysis of the surface-bound imine. Benzaldehyde is detected with excellent specificity at 10 ppm in a complex mixture using this method. Using the enrichment capability of the membrane, a full mass spectrum of benzaldehyde can be measured at a concentration of 10 ppb. The behavior of a variety of other aldehydes is also discussed to illustrate the capabilities of the method. 21 refs., 5 figs., 2 tabs.

  15. Thiosemicarbazone Cu(II) and Zn(II) complexes as potential anticancer agents: syntheses, crystal structure, DNA cleavage, cytotoxicity and apoptosis induction activity.

    PubMed

    Shao, Jia; Ma, Zhong-Ying; Li, Ang; Liu, Ya-Hong; Xie, Cheng-Zhi; Qiang, Zhao-Yan; Xu, Jing-Yuan

    2014-07-01

    Four novel thiosemicarbazone metal complexes, [Cu(Am4M)(OAc)]·H2O (1), [Zn(HAm4M)Cl2] (2), [Zn2(Am4M)2Br2] (3) and [Zn2(Am4M)2(OAc)2]·2MeOH (4) [HAm4M=(Z)-2-(amino(pyridin-2-yl)methylene)-N-methylhydrazinecarbothioamide], have been synthesized and characterized by X-ray crystallography, elemental analysis, ESI-MS and IR. X-ray analysis revealed that complexes 1 and 2 are mononuclear, which possess residual coordination sites for Cu(II) ion in 1 and good leaving groups (Cl(-)) for Zn(II) ion in 2. Both 3 and 4 displayed dinuclear units, in which the metal atoms are doubly bridged by S atoms of two Am4M(-) ligands in 3 and by two acetate ions in bi- and mono-dentate forms, respectively, in 4. Their antiproliferative activities on human epithelial cervical cancer cell line (HeLa), human liver hepatocellular carcinoma cell line (HepG-2) and human gastric cancer cell line (SGC-7901) were screened. Inspiringly, IC50 value (11.2±0.9 μM) of complex 1 against HepG-2 cells was nearly 0.5 fold of that against human hepatic cell lines LO2, showing a lower toxicity to human liver cells. Additionally, it displayed a stronger inhibition on the viability of HepG-2 cells than cisplatin (IC50=25±3.1 μM), suggesting complex 1 might be a potential high efficient antitumor agent. Furthermore, fluorescence microscopic observation and flow cytometric analysis revealed that complex 1 could significantly suppress HepG-2 cell viability and induce apoptosis. Several indexes, such as DNA cleavage, reactive oxygen species (ROS) generation, comet assay and cell cycle analysis indicated that the antitumor mechanism of complex 1 on HepG-2 cells might be via ROS-triggered apoptosis pathway. Copyright © 2014. Published by Elsevier Inc.

  16. Supramolecular architectures in luminescent Zn(II) and Cd(II) complexes containing imidazole derivatives: Crystal structures, vibrational and thermal properties, Hirshfeld surface analysis and electrostatic potentials

    NASA Astrophysics Data System (ADS)

    Di Santo, Alejandro; Echeverría, Gustavo A.; Piro, Oscar E.; Pérez, Hiram; Ben Altabef, Aida; Gil, Diego M.

    2017-04-01

    Three novel zinc and cadmium complexes with 1-methylimidazole and 2-methylimidazole as ligands, mono-nuclear dichloro-bis(1-methylimidazole) zinc(II) and dibromo-bis(2-methylimidazole)cadmium(II) monohydrate complexes, and poly-nuclear bis(1-methylimidazole)-di-(μ2-bromo)cadmium(II) complex, namely, compounds 1-3, respectively, have been synthesized. The complexes were characterized by IR and Raman spectroscopies, thermal analysis and fluorescence. All the compounds exhibit interesting luminescent properties in solid state originated from intra-ligand (π→π*) transitions. Crystal structures of 1-3 were determined by single-crystal X-ray diffraction. Compound 1 crystallizes in P21/n space group, the Zn(II) ion lies at a crystal general position in a tetrahedral environment, and the mono-nuclear units are weakly bonded to one another by Csbnd H⋯Cl hydrogen bonds. Compound 2 crystallizes in Pnma space group, and mirror-related tetrahedral units around Cd(II) ion are H-bonded through a water molecule. Compound 3 crystallizes in P21/c space group, and the Cd(II) ion presents a centrosymmetric octahedral coordination. Neighboring and equatorial edge-sharing octahedra conform a polymeric arrangement that extends along the crystal a-axis. Weak hydrogen bonds are the major driving forces in the crystal packing of the three complexes. Hirshfeld surface analysis reveals a detailed scrutiny of intermolecular interactions experienced by each complex. The surfaces mapped over dnorm property highlight the X···H (X = Cl, Br) as the main intermolecular contacts for the three complexes, being also relevant the presence of O⋯H contacts for complex 2. The surfaces mapped over Shape index and curvedness properties for the two Cd complexes allow identify π … π stacking interactions which are absent in the Zn complex. 2D fingerprint plots have been used to quantify the relative contribution of the intermolecular contacts to crystal stability of compounds, showing

  17. Thermodynamics of binding of a sulfonamide inhibitor to metal-mutated carbonic anhydrase as studied by affinity capillary electrophoresis.

    PubMed

    Sato, Yosuke; Hoshino, Hitoshi; Iki, Nobuhiko

    2015-09-01

    By affinity capillary electrophoresis (ACE), the thermodynamic binding constants of a sulfonamide (SA) inhibitor to bovine carbonic anhydrase II (CA) and metal mutated variants (M-CAs) were evaluated. 1-(4-Aminosulfonylphenylazo)-2-naphthol-6,8-disulfonate was used as the SA in the electrophoretic buffer for ACE. The Scatchard analysis of the dependence of the electrophoretic mobility of native CA on the SA concentration provided the binding constant to be Kb=(2.29±0.05)×10(6) M(-1) (at pH8.4, 25°C). On the other hand, apoCA showed far smaller value [Kb=(3.76±0.14)×10(2) M(-1)], suggesting that the coordination of SA to the Zn(II) center controlled the binding thermodynamics. The ACE of M-CAs showed the same behaviors as native CA but with different Kb values. For example, Co-CA adopting the same tetrahedral coordination geometry as native CA exhibited the largest Kb value [(2.55±0.05)×10(6) M(-1)] among the M-CAs. In contrast, Mn- and Ni-CA, which adopted the octahedral coordination geometry, had Kb values that were about two orders of magnitude lower. Because the hydrophobic cavity of CA around the active center pre-organized the orientation of SA, thereby fixing the ligating NH(-) moiety to the apex of the tetrahedron supported by three basal His3 of CA, metals such as Zn and Co at the center of M-CA gave the most stable CA-SA complex. However, pre-organization was not favored for octahedral geometry. Thus, pre-organization of SA was the key to facilitating the tetrahedral coordination geometry of the Zn(II) active center of CA. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Conformal field theory on affine Lie groups

    SciTech Connect

    Clubok, Kenneth Sherman

    1996-04-01

    Working directly on affine Lie groups, we construct several new formulations of the WZW model, the gauged WZW model, and the generic affine-Virasoro action. In one formulation each of these conformal field theories (CFTs) is expressed as a one-dimensional mechanical system whose variables are coordinates on the affine Lie group. When written in terms of the affine group element, this formulation exhibits a two-dimensional WZW term. In another formulation each CFT is written as a two-dimensional field theory, with a three- dimensional WZW term, whose fields are coordinates on the affine group. On the basis of these equivalent formulations, we develop a translation dictionary in which the new formulations on the affine Lie group are understood as mode formulations of the conventional formulations on the Lie group. Using this dictionary, we also express each CFT as a three-dimensional field theory on the Lie group with a four-dimensional WZW term. 36 refs.

  19. Antisymmetric tensor generalizations of affine vector fields

    PubMed Central

    Morisawa, Yoshiyuki; Tomoda, Kentaro

    2016-01-01

    Tensor generalizations of affine vector fields called symmetric and antisymmetric affine tensor fields are discussed as symmetry of spacetimes. We review the properties of the symmetric ones, which have been studied in earlier works, and investigate the properties of the antisymmetric ones, which are the main theme in this paper. It is shown that antisymmetric affine tensor fields are closely related to one-lower-rank antisymmetric tensor fields which are parallelly transported along geodesics. It is also shown that the number of linear independent rank-p antisymmetric affine tensor fields in n-dimensions is bounded by (n + 1)!/p!(n − p)!. We also derive the integrability conditions for antisymmetric affine tensor fields. Using the integrability conditions, we discuss the existence of antisymmetric affine tensor fields on various spacetimes. PMID:26858463

  20. Simultaneous Stripping Detection of Pb(II), Cd(II) and Zn(II) Using a Bimetallic Hg-Bi/Single-Walled Carbon Nanotubes Composite Electrode

    PubMed Central

    Ouyang, Ruizhuo; Zhu, Zhenqian; Tatum, Clarissa E.; Chambers, James Q.; Xue, Zi-Ling

    2011-01-01

    A new, sensitive platform for the simultaneous electrochemical assay of Zn(II), Cd(II) and Pb(II) in aqueous solution has been developed. The platform is based on a new bimetallic Hg-Bi/single-walled carbon nanotubes (SWNTs) composite modified glassy carbon electrode (GCE), demonstrating remarkably improved performance for the anodic stripping assay of Zn(II), Cd(II) and Pb(II). The synergistic effect of Hg and Bi as well as the enlarged, activated surface and good electrical conductivity of SWNTs on GCE contribute to the enhanced activity of the proposed electrode. The analytical curves for Zn(II), Cd(II) an Pb(II) cover two linear ranges varying from 0.5 to 11 μg L-1 and 10 to 130 μg L-1 with correlation coefficients higher than 0.992. The limits of detection for Zn(II), Cd(II) are lower than 2 μg L-1 (S/N = 3). For Pb(II), moreover, there is another lower, linear range from 5 to 1100 ng L-1 with a coefficient of 0.987 and a detection limit of 0.12 ng L-1. By using the standard addition method, Zn(II), Cd(II) and Pb(II) ions in river samples were successfully determined. These results suggest that the proposed method can be applied as a simple, efficient alternative for the simultaneous monitoring of heavy metals in water samples. In addition, this method demonstrates the powerful application of carbon nanotubes in electrochemical analysis of heavy metals. PMID:21660117

  1. Zn(II) and Cu(II) adsorption and retention onto iron oxyhydroxide nanoparticles: effects of particle aggregation and salinity

    PubMed Central

    2014-01-01

    Background Iron oxyhydroxides are commonly found in natural aqueous systems as nanoscale particles, where they can act as effective sorbents for dissolved metals due to their natural surface reactivity, small size and high surface area. These properties make nanoscale iron oxyhydroxides a relevant option for the remediation of water supplies contaminated with dissolved metals. However, natural geochemical processes, such as changes in ionic strength, pH, and temperature, can cause these particles to aggregate, thus affecting their sorption capabilities and remediation potential. Other environmental parameters such as increasing salinity may also impact metal retention, e.g. when particles are transported from freshwater to seawater. Results After using synthetic iron oxyhydroxide nanoparticles and nanoparticle aggregates in batch Zn(II) adsorption experiments, the addition of increasing concentrations of chloride (from 0.1 M to 0.6 M) appears to initially reduce Zn(II) retention, likely due to the desorption of outer-sphere zinc surface complexes and subsequent formation of aqueous Zn-Cl complexes, before then promoting Zn(II) retention, possibly through the formation of ternary surface complexes (supported by EXAFS spectroscopy) which stabilize zinc on the surface of the nanoparticles/aggregates. In batch Cu(II) adsorption experiments, Cu(II) retention reaches a maximum at 0.4 M chloride. Copper-chloride surface complexes are not indicated by EXAFS spectroscopy, but there is an increase in the formation of stable aqueous copper-chloride complexes as chloride concentration rises (with CuCl+ becoming dominant in solution at ~0.5 M chloride) that would potentially inhibit further sorption or encourage desorption. Instead, the presence of bidentate edge-sharing and monodentate corner-sharing complexes is supported by EXAFS spectroscopy. Increasing chloride concentration has more of an impact on zinc retention than the mechanism of nanoparticle aggregation, whereas

  2. Structural determinants of sigma receptor affinity

    SciTech Connect

    Largent, B.L.; Wikstroem, H.G.; Gundlach, A.L.; Snyder, S.H.

    1987-12-01

    The structural determinants of sigma receptor affinity have been evaluated by examining a wide range of compounds related to opioids, neuroleptics, and phenylpiperidine dopaminergic structures for affinity at sigma receptor-binding sites labeled with (+)-(/sup 3/H)3-PPP. Among opioid compounds, requirements for sigma receptor affinity differ strikingly from the determinants of affinity for conventional opiate receptors. Sigma sites display reverse stereoselectivity to classical opiate receptors. Multi-ringed opiate-related compounds such as morphine and naloxone have negligible affinity for sigma sites, with the highest sigma receptor affinity apparent for benzomorphans which lack the C ring of opioids. Highest affinity among opioids and other compounds occurs with more lipophilic N-substituents. This feature is particularly striking among the 3-PPP derivatives as well as the opioids. The butyrophenone haloperidol is the most potent drug at sigma receptors we have detected. Among the series of butyrophenones, receptor affinity is primarily associated with the 4-phenylpiperidine moiety. Conformational calculations for various compounds indicate a fairly wide range of tolerance for distances between the aromatic ring and the amine nitrogen, which may account for the potency at sigma receptors of structures of considerable diversity. Among the wide range of structures that bind to sigma receptor-binding sites, the common pharmacophore associated with high receptor affinity is a phenylpiperidine with a lipophilic N-substituent.

  3. Vertex representations of quantum affine algebras.

    PubMed

    Frenkel, I B; Jing, N

    1988-12-01

    We construct vertex representations of quantum affine algebras of ADE type, which were first introduced in greater generality by Drinfeld and Jimbo. The limiting special case of our construction is the untwisted vertex representation of affine Lie algebras of Frenkel-Kac and Segal. Our representation is given by means of a new type of vertex operator corresponding to the simple roots and satisfying the defining relations. In the case of the quantum affine algebra of type A, we introduce vertex operators corresponding to all the roots and determine their commutation relations. This provides an analogue of a Chevalley basis of the affine Lie algebra [unk](n) in the basic representation.

  4. A Novel Vertex Affinity for Community Detection

    SciTech Connect

    Yoo, Andy; Sanders, Geoffrey; Henson, Van; Vassilevski, Panayot

    2015-10-05

    We propose a novel vertex affinity measure in this paper. The new vertex affinity quantifies the proximity between two vertices in terms of their clustering strength and is ideal for such graph analytics applications as community detection. We also developed a framework that combines simple graph searches and resistance circuit formulas to compute the vertex affinity efficiently. We study the properties of the new affinity measure empirically in comparison to those of other popular vertex proximity metrics. Our results show that the existing metrics are ill-suited for community detection due to their lack of fundamental properties that are essential for correctly capturing inter- and intra-cluster vertex proximity.

  5. An Optical Biosensor from Green Fluorescent Escherichia coli for the Evaluation of Single and Combined Heavy Metal Toxicities

    PubMed Central

    Futra, Dedi; Heng, Lee Yook; Ahmad, Asmat; Surif, Salmijah; Ling, Tan Ling

    2015-01-01

    A fluorescence-based fiber optic toxicity biosensor based on genetically modified Escherichia coli (E. coli) with green fluorescent protein (GFP) was developed for the evaluation of the toxicity of several hazardous heavy metal ions. The toxic metals include Cu(II), Cd(II), Pb(II), Zn(II), Cr(VI), Co(II), Ni(II), Ag(I) and Fe(III). The optimum fluorescence excitation and emission wavelengths of the optical biosensor were 400 ± 2 nm and 485 ± 2 nm, respectively. Based on the toxicity observed under optimal conditions, the detection limits of Cu(II), Cd(II), Pb(II), Zn(II), Cr(VI), Co(II), Ni(II), Ag(I) and Fe(III) that can be detected using the toxicity biosensor were at 0.04, 0.32, 0.46, 2.80, 100, 250, 400, 720 and 2600 μg/L, respectively. The repeatability and reproducibility of the proposed biosensor were 3.5%–4.8% RSD (relative standard deviation) and 3.6%–5.1% RSD (n = 8), respectively. The biosensor response was stable for at least five weeks, and demonstrated higher sensitivity towards metal toxicity evaluation when compared to a conventional Microtox assay. PMID:26029952

  6. A simple, high-resolution method for establishing DNA binding affinity and sequence selectivity.

    PubMed

    Boger, D L; Fink, B E; Brunette, S R; Tse, W C; Hedrick, M P

    2001-06-27

    Full details of the development of a simple, nondestructive, and high-throughput method for establishing DNA binding affinity and sequence selectivity are described. The method is based on the loss of fluorescence derived from the displacement of ethidium bromide or thiazole orange from the DNA of interest or, in selected instances, the change in intrinsic fluorescence of a DNA binding agent itself and is applicable for assessing relative or absolute DNA binding affinities. Enlisting a library of hairpin deoxyoligonucleotides containing all five base pair (512 hairpins) or four base pair (136 hairpins) sequences displayed in a 96-well format, a compound's rank order binding to all possible sequences is generated, resulting in a high-resolution definition of its sequence selectivity using this fluorescent intercalator displacement (FID) assay. As such, the technique complements the use of footprinting or affinity cleavage for the establishment of DNA binding selectivity and provides the information at a higher resolution. The merged bar graphs generated by this rank order binding provide a qualitative way to compare, or profile, DNA binding affinity and selectivity. The 96-well format assay (512 hairpins) can be conducted at a minimal cost (presently ca. $100 for hairpin deoxyoligonucleotides/assay with ethiduim bromide or less with thiazole orange), with a rapid readout using a fluorescent plate reader (15 min), and is adaptable to automation (Tecan Genesis Workstation 100 robotic system). Its use in generating a profile of DNA binding selectivity for several agents including distamycin A, netropsin, DAPI, Hoechst 33258, and berenil is described. Techniques for establishing binding constants from quantitative titrations are compared, and recommendations are made for use of a Scatchard or curve fitting analysis of the titration binding curves as a reliable means to quantitate the binding affinity.

  7. Antibacterial Co(II), Cu(II), Ni(II) and Zn(II) Complexes of Thiadiazoles Schiff Bases

    PubMed Central

    Jaffery, Maimoon F.; Supuran, Claudiu T.

    2001-01-01

    Schiff bases were obtained by condensation of 2-amino-l,3,4-thiadiazole with 5-substituted-salicylaldehydes which were further used to obtain complexes of the type [M(L)2]Cl2, where M=Co(II), Cu(II), Ni(II) or Zn(II). The new compounds described here have been characterized by physical, spectral and analytical data, and have been screened for antibacterial activity against several bacterial strains such as Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The antibacterial potency of these Schiff bases increased upon chelation/complexation, against the tested bacterial species, opening new aproaches in the fight against antibiotic resistant strains. PMID:18475981

  8. In Vitro Resistance Selection Studies of RLP068/Cl, a New Zn(II) Phthalocyanine Suitable for Antimicrobial Photodynamic Therapy▿

    PubMed Central

    Giuliani, Francesco; Martinelli, Manuele; Cocchi, Annalisa; Arbia, Debora; Fantetti, Lia; Roncucci, Gabrio

    2010-01-01

    Resistance to antimicrobial agents is emerging in a wide variety of nosocomial and community-acquired pathogens. The development of alternative therapies against nosocomial infections caused by clinically relevant pathogens represents a major public health concern. RLP068/Cl is a novel Zn(II) phthalocyanine proposed as a photosensitizer suitable for antimicrobial photodynamic therapy (APDT) for localized infections. Its ability, following activation by light, to induce resistance in three major human pathogens after 20 daily passages was studied. Simultaneously for the same strains, the ability of daily sequential subcultures in subinhibitory concentrations of RLP068/Cl to develop resistant mutants without illumination was evaluated. We demonstrate that 20 consecutive APDT treatments with RLP068/Cl did not result in any resistant mutants and that, in dark conditions, only Staphylococcus aureus strains had increased MICs of RLP068/Cl. However, even in this case, the susceptibility of the mutated bacteria to APDT was not affected by their MIC increase. PMID:20008782

  9. Synthesis and characterization of polymeric azido Zn(II) and Ni(II) complexes based on 3-hydroxypyridine

    NASA Astrophysics Data System (ADS)

    Mautner, Franz A.; Berger, Christian; Domian, Elisabeth; Fischer, Roland C.; Massoud, Salah S.

    2016-10-01

    The synthesis and structural characterization of two new complexes catena-[Ni(3-O-py)(3-HO-py)2(μ1,3-N3)(H2O)] (1) and catena-[Zn(μ-3-O-py)(μ1,1-N3)] (2), where 3-HO-py = 3-hydroxypyridine, are reported. The complexes were characterized by the elemental microanalyses, IR, and X-ray crystallography and by UV-Vis spectroscopy for complex 1. Single crystal X-ray crystallography revealed the polymeric nature of the complexes: 1 as 1D with a single EE azide bridging, and 2 as 2D with μ(O,O‧,N) bridging of the deprotonated 3-O-py anions and di-EO azide groups, respectively. In 1 the neutral and deprotonated 3-hydroxypyridine molecules act only as N-terminal ligands. The emission spectral properties of the Zn(II) complex were investigated.

  10. Structure of classical affine and classical affine fractional W-algebras

    SciTech Connect

    Suh, Uhi Rinn

    2015-01-15

    We introduce a classical BRST complex (See Definition 3.2.) and show that one can construct a classical affine W-algebra via the complex. This definition clarifies that classical affine W-algebras can be considered as quasi-classical limits of quantum affine W-algebras. We also give a definition of a classical affine fractional W-algebra as a Poisson vertex algebra. As in the classical affine case, a classical affine fractional W-algebra has two compatible λ-brackets and is isomorphic to an algebra of differential polynomials as a differential algebra. When a classical affine fractional W-algebra is associated to a minimal nilpotent, we describe explicit forms of free generators and compute λ-brackets between them. Provided some assumptions on a classical affine fractional W-algebra, we find an infinite sequence of integrable systems related to the algebra, using the generalized Drinfel’d and Sokolov reduction.

  11. Development of a stand-alone affinity clean-up for lysergic acid diethylamide in urine.

    PubMed

    Francis, J M; Craston, D H

    1996-02-01

    A total analysis scheme for lysergic acid diethylamide (LSD) from human urine is described. A simple ELISA technique led to the development and optimization of an affinity clean-up cartridge, resulting in high purification factors with a single combined extraction/clean-up step. LSD can be measured with a straightforward HPLC-fluorescence technique, which minimizes operating complexity and process implementation time. The method has been applied to urine containing 0.5 ng ml-1 LDS, and the ability of high-affinity materials to preconcentrate a sample into a small volume should allow the working range of the procedure to be adjusted as required.

  12. Scaling analysis of affinity propagation.

    PubMed

    Furtlehner, Cyril; Sebag, Michèle; Zhang, Xiangliang

    2010-06-01

    We analyze and exploit some scaling properties of the affinity propagation (AP) clustering algorithm proposed by Frey and Dueck [Science 315, 972 (2007)]. Following a divide and conquer strategy we setup an exact renormalization-based approach to address the question of clustering consistency, in particular, how many cluster are present in a given data set. We first observe that the divide and conquer strategy, used on a large data set hierarchically reduces the complexity O(N2) to O(N((h+2)/(h+1))) , for a data set of size N and a depth h of the hierarchical strategy. For a data set embedded in a d -dimensional space, we show that this is obtained without notably damaging the precision except in dimension d=2 . In fact, for d larger than 2 the relative loss in precision scales such as N((2-d)/(h+1)d). Finally, under some conditions we observe that there is a value s* of the penalty coefficient, a free parameter used to fix the number of clusters, which separates a fragmentation phase (for ss*) of the underlying hidden cluster structure. At this precise point holds a self-similarity property which can be exploited by the hierarchical strategy to actually locate its position, as a result of an exact decimation procedure. From this observation, a strategy based on AP can be defined to find out how many clusters are present in a given data set.

  13. Recovery and concentration of metal ions. 4: Uphill transport of Zn(II) in a multimembrane hybrid system

    SciTech Connect

    Wodzki, R.; Sionkowski, G.; Pozniak, G.

    1999-02-01

    A study has been made on the uphill transport of zinc cations across a multimembrane hybrid system (MHS) composed of two ion-exchange membranes (IEM) separated by a bulk liquid membrane (BLM). The fluxes of the Zn(II)/H countertransport were investigated as dependent on the composition and structure of ion-exchange polymer membranes (i), the solvent of a liquid membrane (II), the feed and strip membrane area ratio (iii), and the pH of the feed solution (iv). The IEMs of various ionogenic groups (sulfonic acid, carboxylic acid, quaternized amine) and of various structure (clustered, gelatinous, porous) were examined in the MHS containing the BLM with di(2-ethylhexyl)phosphoric acid as a carrier of Zn(II) cations. It has been found that the Zn(II) fluxes are dependent on the properties of both the BLM and polymer membranes, i.e., on the BLM solvent viscosity (i), the nature and concentration of the IEM ion-exchange sites (ii), and the IEM thickness (iii). The best results were obtained when using hexane as the BLM solvent and the Nafion-117 membrane (perfluorinated polymer, sulfonic acid groups) as the cation-exchange membrane (CEM). The influence of the area ratio (feed-to-strip interface) has been checked for A{sub f}/A{sub g} equal to 3:1, 1:1, and 1:3. It was found that the asymmetry of the system leads mainly to some changes in the accumulation of transported species in a liquid membrane phase.

  14. Improving image segmentation by learning region affinities

    SciTech Connect

    Prasad, Lakshman; Yang, Xingwei; Latecki, Longin J

    2010-11-03

    We utilize the context information of other regions in hierarchical image segmentation to learn new regions affinities. It is well known that a single choice of quantization of an image space is highly unlikely to be a common optimal quantization level for all categories. Each level of quantization has its own benefits. Therefore, we utilize the hierarchical information among different quantizations as well as spatial proximity of their regions. The proposed affinity learning takes into account higher order relations among image regions, both local and long range relations, making it robust to instabilities and errors of the original, pairwise region affinities. Once the learnt affinities are obtained, we use a standard image segmentation algorithm to get the final segmentation. Moreover, the learnt affinities can be naturally unutilized in interactive segmentation. Experimental results on Berkeley Segmentation Dataset and MSRC Object Recognition Dataset are comparable and in some aspects better than the state-of-art methods.

  15. Method and apparatus for detection of fluorescently labeled materials

    DOEpatents

    Stern, David; Fiekowsky, Peter

    2004-05-25

    Fluorescently marked targets bind to a substrate 230 synthesized with polymer sequences at known locations. The targets are detected by exposing selected regions of the substrate 230 to light from a light source 100 and detecting the photons from the light fluoresced therefrom, and repeating the steps of exposure and detection until the substrate 230 is completely examined. The resulting data can be used to determine binding affinity of the targets to specific polymer sequences.

  16. Method and apparatus for detection of fluorescently labeled materials

    DOEpatents

    Stern, David; Fiekowsky, Peter

    1997-01-01

    Fluorescently marked targets bind to a substrate 230 synthesized with polymer sequences at known locations. The targets are detected by exposing selected regions of the substrate 230 to light from a light source 100 and detecting the photons from the light fluoresced therefrom, and repeating the steps of exposure and detection until the substrate 230 is completely examined. The resulting data can be used to determine binding affinity of the targets to specific polymer sequences.

  17. Focused fluorescent probe library for metal cations and biological anions.

    PubMed

    Rhee, Hyun-Woo; Lee, Sang Wook; Lee, Jun-Seok; Chang, Young-Tae; Hong, Jong-In

    2013-09-09

    A focused fluorescent probe library for metal cations was developed by combining metal chelators and picolinium/quinolinium moieties as combinatorial blocks connected through a styryl group. Furthermore, metal complexes derived from metal chelators having high binding affinities for metal cations were used to construct a focused probe library for phosphorylated biomolecules. More than 250 fluorescent probes were screened for identifying an ultraselective probe for dTTP.

  18. Integrin affinity modulation in angiogenesis

    PubMed Central

    Mahabeleshwar, Ganapati H.; Chen, Juhua; Feng, Weiyi; Somanath, Payaningal R.; Razorenova, Olga V.; Byzova, Tatiana V.

    2008-01-01

    Integrins, transmembrane glycoprotein receptors, play vital roles in pathological angiogenesis, but their precise regulatory functions are not completely understood and remain controversial. This study aims to assess the regulatory functions of individual beta subunits of endothelial integrins in angiogenic responses induced by vascular endothelial growth factor (VEGF). Inhibition of expression of β1, β3 or β5 integrins in endothelial cells resulted in down regulation of EC adhesion and migration on the primary ligand for the corresponding integrin receptor, while no effects on the recognition of other ligands were detected. Although inhibition of expression of each subunit substantially affected capillary growth stimulated by VEGF, the loss of β3 integrin was the most inhibitory. EC stimulation by VEGF induced formation of the high affinity (activated) state of αvβ3 in a monolayer and activated αvβ3 was co-localized with VEGF receptor-2 (VEGFR-2). Inhibition of expression of β1, β3 or β5 did not affect expression levels of VEGFR-2 in EC. However, inhibition of β3, but not β1 or β5, resulted in substantial inhibition of VEGFR-2 phosphorylation stimulated by VEGF. Exogenous stimulation of αvβ3 integrin with activating antibodies augmented VEGF-dependent phosphorylation of VEGFR-2, whereas integrin blockade suppressed this response. Most importantly, activated αvβ3 was detected on endothelial cells of tumor vasculature. Activation of αvβ3 was substantially increased in highly-vascularized tumors as compared to normal tissues. Moreover, activated αvβ3 was co-localized with VEGFR-2 on endothelial cells of proliferating blood vessels. Together, these results show the unique role of αvβ3 integrin in cross-talk with VEGFR-2 in the context of pathological angiogenesis. PMID:18287811

  19. Complex formation equilibria of Cu(II) and Zn(II) with triethylenetetramine and its mono- and di-acetyl metabolites.

    PubMed

    Nurchi, Valeria M; Crisponi, Guido; Crespo-Alonso, Miriam; Lachowicz, Joanna I; Szewczuk, Zbigniew; Cooper, Garth J S

    2013-05-07

    Triethylenetetramine (TETA) dihydrochloride, or trientine, is a therapeutic molecule that has long been used as a copper-chelating agent for the second-line treatment of patients with Wilson's disease. More recently, it has also been employed as an experimental therapeutic molecule in diabetes where it improves cardiac structure in patients with diabetic cardiomyopathy and left-ventricular hypertrophy. TETA is metabolized by acetylation, which leads to the formation of two main metabolites in humans and other mammals, monoacetyl-TETA (MAT) and diacetyl-TETA (DAT). These metabolites have been identified in the plasma and urine of healthy and diabetic subjects treated with TETA, and could themselves play a role in TETA-mediated copper chelation and restoration of physiological copper regulation in diabetes. In this regard, a potentiometric and spectrophotometric study of Cu(II)-complex formation equilibria of TETA, MAT and DAT is presented here, to provide a comprehensive evaluation of the stoichiometries of the complexes formed and of their relative stability constants. A potentiometric study has also been conducted on the corresponding Zn(II) complexes, to evaluate any possible interference with TETA-mediated Cu(II) binding by this second physiological transition-metal ion, which is present in similar concentrations in human plasma and which also binds to TETA. An ESI-MS study of these systems has both confirmed the complex formation mechanisms established from the potentiometric and spectrophotometric results, and in addition provided direct information on the stoichiometry of the complexes formed in solution. These data when taken together show that the 1 : 1 complexes formed with Cu(II) and Zn(II) have different degrees of protonation. The stability of the Cu(II) and Zn(II) complexes with the three ligands, evaluated by the parameters pCu and pZn, decreases with the introduction of the acetyl groups. Nevertheless the stability of Cu(II) complexes with MAT is

  20. Aptamer-Based Fluorescent Biosensors

    PubMed Central

    Wang, Rongsheng E.; Zhang, Yin; Cai, Jianfeng; Cai, Weibo; Gao, Ting

    2011-01-01

    Selected from random pools of DNA or RNA molecules through systematic evolution of ligands by exponential enrichment (SELEX), aptamers can bind to target molecules with high affinity and specificity, which makes them ideal recognition elements in the development of biosensors. To date, aptamer-based biosensors have used a wide variety of detection techniques, which are briefly summarized in this article. The focus of this review is on the development of aptamer-based fluorescent biosensors, with emphasis on their design as well as properties such as sensitivity and specificity. These biosensors can be broadly divided into two categories: those using fluorescently-labeled aptamers and others that employ label-free aptamers. Within each category, they can be further divided into “signal-on” and “signal-off” sensors. A number of these aptamer-based fluorescent biosensors have shown promising results in biological samples such as urine and serum, suggesting their potential applications in biomedical research and disease diagnostics. PMID:21838688

  1. Fluorescence of dental porcelain.

    PubMed

    Monsénégo, G; Burdairon, G; Clerjaud, B

    1993-01-01

    This study of the fluorescence of natural enamel and of dental ceramics shows the fluorescence of ceramics not containing rare earths decreases when the color saturation increases; the fluorescence of samples of the same shade guide are not homogenous; some guides show a strong green fluorescence; and two shade guides of the same origin can present completely different fluorescence. The cementing medium can affect the fluorescence of a ceramic prosthesis.

  2. The Cutting Edge of Affinity Electrophoresis Technology

    PubMed Central

    Kinoshita, Eiji; Kinoshita-Kikuta, Emiko; Koike, Tohru

    2015-01-01

    Affinity electrophoresis is an important technique that is widely used to separate and analyze biomolecules in the fields of biology and medicine. Both quantitative and qualitative information can be gained through affinity electrophoresis. Affinity electrophoresis can be applied through a variety of strategies, such as mobility shift electrophoresis, charge shift electrophoresis or capillary affinity electrophoresis. These strategies are based on changes in the electrophoretic patterns of biological macromolecules that result from interactions or complex-formation processes that induce changes in the size or total charge of the molecules. Nucleic acid fragments can be characterized through their affinity to other molecules, for example transcriptional factor proteins. Hydrophobic membrane proteins can be identified by means of a shift in the mobility induced by a charged detergent. The various strategies have also been used in the estimation of association/disassociation constants. Some of these strategies have similarities to affinity chromatography, in that they use a probe or ligand immobilized on a supported matrix for electrophoresis. Such methods have recently contributed to profiling of major posttranslational modifications of proteins, such as glycosylation or phosphorylation. Here, we describe advances in analytical techniques involving affinity electrophoresis that have appeared during the last five years. PMID:28248262

  3. Zinspy Sensors with Enhanced Dynamic Range for Imaging Neuronal Cell Zinc Uptake and Mobilization

    PubMed Central

    Nolan, Elizabeth M.; Ryu, Jubin W.; Jaworski, Jacek; Feazell, Rodney P.; Sheng, Morgan; Lippard, Stephen J.

    2006-01-01

    Thiophene moieties were incorporated into previously described Zinspy (ZS) fluorescent Zn(II) sensor motifs (Nolan, E. M.; Lippard, S. J. Inorg. Chem. 2004, 43, 8310–8317) to provide enhanced fluorescence properties, low-micromolar dissociation constants for Zn(II), and improved Zn(II) selectivity. Halogenation of the xanthenone and benzoate moieties of the fluorescein platform systematically modulates the excitation and emission profiles, pH-dependent fluorescence, Zn(II) affinity, and Zn(II) complexation rates, offering a general strategy for tuning multiple properties of xanthenone-based metal ion sensors. Extensive biological studies in cultured cells and primary neuronal cultures demonstrate 2-{6-hydroxy-3-oxo-4,5-bis[(pyridin-2-ylmethylthiophen-2-ylmethylamino)methyl]-3H-xanthen-9-yl}benzoic acid (ZS5) to be a versatile imaging tool for detecting Zn(II) in vivo. ZS5 localizes to the mitochondria of HeLa cells and allows visualization of glutamate-mediated Zn(II) uptake in dendrites and Zn(II) release resulting from nitrosative stress in neurons. PMID:17132019

  4. Studies on the binding affinity of anticancer drug mitoxantrone to chromatin, DNA and histone proteins

    PubMed Central

    Hajihassan, Zahra; Rabbani-Chadegani, Azra

    2009-01-01

    Mitoxantrone is a potent antitumor drug, widely used in the treatment of various cancers. In the present study, we have investigated and compared the affinity of anticancer drug, mitoxantrone, to EDTA-soluble chromatin (SE-chromatin), DNA and histones employing UV/Vis, fluorescence, CD spectroscopy, gel electrophoresis and equilibrium dialysis techniques. The results showed that the interaction of mitoxantrone with SE-chromatin proceeds into compaction/aggregation as revealed by reduction in the absorbencies at 608 and 260 nm (hypochromicity) and disappearance of both histones and DNA on the gels. Mitoxantrone interacts strongly with histone proteins in solution making structural changes in the molecule as shown by CD and fluorescence analysis. The binding isotherms demonstrate a positive cooperative binding pattern for the chromatin- mitoxantrone interaction. It is suggested higher binding affinity of mitoxantrone to chromatin compared to DNA implying that the histone proteins may play an important role in the chromatin- mitoxantrone interaction process. PMID:19284573

  5. In Silico Analysis for Transcription Factors With Zn(II)2C6 Binuclear Cluster DNA-Binding Domains in Candida albicans

    PubMed Central

    Maicas, Sergi; Moreno, Inmaculada; Nieto, Almudena; Gómez, Micaela; Sentandreu, Rafael

    2005-01-01

    A total of 6047 open reading frames in the Candida albicans genome were screened for Zn(II)2C6-type zinc cluster proteins (or binuclear cluster proteins) involved in DNA recognition. These fungal proteins are transcription regulators of genes involved in a wide range of cellular processes, including metabolism of different compounds such as sugars or amino acids, as well as multi-drug resistance, control of meiosis, cell wall architecture, etc. The selection criteria used in the sequence analysis were the presence of the CysX2CysX6CysX5-16CysX2CysX6-8Cys motif and a putative nuclear localization signal. Using this approach, 70 putative Zn(II)2C6 transcription factors have been found in the genome of C. albicans. PMID:18629206

  6. Applications of dynamic light scattering, fluorescence microscopy and fluorescence spectroscopy in DB-67 liposomal formulation studies

    NASA Astrophysics Data System (ADS)

    Kruszewski, Stefan; Ziomkowska, Blanka; Cyrankiewicz, Michał; Latus, Lori; Bom, David

    2005-08-01

    Campthothecin (CPT) and its analogues as prominent anticancer agents are currently the subject of the intensive studies. One of the most promising camptothecin analogues is 7-tert-butyldimethylsil- 1 0-hydroxycampthothecin called DB-67. It is characterized by high affinity to SUV (small unilamellar lipids vesicles) and relatively high stability in human blood. The studies of liposomal formulation as a delivery systems for DB-67 are the subject of this paper. The methods of dynamic light scattering (DLS), fluorescence microscopy (FM) and fluorescence spectroscopy (FS) are used to determine the physical properties of DB-67 liposomal formulation.

  7. Affimer proteins are versatile and renewable affinity reagents

    PubMed Central

    Tiede, Christian; Bedford, Robert; Heseltine, Sophie J; Smith, Gina; Wijetunga, Imeshi; Ross, Rebecca; AlQallaf, Danah; Roberts, Ashley PE; Balls, Alexander; Curd, Alistair; Hughes, Ruth E; Martin, Heather; Needham, Sarah R; Zanetti-Domingues, Laura C; Sadigh, Yashar; Peacock, Thomas P; Tang, Anna A; Gibson, Naomi; Kyle, Hannah; Platt, Geoffrey W; Ingram, Nicola; Taylor, Thomas; Coletta, Louise P; Manfield, Iain; Knowles, Margaret; Bell, Sandra; Esteves, Filomena; Maqbool, Azhar; Prasad, Raj K; Drinkhill, Mark; Bon, Robin S; Patel, Vikesh; Goodchild, Sarah A; Martin-Fernandez, Marisa; Owens, Ray J; Nettleship, Joanne E; Webb, Michael E; Harrison, Michael; Lippiat, Jonathan D; Ponnambalam, Sreenivasan; Peckham, Michelle; Smith, Alastair; Ferrigno, Paul Ko; Johnson, Matt; McPherson, Michael J; Tomlinson, Darren Charles

    2017-01-01

    Molecular recognition reagents are key tools for understanding biological processes and are used universally by scientists to study protein expression, localisation and interactions. Antibodies remain the most widely used of such reagents and many show excellent performance, although some are poorly characterised or have stability or batch variability issues, supporting the use of alternative binding proteins as complementary reagents for many applications. Here we report on the use of Affimer proteins as research reagents. We selected 12 diverse molecular targets for Affimer selection to exemplify their use in common molecular and cellular applications including the (a) selection against various target molecules; (b) modulation of protein function in vitro and in vivo; (c) labelling of tumour antigens in mouse models; and (d) use in affinity fluorescence and super-resolution microscopy. This work shows that Affimer proteins, as is the case for other alternative binding scaffolds, represent complementary affinity reagents to antibodies for various molecular and cell biology applications. DOI: http://dx.doi.org/10.7554/eLife.24903.001 PMID:28654419

  8. Label-free microscale thermophoresis discriminates sites and affinity of protein-ligand binding.

    PubMed

    Seidel, Susanne A I; Wienken, Christoph J; Geissler, Sandra; Jerabek-Willemsen, Moran; Duhr, Stefan; Reiter, Alwin; Trauner, Dirk; Braun, Dieter; Baaske, Philipp

    2012-10-15

    Look, no label! Microscale thermophoresis makes use of the intrinsic fluorescence of proteins to quantify the binding affinities of ligands and discriminate between binding sites. This method is suitable for studying binding interactions of very small amounts of protein in solution. The binding of ligands to iGluR membrane receptors, small-molecule inhibitorss to kinase p38, aptamers to thrombin, and Ca(2+) ions to synaptotagmin was quantified.

  9. Accessing two-coordinate Zn(II) Organocations via NHC coordination: synthesis, structure and use as π-Lewis acids in alkene, alkyne, and CO2 hydrosilylation.

    PubMed

    Dagorne, Samuel; Specklin, David; Hild, Frédéric; Fliedel, Christophe; Gourlaouen, Christophe; Veiros, Luis

    2017-09-19

    Discrete two-coordinate Zn(II) organocations are first reported, presently of the type (NHC)Zn-R+, thanks to NHC stabilization. In preliminary reactivity studies, such entities, which are direct cationic analogues of long-known ZnR2 species, act as effective and tunable π-Lewis acid catalysts in alkene, alkyne and CO2 hydrosilylation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Sensitive electrochemical sensor using a graphene-polyaniline nanocomposite for simultaneous detection of Zn(II), Cd(II), and Pb(II).

    PubMed

    Ruecha, Nipapan; Rodthongkum, Nadnudda; Cate, David M; Volckens, John; Chailapakul, Orawon; Henry, Charles S

    2015-05-18

    This work describes the development of an electrochemical sensor for simultaneous detection of Zn(II), Cd(II), and Pb(II) using a graphene-polyaniline (G/PANI) nanocomposite electrode prepared by reverse-phase polymerization in the presence of polyvinylpyrrolidone (PVP). Two substrate materials (plastic film and filter paper) and two nanocomposite deposition methods (drop-casting and electrospraying) were investigated. Square-wave anodic stripping voltammetry currents were higher for plastic vs. paper substrates. Performance of the G/PANI nanocomposites was characterized by scanning electron microscopy (SEM) and cyclic voltammetry. The G/PANI-modified electrode exhibited high electrochemical conductivity, producing a three-fold increase in anodic peak current (vs. the unmodified electrode). The G/PANI-modified electrode also showed evidence of increased surface area under SEM. Square-wave anodic stripping voltammetry was used to measure Zn(II), Cd(II), and Pb(II) in the presence of Bi(III). A linear working range of 1-300 μg L(-1) was established between anodic current and metal ion concentration with detection limits (S/N=3) of 1.0 μg L(-1) for Zn(II), and 0.1 μg L(-1) for both Cd(II) and Pb(II). The G/PANI-modified electrode allowed selective determination of the target metals in the presence of common metal interferences including Mn(II), Cu(II), Fe(III), Fe(II), Co(III), and Ni(II). Repeat assays on the same device demonstrated good reproducibility (%RSD<11) over 10 serial runs. Finally, this system was utilized for determining Zn(II), Cd(II), and Pb(II) in human serum using the standard addition method.

  11. Subcomponent self-assembly of a 4 nm M4 L6 tetrahedron with Zn(II) vertices and perylene bisimide dye edges.

    PubMed

    Frischmann, Peter D; Kunz, Valentin; Stepanenko, Vladimir; Würthner, Frank

    2015-02-09

    Formation of a tetrahedron with >4 nm perylene bisimide (PBI) dye edges and Zn(II) vertices in a one-pot 22 component self-assembly reaction is reported. The luminescent polyhedron equilibrates to a Zn2 L3 helicate and disassembles upon dilution. Insights into the subcomponent self-assembly of extended PBI ligands help to refine design rules for constructing large photofunctional metallosupramolecular hosts.

  12. Genome-wide analysis of the Zn(II)2Cys6 zinc cluster-encoding gene family in Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    Proteins with a Zn(II)2Cys6 domain, Cys-X2-Cys-X6-Cys-X5-12-Cys-X2-Cys-X6-9-Cys (hereafter, referred to as the C6 domain), form a subclass of zinc finger proteins found exclusively in fungi and yeast. Genome sequence databases of Saccharomyces cerevisiae and Candida albicans have provided an overvie...

  13. NADH fluorescence lifetime analysis of the effect of magnesium ions on ALDH2

    USDA-ARS?s Scientific Manuscript database

    Aldehyde dehydrogenase 2 (ALDH2) catalyzes oxidation of toxic aldehydes to carboxylic acids. Physiologic levels of Mg2+ ions influence enzyme activity in part by increasing NADH binding affinity. Traditional fluorescence measurements monitor the blue shift of the NADH fluorescence spectrum to study ...

  14. NADH fluorescence lifetime analysis of the effect of magnesium ions on ALDH2

    USDA-ARS?s Scientific Manuscript database

    ALDH2 catalyzes oxidation of toxic aldehydes to their corresponding carboxylic acids. Magnesium ions influence enzyme activity in part by increasing NADH binding affinity. Traditional fluorescence measurements have monitored the blue shift of the NADH fluorescence spectrum to elucidate the extent of...

  15. Spectral and thermodynamic properties of Ag(I), Au(III), Cd(II), Co(II), Fe(III), Hg(II), Mn(II), Ni(II), Pb(II), U(IV), and Zn(II) binding by methanobactin from Methylosinus trichosporium OB3b.

    PubMed

    Choi, Dong W; Do, Young S; Zea, Corbin J; McEllistrem, Marcus T; Lee, Sung-W; Semrau, Jeremy D; Pohl, Nicola L; Kisting, Clint J; Scardino, Lori L; Hartsel, Scott C; Boyd, Eric S; Geesey, Gill G; Riedel, Theran P; Shafe, Peter H; Kranski, Kim A; Tritsch, John R; Antholine, William E; DiSpirito, Alan A

    2006-12-01

    Methanobactin (mb) is a novel chromopeptide that appears to function as the extracellular component of a copper acquisition system in methanotrophic bacteria. To examine this potential physiological role, and to distinguish it from iron binding siderophores, the spectral (UV-visible absorption, circular dichroism, fluorescence, and X-ray photoelectron) and thermodynamic properties of metal binding by mb were examined. In the absence of Cu(II) or Cu(I), mb will bind Ag(I), Au(III), Co(II), Cd(II), Fe(III), Hg(II), Mn(II), Ni(II), Pb(II), U(VI), or Zn(II), but not Ba(II), Ca(II), La(II), Mg(II), and Sr(II). The results suggest metals such as Ag(I), Au(III), Hg(II), Pb(II) and possibly U(VI) are bound by a mechanism similar to Cu, whereas the coordination of Co(II), Cd(II), Fe(III), Mn(II), Ni(II) and Zn(II) by mb differs from Cu(II). Consistent with its role as a copper-binding compound or chalkophore, the binding constants of all the metals examined were less than those observed with Cu(II) and copper displaced other metals except Ag(I) and Au(III) bound to mb. However, the binding of different metals by mb suggests that methanotrophic activity also may play a role in either the solubilization or immobilization of many metals in situ.

  16. PRINCIPLES OF AFFINITY-BASED BIOSENSORS

    EPA Science Inventory

    Despite the amount of resources that have been invested by national and international academic, government, and commercial sectors to develop affinity-based biosensor products, little obvious success has been realized through commercialization of these devices for specific applic...

  17. Universality of affine formulation in general relativity

    NASA Astrophysics Data System (ADS)

    Kijowski, Jerzy; Werpachowski, Roman

    2007-02-01

    The affine variational principle for general relativity, proposed in 1978 by one of us, is a good remedy for the nonuniversal properties of the standard, metric formulation, arising when the matter Lagrangian depends upon the metric derivatives. The affine version of the theory cures the standard drawback of the metric version, where the leading (second-order) term of the field equations depends upon the matter fields and its causal structure violates the light cone structure of the metric. Choosing the affine connection (and not the metric one) as the gravitational configuration, simplifies considerably the canonical structure of the theory and is more suitable for the purposes of its quantization along the lines of Ashtekar and Lewandowski. We show how the affine formulation provides a simple method to handle boundary integrals in general relativity theory.

  18. Visualizing Antibody Affinity Maturation in Germinal Centers

    PubMed Central

    Tas, Jeroen M.J.; Mesin, Luka; Pasqual, Giulia; Targ, Sasha; Jacobsen, Johanne T.; Mano, Yasuko M.; Chen, Casie S.; Weill, Jean-Claude; Reynaud, Claude-Agnès; Browne, Edward P.; Meyer-Hermann, Michael; Victora, Gabriel D.

    2016-01-01

    Antibodies somatically mutate to attain high affinity in germinal centers (GCs). There, competition between B cell clones and among somatic mutants of each clone drives an increase in average affinity across the population. The extent to which higher-affinity cells eliminating competitors restricts clonal diversity is unknown. By combining multiphoton microscopy and sequencing, we show that tens to hundreds of distinct B cell clones seed each GC, and that GCs lose clonal diversity at widely disparate rates. Furthermore, efficient affinity maturation can occur in the absence of homogenizing selection, ensuring that many clones can mature in parallel within the same GC. Our findings have implications for development of vaccines in which antibodies with non-immunodominant specificities must be elicited, as is the case for HIV-1 and influenza. PMID:26912368

  19. PRINCIPLES OF AFFINITY-BASED BIOSENSORS

    EPA Science Inventory

    Despite the amount of resources that have been invested by national and international academic, government, and commercial sectors to develop affinity-based biosensor products, little obvious success has been realized through commercialization of these devices for specific applic...

  20. Protein purification using PDZ affinity chromatography.

    PubMed

    Walkup, Ward G; Kennedy, Mary B

    2015-04-01

    PDZ domains function in nature as protein-binding domains within scaffold and membrane-associated proteins. They comprise approximately 90 residues and undergo specific, high-affinity interactions with complementary C-terminal peptide sequences, other PDZ domains, and/or phospholipids. We have previously shown that the specific, strong interactions of PDZ domains with their ligands make them well suited for use in affinity chromatography. This unit provides protocols for the PDZ affinity chromatography procedure that are applicable for the purification of proteins that contain PDZ domains or PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We detail the preparation of affinity resins composed of PDZ domains or PDZ domain peptide ligands coupled to solid supports. These resins can be used to purify proteins containing endogenous or genetically introduced PDZ domains or ligands, eluting the proteins with free PDZ domain peptide ligands.

  1. Lighting up G protein-coupled purinergic receptors with engineered fluorescent ligands

    PubMed Central

    Ciruela, Francisco; Fernández-Dueñas, Víctor; Jacobson, Kenneth A.

    2015-01-01

    The use of G protein-coupled receptors fluorescent ligands is undergoing continuous expansion. In line with this, fluorescent agonists and antagonists of high affinity for G protein-coupled adenosine and P2Y receptors have been shown to be useful pharmacological probe compounds. Fluorescent ligands for A1R, A2AR, and A3R (adenosine receptors) and P2Y2R, P2Y4R, P2Y6R, and P2Y14R (nucleotide receptors) have been reported. Such ligands have been successfully applied to drug discovery and to GPCR characterization by flow cytometry, fluorescence correlation spectroscopy, fluorescence microscopy, fluorescence polarization, fluorescence resonance energy transfer and scanning confocal microscopy. Here we summarize recently reported and readily available representative fluorescent ligands of purinergic receptors. In addition, we pay special attention on the use of this family of fluorescent ligands revealing two main aspects of purinergic receptor biology, namely ligand binding and receptor oligomerization. PMID:25890205

  2. Synthesis, characterization, DFT and biological studies of isatinpicolinohydrazone and its Zn(II), Cd(II) and Hg(II) complexes

    NASA Astrophysics Data System (ADS)

    El-Gammal, O. A.; Rakha, T. H.; Metwally, H. M.; Abu El-Reash, G. M.

    2014-06-01

    Isatinpicolinohydrazone (H2IPH) and its Zn(II), Cd(II) and Hg(II) complexes have been synthesized and investigated using physicochemical techniques viz. IR, 1H NMR, 13C NMR, UV-Vis spectrometric methods and magnetic moment measurements. The investigation revealed that H2IPH acts as binegative tetradentate in Zn(II), neutral tridentate in Cd(II) and as neutral bidentate towards Hg(II) complex. Octahedral geometry is proposed for all complexes. The bond length, bond angle, chemical reactivity, energy components (kcal/mol), binding energy (kcal/mol) and dipole moment (Debyes) for all the title compounds were evaluated by DFT and also MEP for the ligand is shown. Theoretical infrared intensities of H2IPH and also the theoretical electronic spectra of the ligand and its complexes were calculated. The thermal behavior and the kinetic parameters of degradation were determined using Coats-Redfern and Horowitz-Metzger methods. The in vitro antibacterial studies of the complexes proved them as growth inhibiting agents. The DDPH antioxidant of the compounds have been screened. Antitumor activity, carried out in vitro on human mammary gland (breast) MCF7, have shown that Hg(II) complex exhibited potent activity followed by Zn(II), Cd(II) complexes and the ligand.

  3. Biosorption of Cu(II), Zn(II), Ni(II) and Pb(II) ions by cross-linked metal-imprinted chitosans with epichlorohydrin.

    PubMed

    Chen, Chia-Yun; Yang, Cheng-Yu; Chen, Arh-Hwang

    2011-03-01

    Cross-linked metal-imprinted chitosan microparticles were prepared from chitosan, using four metals (Cu(II), Zn(II), Ni(II), and Pb(II)) as templates, and epichlorohydrin as the cross-linker. The microparticles were characterized by Fourier transform infrared spectroscopy, solid state (13)C nuclear magnetic resonance spectroscopy, and energy-dispersive X-ray spectroscopy. They were used for comparative biosorption of Cu(II), Zn(II), Ni(II) and Pb(II) ions in an aqueous solution. The results showed that the sorption capacities of Cu(II), Zn(II), Ni(II), and Pb(II) on the templated microparticles increased from 25 to 74%, 13 to 46%, 41 to 57%, and 12 to 43%, respectively, as compared to the microparticles without metal ion templates. The dynamic study showed that the sorption process followed the second-order kinetic equation. Three sorption models, Langmuir, Freundlich, and Dubinin-Radushkevich, were applied to the equilibrium isotherm data. The result showed that the Langmuir isotherm equation best fitted for monolayer sorption processes. Furthermore, the microparticles can be regenerated and reused for the metal removal.

  4. Molecular structure, UV/vis spectra, and cyclic voltammograms of Mn(II), Co(II), and Zn(II) 5,10,15,20-tetraphenyl-21-oxaporphyrins.

    PubMed

    Stute, Silvio; Götzke, Linda; Meyer, Dirk; Merroun, Mohamed L; Rapta, Peter; Kataeva, Olga; Seichter, Wilhelm; Gloe, Kerstin; Dunsch, Lothar; Gloe, Karsten

    2013-02-04

    The 5,10,15,20-tetraphenyl-21-oxaporphyrin complexes of Mn(II), Co(II), and Zn(II) have been crystallized and studied by X-ray diffraction, NMR and UV/vis spectroscopy, and mass spectrometry as well as cyclic voltammetry. The X-ray structure of the earlier described Cu(II) complex is also reported. All complex structures possess a five-coordinate, approximately square-pyramidal geometry with a slight deviation of the heteroaromatic moieties from planarity. The packing structures are characterized by parallel strands of complex molecules interacting by weak hydrogen bonds. In the case of Zn(II) an octahedral complex has also been isolated using a side-chain hydroxy functionalized oxaporphyrin ligand; the structure was verified by NMR and EXAFS spectroscopy. Cyclic voltammetry studies reveal that the reduction of the complex bound Mn(II), Co(II), and Zn(II) ions is a ligand-centered process whereas the first oxidation step depends on the metal ion present.

  5. Preparation of cross-linked magnetic chitosan-phenylthiourea resin for adsorption of Hg(II), Cd(II) and Zn(II) ions from aqueous solutions.

    PubMed

    Monier, M; Abdel-Latif, D A

    2012-03-30

    In this study, cross-linked magnetic chitosan-phenylthiourea (CSTU) resin were prepared and characterized by means of FTIR, (1)H NMR, SEM high-angle X-ray diffraction (XRD), magnetic properties and thermogravimetric analysis (TGA). The prepared resin were used to investigate the adsorption properties of Hg(II), Cd(II) and Zn(II) metal ions in an aqueous solution. The extent of adsorption was investigated as a function of pH and the metal ion removal reached maximum at pH 5.0. Also, the kinetic and thermodynamic parameters of the adsorption process were estimated. These data indicated that the adsorption process is exothermic and followed the pseudo-second-order kinetics. Equilibrium studies showed that the data of Hg(II), Cd(II) and Zn(II) adsorption followed the Langmuir model. The maximum adsorption capacities for Hg(II), Cd(II) and Zn(II) were estimated to be 135 ± 3, 120 ± 1 and 52 ± 1 mg/g, which demonstrated the high adsorption efficiency of CSTU toward the studied metal ions. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Synthesis, characterization, DFT and biological studies of isatinpicolinohydrazone and its Zn(II), Cd(II) and Hg(II) complexes.

    PubMed

    El-Gammal, O A; Rakha, T H; Metwally, H M; Abu El-Reash, G M

    2014-06-05

    Isatinpicolinohydrazone (H2IPH) and its Zn(II), Cd(II) and Hg(II) complexes have been synthesized and investigated using physicochemical techniques viz. IR, (1)H NMR, (13)C NMR, UV-Vis spectrometric methods and magnetic moment measurements. The investigation revealed that H2IPH acts as binegative tetradentate in Zn(II), neutral tridentate in Cd(II) and as neutral bidentate towards Hg(II) complex. Octahedral geometry is proposed for all complexes. The bond length, bond angle, chemical reactivity, energy components (kcal/mol), binding energy (kcal/mol) and dipole moment (Debyes) for all the title compounds were evaluated by DFT and also MEP for the ligand is shown. Theoretical infrared intensities of H2IPH and also the theoretical electronic spectra of the ligand and its complexes were calculated. The thermal behavior and the kinetic parameters of degradation were determined using Coats-Redfern and Horowitz-Metzger methods. The in vitro antibacterial studies of the complexes proved them as growth inhibiting agents. The DDPH antioxidant of the compounds have been screened. Antitumor activity, carried out in vitro on human mammary gland (breast) MCF7, have shown that Hg(II) complex exhibited potent activity followed by Zn(II), Cd(II) complexes and the ligand.

  7. Ni(II) and Zn(II) complexes of 2-((thiophen-2-ylmethylene)amino)benzamide: Synthesis, spectroscopic characterization, thermal, DFT and anticancer activities

    NASA Astrophysics Data System (ADS)

    Tyagi, Prateek; Chandra, Sulekh; Saraswat, B. S.

    2015-01-01

    The paper presents the synthesis of Ni(II) and Zn(II) complexes of general composition M(L)X2 and M(L)2X2 (M = Ni(II), Zn(II), X = Cl-1, OAc-1) with Schiff base obtained through the condensation of 2-aminobenzamide with thiophene-2-carbaldehyde. The characterization of newly formed complexes was done by 1H NMR, UV-VIS, TGA, IR, mass spectrophotometry and molar conductivity studies. The thermal studies suggested that the complexes are more stable as compared to ligand. In DFT studies the geometries of Schiff's base and metal complexes were fully optimized with respect to the energy using the 6-31+g(d,p) basis set. On the basis of the spectral studies a distorted octahedral geometry has been assigned for Ni(II) complexes and tetrahedral geometry for Zn(II) complexes. The effect of these complexes on proliferation of human breast cancer cell line (MCF-7) and human hepatocellular liver carcinoma cell line (HepG2) were studied and compared with those of free ligand.

  8. Ni(II) and Zn(II) complexes of 2-((thiophen-2-ylmethylene)amino)benzamide: synthesis, spectroscopic characterization, thermal, DFT and anticancer activities.

    PubMed

    Tyagi, Prateek; Chandra, Sulekh; Saraswat, B S

    2015-01-05

    The paper presents the synthesis of Ni(II) and Zn(II) complexes of general composition M(L)X₂ and M(L)₂X₂ (M=Ni(II), Zn(II), X=Cl(-1), OAc(-1)) with Schiff base obtained through the condensation of 2-aminobenzamide with thiophene-2-carbaldehyde. The characterization of newly formed complexes was done by (1)H NMR, UV-VIS, TGA, IR, mass spectrophotometry and molar conductivity studies. The thermal studies suggested that the complexes are more stable as compared to ligand. In DFT studies the geometries of Schiff's base and metal complexes were fully optimized with respect to the energy using the 6-31+g(d,p) basis set. On the basis of the spectral studies a distorted octahedral geometry has been assigned for Ni(II) complexes and tetrahedral geometry for Zn(II) complexes. The effect of these complexes on proliferation of human breast cancer cell line (MCF-7) and human hepatocellular liver carcinoma cell line (HepG2) were studied and compared with those of free ligand.

  9. The high-affinity peptidoglycan binding domain of Pseudomonas phage endolysin KZ144

    SciTech Connect

    Briers, Yves; Schmelcher, Mathias; Loessner, Martin J.; Hendrix, Jelle; Engelborghs, Yves; Volckaert, Guido; Lavigne, Rob

    2009-05-29

    The binding affinity of the N-terminal peptidoglycan binding domain of endolysin KZ144 (PBD{sub KZ}), originating from Pseudomonas aeruginosa bacteriophage {phi}KZ, has been examined using a fusion protein of PBD{sub KZ} and green fluorescent protein (PBD{sub KZ}-GFP). A fluorescence recovery after photobleaching analysis of bound PBD{sub KZ}-GFP molecules showed less than 10% fluorescence recovery in the bleached area within 15 min. Surface plasmon resonance analysis confirmed this apparent high binding affinity revealing an equilibrium affinity constant of 2.95 x 10{sup 7} M{sup -1} for the PBD{sub KZ}-peptidoglycan interaction. This unique domain, which binds to the peptidoglycan of all tested Gram-negative species, was harnessed to improve the specific activity of the peptidoglycan hydrolase domain KMV36C. The chimeric peptidoglycan hydrolase (PBD{sub KZ}-KMV36C) exhibits a threefold higher specific activity than the native catalytic domain (KMV36C). These results demonstrate that the modular assembly of functional domains is a rational approach to improve the specific activity of endolysins from phages infecting Gram-negatives.

  10. Affinity Electrophoresis Using Ligands Attached To Polymers

    NASA Technical Reports Server (NTRS)

    Van Alstine, James M.; Snyder, Robert S.; Harris, J. M.; Brooks, D. E.

    1990-01-01

    In new technique, reduction of electrophoretic mobilities by addition of polyethylene glycol to ligands increases electrophoretic separabilities. In immuno-affinity electrophoresis, modification of ligands extends specificity of electrophoretic separation to particles having surface electric-charge structures otherwise making them electrophoretically inseparable. Modification of antibodies by polyethylene glycol greatly reduces ability to aggregate while enhancing ability to affect electrophoretic mobilities of cells. In hydrophobic-affinity electrophoresis, addition of polyethylene glycol reduces tendency toward aggregation of cells or macromolecules.

  11. Dielectrophoretic manipulation of fluorescing single-walled carbon nanotubes.

    PubMed

    Mureau, Natacha; Mendoza, Ernest; Silva, S Ravi P

    2007-05-01

    We investigate the behavior of fluorescing single-walled carbon nanotubes (SWCNTs) under dielectrophoretic conditions and demonstrate their collection with fluorescence microscopy. SWCNTs are dispersed in water with the aid of a nonionic surfactant, Triton X-100, and labeled through noncovalent binding with the dye 3,3'-dihexyloxacarbocyanine iodide (diOC(6)). The chromophore's affinity to the SWCNTs is due to pi-stacking interactions. Carbon nanotube (CNT) localization is clearly identified on the fluorescence images, showing that the nanotubes concentrate between the electrodes and align along the electric field lines.

  12. Novel fluo-4 analogs for fluorescent calcium measurements.

    PubMed

    Martin, Vladimir V; Beierlein, Michael; Morgan, Josh L; Rothe, Anca; Gee, Kyle R

    2004-12-01

    We report new fluorescent calcium indicators based on fluo-4. Attachment of a carboxamide or methylenecarboxamide moiety to the BAPTA chelator portion of fluo-4 allowed for the attachment of dextrans, protein-reactive moieties, and biotin. In particular, a high affinity fluo-4 dextran conjugate was prepared and shown to be functional in brain slices. All new probes were characterized spectroscopically and exhibited large fluorescence increases upon calcium-binding. The biotinylated version of fluo-4 formed a persistent streptavidin complex which still responded to increasing calcium concentrations with a large fluorescence increase.

  13. Synthesis and Spectroscopic and Biological Activities of Zn(II) Porphyrin with Oxygen Donors

    PubMed Central

    Bajju, Gauri Devi; Kundan, Sujata; Bhagat, Madhulika; Gupta, Deepmala; Kapahi, Ashu; Devi, Geeta

    2014-01-01

    Results of investigation of the physicochemical properties of zinc complexes containing substituted phenols as axial ligand having general formula [X-Zn-t(p-CH3) PP] [where X = different phenolates as axial ligand] in impurity-free organic solvent are presented. The four-coordinated zinc porphyrin accepts one axial ligand in 1 : 1 molar ratio to form five-coordinated complex, which is purified by column chromatography and characterized by physicochemical, biological evaluation and TGA/DTA studies. Absorption spectra show two principal effects: a red shift for phenols bearing substituted electron releasing groups (−CH3, −NH2) and blue shift for phenols bearing electron withdrawing groups (−NO2, −Cl) relative to Zn-t(p-CH3) PP, respectively. 1H NMR spectra show that the protons of the phenol ring axially attached to the central metal ion are merged with the protons of the porphyrin ring. Fluorescence spectra show two fluorescence peaks in the red region with emission ranging from 550 nm to 700 nm. IR spectra confirm the appearance of Zn-NPor and Zn-O vibrational frequencies, respectively. According to the thermal studies, the complexes have a higher thermal stability and the decomposition temperature of these complexes depends on the axial ligation. The respective complexes of X-ZnII-t(p-CH3) PP were found to possess higher antifungal activity (up to 90%) and higher in vitro cytotoxicity against human cancer cells lines. PMID:24744692

  14. Dicyanovinylnaphthalenes for neuroimaging of amyloids and relationships of electronic structures and geometries to binding affinities.

    PubMed

    Petric, Andrej; Johnson, Scott A; Pham, Hung V; Li, Ying; Ceh, Simon; Golobic, Amalija; Agdeppa, Eric D; Timbol, Gerald; Liu, Jie; Keum, Gyochang; Satyamurthy, Nagichettiar; Kepe, Vladimir; Houk, Kendall N; Barrio, Jorge R

    2012-10-09

    The positron-emission tomography (PET) probe 2-(1-[6-[(2-fluoroethyl)(methyl)amino]-2-naphthyl]ethylidene) (FDDNP) is used for the noninvasive brain imaging of amyloid-β (Aβ) and other amyloid aggregates present in Alzheimer's disease and other neurodegenerative diseases. A series of FDDNP analogs has been synthesized and characterized using spectroscopic and computational methods. The binding affinities of these molecules have been measured experimentally and explained through the use of a computational model. The analogs were created by systematically modifying the donor and the acceptor sides of FDDNP to learn the structural requirements for optimal binding to Aβ aggregates. FDDNP and its analogs are neutral, environmentally sensitive, fluorescent molecules with high dipole moments, as evidenced by their spectroscopic properties and dipole moment calculations. The preferred solution-state conformation of these compounds is directly related to the binding affinities. The extreme cases were a nonplanar analog t-butyl-FDDNP, which shows low binding affinity for Aβ aggregates (520 nM K(i)) in vitro and a nearly planar tricyclic analog cDDNP, which displayed the highest binding affinity (10 pM K(i)). Using a previously published X-ray crystallographic model of 1,1-dicyano-2-[6-(dimethylamino)naphthalen-2-yl]propene (DDNP) bound to an amyloidogenic Aβ peptide model, we show that the binding affinity is inversely related to the distortion energy necessary to avoid steric clashes along the internal surface of the binding channel.

  15. Dicyanovinylnaphthalenes for neuroimaging of amyloids and relationships of electronic structures and geometries to binding affinities

    PubMed Central

    Petrič, Andrej; Johnson, Scott A.; Pham, Hung V.; Li, Ying; Čeh, Simon; Golobič, Amalija; Agdeppa, Eric D.; Timbol, Gerald; Liu, Jie; Keum, Gyochang; Satyamurthy, Nagichettiar; Kepe, Vladimir; Houk, Kendall N.; Barrio, Jorge R.

    2012-01-01

    The positron-emission tomography (PET) probe 2-(1-[6-[(2-fluoroethyl)(methyl)amino]-2-naphthyl]ethylidene) (FDDNP) is used for the noninvasive brain imaging of amyloid-β (Aβ) and other amyloid aggregates present in Alzheimer’s disease and other neurodegenerative diseases. A series of FDDNP analogs has been synthesized and characterized using spectroscopic and computational methods. The binding affinities of these molecules have been measured experimentally and explained through the use of a computational model. The analogs were created by systematically modifying the donor and the acceptor sides of FDDNP to learn the structural requirements for optimal binding to Aβ aggregates. FDDNP and its analogs are neutral, environmentally sensitive, fluorescent molecules with high dipole moments, as evidenced by their spectroscopic properties and dipole moment calculations. The preferred solution-state conformation of these compounds is directly related to the binding affinities. The extreme cases were a nonplanar analog t-butyl-FDDNP, which shows low binding affinity for Aβ aggregates (520 nM Ki) in vitro and a nearly planar tricyclic analog cDDNP, which displayed the highest binding affinity (10 pM Ki). Using a previously published X-ray crystallographic model of 1,1-dicyano-2-[6-(dimethylamino)naphthalen-2-yl]propene (DDNP) bound to an amyloidogenic Aβ peptide model, we show that the binding affinity is inversely related to the distortion energy necessary to avoid steric clashes along the internal surface of the binding channel. PMID:23012452

  16. Non-affine deformations in flexible and semi-flexible polymer gels

    NASA Astrophysics Data System (ADS)

    Basu, Anindita; Wen, Qi; Mao, Xiaoming; Lubensky, Tom; Janmey, Paul; Yodh, Arjun

    2011-03-01

    We test the validity of affine deformation assumption in flexible and semi-flexible polymer networks by embedding different-sized fluorescent tracer beads within model polymer networks and quantifying their displacements under shear. A conventional rheometer is used with a confocal microscope for this purpose. Non-affinity is quantified as a function of applied strain, polymer chain density, cross-link concentration, network morphology, reaction kinetics and size of probe particles used. ~Non-affinity measurements in flexible polymer gels are in qualitative agreement with current theories in rubber elasticity. ~For semi-flexible bio-polymer gels, measurements indicate that non-affine deformations are small for networks of thinner, relatively flexible filaments and get smaller as strain increases into non-linear elastic regime. These small measures are consistent with the entropic model for non-linear elasticity of semi-flexible gels. However, as filament stiffness and mesh size increase, the deformations become more non-affine, as predicted by the enthalpic bending and stretching models of non-linear elasticity. MRSEC DMR-0520020, DMR-0505048, and DMR- 0079909. Done...processed 7726 records...17:54:11 Beginning APS data extraction...17:54:12

  17. Probing the binding affinity of plasma proteins adsorbed on Au nanoparticles.

    PubMed

    Zhang, Xiaoning; Zhang, Junting; Zhang, Fan; Yu, Shaoning

    2017-04-06

    Nanoparticle (NP) surfaces are modified immediately by the adsorption of proteins when exposed to human blood, leading to the formation of a protein corona. The adsorption of serum proteins is the key process for exploring the bioapplication and biosafety of NPs. In this study, NP-protein binding affinity (Ka) was investigated. Some serum proteins, such as human serum albumin (HSA), trypsin (TRP), hemoglobin (Hb), myoglobin (MB), immunoglobulin G (IgG), carbonic anhydrase (CA), fibrinogen (FIB), chymotrypsin and r-globulin, were used with gold nanoparticles (AuNPs) to address binding affinity according to isothermal titration calorimetry (ITC) combined with dynamic light scattering (DLS) and fluorescence quenching. The NP protein binding affinities determined by the two methods were in agreement, and depended on the protein properties and size of the NPs. The two methods are convenient, and the results are highly comparable. These methods can be extended to determine the binding affinity of NP protein interactions. The adsorption of proteins upon the AuNP surface is a complex process and depends on several factors, but the binding affinities are higher for proteins with more cysteine residues located on the surface.

  18. Gas-phase nitronium ion affinities.

    PubMed Central

    Cacace, F; de Petris, G; Pepi, F; Angelelli, F

    1995-01-01

    Evaluation of nitronium ion-transfer equilibria, L1NO2+ + L2 = L2NO2+ + L1 (where L1 and L2 are ligands 1 and 2, respectively) by Fourier-transform ion cyclotron resonance mass spectrometry and application of the kinetic method, based on the metastable fragmentation of L1(NO2+)L2 nitronium ion-bound dimers led to a scale of relative gas-phase nitronium ion affinities. This scale, calibrated to a recent literature value for the NO2+ affinity of water, led for 18 ligands, including methanol, ammonia, representative ketones, nitriles, and nitroalkanes, to absolute NO2+ affinities, that fit a reasonably linear general correlation when plotted vs. the corresponding proton affinities (PAs). The slope of the plot depends to a certain extent on the specific nature of the ligands and, hence, the correlations between the NO2+ affinities, and the PAs of a given class of compounds display a better linearity than the general correlation and may afford a useful tool for predicting the NO2+ affinity of a molecule based on its PA. The NO2+ binding energies are considerably lower than the corresponding PAs and well below the binding energies of related polyatomic cations, such as NO+, a trend consistent with the available theoretical results on the structure and the stability of simple NO2+ complexes. The present study reports an example of extension of the kinetic method to dimers, such as L1(NO2+)L2, bound by polyatomic ions, which may considerably widen its scope. Finally, measurement of the NO2+ affinity of ammonia allowed evaluation of the otherwise inaccessible PA of the amino group of nitramide and, hence, direct experimental verification of previous theoretical estimates. PMID:11607578

  19. Syntheses, structural characterization, luminescence and optical studies of Ni(II) and Zn(II) complexes containing salophen ligand

    NASA Astrophysics Data System (ADS)

    More, M. S.; Pawal, S. B.; Lolage, S. R.; Chavan, S. S.

    2017-01-01

    Some Ni(II) (1a-d) and Zn(II) (2a-d) salophen complexes were prepared by the treatment of 5-bromosalicylaldehyde, 5-(trimethylsilylethynyl)salicylaldehyde, 5-(4-nitrophenyl)ethynylsalicylaldehyde or 5-(4-methoxyphenyl)ethynylsalicylaldehyde with nickel acetate or zinc acetate followed by addition of 2,3-diamino-5-bromopyridine. All complexes were characterized by elemental analyses, IR, 1H NMR and mass spectral studies. X-ray powder diffraction of representative complexes 1c and 2b and SEM studies of 1b and 2d are used to elucidate the crystal structure and morphology of the complexes. The electrochemical behavior reveals that the redox responses of Ni(II) complexes shifted to more negative potential in order to increase the π-conjugation in the complexes. Room temperature luminescence is observed for all complexes corresponding to π→π* ILCT transition with some MLCT character in DMF and is finely tuned by the degree of extended π-conjugation and variation of the substituent group with different electronic effects in the complexes. The second harmonic generation (SHG) efficiency of the complexes was screened by Kurtz-powder technique indicating that all complexes possesses promising potential for the application as a useful nonlinear optical material.

  20. Asymmetric mono- and dinuclear Ga(III) and Zn(II) complexes as models for purple acid phosphatases.

    PubMed

    Bosch, Simone; Comba, Peter; Gahan, Lawrence R; Schenk, Gerhard

    2016-09-01

    Derivatives of the known dinucleating ligands HL(1) (2,6-bis{[bis(pyridin-2-ylmethyl)amino]methyl}-4-methylphenol) and H2L(2) (2-{[bis(pyridin-2-ylmethyl)amino]methyl}-6-{[(2-hydroxybenzyl)(pyridine-2-ylmethyl)amino]methyl}-4-methylphenol) with two pivaloylamido hydrogen bond donor substituents, H3L(3) and H3L(5), have been prepared. The mono-, homo- and heterodinuclear Zn(II) and Ga(III) complexes of these ligands have been prepared and characterized. The solution equilibria are discussed on the basis of extensive NMR spectroscopic, mass spectrometric and pH-dependent UV-vis spectroscopic titrations. The phosphoester hydrolysis activity of the complexes has been studied as a function of pH and substrate concentration and analyzed using Michaelis-Menten kinetics. It emerges that the mixed metal (mixed valent) complex of the ligand with an asymmetric disposition of the hydrogen bonding substituents (H3L(3)) is a functional model for the mixed valent, dinuclear metallohydrolase purple acid phosphatase. This complex combines the essential structural features of the active site of PAP and is the first heterodinuclear model complex mimicking the essential function of PAPs, i.e. the hydrolysis of phosphomonoesters. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Ethylenediamine-modified graphene oxide covalently functionalized with a tetracarboxylic Zn(ii) phthalocyanine hybrid for enhanced nonlinear optical properties.

    PubMed

    Li, Zongle; He, Chunying; Wang, Zhao; Gao, Yachen; Dong, Yongli; Zhao, Cheng; Chen, Zhimin; Wu, Yiqun; Song, Weina

    2016-07-06

    Tetracarboxylic Zn(ii) phthalocyanine-amino functionalized graphene oxide (ZnPcC4-NGO) hybrid materials have been prepared by a covalent functionalization method. The characterizations indicate that the amino-functionalization of GO has an important influence on the structure and photophysical properties of the ZnPcC4-NGO hybrid. The ZnPcC4-NGO hybrid exhibits enhanced photo-induced electron transfer or energy transfer (PET/ET), compared to the ZnPcC4 covalent functionalized GO (ZnPcC4-GO), owing to the presence of the extended sp(2) carbon configurations, along with the partial reduction of the NGO nanosheets and the introduction of electron-donating ethylenediamine. The nonlinear optical (NLO) properties of the hybrids were investigated using the Z-scan technique at 532 nm with 4 ns laser pulses. The results show that the efficient covalent functionalization and partial reduction of NGO cause the ZnPcC4-NGO hybrid to possess evidently larger NLO properties than the individual NGO, ZnPcC4 and the ZnPcC4-GO hybrid. The enhanced NLO performance can be attributed to the increased excited state absorption from the extended sp(2) carbon configurations of the NGO moiety, reverse saturable absorption arising from ZnPcC4 moiety, and the contribution of the efficient PET/ET process between the ZnPcC4 and NGO moieties in the hybrid.

  2. Synthesis, characterization, crystal structure and cytotoxic properties of thiosemicarbazide Ni(II) and Zn(II) complexes

    NASA Astrophysics Data System (ADS)

    Mathan Kumar, S.; Rajesh, J.; Anitha, K.; Dhahagani, K.; Marappan, M.; Indra Gandhi, N.; Rajagopal, G.

    2015-05-01

    Synthesis of new complexes of Ni(II) (1) and Zn(II) (2) with [1-(2-hydroxy-3,5-diiodobenzylidene)-4-phenylthiosemicarbazide] have been reported. The composition of these two complexes 1 and 2 is discussed on the basis of IR, 1H NMR and UV spectral data along with their X-ray crystallographic data. The crystal structure of these two complexes has revealed that the free ligand (L) is deprotonated twice at the oxygen and sulfur atoms and they are coordinated with the complexes through phenoxide-O, azomethine-N and thiolate-S atoms. The single-crystal X-ray structures of complex (1) exhibits a square planar structure, while complex (2) reveals trigonal bipyramidal distorted square based pyramidal structure. Anticancer activity of ligand and the complexes 1-2 are evaluated in human adenocarcinoma (MCF-7) cells. The preliminary bioassay indicates that the free ligand and the complexes 1-2 exhibit inhibitory activity against the human adenocarcinoma cancer cell lines.

  3. Electron transfer reaction of porphyrin and porphycene complexes of Cu(II) and Zn(II) in acetonitrile.

    PubMed

    Aoki, Kaori; Goshima, Toshimitsu; Kozuka, Yohei; Kawamori, Yukiko; Ono, Noboru; Hisaeda, Yoshio; Takagi, Hideo D; Inamo, Masahiko

    2009-01-07

    The outer-sphere one-electron oxidation reaction of the Cu(II) and Zn(II) complexes of nonplanar 2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-tetraphenylporphyrin and planar porphycenes as well as those of 2,3,7,8,12,13,17,18-octaethylporphyrin and 5,10,15,20-tetraphenylporphyrin by Cu(2+) giving corresponding pi-cation radicals was investigated spectrophotometrically in acetonitrile. The electron self-exchange rate constants between the parent porphyrin and porphycene complexes and their pi-cation radicals were determined using the Marcus cross relation for the electron transfer reaction. The obtained rate constants are in the order of 10(9) to 10(11) M(-1) s(-1) for the planar porphyrin and porphycene complexes and 10(4) to 10(6) M(-1) s(-1) for the nonplanar OETPP complexes at T = 25.0 degrees C. The relatively slow self-exchange reaction of the distorted porphyrin complexes, as compared with those for the planar porphyrin and porphycene complexes, was ascribed to the significant deformation of the complex associated with the oxidation reaction from the parent complex to the corresponding pi-cation radical.

  4. Perfringolysin O association with ordered lipid domains: implications for transmembrane protein raft affinity.

    PubMed

    Nelson, Lindsay D; Chiantia, Salvatore; London, Erwin

    2010-11-17

    Upon interaction with cholesterol, perfringolysin O (PFO) inserts into membranes and forms a rigid transmembrane (TM) β-barrel. PFO is believed to interact with liquid ordered lipid domains (lipid rafts). Because the origin of TM protein affinity for rafts is poorly understood, we investigated PFO raft affinity in vesicles having coexisting ordered and disordered lipid domains. Fluorescence resonance energy transfer (FRET) from PFO Trp to domain-localized acceptors indicated that PFO generally has a raft affinity between that of LW peptide (low raft affinity) and cholera toxin B (high raft affinity) in vesicles containing ordered domains rich in brain sphingomyelin or distearoylphosphatidylcholine. FRET also showed that ceramide, which increases exposure of cholesterol to water and thus displaces it from rafts, does not displace PFO from ordered domains. This can be explained by shielding of PFO-bound cholesterol from water. Finally, FRET showed that PFO affinity for ordered domains was higher in its non-TM (prepore) form than in its TM form, demonstrating that the TM portion of PFO interacts unfavorably with rafts. Microscopy studies in giant unilamellar vesicles confirmed that PFO exhibits intermediate raft affinity, and showed that TM PFO (but not non-TM PFO) concentrated at the edges of liquid ordered domains. These studies suggest that a combination of binding to raft-associating molecules and having a rigid TM structure that is unable to pack well in a highly ordered lipid environment can control TM protein domain localization. To accommodate these constraints, raft-associated TM proteins in cells may tend to locate within liquid disordered shells encapsulated within ordered domains. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Stability of flavin semiquinones in the gas phase: the electron affinity, proton affinity, and hydrogen atom affinity of lumiflavin.

    PubMed

    Zhang, Tianlan; Papson, Kaitlin; Ochran, Richard; Ridge, Douglas P

    2013-11-07

    Examination of electron transfer and proton transfer reactions of lumiflavin and proton transfer reactions of the lumiflavin radical anion by Fourier transform ion cyclotron resonance mass spectrometry is described. From the equilibrium constant determined for electron transfer between 1,4-naphthoquinone and lumiflavin the electron affinity of lumiflavin is deduced to be 1.86 ± 0.1 eV. Measurements of the rate constants and efficiencies for proton transfer reactions indicate that the proton affinity of the lumiflavin radical anion is between that of difluoroacetate (331.0 kcal/mol) and p-formyl-phenoxide (333.0 kcal/mol). Combining the electron affinity of lumiflavin with the proton affinity of the lumiflavin radical anion gives a lumiflavin hydrogen atom affinity of 59.7 ± 2.2 kcal/mol. The ΔG298 deduced from these results for adding an H atom to gas phase lumiflavin, 52.1 ± 2.2 kcal/mol, is in good agreement with ΔG298 for adding an H atom to aqueous lumiflavin from electrochemical measurements in the literature, 51.0 kcal/mol, and that from M06-L density functional calculations in the literature, 51.2 kcal/mol, suggesting little, if any, solvent effect on the H atom addition. The proton affinity of lumiflavin deduced from the equilibrium constant for the proton transfer reaction between lumiflavin and 2-picoline is 227.3 ± 2.0 kcal mol(-1). Density functional theory calculations on isomers of protonated lumiflavin provide a basis for assigning the most probable site of protonation as position 1 on the isoalloxazine ring and for estimating the ionization potentials of lumiflavin neutral radicals.

  6. Unusual Recognition and Separation of Hydrated Metal Sulfates [M2(μ-SO4)2(H2O)n, M = Zn(II), Cd(II), Co(II), Mn(II)] by a Ditopic Receptor.

    PubMed

    Ghosh, Tamal Kanti; Dutta, Ranjan; Ghosh, Pradyut

    2016-04-04

    A ditopic receptor L1, having metal binding bis(2-picolyl) donor and anion binding urea group, is synthesized and explored toward metal sulfate recognition via formation of dinuclear assembly, (L1)2M2(SO4)2. Mass spectrometric analysis, (1)H-DOSY NMR, and crystal structure analysis reveal the existence of a dinuclear assembly of MSO4 with two units of L1. (1)H NMR study reveals significant downfield chemical shift of -NH protons of urea moiety of L1 selectively with metal sulfates (e.g., ZnSO4, CdSO4) due to second-sphere interactions of sulfate with the urea moiety. Variable-temperature (1)H NMR studies suggest the presence of intramolecular hydrogen bonding interaction toward metal sulfate recognition in solution state, whereas intermolecular H-bonding interactions are observed in solid state. In contrast, anions in their tetrabutylammonium salts fail to interact with the urea -NH probably due to poor acidity of the tertiary butyl urea group of L1. Metal sulfate binding selectivity in solution is further supported by isothermal titration calorimetric studies of L1 with different Zn salts in dimethyl sulfoxide (DMSO), where a binding affinity is observed for ZnSO4 (Ka = 1.23 × 10(6)), which is 30- to 50-fold higher than other Zn salts having other counteranions in DMSO. Sulfate salts of Cd(II)/Co(II) also exhibit binding constants in the order of ∼1 × 10(6) as in the case of ZnSO4. Positive role of the urea unit in the selectivity is confirmed by studying a model ligand L2, which is devoid of anion recognition urea unit. Structural characterization of four MSO4 [M = Zn(II), Cd(II), Co(II), Mn(II)] complexes of L1, that is, complex 1, [(L1)2(Zn)2(μ-SO4)2]; complex 2, [(L1)2(H2O)2(Cd)2(μ-SO4)2]; complex 3, [(L1)2(H2O)2(Co)2(μ-SO4)2]; and complex 4, [(L1)2(H2O)2(Mn)2(μ-SO4)2], reveal the formation of sulfate-bridged eight-membered crownlike binuclear complexes, similar to one of the concentration-dependent dimeric forms of MSO4 as observed in solid state

  7. Proton Affinity Calculations with High Level Methods.

    PubMed

    Kolboe, Stein

    2014-08-12

    Proton affinities, stretching from small reference compounds, up to the methylbenzenes and naphthalene and anthracene, have been calculated with high accuracy computational methods, viz. W1BD, G4, G3B3, CBS-QB3, and M06-2X. Computed and the currently accepted reference proton affinities are generally in excellent accord, but there are deviations. The literature value for propene appears to be 6-7 kJ/mol too high. Reported proton affinities for the methylbenzenes seem 4-5 kJ/mol too high. G4 and G3 computations generally give results in good accord with the high level W1BD. Proton affinity values computed with the CBS-QB3 scheme are too low, and the error increases with increasing molecule size, reaching nearly 10 kJ/mol for the xylenes. The functional M06-2X fails markedly for some of the small reference compounds, in particular, for CO and ketene, but calculates methylbenzene proton affinities with high accuracy.

  8. Classification of neocortical interneurons using affinity propagation.

    PubMed

    Santana, Roberto; McGarry, Laura M; Bielza, Concha; Larrañaga, Pedro; Yuste, Rafael

    2013-01-01

    In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. In fact, neuronal classification is a difficult problem because it is unclear how to designate a neuronal cell class and what are the best characteristics to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological, or molecular characteristics, have provided quantitative and unbiased identification of distinct neuronal subtypes, when applied to selected datasets. However, better and more robust classification methods are needed for increasingly complex and larger datasets. Here, we explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. Affinity propagation outperformed Ward's method, a current standard clustering approach, in classifying the neurons into 4 subtypes. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits.

  9. Classification of neocortical interneurons using affinity propagation

    PubMed Central

    Santana, Roberto; McGarry, Laura M.; Bielza, Concha; Larrañaga, Pedro; Yuste, Rafael

    2013-01-01

    In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. In fact, neuronal classification is a difficult problem because it is unclear how to designate a neuronal cell class and what are the best characteristics to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological, or molecular characteristics, have provided quantitative and unbiased identification of distinct neuronal subtypes, when applied to selected datasets. However, better and more robust classification methods are needed for increasingly complex and larger datasets. Here, we explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. Affinity propagation outperformed Ward's method, a current standard clustering approach, in classifying the neurons into 4 subtypes. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits. PMID:24348339

  10. New fluorescent azo-Schiff base Cu(II) and Zn(II) metal chelates; spectral, structural, electrochemical, photoluminescence and computational studies

    NASA Astrophysics Data System (ADS)

    Purtas, Fatih; Sayin, Koray; Ceyhan, Gokhan; Kose, Muhammet; Kurtoglu, Mukerrem

    2017-06-01

    A new Schiff base containing azo chromophore group obtained by condensation of 2-hydroxy-4-[(E)-phenyldiazenyl]benzaldehyde with 3,4-dimethylaniline (HL) are used for the syntheses of new copper(II) and zinc(II) chelates, [Cu(L)2], and [Zn(L)2], and characterized by physico-chemical and spectroscopic methods such as 1H and 13C NMR, IR, UV.-Vis. and elemental analyses. The solid state structure of the ligand was characterized by single crystal X-ray diffraction study. X-ray diffraction data was then used to calculate the harmonic oscillator model of aromaticity (HOMA) indexes for the rings so as to investigate of enol-imine and keto-amine tautomeric forms in the solid state. The phenol ring C10-C15 shows a considerable deviation from the aromaticity with HOMA value of 0.837 suggesting the shift towards the keto-amine tautomeric form in the solid state. The analytical data show that the metal to ligand ratio in the chelates was found to be 1:2. Theoretical calculations of the possible isomers of the ligand and two metal complexes are performed by using B3LYP method. Electrochemical and photoluminescence properties of the synthesized azo-Schiff bases were also investigated.

  11. Identity, Affinity, Reality: Making the Case for Affinity Groups in Elementary School

    ERIC Educational Resources Information Center

    Parsons, Julie; Ridley, Kimberly

    2012-01-01

    Affinity groups are places where students build connections and process "ouch" moments from their classes. Children talk about the isolation they sometimes feel. The relationships students gain through race-based affinity groups enable them to feel less alone with their emotions and help them build a stronger sense of self. At the same…

  12. Stepparents' Affinity-Seeking and Affinity-Maintaining Strategies with Stepchildren.

    ERIC Educational Resources Information Center

    Ganong, Lawrence; Coleman, Marilyn; Fine, Mark; Martin, Patricia

    1999-01-01

    Examines the strategies that stepparents use to develop and maintain affinity with stepchildren and the effects that these strategies have on the development of stepparent-stepchildren relationships. Thirty-one affinity-seeking strategies are identified. Results show that dyadic activities worked best, but it is important that stepchildren…

  13. Identity, Affinity, Reality: Making the Case for Affinity Groups in Elementary School

    ERIC Educational Resources Information Center

    Parsons, Julie; Ridley, Kimberly

    2012-01-01

    Affinity groups are places where students build connections and process "ouch" moments from their classes. Children talk about the isolation they sometimes feel. The relationships students gain through race-based affinity groups enable them to feel less alone with their emotions and help them build a stronger sense of self. At the same…

  14. Stepparents' Affinity-Seeking and Affinity-Maintaining Strategies with Stepchildren.

    ERIC Educational Resources Information Center

    Ganong, Lawrence; Coleman, Marilyn; Fine, Mark; Martin, Patricia

    1999-01-01

    Examines the strategies that stepparents use to develop and maintain affinity with stepchildren and the effects that these strategies have on the development of stepparent-stepchildren relationships. Thirty-one affinity-seeking strategies are identified. Results show that dyadic activities worked best, but it is important that stepchildren…

  15. Regulation of the high-affinity copper transporter (hCtr1) expression by cisplatin and heavy metals.

    PubMed

    Liang, Zheng Dong; Long, Yan; Chen, Helen H W; Savaraj, Niramol; Kuo, Macus Tien

    2014-01-01

    Platinum-based antitumor agents have been the mainstay in cancer chemotherapy for many human malignancies. Drug resistance is an important obstacle to achieving the maximal therapeutic efficacy of these drugs. Understanding how platinum drugs enter cells is of great importance in improving therapeutic efficacy. It has been demonstrated that human high-affinity copper transporter 1 (hCtr1) is involved in transporting cisplatin into cells to elicit cytotoxic effects, although other mechanisms may exist. In this communication, we demonstrate that cisplatin transcriptionally induces the expression of hCtr1 in time- and concentration-dependent manners. Cisplatin functions as a competitor for hCtr1-mediated copper transport, resulting in reduced cellular copper levels and leading to upregulated expression of Sp1, which is a positive regulator for hCtr1 expression. Thus, regulation of hCtr1 expression by cisplatin is an integral part of the copper homeostasis regulation system. We also demonstrate that Ag(I) and Zn(II), which are known to suppress hCtr1-mediated copper transport, can also induce hCtr1/Sp1 expression. In contrast, Cd(II), another inhibitor of copper transport, downregulates hCtr1 expression by suppressing Sp1 expression. Collectively, our results demonstrate diverse mechanisms of regulating copper metabolism by these heavy metals.

  16. Non-affine elasticity in jammed systems

    NASA Astrophysics Data System (ADS)

    Maloney, Craig

    2006-03-01

    Symmetry dictates that perfect crystals should deform homogeneously, or affinely, under external load, and computing the elastic moduli from the underlying interaction potential is then straightforward. For disordered materials no such simple procedure exists, and recent numerical works have demonstrated that non-affine corrections can dramatically reduce the naive expectation for the shear modulus in a broad class of disordered systems and may control rigidity loss in the zero pressure limit in purely repulsive systems, i.e. the unjamming transition (c.f. [O'Hern et. al. PRE 68, 011306 (2003)]). We present numerical results and an analytical framework for the study of these non-affine corrections to the elastic response of disordered packings.

  17. Biomimetic affinity ligands for protein purification.

    PubMed

    Sousa, Isabel T; Taipa, M Angela

    2014-01-01

    The development of sophisticated molecular modeling software and new bioinformatic tools, as well as the emergence of data banks containing detailed information about a huge number of proteins, enabled the de novo intelligent design of synthetic affinity ligands. Such synthetic compounds can be tailored to mimic natural biological recognition motifs or to interact with key surface-exposed residues on target proteins and are designated as "biomimetic ligands." A well-established methodology for generating biomimetic or synthetic affinity ligands integrates rational design with combinatorial solid-phase synthesis and screening, using the triazine scaffold and analogues of amino acids side chains to create molecular diversity.Triazine-based synthetic ligands are nontoxic, low-cost, highly stable compounds that can replace advantageously natural biological ligands in the purification of proteins by affinity-based methodologies.

  18. Affine coherent states and Toeplitz operators

    NASA Astrophysics Data System (ADS)

    Hutníková, Mária; Hutník, Ondrej

    2012-06-01

    We study a parameterized family of Toeplitz operators in the context of affine coherent states based on the Calderón reproducing formula (= resolution of unity on L_2( {R})) and the specific admissible wavelets (= affine coherent states in L_2( {R})) related to Laguerre functions. Symbols of such Calderón-Toeplitz operators as individual coordinates of the affine group (= upper half-plane with the hyperbolic geometry) are considered. In this case, a certain class of pseudo-differential operators, their properties and their operator algebras are investigated. As a result of this study, the Fredholm symbol algebras of the Calderón-Toeplitz operator algebras for these particular cases of symbols are described. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’.

  19. Properties of impurity-bearing ferrihydrite II: Insights into the surface structure and composition of pure, Al- and Si-bearing ferrihydrite from Zn(II) sorption experiments and Zn K-edge X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Cismasu, A. Cristina; Levard, Clément; Michel, F. Marc; Brown, Gordon E.

    2013-10-01

    Naturally occurring ferrihydrite often contains impurities such as Al and Si, which can impact its chemical reactivity with respect to metal(loid) adsorption and (in)organic or microbially induced reductive dissolution. However, the surface composition of impure ferrihydrites is not well constrained, and this hinders our understanding of the factors controlling the surface reactivity of these nanophases. In this study, we conducted Zn(II) adsorption experiments combined with Zn K-edge X-ray absorption spectroscopy measurements on pure ferrihydrite (Fh) and Al- or Si-bearing ferrihydrites containing 10 and 20 mol% Al or Si (referred to as 10AlFh, 20AlFh and 10SiFh, 20SiFh) to evaluate Zn(II) uptake in relation to Zn(II) speciation at their surfaces. Overall, Zn(II) uptake at the surface of AlFh is similar to that of pure Fh, and based on Zn K-edge EXAFS data, Zn(II) speciation at the surface of Fh and AlFh also appears similar. Binuclear bidentate IVZn-VIFe complexes (at ∼3.46 Å (2C[1]) and ∼3.25 Å (2C[2])) were identified at low Zn(II) surface coverages from Zn K-edge EXAFS fits. With increasing Zn(II) surface coverage, the number of second-neighbor Fe ions decreased, which was interpreted as indicating the formation of IVZn polymers at the ferrihydrite surface, and a deviation from Langmuir uptake behavior. Zn(II) uptake at the surface of SiFh samples was more significant than at Fh and AlFh surfaces, and was attributed to the formation of outer-sphere complexes (on average 24% of sorbed Zn). Although similar Zn-Fe/Zn distances were obtained for the Zn-sorbed SiFh samples, the number of Fe second neighbors was lower in comparison with Fh. The decrease in second-neighbor Fe is most pronounced for sample 20SiFh, suggesting that the amount of reactive surface Fe sites diminishes with increasing Si content. Although our EXAFS results shown here do not provide evidence for the existence of Zn-Al or Zn-Si complexes, their presence is not excluded for Zn-sorbed Al

  20. Use of Affinity Diagrams as Instructional Tools in Inclusive Classrooms.

    ERIC Educational Resources Information Center

    Haselden, Polly G.

    2003-01-01

    This article describes how the affinity diagram, a tool for gathering information and organizing it into natural groupings, can be used in inclusive classrooms. It discusses how students can be taught to use an affinity diagram, how affinity diagrams can be used to reflect many voices, and how affinity diagrams can be used to plan class projects.…

  1. Interplay of bifurcated hydrogen bonds in making of inclusion/pseudo-inclusion complexes of Ni(II), Cu(II) and Zn(II) of a salophen type ligand: Crystal structures and spectral aspects

    NASA Astrophysics Data System (ADS)

    Ambili, K. U.; Sithambaresan, M.; Kurup, M. R. Prathapachandra

    2017-04-01

    Three novel photoluminescent materials were synthesized by treating Ni(II), Cu(II) and Zn(II) acetate salts with a Schiff base prepared from 3-ethoxysalicylaldehyde and 2-aminobenzylamine. Among the prepared complexes, Ni(II) and Cu(II) complexes are inclusion compounds while Zn(II) complex is a pseudo-inclusion compound. They were characterized by elemental analysis, IR, UV-visible and EPR spectra. Single crystal XRD studies of these complexes suggest that Ni(II) and Cu(II) are in a distorted square planar environment while the spatial arrangement of donor atoms in Zn(II) complex is best described as distorted square based pyramid although significant distortion towards trigonal bipyramid is noticed. Stabilized crystal packing of the complexes is established via supramolecular interactions. The metal chelate rings as the π system for C-H···π interactions found in Cu(II) and Zn(II) complexes explicit the concept of metalloaromaticity. TG-DTG studies reveal that all the complexes are thermally stable. Both ligand and complexes exhibit intense photoluminescence in near UV region. However, Zn(II) complex giving an intense blue-green emission spectrum at maximum wavelength of 518 nm with shoulder peaks, could be used for optoelectronic applications.

  2. On the electron affinity of B2

    SciTech Connect

    Glezakou, Vanda A.; Taylor, Peter

    2009-02-02

    We present the results of high-level ab initio calculations on the electron affinity of B2. Our new best estimate of 1.93±0.03 eV is in agreement with previous calculations as well as the sole existing experimental estimate of 1.8 eV, as derived from quantities with an uncertainty of 0.4 eV. The electron affinity of atomic boron, which is much smaller, is also calculated for comparison, and again found to be in good agreement with experiment. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  3. Negative Electron Affinity Mechanism for Diamond Surfaces

    NASA Technical Reports Server (NTRS)

    Krainsky, I. L.; Asnin, V. M.

    1998-01-01

    The energy distribution of the secondary electrons for chemical vacuum deposited diamond films with Negative Electron Affinity (NEA) was investigated. It was found that while for completely hydrogenated diamond surfaces the negative electron affinity peak in the energy spectrum of the secondary electrons is present for any energy of the primary electrons, for partially hydrogenated diamond surfaces there is a critical energy above which the peak is present in the spectrum. This critical energy increases sharply when hydrogen coverage of the diamond surface diminishes. This effect was explained by the change of the NEA from the true type for the completely hydrogenated surface to the effective type for the partially hydrogenated surfaces.

  4. Affine Invariant Character Recognition by Progressive Removing

    NASA Astrophysics Data System (ADS)

    Iwamura, Masakazu; Horimatsu, Akira; Niwa, Ryo; Kise, Koichi; Uchida, Seiichi; Omachi, Shinichiro

    Recognizing characters in scene images suffering from perspective distortion is a challenge. Although there are some methods to overcome this difficulty, they are time-consuming. In this paper, we propose a set of affine invariant features and a new recognition scheme called “progressive removing” that can help reduce the processing time. Progressive removing gradually removes less feasible categories and skew angles by using multiple classifiers. We observed that progressive removing and the use of the affine invariant features reduced the processing time by about 60% in comparison to a trivial one without decreasing the recognition rate.

  5. New unitary affine-Virasoro constructions

    SciTech Connect

    Halpern, M.B.; Kiritsis, E.; Obers, N.A.; Poratti, M. ); Yamron, J.P. )

    1990-06-20

    This paper reports on a quasi-systematic investigation of the Virasoro master equation. The space of all affine-Virasoro constructions is organized by K-conjugation into affine-Virasoro nests, and an estimate of the dimension of the space shows that most solutions await discovery. With consistent ansatze for the master equation, large classes of new unitary nests are constructed, including quadratic deformation nests with continuous conformal weights, and unitary irrational central charge nests, which may dominate unitary rational central charge on compact g.

  6. Cation affinity numbers of Lewis bases.

    PubMed

    Lindner, Christoph; Tandon, Raman; Maryasin, Boris; Larionov, Evgeny; Zipse, Hendrik

    2012-01-01

    Using selected theoretical methods the affinity of a large range of Lewis bases towards model cations has been quantified. The range of model cations includes the methyl cation as the smallest carbon-centered electrophile, the benzhydryl and trityl cations as models for electrophilic substrates encountered in Lewis base-catalyzed synthetic procedures, and the acetyl cation as a substrate model for acyl-transfer reactions. Affinities towards these cationic electrophiles are complemented by data for Lewis-base addition to Michael acceptors as prototypical neutral electrophiles.

  7. Asymptotic Representations of Quantum Affine Superalgebras

    NASA Astrophysics Data System (ADS)

    Zhang, Huafeng

    2017-08-01

    We study representations of the quantum affine superalgebra associated with a general linear Lie superalgebra. In the spirit of Hernandez-Jimbo, we construct inductive systems of Kirillov-Reshetikhin modules based on a cyclicity result that we established previously on tensor products of these modules, and realize their inductive limits as modules over its Borel subalgebra, the so-called q-Yangian. A new generic asymptotic limit of the same inductive systems is proposed, resulting in modules over the full quantum affine superalgebra. We derive generalized Baxter's relations in the sense of Frenkel-Hernandez for representations of the full quantum group.

  8. Evidence of multi-affinity in the Japanese stock market

    NASA Astrophysics Data System (ADS)

    Katsuragi, Hiroaki

    2000-04-01

    Fluctuations of the Japanese stock market (Tokyo Stock Price Index: TOPIX) are analyzed using a multi-affine analysis method. In the research to date, only some simulated self-affine models have shown multi-affinity. In most experiments using observations of self-affine fractal profiles, multi-affinity has not been found. However, we find evidence of multi-affinity in fluctuations of the Japanese stock market (TOPIX). The qth-order Hurst exponent Hq varies with changes in q. This multi-affinity indicates that there are plural mechanisms that affect the same time scale as stock market price fluctuation dynamics.

  9. Fluorescent optical position sensor

    DOEpatents

    Weiss, Jonathan D.

    2005-11-15

    A fluorescent optical position sensor and method of operation. A small excitation source side-pumps a localized region of fluorescence at an unknown position along a fluorescent waveguide. As the fluorescent light travels down the waveguide, the intensity of fluorescent light decreases due to absorption. By measuring with one (or two) photodetectors the attenuated intensity of fluorescent light emitted from one (or both) ends of the waveguide, the position of the excitation source relative to the waveguide can be determined by comparing the measured light intensity to a calibrated response curve or mathematical model. Alternatively, excitation light can be pumped into an end of the waveguide, which generates an exponentially-decaying continuous source of fluorescent light along the length of the waveguide. The position of a photodetector oriented to view the side of the waveguide can be uniquely determined by measuring the intensity of the fluorescent light emitted radially at that location.

  10. A Fluorescence Lecture Demonstration.

    ERIC Educational Resources Information Center

    Bozzelli, Joseph W.; Kemp, Marwin

    1982-01-01

    Describes fluorescence demonstrations related to several aspects of molecular theory and quantitized energy levels. Demonstrations use fluorescent chemical solutions having luminescence properties spanning the visible spectrum. Also describes a demonstration of spontaneous combustion of familiar substances in chlorine. (JN)

  11. A Fluorescence Lecture Demonstration.

    ERIC Educational Resources Information Center

    Bozzelli, Joseph W.; Kemp, Marwin

    1982-01-01

    Describes fluorescence demonstrations related to several aspects of molecular theory and quantitized energy levels. Demonstrations use fluorescent chemical solutions having luminescence properties spanning the visible spectrum. Also describes a demonstration of spontaneous combustion of familiar substances in chlorine. (JN)

  12. Ionic selectivity of low-affinity ratiometric calcium indicators: mag-Fura-2, Fura-2FF and BTC.

    PubMed

    Hyrc, K L; Bownik, J M; Goldberg, M P

    2000-02-01

    Accurate measurement of elevated intracellular calcium levels requires indicators with low calcium affinity and high selectivity. We examined fluorescence spectral properties and ionic specificity of three low-affinity, ratiometric indicators structurally related to Fura-2: mag-Fura-2 (furaptra), Fura-2FF, and BTC. The indicators differed in respect to their excitation wavelengths, affinity for Ca2+ (Kd approximately 20 microM, 6 microM and 12 microM respectively) and selectivity over Mg2+ (Kd approximately 2 mM for mag-Fura-2, > 10 mM for Fura-2FF and BTC). Among the tested indicators, BTC was limited by a modest dynamic range upon Ca2+ binding, susceptibility to photodamage, and sensitivity to alterations in pH. All three indicators bound other metal ions including Zn2+, Cd2+ and Gd3+. Interestingly, only in the case of BTC were spectral differences apparent between Ca2+ and other metal ions. For example, the presence of Zn2+ increased BTC fluorescence 6-fold at the Ca2+ isosbestic point, suggesting that this dye may be used as a fluorescent Zn2+ indicator. Fura-2FF has high specificity, wide dynamic range, and low pH sensitivity, and is an optimal low-affinity Ca2+ indicator for most imaging applications. BTC may be useful if experimental conditions require visible wavelength excitation or sensitivity to other metal ions including Zn2+.

  13. Synthesis, characterization of 1,2,4-triazole Schiff base derived 3d-metal complexes: Induces cytotoxicity in HepG2, MCF-7 cell line, BSA binding fluorescence and DFT study

    NASA Astrophysics Data System (ADS)

    Tyagi, Prateek; Tyagi, Monika; Agrawal, Swati; Chandra, Sulekh; Ojha, Himanshu; Pathak, Mallika

    2017-01-01

    Two novel Schiff base ligands H2L1 and H2L2 have been synthesized by condensation reaction of amine derivative of 1,2,4-triazole moiety with 2-hydroxy-4-methoxybenzaldehyde. Co(II), Ni(II), Cu(II) and Zn(II) of the synthesized Schiff bases were prepared by using a molar ratio of ligand:metal as 1:1. The structure of the Schiff bases and synthesized metal complexes were established by 1H NMR, UV-Vis, IR, Mass spectrometry and molar conductivity. The thermal stability of the complexes was study by TGA. Fluorescence quenching mechanism of metal complexes 1-4 show that Zn(II) and Cu(II) complex binds more strongly to BSA. In DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6-31 + g(d,p) basis set. The spectral data shows that the ligands behaves as binegative tridentate. On the basis of the spectral studies, TGA and DFT data an octahedral geometry has been assigned for Co(II), Ni(II), square planar for Cu(II) and tetrahedral for Zn(II) complexes. The anticancer activity were screened against human breast cancer cell line (MCF-7) and human hepatocellular liver carcinoma cell line (Hep-G2). Result indicates that metal complexes shows increase cytotoxicity in proliferation to cell lines as compared to free ligand.

  14. Synthesis, characterization of 1,2,4-triazole Schiff base derived 3d-metal complexes: Induces cytotoxicity in HepG2, MCF-7 cell line, BSA binding fluorescence and DFT study.

    PubMed

    Tyagi, Prateek; Tyagi, Monika; Agrawal, Swati; Chandra, Sulekh; Ojha, Himanshu; Pathak, Mallika

    2017-01-15

    Two novel Schiff base ligands H2L(1) and H2L(2) have been synthesized by condensation reaction of amine derivative of 1,2,4-triazole moiety with 2-hydroxy-4-methoxybenzaldehyde. Co(II), Ni(II), Cu(II) and Zn(II) of the synthesized Schiff bases were prepared by using a molar ratio of ligand:metal as 1:1. The structure of the Schiff bases and synthesized metal complexes were established by (1)H NMR, UV-Vis, IR, Mass spectrometry and molar conductivity. The thermal stability of the complexes was study by TGA. Fluorescence quenching mechanism of metal complexes 1-4 show that Zn(II) and Cu(II) complex binds more strongly to BSA. In DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6-31+g(d,p) basis set. The spectral data shows that the ligands behaves as binegative tridentate. On the basis of the spectral studies, TGA and DFT data an octahedral geometry has been assigned for Co(II), Ni(II), square planar for Cu(II) and tetrahedral for Zn(II) complexes. The anticancer activity were screened against human breast cancer cell line (MCF-7) and human hepatocellular liver carcinoma cell line (Hep-G2). Result indicates that metal complexes shows increase cytotoxicity in proliferation to cell lines as compared to free ligand.

  15. Safe biodegradable fluorescent particles

    DOEpatents

    Martin, Sue I.; Fergenson, David P.; Srivastava, Abneesh; Bogan, Michael J.; Riot, Vincent J.; Frank, Matthias

    2010-08-24

    A human-safe fluorescence particle that can be used for fluorescence detection instruments or act as a safe simulant for mimicking the fluorescence properties of microorganisms. The particle comprises a non-biological carrier and natural fluorophores encapsulated in the non-biological carrier. By doping biodegradable-polymer drug delivery microspheres with natural or synthetic fluorophores, the desired fluorescence can be attained or biological organisms can be simulated without the associated risks and logistical difficulties of live microorganisms.

  16. Atmospheric Nitrogen Fluorescence Yield

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Christl, M. J.; Fountain, W. F.; Gregory, J. C.; Martens, K. U.; Sokolsky, Pierre; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Several existing and planned experiments estimate the energies of ultra-high energy cosmic rays from air showers using the atmospheric nitrogen fluorescence. The nitrogen fluorescence yield from air shower electrons depends on the atmospheric composition. We will discuss the uncertainties in the fluorescence yield form electrons in the real atmosphere and describe a concept for a small balloon payload to measure the atmospheric fluorescence yield as a function of attitude.

  17. Fluorescence-Lifetime Imaging and Super-Resolution Microscopies Shed Light on the Directed- and Self-Assembly of Functional Porphyrins onto Carbon Nanotubes and Flat Surfaces.

    PubMed

    Mao, Boyang; Calatayud, David G; Mirabello, Vincenzo; Kuganathan, Navaratnarajah; Ge, Haobo; Jacobs, Robert M J; Shepherd, Ashley M; Ribeiro Martins, José A; Bernardino De La Serna, Jorge; Hodges, Benjamin J; Botchway, Stanley W; Pascu, Sofia I

    2017-07-21

    Functional porphyrins have attracted intense attention due to their remarkably high extinction coefficients in the visible region and potential for optical and energy-related applications. Two new routes to functionalised SWNTs have been established using a bulky Zn(II) -porphyrin featuring thiolate groups at the periphery. We probed the optical properties of this zinc(II)-substituted, bulky aryl porphyrin and those of the corresponding new nano-composites with single walled carbon nanotube (SWNTs) and coronene, as a model for graphene. We report hereby on: i) the supramolecular interactions between the pristine SWNTs and Zn(II) -porphyrin by virtue of π-π stacking, and ii) a novel covalent binding strategy based on the Bingel reaction. The functional porphyrins used acted as dispersing agent for the SWNTs and the resulting nanohybrids showed improved dispersibility in common organic solvents. The synthesized hybrid materials were probed by various characterisation techniques, leading to the prediction that supramolecular polymerisation and host-guest functionalities control the fluorescence emission intensity and fluorescence lifetime properties. For the first time, XPS studies highlighted the differences in covalent versus non-covalent attachments of functional metalloporphyrins to SWNTs. Gas-phase DFT calculations indicated that the Zn(II) -porphyrin interacts non-covalently with SWNTs to form a donor-acceptor complex. The covalent attachment of the porphyrin chromophore to the surface of SWNTs affects the absorption and emission properties of the hybrid system to a greater extent than in the case of the supramolecular functionalisation of the SWNTs. This represents a synthetic challenge as well as an opportunity in the design of functional nanohybrids for future sensing and optoelectronic applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Enhancing single-molecule fluorescence with nanophotonics.

    PubMed

    Acuna, Guillermo; Grohmann, Dina; Tinnefeld, Philip

    2014-10-01

    Single-molecule fluorescence spectroscopy has become an important research tool in the life sciences but a number of limitations hinder the widespread use as a standard technique. The limited dynamic concentration range is one of the major hurdles. Recent developments in the nanophotonic field promise to alleviate these restrictions to an extent that even low affinity biomolecular interactions can be studied. After motivating the need for nanophotonics we introduce the basic concepts of nanophotonic devices such as zero mode waveguides and nanoantennas. We highlight current applications and the future potential of nanophotonic approaches when combined with biological systems and single-molecule spectroscopy.

  19. Streamlining the Pipeline for Generation of Recombinant Affinity Reagents by Integrating the Affinity Maturation Step

    PubMed Central

    Huang, Renhua; Gorman, Kevin T.; Vinci, Chris R.; Dobrovetsky, Elena; Gräslund, Susanne; Kay, Brian K.

    2015-01-01

    Often when generating recombinant affinity reagents to a target, one singles out an individual binder, constructs a secondary library of variants, and affinity selects a tighter or more specific binder. To enhance the throughput of this general approach, we have developed a more integrated strategy where the “affinity maturation” step is part of the phage-display pipeline, rather than a follow-on process. In our new schema, we perform two rounds of affinity selection, followed by error-prone PCR on the pools of recovered clones, generation of secondary libraries, and three additional rounds of affinity selection, under conditions of off-rate competition. We demonstrate the utility of this approach by generating low nanomolar fibronectin type III (FN3) monobodies to five human proteins: ubiquitin-conjugating enzyme E2 R1 (CDC34), COP9 signalosome complex subunit 5 (COPS5), mitogen-activated protein kinase kinase 5 (MAP2K5), Splicing factor 3A subunit 1 (SF3A1) and ubiquitin carboxyl-terminal hydrolase 11 (USP11). The affinities of the resulting monobodies are typically in the single-digit nanomolar range. We demonstrate the utility of two binders by pulling down the targets from a spiked lysate of HeLa cells. This integrated approach should be applicable to directed evolution of any phage-displayed affinity reagent scaffold. PMID:26437402

  20. On modality and complexity of affine embeddings

    SciTech Connect

    Arzhantsev, I V

    2001-08-31

    Let G be a reductive algebraic group and let H be a reductive subgroup of G. The modality of a G-variety X is the largest number of the parameters in a continuous family of G-orbits in X. A precise formula for the maximum value of the modality over all affine embeddings of the homogeneous space G/H is obtained.

  1. Vygotsky's and Buber's Pedagogical Perspectives: Some Affinities

    ERIC Educational Resources Information Center

    Bartholo, Roberto; Tunes, Elizabeth; Tacca, Maria Carmen Villela Rosa

    2010-01-01

    The purpose of this paper is to examine the dialogical and creative character of pedagogic work by analyzing the affinities between Martin Buber's "I-Thou relation" and Lev Semenovich Vygotsky's "Zone of Proximal Development". Backed up by empirical studies on the teacher-student relation, we understand that education can only result in students'…

  2. Fan Affinity Laws from a Collision Model

    ERIC Educational Resources Information Center

    Bhattacharjee, Shayak

    2012-01-01

    The performance of a fan is usually estimated using hydrodynamical considerations. The calculations are long and involved and the results are expressed in terms of three affinity laws. In this paper we use kinetic theory to attack this problem. A hard sphere collision model is used, and subsequently a correction to account for the flow behaviour…

  3. Modern affinity reagents: Recombinant antibodies and aptamers.

    PubMed

    Groff, Katherine; Brown, Jeffrey; Clippinger, Amy J

    2015-12-01

    Affinity reagents are essential tools in both basic and applied research; however, there is a growing concern about the reproducibility of animal-derived monoclonal antibodies. The need for higher quality affinity reagents has prompted the development of methods that provide scientific, economic, and time-saving advantages and do not require the use of animals. This review describes two types of affinity reagents, recombinant antibodies and aptamers, which are non-animal technologies that can replace the use of animal-derived monoclonal antibodies. Recombinant antibodies are protein-based reagents, while aptamers are nucleic-acid-based. In light of the scientific advantages of these technologies, this review also discusses ways to gain momentum in the use of modern affinity reagents, including an update to the 1999 National Academy of Sciences monoclonal antibody production report and federal incentives for recombinant antibody and aptamer efforts. In the long-term, these efforts have the potential to improve the overall quality and decrease the cost of scientific research. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Validation of affinity reagents using antigen microarrays.

    PubMed

    Sjöberg, Ronald; Sundberg, Mårten; Gundberg, Anna; Sivertsson, Asa; Schwenk, Jochen M; Uhlén, Mathias; Nilsson, Peter

    2012-06-15

    There is a need for standardised validation of affinity reagents to determine their binding selectivity and specificity. This is of particular importance for systematic efforts that aim to cover the human proteome with different types of binding reagents. One such international program is the SH2-consortium, which was formed to generate a complete set of renewable affinity reagents to the SH2-domain containing human proteins. Here, we describe a microarray strategy to validate various affinity reagents, such as recombinant single-chain antibodies, mouse monoclonal antibodies and antigen-purified polyclonal antibodies using a highly multiplexed approach. An SH2-specific antigen microarray was designed and generated, containing more than 6000 spots displayed by 14 identical subarrays each with 406 antigens, where 105 of them represented SH2-domain containing proteins. Approximately 400 different affinity reagents of various types were analysed on these antigen microarrays carrying antigens of different types. The microarrays revealed not only very detailed specificity profiles for all the binders, but also showed that overlapping target sequences of spotted antigens were detected by off-target interactions. The presented study illustrates the feasibility of using antigen microarrays for integrative, high-throughput validation of various types of binders and antigens.

  5. Fan Affinity Laws from a Collision Model

    ERIC Educational Resources Information Center

    Bhattacharjee, Shayak

    2012-01-01

    The performance of a fan is usually estimated using hydrodynamical considerations. The calculations are long and involved and the results are expressed in terms of three affinity laws. In this paper we use kinetic theory to attack this problem. A hard sphere collision model is used, and subsequently a correction to account for the flow behaviour…

  6. Vygotsky's and Buber's Pedagogical Perspectives: Some Affinities

    ERIC Educational Resources Information Center

    Bartholo, Roberto; Tunes, Elizabeth; Tacca, Maria Carmen Villela Rosa

    2010-01-01

    The purpose of this paper is to examine the dialogical and creative character of pedagogic work by analyzing the affinities between Martin Buber's "I-Thou relation" and Lev Semenovich Vygotsky's "Zone of Proximal Development". Backed up by empirical studies on the teacher-student relation, we understand that education can only result in students'…

  7. Stabilization of the Motion of Affine Systems

    NASA Astrophysics Data System (ADS)

    Babenko, E. A.; Martynyuk, A. A.

    2016-07-01

    Sufficient conditions for the stability of a nonlinear affine system subject to interval initial conditions are established. These conditions are based on new estimates of the norms of the solutions of the systems of perturbed equations of motion. This stabilization method is used to analyze an electromechanical system with permanent magnet

  8. Nonuniform speaker normalization using affine transformation.

    PubMed

    Bharath Kumar, S V; Umesh, S

    2008-09-01

    In this paper, a well-motivated nonuniform speaker normalization model that affinely relates the formant frequencies of speakers enunciating the same sound is proposed. Using the proposed affine model, the corresponding universal-warping function that is required for normalization is shown to have the same parametric form as the mel scale formula. The parameters of this universal-warping function are estimated from the vowel formant data and are shown to be close to the commonly used formula for the mel scale. This shows an interesting connection between nonuniform speaker normalization and the psychoacoustics based mel scale. In addition, the affine model fits the vowel formant data better than commonly used ad hoc normalization models. This work is motivated by a desire to improve the performance of speaker-independent speech recognition systems, where speaker normalization is conventionally done by assuming a linear-scaling relationship between spectra of speakers. The proposed affine relation is extended to describe the relationship between spectra of speakers enunciating the same sound. On a telephone-based connected digit recognition task, the proposed model provides improved recognition performance over the linear-scaling model.

  9. Magnesium(II) and zinc(II)-protoporphyrin IX's stabilize the lowest oxygen affinity state of human hemoglobin even more strongly than deoxyheme.

    PubMed

    Miyazaki, G; Morimoto, H; Yun, K M; Park, S Y; Nakagawa, A; Minagawa, H; Shibayama, N

    1999-10-08

    Studies of oxygen equilibrium properties of Mg(II)-Fe(II) and Zn(II)-Fe(II) hybrid hemoglobins (i.e. alpha2(Fe)beta2(M) and alpha2(M)beta2(Fe); M=Mg(II), Zn(II) (neither of these closed-shell metal ions binds oxygen or carbon monoxide)) are reported along with the X-ray crystal structures of alpha2(Fe)beta2(Mg) with and without CO bound. We found that Mg(II)-Fe(II) hybrids resemble Zn(II)-Fe(II) hybrids very closely in oxygen equilibrium properties. The Fe(II)-subunits in these hybrids bind oxygen with very low affinities, and the effect of allosteric effectors, such as proton and/or inositol hexaphosphate, is relatively small. We also found a striking similarity in spectrophotometric properties between Mg(II)-Fe(II) and Zn(II)-Fe(II) hybrids, particularly, the large spectral changes that occur specifically in the metal-containing beta subunits upon the R-T transition of the hybrids. In crystals, both alpha2(Fe)beta2(Mg) and alpha2(Fe-CO)beta2(Mg) adopt the quaternary structure of deoxyhemoglobin. These results, combined with the re-evaluation of the oxygen equilibrium properties of normal hemoglobin, low-affinity mutants, and metal substituted hybrids, point to a general tendency of human hemoglobin that when the association equilibrium constant of hemoglobin for the first binding oxygen molecule (K1) approaches 0.004 mmHg(-1), the cooperativity as well as the effect of allosteric effectors is virtually abolished. This is indicative of the existence of a distinct thermodynamic state which determines the lowest oxygen affinity of human hemoglobin. Moreover, excellent agreement between the reported oxygen affinity of deoxyhemoglobin in crystals and the lowest affinity in solution leads us to propose that the classical T structure of deoxyhemoglobin in the crystals represents the lowest affinity state in solution. We also survey the oxygen equilibrium properties of various metal-substituted hybrid hemoglobins studied over the past 20 years in our laboratory. The bulk

  10. Potentiometric, UV and (1)H NMR study on the interaction of penicillin derivatives with Zn(II) in aqueous solution.

    PubMed

    Cardiano, Paola; Cigala, Rosalia Maria; Crea, Francesco; De Stefano, Concetta; Giuffrè, Ottavia; Sammartano, Silvio; Vianelli, Giuseppina

    2017-04-01

    The interaction of Zn(II) with ampicillin [(2S,5R,6R)-6-([(2R)-2-amino-2-phenylacetyl]amino)-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2- carboxylic acid] and amoxicillin [(2S,5R,6R)-6-{[(2R)-2-amino-2-(4-hydroxyphenyl)-acetyl]amino}-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-24-carboxylic acid] in NaCl aqueous solution at different ionic strengths and at t=25°C was investigated by potentiometric, UV and (1)H NMR techniques. Fairly similar speciation models were obtained for the two systems. At I=0.15molL(-1), two different sets of measurements, at low and high concentrations, were carried out. For the Zn(2+)-amoxicillin system, the Zn2L2(OH)2 species was obtained in the set of measurements at high concentration. The spectrophotometric and (1)H NMR results thus obtained are fully consistent with the speciation models found from potentiometric investigations, confirming the formation as well as the relative stability of the complex species. The dependence of the stability constants on the ionic strength was modeled by means of the Debye-Hückel and SIT (Specific ion Interaction Theory) approaches, and the parameter that accounts for the variation of the stability constants with the ionic strength and the specific ion interaction parameters were determined for all the ionic species. The sequestering ability of the ligands towards Zn(2+) was evaluated by determining the pL0.5 parameter at different ionic strengths. It resulted that the sequestering ability of ampicillin is higher of ~0.5 order of magnitude with respect to amoxicillin. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Metal Zn(II), Cu(II), Ni (II) complexes of ursodeoxycholic acid as putative anticancer agents

    PubMed Central

    Dyakova, Lora; Culita, Daniela-Cristina; Marinescu, Gabriela; Alexandrov, Marin; Kalfin, Reni; Patron, Luminita; Alexandrova, Radostina

    2014-01-01

    The aim of the study was to evaluate the influence of metal [Zn(II), Cu(II), Ni(II)] complexes with ursodeoxycholic acid (UDCA) on the viability and proliferation of tumour and non-tumour cells. Cell lines established from retrovirus-transformed chicken hepatoma (LSCC-SF-Mc29) and rat sarcoma (LSR-SF-SR) as well as from human cancers of the breast (MCF-7), uterine cervix (HeLa), lung (A549) and liver (HepG2) were used as model systems. Non-tumour human embryo (Lep-3) cells were also included in some of the experiments. The investigations were carried out by the thiazolyl blue tetrazolium bromide (MTT) test, neutral red uptake cytotoxicity assay, crystal violet staining, double staining with acridine orange and propidium iodide and the colony-forming method. The results obtained revealed that: (1) UDCA and its metal complexes in the tested concentrations decreased (to a varying degree) the viability and proliferation of the treated cells in a time- and concentration-dependent manner; (2) chicken hepatoma (LSCC-SF-Mc29) cells were most sensitive to the cytotoxic and antiproliferative action of the compounds tested, followed by rat sarcoma (LSR-SF-SR) cells; (3) Cu‒UDCA and Ni‒UDCA were more effective against animal LSCC-SF-Mc29 and LSR-SF-SR cells, while Zn‒UDCA significantly decreased the viability and proliferation of human tumour cell lines; (4) applied independently, UDCA expressed lower cytotoxic/cytostatic activity as compared to metal complexes; and (5) the sensitivity of the non-tumour embryonic Lep-3 cells to the effects of UDCA and its metal complexes was comparable or even higher than those of the human tumour cells. PMID:26019542

  12. Comparative Raman study of four plant metallothionein isoforms: Insights into their Zn(II) clusters and protein conformations.

    PubMed

    Tomas, Mireia; Tinti, Anna; Bofill, Roger; Capdevila, Mercè; Atrian, Silvia; Torreggiani, Armida

    2016-03-01

    Four Metallothioneins (MTs) from soybean (Glycine max) were heterologously synthesized and comparatively analysed by Raman spectroscopy. The participation of protein donor groups (S-thiol and N-imidazol) in Zn(II) chelation, as well as the presence of secondary structure elements was comparatively analysed. Metal clusters with different geometry can be hypothesised for the four GmMTs: a cubane-like or an adamantane-like metal cluster in Zn-GmMT1, and dinuclear Zn-S clusters in Zn-GmMT2, Zn-GmMT3 and Zn-GmMT4. The latter have also a similar average Cys/Zn content, whereas a lower ratio is present in Zn-GmMT1. This is possible thanks to the involvement in metal coordination of a greater number of bridging Cys, as well as of some carboxylate groups. As regards secondary structure elements, a large content of β-turn segments is present in all four Zn-GmMTs, especially for isoforms 1 and 4. β-strands give a contribution to the folding of three GmMTs isoforms, and the highest percentage was found in Zn-GmMT2 (~45%). Conversely, the α-helix content is negligible in all the GmMTs except in Zn-GmMT3, where this peculiar feature coincides with the possible involvement of the two His residues in metal coordination. Conversely, His is predominantly free and present as tautomer I in Zn-GmMT4. In conclusion, this work illustrates the attractive potential of Raman spectroscopy, combined with other techniques, to be a very informative tool for evidencing structural differences among in vivo synthesized metal-MT complexes.

  13. Removal of Ni(II), Zn(II) and Pb(II) ions from single metal aqueous solution using rice husk-based activated carbon

    SciTech Connect

    Taha, Mohd F. Shaharun, Maizatul S.; Shuib, Anis Suhaila Borhan, Azry

    2014-10-24

    An attempt was made to investigate the potential of rice husk-based activated carbon as an alternative low-cost adsorbent for the removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Rice husk-based activated carbon was prepared via treatment of rice husk with NaOH followed by the carbonization process at 400°C for 2 hours. Three samples, i.e. raw rice husk, rice husk treated with NaOH and rice husk-based activated carbon, were analyzed for their morphological characteristics using field-emission scanning electron microscope/energy dispersive X-ray (FESEM/EDX). These samples were also analyzed for their carbon, hydrogen, nitrogen, oxygen and silica contents using CHN elemental analyzer and FESEM/EDX. The porous properties of rice husk-based activated carbon were determined by Brunauer-Emmett-Teller (BET) surface area analyzer, and its surface area and pore volume were 255 m{sup 2}/g and 0.17 cm{sup 2}/g, respectively. The adsorption studies for the removal of Ni(II), Zn(II) and Pb(II) ions from single metal aqueous solution were carried out at a fixed initial concentration of metal ion (150 ppm) with variation amount of adsorbent (rice husk-based activated carbon) as a function of varied contact time at room temperature. The concentration of each metal ion was analyzed using atomic absorption spectrophotometer (AAS). The results obtained from adsorption studies indicate the potential of rice husk as an economically promising precursor for the preparation of activated carbon for removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Isotherm and kinetic model analyses suggested that the experimental data of adsorption studies fitted well with Langmuir, Freundlich and second-order kinetic models.

  14. Optical mesosensors for monitoring and removal of ultra-trace concentration of Zn(II) and Cu(II) ions from water.

    PubMed

    El-Safty, Sherif A; Shenashen, M A; Ismael, M; Khairy, M; Awual, Md R

    2012-11-21

    Optical captor design is necessary for the controlled development of a technique for detecting and removing heavy and toxic metals from drinking water with high flexibility and low capital cost. We designed chemical mesocaptors for optical separation/extraction and monitoring/detection of Cu(II) and Zn(II) ions from water even at trace concentration levels without a preconcentration process. The mesoporous aluminosilica carriers with three-dimensional (3D) structures, high aluminum content, natural surfaces, and active acid sites strongly induced H-bonding and dispersive interactions with organic moieties, thereby leading to the formation of stable captors without chromophore leaching during the removal assays of Cu(II) and Zn(II) ions. Using such a tailored mesocaptor design, the direct immobilization of these hydrophobic ligands (4,5-diamino-6-hydroxy-2-mercaptopyrimidine and diphenylthiocarbazone) into ordered pore-based aluminasilica monoliths enabled the easy generation and transduction of optical colour signals as a response to metal-to-ligand binding events, even at ultra-trace concentrations (~10(-9) mol dm(-3)) of Cu(II) and Zn(II) ions in drinking water, without the need for sophisticated instruments. Theoretical models have been developed to provide insights into the effect of active site surfaces on the enhancement of the optical removal process in terms of long-term stability, reversibility, and selectivity, hence allowing us to understand the role of mesoscopic geometry and nanoscale pore orientation of mesocaptors better. Generally, this ion-capture model enables the development of a simple and effective technique for effective wastewater treatment and management.

  15. Removal of Ni(II), Zn(II) and Pb(II) ions from single metal aqueous solution using rice husk-based activated carbon

    NASA Astrophysics Data System (ADS)

    Taha, Mohd F.; Shuib, Anis Suhaila; Shaharun, Maizatul S.; Borhan, Azry

    2014-10-01

    An attempt was made to investigate the potential of rice husk-based activated carbon as an alternative low-cost adsorbent for the removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Rice husk-based activated carbon was prepared via treatment of rice husk with NaOH followed by the carbonization process at 400°C for 2 hours. Three samples, i.e. raw rice husk, rice husk treated with NaOH and rice husk-based activated carbon, were analyzed for their morphological characteristics using field-emission scanning electron microscope/energy dispersive X-ray (FESEM/EDX). These samples were also analyzed for their carbon, hydrogen, nitrogen, oxygen and silica contents using CHN elemental analyzer and FESEM/EDX. The porous properties of rice husk-based activated carbon were determined by Brunauer-Emmett-Teller (BET) surface area analyzer, and its surface area and pore volume were 255 m2/g and 0.17 cm2/g, respectively. The adsorption studies for the removal of Ni(II), Zn(II) and Pb(II) ions from single metal aqueous solution were carried out at a fixed initial concentration of metal ion (150 ppm) with variation amount of adsorbent (rice husk-based activated carbon) as a function of varied contact time at room temperature. The concentration of each metal ion was analyzed using atomic absorption spectrophotometer (AAS). The results obtained from adsorption studies indicate the potential of rice husk as an economically promising precursor for the preparation of activated carbon for removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Isotherm and kinetic model analyses suggested that the experimental data of adsorption studies fitted well with Langmuir, Freundlich and second-order kinetic models.

  16. Effect of biofilm coatings at metal-oxide/water interfaces II: Competitive sorption between Pb(II) and Zn(II) at Shewanella oneidensis/metal-oxide/water interfaces

    NASA Astrophysics Data System (ADS)

    Wang, Yingge; Gélabert, Alexandre; Michel, F. Marc; Choi, Yongseong; Eng, Peter J.; Spormann, Alfred M.; Brown, Gordon E.

    2016-09-01

    Competitive sorption of Pb(II) and Zn(II) on Shewanella oneidensis MR-1 biofilm-coated single-crystal α-Al2O3 (1 -1 0 2) and α-Fe2O3 (0 0 0 1) surfaces was investigated using long-period X-ray standing wave-florescence yield (LP-XSW-FY) spectroscopy. In situ partitioning of aqueous Pb(II) and Zn(II) between the biofilms and underlying metal-oxide substrates was probed following exposure of these complex interfaces to equi-molar Pb and Zn solutions (0.01 M NaNO3 as background electrolyte, pH = 6.0, and 3-h equilibration time). At higher Pb and Zn concentrations (⩾10-5 M), more than 99% of these ions partitioned into the biofilms at S. oneidensis/α-Al2O3 (1 -1 0 2)/water interfaces, which is consistent with the partitioning behavior of both Pb(II) or Zn(II) in single-metal-ion experiments. Thus, no apparent competitive effects were found in this system at these relatively high metal-ion concentrations. However, at lower equi-molar concentrations (⩽10-6 M), Pb(II) and Zn(II) partitioning in the same system changed significantly compared to the single-metal-ion systems. The presence of Zn(II) decreased Pb(II) partitioning onto α-Al2O3 (1 -1 0 2) substantially (∼52% to ∼13% at 10-7 M, and ∼23% to ∼5% at 10-6 M), whereas the presence of Pb(II) caused more Zn(II) to partition onto α-Al2O3 (1 -1 0 2) surfaces (∼15% to ∼28% at 10-7 M, and ∼1% to ∼7% at 10-6 M). The higher observed partitioning of Zn(II) (∼28%) at the α-Al2O3 (1 -1 0 2) surfaces compared to Pb(II) (∼13%) in the mixed-metal-ion systems at the lowest concentration (10-7 M) suggests that Zn(II) is slightly favored over Pb(II) for sorption sites on α-Al2O3 (1 -1 0 2) surfaces under our experimental conditions. Competitive sorption of Pb(II) and Zn(II) at S. oneidensis/α-Fe2O3 (0 0 0 1)/water interfaces at equi-molar metal-ion concentrations of ⩽10-6 M showed that the presence of Pb(II) ions decreased Zn(II) partitioning onto α-Fe2O3 (0 0 0 1) significantly (∼45% to <1% at 10

  17. Fluorescence study of sugars

    NASA Astrophysics Data System (ADS)

    Thongjamroon, Sunida; Pattanaporkratana, Apichart

    2015-07-01

    We studied photoemission of monosaccharides and disaccharides using laser-induced fluorescence spectroscopy. A 532- nm, 10 mW, laser was used to excite the samples and back-scattering signals were collected by a spectrometer. We found that most sugars show weak fluorescence in solid phase but do not fluoresce when dissolved in water solutions. The emission spectra show similar peak intensity at 590 nm, but they are different in emission intensities. We suggest that the fluorescence spectra may be used to differentiate sugar type, even though the origin of the fluorescence is unclear and needed further study.

  18. Thermal Studies of Zn(II), Cd(II) and Hg(II) Complexes of Some N-Alkyl-N-Phenyl-Dithiocarbamates

    PubMed Central

    Onwudiwe, Damian C.; Ajibade, Peter A.

    2012-01-01

    The thermal decomposition of Zn(II), Cd(II) and Hg(II) complexes of N-ethyl-N-phenyl and N-butyl-N-phenyl dithiocarbamates have been studied using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The products of the decomposition, at two different temperatures, were further characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The results show that while the zinc and cadmium complexes undergo decomposition to form metal sulphides, and further undergo oxidation forming metal oxides as final products, the mercury complexes gave unstable volatiles as the final product. PMID:22949811

  19. Formation of a unique zinc carbamate by CO2 fixation: implications for the reactivity of tetra-azamacrocycle ligated Zn(II) complexes.

    PubMed

    Notni, Johannes; Schenk, Stephan; Görls, Helmar; Breitzke, Hergen; Anders, Ernst

    2008-02-18

    The macrocyclic ligand [13]aneN 4 ( L1, 1,4,7,10-tetra-azacyclotridecane) was reacted with Zn(II) perchlorate and CO 2 in an alkaline methanol solution. It was found that, by means of subtle changes in reaction conditions, two types of complexes can be obtained: (a) the mu 3 carbonate complex 1, {[Zn( L1)] 3(mu 3-CO 3)}(ClO 4) 4, rhombohedral crystals, space group R3 c, with pentacoordinate zinc in a trigonal bipyramidal enviroment, and (b) an unprecedenced dimeric Zn(II) carbamate structure, 2, [Zn( L2)] 2(ClO 4) 2, monoclinic crystals, space group P2 1/ n. The ligand L2 (4-carboxyl-1,4,7,10-tetra-azacyclotridecane) is a carbamate derivative of L1, obtained by transformation of a hydrogen atom of one of the NH moieties into carbamate by means of CO 2 uptake. In compound 2, the distorted tetrahedral Zn(II) coordinates to the carbamate moiety in a monodentate manner. Most notably, carbamate formation can occur upon reaction of CO 2 with the [Zn L1] (2+) complex, which implicates that a Zn-N linkage is cleaved upon attack of CO 2. Since complexes of tetra-azamacrocycles and Zn(II) are routinely applied for enzyme model studies, this finding implies that the Zn-azamacrocycle moiety generally should no longer be considered to play always only an innocent role in reactions. Rather, its reactivity has to be taken into account in respective investigations. In the presence of water, 2 is transformed readily into carbonate 1. Both compounds have been additionally characterized by solid-state NMR and infrared spectroscopy. A thorough comparison of 1 with related azamacrocycle ligated zinc(II) carbonates as well as a discussion of plausible reaction paths for the formation of 2 are given. Furthermore, the infrared absorptions of the carbamate moiety have been assigned by calculating the vibrational modes of the carbamate complex using DFT methods and the vibrational spectroscopy calculation program package SNF.

  20. Violet diode laser-induced chlorophyll fluorescence: a tool for assessing mosaic disease severity in cassava (Manihot esculenta Crantz) cultivars.

    PubMed

    Anderson, Benjamin; Eghan, Moses J; Asare-Bediako, Elvis; Buah-Bassuah, Paul K

    2012-01-01

    Violet diode laser-induced chlorophyll fluorescence was used in agronomical assessment (disease severity and average yield per plant). Because cassava (Manihot esculenta Crantz) is of economic importance, improved cultivars with various levels of affinity for cassava mosaic disease were investigated. Fluorescence data correlated with cassava mosaic disease severity levels and with the average yield per plant.

  1. The Affinity of Cholesterol for Different Phospholipids Affects Lateral Segregation in Bilayers.

    PubMed

    Engberg, Oskar; Hautala, Victor; Yasuda, Tomokazu; Dehio, Henrike; Murata, Michio; Slotte, J Peter; Nyholm, Thomas K M

    2016-08-09

    Saturated and unsaturated phospholipids (PLs) can segregate into lateral domains. The preference of cholesterol for saturated acyl chains over monounsaturated, and especially polyunsaturated ones, may also affect lateral segregation. Here we have studied how cholesterol influenced the lateral segregation of saturated and unsaturated PLs, for which cholesterol had a varying degree of affinity. The fluorescence lifetime of trans-parinaric acid reported the formation of ordered domains (gel or liquid-ordered (lo)) in bilayers composed of different unsaturated phosphatidylcholines, and dipalmitoyl-phosphatidylcholine or n-palmitoyl-sphingomyelin, in the presence or absence of cholesterol. We observed that cholesterol facilitated lateral segregations and the degree of facilitation correlated with the relative affinity of cholesterol for the different PLs in the bilayers. Differential scanning calorimetry and (2)H nuclear magnetic resonance showed that cholesterol increased the thermostability of both the gel and lo-domains. Increased number of double bonds in the unsaturated PL increased the order in the lo-domains, likely by enriching the ordered domains in saturated lipids and cholesterol. This supported the conclusions from the trans-parinaric acid experiments, and offers insight into how cholesterol facilitated lateral segregation. In conclusion, the relative affinity of cholesterol for different PLs appears to be an important determinant for the formation of ordered domains. Our data suggests that knowledge of the affinity of cholesterol for the different PLs in a bilayer allows prediction of the degree to which the sterol promotes lo-domain formation.

  2. Effect of biofilm coatings at metal-oxide/water interfaces II: Competitive sorption between Pb(II) and Zn(II) at Shewanella oneidensis/metal-oxide/water interfaces

    DOE PAGES

    Wang, Yingge; Gelabert, Alexandre; Michel, F. Marc; ...

    2016-05-07

    Competitive sorption of Pb(II) and Zn(II) on Shewanella oneidensis MR-1 biofilm-coated single-crystal α-Al2O3 (1 –1 0 2) and α-Fe2O3 (0 0 0 1) surfaces was investigated using long-period X-ray standing wave-florescence yield (LP-XSW-FY) spectroscopy. In situ partitioning of aqueous Pb(II) and Zn(II) between the biofilms and underlying metal-oxide substrates was probed following exposure of these complex interfaces to equi-molar Pb and Zn solutions (0.01 M NaNO3 as background electrolyte, pH = 6.0, and 3-h equilibration time). At higher Pb and Zn concentrations (≥10–5 M), more than 99% of these ions partitioned into the biofilms at S. oneidensis/α-Al2O3 (1 –1 0more » 2)/water interfaces, which is consistent with the partitioning behavior of both Pb(II) or Zn(II) in single-metal-ion experiments. Furthermore, no apparent competitive effects were found in this system at these relatively high metal-ion concentrations. However, at lower equi-molar concentrations (≤10–6 M), Pb(II) and Zn(II) partitioning in the same system changed significantly compared to the single-metal-ion systems. The presence of Zn(II) decreased Pb(II) partitioning onto α-Al2O3 (1 –1 0 2) substantially (~52% to ~13% at 10–7 M, and ~23% to ~5% at 10–6 M), whereas the presence of Pb(II) caused more Zn(II) to partition onto α-Al2O3 (1 –1 0 2) surfaces (~15% to ~28% at 10–7 M, and ~1% to ~7% at 10–6 M) .The higher observed partitioning of Zn(II) (~28%) at the α-Al2O3 (1 –1 0 2) surfaces compared to Pb(II) (~13%) in the mixed-metal-ion systems at the lowest concentration (10–7 M) suggests that Zn(II) is slightly favored over Pb(II) for sorption sites on α-Al2O3 (1 –1 0 2) surfaces under our experimental conditions.« less

  3. Batch affinity adsorption of His-tagged proteins with EDTA-based chitosan.

    PubMed

    Hua, Weiwei; Lou, Yimin; Xu, Weiyuan; Cheng, Zhixian; Gong, Xingwen; Huang, Jianying

    2016-01-01

    Affinity adsorption purification of hexahistidine-tagged (His-tagged) proteins using EDTA-chitosan-based adsorption was designed and carried out. Chitosan was elaborated with ethylenediaminetetraacetic acid (EDTA), and the resulting polymer was characterized by FTIR, TGA, and TEM. Different metals including Ni(2+), Cu(2+), and Zn(2+) were immobilized with EDTA-chitosan, and their capability to the specific adsorption of His-tagged proteins were then investigated. The results showed that Ni(2+)-EDTA-chitosan and Zn(2+)-EDTA-chitosan had high affinity toward the His-tagged proteins, thus isolating them from protein mixture. The target fluorescent-labeled hexahistidine protein remained its fluorescent characteristic throughout the purification procedure when Zn(2+)-EDTA-chitosan was used as a sorbent, wherein the real-time monitor was performed to examine the immigration of fluorescent-labeled His-tagged protein. Comparatively, Zn(2+)-EDTA-chitosan showed more specific binding ability for the target protein, but with less binding capacity. It was further proved that this purification system could be recovered and reused at least for 5 times and could run on large scales. The presented M(2+)-EDTA-chitosan system, with the capability to specifically bind His-tagged proteins, make the purification of His-tagged proteins easy to handle, leaving out fussy preliminary treatment, and with the possibility of continuous processing and a reduction in operational cost in relation to the costs of conventional processes.

  4. Potential toxicity and affinity of triphenylmethane dye malachite green to lysozyme.

    PubMed

    Ding, Fei; Li, Xiu-Nan; Diao, Jian-Xiong; Sun, Ye; Zhang, Li; Ma, Lin; Yang, Xin-Ling; Zhang, Li; Sun, Ying

    2012-04-01

    Malachite green is a triphenylmethane dye that is used extensively in many industrial and aquacultural processes, generating environmental concerns and health problems to human being. In this contribution, the complexation between lysozyme and malachite green was verified by means of computer-aided molecular modeling, steady state and time-resolved fluorescence, and circular dichroism (CD) approaches. The precise binding patch of malachite green in lysozyme has been identified from molecular modeling and ANS displacement, Trp-62, Trp-63, and Trp-108 residues of lysozyme were earmarked to possess high-affinity for this dye, the principal forces in the lysozyme-malachite green adduct are hydrophobic and π-π interactions. Steady state fluorescence proclaimed the complex of malachite green with lysozyme yields quenching through static type, which substantiates time-resolved fluorescence measurements that lysozyme-malachite green conjugation formation has an affinity of 10(3)M(-1). Moreover, via molecular modeling and also CD data, we can safely arrive at a conclusion that the polypeptide chain of lysozyme partially destabilized upon complexation with malachite green. The data emerged here will help to further understand the toxicological action of malachite green in human body.

  5. Fluorescent indicator dyes for calcium ions

    NASA Technical Reports Server (NTRS)

    Tsien, Roger Y. (Inventor); Grynkiewicz, Grzegorz (Inventor)

    1986-01-01

    The present invention discloses a new class of highly fluorescent indicator dyes that are specific for calcium ions. The new fluorescent indicator dyes combine a stilbene-type fluorophore with a tetracarboxylate parent Ca.sup.2+ chelating compound having the octacoordinate pattern of liganding groups characteristic of EGTA and BAPTA. Preferred forms contain extra heterocyclic bridges to reinforce the ethylenic bond of the stilbene and to reduce hydrophobicity. Compared to their widely used predecessor, quin2, the new dyes offer up to thirty-fold brighter fluorescence, major changes in wavelength (not just intensity) upon Ca.sup.2+ binding, slightly lower affinities for Ca.sup.2+, slightly longer wavelengths of excitation, and considerably improved selectivity for Ca.sup.2+ over other divalent cations. These properties, particularly the wavelength sensitivity to Ca.sup.2+, make the dyes useful indicators for many intracellular applications, especially in single cells, adherent cell layers, or bulk tissues. The present invention also discloses an improved method for synthesizing alpha-acyloxyalkyl bromides wherein the bromides so synthesized are free of contaminating bis(1-bromoalkyl)ether. The improved method is exemplified herein in the synthesis of acetoxymethyl bromide, a compound useful in preparing the acetoxymethyl esters disclosed herein as novel Ca.sup.2+ specific fluorescent indicators.

  6. Quantitative in vivo solubility and reconstitution of truncated circular permutants of green fluorescent protein.

    PubMed

    Huang, Yao-Ming; Nayak, Sasmita; Bystroff, Christopher

    2011-11-01

    Several versions of split green fluorescent protein (GFP) fold and reconstitute fluorescence, as do many circular permutants, but little is known about the dependence of reconstitution on circular permutation. Explored here is the capacity of GFP to fold and reconstitute fluorescence from various truncated circular permutants, herein called "leave-one-outs" using a quantitative in vivo solubility assay and in vivo reconstitution of fluorescence. Twelve leave-one-out permutants are discussed, one for each of the 12 secondary structure elements. The results expand the outlook for the use of permuted split GFPs as specific and self-reporting gene encoded affinity reagents.

  7. Drug Affinity Responsive Target Stability (DARTS) for Small Molecule Target Identification

    PubMed Central

    Hwang, Heejun; Schiestl, Robert; McBride, William; Loo, Joseph A.; Huang, Jing

    2015-01-01

    Drug Affinity Responsive Target Stability (DARTS) is a relatively quick and straightforward approach to identify potential protein targets for small molecules. It relies on the protection against proteolysis conferred on the target protein by interaction with a small molecule. The greatest advantage of this method is being able to use the native small molecule without having to immobilize or modify it (e.g. by incorporation of biotin, fluorescent, radioisotope, or photo-affinity labels). Here we describe in detail the protocol for performing unbiased DARTS with complex protein lysate to identify potential binding targets of small molecules and for using DARTS-Western blotting to test, screen, or validate potential small molecule targets. Although the ideas have mainly been developed from studying molecules in areas of biology that are currently of interest to us and our collaborators, the general principles should be applicable to the analysis of all molecules in nature. PMID:25618353

  8. Preorganized Peptide Scaffolds as Mimics of Phosphorylated Proteins Binding Sites with a High Affinity for Uranyl.

    PubMed

    Starck, Matthieu; Sisommay, Nathalie; Laporte, Fanny A; Oros, Stéphane; Lebrun, Colette; Delangle, Pascale

    2015-12-07

    Cyclic peptides with two phosphoserines and two glutamic acids were developed to mimic high-affinity binding sites for uranyl found in proteins such as osteopontin, which is believed to be a privileged target of this ion in vivo. These peptides adopt a β-sheet structure that allows the coordination of the latter amino acid side chains in the equatorial plane of the dioxo uranyl cation. Complementary spectroscopic and analytical methods revealed that these cyclic peptides are efficient uranyl chelating peptides with a large contribution from the phosphorylated residues. The conditional affinity constants were measured by following fluorescence tryptophan quenching and are larger than 10(10) at physiological pH. These compounds are therefore promising models for understanding uranyl chelation by proteins, which is relevant to this actinide ion toxicity.

  9. Thirty-fifth anniversary of the optical affinity sensor for glucose: a personal retrospective.

    PubMed

    Schultz, Jerome S

    2015-01-01

    Since 1962 when Clark introduced the enzyme electrode, research has been intense for a robust implantable glucose sensor. An alternative "optical affinity sensor" was introduced by Jerome Schultz in 1979. The evolution of this sensor technology into a new methodology is reviewed. The approach integrates a variety of disparate concepts: the selectivity of immunoassays-selectivity for glucose was obtained with concanavalin A, detection sensitivity was obtained with fluorescence (FITC-Dextran), and miniaturization was achieved by the use of an optical fiber readout system. Refinements of Schultz's optical affinity sensor approach over the past 35 years have led to a number of configurations that show great promise to meet the needs of a successful implantable continuous monitoring device for diabetics, some of which are currently being tested clinically. © 2014 Diabetes Technology Society.

  10. Novel Chalcone-Based Fluorescent Human Histamine H3 Receptor Ligands as Pharmacological Tools

    PubMed Central

    Tomasch, Miriam; Schwed, J. Stephan; Weizel, Lilia; Stark, Holger

    2012-01-01

    Novel fluorescent chalcone-based ligands at human histamine H3 receptors (hH3R) have been designed, synthesized, and characterized. Compounds described are non-imidazole analogs of ciproxifan with a tetralone motif. Tetralones as chemical precursors and related fluorescent chalcones exhibit affinities at hH3R in the same concentration range like the reference antagonist ciproxifan (hH3R pKi value of 7.2). Fluorescence characterization of our novel ligands shows emission maxima about 570 nm for yellow fluorescent chalcones and ≥600 nm for the red fluorescent derivatives. Interferences to cellular autofluorescence could be excluded. All synthesized chalcone compounds could be used to visualize hH3R proteins in stably transfected HEK-293 cells using confocal laser scanning fluorescence microscopy. These novel fluorescent ligands possess high potential to be used as pharmacological tools for hH3R visualization in different tissues. PMID:22470321

  11. Optimal Affine-Invariant Point Matching

    NASA Astrophysics Data System (ADS)

    Costa, Mauro S.; Haralick, Robert M.; Phillips, Tsaiyun I.; Shapiro, Linda G.

    1989-03-01

    The affine-transformation matching scheme proposed by Hummel and Wolfson (1988) is very efficient in a model-based matching system, not only in terms of the computational complexity involved, but also in terms of the simplicity of the method. This paper addresses the implementation of the affine-invariant point matching, applied to the problem of recognizing and determining the pose of sheet metal parts. It points out errors that can occur with this method due to quantization, stability, symmetry, and noise problems. By beginning with an explicit noise model which the Hummel and Wolfson technique lacks, we can derive an optimal approach which overcomes these problems. We show that results obtained with the new algorithm are clearly better than the results from the original method.

  12. Weight Representations of Admissible Affine Vertex Algebras

    NASA Astrophysics Data System (ADS)

    Arakawa, Tomoyuki; Futorny, Vyacheslav; Ramirez, Luis Enrique

    2017-08-01

    For an admissible affine vertex algebra {V_k{(\\mathfrak{g})}} of type A, we describe a new family of relaxed highest weight representations of {V_k{(\\mathfrak{g})}}. They are simple quotients of representations of the affine Kac-Moody algebra {\\widehat{\\mathfrak{g}}} induced from the following {\\mathfrak{g}}-modules: (1) generic Gelfand-Tsetlin modules in the principal nilpotent orbit, in particular all such modules induced from {\\mathfrak{sl}_2}; (2) all Gelfand-Tsetlin modules in the principal nilpotent orbit that are induced from {\\mathfrak{sl}_3}; (3) all simple Gelfand-Tsetlin modules over {\\mathfrak{sl}_3}. This in particular gives the classification of all simple positive energy weight representations of {V_k{(\\mathfrak{g})}} with finite dimensional weight spaces for {\\mathfrak{g}=\\mathfrak{sl}_3}.

  13. Affinity Chromatography in Nonionic Detergent Solutions

    NASA Astrophysics Data System (ADS)

    Robinson, Jack B.; Strottmann, James M.; Wick, Donald G.; Stellwagen, Earle

    1980-10-01

    Anionic dye affinity chromatography is commonly unproductive in the presence of nonionic detergents used to extract particulate proteins. Using lactate dehydrogenase as a model protein, Cibacron blue F3GA as a model dye, and Triton X-100 as a model detergent, we find that the dye is encapsulated in nonionic detergent micelles, rendering the dye incapable of ligation with the enzyme. However, the dye can be liberated from the micelles without altering the nonionic detergent concentration by addition of an anionic detergent, such as deoxycholate or sodium dodecyl sulfate, forming mixed anionic/nonionic micelles that displace the anionic dye. Encapsulation of the anionic detergents prevents their activity as protein denaturants. These observations have been successfully translated to the dye affinity chromatography of a detergent extract of brain particulate cyclic nucleotide phosphodiesterase.

  14. Affinity chromatography in nonionic detergent solutions.

    PubMed Central

    Robinson, J B; Strottmann, J M; Wick, D G; Stellwagen, E

    1980-01-01

    Anionic dye affinity chromatography is commonly unproductive in the presence of nonionic detergents used to extract particulate proteins. Using lactate dehydrogenase as a model protein, Cibacron blue F3GA as a model dye, and Triton X-100 as a model detergent, we find that the dye is encapsulated in nonionic detergent micelles, rendering the dye incapable of ligation with the enzyme. However, the dye can be liberatd from the micelles without altering the nonionic detergent concentration by addition of an anionic detergent, such as deoxycholate or sodium dodecyl sulfate, forming mixed anionic/nonionic micelles that displace the anionic dye. Encapsulation of the anionic detergents prevents their activity as protein denaturants. These observations have been successfuly translated to the dye affinity chromatography of a detergent extract of brain particulate cyclic nucleotide phosphodiesterase. PMID:6934517

  15. Affine Non-Local Means Image Denoising.

    PubMed

    Fedorov, Vadim; Ballester, Coloma

    2017-05-01

    This paper presents an extension of the Non-Local Means denoising method, that effectively exploits the affine invariant self-similarities present in the images of real scenes. Our method provides a better image denoising result by grounding on the fact that in many occasions similar patches exist in the image but have undergone a transformation. The proposal uses an affine invariant patch similarity measure that performs an appropriate patch comparison by automatically and intrinsically adapting the size and shape of the patches. As a result, more similar patches are found and appropriately used. We show that this image denoising method achieves top-tier performance in terms of PSNR, outperforming consistently the results of the regular Non-Local Means, and that it provides state-of-the-art qualitative results.

  16. Highly sensitive turn-on fluorescence detection of thrombomodulin based on fluorescence resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Kong, Liyan; Zhu, Jiaming; Wang, Wen; Jin, Lehe; Fu, Yanjiao; Duan, Bohui; Tan, Liang

    2017-02-01

    As an integral glycoprotein on the surface of endothelial cells, thrombomodulin (TM) has very high affinity for thrombin. TM has been regarded to be a marker of endothelial damage since it can be released during endothelial cell injury. In this work, a highly sensitive fluorescence method for the quantitative detection of TM was developed. TM antibody (Ab) and bovine serum albumin (BSA) were bound on gold nanoparticles (AuNPs) to construct BSA-AuNPs-Ab nanocomposites and they were characterized by transmission electron microscope and UV-vis spectrophotometry. The fluorescence of acridine orange (AO) was quenched by the prepared gold nanocomposites based on fluorescence resonance energy transfer (FRET). In the presence of TM, the fluorescence was turned on due to the effective separation of AO from the surface of gold nanocomposites. Under optimum conditions, the enhanced fluorescence intensity displayed a linear relationship with the logarithm of the TM concentration from 0.1 pg mL- 1 to 5 ng mL- 1 with a low detection limit of 12 fg mL- 1. The release of soluble thrombomodulin (sTM) by the injured HUVEC-C cells in the presence of H2O2 was investigated using the proposed method. The released sTM content in the growth medium was found to be increased with the enhancement of contact time of the cells with H2O2.

  17. Fluorescence resonance energy transfer between green fluorescent protein and doxorubicin enabled by DNA nanotechnology.

    PubMed

    Heger, Zbynek; Kominkova, Marketa; Cernei, Natalia; Krejcova, Ludmila; Kopel, Pavel; Zitka, Ondrej; Adam, Vojtech; Kizek, Rene

    2014-12-01

    DNA nanotechnology is a rapidly growing research area, where DNA may be used for wide range of applications such as construction of nanodevices serving for large scale of diverse purposes. Likewise a panel of various purified fluorescent proteins is investigated for their ability to emit their typical fluorescence spectra under influence of particular excitation. Hence these proteins may form ideal donor molecules for assembly of fluorescence resonance emission transfer (FRET) constructions. To extend the application possibilities of fluorescent proteins, while using DNA nanotechnology, we developed nanoconstruction comprising green fluorescent protein (GFP) bound onto surface of surface active nanomaghemite and functionalized with gold nanoparticles. We took advantage of natural affinity between gold and thiol moieties, which were modified to bind DNA fragment. Finally we enclosed doxorubicin into fullerene cages. Doxorubicin intercalated in DNA fragment bound on the particles and thus we were able to connect these parts together. Because GFP behaved as a donor and doxorubicin as an acceptor using excitation wavelength for GFP (395 nm) in emission wavelength of doxorubicin (590 nm) FRET was observed. This nanoconstruction may serve as a double-labeled transporter of doxorubicin guided by force of external magnetic force owing to the presence of nanomaghemite. Further nanomaghemite offers the possibility of using this technology for thermotherapy.

  18. Purification of swine haptoglobin by affinity chromatography.

    PubMed Central

    Eurell, T E; Hall, W F; Bane, D P

    1990-01-01

    A globin-agarose affinity chromatography technique was used to purify swine haptoglobin. This technique provides a highly specific, single-step purification method without the contamination of extraneous serum proteins reported by previous studies. Complex formation between the haptoglobin isolate and swine hemoglobin confirmed that biological activity was maintained during the purification process. Immunoelectrophoretic and Ouchterlony immunodiffusion methods revealed that the swine haptoglobin isolate cross-reacted with polyvalent antisera against human haptoglobin. Images Fig. 2. Fig. 3. PMID:2123414

  19. Negative affinity X-ray photocathodes

    NASA Technical Reports Server (NTRS)

    Vanspeybroeck, L.; Kellogg, E.; Murray, S.; Duckett, S.

    1974-01-01

    A new X-ray image intensifier is described. The device should eventually have a quantum efficiency which is an order of magnitude greater than that of presently available high spatial resolution X-ray detectors, such as microchannel plates. The new intesifier is based upon a GaAs crystal photocathode which is activated to achieve negative electron affinity. Details concerning the detector concept are discussed together with the theoretical relations involved, X-ray data, and optical data.

  20. Affine algebraic groups with periodic components

    SciTech Connect

    Fedotov, Stanislav N

    2009-08-31

    A connected component of an affine algebraic group is called periodic if all its elements have finite order. We give a characterization of periodic components in terms of automorphisms with finitely many fixed points. Also discussed is which connected groups have finite extensions with periodic components. The results are applied to the study of the normalizer of a maximal torus in a simple algebraic group. Bibliography: 10 titles.

  1. Excited state electron affinity calculations for aluminum

    NASA Astrophysics Data System (ADS)

    Hussein, Adnan Yousif

    2017-08-01

    Excited states of negative aluminum ion are reviewed, and calculations of electron affinities of the states (3s^23p^2)^1D and (3s3p^3){^5}{S}° relative to the (3s^23p)^2P° and (3s3p^2)^4P respectively of the neutral aluminum atom are reported in the framework of nonrelativistic configuration interaction (CI) method. A priori selected CI (SCI) with truncation energy error (Bunge in J Chem Phys 125:014107, 2006) and CI by parts (Bunge and Carbó-Dorca in J Chem Phys 125:014108, 2006) are used to approximate the valence nonrelativistic energy. Systematic studies of convergence of electron affinity with respect to the CI excitation level are reported. The calculated value of the electron affinity for ^1D state is 78.675(3) meV. Detailed Calculations on the ^5S°c state reveals that is 1216.8166(3) meV below the ^4P state.

  2. Overview of affinity biosensors in food analysis.

    PubMed

    Patel, Pradip D

    2006-01-01

    The 4 major driving forces that are expected to lead to increased use of affinity biosensors that meet crucial industrial test specifications, e.g., fast, reliable, cost-effective, and use of low-skilled personnel, are (1) strict legislative framework, e.g., recent changes proposed to the European food safety and hygiene legislation, EC No. 178/2002; (2) industrial shift from quality control to quality assurance procedures, e.g., Hazard Analysis Critical Control Point, ensuring effective positioning in the global competitive trade; (3) just-in-time production resulting in 'right' product every time; and (4) consumer demand for safe and wholesome products. The affinity biosensors field has expanded significantly over the past decade, with a projected global biosensors market growth from $6.1 billion in 2004 to $8.2 billion in 2009, representing major industrial sectors (e.g., Pharma, Medicare, and Food). This brief review is targeted to affinity biosensors developed for the food industry and includes research and development leading to biosensors for microbiological and chemical analytes of industrial concern, commercial biosensors products on the market, and examples of future prospects in this diagnostic field.

  3. On constructing purely affine theories with matter

    NASA Astrophysics Data System (ADS)

    Cervantes-Cota, Jorge L.; Liebscher, D.-E.

    2016-08-01

    We explore ways to obtain the very existence of a space-time metric from an action principle that does not refer to it a priori. Although there are reasons to believe that only a non-local theory can viably achieve this goal, we investigate here local theories that start with Schrödinger's purely affine theory (Schrödinger in Space-time structure. Cambridge UP, Cambridge, 1950), where he gave reasons to set the metric proportional to the Ricci curvature aposteriori. When we leave the context of unified field theory, and we couple the non-gravitational matter using some weak equivalence principle, we can show that the propagation of shock waves does not define a lightcone when the purely affine theory is local and avoids the explicit use of the Ricci tensor in realizing the weak equivalence principle. When the Ricci tensor is substituted for the metric, the equations seem to have only a very limited set of solutions. This backs the conviction that viable purely affine theories have to be non-local.

  4. Phosphopeptide Enrichment by Immobilized Metal Affinity Chromatography.

    PubMed

    Thingholm, Tine E; Larsen, Martin R

    2016-01-01

    Immobilized metal affinity chromatography (IMAC) has been the method of choice for phosphopeptide enrichment prior to mass spectrometric analysis for many years and it is still used extensively in many laboratories. Using the affinity of negatively charged phosphate groups towards positively charged metal ions such as Fe(3+), Ga(3+), Al(3+), Zr(4+), and Ti(4+) has made it possible to enrich phosphorylated peptides from peptide samples. However, the selectivity of most of the metal ions is limited, when working with highly complex samples, e.g., whole-cell extracts, resulting in contamination from nonspecific binding of non-phosphorylated peptides. This problem is mainly caused by highly acidic peptides that also share high binding affinity towards these metal ions. By lowering the pH of the loading buffer nonspecific binding can be reduced significantly, however with the risk of reducing specific binding capacity. After binding, the enriched phosphopeptides are released from the metal ions using alkaline buffers of pH 10-11, EDTA, or phosphate-containing buffers. Here we describe a protocol for IMAC using Fe(3+) for phosphopeptide enrichment. The principles are illustrated on a semi-complex peptide mixture.

  5. Methods for determining the genetic affinity of microorganisms and viruses

    NASA Technical Reports Server (NTRS)

    Fox, George E. (Inventor); Willson, III, Richard C. (Inventor); Zhang, Zhengdong (Inventor)

    2012-01-01

    Selecting which sub-sequences in a database of nucleic acid such as 16S rRNA are highly characteristic of particular groupings of bacteria, microorganisms, fungi, etc. on a substantially phylogenetic tree. Also applicable to viruses comprising viral genomic RNA or DNA. A catalogue of highly characteristic sequences identified by this method is assembled to establish the genetic identity of an unknown organism. The characteristic sequences are used to design nucleic acid hybridization probes that include the characteristic sequence or its complement, or are derived from one or more characteristic sequences. A plurality of these characteristic sequences is used in hybridization to determine the phylogenetic tree position of the organism(s) in a sample. Those target organisms represented in the original sequence database and sufficient characteristic sequences can identify to the species or subspecies level. Oligonucleotide arrays of many probes are especially preferred. A hybridization signal can comprise fluorescence, chemiluminescence, or isotopic labeling, etc.; or sequences in a sample can be detected by direct means, e.g. mass spectrometry. The method's characteristic sequences can also be used to design specific PCR primers. The method uniquely identifies the phylogenetic affinity of an unknown organism without requiring prior knowledge of what is present in the sample. Even if the organism has not been previously encountered, the method still provides useful information about which phylogenetic tree bifurcation nodes encompass the organism.

  6. Quantum Chemical Studies on the Prediction of Structures, Charge Distributions and Vibrational Spectra of Some Ni(II), Zn(II), and Cd(II) Iodide Complexes

    NASA Astrophysics Data System (ADS)

    Bardakci, Tayyibe; Kumru, Mustafa; Altun, Ahmet

    2016-06-01

    Transition metal complexes play an important role in coordination chemistry as well as in the formation of metal-based drugs. In order to obtain accurate results for studying these type of complexes quantum chemical studies are performed and especially density functional theory (DFT) has become a promising choice. This talk represents molecular structures, charge distributions and vibrational analysis of Ni(II), Zn(II), and Cd(II) iodide complexes of p-toluidine and m-toluidine by means of DFT. Stable structures of the ligands and the related complexes have been obtained in the gas phase at B3LYP/def2-TZVP level and calculations predict Ni(II) complexes as distorted polymeric octahedral whereas Zn(II) and Cd(II) complexes as distorted tetrahedral geometries. Charge distribution analysis have been performed by means of Mulliken, NBO and APT methods and physically most meaningful method for our compounds is explained. Vibrational spectra of the title compounds are computed from the optimized geometries and theoretical frequencies are compared with the previously obtained experimental data. Since coordination occurs via nitrogen atoms of the free ligands, N-H stretching bands of the ligands are shifted towards lower wavenumbers in the complexes whereas NH_2 wagging and twisting vibrations are shifted towards higher wavenumbers.

  7. Simultaneous determination of Cu(II), Ni(II) and Zn(II) by peroxyoxalate chemiluminescence using Partial Least Squares calibration.

    PubMed

    Murillo Pulgarin, J A; García Bermejo, L F; Carrasquero, A

    2011-01-21

    It was found that the ions Cu(II), Ni(II) and Zn(II) can attenuate the peroxyoxalate chemiluminescence emission, which was used to develop an analytical procedure for the simultaneous determination of these ions in a stopped-flow system using Partial Least Square (PLS) calibration. Acetonitrile was used to dissolve TCPO and to prepare a mixture of fluorescein, H(2)O(2) and imidazole. These solutions were carried using two peristaltic pumps, while a third pump was employed to propel the aqueous solutions of the metallic ions. All solutions were mixed in the quartz cell of a Campsec CL detector connected to a personal computer to register the CL development using the Clarity software. Under the optimum operative conditions each ion produced a specific CL development with maximum intensities at 0.280 min for Zn(II), 0.307 min for Ni(II) and 0.327 min for Cu(II). The latter exhibited the highest inhibition effect. The experimental calibration set was composed of 16 sample solutions using a central design for three component mixtures with scaled values. The proposed method offers the advantages of simplicity, good precision and accuracy for the simultaneous determination of Ni(2+), Cu(2+) and Zn(2+) in water samples.

  8. Reaction of Pb(II) and Zn(II) with Ethyl Linoleate To Form Structured Hybrid Inorganic–Organic Complexes: A Model for Degradation in Historic Paint Films

    DOE PAGES

    MacDonald, Margaret G.; Palmer, Michael R.; Suchomel, Matthew R.; ...

    2016-09-07

    To investigate soap formation in drying oils in historic paints, the reaction between metal acetates (K+, Zn2+, Pb2+) and ethyl linoleate (EL) was studied using optical microscopy, X-ray powder diffraction, and electron microscopy. Pb(II) and Zn(II) react rapidly with EL to form highly structured, spherulitic, luminescent crystallites that aggregate. Evidence from Fourier transform infrared (FTIR) and scanning electron microscopy/energy dispersive X-ray analysis and high-resolution synchrotron powder X-ray diffraction indicates that these are organic-inorganic hybrid complexes or coordination polymers. FTIR absorbance peaks at ca. 1540 cm-1 for Pb(II) and ca. 1580 cm-1 for Zn(II) are consistent with the formation of carboxylatemore » complexes. The complexes formed offer insight into the degradation processes observed in oil paint films, suggesting that soap formation is rapid when metal ions are solubilized and can occur with unsaturated fatty acids that are present in fresh oils. Finally, these complexes may account for the atypical luminescence observed in lead-containing cured oil paint films.« less

  9. Comparative adsorption of Cu(II), Zn(II), and Pb(II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin.

    PubMed

    Chen, Arh-Hwang; Liu, Sheng-Chang; Chen, Chia-Yuan; Chen, Chia-Yun

    2008-06-15

    The crosslinked chitosans synthesized by the homogeneous reaction of chitosan in aqueous acetic acid solution with epichlorohydrin were used to investigate the adsorptions of three metals of Cu(II), Zn(II), and Pb(II) ions in an aqueous solution. The crosslinked chitosan characterized by 13CNMR, SEM, and elemental analysis, and the effects of pH and anion on the adsorption capacity were carried out. The dynamical study demonstrated that the adsorption process was followed the second-order kinetic equation. The results obtained from the equilibrium isotherms adsorption studies of three metals of Cu(II), Zn(II), and Pb(II) ions by being analyzed in three adsorption models, namely, Langmuir, Freundlich, and Dubinnin-Radushkevich isotherm equations, indicated to be well fitted to the Langmuir isotherm equation under the concentration range studied, by comparing the linear correlation coefficients. The order of the adsorption capacity (Qm) for three metal ions was as follows: Cu2+>Pb2+>Zn2+. This technique for syntheses of the crosslinked chitosans with epichlorohydrin via the homogeneous reaction in aqueous acetic acid solution showed that the adsorptions of three metal ions in aqueous solution were followed the monolayer coverage of the adsorbents through physical adsorption phenomena.

  10. Reaction of Pb(II) and Zn(II) with Ethyl Linoleate To Form Structured Hybrid Inorganic–Organic Complexes: A Model for Degradation in Historic Paint Films

    SciTech Connect

    MacDonald, Margaret G.; Palmer, Michael R.; Suchomel, Matthew R.; Berrie, Barbara H.

    2016-09-23

    To investigate soap formation in drying oils in historic paints, the reaction between metal acetates (K+, Zn2+, Pb2+) and ethyl linoleate (EL) was studied using optical microscopy, X-ray powder diffraction, and electron microscopy. Pb(II) and Zn(II) react rapidly with EL to form highly structured, spherulitic, luminescent crystallites that aggregate. Evidence from Fourier transform infrared (FTIR) and scanning electron microscopy/energy dispersive X-ray analysis and high-resolution synchrotron powder X-ray diffraction indicates that these are organic–inorganic hybrid complexes or coordination polymers. FTIR absorbance peaks at ca. 1540 cm–1 for Pb(II) and ca. 1580 cm–1 for Zn(II) are consistent with the formation of carboxylate complexes. The complexes formed offer insight into the degradation processes observed in oil paint films, suggesting that soap formation is rapid when metal ions are solubilized and can occur with unsaturated fatty acids that are present in fresh oils. These complexes may account for the atypical luminescence observed in lead-containing cured oil paint films.

  11. Utilization of water hyacinth weed (Eichhornia crassipes) for the removal of Pb(II), Cd(II) and Zn(II) from aquatic environments: an adsorption isotherm study.

    PubMed

    Mahamadi, C; Nharingo, T

    2010-10-01

    The potential of Eichhornia crassipes biomass for the adsorption of three metal ions, Pb(II), Cd(II) and Zn(II), from aqueous solution was studied using five two-parameter adsorption isotherm equations--Langmuir, Freundlich, Flory-Huggins, Temkin and Redlich-Peterson isotherms. The equilibrium adsorption data were obtained at different initial metal ion concentrations (C0 = 10-60 mg/L), 3 h contact time, 30 degrees C temperature, a dosage of 2 g/L, agitation rate of 150 rpm and buffered at pH 4.84. Langmuir isotherms gave monolayer sorption capacities (qm) of 26.32, 12.60 and 12.55 mg/g for Pb(II), Cd(II) and Zn(II) metal ions, respectively. The same trend of metal uptake was indicated by plots of sorption favourability (S(F)). Negative values of deltaGads0 indicated that the adsorption was spontaneous and exothermic in nature, and values from the Temkin isotherm constant, bT, suggested a mechanism consistent with an ion-exchange process. The results from these studies indicated that E. crassipes biomass has promising potential for the removal of toxic metals from aquatic environments.

  12. Synthesis, characterization and biological activity of Cu(II), Zn(II) and Re(I) complexes derived from S-benzyldithiocarbazate and 3-acetylcoumarin.

    PubMed

    Low, May Lee; Paulus, Georgiana; Dorlet, Pierre; Guillot, Régis; Rosli, Rozita; Delsuc, Nicolas; Crouse, Karen A; Policar, Clotilde

    2015-06-01

    Cu(II), Zn(II) and Re(I) complexes have been synthesized with the Schiff base, N'-[1-(2-oxo-2H-chromen-3-yl)-ethylidene]-hydrazinecarbodithioic acid benzyl ester (SBCM-H) which was prepared by condensation of S-benzyldithiocarbazate and 3-acetylcoumarin. The metal complexes were characterized on the basis of various physico-chemical and spectroscopic techniques including elemental analysis and electrochemical studies, and FT-IR, UV-Vis, NMR, EPR and mass spectroscopy. The Schiff base was found to behave as a bidentate ligand coordinating with Cu(II) and Zn(II) in the thiolate form with 1:2 metal to ligand stoichiometry. Crystals suitable for X-ray diffractometry (XRD) were obtained from the reaction of ReCl(CO)5 with SBCM-H forming a centrosymmetric dimeric complex Re2L2(CO)6 linked by Re-S-Re bridges, where S is the thiolate sulfur of the N,S-bidentate ligand. This Re(I) complex is the first metal carbonyl complex with a bidentate dithiocarbazate ligand to have been characterized by XRD. Cytotoxicity assays revealed enhancement of the bioactivity of SBCM-H upon complexation. Both Cu(II) and Re(I) complexes are found to be active against human breast adenocarcinoma cancer cell lines MDA-MB-231 and MCF-7. TOC diagram.

  13. Energy-transfer fluorescent reagents for DNA analyses.

    PubMed

    Glazer, A N; Mathies, R A

    1997-02-01

    Fluorescence resonance energy transfer has facilitated the development of a new class of high-performance fluorescent labeling reagents for multiplex analyses of nucleic acids. The enhanced emission of energy transfer (ET) primers has provided a decadic improvement in the performance of automated DNA sequencers. The emission spectral purity of ET primers permits the development of robust multiplex diagnostic methods for the detection of PCR products. High affinity bifunctional intercalation reagents containing ET-coupled dyes are also being used for high-performance multiplex assays of double-stranded DNA when noncovalent labeling is preferred.

  14. Fluorescent fiber diagnostics

    DOEpatents

    Toeppen, John S.

    1994-10-04

    A fluorescent fiber (13) having a doped core (16) is pumped (11) by light (18) of a relatively short wavelength to produce fluorescence at a longer wavelength that is detected by detector (24). The level of fluorescence is monitored (26) and evaluated to provide information as to the excitation of the fiber (13) or the environment thereof. In particular, the level of intensity of the detected fluorescence may be used to measure the intensity of a light beam (18) passing axially through an optical fiber system (12) (FIG. 1 ), or the intensity of a light beam (46) passing radially through a fluorescent fiber (13) (FIG. 2 ), or the level of a fluid (32) in a tank (31) (FIG. 3 ), or a scintillation event (37) in a fluorescent fiber (13) pumped to produce amplification of the scintillation event (FIG. 4 ).

  15. Fluorescent fiber diagnostics

    DOEpatents

    Toeppen, John S.

    1994-01-01

    A fluorescent fiber (13) having a doped core (16) is pumped (11) by light (18) of a relatively short wavelength to produce fluorescence at a longer wavelength that is detected by detector (24). The level of fluorescence is monitored (26) and evaluated to provide information as to the excitation of the fiber (13) or the environment thereof. In particular, the level of intensity of the detected fluorescence may be used to measure the intensity of a light beam (18) passing axially through an optical fiber system (12) (FIG. 1 ), or the intensity of a light beam (46) passing radially through a fluorescent fiber (13) (FIG. 2 ), or the level of a fluid (32) in a tank (31) (FIG. 3 ), or a scintillation event (37) in a fluorescent fiber (13) pumped to produce amplification of the scintillation event (FIG. 4 ).

  16. Holograms with fluorescent benzyl

    NASA Astrophysics Data System (ADS)

    Olivares-Pérez, A.; Toxqui-López, S.; Fuentes-Tapia, I.; Dorantes-Garcia, V.

    2011-02-01

    Behavior study of the diffraction efficiency parameter from holographic gratings, with fluorescents inks such as benzyls. We have been able to make holograms with substances such as fluorescence to blue laser to make transmissions holograms using ammonium dichromate as photo-sensibilizer and polyvinyl alcohol (PVA) as matrix. Ammonium dichromate inhibit the fluorescence propertied of inks, mixed in a (PVA) matrix, but we show the results of painting hologram method with fluorescents inks and describe how the diffraction efficiency parameter changes as a function of ink absorbed by the emulsion recorded with gratings with a He-Cd laser at 442nm and we later were painting with fluorescent ink, interesting fluorescence characteristic to the hologram.

  17. Fluorescence Live Cell Imaging

    PubMed Central

    Ettinger, Andreas

    2014-01-01

    Fluorescence microscopy of live cells has become an integral part of modern cell biology. Fluorescent protein tags, live cell dyes, and other methods to fluorescently label proteins of interest provide a range of tools to investigate virtually any cellular process under the microscope. The two main experimental challenges in collecting meaningful live cell microscopy data are to minimize photodamage while retaining a useful signal-to-noise ratio, and to provide a suitable environment for cells or tissues to replicate physiological cell dynamics. This chapter aims to give a general overview on microscope design choices critical for fluorescence live cell imaging that apply to most fluorescence microscopy modalities, and on environmental control with a focus on mammalian tissue culture cells. In addition, we provide guidance on how to design and evaluate fluorescent protein constructs by spinning disk confocal microscopy. PMID:24974023

  18. Fluorescent minerals, a review

    USGS Publications Warehouse

    Modreski, P.J.; Aumente-Modreski, R.

    1996-01-01

    Fluorescent minerals are more than just an attractive novelty, and collecting them is a speciality for thousands of individuals who appreciate their beauty, rarity, and scientific value. Fluorescent properties can be used as an aid to mineral identification, locality determination, and distinction between natural and synthetic gemstones. This article gives an overview of those aspects of fluorescence that are of most interest to collectors, hobbyists, and mineralogists. -from Authors

  19. Engineering of Bispecific Affinity Proteins with High Affinity for ERBB2 and Adaptable Binding to Albumin

    PubMed Central

    Nilvebrant, Johan; Åstrand, Mikael; Georgieva-Kotseva, Maria; Björnmalm, Mattias; Löfblom, John; Hober, Sophia

    2014-01-01

    The epidermal growth factor receptor 2, ERBB2, is a well-validated target for cancer diagnostics and therapy. Recent studies suggest that the over-expression of this receptor in various cancers might also be exploited for antibody-based payload delivery, e.g. antibody drug conjugates. In such strategies, the full-length antibody format is probably not required for therapeutic effect and smaller tumor-specific affinity proteins might be an alternative. However, small proteins and peptides generally suffer from fast excretion through the kidneys, and thereby require frequent administration in order to maintain a therapeutic concentration. In an attempt aimed at combining ERBB2-targeting with antibody-like pharmacokinetic properties in a small protein format, we have engineered bispecific ERBB2-binding proteins that are based on a small albumin-binding domain. Phage display selection against ERBB2 was used for identification of a lead candidate, followed by affinity maturation using second-generation libraries. Cell surface display and flow-cytometric sorting allowed stringent selection of top candidates from pools pre-enriched by phage display. Several affinity-matured molecules were shown to bind human ERBB2 with sub-nanomolar affinity while retaining the interaction with human serum albumin. Moreover, parallel selections against ERBB2 in the presence of human serum albumin identified several amino acid substitutions that dramatically modulate the albumin affinity, which could provide a convenient means to control the pharmacokinetics. The new affinity proteins competed for ERBB2-binding with the monoclonal antibody trastuzumab and recognized the native receptor on a human cancer cell line. Hence, high affinity tumor targeting and tunable albumin binding were combined in one small adaptable protein. PMID:25089830

  20. Monte Carlo fluorescence microtomography

    NASA Astrophysics Data System (ADS)

    Cong, Alexander X.; Hofmann, Matthias C.; Cong, Wenxiang; Xu, Yong; Wang, Ge

    2011-07-01

    Fluorescence microscopy allows real-time monitoring of optical molecular probes for disease characterization, drug development, and tissue regeneration. However, when a biological sample is thicker than 1 mm, intense scattering of light would significantly degrade the spatial resolution of fluorescence microscopy. In this paper, we develop a fluorescence microtomography technique that utilizes the Monte Carlo method to image fluorescence reporters in thick biological samples. This approach is based on an l0-regularized tomography model and provides an excellent solution. Our studies on biomimetic tissue scaffolds have demonstrated that the proposed approach is capable of localizing and quantifying the distribution of optical molecular probe accurately and reliably.

  1. Fluorescence lifetime imaging ophthalmoscopy.

    PubMed

    Dysli, Chantal; Wolf, Sebastian; Berezin, Mikhail Y; Sauer, Lydia; Hammer, Martin; Zinkernagel, Martin S

    2017-09-01

    Imaging techniques based on retinal autofluorescence have found broad applications in ophthalmology because they are extremely sensitive and noninvasive. Conventional fundus autofluorescence imaging measures fluorescence intensity of endogenous retinal fluorophores. It mainly derives its signal from lipofuscin at the level of the retinal pigment epithelium. Fundus autofluorescence, however, can not only be characterized by the spatial distribution of the fluorescence intensity or emission spectrum, but also by a characteristic fluorescence lifetime function. The fluorescence lifetime is the average amount of time a fluorophore remains in the excited state following excitation. Fluorescence lifetime imaging ophthalmoscopy (FLIO) is an emerging imaging modality for in vivo measurement of lifetimes of endogenous retinal fluorophores. Recent reports in this field have contributed to our understanding of the pathophysiology of various macular and retinal diseases. Within this review, the basic concept of fluorescence lifetime imaging is provided. It includes technical background information and correlation with in vitro measurements of individual retinal metabolites. In a second part, clinical applications of fluorescence lifetime imaging and fluorescence lifetime features of selected retinal diseases such as Stargardt disease, age-related macular degeneration, choroideremia, central serous chorioretinopathy, macular holes, diabetic retinopathy, and retinal artery occlusion are discussed. Potential areas of use for fluorescence lifetime imaging ophthalmoscopy will be outlined at the end of this review. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Changes of serum albumin affinity for aspirin induced by fatty acid.

    PubMed

    Bojko, B; Sułkowska, A; Maciazek, M; Równicka, J; Njau, F; Sułkowski, W W

    2008-05-01

    Saturated fatty acids such as myristic acid play an important role in the pathogenesis of cardiovascular disorders. Using the quenching fluorescence method we examined the influence of myristate on the changes of transporting protein affinity towards aspirin-the most popular anticoagulant. Our results showed that the presence of the myristic acid alters the stability of the anticoagulant-albumin complex. The ranges of [myristate]/[albumin] molar ratio at which the stability of drug-protein complex increases or decreases were determined. The differences in interaction between ligands and human or bovine serum albumins were identified. The competition in binding of ligands with these albumins was also described.

  3. Complementary DNA display selection of high-affinity peptides binding the vacuolating toxin (VacA) of Helicobacter pylori.

    PubMed

    Hayakawa, Yumiko; Matsuno, Mitsuhiro; Tanaka, Makoto; Wada, Akihiro; Kitamura, Koichiro; Takei, Osamu; Sasaki, Ryuzo; Mizukami, Tamio; Hasegawa, Makoto

    2015-09-01

    Artificial peptides designed for molecular recognition of a bacterial toxin have been developed. Vacuolating cytotoxin A protein (VacA) is a major virulence factor of Helicobacter pylori, a gram-negative microaerophilic bacterium inhabiting the upper gastrointestinal tract, particularly the stomach. This study attempted to identify specific peptide sequences with high affinity for VacA using systematic directed evolution in vitro, a cDNA display method. A surface plasmon resonance-based biosensor and fluorescence correlation spectroscopy to examine binding of peptides with VacA identified a peptide (GRVNQRL) with high affinity. Cyclization of the peptide by attaching cysteine residues to both termini improved its binding affinity to VacA, with a dissociation constant (Kd ) of 58 nm. This study describes a new strategy for the development of artificial functional peptides, which are promising materials in biochemical analyses and medical applications. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  4. Topological and affine classification of complete noncompact flat 4-manifolds

    NASA Astrophysics Data System (ADS)

    Sadowski, Michał

    2008-11-01

    In this paper we give topological and affine classification of complete noncompact flat 4-manifolds. In particular, we show that the number of diffeomorphism classes of them is equal to 44. The affine classification uses the results of [M. Sadowski, Affinely equivalent complete flat manifolds, Cent. Eur. J. Math. 2 (2) (2004) 332-338]. The affine and the topological equivalence classes are the same for flat manifolds not homotopy equivalent to S1,T2 or the Klein bottle.

  5. Fluorescent and Lanthanide Labeling for Ligand Screens, Assays, and Imaging

    PubMed Central

    Josan, Jatinder S.; De Silva, Channa R.; Yoo, Byunghee; Lynch, Ronald M.; Pagel, Mark D.; Vagner, Josef; Hruby, Victor J.

    2012-01-01

    The use of fluorescent (or luminescent) and metal contrast agents in high-throughput screens, in vitro assays, and molecular imaging procedures has rapidly expanded in recent years. Here we describe the development and utility of high-affinity ligands for cancer theranostics and other in vitro screening studies. In this context, we also illustrate the syntheses and use of heteromultivalent ligands as targeted imaging agents. PMID:21318902

  6. Solution assembly of the pseudo-high affinity and intermediate affinity interleukin-2 receptor complexes.

    PubMed Central

    Wu, Z.; Goldstein, B.; Laue, T. M.; Liparoto, S. F.; Nemeth, M. J.; Ciardelli, T. L.

    1999-01-01

    The high affinity interleukin-2 receptor is composed of three cell surface subunits, IL-2Ralpha, IL-2Rbeta, and IL-2Rgamma. Functional forms of the IL-2 receptor exist, however, that enlist only two of the three subunits. On activated T-cells, the alpha- and beta-subunits combine as a preformed heterodimer (the pseudo-high affinity receptor) that serves to capture IL-2. On a subpopulation of natural killer cells, the beta- and gamma-subunits interact in a ligand-dependent manner to form the intermediate affinity receptor site. Previously, we have demonstrated the feasibility of employing coiled-coil molecular recognition for the solution assembly of a heteromeric IL-2 receptor complex. In that study, although the receptor was functional, the coiled-coil complex was a trimer rather than the desired heterodimer. We have now redesigned the hydrophobic heptad sequences of the coiled-coils to generate soluble forms of both the pseudo-high affinity and the intermediate affinity heterodimeric IL-2 receptors. The properties of these complexes were examined and their relevance to the physiological IL-2 receptor mechanism is discussed. PMID:10091650

  7. Integrin avidity regulation: are changes in affinity and conformation underemphasized?

    PubMed

    Carman, Christopher V; Springer, Timothy A

    2003-10-01

    Integrins play critical roles in development, wound healing, immunity and cancer. Central to their function is their unique ability to modulate dynamically their adhesiveness through both affinity- and valency-based mechanisms. Recent advances have shed light on the structural basis for affinity regulation and on the signaling mechanisms responsible for both affinity and valency modes of regulation.

  8. Enhancing the Affinity of Anti-Human α-Thrombin 15-mer DNA Aptamer and Anti-Immunoglobulin E Aptamer by PolyT Extension.

    PubMed

    Bai, Yunlong; Li, Yapiao; Zhang, Dapeng; Wang, Hailin; Zhao, Qiang

    2017-09-05

    Aptamer affinity capillary electrophoresis-laser-induced fluorescence (CE-LIF) for protein detection takes advantage of aptamers for their ease of synthesis and labeling, small size, and having many negative charges. Its success relies on the high binding affinity of aptamers. One 15-mer DNA aptamer (5'-GGT TGG TGT GGT TGG-3', Apt15) shows desirable specificity for human α-thrombin, an important enzyme with multiple functions in blood. However, Apt15 has weak binding affinity, and the use of Apt15 in affinity CE-LIF analysis remains challenging. Here we reported that extension of Apt15 at the 3'-end with a polyT tail having length of 18 T or longer significantly enhanced its affinity and enabled a well-isolated and stable peak for thrombin-aptamer complex in affinity CE. It was likely that the improvement of binding affinity resulted from double binding, an additional interaction of the polyT tail with thrombin in addition to the Apt15 section binding to thrombin. With dye-labeled Apt15 having a T25 tail, we achieved detection of thrombin at concentrations as low as 0.1 nM by affinity CE-LIF. This aptamer probe specifically bound to human α-thrombin, showing negligible affinity for human β- and γ-thrombin, which are proteolyzed derivatives of human alpha α-thrombin and share similar structure. This strategy of adding a polyT extension also enhanced the binding affinity of anti-immunoglobulin E aptamer in CE-LIF analysis, showing that the affinity enhancement approach is not limited to the thrombin-binding aptamer and has potential for more applications in bioanalysis.

  9. Affinity maturation of single-chain variable fragment specific for aflatoxin B(1) using yeast surface display.

    PubMed

    Min, Won-Ki; Kim, Sung-Gun; Seo, Jin-Ho

    2015-12-01

    As aflatoxin B1 is one of the most toxic mycotoxins, it is important to detect and to quantify aflatoxin B1 accurately by immunological methods. To enhance aflatoxin B1-binding affinity of the single-chain variable fragment, yeast surface display technique combined with fluorescence-activated cell sorting was applied. A randomly mutated scFv library was subjected to 4 rounds of fluorescence-activated cell sorting, resulting in isolation of 5 scFv variants showing an affinity improvement compared to the parental wild type scFv. The best scFv with a 9-fold improvement in affinity for aflatoxin B1 exhibited similar specificity to the monoclonal antibody. Most of the mutations in scFv-M37 were located outside of the canonical antigen-contact loops, suggesting that its affinity improvement might be driven by an allosteric effect inducing scFv-M37 to form a more favorable binding pocket for aflatoxin B1 than the wild type scFv.

  10. Using Fluorophore-labeled Oligonucleotides to Measure Affinities of Protein-DNA Interactions

    PubMed Central

    Anderson, Brian J.; Larkin, Chris; Guja, Kip; Schildbach, Joel F.

    2011-01-01

    Changes in fluorescence emission intensity and anisotropy can reflect changes in the environment and molecular motion of a fluorophore. Researchers can capitalize on these characteristics to assess the affinity and specificity of DNA-binding proteins using fluorophore-labeled oligonucleotides. While there are many advantages to measuring binding using fluorescent oligonucleotides, there are also some distinct disadvantages. Here we describe some of the relevant issues for the novice, illustrating key points using data collected with the F plasmid relaxase domain and a variety of labeled oligonucleotides. Topics include selection of a fluorophore, experimental design using a fluorometer equipped with an automatic titrating unit, and analysis of direct binding and competition assays. PMID:19152864

  11. A genetically encoded fluorescent reporter of ATP/ADP ratio

    PubMed Central

    Berg, Jim; Hung, Yin Pun; Yellen, Gary

    2008-01-01

    A fluorescent sensor of adenylate nucleotides was constructed by combining a circularly permuted variant of green fluorescent protein with a bacterial regulatory protein, GlnK1, from Methanococcus jannaschii. The affinity for Mg-ATP is below 100 nM, as seen for the other members of the bacterial PII regulator family – a surprisingly high affinity given normal intracellular [ATP] in the millimolar range. ADP binds to the same site, competing with Mg-ATP but producing a smaller change in fluorescence. With normal physiological concentrations of ATP and ADP, the binding site is saturated, but competition between the two substrates causes the sensor to behave as a nearly ideal reporter of the ATP/ADP concentration ratio. This principle for sensing the ratio of two analytes by competition at a high affinity site probably underlies the normal functioning of PII regulatory proteins. The engineered sensor, Perceval, can be used to monitor the ATP/ADP ratio during live cell imaging. PMID:19122669

  12. Application of silica fume as a new SP-extractor for trace determination of Zn(II) and Cd(II) in pharmaceutical and environmental samples by square-wave anodic stripping voltammetry

    NASA Astrophysics Data System (ADS)

    Ahmed, Salwa A.; Gaber, Ahmed A. Abdel; Rahim, Asmaa M. Abdel

    2015-04-01

    In this work, silica fume (SF) is used as a solid-phase extractor for extraction of Zn(II) and Cd(II) from aqueous solutions. Characterization of SF is performed by Fourier transform infrared, X-ray diffraction, transmission and scanning electron microscopy. The optimum experimental conditions for the two metal ions are investigated using batch and column techniques. The maximum adsorption capacity values are found to be 54.13 and 121.28 mg g-1 at the optimum pH 6.0 and 8.0 for Zn(II) and Cd(II), respectively. The equilibrium data are analyzed using the Langmuir, Freundlich, and Temkin isotherms by nonlinear regression analysis. Also, the kinetics analysis revealed that the overall adsorption process is successfully fitted with the pseudo-second-order model. The method is applied for determination of the target metal ions in pharmaceutical and environmental samples using square-wave anodic stripping voltammetry. The limit of detection (LOD) values are 0.102 and 1.43 × 10-3 mg L-1 for Zn(II) and Cd(II), respectively. The percentage recovery values are 98.8-100.5 % which indicate the success of the proposed method for determination of Zn(II) and Cd(II) without interfering effects.

  13. Influence of different mineral and Organic pesticide treatments on Cd(II), Cu(II), Pb(II), and Zn(II) contents determined by derivative potentiometric stripping analysis in Italian white and red wines.

    PubMed

    Salvo, Francesco; La Pera, Lara; Di Bella, Giuseppa; Nicotina, Mariano; Dugo, Giacomo

    2003-02-12

    This paper deals with the use of derivative potentiometric stripping analysis (dPSA) as a rapid and precise method to determine Cd(II), Cu(II), Pb(II), and Zn(II) levels in red and white wine samples from Sicily, Campania, and Tuscany and to investigate the possible connection between the content of these metals and the pesticide treatments used in vine-growing to control plant diseases and pests. dPSA allowed direct quantitation of heavy metals in acidified wines without any sample pretreatment. Mean recoveries of Cd(II), Cu(II), Pb(II), and Zn(II) ranged from 95.5 to 99.2% for white wine samples and from 96.1 to 100.0% for red wine samples. The obtained results showed that Cd(II) was not found in any sample and that Cu(II), Pb(II), and Zn(II) levels were always lower than the toxicity limits in both fungicide- and water-treated wines. Nevertheless, the contents of metals were increased in samples from organic and inorganic pesticides treatment with respect to the water-treated samples. In particular, quinoxyfen, dinocap-penconazole, and dinocap applications considerably increased Cu(II) and Zn(II) contents in white and red wines. The levels of lead were significantly raised by azoxystrobin and sulfur treatments.

  14. Application of silica fume as a new SP-extractor for trace determination of Zn(II) and Cd(II) in pharmaceutical and environmental samples by square-wave anodic stripping voltammetry

    NASA Astrophysics Data System (ADS)

    Ahmed, Salwa A.; Gaber, Ahmed A. Abdel; Rahim, Asmaa M. Abdel

    2017-05-01

    In this work, silica fume (SF) is used as a solid-phase extractor for extraction of Zn(II) and Cd(II) from aqueous solutions. Characterization of SF is performed by Fourier transform infrared, X-ray diffraction, transmission and scanning electron microscopy. The optimum experimental conditions for the two metal ions are investigated using batch and column techniques. The maximum adsorption capacity values are found to be 54.13 and 121.28 mg g-1 at the optimum pH 6.0 and 8.0 for Zn(II) and Cd(II), respectively. The equilibrium data are analyzed using the Langmuir, Freundlich, and Temkin isotherms by nonlinear regression analysis. Also, the kinetics analysis revealed that the overall adsorption process is successfully fitted with the pseudo-second-order model. The method is applied for determination of the target metal ions in pharmaceutical and environmental samples using square-wave anodic stripping voltammetry. The limit of detection (LOD) values are 0.102 and 1.43 × 10-3 mg L-1 for Zn(II) and Cd(II), respectively. The percentage recovery values are 98.8-100.5 % which indicate the success of the proposed method for determination of Zn(II) and Cd(II) without interfering effects.

  15. Spectroscopic analysis on structure-affinity relationship in the interactions of different oleanane-type triterpenoids with bovine serum albumin.

    PubMed

    Hou, Jia; Wang, Zhenzhong; Yue, Ying; Li, Qian; Shao, Shijun

    2015-09-01

    Oleanane-type triterpenoids serve as an important group of plant secondary metabolites with a variety of biological activities and the C-3 position substitution pattern is a significant structural feature for their biological activities. Three selected oleanane-type triterpenoids (glycyrrhizin, glycyrrhetinic acid, and carbenoxolone) bearing different substituents (glucuronic acid dimer, hydroxyl, and succinyl groups) at the C-3 position were studied for their affinities to bind bovine serum albumin (BSA) by steady-state fluorescence, synchronous, three-dimensional fluorescence and ultraviolet-visible (UV-vis) absorption spectra. The binding mechanism of the triterpenoids to BSA is due to the formation of the triterpenoids-BSA complex and the binding affinity is strongest for carbenoxolone and ranked in the order carbenoxolone > glycyrrhetinic acid > glycyrrhizin. The thermodynamic parameters calculated at different temperatures showed that triterpenoids binding to BSA primarily depended on hydrophobic interaction and hydrogen bonding. The distance between the bound triterpenoid and BSA was determined on the basis of the Förster's energy transfer theory. Displacement experiments using phenylbutazone and ibuprofen showed the binding site of triterpenoids on BSA at subdomain IIA (Sudlow's site I). The effect of triterpenoids on BSA conformation was analyzed by UV-vis absorption, and synchronous and three-dimensional fluorescence spectra. These results revealed that the C-3 position substitution pattern significantly affects the structure-affinity relationships of oleanane-type triterpenoid binding to BSA and further affects the bioavailability of triterpenoids in the blood circulatory system. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Binding of the Grb2 SH2 domain to phosphotyrosine motifs does not change the affinity of its SH3 domains for Sos proline-rich motifs.

    PubMed

    Cussac, D; Frech, M; Chardin, P

    1994-09-01

    Phosphotyrosine peptide binding to Grb2 induces tryptophan fluorescence changes in the Src homology 2 (SH2) domain. Affinities are in the nanomolar range, the Shc peptide having the highest affinity, followed by peptides mimicking Grb2 binding sites on EGF and HGF receptors, the putative sites on insulin and IGF-1 receptors having much lower affinities. Proline-rich peptide binding to the SH3 domains induces fluorescence changes mainly in the C-terminal SH3. Affinities are in the micromolar range, the highest affinity peptides mimicking the first proline-rich motif of the Sos C-terminus. Additional residues before this PVPPPVPP motif provide a minor contribution to the binding, but the two residues after this motif are important and may contribute to specificity. The affinity of each SH3 for each proline-rich motif is too low to account for the high stability of the Grb2-Sos complex, suggesting that Grb2 recognizes other structural features in the Sos C-terminus. Binding of a phosphotyrosine peptide to the SH2 has no effect on the SH3s. Thus the binding of Grb2 to a receptor or to an associated protein phosphorylated on tyrosines is unlikely to activate the exchange factor activity of Sos through a conformational change transmitted from the SH2 to the SH3 domains.

  17. Binding patterns and structure-affinity relationships of food azo dyes with lysozyme: a multitechnique approach.

    PubMed

    Peng, Wei; Ding, Fei; Peng, Yu-Kui; Jiang, Yu-Ting; Zhang, Li

    2013-12-18

    Food dyes serve to beguile consumers: they are often used to imitate the presence of healthful, colorful food produce such as fruits and vegetables. But considering the hurtful impact of these chemicals on the human body, it is time to thoroughly uncover the toxicity of these food dyes at the molecular level. In the present contribution, we have examined the molecular reactions of protein lysozyme with model food azo compound Color Index (C.I.) Acid Red 2 and its analogues C.I. Acid Orange 52, Solvent Yellow 2, and the core structure of azobenzene using a combination of biophysical methods at physiological conditions. Fluorescence, circular dichroism (CD), time-resolved fluorescence, UV-vis absorption as well as computer-aided molecular modeling were used to analyze food dye affinity, binding mode, energy transfer, and the effects of food dye complexation on lysozyme stability and conformation. Fluorescence emission spectra indicate complex formation at 10(-5) M dye concentration, and this corroborates time-resolved fluorescence results showing the diminution in the tryptophan (Trp) fluorescence mainly via a static type (KSV = 1.505 × 10(4) M(-1)) and Förster energy transfer. Structural analysis displayed the participation of several amino acid residues in food dye protein adducts, with hydrogen bonds, π-π and cation-π interactions, but the conformation of lysozyme was unchanged in the process, as derived from fluorescence emission, far-UV CD, and synchronous fluorescence spectra. The overall affinity of food dye is 10(4) M(-1) and there exists only one kind of binding domain in protein for food dye. These data are consistent with hydrophobic probe 8-anilino-1-naphthalenesulfonic acid (ANS) displacement, and molecular modeling manifesting the food dye binding patch was near to Trp-62 and Trp-63 residues of lysozyme. On the basis of the computational analyses, we determine that the type of substituent on the azobenzene structure has a powerful influence on the

  18. Synthesis of biocompatible glycodendrimer based on fluorescent perylene bisimides and its bioimaging.

    PubMed

    Wang, Ke-Rang; An, Hong-Wei; Rong, Rui-Xue; Cao, Zhi-Ran; Li, Xiao-Liu

    2014-04-01

    A novel water-soluble fluorescent glycodendrimer based on perylene bisimides is synthesized, which exhibits high fluorescence quantum yield of 54%. While the binding interactions of PBI-Man with Concanavalin A (Con A) are studied by fluorescence spectra and CD spectra, which show strong binding affinity for Con A with the binding constant of 3.8 × 10(7) m(-1) for monomeric mannose, nearly four orders of magnitude higher affinity than the monovalent mannose ligand. Furthermore, the fluorescence imaging of macrophage cell with PBI-Man is investigated, and shows selectively binding interaction with the mannose receptor-medicated cell entry. Moreover, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) activities of PBI-Man show that PBI-Man as a biocompatible agent is noncytotoxic to living cells.

  19. Using Fluorescence Spectroscopy to Evaluate Hill Parameters and Heterogeneity of Ligand Binding to Cytochromes P450

    NASA Astrophysics Data System (ADS)

    Marsch, Glenn A.; Carlson, Benjamin; Hansen, Jennifer; Mihelc, Elaine; Martin, Martha V.; Guengerich, F. Peter

    2009-03-01

    The cytochromes P450 (CYPs) are hemoproteins that oxidize many drugs and carcinogens. Binding interactions of two CYPs with Nile Red, pyrene, and alpha-naphthoflavone were studied using fluorescence quenching. Upon interaction with CYPs, fluorescence from pyrene excited-state dimers was quenched more efficiently than fluorescence from pyrene monomers. Quenching data was fit to the Hill equation to determine binding affinities and the Hill parameter n for the interaction of substrates with CYPs. All ligands showed strong binding to the CYPs, especially alpha-naphthoflavone, but exhibited little or no cooperativity in the interaction. Modified Stern-Volmer plots were used to confirm binding affinities, and suggested heterogeneous populations of amino acid fluorophores. Fluorescence anisotropy experiments suggest that CYP molecules tumble more rapidly when alpha-naphthoflavone is added.

  20. Fluorescence in insects

    NASA Astrophysics Data System (ADS)

    Welch, Victoria L.; Van Hooijdonk, Eloise; Intrater, Nurit; Vigneron, Jean-Pol

    2012-10-01

    Fluorescent molecules are much in demand for biosensors, solar cells, LEDs and VCSEL diodes, therefore, considerable efforts have been expended in designing and tailoring fluorescence to specific technical applications. However, naturally occurring fluorescence of diverse types has been reported from a wide array of living organisms: most famously, the jellyfish Aequorea victoria, but also in over 100 species of coral and in the cuticle of scorpions, where it is the rule, rather than the exception. Despite the plethora of known insect species, comparatively few quantitative studies have been made of insect fluorescence. Because of the potential applications of natural fluorescence, studies in this field have relevance to both physics and biology. Therefore, in this paper, we review the literature on insect fluorescence, before documenting its occurrence in the longhorn beetles Sternotomis virescens, Sternotomis variabilis var. semi rufescens, Anoplophora elegans and Stellognatha maculata, the tiger beetles Cicindela maritima and Cicindela germanica and the weevil Pachyrrhynchus gemmatus purpureus. Optical features of insect fluorescence, including emitted wavelength, molecular ageing and naturally occurring combinations of fluorescence with bioluminescence and colour-producing structures are discussed.

  1. Fluorescent Detection of Flaws.

    DTIC Science & Technology

    In a method for detecting flaws in the surface of a workpiece, initially microcapsules containing a fluorescent dye are deposited on the surface...After removal of excess microcapsules from the surface in order to reduce background fluorescence, the surface is visually inspected under ultraviolet

  2. Cleavage of an RNA model catalyzed by dinuclear Zn(II) complexes containing rate-accelerating pendants. Comparison of the catalytic benefits of H-bonding and hydrophobic substituents.

    PubMed

    Mohamed, Mark F; Brown, R Stan

    2010-12-17

    The transesterification of a simple RNA model, 2-hydroxypropyl p-nitrophenyl phosphate (2, HpNPP) promoted by seven dinuclear Zn(II) catalysts (3,4,5,6,7,8,9:Zn(II)2:(-OCH3)) based on the bis[bis(2-substituted-pyridinyl-6-methyl)]amine ligand system was investigated in methanol under sspH-controlled conditions at 25.0 ± 0.1 °C. The two metal complexing ligands were joined together via the amino N connected to a m-xylyl linker (3, 4, 5, 6, 7) where the 2-pyridinyl substituent = H, CH3, (CH)4, NH2, and NH(C═O)CH3, respectively, and a propyl linker (8, 9) where the ring substituent = H and CH3. All of the dinuclear complexes except 8:Zn(II)2 exhibit saturation kinetics for the kobs versus [catalyst] plots from which one can determine catalyst:substrate binding constants (KM), the catalytic rate constants for their decomposition (kcat), and the second order catalytic rate constants (k2cat = kcat/KM). In the case of 8:Zn(II)2, the plots of kobs versus [catalyst] as a function of sspH are linear, and the catalytic rate constants (k2cat) are defined as the gradients of the plots. Analysis of all of the data at the sspH optimum for each reaction indicates that the presence of the amino and acetamido H-bonding groups and the CH3 group provides similar increases of the kcat terms of 25−50 times that exhibited by the parent complex 3:Zn(II)2. However, in terms of substrate catalyst binding (KM), there is no clear trend that H-bonding groups or the CH3 group provides stronger binding than the parent complex. In terms of the overall second order catalytic rate constant, the CH3, amino, and NH(C═O)CH3 groups provide 20, 10, and 68 times the k2cat observed for the parent complex. In the case of 9:Zn(II)2, the presence of the methyl groups provides a 1000-fold increase in activity (judged by k2cat) over the parent complex 8:Zn(II)2. The results are interpreted to indicate that H-bonding effects may be important for catalysis and less so for substrate binding, but the

  3. Regular subalgebras of affine Kac Moody algebras

    NASA Astrophysics Data System (ADS)

    Felikson, Anna; Retakh, Alexander; Tumarkin, Pavel

    2008-09-01

    We classify regular subalgebras of Kac-Moody algebras in terms of their root systems. In the process, we establish that a root system of a subalgebra is always an intersection of the root system of the algebra with a sublattice of its root lattice. We also discuss applications to investigations of regular subalgebras of hyperbolic Kac-Moody algebras and conformally invariant subalgebras of affine Kac-Moody algebras. In particular, we provide explicit formulae for determining all Virasoro charges in coset constructions that involve regular subalgebras.

  4. On the electron affinity of Be2

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Partridge, H.

    1984-01-01

    Calculations of the electron affinity (EA) of Be2 using a large Slater-type orbital basis set and extensive correlation based upon a CASSCF reference are reported. The adiabatic EAs are estimated to be 0.44 eV for the 2Sigma sub g(+) state and 0.56 eV for the 2Pi sub u state. The extra electron attaches into an empty bonding orbital, causing a shortening of the bond length and an increase in omega(e). The D(e) of the 2Pi sub u state of Be2 is six times as large as the D(e) of Be2.

  5. Latest European coelacanth shows Gondwanan affinities.

    PubMed

    Cavin, Lionel; Forey, Peter L; Buffetaut, Eric; Tong, Haiyan

    2005-06-22

    The last European fossil occurrence of a coelacanth is from the Mid-Cretaceous of the English Chalk (Turonian, 90 million years ago). Here, we report the discovery of a coelacanth from Late Cretaceous non-marine rocks in southern France. It consists of a left angular bone showing structures that imply close phylogenetic affinities with some extinct Mawsoniidae. The closest relatives are otherwise known from Cretaceous continental deposits of southern continents and suggest that the dispersal of freshwater organisms from Africa to Europe occurred in the Late Cretaceous.

  6. On the structure of self-affine convex bodies

    SciTech Connect

    Voynov, A S

    2013-08-31

    We study the structure of convex bodies in R{sup d} that can be represented as a union of their affine images with no common interior points. Such bodies are called self-affine. Vallet's conjecture on the structure of self-affine bodies was proved for d = 2 by Richter in 2011. In the present paper we disprove the conjecture for all d≥3 and derive a detailed description of self-affine bodies in R{sup 3}. Also we consider the relation between properties of self-affine bodies and functional equations with a contraction of an argument. Bibliography: 10 titles.

  7. Affinity filtration coupled with capillary-based affinity purification for the isolation of protein complexes.

    PubMed

    Qureshi, M S; Sheikh, Q I; Hill, R; Brown, P E; Dickman, M J; Tzokov, S B; Rice, D W; Gjerde, D T; Hornby, D P

    2013-08-01

    The isolation of complex macromolecular assemblies at the concentrations required for structural analysis represents a major experimental challenge. Here we present a method that combines the genetic power of site-specific recombination in order to selectively "tag" one or more components of a protein complex with affinity-based rapid filtration and a final step of capillary-based enrichment. This modified form of tandem affinity purification produces highly purified protein complexes at high concentrations in a highly efficient manner. The application of the method is demonstrated for the yeast Arp2/3 heptameric protein complex involved in mediating reorganization of the actin cytoskeleton.

  8. Monitoring the human beta1, beta2, beta3 adrenergic receptors expression and purification in Pichia pastoris using the fluorescence properties of the enhanced green fluorescent protein.

    PubMed

    Talmont, Franck

    2009-01-01

    The three beta adrenergic receptor subtypes, beta1-, beta2- and beta3-, were expressed in the methylotrophic yeast Pichia pastoris. These receptors were N-terminally fused to the enhanced green fluorescent protein (EGFP) and the fluorescent properties of EGFP were used: (1) to select the recombinant strains, (2) to monitor the expression of the fluorescent receptors, and (3) to monitor the purification of the receptors by immobilized metal affinity chromatography. We demonstrate here that Pichia pastoris can be an alternative host to express and purify milligram amounts of human beta adrenergic receptors.

  9. Four Zn(II)/Cd(II)-3-amino-1,2,4-triazolate frameworks constructed by in situ metal/ligand reactions: Structures and fluorescent properties

    NASA Astrophysics Data System (ADS)

    Chen, Zilu; Li, Xiaoling; Liang, Fupei

    2008-08-01

    Four Cd(II) and Zn(II) complexes with the in situ-generated ligand of 3-amino-1,2,4-triazolate (AmTAZ -) were isolated from the solvothermal reactions of the corresponding Cd(II) or Zn(II) salts with 5-amino-1H-1,2,4-triazole-3-carboxylic acid (AmTAZAc). Their structures were determined by single-crystal X-ray diffraction analysis. [Zn(AmTAZ)(CH 3COO)] ( 1) presents a two-dimensional framework constructed from Zn(II) ions and μ3-AmTAZ - ligands. A remarkable feature of [Zn 4(AmTAZ) 4(SO 4)(OH)(C 2O 4) 0.5]·2H 2O ( 2) is the construction of the building units of octagonal cylinders which interact with each other by sharing one face or overlapping, resulting in the formation of a three-dimensional framework with three kinds of 1D channels. [Cd(AmTAZ)Br] ( 3) crystallizes in a chiral space group P2 12 12 1, giving a homochiral three-dimensional framework with two types of helical channels (left- and right-handed). Different from the others, the 3-amino-1,2,4-triazole molecules in [Cd(AmTAZH)SO 4] ( 4) behave as neutral μ2-2,4-bridges to connect the two-dimensional CdSO 4 sheets into a three-dimensional framework. Of all, 2 and 3 display different fluorescent properties probably due to different metal ions, coordination environments and structural topologies.

  10. Avoiding degenerate coframes in an affine gauge approach to quantum gravity

    SciTech Connect

    Mielke, E.W.; McCrea, J.D.; Ne`eman, Y.; Hehl, F.W.

    1993-04-01

    This report discusses the following concepts on quantum gravity: The affine gauge approach; affine gauge transformations versus active differomorphisms; affine gauge approach to quantum gravity with topology change.

  11. Transmembrane Peptides Influence the Affinity of Sterols for Phospholipid Bilayers

    PubMed Central

    Nyström, Joel H.; Lönnfors, Max; Nyholm, Thomas K.M.

    2010-01-01

    Abstract Cholesterol is distributed unevenly between different cellular membrane compartments, and the cholesterol content increases from the inner bilayers toward the plasma membrane. It has been suggested that this cholesterol gradient is important in the sorting of transmembrane proteins. Cholesterol has also been to shown play an important role in lateral organization of eukaryotic cell membranes. In this study the aim was to determine how transmembrane proteins influence the lateral distribution of cholesterol in phospholipid bilayers. Insight into this can be obtained by studying how cholesterol interacts with bilayer membranes of different composition in the presence of designed peptides that mimic the transmembrane helices of proteins. For this purpose we developed an assay in which the partitioning of the fluorescent cholesterol analog CTL between LUVs and mβCD can be measured. Comparison of how cholesterol and CTL partitioning between mβCD and phospholipid bilayers with different composition suggests that CTL sensed changes in bilayer composition similarly as cholesterol. Therefore, the results obtained with CTL can be used to understand cholesterol distribution in lipid bilayers. The effect of WALP23 on CTL partitioning between DMPC bilayers and mβCD was measured. From the results it was clear that WALP23 increased both the order in the bilayers (as seen from CTL and DPH anisotropy) and the affinity of the sterol for the bilayer in a concentration dependent way. Although WALP23 also increased the order in DLPC and POPC bilayers the effects on CTL partitioning was much smaller with these lipids. This indicates that proteins have the largest effect on sterol interactions with phospholipids that have longer and saturated acyl chains. KALP23 did not significantly affect the acyl chain order in the phospholipid bilayers, and inclusion of KALP23 into DMPC bilayers slightly decreased CTL partitioning into the bilayer. This shows that transmembrane proteins

  12. Affinity and specificity of ciprofloxacin-bovine serum albumin interactions: spectroscopic approach.

    PubMed

    Hu, Yan-Jun; Ou-Yang, Yu; Zhang, Yue; Liu, Yi

    2010-05-01

    Fluorescence spectroscopy in combination with UV-Vis absorption spectroscopy were employed to investigate the binding of an antibacterial drug Ciprofloxacin (CPFX) to bovine serum albumin (BSA) under the physiological conditions. In the discussion of the quenching mechanism, it was proved that the fluorescence quenching of BSA by CPFX is a result of the formation of CPFX-BSA complex. Binding parameters were determined using the modified Stern-Volmer equation and Scatchard equation to provide a measure of the binding affinity between CPFX and BSA. The results of thermodynamic parameters DeltaG, DeltaH, DeltaS, at different temperatures indicate that the electrostatic interactions play a major role for CPFX-BSA association. Site marker competitive experiments indicated that the binding of CPFX to BSA primarily took place in site I. Furthermore, the effect of metal ions to CPFX-BSA system was studied, and the distance r between donor (BSA) and acceptor (CPFX) was obtained according to fluorescence resonance energy transfer (FRET). The conformation of BSA upon CPFX binding was evaluated by measuring synchronous fluorescence properties of the CPFX-BSA complex.

  13. Mechanism of "turn-on" fluorescent sensors for mercury(II) in solution and its implications for ligand design.

    PubMed

    Lee, Hyunjung; Lee, Hee-Seung; Reibenspies, Joseph H; Hancock, Robert D

    2012-10-15

    The tendency of a Hg(II) ion to strongly quench fluorescence of potential fluorescent sensors is explored. Fluorescence measurements show the expected order of the chelation-enhanced fluorescence (CHEF) effect of Zn(II) > Cd(II) > Hg(II) ~ Cu(II), which is interpreted as (1) unpaired electrons causing the weak CHEF effect for Cu(II) and (2) the order Zn(II) > Cd(II) > Hg(II) reflecting the "heavy atom" effect, which may be due to increasing spin-orbit coupling constants (ζ) for Zn(II) < Cd(II) < Hg(II). The structures of mercury(II) complexes of N-(9-anthracenylmethyl)-N-(2-pyridinylmethyl)-2-pyridinemethanamine (ADPA) are reported. [Hg(ADPA)Cl(2)HgCl(2)] (1) has one Hg(II) held by two bridging chlorides, while the other Hg(II) is coordinated to the ADPA ligand. The latter Hg(II) has a nearest π contact of 3.215 Å with a C atom from the anthracenyl group, which falls in the range of reported Hg-C π contacts with aromatic groups. This contact may be important in quenching the fluorescence of the Hg(II)/ADPA complex. A density functional theory study shows that the Hg-C interaction is strong enough to prevent a simple HOMO → LUMO transition of the fluorophore. In fact, the S(0) → S(1) and S(2) transitions in the Hg(II)/ADPA complex have significant charge-transfer character to mercury. An important aspect of the coordination geometry of Hg(II) is illustrated by 1, where Hg(II) tends to form a few (often only two) short bonds to the more covalently binding donor atoms present, with much longer bonds to other donor atoms. The Hg-N bonds to the two pyridyl N-donor atoms of ADPA in 1 are relatively short at 2.212(8) and 2.224(8) Å, while that to the central saturated N-donor atom of ADPA is long at 2.603(8) Å. The latter long Hg-N bond may allow a photoinduced electron-transfer (PET) effect, quenching the fluorescence of the anthracenyl fluorophore. The structure of [Hg(ADPA)Br(2)] (2) reflects the more covalent binding of the two bromine ligands compared to

  14. Extraction of haemoglobin from human blood by affinity precipitation using a haptoglobin-based stimuli-responsive affinity macroligand.

    PubMed

    Stocker-Majd, Gisela; Hilbrig, Frank; Freitag, Ruth

    2008-06-13

    Affinity precipitation was compared to affinity chromatography and batch adsorption as the final purification step in a protocol for the isolation of haemoglobin from human blood. Haptoglobin was the affinity ligand. The first steps on the process were realized by traditional methods (lyses of red blood cells followed by ammonium sulphate precipitation). For affinity chromatography (and batch adsorption) the ligand was linked to Sepharose, for affinity precipitation to a thermoresponsive polymer, namely poly(N-isopropylacrylamide). Five haptoglobin-poly(N-isopropylacrylamide) bioconjugates (affinity macroligands) were constructed with different polymer: haptoglobin-coupling ratios. Conjugation of haptoglobin to the soluble poly(N-isopropylacrylamide) apparently does not change the interaction thermodynamics with haemoglobin, as the haemoglobin binding constants calculated by a Scatchard analysis for the affinity macroligand were of the same order of magnitude as those described in the literature for the haemoglobin-haptoglobin complex in solution. Two elution protocols were used for haemoglobin release from the various affinity materials, one at pH 2, the other with 5 M urea at pH 11. Both affinity chromatography and affinity precipitation yielded a pure haemoglobin of high quality. Compared to the affinity chromatography, affinity precipitation showed a significantly higher ligand efficiency (ratio of the experimental capacity to the theoretical one). The method thus makes better use of the expensive affinity ligands. As affinity precipitation only requires small temperature changes to bring about precipitation/redissolution of the affinity complexes and a centrifugation step for recovery of the precipitate, the method in addition has advantages in term of scalability and simplicity.

  15. Gravitational Goldstone fields from affine gauge theory

    NASA Astrophysics Data System (ADS)

    Tresguerres, Romualdo; Mielke, Eckehard W.

    2000-08-01

    In order to facilitate the application of standard renormalization techniques, gravitation should be described, in the pure connection formalism, as a Yang-Mills theory of a certain spacetime group, say the Poincaré or the affine group. This embodies the translational as well as the linear connection. However, the coframe is not the standard Yang-Mills-type gauge field of the translations, since it lacks the inhomogeneous gradient term in the gauge transformations. By explicitly restoring this ``hidden'' piece within the framework of nonlinear realizations, the usual geometrical interpretation of the dynamical theory becomes possible, and in addition one can avoid the metric or coframe degeneracy which would otherwise interfere with the integrations within the path integral. We claim that nonlinear realizations provide the general mathematical scheme for the foundation of gauge theories of spacetime symmetries. When applied to construct the Yang-Mills theory of the affine group, tetrads become identified with nonlinear translational connections; the anholonomic metric no longer constitutes an independent gravitational potential, since its degrees of freedom reveal a correspondence to eliminateable Goldstone bosons. This may be an important advantage for quantization.

  16. Fatigue damage prognosis using affine arithmetic

    NASA Astrophysics Data System (ADS)

    Gbaguidi, Audrey; Kim, Daewon

    2014-02-01

    Among the essential steps to be taken in structural health monitoring systems, damage prognosis would be the field that is least investigated due to the complexity of the uncertainties. This paper presents the possibility of using Affine Arithmetic for uncertainty propagation of crack damage in damage prognosis. The structures examined are thin rectangular plates made of titanium alloys with central mode I cracks and a composite plate with an internal delamination caused by mixed mode I and II fracture modes, under a harmonic uniaxial loading condition. The model-based method for crack growth rates are considered using the Paris Erdogan law model for the isotropic plates and the delamination growth law model proposed by Kardomateas for the composite plate. The parameters for both models are randomly taken and their uncertainties are considered as defined by an interval instead of a probability distribution. A Monte Carlo method is also applied to check whether Affine Arithmetic (AA) leads to tight bounds on the lifetime of the structure.

  17. Affinity-based target deconvolution of safranal

    PubMed Central

    2013-01-01

    Background and the purpose of the study Affinity-based target deconvolution is an emerging method for the identification of interactions between drugs/drug candidates and cellular proteins, and helps to predict potential activities and side effects of a given compound. In the present study, we hypothesized that a part of safranal pharmacological effects, one of the major constituent of Crocus sativus L., relies on its physical interaction with target proteins. Methods Affinity chromatography solid support was prepared by covalent attachment of safranal to agarose beads. After passing tissue lysate through the column, safranal-bound proteins were isolated and separated on SDS-PAGE or two-dimensional gel electrophoresis. Proteins were identified using MALDI-TOF/TOF mass spectrometry and Mascot software. Results and major conclusion Data showed that safranal physically binds to beta actin, cytochrome b-c1 complex sub-unit 1, trifunctional enzyme sub-unit beta and ATP synthase sub-unit alpha and beta. These interactions may explain part of safranal’s pharmacological effects. However, phenotypic and/or biological relevance of these interactions remains to be elucidated by future pharmacological studies. PMID:23514587

  18. Quantification of hydrophobic interaction affinity of colloids

    NASA Astrophysics Data System (ADS)

    Saini, G.; Nasholm, N.; Wood, B. D.

    2009-12-01

    Colloids play an important role in a wide variety of disciplines, including water and wastewater treatment, subsurface transport of metals and organic contaminants, migration of fines in oil reservoirs, biocolloid (virus and bacteria) transport in subsurface, and are integral to laboratory transport studies. Although the role of hydrophobicity in adhesion and transport of colloids, particularly bacteria, is well known; there is scarcity of literature regarding hydrophobicity measurement of non-bacterial colloids and other micron-sized particles. Here we detail an experimental approach based on differential partitioning of colloids between two liquid phases (hydrocarbon and buffer) as a measure of the hydrophobic interaction affinity of colloids. This assay, known as Microbial adhesion to hydrocarbons or MATH, is frequently used in microbiology and bacteriology for quantifying the hydrophobicity of microbes. Monodispersed colloids and particles, with sizes ranging from 1 micron to 33 micron, were used for the experiments. A range of hydrophobicity values were observed for different particles. The hydrophobicity results are also verified against water contact angle measurements of these particles. This liquid-liquid partitioning assay is quick, easy-to-perform and requires minimal instrumentation. Estimation of the hydrophobic interaction affinity of colloids would lead to a better understanding of their adhesion to different surfaces and subsequent transport in porous media.

  19. Functional gold nanoparticles for optical affinity biosensing.

    PubMed

    Špringer, Tomáš; Chadtová Song, Xue; Ermini, Maria Laura; Lamačová, Josefína; Homola, Jiří

    2017-06-01

    Functional gold nanoparticles (AuNPs) are commonly used to enhance the response of optical affinity biosensors. In this work, we investigated the effect of preparation conditions on functional properties of AuNPs functionalized with antibody (Ab-AuNPs), specifically AuNPs with antibody against carcinoembryonic antigen (CEA) covalently attached via carboxy-terminated oligo-ethylene thiolate linker layer. The following parameters of preparation of Ab-AuNP have been found to have a significant effect on Ab-AuNP performance in affinity biosensors: the time of reaction of activated AuNPs with antibody, concentrations of antibody and amino-coupling reagents, and composition of immobilization buffer (molarity and salt content). In contrast, pH of immobilization buffer has been demonstrated to have only a minor influence. Our experiments showed that the Ab-AuNPs prepared under optimum conditions offered a binding efficiency of Ab-AuNPs to CEA as high as 63%, which is more than 4 times better than the best efficiencies reported for similar functional AuNPs so far. We employed these Ab-AuNPs with a surface plasmon resonance (SPR) biosensor for the detection of CEA and showed that the Ab-AuNPs enhanced the sensor response to CEA by a factor of 1000. We also demonstrated that the Ab-AuNPs allow the biosensor to detect CEA at concentrations as low as 12 and 40 pg/mL in buffer and 50% blood plasma, respectively.

  20. Improvement of Aptamer Affinity by Dimerization

    PubMed Central

    Hasegawa, Hijiri; Taira, Ken-ichi; Sode, Koji; Ikebukuro, Kazunori

    2008-01-01

    To increase the affinities of aptamers for their targets, we designed an aptamer dimer for thrombin and VEGF. This design is based on the avidity of the antibody, which enables the aptamer to connect easily since it is a single-strand nucleic acid. In this study, we connected a 15-mer thrombin-binding aptamer with a 29-mer thrombin-binding aptamer. Each aptamer recognizes a different part of the thrombin molecule, and the aptamer dimer has a Kd value which is 1/10 of that of the monomers from which it is composed. Also, the designed aptamer dimer has higher inhibitory activity than the reported (15-mer) thrombin-inhibiting aptamer. Additionally, we connected together two identical aptamers against vascular endothelial growth factor (VEGF165), which is a homodimeric protein. As in the case of the anti-thrombin aptamer, the dimeric anti-VEGF aptamer had a much lower Kd value than that of the monomer. This study demonstrated that the dimerization of aptamers effectively improves the affinities of those aptamers for their targets. PMID:27879754

  1. Affine conformal vectors in space-time

    NASA Astrophysics Data System (ADS)

    Coley, A. A.; Tupper, B. O. J.

    1992-05-01

    All space-times admitting a proper affine conformal vector (ACV) are found. By using a theorem of Hall and da Costa, it is shown that such space-times either (i) admit a covariantly constant vector (timelike, spacelike, or null) and the ACV is the sum of a proper affine vector and a conformal Killing vector or (ii) the space-time is 2+2 decomposable, in which case it is shown that no ACV can exist (unless the space-time decomposes further). Furthermore, it is proved that all space-times admitting an ACV and a null covariantly constant vector (which are necessarily generalized pp-wave space-times) must have Ricci tensor of Segré type {2,(1,1)}. It follows that, among space-times admitting proper ACV, the Einstein static universe is the only perfect fluid space-time, there are no non-null Einstein-Maxwell space-times, and only the pp-wave space-times are representative of null Einstein-Maxwell solutions. Otherwise, the space-times can represent anisotropic fluids and viscous heat-conducting fluids, but only with restricted equations of state in each case.

  2. Enhanced metal ion selectivity of 2,9-di-(pyrid-2-yl)-1,10-phenanthroline and its use as a fluorescent sensor for cadmium(II).

    PubMed

    Cockrell, Gregory M; Zhang, Gang; VanDerveer, Donald G; Thummel, Randolph P; Hancock, Robert D

    2008-01-30

    The metal ion complexing properties of the ligand DPP (2,9-di-(pyrid-2-yl)-1,10-phenanthroline) were studied by crystallography, fluorimetry, and UV-visible spectroscopy. Because DPP forms five-membered chelate rings, it will favor complexation with metal ions of an ionic radius close to 1.0 A. Metal ion complexation and accompanying selectivity of DPP is enhanced by the rigidity of the aromatic backbone of the ligand. Cd2+, with an ionic radius of 0.96 A, exhibits a strong CHEF (chelation enhanced fluorescence) effect with 10(-8) M DPP, and Cd2+ concentrations down to 10(-9) M can be detected. Other metal ions that cause a significant CHEF effect with DPP are Ca2+ (10(-3) M) and Na+ (1.0 M), whereas metal ions such as Zn2+, Pb2+, and Hg2+ cause no CHEF effect with DPP. The lack of a CHEF effect for Zn2+ relates to the inability of this small ion to contact all four donor atoms of DPP. The structures of [Cd(DPP)2](ClO4)2 (1), [Pb(DPP)(ClO4)2H2O] (2), and [Hg(DPP)(ClO4)2] (3) are reported. The Cd(II) in 1 is 8-coordinate with the Cd-N bonds to the outer pyridyl groups stretched by steric clashes between the o-hydrogens on these outer pyridyl groups and the central aromatic ring of the second DPP ligand. The 8-coordinate Pb(II) in 2 has two short Pb-N bonds to the two central nitrogens of DPP, with longer bonds to the outer N-donors. The coordination sphere around the Pb(II) is completed by a coordinated water molecule, and two coordinated ClO4(-) ions, with long Pb-O bonds to ClO4(-) oxygens, typical of a sterically active lone pair on Pb(II). The Hg(II) in 3 shows an 8-coordinate structure with the Hg(II) forming short Hg-N bonds to the outer pyridyl groups of DPP, whereas the other Hg-N and Hg-O bonds are rather long. The structures are discussed in terms of the fit of large metal ions to DPP with minimal steric strain. The UV-visible studies of the equilibria involving DPP and metal ions gave formation constants that show that DPP has a higher affinity for metal

  3. A simple approach for preparation of affinity matrices: Simultaneous purification and reversible immobilization of a streptavidin mutein to agarose matrix

    PubMed Central

    Wu, Sau-Ching; Wang, Chris; Hansen, Dave; Wong, Sui-Lam

    2017-01-01

    SAVSBPM18 is an engineered streptavidin for affinity purification of both biotinylated biomolecules and recombinant proteins tagged with streptavidin binding peptide (SBP) tags. To develop a user-friendly approach for the preparation of the SAVSBPM18-based affinity matrices, a designer fusion protein containing SAVSBPM18 and a galactose binding domain was engineered. The galactose binding domain derived from the earthworm lectin EW29 was genetically modified to eliminate a proteolytic cleavage site located at the beginning of the domain. This domain was fused to the C-terminal end of SAVSBPM18. It allows the SAVSBPM18 fusions to bind reversibly to agarose and can serve as an affinity handle for purification of the fusion. Fluorescently labeled SAVSBPM18 fusions were found to be stably immobilized on Sepharose 6B-CL. The enhanced immobilization capability of the fusion to the agarose beads results from the avidity effect mediated by the tetrameric nature of SAVSBPM18. This approach allows the consolidation of purification and immobilization of SAVSBPM18 fusions to Sepharose 6B-CL in one step for affinity matrix preparation. The resulting affinity matrix has been successfully applied to purify both SBP tagged β-lactamase and biotinylated proteins. No significant reduction in binding capacity of the column was observed for at least six months. PMID:28220817

  4. Different affinity of galectins for human serum glycoproteins: galectin-3 binds many protease inhibitors and acute phase proteins.

    PubMed

    Cederfur, Cecilia; Salomonsson, Emma; Nilsson, Jonas; Halim, Adnan; Oberg, Christopher T; Larson, Göran; Nilsson, Ulf J; Leffler, Hakon

    2008-05-01

    Here we report the first survey of galectins binding to glycoproteins of human serum. Serum was subjected to affinity chromatography using immobilized galectins, and the bound glycoproteins were analyzed by electrophoresis, Western blotting, and mass spectrometry. Galectins-3, -8, and -9 bound a much broader range of ligands in serum than previously known, galectin-1 bound less, and galectins-2, -4, and -7 bound only traces or no serum ligands. Galectin-3 bound most major glycoproteins, including alpha-2-macroglobulin and acute phase proteins such as haptoglobin. It bound only a selected minor fraction of transferrin, and bound none or little of IgG. Galectins-8 and -9 bound a similar range of glycoproteins as galectin-3, but in lower amounts, and galectin-8 had a relative preference for IgA. Galectin-1 bound mainly a fraction of alpha-2-macroglobulin and only traces of other glycoproteins. The binding of galectin-3 to serum glycoproteins requires affinity for LacNAc, since a mutant (R186S), which has lost this affinity, did not bind any serum glycoproteins. The average affinity of galectin-3 for serum glycoproteins was estimated to correspond to K(d) approximately 1-5 muM by modeling of the affinity chromatography and a fluorescence anisotropy assay. Since galectins are expressed on endothelial cells and other cells exposed to serum components, this report gives new insight into function of galectins and the role of their different fine specificity giving differential binding to the serum glycoproteins.

  5. Affinity Crystallography: A New Approach to Extracting High-Affinity Enzyme Inhibitors from Natural Extracts.

    PubMed

    Aguda, Adeleke H; Lavallee, Vincent; Cheng, Ping; Bott, Tina M; Meimetis, Labros G; Law, Simon; Nguyen, Nham T; Williams, David E; Kaleta, Jadwiga; Villanueva, Ivan; Davies, Julian; Andersen, Raymond J; Brayer, Gary D; Brömme, Dieter

    2016-08-26

    Natural products are an important source of novel drug scaffolds. The highly variable and unpredictable timelines associated with isolating novel compounds and elucidating their structures have led to the demise of exploring natural product extract libraries in drug discovery programs. Here we introduce affinity crystallography as a new methodology that significantly shortens the time of the hit to active structure cycle in bioactive natural product discovery research. This affinity crystallography approach is illustrated by using semipure fractions of an actinomycetes culture extract to isolate and identify a cathepsin K inhibitor and to compare the outcome with the traditional assay-guided purification/structural analysis approach. The traditional approach resulted in the identification of the known inhibitor antipain (1) and its new but lower potency dehydration product 2, while the affinity crystallography approach led to the identification of a new high-affinity inhibitor named lichostatinal (3). The structure and potency of lichostatinal (3) was verified by total synthesis and kinetic characterization. To the best of our knowledge, this is the first example of isolating and characterizing a potent enzyme inhibitor from a partially purified crude natural product extract using a protein crystallographic approach.

  6. Characterization of a dockerin-based affinity tag: application for purification of a broad variety of target proteins.

    PubMed

    Demishtein, Alik; Karpol, Alon; Barak, Yoav; Lamed, Raphael; Bayer, Edward A

    2010-01-01

    Cellulose, a major component of plant matter, is degraded by a cell surface multiprotein complex called the cellulosome produced by several anaerobic bacteria. This complex coordinates the assembly of different glycoside hydrolases, via a high-affinity Ca(2+)-dependent interaction between the enzyme-borne dockerin and the scaffoldin-borne cohesin modules. In this study, we characterized a new protein affinity tag, ΔDoc, a truncated version (48 residues) of the Clostridium thermocellum Cel48S dockerin. The truncated dockerin tag has a binding affinity (K(A)) of 7.7 × 10(8)M(-1), calculated by a competitive enzyme-linked assay system. In order to examine whether the tag can be used for general application in affinity chromatography, it was fused to a range of target proteins, including Aequorea victoria green fluorescent protein (GFP), C. thermocellum β-glucosidase, Escherichia coli thioesterase/protease I (TEP1), and the antibody-binding ZZ-domain from Staphylococcus aureus protein A. The results of this study significantly extend initial studies performed using the Geobacillus stearothermophilus xylanase T-6 as a model system. In addition, the enzymatic activity of a C. thermocellum β-glucosidase, purified using this approach, was tested and found to be similar to that of a β-glucosidase preparation (without the ΔDoc tag) purified using the standard His-tag. The truncated dockerin derivative functioned as an effective affinity tag through specific interaction with a cognate cohesin, and highly purified target proteins were obtained in a single step directly from crude cell extracts. The relatively inexpensive beaded cellulose-based affinity column was reusable and maintained high capacity after each cycle. This study demonstrates that deletion into the first Ca(2+)-binding loop of the dockerin module results in an efficient and robust affinity tag that can be generally applied for protein purification. Copyright © 2010 John Wiley & Sons, Ltd.

  7. Highly thermostable fluorescent proteins

    DOEpatents

    Bradbury, Andrew M [Santa Fe, NM; Waldo, Geoffrey S [Santa Fe, NM; Kiss, Csaba [Los Alamos, NM

    2012-05-01

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  8. Highly thermostable fluorescent proteins

    DOEpatents

    Bradbury, Andrew M.; Waldo, Geoffrey S.; Kiss, Csaba

    2011-03-22

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  9. Highly thermostable fluorescent proteins

    DOEpatents

    Bradbury, Andrew M [Santa Fe, NM; Waldo, Geoffrey S [Santa Fe, NM; Kiss, Csaba [Los Alamos, NM

    2011-11-29

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  10. Super resolution fluorescence microscopy

    PubMed Central

    Huang, Bo; Bates, Mark; Zhuang, Xiaowei

    2010-01-01

    Achieving a spatial resolution that is not limited by the diffraction of light, recent developments of super-resolution fluorescence microscopy techniques allow the observation of many biological structures not resolvable in conventional fluorescence microscopy. New advances in these techniques now give them the ability to image three-dimensional (3D) structures, measure interactions by multicolor colocalization, and record dynamic processes in living cells at the nanometer scale. It is anticipated that super-resolution fluorescence microscopy will become a widely used tool for cell and tissue imaging to provide previously unobserved details of biological structures and processes. PMID:19489737

  11. Fluorescent discharge lamp

    NASA Technical Reports Server (NTRS)

    Mukai, E.; Otsuka, H.; Nomi, K.; Honmo, I.

    1982-01-01

    A rapidly illuminating fluorescent lamp 1,200 mm long and 32.5 mm in diameter with an interior conducting strip which is compatible with conventional fixtures and ballasts is described. The fluorescent lamp is composed of a linear glass tube, electrodes sealed at both ends, mercury and raregas sealed in the glass tube, a fluorescent substance clad on the inner walls of the glass tube, and a clad conducting strip extending the entire length of the glass tube in the axial direction on the inner surface of the tube.

  12. Spectrophotometric study of the complex formation of 3-(2-hydroxyphenyl)-2-mercaptopropenoic acid with Ni(II) and Zn(II).

    PubMed

    Beltran, J L; Centeno, G; Izquierdo, A; Prat, M D

    1992-08-01

    The dissociation and complex formation equilibria between Ni(II) and Zn(II) with 3-(2-hydroxyphenyl)-2-mercaptopropenoic acid, at 25 degrees in aqueous 0.1 and 1.0M sodium perchlorate solutions, containing about 1% ethanol, have been studied spectrophotometrically. The data were connected directly from the spectrophotometer to an IBM-PC via a serial interface, using the DUMOD program (written in BASIC), described in the paper. The obtained spectra were treated by the factor analysis program NIPALS in order to determine the number of absorbing species and the experimental error. Dissociation constants of ligand (H(3)L), and formation constants for the complexes Ni(HL), Ni(HL)(2), Zn(HL) and Zn(HL)(2) at 0.1 and 1.0M ionic strengths, refined by the SQUAD program, are reported.

  13. Isostructural 1D coordination polymers of Zn(II), Cd(II) and Cu(II) with phenylpropynoic acid and DABCO as organic linkers

    NASA Astrophysics Data System (ADS)

    Saravanakumar, Rajendran; Varghese, Babu; Sankararaman, Sethuraman

    2014-11-01

    Using phenylpropynoic acid (PPA) and 1,4-diazabicyclo[2.2.2]octane (DABCO) as organic spacers, isostructural coordination polymers of Zn(II), Cd(II) and Cu(II) were synthesized by solvothermal method and structurally characterized using single crystal XRD, powder XRD, 13C CP-MAS NMR spectroscopy. Single crystal XRD data revealed four PPA units coordinating with two metal ions forming a paddle wheel secondary building unit (SBU). The paddle wheel units are connected through coordination of DABCO nitrogen to the metal centers from the axial positions leading to the formation of the 1D coordination polymers along the c axis. Intermolecular π stacking and Csbnd H…π interactions between the adjacent polymer chains convert the 1D coordination polymer into an interesting 3D network with the Csbnd H…π bonds running along the crystallographic a and b axes. Thermal and nitrogen adsorption studies of these coordination polymers are reported.

  14. Effect of oxygen on free radicals in DOPA-melanin complexes with netilmicin, diamagnetic Zn(II), and paramagnetic Cu(II)

    NASA Astrophysics Data System (ADS)

    Zdybel, Magdalena; Pilawa, Barbara; Buszman, Ewa; Wrześniok, Dorota

    2013-01-01

    Electron paramagnetic resonance (EPR) spectroscopy was used to examine interactions between molecules of oxygen O2 and free radicals of DOPA-melanin and its complexes with netilmicin, Zn(II) and Cu(II). EPR spectra were measured for evacuated samples and then compared to earlier data for the samples in air. The concentrations of free radicals in the evacuated samples were higher than for samples in air. The strongest effect was observed for DOPA-melanin and melanin samples containing Cu(II). Evacuation of DOPA-melanin and DOPA-melanin-Cu(II) samples causes high EPR line broadening. Faster spin-lattice relaxation processes exist in evacuated melanin samples than in samples in air.

  15. New metastable hybrid phase, Zn 2(OH) 2(C 8H 4O 4), exhibiting unique oxo-penta-coordinated Zn(II) atoms

    NASA Astrophysics Data System (ADS)

    Carton, Anne; Mesbah, Adel; Aranda, Lionel; Rabu, Pierre; François, Michel

    2009-04-01

    The metastable phase ( phase 1) Zn(OH) 2(tp) 2 (tp = C 8H 4O 42-) was found to be an intermediate forming during the hydrothermal synthesis of Zn 3(OH) 4tp ( phase 2). Its structure has been determined ab initio from synchrotron powder diffraction data and refined with the Rietveld method: space group P2 1/ c, a = 3.48856(2) Å, b = 5.84645(2) Å, c = 22.1331(1) Å, β = 103.46(1)°, Dx = 2.488 g/cm 3, Rp = 0.10, RB = 0.095 (402 independent reflections). The structures of the two analogues were compared. Whereas a mixed coordination of the zinc atoms was found in phase 2, phase 1 exhibits only penta-coordinated Zn(II). Moreover, different optical properties were observed, Zn 2(OH) 2(tp) showing photoluminescence at 378 nm under λex = 316 nm.

  16. In situ ESR and UV/vis spectroelectrochemical study of eosin Y upon reduction with and without Zn(II) ions.

    PubMed

    Goux, A; Pauporté, T; Lincot, D; Dunsch, L

    2007-04-23

    The electroreduction of eosin Y on a platinum electrode in deaerated slightly acidic aqueous 0.1 mol L(-1) potassium chloride medium is followed in situ by electron spin resonance (ESR) spectroscopy and UV/Vis spectroscopy. The electrochemical formation of a semiquinone radical is proved by both the appearance of an absorbing band at 408 nm, and a strong ESR signal observed during a negative-going scan. The system is also studied in the presence of Zn(II) ions due to its importance for understanding the growth mechanism of nanostructured ZnO/Eosin Y hybrid films by electrodeposition; under such conditions the ESR and UV/Vis response of the semiquinone radical is not observed. Zinc (II) ions form a complex with the dye, which is reduced by a fast two-electron process.

  17. Inhibition of the HIF1α-p300 interaction by quinone- and indandione-mediated ejection of structural Zn(II)

    PubMed Central

    Jayatunga, Madura K. P.; Thompson, Sam; McKee, Tawnya C.; Chan, Mun Chiang; Reece, Kelie M.; Hardy, Adam P.; Sekirnik, Rok; Seden, Peter T.; Cook, Kristina M.; McMahon, James B.; Figg, William D.; Schofield, Christopher J.; Hamilton, Andrew D.

    2014-01-01

    Protein-protein interactions between the hypoxia inducible transcription factor (HIF) and the transcriptional coactivators p300/CBP are potential cancer targets due to their role in the hypoxic response. A natural product based screen led to the identification of indandione and benzoquinone derivatives that reduce the tight interaction between a HIF-1α fragment and the CH1 domain of p300. The indandione derivatives were shown to fragment to give ninhydrin, which was identified as the active species. Both the naphthoquinones and ninhydrin were observed to induce Zn(II) ejection from p300 and the catalytic domain of the histone demethylase KDM4A. Together with previous reports on the effects of reated compounds on HIF-1α and other systems, the results suggest that care should be taken in interpreting biological results obtained with highly electrophilic/ thiol modifying compounds. PMID:25023609

  18. Chitosan supported Zn(II) mixed ligand complexes as heterogeneous catalysts for one-pot synthesis of amides from ketones via Beckmann rearrangement

    NASA Astrophysics Data System (ADS)

    Anuradha; Kumari, Shweta; Layek, Samaresh; Pathak, Devendra D.

    2017-02-01

    Chitosan supported Zn(II) mixed ligand complexes have been synthesized and characterized by FT-IR, UV-Vis, TGA, XRD, FESEM, EDX, AAS and Elemental Analysis. These complexes have been found to be efficient and recyclable heterogeneous catalysts for the one-pot synthesis of amides via Beckmann rearrangement. All three complexes can be easily filtered out from the reaction medium and reused up to five times without significant loss of catalytic activity. The reported protocol is economical and novel in the sense that amides can be easily synthesized in only one-step. All products were obtained as white to off-white crystalline solids and fully characterized by 1H NMR, FT-IR and Mass Spectra.

  19. The mammalian profilin isoforms display complementary affinities for PIP2 and proline-rich sequences.

    PubMed

    Lambrechts, A; Verschelde, J L; Jonckheere, V; Goethals, M; Vandekerckhove, J; Ampe, C

    1997-02-03

    We present a study on the binding properties of the bovine profilin isoforms to both phosphatidylinositol 4,5-bisphosphate (PIP2) and proline-rich peptides derived from vasodilator-stimulated phosphoprotein (VASP) and cyclase-associated protein (CAP). Using microfiltration, we show that compared with profilin II, profilin I has a higher affinity for PIP2. On the other hand, fluorescence spectroscopy reveals that proline-rich peptides bind better to profilin II. At micromolar concentrations, profilin II dimerizes upon binding to proline-rich peptides. Circular dichroism measurements of profilin II reveal a significant conformational change in this protein upon binding of the peptide. We show further that PIP2 effectively competes for binding of profilin I to poly-L-proline, since this isoform, but not profilin II, can be eluted from a poly-L-proline column with PIP2. Using affinity chromatography on either profilin isoform, we identified profilin II as the preferred ligand for VASP in bovine brain extracts. The complementary affinities of the profilin isoforms for PIP2 and the proline-rich peptides offer the cell an opportunity to direct actin assembly at different subcellular localizations through the same or different signal transduction pathways.

  20. Microdevices integrating affinity columns and capillary electrophoresis for multi-biomarker analysis in human serum

    PubMed Central

    Yang, Weichun; Yu, Ming; Sun, Xiuhua; Woolley, Adam T.

    2010-01-01

    Summary Biomarkers in human body fluids have great potential for use in screening for diseases such as cancer and diabetes, diagnosis, determining the effectiveness of treatments, and detecting recurrence. Present 96-well immunoassay technology effectively analyzes large numbers of samples; however, this approach is more expensive and less time effective on single or a few samples. In contrast, microfluidic systems are well suited for assaying small numbers of specimens in a point-of-care setting, provided suitable procedures are developed to work within peak capacity constraints when analyzing complex mixtures like human blood serum. Here, we developed integrated microdevices with an affinity column and capillary electrophoresis channels to isolate and quantitate a panel of proteins in complex matrices. To form an affinity column, a thin film of a reactive polymer was photopolymerized in a microchannel, and four antibodies were covalently immobilized to it. The retained protein amounts were consistent from chip to chip, demonstrating reproducibility. Furthermore, the signals from four fluorescently labeled proteins captured on-column were in the same range after rinsing, indicating the column has little bias toward any of the four antibodies or their antigens. These affinity columns have been integrated with capillary electrophoresis separation, enabling us to simultaneously quantify four protein biomarkers in human blood serum in the low ng/mL range using either a calibration curve or standard addition. Our systems provide a fast, integrated and automated platform for multiple biomarker quantitation in complex media such as human blood serum. PMID:20664867

  1. Method for trapping affinity chromatography of transcription factors using aldehyde-hydrazide coupling to agarose.

    PubMed

    Jia, Yinshan; Jarrett, Harry W

    2015-08-01

    The use of a method of coupling DNA was investigated for trapping and purifying transcription factors. Using the GFP-C/EBP (CAAT/enhancer binding protein) fusion protein as a model, trapping gives higher purity and comparable yield to conventional affinity chromatography. The chemistry used is mild and was shown to have no detrimental effect on GFP fluorescence or GFP-C/EBP DNA binding. The method involves introducing a ribose nucleotide to the 3' end of a DNA sequence. Reaction with mM NaIO4 (sodium metaperiodate) produces a dialdehyde of ribose that couples to hydrazide-agarose. The DNA is combined at nM concentration with a nuclear extract or other protein mixture, and DNA-protein complexes form. The complex is then coupled to hydrazide-agarose for trapping the DNA-protein complex and the protein eluted by increasing NaCl concentration. Using a different oligonucleotide with the proximal E-box sequence from the human telomerase promoter, USF-2 transcription factor was purified by trapping, again with higher purity than results from conventional affinity chromatography and similar yield. Other transcription factors binding E-boxes, including E2A, c-Myc, and Myo-D, were also purified, but myogenin and NFκB were not. Therefore, this approach proved to be valuable for both affinity chromatography and the trapping approach.

  2. Microarrays as Model Biosensor Platforms to Investigate the Structure and Affinity of Aptamers

    PubMed Central

    Martin, Jennifer A.; Chushak, Yaroslav; Chávez, Jorge L.; Hagen, Joshua A.; Kelley-Loughnane, Nancy

    2016-01-01

    Immobilization of nucleic acid aptamer recognition elements selected free in solution onto the surface of biosensor platforms has proven challenging. This study investigated the binding of multiple aptamer/target pairs immobilized on a commercially available microarray as a model system mimicking biosensor applications. The results indicate a minimum distance (linker length) from the surface and thymine nucleobase linker provides reproducible binding across varying conditions. An indirect labeling method, where the target was labeled with a biotin followed by a brief Cy3-streptavidin incubation, provided a higher signal-to-noise ratio and over two orders of magnitude improvement in limit of detection, compared to direct Cy3-protein labeling. We also showed that the affinities of the aptamer/target interaction can change between direct and indirect labeling and conditions to optimize for the highest fluorescence intensity will increase the sensitivity of the assay but will not change the overall affinity. Additionally, some sequences which did not initially bind demonstrated binding when conditions were optimized. These results, in combination with studies demonstrating enhanced binding in nonselection buffers, provided insights into the structure and affinity of aptamers critical for biosensor applications and allowed for generalizations in starting conditions for researchers wishing to investigate aptamers on a microarray surface. PMID:27042344

  3. Structure of a High-Affinity

    SciTech Connect

    Saphire, E.O.; Montero, M.; Menendez, A.; Houten, N.E.van; Irving, M.B.; Pantophlet, R.; Swick, M.B.; Parren, P.W.H.I.; Burton, D.R.; Scott, J.K.; Wilson, I.A.; /Scripps Res. Inst. /Simon Fraser U. /British Columbia U.

    2007-07-13

    The human antibody b12 recognizes a discontinuous epitope on gp120 and is one of the rare monoclonal antibodies that neutralize a broad range of primary human immunodeficiency virus type 1 (HIV-1) isolates. We previously reported the isolation of B2.1, a dimeric peptide that binds with high specificity to b12 and competes with gp120 for b12 antibody binding. Here, we show that the affinity of B2.1 was improved 60-fold over its synthetic-peptide counterpart by fusing it to the N terminus of a soluble protein. This affinity, which is within an order of magnitude of that of gp120, probably more closely reflects the affinity of the phage-borne peptide. The crystal structure of a complex between Fab of b12 and B2.1 was determined at 1.8 Angstrom resolution. The structural data allowed the differentiation of residues that form critical contacts with b12 from those required for maintenance of the antigenic structure of the peptide, and revealed that three contiguous residues mediate B2.1's critical contacts with b12. This single region of critical contact between the B2.1 peptide and the b12 paratope is unlikely to mimic the discontinuous key binding residues involved in the full b12 epitope for gp120, as previously identified by alanine scanning substitutions on the gp120 surface. These structural observations are supported by experiments that demonstrate that B2.1 is an ineffective immunogenic mimic of the b12 epitope on gp120. Indeed, an extensive series of immunizations with B2.1 in various forms failed to produce gp120 cross-reactive sera. The functional and structural data presented here, however, suggest that the mechanism by which b12 recognizes the two antigens is very different. Here, we present the first crystal structure of peptide bound to an antibody that was originally raised against a discontinuous protein epitope. Our results highlight the challenge of producing immunogens that mimic discontinuous protein epitopes, and the necessity of combining

  4. Phenoxo bridged dinuclear Zn(II) Schiff base complex as new precursor for preparation zinc oxide nanoparticles: Synthesis, characterization, crystal structures and photoluminescence studies

    SciTech Connect

    Saeednia, S.; Iranmanesh, P.; Ardakani, M. Hatefi; Mohammadi, M.; Norouzi, Gh.

    2016-06-15

    Highlights: • A novel nano-scale Zn(II) complex was synthesized by solvothermal method. • Chemical structure of the nanostructures was characterized as well as bulk complex. • The photoluminescence property of the complex was investigated at room temperature. • The thermogravimetry and differential thermal analysis were carried out. • Thermal decomposition of the nanostructures was prepared zinc oxide nanoparticles. - Abstract: Nanoparticles of a novel Zn(II) Schiff base complex, [Zn(HL)NO{sub 3}]{sub 2} (1), (H{sub 2}L = 2-[(2-hydroxy-propylimino) methyl] phenol), was synthesized by using solvothermal method. Shape, morphology and chemical structure of the synthesized nanoparticles were characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Fourier Transform Infrared Spectoscopy (FT-IR) and UV–vis spectroscopy. Structural determination of compound 1 was determined by single-crystal X-ray diffraction. The results were revealed that the zinc complex is a centrosymmetric dimer in which deprotonated phenolates bridge the two five-coordinate metal atoms and link the two halves of the dimer. The thermal stability of compound 1 was analyzed by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The effect of the initial substrates concentration and reaction time on size and morphology of compound 1 nanostructure was investigated as well. Furthermore, the luminescent properties of the complex 1 were examined. ZnO nanoparticles with diameter between 15 and 20 nm were simply synthesized by solid-state transformation of compound 1 at 700 °C.

  5. Removal of Pb(II), Cd(II), Cu(II), and Zn(II) by hematite nanoparticles: effect of sorbent concentration, pH, temperature, and exhaustion.

    PubMed

    Shipley, Heather J; Engates, Karen E; Grover, Valerie A

    2013-03-01

    Nanoparticles offer the potential to improve environmental treatment technologies due to their unique properties. Adsorption of metal ions (Pb(II), Cd(II), Cu(II), Zn(II)) to nanohematite was examined as a function of sorbent concentration, pH, temperature, and exhaustion. Adsorption experiments were conducted with 0.05, 0.1, and 0.5 g/L nanoparticles in a pH 8 solution and in spiked San Antonio tap water. The adsorption data showed the ability of nanohematite to remove Pb, Cd, Cu, and Zn species from solution with adsorption increasing as the nanoparticle concentration increased. At 0.5 g/L nanohematite, 100 % Pb species adsorbed, 94 % Cd species adsorbed, 89 % Cu species adsorbed and 100 % Zn species adsorbed. Adsorption kinetics for all metals tested was described by a pseudo second-order rate equation with lead having the fastest rate of adsorption. The effect of temperature on adsorption showed that Pb(II), Cu(II), and Cd(II) underwent an endothermic reaction, while Zn(II) underwent an exothermic reaction. The nanoparticles were able to simultaneously remove multiple metals species (Zn, Cd, Pb, and Cu) from both a pH 8 solution and spiked San Antonio tap water. Exhaustion experiments showed that at pH 8, exhaustion did not occur for the nanoparticles but adsorption does decrease for Cd, Cu, and Zn species but not Pb species. The strong adsorption coupled with the ability to simultaneously remove multiple metal ions offers a potential remediation method for the removal of metals from water.

  6. Five coordinate M(II)-diphenolate [M = Zn(II), Ni(II), and Cu(II)] Schiff base complexes exhibiting metal- and ligand-based redox chemistry.

    PubMed

    Franks, Mark; Gadzhieva, Anastasia; Ghandhi, Laura; Murrell, David; Blake, Alexander J; Davies, E Stephen; Lewis, William; Moro, Fabrizio; McMaster, Jonathan; Schröder, Martin

    2013-01-18

    Five-coordinate Zn(II), Ni(II), and Cu(II) complexes containing pentadentate N(3)O(2) Schiff base ligands [1A](2-) and [1B](2-) have been synthesized and characterized. X-ray crystallographic studies reveal five coordinate structures in which each metal ion is bound by two imine N-donors, two phenolate O-donors, and a single amine N-donor. Electron paramagnetic resonance (EPR) spectroscopic studies suggest that the N(3)O(2) coordination spheres of [Cu(1A)] and [Cu(1B)] are retained in CH(2)Cl(2) solution and solid-state superconducting quantum interference device (SQUID) magnetometric studies confirm that [Ni(1A)] and [Ni(1B)] adopt high spin (S = 1) configurations. Each complex exhibits two reversible oxidation processes between +0.05 and +0.64 V vs [Fc](+)/[Fc]. The products of one- and two-electron oxidations have been studied by UV/vis spectroelectrochemistry and by EPR spectroscopy which confirm that each oxidation process for the Zn(II) and Cu(II) complexes is ligand-based with sequential formation of mono- and bis-phenoxyl radical species. In contrast, the one-electron oxidation of the Ni(II) complexes generates Ni(III) products. This assignment is supported by spectroelectrochemical and EPR spectroscopic studies, density functional theory (DFT) calculations, and the single crystal X-ray structure of [Ni(1A)][BF(4)] which contains Ni in a five-coordinate distorted trigonal bipyramidal geometry.

  7. [Isolation and purification of enhanced green fluorescent protein using chromatography].

    PubMed

    Hou, Qinghua; Song, Shuliang; Liang, Hao; Wang, Weili; Ji, Aiguo

    2013-02-01

    Enhanced green fluorescent protein (EGFP) is a common biological marker. In this research, on the foundation of successful clone and expression of EGFP, a two-step chromatographic method was established to separate and purify EGFP, which includes the use of HisTrap HP immobilized metal affinity chromatography (IMAC) and Sephadex G-10 HR size exclusion chromatography in sequence. Sephacryl S-300 HR size exclusion chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) were used to check out the purity of EGFP. At last, it was found that EGFP still had fluorescent activity using fluorescence spectrophotometric detection and Native-PAGE detection. This method can effectively separate the active EGFP. The purity of the obtained EGFP was more than 98%.

  8. High Affinity Host-Guest FRET Pair for Single-Vesicle Content-Mixing Assay: Observation of Flickering Fusion Events.

    PubMed

    Gong, Bokyoung; Choi, Bong-Kyu; Kim, Jae-Yeol; Shetty, Dinesh; Ko, Young Ho; Selvapalam, Narayanan; Lee, Nam Ki; Kim, Kimoon

    2015-07-22

    Fluorescence-based single-vesicle fusion assays provide a powerful method for studying mechanisms underlying complex biological processes of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)-mediated vesicle fusion and neurotransmitter release. A crucial element of these assays is the ability of the fluorescent probe(s) to reliably detect key intermediate events of fusion pore opening and content release/mixing. Here, we report a new, reliable, and efficient single-vesicle content-mixing assay using a high affinity, fluorophore tagged host-guest pair, cucurbit[7]uril-Cy3 and adamantane-Cy5 as a fluorescence resonance energy transfer (FRET) pair. The power of these probes is demonstrated by the first successful observation of flickering dynamics of the fusion pore by in vitro assay using neuronal SNARE-reconstituted vesicles.

  9. Fluorescent viscoelastic enhancement.

    PubMed

    Smith, K D; Burt, W L

    1992-11-01

    By inserting an Erreger 485 exciter filter into the operating microscope, translucent yellow Healon (sodium hyaluronate) transforms into a brilliant opaque green viscoelastic. We have developed this technique and termed it "fluorescent viscoelastic enhancement." Using the technique, we demonstrated that the time required to remove Healon from the anterior chamber after intraocular lens insertion varies. Healon is usually aspirated quickly, in less than 17 seconds. Otherwise it traps behind the intraocular lens and requires more time for irrigation/aspiration (I/A) and manipulation of the I/A tip. Fluorescent viscoelastic enhancement minimized I/A time, reducing excess turbulence and manipulation in the anterior chamber, and thus may reduce corneal endothelial cell loss. This study also demonstrated that fluorescent viscoelastic enhancement prevented postoperative intraocular pressure rise, compared to the conventional removal of clear Healon. Fluorescent viscoelastic enhancement assures the surgeon that a large amount of Healon is not left behind.

  10. Fluorescent radiation converter

    NASA Technical Reports Server (NTRS)

    Viehmann, W. (Inventor)

    1981-01-01

    A fluorescence radiation converter is described which includes a substantially undoped optically transparent substrate and a waveshifter coating deposited on at least one portion of the substrate for absorption of radiation and conversion of fluorescent radiation. The coating is formed to substantially 1000 g/liter of a solvent, 70 to 200 g/liter of an organic polymer, and 0.2 to 25 g/liter of at least one organic fluorescent dye. The incoming incident radiation impinges on the coating. Radiation is absorbed by the fluorescent dye and is re-emitted as a longer wavelength radiation. Radiation is trapped within the substrate and is totally internally reflected by the boundary surface. Emitted radiation leaves the substrate ends to be detected.

  11. Fluorescent filtered electrophosphorescence

    DOEpatents

    Forrest, Stephen; Sun, Yiru; Giebink, Noel; Thompson, Mark E.

    2010-08-03

    The present invention relates to organic light emitting devices (OLEDs), and more specifically to OLEDS that emit light using a combination of fluorescent emitters and phosphorescent emitters for the efficient utilization of all of the electrically generated excitons.

  12. Fluorescent filtered electrophosphorescence

    DOEpatents

    Forrest, Stephen R [Princeton, NJ; Sun, Yiru [Princeton, NJ; Giebink, Noel [Princeton, NJ; Thompson, Mark E [Anaheim Hills, CA

    2009-01-06

    The present invention relates to organic light emitting devices (OLEDs), and more specifically to OLEDS that emit light using a combination of fluorescent emitters and phosphorescent emitters for the efficient utilization of all of the electrically generated excitons.

  13. Candida, fluorescent stain (image)

    MedlinePlus

    This microscopic film shows a fluorescent stain of Candida. Candida is a yeast (fungus) that causes mild disease, but in immunocompromised individuals it may cause life-threatening illness. (Image ...

  14. Atmospheric Fluorescence Yield

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Christl, M. J.; Fountain, W. F.; Gregory, J. C.; Martens, K.; Sokolsky, P.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Several existing and planned experiments estimate the energies of ultra-high energy cosmic rays from air showers using the atmospheric fluorescence from these showers. Accurate knowledge of the conversion from atmospheric fluorescence to energy loss by ionizing particles in the atmosphere is key to this technique. In this paper we discuss a small balloon-borne instrument to make the first in situ measurements versus altitude of the atmospheric fluorescence yield. The instrument can also be used in the lab to investigate the dependence of the fluorescence yield in air on temperature, pressure and the concentrations of other gases that present in the atmosphere. The results can be used to explore environmental effects on and improve the accuracy of cosmic ray energy measurements for existing ground-based experiments and future space-based experiments.

  15. Electron affinities of atoms, molecules and radicals

    NASA Astrophysics Data System (ADS)

    Christodoulides, A. A.; McCorkle, D. L.; Christophorou, L. G.

    The theoretical, semiempirical and experimental methods employed to determine electron affinities (EAs) of atoms, molecules and radicals, and summarize the EA data obtained by these methods were reviewed. The detailed processes underlying the principles of the experimental methods are discussed very briefly. It is, nonetheless, instructive to recapitulate the definition of EA and those of the related quantities, namely, the vertical detachment energy, VDE, and the vertical attachment energy, VAE. The EA of an atom is defined as the difference in total energy between the ground state of the neutral atom (plus the electron at rest at infinity) and its negative ion. The EA of a molecule is defined as the difference in energy between the neutral molecule plus an electron at rest at infinity and the molecular negative ion when both, the neutral molecules and the negative ion, are in their ground electronic, vibrational and rotational states.

  16. The affine cohomology spaces and its applications

    NASA Astrophysics Data System (ADS)

    Fraj, Nizar Ben; Laraiedh, Ismail

    2016-12-01

    We compute the nth cohomology space of the affine Lie superalgebra 𝔞𝔣𝔣(1) on the (1,1)-dimensional real superspace with coefficient in a large class of 𝔞𝔣𝔣(1)-modules M. We apply our results to the module of weight densities and the module of linear differential operators acting on a superspace of weighted densities. This work is the generalization of a result by Basdouri et al. [The linear 𝔞𝔣𝔣(n|1)-invariant differential operators on weighted densities on the superspace ℝ1|n and 𝔞𝔣𝔣(n|1)-relative cohomology, Int. J. Geom. Meth. Mod. Phys. 10 (2013), Article ID: 1320004, 9 pp.

  17. Automatic gesture analysis using constant affine velocity.

    PubMed

    Cifuentes, Jenny; Boulanger, Pierre; Pham, Minh Tu; Moreau, Richard; Prieto, Flavio

    2014-01-01

    Hand human gesture recognition has been an important research topic widely studied around the world, as this field offers the ability to identify, recognize, and analyze human gestures in order to control devices or to interact with computer interfaces. In particular, in medical training, this approach is an important tool that can be used to obtain an objective evaluation of a procedure performance. In this paper, some obstetrical gestures, acquired by a forceps, were studied with the hypothesis that, as the scribbling and drawing movements, they obey the one-sixth power law, an empirical relationship which connects path curvature, torsion, and euclidean velocity. Our results show that obstetrical gestures have a constant affine velocity, which is different for each type of gesture and based on this idea this quantity is proposed as an appropriate classification feature in the hand human gesture recognition field.

  18. High-affinity neuropeptide Y receptor antagonists.

    PubMed Central

    Daniels, A J; Matthews, J E; Slepetis, R J; Jansen, M; Viveros, O H; Tadepalli, A; Harrington, W; Heyer, D; Landavazo, A; Leban, J J

    1995-01-01

    Neuropeptide Y (NPY) is one of the most abundant peptide transmitters in the mammalian brain. In the periphery it is costored and coreleased with norepinephrine from sympathetic nerve terminals. However, the physiological functions of this peptide remain unclear because of the absence of specific high-affinity receptor antagonists. Three potent NPY receptor antagonists were synthesized and tested for their biological activity in in vitro, ex vivo, and in vivo functional assays. We describe here the effects of these antagonists inhibiting specific radiolabeled NPY binding at Y1 and Y2 receptors and antagonizing the effects of NPY in human erythroleukemia cell intracellular calcium mobilization perfusion pressure in the isolated rat kidney, and mean arterial blood pressure in anesthetized rats. PMID:7568074

  19. High-affinity neuropeptide Y receptor antagonists.

    PubMed

    Daniels, A J; Matthews, J E; Slepetis, R J; Jansen, M; Viveros, O H; Tadepalli, A; Harrington, W; Heyer, D; Landavazo, A; Leban, J J; Spaltenstein, A

    1995-09-26

    Neuropeptide Y (NPY) is one of the most abundant peptide transmitters in the mammalian brain. In the periphery it is costored and coreleased with norepinephrine from sympathetic nerve terminals. However, the physiological functions of this peptide remain unclear because of the absence of specific high-affinity receptor antagonists. Three potent NPY receptor antagonists were synthesized and tested for their biological activity in in vitro, ex vivo, and in vivo functional assays. We describe here the effects of these antagonists inhibiting specific radiolabeled NPY binding at Y1 and Y2 receptors and antagonizing the effects of NPY in human erythroleukemia cell intracellular calcium mobilization perfusion pressure in the isolated rat kidney, and mean arterial blood pressure in anesthetized rats.

  20. Effectively nonlocal metric-affine gravity

    NASA Astrophysics Data System (ADS)

    Golovnev, Alexey; Koivisto, Tomi; Sandstad, Marit

    2016-03-01

    In metric-affine theories of gravity such as the C-theories, the spacetime connection is associated to a metric that is nontrivially related to the physical metric. In this article, such theories are rewritten in terms of a single metric, and it is shown that they can be recast as effectively nonlocal gravity. With some assumptions, known ghost-free theories with nonsingular and cosmologically interesting properties may be recovered. Relations between different formulations are analyzed at both perturbative and nonperturbative levels, taking carefully into account subtleties with boundary conditions in the presence of integral operators in the action, and equivalences between theories related by nonlocal redefinitions of the fields are verified at the level of equations of motion. This suggests a possible geometrical interpretation of nonlocal gravity as an emergent property of non-Riemannian spacetime structure.

  1. Dynamic friction of self-affine surfaces

    NASA Astrophysics Data System (ADS)

    Schmittbuhl, Jean; Vilotte, Jean-Pierre; Roux, Stéphane

    1994-02-01

    We investigate the velocity dependence of the friction between two rigid blocks limited by a self-affine surface such as the one generated by a crack. The upper solid is subjected either to gravity or to an external elastic stiffness, and is driven horizontally at constant velocity, V, while the lower solid is fixed. For low velocities, the apparent friction coefficient is constant. For high velocities, the apparent friction is shown to display a velocity weakening. The weakening can be related to the variation of the mean contact time due to the occurrence of jumps during the motions. The cross-over between these two regimes corresponds to a characteristic velocity which depends on the geometry of the surfaces and on the mean normal force. In the case of simple gravity loading, the velocity dependence of the apparent friction at high velocities is proportional to 1/V^2 where V is the imposed tangential velocity. In the case of external elastic stiffness, two velocity weakening regimes can be identified, the first is identical to the gravity case with a 1/V^2 dependence, the second appears at higher velocities and is characterized by a 1/V variation. The characteristic velocity of this second cross-over depends on the roughness and the elastic stiffness. The statistical distribution of ballistic flight distances is analysed, and is shown to reveal in all cases the self-affinity of the contacting surfaces. Nous analysons la dépendence en vitesse du frottement entre deux solides limités par une surface rugueuse auto-affine comme celle d'une surface de fracture. Le solide supérieur est soumis soit à la gravité, soit à une raideur élastique externe, et est entraîné à vitesse horizontale constante V sur le solide inférieur fixe. A faible vitesse, le coefficient de friction apparent, est constant. A forte vitesse, le coefficient de friction apparent devient inversement proportionnel à la vitesse. Cette dépendance peut être reliée à la variation du temps

  2. A surface plasmon field-enhanced fluorescence reversible split aptamer biosensor.

    PubMed

    Sergelen, K; Liedberg, B; Knoll, W; Dostálek, J

    2017-08-07

    Surface plasmon field-enhanced fluorescence is reported for the readout of a heterogeneous assay that utilizes low affinity split aptamer ligands. Weak affinity ligands that reversibly interact with target analytes hold potential for facile implementation in continuous monitoring biosensor systems. This functionality is not possible without the regeneration of more commonly used assays relying on high affinity ligands and end-point measurement. In fluorescence-based sensors, the use of low affinity ligands allows avoiding this step but it imposes a challenge associated with the weak optical response to the specific capture of the target analyte which is also often masked by a strong background. The coupling of fluorophore labels with a confined field of surface plasmons is reported for strong amplification of the fluorescence signal emitted from the sensor surface and its efficient discrimination from the background. This optical scheme is demonstrated for time-resolved analysis of chosen model analytes - adenoside and adenosine triphosphate - with a split aptamer that exhibits an equilibrium affinity binding constant between 0.73 and 1.35 mM. The developed biosensor enables rapid and specific discrimination of target analyte concentration changes from low μM to mM in buffer as well as in 10% serum.

  3. Engineering GCaMP affinity and kinetics for improved tracking of neuronal activity

    NASA Astrophysics Data System (ADS)

    Sun, Xiaonan Richard

    Fluorescent calcium indicator proteins (FCIPs) are powerful tools for monitoring neural activity. However, they still have significant performance limitations compared with synthetic indicators based on the small-molecule chelator BAPTA. Because of high cooperativity originating from a calmodulin-based recombinant calcium sensor, a given GECI is only sensitive to a small part of a neuron's likely calcium concentration range, which can span a range of 0.1-10 microM. GECIs also have up to 100-fold slower reponse kinetics than BAPTA-based indicators. Overcoming limitations in range and kinetics is a key step toward monitoring spike times and firing rates in cell-type-specific brain circuits. We are engaged in structure-based design to vary the affinity and accelerate the response kinetics of a widely used GECI, GCaMP3. We have designed more than 50 novel variants by targeted mutation of GCaMP3's calmodulin (CaM) domain and its intraprobe peptide partner, RS20. In our cuvet characterizations of purified protein, we have attained a nearly 40-fold (0.16-6 microM) range of KD without impairing per-molecule brightness. In stopped-flow biochemical measurements, off-responses to sharp decreases in calcium are more than 10 times faster than any other published GECI. Most of the gap in off-response speed between G-CaMP3 and BAPTA-based indicators could be closed without perturbing KD. In Drosophila antennal nerve axons, sensory stimulation-evoked fluorescence responses were significantly enhanced in speed and amplitude in two novel GECIs. With our biophysical measurements, we discovered that the N-lobe of the bilobular CaM domain is required for the high-fluorescence state and the C-lobe contributes to high affinity Ca2+ binding. To account for our observations, we propose a molecular dynamics model of GCaMP3 with two kinetic pathways leading to a high-fluorescence state. First, small amounts of Ca 2+ activate a slow "C-like" pathway through sequential binding to the C

  4. Laser fluorescence diagnostics

    NASA Astrophysics Data System (ADS)

    Kozlov, V. K.; Krasilnikov, D. M.; Turkin, V. V.

    1995-01-01

    This paper descsribes the development of an apparatus, method, and practical recommendation on using fluorescence diagnostics in alimentary-intestinal tract surgery and analyses of blood serum and plasma for investigating influence of various drug preparations on a human organism. The report of the firm Israel Aircraft Industries on the high efficiency of using fluorescent analysis in early diagnostics of rectum, lung, and breast cancer has stimulated our publication.

  5. Phase-Conjugated Fluorescence

    DTIC Science & Technology

    1991-01-01

    reverse if necessary and identify by block number)FIELD GROUP SUB-GROUP PHASE-CONJUGATED FLUORESCENCE EMITTED POWER FOUR -WAVE MIXING THREE CONTRIBUTIONS...atom near a phase conjugator (PC) based on four -wave mixing is studied from first principles. The MaxwellLeisenberg equations are solved for the...Fronczak Hall State University of New York at Buffalo Buffalo, New York 14260 Fluorescent emission by an atom near a phase conjugator (PC) based on four -wave

  6. Epi-Fluorescence Microscopy

    PubMed Central

    Webb, Donna J.; Brown, Claire M.

    2012-01-01

    Epi-fluorescence microscopy is available in most life sciences research laboratories, and when optimized can be a central laboratory tool. In this chapter, the epi-fluorescence light path is introduced and the various components are discussed in detail. Recommendations are made for incident lamp light sources, excitation and emission filters, dichroic mirrors, objective lenses, and charge-coupled device (CCD) cameras in order to obtain the most sensitive epi-fluorescence microscope. The even illumination of metal-halide lamps combined with new “hard” coated filters and mirrors, a high resolution monochrome CCD camera, and a high NA objective lens are all recommended for high resolution and high sensitivity fluorescence imaging. Recommendations are also made for multicolor imaging with the use of monochrome cameras, motorized filter turrets, individual filter cubes, and corresponding dyes that are the best choice for sensitive, high resolution multicolor imaging. Images should be collected using Nyquist sampling and should be corrected for background intensity contributions and nonuniform illumination across the field of view. Photostable fluorescent probes and proteins that absorb a lot of light (i.e., high extinction co-efficients) and generate a lot of fluorescence signal (i.e., high quantum yields) are optimal. A neuronal immune-fluorescence labeling protocol is also presented. Finally, in order to maximize the utility of sensitive wide-field microscopes and generate the highest resolution images with high signal-to-noise, advice for combining wide-field epi-fluorescence imaging with restorative image deconvolution is presented. PMID:23026996

  7. Fluorescence (Multiwave) Confocal Microscopy.

    PubMed

    Welzel, J; Kästle, Raphaela; Sattler, Elke C

    2016-10-01

    In addition to reflectance confocal microscopy, multiwave confocal microscopes with different laser wavelengths in combination with exogenous fluorophores allow fluorescence mode confocal microscopy in vivo and ex vivo. Fluorescence mode confocal microscopy improves the contrast between the epithelium and the surrounding soft tissue and allows the depiction of certain structures, like epithelial tumors, nerves, and glands. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Fluorescent Applications to Crystallization

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Forsythe, Elizabeth; Achari, Aniruddha

    2006-01-01

    By covalently modifying a subpopulation, less than or equal to 1%, of a macromolecule with a fluorescent probe, the labeled material will add to a growing crystal as a microheterogeneous growth unit. Labeling procedures can be readily incorporated into the final stages of purification, and tests with model proteins have shown that labeling u to 5 percent of the protein molecules does not affect the X-ray data quality obtained . The presence of the trace fluorescent label gives a number of advantages. Since the label is covalently attached to the protein molecules, it "tracks" the protein s response to the crystallization conditions. The covalently attached probe will concentrate in the crystal relative to the solution, and under fluorescent illumination crystals show up as bright objects against a darker background. Non-protein structures, such as salt crystals, do not show up under fluorescent illumination. Crystals have the highest protein concentration and are readily observed against less bright precipitated phases, which under white light illumination may obscure the crystals. Automated image analysis to find crystals should be greatly facilitated, without having to first define crystallization drop boundaries as the protein or protein structures is all that shows up. Fluorescence intensity is a faster search parameter, whether visually or by automated methods, than looking for crystalline features. Preliminary tests, using model proteins, indicates that we can use high fluorescence intensity regions, in the absence of clear crystalline features or "hits", as a means for determining potential lead conditions. A working hypothesis is that more rapid amorphous precipitation kinetics may overwhelm and trap more slowly formed ordered assemblies, which subsequently show up as regions of brighter fluorescence intensity. Experiments are now being carried out to test this approach using a wider range, of proteins. The trace fluorescently labeled crystals will also

  9. Two-dimensional fluorescence intensity distribution analysis: theory and applications.

    PubMed

    Kask, P; Palo, K; Fay, N; Brand, L; Mets, U; Ullmann, D; Jungmann, J; Pschorr, J; Gall, K

    2000-04-01

    A method of sample analysis is presented which is based on fitting a joint distribution of photon count numbers. In experiments, fluorescence from a microscopic volume containing a fluctuating number of molecules is monitored by two detectors, using a confocal microscope. The two detectors may have different polarizational or spectral responses. Concentrations of fluorescent species together with two specific brightness values per species are determined. The two-dimensional fluorescence intensity distribution analysis (2D-FIDA), if used with a polarization cube, is a tool that is able to distinguish fluorescent species with different specific polarization ratios. As an example of polarization studies by 2D-FIDA, binding of 5'-(6-carboxytetramethylrhodamine) (TAMRA)-labeled theophylline to an anti-theophylline antibody has been studied. Alternatively, if two-color equipment is used, 2D-FIDA can determine concentrations and specific brightness values of fluorescent species corresponding to individual labels alone and their complex. As an example of two-color 2D-FIDA, binding of TAMRA-labeled somatostatin-14 to the human type-2 high-affinity somatostatin receptors present in stained vesicles has been studied. The presented method is unusually accurate among fluorescence fluctuation methods. It is well suited for monitoring a variety of molecular interactions, including receptors and ligands or antibodies and antigens.

  10. A novel fluorescent probe: europium complex hybridized T7 phage.

    PubMed

    Liu, Chin-Mei; Jin, Qiaoling; Sutton, April; Chen, Liaohai

    2005-01-01

    We report on the creation of a novel fluorescent probe of europium-complex hybridized T7 phage. It was made by filling a ligand-displayed T7 ghost phage with a fluorescent europium complex particle. The structure of the hybridized phage, which contains a fluorescent inorganic core surrounded by a ligand-displayed capsid shell, was confirmed by electron microscope, energy-dispersive X-ray analysis (EDX), bioassays, and fluorescence spectrometer. More importantly, as a benefit of the phage display technology, the hybridized phage has the capability to integrate an affinity reagent against virtually any target molecules. The approach provides an original method to fluorescently "tag" a bioligand and/or to "biofunctionalize" a fluorophore particle. By using other types of materials such as radioactive or magnetic particles to fill the ghost phage, we envision that the hybridized phages represent a new class of fluorescent, magnetic, or radioprobes for imaging and bioassays and could be used both in vitro and in vivo.

  11. Plasmon-controlled fluorescence

    PubMed Central

    Lakowicz, Joseph R.; Chowdhury, Mustafa H.; Ray, Krishanu; Zhang, Jian; Fu, Yi; Badugu, Ramachandram; Sabanayagam, Chandran R.; Nowaczyk, Kazimierz; Szmacinski, Henryk; Aslan, Kadir; Geddes, Chris D.

    2009-01-01

    Fluorescence is widely used in biological research. Future advances in biology and medicine often depend on the advances in the capabilities of fluorescence measurements. In this overview paper we describe how a combination of fluorescence, and plasmonics, and nanofabrication can fundamentally change and increase the capabilities of fluorescence technology. This change will be based on the use of surface plasmons which are collective oscillations of free electrons in metallic surfaces and particles. Surface plasmon resonance is now used to measure bioaffinity reactions. However, the uses of surface plasmons in biology are not limited to their optical absorption or extinction. We have shown that fluorophores in the excited state can create plasmons which radiate into the far field; additionally fluorophores in the ground state can interact with and be excited by surface plasmons. These interactions suggest that the novel optical absorption and scattering properties of metallic nanostructures can be used to control the decay rates, location and direction of fluorophore emission. We refer to this technology as plasmon-controlled fluorescence. We predict that plasmon-controlled fluorescence (PCF) will result in a new generation of probes and devices. PCF is likely to allow design of structures which enhance emission at specific wavelengths and the creation of new devices which control and transport the energy from excited fluorophores in the form of plasmons, and then convert the plasmons back to light. PMID:20953312

  12. Al(OH)3 facilitated synthesis of water-soluble, magnetic, radiolabelled and fluorescent hydroxyapatite nanoparticles.

    PubMed

    Cui, X; Green, M A; Blower, P J; Zhou, D; Yan, Y; Zhang, W; Djanashvili, K; Mathe, D; Veres, D S; Szigeti, K

    2015-06-07

    Magnetic and fluorescent hydroxyapatite nanoparticles were synthesised using Al(OH)3-stabilised MnFe2O4 or Fe3O4 nanoparticles as precursors. They were readily and efficiently radiolabelled with (18)F. Bisphosphonate polyethylene glycol polymers were utilised to endow the nanoparticles with excellent colloidal stability in water and to incorporate cyclam for high affinity labelling with (64)Cu.

  13. Dimeric fluorescent energy transfer dyes comprising asymmetric cyanine azole-indolenine chromophores

    DOEpatents

    Glazer, Alexander N.; Benson, Scott C.

    1996-01-01

    Novel fluorescent DNA-staining dyes are provided combining asymmetric cyanine azole-indolenine dyes, which provide for strong DNA affinity, large Stokes shifts and emission in the red region of the spectrum. The dyes find particular application in gel electrophoresis and for labels which may be bound to a variety of compositions in a variety of contexts.

  14. A Trp-BODIPY cyclic peptide for fluorescence labelling of apoptotic bodies.

    PubMed

    Subiros-Funosas, Ramon; Mendive-Tapia, Lorena; Sot, Jesus; Pound, John D; Barth, Nicole; Varela, Yaiza; Goñi, Felix M; Paterson, Margaret; Gregory, Christopher D; Albericio, Fernando; Dransfield, Ian; Lavilla, Rodolfo; Vendrell, Marc

    2017-01-10

    The rational design and synthesis of a Trp-BODIPY cyclic peptide for the fluorescent labelling of apoptotic bodies is described. Affinity assays, confocal microscopy and flow cytometry analysis confirmed the binding of the peptide to negatively-charged phospholipids associated with apoptosis, and its applicability for the detection and characterisation of subcellular structures released by apoptotic cells.

  15. Studies on interactions between plant secondary metabolites and glutathione transferase using fluorescence quenching method.

    PubMed

    Zhang, Xian; Cheng, Xinsheng; Wang, Chuanqin; Xue, Zechun; Yang, Liwen; Xi, Zheng

    2007-04-01

    The interactions between plant secondary metabolites (tannic acid, rutin, cinnamic acid and catechin) and glutathione transferase (GST) were investigated by fluorescence and UV-Vis absorption spectroscopy. Intrinsic fluorescence of GST was measured by selectively exciting their tryptophan (Trp) residues and quenching constants were determined using the Stern-Volmer equation. The binding affinity was found to be strongest for tannic acid and ranked in the order tannic acid>rutin>cinnamic acid>catechin. The pH values in the range of 6.7-7.9, except for tannic acid, did not affect significantly the affinity of rutin, cinnamic acid and catechin with GST. Results showed that the fluorescence quenching of GST was a static_quenching. Fluorescence quenching and UV-Vis absorption spectroscopy suggested that only the tannic acid changed the microenvironment of the Trp residues. Furthermore, the number of binding sites and binding constants at different pH values showed that tannic acid had strongest affinity towards GST and hydrogen bonding played an important role in the affinity between GST and the metabolites.

  16. Gravitation, Electromagnetism and the Cosmological Constant in Purely Affine Gravity

    NASA Astrophysics Data System (ADS)

    Popławski, Nikodem J.

    The Eddington Lagrangian in the purely affine formulation of general relativity generates the Einstein equations with the cosmological constant. The Ferraris-Kijowski purely affine Lagrangian for the electromagnetic field, which has the form of the Maxwell Lagrangian with the metric tensor replaced by the symmetrized Ricci tensor, is dynamically equivalent to the Einstein-Maxwell Lagrangian in the metric formulation. We show that the sum of the two affine Lagrangians is dynamically inequivalent to the sum of the analogous Lagrangians in the metric-affine/metric formulation. We also show that such a construction is valid only for weak electromagnetic fields. Therefore the purely affine formulation that combines gravitation, electromagnetism and the cosmological constant cannot be a simple sum of terms corresponding to separate fields. Consequently, this formulation of electromagnetism seems to be unphysical, unlike the purely metric and metric-affine pictures, unless the electromagnetic field couples to the cosmological constant.

  17. Study on the degeneracy of antisense peptides using affinity chromatography.

    PubMed

    Zhao, R; Yu, X; Liu, H; Zhai, L; Xiong, S; Su, T; Liu, G

    2001-04-13

    The degeneracy of antisense peptides was studied by high-performance affinity chromatography. A model sense peptide (AAAA) and its antisense peptides (CGGG, GGGG, RGGG, SGGG) were designed and synthesized according to the degeneracy of genetic codes. An affinity column with AAAA as the ligand was prepared. The affinity chromatographic behaviors of antisense peptides on the column were evaluated. The results indicated that model antisense peptides have clear retention on the immobilized AAAA affinity column. RGGG showed the strongest affinity interaction. Similar result was obtained from another experiment that Arg-substituted antisense peptide of fusion peptide (1-11) of influenza virus A was also shown the highest affinity binding to immobilized fusion peptide.

  18. Classical affine W-algebras associated to Lie superalgebras

    SciTech Connect

    Suh, Uhi Rinn

    2016-02-15

    In this paper, we prove classical affine W-algebras associated to Lie superalgebras (W-superalgebras), which can be constructed in two different ways: via affine classical Hamiltonian reductions and via taking quasi-classical limits of quantum affine W-superalgebras. Also, we show that a classical finite W-superalgebra can be obtained by a Zhu algebra of a classical affine W-superalgebra. Using the definition by Hamiltonian reductions, we find free generators of a classical W-superalgebra associated to a minimal nilpotent. Moreover, we compute generators of the classical W-algebra associated to spo(2|3) and its principal nilpotent. In the last part of this paper, we introduce a generalization of classical affine W-superalgebras called classical affine fractional W-superalgebras. We show these have Poisson vertex algebra structures and find generators of a fractional W-superalgebra associated to a minimal nilpotent.

  19. Formation, characterization, aggregation, fluorescence and antioxidant properties of novel tetrasubstituted metal-free and metallophthalocyanines bearing (4-(methylthio)phenoxy) moieties

    NASA Astrophysics Data System (ADS)

    Yıldırım, Nurdan; Bilgiçli, Ahmet T.; Alici, Esma Hande; Arabacı, Gulnur; Yarasir, M. Nilüfer

    2017-09-01

    The synthesis and characterization of peripherally tetra 4-(methylthio)phenoxy substituted metal-free(2), Zn(II) (3) and Co(II) (4) phthalocyanine derivatives were reported. These newly synthesized phthalocyanine derivatives showed the enhanced solubility in organic solvents and they were characterized by a combination of elemental analysis, FTIR, 1H NMR, 13C NMR, UV-vis and MALDI-TOF/MS spectral data. Their aggregation properties were investigated in THF by UV-vis and fluorescence. These metal-free and metallophthalocyanine compounds were also evaluated for their total antioxidant abilities by using three different antioxidant methods such as 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging, ferrous ion chelating and reducing power activity. All tested compounds showed radical scavenging activity. The highest radical scavenging activity was found from cobalt phthalocyanine (4) compound respectively. IC50 values of the compounds and standards (BHT and Trolox) were also determined. The results showed that the compound 4 had the highest antioxidant activity among all tested compounds including standards. The tested phthalocyanine compounds had ferrous ion chelating activity. In addition, they showed very high reducing power. All tested compounds had higher reducing power than the standards such as ascorbic acid and BHT. The present study shows that the synthesized tetra phthalocyanine [M: 2H(2), Zn(II)(3), Co(II)(4)] with four peripheral 4-(methylthio) phenoxy compounds have the effective antioxidant properties that can be used as antioxidant agents.

  20. Fluorescence turn-on sensing of protein based on mannose functionalized perylene bisimides and its fluorescence imaging.

    PubMed

    Wang, Ke-Rang; An, Hong-Wei; Rong, Rui-Xue; Cao, Zhi-Ran; Li, Xiao-Liu

    2014-08-15

    A new water-soluble glycocluster based on perylene bisimides PBI-12-Man has been designed and synthesized, and its specific and selective binding property with Concanavalin A (Con A) has been investigated by fluorescence spectroscopy and circular dichroism (CD) spectroscopy, which showed strong binding affinity for Con A with the binding constant of 8.2×10(5)M(-1) for monomeric mannose unit, two orders of magnitude higher than the corresponding monosaccharide ligand. Most interestingly, a fluorescence enhancement of PBI-12-Man was observed upon binding with Con A because of deaggregation of the self-assembly of PBI-12-Man induced by carbohydrate-protein interaction, and the further study of the fluorescence enhancement with macrophage cells showed that PBI-12-Man as a biocompatible agent had fluorescence imaging of the surface mannose receptor of the cells. Such fluorescence turn-on sensing of protein based on carbohydrate-protein interactions would facilitate the development of new protein-specific fluorescent probe for diagnosis and molecular imaging under live cell conditions.