Science.gov

Sample records for affinity gel chromatography

  1. Rapid purification of mitochondrial hexokinase from rat brain by a single affinity chromatography step on Affi-Gel blue.

    PubMed

    Wilson, J E

    1989-01-01

    The mitochondrial hexokinase from rat brain, selectively released from mitochondria by the action of glucose 6-phosphate, can be purified to greater than 90% homogeneity by a single affinity chromatography step on Affi-Gel Blue; the Cibacron Blue F3GA ligand bound to this matrix serves as an analog of ATP, the normal substrate for the enzyme, and selective elution is accomplished using glucose 6-phosphate which is a competitive ligand vs. ATP. With this and other modifications to the previously described procedure highly purified enzyme is readily obtained in good yield and with retention of the ability to rebind to mitochondria.

  2. Separation and quantitation of hepatoma-associated gamma-glutamyltransferase by affinity chromatography with Affi-Gel blue and Con A-Sepharose.

    PubMed

    Izumi, M; Taketa, K

    1983-01-01

    Isozymes of serum gamma-glutamyltransferase (GGT) in patients with hepatocellular carcinoma (HCC) and other liver diseases were separated into two groups by double-affinity column chromatography with Affi-Gel blue and Con A-Sepharose, one recovered in the unbound fraction and the other in the bound fraction. Upon electrophoresis with polyacrylamide gradient gel slabs, the unbound fraction gave a GGTI1 band and a faint II1 band and the bound fraction gave a GGT I band and faint bands of GGT I", II' and X, when the original serum contained hepatoma-associated GGT (I1, I" and II') and high-molecular-weight lipid-protein complex, GGT(X). GGT I was present in all cases as a common isozyme. Other lipoprotein-associated GGT isozymes, III-IX, were removed by passing through Affi-Gel blue. GGT activities of unbound fraction in patients with HCC were generally higher than those in patients with non-HCC liver diseases, although the difference was not significant. When the percent of GGT activity of unbound (unbound + bound) was taken, 54% of patients with HCC had a ratio greater than 22%, whereas none of the healthy subjects or patients with other liver diseases gave values greater than this. The present technique may prove to be a useful clinical test for the diagnosis of HCC.

  3. Identification of phosphoproteins in Arabidopsis thaliana leaves using polyethylene glycol fractionation, immobilized metal-ion affinity chromatography, two-dimensional gel electrophoresis and mass spectrometry.

    PubMed

    Aryal, Uma K; Krochko, Joan E; Ross, Andrew R S

    2012-01-01

    Reversible protein phosphorylation is a key regulatory mechanism in cells. Identification and characterization of phosphoproteins requires specialized enrichment methods, due to the relatively low abundance of these proteins, and is further complicated in plants by the high abundance of Rubisco in green tissues. We present a novel method for plant phosphoproteome analysis that depletes Rubisco using polyethylene glycol fractionation and utilizes immobilized metal-ion affinity chromatography to enrich phosphoproteins. Subsequent protein separation by one- and two-dimensional gel electrophoresis is further improved by extracting the PEG-fractionated protein samples with SDS/phenol and methanol/chloroform to remove interfering compounds. Using this approach, we identified 132 phosphorylated proteins in a partial Arabidopsis leaf extract. These proteins are involved in a range of biological processes, including CO(2) fixation, protein assembly and folding, stress response, redox regulation, and cellular metabolism. Both large and small subunits of Rubisco were phosphorylated at multiple sites, and depletion of Rubisco enhanced detection of less abundant phosphoproteins, including those associated with state transitions between photosystems I and II. The discovery of a phosphorylated form of AtGRP7, a self-regulating RNA-binding protein that affects floral transition, as well as several previously uncharacterized ribosomal proteins confirm the utility of this approach for phosphoproteome analysis and its potential to increase our understanding of growth and development in plants.

  4. Purification of human copper, zinc superoxide dismutase by copper chelate affinity chromatography

    SciTech Connect

    Weslake, R.J.; Chesney, S.L.; Petkau, A.; Friesen, A.D.

    1986-05-15

    Copper, zinc superoxide dismutase was isolated from human red blood cell hemolysate by DEAE-Sepharose and copper chelate affinity chromatography. Enzyme preparations had specific activities ranging from 3400 to 3800 U/mg and recoveries were approximately 60% of the enzyme activity in the lysate. Copper chelate affinity chromatography resulted in a purification factor of about 60-fold. The homogeneity of the superoxide dismutase preparation was analyzed by sodium dodecyl sulfate-gel electrophoresis, analytical gel filtration chromatography, and isoelectric focusing.

  5. Extension of the selection of protein chromatography and the rate model to affinity chromatography.

    PubMed

    Sandoval, G; Shene, C; Andrews, B A; Asenjo, J A

    2010-01-01

    The rational selection of optimal protein purification sequences, as well as mathematical models that simulate and allow optimization of chromatographic protein purification processes have been developed for purification procedures such as ion-exchange, hydrophobic interaction and gel filtration chromatography. This paper investigates the extension of such analysis to affinity chromatography both in the selection of chromatographic processes and in the use of the rate model for mathematical modelling and simulation. Two affinity systems were used: Blue Sepharose and Protein A. The extension of the theory developed previously for ion-exchange and HIC chromatography to affinity separations is analyzed in this paper. For the selection of operations two algorithms are used. In the first, the value of η, which corresponds to the efficiency (resolution) of the actual chromatography and, Σ, which determines the amount of a particular contaminant eliminated after each separation step, which determines the purity, have to be determined. It was found that the value of both these parameters is not generic for affinity separations but will depend on the type of affinity system used and will have to be determined on a case by case basis. With Blue Sepharose a salt gradient was used and with Protein A, a pH gradient. Parameters were determined with individual proteins and simulations of the protein mixtures were done. This approach allows investigation of chromatographic protein purification in a holistic manner that includes ion-exchange, HIC, gel filtration and affinity separations for the first time.

  6. Protein purification using PDZ affinity chromatography.

    PubMed

    Walkup, Ward G; Kennedy, Mary B

    2015-04-01

    PDZ domains function in nature as protein-binding domains within scaffold and membrane-associated proteins. They comprise approximately 90 residues and undergo specific, high-affinity interactions with complementary C-terminal peptide sequences, other PDZ domains, and/or phospholipids. We have previously shown that the specific, strong interactions of PDZ domains with their ligands make them well suited for use in affinity chromatography. This unit provides protocols for the PDZ affinity chromatography procedure that are applicable for the purification of proteins that contain PDZ domains or PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We detail the preparation of affinity resins composed of PDZ domains or PDZ domain peptide ligands coupled to solid supports. These resins can be used to purify proteins containing endogenous or genetically introduced PDZ domains or ligands, eluting the proteins with free PDZ domain peptide ligands.

  7. Affinity Chromatography in Nonionic Detergent Solutions

    NASA Astrophysics Data System (ADS)

    Robinson, Jack B.; Strottmann, James M.; Wick, Donald G.; Stellwagen, Earle

    1980-10-01

    Anionic dye affinity chromatography is commonly unproductive in the presence of nonionic detergents used to extract particulate proteins. Using lactate dehydrogenase as a model protein, Cibacron blue F3GA as a model dye, and Triton X-100 as a model detergent, we find that the dye is encapsulated in nonionic detergent micelles, rendering the dye incapable of ligation with the enzyme. However, the dye can be liberated from the micelles without altering the nonionic detergent concentration by addition of an anionic detergent, such as deoxycholate or sodium dodecyl sulfate, forming mixed anionic/nonionic micelles that displace the anionic dye. Encapsulation of the anionic detergents prevents their activity as protein denaturants. These observations have been successfully translated to the dye affinity chromatography of a detergent extract of brain particulate cyclic nucleotide phosphodiesterase.

  8. Virus inactivation by protein denaturants used in affinity chromatography.

    PubMed

    Roberts, Peter L; Lloyd, David

    2007-10-01

    Virus inactivation by a number of protein denaturants commonly used in gel affinity chromatography for protein elution and gel recycling has been investigated. The enveloped viruses Sindbis, herpes simplex-1 and vaccinia, and the non-enveloped virus polio-1 were effectively inactivated by 0.5 M sodium hydroxide, 6 M guanidinium thiocyanate, 8 M urea and 70% ethanol. However, pH 2.6, 3 M sodium thiocyanate, 6 M guanidinium chloride and 20% ethanol, while effectively inactivating the enveloped viruses, did not inactivate polio-1. These studies demonstrate that protein denaturants are generally effective for virus inactivation but with the limitation that only some may inactivate non-enveloped viruses. The use of protein denaturants, together with virus reduction steps in the manufacturing process should ensure that viral cross contamination between manufacturing batches of therapeutic biological products is prevented and the safety of the product ensured.

  9. Phosphopeptide Enrichment by Immobilized Metal Affinity Chromatography.

    PubMed

    Thingholm, Tine E; Larsen, Martin R

    2016-01-01

    Immobilized metal affinity chromatography (IMAC) has been the method of choice for phosphopeptide enrichment prior to mass spectrometric analysis for many years and it is still used extensively in many laboratories. Using the affinity of negatively charged phosphate groups towards positively charged metal ions such as Fe(3+), Ga(3+), Al(3+), Zr(4+), and Ti(4+) has made it possible to enrich phosphorylated peptides from peptide samples. However, the selectivity of most of the metal ions is limited, when working with highly complex samples, e.g., whole-cell extracts, resulting in contamination from nonspecific binding of non-phosphorylated peptides. This problem is mainly caused by highly acidic peptides that also share high binding affinity towards these metal ions. By lowering the pH of the loading buffer nonspecific binding can be reduced significantly, however with the risk of reducing specific binding capacity. After binding, the enriched phosphopeptides are released from the metal ions using alkaline buffers of pH 10-11, EDTA, or phosphate-containing buffers. Here we describe a protocol for IMAC using Fe(3+) for phosphopeptide enrichment. The principles are illustrated on a semi-complex peptide mixture.

  10. [Separation of osteoclasts by lectin affinity chromatography].

    PubMed

    Itokazu, M; Tan, A; Tanaka, S

    1991-09-01

    Newborn rat calvaria bone cells obtained by digestion were fractionated on columns of wheat-germ agglutinin (WGA) sepharose 6MB for osteoclast isolation. The initial nonspecific binding cells which were passed through the WGA sepharose column by a buffer acquired a high enzyme activity of alkaline phosphatase, but not that of acid phosphatase. However, elution of cells using a buffer with the addition of N-acetyl-D-glucosamine resulted in a high acid phosphatase activity but no alkaline phosphatase activity. The former WGA binding negative fraction enriched osteoblasts averaging 30 microns in size. The latter WGA binding positive fraction enriched osteoclasts ranging from 20 microns to 60 microns in size. The electron-microscope clearly demonstrated the cellular details of osteoclasts. Isolated cell counts showed a ratio of six to four. These results indicate that our method of osteoclast isolation is simple and useful in lectin affinity chromatography because all cells have sugar moieties on their surface and the binding of osteoclasts can be reversed by the addition of specific lectin-binding sugars to the eluting buffer.

  11. Gel Filtration Chromatography: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Hurlbut, Jeffrey A.; Schonbeck, Niels D.

    1984-01-01

    Describes a rapid, visual demonstration of protein separation by gel filtration chromatography. The procedure separates two highly colored proteins of different molecular weights on a Sephadex G-75 in 45 minutes. This time includes packing the column as well. Background information, reagents needed, procedures used, and results obtained are…

  12. Gel Permeation Chromatography of Fluoroether Polymers

    NASA Technical Reports Server (NTRS)

    Korus, Roger A.; Rosser, Robert W.

    1978-01-01

    A Method is described for determining the molecular weight distribution of fluorinated polymers by gel permeation chromatography. Porous silica-packed columns are used with Freon 113 as the chromatographic solvent. Fluoroether oligomers are used for column calibration in the molecular weight range of 1400 to 12000.

  13. Affinity separation of human plasma gelsolin on Affi-Gel Blue.

    PubMed

    Yamamoto, H; Terabayashi, M; Egawa, T; Hayashi, E; Nakamura, H; Kishimoto, S

    1989-05-01

    Human plasma gelsolin was specifically eluted with 1 mM adenosine 5'-triphosphate from an Affi-Gel Blue column. Since the ionic strength of sodium chloride required to elute the protein from the dye column was much higher than that of 1 mM adenosine 5'-triphosphate, the binding of plasma gelsolin with the dye-ligand appeared to be biospecific. Taking advantage of this affinity interaction, we have developed a revised purification method of human plasma gelsolin. The purification included ammonium sulfate precipitation, diethylaminoethyl-Sepharose chromatography, Affi-Gel Blue chromatography, and Phenyl-Sepharose chromatography. The method allowed a reproducible purification of the protein to apparent homogeneity, producing a 331-fold purification with a yield of 6%.

  14. Kosmotropes enhance the yield of antibody purified by affinity chromatography using immobilized bacterial immunoglobulin binding proteins.

    PubMed

    Ngo, That T; Narinesingh, Dyer

    2008-01-01

    The yield of antibody purified using affinity chromatography on immobilized Protein A or Protein G was increased up to 5-fold (500%) by including kosmotropic salts in the binding buffer. The binding buffer is used to equilibrate the affinity column before applying a sample to the column and also to dilute the sample prior to loading onto the affinity column to optimize conditions for a maximal binding of antibodies to affinity gels. In this study, the kosmotropic salts that were effective in greatly increasing antibody binding to Protein A included both inorganic and organic salts of ammonium; sodium; or potassium sulfate, phosphate, polycarboxylates; for example, succinate, citrate, isocitrate, N-(2-hydroxyethylene diamine triacetate (HEDTA), ethylene diamine tetraacetate (EDTA), and ethylene glycol-O,O'-bis(2-aminoethyl)-N,N,N'N'-tetra acetate(EGTA). On an equal-molar basis, the greater the number of carboxylic groups within the polycarboxylate molecule, the greater the increase in the yield of the purified antibody that was observed. The data show that kosmotropes can be used as effective additives to enhance the binding of immunoglobulins to Protein A or Protein G gels with a resultant increase in the yield of the purified antibodies. Thus, it appears that strongly hydrated anions (citrate, sulfate, and phosphate) and weakly hydrated cations (ammonium, potassium) increase the yield of antibody purified on either Protein A or Protein G affinity gels.

  15. Kinetic Studies of Biological Interactions By Affinity Chromatography

    PubMed Central

    Schiel, John E.; Hage, David S.

    2009-01-01

    The rates at which biological interactions occur can provide important information on the mechanism and behavior of such processes in living systems. This review will discuss how affinity chromatography can be used as a tool to examine the kinetics of biological interactions. This approach, referred to here as biointeraction chromatography, uses a column with an immobilized binding agent to examine the association or dissociation of this agent with other compounds. The use of HPLC-based affinity columns in kinetic studies has received particular attention in recent years. Advantages of using HPLC with affinity chromatography for this purpose include the ability to reuse the same ligand within a column for a large number of experiments, and the good precision and accuracy of this approach. A number of techniques are available for kinetic studies through the use of affinity columns and biointeraction chromatography. These approaches include plate height measurements, peak profiling, peak fitting, split-peak measurements, and peak decay analysis. The general principles for each of these methods are discussed in this review and some recent applications of these techniques are presented. The advantages and potential limitations of each approach are also considered. PMID:19391173

  16. Protein purification by aminosquarylium cyanine dye-affinity chromatography.

    PubMed

    Silva, M S; Graça, V C; Reis, L V; Santos, P F; Almeida, P; Queiroz, J A; Sousa, F

    2013-12-01

    The most selective purification method for proteins and other biomolecules is affinity chromatography. This method is based on the unique biological-based specificity of the biomolecule-ligand interaction and commonly uses biological ligands. However, these ligands may present some drawbacks, mainly because of their cost and lability. Dye-affinity chromatography overcomes the limitations of biological ligands and is widely used owing to the low cost of synthetic dyes and to their resistance to biological and chemical degradation. In this work, immobilized aminosquarylium cyanine dyes are used in order to exploit affinity interactions with standard proteins such as lysozyme, α-chymotrypsin and trypsin. These studies evaluate the affinity interactions occurring between the immobilized ligand and the different proteins, as a reflection of the sum of several molecular interactions, namely ionic, hydrophobic and van der Waals, spread throughout the structure, in a defined spatial manner. The results show the possibility of using an aminosquarylium cyanine dye bearing a N-hexyl pendant chain, with a ligand density of 1.8 × 10(-2) mmol of dye/g of chromatographic support, to isolate lysozyme, α-chymotrypsin and trypsin from a mixture. The application of a decreasing ammonium sulfate gradient resulted in the recovery of lysozyme in the flowthrough. On the other hand, α-chymotrypsin and trypsin were retained, involving different interactions with the ligand. In conclusion, this study demonstrates the potential applicability of ligands such as aminosquarylium cyanine dyes for the separation and purification of proteins by affinity chromatography.

  17. Polystyrene as an affinity chromatography matrix for the purification of antibodies.

    PubMed

    Staak, C; Salchow, F; Clausen, P H; Luge, E

    1996-08-14

    Affinity chromatography is used for the purification of diagnostic polyclonal antibodies in order to ensure specificity. Most commonly, activated bead-formed agarose or its derivatives are used as gel matrices. Alternative matrix materials have been described, but as yet they do not appear to offer important advantages. In this study, pulverized polystyrene (PS 158K, BASF, Mannheim, Germany) was used as a solid phase for the immobilisation of bovine immunoglobulins (Ig). Affinity chromatography was performed using these coated polystyrene beads as the column matrix material in the purification of anti-bovine Ig. The polystyrene binding capacity for the different bovine Ig classes was compared using the Mancini single radial immunodiffusion technique, and ELISA procedures were used to monitor the antibody reactivity of purified and unpurified antibodies. The degree of purification was comparable to the most commonly used procedure using gel matrices from activated bead-formed agarose (e.g. CNBr-activated Sepharose 4B, Pharmacia/LKB Biotechnology, Uppsala, Sweden), but the antibody yield per ml column volume was distinctly lower. In order to raise the yield, such polystyrene bead columns with immobilized antigen can be re-used without loss of activity or larger column volumes can be used to raise the binding capacity. The polystyrene material is quite durable, chemically and immunologically inert and has a long shelf life. We conclude that polystyrene based affinity chromatography is efficient, simple and cheap.

  18. DEAE-Affi-Gel Blue chromatography of human serum: use for purification of native transferrin.

    PubMed

    Werner, P A; Galbraith, R M; Arnaud, P

    1983-10-01

    Human serum was subjected to chromatography on DEAE-Affi-Gel Blue which combines ion-exchange and pseudo-ligand-affinity chromatography in a 0.02 M phosphate buffer, pH 7.0. All serum proteins were bound with the exception of transferrin, IgG (immunoglobulin G) and trace amounts of IgA. After a second step of Sephadex G-100 gel chromatography, or affinity chromatography against goat anti-human IgG F(ab')2 coupled to AH-Sepharose 4B, IgG and IgA were removed. The transferrin obtained was homogeneous and of high yield (greater than 80%), and was unaltered as judged by analyses of molecular weight, isoelectric point, iron-binding capacity, antigenicity, and ability to bind to high-affinity specific cellular receptors. Thus, DEAE-Affi-Gel Blue chromatography may be used as the basis for a simple, rapid, two-step method for the purification of large amounts of native transferrin from serum.

  19. Phenylboronic acid-salicylhydroxamic acid bioconjugates. 2. Polyvalent immobilization of protein ligands for affinity chromatography.

    PubMed

    Wiley, J P; Hughes, K A; Kaiser, R J; Kesicki, E A; Lund, K P; Stolowitz, M L

    2001-01-01

    Phenylboronic acid bioconjugates prepared from alkaline phosphatase by reaction with either 2,5-dioxopyrrolidinyl 3-[N-[3-(1,3,2-dioxaboran-2-yl)phenyl]carbamoyl]propanoate (PBA-XX-NHS) or 2,5-dioxopyrrolidinyl 6-[[3,5-di-(1,3,2-dioxaboran-2-yl)phenyl]carbonylamino]hexanoate (PDBA-X-NHS) were compared with respect to the efficiency with which they were immobilized on salicylhydroxamic acid-modified Sepharose (SHA-X-Sepharose) by boronic acid complex formation. When immobilized on moderate capacity SHA-X-Sepharose (5.4 micromol of SHA/mL of gel), PDBA-alkaline phosphatase conjugates were shown to be stable with respect to both the alkaline (pH 11.0) and acidic (pH 2.5) buffers utilized to recover anti-alkaline phosphatase during affinity chromatography. Boronic acid complex formation was compared to covalent immobilization of alkaline phosphatase on Affi-Gel 10 and Affi-Gel 15. PDBA-AP.SHA-X-Sepharose was shown to afford superior performance to both Affi-Gel 10 and Affi-Gel 15 with respect to immobilization of alkaline phosphatase, retention of anti-alkaline phosphatase and recovery of anti-alkaline phosphatase under alkaline conditions. High capacity SHA-X-Sepharose (> or = 7 micromol of SHA/mL of gel) was shown to afford superior performance to moderate capacity SHA-X-Sepharose (4.5 micromol of SHA/mL of gel) with respect to stability at pH 11.0 and pH 2.5 when a PDBA-alphaHuman IgG conjugate with a low incorporation ratio of only 1.5:1 was immobilized on SHA-X-Sepharose and subsequently utilized for affinity chromatography of Human IgG. The results are interpreted in terms of either a bivalent or trivalent interaction involving boronic acid complex formation.

  20. The Purification of a Blood Group A Glycoprotein: An Affinity Chromatography Experiment.

    ERIC Educational Resources Information Center

    Estelrich, J.; Pouplana, R.

    1988-01-01

    Describes a purification process through affinity chromatography necessary to obtain specific blood group glycoproteins from erythrocytic membranes. Discusses the preparation of erythrocytic membranes, extraction of glycoprotein from membranes, affinity chromatography purification, determination of glycoproteins, and results. (CW)

  1. Affinity chromatography of Band 3, the anion transport protein of erythrocyte membranes.

    PubMed

    Pimplikar, S W; Reithmeier, R A

    1986-07-25

    Affinity chromatography of Band 3 was performed using a series of affinity matrices synthesized with various inhibitor ligands and spacer arms. Hydrophilic spacer arms greater than four atoms in length were essential for Band 3 binding. An affinity resin prepared by reacting 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonate (Ki = 10 microM) with Affi-Gel 102 was found to be the most effective resin of the series tested. Solubilized proteins from human erythrocyte membranes were incubated with the affinity resin, and pure Band 3 was recovered by eluting with 4-benzamido-4'-aminostilbene-2,2'-disulfonate (BADS; Ki = 2 microM). Band 3 bound to the resin specifically in its stilbene disulfonate binding site, and optimal binding was achieved at pH 8 and at high ionic strength. At 4 degrees C, up to 80% of the bound Band 3 could be eluted by 1 mM BADS, whereas the remainder could be eluted under denaturing conditions using 1% lithium dodecyl sulfate. At 22 or 37 degrees C, the amount of BADS-elutable Band 3 was reduced with a concomitant increase of Band 3 in the lithium dodecyl sulfate elute. Thus, for successful affinity chromatography, the experiment must be carried out rapidly at 4 degrees C. This procedure was also used to purify the Band 3 protein from mouse, horse, pig, and chicken erythrocytes.

  2. [Progresses in screening active compounds from herbal medicine by affinity chromatography].

    PubMed

    Feng, Ying-shu; Tong, Shan-shan; Xu, Xi-ming; Yu, Jiang-nan

    2015-03-01

    Affinity chromatography is a chromatographic method for separating molecules using the binding characteristics of the stationary phase with potential drug molecules. This method can be performed as a high throughput screening method and a chromatographic separation method to screen a variety of active drugs. This paper summarizes the history of affinity chromatography, screening technology of affinity chromatography, and application of affinity chromatography in screening bio-active compounds in herbal medicines, and then discusses its application prospects, in order to broaden applications of the affinity chromatography in drug screening.

  3. Mullerian inhibiting substance fractionation by dye affinity chromatography.

    PubMed

    Budzik, G P; Powell, S M; Kamagata, S; Donahoe, P K

    1983-08-01

    Mullerian inhibiting substance (MIS), a large glycoprotein secreted by the fetal and neonatal testis, is responsible for regression of the Mullerian ducts in the male embryo. This fetal growth regulator has been purified more than 2000-fold from crude testicular incubation medium following fractionation on a triazinyl dye affinity support. A high yield of 60% recovered activity was achieved in the absence of exogenous carrier protein by stabilizing MIS with 2-mercaptoethanol, EDTA, and Nonidet-P40 and eliminating losses in the handling and concentration of MIS fractions. Although affinity elution with nucleotides has proved successful in other systems, MIS could not be eluted with ATP, GTP, or AMP, with or without divalent metal ions. Nucleotide elution, however, does remove contaminating proteins prior to MIS recovery with high ionic strength. The 2000-fold-purified MIS fraction, although not homogeneous, shows a reduction-sensitive band after SDS-gel electrophoresis that has been proposed to be the MIS dimer.

  4. PHARMACEUTICAL AND BIOMEDICAL APPLICATIONS OF AFFINITY CHROMATOGRAPHY: RECENT TRENDS AND DEVELOPMENTS

    PubMed Central

    Hage, David S.; Anguizola, Jeanethe A.; Bi, Cong; Li, Rong; Matsuda, Ryan; Papastavros, Efthimia; Pfaunmiller, Erika; Vargas, John; Zheng, Xiwei

    2012-01-01

    Affinity chromatography is a separation technique that has become increasingly important in work with biological samples and pharmaceutical agents. This method is based on the use of a biologically-related agent as a stationary phase to selectively retain analytes or to study biological interactions. This review discusses the basic principles behind affinity chromatography and examines recent developments that have occurred in the use of this method for biomedical and pharmaceutical analysis. Techniques based on traditional affinity supports are discussed, but an emphasis is placed on methods in which affinity columns are used as part of HPLC systems or in combination with other analytical methods. General formats for affinity chromatography that are considered include step elution schemes, weak affinity chromatography, affinity extraction and affinity depletion. Specific separation techniques that are examined include lectin affinity chromatography, boronate affinity chromatography, immunoaffinity chromatography, and immobilized metal ion affinity chromatography. Approaches for the study of biological interactions by affinity chromatography are also presented, such as the measurement of equilibrium constants, rate constants, or competition and displacement effects. In addition, related developments in the use of immobilized enzyme reactors, molecularly imprinted polymers, dye ligands and aptamers are briefly considered. PMID:22305083

  5. Hemoglobin Ypsilanti: a high-oxygen-affinity hemoglobin demonstrated by two automated high-pressure liquid chromatography systems.

    PubMed

    Mais, Daniel D; Boxer, Laurence A; Gulbranson, Ronald D; Keren, David F

    2007-11-01

    Hemoglobin (Hb) Ypsilanti is a rare high-oxygen-affinity hemoglobin. Like other high-oxygen-affinity hemoglobins, Hb Ypsilanti manifests as erythrocytosis. Because the migration of many high-oxygen-affinity variants on alkaline and acid gels does not differ from that of HbA, oxygen-hemoglobin dissociation studies are often used to document their presence. Hb Ypsilanti is a notable exception because its electrophoresis pattern on alkaline gel is highly characteristic, exemplifying the phenomenon of hybrid formation in variant hemoglobins. In the past few years, several laboratories have begun to use high-pressure liquid chromatography (HPLC) as a screen for hemoglobinopathies. We demonstrate the elution profile of Hb Ypsilanti on the 2 most widely used HPLC methods.

  6. Novel cross-linked alcohol-insoluble solid (CL-AIS) affinity gel from pea pod for pectinesterase purification.

    PubMed

    Wu, Ming-Chang; Lin, Guan-Hui; Wang, Yuh-Tai; Jiang, Chii-Ming; Chang, Hung-Min

    2005-10-05

    Alcohol-insoluble solids (AIS) from pea pod were cross-linked (CL-AIS) and used as an affinity gel matrix to isolate pectin esterases (PEs) from tendril shoots of chayote (TSC) and jelly fig achenes (JFA), and the results were compared with those isolated by ion-exchange chromatography with a commercial resin. CL-AIS gel matrix in a column displayed poor absorption and purification fold of PE; however, highly methoxylated CL-AIS (HM-CL-AIS), by exposing CL-AIS to methanolic sulfuric acid to increase the degree of esterification (DE) to 92%, facilitated the enzyme purification. The purified TSC PE and JFA PE by the HM-CL-AIS column were proofed as a single band on an SDS-PAGE gel, showing that the HM-CL-AIS column was a good matrix for purification of PE, either with alkaline isoelectric point (pI) (TSC PE) or with acidic pI (JFA PE).

  7. Purification of cytochrome c oxidase by lysine-affinity chromatography.

    PubMed

    Felsch, J; Kotake, S; Copeland, R A

    1992-02-01

    A method for the purification of cytochrome c oxidase that is based on the affinity of this enzyme for polycations such as poly-L-lysine is described. When detergent extracts of bovine cardiac mitochondria were applied to either a poly-L-lysine-agarose or a lysine-Sepharose column at low ionic strength, cytochrome c oxidase was found to adhere tightly, whereas the bulk of the proteins were eluted by washing with the same buffer. The cytochrome c oxidase was eluted by application of a linear potassium chloride gradient to the columns. The resulting enzyme was identical to that obtained by more traditional purification methods in terms of its subunit composition, optical and resonance Raman spectra, and cytochrome c oxidizing activity. When detergent extracts of spheroplasts from Paracoccus denitrificans were applied to these columns, the cytochrome c oxidase from this organism was also found to adhere tightly. Thus this purification method appears applicable to both prokaryotic and eukaryotic forms of the enzyme. The advantages of this new purification method are that it is less labor intensive than the traditional procedure and less expensive than methods based on cytochrome c-affinity chromatography.

  8. Purification of baculovirus vectors using heparin affinity chromatography

    PubMed Central

    Nasimuzzaman, Md; Lynn, Danielle; van der Loo, Johannes CM; Malik, Punam

    2016-01-01

    Baculoviruses are commonly used for recombinant protein and vaccine production. Baculoviruses are nonpathogenic to vertebrates, have a large packaging capacity, display broad host and cell type tropism, infect both dividing and nondividing cells, and do not elicit strong immune or allergic responses in vivo. Hence, their use as gene delivery vehicles has become increasingly popular in recent years. Moreover, baculovirus vectors carrying mammalian regulatory elements can efficiently transduce and express transgenes in mammalian cells. Based on the finding that heparan sulfate, which is structurally similar to heparin, is an attachment receptor for baculovirus, we developed a novel scalable baculovirus purification method using heparin-affinity chromatography. Baculovirus supernatants were loaded onto a POROS heparin column, washed to remove unbound materials, and eluted with 1.5 mol/l NaCl, which yielded a recovery of purified baculovirus of 85%. After ultracentrifugation, baculovirus titers increased from 200- to 700-fold with overall yields of 26–29%. We further show that baculovirus particles were infectious, normal in morphology and size, despite high-salt elution and shear forces used during purification and concentration. Our chromatography-based purification method is scalable and, together with ultracentrifugation and/or tangential flow filtration, will be suitable for large-scale manufacturing of baculovirus stocks for protein and vaccine production and in gene therapy applications. PMID:27933303

  9. Application of Frontal Affinity Chromatography to Study the Biomolecular Interactions with Trypsin.

    PubMed

    Hu, YuanYuan; Qian, Junqing; Guo, Hui; Jiang, ShengLan; Zhang, Zheng

    2015-07-01

    Trypsin is a serine protease that has been proposed as a potential therapeutic target for metabolic disorders and malignancy diseases, thus the identification of biomolecular interactions of compounds to trypsin could be of great therapeutic importance. In this study, trypsin was immobilized on a monolithic silica capillary column via sol-gel. The binding properties of four small molecules (daidzin, genistin, matrine and oxymatrine) to trypsin were examined using the trypsin affinity columns by frontal analysis. The results indicate that the matrine (dissociation constant, Kd = 7.904 μM) has stronger interaction with trypsin than the oxymatrine (Kd = 8.204 μM), whereas daidzin and genistin were nearly have no affinity with trypsin. The results demonstrated that the frontal affinity chromatography can be used for the direct determination of protein-protease inhibitor binding interactions and have several significant advantages, including easy fabricating, reproducible, minimal technological requirements and potential to become a reliable alternative for quantitative studies of biomolecular interactions.

  10. Purification and characterization of a new type lactose-binding Ulex europaeus lectin by affinity chromatography.

    PubMed

    Konami, Y; Yamamoto, K; Osawa, T

    1991-02-01

    A new type lactose-binding lectin was purified from extracts of Ulex europaeus seeds by affinity chromatography on a column of galactose-Sepharose 4B, followed by gel filtration on Sephacryl S-300. This lectin, designated as Ulex europaeus lectin III (UEA-III), was found to be inhibited by lactose. The dimeric lectin is a glycoprotein with a molecular mass of 70,000 Da; it consists of two apparently identical subunits of a molecular mass of 34,000 Da. Compositional analysis showed that this lectin contains 30% carbohydrate and a large amount of aspartic acid, serine and valine, but no sulfur-containing amino acids. The N-terminal amino-acid sequences of L-fucose-binding Ulex europaeus lectin I (UEA-I) and di-N-acetylchitobiose-binding Ulex europaeus lectin II (UEA-II), both of which we have already purified and characterized, and that of UEA-III were determined and compared.

  11. Fractionation of the genetic variants of human alpha 1-acid glycoprotein in the native form by chromatography on an immobilized copper(II) affinity adsorbent. Heterogeneity of the separate variants by isoelectrofocusing and by concanavalin A affinity chromatography.

    PubMed

    Hervé, F; Gomas, E; Duché, J C; Tillement, J P

    1993-05-19

    Fractionation of the three main genetic variants (F1, S and A) of human alpha 1-acid glycoprotein (AAG), in their native (sialylated) form, by chromatography on immobilized copper(II) affinity adsorbent was investigated. This chromatographic method had been previously developed to fractionate the desialylated protein variants. For that purpose, the three main AAG phenotypes samples (F1S/A, F1/A and S/A), which had been previously isolated from individual human plasma samples, and an AAG sample from commercial source (a mixture of the phenotypes) were used in the native form. Affinity chromatography of these different samples on an iminodiacetate Sepharose-copper(II) gel at pH 7 resolved two protein peaks, irrespective of the origin of the native AAG sample used. The unbound peak 1 was found to consist of the F1, the S or both variants, depending on the phenotype of the AAG sample used in the chromatography. The bound peak 2 was found to consist of the A variant in a pure form. The fractionation results obtained with native AAG were found to be the same as those originally yielded by the desialylated protein. However, comparison of the interactions of native and desialylated AAG with immobilized copper(II) ions, using an affinity chromatographic method and a non-chromatographic equilibrium binding technique, respectively, showed that desialylation increased the non-specific interactions of the protein with immobilized copper(II) ions. The AAG variants were not fractionated when affinity chromatography was performed using immobilized zinc, nickel or cobalt(II) ions, instead of copper. After purification of each variant in the sialylated form (F1, S and A), their respective heterogeneity was studied by analytical isoelectrofocusing with carrier ampholytes in the pH range 2.5-4.5. In addition, the lectin-binding behaviour of the separate sialylated AAG variants was investigated by affinity chromatography on immobilized concanavalin A.

  12. Purification and characterization of a Cytisus-type Ulex europeus hemagglutinin II by affinity chromatography.

    PubMed

    Konami, Y; Tsuji, T; Matsumoto, I; Osawa, T

    1981-07-01

    Ulex europeus hemagglutinin II [Cytisus-type anti-H(O) hemagglutinin] inhibited most by di-N-acetylchitobiose has been purified by affinity chromatography on a column of chitobiose-Sepharose 4B, followed by gel filtration on Sephacryl S-300. The purified hemagglutinin was homogeneous by ultracentrifugal analysis and gave a single band by electrophoresis on polyacrylamide gel, and had a molecular weight of 105 000 by sedimentation equilibrium and an isoelectric point of pH 6.66. This hemagglutinin was found to be composed of four, apparently identical, subunits of a molecular weight of 25 000 +/- 2 000 by dodecyl sulphate-polyacrylamide gel electrophoresis, and to contain 10.3% carbohydrate in which mannose (3.7%) was the predominant sugar, with smaller amounts of glucose, glucosamine, xylose, fucose and galactose. Amino acid analysis of the purified hemagglutinin II showed a large amount of aspartic acid and serine, but as little as 0.1 mol/100 mol of cystine or methionine could be detected.

  13. Purification and characterization of two types of Cytisus multiflorus hemagglutinin by affinity chromatography.

    PubMed

    Konami, Y; Yamamoto, K; Tsuji, T; Matsumoto, I; Osawa, T

    1983-10-01

    Two hemagglutinins were separated from extracts of Cytisus multiflorus seeds by successive affinity chromatographies on columns of galactose- and di- N-acetylchitobiose-Sepharose 4B. One was found to be inhibited by di- N-acetylchitobiose or tri- N-acetylchitotriose and shown to possess anti-H(O) activity [Cytisus-type anti-H(O) hemagglutinin designated as Cytisus multiflorus hemagglutinin I]. The other, which was not a blood group-specific hemagglutinin, was inhibited by galactose or lactose (hemagglutinin II). Hemagglutinins I and II were further purified by gel filtration on Sephacryl S-300. These preparations were homogeneous as judged by polyacrylamide gel electrophoresis and gel filtration. The molecular weights of the purified hemagglutinins I and II were found to be 86000 by sedimentation equilibrium analysis and 80000 by gel filtration. On disc gel electrophoresis in the presence of sodium dodecyl sulfate and dithiothreitol, both hemagglutinins gave a single component of a molecular weight of 42000 +/- 2000, suggesting that these hemagglutinins are dimeric proteins of two identical subunits. Hemagglutinins I and II contain 2.7% and 1.5% carbohydrate, respectively, and only very small amounts of cystine and methionine were detected, but they are rich in aspartic acid and serine. Treatment of human O erythrocytes with a purified H-decomposing enzyme (alpha-L-fucosidase from Bacillus fulminans abolished the agglutinability of the cells with hemagglutinin I. This indicates that the L-fucosyl residue is important even for the H-specificity detected by this di-N-acetylchitobiose-specific hemagglutinin I.

  14. Purification of peroxidase from red cabbage (Brassica oleracea var. capitata f. rubra) by affinity chromatography.

    PubMed

    Somtürk, Burcu; Kalın, Ramazan; Özdemir, Nalan

    2014-08-01

    Peroxidase was purified in a single step using 4-amino benzohydrazide affinity chromatography from red cabbage (Brassica oleracea var. capitata f. rubra), and some important biochemical characteristics of the purified enzyme were determined. The enzyme, with a specific activity of 3,550 EU/mg protein, was purified 120.6-fold with a yield of 2.9% from the synthesized affinity matrix. The molecular weight of the enzyme was found to be 69.3 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme exhibited maximum activity at pH 7.0 and 30 °C. For guaiacol substrate, the K m and V max values were found as 0.048 mM and 1.46 EU/mL/min, respectively. Additionally, the IC50 and K i values for 4-amino benzohydrazide were calculated to be 1.047 and 0.702±0.05 mM, respectively, and 4-amino benzohydrazide showed noncompetitive inhibition.

  15. Purification of human immunoglobulin G autoantibodies to tumor necrosis factor using affinity chromatography and magnetic separation.

    PubMed

    Sennikov, S V; Golikova, E A; Kireev, F D; Lopatnikova, J A

    2013-04-30

    Autoantibodies to cytokines are important biological effector molecules that can regulate cytokine activities. The aim of the study was to develop a protocol to purify autoantibodies to tumor necrosis factor from human serum, for use as a calibration material to determine the absolute content of autoantibodies to tumor necrosis factor by enzyme-linked immunosorbent assay. The proposed protocol includes a set of affinity chromatography methods, namely, Bio-Gel P6DG sorbent to remove albumin from serum, Protein G Sepharose 4 Fast Flow to obtain a total immunoglobulin G fraction of serum immunoglobulins, and Affi-Gel 15 to obtain specifically antibodies to tumor necrosis factor. The addition of a magnetic separation procedure to the protocol eliminated contaminant tumor necrosis factor from the fraction of autoantibodies to tumor necrosis factor. The protocol generated a pure fraction of autoantibodies to tumor necrosis factor, and enabled us to determine the absolute concentrations of different subclasses of immunoglobulin G autoantibodies to tumor necrosis factor in apparently healthy donors.

  16. New family of glutathionyl-biomimetic ligands for affinity chromatography of glutathione-recognising enzymes.

    PubMed

    Melissis, S C; Rigden, D J; Clonis, Y D

    2001-05-11

    Three anthraquinone glutathionyl-biomimetic dye ligands, comprising as terminal biomimetic moiety glutathione analogues (glutathionesulfonic acid, S-methyl-glutathione and glutathione) were synthesised and characterised. The biomimetic ligands were immobilised on agarose gel and the affinity adsorbents, together with a nonbiomimetic adsorbent bearing Cibacron Blue 3GA, were studied for their purifying ability for the glutathione-recognising enzymes, NAD+-dependent formaldehyde dehydrogenase (FaDH) from Candida boidinii, NAD(P)+-dependent glutathione reductase from S. cerevisiae (GSHR) and recombinant maize glutathione S-transferase I (GSTI). All biomimetic adsorbents showed higher purifying ability for the target enzymes compared to the nonbiomimetic adsorbent, thus demonstrating their superior effectiveness as affinity chromatography materials. In particular, the affinity adsorbent comprising as terminal biomimetic moiety glutathionesulfonic acid (BM1), exhibited the highest purifying ability for FaDH and GSTI, whereas, the affinity adsorbent comprising as terminal biomimetic moiety methyl-glutathione (BM2) exhibited the highest purifying ability for GSHR. The BM1 adsorbent was integrated in a facile two-step purification procedure for FaDH. The purified enzyme showed a specific activity equal to 79 U/mg and a single band after sodium dodecylsulfate-polyacrylamide gel electrophoresis analysis. Molecular modelling was employed to visualise the binding of BM1 with FaDH, indicating favourable positioning of the key structural features of the biomimetic dye. The anthraquinone moiety provides the driving force for the correct positioning of the glutathionyl-biomimetic moiety in the binding site. It is located deep in the active site cleft forming many favourable hydrophobic contacts with hydrophobic residues of the enzyme. The positioning of the glutathione-like biomimetic moiety is primarily achieved by the strong ionic interactions with the Zn2+ ion of FaDH and Arg

  17. The Binding of Biotin to Sepharose-Avidin Column: Demonstration of the Affinity Chromatography Technique

    ERIC Educational Resources Information Center

    Landman, A. D.; Landman, N. N.

    1976-01-01

    Describes a biochemistry experiment that illustrates the methodology of affinity chromatography by attaching avidin, a glycoprotein in egg white, to a Sepharose matrix in order to bind biotin-containing proteins. (MLH)

  18. Affinity Chromatography of Lactate Dehydrogenase: An Experiment for the Undergraduate Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Anderson, Alexander J.

    1988-01-01

    Discusses a laboratory technique of enzyme purification by affinity chromatography as part of an undergraduate biochemical methodology course. Provides preparation details of the rat muscle homogenate and reagents. Proposes column requirements and assaying information. (MVL)

  19. Non-affine deformations in flexible and semi-flexible polymer gels

    NASA Astrophysics Data System (ADS)

    Basu, Anindita; Wen, Qi; Mao, Xiaoming; Lubensky, Tom; Janmey, Paul; Yodh, Arjun

    2011-03-01

    We test the validity of affine deformation assumption in flexible and semi-flexible polymer networks by embedding different-sized fluorescent tracer beads within model polymer networks and quantifying their displacements under shear. A conventional rheometer is used with a confocal microscope for this purpose. Non-affinity is quantified as a function of applied strain, polymer chain density, cross-link concentration, network morphology, reaction kinetics and size of probe particles used. ~Non-affinity measurements in flexible polymer gels are in qualitative agreement with current theories in rubber elasticity. ~For semi-flexible bio-polymer gels, measurements indicate that non-affine deformations are small for networks of thinner, relatively flexible filaments and get smaller as strain increases into non-linear elastic regime. These small measures are consistent with the entropic model for non-linear elasticity of semi-flexible gels. However, as filament stiffness and mesh size increase, the deformations become more non-affine, as predicted by the enthalpic bending and stretching models of non-linear elasticity. MRSEC DMR-0520020, DMR-0505048, and DMR- 0079909. Done...processed 7726 records...17:54:11 Beginning APS data extraction...17:54:12

  20. NADP-specific isocitrate dehydrogenase of Escherichia coli. IV. Purification by chromatography on Affi-Gel Blue.

    PubMed

    Vasquez, B; Reeves, H C

    1979-05-23

    Affinity chromatography on Affi-Gel Blue has been used to purify the NADP-specific isocitrate dehydrogenase (EC 1.1.1.42) from Escherichia coli. The protocol permits rapid purification of the enzyme in milligram quantities with a yield of 50% and is carried out almost entirely at room temperature. The preparation was judged to be homogeneous by non-denaturing electrophoresis at pH 7.5 and denaturing electrophoresis in the presence of sodium dodecyl sulfate. The subunit molecular weight of 53 000, determined by sodium dodecyl sulfate gel electrophoresis, is in reasonable agreement with the value of 46 900 estimated from the amino acid composition data.

  1. PDZ Affinity Chromatography: A general method for affinity purification of proteins based on PDZ domains and their ligands

    PubMed Central

    Walkup, Ward G.; Kennedy, Mary B.

    2014-01-01

    PDZ (PSD-95, DiscsLarge, ZO1) domains function in nature as protein binding domains within scaffold and membrane-associated proteins. They comprise ~ 90 residues and make specific, high affinity interactions with complementary C-terminal peptide sequences, with other PDZ domains, and with phospholipids. We hypothesized that the specific, strong interactions of PDZ domains with their ligands would make them well suited for use in affinity chromatography. Here we describe a novel affinity chromatography method applicable for the purification of proteins that contain PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We created a series of affinity resins comprised of PDZ domains from the scaffold protein PSD-95, or from neuronal nitric oxide synthase (nNOS), coupled to solid supports. We used them to purify heterologously expressed neuronal proteins or protein domains containing endogenous PDZ domain ligands, eluting the proteins with free PDZ domain peptide ligands. We show that Proteins of Interest (POIs) lacking endogenous PDZ domain ligands can be engineered as fusion products containing C-terminal PDZ domain ligand peptides or internal, N- or C-terminal PDZ domains and then can be purified by the same method. Using this method, we recovered recombinant GFP fused to a PDZ-domain ligand in active form as verified by fluorescence yield. Similarly, chloramphenicol acetyltransferase (CAT) and β-Galactosidase (LacZ) fused to a C-terminal PDZ domain ligand or an N-terminal PDZ domain were purified in active form as assessed by enzymatic assay. In general, PDZ domains and ligands derived from PSD-95 were superior to those from nNOS for this method. PDZ Domain Affinity Chromatography promises to be a versatile and effective method for purification of a wide variety of natural and recombinant proteins. PMID:24607360

  2. PDZ affinity chromatography: a general method for affinity purification of proteins based on PDZ domains and their ligands.

    PubMed

    Walkup, Ward G; Kennedy, Mary B

    2014-06-01

    PDZ (PSD-95, DiscsLarge, ZO1) domains function in nature as protein binding domains within scaffold and membrane-associated proteins. They comprise ∼90 residues and make specific, high affinity interactions with complementary C-terminal peptide sequences, with other PDZ domains, and with phospholipids. We hypothesized that the specific, strong interactions of PDZ domains with their ligands would make them well suited for use in affinity chromatography. Here we describe a novel affinity chromatography method applicable for the purification of proteins that contain PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We created a series of affinity resins comprised of PDZ domains from the scaffold protein PSD-95, or from neuronal nitric oxide synthase (nNOS), coupled to solid supports. We used them to purify heterologously expressed neuronal proteins or protein domains containing endogenous PDZ domain ligands, eluting the proteins with free PDZ domain peptide ligands. We show that Proteins of Interest (POIs) lacking endogenous PDZ domain ligands can be engineered as fusion products containing C-terminal PDZ domain ligand peptides or internal, N- or C-terminal PDZ domains and then can be purified by the same method. Using this method, we recovered recombinant GFP fused to a PDZ domain ligand in active form as verified by fluorescence yield. Similarly, chloramphenicol acetyltransferase (CAT) and β-Galactosidase (LacZ) fused to a C-terminal PDZ domain ligand or an N-terminal PDZ domain were purified in active form as assessed by enzymatic assay. In general, PDZ domains and ligands derived from PSD-95 were superior to those from nNOS for this method. PDZ Domain Affinity Chromatography promises to be a versatile and effective method for purification of a wide variety of natural and recombinant proteins.

  3. Affinity Chromatography of Native and Recombinant Proteins from Receptors for Insulin and IGF-I to Recombinant Single Chain Antibodies

    PubMed Central

    Fujita-Yamaguchi, Yoko

    2015-01-01

    Affinity chromatography is an efficient method to isolate proteins by taking advantage of their affinities for specific molecules such as substrates, inhibitors, antigens, ligands, antibodies, and other interacting molecules, including subunits. Nowadays, we take the effectiveness and excellence of this technology for granted. This essay will mainly cover the use of affinity chromatography based on my experience. PMID:26579073

  4. Affinity chromatography on immobilized "biomimetic" ligands. Synthesis, immobilization and chromatographic assessment of an immunoglobulin G-binding ligand.

    PubMed

    Teng, S F; Sproule, K; Husain, A; Lowe, C R

    2000-03-31

    A synthetic bifunctional ligand (22/8) comprising a triazine scaffold substituted with 3-aminophenol (22) and 4-amino-1-naphthol (8) has been designed, synthesised, characterised and immobilized on agarose beads to create a robust, highly selective affinity adsorbent for human immunoglobulin G (IgG). Scatchard analysis of the binding isotherm for IgG on immobilized 22/8 (90 micromol 22/8/g moist weight gel) indicated an affinity constant (Ka) of 1.4 x 10(5) M(-1) and a theoretical maximum capacity of 151.9 mg IgG/g moist weight gel. The adsorbent shows similar selectivity to immobilized protein A and binds IgG from a number of species. An apparent capacity of 51.9 mg human IgG/g moist weight gel was observed under the experimental conditions selected for adsorption. Human IgG was eluted with glycine-HCl buffer with a recovery of 67-69% and a purity of 97.3-99.2%, depending on the pH value of the buffer used for elution. Preparative chromatography of IgG from human plasma showed that under the specified conditions, 94.4% of plasma IgG was adsorbed and 60% subsequently eluted with a purity of 92.5%. The immobilized ligand was able to withstand incubation in 1 M NaOH for 7 days without loss of binding capacity for IgG.

  5. Profiling of drug binding proteins by monolithic affinity chromatography in combination with liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhang, Xuepei; Wang, Tongdan; Zhang, Hanzhi; Han, Bing; Wang, Lishun; Kang, Jingwu

    2014-09-12

    A new approach for proteome-wide profiling drug binding proteins by using monolithic capillary affinity chromatography in combination with HPLC-MS/MS is reported. Two immunosuppresive drugs, namely FK506 and cyclosporin A, were utilized as the experimental models for proof-of-concept. The monolithic capillary affinity columns were prepared through a single-step copolymerization of the drug derivatives with glycidyl methacrylate and ethylene dimethacrylate. The capillary chromatography with the affinity monolithic column facilitates the purification of the drug binding proteins from the cell lysate. By combining the capillary affinity column purification and the shot-gun proteomic analysis, totally 33 FK506- and 32 CsA-binding proteins including all the literature reported target proteins of these two drugs were identified. Among them, two proteins, namely voltage-dependent anion-selective channel protein 1 and serine/threonine-protein phosphatase PGAM5 were verified by using the recombinant proteins. The result supports that the monolithic capillary affinity chromatography is likely to become a valuable tool for profiling of binding proteins of small molecular drugs as well as bioactive compounds.

  6. Purification and characterization of two types of Cytisus sessilifolius anti-H(O) lectins by affinity chromatography.

    PubMed

    Konami, Y; Yamamoto, K; Osawa, T

    1991-02-01

    Two anti-H(O) lectins were separated from extracts of Cytisus sessilifolius seeds by successive affinity chromatographies on columns of di-N-acetylchitobiose- and galactose-Sepharose 4B. One was found to be inhibited most by di-N-acetylchitotriose or tri-N-acetylchitotriose [Cytisus-type anti-H(O) lectin designated as Cytisus sessilifolius lectin I (CSA-I)] and the other anti-H(O) lectin was inhibited by galactose or lactose and designated as Cytisus sessilifolius lectin II (CSA-II). These two anti-H(O) lectins were further purified by gel filtration on TSK-Gel G3000SW. These preparations were homogeneous as judged by polyacrylamide gel electrophoresis and gel filtration. The molecular masses of the purified lectins I and II were found to be 95,000 and 68,000 Da, respectively, by gel filtration on TSK-Gel G3000SW. On polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and 2-mercaptoethanol, both lectins gave a single component of molecular masses of 27,000 +/- 2,000 and 34,000 +/- 2,000 Da, respectively, suggesting that the lectins I and II were composed of four and two apparently identical subunits, respectively. Lectins I and II contain 38% and 13% carbohydrate, respectively, and only very small amounts of cysteine and methionine, but they are rich in aspartic acid, serine and glycine. The N-terminal amino-acid sequences of these two lectins were determined and compared with those of several lectins already published.

  7. Calcium-modulated conformational affinity chromatography. Application to the purification of calmodulin and S100 proteins.

    PubMed

    Fleminger, G; Neufeld, T; Star-Weinstock, M; Litvak, M; Solomon, B

    1992-04-24

    The purification of proteins by affinity chromatography is based on their highly specific interaction with an immobilized ligand followed by elution under conditions where their affinity towards the ligand is markedly reduced. Thus, a high-degree purification by a single chromatographic step is achieved. However, when several proteins in the crude mixture share affinity to a common immobilized ligand, they may not be resolved by affinity chromatography and subsequent "real" chromatographic purification steps may be required. It is shown that by using properly selected gradient elution conditions, the affinities of the various proteins towards the immobilized ligand may be gradually modulated and their separation may be achieved. This is exemplified by the isolation and separation of a group of Ca(2+)-activated proteins, Calmodulin, S100a and S100b, from bovine brain extract, using a melittin-Eupergit C affinity column which is developed with Ca(2+)-chelator gradients. As expected, separation of the three proteins into individual peaks, eluted in order of increasing affinity to the matrix, was obtained. Sigmoid selectivity curves calculated from the elution volumes under different elution conditions for each of the proteins were obtained, illustrating the chromatographic behaviour of the gradient affinity separation system.

  8. Mixed-bed affinity chromatography: principles and methods.

    PubMed

    Boschetti, Egisto; Righetti, Pier Giorgio

    2015-01-01

    Mixed-bed chromatography is far from being a well-established technology within the panoply of bioseparation tools. Composed of an assembly of distinct sorbents that are mixed in a single bed, they have been mostly developed in the last decade for the reduction of dynamic concentration range where they allowed discovering many low-copy proteins within very complex proteomes. Other interesting preparative applications of mixed-bed chromatography have since been developed. In this chapter the basic concepts first and then detailed application recipes are described for (1) the reduction of protein dynamic concentration range, (2) the removal of impurity traces at the last stage of a biopurification process, and (3) the selection and use of sorbents as mixed bed in protein purification.

  9. Twin-column CaptureSMB: a novel cyclic process for protein A affinity chromatography.

    PubMed

    Angarita, Monica; Müller-Späth, Thomas; Baur, Daniel; Lievrouw, Roel; Lissens, Geert; Morbidelli, Massimo

    2015-04-10

    A twin-column counter-current chromatography processes, CaptureSMB, was used for the protein A affinity capture of a monoclonal antibody (mAb). By means of sequential loading, the process improves the utilization of the stationary phase by achieving loadings much closer to the static binding capacity of the resin in comparison to batch chromatography. Using a mAb capture case study with protein A affinity chromatography, the performance and product quality obtained from CaptureSMB and batch processes were compared. The effect of the flow rate, column length and titer concentration on the process performance and product quality were evaluated. CaptureSMB showed superior performance compared to batch chromatography with respect to productivity, capacity utilization, product concentration and buffer consumption. A simplified economic evaluation showed that CaptureSMB could decrease resin costs of 10-30% depending on the manufacturing scenario.

  10. Affinity monolith chromatography: A review of principles and recent analytical applications

    PubMed Central

    Pfaunmiller, Erika L.; Paulemond, Marie Laura; Dupper, Courtney M.; Hage, David S.

    2012-01-01

    Affinity monolith chromatography (AMC) is a type of liquid chromatography that uses a monolithic support and a biologically-related binding agent as a stationary phase. AMC is a powerful method for the selective separation, analysis or studies of specific target compounds in a sample. This review discusses the basic principles of AMC and recent developments or applications of this method, with particular emphasis being given to work that has appeared in the last five years. Various materials that have been used to prepare columns for AMC are examined, including organic monoliths, silica monoliths, agarose monoliths and cryogels. These supports have been used in AMC for formats that have ranged from traditional columns to disks, microcolumns and capillaries. Many binding agents have also been employed in AMC, such as antibodies, enzymes, proteins, lectins, immobilized metal-ions and dyes. Some applications that have been reported with these binding agents in AMC are bioaffinity chromatography, immunoaffinity chromatography or immunoextraction, immobilized metal-ion affinity chromatography, dye-ligand affinity chromatography, chiral separations and biointeraction studies. Examples are presented from fields that include analytical chemistry, pharmaceutical analysis, clinical testing and biotechnology. Current trends and possible future directions in AMC are also discussed. PMID:23187827

  11. Application of coupled affinity-sizing chromatography for the detection of proteolyzed HSA-tagged proteins.

    PubMed

    London, Anne Serdakowski; Patel, Kunal; Quinn, Lisa; Lemmerer, Martin

    2015-04-01

    Coupled affinity liquid chromatography and size exclusion chromatography (ALC-SEC) is a technique that has been shown to successfully report product quality of proteins during cell expression and prior to the commencement of downstream processing chromatography steps. This method was applied to monitoring the degradation and subsequent partial remediation of a HSA-tagged protein which showed proteolysis, allowing for rapid cell line development to address this product quality dilemma. This paper outlines the novel application of this method for measuring and addressing protease-induced proteolysis.

  12. Glycan-specific whole cell affinity chromatography: a versatile microbial adhesion platform

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have constructed a C-glycoside ketohydrazide affinity chromatography resin that interacts with viable whole-cell microbial populations with biologically appropriate stereo-specificity in a carbohydrate-defined manner. It readily allows for the quantification, selection, and manipulation of target...

  13. Cross-linked leucaena seed gum matrix: an affinity chromatography tool for galactose-specific lectins.

    PubMed

    Seshagirirao, Kottapalli; Leelavathi, Chaganti; Sasidhar, Vemula

    2005-05-31

    A cross-linked leucaena (Leucaena leucocephala) seed gum (CLLSG) matrix was prepared for the isolation of galactose-specific lectins by affinity chromatography. The matrix was evaluated for affinity with a known galactose-specific lectin from the seeds of snake gourd (Trichosanthes anguina). The matrix preparation was simple and inexpensive when compared to commercial galactose-specific matrices (i.e. about 1.5 US dollars/100 ml of matrix). The current method is also useful for the demonstration of the affinity chromatography technique in laboratories. Since leucaena seeds are abundant and inexpensive, and the matrix preparation is easy, CLLSG appears to be a promising tool for the separation of galactose-specific lectins.

  14. Affitins as robust tailored reagents for affinity chromatography purification of antibodies and non-immunoglobulin proteins.

    PubMed

    Béhar, Ghislaine; Renodon-Cornière, Axelle; Mouratou, Barbara; Pecorari, Frédéric

    2016-04-08

    Affinity chromatography is a convenient way of purifying proteins, as a high degree of purity can be reached in one step. The use of tags has greatly contributed to the popularity of this technique. However, the addition of tags may not be desirable or possible for the production of biopharmaceuticals. There is thus a need for tailored artificial affinity ligands. We have developed the use of archaeal extremophilic proteins as scaffolds to generate affinity proteins (Affitins). Here, we explored the potential of Affitins as ligand to design affinity columns. Affitins specific for human immunoglobulin G (hIgG), bacterial PulD protein, and chicken egg lysozyme were immobilized on an agarose matrix. The columns obtained were functional and highly selective for their cognate target, even in the presence of exogenous proteins as found in cell culture media, ascites and bacterial lysates, which result in a high degree of purity (∼95%) and recovery (∼100%) in a single step. Anti-hIgG Affitin columns withstand repetitive cycles of purification and cleaning-in-place treatments with 0.25 M NaOH as well as Protein A does. High levels of Affitin productions in Escherichia coli makes it possible to produce these affinity columns at low cost. Our results validate Affitins as a new class of tailored ligands for the affinity chromatography purification of potentially any proteins of interest including biopharmaceuticals.

  15. Liquid chromatography and differential scanning calorimetry studies on the states of water in polystyrene-divinylbenzene copolymer gels.

    PubMed

    Baba, Takayuki; Shibukawa, Masami; Heya, Tomoyuki; Abe, Shin-ichiro; Oguma, Koichi

    2003-08-29

    The thermal phase transition behavior of water incorporated in crosslinked polystyrene-divinylbenzene copolymer (PS-DVB) gel packings for liquid chromatography was investigated by differential scanning calorimetry. Free or bulk water, freezable bound or intermediate water, and nonfreezing water were observed for TSKgel Styrene-250 samples, while only free water and nonfreezing water were observed for TSKgel Styrene-60 samples. Freezable bound water and nonfreezing water in these gel samples were considered to be water confined in pores of the polymer gels. A liquid chromatographic method for determination of the amounts of stationary phase water was applied to the characterization of water in the PS-DVB beads in the columns and it was found out that any water in the PS-DVB gels did not function as the stationary phase contrary to the water sorbed in hydrophilic polymer gels; not only freezable bound water but also nonfreezing water in hydrophobic PS-DVB gels are similar to bulk water with respect to the affinity to the solute compounds.

  16. Affinity chromatography approaches to overcome the challenges of purifying plasmid DNA.

    PubMed

    Sousa, Fani; Prazeres, Duarte M F; Queiroz, João A

    2008-09-01

    The diversity of biomolecules present in plasmid DNA (pDNA)-containing extracts and the structural and chemical similarities between pDNA and impurities are some of the main challenges of improving or establishing novel purification procedures. In view of the unequalled specificity of affinity purification, this technique has recently begun to be applied in downstream processing of plasmids. This paper discusses the progress and importance of affinity chromatography (AC) for the purification of pDNA-based therapeutic products. Several affinity approaches have already been successfully developed for a variety of applications, and we will focus here on highlighting their possible contributions to the pDNA purification challenge. Diverse affinity applications and their advantages and disadvantages are discussed, as well as the most significant results and improvements in the challenging task of purifying plasmids.

  17. Establishment and application of milk fingerprint by gel filtration chromatography.

    PubMed

    Gao, P; Li, J; Li, Z; Hao, J; Zan, L

    2016-12-01

    Raw milk adulteration frequently occurs in undeveloped countries. It not only reduces the nutritional value of milk, but it is also harmful to consumers. In this paper, we focused on investigating an efficient method for the quality control of raw milk protein. A gel filtration chromatography (GFC) fingerprint method combined with chemometrics was developed for fingerprint analysis of raw milk. To optimize the GFC conditions, milk fat was removed by centrifugation, and GFC analysis was performed on a Superdex 75 10/300GL column (Just Scientific, Shanghai, China) with 0.2 M NaH2PO4-Na2HPO4 buffer (pH 7.0) as the mobile phase. The flow rate was 0.5mL/min, and the detection wavelength was set at 280 nm. Ten batches of 120 raw milk samples were analyzed to establish the GFC fingerprint under optimal conditions. Six major peaks common to the chromatogram of each raw milk sample were selected for fingerprint analysis, and the characteristic peaks were used to establish a standard chromatographic fingerprint. Principal component analysis was then applied to classify GFC information of adulterated milk and raw milk, allowing adulterated samples to be effectively screened out from the raw milk in principal component analysis scores plot. The fingerprint method demonstrates promising features in detecting milk protein adulteration.

  18. Routes to improve binding capacities of affinity resins demonstrated for Protein A chromatography.

    PubMed

    Müller, Egbert; Vajda, Judith

    2016-05-15

    Protein A chromatography is a well-established platform in downstream purification of monoclonal antibodies. Dynamic binding capacities are continuously increasing with almost every newly launched Protein A resin. Nevertheless, binding capacities of affinity chromatography resins cannot compete with binding capacities obtained with modern ion exchange media. Capacities of affinity resins are roughly 50% lower. High binding capacities of ion exchange media are supported by spacer technologies. In this article, we review existing spacer technologies of affinity chromatography resins. A yet known effective approach to increase the dynamic binding capacity of Protein A resins is oligomerization of the particular Protein A motifs. This resembles the tentacle technology used in ion exchange chromatography. Dynamic binding capacities of a hexameric ligand are roughly twice as high compared to capacities obtained with a tetrameric ligand. Further capacity increases up to 130mg/ml can be realized with the hexamer ligand, if the sodium phosphate buffer concentration is increased from 20 to 100mM. Equilibrium isotherms revealed a BET shape for the hexamer ligand at monoclonal antibody liquid phase concentrations higher than 9mg/ml. The apparent multilayer formation may be due to hydrophobic forces. Other quality attributes such as recovery, aggregate content, and overall purity of the captured monoclonal antibody are not affected.

  19. Enrichment of phosphorylated proteins from cell lysate using a novel phosphate-affinity chromatography at physiological pH.

    PubMed

    Kinoshita-Kikuta, Emiko; Kinoshita, Eiji; Yamada, Atsushi; Endo, Mika; Koike, Tohru

    2006-10-01

    While phosphoproteins have attracted great interest toward the post-genome research (e.g. clinical diagnosis and drug design), there have been few procedures for the specific enrichment of native phosphoproteins from cells or tissues. Here, we describe a simple and efficient protocol to enrich phosphoproteins comprehensively from a complex mixture containing solubilized cellular proteins. This method is based on immobilized metal affinity chromatography using a phosphate-binding tag molecule (i.e. a dinuclear zinc(II) complex) attached on a highly cross-linked agarose. The binding, washing, and elution processes were all conducted without a detergent or a reducing agent at pH 7.5 and room temperature. An additive, 1.0 M CH3COONa, was necessary in the binding and washing buffers (0.10 M Tris-CH3COOH, pH 7.5) to prevent the nonphosphorylated protein from binding. The absorbed phosphoproteins were eluted using a mixed buffer solution (pH 7.5) consisting of 0.10 M Tris-CH3COOH, 10 mM NaH2PO4-NaOH, and 1.0 M NaCl. In this study, we demonstrate a typical example of phosphate-affinity chromatography using an epidermal growth factor-stimulated A431 cell lysate. The total time for the column chromatography (1 mL gel scale) was less than 1 h. The strong enrichment of the phosphoproteins into the elution fraction was evaluated using SDS-PAGE followed by Western blotting analysis.

  20. Single-step purification of native miraculin using immobilized metal-affinity chromatography.

    PubMed

    Duhita, Narendra; Hiwasa-Tanase, Kyoko; Yoshida, Shigeki; Ezura, Hiroshi

    2009-06-24

    Miraculin is a taste-modifying protein that can be isolated from miracle fruit ( Richadella dulcifica ), a shrub native to West Africa. It is able to turn a sour taste into a sweet taste. The commercial exploitation of this sweetness-modifying protein is underway, and a fast and efficient purification method to extract the protein is needed. We succeeded in purifying miraculin from miracle fruit in a single-step purification using immobilized metal-affinity chromatography (IMAC). The purified miraculin exhibited high purity (>95%) in reverse-phase high-performance liquid chromatography. We also demonstrated the necessity of its structure for binding to the nickel-IMAC column.

  1. Affinity chromatography of porcine pepsin A using quinolin-8-ol as ligand.

    PubMed

    Novotná, Lenka; Hrubý, Martin; Benes, Milan J; Kucerová, Zdenka

    2005-08-19

    Stationary phase containing quinolin-8-ol immobilized on macroporous methacrylate support for the affinity chromatography of porcine pepsin A is described. Optimized chromatographic conditions for separation of porcine pepsin A on this stationary phase were found investigating the influence of pH, concentration, ionic strength and chemical composition of the used mobile phases. The stationary phase shows a good reproducibility of chromatographic analyses (relative standard deviation, +/-2%), a high recovery (ca. 93%) and a satisfactory capacity (13 mg pepsin A/1 mL stationary phase) for porcine pepsin A. The obtained findings confirm the applicability of affinity chromatography on the stationary phase with immobilized quinolin-8-ol to the isolation and determination of porcine pepsin A.

  2. Identification of potential cellular targets of aloisine A by affinity chromatography.

    PubMed

    Corbel, Caroline; Haddoub, Rose; Guiffant, Damien; Lozach, Olivier; Gueyrard, David; Lemoine, Jérôme; Ratin, Morgane; Meijer, Laurent; Bach, Stéphane; Goekjian, Peter

    2009-08-01

    Affinity chromatography was used to identify potential cellular targets of aloisine A (7-n-butyl-6-(4'-hydroxyphenyl)-5H-pyrrolo[2,3b]pyrazine), a potent inhibitor of cyclin-dependent kinases. This technique is based on the immobilization of the drug on a solid matrix, followed by identification of specifically bound proteins. To this end, both aloisine A and the protein-kinase inactive control N-methyl aloisine, bearing extended linker chains have been synthesized. We present the preparation of such analogues having the triethylene glycol chain at different positions of the molecule, as well as their immobilization on an agarose-based matrix. Affinity chromatography of various biological extracts on the aloisine matrices allowed the identification of both protein kinases and non-kinase proteins as potential cellular targets of aloisine.

  3. A novel gigaporous GSH affinity medium for high-speed affinity chromatography of GST-tagged proteins.

    PubMed

    Huang, Yongdong; Zhang, Rongyue; Li, Juan; Li, Qiang; Su, Zhiguo; Ma, Guanghui

    2014-03-01

    Novel GSH-AP (phenoxyl agarose coated gigaporous polystyrene, Agap-co-PSt) microspheres were successfully prepared by introducing GSH ligand into hydrophilic AP microspheres pre-activated with 1,4-butanediol diglycidyl ether. The gigaporous structure and chromatographic properties of GSH-AP medium were evaluated and compared with commercial GSH Sepharose FF (GSH-FF) medium. The macropores (100-500nm) of gigaporous PSt microspheres were well maintained after coating with agarose and functionalized with GSH ligand. Hydrodynamic experiments showed that GSH-AP column had less backpressure and plate height than those of GSH-FF column at high flow velocity, which was beneficial for its use in high-speed chromatography. The presence of flow-through pores in GSH-AP microspheres also accelerated the mass transfer rate of biomolecules induced by convective flow, leading to high protein resolution and high dynamic binding capacity (DBC) of glutathione S-transferase (GST) at high flow velocity. High purity of GST and GST-tagged recombinant human interleukin-1 receptor antagonist (rhIL-1RA) were obtained from crude extract with an acceptable recovery yield within 1.5min at a velocity up to 1400cm/h. GSH-AP medium is promising for high-speed affinity chromatography for the purification of GST and GST-tagged proteins.

  4. Preparation of adsorbents for affinity chromatography using TSKgel Tresyl-Toyopearl 650M.

    PubMed

    Nakamura, K; Toyoda, K; Kato, Y; Shimura, K; Kasai, K

    1989-09-08

    The optimum conditions for the coupling of proteins were investigated using TSKgel Tresyl-Toyopearl 650M. They were dependent on the proteins coupled. For example, when soybean trypsin inhibitor was coupled at pH 8 the coupling was completed within 1 h and the subsequent adsorption capacity for trypsin was maximal. Longer coupling times decreased the adsorption capacity due to multi-point attachment. The adsorbents obtained were successfully used for affinity chromatography in a short time.

  5. Optimising the design and operation of semi-continuous affinity chromatography for clinical and commercial manufacture.

    PubMed

    Pollock, James; Bolton, Glen; Coffman, Jon; Ho, Sa V; Bracewell, Daniel G; Farid, Suzanne S

    2013-04-05

    This paper presents an integrated experimental and modelling approach to evaluate the potential of semi-continuous chromatography for the capture of monoclonal antibodies (mAb) in clinical and commercial manufacture. Small-scale single-column experimental breakthrough studies were used to derive design equations for the semi-continuous affinity chromatography system. Verification runs with the semi-continuous 3-column and 4-column periodic counter current (PCC) chromatography system indicated the robustness of the design approach. The product quality profiles and step yields (after wash step optimisation) achieved were comparable to the standard batch process. The experimentally-derived design equations were incorporated into a decisional tool comprising dynamic simulation, process economics and sizing optimisation. The decisional tool was used to evaluate the economic and operational feasibility of whole mAb bioprocesses employing PCC affinity capture chromatography versus standard batch chromatography across a product's lifecycle from clinical to commercial manufacture. The tool predicted that PCC capture chromatography would offer more significant savings in direct costs for early-stage clinical manufacture (proof-of-concept) (∼30%) than for late-stage clinical (∼10-15%) or commercial (∼5%) manufacture. The evaluation also highlighted the potential facility fit issues that could arise with a capture resin (MabSelect) that experiences losses in binding capacity when operated in continuous mode over lengthy commercial campaigns. Consequently, the analysis explored the scenario of adopting the PCC system for clinical manufacture and switching to the standard batch process following product launch. The tool determined the PCC system design required to operate at commercial scale without facility fit issues and with similar costs to the standard batch process whilst pursuing a process change application. A retrofitting analysis established that the direct cost

  6. Immobilized Metal Affinity Chromatography Coupled to Multiple Reaction Monitoring Enables Reproducible Quantification of Phospho-signaling*

    PubMed Central

    Kennedy, Jacob J.; Yan, Ping; Zhao, Lei; Ivey, Richard G.; Voytovich, Uliana J.; Moore, Heather D.; Lin, Chenwei; Pogosova-Agadjanyan, Era L.; Stirewalt, Derek L.; Reding, Kerryn W.; Whiteaker, Jeffrey R.; Paulovich, Amanda G.

    2016-01-01

    A major goal in cell signaling research is the quantification of phosphorylation pharmacodynamics following perturbations. Traditional methods of studying cellular phospho-signaling measure one analyte at a time with poor standardization, rendering them inadequate for interrogating network biology and contributing to the irreproducibility of preclinical research. In this study, we test the feasibility of circumventing these issues by coupling immobilized metal affinity chromatography (IMAC)-based enrichment of phosphopeptides with targeted, multiple reaction monitoring (MRM) mass spectrometry to achieve precise, specific, standardized, multiplex quantification of phospho-signaling responses. A multiplex immobilized metal affinity chromatography- multiple reaction monitoring assay targeting phospho-analytes responsive to DNA damage was configured, analytically characterized, and deployed to generate phospho-pharmacodynamic curves from primary and immortalized human cells experiencing genotoxic stress. The multiplexed assays demonstrated linear ranges of ≥3 orders of magnitude, median lower limit of quantification of 0.64 fmol on column, median intra-assay variability of 9.3%, median inter-assay variability of 12.7%, and median total CV of 16.0%. The multiplex immobilized metal affinity chromatography- multiple reaction monitoring assay enabled robust quantification of 107 DNA damage-responsive phosphosites from human cells following DNA damage. The assays have been made publicly available as a resource to the community. The approach is generally applicable, enabling wide interrogation of signaling networks. PMID:26621847

  7. Method for trapping affinity chromatography of transcription factors using aldehyde-hydrazide coupling to agarose.

    PubMed

    Jia, Yinshan; Jarrett, Harry W

    2015-08-01

    The use of a method of coupling DNA was investigated for trapping and purifying transcription factors. Using the GFP-C/EBP (CAAT/enhancer binding protein) fusion protein as a model, trapping gives higher purity and comparable yield to conventional affinity chromatography. The chemistry used is mild and was shown to have no detrimental effect on GFP fluorescence or GFP-C/EBP DNA binding. The method involves introducing a ribose nucleotide to the 3' end of a DNA sequence. Reaction with mM NaIO4 (sodium metaperiodate) produces a dialdehyde of ribose that couples to hydrazide-agarose. The DNA is combined at nM concentration with a nuclear extract or other protein mixture, and DNA-protein complexes form. The complex is then coupled to hydrazide-agarose for trapping the DNA-protein complex and the protein eluted by increasing NaCl concentration. Using a different oligonucleotide with the proximal E-box sequence from the human telomerase promoter, USF-2 transcription factor was purified by trapping, again with higher purity than results from conventional affinity chromatography and similar yield. Other transcription factors binding E-boxes, including E2A, c-Myc, and Myo-D, were also purified, but myogenin and NFκB were not. Therefore, this approach proved to be valuable for both affinity chromatography and the trapping approach.

  8. Isolation and purification of blood group antigens using immuno-affinity chromatography on short monolithic columns.

    PubMed

    Mönster, Andrea; Hiller, Oliver; Grüger, Daniela; Blasczyk, Rainer; Kasper, Cornelia

    2011-02-04

    Monolithic columns have gained increasing attention as stationary phases for the separation of biomolecules and biopharmaceuticals. In the present work the performance of monolithic convective interaction media (CIM(®)) chromatography for the purification of blood group antigens was established. The proteins employed in this study are derived from blood group antigens Knops, JMH and Scianna, equipped both with a His-tag and with a V5-tag by which they can be purified. In a first step a monoclonal antibody directed against the V5-tag was immobilized on a CIM(®) Disk with epoxy chemistry. After this, the immobilized CIM(®) Disk was used in immuno-affinity chromatography to purify the three blood group antigens from cell culture supernatant. Up-scaling of the applied technology was carried out using CIM(®) Tubes. In comparison to conventional affinity chromatography, blood group antigens were also purified via His-tag using a HiTrap(®) metal-affinity column. The two purifications have been compared regarding purity, yield and purification speed. Using the monolithic support, it was possible to isolate the blood group antigens with a higher flow rate than using the conventional bed-packed column.

  9. Identification of proteins interacting with ammodytoxins in Vipera ammodytes ammodytes venom by immuno-affinity chromatography.

    PubMed

    Brgles, Marija; Kurtović, Tihana; Kovačič, Lidija; Križaj, Igor; Barut, Miloš; Lang Balija, Maja; Allmaier, Günter; Marchetti-Deschmann, Martina; Halassy, Beata

    2014-01-01

    In order to perform their function, proteins frequently interact with other proteins. Various methods are used to reveal protein interacting partners, and affinity chromatography is one of them. Snake venom is composed mostly of proteins, and various protein complexes in the venom have been found to exhibit higher toxicity levels than respective components separately. Complexes can modulate envenomation activity of a venom and/or potentiate its effect. Our previous data indicate that the most toxic components of the Vipera ammodytes ammodytes (Vaa) venom isolated so far-ammodytoxins (Atxs)-are contributing to the venom's toxicity only moderately; therefore, we aimed to explore whether they have some interacting partner(s) potentiating toxicity. For screening of possible interactions, immuno-affinity chromatography combined with identification by mass spectrometry was used. Various chemistries (epoxy, carbonyldiimidazole, ethylenediamine) as well as protein G functionality were used to immobilize antibodies on monolith support, a Convective Interaction Media disk. Monoliths have been demonstrated to better suit the separation of large biomolecules. Using such approach, several proteins were indicated as potential Atx-binding proteins. Among these, the interaction of Atxs with a Kunitz-type inhibitor was confirmed by far-Western dot-blot and surface plasmon resonance measurement. It can be concluded that affinity chromatography on monolithic columns combined with mass spectrometry identification is a successful approach for screening of protein interactions and it resulted with detection of the interaction of Atx with Kunitz-type inhibitor in Vaa venom for the first time.

  10. A novel approach for separating bacteriophages from other bacteriophages using affinity chromatography and phage display.

    PubMed

    Ceglarek, Izabela; Piotrowicz, Agnieszka; Lecion, Dorota; Miernikiewicz, Paulina; Owczarek, Barbara; Hodyra, Katarzyna; Harhala, Marek; Górski, Andrzej; Dąbrowska, Krystyna

    2013-11-14

    Practical applications of bacteriophages in medicine and biotechnology induce a great need for technologies of phage purification. None of the popular methods offer solutions for separation of a phage from another similar phage. We used affinity chromatography combined with competitive phage display (i) to purify T4 bacteriophage from bacterial debris and (ii) to separate T4 from other contaminating bacteriophages. In 'competitive phage display' bacterial cells produced both wild types of the proteins (expression from the phage genome) and the protein fusions with affinity tags (expression from the expression vectors). Fusion proteins were competitively incorporated into the phage capsid. It allowed effective separation of T4 from a contaminating phage on standard affinity resins.

  11. A Static Method as an Alternative to Gel Chromatography: An Experiment for the Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Burum, Alex D.; Splittgerber, Allan G.

    2008-01-01

    This article describes a static method as an alternative to gel chromatography, which may be used as an undergraduate laboratory experiment. In this method, a constant mass of Sephadex gel is swollen in a series of protein solutions. UV-vis spectrophotometry is used to find a partition coefficient, KD, that indicates the fraction of the interior…

  12. Purification to homogeneity of an active opioid receptor from rat brain by affinity chromatography.

    PubMed

    Loukas, S; Mercouris, M; Panetsos, F; Zioudrou, C

    1994-05-10

    Active opioid binding proteins were solubilized from rat brain membranes in high yield with sodium deoxycholate in the presence of NaCl. Purification of opioid binding proteins was accomplished by opioid antagonist affinity chromatography. Chromatography using the delta-opioid antagonist N,N-diallyl-Tyr-D-Leu-Gly-Tyr-Leu attached to omega-aminododecyl-agarose (Affi-G) (procedure A) yielded a partially purified protein that binds selectively the delta-opioid agonist [3H]Tyr-D-Ser-Gly-Phe-Leu-Thr ([3H]DSLET), with a Kd of 19 +/- 3 nM and a Bmax of 5.1 +/- 0.4 nmol/mg of protein. Subsequently, Lens culinaris agglutinin-Sepharose 4B chromatography of the Affi-G eluate resulted in isolation of an electrophoretically homogeneous protein of 58 kDa that binds selectively [3H]DSLET with a Kd of 21 +/- 3 nM and a Bmax of 16.5 +/- 1.0 nmol/mg of protein. Chromatography using the nonselective antagonist 6-aminonaloxone coupled to 6-aminohexanoic acid-Sepharose 4B (Affi-NAL) (procedure B) resulted in isolation of a protein that binds selectively [3H]DSLET with a Kd of 32 +/- 2 nM and a Bmax of 12.4 +/- 0.5 nmol/mg of protein, and NaDodSO4/PAGE revealed a major band of apparent molecular mass 58 kDa. Polyclonal antibodies (Anti-R IgG) raised against the Affi-NAL protein inhibit the specific [3H]DSLET binding to the Affi-NAL eluate and to the solubilized membranes. Moreover, the Anti-R IgG inhibits the specific binding of radiolabeled Tyr-D-Ala-Gly-N-methyl-Phe-Gly-ol (DAMGO; mu-agonist), DSLET (delta-agonist), and naloxone to homogenates of rat brain membranes with equal potency. Furthermore, immunoaffinity chromatography of solubilized membranes resulted in the retention of a major protein of apparent molecular mass 58 kDa. In addition, immunoblotting of solubilized membranes and purified proteins from the Affi-G and Affi-NAL matrices revealed that the Anti-R IgG interacts with a protein of 58 kDa.

  13. Purification of prenylated proteins by affinity chromatography on cyclodextrin-modified agarose

    PubMed Central

    Chung, Jinhwa A.; Wollack, James W.; Hovlid, Marisa L.; Okesli, Ayse; Chen, Yan; Mueller, Joachim D.; Distefano, Mark D.; Taton, T. Andrew

    2009-01-01

    Although protein prenylation is widely studied, there are few good methods for isolating prenylated proteins from their non-prenylated relatives. We report that crosslinked agarose (e.g., Sepharose) chromatography media that has been chemically functionalized with β-cyclodextrin (β-CD) is extremely effective in affinity chromatography of prenylated proteins. In this study, a variety of proteins with C-terminal prenylation target (“CAAX box”) sequences were enzymatically prenylated in vitro with natural and non-natural prenyl diphosphate substrates. The prenylated protein products could then be isolated from starting materials by gravity chromatography or fast protein liquid chromatography (FPLC) on a β-CD-Sepharose column. One particular prenylation reaction—farnesylation of a mCherry-CAAX fusion construct—was studied in detail. In this case, purified farnesylated product was unambiguously identified by electrospray mass spectrometry. In addition, when mCherry-CAAX was prenylated with a non-natural, functional isoprenoid substrate, the functional group was maintained by chromatography on β-CD-Sepharose, such that the resulting protein could be selectively bound at its C terminus to complementary functionality on a solid substrate. Finally, β-CD-Sepharose FPLC was used to isolate prenylated mCherry-CAAX from crude HeLa cell lysate, as a model for purifying prenylated proteins from cell extracts. We propose that this method could be generally useful to the community of researchers studying protein prenylation. PMID:18834849

  14. Aflatoxin metabolism in humans: detection of metabolites and nucleic acid adducts in urine by affinity chromatography

    SciTech Connect

    Groopman, J.D.; Donahue, P.R.; Zhu, J.Q.; Chen, J.S.; Wogan, G.N.

    1985-10-01

    A high-affinity IgM monoclonal antibody specific for aflatoxins was covalently bound to Sepharose 4B and used as a preparative column to isolate aflatoxin derivatives from the urine of people and experimental animals who had been exposed to the carcinogen environmentally or under laboratory conditions. Aflatoxin levels were quantified by radioimmunoassay and high-performance liquid chromatography after elution from the affinity column. In studies on rats injected with ( UC)aflatoxin B1, the authors identified the major aflatoxin-DNA adduct, 2,3-dihydro-2-(N7-guanyl)-3-hydroxy-aflatoxin B1 (AFB1-N7-Gua), and the oxidative metabolites M1 and P1 as the major aflatoxin species present in the urine. When this methodology was applied to human urine samples obtained from people from the Guangxi Province of China exposed to aflatoxin B1 through dietary contamination, the aflatoxin metabolites detected were also AFB1-N7-Gua and aflatoxins M1 and P1. Therefore, affinity chromatography using a monoclonal antibody represents a useful and rapid technique with which to isolate this carcinogen and its metabolites in biochemical epidemiology and for subsequent quantitative measurements, providing exposure information that can be used for risk assessment.

  15. Regenerated silica gel as stationary phase on vacuum column chromatography to purify temulawak's extracts

    NASA Astrophysics Data System (ADS)

    Cahyono, Bambang; Maduwu, Ratna Dewi; Widayat, Suzery, Meiny

    2015-12-01

    Commercial silica gel only used once by many researchers and affected high cost for purification process, also less support the green chemistry program. This research focused in regeneration silica gel that used purification of temulawak's extracts (Curcuma xanthorrhiza Roxb) by vacuum column chromatography. Sample extracts (contains 10.1195±0.5971% of curcuminoids) was purified by vacuum column chromatography (pressure: 45 kPa, column: 100mm on length and 16mm on diameter). Ethanol 96% and acetone were compared as eluent. The amount of solvent and yield of curcuminoids used as indicator purification. The silica gel was regenerated with heating in 600°C for 8 hours The silica gels were analyzed by IR spectroscopy and X-ray diffraction. Furthermore, regenerated silica gel was used as the stationary phase in vacuum column chromatography under the same conditions with the previous purification. All the purification experiments were performed in three repetitions. Based on regression equation, y=0.132x+0.0011 (r2=0.9997) the yield of curcuminoids on purified products using ethanol as the eluent was improved 4.26% (to 14.3724±0.5749%) and by acetone was improved 3,03% (to 13.1450 ±0.6318%). The IR spectrum of both silica gel showed the same vibration profile and also there were three crystallinity peaks missing on its X-ray diffraction. Regenerated silica gel has the same performance with new silica gel in purification of temulawak's extract: by ethanol has increased 4.08% (14.1947±0.7415%) and 2.93% (13.0447±0.4822) by acetone. In addition, all purification products showed similar TLC profiles. Purification using regenerated silica gel as the adsorbent on vacuum column chromatography has exactly same potential with the new silica gel.

  16. Regenerated silica gel as stationary phase on vacuum column chromatography to purify temulawak’s extracts

    SciTech Connect

    Cahyono, Bambang; Maduwu, Ratna Dewi; Widayat,; Suzery, Meiny

    2015-12-29

    Commercial silica gel only used once by many researchers and affected high cost for purification process, also less support the green chemistry program. This research focused in regeneration silica gel that used purification of temulawak’s extracts (Curcuma xanthorrhiza Roxb) by vacuum column chromatography. Sample extracts (contains 10.1195±0.5971% of curcuminoids) was purified by vacuum column chromatography (pressure: 45 kPa, column: 100mm on length and 16mm on diameter). Ethanol 96% and acetone were compared as eluent. The amount of solvent and yield of curcuminoids used as indicator purification. The silica gel was regenerated with heating in 600°C for 8 hours The silica gels were analyzed by IR spectroscopy and X-ray diffraction. Furthermore, regenerated silica gel was used as the stationary phase in vacuum column chromatography under the same conditions with the previous purification. All the purification experiments were performed in three repetitions. Based on regression equation, y=0.132x+0.0011 (r{sup 2}=0.9997) the yield of curcuminoids on purified products using ethanol as the eluent was improved 4.26% (to 14.3724±0.5749%) and by acetone was improved 3,03% (to 13.1450 ±0.6318%). The IR spectrum of both silica gel showed the same vibration profile and also there were three crystallinity peaks missing on its X-ray diffraction. Regenerated silica gel has the same performance with new silica gel in purification of temulawak’s extract: by ethanol has increased 4.08% (14.1947±0.7415%) and 2.93% (13.0447±0.4822) by acetone. In addition, all purification products showed similar TLC profiles. Purification using regenerated silica gel as the adsorbent on vacuum column chromatography has exactly same potential with the new silica gel.

  17. Development and Validation of an Affinity Chromatography-Protein G Method for IgG Quantification

    PubMed Central

    Paradina Fernández, Lesly; Calvo, Loany; Viña, Lisel

    2014-01-01

    Nimotuzumab, an IgG that recognizes the epidermal growth factor receptor (EGF-R) overexpressed in some tumors, is used in the treatment of advanced head and neck cancer. For the quantification of this protein in cell culture supernatants, protein G-HPLC affinity chromatography is used due to its high affinity and specificity for antibodies of this class. The technique relies on the comparison of the area under the curve of the elution peak of the samples to be evaluated versus to a calibration curve of well-known concentrations and was validated by assessment of its robustness, specificity, repeatability, intermediate precision, accuracy, linearity, limit of detection, limit of quantification, and range. According to results of the study all validation parameters fulfilled the preestablished acceptance criteria and demonstrated the feasibility of the assay for the analysis of samples of cell culture supernatant as well as drug product. PMID:27379284

  18. Actin affinity chromatography in the purification of human, avian and other mammalian plasma proteins binding vitamin D and its metabolites (Gc globulins).

    PubMed Central

    Haddad, J G; Kowalski, M A; Sanger, J W

    1984-01-01

    The human plasma protein binding vitamin D and its metabolites (Gc globulin; group-specific component) has been isolated from human plasma by column affinity chromatography on gels to which monomeric actin was covalently attached. Rabbit skeletal-muscle G-actin was covalently coupled to amino-agarose gels before the application of human plasma. At actin/protein molar ratios of 4-8:1, excellent recovery (approximately 58%) of purified binding protein was achieved. After 0.75 M-NaCl washes, the binding protein was eluted from the columns in 3 M-guanidinium chloride, dialysed and analysed. These eluates contained the binding protein as 34-100% of the total protein, reflecting a 130-fold average purification in this single step. In the presence of Ca2+, gelsolin (another plasma protein that binds actin) was apparently retained by the affinity column, but this was prevented by chelation of plasma Ca2+. The actin affinity step also was effective in the isolation of the binding protein from rat, rabbit and chicken plasma, as indicated by autoradiographs of purified fractions analysed by gel electrophoresis after incubation with 25-hydroxy[26,27-3H]cholecalciferol. Further isolation by hydroxyapatite chromatography yielded a purified binding protein which displayed characteristic binding activity toward vitamin D metabolites and G-actin, and retained its physicochemical features. This brief purification sequence is relatively simple and efficient, and should prove to be useful to investigators studying this interesting plasma protein. Images Fig. 1. Fig. 3. Fig. 4. PMID:6547042

  19. Isolation and partial characterization of Bromelia hemisphaerica protease by affinity chromatography.

    PubMed

    Ochoa, N; Agundis, C; Córdoba, F

    1987-01-01

    Hemisphaericin, the protease from Bromelia hemisphaerica fruit juice was isolated by affinity chromatography in one step, using a mercurial sepharose derivative. The enzyme behaves as a single component in immunodifussion, immunoelectrophoresis and polyacrylamide electrophoresis in the presence of SDS and 2-mercaptoethanol. Association and dissociation of active components were evidenced in electrophoresis at pH 3.6 and at pH 8.6. Immunoelectrophoresis analyses also disclosed a certain degree of internal immunological heterogeneity. The results are explained by the presence of an enzyme subunit, of about 8000 daltons, endowed with polymeric properties induced by the pH and oxidative environment.

  20. Rapid and Complete Purification of Acetylcholinesterases of Electric Eel and Erythrocyte by Affinity Chromatography

    PubMed Central

    Berman, Jonathan Dembitz; Young, Michael

    1971-01-01

    Affinity chromatography has been used to purify acetylcholinesterase both from the electric tissue of Electrophorus electricus and from bovine erythrocyte membranes. For this purpose, several specific enzymic inhibitors of each protein were synthesized and joined covalently to an insoluble support resin. AchE is selectively retained by such inhibitor-resins when highly impure solutions are chromatographed upon them. After removal from the resin, both enzymes are electrophoretically homogeneous and they may be recovered in yields of 75% or more. Images PMID:5277092

  1. Procedure for rapid isolation of photosynthetic reaction centers using cytochrome c affinity chromatography

    SciTech Connect

    Brudvig, G.W.; Worland, S.T.; Sauer, K.

    1983-02-01

    Horse heart cytochrome c linked to Sepharose 4B is used to purify reaction centers from Rhodopseudomonas sphaeroides R-26. This procedure allows for an initial recovery of 80-90% of the bacterial reaction centers present in chromatophore membranes. High purity reaction centers (A/sub 280//A/sub 802/ < 1.30) can be obtained with a 30% recovery. Reaction centers from wild-type Rps. sphaeroides and Rps. capsulata also bind to a cytochrome c column. Cytochrome c affinity chromatography can also be used to isolate photosystem I complexes from spinach chloroplasts.

  2. Heparin-sepharose affinity chromatography for purification of bull seminal-plasma hyaluronidase.

    PubMed Central

    Srivastava, P N; Farooqui, A A

    1979-01-01

    Bull seminal-plasma hyaluronidase was purified 180-fold by chromatography on concanvalin A-Sepharose, heparin Sepharose, Sephadex G-200 and Sephacryl S-200. With hyaluronic acid as the substrate, the specific activity and turnover number of purified hyaluronidase were 3.63 mumol/min per mg (104000 National Formulary units/mg of protein) and 214 min-1 (mol of product formed/mol of enzyme per min) respectively. Polyacrylamide-gel electrophoresis indicated that the purified enzyme migrated as a single band on 7.5 and 10% (w/v) gels at pH 4.3 and 5.3. Bull seminal-plasma hyaluronidase was markedly inhibited by hydroxylamine, phenylhydrazine and semicarbazide. Purified hyaluronidase (1.25 munits; 1 unit = 1 mumol of N-acetylglucosamine liberated/min at 37 degrees C) dispersed the cumulus clot of rabbit ova in 1 h at 22 degrees C. Images Fig. 4. PMID:540029

  3. Optical isomer separation of single-chirality carbon nanotubes using gel column chromatography.

    PubMed

    Liu, Huaping; Tanaka, Takeshi; Kataura, Hiromichi

    2014-11-12

    We report a gel column chromatography method for easily separating the optical isomers (i.e., left- and right-handed structures) of single-chirality carbon nanotubes. This method uses the difference in the interactions of the two isomers of a chiral single-wall carbon nanotube (SWCNT) with an allyl dextran-based gel, which result from the selective interaction of the chiral moieties of the gel with the isomers. Using this technique, we sorted optical isomers of nine distinct (n, m) single-chirality species from HiPco SWCNTs, which is the maximum number of isolable species of SWCNTs reported to date. Because of its advantages of technical simplicity, low cost, and high efficiency, gel column chromatography allows researchers to prepare macroscopic ensembles of single-structure SWCNTs and enables the complete discovery of intrinsic properties of SWCNTs and advances their application.

  4. Partial purification of the microsomal rat liver iodothyronine deiodinase. II. Affinity chromatography.

    PubMed

    Mol, J A; van den Berg, T P; Visser, T J

    1988-02-01

    Iodothyronine deiodinase has been solubilized and purified approximately 2400 times from liver microsomal fractions of male Wistar rats pretreated with thyroxine. The deiodinase was solubilized with 1% cholate, and stripped of adhering phospholipids by ammonium sulfate precipitation followed by solubilization with the non-ionic detergent Emulgen 911. The enzyme was further purified by successive ion-exchange chromatography on DEAE-Sephacel and Cellex-P and affinity chromatography on 3,3',5-triiodothyronine-Sepharose. Finally, the deiodinase was reacted with 6-propionyl-2-thiouracil-Sepharose, a derivative of the mechanism-based inhibitor 6-propyl-2-thiouracil. Covalent binding was observed only in the presence of substrate in agreement with the proposed mechanism of deiodination. The deiodinase was eluted from the affinity column by reduction of the enzyme-propylthiouracil mixed disulfide with 50 mM dithiothreitol. The enzyme was approximately 50% pure as judged by SDS-PAGE, exhibiting a subunit molecular weight of 25,000. This preparation was equally enriched in outer ring and inner ring deiodinase activities in keeping with the view that both are intrinsic to a single, type I deiodinase.

  5. A new affinity approach to isolate Escherichia coli 6S RNA with histidine-chromatography.

    PubMed

    Martins, R; Queiroz, J A; Sousa, F

    2010-01-01

    6S RNA is an abundant non-coding RNA in Escherichia coli (E. coli), but its function has not been discovered until recently. The first advance on 6S RNA function was the demonstration of its ability to bind the σ(70)-holoenzyme form of RNA polymerase, inhibiting its activity and consequently the transcription process. The growing interest in the investigation of non-coding small RNAs (sRNA) calls for the development of new methods for isolation and purification of RNA. This work presents an optimized RNA extraction procedure and describes a new affinity chromatography method using a histidine support to specifically purify 6S RNA from other E. coli sRNA species. The RNA extraction procedure was optimized, and a high yield was obtained in the separation of sRNA and ribosomal RNA (rRNA) from total RNA (RNAt). This improved method takes advantage of its simplicity and significant cost reduction, since some complex operations have been eliminated. A purification strategy was also developed to separate 6S RNA from an sRNA mixture. Pure RNA can be advantageously obtained using the histidine-affinity chromatography method, aiming at its application to structural or functional studies.

  6. Affinity chromatography reveals RuBisCO as an ecdysteroid-binding protein.

    PubMed

    Uhlik, Ondrej; Kamlar, Marek; Kohout, Ladislav; Jezek, Rudolf; Harmatha, Juraj; Macek, Tomas

    2008-12-22

    The aim of this work was to isolate plant ecdysteroid-binding proteins using affinity chromatography. Ecdysteroids as insect hormones have been investigated thoroughly but their function and the mechanism of action in plants and other organisms is still unknown although ecdysteroids occur in some plants in a relatively large amount. Therefore, 20-hydroxyecdysone was immobilized on a polymeric carrier as a ligand for affinity chromatography in order to isolate plant ecdysteroid-binding proteins from the cytosolic extract of New Zealand spinach (Tetragonia tetragonoides). Non-specifically bound proteins were eluted with a rising gradient of concentration of sodium chloride, and 3% (v/v) acetic acid was used for the elution of the specifically bound proteins. Using this method, ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) was isolated. The influence of ecdysteroids on RuBisCO was further studied. Our results show that ecdysteroids are able to increase the yield of RuBisCO-mediated reaction in which CO(2) is fixed into organic matter by more than 10%.

  7. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies

    PubMed Central

    Boulet-Audet, Maxime; Kazarian, Sergei G.; Byrne, Bernadette

    2016-01-01

    In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan. PMID:27470880

  8. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies

    NASA Astrophysics Data System (ADS)

    Boulet-Audet, Maxime; Kazarian, Sergei G.; Byrne, Bernadette

    2016-07-01

    In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan.

  9. Inosine 5'-monophosphate dehydrogenase of Escherichia coli. Purification by affinity chromatography, subunit structure and inhibition by guanosine 5'-monophosphate.

    PubMed Central

    Gilbert, H J; Lowe, C R; Drabble, W T

    1979-01-01

    Escherichia coli IMP dehydrogenase (EC 1.2.1.14) was purified by affinity chromatography on immobilized nucleotides. The enzyme binds to agarose-bound 8-(6-aminohexyl)-AMP, N6-(6-aminohexyl)-AMP and 8-(8-amino-octyl)-IMP but not to immobilized NAD+ or Cibacron Blue F3G-A. AMP proved to be an effective eluent. A large-scale purification scheme in which 8-(6-aminohexyl)-AMP-agarose was used resulted in a homogeneous preparation of IMP dehydrogenase. The enzyme was also purified by immunoprecipitation with monospecific antisera. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, N-terminal amino acid analysis and tryptic 'finger-printing' demonstrated that IMP dehydrogenase comprises identical subunits of mol.wt. 58000. Trypsin and Pronase cleave the 58000-mol.wt. subunit into peptides of mol.wts. 42000 and 14000, with a concomitant decrease in enzyme activity. These observations rationalize much of the contradictory data on the subunit composition of the enzyme found in the literature. GMP appears to be a competitive inhibitor with respect to IMP, with no evidence for regulatory behaviour being found. The two purification procedures were also used to purify inactive mutant enzymes from guaB mutant strains of E. coli. PMID:44191

  10. Characterization of the rabbit homolog of human MUC1 glycoprotein isolated from bladder by affinity chromatography on immobilized jacalin.

    PubMed

    Higuchi, T; Xin, P; Buckley, M S; Erickson, D R; Bhavanandan, V P

    2000-07-01

    The urinary bladder is lined by transitional epithelium, the glycocalyx on the luminal surface has interesting properties and is implicated in protective functions. Glycoconjugates are major components of the glycocalyx, but their biochemical nature is not well understood. Previous studies on rabbit bladder indicated the presence of significant levels of sialoglycoproteins compared to glycosaminoglycans in the epithelium. In this study, rabbit explant cultures were radiolabeled by precursor sugars or amino acids and a major lectin-reactive glycoprotein of rabbit bladder mucosa was isolated by affinity chromatography on jacalin-agarose. The radiolabeled glycoprotein was purified to homogeneity by a second cycle on the lectin column, followed by gel filtration and density gradient centrifugation. The average molecular mass of the glycoprotein was estimated to be 245 kDa and 210 kDa by gel filtration and SDS-PAGE, respectively. Its buoyant density was 1.40 g/ml, suggesting a carbohydrate content of approximately 50%. The percent distribution of glucosamine-derived tritium label in sialic acid, galactosamine, and glucosamine was 30, 52, and 18, respectively. The glycoprotein consisted entirely of small sialylated and neutral oligosaccharides O-glycosidically linked to serine and threonine residues. The same glycoprotein could be immunoprecipitated with an antibody against the carboxy terminal 17 amino acid peptide of human MUC1 mucin glycoprotein. This suggests that this mucin glycoprotein is the rabbit homolog of MUC1 glycoprotein, which has been previously established to be a component of human bladder urothelium and has been purified from human urine and biochemically characterized.

  11. The development of mitochondrial membrane affinity chromatography columns for the study of mitochondrial transmembrane proteins

    PubMed Central

    Habicht, K-L.; Singh, N.S.; Indig, F.E.; Wainer, I.W.; Moaddel, R.; Shimmo, R.

    2015-01-01

    Mitochondrial membrane fragments from U-87 MG (U87MG) and HEK-293 cells were successfully immobilized on to Immobilized Artificial Membrane (IAM) chromatographic support and surface of activated open tubular (OT) silica capillary resulting in mitochondrial membrane affinity chromatography (MMAC) columns. Translocator protein (TSPO), located in mitochondrial outer membrane as well as sulfonylurea and mitochondrial permeability transition pore (mPTP) receptors, localized to the inner membrane, were characterized. Frontal displacement experiments with multiple concentrations of dipyridamole (DIPY) and PK-11195 were run on MMAC-(U87MG) column and the binding affinities (Kd) determined were 1.08 ± 1.49 and 0.0086 ± 0.0006 μM respectively, which was consistent with previously reported values. Further, binding affinities (Ki) for DIPY binding site were determined for TSPO ligands, PK-11195, mesoporphyrin IX, protoporphyrin IX and rotenone. Additionally, the relative ranking of these TSPO ligands based on single displacement studies using DIPY as marker on MMAC-(U87MG) was consistent with the obtained Ki values. The immobilization of mitochondrial membrane fragments was also confirmed by confocal microscopy. PMID:26049098

  12. Affinity chromatography of chaperones based on denatured proteins: Analysis of cell lysates of different origin.

    PubMed

    Marchenko, N Yu; Sikorskaya, E V; Marchenkov, V V; Kashparov, I A; Semisotnov, G V

    2016-03-01

    Molecular chaperones are involved in folding, oligomerization, transport, and degradation of numerous cellular proteins. Most of chaperones are heat-shock proteins (HSPs). A number of diseases of various organisms are accompanied by changes in the structure and functional activity of chaperones, thereby revealing their vital importance. One of the fundamental properties of chaperones is their ability to bind polypeptides lacking a rigid spatial structure. Here, we demonstrate that affinity chromatography using sorbents with covalently attached denatured proteins allows effective purification and quantitative assessment of their bound protein partners. Using pure Escherichia coli chaperone GroEL (Hsp60), the capacity of denatured pepsin or lysozyme-based affinity sorbents was evaluated as 1 mg and 1.4 mg of GroEL per 1 ml of sorbent, respectively. Cell lysates of bacteria (E. coli, Thermus thermophilus, and Yersinia pseudotuberculosis), archaea (Halorubrum lacusprofundi) as well as the lysate of rat liver mitochondria were analyzed using affinity carrier with denatured lysozyme. It was found that, apart from Hsp60, other proteins with a molecular weight of about 100, 50, 40, and 20 kDa are able to interact with denatured lysozyme.

  13. Selective isolation of β-glucan from corn pericarp hemicelluloses by affinity chromatography on cellulose column.

    PubMed

    Yoshida, Tomoki; Honda, Yoichi; Tsujimoto, Takashi; Uyama, Hiroshi; Azuma, Jun-ichi

    2014-10-13

    A combination of anion-exchange chromatography and affinity chromatography on a cellulose column was found to be effective for the isolation of β-(1,3;1,4)-glucan (BG) from corn pericarp hemicelluloses (CPHs). CPHs containing 6.6% BG were extracted from corn pericarp with 6M urea-2 wt% NaOH solution and initially fractionated into neutral and acidic parts by anion exchange chromatography to remove acidic arabinoxylan consisting of arabinose (35.6%) and xylose (50.9%). The neutral fraction (yield; 10.1% on the basis of CPHs) consisting of 1.0% arabinose, 10.1% xylose and 80.3% glucose containing 28.4% BG was then applied to a cellulose column of Whatman CF-11. BG could be recovered from the adsorbed fraction on the cellulose column by elution with 2% NaOH in a yield of 2.6% on the basis of CPHs with a purity of 84.7%. The chemical structure of the isolated corn pericarp BG was confirmed by (13)C NMR spectroscopic, methylation and lichenase treatment analyses. The results indicate that the ratios of (1,4)/(1,3) linkage and cellotriosyl/cellotetraosyl segments of the BG were 2.60 and 2.5, respectively.

  14. Synthesis of sulfonamide- and sulfonyl-phenylboronic acid-modified silica phases for boronate affinity chromatography at physiological pH.

    PubMed

    Li, Xiaobao; Pennington, Justin; Stobaugh, John F; Schöneich, Christian

    2008-01-15

    Two new types of boronate affinity solid phases were synthesized and characterized. The materials were prepared by silylation of porous silica gel with monochlorosilane derivatives containing synthetic sulfonyl- and sulfonamide-substituted phenylboronic acids. The new solid phases were evaluated for boronate affinity chromatography with aryl and alkyl cis-diol compounds and were found to be suitable for the retention of cis-diols under acidic conditions. Significant correlations between the retention factor (K) and the pH of the mobile phase demonstrate that the binding of cis-diols to the solid phases is best rationalized by chelation. Based on the lower pKa, caused by the electron-withdrawing effects of the sulfonyl and sulfonamide groups, these media display an enhanced affinity for cis-diols as compared with unsubstituted phenylboronic acid. Using isocratic elution, a mixture of various biologically relevant l-tyrosines, l-DOPA, and several catecholamines were resolved with a mobile phase composed of 0.05M phosphate buffer (pH 5.5). Mono-, di-, and triphosphates of adenosine were also separated at pH 6.0. Hence, the new boronate solid phase offers efficient affinity separation and purification of cis-diol-containing molecules under rather mild pH conditions.

  15. Separation of soluble Brucella antigens by gel-filtration chromatography.

    PubMed

    McGhee, J R; Freeman, B A

    1970-07-01

    Soluble precipitating antigens of Brucella suis have been, in various degrees, purified by filtration on Sephadex gels. The most useful gels employed were Sephadex G-150, Sephadex G-200, and Sepharose 4B. Although not all fractions proved to be immunologically pure, some crude molecular-size estimates of most of the 13 soluble antigens of the Brucella cell could be given. In addition, monospecific antisera to three purified Brucella antigens have been prepared. By using purified preparations, physical and chemical data were obtained on two major antigens, E and 1, and a minor antigen, f. Antigen E is not an agglutinogen and may be toxic. Antigen 1 is of low molecular weight and is neither toxic nor agglutinogenic. The minor antigen f is an agglutinogen as well as a precipitinogen and is found on the cell surface. Both major antigens, when purified, were immunogenic in rabbits.

  16. A Laboratory Exercise for Visible Gel Filtration Chromatography Using Fluorescent Proteins

    ERIC Educational Resources Information Center

    Zhang, Wenqiang; Cao, Yibin; Xu, Lishan; Gong, Jufang; Sun, Meihao

    2015-01-01

    Gel filtration chromatography (GFC) separates molecules according to size and is one of the most widely used methods for protein purification. Here, red fluorescent protein (RFP), green fluorescent protein (GFP), yellow fluorescent protein (YFP), cyan fluorescent protein (CFP), and/or their fusion proteins were prokaryotically expressed, purified,…

  17. Identification of the Cardiac Beta-Adrenergic Receptor Protein: Solubilization and Purification by Affinity Chromatography

    PubMed Central

    Lefkowitz, Robert J.; Haber, Edgar; O'Hara, Donald

    1972-01-01

    A protein that binds catecholamines with a specificity parallel to that of their in vivo effects on cardiac contractility (isoproterenol > epinephrine or norepinephrine > dopamine > dihydroxyphenylalanine) was solubilized from a microsomal fraction of canine ventricular myocardium. The binding protein was purified 500 to 800-fold by solubilization and subsequent affinity chromatography with conjugates of norepinephrine linked to agarose beads. Purified β-adrenergic binding protein exists in two forms, corresponding to molecular weights of 40,000 and 160,000. The purified material has a single association constant, 2.3 × 105 liters/mol (as compared to two association constants, 107 and 106 liters/mol, for the binding protein in particulate form) but retains the identical binding specificity for β-adrenergic drugs and antagonists. Images PMID:4507606

  18. Protein Affinity Chromatography with Purified Yeast DNA Polymerase α Detects Proteins that Bind to DNA Polymerase

    NASA Astrophysics Data System (ADS)

    Miles, Jeff; Formosa, Tim

    1992-02-01

    We have overexpressed the POL1 gene of the yeast Saccharomyces cerevisiae and purified the resulting DNA polymerase α polypeptide in an apparently intact form. We attached the purified DNA polymerase covalently to an agarose matrix and used this matrix to chromatograph extracts prepared from yeast cells. At least six proteins bound to the yeast DNA polymerase α matrix that did not bind to a control matrix. We speculate that these proteins might be DNA polymerase α accessory proteins. Consistent with this interpretation, one of the binding proteins, which we have named POB1 (polymerase one binding), is required for normal chromosome transmission. Mutations in this gene cause increased chromosome loss and an abnormal cell morphology, phenotypes that also occur in the presence of mutations in the yeast α or δ polymerase genes. These results suggest that the interactions detected by polymerase affinity chromatography are biologically relevant and may help to illuminate the architecture of the eukaryotic DNA replication machinery.

  19. Contamination of ribosome inactivating proteins with ribonucleases, separated by affinity chromatography on red sepharose.

    PubMed

    Wang, H X; Ng, T B; Cheng, C H K; Fong, W P

    2003-05-01

    Three preparations of type 1 ribosome inactivating proteins (RIPs), namely, agrostin, saporin, and luffin, were subjected to affinity chromatography on Red Sepharose and eluted with a linear concentration gradient of NaCl in 10 mM Tris-HCl buffer (pH 7.4). The eluate was assayed for ability to inhibit translation in a cell-free rabbit reticulocyte lysate system which measures RIP activity, and for ability to hydrolyze yeast transfer RNA which measures RNase activity. It was found that, in all three RIP preparations, the peak of RIP activity, which coincided with the peak of absorbance at 280 nm, was eluted earlier than the peak of RNase activity. It appears that RNase is a possible contaminant of ribosome inactivating protein preparations and that this contamination can be minimized by using Red Sepharose.

  20. A recombinant envelope protein from Dengue virus purified by IMAC is bioequivalent with its immune-affinity chromatography purified counterpart.

    PubMed

    Hermida, L; Rodríguez, R; Lazo, L; López, C; Márquez, G; Páez, R; Suárez, C; Espinosa, R; García, J; Guzmán, G; Guillén, G

    2002-03-28

    Semi-purified DEN-4 envelope protein, obtained in Pichia pastoris, was capable of generating neutralising and protecting antibodies after immunisation in mice. Here we compared two purification processes of this recombinant protein using two chromatographic steps: immune-affinity chromatography and immobilised metal ion adsorption chromatography (IMAC). The protein purified by both methods produced functional antibodies reflected by titres of haemagglutination inhibition and neutralisation. IMAC could be used as an alternative for high scale purification.

  1. Reinforcement of frontal affinity chromatography for effective analysis of lectin-oligosaccharide interactions.

    PubMed

    Hirabayashi, J; Arata, Y; Kasai, K

    2000-08-25

    Frontal affinity chromatography is a method for quantitative analysis of biomolecular interactions. We reinforced it by incorporating various merits of a contemporary liquid chromatography system. As a model study, the interaction between an immobilized Caenorhabditis elegans galectin (LEC-6) and fluorescently labeled oligosaccharides (pyridylaminated sugars) was analyzed. LEC-6 was coupled to N-hydroxysuccinimide-activated Sepharose 4 Fast Flow (100 microm diameter), and packed into a miniature column (e.g., 10 x 4.0 mm, 0.126 ml). Twelve pyridylaminated oligosaccharides were applied to the column through a 2-ml sample loop, and their elution patterns were monitored by fluorescence. The volume of the elution front (V) determined graphically for each sample was compared with that obtained in the presence of an excess amount of hapten saccharide, lactose (V0); and the dissociation constant, Kd, was calculated according to the literature [K. Kasai, Y. Oda, M. Nishikawa, S. Ishii, J. Chromatogr. 376 (1986) 33]. This system also proved to be useful for an inverse confirmation; that is, application of galectins to an immobilized glycan column (in the present case, asialofetuin was immobilized on Sepharose 4 Fast Flow), and the elution profiles were monitored by fluorescence based on tryptophan. The relative affinity of various galectins for asialofetuin could be easily compared in terms of the extent of retardation. The newly constructed system proved to be extremely versatile. It enabled rapid (analysis time 12 min/cycle) and sensitive (20 nM for pyridylaminated derivatives, and 1 microg/ml for protein) analyses of lectin-carbohydrate interactions. It should become a powerful tool for elucidation of biomolecular interactions, in particular for functional analysis of a large number of proteins that should be the essential issues of post-genome projects.

  2. Single-Step Purification of Monomeric l-Selectin via Aptamer Affinity Chromatography

    PubMed Central

    Kuehne, Christian; Wedepohl, Stefanie; Dernedde, Jens

    2017-01-01

    l-selectin is a transmembrane receptor expressed on the surface of white blood cells and responsible for the tethering of leukocytes to vascular endothelial cells. This initial intercellular contact is the first step of the complex leukocyte adhesion cascade that ultimately permits extravasation of leukocytes into the surrounding tissue in case of inflammation. Here we show the binding of a soluble histidine tagged l-selectin to a recently described shortened variant of an l-selectin specific DNA aptamer with surface plasmon resonance. The high specificity of this aptamer in combination with its high binding affinity of ~12 nM, allows for a single-step protein purification from cell culture supernatants. In comparison to the well-established Ni-NTA based technology, aptamer affinity chromatography (AAC) was easier to establish, resulted in a 3.6-fold higher protein yield, and increased protein purity. Moreover, due to target specificity, the DNA aptamer facilitated binding studies directly from cell culture supernatant, a helpful characteristic to quickly monitor successful expression of biological active l-selectin. PMID:28125045

  3. Using affinity chromatography to engineer and characterize pH-dependent protein switches.

    PubMed

    Sagermann, Martin; Chapleau, Richard R; DeLorimier, Elaine; Lei, Margarida

    2009-01-01

    Conformational changes play important roles in the regulation of many enzymatic reactions. Specific motions of side chains, secondary structures, or entire protein domains facilitate the precise control of substrate selection, binding, and catalysis. Likewise, the engineering of allostery into proteins is envisioned to enable unprecedented control of chemical reactions and molecular assembly processes. We here study the structural effects of engineered ionizable residues in the core of the glutathione-S-transferase to convert this protein into a pH-dependent allosteric protein. The underlying rational of these substitutions is that in the neutral state, an uncharged residue is compatible with the hydrophobic environment. In the charged state, however, the residue will invoke unfavorable interactions, which are likely to induce conformational changes that will affect the function of the enzyme. To test this hypothesis, we have engineered a single aspartate, cysteine, or histidine residue at a distance from the active site into the protein. All of the mutations exhibit a dramatic effect on the protein's affinity to bind glutathione. Whereas the aspartate or histidine mutations result in permanently nonbinding or binding versions of the protein, respectively, mutant GST50C exhibits distinct pH-dependent GSH-binding affinity. The crystal structures of the mutant protein GST50C under ionizing and nonionizing conditions reveal the recruitment of water molecules into the hydrophobic core to produce conformational changes that influence the protein's active site. The methodology described here to create and characterize engineered allosteric proteins through affinity chromatography may lead to a general approach to engineer effector-specific allostery into a protein structure.

  4. Separation of TFIIIC into two functional components by sequence specific DNA affinity chromatography.

    PubMed Central

    Dean, N; Berk, A J

    1987-01-01

    Recently, it has been shown that mammalian transcription factor IIIC (TFIIIC) activity can be separated by anion exchange FPLC chromatography into two functional components (1), both of which are required for transcription of tRNA and the adenovirus VA RNA genes. Here we show that these two functional components, designated TFIIIC1 and TFIIIC2, can also be separated by sequence specific DNA affinity chromatography. These results confirm the observation that TFIIIC can be fractionated into two components, which are both required for transcription of VA I and tRNA genes in vitro. Thus in the mammalian reconstituted system, a minimum of three proteins, in addition to RNA polymerase III, are required for the transcription of the VA and tRNA genes in vitro. The DNA binding component, TFIIIC2, binds specifically to the 3' segment of the internal promoter (the B block), demonstrated by its ability to protect this region from digestion by DNase I. TFIIIC2 is the limiting, titratable component in the phosphocellulose C fraction required for the formation of a stable pre-initiation complex on the VAI RNA gene in vitro, as demonstrated with a template competition and rescue assay. Images PMID:3697084

  5. Isolation of two molecular populations of human complement factor H by hydrophobic affinity chromatography.

    PubMed Central

    Ripoche, J; Al Salihi, A; Rousseaux, J; Fontaine, M

    1984-01-01

    Human complement factor H was prepared in highly purified form from fresh serum by euglobulin precipitation, DEAE-Sephacel chromatography and Sephacryl S-300 gel filtration. This preparation allowed the recovery of 37% of the initial factor H. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis revealed that factor H was homogeneous both in reduced and non-reduced media and exhibited a molecular mass of 150 kDa. Charge-shift experiments clearly showed the presence of hydrophobic sites in the factor H molecule. Charge shifts were observed with two detergent systems (Triton/sodium deoxycholate and Triton/cetyltrimethylammonium bromide). Factor H was able to bind to phenyl-Sepharose. This property allowed us to study two populations of factor H. These two populations exhibited the same physicochemical parameters, but revealed differences in their ability to aggregate in low- and iso-ionic-strength media. The molecular basis and biological significance of this heterogeneity are discussed. Images Fig. 3. Fig. 4. Fig. 5. PMID:6235808

  6. Isolation of human beta-interferon receptor by wheat germ lectin affinity and immunosorbent column chromatographies

    SciTech Connect

    Zhang, Z.Q.; Fournier, A.; Tan, Y.H.

    1986-06-15

    Radioiodinated human beta-interferon-Ser 17 (Betaseron) was reversibly cross-linked to Daudi cells by dithiobis(succinimidylpropionate). The radioactive ligand was cross-linked to three macromolecules forming labeled complexes of apparent Mr values of 130,000, 220,000, and 320,000. Betaseron, human alpha-interferon, human interleukin 2 but not recombinant human gamma-interferon competed with the labeled ligand for binding to these putative receptor(s). Human leukocyte-produced gamma-interferon competed weakly with /sup 125/I-Betaseron for binding to Daudi cells. The Betaseron-receptor complex(es) was purified by passage through a wheat germ lectin column followed by chromatography on an anti-interferon immunosorbent column and semipreparative gel electrophoresis. The cross-linked ligand-receptor complex was shown to be highly purified by sodium dodecyl sulfate and acetic acid:urea:Triton X-100 polyacrylamide gel electrophoresis. It can be dissociated into the labeled Betaseron (Mr = 17,000) ligand and a receptor moiety which has an apparent molecular weight of 110,000. The chromatographic behavior of the ligand-receptor complex on wheat germ lectin column suggests that the receptor is a glycoprotein. The described procedure yielded about 1 microgram of Betaseron receptor from 10(10) Daudi cells, estimated to contain a maximum of about 15 micrograms of the receptor.

  7. Separation of Aeruginosin-865 from Cultivated Soil Cyanobacterium (Nostoc sp.) by Centrifugal Partition Chromatography combined with Gel Permeation Chromatography.

    PubMed

    Cheel, José; Minceva, Mirjana; Urajová, Petra; Aslam, Rabya; Hrouzek, Pavel; Kopecký, Jiří

    2015-10-01

    Aeruginosin-865 was isolated from cultivated soil cyanobacteria using a combination of centrifugal partition chromatography (CPC) and gel permeation chromatography. The solubility of Aer-865 in different solvents was evaluated using the conductor-like screening model for real solvents (COSMO-RS). The CPC separation was performed in descending mode with a biphasic solvent system composed of water-n-BuOH-acetic acid (5:4:1, v/v/v). The upper phase was used as a stationary phase, whereas the lower phase was employed as a mobile phase at a flow rate of 10 mL/min. The revolution speed and temperature of the separation column were 1700 rpm and 25 degrees C, respectively. Preparative CPC separation followed by gel permeation chromatography was performed on 50 mg of crude extract yielding Aer-865 (3.5 mg), with a purity over 95% as determined by HPLC. The chemical identity of the isolated compound was confirmed by comparing its spectroscopic data (UV, HRESI-MS, HRESI-MS/MS) with those of an authentic standard and data available in the literature.

  8. Microheterogeneous forms of radioiodinated bovine thyrotropin: discrimination of different receptor-active components by gel permeation chromatography

    SciTech Connect

    Stanton, P.G.; Hearn, M.T.

    1986-01-01

    The products of the radioiodination and subsequent receptor adsorption of bovine TSH (bTSH) radiolabeled by the lactoperoxidase method have been further investigated. After receptor adsorption, (125I)bTSH was resolved by gel permeation chromatography on Sephadex G-100 (superfine) under low ionic strength conditions into three peaks of radioactivity (tracers 2a, 2b, and 2c, respectively). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions demonstrated that each tracer component was radiolabeled on both the alpha- and beta-subunits. Analysis of the three tracers by TSH radioreceptor assay (under different radioreceptor assay conditions) showed that tracers 2b and 2c exhibited saturable rebinding to crude thyroid membranes containing functional TSH receptors. However, tracer 2c exhibited a maximum binding 2-fold greater than tracer 2b. This difference has been attributed to the abundance of an apparently low affinity binding component in tracer 2c. Rechromatography of tracers 2b and 2c on Sephadex G-100 (superfine) under high ionic strength conditions yielded tracer profiles that were coincident, demonstrating that the initial separation under low ionic strength conditions was not based on differences in molecular volume. The data indicate that radioiodination of highly purified bTSH yields multiple tracer components. Further, receptor adsorption, commonly used to purify freshly iodinated bTSH before radioreceptor assay, purifies at least two species of receptor-active (125I) bTSH.

  9. Ethanol-assisted gel chromatography for single-chirality separation of carbon nanotubes.

    PubMed

    Zeng, Xiang; Hu, Jinwen; Zhang, Xiao; Zhou, Naigen; Zhou, Weiya; Liu, Huaping; Xie, Sishen

    2015-10-21

    Surfactants or polymers are usually used for the liquid processing of carbon nanotubes for their structure separation. However, they are difficult to remove after separation, affecting the intrinsic properties and applications of the separated species. Here, we report an ethanol-assisted gel chromatography for the chirality separation of single-walled carbon nanotubes (SWCNTs), in which ethanol is employed to finely tune the density/coverage of sodium dodecyl sulfate (SDS) on nanotubes, and thus the interactions between SWCNTs and an allyl dextran-based gel. Incrementally increasing the ethanol content in a low-concentration SDS eluent leads to successive desorption of the different structure SWCNTs adsorbed on the gel, and to achieve multiple distinct (n, m) single-chirality species. The use of ethanol enables the working concentration of SDS to be reduced dramatically and also avoids the introduction of other surfactants or chemical reagents. More importantly, ethanol can be easily removed after separation. The ability of ethanol to tune the interactions between SWCNTs and the gel also gives a deeper insight into the separation mechanism of SWCNTs using gel chromatography.

  10. Ion-exclusion chromatography of carboxylic acids on silica gel modified with aluminium.

    PubMed

    Ohta, K; Tanaka, K

    1999-07-30

    The modification of silica gel with aluminium by a coating method was effective for the preparation of a silica-based stationary phase, which acted as a cation exchanger under strongly acidic conditions. In order to expand the utility of the laboratory-made aluminium-adsorbing silica gel it was applied as a stationary phase to the ion-exclusion chromatography of various carboxylic acids. Good separations for both aliphatic carboxylic acids and benzenecarboxylic acids with a hydrophobic nature under acidic eluent conditions were achieved in 25 min.

  11. Clean-up of a pesticide-lanolin mixture by gel permeation chromatography.

    PubMed

    López-Mesas, M; Crespi, M; Brach, J; Mullender, J P

    2000-12-01

    In this study, the efficiency of a clean-up method by gel permeation chromatography (GPC) for the separation of pesticides from lanolin is analyzed. The pesticides analyzed belong to two different families, organophosphorous and synthetic pyrethroids. Lanolin, a standard mixture of the pesticides, and a lanolin-pesticides mixture are injected in a GPC column. The recoveries and elution times from the GPC column of lanolin (by a gravimetric method) and pesticides (by gas chromatography-electron capture detector) are determined. From this column, a good separation of the lanolin-pesticides mixture is observed.

  12. A method to resolve the composition of heterogeneous affinity-purified protein complexes assembled around a common protein by chemical cross-linking, gel electrophoresis and mass spectrometry.

    PubMed

    Rudashevskaya, Elena L; Sacco, Roberto; Kratochwill, Klaus; Huber, Marie L; Gstaiger, Matthias; Superti-Furga, Giulio; Bennett, Keiryn L

    2013-01-01

    Protein complexes form, dissociate and re-form in order to perform specific cellular functions. In this two-pronged protocol, noncovalent protein complexes are initially isolated by affinity purification for subsequent identification of the components by liquid chromatography high-resolution mass spectrometry (LC-MS) on a hybrid LTQ Orbitrap Velos. In the second prong of the approach, the affinity-purification strategy includes a chemical cross-linking step to 'freeze' a series of concurrently formed, heterogeneous protein subcomplex species that are visualized by gel electrophoresis. This branch of the methodology amalgamates standard and well-practiced laboratory methods to reveal compositional changes that occur in protein complex architecture. By using mouse N-terminally tagged streptavidin-binding peptide-hemagglutinin-TANK-binding kinase 1 (SH-TBK1), we chemically cross-linked the affinity-purified complex of SH-TBK1 with the homobifunctional lysine-specific reagent bis(sulfosuccinimidyl) suberate (BS(3)), and we separated the resultant protein complexes by denaturation and by silver-stained one- and two-dimensional SDS-PAGE. We observed a range of cross-linked TBK1 complexes of variable pI and M(r) and confirmed them by immunoblotting. LC-MS analysis of in situ-digested cross-linked proteins shows differences in the composition of the TBK1 subcomplexes. The protocol is inherently simple and can be readily extended to the investigation of a range of protein complexes. From cell lysis to data generation by LC-MS, the protocol takes approximately 2.5 to 5.5 d to perform.

  13. Applicability of the modified universal calibration of gel permeation chromatography on proteins.

    PubMed

    Dondos, Anastasios

    2006-09-15

    The modified universal calibration of gel permeation chromatography (GPC) has been applied in the case of native proteins. Plotting log([eta]M/Phi) versus elution volume, instead of log[eta]M versus elution volume used till now, we obtain unique curves with different proteins and non-proteonic polymers ([eta]: intrinsic viscosity, M: molecular mass, Phi: Flory's parameter). The values of Flory's parameter Phi are calculated for each protein using an indirect method based on GPC.

  14. Recombinant Passenger Proteins Can Be Conveniently Purified by One-Step Affinity Chromatography.

    PubMed

    Wang, Hua-zhen; Chu, Zhi-zhan; Chen, Chang-chao; Cao, Ao-cheng; Tong, Xin; Ouyang, Can-bin; Yuan, Qi-hang; Wang, Mi-nan; Wu, Zhong-kun; Wang, Hai-hong; Wang, Sheng-bin

    2015-01-01

    Fusion tag is one of the best available tools to date for enhancement of the solubility or improvement of the expression level of recombinant proteins in Escherichia coli. Typically, two consecutive affinity purification steps are often necessitated for the purification of passenger proteins. As a fusion tag, acyl carrier protein (ACP) could greatly increase the soluble expression level of Glucokinase (GlcK), α-Amylase (Amy) and GFP. When fusion protein ACP-G2-GlcK-Histag and ACP-G2-Amy-Histag, in which a protease TEV recognition site was inserted between the fusion tag and passenger protein, were coexpressed with protease TEV respectively in E. coli, the efficient intracellular processing of fusion proteins was achieved. The resulting passenger protein GlcK-Histag and Amy-Histag accumulated predominantly in a soluble form, and could be conveniently purified by one-step Ni-chelating chromatography. However, the fusion protein ACP-GFP-Histag was processed incompletely by the protease TEV coexpressed in vivo, and a large portion of the resulting target protein GFP-Histag aggregated in insoluble form, indicating that the intracellular processing may affect the solubility of cleaved passenger protein. In this context, the soluble fusion protein ACP-GFP-Histag, contained in the supernatant of E. coli cell lysate, was directly subjected to cleavage in vitro by mixing it with the clarified cell lysate of E. coli overexpressing protease TEV. Consequently, the resulting target protein GFP-Histag could accumulate predominantly in a soluble form, and be purified conveniently by one-step Ni-chelating chromatography. The approaches presented here greatly simplify the purification process of passenger proteins, and eliminate the use of large amounts of pure site-specific proteases.

  15. Detection of human butyrylcholinesterase-nerve gas adducts by liquid chromatography-mass spectrometric analysis after in gel chymotryptic digestion.

    PubMed

    Tsuge, Kouichiro; Seto, Yasuo

    2006-06-21

    To verify the exposure to nerve gas, a method for detecting human butyrylcholinesterase (BuChE)-nerve gas adduct was developed using LC-electrospray mass spectrometry (ESI-MS). Purified human serum BuChE was incubated with sarin, soman or VX, and the adduct was purified by sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) and digested in gel by treatment with chymotrypsin. The resulting peptide mixture was subjected to LC-ESI-MS. From the chymotryptic digest of untreated human BuChE, one peak corresponding to the peptide fragment containing the active center serine residue was detected on the extracted ion chromatogram at m/z 948.5, and the sequence was ascertained to be "GESAGAASVSL" by MS/MS analysis. From the chymotryptic digest of the human BuChE-sarin adduct, a singly charged peptide peak was detected on the extracted ion chromatogram at m/z 1,069.5, and the sequence was ascertained to be "GEXAGAASVSL" by MS/MS analysis (X denotes isopropylmethylphosphonylated serine). The difference in molecular weight (120.0 Da) between the active center peptide fragments corresponding to the untreated BuChE and BuChE-sarin adduct was assumed to be derived from the addition of an isopropyl methylphosphonyl moiety to the serine residue. The formation of human BuChE adducts with soman, VX and an aged soman adduct was confirmed by detecting the respective active center peptide fragments using LC-ESI-MS. To apply the established method to an actual biological sample, human serum was incubated with VX, and the adduct was purified by procainamide affinity chromatography followed by SDS-PAGE. After chymotryptic in gel digestion, the ethylphosphonylated active center peptide fragment could be detected, and the structure of the residue was ascertained by LC-ESI-MS analysis.

  16. One-step purification of mouse monoclonal antibodies from ascitic fluid by DEAE Affi-Gel blue chromatography.

    PubMed

    Bruck, C; Portetelle, D; Glineur, C; Bollen, A

    1982-09-30

    Monoclonal antibodies can be purified directly from ascitic fluids by chromatography on a DEAE Affi-gel blue column. Optimal conditions were determined for the recovery of immunoglobulins free of contaminating protease and nuclease activities.

  17. AraUTP-Affi-Gel 10: a novel affinity absorbent for the specific purification of DNA polymerase alpha-primase.

    PubMed

    Izuta, S; Saneyoshi, M

    1988-10-01

    For the specific purification of eukaryotic DNA-dependent DNA polymerase alpha, we prepared two novel affinity resins bearing 5-(E)-(4-aminostyryl) araUTP as a ligand. One of them was araUTP-Sepharose 4B which was coupled directly with the ligand and the other was araUTP-Affi-Gel 10 which was coupled with the ligand through a spacer. No DNA polymerase alpha-primase activity from cherry salmon (Oncorhynchus masou) testes was bound on the araUTP-Sepharose 4B in all cases examined. On the other hand, the araUTP-Affi-Gel 10 retains this enzyme activity when poly(dA) or poly(dA)-oligo(dT)12-18 is present. The retained enzyme activity was sharply eluted around 100-mM KCl concentrations as a single peak, and this fraction showed a specific activity of about 170,000 units/mg as alpha-polymerase activity. The highly purified DNA polymerase alpha-primase isolated using the araUTP-Affi-Gel 10 contained only three polypeptides, which showed Mr values of 120,000, 62,000, and 58,000, respectively, as judged using sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

  18. Dynamic affinity chromatography in the separation of sulfated lignins binding to thrombin

    PubMed Central

    Liang, Aiye; Thakkar, Jay N.; Hindle, Michael; Desai, Umesh R.

    2013-01-01

    Sulfated low molecular weight lignins (LMWLs), a mixture of chemo-enzymatically prepared oligomers, have been found to be potent antagonists of coagulation. However, structures that induce anticoagulation remain unidentified. The highly polar sulfate groups on these molecules and the thousands of different structures present in these mixtures make traditional chromatographic resolution of sulfated LMWLs difficult. We performed dynamic thrombin affinity chromatography monitored using chromogenic substrate hydrolysis assay to isolate sulfated LMWL fractions that differed significantly in their biophysical and biochemical properties. Three fractions, I35, I55 and Peak II, were isolated from the starting complex mixture. Independent plasma clotting assays suggested that I35 possessed good anticoagulation potential (APTT = 4.2 μM; PT = 6.8 μM), while I55 and Peak II were approximately 10- and 100-fold less potent. The ESI-MS spectrum of this oligomeric fraction showed multiple peaks at 684.8, 610.6, 557.4, 541.4, 536.5, and 519.4 m/z, which most probably arise from variably functionalized (β-O4—β-β-linked trimers and/or a β-O4—β-O4-linked dimers. The first direct observation of these structures in sulfated LMWLs will greatly assist in the discovery of more potent sulfated LMWL-based anticoagulants. PMID:23122400

  19. NMR screening of new carbocyanine dyes as ligands for affinity chromatography.

    PubMed

    Cruz, Carla; Boto, Renato E F; Drzazga, Anna K; Almeida, Paulo; Queiroz, João A

    2014-04-01

    Four new carbocyanines containing symmetric and asymmetric heterocyclic moieties and N-carboxyalkyl groups have been synthesized and characterized. The binding mechanism established between these cyanines and several proteins was evaluated using saturation transfer difference (STD) NMR. The results obtained for the different dyes revealed a specific interaction to the standard proteins lysozyme, α-chymotrypsin, ribonuclease (RNase), bovine serum albumin (BSA), and gamma globulin. For instance, the two un-substituted symmetrical dyes (cyanines 1 and 3) interacted preferentially through its benzopyrrole and dibenzopyrrole units with lysozyme, α-chymotrypsin, and RNase, whereas the symmetric disulfocyanine dye (cyanine 2) bound BSA and gamma globulin through its carboxyalkyl chains. On the other hand, the asymmetric dye (cyanine 4) interacts with lysozyme and α-chymotrypsin through benzothiazole moiety and with RNase through dibenzopyrrole unit. Thus, STD-NMR technique was successfully used to screen cyanine-protein interactions and determine potential binding sites of the cyanines for posterior use as ligands in affinity chromatography.

  20. CHARACTERIZATION OF DRUG INTERACTIONS WITH SERUM PROTEINS BY USING HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY

    PubMed Central

    Hage, David S.; Anguizola, Jeanethe; Barnaby, Omar; Jackson, Abby; Yoo, Michelle J.; Papastavros, Efthimia; Pfaunmiller, Erika; Sobansky, Matt; Tong, Zenghan

    2011-01-01

    The binding of drugs with serum proteins can affect the activity, distribution, rate of excretion, and toxicity of pharmaceutical agents in the body. One tool that can be used to quickly analyze and characterize these interactions is high-performance affinity chromatography (HPAC). This review shows how HPAC can be used to study drug-protein binding and describes the various applications of this approach when examining drug interactions with serum proteins. Methods for determining binding constants, characterizing binding sites, examining drug-drug interactions, and studying drug-protein dissociation rates will be discussed. Applications that illustrate the use of HPAC with serum binding agents such as human serum albumin, α1-acid glycoprotein, and lipoproteins will be presented. Recent developments will also be examined, such as new methods for immobilizing serum proteins in HPAC columns, the utilization of HPAC as a tool in personalized medicine, and HPAC methods for the high-throughput screening and characterization of drug-protein binding. PMID:21395530

  1. Purification of a thermostable alkaline laccase from papaya (Carica papaya) using affinity chromatography.

    PubMed

    Jaiswal, Nivedita; Pandey, Veda P; Dwivedi, Upendra N

    2015-01-01

    A laccase from papaya leaves was purified to homogeneity by a two step procedure namely, heat treatment (at 70 °C) and Con-A affinity chromatography. The procedure resulted in 1386.7-fold purification of laccase with a specific activity of 41.3 units mg(-1) and an overall yield of 61.5%. The native purified laccase was found to be a hexameric protein of ∼ 260 kDa. The purified enzyme exhibited acidic and alkaline pH optima of 6.0 and 8.0 with the non-phenolic substrate (ABTS) and phenolic substrate (catechol), respectively. The purified laccase was found to be thermostable up to 70 °C such that it retained ∼ 80% activity upon 30 min incubation at 70 °C. The Arrhenius energy of activation for purified laccase was found to be 7.7 kJ mol(-1). The enzyme oxidized various phenolic and non-phenolic substrates having catalytic efficiency (K(cat)/K(m)) in the order of 7.25>0.67>0.27 mM(-1) min(-1) for ABTS, catechol and hydroquinone, respectively. The purified laccase was found to be activated by Mn(2+), Cd(2+), Ca(2+), Na(+), Fe(2+), Co(2+) and Cu(2+) while weakly inhibited by Hg(2+). The properties such as thermostability, alkaline pH optima and metal tolerance exhibited by the papaya laccase make it a promising candidate enzyme for industrial exploitation.

  2. Characterization of minor site probes for human serum albumin by high-performance affinity chromatography.

    PubMed

    Sengupta, A; Hage, D S

    1999-09-01

    This study used high-performance affinity chromatography (HPAC) and immobilized human serum albumin (HSA) columns to examine the specificity and cross-reactivity of various compounds that have been proposed as markers for the minor binding sites of HSA. These agents included acetyldigitoxin and digitoxin as probes for the digitoxin site, phenol red as a probe for the bilirubin site, and cisor trans-clomiphene as markers for the tamoxifen site. None of these probes showed any significant binding at HSA's indole-benzodiazepine site. However, phenol red did bind at the warfarin-azapropazone site of HSA, and cis/trans-clomiphene gave positive allosteric effects caused by the binding of warfarin to HSA. Digitoxin and acetyldigitoxin were found to bind to a common, unique region on HSA; cis- and trans-clomiphene also appeared to interact at a unique site, although trans-clomiphene displayed additional direct competition with phenol red. From these results it was possible to develop a model that described the general relationship between these binding regions on HSA. This information should be useful in future studies that employ HPAC for characterizing the binding of HSA to other drugs or clinical agents.

  3. Advance chromatin extraction improves capture performance of protein A affinity chromatography.

    PubMed

    Nian, Rui; Zhang, Wei; Tan, Lihan; Lee, Jeremy; Bi, Xeuzhi; Yang, Yuansheng; Gan, Hui Theng; Gagnon, Pete

    2016-01-29

    Practical effects of advance chromatin removal on performance of protein A affinity chromatography were evaluated using a caprylic acid-allantoin-based extraction method. Lacking this treatment, the practice of increasing loading residence time to increase capacity was shown to increase host protein contamination of the eluted IgG. Advance chromatin extraction suspended that compromise. Protein A ligand leakage from columns loaded with chromatin-extracted harvest was half the level observed on protein A columns loaded with non-extracted harvest. Columns loaded with chromatin-extracted harvest were cleaned more effectively by 50-100mM NaOH than columns loaded with non-extracted harvest that were cleaned with 250-500mM NaOH. Two protein A media with IgG capacities in excess of 50g/L were loaded with chromatin-extracted harvest, washed with 2.0M NaCl before elution, and the eluted IgG fraction titrated to pH 5.5 before microfiltration. Host protein contamination in the filtrate was reduced to <1ppm, DNA to <1ppb, protein A leakage to 0.5ppm, and aggregates to 1.0%. Caprylic acid and allantoin were both reduced below 5ppm. Step recovery of IgG was 99.4%. Addition of a single polishing step reduced residual protein A beneath the level of detection and aggregates to <0.1%. Overall process recovery including chromatin extraction was 90%.

  4. Proteomic analysis of copper-binding proteins in excess copper-stressed rice roots by immobilized metal affinity chromatography and two-dimensional electrophoresis.

    PubMed

    Song, Yufeng; Zhang, Hongxiao; Chen, Chen; Wang, Guiping; Zhuang, Kai; Cui, Jin; Shen, Zhenguo

    2014-04-01

    Copper (Cu) is an essential micronutrient required for plant growth and development. However, excess Cu can inactivate and disturb protein structure as a result of unavoidable binding to proteins. To understand better the mechanisms involved in Cu toxicity and tolerance in plants, we developed a new immobilized metal affinity chromatography (IMAC) method for the separation and isolation of Cu-binding proteins extracted from roots of rice seedling exposed to excess Cu. In our method, IDA-Sepharose or EDDS-Sepharose column (referred as pre-chromatography) and Cu-IDA-Sepharose column (referred as Cu-IMAC) were connected in tandem. Namely, protein samples were pre-chromatographed with IDA-Sepharose column to removal metal ions, then protein solution was flowed into Cu-IMAC column for enriching Cu-binding proteins in vitro. Compared with the control (Cu-IMAC without any pre-chromatography), IDA-Sepharose pre-chromatography method markedly increased yield of the Cu-IMAC-binding proteins, and number of protein spots and the abundance of 40 protein spots on two-dimensional electrophoresis (2-DE) gels. Thirteen protein spots randomly selected from 2-DE gel and 11 proteins were identified using MALDI-TOF-TOF MS. These putative Cu-binding proteins included those involved in antioxidant defense, carbohydrate metabolism, nucleic acid metabolism, protein folding and stabilization, protein transport and cell wall synthesis. Ten proteins contained one or more of nine putative metal-binding motifs reported by Smith et al. (J Proteome Res 3:834-840, 2004) and seven proteins contained one or two of top six motifs reported by Kung et al. (Proteomics 6:2746-2758, 2006). Results demonstrated that more proteins specifically bound with Cu-IMAC could be enriched through removal of metal ions from samples by IDA-Sepharose pre-chromatography. Further studies are needed on metal-binding characteristics of these proteins in vivo and the relationship between Cu ions and protein biological

  5. Physicochemical and Biological Characterization of Fucoidan from Fucus vesiculosus Purified by Dye Affinity Chromatography

    PubMed Central

    Zayed, Ahmed; Muffler, Kai; Hahn, Thomas; Rupp, Steffen; Finkelmeier, Doris; Burger-Kentischer, Anke; Ulber, Roland

    2016-01-01

    A comparative study concerning the physicochemical, monomeric composition and biological characters among different fucoidan fractions is presented. Common purification techniques for fucoidan usually involve many steps. During these steps, the important structural features might be affected and consequently alter its biological activities. Three purified fractions were derived from Fucus vesiculosus water extract which, afterwards, were purified by a recently-developed dye affinity chromatography protocol. This protocol is based on dye-sulfated polysaccharide interactions. The first two fractions were obtained from crude precipitated fucoidan at different pH values of the adsorption phase: pH 1 and 6. This procedure resulted in fucoidan_1 and 6 fractions. The other, third, fraction: fucoidan_M, however, was obtained from a buffered crude extract at pH 1, eliminating the ethanol precipitation step. All of the three fractions were then further evaluated. Results revealed that fucoidan_M showed the highest sulfur content (S%), 12.11%, with the lowest average molecular weight, 48 kDa. Fucose, galactose, and uronic acid/glucose dimers were detected in all fractions, although, xylose was only detected in fucoidan_1 and 6. In a concentration of 10 µg·mL−1, Fucoidan_6 showed the highest heparin-like anticoagulant activity and could prolong the APTT and TT significantly to 66.03 ± 2.93 and 75.36 ± 1.37 s, respectively. In addition, fucoidan_M demonstrated the highest potency against HSV-1 with an IC50 of 2.41 µg·mL−1. The technique proved to be a candidate for fucoidan purifaction from its crude extract removing the precipitation step from common purification protocols and produced different fucoidan qualities resulted from the different incubation conditions with the immobilized thiazine toluidine blue O dye. PMID:27092514

  6. Sequential injection affinity chromatography utilizing an albumin immobilized monolithic column to study drug-protein interactions.

    PubMed

    Zacharis, Constantinos K; Kalaitzantonakis, Eftichios A; Podgornik, Ales; Theodoridis, Georgios

    2007-03-09

    In this study, sequential injection affinity chromatography was used for drug-protein interactions studies. The analytical system used consisted of a sequential injection analysis (SIA) manifold directly connected with convective interaction media (CIM) monolithic epoxy disks modified by ligand-immobilization of protein. A non-steroidal, anti-inflammatory drug, naproxen (NAP) and bovine serum albumin (BSA) were selected as model drug and protein, respectively. The SIA system was used for sampling, introduction and propulsion of drug towards to the monolithic column. Association equilibrium constants, binding capacity at various temperatures and thermodynamic parameters (free energy DeltaG, enthalpy DeltaH) of the binding reaction of naproxen are calculated by using frontal analysis mathematics. The variation of incubation time and its effect in on-line binding mode was also studied. The results indicated that naproxen had an association equilibrium constant of 2.90 x 10(6)M(-1) at pH 7.4 and 39 degrees C for a single binding site. The associated change in enthalpy (DeltaH) was -27.36 kcal mol(-1) and the change in entropy (DeltaS) was -73 cal mol(-1)K(-1) for a single type of binding sites. The location of the binding region was examined by competitive binding experiments using a biphosphonate drug, alendronate (ALD), as a competitor agent. It was found that the two drugs occupy the same class of binding sites on BSA. All measurements were performed with fluorescence (lambda(ext)=230 nm, lambda(em)=350 nm) and spectrophotometric detection (lambda=280 nm).

  7. Determination of the kinetic rate constant of cyclodextrin supramolecular systems by high performance affinity chromatography.

    PubMed

    Li, Haiyan; Ge, Jingwen; Guo, Tao; Yang, Shuo; He, Zhonggui; York, Peter; Sun, Lixin; Xu, Xu; Zhang, Jiwen

    2013-08-30

    It is challenging and extremely difficult to measure the kinetics of supramolecular systems with extensive, weak binding (Ka<10(5)M(-1)), and fast dissociation, such as those composed of cyclodextrins and drugs. In this study, a modified peak profiling method based on high performance affinity chromatography (HPAC) was established to determine the dissociation rate constant of cyclodextrin supramolecular systems. The interactions of β-cyclodextrin with acetaminophen and sertraline were used to exemplify the method. The retention times, variances and the plate heights of the peaks for acetaminophen or sertraline, conventional non-retained substance (H2O) on the β-cyclodextrin bonded column and a control column were determined at four flow rates under linear elution conditions. Then, plate heights for the theoretical non-retained substance were estimated by the modified HPAC method, in consideration of the diffusion and stagnant mobile phase mass transfer. As a result, apparent dissociation rate constants of 1.82 (±0.01)s(-1) and 3.55 (±0.37)s(-1) were estimated for acetaminophen and sertraline respectively at pH 6.8 and 25°C with multiple flow rates. Following subtraction of the non-specific binding with the support, dissociation rate constants were estimated as 1.78 (±0.00) and 1.91 (±0.02)s(-1) for acetaminophen and sertraline, respectively. These results for acetaminophen and sertraline were in good agreement with the magnitude of the rate constants for other drugs determined by capillary electrophoresis reported in the literature and the peak fitting method we performed. The method described in this work is thought to be suitable for other supramolecules, with relatively weak, fast and extensive interactions.

  8. Physicochemical and Biological Characterization of Fucoidan from Fucus vesiculosus Purified by Dye Affinity Chromatography.

    PubMed

    Zayed, Ahmed; Muffler, Kai; Hahn, Thomas; Rupp, Steffen; Finkelmeier, Doris; Burger-Kentischer, Anke; Ulber, Roland

    2016-04-15

    A comparative study concerning the physicochemical, monomeric composition and biological characters among different fucoidan fractions is presented. Common purification techniques for fucoidan usually involve many steps. During these steps, the important structural features might be affected and consequently alter its biological activities. Three purified fractions were derived from Fucus vesiculosus water extract which, afterwards, were purified by a recently-developed dye affinity chromatography protocol. This protocol is based on dye-sulfated polysaccharide interactions. The first two fractions were obtained from crude precipitated fucoidan at different pH values of the adsorption phase: pH 1 and 6. This procedure resulted in fucoidan_1 and 6 fractions. The other, third, fraction: fucoidan_M, however, was obtained from a buffered crude extract at pH 1, eliminating the ethanol precipitation step. All of the three fractions were then further evaluated. Results revealed that fucoidan_M showed the highest sulfur content (S%), 12.11%, with the lowest average molecular weight, 48 kDa. Fucose, galactose, and uronic acid/glucose dimers were detected in all fractions, although, xylose was only detected in fucoidan_1 and 6. In a concentration of 10 µg·mL(-1), Fucoidan_6 showed the highest heparin-like anticoagulant activity and could prolong the APTT and TT significantly to 66.03 ± 2.93 and 75.36 ± 1.37 s, respectively. In addition, fucoidan_M demonstrated the highest potency against HSV-1 with an IC50 of 2.41 µg·mL(-1). The technique proved to be a candidate for fucoidan purifaction from its crude extract removing the precipitation step from common purification protocols and produced different fucoidan qualities resulted from the different incubation conditions with the immobilized thiazine toluidine blue O dye.

  9. Surfactant free fractions of metallic and semiconducting single-walled carbon nanotubes via optimised gel chromatography

    SciTech Connect

    Lukaszczuk, Pawel; Ruemmeli, Mark H.; Knupfer, Martin; Kalenczuk, Ryszard J.; Borowiak-Palen, Ewa

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer The application of gel permeation chromatography technique in a field of SWCNT separation. Black-Right-Pointing-Pointer Non-commercial agarose gel used as a column filling. Black-Right-Pointing-Pointer Purification route is presented, quality and quantity estimation is shown. Black-Right-Pointing-Pointer Process is ready for high-scale separation of SWCNTs. -- Abstract: We report the procedure of sorting/purification of carbon nanotubes by electronic type using chromatographic column with sodium dodecylsulfate (SDS) and sodium deoxycholate (DOC) solutions as the eluents. The non-commercial agarose gel in different concentrations has been tested in the process. It was found that in optimal gel concentration the fractionation resulted in {approx}96.2% yield of semiconducting species. Importantly, to get surfactant-free fractions the post-separation purification procedure has been carried out. The UV-vis-NIR and Raman spectroscopy have been utilised for the samples analysis. High resolution transmission microscopy and thermogravimetric analysis allowed to study the sample morphology and purity, respectively.

  10. Serum protein determination by high-performance gel-permeation chromatography.

    PubMed

    Hayakawa, K; Masuko, M; Mineta, M; Yoshikawa, K; Yamauchi, K; Hirano, M; Katsumata, N; Tanaka, T

    1997-08-15

    A general high-performance gel-permeation chromatography (HPGPC) method was developed to determine protein in human serum with improved sensitivity and speed. The optimum UV wavelength for protein detection was found to be 210 nm, by comparing the protein values obtained by varying the UV wavelength of the HPLC detection system with the protein values obtained from spectrophotometric protein assays, i.e., the bicinchoninic acid (BCA) method and the biuret method. The analysis time was less than 1 min. Since this HPGPC serum protein assay method is simple and rapid, it is expected to be particularly well adapted for use in clinical laboratories.

  11. Purification of coenzyme Q10 from fermentation extract: high-speed counter-current chromatography versus silica gel column chromatography.

    PubMed

    Cao, Xue-Li; Xu, Ya-Tao; Zhang, Guang-Ming; Xie, Sheng-Meng; Dong, Ying-Mao; Ito, Yoichiro

    2006-09-15

    High-speed counter-current chromatography (HSCCC) is applied to the purification of coenzyme Q(10) (CoQ(10)) for the first time. CoQ(10) was obtained from a fermentation broth extract. A non-aqueous two-phase solvent system composed of heptane-acetonitrile-dichloromethane (12:7:3.5, v/v/v) was selected by analytical HSCCC and used for purification of CoQ(10) from 500 mg of the crude extract. The separation yielded 130 mg of CoQ(10) at an HPLC purity of over 99%. The overall results of the present studies show the advantages of HSCCC over an alternative of silica gel chromatography followed by recrystallization. These advantages extend to higher purity (97.8% versus 93.3%), recovery (88% versus 74.3%) and yield (26.4% versus 23.4%). An effort to avoid the toxic, expensive solvent CH(2)Cl(2) was unsuccessful, but at least its percentage is low in the solvent system.

  12. In-gel microwave-assisted acid hydrolysis of proteins combined with liquid chromatography tandem mass spectrometry for mapping protein sequences.

    PubMed

    Sun, Difei; Wang, Nan; Li, Liang

    2014-01-07

    We report an enabling method for mapping the protein sequence with high sequence coverage. This method combines the high separation power of gel electrophoresis for protein separation with the high sequence coverage capability of microwave-assisted acid hydrolysis (MAAH) mass spectrometry (MS). In-gel MAAH using 25% trifluoroacetic acid was developed and optimized for degrading the gel-separated protein into small peptides suitable for tandem MS sequencing. For bovine serum albumin (BSA) (∼67 kDa), with 4 μg of protein loading onto a gel for separation, followed by excising the protein gel band for in-gel MAAH and then injecting ∼2 μg of the resultant peptides into a liquid chromatography quadrupole time-of-flight mass spectrometer for analysis, 689 ± 54 (n = 3) unique peptides were identified with a protein sequence coverage of 99 ± 1%. Both the number of peptides detected and sequence coverage decreased as the sample amount decreased, mainly due to background interference: 316 ± 59 peptides and 94 ± 3% coverage for 2 μg loading, 136 ± 19 and 76 ± 5% for 1 μg loading, and 30 ± 2 and 32 ± 2% for 0.5 μg loading. To demonstrate the general applicability of the method, 10 gel bands from gel electrophoresis of an albumin-depleted human plasma sample were excised for in-gel MAAH LC-MS analysis. In total, 19 relatively high abundance proteins with molecular weights ranging from ∼8 to ∼160 kD could be mapped with coverage of 100% for six proteins (MW 8759 to 68 425 Da), 96-98% for five proteins (MW 11 458 to 36 431 Da), 92% for three proteins (MW 15 971 to 36 431 Da), 80-87% for four proteins (MW 42 287 to 162 134 Da), and 56% for one protein (MW 51 358 Da). Finally, to demonstrate the applicability of the method for more detailed analysis of complex protein mixtures, two-dimensional (2D) gel electrophoresis was combined with in-gel MAAH, affinity purification, and LC-MS/MS to characterize six bovine alpha-S1-casein phosphoprotein

  13. G-quadruplex on oligo affinity support (G4-OAS): an easy affinity chromatography-based assay for the screening of G-quadruplex ligands.

    PubMed

    Musumeci, Domenica; Amato, Jussara; Randazzo, Antonio; Novellino, Ettore; Giancola, Concetta; Montesarchio, Daniela; Pagano, Bruno

    2014-05-06

    A simple, cheap, and highly reproducible affinity chromatography-based method has been developed for the screening of G-quadruplex binders. The tested compounds were flowed through a polystyrene resin functionalized with an oligonucleotide able to form, in proper conditions, a G-quadruplex structure. Upon cation-induced control of the folding/unfolding processes of the immobilized G-quadruplex-forming sequence, small molecules specifically interacting with the oligonucleotide structure were first captured and then released depending on the used working solution. This protocol, first optimized for different kinds of known G-quadruplex ligands and then applied to a set of putative ligands, has allowed one to fully reuse the same functionalized resin batch, recycled for several tens of experiments without loss in efficiency and reproducibility.

  14. Effect of silica gel modification with cyclofructans on properties of hydrophilic interaction liquid chromatography stationary phases.

    PubMed

    Kozlík, Petr; Símová, Veronika; Kalíková, Květa; Bosáková, Zuzana; Armstrong, Daniel W; Tesařová, Eva

    2012-09-28

    Hydrophilic interaction liquid chromatography (HILIC) offers very good possibilities for separation of polar compounds as an alternative to reversed phase HPLC where polar compounds are not sufficiently retained. HILIC is becoming more popular for the analysis of biologically interesting (active) analytes. Various stationary phases are commercially available however, development of new materials (sorbents) suitable for HILIC systems still continues. Silica gel columns can be used directly but their modification can improve separation ability of the stationary phases. Cyclofructan-based stationary phases are demonstrated as possible HILIC columns in this work. The effect of silica gel modification by cyclofructan and a derivatized cyclofructan was studied in detail. HILIC separation systems with silica gel, cyclofructan and isopropyl cyclofructan modified silica stationary phases were compared. The detailed study of chromatographic behavior of peptides revealed that multimodal retention mechanism is present in systems with these stationary phases. Mobile phase composition changes the types of interactions and their strengths. It appears that ability to donate protons and dispersion forces are the main interactions that affect retention in HILIC with cyclofructan-based columns while they are less important in separation systems with bare silica stationary phase. Suitability of cyclofructan-based stationary phases in HILIC for separation of pentapeptides and nonapeptides was demonstrated.

  15. Serial displacement chromatofocusing and its applications in multidimensional chromatography and gel electrophoresis: II. Experimental results.

    PubMed

    Shen, Hong; Li, Xiang; Bieberich, Charles; Frey, Douglas D

    2009-02-06

    Part I of this study investigated the theory and basic characteristics of "serial displacement chromatofocusing" (SDC). In Part II of this study, SDC is applied to two prototype applications which have potential uses in proteomics and related areas involving the analysis of complex analyte mixtures. In the first application, SDC was used as a prefractionation method prior to two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) to separate a human prostate cancer cell lysate. It was observed that the resolution achieved in narrow-pI-range 2D-PAGE was improved when using SDC prefractionation, so that SDC may be useful as a low-cost, high-speed, and highly scalable alternative to electrophoretic prefractionation methods for 2D-PAGE. The second application involves the use of SDC as the first dimension, and reversed-phase chromatography as the second dimension, to produce a novel, fully automated, two-dimensional high-performance liquid chromatography technique. The method was shown to have performance advantages over one-dimensional reversed-phase chromatography for peptide separations.

  16. Purification of chimeric heavy chain monoclonal antibody EG2-hFc using hydrophobic interaction membrane chromatography: an alternative to protein-A affinity chromatography.

    PubMed

    Sadavarte, Rahul; Spearman, Maureen; Okun, Natalie; Butler, Michael; Ghosh, Raja

    2014-06-01

    Heavy chain monoclonal antibodies are being considered as alternative to whole-IgG monoclonal antibodies for certain niche applications. Protein-A chromatography which is widely used for purifying IgG monoclonal antibodies is also used for purifying heavy chain monoclonal antibodies as these molecules possess fully functional Fc regions. However, the acidic conditions used to elute bound antibody may sometimes also leach protein-A, which is immunotoxic. Low pH conditions also tend to make the mAb molecules unstable and prone to aggregation. Moreover, protein-A affinity chromatography does not remove aggregates already present in the feed. Hydrophobic interaction membrane chromatography (or HIMC) has already been studied as an alternative to protein-A chromatography for purifying whole-IgG monoclonal antibodies. This paper describes the use of HIMC for capturing a humanized chimeric heavy chain monoclonal antibody (EG2-hFC). Binding and eluting conditions were suitably optimized using pure EG2-hFC. Based on this, an HIMC method was developed for capture of EG2-hFC directly from cell culture supernatant. The EG2-hFc purity obtained in this single-step process was high. The glycan profiles of protein-A and HIMC purified monoclonal antibody samples were similar, clearly demonstrating that both techniques captured similarly glycosylated population of EG2-hFc. Moreover, this technique was able to resolve aggregates from monomeric form of the EG2-hFc.

  17. Identification of native Escherichia coli BL21 (DE3) proteins that bind to immobilized metal affinity chromatography under high imidazole conditions and use of 2D-DIGE to evaluate contamination pools with respect to recombinant protein expression level.

    PubMed

    Bartlow, Patrick; Uechi, Guy T; Cardamone, John J; Sultana, Tamanna; Fruchtl, McKinzie; Beitle, Robert R; Ataai, Mohammad M

    2011-08-01

    Immobilized metal affinity chromatography (IMAC) is a widely used purification tool for the production of active, soluble recombinant proteins. Escherichia coli proteins that routinely contaminate IMAC purifications have been characterized to date. The work presented here narrows that focus to the most problematic host proteins, those retaining nickel affinity under elevated imidazole conditions, using a single bind-and-elute step. Two-dimensional difference gel electrophoresis, a favored technique for resolving complex protein mixtures and evaluating their expression, here discerns variation in the soluble extract pools that are loaded in IMAC and the remaining contaminants with respect to varied levels of recombinant protein expression. Peptidyl-prolyl isomerase SlyD and catabolite activator protein (CAP) are here shown to be the most persistent contaminants and have greater prevalence at low target protein expression.

  18. Copper(II)-based metal affinity chromatography for the isolation of the anticancer agent bleomycin from Streptomyces verticillus culture.

    PubMed

    Gu, Jiesi; Codd, Rachel

    2012-10-01

    The glycopeptide-based bleomycins are structurally complex natural products produced by Streptomyces verticillus used in combination therapy against testicular and other cancers. Bleomycin has a high affinity towards a range of transition metal ions with the 1:1 Fe(II) complex relevant to its mechanism of action in vivo and the 1:1 Cu(II) complex relevant to its production from culture. The affinity between Cu(II) and bleomycin was the underlying principle for using Cu(II)-based metal affinity chromatography in this work to selectively capture bleomycin from crude S. verticillus culture. A solution of standard bleomycin was retained at a binding capacity of 300 nmol mL(-1) on a 1-mL bed volume of Cu(II)-loaded iminodiacetate (IDA) resin at pH 9 via the formation of the heteroleptic immobilized complex [Cu(IDA)(bleomycin)]. Bleomycin was eluted from the resin at pH 5 as the metal-free ligand under conditions where pK(a) (IDA)affinity chromatography as a green chemistry platform for streamlined access to this high-value therapeutic agent.

  19. Simultaneous determination of seven anticoagulant rodenticides in agricultural products by gel permeation chromatography and liquid chromatography-tandem mass spectrometry.

    PubMed

    Saito-Shida, Shizuka; Nemoto, Satoru; Matsuda, Rieko; Akiyama, Hiroshi

    2016-11-01

    A sensitive and reliable method for the simultaneous determination of hydroxycoumarin-type (brodifacoum, bromadiolone, coumatetralyl, and warfarin) and indandione-type (chlorophacinone, diphacinone, and pindone) rodenticides in agricultural products by gel permeation chromatography (GPC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed. The procedure involved extraction of the rodenticides from samples with acetone, followed by liquid-liquid partitioning with hexane/ethyl acetate (1:1, v/v) and 10% sodium chloride aqueous solution, then cleanup using GPC, and finally, analysis using LC-MS/MS. High recoveries from the GPC column were obtained for all rodenticides tested using a mobile phase of acetone/cyclohexane/triethylamine (400:1600:1, v/v/v). An ODS column, which contains low levels of metal impurities, gave satisfactory peak shapes for both hydroxycoumarin- and indandione-type rodenticides in the LC-MS/MS separation. The average recoveries of rodenticides from eight agricultural foods (apple, eggplant, cabbage, orange, potato, tomato, brown rice, and soybean) fortified at 0.0005-0.001 mg/kg ranged from 76 to 116%, except for bromadiolone in orange (53%) and diphacinone in soybean (54%), and the relative standard deviations ranged from 1 to 16%. The proposed method effectively removed interfering components, such as pigments and lipids, and showed high selectivity. In addition, the matrix effects were negligible for most of the rodenticide/food combinations. The results suggest that the proposed method is reliable and suitable for determining hydroxycoumarin- and indandione-type rodenticides in agricultural products.

  20. The antigenicity in guinea pigs and monkeys of three mycobacterial polysaccharides purified by affinity chromatography with concanavalin A.

    PubMed

    Daniel, T M

    1975-06-01

    The antigenicity of 3 polysaccharides purified from culture filtrates of Mycobacterim tuberculosis by affinity chromatography using a concanavalin A-agarose absorbent was studied. All 3 purified polysaccharides were found to be potent elicitors of delayed skin test reactions in sensitized guinea pigs and in a tuberculos monkey. This antigenicity could not be attributed to contaminating protein. Small dermal reactions were also observed in control guinea pigs. All 3 polysaccharides reacted with precipitating antibody in guinea pig sera, the antigenic specificity observed with the guinea pig sera differing from that demonstrated with reference goat antiserum. The 3 polysaccharides were also demonstrated to contain hemagglutination antigenic sites.

  1. Open-Source-Based 3D Printing of Thin Silica Gel Layers in Planar Chromatography.

    PubMed

    Fichou, Dimitri; Morlock, Gertrud E

    2017-02-07

    On the basis of open-source packages, 3D printing of thin silica gel layers is demonstrated as proof-of-principle for use in planar chromatography. A slurry doser was designed to replace the plastic extruder of an open-source Prusa i3 printer. The optimal parameters for 3D printing of layers were studied, and the planar chromatographic separations on these printed layers were successfully demonstrated with a mixture of dyes. The layer printing process was fast. For printing a 0.2 mm layer on a 10 cm × 10 cm format, it took less than 5 min. It was affordable, i.e., the running costs for producing such a plate were less than 0.25 Euro and the investment costs for the modified hardware were 630 Euro. This approach demonstrated not only the potential of the 3D printing environment in planar chromatography but also opened new avenues and new perspectives for tailor-made plates, not only with regard to layer materials and their combinations (gradient plates) but also with regard to different layer shapes and patterns. As such an example, separations on a printed plane layer were compared with those obtained from a printed channeled layer. For the latter, 40 channels were printed in parallel on a 10 cm × 10 cm format for the separation of 40 samples. For producing such a channeled plate, the running costs were below 0.04 Euro and the printing process took only 2 min. All modifications of the device and software were released open-source to encourage reuse and improvements and to stimulate the users to contribute to this technology. By this proof-of-principle, another asset was demonstrated to be integrated into the Office Chromatography concept, in which all relevant steps for online miniaturized planar chromatography are performed by a single device.

  2. [Prospects of application of the chitin-binding domains to isolation and purification of recombinant proteins by affinity chromatography: a review].

    PubMed

    Kurek, D V; Lopatin, S A; Varlamov, V P

    2009-01-01

    Properties of substrate-binding domains, some parameters of affinity sorbents, and a number of other special features that were necessary to take into account during creation of chromatographic system for isolation and purification of proteins with incorporated chitin-binding domain were discussed in this review. This method was shown to be successfully used along with metal-chelate affinity chromatography. The metal-chelate affinity chromatography with the use of polyhistidine peptides as affinity labels is successfully applied to isolation, purification, and investigation of recombinant proteins. However, this system had some disadvantages. At present, scientists attracted more and more attention to substrate-binding domains, including those chitin-binding, because they had a number of advantages being used as affinity label.

  3. Thermal and oxidative degradation studies of formulated C-ethers by gel-permeation chromatography

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Morales, W.

    1982-01-01

    Gel-permeation chromatography was used to analyze C-ether lubricant formulations from high-temperature bearing tests and from micro-oxidation tests. Three mu-styragel columns (one 500 and two 100 A) and a tetrahydrofuran mobile phase were found to adequately separate the C-ether degradation products. The micro-oxidation tests yielded degradation results qualitatively similar to those observed from the bearing tests. Micro-oxidation tests conducted in air yielded more degradation than did tests in nitrogen. No great differences were observed between the thermal-oxidative stabilities of the two C-ether formulations or between the catalytic degradation activities of silver and M-50 steel. C-ether formulation I did yield more degradation than did formulation II in 111- and 25-hour bearing tests, respectively.

  4. A laboratory exercise for visible gel filtration chromatography using fluorescent proteins.

    PubMed

    Zhang, Wenqiang; Cao, Yibin; Xu, Lishan; Gong, Jufang; Sun, Meihao

    2015-01-01

    Gel filtration chromatography (GFC) separates molecules according to size and is one of the most widely used methods for protein purification. Here, red fluorescent protein (RFP), green fluorescent protein (GFP), yellow fluorescent protein (YFP), cyan fluorescent protein (CFP), and/or their fusion proteins were prokaryotically expressed, purified, and used in a laboratory exercise to intuitively demonstrate GFC. Different bands, corresponding to RFP, RFP-CFP (RC), YFP-RFP-YFP (YRY), and pyruvate kinase II-GFP (PKG) were well separated on a Superdex 200 column from a 0.5-mL sample. Increasing the sample volume and changing the chromatographic resin to Sephadex G-100 resulted in lower resolution separation. Students enjoyed identifying combinations of colored proteins and found this exercise helpful for understanding the factors that affect GFC resolution.

  5. Use of direct current argon plasma as a detector in gel filtration chromatography of biological fluids

    NASA Astrophysics Data System (ADS)

    Gardiner, P. E.; Brätter, P.; Negretti, Virginia E.; Schulze, G.

    A direct-current argon plasma spectrometer has been interfaced with a gel filtration chromatography column to serve as a multi-element-specific detector. This analytical system was used to speciate protein-bound copper, iron, and zinc in serum and intravenous infusion fluids. The operating parameters of the direct current argon plasma including instrumental drift, detection limits, effect of background levels on the calibration graphs. and accuracy were optimized. Calibrations had to be repeated every hour to compensate for instrumental drift. The detection limits of this system (3.2, 3.9 and 9.3 μg l -1 for copper, iron and zinc, respectively) are adequate for the determination of most species containing those elements in the column effluent.

  6. Detection and identification of heme c-modified peptides by histidine affinity chromatography, high-performance liquid chromatography-mass spectrometry, and database searching.

    PubMed

    Merkley, Eric D; Anderson, Brian J; Park, Jea; Belchik, Sara M; Shi, Liang; Monroe, Matthew E; Smith, Richard D; Lipton, Mary S

    2012-12-07

    Multiheme c-type cytochromes (proteins with covalently attached heme c moieties) play important roles in extracellular metal respiration in dissimilatory metal-reducing bacteria. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) characterization of c-type cytochromes is hindered by the presence of multiple heme groups, since the heme c modified peptides are typically not observed or, if observed, not identified. Using a recently reported histidine affinity chromatography (HAC) procedure, we enriched heme c tryptic peptides from purified bovine heart cytochrome c, two bacterial decaheme cytochromes, and subjected these samples to LC-MS/MS analysis. Enriched bovine cytochrome c samples yielded 3- to 6-fold more confident peptide-spectrum matches to heme c containing peptides than unenriched digests. In unenriched digests of the decaheme cytochrome MtoA from Sideroxydans lithotrophicus ES-1, heme c peptides for 4 of the 10 expected sites were observed by LC-MS/MS; following HAC fractionation, peptides covering 9 out of 10 sites were obtained. Heme c peptide spiked into E. coli lysates at mass ratios as low as 1×10(-4) was detected with good signal-to-noise after HAC and LC-MS/MS analysis. In addition to HAC, we have developed a proteomics database search strategy that takes into account the unique physicochemical properties of heme c peptides. The results suggest that accounting for the double thioether link between heme c and peptide, and the use of the labile heme fragment as a reporter ion, can improve database searching results. The combination of affinity chromatography and heme-specific informatics yielded increases in the number of peptide-spectrum matches of 20-100-fold for bovine cytochrome c.

  7. Detection and Identification of Heme c-Modified Peptides by Histidine Affinity Chromatography, High-Performance Liquid Chromatography-Mass Spectrometry, and Database Searching

    SciTech Connect

    Merkley, Eric D.; Anderson, Brian J.; Park, Jea H.; Belchik, Sara M.; Shi, Liang; Monroe, Matthew E.; Smith, Richard D.; Lipton, Mary S.

    2012-12-07

    Multiheme c-type cytochromes (proteins with covalently attached heme c moieties) play important roles in extracellular metal respiration in dissimilatory metal-reducing bacteria. Liquid chromatography-tandem mass spectrometry-(LC-MS/MS) characterization of c-type cytochromes is hindered by the presence of multiple heme groups, since the heme c modified peptides are typically not observed, or if observed, not identified. Using a recently reported histidine affinity chromatography (HAC) procedure, we enriched heme c tryptic peptides from purified bovine heart cytochrome c, a bacterial decaheme cytochrome, and subjected these samples to LC-MS/MS analysis. Enriched bovine cytochrome c samples yielded three- to six-fold more confident peptide-spectrum matches to heme-c containing peptides than unenriched digests. In unenriched digests of the decaheme cytochrome MtoA from Sideroxydans lithotrophicus ES-1, heme c peptides for four of the ten expected sites were observed by LC-MS/MS; following HAC fractionation, peptides covering nine out of ten sites were obtained. Heme c peptide spiked into E. coli lysates at mass ratios as low as 10-4 was detected with good signal-to-noise after HAC and LC-MS/MS analysis. In addition to HAC, we have developed a proteomics database search strategy that takes into account the unique physicochemical properties of heme c peptides. The results suggest that accounting for the double thioether link between heme c and peptide, and the use of the labile heme fragment as a reporter ion, can improve database searching results. The combination of affinity chromatography and heme-specific informatics yielded increases in the number of peptide-spectrum matches of 20-100-fold for bovine cytochrome c.

  8. Characterization of the human submandibular/sublingual saliva glycoproteome using lectin affinity chromatography coupled to multidimensional protein identification technology.

    PubMed

    Gonzalez-Begne, Mireya; Lu, Bingwen; Liao, Lujian; Xu, Tao; Bedi, Gurrinder; Melvin, James E; Yates, John R

    2011-11-04

    In-depth analysis of the salivary proteome is fundamental to understanding the functions of salivary proteins in the oral cavity and to reveal disease biomarkers involved in different pathophysiological conditions, with the ultimate goal of improving patient diagnosis and prognosis. Submandibular and sublingual glands contribute saliva rich in glycoproteins to the total saliva output, making them valuable sources for glycoproteomic analysis. Lectin-affinity chromatography coupled to mass spectrometry-based shotgun proteomics was used to explore the submandibular/sublingual (SM/SL) saliva glycoproteome. A total of 262 N- and O-linked glycoproteins were identified by multidimensional protein identification technology (MudPIT). Only 38 were previously described in SM and SL salivas from the human salivary N-linked glycoproteome, while 224 were unique. Further comparison analysis with SM/SL saliva of the human saliva proteome, revealed 125 glycoproteins not formerly reported in this secretion. KEGG pathway analyses demonstrated that many of these glycoproteins are involved in processes such as complement and coagulation cascades, cell communication, glycosphingolipid biosynthesis neo-lactoseries, O-glycan biosynthesis, glycan structures-biosynthesis 2, starch and sucrose metabolism, peptidoglycan biosynthesis or others pathways. In summary, lectin-affinity chromatography coupled to MudPIT mass spectrometry identified many novel glycoproteins in SM/SL saliva. These new additions to the salivary proteome may prove to be a critical step for providing reliable biomarkers in the diagnosis of a myriad of oral and systemic diseases.

  9. Enrichment and Analysis of Nonenzymatically Glycated Peptides: Boronate Affinity Chromatography Coupled with Electron-Transfer Dissociation Mass Spectrometry

    SciTech Connect

    Zhang, Qibin; Tang, Ning; Brock, Jonathan W.; Mottaz, Heather M.; Ames, Jennifer M.; Baynes, John; Smith, Richard D.; Metz, Thomas O.

    2007-06-01

    Non-enzymatic glycation of peptides and proteins by D-glucose has important implications in the pathogenesis of diabetes mellitus, particularly in the development of diabetic complications. However, no effective high-throughput methods exist for identifying proteins containing this low abundance post-translational modification in bottom-up proteomic studies. In this report, phenylboronate affinity chromatography was used in a two-step enrichment scheme to selectively isolate first glycated proteins and then glycated, tryptic peptides from human serum glycated in vitro. Enriched peptides were subsequently analyzed by alternating electron transfer dissociation (ETD) and collision induced dissociation (CID) tandem mass spectrometry. It was observed that ETD fragmentation mode resulted in a significantly higher number of glycated peptide identifications (87.6% of all identified peptides) versus CID mode (17.0% of all identified peptides), when utilizing dual glycation enrichment on both the protein and peptide level. This study illustrates that phenylboronate affinity chromatography coupled with LC-MS/MS with ETD as the fragmentation mode is an efficient approach for analyses of glycated proteins and can have broad applications in studies of diabetes mellitus.

  10. Separation and analysis of cis-diol-containing compounds by boronate affinity-assisted micellar electrokinetic chromatography.

    PubMed

    Wang, Heye; Lü, Chenchen; Li, Hengye; Chen, Yang; Zhou, Min; Ouyang, Jian; Liu, Zhen

    2013-10-01

    Cis-diol-containing compounds (CDCCs) are usually highly hydrophilic compounds and are therefore difficult to separate by conventional reversed-phase-based micellar electrokinetic chromatography (MEKC) due to poor selectivity. Here, we report a new method, called boronate affinity-assisted micellar electrokinetic chromatography (BAA-MEKC), to solve this issue. A boronic acid with a hydrophobic alkyl chain was added to the background electrolyte, which acted as a modifier to adjust the selectivity. CDCCs can covalently react with the boronic acid to form negatively charged surfactant-like complexes, which can partition into micelles formed with a cationic surfactant. Thus, CDCCs can be separated according to the differential partition constants of their boronic acid complexes between the micellar phase and the surrounding aqueous phase. To verify this method, eight nucleosides were employed as the test compounds and their separation confirmed that the combination of boronate affinity interaction with MEKC can effectively enhance the separation of CDCCs. The effects of experimental conditions on the separation were investigated. Finally, the BAA-MEKC method was applied to the separation and analysis of nucleosides extracted from human urine. BAA-MEKC exhibited better selectivity and improved separation as compared with conventional MEKC and CZE. Successful quantitative analysis of urinary nucleosides by BAA-MEKC was demonstrated.

  11. Purification of berry flavonol glycosides by long-bed gel permeation chromatography.

    PubMed

    Riihinen, Kaisu R; Gödecke, Tanja; Pauli, Guido F

    2012-06-29

    While Sephadex LH-20 gel is frequently employed as a stationary phase during pre-separations and in open column chromatography systems, its separation power in long-bed gel permeation chromatography (GPC) applications is much less prevalent. Aimed at the characterization of bioactive constituents, a long-bed GPC protocol was established for lingonberry juice concentrate. The method included pre-fractionation over HP-20 resin to eliminate sugars and organic acids as well as a major part of other predominant berry flavonoids (anthocyanins, flavan-3-ols and proanthocyanidins), prior to the elution of the fraction containing 10% (w/w) of quercetin glycosides (QGs). Subsequently, seven major QGs were purified using a 10-m Sephadex LH-20 system and isocratic elution with methanol. The total mass recovery was 99.3±1.4%, after eluting the highly-retained compounds from the employed pre-column with 70% acetone. Injecting 1070 mg per run, the yield of purified QGs ranged from 2 to 6 mg per collected single fraction. The LC-UV/PDA purities of isolated Q-3-O-α-rhamnoside and Q-3-O-β-galactoside were 82 and 94 area% at 250 nm, while the three Q-pentosides showed purities of 59, 30, and 57 area%. By comparison, purity assessment of these isolates by quantitative ¹H NMR (total integral and modified 100% method) led to significantly lower purities of 70 and 52% for Q-rha and Q-gal and 38, 25 and 46% for Q-pentosides, respectively. This can be explained by the presence of hidden residual complexity (RC), which is revealed by the quantitative NMR method. This finding has potentially broader implication as it reveals an unexpected degree of RC in GPC fractions. Despite remarkable separation power for congeneric flavonoids, long-bed GPC on Sephadex LH-20 produces materials, which require careful analysis of purity before interpreting bioassay results.

  12. Novel cartilage oligomeric matrix protein (COMP) neoepitopes identified in synovial fluids from patients with joint diseases using affinity chromatography and mass spectrometry.

    PubMed

    Åhrman, Emma; Lorenzo, Pilar; Holmgren, Kristin; Grodzinsky, Alan J; Dahlberg, Leif E; Saxne, Tore; Heinegård, Dick; Önnerfjord, Patrik

    2014-07-25

    To identify patients at risk for progressive joint damage, there is a need for early diagnostic tools to detect molecular events leading to cartilage destruction. Isolation and characterization of distinct cartilage oligomeric matrix protein (COMP) fragments derived from cartilage and released into synovial fluid will allow discrimination between different pathological conditions and monitoring of disease progression. Early detection of disease and processes in the tissue as well as an understanding of the pathologic mechanisms will also open the way for novel treatment strategies. Disease-specific COMP fragments were isolated by affinity chromatography of synovial fluids from patients with rheumatoid arthritis, osteoarthritis, or acute trauma. Enriched COMP fragments were separated by SDSPAGE followed by in-gel digestion and mass spectrometric identification and characterization.Using the enzymes trypsin, chymotrypsin, and Asp-N for the digestions, an extensive analysis of the enriched fragments could be accomplished. Twelve different neoepitopes were identified and characterized within the enriched COMP fragments. For one of the neoepitopes, Ser77, an inhibition ELISA was developed. This ELISA quantifies COMP fragments clearly distinguishable from total COMP. Furthermore, fragments containing the neoepitope Ser77 were released into the culture medium of cytokine (TNF-α and IL-6/soluble IL-6 receptor)-stimulated human cartilage explants. The identified neoepitopes provide a complement to the currently available commercial assays for cartilage markers. Through neoepitope assays, tools to pinpoint disease progression, evaluation methods for therapy, and means to elucidate disease mechanisms will be provided.

  13. Novel Cartilage Oligomeric Matrix Protein (COMP) Neoepitopes Identified in Synovial Fluids from Patients with Joint Diseases Using Affinity Chromatography and Mass Spectrometry*

    PubMed Central

    Åhrman, Emma; Lorenzo, Pilar; Holmgren, Kristin; Grodzinsky, Alan J.; Dahlberg, Leif E.; Saxne, Tore; Heinegård, Dick; Önnerfjord, Patrik

    2014-01-01

    To identify patients at risk for progressive joint damage, there is a need for early diagnostic tools to detect molecular events leading to cartilage destruction. Isolation and characterization of distinct cartilage oligomeric matrix protein (COMP) fragments derived from cartilage and released into synovial fluid will allow discrimination between different pathological conditions and monitoring of disease progression. Early detection of disease and processes in the tissue as well as an understanding of the pathologic mechanisms will also open the way for novel treatment strategies. Disease-specific COMP fragments were isolated by affinity chromatography of synovial fluids from patients with rheumatoid arthritis, osteoarthritis, or acute trauma. Enriched COMP fragments were separated by SDS-PAGE followed by in-gel digestion and mass spectrometric identification and characterization. Using the enzymes trypsin, chymotrypsin, and Asp-N for the digestions, an extensive analysis of the enriched fragments could be accomplished. Twelve different neoepitopes were identified and characterized within the enriched COMP fragments. For one of the neoepitopes, Ser77, an inhibition ELISA was developed. This ELISA quantifies COMP fragments clearly distinguishable from total COMP. Furthermore, fragments containing the neoepitope Ser77 were released into the culture medium of cytokine (TNF-α and IL-6/soluble IL-6 receptor)-stimulated human cartilage explants. The identified neoepitopes provide a complement to the currently available commercial assays for cartilage markers. Through neoepitope assays, tools to pinpoint disease progression, evaluation methods for therapy, and means to elucidate disease mechanisms will be provided. PMID:24917676

  14. Analysis of lipoprotein profiles of healthy cats by gel-permeation high-performance liquid chromatography

    PubMed Central

    MIZUTANI, Hisashi; SAKO, Toshinori; OKUDA, Hiroko; ARAI, Nobuaki; KURIYAMA, Koji; MORI, Akihiro; YOSHIMURA, Itaru; KOYAMA, Hidekazu

    2016-01-01

    Density gradient ultracentrifugation (DGUC) and gel electrophoresis are conventionally used to obtain lipoprotein profiles of animals. We recently applied high-performance liquid chromatography with a gel permeation column (GP-HPLC) and an on-line dual enzymatic system to dogs for lipoprotein profile analysis. We compared the GP-HPLC with DGUC as a method to obtain a feline lipoprotein profile. The lipoprotein profiles showed large and small peaks, which corresponded to high-density lipoprotein (HDL) and low-density lipoprotein (LDL), respectively, whereas very low-density lipoprotein (VLDL) and chylomicron (CM) were only marginally detected. This profile was very similar to that of dogs reported previously. Healthy cats also had a small amount of cholesterol-rich particles distinct from the normal LDL or HDL profile. There was no difference in lipoprotein profiles between the sexes, but males had a significantly larger LDL particle size (P=0.015). This study shows the feasibility of GP-HPLC for obtaining accurate lipoprotein profiles with small sample volumes and provides valuable reference data for healthy cats that should facilitate diagnoses. PMID:27170431

  15. Purification of the Caenorhabditis elegans transposase Tc1A refolded during gel filtration chromatography.

    PubMed

    García-Sáez, I; Plasterk, R H

    2000-08-01

    Full-length recombinant transposase Tc1A from Caenorhabditis elegans (343 amino acids) expressed in Escherichia coli BL21 in inclusion bodies has been purified in a high yield in a soluble form. The procedure includes denaturation of the inclusion bodies followed by refolding of the Tc1A protein by gel filtration. This last step is absolutely crucial to give a high yield of soluble and active protein since it allows the physical separation of the aggregates from intermediates that give rise to correctly refolded protein. This step is very sensitive to the concentration of protein. Good yields of refolded protein are obtained by refolding 2 to 12 mg of denatured protein. The other purification steps involve the initial use of gel filtration under denaturing conditions and a final step of ion-exchange chromatography. Biological activity of the purified protein was confirmed in an in vitro transposon excision assay and its DNA-binding capacity by UV crosslinking. This new Tc1A purification procedure gives a yield of 12-16 mg/liter E. coli culture, in a form suitable for crystallization studies.

  16. Production of capsular polysaccharide of Streptococcus pneumoniae type 14 and its purification by affinity chromatography.

    PubMed

    Suárez, N; Fraguas, L F; Texeira, E; Massaldi, H; Batista-Viera, F; Ferreira, F

    2001-02-01

    We describe a rapid and efficient method for producing the capsular polysaccharide of Streptococcus pneumoniae by fermentation on tryptic soy broth and purification of this compound by using immobilized soybean lectin as an affinity adsorbent. In principle, the same strategy can be used to produce purified capsular polysaccharides from other streptococcal serotypes by selecting the appropriate lectin adsorbents.

  17. Production of Capsular Polysaccharide of Streptococcus pneumoniae Type 14 and Its Purification by Affinity Chromatography

    PubMed Central

    Suárez, Norma; Fraguas, Laura Franco; Texeira, Esther; Massaldi, Hugo; Batista-Viera, Francisco; Ferreira, Fernando

    2001-01-01

    We describe a rapid and efficient method for producing the capsular polysaccharide of Streptococcus pneumoniae by fermentation on tryptic soy broth and purification of this compound by using immobilized soybean lectin as an affinity adsorbent. In principle, the same strategy can be used to produce purified capsular polysaccharides from other streptococcal serotypes by selecting the appropriate lectin adsorbents. PMID:11157270

  18. Indirect fluorometric detection techniques on thin layer chromatography and effect of ultrasound on gel electrophoresis

    SciTech Connect

    Yinfa, Ma.

    1990-12-10

    Thin-layer chromatography (TLC) is a broadly applicable separation technique. It offers many advantages over high performance liquid chromatography (HPLC), such as easily adapted for two-dimensional separation, for whole-column'' detection and for handling multiple samples, etc. However, due to its draggy development of detection techniques comparing with HPLC, TLC has not received the attention it deserves. Therefore, exploring new detection techniques is very important to the development of TLC. It is the principal of this dissertation to present a new detection method for TLC -- indirect fluorometric detection method. This detection technique is universal sensitive, nondestructive, and simple. This will be described in detail from Sections 1 through Section 5. Section 1 and 3 describe the indirect fluorometric detection of anions and nonelectrolytes in TLC. In Section 2, a detection method for cations based on fluorescence quenching of ethidium bromide is presented. In Section 4, a simple and interesting TLC experiment is designed, three different fluorescence detection principles are used for the determination of caffeine, saccharin and sodium benzoate in beverages. A laser-based indirect fluorometric detection technique in TLC is developed in Section 5. Section 6 is totally different from Sections 1 through 5. An ultrasonic effect on the separation of DNA fragments in agarose gel electrophoresis is investigated. 262 refs.

  19. Determination of bisphenol A in wine by sol-gel immunoaffinity chromatography, HPLC and fluorescence detection.

    PubMed

    Brenn-Struckhofova, Z; Cichna-Markl, M

    2006-11-01

    The paper presents a highly selective analytical method for the determination of traces of bisphenol A (BPA) in wine and the results of a survey 59 wine samples sourced from vats (steel, wood and plastic), glass bottles and Tetra briks. The procedure consists of sample clean-up by sol-gel immunoaffinity chromatography followed by determination of BPA by high-performance liquid chromatography and fluorescence detection. The method has a limit of detection (LOD) (S/N = 3) of 0.1 ng ml-1 and a limit of quantitation (LOQ) (S/N = 6) of 0.2 ng ml-1. In 13 of 59 wine samples, the BPA concentration was below the LOQ. The mean and median for all wine samples with BPA concentrations above the LOQ were 0.58 and 0.40 ng ml-1, respectively. These values - the first set of data on BPA in wine - are far lower than previously published BPA levels derived from migration experiments using wine simulants. Experiments carried out by submerging plastic stoppers in ethanol-water (11 : 89, v/v) up to 11 weeks indicated that detectable amounts of BPA can be leached from some stoppers.

  20. One-pass separation of single-wall carbon nanotubes by gel chromatography with a gradient of surfactant concentration.

    PubMed

    Inori, Ryuji; Okada, Takako; Arie, Takayuki; Akita, Seiji

    2012-06-15

    We have investigated the diameter-selective separation of carbon nanotubes by one-pass gel chromatography with a gradient of surfactant concentration. The formation of surfactant gradient in a column was successfully measured and is explained by a simple diffusion process even in the gel. We found that the diameter of eluted nanotubes is inversely proportional to the surfactant concentration of eluate. The detailed analysis of the movement of the nanotubes in the gel revealed that the separation mechanism was qualitatively explained by a model based on the trapping and de-trapping events of the nanotube–surfactant micelle on the gel surface,where the probability of the trapping and de-trapping events is proportional to the product of the diameter of the nanotubes and the surfactant concentration.

  1. One-pass separation of single-wall carbon nanotubes by gel chromatography with a gradient of surfactant concentration

    NASA Astrophysics Data System (ADS)

    Inori, Ryuji; Okada, Takako; Arie, Takayuki; Akita, Seiji

    2012-06-01

    We have investigated the diameter-selective separation of carbon nanotubes by one-pass gel chromatography with a gradient of surfactant concentration. The formation of surfactant gradient in a column was successfully measured and is explained by a simple diffusion process even in the gel. We found that the diameter of eluted nanotubes is inversely proportional to the surfactant concentration of eluate. The detailed analysis of the movement of the nanotubes in the gel revealed that the separation mechanism was qualitatively explained by a model based on the trapping and de-trapping events of the nanotube-surfactant micelle on the gel surface, where the probability of the trapping and de-trapping events is proportional to the product of the diameter of the nanotubes and the surfactant concentration.

  2. [Affinity chromatography and proteomic screening as the effective method for S100A4 new protein targets discovery].

    PubMed

    Koshelev, Iu A

    2014-01-01

    Affinity chromatography followed by a selective binding proteins identification can be using as effective method for a biological impotent interactions discovery. The molecular structure and their surface charge as and conformational regulation possibilities, which change their surface hydrophobic properties, all they should to taken in account during method optimization process. With the same' method we had identify some new S100A4 target proteins such as cytoskeleton proteins Sept2, Sept7, Sept11 and this interaction would can to highlight as S100A4 would regulate cell motility. Even we had identify the transcription cofactor Ddx5 and through such complex formation a S100A4 protein would can to regulate E-cadherin, p21 Waf1/Cip1), Bnip3 gene expression. The same protocol can be using for a target proteins search with another S100 protein family members, because their molecules demonstrate a high homology level in amino aside sequences and 3D structures.

  3. Purification of antibodies against N-homocysteinylated proteins by affinity chromatography on Nomega-homocysteinyl-aminohexyl-Agarose.

    PubMed

    Perła, Joanna; Undas, Anetta; Twardowski, Tomasz; Jakubowski, Hieronim

    2004-08-05

    Modification with homocysteine (Hcy)-thiolactone leads to the formation of N-Hcy-Lys-protein. Although N-Hcy-Lys-proteins are immunogenic, pure antibodies have not yet been obtained. Here we describe synthesis and application of Nomega-homocysteinyl-aminohexyl-Agarose for affinity purification of anti-N-Hcy-Lys-protein antibodies. Nomega-homocysteinyl-aminohexyl-Agarose was prepared by N-homocysteinylation of omega-aminohexyl-Agarose with Hcy-thiolactone. Immune serum was obtained from rabbits inoculated with N-Hcy-Lys-keyhole limpet hemocyanine and IgG fraction prepared by chromatography on protein A-Agarose. Anti-N-Hcy-Lys-protein IgG was adsorbed on Nomega-homocysteinyl-aminohexyl-Agarose column at pH 8.6 and eluted with a pH 2.3 buffer. Enzyme-linked immunosorbent assays demonstrate that the antibody recognizes specifically N-homocysteinylated variants of hemoglobin, albumin, transferrin, and antitrypsin.

  4. Separation of Binding Protein of Celangulin V from the Midgut of Mythimna separata Walker by Affinity Chromatography

    PubMed Central

    Lu, Lina; Qi, Zhijun; Zhang, Jiwen; Wu, Wenjun

    2015-01-01

    Celangulin V, an insecticidal compound isolated from the root bark of Chinese bittersweet, can affect the digestive system of insects. However, the mechanism of how Celangulin V induces a series of symptoms is still unknown. In this study, affinity chromatography was conducted through coupling of Celangulin V-6-aminoacetic acid ester to the CNBr-activated Sepharose 4B. SDS-PAGE was used to analyze the collected fraction eluted by Celangulin V. Eight binding proteins (Zinc finger protein, Thioredoxin peroxidase (TPx), Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), SUMO E3 ligase RanBP2, Transmembrane protein 1, Actin, APN and V-ATPase) were obtained and identified by LC/Q-TOF-MS from the midgut of Mythimna separata larvae. The potential of these proteins to serve as target proteins involved in the insecticidal activity of Celangulin V is discussed. PMID:25996604

  5. Evaluation of immobilized metal affinity chromatography kits for the purification of histidine-tagged recombinant CagA protein.

    PubMed

    Karakus, Cebrail; Uslu, Merve; Yazici, Duygu; Salih, Barik A

    2016-05-15

    Immobilized metal affinity chromatography (IMAC) technique is used for fast and reliable purification of histidine(His)-tagged recombinant proteins. The technique provides purification under native and denaturing conditions. The aim of this study is to evaluate three commercially available IMAC kits (Thermo Scientific, GE Healthcare and Qiagen) for the purification of a 6xHis-tagged recombinant CagA (cytotoxin-associated gene A) protein from IPTG-induced Escherichia coli BL21(DE3) culture. The kits were tested according to the manufacturer instructions and the protein was purified with only GE Healthcare and Qiagen kits under denaturing conditions. 1% (w/v) SDS was used as denaturing agent in PBS instead of extraction reagent of Thermo Scientific kit to lyse bacterial cells from 100ml culture. The 6xHis-tagged recombinant protein was purified by the three kits equally.

  6. Determination of soluble immunoglobulin G in bovine colostrum products by Protein G affinity chromatography-turbidity correction and method validation.

    PubMed

    Holland, Patrick T; Cargill, Anne; Selwood, Andrew I; Arnold, Kate; Krammer, Jacqueline L; Pearce, Kevin N

    2011-05-25

    Immunoglobulin-containing food products and nutraceuticals such as bovine colostrum are of interest to consumers as they may provide health benefits. Commercial scale colostrum products are valued for their immunoglobulin G (IgG) content and therefore require accurate analysis. One of the most commonly used methods for determining total soluble IgG in colostrum products is based on affinity chromatography using a Protein G column and UV detection. This paper documents improvements to the accuracy of the Protein G analysis of IgG in colostrum products, especially those containing aggregated forms of IgG. Capillary electrophoresis-sodium dodecyl sulfate (CE-SDS) analysis confirmed that aggregated IgG measured by Protein G does not contain significant amounts of casein or other milk proteins. Size exclusion chromatography identified the content of soluble IgG as mainly monomeric IgG and aggregated material MW > 450 kDa with small amounts of dimer and trimer. The turbidity of the eluting IgG, mainly associated with aggregated IgG, had a significant effect on the quantitative results. Practical techniques were developed to correct affinity LC data for turbidity on an accurate, consistent, and efficient basis. The method was validated in two laboratories using a variety of colostrum powders. Precision for IgG was 2-3% (RSD(r)) and 3-12% (RSD(R)). Recovery was 100.2 ± 2.4% (mean ± RSD, n = 10). Greater amounts of aggregated IgG were solubilized by a higher solution:sample ratio and extended times of mixing or sonication, especially for freeze-dried material. It is concluded that the method without acid precipitation and with turbidity correction provides accurate, precise, and robust data for total soluble IgG and is suitable for product specification and quality control of colostrum products.

  7. Sialic acid-specific affinity chromatography for the separation of erythropoietin glycoforms using serotonin as a ligand.

    PubMed

    Meininger, M; Stepath, M; Hennig, R; Cajic, S; Rapp, E; Rotering, H; Wolff, M W; Reichl, U

    2016-02-15

    Recombinant human erythropoietin (rhEPO) is an important CHO cell-derived glycoprotein and the degree of sialylation of this hormone is crucial for its in vivo bioactivity. In order to improve the purification process serotonin as a potential affinity ligand was tested for preparative chromatographic separation of rhEPO glycoforms into fractions of different degrees of sialylation. Therefore, two chromatographic matrices were prepared by immobilizing serotonin on CNBr- and NHS-Sepharose™. First it was shown both matrices bind rhEPO only in its sialylated form. Results indicate that binding is pH independent between pH 3.5 to 8 suggesting it is not only based on electrostatic interactions. Second, after optimal binding conditions were identified, semi-purified rhEPO was loaded onto both matrices and eluted using a stepwise elution gradient of sodium chloride. For comparison same affinity purification experiments were performed using wheat germ agglutinin-coupled agarose, a lectin known for its affinity towards sialylated glycoproteins. To monitor changes in N-glycan fingerprint, eluate fractions were analyzed by multiplexed capillary gel electrophoresis coupled to laser-induced fluorescence (xCGE-LIF). For the serotonin matrices an increasing degree of sialylation was observed from the first to the third elution fraction while purity of rhEPO could be increased at the same time. The late elution fractions of serotonin-coupled CNBr- and NHS-Sepharose™ also showed an overall sialylation degree exceeding that of the starting material. In contrast, for rhEPO bound to wheat germ agglutinin-coupled agarose, no distinct change in the degree of sialylation could be observed after elution. Overall, these encouraging results highlight the potential of serotonin as a chromatographic ligand for the improvement of pharmaceutical purification processes of rhEPO.

  8. Induced binding of proteins by ammonium sulfate in affinity and ion-exchange column chromatography.

    PubMed

    Arakawa, Tsutomu; Tsumoto, Kouhei; Ejima, Daisuke; Kita, Yoshiko; Yonezawa, Yasushi; Tokunaga, Masao

    2007-04-10

    In general, proteins bind to affinity or ion-exchange columns at low salt concentrations, and the bound proteins are eluted by raising the salt concentration, changing the solvent pH, or adding competing ligands. Blue-Sepharose is often used to remove bovine serum albumin (BSA) from samples, but when we applied BSA to Blue-Sepharose in 20 mM phosphate, pH 7.0, 50%-60% of the protein flowed through the column; however, complete binding of BSA was achieved by the addition of 2 M ammonium sulfate (AS) to the column equilibration buffer and the sample. The bound protein was eluted by decreasing the AS concentration or by adding 1 M NaCl or arginine. AS at high concentrations resulted in binding of BSA even to an ion-exchange column, Q-Sepharose, at pH 7.0. Thus, although moderate salt concentrations elute proteins from Blue-Sepharose or ion-exchange columns, proteins can be bound to these columns under extreme salting-out conditions. Similar enhanced binding of proteins by AS was observed with an ATP-affinity column.

  9. Affinity-based screening of combinatorial libraries using automated, serial-column chromatography

    SciTech Connect

    Evans, D.M.; Williams, K.P.; McGuinness, B.

    1996-04-01

    The authors have developed an automated serial chromatographic technique for screening a library of compounds based upon their relative affinity for a target molecule. A {open_quotes}target{close_quotes} column containing the immobilized target molecule is set in tandem with a reversed-phase column. A combinatorial peptide library is injected onto the target column. The target-bound peptides are eluted from the first column and transferred automatically to the reversed-phase column. The target-specific peptide peaks from the reversed-phase column are identified and sequenced. Using a monoclonal antibody (3E-7) against {beta}-endorphin as a target, we selected a single peptide with sequence YGGFL from approximately 5800 peptides present in a combinatorial library. We demonstrated the applicability of the technology towards selection of peptides with predetermined affinity for bacterial lipopolysaccharide (LPS, endotoxin). We expect that this technology will have broad applications for high throughput screening of chemical libraries or natural product extracts. 21 refs., 4 figs.

  10. The Plasma Membrane Ca(2+) ATPase: Purification by Calmodulin Affinity Chromatography, and Reconstitution of the Purified Protein.

    PubMed

    Niggli, Verena; Carafoli, Ernesto

    2016-01-01

    Plasma membrane Ca(2+) ATPases (PMCA pumps) are key regulators of cytosolic Ca(2+) in eukaryotes. They extrude Ca(2+) from the cytosol, using the energy of ATP hydrolysis and operate as Ca(2+)-H(+) exchangers. They are activated by the Ca(2+)-binding protein calmodulin, by acidic phospholipids and by other mechanisms, among them kinase-mediated phosphorylation. Isolation of the PMCA in pure and active form is essential for the analysis of its structure and function. In this chapter, the purification of the pump, as first achieved from erythrocyte plasma membranes by calmodulin-affinity chromatography, is described in detail. The reversible, high-affinity, Ca(2+)-dependent interaction of the pump with calmodulin is the basis of the procedure. Either phospholipids or glycerol have to be present in the isolation buffers to keep the pump active during the isolation procedure. After the isolation of the PMCA pump from human erythrocytes the pump was purified from other cell types, e.g., heart sarcolemma, plant microsomal fractions, and cells that express it ectopically. The reconstitution of the purified pump into phospholipid vesicles using the cholate dialysis method will also be described. It allows studies of transport mechanism and of regulation of pump activity. The purified pump can be stored in the reconstituted form for several days at 4 °C with little loss of activity, but it rapidly loses activity when stored in the detergent-solubilized form.

  11. Ultra sensitive affinity chromatography on avidin-functionalized PMMA microchip for low abundant post-translational modified protein enrichment.

    PubMed

    Xia, Hui; Murray, Kermit; Soper, Steven; Feng, June

    2012-02-01

    Post-translational modifications (PTM) of proteins play essential roles in cellular physiology and disease. The identification of protein substrates and detection of modification site helps understand PTM-mediated regulation in essential biological pathways and functions in various diseases. However, PTM proteins are typically present only at trace levels, making them difficult to identify in mass spectrometry based proteomics. In this paper, we report a novel and sensitive affinity chromatography on the avidin-functionalized poly(methyl methacrylate) (PMMA) microchip for enrichment of nanogram (ng) amount of PTMs. The chemical modification of poly(methyl methacrylate) (PMMA) surfaces yield avidin-terminated PMMA surfaces after UV radiation and consecutive EDC mediated coupling (amide reaction). This functionalized PMMA micro-device was developed to identify and specifically trap biotinylated PTM proteins of low abundance from complex protein mixture. Here we selected carbonylated protein as a representative PTM to illustrate the wide application of this affinity microchip for any PTMs converted into a tractable tag after derivatization. The surface topography, surface functional group mapping and elemental composition changes after each modification step of the treatment process were systematically measured qualitatively and quantitatively by atomic force microscopy, X-ray photoelectron spectroscopy and fluorescence microscopy. Quantitative study of biotinlated carbonylated protein capture recovery and elution efficiency of the device was also studied. We also envision that this subproteome enrichment micro-device can be assembled with other lab-on-a-chip components for follow-up protein analysis.

  12. Immobilized palladium(II) ion affinity chromatography for recovery of recombinant proteins with peptide tags containing histidine and cysteine.

    PubMed

    Kikot, Pamela; Polat, Aise; Achilli, Estefania; Fernandez Lahore, Marcelo; Grasselli, Mariano

    2014-11-01

    Fusion of peptide-based tags to recombinant proteins is currently one of the most used tools for protein production. Also, immobilized metal ion affinity chromatography (IMAC) has a huge application in protein purification, especially in research labs. The combination of expression systems of recombinant tagged proteins with this robust chromatographic system has become an efficient and rapid tool to produce milligram-range amounts of proteins. IMAC-Ni(II) columns have become the natural partners of 6xHis-tagged proteins. The Ni(II) ion is considered as the best compromise of selectivity and affinity for purification of a recombinant His-tagged protein. The palladium(II) ion is also able to bind to side chains of amino acids and form ternary complexes with iminodiacetic acid and free amino acids and other sulfur-containing molecules. In this work, we evaluated two different cysteine- and histidine-containing six amino acid tags linked to the N-terminal group of green fluorescent protein (GFP) and studied the adsorption and elution conditions using novel eluents. Both cysteine-containing tagged GFPs were able to bind to IMAC-Pd(II) matrices and eluted successfully using a low concentration of thiourea solution. The IMAC-Ni(II) system reaches less than 20% recovery of the cysteine-containing tagged GFP from a crude homogenate of recombinant Escherichia coli, meanwhile the IMAC-Pd(II) yields a recovery of 45% with a purification factor of 13.

  13. Gel Permeation Chromatography Characterization of the Chain Length Distributions in Thiol-Acrylate Photopolymer Networks

    PubMed Central

    Rydholm, Amber E.; Held, Nicole L.; Bowman, Christopher N.; Anseth, Kristi S.

    2008-01-01

    Crosslinked, degradable networks formed from the photopolymerization of thiol and acrylate monomers are explored as potential biomaterials. The degradation behavior and material properties of these networks are influenced by the molecular weight of the nondegradable thiol-polyacrylate backbone chains that form during photopolymerization. Here, gel permeation chromatography was used to characterize the thiol-polyacrylate backbone chain lengths in degraded thiol-acrylate networks. Increasing thiol functionality from 1 to 4 increased the backbone molecular weight (M̄w = 2.3 ± 0.07 × 104 Da for monothiol and 3.6 ± 0.1 × 104 Da for tetrathiol networks). Decreasing thiol functional group concentration from 30 to 10 mol% also increased the backbone lengths (M̄w = 7.3 ± 1.1 × 104 Da for the networks containing 10 mol% thiol groups as compared to 3.6 ± 0.1 × 104 Da for 30 mol% thiol). Finally, the backbone chain lengths were probed at various stages of degradation and an increase in backbone molecular weight was observed as mass loss progressed from 10 to 70%. PMID:19079733

  14. Technical advance: identification of plant actin-binding proteins by F-actin affinity chromatography

    NASA Technical Reports Server (NTRS)

    Hu, S.; Brady, S. R.; Kovar, D. R.; Staiger, C. J.; Clark, G. B.; Roux, S. J.; Muday, G. K.

    2000-01-01

    Proteins that interact with the actin cytoskeleton often modulate the dynamics or organization of the cytoskeleton or use the cytoskeleton to control their localization. In plants, very few actin-binding proteins have been identified and most are thought to modulate cytoskeleton function. To identify actin-binding proteins that are unique to plants, the development of new biochemical procedures will be critical. Affinity columns using actin monomers (globular actin, G-actin) or actin filaments (filamentous actin, F-actin) have been used to identify actin-binding proteins from a wide variety of organisms. Monomeric actin from zucchini (Cucurbita pepo L.) hypocotyl tissue was purified to electrophoretic homogeneity and shown to be native and competent for polymerization to actin filaments. G-actin, F-actin and bovine serum albumin affinity columns were prepared and used to separate samples enriched in either soluble or membrane-associated actin-binding proteins. Extracts of soluble actin-binding proteins yield distinct patterns when eluted from the G-actin and F-actin columns, respectively, leading to the identification of a putative F-actin-binding protein of approximately 40 kDa. When plasma membrane-associated proteins were applied to these columns, two abundant polypeptides eluted selectively from the F-actin column and cross-reacted with antiserum against pea annexins. Additionally, a protein that binds auxin transport inhibitors, the naphthylphthalamic acid binding protein, which has been previously suggested to associate with the actin cytoskeleton, was eluted in a single peak from the F-actin column. These experiments provide a new approach that may help to identify novel actin-binding proteins from plants.

  15. An illustration of the clinical relevance of detecting human antimouse antibody interference by affinity chromatography.

    PubMed

    Koper, N P; Massuger, L F; Thomas, C M; Beyer, C; Crooy, M J

    1999-10-01

    Elevated Cancer antigen 125 (CA 125) serum concentrations (up to 221 kU/1) were measured in a 39 year old woman with a positive family history of breast cancer. The serum determinations were performed with the automated Immulite OM-MA chemiluminescent enzyme immunoassay system (Diagnostic Products). Laparoscopic evaluation of the ovaries did not reveal any abnormalities. CA 125 measurements in the same patient using the automated IMx immunoassay system (Abbott) demonstrated normal serum levels. Using a previously reported chromatography procedure IgG type human antimouse antibody activity was found to be present in the serum samples explaining the falsely elevated levels. To prevent this interference the manufacturer modified the assay system by replacing the monoclonal M11 detection antibody with a rabbit polyclonal antibody. Using the modified OM-MA CA 125 assay results were comparable with the IMx values.

  16. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography.

    PubMed

    Liu, Huaping; Nishide, Daisuke; Tanaka, Takeshi; Kataura, Hiromichi

    2011-01-01

    Monostructured single-wall carbon nanotubes (SWCNTs) are important in both scientific research and electronic and biomedical applications; however, the bulk separation of SWCNTs into populations of single-chirality nanotubes remains challenging. Here we report a simple and effective method for the large-scale chirality separation of SWCNTs using a single-surfactant multicolumn gel chromatography method utilizing one surfactant and a series of vertically connected gel columns. This method is based on the structure-dependent interaction strength of SWCNTs with an allyl dextran-based gel. Overloading an SWCNT dispersion on the top column results in the adsorption sites of the column becoming fully occupied by the nanotubes that exhibit the strongest interaction with the gel. The unbound nanotubes flow through to the next column, and the nanotubes with the second strongest interaction with the gel are adsorbed in this stage. In this manner, 13 different (n, m) species were separated. Metallic SWCNTs were finally collected as unbound nanotubes because they exhibited the lowest interaction with the gel.

  17. Affinity chromatography matrices for depletion and purification of casein glycomacropeptide from bovine whey.

    PubMed

    Baieli, María F; Urtasun, Nicolás; Martinez, María J; Hirsch, Daniela B; Pilosof, Ana M R; Miranda, María V; Cascone, Osvaldo; Wolman, Federico J

    2017-01-01

    Casein glycomacropeptide (CMP) is a 64- amino acid peptide found in cheese whey, which is released after κ-casein specific cleavage by chymosin. CMP lacks aromatic amino acids, a characteristic that makes it usable as a nutritional supplement for people with phenylketonuria. CMP consists of two nonglycosylated isoforms (aCMP A and aCMP B) and its different glycosylated forms (gCMP A and gCMP B). The most predominant carbohydrate of gCMP is N-acetylneuraminic acid (sialic acid). Here, we developed a CMP purification process based on the affinity of sialic acid for wheat germ agglutinin (WGA). After formation of chitosan beads and adsorption of WGA, the agglutinin was covalently attached with glutaraldehyde. Two matrices with different WGA density were assayed for CMP adsorption. Maximum adsorption capacities were calculated according to the Langmuir model from adsorption isotherms developed at pH 7.0, being 137.0 mg/g for the matrix with the best performance. In CMP reduction from whey, maximum removal percentage was 79% (specifically 33.7% of gCMP A and B, 75.8% of aCMP A, and 93.9% of aCMP B). The CMP was recovered as an aggregate with an overall yield of 64%. Therefore, the matrices developed are promising for CMP purification from cheese whey. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:171-180, 2017.

  18. New approach for separating Bacillus subtilis metalloprotease and alpha-amylase by affinity chromatography and for purifying neutral protease by hydrophobic chromatography.

    PubMed

    Lauer, I; Bonnewitz, B; Meunier, A; Beverini, M

    2000-01-14

    Proteases are commonly used in the biscuit and cracker industry as processing aids. They cause moderate hydrolysis of gluten proteins and improve dough rheology to better control product texture and crunchiness. Commercial bacterial proteases are derived from Bacillus fermentation broth. As filtration and ultrafiltration are carried out as the only recovery steps, these preparations contain also alpha-amylase and beta-glucanase as the main side activities. The aim of this study is to purify and characterize the Bacillus subtilis metalloprotease from a commercial preparation, in order to study separately the impact of the protease activity with regards to its functionality on biscuit properties. Purification was achieved by means of affinity chromatography on Cibacron Blue and HIC as a polishing step. Affinity appeared to be the most appropriate matrix for large scale purification while ion exchange chromatography was inefficient in terms of recovery yields. The crude product was first loaded on a Hi Trap Blue column (34 microm, Pharmacia Biotech); elution was carried out with a gradient of NaCl in the presence of 1 mM ZnCl2. This step was only efficient in the presence of Zn cations, because this salt promoted both protease stabilization resulting in high recovery yields and also complexation of amylase units into dimers resulting in amylase retention on the column and a better separation of the 3 activities. Beta-glucanase was mostly non retained on the column and a part was coeluted with the protease. This protease fraction was then loaded on a Resource Phe column (15 microm, Pharmacia Biotech) in a last step of polishing. Elution was carried out with a linear gradient of 100-0% ammonium sulfate 1.3 M; protease was eluted at the beginning of the gradient and well separated from amylase and glucanase trace impurities. The homogeneity of the purified protease was confirmed by SDS-PAGE, which showed that its MW was about 38. pH and temperature optima were also

  19. Rapid purification of the gastric H+/K(+)-ATPase complex by tomato-lectin affinity chromatography.

    PubMed Central

    Callaghan, J M; Toh, B H; Simpson, R J; Baldwin, G S; Gleeson, P A

    1992-01-01

    We have previously shown that tomato lectin binds specifically to the 60-90 kDa membrane glycoprotein of parietal cell tubulovesicles, the beta-subunit of the gastric H+/K(+)-ATPase (proton pump) [Callaghan, Toh, Pettitt, Humphris & Gleeson (1990) J. Cell Sci. 95, 563-576; Toh, Gleeson, Simpson, Mortiz, Callaghan, Goldkorn, Jones, Martinelli, Mu, Humphris, Pettitt, Mori, Masuda, Sobieszczuk, Weinstock, Mantamadiotis & Baldwin (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 6418-6422]. Here we have exploited this interaction for the development of a rapid single-step chromatography procedure for the purification of an active pig gastric proton pump complex. Initially, H+/K(+)-ATPase-enriched membranes, prepared from pig gastric microsomes by density-gradient centrifugation, were extracted in 1% Triton X-100 and passed through a 1 ml tomato lectin-Sepharose 4B column. The bound material, eluted with 20 mM-chitotriose, showed a major band with an apparent molecular mass of 95 kDa, and a faint broad band of 60-90 kDa, by SDS/PAGE. N-Glycanase treatment of the bound material resulted in the appearance of a 35 kDa band, the size of the protein core of the 60-90 kDa glycoprotein beta-subunit. The two components were identified as the 95 kDa alpha-subunit and the 60-90 kDa beta-subunit of the gastric H+/K(+)-ATPase, by immunoreactivity with monospecific antibodies, and by tryptic peptide sequences of the tomato-lectin-bound material. The beta-subunit was present in approximately equimolar amounts to the catalytic alpha-subunit. Whereas the gastric H+/K(+)-ATPase was not active after solubilization in 1% Triton X-100, solubilization of density-gradient-purified membranes in the non-ionic detergent, C12E8, followed by chromatography of the extract on tomato lectin-Sepharose 4B, resulted in the purification of the gastric H+/K(+)-ATPase complex which exhibited K(+)-dependent phosphatase activity. This is the first report of a rapid purification of a partially active solubilized

  20. Characterization of a multiple endogenously expressed adenosine triphosphate-binding cassette transporters using nuclear and cellular membrane affinity chromatography columns.

    PubMed

    Habicht, K-L; Singh, N S; Khadeer, M A; Shimmo, R; Wainer, I W; Moaddel, R

    2014-04-25

    Glioblastoma multiforme is an aggressive form of human astrocytoma, with poor prognosis due to multi-drug resistance to a number of anticancer drugs. The observed multi-drug resistance is primarily due to the efflux activity of ATP-Binding Cassette (ABC) efflux transporters such as Pgp, MRP1 and BCRP. The expression of these transporters has been demonstrated in nuclear and cellular membranes of the LN-229 human glioblastoma cell line. Nuclear membrane and cellular membrane fragments from LN-229 cells were immobilized on the IAM stationary phase to create nuclear and cellular membrane affinity chromatography columns, (NMAC(LN-229)) and (CMAC(LN-229)), respectively. Pgp, MRP1 and BCRP transporters co-immobilized on both columns were characterized and compared by establishing the binding affinities for estrone-3-sulfate (3.8 vs. 3.7μM), verapamil (0.6 vs. 0.7μM) and prazosin (0.099 vs. 0.033μM) on each column and no significant differences were observed. Since the marker ligands had overlapping selectivities, the selective characterization of each transporter was carried out by saturation of the binding sites of the non-targeted transporters. The addition of verapamil (Pgp and MRP1 substrate) to the mobile phase allowed the comparative screening of eight compounds at the nuclear and cellular BCRP using etoposide as the marker ligand. AZT increased the retention of etoposide (+15%), a positive allosteric interaction, on the CMAC(LN-229) column and decreased it (-5%) on the NMAC(LN-229), while the opposite effect was produced by rhodamine. The results indicate that there are differences between the cellular and nuclear membrane expressed BCRP and that NMAC and CMAC columns can be used to probe these differences.

  1. Characterization of the coal biosolubilization process using gel permeation chromatography and CPMAS NMR

    SciTech Connect

    Linehan, J.C.; Bean, R.M.; Franz, J.A.; Campbell, J.A.

    1990-05-01

    Leonardite, an oxidized lignite, and Illinois {number sign}6 coal were treated with Trametes versicolor and Penicillium sp., respectively, and separately with aqueous base to yield soluble and insoluble products. The products and starting materials were analyzed by gel permeation chromatography (GPC), using both aqueous and organic eluents, and by high-field, high-speed-pinning (>10.0 kHz) {sup 13}C cross polarization/magic angle spinning (CPMAS) nuclear magnetic resonance spectroscopy (NMR). The weight average molecular weights (M{sub w}) of the fungal-and base-solubilized products determined by GPC using acidic tetrahydrofuran (THF) eluent were found to be consistently lower than the M{sub w} determined using basic aqueous eluents. The M{sub w} of the leonardite product was measured to be 1800 and 6100 daltons using the THF and aqueous eluents, respectively. The aqueous eluent (phosphate buffered at pH 11.5) was found to be superior to the THF eluent in its solubilizing power, with 10% more material analyzed with the basic eluent. The solubility of the biotreated products in aqueous base was greater than either the starting coal or the chemically solubilized product. The Trametes-solubilized leonardite was found to contain a higher percentage of aliphatic carbon than the raw lignite; the Penicillium- solubilized Illinois {number sign}6 contained more aromatic carbon than before fungal treatment as determined by {sup 13}C CPMAS NMR. Pre-oxidation of Illinois {number sign}6 decreases the relative amount of aliphatic carbon. The high-field, high-speed-spinning CPMAS NMR technique was quantitatively evaluated using Argonne premium coals,International Humic Society Standards, and model compounds at various temperatures. 7 refs., 4 figs., 3 tabs.

  2. Comparative study of glycated hemoglobin by ion exchange chromatography and affinity binding nycocard reader in type 2 diabetes mellitus.

    PubMed

    Gautam, N; Dubey, R K; Jayan, A; Nepaune, Y; Padmavathi, P; Chaudhary, S; Jha, S K; Sinha, A K

    2014-12-01

    The aim of this study was to compare the level of glycated hemoglobin (HbA1c) in type 2 Diabetes Mellitus (DM) patients by two different methods namely Ion Exchange Chromatography and Affinity Binding Nycocard Reader. This is a cross-sectional study conducted on confirmed type 2 diabetes mellitus patients (n = 100) who visited Out Patients Department of the Universal College of Medical Sciences Teaching hospital, Bhairahawa, Nepal from November 2012 to March 2013. The diagnosis of diabetes mellitus was done on the basis of their fasting (164.46 ± 45.33 mg/dl) and random (187.93 ± 78.02 mg/dl) serum glucose level along with clinical history highly suggestive of type 2 DM. The HbA1c values of (7.8 ± 1.9%) and (8.0 ± 2.2%) were found in DM patients as estimated by those two different methods respectively. The highest frequency was observed in HbA1c > 8.0% indicating maximum cases were under very poor glycemic control. However, there were no significant differences observed in HbA1c value showing both methods are comparable in nature and can be used in lab for ease of estimation. The significant raised in HbA1c indicates complications associated with DM and monitoring of therapy become hard for those patients. Despite having standard reference method for HbA1c determination, the availability of report at the time of the patient visit can be made easy by using Nycocard Reader and Ion Exchange Chromatography techniques without any delay in communicating glycemic control, clinical decision-making and changes in treatment regimen.

  3. A Continuous Procedure Based on Column Chromatography to Purify Anthocyanins from Schisandra chinensis by a Macroporous Resin plus Gel Filtration Chromatography.

    PubMed

    Yue, Daran; Yang, Lei; Liu, Shouxin; Li, Jian; Li, Wei; Ma, Chunhui

    2016-02-06

    In our previous study, as natural food colorants and antioxidants, the color and content stabilities of Schisandra chinensis (S. chinensis) anthocyanins were investigated. In this work, the purification process parameters of S. chinensis anthocyanins using a macroporous resin and gel filtration chromatography were evaluated. The optimized parameters of static adsorption and desorption were as follows. The selected resin is HPD-300 (nonpolar copolymer styrene type resin), and the anthocyanins adsorption saturation capacity of HPD-300 resin was 0.475 mg/g dry resin. Adsorption time was 4 h, and 0.517 mg/mL of S. chinensis anthocyanins was adsorbed on the resin column with a flow rate of 39 mL/h (3 BV/h). After adsorption, the anthocyanins were completely desorpted with 2.5 BV of 90% (v/v) ethanol solution, and the desorption flow rate was 13 mL/h (1 BV/h). After purification by dynamic adsorption and desorption, the anthocyanins content in the effluent increased from 47.6 mg/g to 128.4 mg/g, the purity of anthocyanins increased six-fold from 5.08% to 30.43%, and the anthocyanins recovery was 96.5%. The major constituent of S. chinensis anthocyanins was isolated with Bio-Gel P2 gel filtration chromatography, and it was detected by liquid chromatography electrospray ionisation tandem mass spectrometry (LC-ESI-MS) as cyanidin-3-O-xylosylrutinoside. Moreover, the antioxidant activities of S. chinensis anthocyanins were investigated. After purification using the HPD-300 resin, the antioxidant activities of anthocyanins were increased 1.2-fold (FRAP) and 1.7-fold (ABTS).

  4. Use of gel permeation chromatography for clean-up in the analysis of coccidiostats in eggs by liquid chromatography-tandem mass spectrometry.

    PubMed

    Chico, J; Rúbies, A; Centrich, F; Companyó, R; Prat, M D; Granados, M

    2013-05-01

    An analytical method for determination and confirmation of nine coccidiostatics in eggs is reported. Ethyl acetate is used as extraction solvent, with satisfactory results, and simple automated clean-up is based on gel-permeation chromatography (GPC) . The target compounds are then analysed by liquid chromatography-electrospray ionization-tandem mass spectrometry. The method was validated in-house in accordance with Commission Decision 2002/657/EC. Trueness and precision were determined at four concentrations, and the mean errors obtained were <10 %, with relative standard deviations ranging from 3 to 18 %. For three non-authorized coccidiostatics (clopidol, ethopabate, and ronizadole), decision limit and detection capability were in the ranges 0.12-0.16 and 0.18-0.23 μg kg(-1), respectively. The results obtained prove the suitability of this new analytical method for routine monitoring of these substances in eggs.

  5. Classification and dating of black gel pen ink by ion-pairing high-performance liquid chromatography.

    PubMed

    Liu, Yi-Zi; Yu, Jing; Xie, Meng-Xia; Liu, Yuan; Han, Jie; Jing, Ting-Ting

    2006-11-24

    A novel approach for classification and dating of the black gel pen ink entries on document was developed based on ion-pairing high-performance liquid chromatography (IP-HPLC). Ninety-three black gel pens were collected and divided into two groups, dye-based and pigment-based, by preliminary solubility test. The chromatographic conditions for separation of the dye-based black gel pen inks were optimized and the dye components in inks were satisfactorily separated by using 40 mmol/L tetrabutylammonium bromide as ion-pairing reagent. According to the number and the chromatographic retention times of the main dye components, the 50 dye-based inks were categorized into four classes. The inks within a class can be further identified by the percentage of each dye component. The compositional changes of the dye components in the black gel pen ink entries on paper were investigated in light and natural aging conditions and it has been found that the dye components in the ink entries underwent obvious decomposition, and the decomposing extent of the dye components was related to the aging time. The results can provide scientific evidences for dating of the suspicious black gel pen ink entries on documents.

  6. [Rapid determination of pesticide multiresidues in porphyra by dispersive solid-phase extraction coupled with online gel permeation chromatography-gas chromatography-mass spectrometry].

    PubMed

    Sun, Xiaojie; Guo, Mengmeng; Wang, Suyue; Tan, Zhijun; Li, Zhaoxin; Zhai, Yuxiu

    2014-10-01

    A rapid method for the simultaneous identification and quantification of pesticide multiresidues in porphyra was developed using gel permeation chromatography (GPC) coupled to gas chromatography-mass spectrometry (GPC-GC/MS). Nineteen pesticides (organochlorines, organophosphoruses, triazines and pyrethroids) were selected as the target analytes. The pretreatment method was applied consisting of organic solvent extraction followed by dispersive solid-phase extraction with graphitized carbon black (GCB) and primary secondary amine (PSA) adsorbents. GPC was also employed online to remove the large molecules such as pigments and lipids. The quantitative analysis was carried out by external standard method using gas chromatography coupled with mass spectrometry in selective ion monitoring (SIM) mode. Moreover, a large volume of sample was allowed to be injected using the program of GPC programmed-temperature vaporizer of gas chromatography to improve the sensitivity of measurements. The results showed that the calibration curves were linear (r > 0.995) in the range of 10-1,000 μg/L for all the pesticides. The limits of detection (LODs) for the pesticides in porphyra were from 0.005 to 0.03 mg/kg, and the average recoveries were between 70% and 120%. The advantages of the method are simple, sensitive and shorter operation time for analysis of pesticide residues in porphyra samples.

  7. Chromatography.

    ERIC Educational Resources Information Center

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities on chromatography. Directions for preparing leaf pigment extracts using alcohol are given, and paper chromatography and thin-layer chromatography are described as modifications of the basic principles of chromatography. (KHR)

  8. Purification of a lectin from M. rubra leaves using immobilized metal ion affinity chromatography and its characterization.

    PubMed

    Sureshkumar, Thavamani; Priya, Sulochana

    2012-12-01

    Lectins represent a heterogeneous group of proteins/glycoproteins with unique carbohydrate specificity, with wide range of biomedical applications. The multi-step purification protocols generally used for purification of lectin result in a significant reduction in the final yield and activity. In the present study, Morus rubra lectin (MRL) was purified to homogeneity from the leaves using a single-step immobilized metal ion affinity chromatography (IMAC) procedure. The approximate molecular weight of purified MRL resolved as a single band on SDS-PAGE was 52 kDa. Final percentage yield of purified lectin by IMAC was calculated as 74.7 %. Purified MRL was specific to three sugars, galactose, D-galactosamine and N-acetyl-D-galactosamine, and rendered haemagglutination (HA) activity towards different human blood group RBCs. MRL showed stability over a wide range of temperature (up to 80 °C) and pH (4-11). Chelation of the lectin with EDTA did not alter HA which indicates that metal ion is not required for activity. In the presence of Fe(2+), Ca(2+), Zn(2+), Ni(2+), Mn(2+), Na(+) and K(+), HA activity was reduced to 50 %, whereas the presence of trivalent metal ions (Fe3(+) and Al(3+)) and Cu(2+) did not affect the activity. In the presence of Mg(2+) and Hg(2+), only 25 % of HA activity remained.

  9. Serodiagnosis of human neurocysticercosis using antigenic components of Taenia solium metacestodes derived from the unbound fraction from jacalin affinity chromatography.

    PubMed

    Machado, Gleyce Alves; Oliveira, Heliana Batista de; Gennari-Cardoso, Margareth Leitão; Mineo, José Roberto; Costa-Cruz, Julia Maria

    2013-05-01

    The aim of the present study was to analyse Taenia solium metacestode antigens that were derived from the unbound fraction of jacalin affinity chromatography and subsequent tert-octylphenoxy poly (oxyethylene) ethanol Triton X-114 (TX-114) partitioning in the diagnosis of human neurocysticercosis (NCC). Immunoassays were designed to detect T. solium-specific IgG antibodies by ELISA and immunoblot. Serum samples were collected from 132 individuals who were categorised as follows: 40 had NCC, 62 presented Taenia spp or other parasitic diseases and 30 were healthy individuals. The jacalin-unbound (J unbound ) fraction presented higher sensitivity and specificity rates than the jacalin-bound fraction and only this fraction was subjected to subsequent TX-114 partitioning, resulting in detergent (DJ unbound ) and aqueous (AJ unbound ) fractions. The ELISA sensitivity and specificity were 85% and 84.8% for J unbound , 92.5% and 93.5% for DJ unbound and 82.5% and 82.6% for AJ unbound . By immunoblot, the DJ unbound fraction showed 100% sensitivity and specificity and only serum samples from patients with NCC recognised the 50-70 kDa T. solium-specific components. We conclude that the DJ unbound fraction can serve as a useful tool for the differential immunodiagnosis of NCC by immunoblot.

  10. Monolith immuno-affinity enrichment liquid chromatography tandem mass spectrometry for quantitative protein analysis of recombinant bovine somatotropin in serum.

    PubMed

    Smits, Nathalie G E; Blokland, Marco H; Wubs, Klaas L; Nessen, Merel A; van Ginkel, Leen A; Nielen, Michel W F

    2015-08-01

    The use of recombinant bovine somatotropin (rbST) to enhance milk production is approved in several countries, but it is prohibited in the European Union. According to EU legislation, it is necessary to confirm positive screening results prior to enforcement. Although adequate screening assays are available nowadays, development of liquid chromatography tandem mass spectrometry (LC-MS/MS) confirmatory methods to detect low levels of rbST is still a challenge. Here, we present a novel approach using immuno-affinity enrichment on monolithic micro-columns in combination with state-of-the-art ultra-high pressure LC-MS/MS (UHPLC-MS/MS) detection. The developed approach enables detection and confirmation of rbST in serum at a decision limit (CCα) concentration of 0.8 ng mL(-1). Furthermore, the method is easy to handle, robust and reproducible. We successfully applied the confirmatory method to serum samples from rbST treated cows that were found suspect after immunoassay-based screening. The use of rbST could be confirmed over 1 week after treatment, and the developed method demonstrated the sensitivity needed for effective control. Graphical Abstract Graphical summary of the workflow, for serum preparation, enrichment with monolith microcolumns and LC-MS/MS measurement of rbST.

  11. Proteomic analysis of human O {sup 6}-methylguanine-DNA methyltransferase by affinity chromatography and tandem mass spectrometry

    SciTech Connect

    Niture, Suryakant K.; Doneanu, Catalin E.; Velu, Chinavenmeni S.; Bailey, Nathan I.; Srivenugopal, Kalkunte S. . E-mail: Kalkunte.srivenugopal@ttuhsc.edu

    2005-12-02

    Recent evidence suggests that human O {sup 6}-methylguanine-DNA methyltransferase (MGMT), a DNA repair protein that protects the genome against mutagens and accords tumor resistance to many anticancer alkylating agents, may have other roles besides repair. Therefore, we isolated MGMT-interacting proteins from extracts of HT29 human colon cancer cells using affinity chromatography on MGMT-Sepharose. Specific proteins bound to this column were identified by electrospray ionization tandem mass spectrometry and/or Western blotting. These procedures identified >60 MGMT-interacting proteins with diverse functions including those involved in DNA replication and repair (MCM2, PCNA, ORC1, DNA polymerase {delta}, MSH-2, and DNA-dependent protein kinase), cell cycle progression (CDK1, cyclin B, CDK2, CDC7, CDC10, 14-3-3 protein, and p21{sup waf1/cip1}), RNA processing and translation (poly(A)-binding protein, nucleolin, heterogeneous nuclear ribonucleoproteins, A2/B1, and elongation factor-1{alpha}), several histones (H4, H3.4, and H2A.1), and topoisomerase I. The heat shock proteins, HSP-90{alpha} and {beta}, also bound strongly with MGMT. The DNA repair activity of MGMT was greatly enhanced in the presence of interacting proteins or histones. These data, for the first time, suggest that human MGMT is likely to have additional functions, possibly, in sensing and integrating the DNA damage/repair-related signals with replication, cell cycle progression, and genomic stability.

  12. Use of Aleuria alantia Lectin Affinity Chromatography to Enrich Candidate Biomarkers from the Urine of Patients with Bladder Cancer

    PubMed Central

    Ambrose, Sarah R.; Gordon, Naheema S.; Goldsmith, James C.; Wei, Wenbin; Zeegers, Maurice P.; James, Nicholas D.; Knowles, Margaret A.; Bryan, Richard T.; Ward, Douglas G.

    2015-01-01

    Developing a urine test to detect bladder tumours with high sensitivity and specificity is a key goal in bladder cancer research. We hypothesised that bladder cancer-specific glycoproteins might fulfill this role. Lectin-ELISAs were used to study the binding of 25 lectins to 10 bladder cell lines and serum and urine from bladder cancer patients and non-cancer controls. Selected lectins were then used to enrich glycoproteins from the urine of bladder cancer patients and control subjects for analysis by shotgun proteomics. None of the lectins showed a strong preference for bladder cancer cell lines over normal urothlelial cell lines or for urinary glycans from bladder cancer patients over those from non-cancer controls. However, several lectins showed a strong preference for bladder cell line glycans over serum glycans and are potentially useful for enriching glycoproteins originating from the urothelium in urine. Aleuria alantia lectin affinity chromatography and shotgun proteomics identified mucin-1 and golgi apparatus protein 1 as proteins warranting further investigation as urinary biomarkers for low-grade bladder cancer. Glycosylation changes in bladder cancer are not reliably detected by measuring lectin binding to unfractionated proteomes, but it is possible that more specific reagents and/or a focus on individual proteins may produce clinically useful biomarkers. PMID:28248271

  13. Glycopeptide Site Heterogeneity and Structural Diversity Determined by Combined Lectin Affinity Chromatography/IMS/CID/MS Techniques

    NASA Astrophysics Data System (ADS)

    Zhu, Feifei; Trinidad, Jonathan C.; Clemmer, David E.

    2015-07-01

    Glycopeptides from a tryptic digest of chicken ovomucoid were enriched using a simplified lectin affinity chromatography (LAC) platform, and characterized by high-resolution mass spectrometry (MS) as well as ion mobility spectrometry (IMS)-MS. The LAC platform effectively enriched the glycoproteome, from which a total of 117 glycopeptides containing 27 glycan forms were identified for this protein. IMS-MS analysis revealed a high degree of glycopeptide site heterogeneity. Comparison of the IMS distributions of the glycopeptides from different charge states reveals that higher charge states allow more structures to be resolved. Presumably the repulsive interactions between charged sites lead to more open configurations, which are more readily separated compared with the more compact, lower charge state forms of the same groups of species. Combining IMS with collision induced dissociation (CID) made it possible to determine the presence of isomeric glycans and to reconstruct their IMS profiles. This study illustrates a workflow involving hybrid techniques for determining glycopeptide site heterogeneity and evaluating structural diversity of glycans and glycopeptides.

  14. Purification of the Plasma Membrane Ca2+-ATPase from Radish Seedlings by Calmodulin-Agarose Affinity Chromatography1

    PubMed Central

    Bonza, Cristina; Carnelli, Antonella; De Michelis, Maria Ida; Rasi-Caldogno, Franca

    1998-01-01

    The Ca2+-ATPase of the plasma membrane (PM) of germinating radish (Raphanus sativus L.) seeds was purified by calmodulin (CaM)-affinity chromatography using a batch procedure. PM purified by aqueous two-phase partitioning was solubilized with n-dodecyl β-d-maltoside and applied to a CaM-agarose matrix. After various washings with decreasing Ca2+ concentrations, the Ca2+-ATPase was eluted with 5 mm ethylenediaminetetraacetate (EDTA). The EDTA-eluted fraction contained about 25% of the loaded Ca2+-ATPase activity, with a specific activity 70-fold higher than that of the starting PM fraction. The EDTA-eluted fraction was highly enriched in a 133-kD polypeptide, which was identified as the PM Ca2+-ATPase by 125I-CaM overlay and fluorescein-isothiocyanate labeling. The PM Ca2+-ATPase cross-reacted with an antiserum against a putative Ca2+-ATPase of the Arabidopsis thaliana chloroplast envelope. PMID:9490776

  15. Optimization of pore structure and particle morphology of mesoporous silica for antibody adsorption for use in affinity chromatography

    NASA Astrophysics Data System (ADS)

    Hikosaka, Ryouichi; Nagata, Fukue; Tomita, Masahiro; Kato, Katsuya

    2016-10-01

    Antibodies have received significant attention for use as antibody drugs, because they bind the objective protein (antigen) via antigen-antibody reactions. Recently, many reports have appeared on various monoclonal antibodies that recognize a single antigen. In this study, monoclonal antibodies are used as adsorbates on mesoporous silica (MPS) for affinity chromatography. MPS has high surface area and large pore volume; moreover, pore diameter, pore structure, and particle morphology are relatively easy to tune by adjusting the conditions of synthesis. The pore structure (two-dimensional (2D) hexagonal and three-dimensional cubic) and particle morphology (spherical and polyhedral) of MPS are optimized for use in a monoclonal antibody/MPS composite. When anti-IgG (one of the monoclonal antibodies) adsorbs on the MPS material and IgG (antigen) binds to anti-IgG/MPS composites, MCM-41p with a 2D-hexagonal pore structure and polyhedral particle morphology has the highest IgG binding efficiency. In addition, the antibody/MPS composites remain stable in chaotropic and low-pH solutions and can be cycled at least five times without decreasing IgG elution. In purification and removal tests, the use of the antibody/MPS composites allows only the objective protein from protein mixtures to be bound and eluted.

  16. Purification of GFP fusion proteins with high purity and yield by monoclonal antibody-coupled affinity column chromatography.

    PubMed

    Zhuang, Ran; Zhang, Yuan; Zhang, Rui; Song, Chaojun; Yang, Kun; Yang, Angang; Jin, Boquan

    2008-05-01

    GFP has often been used as a marker of gene expression, protein localization in living and fixed tissues as well as for protein targeting in intact cells and organisms. Monitoring foreign protein expression via GFP fusion is also very appealing for bioprocess applications. Many cells, including bacterial, fungal, plant, insect and mammalian cells, can express recombinant GFP (rGFP) efficiently. Several methods and procedures have been developed to purify the rGFP or recombinant proteins fused with GFP tag. However, most current GFP purification methods are limited by poor yields and low purity. In the current study, we developed an improved purification method, utilizing a FMU-GFP.5 monoclonal antibody (mAb) to GFP together with a mAb-coupled affinity chromatography column. The method resulted in a sample that was highly pure (more than 97% homogeneity) and had a sample yield of about 90%. Moreover, the GFP epitope permitted the isolation of almost all the active recombinant target proteins fused with GFP, directly and easily, from the crude cellular sources. Our data suggests this method is more efficient than any currently available method for purification of GFP protein.

  17. Serodiagnosis of human neurocysticercosis using antigenic components of Taenia solium metacestodes derived from the unbound fraction from jacalin affinity chromatography

    PubMed Central

    Machado, Gleyce Alves; de Oliveira, Heliana Batista; Gennari-Cardoso, Margareth Leitão; Mineo, José Roberto; Costa-Cruz, Julia Maria

    2013-01-01

    The aim of the present study was to analyse Taenia solium metacestode antigens that were derived from the unbound fraction of jacalin affinity chromatography and subsequent tert-octylphenoxy poly (oxyethylene) ethanol Triton X-114 (TX-114) partitioning in the diagnosis of human neurocysticercosis (NCC). Immunoassays were designed to detect T. solium-specific IgG antibodies by ELISA and immunoblot. Serum samples were collected from 132 individuals who were categorised as follows: 40 had NCC, 62 presented Taenia spp or other parasitic diseases and 30 were healthy individuals. The jacalin-unbound (Junbound) fraction presented higher sensitivity and specificity rates than the jacalin-bound fraction and only this fraction was subjected to subsequent TX-114 partitioning, resulting in detergent (DJunbound) and aqueous (AJunbound) fractions. The ELISA sensitivity and specificity were 85% and 84.8% for Junbound, 92.5% and 93.5% for DJunboundand 82.5% and 82.6% for AJunbound. By immunoblot, the DJunboundfraction showed 100% sensitivity and specificity and only serum samples from patients with NCC recognised the 50-70 kDa T. solium-specific components. We conclude that the DJunboundfraction can serve as a useful tool for the differential immunodiagnosis of NCC by immunoblot. PMID:23778661

  18. LC-MS/MS quantitation of esophagus disease blood serum glycoproteins by enrichment with hydrazide chemistry and lectin affinity chromatography.

    PubMed

    Song, Ehwang; Zhu, Rui; Hammoud, Zane T; Mechref, Yehia

    2014-11-07

    Changes in glycosylation have been shown to have a profound correlation with development/malignancy in many cancer types. Currently, two major enrichment techniques have been widely applied in glycoproteomics, namely, lectin affinity chromatography (LAC)-based and hydrazide chemistry (HC)-based enrichments. Here we report the LC-MS/MS quantitative analyses of human blood serum glycoproteins and glycopeptides associated with esophageal diseases by LAC- and HC-based enrichment. The separate and complementary qualitative and quantitative data analyses of protein glycosylation were performed using both enrichment techniques. Chemometric and statistical evaluations, PCA plots, or ANOVA test, respectively, were employed to determine and confirm candidate cancer-associated glycoprotein/glycopeptide biomarkers. Out of 139, 59 common glycoproteins (42% overlap) were observed in both enrichment techniques. This overlap is very similar to previously published studies. The quantitation and evaluation of significantly changed glycoproteins/glycopeptides are complementary between LAC and HC enrichments. LC-ESI-MS/MS analyses indicated that 7 glycoproteins enriched by LAC and 11 glycoproteins enriched by HC showed significantly different abundances between disease-free and disease cohorts. Multiple reaction monitoring quantitation resulted in 13 glycopeptides by LAC enrichment and 10 glycosylation sites by HC enrichment to be statistically different among disease cohorts.

  19. PREPARATION OF FLUORESCEIN ISOTHIOCYANATE-LABELED GAMMA-GLOBULIN BY DIALYSIS, GEL FILTRATION, AND IONEXCHANGE CHROMATOGRAPHY IN COMBINATION.

    PubMed

    DEDMON, R E; HOLMES, A W; DEINHARDT, F

    1965-03-01

    Dedmon, Robert E. (Presbyterian-St. Luke's Hospital, Chicago, Ill.), Albert W. Holmes, and Friedrich Deinhardt. Preparation of fluorescein isothiocyanate-labeled gamma-globulin by dialysis, gel filtration, and ion-exchange chromatography in combination. J. Bacteriol. 89:734-739. 1965.-Antiviral immune gamma-globulins isolated from rabbit and guinea pig sera were labeled through dialysis membranes with fluorescein isothiocyanate and purified in several ways to eliminate nonspecific staining. Gel filtration of the conjugate with Sephadex G-25 coarse beads followed by column fractionation with diethylaminoethyl-Sephadex yielded consistently highly specific staining materials. Fluorescein-protein ratios varied between 1.0 and 4.0. This technique has proved to be simple and reliable, and is less time-consuming than previous techniques.

  20. Purification of biologically active human plasma transthyretin by dye-affinity chromatography: studies on dye leakage and possibility of heat treatment for virus inactivation.

    PubMed

    Regnault, V; Rivat, C; Vallar, L; Geschier, C; Stolz, J F

    1992-12-11

    The application of a purification procedure for the industrial preparation from human plasma of a therapeutic protein may be hindered by several safety concerns. The dye leaching from Remazol Yellow GGL-Sepharose used for the affinity chromatography of human plasma transthyretin was quantitatively studied by a sensitive competitive enzyme immunoassay. The possibility of including a heat treatment step for virus inactivation in the purification process while preserving the biochemical and functional characteristics of the protein is also reported.

  1. Differential effects of DEAE negative mode chromatography and gel-filtration chromatography on the charge status of Helicobacter pylori neutrophil-activating protein.

    PubMed

    Hong, Zhi-Wei; Yang, Yu-Chi; Pan, Timothy; Tzeng, Huey-Fen; Fu, Hua-Wen

    2017-01-01

    Helicobacter pylori neutrophil-activating protein (HP-NAP) is involved in H. pylori-associated gastric inflammation. HP-NAP is also a vaccine candidate, a possible drug target, and a potential diagnostic marker for H. pylori-associated diseases. Previously, we purified recombinant HP-NAP by one-step diethylaminoethyl (DEAE) negative mode chromatography by collecting the unbound fraction at pH 8.0 at 4°C. It remains unclear why HP-NAP does not bind to DEAE resins at the pH above its isoelectric point during the purification. To investigate how pH affects the surface net charge of HP-NAP and its binding to DEAE resins during the purification, recombinant HP-NAP expressed in Escherichia coli was subjected to DEAE negative mode chromatography at pH ranging from 7.0 to 9.0 at 25°C and the surface charge of purified HP-NAP was determined by capillary electrophoresis. A minimal amount of HP-NAP was detected in the elution fraction of DEAE Sepharose resin at pH 8.5, whereas recombinant HP-NAP was detected in the elution fraction of DEAE Sephadex resin only at pH 7.0 and 8.0. The purified recombinant HP-NAP obtained from the unbound fractions was not able to bind to DEAE resins at pH 7.0 to 9.0. In addition, the surface charge of the purified HP-NAP was neutral at pH 7.0 to 8.0 and was either neutral or slightly negative at pH 8.5 and 9.0. However, recombinant HP-NAP purified from gel-filtration chromatography was able to bind to DEAE Sepharose resin at pH 7.0 to 9.0 and DEAE Sephadex resin at pH 7.0. At pH 8.5 and 9.0, only the negatively charged species of HP-NAP were found. Thus, recombinant HP-NAP with different charge status can be differentially purified by DEAE negative mode chromatography and gel-filtration chromatography. Furthermore, the charge distribution on the surface of HP-NAP, the presence of impure proteins, and the overall net charge of the resins all affect the binding of HP-NAP to DEAE resins during the negative purification.

  2. Differential effects of DEAE negative mode chromatography and gel-filtration chromatography on the charge status of Helicobacter pylori neutrophil-activating protein

    PubMed Central

    Pan, Timothy; Tzeng, Huey-Fen

    2017-01-01

    Helicobacter pylori neutrophil-activating protein (HP-NAP) is involved in H. pylori-associated gastric inflammation. HP-NAP is also a vaccine candidate, a possible drug target, and a potential diagnostic marker for H. pylori-associated diseases. Previously, we purified recombinant HP-NAP by one-step diethylaminoethyl (DEAE) negative mode chromatography by collecting the unbound fraction at pH 8.0 at 4°C. It remains unclear why HP-NAP does not bind to DEAE resins at the pH above its isoelectric point during the purification. To investigate how pH affects the surface net charge of HP-NAP and its binding to DEAE resins during the purification, recombinant HP-NAP expressed in Escherichia coli was subjected to DEAE negative mode chromatography at pH ranging from 7.0 to 9.0 at 25°C and the surface charge of purified HP-NAP was determined by capillary electrophoresis. A minimal amount of HP-NAP was detected in the elution fraction of DEAE Sepharose resin at pH 8.5, whereas recombinant HP-NAP was detected in the elution fraction of DEAE Sephadex resin only at pH 7.0 and 8.0. The purified recombinant HP-NAP obtained from the unbound fractions was not able to bind to DEAE resins at pH 7.0 to 9.0. In addition, the surface charge of the purified HP-NAP was neutral at pH 7.0 to 8.0 and was either neutral or slightly negative at pH 8.5 and 9.0. However, recombinant HP-NAP purified from gel-filtration chromatography was able to bind to DEAE Sepharose resin at pH 7.0 to 9.0 and DEAE Sephadex resin at pH 7.0. At pH 8.5 and 9.0, only the negatively charged species of HP-NAP were found. Thus, recombinant HP-NAP with different charge status can be differentially purified by DEAE negative mode chromatography and gel-filtration chromatography. Furthermore, the charge distribution on the surface of HP-NAP, the presence of impure proteins, and the overall net charge of the resins all affect the binding of HP-NAP to DEAE resins during the negative purification. PMID:28328957

  3. Multiresidue analysis of 30 organochlorine pesticides in milk and milk powder by gel permeation chromatography-solid phase extraction-gas chromatography-tandem mass spectrometry.

    PubMed

    Zheng, Guocan; Han, Chao; Liu, Yi; Wang, Jing; Zhu, Meiwen; Wang, Chengjun; Shen, Yan

    2014-10-01

    A method for simultaneous determination of the 30 organochlorine pesticides (OCP) in milk and milk powder samples has been developed. Prior to the gas chromatography-tandem mass spectrometric analysis, the residual OCP in samples were extracted with n-hexane and acetone mixture (1/1, vol/vol) and cleaned up by gel permeation chromatography and solid phase extraction. Selected reaction monitoring mode was used for gas chromatography-tandem mass spectrometric data acquisition to identify and quantify the OCP. To avoid the matrix effects, matrix-matched calibration solutions ranging from 2 to 50 ng/mL were used to record the calibration curve. Limits of quantification of all OCP were 0.8 μg/kg. With the exception of endrin, limits of quantification are significantly lower than maximum residue limits set by the European Union and China. The average recoveries were in the range of 70.1 to 114.7% at 3 spiked concentration levels (0.8, 2.0, and 10.0 μg/kg) with residual standard deviation lower than 12.9%. The developed method was successfully applied to analyze the OCP in commercial milk products.

  4. Purification of modified mycobacterial A60 antigen by affinity chromatography and its use for rapid diagnostic tuberculosis infection.

    PubMed

    Yari, Sh; Hadizadeh Tasbiti, A; Fateh, A; Karimi, A; Yari, F; Sakhai, F; Ghazanfari, M; Bahrmand, A

    2011-11-01

    Tuberculosis has been declared a global emergency. The mainstay for its control is the rapid and accurate identification of infected individual. Antibodies to A60, one of the macromolecular antigen complexes of mycobacteria were commonly used in the rapid detection of Mycobacterium tuberculosis. The aim of this study was to prepare specific antibodies against A60 for detection of tuberculosis infection. Specific polyclonal antibodies against A60, (A60-Ab) were prepared in rabbits using 2 boosted injections of the antigen (A60). The antibodies were purified and treated with normal oral flora to remove any non-specific and cross-reactive antibodies. These antibodies were conjugated to CNBr-activated Sepharose 4B and used to isolate subunits of A60 with more specificity for M. tuberculosis. A new affinity column was designed to prepare modified (purified) A60 antigen. Purified A60 antigen (PA60-Ag) was used to develop antibody production by Immunoaffinity chromatography. 113 patients with a confirmed diagnosis of pulmonary TB at Pasteur Institute were selected for the study. The specificity of the results was analyzed with TB-rapid test by using PA60-antibodies. TB-rapid test revealed that normal oral flora-absorbed antibodies could lead to more specific results than that of the non-absorbed antibodies. The developed, modified A60 antibodies, (PA60-Ab)-rapid test showed higher sensitivity, specificity, Positive Predictive Value (PPV), Negative Predictive Value (NPV) and overall efficiency (93.0%, 86.0%, 90.0%, 91.0%, and 90.0% respectively) for the detection of the Mycobacterium antigen. Moreover, PA60-Ag showed only two protein bands of molecular weight 45 and 66kDa in SDS-PAGE while untreated A60 showed multiple bands. Thus, our study helped in the purification of a novel and well characterized A60 antigen and good diagnostic potential for detecting tuberculosis infection.

  5. Purification of rat kidney glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and glutathione reductase enzymes using 2',5'-ADP Sepharose 4B affinity in a single chromatography step.

    PubMed

    Adem, Sevki; Ciftci, Mehmet

    2012-01-01

    The enzymes of glucose 6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), and glutathione reductase (GR) were purified from rat kidney in one chromatographic step consisting of the use of the 2',5'-ADP Sepharose 4B by using different elution buffers. This purification procedure was accomplished with the preparation of the homogenate and affinity chromatography on 2',5'-ADP Sepharose 4B. The purity and subunit molecular weights of the enzymes were checked on SDS-PAGE and purified enzymes showed a single band on the gel. The native molecular weights of the enzymes were found with Sephadex G-150 gel filtration chromatography. Using this procedure, G6PG, having the specific activity of 32 EU/mg protein, was purified 531-fold with a yield of 88%; 6PGD, having the specific activity of 25 EU/mg protein, was purified 494-fold with a yield of 73%; and GR, having the specific activity of 33 EU/mg protein, was purified 477-fold with a yield of 76%. Their native molecular masses were estimated to be 144 kDa for G6PD, 110 kDa for 6PGD, and 121 kDa for GR and the subunit molecular weights were found to be 68, 56, and 61 kDa, respectively. A new modified method to purify G6PD, 6PGD, and GR, namely one chromatographic step using the 2',5'-ADP Sepharose 4B, is described for the first time in this study. This procedure has several advantages for purification of enzymes, such as, rapid purification, produces high yield, and uses less chemical materials.

  6. Analysis of Free Drug Fractions in Serum by Ultrafast Affinity Extraction and Two-Dimensional Affinity Chromatography using α1-Acid Glycoprotein Microcolumns

    PubMed Central

    Bi, Cong; Zheng, Xiwei; Hage, David S.

    2016-01-01

    In the circulatory system, many drugs are reversibly bound to serum proteins such as human serum albumin (HSA) and alpha1-acid glycoprotein (AGP), resulting in both free and protein-bound fractions for these drugs. This report examined the use of microcolumns containing immobilized AGP for the measurement of free drug fractions by ultrafast affinity extraction and a two-dimensional affinity system. Several drugs known to bind AGP were used as models to develop and evaluate this approach. Factors considered during the creation of this method included the retention of the drugs on the microcolumns, the injection flow rate, the microcolumn size, and the times at which a second AGP column was placed on-line with the microcolumn. The final system had residence times of only 110–830 ms during sample passage through the AGP microcolumns and allowed free drug fractions to be determined within 10–20 min when using only 3–10 µL of sample per injection. This method was used to measure the free fractions of the model drugs at typical therapeutic levels in serum, giving good agreement with the results obtained by ultrafiltration. This approach was also used to estimate the binding constants for each drug with AGP in serum, even for drugs that had significant interactions with both AGP and HSA in such samples. These results indicated that AGP microcolumns could be used with ultrafast affinity extraction to measure free drug fractions in a label-free manner and to study the binding of drugs with AGP in complex samples such as serum. PMID:26797422

  7. Determination of banned 10 azo-dyes in hot chili products by gel permeation chromatography-liquid chromatography-electrospray ionization-tandem mass spectrometry.

    PubMed

    Sun, Han-Wen; Wang, Feng-Chi; Ai, Lian-Feng

    2007-09-14

    An accurate method based on the use of gel permeation chromatography (GPC)-liquid chromatography-tandem mass spectrometry interfaced with electrospray ionization (GPC-LC-ESI-MS/MS) was devised for the simultaneous determination of Sudan (I-IV), Sudan Orange G, Sudan Red B, Sudan Red G, Sudan Red 7B, Butter Yellow and Para Red in hot chili products. A GPC clean-up procedure was developed for simultaneous quantification of 10 dyes in hot chili and hot chili products avoiding some interference and permitting multiple injections without damaging the column. A HPLC was performed on an Inertsil C18 column using a multistep gradient elution with 0.1% formic acid and methanol as the mobile phase. Mass spectral acquisition was done in positive ion mode. Linearity of around three orders in the magnitude of concentration was generally obtained with the correlation coefficients (r2) of 0.9984-0.9997. Limit of detection (LOD) and limit of quantification (LOQ) for the investigated dyes were in the ranges of 0.1-1.8 and 0.4-5.0 microg/kg depending on matrices, respectively. The recoveries of the 10 synthetic dyes in five matrices ranged from 81.7 to 92.9%. The intra- and inter-day precision (RSDs) was between 2.9-7.8 and 3.9-8.1%, respectively. This method has been applied successfully for the determination of the studied 10 banned dyes in hot chili products.

  8. [Determination of 28 organochlorine and pyrethroid pesticides in pine nuts using solid-phase extraction and on-line gel permeation chromatography-gas chromatography/mass spectrometry].

    PubMed

    Kang, Qinghe; Wu, Yan; Gao, Kaiyang; Li, Zhibin

    2009-03-01

    An analytical method has been developed for the determination of 28 organochlorine pesticides and pyrethroid pesticides in pine nuts. The sample was extracted With acetonitrile-water (4:1, v/v) as the extraction solution by means of high-speed homogenization. The crude extract was purified by an Aluminium-N solid phase extraction column to remove most of the fat and sterols in the sample, then on-line gel permeation chromatography-gas chromatography/ mass spectrometry (GPC-GC/MS) analysis was performed. The recoveries for the most of pesticides in the sample spiked with the standards of 0.05 mg/kg were 70%-120%, and the relative standard deviations were less than 15%. The limits of detection of 28 organochlorine pesti- and pyrethroid pesticides were 0.002-0.05 mg/kg. The linear relationship and the recovery results were satisfactory. The method is rapid, accurate, highly senstive, and can be used for the simultaneous determination of pesticide residues in pine nuts.

  9. Phenyl Functionalized Sol-gel Silica Sorbent for Capillary Microextraction and Chromia-Based Sol-gel Ucon Stationary Phase for Capillary Gas Chromatography

    NASA Astrophysics Data System (ADS)

    McLean, Michael M.

    The first chapter of this thesis presents an introduction to sol-gel methodology whose usefulness as a synthetic route will be demonstrated with two applications in chromatography. The first application involves the fabrication of a capillary micro-extraction (CME) device by coating a phenyl functionalized extracting phase on the inner surface of a fused silica capillary for analyte pre-concentration. The device was coupled on-line to a RP-HPLC system and practicality was demonstrated using allergens as target analytes. The allergens chosen as model analytes are typically found in fragrance products and food. Most of the 26 fragrance allergens that are monitored by various government authorities have a phenyl organic moiety (a strong chromophore), thus making them appropriate probes for exploring the extraction efficiency of the coating using a UV detector. The CME device showed ppt level limit of detection which makes it suitable for trace analyses of allergens and similar compounds in a variety of matrices. The second application explores the feasibility of using sol-gel derived chromia-based stationary phase in gas chromatographic columns. The organic moiety of the stationary phase was derived from Ucon 75-H-90,000 while the inorganic backbone was prepared using chromium(III) dichloride hydroxide - methacrylic acid - aqua complex, 40% in isopropanol/acetone . Usefulness of prepared chromia-based GC stationary phase was examined for petrochemical application. Promising results were obtained using aliphatic-aromatics, polyaromatic hydrocarbons, BTEX test mixture, cycloalkanes, branched alkanes and akylbenzenes. The column was able to perform without degradation despite being rinsed multiples times sequentially with the following solvents: dichloromethane, methanol, water and finally methanol again. Maximum theoretical plate number calculated is around 2,400 plates/m. The plate number clearly needs improvement but is a promising result for the newly explored

  10. Analysis of Multi-Site Drug-Protein Interactions by High-Performance Affinity Chromatography: Binding by Glimepiride to Normal or Glycated Human Serum Albumin

    PubMed Central

    Matsuda, Ryan; Li, Zhao; Zheng, Xiwei; Hage, David S.

    2015-01-01

    High-performance affinity chromatography (HPAC) was used in a variety of formats to examine multi-site interactions between glimepiride, a third-generation sulfonylurea drug, and normal or in vitro glycated forms of the transport protein human serum albumin (HSA). Frontal analysis revealed that glimepiride interacts with normal HSA and glycated HSA at a group of high affinity sites (association equilibrium constant, or Ka, 9.2–11.8 × 105 M−1 at pH 7.4 and 37°C) and a group of lower affinity regions (Ka, 5.9–16.2 × 103 M−1). Zonal elution competition studies were designed and carried out in both normal- and reversed-role formats to investigate the binding by this drug at specific sites. These experiments indicated that glimepiride was interacting at both Sudlow sites I and II. Allosteric effects were also noted with R-warfarin at Sudlow site I and with tamoxifen at the tamoxifen site on HSA. The binding at Sudlow site I had a 2.1- to 2.3-fold increase in affinity in going from normal HSA to the glycated samples of HSA. There was no significant change in the affinity for glimepiride at Sudlow site II in going from normal HSA to a moderately glycated sample of HSA, but a slight decrease in affinity was seen in going to a more highly glycated HSA sample. These results demonstrated how various HPAC-based methods can be used to profile and characterize multi-site binding by a drug such as glimepiride to a protein and its modified forms. The information obtained from this study should be useful in providing a better understanding of how drug-protein binding may be affected by glycation and of how separation and analysis methods based on HPAC can be employed to study systems with complex interactions or that involve modified proteins. PMID:26189669

  11. Affinity chromatography of GroEL chaperonin based on denatured proteins: role of electrostatic interactions in regulation of GroEL affinity for protein substrates.

    PubMed

    Marchenko, N Iu; Marchenkov, V V; Kaĭsheva, A L; Kashparov, I A; Kotova, N V; Kaliman, P A; Semisotnov, G V

    2006-12-01

    The chaperonin GroEL of the heat shock protein family from Escherichia coli cells can bind various polypeptides lacking rigid tertiary structure and thus prevent their nonspecific association and provide for acquisition of native conformation. In the present work we studied the interaction of GroEL with six denatured proteins (alpha-lactalbumin, ribonuclease A, egg lysozyme in the presence of dithiothreitol, pepsin, beta-casein, and apocytochrome c) possessing negative or positive total charge at neutral pH values and different in hydrophobicity (affinity for a hydrophobic probe ANS). To prevent the influence of nonspecific association of non-native proteins on their interaction with GroEL and make easier the recording of the complexing, the proteins were covalently attached to BrCN-activated Sepharose. At low ionic strength (lower than 60 mM), tight binding of the negatively charged denatured proteins with GroEL (which is also negatively charged) needed relatively low concentrations (approximately 10 mM) of bivalent cations Mg2+ or Ca2+. At the high ionic strength (approximately 600 mM), a tight complex was produced also in the absence of bivalent cations. In contrast, positively charged denatured proteins tightly interacted with GroEL irrespectively of the presence of bivalent cations and ionic strength of the solution (from 20 to 600 mM). These features of GroEL interaction with positively and negatively charged denatured proteins were confirmed by polarized fluorescence (fluorescence anisotropy). The findings suggest that the affinity of GroEL for denatured proteins can be determined by the balance of hydrophobic and electrostatic interactions.

  12. Quantitation of monomers in poly(glyerol-co-diacid) gels using gas chromatography

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The validation of a gas chromatography (GC) method developed to quantify amounts of starting material from the synthesis of hyperbranched polymers made from glycerol and either succinic acid, glutaric acid, or azelaic acid is described. The GC response to concentration was linear for all starting r...

  13. Engineering Escherichia coli BL21(DE3) derivative strains to minimize E. coli protein contamination after purification by immobilized metal affinity chromatography.

    PubMed

    Robichon, Carine; Luo, Jianying; Causey, Thomas B; Benner, Jack S; Samuelson, James C

    2011-07-01

    Recombinant His-tagged proteins expressed in Escherichia coli and purified by immobilized metal affinity chromatography (IMAC) are commonly coeluted with native E. coli proteins, especially if the recombinant protein is expressed at a low level. The E. coli contaminants display high affinity to divalent nickel or cobalt ions, mainly due to the presence of clustered histidine residues or biologically relevant metal binding sites. To improve the final purity of expressed His-tagged protein, we engineered E. coli BL21(DE3) expression strains in which the most recurring contaminants are either expressed with an alternative tag or mutated to decrease their affinity to divalent cations. The current study presents the design, engineering, and characterization of two E. coli BL21(DE3) derivatives, NiCo21(DE3) and NiCo22(DE3), which express the endogenous proteins SlyD, Can, ArnA, and (optionally) AceE fused at their C terminus to a chitin binding domain (CBD) and the protein GlmS, with six surface histidines replaced by alanines. We show that each E. coli CBD-tagged protein remains active and can be efficiently eliminated from an IMAC elution fraction using a chitin column flowthrough step, while the modification of GlmS results in loss of affinity for nickel-containing resin. The "NiCo" strains uniquely complement existing methods for improving the purity of recombinant His-tagged protein.

  14. Chromatography

    MedlinePlus

    Chromatography is a way of separating two or more chemical compounds. Chemical compounds are chemicals that are ... of chemical compound. There are different kinds of chromatography. These include gas, high pressure liquid, or ion ...

  15. Isolation of a Trypanosoma cruzi antigen by affinity chromatography with a monoclonal antibody. Preliminary evaluation of its possible applications in serological tests.

    PubMed Central

    Carbonetto, C H; Malchiodi, E L; Chiaramonte, M; Durante de Isola, E; Fossati, C A; Margni, R A

    1990-01-01

    By affinity chromatography with a monoclonal antibody (163B6), obtained in our laboratory, we have isolated a T. cruzi antigen which could be useful for differential diagnosis of Chagas' disease from leishmaniasis. This antigen, a 52-kD protein, reacted with all sera from Chagas' disease patients tested but not with sera from patients with leishmania, in ELISA. The 52-kD antigen is widely distributed in the Trypanosoma genus since the 163B6 monoclonal antibody reacts with T. rangeli and 8 strains and a clone of T. cruzi epimastigotes. Images Fig. 1 Fig. 2 PMID:2119921

  16. Use of differential dye-ligand chromatography with affinity elution for enzyme purification: 2-keto-3-deoxy-6-phosphogluconate aldolase from Zymomonas mobilis.

    PubMed

    Scopes, R K

    1984-02-01

    2-Keto-3-deoxy-6-phosphogluconate aldolase (EC 4.1.2.14) has been isolated from extracts of Zymomonas mobilis using differential dye-ligand chromatography and affinity elution with product/product analog. The one-step procedure gives an enzyme with specific activity 600 units mg-1. Only 1 out of 47 dyes, Procion Yellow MX-GR, bound the enzyme completely in 20 mM phosphate buffer, pH 6.5. A column of Navy HE-R adsorbent was used first to remove most of the potentially adsorbing proteins.

  17. Selective modification of polylactide by introducing acrylate groups: IR spectroscopy, gel permeation chromatography, and differential thermal analysis

    NASA Astrophysics Data System (ADS)

    Shashkova, V. T.; Matveeva, I. A.; Glagolev, N. N.; Zarkhina, T. S.; Timashev, P. S.; Bagratashvili, V. N.; Solov'eva, A. B.

    2016-10-01

    One-stage modification of polylactide has been performed to obtain the acrylate derivatives of the polymer capable of further polymerization and preparation of cross-linked polymer materials suitable for creating implants. The reaction mechanism was determined by IR spectroscopy, gel permeation chromatography, and differential thermal analysis. It was shown for the first time that the reaction path changes depending on the ratio of components so that the desired product polylactide acrylate forms with a ~90% yield only in the presence of large (approximately tenfold) excesses of the isocyanate and acrylate components; at the equimolar ratio of components generally used in urethane formation, a mixture of the desired product (~30%), oligourethane diacrylates, and unchanged polylactide forms.

  18. Preparation and evaluation of a phenylboronate affinity monolith for selective capture of glycoproteins by capillary liquid chromatography.

    PubMed

    Lin, Zi An; Pang, Ji Lei; Lin, Yao; Huang, Hui; Cai, Zong Wei; Zhang, Lan; Chen, Guo Nan

    2011-08-21

    A phenylboronate affinity monolith was prepared and applied to the selective capture of glycoproteins from unfractionated protein mixtures. The monolith was synthesized in a 100 μm i.d capillary by an in situ polymerization procedure using a pre-polymerization mixture consisting of 4-vinylphenylboronic acid (VPBA) as functional monomer, ethylene dimethacrylate (EDMA) as crosslinker, diethylene glycol and ethylene glycol as binary porogenic solvents, and azobisisobutyronitrile (AIBN) as initiator. The prepared monolith was characterized in terms of the morphology, pore property, and recognition property. The selectivity and dynamic binding capacity were evaluated by using standard glycoproteins and nonglycoproteins as model proteins. The chromatographic results demonstrated that the phenylboronate affinity monolith had higher selectivity and binding capacity for glycoprotein than nonglycoprotein. The resulting phenylboronate affinity monolith was used as the sorbent for in-tube solid phase microextraction (in-tube SPME), and the extraction performance of the monolith was assessed by capture of ovalbumin from egg white sample.

  19. Chromatography on DEAE ion-exchange and Protein G affinity columns in tandem for the separation and purification of proteins.

    PubMed

    Qi, Y; Yan, Z; Huang, J

    2001-10-30

    A high-performance liquid-chromatographic method based on coupled DEAE anion-exchange and Protein G affinity columns has been developed for the simultaneous separation and purification of immunoglobulin G and albumin from mouse serum. The diluted mouse serum was injected directly into this system, and the proteins were eluted separately from the DEAE and Protein G columns, coupled in series, by the column-switching technique. The advantages of this method are that IgG and albumin can be separated and purified simultaneously, the expensive affinity column is protected from contamination by the impurities in the mouse serum, and it is fast, selective, robust, and reproducible.

  20. Applying Chromatography.

    ERIC Educational Resources Information Center

    Klein, Jessie W.; Patev, Paul

    1998-01-01

    Presents three experiments to introduce students to different kinds of chromatography: (1) paper chromatography; (2) gel filtration chromatography; and (3) reverse-phase liquid chromatography. Written in the form of a laboratory manual, explanations of each of the techniques, materials needed, procedures, and a glossary are included. (PVD)

  1. On-column entrapment of alpha1-acid glycoprotein for studies of drug-protein binding by high-performance affinity chromatography.

    PubMed

    Anguizola, Jeanethe; Bi, Cong; Koke, Michelle; Jackson, Abby; Hage, David S

    2016-08-01

    An on-column approach for protein entrapment was developed to immobilize alpha1-acid glycoprotein (AGP) for drug-protein binding studies based on high-performance affinity chromatography. Soluble AGP was physically entrapped by using microcolumns that contained hydrazide-activated porous silica and by employing mildly oxidized glycogen as a capping agent. Three on-column entrapment methods were evaluated and compared to a previous slurry-based entrapment method. The final selected method was used to prepare 1.0 cm × 2.1 mm I.D. affinity microcolumns that contained up to 21 (±4) μg AGP and that could be used over the course of more than 150 sample applications. Frontal analysis and zonal elution studies were performed on these affinity microcolumns to examine the binding of various drugs with the entrapped AGP. Site-selective competition studies were also conducted for these drugs. The results showed good agreement with previous observations for these drug-protein systems and with binding constants that have been reported in the literature. The entrapment method developed in this study should be useful for future work in the area of personalized medicine and in the high-throughput screening of drug interactions with AGP or other proteins. Graphical abstract On-column protein entrapment using a hydrazide-activated support and oxidized glycogen as a capping agent.

  2. Immobilized fusion protein affinity chromatography combined with HPLC-ESI-Q-TOF-MS/MS for rapid screening of PPARγ ligands from natural products.

    PubMed

    Zhu, Junfeng; Yi, Xiaojiao; Liu, Wenhui; Xu, Yingchun; Chen, Shuqing; Wu, Yongjiang

    2017-04-01

    Screening agonists of peroxisome proliferator-activated receptor-γ (PPARγ) from natural products is particularly motivated by the need for effective anti-diabetic agents. However, method for direct identification of PPARγ ligands from a complex sample is rarely reported. Here we propose a novel immobilized fusion protein affinity chromatography (IFPAC) to achieve rapid multicomponent screening. First, functional human PPARγ ligand binding domain (hPPARγLBD) was bacterially produced by fusion to glutathione S-transferase (GST). The unpurified GST-hPPARγLBD was directly applied to a 96-well filter plate prepacked with glutathione sepharose. Due to the strong affinity between GST and glutathione, the fusion protein could selectively attach to the glutathione matrix with an oriented immobilization, which was rapidly purified under non-denaturing conditions. Experimental results indicated that the prepared 96-affinity column array exhibited excellent selectivity and sensitivity for fishing novel interacting compounds. The proposed approach was applied in the high-throughput screening of PPARγ ligands from natural products, followed by rapid characterization of active compounds using HPLC-ESI-Q-TOF-MS/MS. Isochlorogenic acid A in Dendranthema indicum flowers was found to be a PPARγ ligand. Our findings suggested the IFPAC could be a powerful tool for drug discovery from natural products.

  3. Synthesis of 17 beta-hydroxyandrost-4-en-3-one-7 alpha-(biotinyl-6-N-hexylamide), a conjugate useful for affinity chromatography and for testosterone immunoassays.

    PubMed

    Luppa, P; Hauck, S; Schwab, I; Birkmayer, C; Hauptmann, H

    1996-01-01

    We describe the synthesis of 17 beta-hydroxyandrost-4-en-3-one-7 alpha-(biotinyl-6-N-hexylamide) from 17 beta-hydroxyandrost-4-en-3-one (testosterone) via copper-catalyzed 1,6 Michael addition of a 6-(tertbutyldimethylsilyloxyhexyl) chain to 6-dehydrotestosterone 17 beta-acetate. After chromatographic separation of the 7 alpha-isomer from the alpha / beta mixture and cleavage of the silyl ether, the alcohol was oxidized to the 6-hexanal side chain and then subjected to reductive amination. The resulting primary amine is easily biotinylated using biotinyl-N-hydroxysuccinimide ester. The overall yield for the epimeric 7 alpha-end product was 30%. The absolute configurations of the epimers were investigated by 1H NMR studies by the nuclear Overhauser effect. We introduced a biotin label to the testosterone molecule at ring position 7 in compliance with Landsteiner's principle, which states that antibody specificity is directed primarily at that portion of the hapten furthest from the functional group linking it to the carrier protein. Thus, this negligible alteration in comparison to the structure of the respective testosterone hapten used to elicit antibodies offers the feasibility of applying the testosterone derivative as an optimal immunoadsorbent in affinity chromatography. The 7 alpha-biotinylated testosterone was used to obtain active antitestosterone antibodies from a specific antiserum by affinity chromatography. This was achieved by attaching the biotinylated testosterone to agarose-coupled streptavidin beads. Accordingly, a 3H-testosterone-binding test demonstrated a 20-fold increase in affinity of the purified antibody to the steroid compared to the original antiserum, and a recovery of > 80% could be obtained. The antitestosterone antibody, obtained by that method, is an effective component for use in a competitive immunoassay for testosterone in human sera. An assay configuration is conceivable with the same 7 alpha-biotinylated testosterone employed as

  4. Simultaneous determination of zearalenone and its derivatives in edible vegetable oil by gel permeation chromatography and gas chromatography-triple quadrupole mass spectrometry.

    PubMed

    Qian, Mingrong; Zhang, Hu; Wu, Liqin; Jin, Nuo; Wang, Jianmei; Jiang, Kezhi

    2015-01-01

    A sensitive gas chromatographic-triple quadrupole mass spectrometric (GC-QqQ MS) analytical method, for the determination of zearalenone and its five derivatives in edible vegetable oil, was developed. After the vegetable oil samples were prepared using gel permeation chromatography, the eluent was collected, evaporated and dried with nitrogen gas. The residue was silylated with N,O-bis-trimethylsilyltrifluoroacetamide, containing 1% trimethylchlorosilane. GC-QqQ MS was performed in the reaction-monitoring mode to confirm and quantify mycotoxins in vegetable oil. The limits of quantitation were 0.03-0.2 μg kg(-1) for the six mycotoxins. The average recoveries, measured at 2, 20 and 200 μg kg(-1), were in the range 80.3-96.5%. Zearalenone was detected in the range 5.2-184.6 μg kg(-1) in nine maize oils and at 40.7 μg kg(-1) in a rapeseed oil from the local market.

  5. Affinity membrane chromatography: relationship of dye-ligand type to surface polarity and their effect on lysozyme separation and purification.

    PubMed

    Arica, M Yakup; Yilmaz, Meltem; Yalçin, Emine; Bayramoğlu, Gülay

    2004-06-15

    Two different dye-ligands, i.e. Procion Brown MX-5BR (RB-10) and Procion Green H-4G (RG-5) were immobilised onto poly(2-hydroxyethylmethacrylate) (pHEMA) membranes. The polarities of the affinity membranes were determined by contact angle measurements. Separation and purification of lysozyme from solution and egg white were investigated. The adsorption data was analysed using two adsorption kinetic models the first order and the second order to determine the best-fit equation for the separation of lysozyme using affinity membranes. The second-order equation for the adsorption of lysozyme on the RB-10 and RG-5 immobilised membranes systems is the most appropriate equation to predict the adsorption capacity for the affinity membranes. The reversible lysozyme adsorption on the RB-10 and RG-5 did not follow the Langmuir model, but obeyed the Temkin and Freundlich isotherm model. Separation and purification were monitored by determining the lysozyme activity using Micrococcus lysodeikticus as substrate. The purities of the eluted lysozyme, as determined by HPLC, were 76 and 92% with recovery 63 and 77% for RB-10 and RG-5 membranes, respectively. For the separation and purification of lysozyme the RG-5 immobilised membrane provided the best results. The affinity membranes are stable when subjected to sanitization with sodium hydroxide after repeated adsorption-elution cycles.

  6. [Separation of purines, pyrimidines, pterins and flavonoids on magnolol-bonded silica gel stationary phase by high performance liquid chromatography].

    PubMed

    Chen, Hong; Li, Laishen; Zhang, Yang; Zhou, Rendan

    2012-10-01

    A new magnolol-bonded silica gel stationary phase (MSP) was used to separate the basic drugs including four purines, eight pyrimidines, four pterins and five flavonoids as polar representative samples by high performance liquid chromatography (HPLC). To clarify the separation mechanism, a commercial ODS column was also tested under the same chromatographic conditions. The high selectivities and fast baseline separations of the above drugs were achieved by using simple mobile phases on MSP. Although there is no end-caped treatment, the peak shapes of basic drugs containing nitrogen such as purines, pyrimidines and pterins were rather symmetrical on MSP, which indicated the the magnolol as ligand with multi-sites could shield the side effect of residual silanol groups on the surface of silica gel. Although somewhat different in the separation resolution, it was found that the elution orders of some drugs were generally similar on both MSP and ODS. The hydrophobic interaction should play a significant role in the separations of the above basic drugs, which was attributed to their reversed-phase property in the nature. However, MSP could provide the additional sites for many polar solutes, which was a rational explanation for the high selectivity of MSP. For example, in the separation of purines, pyrimidines and pterins on MSP, hydrogen-bonding and dipole-dipole interactions played leading roles besides hydrophobic interaction. Some solute molecules (such as mercaptopurine, vitexicarpin) and MSP can form the strong pi-pi stacking in the separation process. All enhanced the retention and improved the separation selectivity of MSP, which facilitated the separation of the basic drugs.

  7. Virus-binding proteins recovered from bacterial culture derived from activated sludge by affinity chromatography assay using a viral capsid peptide.

    PubMed

    Sano, Daisuke; Matsuo, Takahiro; Omura, Tatsuo

    2004-06-01

    The contamination of water environments by pathogenic viruses has raised concerns about outbreaks of viral infectious diseases in our society. Because conventional water and wastewater treatment systems are not effective enough to inactivate or remove pathogenic viruses, a new technology for virus removal needs to be developed. In this study, the virus-binding proteins (VBPs) in a bacterial culture derived from activated sludge were successfully recovered. The recovery of VBPs was achieved by applying extracted crude proteins from a bacterial culture to an affinity column in which a custom-made peptide of capsid protein from the poliovirus type 1 (PV1) Mahoney strain (H(2)N-DNPASTTNKDKL-COOH) was immobilized as a ligand. VBPs exhibited the ability to adsorb infectious particles of PV1 Sabin 1 as determined by enzyme-linked immunosorbent assay. The evaluation of surface charges of VBPs with ion-exchange chromatography found that a majority of VBP molecules had a net negative charge under the conditions of affinity chromatography. On the other hand, a calculated isoelectric point implied that the viral peptide in the affinity column was also charged negatively. As a result, the adsorption of the VBPs to the viral peptide in the affinity column occurred with a strong attractive force that was able to overcome the electrostatic repulsive force. Two-dimensional electrophoresis revealed that the isolated VBPs include a number of proteins, and their molecular masses were widely distributed but smaller than 100 kDa. Amino acid sequences of N termini of five VBPs were determined. Homology searches for the N termini against all protein sequences in the National Center for Biotechnology Information (NCBI) database showed that the isolated VBPs in this study were newly discovered proteins. These VBPs that originated with bacteria in activated sludge might be stable, because they are existing in the environment of wastewater treatments. Therefore, a virus removal technology

  8. Silica gel microspheres decorated with covalent triazine-based frameworks as an improved stationary phase for high performance liquid chromatography.

    PubMed

    Zhao, Wenjie; Hu, Kai; Hu, Chenchen; Wang, Xiaoyu; Yu, Ajuan; Zhang, Shusheng

    2017-03-03

    A new stationary phase for high performance liquid chromatography (HPLC) applications based on silica gel microspheres decorated with covalent triazine-based frameworks (CTF-SiO2) composite has been reported here. In this new hybrid material, sheet-like covalent triazine-based frameworks (CTF) were grown onto the supporting silica spheres, in order to achieve improved chromatographic separation and selectivity. The new material was characterized by infrared spectroscopy, elemental analysis and thermogravimetric analysis. The chromatographic performance and retention mechanism of the new stationary phase were investigated in reversed-phase mode and compared against standard C18 and cyano-modified silica (CN-SiO2) columns. A variety of different probe molecules were analyzed, including mono-substituted benzenes, polycyclic aromatic hydrocarbons, phenols, anilines and bases. The synergism of triazine and aromatic moieties provided several different retention mechanisms, thus improving the selectivity in the CTF-SiO2 composite. The good column packing properties of the uniform silica microspheres combined with the separation ability of the CTF frameworks make the new CTF-SiO2 material a potentially useful stationary phase for the analysis of complex samples.

  9. Capillary zone electrophoresis of soil humic acid fractions obtained by coupling size-exclusion chromatography and polyacrylamide gel electrophoresis.

    PubMed

    Cavani, Luciano; Ciavatta, Claudio; Trubetskaya, Olga E; Reznikova, Olga I; Afanas'eva, Gaida V; Trubetskoj, Oleg A

    2003-01-03

    Capillary zone electrophoresis (CZE) was used for characterisation of soil humic acid (HA) fractions obtained by coupling size-exclusion chromatography with polyacrylamide gel electrophoresis, on the basis of their molecular size and electrophoretic mobility. CZE was conducted using several low alkaline buffers as background electrolyte (BGE): 50 mM carbonate, pH 9.0; 50 mM phosphate, pH 8.5; 50 mM borate, pH 8.3; 50 mM Tris-borate+1 mM EDTA+7 M urea+0.1% sodium dodecyl sulphate (SDS), pH 8.3. Independently of BGE conditions, the effective electrophoretic mobility of HA fractions were in good agreement with their molecular size. The better resolution of HA were obtained in Tris-borate-EDTA buffer with urea and SDS. This results indicated that CZE, mostly with BGE-contained disaggregating agents, is useful for separating HAs in fractions with different molecular sizes.

  10. Characterization and quantitation of polyolefin microplastics in personal-care products using high-temperature gel-permeation chromatography.

    PubMed

    Hintersteiner, Ingrid; Himmelsbach, Markus; Buchberger, Wolfgang W

    2015-02-01

    In recent years, the development of reliable methods for the quantitation of microplastics in different samples, including evaluating the particles' adverse effects in the marine environment, has become a great concern. Because polyolefins are the most prevalent type of polymer in personal-care products containing microplastics, this study presents a novel approach for their quantitation. The method is suitable for aqueous and hydrocarbon-based products, and includes a rapid sample clean-up involving twofold density separation and a subsequent quantitation with high-temperature gel-permeation chromatography. In contrast with previous procedures, both errors caused by weighing after insufficient separation of plastics and matrix and time-consuming visual sorting are avoided. In addition to reliable quantitative results, in this investigation a comprehensive characterization of the polymer particles isolated from the product matrix, covering size, shape, molecular weight distribution and stabilization, is provided. Results for seven different personal-care products are presented. Recoveries of this method were in the range of 92-96 %.

  11. Application of GPC/LALLS to cellulose research. [Gel permeation chromatography/low-angle laser light scattering

    SciTech Connect

    Cael, J.J.; Cietek, D.J.; Kolpak, F.J.

    1983-01-01

    The techniques of gel permeation chromatography and low-angle laser light scattering (GPC/LALLS) have been combined for absolute determination of cellulose molecular weights and molecular weight distributions (MWD). The GPC/LALLS technique has been applied to tetrahydrofuran (THF) solutions of cellulose tricarbanilate (CTC) derivatives prepared from celluloses having a wide range of molecular weights. The molecular weight data obtained are consistent with values determined by intrinsic viscosity methods; and as a consequence of the absolute nature of this technique, Mark-Houswink coefficients can be predicted from a single, broad-distribution, linear homopolymer without recourse to tedious and time-consuming fractional precipitation methods. A unique application of the technique has been in correlating GPC/LALLS molecular weight data with the viscosity of nonderivatized celluloses dissolved in 0.5 M cupiethylenediamine hydroxide (CuEn). The procedure yields an absolute viscosity-molecular weight relationship which is comparable with a similar relationship originally derived from cellulose nitrates. The results indicate that the weight-average degree of polymerization (DP/sub w/) for CTC preparations is considerably greater than that obtained from cellulose nitrates, and this discrepancy, in DP/sub w/ has been attributed to errors in the Mark-Houwink coefficients for the cellulose nitrate-acetone system. 25 references, 9 figures, 7 tables.

  12. Characterisation of rat and human tissue alkaline phosphatase isoforms by high-performance liquid chromatography and agarose gel electrophoresis.

    PubMed

    Dziedziejko, Violetta; Safranow, Krzysztof; Slowik-Zylka, Dorota; Machoy-Mokrzynska, Anna; Millo, Barbara; Machoy, Zygmunt; Chlubek, Dariusz

    2009-03-01

    Alkaline phosphatase (ALP) exists as several isoenzymes and many isoforms present in tissues and serum. The objective of this study was to separate tissue ALP forms in rats and humans and characterise their properties. The materials for the investigation were intestinal, bone, and liver tissue of rats and commercially available human preparations of tissue ALP. Two methods of separation were used: high-performance liquid chromatography (HPLC) and agarose gel electrophoresis. Using HPLC in the rat tissues, two ALP isoforms in the intestine, one in the bone, and three in the liver were identified. In humans three intestinal, two bone, and one liver isoform were resolved. Electrophoresis showed two ALP activity bands in rat intestine, one wide band in the bone, and three bands in the liver. ALP of human tissues was visualised as a single wide band, with a different mobility observed for each organ. In both species the presence of a form with properties characteristic of the bone isoform of the tissue-nonspecific isoenzyme was observed in the intestine. HPLC offers a higher resolution than electrophoresis with respect to tissue ALP fractions in rats and in humans, but electrophoresis visualises high-molecular-mass insoluble enzyme forms.

  13. Purification of anti-MUC1 antibodies by peptide mimotope affinity chromatography using peptides derived from a polyvalent phage display library.

    PubMed

    Smith, Richard G; Missailidis, Sotiris; Price, Michael R

    2002-01-05

    A polyvalent, lytic phage display system (T7Select415-1b) displaying a random peptide library has been investigated for its ability to discover novel mimotopes reactive with the therapeutic monoclonal antibody C595. Sequence analysis of enriched phage lead to the identification of a predominant sequence RNREAPRGKICS, and two other consensus sequences RXXP and RXP. The novel synthetic peptide RNREAPRGKICS was linked to beaded agarose and the performance as a mimotope affinity chromatography matrix evaluated. Antibody purified using the novel matrix was found to be of higher specific reactivity than antibody purified using the conventional epitope matrix (peptide APDTRPAPG). The RNREAPRGKICS peptide binding to C595 demonstrated a higher equilibrium association constant (K(A)=0.75 x 10(6)) than the epitope peptide (K(A)=0.16 x 10(6)). Circular dichroism showed that the novel peptide had a more highly ordered structure at 4 degrees C and room temperature, than the epitope peptide.

  14. Immobilized metal ion affinity chromatography on Co2+-carboxymethylaspartate-agarose Superflow, as demonstrated by one-step purification of lactate dehydrogenase from chicken breast muscle.

    PubMed

    Chaga, G; Hopp, J; Nelson, P

    1999-02-01

    A rapid method for the purification of lactate dehydrogenase from whole chicken muscle extract in one chromatographic step is reported. The purification procedure can be accomplished in less than 1 h. A new type of immobilized metal ion affinity chromatography adsorbent is used that can be utilized at linear flow rates higher than 5 cm/min. The final preparation of the enzyme was with purity higher than 95% as ascertained by SDS-PAGE. Three immobilized metal ions (Ni2+, Zn2+ and Co2+) were compared for their binding properties towards the purified enzyme. The binding site of the enzyme for immobilized intermediate metal ions was determined after cleavage with CNBr and binding studies of the derivative peptides on immobilized Co2+. A peptide located on the N-terminus of the enzyme, implicated in the binding, has great potential as a purification tag in fusion proteins.

  15. Purification of HBsAg produced by the human hepatoma cell line PLC/PRE/5 by affinity chromatography using monoclonal antibodies and application for ELISA diagnostic.

    PubMed

    Merten, O W; Reiter, S; Scheirer, W; Katinger, H

    1983-01-01

    The human cell line PLC/PRF/5 (5) was used for the production of hepatitis B surface antigen subtype ad (HBsAg ad) and purified by affinity chromatography (AC) with monoclonal antibodies (mAb). mAb to HBsAg from mouse ascites have been purified by Protein A - AC prior coupling to AH-Sepharose 4B (Pharmacia). The combined procedure of ammonium-sulphate-precipitation of HBsAg from culture supernatants and immunosorbent-AC leads to approx. 700-fold purification. ELISA results using the mAb and the HBsAg for diagnostics of human serum, positive for anti-HBsAg-antibodies correlate with the RIA (AUSAB, Abbott).

  16. Enantioseparation of nuarimol by affinity electrokinetic chromatography-partial filling technique using human serum albumin as chiral selector.

    PubMed

    Martínez-Gómez, Maria Amparo; Escuder-Gilabert, Laura; Villanueva-Camañas, Rosa M; Sagrado, Salvador; Medina-Hernández, Maria J

    2008-10-01

    The present paper deals with the enantiomeric separation of nuarimol enantiomers by affinity EKC-partial filling technique using HSA as chiral selector. Firstly, a study of nuarimol interactions with HSA by CE-frontal analysis was performed. The binding parameters obtained for the first site of interaction were n(1) = 0.84; K(1) = 9.7 +/- 0.3x10(3 )M(-1) and the protein binding percentage of nuarimol at physiological concentration of HSA was 75.2 +/- 0.2%. Due to the moderate affinity of nuarimol towards HSA the possibility of using this protein as chiral selector for the separation of nuarimol using the partial filling technique was evaluated. A multivariate optimization approach of the most critical experimental variables in enantioresolution, running pH, HSA concentration and plug length was carried out. Separation of nuarimol enantiomers was obtained under the following selected conditions: electrophoretic buffer composed of 50 mM Tris at pH 7.3; 160 muM HSA solution applied at 50 mbar for 156 s as chiral selector; nuarimol solutions in the range of 2-8x10(-4) M injected hydrodynamically at 30 mbar for 2 s and the electrophoretic runs performed at 30 degrees C applying 15 kV voltage. Resolution, accuracy, reproducibility speed and cost of the proposed method make it suitable for quality control of the enantiomeric composition of nuarimol in formulations and for further toxicological studies. The results showed a different affinity between nuarimol enantiomers towards HSA.

  17. Capillary high-performance liquid chromatography/mass spectrometric analysis of proteins from affinity-purified plasma membrane.

    PubMed

    Zhao, Yingxin; Zhang, Wei; White, Michael A; Zhao, Yingming

    2003-08-01

    Proteomics analysis of plasma membranes is a potentially powerful strategy for the discovery of proteins involved in membrane remodeling under diverse cellular environments and identification of disease-specific membrane markers. A key factor for successful analysis is the preparation of plasma membrane fractions with low contamination from subcellular organelles. Here we report the characterization of plasma membrane prepared by an affinity-purification method, which involves biotinylation of cell-surface proteins and subsequent affinity enrichment with strepavidin beads. Western blotting analysis showed this method was able to achieve a 1600-fold relative enrichment of plasma membrane versus mitochondria and a 400-fold relative enrichment versus endoplasmic reticulum, two major contaminants in plasma membrane fractions prepared by conventional ultracentrifugation methods. Capillary-HPLC/MS analysis of 30 microg of affinity-purified plasma membrane proteins led to the identification of 918 unique proteins, which include 16.4% integral plasma membrane proteins and 45.5% cytosol proteins (including 8.6% membrane-associated proteins). Notable among the identified membrane proteins include 30 members of ras superfamily, receptors (e.g., EGF receptor, integrins), and signaling molecules. The low number of endoplasmic reticulum and mitochondria proteins (approximately 3.3% of the total) suggests the plasma membrane preparation has minimum contamination from these organelles. Given the importance of integral membrane proteins for drug design and membrane-associated proteins in the regulation cellular behaviors, the described approach will help expedite the characterization of plasma membrane subproteomes, identify signaling molecules, and discover therapeutic membrane-protein targets in diseases.

  18. Effect of the detergent Tween-20 on the DNA affinity chromatography of Gal4, C/EBPalpha, and lac repressor with observations on column regeneration.

    PubMed

    Robinson, F Darlene; Moxley, Robert A; Jarrett, Harry W

    2004-01-23

    C/EBPalpha, Gal4, and lac repressor, representing three different transcription factor homology families, were expressed as fusion proteins and used to characterize the effects of column aging, Mg2+, the nonionic detergent Tween-20, column loading, and bovine serum albumin on DNA-affinity chromatography. When lac-repressor-beta-galactosidase fusion protein is loaded onto a new DNA-Sepharose column, less elutes from a new column than one that has been used two or more times. Higher amounts of lac repressor, the Green Fluorescent Protein fusions with CAAT enhancer binding protein (C/EBPalpha) and Gal4, elute from the columns when 0.1% Tween-20 is added to the mobile phase. The amount of improvement found depends upon the transcription factor studied and the amount of the protein loaded on the column; lac repressor and Gal4 are eluted in higher amounts over a large range of protein loads while C/EBP shows the greatest effect at low protein loads. This detergent effect is seen when either Sepharose or silica is used for the stationary phase. Including bovine serum albumin in the mobile phase gives a similar though lesser improvement to that observed with Tween-20. Mg2+ or EDTA in the mobile phase gave similar chromatography for C/EBP; since EDTA protects columns from DNases, its inclusion in the mobile phase is preferred. After extended use, the DNA affinity columns no longer bind transcription factors and this is not due to losses of DNA from the columns. Two simple methods (sodium dodecylsulfate and KSCN) were developed to regenerate such worn out columns.

  19. Affinity chromatography of proteins on non-porous copolymerized particles of styrene, methyl methacrylate and glycidyl methacrylate.

    PubMed

    Chen, C H; Lee, W C

    2001-06-29

    Non-porous particles having an average diameter of 2.1 microm were prepared by co-polymerization of styrene, methyl methacrylate and glycidyl methacrylate, which was abbreviated as P(S-MMA-GMA). The particles were mechanically stable due to the presence of benzene rings in the backbone of polymer chains, and could withstand high pressures when a column packed with these particles was operated in the HPLC mode. The polymer particles were advantaged by immobilization of ligands via the epoxy groups on the particle surface that were introduced by one of the monomers, glycidyl methacrylate. As a model system, Cibacron Blue 3G-A was covalently immobilized onto the non-porous copolymer beads. The dye-immobilized P(S-MMA-GMA) particles were slurry packed into a 1.0 cm x 0.46 cm I.D. column. This affinity column was effective for the separation of turkey egg white lysozyme from a protein mixture. The bound lysozyme could be eluted to yield a sharp peak by using a phosphate buffer containing 1 M NaCl. For a sample containing up to 8 microg of lysozyme, the retained portion of proteins could be completely eluted without any slit peak. Due to the use of a shorter column, the analysis time was shorter in comparison with other affinity systems reported in the literature. The retention time could be reduced significantly by increasing the flow-rate, while the capacity factor remained at the same level.

  20. Online micro-solid-phase extraction based on boronate affinity monolithic column coupled with high-performance liquid chromatography for the determination of monoamine neurotransmitters in human urine.

    PubMed

    Yang, Xiaoting; Hu, Yufei; Li, Gongke

    2014-05-16

    Quantification of monoamine neurotransmitters is very important in diagnosing and monitoring of patients with neurological disorders. We developed an online analytical method to selectively determine urinary monoamine neurotransmitters, which coupled the boronate affinity monolithic column micro-solid-phase extraction with high-performance liquid chromatography (HPLC). The boronate affinity monolithic column was prepared by in situ polymerization of vinylphenylboronic acid (VPBA) and N,N'-methylenebisacrylamide (MBAA) in a stainless capillary column. The prepared monolithic column showed good permeability, high extraction selectivity and capacity. The column-to-column reproducibility was satisfactory and the enrichment factors were 17-243 for four monoamine neurotransmitters. Parameters that influence the online extraction efficiency, including pH of sample solution, flow rate of extraction and desorption, extraction volume and desorption volume were investigated. Under the optimized conditions, the developed method exhibited low limit of detection (0.06-0.80μg/L), good linearity (with R(2) between 0.9979 and 0.9993). The recoveries in urine samples were 81.0-105.5% for four monoamine neurotransmitters with intra- and inter-day RSDs of 2.1-8.2% and 3.7-10.6%, respectively. The online analytical method was sensitive, accurate, selective, reliable and applicable to analysis of trace monoamine neurotransmitters in human urine sample.

  1. A Simple and Universal Gel Permeation Chromatography Technique for Precise Molecular Weight Characterization of Well-Defined Poly(ionic liquid)s

    SciTech Connect

    He, Hongkun; Zhong, Mingjiang; Adzima, Brian; Luebke, David; Nulwala, Hunaid; Matyjaszewski, Krzysztof

    2013-03-20

    Poly(ionic liquid)s (PILs) are an important class of technologically relevant materials. However, characterization of well-defined polyionic materials remains a challenge. Herein, we have developed a simple and versatile gel permeation chromatography (GPC) methodology for molecular weight (MW) characterization of PILs with a variety of anions. PILs with narrow MW distributions were synthesized via atom transfer radical polymerization, and the MWs obtained from GPC were further confirmed via nuclear magnetic resonance end group analysis.

  2. High performance affinity chromatography (HPAC) as a high-throughput screening tool in drug discovery to study drug-plasma protein interactions.

    PubMed

    Vuignier, Karine; Guillarme, Davy; Veuthey, Jean-Luc; Carrupt, Pierre-Alain; Schappler, Julie

    2013-02-23

    Drug-plasma protein binding is an important parameter that, together with other physicochemical properties such as lipophilicity and pK(a), greatly influences drug absorption, distribution, metabolism, and excretion (ADME). Therefore, it is important for pharmaceutical companies to develop a rapid screening assay to examine plasma protein binding during the early stages of the drug discovery process. Human serum albumin (HSA) and α(1)-acid glycoprotein (AGP) are the most important plasma proteins that are capable of binding drugs. In this work, an automated and high-throughput (<3 min/compound) strategy was developed using high performance affinity chromatography (HPAC) with commercial HSA and AGP columns to evaluate drug-plasma protein interactions for drug screening. A generic gradient was used throughout the study to separate drugs that were weakly and tightly bound to HSA and AGP. To accelerate the analysis time, the system was calibrated in a single run by pooling reference compounds without overloading the column. For both HSA and AGP studies, the developed methods were successfully transferred from HPAC-UV to HPAC-MS with single quadrupole MS detection and ammonium acetate, pH 7.0 as a volatile mobile phase. The MS detection enhanced the sensitivity, selectivity, and throughput of the method by pooling unknown compounds. For HSA analyses, the binding percentages obtained using HPAC were well correlated with the binding percentages from the literature. This method was also able to rank compounds based on their affinity for HSA. Concerning the AGP analyses, the quality of the correlation between the binding percentages obtained in HPAC and those from the literature was weaker. However, the method was able to classify compounds into weak, medium, and strong binders and rank compounds based on their affinity for AGP.

  3. Potential of human serum albumin as chiral selector of basic drugs in affinity electrokinetic chromatography-partial filling technique.

    PubMed

    Martínez-Gómez, Maria A; Villanueva-Camañas, R M; Sagrado, Salvador; Medina-Hernández, Maria J

    2006-11-01

    The enantiomeric resolution of compounds using HSA by means of affinity EKC (AEKC)-partial filling technique is the result of a delicate balance between different experimental variables such as protein concentration, running pH (background electrophoretic buffer (BGE), protein, and compound solutions), and plug length. In this paper, the possibility of using HSA as chiral selector for enantioseparation of 28 basic drugs using this methodology is studied. The effect of the physicochemical parameters, the structural properties of compounds, and compound-HSA protein binding percentages over their chiral resolution with HSA is outlined. Based on the results obtained, a decision tree is proposed for the "a priori" prediction of the capability of HSA for enantioseparation of basic drugs in AEKC. The results obtained indicated that enantioresolution of basic compounds with HSA depends on the hydrophobicity, polarity, and molar volume of compounds.

  4. Evaluation of microbeads of calcium alginate as a fluidized bed medium for affinity chromatography of Aspergillus niger Pectinase.

    PubMed

    Roy, Ipsita; Jain, Sulakshana; Teotia, Sunita; Gupta, Munishwar Nath

    2004-01-01

    Calcium alginate microbeads (212-425 microm) were prepared by spraying 2% (w/v) alginate solution into 1 M CaCl2 solution. The fluidization behavior of these beads was studied, and the bed expansion index and terminal velocity were found to be 4.3 and 1808 cm h(-1), respectively. Residence time distribution curves showed that the dispersion of the protein was much less with these microbeads than with conventionally prepared calcium alginate macrobeads when both kinds of beads were used for chromatography in a fluidized bed format. The fluidized bed of these beads was used for the purification of pectinase from a commercial preparation. The media performed well even with diluted feedstock; 90% activity recovery with 211-fold purification was observed.

  5. Multivariate optimization approach for chiral resolution of drugs using human serum albumin in affinity electrokinetic chromatography-partial filling technique.

    PubMed

    Martinez-Gomez, Maria A; Villanueva-Camañas, Rosa M; Sagrado, Salvador; Medina-Hernández, Maria J

    2005-11-01

    The enantiomeric resolution of chiral compounds using HSA by means of affinity EKC (AEKC)-partial filling technique is the result of a delicate balance between different experimental variables such as protein concentration, running pH (background electrophoretic buffer, protein and compound solutions) and protein solution plug length. In this paper multivariate optimization approaches for chiral separation of four basic drugs (alprenolol, oxprenolol, promethazine and propranolol) using HSA as chiral selector in AEKC-partial filling technique are studied. The experimental conditions to achieve maximum resolution are optimized using the Box-Behnken experimental design. Partial least squares and pareto charts are used to analyse the main effects on the resolution. The experimental resolutions observed for all compounds studied in optimum conditions agree with the estimated values based on response surface models. The results obtained show that the range of experimental conditions that provided enantioresolution narrows as hydrophobicity of analytes decreases. This fact can be explained by assuming that hydrophobicity controls the interaction of basic compounds with HSA.

  6. A general method for fractionation of plasma proteins. Dye-ligand affinity chromatography on immobilized Cibacron blue F3-GA.

    PubMed

    Gianazza, E; Arnaud, P

    1982-01-01

    The chromatographic behaviour of 27 different plasma proteins on fractionation of human plasma on immobilized Cibacron Blue F3-GA was studied. The column was eluted by using a three-step procedure. First, a low-molarity buffer (30 mM-H3PO4/Na3PO4, pH 7.0, I0.053) was used, then a linear salt gradient (0-1 M-NaCl in the buffer above) was applied, followed by a wash with two bed volumes of 1.0 M-NaCl. Finally, bound proteins were 'stripped' with 0.5 M-NaSCN. Up to 1 ml of whole plasma could be loaded per 5 ml bed volume. No denaturation of proteinase inhibitors or complement fractions was observed. The recovery of individual proteins ranged between 52 and greater than 95%. Enrichment of four individual plasma components (alpha 1-antitrypsin, caeruloplasmin, antithrombin III and haemopexin) was between 10-fold and 75-fold. These results indicate that chromatography on immobilized Cibacron Blue F3-GA can be a useful initial step in the purification of plasma proteins.

  7. High-temperature solvent stability of sol-gel germania triblock polymer coatings in capillary microextraction on-line coupled to high-performance liquid chromatography.

    PubMed

    Segro, Scott S; Malik, Abdul

    2010-09-10

    Germania-based sol-gel organic-inorganic hybrid coatings were prepared for on-line coupling of capillary microextraction with high-performance liquid chromatography. For this, a germania-based sol-gel precursor, tetra-n-butoxygermane and a hydroxy-terminated triblock copolymer, poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) were used. These sol-gel germania triblock polymer coatings were chemically anchored to the inner walls of a fused silica capillary (0.25 mm I.D.) in course of its evolution from the sol solution. Scanning electron microscopy images of the sol-gel germania triblock polymer coating were obtained to estimate the coating thickness. For the first time, the analyte distribution constants between a sol-gel germania organic-inorganic hybrid coating and the samples (K(cs)) were determined. For a variety of analytes from different chemical classes, including polycyclic aromatic hydrocarbons (PAHs), ketones, alcohols, phenols and amines, the K(cs) values ranged from 8.1 x 10(1) to 5.6 x 10(4). Also, for the first time, the stability of the sol-gel germania-based coating in high-temperature reversed-phase solvent environment was evaluated. The sol-gel germania triblock polymer coatings were capable of surviving exposure to high-temperature solvent conditions (200 degrees C) with little change in extraction capabilities. This demonstrates that sol-gel germania triblock polymer hybrid materials might be suitable for further applications in high-temperature HPLC. The reproducibility of the method for preparation of the sol-gel germania triblock polymer coatings was also evaluated, and the capillary-to-capillary RSD values ranged from 5.3 to 6.5%. The use of higher flow rates in extraction was found to significantly reduce the time required (from 30-40 to 10-15 min) to reach equilibrium between the sol-gel germania triblock polymer coating and the analytes in the sample solution.

  8. Lectin affinity chromatography of articular cartilage fibromodulin: Some molecules have keratan sulphate chains exclusively capped by α(2-3)-linked sialic acid.

    PubMed

    Lauder, Robert M; Huckerby, Thomas N; Nieduszynski, Ian A

    2011-10-01

    Fibromodulin from bovine articular cartilage has been subjected to lectin affinity chromatography by Sambucus nigra lectin which binds α(2-6)- linked N-acetylneuraminic acid, and the structure of the keratan sulphate in the binding and non-binding fractions examined by keratanase II digestion and subsequent high pH anion exchange chromatography. It has been confirmed that the keratan sulphate chains attached to fibromodulin isolated from bovine articular cartilage may have the chain terminating N-acetylneuraminic acid residue α(2-3)- or α(2-6)-linked to the adjacent galactose residue. Although the abundance of α(2-6)-linked N-acetylneuraminic acid (ca. 22%) is such that this could cap one of the four chains in almost all fibromodulin molecules, it was found that ca. 34% of the fibromodulin proteoglycan molecules from bovine articular cartilage were capped exclusively with α(2-3)-linked N-acetylneuraminic acid. The remainder of the fibromodulin proteoglycans, which bound to the lectin had a mixture of α(2-3)- and α(2-6)-linked N-acetylneuraminic acid capping structures. The keratan sulphates attached to fibromodulin molecules capped exclusively with α(2-3)- linked N-acetylneuraminic acid were found to have a higher level of galactose sulphation than those from fibromodulin with both α(2-3)- and α(2-6)-linked N-acetylneuraminic acid caps, which bound to the Sambucus nigra lectin. In addition, both pools contained chains of similar length (ca. 8-9 disaccharides). Both also contained α(1-3)-linked fucose, showing that this feature does not co-distribute with α(2-6)-linked N-acetylneuraminic acid, although these two features are present only in mature articular cartilage. These data show that there are discrete populations of fibromodulin within articular cartilage, which may have differing impacts upon tissue processes.

  9. Lectin affinity electrophoresis.

    PubMed

    Kobayashi, Yuka

    2014-01-01

    An interaction or a binding event typically changes the electrophoretic properties of a molecule. Affinity electrophoresis methods detect changes in the electrophoretic pattern of molecules (mainly macromolecules) that occur as a result of biospecific interactions or complex formation. Lectin affinity electrophoresis is a very effective method for the detection and analysis of trace amounts of glycobiological substances. It is particularly useful for isolating and separating the glycoisomers of target molecules. Here, we describe a sensitive technique for the detection of glycoproteins separated by agarose gel-lectin affinity electrophoresis that uses antibody-affinity blotting. The technique is tested using α-fetoprotein with lectin (Lens culinaris agglutinin and Phaseolus vulgaris agglutinin)-agarose gels.

  10. An in depth proteomic analysis based on ProteoMiner, affinity chromatography and nano-HPLC-MS/MS to explain the potential health benefits of bovine colostrum.

    PubMed

    Altomare, Alessandra; Fasoli, Elisa; Colzani, Mara; Parra, Ximena Maria Paredes; Ferrari, Marina; Cilurzo, Francesco; Rumio, Cristiano; Cannizzaro, Luca; Carini, Marina; Righetti, Pier Giorgio; Aldini, Giancarlo

    2016-03-20

    Bovine colostrum (BC), the initial milk secreted by the mammary gland immediately after parturition, is widely used for several health applications. We here propose an off-target method based on proteomic analysis to explain at molecular level the potential health benefits of BC. The method is based on the set-up of an exhaustive protein data bank of bovine colostrum, including the minor protein components, followed by a bioinformatic functional analysis. The proteomic approach based on ProteoMiner technology combined to a highly selective affinity chromatography approach for the immunoglobulins depletion, identified 1786 proteins (medium confidence; 634 when setting high confidence), which were then clustered on the basis of their biological function. Protein networks were then created on the basis of the biological functions or health claims as input. A set of 93 proteins involved in the wound healing process was identified. Such an approach also permits the exploration of novel biological functions of BC by searching in the database the presence of proteins characterized by innovative functions. In conclusion an advanced approach based on an in depth proteomic analysis is reported which permits an explanation of the wound healing effect of bovine colostrum at molecular level and allows the search of novel potential beneficial effects.

  11. Quantitative Phosphoproteome Analysis of Lysophosphatidic Acid Induced Chemotaxis applying Dual-step ¹⁸O Labeling Coupled with Immobilized Metal-ion Affinity Chromatography

    SciTech Connect

    Ding, Shi-Jian; Wang, Yingchun; Jacobs, Jon M.; Qian, Weijun; Yang, Feng; Tolmachev, Aleksey V.; Du, Xiuxia; Wang, Wei; Moore, Ronald J.; Monroe, Matthew E.; Purvine, Samuel O.; Waters, Katrina M.; Heibeck, Tyler H.; Adkins, Joshua N.; Camp, David G.; Klemke, Richard L.; Smith, Richard D.

    2008-10-01

    Reversible protein phosphorylation is a central cellular regulatory mechanism in modulating protein activity and propagating signals within cellular pathways and networks. Development of more effective methods for the simultaneous identification of phosphorylation sites and quantification of temporal changes in protein phosphorylation could provide important insights into molecular signaling mechanisms in a variety of different cellular processes. Here we present an integrated quantitative phosphoproteomics approach and its applications for comparative analysis of Cos-7 cells in response to lysophosphatidic acid (LPA) gradient stimulation. The approach combines trypsin-catalyzed 16O/18O labeling plus 16O/18O-methanol esterification labeling for quantitation, a macro- Immobilized Metal-ion Affinity Chromatography trap for phosphopeptide enrichment, and a monolithic capillary column with integrated electrospray emitter. LC separation and MS/MS is followed by neutral loss-dependent MS/MS/MS for phosphopeptide identification using a linear ion trap (LTQ)-FT mass spectrometer and complementary searching algorithms for interpreting MS/MS spectra. Protein phosphorylation involved in various signaling pathways of cell migration were identified and quantified, such as mitogen-activated protein kinase 1, dual-specificity mitogen-activated protein kinase kinase 2, and dual-specificity tyrosine-phosphorylation regulated kinase 1b, and a number of Rho GTPase-activating proteins. These results demonstrate the efficiency of this quantitative phosphoproteomics approach and its application for rapid discovery of phosphorylation events associated with gradient sensing and cell chemotaxis.

  12. The purification of human enterokinase by affinity chromatography and immunoadsorption. Some observations on its molecular characteristics and comparisons with the pig enzyme.

    PubMed Central

    Grant, D A; Hermon-Taylor, J

    1976-01-01

    A method is described for the purification of human enterokinase from accumulated duodenal fluid by affinity chromatography using p-aminobenzamidine as the ligand. Resolution was greatest when glycylglycine was substituted as the spacer arm. Purification was not a one-step procedure, and some contamination, principally by the alpha-glucosidases, remained. Their removal was completed by immunoadsorption using antisera raised to enterokinase-free material containing these enzymes, prepared as a by-product of the purification procedure. The final preparation had an activity of 4260 nmol of trypsin/min per mg and was free of other enzymic activity tested. Amino acid and sugar analyses of the highly purified enzyme indicated an acidic glycoprotein containing 57% sugar (neutral sugars 47%, amino sugars 10%). The apparent mol.wts. and Stokes radii of human and pig enterokinase were 296 000 and 316 000, and 5.65 and 5.78 nm respectively. Two isoenzymes were identified for human enterokinase and three for the pig enzyme. Human enterokinase demonstrated a resistance to reduction of disulphide linkages and to sodium dodecyl sulphate binding, which may be related to the need for it to retain its integrity in the digestive environment of the upper small intestine. Antisera to highly purified pig and human enterokinases specifically inhibited enterokinase activity. Immuno-inhibition of intestinal aminopeptidase, maltase and glucoamylase by homologous antisera was not observed. Images PLATE 1 PMID:945736

  13. Serial lectin affinity chromatography with concavalin A and wheat germ agglutinin demonstrates altered asparagine-linked sugar-chain structures of prostatic acid phosphatase in human prostate carcinoma.

    PubMed

    Yoshida, K I; Honda, M; Arai, K; Hosoya, Y; Moriguchi, H; Sumi, S; Ueda, Y; Kitahara, S

    1997-08-01

    Differences between human prostate carcinoma (PCA, five cases) and benign prostatic hyperplasia (BPH, five cases) in asparagine-linked (Asn) sugar-chain structure of prostatic acid phosphatase (PAP) were investigated using lectin affinity chromatography with concanavalin A (Con A) and wheat germ agglutinin (WGA). PAP activities were significantly decreased in PCA-derived PAP, while no significant differences between the two PAP preparations were observed in the enzymatic properties (Michaelis-Menten value, optimal pH, thermal stability, and inhibition study). In these PAP preparations, all activities were found only in the fractions which bound strongly to the Con A column and were undetectable in the Con A unbound fractions and in the fractions which bound weakly to the Con A column. The relative amounts of PAP which bound strongly to the Con A column but passed through the WGA column, were significantly greater in BPH-derived PAP than in PCA-derived PAP. In contrast, the relative amounts of PAP which bound strongly to the Con A column and bound to the WGA column, were significantly greater in PCA-derived PAP than in BPH-derived PAP. The findings suggest that Asn-linked sugar-chain structures are altered during oncogenesis in human prostate and also suggest that studies of qualitative differences of sugar-chain structures of PAP might lead to a useful diagnostic tool for PCA.

  14. Purification by cobalamin-Sepharose affinity chromatography and intrinsic factor-binding activity of an extramembrane proteolytic product from pig ileal mucosa.

    PubMed Central

    Yerima, A; Safi, A; Gastin, I; Michalski, J C; Saunier, M; Gueant, J L

    1996-01-01

    We have purified a cobalamin-binding protein obtained by papain digestion of pig intestine by cobalamin-AH-Sepharose affinity chromatography, with a purification factor of 17,300, a yield of 63% and a cobalamin-binding activity of 11,260 pmol/mg of protein. The protein contained 3.8% carbohydrate and was O- and N-glycosylated. Its molecular mass was 69 kDa on SDS/PAGE and its isoelectric point was 5.1. It had a binding activity for both [57Co]cobalamin and [57Co]cobalamin-intrinsic factor in native PAGE autoradiography and it inhibited the binding of intrinsic factor to the intact intestinal receptor with an IC50 of 49.31 nmol/l in a radioisotope assay. In conclusion, the purified protein shared a binding activity for both cobalamin and intrinsic factor-cobalamin complexes and could correspond to the extracellular domain of the ileal intrinsic factor receptor. PMID:8573109

  15. Molecular insight in the purification of immunoglobulin by pseudobiospecific ligand l-histidine and histidyl moieties in histidine ligand affinity chromatography (HLAC) by molecular docking.

    PubMed

    Savane, Tushar S; Kumar, Sanjit; Janakiraman, Vignesh Narasimhan; Kamalanathan, Agamudi S; Vijayalakshmi, Mookambeswaran A

    2016-05-15

    Pseudobiospecific ligand l-histidine is an inexpensive, highly stable, non-toxic ligand explored successfully over the last twenty years for the purification of immunoglobulins in immobilised histidine ligand affinity chromatography. It is of great interest to know the molecular recognition sites of IgG to immobilized l-histidine. Here, we have used an in silico approach to explore the molecular recognition of l-histidine by IgG. We have assessed the feasible binding modes of histidine and its moieties at different sites of IgG and considered only those binding conformations which are exhibited via the imidazole ring NH group or any other OH donating group apart from the ones which are terminally conjugated with the support matrix. We categorised binding site into two categories; category I: inner binding groove and category II: surface binding groove and observed that the hinge region of IgG has most favourable binding pocket for l-histidine and histidyl moieties. Ser and Tyr residues on the hinge region make several significant interactions with l-histidine and histidyl moieties. In case of Fc region of IgG, l-histidine and histidyl moieties closely resemble the binding modes of Protein A, biomimetic ligand 22/8 and B domain of SpA to IgG. In addition to these we have also observed a significant binding site for l-histidine and histidyl moieties at Fab region of IgG.

  16. Enantioseparation of phenotiazines by affinity electrokinetic chromatography using human serum albumin as chiral selector: application to enantiomeric quality control in pharmaceutical formulations.

    PubMed

    Martínez-Gómez, María Amparo; Sagrado, Salvador; Villanueva-Camañas, Rosa María; Medina-Hernández, Maria José

    2007-01-23

    Nowadays, there is a special interest within the pharmaceutical laboratories to develop single enantiomer formulations and consequently a need for analytical methods to determine the enantiomeric purity of drugs. The present paper deals with the enantiomeric separation of promethazine and trimeprazine enantiomers by affinity electrokinetic chromatography (AEKC)-partial filling technique using human serum albumin (HSA) as chiral selector. A multivariate optimization of the most critical experimental variables in enantioresolution, running pH, HSA concentration and plug length, is carried out to obtain enantioresolution of promethazine and trimeprazine. The estimated maximum and optimum resolution of trimeprazine and prometazine enantiomers (Rs=1.74 and 2.01, respectively) corresponded to the following experimental conditions: pH 7.5; [HSA] 170 microM and plug length 190 s and pH 7.6; [HSA] 170 microM and plug length 170 s, for trimeprazine and prometazine, respectively. The developed methodologies were applied for the enantiomeric quality control of promethazine and trimeprazine enantiomers in commercially available pharmaceutical formulations. Resolution, accuracy, reproducibility, cost and sample throughput of the proposed methodologies make it suitable for quality control of the enantiomeric composition of promethazine and trimeprazine in pharmaceutical preparations.

  17. Penetrable silica microspheres for immobilization of bovine serum albumin and their application to the study of the interaction between imatinib mesylate and protein by frontal affinity chromatography.

    PubMed

    Ma, Liyun; Li, Jing; Zhao, Juan; Liao, Han; Xu, Li; Shi, Zhi-guo

    2016-01-01

    In the current study, novel featured silica, named penetrable silica, simultaneously containing macropores and mesopores, was immobilized with bovine serum albumin (BSA) via Schiff base method. The obtained BSA-SiO2 was employed as the high-performance liquid chromatographic (HPLC) stationary phase. Firstly, D- and L-tryptophan were used as probes to investigate the chiral separation ability of the BSA-SiO2 stationary phase. An excellent enantioseparation factor was obtained up to 4.3 with acceptable stability within at least 1 month. Next, the BSA-SiO2 stationary phase was applied to study the interaction between imatinib mesylate (IM) and BSA by frontal affinity chromatography. A single type of binding site was found for IM with the immobilized BSA, and the hydrogen-bonding and van der Waals interactions were expected to be contributing interactions based on the thermodynamic studies, and this was a spontaneous process. Compared to the traditional silica for HPLC stationary phase, the proposed penetrable silica microsphere possessed a larger capacity to bond more BSA, minimizing column overloading effects and enhancing enantioseparation ability. In addition, the lower running column back pressure and fast mass transfer were meaningful for the column stability and lifetime. It was a good substrate to immobilize biomolecules for fast chiral resolution and screening drug-protein interactions.

  18. Recognition and binding of β-lactam antibiotics to bovine serum albumin by frontal affinity chromatography in combination with spectroscopy and molecular docking.

    PubMed

    Li, Qian; Zhang, Tianlong; Bian, Liujiao

    2016-03-01

    Serum albumins are the most abundant carrier proteins in blood plasma and participate in the binding and transportation of various exogenous and endogenous compounds in the body. This work was designed to investigate the recognition and binding of three typical β-lactam antibiotics including penicillin G (Pen G), penicillin V (Pen V) and cefalexin (Cef) with bovine serum albumin (BSA) by frontal affinity chromatography in combination with UV-vis absorption spectra, fluorescence emission spectra, binding site marker competitive experiment and molecular docking under simulated physiological conditions. The results showed that a BSA only bound with one antibiotic molecule in the binding process, and the binding constants for Pen G-BSA, Pen V-BSA and Cef-BSA complexes were 4.22×10(1), 4.86×10(2) and 3.32×10(3) (L/mol), respectively. All the three β-lactam antibiotics were mainly inserted into the subdomain IIA (binding site 1) of BSA by hydrogen bonds and Van der Waals forces. The binding capacity between the antibiotics and BSA was closely related to the functional groups and flexibility of side chains in antibiotics. This study provided an important insight into the molecular recognition and binding interaction of BSA with β-lactam antibiotics, which may be a useful guideline for the innovative clinical medications and new antibiotic designs with effective pharmacological properties.

  19. Development and characterization of the α3β4α5 nicotinic receptor cellular membrane affinity chromatography column and its application for on line screening of plant extracts

    PubMed Central

    Ciesla, L.; Okine, M.; Rosenberg, A.; Dossou, K.S.S.; Toll, L.; Wainer, I.W.; Moaddel, R.

    2016-01-01

    The α3β4α5 nAChR has been recently shown to be a useful target for smoking cessation pharmacotherapies. Herein, we report on the development and characterization of the α3β4α5 nicotinic receptor column by frontal displacement chromatography. The binding affinity of the nicotine and minor alkaloids found in tobacco smoke condensates were determined for both the α3β4 and α3β4α5 nicotinic receptors. It was demonstrated that while no subtype selectivity was observed for nicotine and nornicotine, anabasine was selective for the α3β4α5 nicotinic receptor. The non-competitive inhibitor binding site was also studied and it was demonstrated while mecamylamine was not selective between subtypes, buproprion showed subtype selectivity for the α3β4 nicotinic receptor. The application of this methodology to complex mixtures was then carried out by screening aqueous-alcoholic solutions of targeted plant extracts, including Lycopodium clavatum L. (Lycopodiaceae) and Trigonella foenum graecum L. (Fabaceae) against both the α3β4 and α3β4α5 nAChRs. PMID:26774122

  20. Designed synthesis of Graphene @titania @mesoporous silica hybrid material as size-exclusive metal oxide affinity chromatography platform for selective enrichment of endogenous phosphopeptides.

    PubMed

    Yao, Jizong; Sun, Nianrong; Deng, Chunhui; Zhang, Xiangming

    2016-04-01

    In this work, a novel size-exclusive metal oxide affinity chromatography (SE-MOAC) platform was built for phosphoproteome research. The operation for preparing graphene @titania @mesoporous silica nanohybrids (denoted as G@TiO2@mSiO2) was facile and easy to conduct by grafting titania nanoparticles on polydopamine (PD)-covered graphene, following a layer of mesoporous silica was coated on the outermost layer. The G@TiO2@mSiO2 nanohybrids exhibited high sensitivity with a low detection limit of 5 amol/μL (a total amount of 1 fmol) and high selectivity for phosphopeptides at a mass ratio of phosphopeptides to non-phosphopeptides (1:1000). The size-exclusive capability of the nanohybrids were also demonstrated by enriching the phosphopeptides from the mixture of Bovine Serum Albumin (BSA), α-casein, and β-casein digests with a high mass ratio (β-casein digests: α-casein: BSA, 1:500:500), which was attributed to the large surface area and ordered mesoporous channels. In addition, the G@TiO2@mSiO2 nanohybrids were employed to capture the endogenous phosphopeptides from human serum successfully.

  1. Affinity in electrophoresis.

    PubMed

    Heegaard, Niels H H

    2009-06-01

    The journal Electrophoresis has greatly influenced my approaches to biomolecular affinity studies. The methods that I have chosen as my main tools to study interacting biomolecules--native gel and later capillary zone electrophoresis--have been the topic of numerous articles in Electrophoresis. Below, the role of the journal in the development and dissemination of these techniques and applications reviewed. Many exhaustive reviews on affinity electrophoresis and affinity CE have been published in the last few years and are not in any way replaced by the present deliberations that are focused on papers published by the journal.

  2. Proteomic study of serum using gel chromatography and MALDI-TOF MS reveals diagnostic biomarkers in male patients with liver-cancer

    NASA Astrophysics Data System (ADS)

    Zeng, Xin-Hua; Huang, He-Qing; Chen, Dong-Shi; Jin, Hong-Wei; Huang, Hui-Ying

    2007-03-01

    Human serum has been widely employed clinically for diagnosing various fatal diseases. However, the concentration of most proteins in human serum is too low to be directly measured using normal analytical methods. In order to obtain reliable analytical results from proteomic analysis of human serum, appropriate sample preparation is essential. A combined off-line analytical technique of gel chromatography and matrix-assisted laser desorption ionization/time of flight mass spectrometry (MALDI-TOF MS) has been successfully established to separate proteins for MS analysis. Using these combined techniques, 176 mass signal peaks of proteins/peptides were found in 6 of 18 fractions from normal male serum (NMS) in the presence of buffer consisting of NH4HCO3 and acetonitrile. A simple gel chromatography column packed with Sephadex G-50 removed most signal-suppressing compounds such as salts and high abundance proteins (HAP). The molecular mass to charge (m/z) ratios of differential peptides revealed in serum of male patient with liver-cancer (LCMPS) compared to NMS were 5365, 5644 and 6462, and these peptides can be used as biomarkers to clinically diagnose liver-cancer. The simple and convenient chromatographic method described here is not only superior to recently described HPLC separation for MS analysis, but also reveals many novel and significant serum biomarkers for the clinical diagnosis of various diseases.

  3. The synthesis and characterization of a nuclear membrane affinity chromatography column for the study of human breast cancer resistant protein (BCRP) using nuclear membranes obtained from the LN-229 cells.

    PubMed

    Habicht, K-L; Frazier, C; Singh, N; Shimmo, R; Wainer, I W; Moaddel, R

    2013-01-01

    BCRP expression has been reported in glioblastoma cell lines and clinical specimens and has been shown to be expressed both in purified nuclei and in the soluble cytoplasmic fraction. To date, the nuclear BCRP has not been characterized. Our laboratory has previously developed an online chromatographic approach for the study of binding interactions between ligands and protein, cellular membrane affinity chromatography. To this end, we have immobilized the nuclear membrane fragments onto an immobilized artificial membrane stationary phase (IAM), resulting in the nuclear membrane affinity chromatography (NMAC) column. Initial characterization was carried out on the radio flow detector, as well as the LC-MSD, using frontal displacement chromatography techniques. Etoposide, a substrate for BCRP, was initially tested, to determine the functional immobilization of BCRP. Frontal displacement experiments with multiple concentrations of etoposide were run and the binding affinity was determined to be 4.54 μM, which is in close agreement with literature. The BCRP was fully characterized on the NMAC column and this demonstrates that for the first time the nuclear membranes have been successfully immobilized.

  4. Biospecific affinity chromatography of an adenosine 3′:5′-cyclic monophosphate-stimulated protein kinase (protamine kinase from trout testis) by using immobilized adenine nucleotides

    PubMed Central

    Jergil, Bengt; Guilford, Hugh; Mosbach, Klaus

    1974-01-01

    1. Two adenine nucleotides, 8-(6-aminohexyl)aminoadenosine 3′:5′-cyclic monophosphate and 8-(6-aminohexyl)amino-AMP, were synthesized. Their structures were established in particular by using mass spectroscopy. 2. Free cyclic AMP and 8-(6-aminohexyl)amino cyclic AMP both stimulate protamine kinase activity at low concentrations, but are inhibitory at concentrations above 0.1mm. AMP is an inhibitor of enzymic activity, whereas neither 8-(6-aminohexyl)amino-AMP nor the earlier synthesized N6-(6-aminohexyl)-AMP is inhibitory. 3. The nucleotides were coupled to Sepharose 4B and used for biospecific chromatography of partially purified protamine kinase. Enzyme applied at high buffer concentrations to the cyclic AMP–Sepharose material was retarded and thereby purified tenfold. At low buffer concentrations the enzyme was adsorbed to the affinity material, and was subsequently released by a pulse of the inhibitor AMP, yielding a 50–100-fold purification. Enzyme applied to immobilized 8-(6-aminohexyl)amino-AMP or N6-(6-aminohexyl)-AMP was eluted together with the main protein peak in the void volume. 4. Protamine kinase eluted from 8-(6-aminohexyl)amino cyclic AMP–Sepharose was no longer activated by cyclic AMP. Results from sucrose gradient centrifugation suggest that a dissociation of the enzyme took place on the immobilized nucleotide. 5. Further information on the mass spectroscopy has been deposited as Supplementary Publication SUP 50026 at the British Library (Lending Division) (formerly the National Lending Library for Science and Technology), Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies may be obtained on the terms given in Biochem. J. (1973) 131, 5. PMID:4374933

  5. Simultaneous speciation of selenoproteins and selenometabolites in plasma and serum by dual size exclusion-affinity chromatography with online isotope dilution inductively coupled plasma mass spectrometry.

    PubMed

    García-Sevillano, M A; García-Barrera, T; Gómez-Ariza, J L

    2014-04-01

    A method for the simultaneous speciation of selenoproteins and selenometabolites in mouse plasma has been developed based on in series two-dimensional size exclusion and affinity high-performance liquid chromatography (2D/SE-AF-HPLC), using two columns of each type, and hyphenation to inductively coupled plasma-(quadrupole) mass spectrometry (ICP-QMS). The method allows the quantitative determination of selenoprotein P (SeP), extracellular glutathione peroxidase (eGPx), selenoalbumin (SeAlb), and selenometabolites in mouse plasma using species-unspecific isotope dilution (SUID). The 2D chromatographic separation is proposed to remove typical spectral interferences in plasma from chloride and bromide on (77)Se ((40)Ar(37)Cl) and (82)Se ((81)Br(1)H). In addition, the approach increases chromatographic resolution allowing the separation of eGPx from Se metabolites of low molecular mass. The method is robust, reliable, and fast with a typical chromatographic runtime less than 20 min. Precision in terms of relative standard deviation (n = 5) is in the order of 4 %, and detection limits are in the range of 0.2 to 1.0 ng Se g(-1). Method accuracy for determination of total protein bound to Se was assessed by analyzing human serum reference material (BCR-637) certified for total Se content, and latterly applied to mouse plasma (Mus musculus). In summary, a reliable speciation method for the analysis of eGPx, selenometabolites, SeP, and SeAlb in plasma/serum samples is proposed for the first time and is applicable to the evaluation of Se status in human in clinical studies and other mammals for environmental or toxicological assessment.

  6. Simultaneous determination of polycyclic aromatic hydrocarbons and tobacco-specific N-nitrosamines in mainstream cigarette smoke using in-pipette-tip solid-phase extraction and on-line gel permeation chromatography-gas chromatography-tandem mass spectrometry.

    PubMed

    Luo, Yan-Bo; Chen, Xiao-Jing; Zhang, Hong-Fei; Jiang, Xing-Yi; Li, Xue; Li, Xiang-Yu; Zhu, Feng-Peng; Pang, Yong-Qiang; Hou, Hong-Wei

    2016-08-19

    In this study, a silica/primary secondary amine (SiO2/PSA) was used as an in-pipette-tip solid phase extraction (SPE) sorbent for the simultaneous determination of polycyclic aromatic hydrocarbons (PAHs) and tobacco-specific N-nitrosamines (TSNAs) in mainstream cigarette smoke (MSS). We investigated several parameters including an extraction procedure of total particulate matter, type and amount of sorbent and on-line gel permeation chromatography parameters to obtain optimum conditions for a new strategy to target analytes. Under the optimized conditions, we developed a method for the simultaneous determination of PAHs and TSNAs in MSS by coupling in-pipette-tip SPE procedures to an on-line gel permeation chromatography-gas chromatography-tandem mass spectrometry (on-line GPC-GC-MS(2)). Our method had limits of detection for target analytes ranging from 0.01 to 0.23ng/cig. Good linearities were obtained with coefficients of determination (R(2)) greater than 0.9984 for all target analytes. Good reproducibility was obtained as intra- and inter-day precisions, and the relative standard deviations were less than 11.4 and 13.3%, respectively. The recoveries were in the range of 77.1-108.6% at different concentrations for real samples. Compared to previous standard methods for the determination of PAHs and TSNAs in MSS, our method was highly effective, fast, and had low consumption of organic solvent and a high degree of automation. Finally, our method successfully analyzed PAHs and TSNAs in real samples, and no significant deviations were observed when compared to similar analysis using standard methods.

  7. Equilibrium Gel Filtration Chromatography for the Measurement of Protein-Ligand Binding in the Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Craig, Douglas B.

    2005-01-01

    A laboratory exercise used in the senior biochemistry course at the University of Winnipeg for three years is discussed. It combines liquid chromatography and absorbance spectroscopy and also allows the students to produce a quantitative result within a single three-hour period.

  8. Simultaneous high-throughput determination of interaction kinetics for drugs and cyclodextrins by high performance affinity chromatography with mass spectrometry detection.

    PubMed

    Wang, Caifen; Wang, Xiaobo; Xu, Xiaonan; Liu, Botao; Xu, Xu; Sun, Lixin; Li, Haiyan; Zhang, Jiwen

    2016-02-25

    The individual determination of the apparent dissociation rate constant (kd,app) using high performance affinity chromatography (HPAC) is a tedious process requiring numerous separate tests and massive data fitting, unable to provide the apparent association rate constant (ka) and equilibrium binding constant (Ka). In this study, a HPAC with mass spectrometry detection (HPAC-MS/MS) was employed to determine the drug-cyclodextrin (CD) interaction kinetics with low sample loading quantity (<10 ng per injection for single compound) and high-throughput yield as twenty drugs determined in one injection. The kd,app measured by HPAC-MS/MS approach were 0.89 ± 0.07, 4.34 ± 0.01, 1.48 ± 0.01 and 7.77 ± 0.04 s(-1) for ketoprofen, trimethoprim, indapamide and acetaminophen, with kd,app for acetaminophen consistent with that from the HPAC method with UV detector in our previous studies. For twenty drugs with diverse structures and chemical properties, good correlationship was found between kd,app measured by single compound analysis method and high-throughput HPAC-MS/MS approach, with the correlation coefficient of 0.987 and the significance F less than 0.001. Comprehensive quantification of ka,app, kd,app and Ka values was further performed based on the measurement of kd,app by peak profiling method and Ka by the peak fitting method. And the investigation of the drug-CD interaction kinetics under different conditions indicated that the column temperature and mobile phase composition significantly affected the determination of ka,app, kd,app and Ka while also dependent on the acidity and basicity of drugs. In summary, the high-throughput HPAC-MS/MS approach has been demonstrated high efficiency in determination of the drug-CD primary interaction kinetic parameter, especially, kd,app, being proven as a novel tool in screening the right CD for the solubilization of the right drug.

  9. Determination of deoxynivalenol in organic and conventional food and feed by sol-gel immunoaffinity chromatography and HPLC-UV detection.

    PubMed

    Klinglmayr, Christine; Nöbauer, Katharina; Razzazi-Fazeli, Ebrahim; Cichna-Markl, Margit

    2010-01-15

    The paper describes the determination of deoxynivalenol (DON) in 55 wheat food and feed samples, 26 from conventional and 29 from organic production. Immunoaffinity columns prepared by entrapping anti-DON antibodies by the sol-gel method were used for sample clean-up. DON was quantified by high performance liquid chromatography (HPLC) and ultraviolet (UV) detection. In general, the incidence of DON contamination was rather low. In eight samples (14.5%) the DON concentration was above the LOQ (380ng/g), in six samples (10.9%) DON was detected but could not be quantified (>LOD (200ng/g), LOQ. The data indicate both a higher incidence of DON contamination and higher DON concentrations in food and feed samples from conventional than in those from organic production.

  10. Selective filling for patterning in microfluidic channels and integration of chromatography in "lab-on-a-chip" devices using sol-gel technology

    NASA Astrophysics Data System (ADS)

    Jindal, Rohit

    The last decade has seen tremendous advancement in the development of miniaturized chemical analysis system also known as "lab-on-a-chip". It is believed that the true potential of these devices will be achieved by integrating various functions such as separation, reaction, sensing, mixing, pumping, injection and detection onto a single chip. The ability to pattern different functionalities is indispensable for the development of highly integrated devices. In this work, a simple method based on the concept of selective filling is described for patterning in the microfluidic channels. It is based on the difference in the free energy of filling between an open and a covered part of the channel. This method was used for the integration of chromatography in the microfluidic devices. A chromatographic column was realized by utilizing sol-gel as an immobilization matrix for entrapping reversed phase chromatographic particles. Localization of the stationary phase was achieved using the selective filling technique. Channels were fabricated in quartz using photolithography and wet etching. Electroosmotic flow was used for manipulating fluid movement in the channels. Cross channel design was used for making a pulse injection of the solutes in the separation channel. An optical fiber setup was developed for carrying out on-chip UV absorbance detection. Stationary phase was created under different sol-gel synthesis conditions. It was established that the sol-gel synthesis carried out under acidic conditions provides the optimum synthesis conditions for creating separation column. Chromatographic performance of the stationary phase material was demonstrated by separating peptides present in a mixture. The sol-gel immobilization method was extended for the integration of micropump in the chip. The micropump enables pumping of the fluid in field free channels. Preliminary results, demonstrating the potential of carbon nanotubes as a support material in the microfluidic channels

  11. Tetraazacalix[2]arene[2]triazine modified silica gel: a novel multi-interaction stationary phase for mixed-mode chromatography.

    PubMed

    Zhao, Wenjie; Wang, Wenjing; Chang, Hong; Cui, Shiwei; Hu, Kai; He, Lijun; Lu, Kui; Liu, Jinxia; Wu, Yangjie; Qian, Jiang; Zhang, Shusheng

    2012-08-17

    A novel multi-interaction and mixed-mode stationary phase based on tetraazacalix[2]arene[2]triazine modified silica (NCS) was synthesized and characterized by infrared spectra, elemental analysis and thermogravimetric analysis. Mechanism involved in the chromatographic separation is the multi-interaction including hydrophobic, π-π, hydrogen-bonding, inclusion and anion-exchange interactions. Based on these interactions, successful separation could be achieved among polycyclic aromatic hydrocarbons, aromatic position isomers, organic bases and phenols in reversed-phase chromatography. Inorganic anions were also shown to be individually separated in anion-exchange chromatography by using the same column. Moreover, the results here also demonstrated that NCS based stationary phase could effectively reduce the adverse effect of residual silanol in the separation process. Such stationary phase with characteristics of multi-interaction mechanism and mixed-mode separation is potential for the analysis of complex samples.

  12. Development and Application of a High-Performance Liquid Chromatography Stability-Indicating Assay for Beyond-Use Date Determination of Compounded Topical Gels Containing Multiple Active Drugs.

    PubMed

    Gorman, Gregory; Sokom, Simara; Coward, Lori; Arnold, John J

    2017-01-01

    Topical gels compounded by pharmacists are important clinical tools for the management of pain. Nevertheless, there is often a dearth of information about the chemical stability of drugs included in these topical formulations, complicating the assignment of beyond-use dating. The purpose of this study was to develop a high-performance liquid chromatography photodiode array-based stability-indicating assay that could simultaneously resolve six drugs (amitriptyline, baclofen, clonidine, gabapentin, ketoprofen, lidocaine) commonly included in topical gels for pain management and their potential degradation products. Furthermore, this method was applied to the determination of beyond-use dating of combinations of these drugs prepared in commonly utilized bases (Lipobase, Lipoderm, Pluronic organogel). Gabapentin was determined to be the least stable component in all formulations tested. Measured stability ranged between 7 to 49 days depending on the base and other active drugs present in the formulation. In the absence of gabapentin, baclofen was the next least stable component, lasting for 120 days, regardless of the type of formulating base used.

  13. Large-scale identification of proteins in human salivary proteome by liquid chromatography/mass spectrometry and two-dimensional gel electrophoresis-mass spectrometry.

    PubMed

    Hu, Shen; Xie, Yongming; Ramachandran, Prasanna; Ogorzalek Loo, Rachel R; Li, Yang; Loo, Joseph A; Wong, David T

    2005-04-01

    Human saliva contains a large number of proteins and peptides (salivary proteome) that help maintain homeostasis in the oral cavity. Global analysis of human salivary proteome is important for understanding oral health and disease pathogenesis. In this study, large-scale identification of salivary proteins was demonstrated by using shotgun proteomics and two-dimensinal gel electrophoresis-mass spectrometry (2-DE-MS). For the shotgun approach, whole saliva proteins were prefractionated according to molecular weight. The smallest fraction, presumably containing salivary peptides, was directly separated by capillary liquid chromatography (LC). However, the large protein fractions were digested into peptides for subsequent LC separation. Separated peptides were analyzed by on-line electrospray tandem mass spectrometry (MS/MS) using a quadrupole-time of flight mass spectrometer, and the obtained spectra were automatically processed to search human protein sequence database for protein identification. Additionally, 2-DE was used to map out the proteins in whole saliva. Protein spots 105 in number were excised and in-gel digested; and the resulting peptide fragments were measured by matrix-assisted laser desorption/ionization-mass spectrometry and sequenced by LC-MS/MS for protein identification. In total, we cataloged 309 proteins from human whole saliva by using these two proteomic approaches.

  14. Molecularly imprinted polymer-sol-gel tablet toward micro-solid phase extraction: I. Determination of methadone in human plasma utilizing liquid chromatography-tandem mass spectrometry.

    PubMed

    El-Beqqali, Aziza; Abdel-Rehim, Mohamed

    2016-09-14

    In the present work molecularly imprinted sol-gel tablet (MIP-Tablet) was prepared. The MIP-sol-gel was prepared as a thin layer on polyethylene material in a tablet form. Methadone-d9 was selected as the template and 3-(propylmethacrylate)-trimethoxysilane was used as precursor. MIP-Tablet was applied for micro-solid phase extraction (μ-SPE). The MIP-Tablet was used for the determination of methadone in human plasma samples utilizing liquid chromatography-tandem mass spectrometry; and each tablet could be used twenty times. The extraction time was 10 min while desorption time was 6 min. Factors affecting the extraction efficiency such as desorption solvents, sample pH, salt addition, extraction time, desorption time and adsorption capacity were investigated. The calibration curves were obtained within the range of 5-5000 ng/mL using methadone in human plasma samples. The coefficients of determination (r(2)) values were ≥0.999 for all runs and the extraction recovery was >80%. The accuracy values for quality control samples varied from +3.6 to +9.7% and the inter-day precision (RSD %) values were ranged from 5.0 to 8.0%. The limit of detection was 1.0 ng/mL and the lower limit of quantification was 5 ng/mL utilizing methadone in human plasma samples.

  15. Comparison of solid phase extraction, saponification and gel permeation chromatography for the clean-up of microwave-assisted biological extracts in the analysis of polycyclic aromatic hydrocarbons.

    PubMed

    Navarro, P; Cortazar, E; Bartolomé, L; Deusto, M; Raposo, J C; Zuloaga, O; Arana, G; Etxebarria, N

    2006-09-22

    The feasibility of different clean-up procedures was studied for the determination of polycyclic aromatic hydrocarbons (PAHs) in biota samples such as oysters, mussels and fish liver. In this sense, once the samples were extracted--essentially with acetone and in a microwave system--and before they could be analysed by gas chromatography-mass spectrometry (GC-MS), three different approaches were studied for the clean-up step: solid phase extraction (SPE), microwave-assisted saponification (MAS) and gel permeation chromatography (GPC). The main aim of this work was to maximise the recoveries of PAHs and to minimise the presence of interfering compounds in the last extract. In the case of SPE, Florisil cartridges of 1, 2 and 5 g, and silica cartridges of 5 g were studied. In that case, and with oysters and mussels, microwave-assisted extraction and 5 g Florisil cartridges provided good results. In addition, the concentrations obtained for Standard Reference Material (SRM) NIST 2977 (mussel tissue) were in good agreement with the certified values. In the case of microwave-assisted saponification, the extracts were not as clean as those obtained with 5 g Florisil and this fact lead to overestimate the concentration of the heaviest PAHs. Finally, the cleanest extracts were obtained by GPC. The method was successfully applied to mussels, oysters and hake liver, and the results obtained for NIST 2977 (mussel tissue) were within the confidence interval of the certified reference material for most of the certified analytes.

  16. Molecularly imprinted sol-gel nanofibers based solid phase microextraction coupled on-line with high performance liquid chromatography for selective determination of acesulfame.

    PubMed

    Moein, Mohammad Mahdi; Javanbakht, Mehran; Karimi, Mohammad; Akbari-adergani, Behrouz

    2015-03-01

    Sol-gel based molecularly imprinted polymer (MIP) nanofiber was successfully fabricated by electrospinning technique on the surface of a stainless steel bar. The manufactured tool was applied for on-line selective solid phase microextraction (SPME) and determination of acesulfame (ACF) as an artificial sweetener with high performance liquid chromatography (HPLC). The selective ability of method for the extraction of ACF was investigated in the presence of some selected sweeteners such as saccharine (SCH), aspartame (ASP) and caffeine (CAF). Electrospinning of MIP sol-gel solution on the stainless steel bar provided an unbreakable sorbent with high thermal, mechanical, and chemical stability. Moreover, application of the MIP-SPME tool revealed a unique approach for the selective microextraction of the analyte in beverage samples. In this work, 3-(triethoxysilyl)-propylamine (TMSPA) was chosen as a precursor due to its ability to imprint the analyte by hydrogen bonding, Van der Walls, and dipole-dipole interactions. Nylon 6 was also added as a backbone and support for the precursor in which sol could greatly growth during the sol-gel process and makes the solution electrospinable. Various effective parameters in the extraction efficiency of the MIP-SPME tool such as loading time, flow rate, desorption time, selectivity, and the sample volume were evaluated. The linearity for the ACF in beverage sample was in the range of 0.78-100.5 ng mL(-1). Limit of detection (LOD) and quantification (LOQ) were 0.23 and 0.78 ng mL(-1) respectively. The RSD values (n=5) were all below 3.5%at the 20 ng mL(-1) level.

  17. [Ion exchange interactions on silica gel in thin-layer chromatography. IV. Plate investigations by UV spectroscopy].

    PubMed

    Volford, O; Takács, M; Vámos, J

    1996-05-01

    The properties of silica gel as stationary phase are determined mainly by siloxane, silanol and metal-silanate functional groups. The metals (Na, Ca etc.) getting into the product as trace elements in the course of manufacture may cause the appearance of artefacts. In our previous studies the ion exchange interactions between salt-type analytes and silanol or metal-silanate groups were investigated. It was found in the TLC test of the salts of organic acids and N-bases that the acids and bases are separated from their counter ions and accept protons from or donate to the silica gel layer. In the present paper several analytes of above type have been investigated in situ by remission spectroscopy. These are: phenobarbital, sulfinpyrazone, sulfucetamide, benzoic acid, salicylic acid, (and their Na-salts) and papaverine hydrochloride. Remission spectra were registered from the start spot directly after application and then from the spot after development with the CHCl3EtOH (9 + 1) mobile phase. Based on the difference between the remission spectra of protonated and deprotonated forms of the analytes, the deviations from the initial state could be established. On the basis of the shift of lambda max values one can conclude to the approximate ratio of the protonated (acid) and deprotonated (anion, base) form present in the examined points (middle or edge) of the chromatographic spot. Significantly different protonation states of the analytes were found in the start spots and in the developed spots. These findings are interpreted by the ion exchange interactions between the pharmacon and silica gel. The results provide a deeper insight into the mechanisms of TLC process.

  18. New silica gel-based monolithic column for nano-liquid chromatography, used in the HILIC mode.

    PubMed

    Silva, Raquel G C; Bottoli, Carla B G; Collins, Carol H

    2012-09-01

    This paper describes the synthesis and chromatographic and morphologic characterization of two monolithic silica nano-columns (50 µm i.d.) prepared by sol-gel processes, using hydrophilic interaction (HILIC) mode separations to evaluate their performance. Two types of monoliths were prepared by varying the precursors (tetraethoxysilane or a tetraethoxysilane-methyltrimethoxysilane mixture) and by changing the type of catalyst (urea and acetic acid or ammonium hydroxide). The monoliths were characterized by scanning electron microscopy, thermogravimetric analysis, infrared spectroscopy and nitrogen adsorption-desorption isotherms. The columns were tested for the separation of several mixtures, with the organically modified silica (ormosil) column successfully separating two challenging mixtures using HILIC conditions.

  19. Sample clean-up by sol-gel immunoaffinity chromatography for the determination of bisphenol A in food and urine.

    PubMed

    Cichna-Markl, Margit

    2012-02-01

    Bisphenol A (2,2-bis(4-hydroxyphenyl)propane, BPA) is an industrial chemical mainly used as a monomer in the synthesis of polycarbonates and epoxy resins. BPA has been shown to elicit estrogenic effects via binding to the nuclear estrogen receptors α and β. Food is considered as the major source of BPA exposure for the general human population. When incorporated into the body, BPA is metabolised in the liver, mainly to BPA glucuronide, and excreted via the urine. The present paper presents analytical methods for the determination of BPA concentrations in foodstuffs and the determination of free and total (free plus conjugated) BPA in urine samples. The paper provides protocols for the preparation and operation of sol-gel immunoaffinity columns and their application to remove interfering matrix compounds and to enrich BPA. In addition, the paper points out major sources of systematic errors in BPA analysis and describes how they can be avoided.

  20. Separation of single-walled carbon nanotubes by gel-based chromatography using surfactant step-gradient techniques and development of new instrumentation for studying SWCNT reaction processes

    NASA Astrophysics Data System (ADS)

    Breindel, Leonard M.

    Single-walled carbon nanotube (SWCNT) synthesis methods such as CoMoCATTM, HiPcoTM, pulsed laser vaporization (PLV), and catalytic chemical vapor deposition (CCVD) produce several different distributions of (n,m) SWCNT structures, where ( n,m) defines the nanotube diameter and chiral wrapping angle. Post-synthesis processing such as functionalization and/or separations must therefore be employed to yield high purity electronic or single (n,m) samples. Through the use of a surfactant gradient across a gel-based chromatographic column, separations of single (n,m) species can be achieved. Anionic surfactants such as SDS, SDBS, and AOT display different separation effectiveness for single (n,m) species. Results of near-infrared optical absorption for separated SWCNT surfactant suspensions will be discussed, leading to a broader understanding of the important factors necessary for the gel chromatography separation technique. In particular, the effects of SWCNT/surfactant micelle structure are found to be key to achieving fast, simple SWCNT electronic type separations. Additionally, development of new instrumentation for the near-infrared spectrofluorimetric analysis (NIR-SFA) of SWCNTs is useful to the advancement of fundamental SWCNT research and applications. NIR-SFA, for instance, allows for the (n,m) structures of a sample to be identified and monitored during the progress of a chemical reaction or separation experiment. Seeking to achieve the time resolutions necessary for such experiments, the design and optimizations of a system utilizing single-wavelength excitation by diode lasers coupled with a fast NIR detection system are presented.

  1. [Isolation and determination of the seeds of Pachyrrhizus errosus protein by high performance gel filtration chromatography (GFC)].

    PubMed

    Wu, H; Hao, B; Tang, G; Lin, Y

    1997-03-01

    From the seeds of Pachyrrhizus errosus, three protein constituents, namel PE1, PE2 and PE3, have been isolated and purified by extraction with 5mmol/L phosphate saline (0.9% NaCl) buffer (PB) at pH 7.2, and S-Sepharose Fast Flow Column (2.6cm x 15cm) chromatography which eluted with 5mmol/L phosphate buffer (pH 7.0) containing 1mmol/L NaCl. Three proteins were burther separated on two connected Protein-Pak 60+Protein-Pak 125 [7.5mm x 39cm, 10microm] columns with mobile phase of 0.2mol/L phosphate buffer (pH 6.5). The flow rate was kept constant at 0.8mL/min by YSB-2 type high press pump. The effluent was monitored at a wavelength of 280nm on photodiode array detector. These three proteins are proved to be homogeneous by SDS-PAGE, IEF and HPGFC experiments, and all present the typical absorption spectra in ultraviolet region. The moleculer weights of the three proteins are approxiamtely 33000D, 14500D and 14000D respectively by SDS-PAGE. But as using HPGFC analysis, the MW value of PE2 is 28000D. This indicates PE2 may be composed of two chains joined by disulfide bond, which is further proved from the latter amino acid composition analysis. The isoelectric points of three proteins are 4.5, 6.5 and 7.5 respectively by using IEF. The amion acids compositions of the three proteins were determined with OPA post-column derivatization/fluorescence detection.

  2. Measuring the molecular dimensions of wine tannins: comparison of small-angle X-ray scattering, gel-permeation chromatography and mean degree of polymerization.

    PubMed

    McRae, Jacqui M; Kirby, Nigel; Mertens, Haydyn D T; Kassara, Stella; Smith, Paul A

    2014-07-23

    The molecular size of wine tannins can influence astringency, and yet it has been unclear as to whether the standard methods for determining average tannin molecular weight (MW), including gel-permeation chromatography (GPC) and depolymerization reactions, are actually related to the size of the tannin in wine-like conditions. Small-angle X-ray scattering (SAXS) was therefore used to determine the molecular sizes and corresponding MWs of wine tannin samples from 3 and 7 year old Cabernet Sauvignon wine in a variety of wine-like matrixes: 5-15% and 100% ethanol; 0-200 mM NaCl and pH 3.0-4.0, and compared to those measured using the standard methods. The SAXS results indicated that the tannin samples from the older wine were larger than those of the younger wine and that wine composition did not greatly impact on tannin molecular size. The average tannin MWs as determined by GPC correlated strongly with the SAXS results, suggesting that this method does give a good indication of tannin molecular size in wine-like conditions. The MW as determined from the depolymerization reactions did not correlate as strongly with the SAXS results. To our knowledge, SAXS measurements have not previously been attempted for wine tannins.

  3. Purification of d-a-tocopheryl polyethylene glycol 1000 succinate (TPGS) by a temperature-modulated silica gel column chromatography: use of Taguchi method to optimize purification conditions.

    PubMed

    Chang, Yinzi; Cao, Yucheng; Zhang, Jin; Wen, Yangyi; Ren, Qilong

    2011-12-05

    The demand for high purity d-a-tocopheryl polyethylene glycol 1000 succinate (TPGS) is increasing with the exploitation of TPGS-related products. Previously, we synthesized a TPGS mixture by esterifying vitamin E succinate with polyethyleneglycol 1000. In this study, a temperature-modulated silica gel chromatographic column was used to purify the synthesized TPGS. Taguchi method was used to optimize purification conditions associated with column temperature, loading amount, feedstock concentration and flow rate of mobile phases. Purification efficacy under the Taguchi optimized conditions was predicted theoretically and the predicted results were verified experimentally. High-performance liquid chromatography was used to quantify the unpurified and purified TPGS. The Taguchi-based analysis separately produced an optimum combination of purification conditions for TPGS purity and recovery. Under the optimized conditions, both the theoretical prediction and the confirmatory experiment yielded TPGS purity and recovery approximating to 98% each. Impressively, the study also found that column temperature had a considerable effect on purification efficacy, in particular on TPGS purity, although it was a less influential factor compared to loading amount and feedstock concentration.

  4. High pH reversed-phase chromatography as a superior fractionation scheme compared to off-gel isoelectric focusing for complex proteome analysis.

    PubMed

    Stein, Derek R; Hu, Xiaojie; McCorrister, Stuart J; Westmacott, Garrett R; Plummer, Francis A; Ball, Terry B; Carpenter, Michael S

    2013-10-01

    MS/MS is the technology of choice for analyzing complex protein mixtures. However, due to the intrinsic complexity and dynamic range present in higher eukaryotic proteomes, prefractionation is an important step to maximize the number of proteins identified. Off-gel IEF (OG-IEF) and high pH RP (Hp-RP) column chromatography have both been successfully utilized as a first-dimension peptide separation technique in shotgun proteomic experiments. Here, a direct comparison of the two methodologies was performed on ex vivo peripheral blood mononuclear cell lysate. In 12-fraction replicate analysis, Hp-RP resulted in more peptides and proteins identified than OG-IEF fractionation. Distributions of peptide pIs and hydropathy did not reveal any appreciable bias in either technique. Resolution, defined here as the ability to limit a specific peptide to one particular fraction, was significantly better for Hp-RP. This leads to a more uniform distribution of total and unique peptides for Hp-RP across all fractions collected. These results suggest that fractionation by Hp-RP over OG-IEF is the better choice for typical complex proteome analysis.

  5. Influence of diet on the proteome of Drosophila melanogaster as assessed by two-dimensional gel electrophoresis and capillary liquid chromatography-mass spectrometry: the hamburger effect revisited.

    PubMed

    Culwell, Thomas F; Thulin, Craig D; Merrell, Karen J; Graves, Steven W

    2008-09-01

    Proteomic biomarker discovery has been called into question. Diamandis hypothesized that seemingly trivial factors, such as eating a hamburger, may cause sufficient proteomic change as to confound proteomic differences. This has been termed the hamburger effect. Little is known about the variability of complex proteomes in response to the environment. Two methods-two-dimensional gel electrophoresis (2DGE) and capillary liquid chromatography-electrospray ionization time-of-flight mass spectrometry (LCMS)-were used to study the hamburger effect in two cross-sections of the soluble fruit fly proteome. 2DGE measured abundant proteins, whereas LCMS measured small proteins and peptides. Proteomic differences between males and females were first evaluated to assess the discriminatory capability of the methods. Likewise, wild-type and white-eyed flies were analyzed as a further demonstration that genetically based proteomic differences could be observed above the background analytical variation. Then dietary interventions were imposed. Ethanol was added to the diet of some populations without significant proteomic effect. However, after a 24-h fast, proteomic differences were found using LCMS but not 2DGE. Even so, only three of approximately 1000 molecular species were altered significantly, suggesting that the influence of even an extreme diet change produced only modest proteomic variability, and that much of the fruit fly proteome remains relatively constant in response to diet. These experiments suggest that proteomics can be a viable approach to biomarker discovery.

  6. Thermally stable ionic liquid-based sol-gel coating for ultrasonic extraction-solid-phase microextraction-gas chromatography determination of phthalate esters in agricultural plastic films.

    PubMed

    Zhou, Xin; Shao, Xiao; Shu, Jian-jun; Liu, Ming-ming; Liu, Han-lan; Feng, Xiong-han; Liu, Fan

    2012-01-30

    A novel sol-gel-coated ionic liquid-based ([AMIM][N(SO(2)CF(3))(2)]-OH-TSO) fiber was successfully applied for the determination of phthalate esters (PAEs) in agricultural plastic films by ultrasonic extraction (UE) combined with solid phase microextraction-gas chromatography (SPME-GC) due to its high thermal stability, specific selectivity and extraction efficiency. The extractant for UE and the adsorption time for SPME were optimized to achieve higher extraction efficiency. The desorption temperature and time were also optimized to avoid the carryover effect of previous extraction, and ultimately improve the precision and accuracy of the method. The [AMIM][N(SO(2)CF(3))(2)]-OH-TSO fiber showed comparable, or even higher response to most of the investigated PAEs than the commercial PDMS, PDMS-DVB and PA fibers. The carryover problem, often encountered when using commercial fibers, had been eliminated when desorption was performed at 360°C for 8 min. The proposed SPME-GC method showed good linearity over three to four orders of magnitude, and low limits of detection ranged from 0.003 to 0.063 μg L(-1). The relative standard deviation values obtained were below 10%, and the recoveries were in the ranges of 90.2-111.4%. Some of the PAEs studied were detected at very high concentration in these agricultural plastic film samples, resulting in a potential risk of crop damage, environmental contamination and human health exposure.

  7. Physicochemical properties of silica gel coated with a thin layer of polyaniline (PANI) and its application in non-suppressed ion chromatography.

    PubMed

    Sowa, Ireneusz; Kocjan, Ryszard; Wójciak-Kosior, Magdalena; Swieboda, Ryszard; Zajdel, Dominika; Hajnos, Mieczysław

    2013-10-15

    Physicochemical properties of a new sorbent and its potential application in non-suppressed ion chromatography (IC) have been investigated. The sorbent was obtained in a process of covering silica gel particles with a film of polyaniline (PANI). The properties of silica modified with polyaniline such as particle size, porosity, average quantity of polyaniline covering carrier and density of sorbent were determined. In our study the following methods were used: microscopic analysis, laser diffraction technique, combustion analysis, mercury porosimetry and helium pycnometry. Column with the newly obtained packing was used for the separation of inorganic anions. Optimized chromatographic system was successfully employed for analysis of iodide and bromide in selected pharmaceutical products (Bochnia salt and Iwonicz salt) applied in chronic respiratory disease. Analysis was carried out using 0.1M solution of HCl in mixture of methanol/water (50:50v/v) as a mobile phase; the flow rate was 0.3 mL min(-1), temperature was 24°C and λ=210 nm. Validation parameters such as correlation coefficient, RSD values, recovery, detection and quantification limits were found to be satisfactory.

  8. Improved Quantitation of Gluten in Wheat Starch for Celiac Disease Patients by Gel-Permeation High-Performance Liquid Chromatography with Fluorescence Detection (GP-HPLC-FLD).

    PubMed

    Scherf, Katharina Anne; Wieser, Herbert; Koehler, Peter

    2016-10-12

    Purified wheat starch (WSt) is commonly used in gluten-free products for celiac disease (CD) patients. It is mostly well-tolerated, but doubts about its safety for CD patients persist. One reason may be that most ELISA kits primarily recognize the alcohol-soluble gliadin fraction of gluten, but insufficiently target the alcohol-insoluble glutenin fraction. To address this problem, a new sensitive method based on the sequential extraction of gliadins, glutenins, and gluten from WSt followed by gel-permeation high-performance liquid chromatography with fluorescence detection (GP-HPLC-FLD) was developed. It revealed that considerable amounts of glutenins were present in most WSt. The gluten contents quantitated by GP-HPLC-FLD as sum of gliadins and glutenins were higher than those by R5 ELISA (gluten as gliadin content multiplied by a factor of 2) in 19 out of 26 WSt. Despite its limited selectivity, GP-HPLC-FLD may be applied as confirmatory method to ELISA to quantitate gluten in WSt.

  9. Determination of fatty acids in soil samples by gas chromatography with mass spectrometry coupled with headspace solid-phase microextraction using a homemade sol-gel fiber.

    PubMed

    Shuai, Qin; Ding, Xiaoxiao; Huang, Yunjie; Xu, Shuangshuang; Xu, Shengrui; Gao, Qiang; Deng, Haidong

    2014-11-01

    Through the use of a homemade sol-gel-derived fiber, a headspace solid-phase microextraction technique coupled to gas chromatography with mass spectrometry was developed for the determination of fatty acids with long, even-numbered carbon chains (C12 -C24 ) in soil samples. The experimental parameters such as reaction time, temperature, and ionic strength that might affect derivatization, extraction, and desorption were investigated. Under the optimized conditions, the linearity of the method ranged from 0.1 to 100 mg/L with a correlation coefficient >0.997. The limit of detection values based on a signal-to-noise ratio of 3:1 were determined with the concentration from 0.39 to 39.4 μg/L. The recoveries of the method for the soil samples were from 91.15 to 108.1%. This developed method using a homemade fiber showed a higher sensitivity than that using a commercial polydimethylsiloxane fiber and was also for the analysis of real soil samples from the Paomaling geological park of China.

  10. The synthesis and characterization of cellular membrane affinity chromatography columns for the study of human multidrug resistant proteins MRP1, MRP2 and human breast cancer resistant protein BCRP using membranes obtained from Spodoptera frugiperda (Sf9) insect cells.

    PubMed

    Bhatia, Prateek A; Moaddel, Ruin; Wainer, Irving W

    2010-06-15

    CMAC (cellular membrane affinity chromatography columns) have been developed for the study of the human multidrug transporters MRP1, MRP2 and the breast cancer resistance protein (BCRP). The columns were constructed using the immobilized artificial membrane (IAM) stationary phase and cellular membrane fragments obtained from Spodoptera frugiperda (Sf9) cells that had been stably transfected with human Mrp1, Mrp2 or Bcrp cDNA, using a baculovirus expression system. The resulting CMAC(Sf9(MRP1)), CMAC(Sf9(MRP2)) and CMAC(Sf9(BCRP)) columns and a control column produced using membrane fragments from non-transfected Sf9 cells, CMAC(Sf9), were characterized using frontal affinity chromatography using [(3)H]-etoposide as the marker ligand and etoposide, benzbromarone and MK571 as the displacers on the CMAC(Sf9(MRP1)) column, etoposide and furosemide on the CMAC(Sf9(MRP2)) column and etoposide and fumitremorgin C on the CMAC(Sf9(BCPR)) column. The binding affinities (K(i) values) obtained from the chromatographic studies were consistent with the data obtained using non-chromatographic techniques and the results indicate that the immobilized MRP1, MRP2 and BCRP transporters retained their ability to selectively bind known ligands. (S)-verapamil displaced [(3)H]-etoposide on the CMAC(Sf9(MRP1)) column to a greater extent than (R)-verapamil and the relative IC(50) values of the enantiomers were calculated using the changes in the retention times of the marker. The observed enantioselectivity and calculated IC(50) values were consistent with previously reported data. The results indicated that the CMAC(Sf9(MRP1)), CMAC(Sf9(MRP2)) and CMAC(Sf9(BCRP)) columns can be used for the study of binding to the MRP1, MRP2 and BCRP transporters and that membranes from the Sf9 cell line can be used to prepare CMAC columns. This is the first example of the use of membranes from a non-mammalian cell line in an affinity chromatographic system.

  11. The study of the influence of temperature and initial glucose concentration on the fermentation process in the presence of Saccharomyces cerevisiae yeast strain immobilized on starch gels by reversed-flow gas chromatography.

    PubMed

    Lainioti, G Ch; Kapolos, J; Koliadima, A; Karaiskakis, G

    2012-01-01

    The technique of reversed-flow gas chromatography (RFGC) was employed for the determination of the alcoholic fermentation phases and of kinetic parameters for free and immobilized cell systems, at different initial glucose concentrations and temperature values. In addition to this, due to its considerable advantages over other techniques, RFGC was used for the characterization of a new biocatalyst, yeast cells immobilized on starch gel, and especially wheat starch gel. Immobilization of wine yeast Saccharomyces cerevisiae AXAZ-1 was accomplished on wheat and corn starch gels in order to prepare new biocatalysts with great interest for the fermentation industry. The RFGC led with great accuracy, resulting from a literature review, to the determination of reaction rate constants and activation energies at each phase of the fermentation processes. A maximum value of rate constants was observed at initial glucose concentration of 205 g/L, where a higher number of yeast cells was observed. The increase of glucose concentrations had a negative influence on the growth of AXAZ-1 cells and rate constants were decreased. The decrease of fermentation temperature caused a substantial reduction in the viability of immobilized cells as well as in rate constant values. Activation energies of corn starch gel presented lower values than those of wheat starch gel. However, the two supports showed higher catalytic efficiency than free cell systems, proving that starch gels may act as a promoter of the catalytic activity of the yeast cells involved in the fermentation process.

  12. Affinity-based target deconvolution of safranal

    PubMed Central

    2013-01-01

    Background and the purpose of the study Affinity-based target deconvolution is an emerging method for the identification of interactions between drugs/drug candidates and cellular proteins, and helps to predict potential activities and side effects of a given compound. In the present study, we hypothesized that a part of safranal pharmacological effects, one of the major constituent of Crocus sativus L., relies on its physical interaction with target proteins. Methods Affinity chromatography solid support was prepared by covalent attachment of safranal to agarose beads. After passing tissue lysate through the column, safranal-bound proteins were isolated and separated on SDS-PAGE or two-dimensional gel electrophoresis. Proteins were identified using MALDI-TOF/TOF mass spectrometry and Mascot software. Results and major conclusion Data showed that safranal physically binds to beta actin, cytochrome b-c1 complex sub-unit 1, trifunctional enzyme sub-unit beta and ATP synthase sub-unit alpha and beta. These interactions may explain part of safranal’s pharmacological effects. However, phenotypic and/or biological relevance of these interactions remains to be elucidated by future pharmacological studies. PMID:23514587

  13. Ultra-fast liquid chromatography with tandem mass spectrometry determination of ochratoxin A in traditional Chinese medicines based on vortex-assisted solid-liquid microextraction and aptamer-affinity column clean-up.

    PubMed

    Yang, Xihui; Hu, Yichen; Kong, Weijun; Chu, Xianfeng; Yang, Meihua; Zhao, Ming; Ouyang, Zhen

    2014-11-01

    A rapid, selective, and sensitive ultra-fast liquid chromatography with tandem mass spectrometry method was developed for the determination of ochratoxin A in traditional Chinese medicines based on vortex-assisted solid-liquid microextraction and aptamer-affinity column clean-up. Through optimizing the sample pretreatment procedures and chromatographic conditions, good linearity (r(2) ≥ 0.9993), low limit of detection (0.5-0.8 μg/kg), and satisfactory recovery (83.54-94.44%) expressed the good reliability and applicability of the established method in various traditional Chinese medicines. Moreover, the aptamer-affinity column, prepared in-house, showed an excellent feasibility owing to its specific identification of ochratoxin A in various kinds of selected traditional Chinese medicines. The maximum adsorption amount and applicability value were 188.96 ± 10.56 ng and 72.3%, respectively. The matrix effects were effectively eliminated, especially for m/z 404.2→358.0 of ochratoxin A. The application of the developed method for screening the natural contamination levels of ochratoxin A in 25 random traditional Chinese medicines on the market in China indicated that only eight samples were contaminated with low levels below the legal limit (5.0 μg/kg) set by the European Union. This study provided a preferred choice for the rapid and accurate monitoring of ochratoxin A in complex matrices.

  14. Rat small-intestinal β-galactosidases. Studies on the fractionation of `acid' β-galactosidase with isoelectric focusing, gel filtration and ion-exchange chromatography

    PubMed Central

    Asp, Nils-Georg

    1970-01-01

    1. Different forms of the rat small-intestinal `acid' β-galactosidase were separated by using the isoelectric-focusing technique. The isoelectric points of the different forms were at pH4.2, 4.6, 5.4, 6.1 and approx. 8. 2. The two forms of `acid' β-galactosidase isoelectric at pH4.2 and 4.6 were completely excluded from the Sephadex G-200 gel, whereas the form isoelectric at pH8 had Kav. 0.4. The concentration and pH of the elution buffer influenced the distribution of enzyme activity between different forms. Thus, under certain conditions of ionic strength and pH, the enzyme seems to form high-molecular-weight aggregates with low isoelectric points. These may be homopolymeric aggregates or the result of binding of enzyme to, for example, membrane fragments. The forms isoelectric at pH5.4 and 6.1 are probably aggregates of intermediate size. 3. During ion-exchange chromatography at pH6.0 one fraction of `acid' β-galactosidase was not retained on the column and was isoelectric at pH8 and another fraction was eluted when the buffer concentration in the eluate had increased to about 50mm. The main part of enzyme eluted in this second fraction was also isoelectric at pH8, indicating that the elution of this fraction is not a simple ion-exchange procedure but probably also involves a splitting of high-molecular-weight aggregates, originally retained because of their low isoelectric points. The enzyme subunits have a higher isoelectric point, and are therefore no longer bound to the ion-exchange resin. PMID:5420050

  15. Separation performance of cucurbit[7]uril in ionic liquid-based sol-gel coating as stationary phase for capillary gas chromatography.

    PubMed

    Wang, Xiaogang; Qi, Meiling; Fu, Ruonong

    2014-12-05

    Here we report the separation performance of a new stationary phase of cucurbit[7]uril (CB7) incorporated into an ionic liquid-based sol-gel coating (CB7-SG) for capillary gas chromatography (GC). The CB7-SG stationary phase showed an average polarity of 455, suggesting its polar nature. Abraham system constants revealed that its major interactions with analytes include H-bond basicity (a), dipole-dipole (s) and dispersive (l) interactions. The CB7-SG stationary phase achieved baseline separation for a wide range of analytes with symmetrical peak shapes and showed advantages over the conventional polar stationary phase that failed to resolve some critical analytes. Also, it exhibited different retention behaviors from the conventional stationary phase in terms of retention times and elution order. Most interestingly, in contrast to the conventional polar phase, the CB7-SG stationary phase exhibited longer retentions for analytes of lower polarity but relatively comparable retentions for polar analytes such as alcohols and phenols. The high resolving ability and unique retention behaviors of the CB7-SG stationary phase may stem from the comprehensive interactions of the aforementioned interactions and shape selectivity. Moreover, the CB7-SG column showed good peak shapes for analytes prone to peak tailing, good thermal stability up to 280°C and separation repeatability with RSD values in the range of 0.01-0.11% for intra-day, 0.04-0.41% for inter-day and 2.5-6.0% for column-to-column, respectively. As demonstrated, the proposed coating method can simultaneously address the solubility problem with CBs for the intended purpose and achieve outstanding GC separation performance.

  16. Electrophoretic Porosimetry of Sol-Gels

    NASA Technical Reports Server (NTRS)

    Snow, L. A.; Smith, D. D.; Sibille, L.; Hunt, A. J.; Ng, J.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    It has been hypothesized that gravity has an effect on the formation and resulting microstructure of sol-gels. In order to more clearly resolve the effect of gravity, pores may be non-destructively analyzed in the wet gel, circumventing the shrinkage and coarsening associated with the drying procedure. We discuss the development of an electrophoretic technique, analogous to affinity chromatography, for the determination of pore size distribution and its application to silica gels. Specifically a monodisperse charged dye is monitored by an optical densitometer as it moves through the wet gel under the influence of an electric field. The transmittance data (output) represents the convolution of the dye concentration profile at the beginning of the run (input) with the pore size distribution (transfer function), i.e. linear systems theory applies. Because of the practical difficulty in producing a delta function input dye profile we prefer instead to use a step function. Average pore size is then related to the velocity of this dye front, while the pore size distribution is related to the spreading of the front. Preliminary results of this electrophoretic porosimetry and its application to ground and space-grown samples will be discussed.

  17. Immobilized metal affinity chromatography in open-loop simulated moving bed technology: purification of a heat stable histidine tagged beta-glucosidase.

    PubMed

    Sahoo, Deepti; Andersson, Jonatan; Mattiasson, Bo

    2009-06-01

    Open-loop simulated moving bed (SMB) has been used for immobilized metal affinity chromatographic (IMAC) purification of his-tagged beta-glucosidase expressed in E. coli. A simplified approach based on an optimized single column protocol is used to design the open-loop SMB. A set of columns in the SMB represent one step in the chromatographic cycle i.e. there will be one set each of columns for load, wash, elution etc within the SMB. Only the wash and elution are operated with columns in sequence. The beta-glucosidase was purified to almost single band purity with a purification factor of 15 and a recovery of 91%. SMB-performance showed reduced buffer consumption, higher purification fold, a better yield and higher productivity.

  18. Studies with an immobilized metal affinity chromatography cassette system involving binuclear triazacyclononane-derived ligands: automation of batch adsorption measurements with tagged recombinant proteins.

    PubMed

    Petzold, Martin; Coghlan, Campbell J; Hearn, Milton T W

    2014-07-18

    This study describes the determination of the adsorption isotherms and binding kinetics of tagged recombinant proteins using a recently developed IMAC cassette system and employing automated robotic liquid handling procedures for IMAC resin screening. These results confirm that these new IMAC resins, generated from a variety of different metal-charged binuclear 1,4,7-triaza-cyclononane (tacn) ligands, interact with recombinant proteins containing a novel N-terminal metal binding tag, NT1A, with static binding capacities similar to those obtained with conventional hexa-His tagged proteins, but with significantly increased association constants. In addition, higher kinetic binding rates were observed with these new IMAC systems, an attribute that can be positively exploited to increase process productivity. The results from this investigation demonstrate that enhancements in binding capacities and affinities were achieved with these new IMAC resins and chosen NT1A tagged protein. Further, differences in the binding performances of the bis(tacn) xylenyl-bridged ligands were consistent with the distance between the metal binding centres of the two tacn moieties, the flexibility of the ligand and the potential contribution from the aromatic ring of the xylenyl group to undergo π/π stacking interactions with the tagged proteins.

  19. [Analysis of rice leaves proteomes by liquid chromatography-tandem, mass spectrometry based on the purification using a novel affinity detergent removal spin column].

    PubMed

    Cao, Xiaolin; Gong, Jiadi; Chen, Mingxue; Yu, Shasha; Bian, Yingfang; Cao, Zhaoyun

    2014-11-01

    A purification method was established for the analysis of proteomes in rice leaves based on a novel detergent removal spin column (DRSC). The proteins were extracted by phenol protein extraction method followed by sodium dodecyl sulfate (SDS) lysis. The lysate was purified by the detergent removal spin column and the enzymolytic peptides were detected by the nanoflow liquid chromatography-hybrid linear trap quadrupole orbitrap mass spectrometry (nanoLC-LTQ/Orbitrap). In terms of SDS removal efficiencies and protein identification, the method of DRSC was compared with those of filter aided sample preparation (FASP) and acetone precipitation. As a result, there were good efficiencies ( > 95%) of SDS removal for the three methods. With the DRSC purification strategy, 563 proteins were identified from rice leaves, while only 196 and 306 proteins were identified by FASP and acetone precipitation procedures respectively, in spite of certain complementarities among these identified proteins by the three methods. DRSC is suitable for proteins with various relative molecular masses and pI values. However, there were similar losses of proteins with different relative molecular masses and pI values with the other two methods. Using the established method, 588 proteins were identified by once injection analysis. According to the molecular functions, 296 proteins with at least two identified peptides can be classified into eight categories with binding activity, enzyme activity, transporter activity, inhibitor activity, structural constitute, catalytic activity, other and unknown functions. The method provides technical reference for conducting rice proteomes.

  20. Role of DNA Repair Factor Xeroderma Pigmentosum Protein Group C in Response to Replication Stress As Revealed by DNA Fragile Site Affinity Chromatography and Quantitative Proteomics.

    PubMed

    Beresova, Lucie; Vesela, Eva; Chamrad, Ivo; Voller, Jiri; Yamada, Masayuki; Furst, Tomas; Lenobel, Rene; Chroma, Katarina; Gursky, Jan; Krizova, Katerina; Mistrik, Martin; Bartek, Jiri

    2016-12-02

    Replication stress (RS) fuels genomic instability and cancer development and may contribute to aging, raising the need to identify factors involved in cellular responses to such stress. Here, we present a strategy for identification of factors affecting the maintenance of common fragile sites (CFSs), which are genomic loci that are particularly sensitive to RS and suffer from increased breakage and rearrangements in tumors. A DNA probe designed to match the high flexibility island sequence typical for the commonly expressed CFS (FRA16D) was used as specific DNA affinity bait. Proteins significantly enriched at the FRA16D fragment under normal and replication stress conditions were identified using stable isotope labeling of amino acids in cell culture-based quantitative mass spectrometry. The identified proteins interacting with the FRA16D fragment included some known CFS stabilizers, thereby validating this screening approach. Among the hits from our screen so far not implicated in CFS maintenance, we chose Xeroderma pigmentosum protein group C (XPC) for further characterization. XPC is a key factor in the DNA repair pathway known as global genomic nucleotide excision repair (GG-NER), a mechanism whose several components were enriched at the FRA16D fragment in our screen. Functional experiments revealed defective checkpoint signaling and escape of DNA replication intermediates into mitosis and the next generation of XPC-depleted cells exposed to RS. Overall, our results provide insights into an unexpected biological role of XPC in response to replication stress and document the power of proteomics-based screening strategies to elucidate mechanisms of pathophysiological significance.

  1. Profiling of cis-Diol-containing Nucleosides and Ribosylated Metabolites by Boronate-affinity Organic-silica Hybrid Monolithic Capillary Liquid Chromatography/Mass Spectrometry

    PubMed Central

    Jiang, Han-Peng; Qi, Chu-Bo; Chu, Jie-Mei; Yuan, Bi-Feng; Feng, Yu-Qi

    2015-01-01

    RNA contains a large number of modified nucleosides. In the metabolic re-exchange of RNA, modified nucleosides cannot be recycled and are thus excreted from cells into biological fluids. Determination of endogenous modified nucleosides in biological fluids may serve as non-invasive cancers diagnostic methods. Here we prepared boronate-affinity organic-silica hybrid capillary monolithic column (BOHCMC) that exhibited excellent selectivity toward the cis-diol-containing compounds. We then used the prepared BOHCMC as the on-line solid-phase microextraction (SPME) column and developed an on-line SPME-LC-MS/MS method to comprehensively profile cis-diol-containing nucleosides and ribosylated metabolites in human urine. Forty-five cis-diol-containing nucleosides and ribosylated metabolites were successfully identified in human urine. And five ribose conjugates, for the first time, were identified existence in human urine in the current study. Furthermore, the relative quantification suggested 4 cis-diol-containing compounds (5′-deoxy-5′-methylthioadensine, N4-acetylcytidine, 1-ribosyl-N-propionylhistamine and N2,N2,7-trimethylguanosine) increased more than 1.5 folds in all the 3 types of examined cancers (lung cancer, colorectal cancer, and nasopharyngeal cancer) compared to healthy controls. The on-line SPME-LC-MS/MS method demonstrates a promising method for the comprehensive profiling of cis-diol-containing ribose conjugates in human urines, which provides an efficient strategy for the identification and discovery of biomarkers and may be used for the screening of cancers. PMID:25585609

  2. Regularities of the sorption of cycloalkenyl-substituted thiophenes and 2,2'-bithiophenes from water-acetonitrile solutions on hexadecyl silica gel under conditions of high-performance liquid chromatography

    NASA Astrophysics Data System (ADS)

    Emel'Yanova, N. S.; Kurbatova, S. V.; Saifutdinov, B. R.; Yudashkin, A. V.

    2011-08-01

    Regularities of the sorption of newly synthesized cycloalkenyl-substituted thiophenes and 2,2'-bithiophenes from water-acetonitrile solutions of different compositions on hexadecyl silica gel are investigated by high-performance liquid chromatography (HPLC). The retention factors and Henry constants of adsorption of these substances are determined. We discuss the effect of the molecular structure of the investigated heterocycles, and the nature and positions of the substituents, on the sorption. The equilibrium constants for the quasi-chemical reactions of sorption of the investigated compounds at the interface, and their solvation in a multicomponent bulk solution, are calculated using the Lanin-Nikitin equation. Based on the obtained results, we suggest that structural self-organization in the bulk solution and at the interface with the hydrophobic surface of hexadecyl silica gel plays an important part in the sorption of cycloalkenylsubstituted thiophenes and 2,2'-bithiophenes from multicomponent solutions.

  3. Application of zirconium-modified silica gel as a stationary phase in the ion-exclusion chromatography of carboxylic acids. I. Separation of benzenecarboxylic acids with tartaric acid as eluent and with UV-photometric detection.

    PubMed

    Ohta, K

    2001-06-22

    The application of zirconium-modified silica gels (Zr-Silicas) as stationary phases for ion-exclusion chromatography with UV-photometric detection (IEC-PD) for mono-, di-, tri- and tetrabenzenecarboxylic acids (pyromellitic, trimellitic, hemimellitic, o-phthalic, salicylic and benzoic acids) and phenol was carried out using tartaric acid as the eluent. Zr-Silicas were prepared by the reaction of the silanol group on the surface of silica gel with zirconium tetrabutoxide [Zr(OCH2CH2CH2CH3)4] in ethanol solution. The effect of the amount of zirconium adsorbed on silica gel on chromatographic behavior of these benzenecarboxylic acids and phenol was investigated. As a result, Zr-Silica adsorbed on 20 mg zirconium g(-1) silica gel was the most suitable stationary phase in the IEC-PD for the simultaneous separation of these benzenecarboxylic acids and phenol. Excellent simultaneous separation and highly sensitive UV detection at 254 nm for these benzenecarboxylic acids and phenol were achieved in 20 min by the IEC-PD using the Zr-Silica column (250x4.6 mm I.D.) and a 10 mM tartaric acid at pH 2.5 as eluent.

  4. [Isolation and purification of enhanced green fluorescent protein using chromatography].

    PubMed

    Hou, Qinghua; Song, Shuliang; Liang, Hao; Wang, Weili; Ji, Aiguo

    2013-02-01

    Enhanced green fluorescent protein (EGFP) is a common biological marker. In this research, on the foundation of successful clone and expression of EGFP, a two-step chromatographic method was established to separate and purify EGFP, which includes the use of HisTrap HP immobilized metal affinity chromatography (IMAC) and Sephadex G-10 HR size exclusion chromatography in sequence. Sephacryl S-300 HR size exclusion chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) were used to check out the purity of EGFP. At last, it was found that EGFP still had fluorescent activity using fluorescence spectrophotometric detection and Native-PAGE detection. This method can effectively separate the active EGFP. The purity of the obtained EGFP was more than 98%.

  5. Kinetic studies of drug-protein interactions by using peak profiling and high-performance affinity chromatography: examination of multi-site interactions of drugs with human serum albumin columns.

    PubMed

    Tong, Zenghan; Schiel, John E; Papastavros, Efthimia; Ohnmacht, Corey M; Smith, Quentin R; Hage, David S

    2011-04-15

    Carbamazepine and imipramine are drugs that have significant binding to human serum albumin (HSA), the most abundant serum protein in blood and a common transport protein for many drugs in the body. Information on the kinetics of these drug interactions with HSA would be valuable in understanding the pharmacokinetic behavior of these drugs and could provide data that might lead to the creation of improved assays for these analytes in biological samples. In this report, an approach based on peak profiling was used with high-performance affinity chromatography to measure the dissociation rate constants for carbamazepine and imipramine with HSA. This approach compared the elution profiles for each drug and a non-retained species on an HSA column and control column over a board range of flow rates. Various approaches for the corrections of non-specific binding between these drugs and the support were considered and compared in this process. Dissociation rate constants of 1.7 (±0.2) s(-1) and 0.67 (±0.04) s(-1) at pH 7.4 and 37°C were estimated by this approach for HSA in its interactions with carbamazepine and imipramine, respectively. These results gave good agreement with rate constants that have determined by other methods or for similar solute interactions with HSA. The approach described in this report for kinetic studies is not limited to these particular drugs or HSA but can also be extended to other drugs and proteins.

  6. Tandem lectin affinity chromatography monolithic columns with surface immobilised concanavalin A, wheat germ agglutinin and Ricinus communis agglutinin-I for capturing sub-glycoproteomics from breast cancer and disease-free human sera.

    PubMed

    Selvaraju, Subhashini; El Rassi, Ziad

    2012-07-01

    In this study, a liquid-phase separation platform consisting of tandem lectin affinity chromatography was introduced for the selective capturing of sub-glycoproteomics that are affected in cancers, e.g. breast cancer. The platform is comprised of three monolithic columns with surface immobilised lectins including concanavalin A (Con A), wheat germ agglutinin (WGA) and Ricinus communis agglutinin-I (RCA-I). While WGA and Con A have specificities directed towards the core portion of N-glycans on the glycoprotein surface, RCA-I specifically interacts with the non-reducing terminal moieties of the outer chain structures of N-glycans. The effects of the order in which the three lectin columns were arranged in the tandem columns format were evaluated. The most suitable order proved to be WGA → Con A → RCA-I (denoted as WCR) as far as the number of captured proteins was concerned. The WCR tandem columns allowed the capture of 113 and 112 proteins from disease-free and breast cancer sera, respectively, corresponding to 75 and 65 non-redundant proteins, respectively. Using mass spectral count ratios and Q-Q plots yielded a panel of 23 non-redundant differentially expressed proteins (i.e. a panel of 23 candidate markers), which should in principle be more representative of a pathophysiological state than a single marker candidate.

  7. Cysteine-rich secretory proteins in snake venoms form high affinity complexes with human and porcine beta-microseminoproteins.

    PubMed

    Hansson, Karin; Kjellberg, Margareta; Fernlund, Per

    2009-08-01

    BETA-microseminoprotein (MSP), a 10 kDa protein in human seminal plasma, binds human cysteine-rich secretory protein-3 (CRISP-3) with high affinity. CRISP-3 is a member of the family of CRISPs, which are widespread among animals. In this work we show that human as well as porcine MSP binds catrin, latisemin, pseudecin, and triflin, which are CRISPs present in the venoms of the snakes Crotalus atrox, Laticauda semifasciata, Pseudechis porphyriacus, and Trimeresurus flavoviridis, respectively. The CRISPs were purified from the venoms by affinity chromatography on a human MSP column and their identities were settled by gel electrophoresis and mass spectrometry. Their interactions with human and porcine MSPs were studied with size exclusion chromatography and surface plasmon resonance measurements. The binding affinities at 25 degrees C were between 10(-10)M and 10(-7)M for most of the interactions, with higher affinities for the interactions with porcine MSP compared to human MSP and with Elapidae CRISPs compared to Viperidae CRISPs. The high affinities of the bindings in spite of the differences in amino acid sequence between the MSPs as well as between the CRISPs indicate that the binding is tolerant to amino acid sequence variation and raise the question how universal this cross-species reaction between MSPs and CRISPs is.

  8. Insulin and epidermal growth factor-urogastrone: Affinity crosslinking to specific binding sites in rat liver membranes

    PubMed Central

    Sahyoun, N.; Hock, R. A.; Hollenberg, M. D.

    1978-01-01

    Both insulin and human epidermal growth factor-urogastrone (EGF/URO) can be covalently linked to specific rat liver membrane binding sites by glutaraldehyde coupling followed by sodium borohydride reduction to yield affinity-labeled membrane constituents sufficiently stable for solubilization and further analysis by various techniques. Solubilization of membranes covalently labeled with 125I-labeled insulin yields a component with chromatographic properties identical to those of a soluble insulin receptor characterized in previous studies. A second soluble insulin-binding component that is not revealed by the affinity-labeling method and that has not yet been reported can also be detected. Membranes similarly labeled with 125I-labeled EGF/URO yield one major and two minor ligand-specific soluble (Triton X-100) affinity-labeled components, as detected by chromatography on Sepharose 6B. Further analysis of the EGF/URO-labeled components by affinity chromatography on concanavalin A-Sepharose, by disc gel electrophoresis, and by enzymatic digestion suggests that the major specific binding component for EGF/URO in liver membranes is a glycoprotein subunit of approximately 100,000 daltons that possesses a 20,000-dalton portion inaccessible to proteolytic cleavage when the subunit is anchored in the membrane. The affinity labeling approach described should prove of use for the study of other polypeptide receptors that, like the EGF/URO receptor, lose their ligand recognition property subsequent to membrane solubilization. PMID:205865

  9. Preconcentration and Determination of Mefenamic Acid in Pharmaceutical and Biological Fluid Samples by Polymer-grafted Silica Gel Solid-phase Extraction Following High Performance Liquid Chromatography

    PubMed Central

    Bagheri Sadeghi, Hayedeh; Panahi, Homayon Ahmad; Mahabadi, Mahsa; Moniri, Elham

    2015-01-01

    Mefenamic acid is a nonsteroidal anti-inflammatory drug (NSAID) that has analgesic, anti-infammatory and antipyretic actions. It is used to relieve mild to moderate pains. Solid-phase extraction of mefenamic acid by a polymer grafted to silica gel is reported. Poly allyl glycidyl ether/iminodiacetic acid-co-N, N-dimethylacrylamide was synthesized and grafted to silica gel and was used as an adsorbent for extraction of trace mefenamic acid in pharmaceutical and biological samples. Different factors affecting the extraction method were investigated and optimum conditions were obtained. The optimum pH value for sorption of mefenamic acid was 4.0. The sorption capacity of grafted adsorbent was 7.0 mg/g. The best eluent solvent was found to be trifluoroacetic acid-acetic acid in methanol with a recovery of 99.6%. The equilibrium adsorption data of mefenamic acid by grafted silica gel was analyzed by Langmuir model. The conformation of obtained data to Langmuir isotherm model reveals the homogeneous binding sites of grafted silica gel surface. Kinetic study of the mefenamic acid sorption by grafted silica gel indicates the good accessibility of the active sites in the grafted polymer. The sorption rate of the investigated mefenamic acid on the grafted silica gel was less than 5 min. This novel synthesized adsorbent can be successfully applied for the extraction of trace mefenamic acid in human plasma, urine and pharmaceutical samples. PMID:26330865

  10. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of semivolatile organic compounds in bottom sediment by solvent extraction, gel permeation chromatographic fractionation, and capillary-column gas chromatography/mass spectrometry

    USGS Publications Warehouse

    Furlong, E.T.; Vaught, D.G.; Merten, L.M.; Foreman, W.T.; Gates, Paul M.

    1996-01-01

    A method for the determination of 79 semivolatile organic compounds (SOCs) and 4 surrogate compounds in soils and bottom sediment is described. The SOCs are extracted from bottom sediment by solvent extraction, followed by partial isolation using high-performance gel permeation chromatography (GPC). The SOCs then are qualitatively identified and quantitative concentrations determined by capillary-column gas chromatography/mass spectrometry (GC/MS). This method also is designed for an optional simultaneous isolation of polychlorinated biphenyls (PCBs) and organochlorine (OC) insecticides, including toxaphene. When OCs and PCBs are determined, an additional alumina- over-silica column chromatography step follows GPC cleanup, and quantitation is by dual capillary- column gas chromatography with electron-capture detection (GC/ECD). Bottom-sediment samples are centrifuged to remove excess water and extracted overnight with dichloromethane. The extract is concentrated, centrifuged, and then filtered through a 0.2-micrometer polytetrafluoro-ethylene syringe filter. Two aliquots of the sample extract then are quantitatively injected onto two polystyrene- divinylbenzene GPC columns connected in series. The SOCs are eluted with dichloromethane, a fraction containing the SOCs is collected, and some coextracted interferences, including elemental sulfur, are separated and discarded. The SOC-containing GPC fraction then is analyzed by GC/MS. When desired, a second aliquot from GPC is further processed for OCs and PCBs by combined alumina-over-silica column chromatography. The two fractions produced in this cleanup then are analyzed by GC/ECD. This report fully describes and is limited to the determination of SOCs by GC/MS.

  11. Biomimetic design of affinity peptide ligand for capsomere of virus-like particle.

    PubMed

    Li, Yanying; Liu, Xiaodan; Dong, Xiaoyan; Zhang, Lin; Sun, Yan

    2014-07-22

    Virus-like particle (VLP) of murine polyomavirus (MPV) is a T = 7d icosahedral capsid that self-assembles from 72 capsomeres (Caps), each of which is a pentamer of major coat protein VP1. VLP has great potential in vaccinology, gene therapy, drug delivery, and materials science. However, its application is hindered by high cost downstream processes, leading to an urgent demand of a highly efficient affinity ligand for the separation and purification of Cap by affinity chromatography. Herein a biomimetic design strategy of an affinity peptide ligand of Cap has been developed on the basis of the binding structure of the C-terminus of minor coat protein (VP2-C) on the inner surface of Cap. The molecular interactions between VP2-C and Cap were first examined using all-atom molecular dynamics (MD) simulations coupled with the molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) method, where V283, P285, D286, W287, L289, and Y296 of VP2-C were identified as the hot spots. An affinity peptide library (DWXLXLXY, X denotes arbitrary amino acids except cysteine) was then constructed for virtual screening sequently by docking with AUTODOCK VINA, binding structure comparison, and final docking with ROSETTA FlexPepDock. Ten peptide candidates were selected and further confirmed by MD simulations and MM/PBSA, where DWDLRLLY was found to have the highest affinity to Cap. In DWDLRLLY, six residues are favorable for the binding, including W2, L4, L6 and Y8 inheriting from VP2-C, and R5 and L7 selected in the virtual screening. This confirms the high efficiency and accuracy of the biomimetic design strategy. DWDLRLLY was then experimentally validated by a one-step purification of Cap from crude cell lysate using affinity chromatography with the octapeptide immobilized on Sepharose gel. The purified Caps were observed to self-assemble into VLP with consistent structure of authentic MPV.

  12. Application of zirconium-modified silica gel as a stationary phase in the ion-exclusion chromatography of carboxylic acids. II. Separation of aliphatic carboxylic acids with pyromellitic acid as eluent and with suppressed conductimetric detection.

    PubMed

    Ohta, K

    2001-06-22

    The application of zirconium-modified silica gels (Zr-Silica) as stationary phases for ion-exclusion chromatography with conductimetric detection (IEC-CD) for C1-C8 aliphatic carboxylic acids (formic, acetic, propionic, butyric, valeric, caproic, heptanoic and caprylic acids) was carried out using pyromellitic acid as the eluent. Zr-Silicas were prepared by the reaction of the silanol group on the surface of silica gel with zirconium tetrabutoxide [Zr(OCH2CH2CH2CH3)4] in ethanol solution. An ASRS-Ultra anion self-regenerating suppressor in the K+ form was used for the enhancement of conductimetric detector response of these aliphatic carboxylic acids. A Zr-Silica adsorbed on 10 mg zirconium g(-1) silica gel was the most suitable stationary phase in IEC-CD for the separation of these aliphatic carboxylic acids. Excellent simultaneous separation and highly sensitive detection for these aliphatic carboxylic acids were achieved in 25 min by IEC-CD with the Zr-Silica column (250x4.6 mm I.D.) and a 0.2 mM pyromellitic acid containing 0.15% heptanol as the eluent.

  13. Introduction of structural affinity handles as a tool in selective nucleic acid separations

    NASA Technical Reports Server (NTRS)

    Willson, III, Richard Coale (Inventor); Cano, Luis Antonio (Inventor)

    2011-01-01

    The method is used for separating nucleic acids and other similar constructs. It involves selective introduction, enhancement, or stabilization of affinity handles such as single-strandedness in the undesired (or desired) nucleic acids as compared to the usual structure (e.g., double-strandedness) of the desired (or undesired) nucleic acids. The undesired (or desired) nucleic acids are separated from the desired (or undesired) nucleic acids due to capture by methods including but not limited to immobilized metal affinity chromatography, immobilized single-stranded DNA binding (SSB) protein, and immobilized oligonucleotides. The invention is useful to: remove contaminating genomic DNA from plasmid DNA; remove genomic DNA from plasmids, BACs, and similar constructs; selectively separate oligonucleotides and similar DNA fragments from their partner strands; purification of aptamers, (deoxy)-ribozymes and other highly structured nucleic acids; Separation of restriction fragments without using agarose gels; manufacture recombinant Taq polymerase or similar products that are sensitive to host genomic DNA contamination; and other applications.

  14. Purification of high affinity benzodiazepine receptor binding site fragments from rat brain

    SciTech Connect

    Klotz, K.L.

    1984-01-01

    In central nervous system benzodiazepine recognition sites occur on neuronal cell surfaces as one member of a multireceptor complex, including recognition sites for benzodiazepines, gamma aminobutyric acid (GABA), barbiturates and a chloride ionophore. During photoaffinity labelling, the benzodiazepine agonist, /sup 3/H-flunitrazepam, is irreversibly bound to central benzodiazepine high affinity recognition sites in the presence of ultraviolet light. In these studies a /sup 3/H-flunitrazepam radiolabel was used to track the isolation and purification of high affinity agonist binding site fragments from membrane-bound benzodiazepine receptor in rat brain. The authors present a method for limited proteolysis of /sup 3/H-flunitrazepam photoaffinity labeled rat brain membranes, generating photolabeled benzodiazepine receptor fragments containing the agonist binding site. Using trypsin chymotrypsin A/sub 4/, or a combination of these two proteases, they have demonstrated the extent and time course for partial digestion of benzodiazepine receptor, yielding photolabeled receptor binding site fragments. These photolabeled receptor fragments have been further purified on the basis of size, using ultrafiltration, gel permeation chromatography, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) as well as on the basis of hydrophobicity, using a high performance liquid chromatography (HPLC) precolumn, several HPLC elution schemes, and two different HPLC column types. Using these procedures, they have purified three photolabeled benzodiazepine receptor fragments containing the agonist binding site which appear to have a molecular weight of less than 2000 daltons each.

  15. A cleavable silica-binding affinity tag for rapid and inexpensive protein purification.

    PubMed

    Coyle, Brandon L; Baneyx, François

    2014-10-01

    We describe a new affinity purification tag called Car9 that confers proteins to which it is fused micromolar affinity for unmodified silica. When appended to the C-terminus of GFPmut2 through a flexible linker, Car9 promotes efficient adsorption to silica gel and the fusion protein can be released from the particles by incubation with L-lysine. Using a silica gel column and the lysine elution approach in fast protein liquid chromatography (FPLC) mode, Car9-tagged versions of GFPmut2, mCherry and maltose binding protein (MBP) can be recovered from clarified lysates with a purity of 80-90%. Capitalizing on silica's ability to handle large pressure drops, we further show that it is possible to go from cell lysates to purified protein in less than 15 min using a fully disposable device. Finally, we demonstrate that the linker-Car9 region is susceptible to proteolysis by E. coli OmpT and take advantage of this observation to excise the C-terminal extension of GFPmut2-Car9 by incubating purified fusion protein with cells that overproduce the outer membrane protease OmpT. The set of strategies described herein, should reduce the cost of affinity purification by at least 10-fold, cut down purification times to minutes, and allow for the production of proteins with native (or nearly native) termini from their C-terminally-tagged versions.

  16. Evidence that the low-affinity folate-binding protein in erythrocyte hemolysate is identical to hemoglobin

    SciTech Connect

    Hansen, S.I.; Holm, J.; Lyngbye, J.

    1981-07-01

    Gel filtration studies on erythrocyte hemolysate demonstrated the presence of a folate binding protein, apparently of the low-affinity type, that co-elutes with hemoglobin. Further, the folate binder eluted with a low salt concentration after DEAE-Sepharose CL-6B anion-exchange chromatography of erythrocyte hemolysate at pH 6.3. The chromatographic behavior of hemoglobin labeled with (3H)folate was so similar to that of the present binder as to suggest that the folate binder in erythrocytes is in fact hemoglobin.

  17. BANANA GEL.

    PubMed

    McGuire, G; Falk, K G

    1922-03-20

    The conditions for the formation of gels from banana extracts were studied. Gels were obtained with extracts more alkaline than pH 7.0 with very small quantities of calcium, strontium, and barium salts, the gel formation with these salts decreasing in the indicated order. In solutions more acid than pH 6.0, no gels were obtained with these salts. Magnesium, lithium, and sodium salts did not cause gel formation either in acid or alkaline solutions. Pancreatine gave a gel on incubation with banana extract at pH 5.0. The gel-forming property of banana extracts was destroyed on boiling.

  18. Extraction of haemoglobin from human blood by affinity precipitation using a haptoglobin-based stimuli-responsive affinity macroligand.

    PubMed

    Stocker-Majd, Gisela; Hilbrig, Frank; Freitag, Ruth

    2008-06-13

    Affinity precipitation was compared to affinity chromatography and batch adsorption as the final purification step in a protocol for the isolation of haemoglobin from human blood. Haptoglobin was the affinity ligand. The first steps on the process were realized by traditional methods (lyses of red blood cells followed by ammonium sulphate precipitation). For affinity chromatography (and batch adsorption) the ligand was linked to Sepharose, for affinity precipitation to a thermoresponsive polymer, namely poly(N-isopropylacrylamide). Five haptoglobin-poly(N-isopropylacrylamide) bioconjugates (affinity macroligands) were constructed with different polymer: haptoglobin-coupling ratios. Conjugation of haptoglobin to the soluble poly(N-isopropylacrylamide) apparently does not change the interaction thermodynamics with haemoglobin, as the haemoglobin binding constants calculated by a Scatchard analysis for the affinity macroligand were of the same order of magnitude as those described in the literature for the haemoglobin-haptoglobin complex in solution. Two elution protocols were used for haemoglobin release from the various affinity materials, one at pH 2, the other with 5 M urea at pH 11. Both affinity chromatography and affinity precipitation yielded a pure haemoglobin of high quality. Compared to the affinity chromatography, affinity precipitation showed a significantly higher ligand efficiency (ratio of the experimental capacity to the theoretical one). The method thus makes better use of the expensive affinity ligands. As affinity precipitation only requires small temperature changes to bring about precipitation/redissolution of the affinity complexes and a centrifugation step for recovery of the precipitate, the method in addition has advantages in term of scalability and simplicity.

  19. /Chromatography+RECOVERY=superresolution chromatography

    NASA Astrophysics Data System (ADS)

    Kosarev, E. L.; Muranov, K. O.

    2003-04-01

    A method for improving the resolution of the chromatographic analysis based on deriving the point-spread function of a chromatographic column, i.e., a chromatogram of an individual compound, is described. The system of two data sets, namely, a chromatogram of a substance analyzed and a point-spread function of a chromatographic column in combination with the noise statistics, makes it possible to use the RECOVERY signal-reconstruction software package described in paper by Gelfgat et al. (Comp. Phys. Commun. 74 (1993) 335). The proposed method has been tested by chromatography of bovine serum albumin using gel filtration. The resultant resolution exceeds that reached using high-performance liquid chromatography (with the cost of the instruments being lower by a factor of 15-20).

  20. Fabrication of a novel nanocomposite based on sol-gel process for hollow fiber-solid phase microextraction of aflatoxins: B1 and B2, in cereals combined with high performane liquid chromatography-diode array detection.

    PubMed

    Es'haghi, Zarrin; Sorayaei, Hoda; Samadi, Fateme; Masrournia, Mahboubeh; Bakherad, Zohreh

    2011-10-15

    The new pre-concentration technique, hollow fiber-solid phase microextraction based on carbon nanotube reinforced sol-gel and liquid chromatography-photodiode array detection was applied to determination of aflatoxins B(1), B(2) (AFB(1), AFB(2)) in rice, peanut and wheat samples. This research provides an overview of trends related to synthesis of solid phase microextraction (SPME) sorbnents that improves the assay of aflatoxins as the semi-polar compounds in several real samples. It mainly includes summary and a list of the results for a simple carbon nanotube reinforced sol-gel in-fiber device. This device was used for extraction, pre-concentration and determination of aflatoxins B1, B2 in real samples. In this technique carbon nanotube reinforced sol was prepared by the sol-gel method via the reaction of phenyl trimethoxysilane (PTMS) with a basic catalyst (tris hydroxymethyl aminomethan). The influences of microextraction parameters such as pH, ageing time, carbon nanotube contents, desorption conditions, desorption solvent and agitation speed were investigated. Optimal HPLC conditions were: C(18) reversed phase column for separation, water-acetonitril-methanol (35:10:55) as the mobile phase and maximum wavelength for detection was 370 nm. The method was evaluated statistically and under optimized conditions, the detection limits for the analytes were 0.074 and 0.061 ng/mL for B1 and B2 respectively. Limit of quantification for B1 and B2 was 0.1 ng/mL too (n=7). The precisions were in the range of 2.829-2.976% (n=3), and linear ranges were within 0.1 and 400 ng/mL. The method was successfully applied to the analysis of cereals (peanut, wheat, rice) with the relative recoveries from 47.43% to 106.83%.

  1. CM Affi-Gel Blue chromatography of human urine: a simple one-step procedure for obtaining erythropoietin suitable for in vitro erythropoietic progenitor assays.

    PubMed

    Krystal, G; Eaves, C J; Eaves, A C

    1984-11-01

    A method for both concentrating and purifying human urinary erythropoietin (Ep) using CM Affi-Gel Blue is described. We have found that up to 40 litres of urine can be processed on a 1 litre gel bed of this material. This gives a 25-50-fold purification of Ep with an apparent Ep recovery in excess of 100%. The high recovery of Ep is probably due, in part, to the removal of inhibitors present in the initial urine. By selecting urine that contains high levels of Ep (greater than 0.5 units/ml), it is possible with this method routinely to obtain preparations with specific activities of 100-300 units of Ep per mg protein. Such preparations are noninhibitory when assayed in either short-term suspension cultures or in longer-term methylcellulose cultures at concentrations up to 5-10 units/ml. Similar tests with these same bioassay systems have shown that other non-Ep stimulating factors (i.e. erythroblast enhancing factor (EEF), granulocyte/macrophage colony stimulating factor (GM-CSF) and burst promoting activity (BPA) ) are also not present at detectable levels. In this study we also show that the loss of biological activity which often occurs when partially purified Ep preparations are stored in solution is markedly reduced in the presence of either 1% bovine serum albumin or 0.1% sodium dodecyl sulphate.

  2. Camelid VHH affinity ligands enable separation of closely related biopharmaceuticals

    PubMed Central

    Pabst, Timothy M.; Wendeler, Michaela; Wang, Xiangyang; Bezemer, Sandra; Hermans, Pim

    2016-01-01

    Abstract Interest in new and diverse classes of molecules such as recombinant toxins, enzymes, and blood factors continues to grow for use a biotherapeutics. Compared to monoclonal antibodies, these novel drugs typically lack a commercially available affinity chromatography option, which leads to greater process complexity, longer development timelines, and poor platformability. To date, for both monoclonal antibodies and novel molecules, affinity chromatography has been mostly reserved for separation of process‐related impurities such as host cell proteins and DNA. Reports of affinity purification of closely related product variants and modified forms are much rarer. In this work we describe custom affinity chromatography development using camelid VHH antibody fragments as "tunable" immunoaffinity ligands for separation of product‐related impurities. One example demonstrates high selectivity for a recombinant immunotoxin where no binding was observed for an undesired deamidated species. Also discussed is affinity purification of a coagulation factor through specific recognition of the gamma‐carboxylglutamic acid domain. PMID:27677057

  3. Separation of glutathione transferase subunits from Proteus vulgaris by two-dimensional gel electrophoresis.

    PubMed

    Hong, Giaming; Chien, Yi-Chih; Chien, Cheng-I

    2003-10-01

    Cytosolic glutathione transferases of Proteus vulgaris were purified by affinity chromatography and characterized by two-dimensional gel electrophoresis. Four different subunits were identified, and each subunit contained a different molecular mass, ranging from 26.2 kDa to 28.5 kDa; a different pI value, ranging from 8.2 to 9.4; and a different amount of protein fraction, ranging from 10% to 56%. All four subunits existed as basic proteins (pI > 7.0). From these results, we concluded that multiple forms of glutathione transferase enzymes existed in Proteus vulgaris, and four different glutathione transferase subunits were separated by 2-D gel electrophoresis.

  4. Characterization of the refolding and reassembly of an integral membrane protein OmpF porin by low-angle laser light scattering photometry coupled with high-performance gel chromatography.

    PubMed

    Watanabe, Yasushi

    2002-06-28

    The refolding and reassembly of an integral membrane protein OmpF porin denatured in sodium dodecylsulfate (SDS) into its stable species by the addition of n-octyl-beta-D-glucopyranoside (OG) have been studied by means of circular dichroism (CD) spectroscopy and low-angle laser light scattering photometry coupled with high-performance gel chromatography. The minimal concentration where change in the secondary structure was induced by the addition of OG was found to be 6.0 mg/ml in CD experiments. A species unfolded further than the SDS-denatured form of this protein was observed at an early stage (5-15 min) of refolding just above the minimal OG concentration. In addition, the CD spectrum of protein species obtained above the minimal OG concentration showed that the protein is composed of a beta-structure which is different from the native structure of this protein. In light scattering experiments, no changes in molecular assemblies were observed when the OG concentration was below its minimal refolding concentration determined by CD measurements. Above the minimal concentration, a compact monomeric species was observed when denatured OmpF porin was incubated for 5 min at 25 degrees C in a refolding medium containing 1 mg/ml SDS and 7 mg/ml OG, and then injected into columns equilibrated with the refolding medium. After an incubation of 24 h before injection into the columns, predominant dimerization of this protein was observed in addition to incorrect aggregation.

  5. Design, synthesis and application of benzyl-sulfonate biomimetic affinity adsorbents for monoclonal antibody purification from transgenic corn.

    PubMed

    Maltezos, Anastasios; Platis, Dimitris; Vlachakis, Dimitrios; Kossida, Sophia; Marinou, Marigianna; Labrou, Nikolaos E

    2014-01-01

    The human anti-human immunodeficiency virus (HIV) antibody 2G12 (mAb 2G12) is one of the most broadly neutralizing antibodies against HIV that recognizes a unique epitope on the surface glycoprotein gp120. In the present work, a limited affinity-ligand library was synthesized and evaluated for its ability to bind and purify recombinant mAb 2G12 expressed in transgenic corn. The affinity ligands were structural fragments of polysulfonate triazine dye Cibacron Blue 3GA (CB3GA) and represent novel lead scaffolds for designing synthetic affinity ligands. Solid phase chemistry was used to synthesize variants of CB3GA lead ligand. One immobilized ligand, bearing 4-aminobenzyl sulfonic acid (4ABS) linked on two chlorine atoms of the triazine ring (4ABS-Trz-4ABS), displayed high affinity for mAb 2G12. Absorption equilibrium, 3D molecular modelling and molecular dynamics simulation studies were carried out to provide a detailed picture of the 4ABS-Trz-4ABS interaction with mAb 2G12. This biomimetic affinity ligand was exploited for the development of a facile two-step purification protocol for mAb 2G12. In the first step of the procedure, mAb 2G12 was purified on an S-Sepharose FF cation exchanger, and in the second step, mAb 2G12 was purified using affinity chromatography on 4ABS-Trz-4ABS affinity adsorbent. Analysis of the antibody preparation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and enzyme-linked immunosorbent assay showed that the mAb 2G12 was fully active and of sufficient purity suitable for analytical applications.

  6. The Cutting Edge of Affinity Electrophoresis Technology

    PubMed Central

    Kinoshita, Eiji; Kinoshita-Kikuta, Emiko; Koike, Tohru

    2015-01-01

    Affinity electrophoresis is an important technique that is widely used to separate and analyze biomolecules in the fields of biology and medicine. Both quantitative and qualitative information can be gained through affinity electrophoresis. Affinity electrophoresis can be applied through a variety of strategies, such as mobility shift electrophoresis, charge shift electrophoresis or capillary affinity electrophoresis. These strategies are based on changes in the electrophoretic patterns of biological macromolecules that result from interactions or complex-formation processes that induce changes in the size or total charge of the molecules. Nucleic acid fragments can be characterized through their affinity to other molecules, for example transcriptional factor proteins. Hydrophobic membrane proteins can be identified by means of a shift in the mobility induced by a charged detergent. The various strategies have also been used in the estimation of association/disassociation constants. Some of these strategies have similarities to affinity chromatography, in that they use a probe or ligand immobilized on a supported matrix for electrophoresis. Such methods have recently contributed to profiling of major posttranslational modifications of proteins, such as glycosylation or phosphorylation. Here, we describe advances in analytical techniques involving affinity electrophoresis that have appeared during the last five years. PMID:28248262

  7. Serine transhydroxymethylase: a simplified radioactive assay; purification and stabilization of enzyme activity employing Affi-Gel Blue.

    PubMed

    Braman, J C; Black, M J; Mangum, J H

    1981-01-01

    An improved radioactive assay has been developed for serine transhydroxymethylase. This assay involves the direct measurement of the [14C]HCHO which is generated when [3- 14C]-serine is employed as the substrate. The new assay eliminates the need for a solvent extraction of a [14C]HCHO-dimedon adduct which is the basis of the assay devised by Taylor and Weissbach. The enzyme has been purified employing Affi-Gel Blue. The purified enzyme retains full activity when bound to this affinity chromatography matrix and can be stored in this state at 4 degrees indefinitely.

  8. Novel neonicotinoid-agarose affinity column for Drosophila and Musca nicotinic acetylcholine receptors.

    PubMed

    Tomizawa, M; Latli, B; Casida, J E

    1996-10-01

    Neonicotinoids such as the insecticide imidacloprid (IMI) act as agonists at the insect nicotinic acetylcholine receptor (nAChR). Head membranes of Drosophila melanogaster and Musca domestica have a single high-affinity binding site for [3H]IMI with KD values of 1-2 nM and Bmax values of 560-850 fmol/mg of protein. Locusta and Periplaneta nAChRs isolated with an alpha-bungarotoxin (alpha-BGT)-agarose affinity column are known to be alpha-subunit homooligomers. This study uses 1-[N-(6-chloro-3-pyridylmethyl)-N-ethyl]amino-1-amino-2-nitroethene++ + (which inhibits [3H]IMI binding to Drosophila and Musca head membranes at 2-3 nM) to develop a neonicotinoid-agarose affinity column. The procedure-introduction of Triton-solubilized Drosophila or Musca head membranes into this neonicotinoid-based column, elution with IMI, and analysis by lithium dodecyl sulfate-polyacrylamicle gel electrophoresis-gives only three proteins (69, 66, and 61 kDa) tentatively assigned as putative subunits of the nAChR; the same three proteins are obtained with Musca using the alpha-BGT-agarose affinity column. Photoaffinity labeling of the Drosophila and Musca putative subunits from the neonicotinoid column with 125I-alpha-BGT-4-azidosalicylic acid gives a labeled derivative of 66-69 kDa. The yield is 2-5 micrograms of receptor protein from 1 g of Drosophila or Musca heads. Neonicotinoid affinity chromatography to isolate native Drosophila and Musca receptors will facilitate studies on the structure and function of insect nAChRs.

  9. An automatic system for multidimensional integrated protein chromatography.

    PubMed

    Kong, Yingjun; Li, Xiunan; Bai, Gaoying; Ma, Guanghui; Su, Zhiguo

    2010-10-29

    An automatic system for multidimensional integrated protein chromatography was designed for simultaneous separation of multiple proteins from complex mixtures, such as human plasma and tissue lysates. This computer-controlled system integrates several chromatographic columns that work independently or cooperatively with one another to achieve efficient high throughputs. The pipelines can be automatically switched either to another column or to a collection container for each UV-detected elution fraction. Environmental contamination is avoided due to the closed fluid paths and elimination of manual column change. This novel system was successfully used for simultaneous preparation of five proteins from the precipitate of human plasma fraction IV (fraction IV). The system involved gel filtration, ion exchange, hydrophobic interaction, and heparin affinity chromatography. Human serum albumin (HSA), transferrin (Tf), antithrombin-III (AT-III), alpha 1-antitrypsin (α1-AT), and haptoglobin (Hp) were purified within 3 h. The following recovery and purity were achieved: 95% (RSD, 2.8%) and 95% for HSA, 80% (RSD, 2.0%) and 99% for Tf, 70% (RSD, 2.1%) and 99% for AT-III, 65% (RSD, 2.0%) and 94% for α1-AT, and 50% (RSD, 1.0%) and 90% for Hp. The results demonstrate that this novel multidimensional integrated chromatography system is capable of simultaneously separating multiple protein products from the same raw material with high yield and purity and it has the potential for a wide range of multi-step chromatography separation processes.

  10. A solid phase microextraction coating based on ionic liquid sol-gel technique for determination of benzene, toluene, ethylbenzene and o-xylene in water samples using gas chromatography flame ionization detector.

    PubMed

    Sarafraz-Yazdi, Ali; Vatani, Hossein

    2013-07-26

    Ionic liquid mediated sol-gel sorbents for head-space solid phase microextraction (HS-SPME) were developed for the extraction of benzene, toluene, ethylbenzene and o-xylene (BTEX) compounds from water samples in ultra-trace levels. The analytes were subsequently analyzed with gas chromatography coupled to flame ionization detector (GC-FID). Three different coating fibers were prepared including: poly(dimethylsiloxane) (PDMS), coating prepared from poly(dimethylsiloxane) in the presence of ionic liquid as co-solvent and conditioned at a higher temperature than decomposition temperature of ionic liquid (PDMS-IL-HT) and coating prepared from poly(dimethylsiloxane) in the presence of ionic liquid as co-solvent and conditioned at a lower temperature than decomposition temperature of ionic liquid (PDMS-IL-LT). Prepared fibers demonstrate many advantages such as high thermal and chemical stabilities due to the chemical bonding of the coatings with the silanol groups on the fused-silica surface fiber. These fibers have shown long life time up to 180 extractions. The scanning electron micrographs of the fibers surfaces revealed that addition of ionic liquid into the sol solution during the sol-gel process increases the fiber coating thickness, affects the form of fiber structure and also leaves high pores in the fiber surface that cause high surface area and therefore increases sample capacity of the fibers. The important parameters that affect the extraction efficiency are desorption temperature and time, sample volume, extraction temperature, extraction time, stirring speed and salt effect. Therefore these factors were investigated and optimized. Under optimal conditions, the dynamic linear range with PDMS-IL-HT, PDMS and PDMS-IL-LT fibers were 0.3-200,000; 50-200,000 and 170-150,000pgmL(-1) and the detection limits (S/N=3) were 0.1-2 and 15-200 and 50-500pgmL(-1), and limit of quantifications (S/N=10) were 0.3-8 and 50-700 and 170-1800, respectively. The relative

  11. 16S-23S Internal Transcribed Spacer Region PCR and Sequencer-Based Capillary Gel Electrophoresis has Potential as an Alternative to High Performance Liquid Chromatography for Identification of Slowly Growing Nontuberculous Mycobacteria

    PubMed Central

    Subedi, Shradha; Kong, Fanrong; Jelfs, Peter; Gray, Timothy J.; Xiao, Meng; Sintchenko, Vitali; Chen, Sharon C-A

    2016-01-01

    Accurate identification of slowly growing nontuberculous mycobacteria (SG-NTM) of clinical significance remains problematic. This study evaluated a novel method of SG-NTM identification by amplification of the mycobacterial 16S-23S rRNA internal transcribed spacer (ITS) region followed by resolution of amplified fragments by sequencer-based capillary gel electrophoresis (SCGE). Fourteen American Type Culture Collection (ATCC) strains and 103 clinical/environmental isolates (total n = 24 species) of SG-NTM were included. Identification was compared with that achieved by high performance liquid chromatography (HPLC), in-house PCR and 16S/ITS sequencing. Isolates of all species yielded a SCGE profile comprising a single fragment length (or peak) except for M. scrofulaceum (two peaks). SCGE peaks of ATCC strains were distinct except for peak overlap between Mycobacterium kansasii and M. marinum. Of clinical/environmental strains, unique peaks were seen for 7/17 (41%) species (M. haemophilum, M. kubicae, M. lentiflavum, M. terrae, M. kansasii, M. asiaticum and M. triplex); 3/17 (18%) species were identified by HPLC. There were five SCGE fragment length types (I–V) each of M. avium, M. intracellulare and M. gordonae. Overlap of fragment lengths was seen between M. marinum and M. ulcerans; for M. gordonae SCGE type III and M. paragordonae; M. avium SCGE types III and IV, and M. intracellulare SCGE type I; M. chimaera, M. parascrofulaceum and M. intracellulare SCGE types III and IV; M. branderi and M. avium type V; and M. vulneris and M. intracellulare type V. The ITS-SCGE method was able to provide the first line rapid and reproducible species identification/screening of SG-NTM and was more discriminatory than HPLC. PMID:27749897

  12. 16S-23S Internal Transcribed Spacer Region PCR and Sequencer-Based Capillary Gel Electrophoresis has Potential as an Alternative to High Performance Liquid Chromatography for Identification of Slowly Growing Nontuberculous Mycobacteria.

    PubMed

    Subedi, Shradha; Kong, Fanrong; Jelfs, Peter; Gray, Timothy J; Xiao, Meng; Sintchenko, Vitali; Chen, Sharon C-A

    2016-01-01

    Accurate identification of slowly growing nontuberculous mycobacteria (SG-NTM) of clinical significance remains problematic. This study evaluated a novel method of SG-NTM identification by amplification of the mycobacterial 16S-23S rRNA internal transcribed spacer (ITS) region followed by resolution of amplified fragments by sequencer-based capillary gel electrophoresis (SCGE). Fourteen American Type Culture Collection (ATCC) strains and 103 clinical/environmental isolates (total n = 24 species) of SG-NTM were included. Identification was compared with that achieved by high performance liquid chromatography (HPLC), in-house PCR and 16S/ITS sequencing. Isolates of all species yielded a SCGE profile comprising a single fragment length (or peak) except for M. scrofulaceum (two peaks). SCGE peaks of ATCC strains were distinct except for peak overlap between Mycobacterium kansasii and M. marinum. Of clinical/environmental strains, unique peaks were seen for 7/17 (41%) species (M. haemophilum, M. kubicae, M. lentiflavum, M. terrae, M. kansasii, M. asiaticum and M. triplex); 3/17 (18%) species were identified by HPLC. There were five SCGE fragment length types (I-V) each of M. avium, M. intracellulare and M. gordonae. Overlap of fragment lengths was seen between M. marinum and M. ulcerans; for M. gordonae SCGE type III and M. paragordonae; M. avium SCGE types III and IV, and M. intracellulare SCGE type I; M. chimaera, M. parascrofulaceum and M. intracellulare SCGE types III and IV; M. branderi and M. avium type V; and M. vulneris and M. intracellulare type V. The ITS-SCGE method was able to provide the first line rapid and reproducible species identification/screening of SG-NTM and was more discriminatory than HPLC.

  13. Ethanol increases affinity of protein kinase C for phosphatidylserine

    SciTech Connect

    Chin, J.H.

    1986-03-01

    Protein kinase C is a calcium-dependent enzyme that requires phospholipid for its activation. It is present in relatively high concentration in the brain and may be involved in neuronal function. The present experiments test whether the membrane disorder induced by ethanol affects the activity of kinase C by changing its interaction with membrane lipid. Fractions rich in kinase C were purified from rat brain cytosol by DEAE-cellulose chromatography and Sephadex G-200 gel filtration. Enzyme activity was assayed by measuring the phosphorylation of histone H1. As expected, phosphatidylserine activated the enzyme, and the stimulation was further increased by the addition of calcium and/or diacylglycerol. At low concentration of free calcium (0.5-1..mu..M), ethanol (800 mM0 enhanced kinase C activity if the presence of phospholipid. similar results were observed in the absence of calcium. Double reciprocal plots of the data showed that ethanol increased the affinity of the enzyme for phosphatidylserine without affecting the V/sub max. The stimulation of kinase C activity by ethanol was not observed at high calcium concentrations. These experiments suggest that ethanol may activated protein kinase C at physiological levels of calcium by facilitating its transfer into the hydrophobic membrane environment.

  14. A new affinity method for purification of bovine testicular hyaluronidase enzyme and an investigation of the effects of some compounds on this enzyme.

    PubMed

    Kaya, Mustafa Oguzhan; Arslan, Oktay; Guler, Ozen Ozensoy

    2015-01-01

    In this study, a new affinity gel for the purification of bovine testicular hyaluronidase (BTH) was synthesized. L-Tyrosine was added as the extension arm to the Sepharose-4B activated with cyanogen bromide. m-Anisidine is a specific inhibitor of BTH enzyme. m-Anisidine was clamped to the newly formed Sepharose-4B-L-tyrosine as a ligand. As a result, an affinity gel having the chemical structure of Sepharose-4B-L-tyrosine-m-anisidine was obtained. BTH purified by ammonium sulfate precipitation and affinity chromatography was obtained with a 16.95% yield and 881.78 degree of purity. The kinetic constants K(M) and V(Max) for BTH were determined by using hyaluronic acid as a substrate. K(M) and V(Max) values obtained from the Lineweaver-Burk graph were found to be 2.23 mM and 19.85 U/mL, respectively. In vitro effects of some chemicals were determined on purified BTH enzyme. Some chemically active ingredients were 1,1-dimethyl piperidinium chloride, β-naphthoxyacetic acid and gibberellic acid. Gibberellic acid showed the best inhibition effect on BTH.

  15. Antibody purification: ammonium sulfate fractionation or gel filtration.

    PubMed

    Grodzki, Ana Cristina; Berenstein, Elsa

    2010-01-01

    Antibodies can be purified by a variety of methods based on their unique physical and chemical properties such as size, solubility, charge, hydrophobicity and binding affinity. This chapter focuses on ammonium sulfate precipitation as a convenient first step in antibody purification in that, it allows the concentration of the starting material and the precipitation of the desired protein. The principle of ammonium sulfate precipitation lies in "salting out" proteins from the solution. The proteins are prevented to form hydrogen bonds with water and the salt facilitates their interaction with each other forming aggregates that afterward precipitate out of solution. Gel filtration or size- exclusion chromatography is also discussed in this chapter. Gel filtration is based on the relative size of protein molecules and it is of great value to separate IgMs, exchange buffers and/or desalt solutions. The columns designed to separate the proteins are composed of porous beads and the proteins will flow through the packed column inside and around the beads, depending on its size.

  16. A dielectric affinity microbiosensor

    NASA Astrophysics Data System (ADS)

    Huang, Xian; Li, Siqi; Schultz, Jerome S.; Wang, Qian; Lin, Qiao

    2010-01-01

    We present an affinity biosensing approach that exploits changes in dielectric properties of a polymer due to its specific, reversible binding with an analyte. The approach is demonstrated using a microsensor comprising a pair of thin-film capacitive electrodes sandwiching a solution of poly(acrylamide-ran-3-acrylamidophenylboronic acid), a synthetic polymer with specific affinity to glucose. Binding with glucose induces changes in the permittivity of the polymer, which can be measured capacitively for specific glucose detection, as confirmed by experimental results at physiologically relevant concentrations. The dielectric affinity biosensing approach holds the potential for practical applications such as long-term continuous glucose monitoring.

  17. Affinity ligands for glycoprotein purification based on the multi-component Ugi reaction.

    PubMed

    Chen, Chen; Khoury, Graziella El; Lowe, Christopher R

    2014-10-15

    One challenge facing the purification of therapeutic glycoproteins by affinity chromatography is creating ligands specific for the glycan moiety. Affinity chromatography of glycoproteins is currently conducted with immobilized lectins or boronates, although biomimetic ligands could present a more desirable option. This work describes the rational design and combinatorial synthesis of carbohydrate-binding ligands based on the solid phase multi-component Ugi reaction. An aldehyde-functionalized Sepharose™ solid support constitutes one component (aldehyde) in the four-component reaction, while the other three components (a primary/secondary amine, a carboxylic acid and an isocyanide) are varied in a combinatorial fashion to generate a tri-substituted Ugi scaffold which provides a degree of rigidity and is functionally suitable for interacting with the glycan moiety of glycoproteins. An Ugi library containing 48 ligands was initially screened against glucose oxidase (GOx) as the model glycoprotein to identify a candidate ligand, A13C24I8, which showed affinity to GOx through its carbohydrate moiety. Immobilized ligand A13C24I8 demonstrated a static binding capacity of 16.7mg GOx/ml resin and an apparent dissociation constant (Kd) of 1.45×10(-6)M at pH 7.4. The adsorbent can also bind 8.1mg AGP/ml resin and displays an apparent affinity constant Kd=1.44×10(-5)M. The ligand has a sugar specificity in the following sequence: sorbitol>fructose>mannitol>ribose>arabinose>xylose>galactose>mannose>glucose>fructose; however, it did not display any specificity for sialic acid or methyl α-D-glycosides. A control ligand, generated by substitution of C24 (3-carboxyphenylboronic acid) with C7 (4-hydroxyphenyl acetic acid), failed to show affinity to the carbohydrate moiety, supporting the importance of the role that boronic acid group plays in sugar binding. GOx spiked E. coli samples were loaded onto immobilized ligand A13C24I8, 3-aminophenylboronic acid (APBA) and

  18. A Method to Site-Specifically Identify and Quantitate Carbonyl End Products of Protein Oxidation Using Oxidation-Dependent Element Coded Affinity Tags (O-ECAT) and NanoLiquid Chromatography Fourier Transform Mass Spectrometry

    SciTech Connect

    Lee, S; Young, N L; Whetstone, P A; Cheal, S M; Benner, W H; Lebrilla, C B; Meares, C F

    2005-08-25

    Protein oxidation is linked to cellular stress, aging, and disease. Protein oxidations that result in reactive species are of particular interest, since these reactive oxidation products may react with other proteins or biomolecules in an unmediated and irreversible fashion, providing a potential marker for a variety of disease mechanisms. We have developed a novel system to identify and quantitate, relative to other states, the sites of oxidation on a given protein. A specially designed Oxidation-dependent carbonyl-specific Element-Coded Affinity Mass Tag (O-ECAT), AOD, ((S)-2-(4-(2-aminooxy)-acetamido)-benzyl)-1, 4, 7, 10-tetraazacyclododecane-N, N', N'', N'''-tetraacetic acid, is used to covalently tag the residues of a protein oxidized to aldehyde or keto end products. After proteolysis, the resulting AOD-tagged peptides are affinity purified, and analyzed by nanoLC-FTICR-MS, which provides high specificity in extracting co-eluting AOD mass pairs with a unique mass difference and affords relative quantitation based on isotopic ratios. Using this methodology, we have mapped the surface oxidation sites on a model protein, recombinant human serum albumin (rHSA) in its native form (as purchased) and after FeEDTA oxidation. A variety of modified amino acid residues including lysine, arginine, proline, histidine, threonine, aspartic and glutamic acids, were found to be oxidized to aldehyde and keto end products. The sensitivity of this methodology is shown by the number of peptides identified, twenty peptides on the native protein and twenty-nine after surface oxidation using FeEDTA and ascorbate. All identified peptides map to the surface of the HSA crystal structure validating this method for identifying oxidized amino acids on protein surfaces. In relative quantitation experiments between FeEDTA oxidation and native protein oxidation, identified sites showed different relative propensities towards oxidation independent of amino acid residue. We expect to extend

  19. Affine dynamics with torsion

    NASA Astrophysics Data System (ADS)

    Gültekin, Kemal

    2016-03-01

    In this study, we give a thorough analysis of a general affine gravity with torsion. After a brief exposition of the affine gravities considered by Eddington and Schrödinger, we construct and analyze different affine gravities based on the determinants of the Ricci tensor, the torsion tensor, the Riemann tensor, and their combinations. In each case we reduce equations of motion to their simplest forms and give a detailed analysis of their solutions. Our analyses lead to the construction of the affine connection in terms of the curvature and torsion tensors. Our solutions of the dynamical equations show that the curvature tensors at different points are correlated via non-local, exponential rescaling factors determined by the torsion tensor.

  20. Use of immunoaffinity chromatography for purification of /sup 125/I-labeled human prolactin

    SciTech Connect

    Stuart, M.C.; Boscato, L.M.; Underwood, P.A.

    1983-02-01

    Researchers assessed a simple method for purifying /sup 125/I-labeled human prolactin, taking advantage of the abundant supplies of monoclonal antibodies available. /sup 125/I-labeled human prolactin purified by immunoaffinity chromatography is compared with that purified by gel filtration on Sephadex G-100. Researchers used monoclonal antibodies to prolactin to prepare the affinity chromatography columns. Prolactin was radiolabeled by the Chloramine T method, purified by each of the above procedures, and the binding and displacement characteristics were studied in radioimmunoassays in which either monoclonal antibodies or a rabbit anti-prolactin serum was the first antibody. A nonimmune fraction of /sup 125/I-labeled prolactin that co-eluted with the immunoreactive hormone from Sephadex G-100 was removed by affinity chromatography, which increased the antibody binding of /sup 125/I-labeled prolactin in the radioimmunoassay in the absence of unlabeled antigen (B/T0, in percent) twofold or more, increased the assay sensitivity, and increased the slope of antigen displacement measured by the 50% intercept. Several advantages make this the purification method of choice.

  1. Aerosol gels

    NASA Technical Reports Server (NTRS)

    Sorensen, Christopher M. (Inventor); Chakrabarti, Amitabha (Inventor); Dhaubhadel, Rajan (Inventor); Gerving, Corey (Inventor)

    2010-01-01

    An improved process for the production of ultralow density, high specific surface area gel products is provided which comprises providing, in an enclosed chamber, a mixture made up of small particles of material suspended in gas; the particles are then caused to aggregate in the chamber to form ramified fractal aggregate gels. The particles should have a radius (a) of up to about 50 nm and the aerosol should have a volume fraction (f.sub.v) of at least 10.sup.-4. In preferred practice, the mixture is created by a spark-induced explosion of a precursor material (e.g., a hydrocarbon) and oxygen within the chamber. New compositions of matter are disclosed having densities below 3.0 mg/cc.

  2. Characterization of Affinity-Purified Isoforms of Acinetobacter calcoaceticus Y1 Glutathione Transferases

    PubMed Central

    Chee, Chin-Soon; Tan, Irene Kit-Ping; Alias, Zazali

    2014-01-01

    Glutathione transferases (GST) were purified from locally isolated bacteria, Acinetobacter calcoaceticus Y1, by glutathione-affinity chromatography and anion exchange, and their substrate specificities were investigated. SDS-polyacrylamide gel electrophoresis revealed that the purified GST resolved into a single band with a molecular weight (MW) of 23 kDa. 2-dimensional (2-D) gel electrophoresis showed the presence of two isoforms, GST1 (pI 4.5) and GST2 (pI 6.2) with identical MW. GST1 was reactive towards ethacrynic acid, hydrogen peroxide, 1-chloro-2,4-dinitrobenzene, and trans,trans-hepta-2,4-dienal while GST2 was active towards all substrates except hydrogen peroxide. This demonstrated that GST1 possessed peroxidase activity which was absent in GST2. This study also showed that only GST2 was able to conjugate GSH to isoproturon, a herbicide. GST1 and GST2 were suggested to be similar to F0KLY9 (putative glutathione S-transferase) and F0KKB0 (glutathione S-transferase III) of Acinetobacter calcoaceticus strain PHEA-2, respectively. PMID:24892084

  3. Affinity Monolith-Integrated Microchips for Protein Purification and Concentration.

    PubMed

    Gao, Changlu; Sun, Xiuhua; Wang, Huaixin; Qiao, Wei; Hu, Bo

    2016-01-01

    Affinity chromatography is a valuable method to purify and concentrate minute amount of proteins. Monoliths with epoxy groups for affinity immobilization were prepared by direct in-situ photopolymerization of glycidyl methacrylate and ethylene glycol dimethacrylate in porogenic solvents consisting of 1-dodecanol and cyclohexanol. By integrating affinity monoliths onto a microfluidic system, targeted biomolecules can be captured and retained on affinity column, while other biomolecules having no specific interactions toward the immobilized ligands flow through the microchannel. Therefore, proteins which remain on the affinity column are purified and concentrated, and then eluted by appropriate solutions and finally, separated by microchip capillary electrophoresis. This integrated microfluidic device has been applied to the purification and separation of specific proteins (FITC-labeled human serum albumin and IgG) in a mixture.

  4. Measurement of MHC/Peptide Interactions by Gel Filtration or Monoclonal Antibody Capture

    PubMed Central

    Sidney, John; Southwood, Scott; Moore, Carrie; Oseroff, Carla; Pinilla, Clemencia; Grey, Howard M.; Sette, Alessandro

    2013-01-01

    This unit describes a technique for the direct and quantitative measurement of the capacity of peptide ligands to bind Class I and Class II MHC molecules. The binding of a peptide of interest to MHC is assessed based on its ability to inhibit the binding of a radiolabeled probe peptide to purified MHC molecules. This unit includes protocols for the purification of Class I and Class II MHC molecules by affinity chromatography, and for the radiolabeling of peptides using the chloramine T method. An alternate protocol describes alterations in the basic protocol that are necessary when performing direct binding assays, which are required for (1) selecting appropriate high-affinity, assay-specific, radiolabeled ligands, and (2) determining the amount of MHC necessary to yield assays with the highest sensitivity. After a predetermined incubation period, dependent upon the allele under examination, the bound and unbound radiolabeled species are separated, and their relative amounts are determined. Three methods for separation are described, two utilizing size-exclusion gel-filtration chromatography and a third using monoclonal antibody capture of MHC. Data analysis for each method is also explained. PMID:23392640

  5. Multiple forms of phosphatase from human brain: isolation and partial characterization of affi-gel blue binding phosphatases.

    PubMed

    Cheng, L Y; Wang, J Z; Gong, C X; Pei, J J; Zaidi, T; Grundke-Iqbal, I; Iqbal, K

    2000-01-01

    Implication of protein phosphatases in Alzheimer disease led us to a systemic investigation of the identification of these enzyme activities in human brain. Human brain phosphatases eluted from DEAE-Sephacel with 0.22 M NaCl were resolved into two main groups by affi-gel blue chromatography, namely affi-gel blue-binding phosphatases and affi-gel blue-nonbinding phosphatases. Affi-gel blue-binding phosphatases were further separated into four different phosphatases, designated P1, P2, P3, and P4 by calmodulin-Sepharose 4B and poly-(L-lysine)-agarose chromatographies. These four phosphatases exhibited activities towards nonprotein phosphoester and two of them, P1 and P4, could dephosphorylate phosphoproteins. The activities of the four phosphatases differed in pH optimum, divalent metal ion requirements, sensitivities to various inhibitors and substrate affinities. The apparent molecular masses as estimated by gel-filtration for P1, P2, P3, and P4 were 97, 45, 42, and 125 kDa, respectively. P1 is markedly similar to PP2B from bovine brain and rabbit skeletal muscle. P4 was labeled with anti-PP2A antibody and may represent a new subtype of PP2A. P1 and P4 were also effective in dephosphorylating Alzheimer disease abnormally hyperphosphorylated tau (AD P-tau). The resulting dephosphorylated AD P-tau had its activity restored in promoting assembly of microtubules in vitro. These results suggest that P1 and P4 might be involved in the regulation of phosphorylation of tau in human brain, especially in neurodegenerative conditions like Alzheimer's disease which are characterized by the abnormal hyperphosphorylation of this protein.

  6. Affinity purification and biochemical characterization of histolysin, the major cysteine proteinase of Entamoeba histolytica.

    PubMed Central

    Luaces, A L; Barrett, A J

    1988-01-01

    We report a one-step method for the purification to homogeneity of a cysteine proteinase of Entamoeba histolytica (histolysin) by affinity chromatography of the soluble extract of the parasite on immobilized phenylalanyl(2-phenyl)aminoacetaldehyde semicarbazone. The enzyme has an apparent Mr of 26,000 by SDS/polyacrylamide-gel electrophoresis and 29,000 by gel chromatography. Its pH optimum varies widely, from 5.5 with azocasein to approx. 7 with other protein substrates and benzyloxycarbonylphenylalanyl-L-citrullylaminomethylcourmarin++ + (Z-Phe-Cit-NHMec), and to 9.5 with benzyloxycarbonylphenylalanylarginylaminomethylcoumarin (Z-Phe-Arg-NHMec) and benzyloxycarbonylarginylarginylaminomethylcourmarin (Z-Arg-Arg-NHMec). Values of Km, kcat. and kcat/Km are 1.5 microM, 130 s-1 and 87 X 10(6) M-1.s-1 for Z-Arg-Arg-NHMec, and 32 microM, 0.4 s-1 and 0.012 x 10(6) M-1.s-1 for Z-Phe-Arg-NHMec, respectively, at pH 7.5 and 37 degrees C. The enzyme is inhibited by leupeptin and such inhibitors of cysteine proteinases as L-transepoxysuccinyl-L-leucylamido-4-(guanidino)butane, peptidyldiazomethanes, iodoacetic acid and chicken cystatin. The tentative N-terminal amino acid sequence of the enzyme closely resembles that of papain. Histolysin does not degrade type I collagen or elastin, but it is active against cartilage proteoglycan and kidney glomerular basement-membrane collagen. It also detaches cells from their substratum in vitro, and could well play a role in tissue invasion. Images Fig. 2. Fig. 4. PMID:2898937

  7. Affine Sphere Relativity

    NASA Astrophysics Data System (ADS)

    Minguzzi, E.

    2017-03-01

    We investigate spacetimes whose light cones could be anisotropic. We prove the equivalence of the structures: (a) Lorentz-Finsler manifold for which the mean Cartan torsion vanishes, (b) Lorentz-Finsler manifold for which the indicatrix (observer space) at each point is a convex hyperbolic affine sphere centered on the zero section, and (c) pair given by a spacetime volume and a sharp convex cone distribution. The equivalence suggests to describe (affine sphere) spacetimes with this structure, so that no algebraic-metrical concept enters the definition. As a result, this work shows how the metric features of spacetime emerge from elementary concepts such as measure and order. Non-relativistic spacetimes are obtained replacing proper spheres with improper spheres, so the distinction does not call for group theoretical elements. In physical terms, in affine sphere spacetimes the light cone distribution and the spacetime measure determine the motion of massive and massless particles (hence the dispersion relation). Furthermore, it is shown that, more generally, for Lorentz-Finsler theories non-differentiable at the cone, the lightlike geodesics and the transport of the particle momentum over them are well defined, though the curve parametrization could be undefined. Causality theory is also well behaved. Several results for affine sphere spacetimes are presented. Some results in Finsler geometry, for instance in the characterization of Randers spaces, are also included.

  8. Neuere Chromatographie

    NASA Astrophysics Data System (ADS)

    Hostettmann, K.

    1983-04-01

    Besides high-performance liquid chromatography (HPLC) which is now a well-established and currently used technique, several emerging methods for the isolation and separation of natural products are receiving considerable attention. Centrifugal thin-layer chromatography is a very rapid technique, but limited in resolution. Of special interest are the recently developed support-free liquid-liquid chromatography methods such as droplet counter-current chromatography (DCCC) and rotation locular counter-current chromatography (RLCC). This latter method was applied to the separation of the enantiomers of (±)-norephedrine.

  9. Multimodal charge-induction chromatography for antibody purification.

    PubMed

    Tong, Hong-Fei; Lin, Dong-Qiang; Chu, Wen-Ning; Zhang, Qi-Lei; Gao, Dong; Wang, Rong-Zhu; Yao, Shan-Jing

    2016-01-15

    Hydrophobic charge-induction chromatography (HCIC) has advantages of high capacity, salt-tolerance and convenient pH-controlled elution. However, the binding specificity might be improved with multimodal molecular interactions. New ligand W-ABI that combining tryptophan and 5-amino-benzimidazole was designed with the concept of mutimodal charge-induction chromatography (MCIC). The indole and benzimidazole groups of the ligand could provide orientated mutimodal binding to target IgG under neutral pH, while the imidazole groups could induce the electrostatic repulsion forces for efficient elution under acidic pH. W-ABI ligand was coupled successfully onto agarose gel, and IgG adsorption behaviors were investigated. High affinity to IgG was found with the saturated adsorption capacity of 70.4 mg/ml at pH 7, and the flow rate of mobile phase showed little impact on the dynamic binding capacity. In addition, efficient elution could be achieved at mild acidic pH with high recovery. Two separation cases (IgG separation from albumin containing feedstock and monoclonal antibody purification from cell culture supernatant) were verified with high purity and recovery. In general, MCIC with the specially-designed ligand is an expanding of HCIC with improved adsorption selectivity, which would be a potential alternative to Protein A-based capture for the cost-effective purification of antibodies.

  10. Three-phase molecularly imprinted sol-gel based hollow fiber liquid-phase microextraction combined with liquid chromatography-tandem mass spectrometry for enrichment and selective determination of a tentative lung cancer biomarker.

    PubMed

    Moein, Mohammad Mahdi; Javanbakht, Mehran; Karimi, Mohammad; Akbari-Adergani, Behrouz; Abdel-Rehim, Mohamed

    2015-07-15

    In the present study, the modification of a polysulfone hollow fiber membrane with in situ molecularly imprinted sol-gel process (as a novel and one-step method) was prepared and investigated. 3-(propylmethacrylate)trimethoxysilane (3PMTMOS) as an inorganic precursor was used for preparation of molecularly imprinted sol-gel. The modified molecularly imprinted sol-gel hollow fiber membrane (MSHM) was used for the liquid-phase microextraction (LPME) of hippuric acid (HA) in human plasma and urine samples. MSHM as a selective, robust, and durable tool was used for at least 50 extractions without significant decrease in the extraction efficiency. The non-molecularly imprinted sol-gel hollow fiber membrane (NSHM) as blank hollow fiber membrane was prepared by the same process, only without HA. To achieve the best condition, influential parameters on the extraction efficiency were thoroughly investigated. The capability of this robust, green, and simple method for extraction of HA was successfully accomplished with LC/MS/MS. The limits of detection (LOD) and quantification (LOQ) in human plasma and urine samples were 0.3 and 1.0nmolL(-1), respectively. The standard calibration curves were obtained within the concentration range 1-2000nmolL(-1) for HA in human plasma and urine. The coefficients of determination (r(2)) were ≥0.998. The obtained data exhibited recoveries were higher than 89% for the extraction of HA in human plasma and urine samples.

  11. Analysis of biomolecular interactions using affinity microcolumns: A review

    PubMed Central

    Zheng, Xiwei; Li, Zhao; Beeram, Sandya; Podariu, Maria; Matsuda, Ryan; Pfaunmiller, Erika L.; White, Christopher J.; Carter, NaTasha; Hage, David S.

    2014-01-01

    Affinity chromatography has become an important tool for characterizing biomolecular interactions. The use of affinity microcolumns, which contain immobilized binding agents and have volumes in the mid-to-low microliter range, has received particular attention in recent years. Potential advantages of affinity microcolumns include the many analysis and detection formats that can be used with these columns, as well as the need for only small amounts of supports and immobilized binding agents. This review examines how affinity microcolumns have been used to examine biomolecular interactions. Both capillary-based microcolumns and short microcolumns are considered. The use of affinity microcolumns with zonal elution and frontal analysis methods are discussed. The techniques of peak decay analysis, ultrafast affinity extraction, split-peak analysis, and band-broadening studies are also explored. The principles of these methods are examined and various applications are provided to illustrate the use of these methods with affinity microcolumns. It is shown how these techniques can be utilized to provide information on the binding strength and kinetics of an interaction, as well as on the number and types of binding sites. It is further demonstrated how information on competition or displacement effects can be obtained by these methods. PMID:24572459

  12. Statistical physics of polymer gels

    NASA Astrophysics Data System (ADS)

    Panyukov, Sergei; Rabin, Yitzhak

    1996-05-01

    This work presents a comprehensive analysis of the statistical mechanics of randomly cross-linked polymer gels, starting from a microscopic model of a network made of instantaneously cross-linked Gaussian chains with excluded volume, and ending with the derivation of explicit expressions for the thermodynamic functions and for the density correlation functions which can be tested by experiments. Using replica field theory we calculate the mean field density in replica space and show that this solution contains statistical information about the behavior of individual chains in the network. The average monomer positions change affinely with macroscopic deformation and fluctuations about these positions are limited to length scales of the order of the mesh size. We prove that a given gel has a unique state of microscopic equilibrium which depends on the temperature, the solvent, the average monomer density and the imposed deformation. This state is characterized by the set of the average positions of all the monomers or, equivalently, by a unique inhomogeneous monomer density profile. Gels are thus the only known example of equilibrium solids with no long-range order. We calculate the RPA density correlation functions that describe the statistical properties of small deviations from the average density, due to both static spatial heterogeneities (which characterize the inhomogeneous equilibrium state) and thermal fluctuations (about this equilibrium). We explain how the deformation-induced anisotropy of the inhomogeneous equilibrium density profile is revealed by small angle neutron scattering and light scattering experiments, through the observation of the butterfly effect. We show that all the statistical information about the structure of polymer networks is contained in two parameters whose values are determined by the conditions of synthesis: the density of cross-links and the heterogeneity parameter. We find that the structure of instantaneously cross

  13. RNA polymerase from Bacillus subtilis: isolation of core and holo enzyme by DNA-cellulose chromatography.

    PubMed Central

    Plevan, P; Albertini, A M; Galizzi, A; Adamoli, A; Mastromei, G; Riva, S; Cassani, G

    1977-01-01

    A new procedure for the purification of B. subtilis RNA polymerase, based on mild lysis of cells, low speed centrifugation, gel filtration, DEAE-Sephadex chromatography and affinity chromatography on DNA-cellulose, yields three forms of enzyme referred here as enzyme A, B and C. As revealed by SDS gel electrophoresis, enzyme A has the subunit structure of core polymerase plus some small polypeptides. Its catalytic properties are similar to those of core polymerase. Enzyme B has the composition of core polymerase. Both enzymes A and B can be stimulated by the addition of beta factor. Enzyme C has the holo-enzyme composition. The pattern of sensitivity of the three forms of enzyme towards KCl are very different: enzymes A and B, even at low concentration of salt, are inhibited with all the DNA templates tested, whereas enzyme C shows a pattern of stimulation specific for each DNA tested. The transcripts of the three enzymes on phage SPP1 DNA template have been analyzed by hybridization to the separated strands. Only enzyme C selectively transcribed the H strands. Images PMID:405660

  14. Biphasic Affinity Chromatographic Approach for Deep Tyrosine Phosphoproteome Analysis.

    PubMed

    Deng, Zhenzhen; Dong, Mingming; Wang, Yan; Dong, Jing; Li, Shawn S-C; Zou, Hanfa; Ye, Mingliang

    2017-02-21

    Tyrosine phosphorylation (pTyr) is important for normal physiology and implicated in many human diseases, particularly cancer. Identification of pTyr sites is critical to dissecting signaling pathways and understanding disease pathologies. However, compared with serine/threonine phosphorylation (pSer/pThr), the analysis of pTyr at the proteome level is more challenging due to its low abundance. Here, we developed a biphasic affinity chromatographic approach where Src SH2 superbinder was coupled with NeutrAvidin affinity chromatography, for tyrosine phosphoproteome analysis. With the use of competitive elution agent biotin-pYEEI, this strategy can distinguish high-affinity phosphotyrosyl peptides from low-affinity ones, while the excess competitive agent is readily removed by using NeutrAvidin agarose resin in an integrated tip system. The excellent performance of this system was demonstrated by analyzing tyrosine phosphoproteome of Jurkat cells from which 3,480 unique pTyr sites were identified. The biphasic affinity chromatography method for deep Tyr phosphoproteome analysis is rapid, sensitive, robust, and cost-effective. It is widely applicable to the global analysis of the tyrosine phosphoproteome associated with tyrosine kinase signal transduction.

  15. Dry-Column Flash Chromatography

    NASA Astrophysics Data System (ADS)

    Shusterman, Alan J.; McDougal, Patrick G.; Glasfeld, Arthur

    1997-10-01

    Dry-column flash chromatography is a safe, powerful, yet easily learned preparative chromatography technique. It has proven useful in research, and an adaptation of the technique for use in large teaching laboratories (general chemistry, organic chemistry) is described here. The student version is similar to vacuum filtration, uses the same compact, readily available glassware, and inexpensive and safe solvents (ethyl acetate and hexane) and adsorbent (Merck grade 60 silica gel). The technique is sufficiently simple and powerful that a beginning student can successfully resolve diastereomers on sample scales ranging from 100 mg to >1 g.

  16. Gas Chromatography.

    ERIC Educational Resources Information Center

    Karasek, Francis W.; And Others

    1984-01-01

    This review covers fundamental developments in gas chromatography during 1982 and 1983. Literature is considered under these headings: columns; liguid phases; solid supports; sorption processes and solvents; open tubular column gas chromatography; instrumentation; high-resolution columns and applications; other techniques; qualitative and…

  17. Ultrasensitive characterization of site-specific glycosylation of affinity-purified haptoglobin from lung cancer patient plasma using 10 μm i.d. porous layer open tubular liquid chromatography-linear ion trap collision-induced dissociation/electron transfer dissociation mass spectrometry.

    PubMed

    Wang, Dongdong; Hincapie, Marina; Rejtar, Tomas; Karger, Barry L

    2011-03-15

    Site-specific analysis of protein glycosylation is important for biochemical and clinical research efforts. Glycopeptide analysis using liquid chromatography-collision-induced dissociation/electron transfer dissociation mass spectrometry (LC-CID/ETD-MS) allows simultaneous characterization of the glycan structure and attached peptide site. However, due to the low ionization efficiency of glycopeptides during electrospray ionization, 200-500 fmol of sample per injection is needed for a single LC-MS run, which makes it challenging for the analysis of limited amounts of glycoprotein purified from biological matrixes. To improve the sensitivity of LC-MS analysis for glycopeptides, an ultranarrow porous layer open tubular (PLOT) LC column (2.5 m × 10 μm i.d.) was coupled to a linear ion trap (LTQ) collision-induced dissociation/electron transfer dissociation mass spectrometer to provide sensitive analysis of N-linked protein glycosylation heterogeneity. The potential of the developed method is demonstrated by the characterization of site-specific glycosylation using haptoglobin (Hpt) as a model protein. To limit the amount of haptoglobin to low picomole amounts of protein, we affinity purified it from 1 μL of pooled lung cancer patient plasma. A total of 26 glycoforms/glycan compositions on three Hpt tryptic glycopeptides were identified and quantified from 10 LC-MS runs with a consumption of 100 fmol of Hpt digest (13 ng of protein, 10 fmol per injection). Included in this analysis was the determination of the glycan occupancy level. At this sample consumption level, the high sensitivity of the PLOT LC-LTQ-CID/ETD-MS system allowed glycopeptide identification and structure determination, along with relative quantitation of glycans presented on the same peptide backbone, even for low abundant glycopeptides at the ∼100 amol level. The PLOT LC-MS system is shown to have sufficient sensitivity to allow characterization of site-specific protein glycosylation from trace

  18. "Clickable" affinity ligands for effective separation of glycoproteins.

    PubMed

    Suksrichavalit, Thummaruk; Yoshimatsu, Keiichi; Prachayasittikul, Virapong; Bülow, Leif; Ye, Lei

    2010-06-04

    In this paper, we present a new modular approach to immobilize boronic acid ligands that can offer effective separation of glycoproteins. A new "clickable" boronic acid ligand was synthesized by introducing a terminal acetylene group into commercially available 3-aminophenyl boronic acid. The clickable ligand, 3-(prop-2-ynyloxycarbonylamino)phenylboronic acid (2) could be easily coupled to azide-functionalized hydrophilic Sepharose using Cu(I)-catalyzed 1,3-dipolar cycloaddition reaction under mild condition. Compared to other boronic acid affinity gels, the new affinity gel displayed superior effectiveness in separating model glycoproteins (ovalbumin and RNase B) from closely related bovine serum albumin and RNase A in the presence of crude Escherichia coli proteins. Because of the simplicity of the immobilization through "click chemistry", the new ligand 2 is expected to not only offer improved glycoprotein separation in other formats, but also act as a useful building block to develop new chemical sensors for analysis of other glycan compounds.

  19. Kernel Affine Projection Algorithms

    NASA Astrophysics Data System (ADS)

    Liu, Weifeng; Príncipe, José C.

    2008-12-01

    The combination of the famed kernel trick and affine projection algorithms (APAs) yields powerful nonlinear extensions, named collectively here, KAPA. This paper is a follow-up study of the recently introduced kernel least-mean-square algorithm (KLMS). KAPA inherits the simplicity and online nature of KLMS while reducing its gradient noise, boosting performance. More interestingly, it provides a unifying model for several neural network techniques, including kernel least-mean-square algorithms, kernel adaline, sliding-window kernel recursive-least squares (KRLS), and regularization networks. Therefore, many insights can be gained into the basic relations among them and the tradeoff between computation complexity and performance. Several simulations illustrate its wide applicability.

  20. Self-affinity and Crossover of A Clay Deposit

    NASA Astrophysics Data System (ADS)

    Fossum, J. O.; Huru Bergene, H.; Hansen, A.; Manificat, G.

    Self-affine dehydrated colloidal deposits on fresh mica surfaces of the synthetic 2:1 smectite clay laponite have been studied by means of Atomic Force Microscopy. AFM images of these prepared assemblies of sol and gel aggregates have been analyzed both by means of standard AFM software, and wavelet methods. The deposited surfaces show an anti-persistent to persistent crossover with a clay concentration dependent crossover length. It is thus concluded that the investigated electrolyte concentrations play a minor role

  1. Adjoint affine fusion and tadpoles

    NASA Astrophysics Data System (ADS)

    Urichuk, Andrew; Walton, Mark A.

    2016-06-01

    We study affine fusion with the adjoint representation. For simple Lie algebras, elementary and universal formulas determine the decomposition of a tensor product of an integrable highest-weight representation with the adjoint representation. Using the (refined) affine depth rule, we prove that equally striking results apply to adjoint affine fusion. For diagonal fusion, a coefficient equals the number of nonzero Dynkin labels of the relevant affine highest weight, minus 1. A nice lattice-polytope interpretation follows and allows the straightforward calculation of the genus-1 1-point adjoint Verlinde dimension, the adjoint affine fusion tadpole. Explicit formulas, (piecewise) polynomial in the level, are written for the adjoint tadpoles of all classical Lie algebras. We show that off-diagonal adjoint affine fusion is obtained from the corresponding tensor product by simply dropping non-dominant representations.

  2. Affinity polymers tailored for the protein A binding site of immunoglobulin G proteins.

    PubMed

    Latza, Patricia; Gilles, Patrick; Schaller, Torsten; Schrader, Thomas

    2014-09-01

    Rational design in combination with a screening process was used to develop affinity polymers for a specific binding site on the surface of immunoglobulin G (IgG) proteins. The concept starts with the identification of critical amino acid residues on the protein interface and their topological arrangement. Appropriate binding monomers were subsequently synthesized. Together with a sugar monomer (2-5 equiv) for water solubility and a dansyl monomer (0.5 equiv) as a fluorescent label, they were subjected in aqueous solution to linear radical copolymerization in various compositions (e.g., azobisisobutyronitrile (AIBN), homogeneous water/DMF mixtures). After ultrafiltration and lyophilization, colorless dry water-soluble powders were obtained. NMR spectroscopic and gel permeation chromatography (GPC) characterization indicated molecular weights between 30 and 500 kD and confirmed retention of monomer composition as well as the absence of monomers. In a competitive enzyme-linked immunosorbent assay (ELISA) screen of the polymer libraries (20-50 members), few copolymers qualified as strong and selective binders for the protein A binding site on the Fc fragment of the antibody. Their monomer composition precisely reflected the critical amino acids found at the interface. The simple combination of a charged and a nonpolar binding monomer sufficed for selective submicromolar IgG recognition by the synthetic polymer. Affinities were confirmed by fluorescence titrations; they increased with decreasing salt load but remained largely unaltered at lowered pH. Other proteins, including those of similar size and isoelectric point (pI), were bound 10-1000 times less tightly. This example indicates that interaction domains in other proteins may also be targeted by synthetic polymers if their comonomer composition reflects the nature and arrangement of amino acid residues on the protein surface.

  3. Functionalized multi-walled carbon nanotubes as affinity ligands

    NASA Astrophysics Data System (ADS)

    Yu, L.; Li, C. M.; Zhou, Q.; Gan, Y.; Bao, Q. L.

    2007-03-01

    Functionalization of carbon nanotubes is very challenging for their applications. The paper here describes a new method to functionalize multi-walled carbon nanotubes (MWCNTs) as specific affinity adsorbents. MWCNTs were acid purified and pretreated with (3-aminopropyl)-triethoxysilane (APTES) in order to introduce abundant amino groups on the surface of MWCNTs. After the conversion of amino groups to carboxyl groups by succinic acid anhydride, MWCNTs were attached to protein A or aminodextran using 1-ethyl-3,3' (dimethylamion)-propylcarbodiimide as a biofunctional crosslinker. The incorporation of aminodextran as a spacer arm noticeably increased the binding capacity of the APTES-modified MWCNTs for protein A. The application of affinity MWCNTs for purification of immunoglobulin G was then evaluated. The affinity of MWCNTs with AMD spacer exhibited a high adsorption capacity of ~361 µg IgG/mg MWCNT (wet basis). About 75% of bound IgG was eluted from affinity MWCNTs (ANT-I and ANT-II) and ELISA confirmed that the biological activity of IgG was well preserved during the course of affinity separation. The functionalized MWCNTs could be potentially used in affinity chromatography.

  4. Fundamentals of gel dosimeters

    NASA Astrophysics Data System (ADS)

    McAuley, K. B.; Nasr, A. T.

    2013-06-01

    Fundamental chemical and physical phenomena that occur in Fricke gel dosimeters, polymer gel dosimeters, micelle gel dosimeters and genipin gel dosimeters are discussed. Fricke gel dosimeters are effective even though their radiation sensitivity depends on oxygen concentration. Oxygen contamination can cause severe problems in polymer gel dosimeters, even when THPC is used. Oxygen leakage must be prevented between manufacturing and irradiation of polymer gels, and internal calibration methods should be used so that contamination problems can be detected. Micelle gel dosimeters are promising due to their favourable diffusion properties. The introduction of micelles to gel dosimetry may open up new areas of dosimetry research wherein a range of water-insoluble radiochromic materials can be explored as reporter molecules.

  5. Gas Chromatography.

    ERIC Educational Resources Information Center

    Cram, Stuart P.; And Others

    1980-01-01

    Selects fundamental developments in theory, methodology, and instrumentation in gas chromatography (GC). A special section reviews GC in the People's Republic of China. Over 1,000 references are cited. (CS)

  6. Boric acid gel enrichment of glycosylated proteins in human wound fluids.

    PubMed

    Krisp, Christoph; Kubutat, Caroline; Kyas, Andreas; Steinsträsser, Lars; Jacobsen, Frank; Wolters, Dirk

    2011-04-01

    The enrichment of glycosylated proteins by glycocapturing materials plays a pivotal role for the investigation of polysaccharide containing proteins in disease pathogenesis. Hence, we investigated a boric acid gel as a binding material for glycoprotein enrichment. The bovine proteins alpha-1-acid-glycoprotein (A1AG) and alpha-2-HS-glycoprotein (fetuin A) were spiked in human chronic wound fluids and were subsequently enriched by a boric acid gel affinity chromatography (BAGAC). The enrichment efficiency was evaluated by western blot analysis and mass spectrometry. Additionally, glycoproteins of human wound fluids from diabetes mellitus patients with chronic foot ulcers were analyzed after BAGAC enrichments. In total 104 glycoproteins were identified, with reported glycosylation sites. 60 proteins were detected in at least 2 out of 3 biological replicates and were used for quantitative analysis between the bound and unbound fractions. Almost 80% of these glycoproteins were more prominent in the bound fraction. Only 2 glycoproteins revealed higher spectral counts in the flow through fraction compared to the bound fraction. These findings demonstrate the capability of the BAGAC material to enrich glycosylated proteins from complex human wound fluids.

  7. Affinity approaches in RNAi-based therapeutics purification.

    PubMed

    Pereira, Patrícia; Queiroz, João A; Figueiras, Ana; Sousa, Fani

    2016-05-15

    The recent investigation on RNA interference (RNAi) related mechanisms and applications led to an increased awareness of the importance of RNA in biology. Nowadays, RNAi-based technology has emerged as a potentially powerful tool for silencing gene expression, being exploited to develop new therapeutics for treating a vast number of human disease conditions, as it is expected that this technology can be translated onto clinical applications in a near future. This approach makes use of a large number of small (namely short interfering RNAs, microRNAs and PIWI-interacting RNAs) and long non-coding RNAs (ncRNAs), which are likely to have a crucial role as the next generation therapeutics. The commercial and biomedical interest in these RNAi-based therapy applications have fostered the need to develop innovative procedures to easily and efficiently purify RNA, aiming to obtain the final product with high purity degree, good quality and biological activity. Recently, affinity chromatography has been applied to ncRNAs purification, in view of the high specificity. Therefore, this article intends to review the biogenesis pathways of regulatory ncRNAs and also to discuss the most significant and recent developments as well as applications of affinity chromatography in the challenging task of purifying ncRNAs. In addition, the importance of affinity chromatography in ncRNAs purification is addressed and prospects for what is forthcoming are presented.

  8. Electrospun polyethersulfone affinity membrane: membrane preparation and performance evaluation.

    PubMed

    Ma, Zuwei; Lan, Zhengwei; Matsuura, Takeshi; Ramakrishna, Seeram

    2009-11-01

    Non-woven polyethersulfone (PES) membranes were prepared by electrospinning. After heat treatment and surface activation, the membranes were covalently functionalized with ligands to be used as affinity membranes. The membranes were characterized in terms of fiber diameter, porosity, specific area, pore size, ligand density and binding capacities. To evaluate the binding efficiency of the membrane, dynamic adsorption of bovine serum albumin (BSA) on the Cibacron blue F3GA (CB) functionalized PES membrane was studied. Experimental breakthrough curves were fitted with the theoretical curves based on the plate model to estimate plate height (H(p)) of the affinity membrane. The high value of H(p) (1.6-8 cm) of the affinity membrane implied a poor dynamic binding efficiency, which can be explained by the intrinsic microstructures of the material. Although the electrospun membrane might not be an ideal candidate for the preparative affinity membrane chromatography for large-scale production, it still can be used for fast small-scale protein purification in which a highly efficient binding is not required. Spin columns packed with protein A/G immobilized PES membranes were demonstrated to be capable of binding IgG specifically. SDS-PAGE results demonstrated that the PES affinity membrane had high specific binding selectivity for IgG molecules and low non-specific protein adsorption. Compared with other reported affinity membranes, the PES affinity membrane had a comparable IgG binding capacity of 4.5 mg/ml, and had a lower flow through pressure drop due to its larger pore size. In conclusion, the novel PES affinity membrane is an ideal spin column packing material for fast protein purification.

  9. Electron Affinity Calculations for Thioethers

    NASA Technical Reports Server (NTRS)

    Sulton, Deley L.; Boothe, Michael; Ball, David W.; Morales, Wilfredo

    1997-01-01

    Previous work indicated that polyphenyl thioethers possessed chemical properties, related to their electron affinities, which could allow them to function as vapor phase lubricants (VPL). Indeed, preliminary tribological tests revealed that the thioethers could function as vapor phase lubricants but not over a wide temperature and hertzian pressure range. Increasing the electron affinity of the thioethers may improve their VPL properties over this range. Adding a substituent group to the thioether will alter its electron affinity in many cases. Molecular orbital calculations were undertaken to determine the effect of five different substituent groups on the electron affinity of polyphenyl thioethers. It was found that the NO2, F, and I groups increased the thioethers electron affinity by the greatest amount. Future work will involve the addition of these groups to the thioethers followed by tribological testing to assess their VPL properties.

  10. Radial Chromatography for the Separation of Nitroaniline Isomers

    ERIC Educational Resources Information Center

    Miller, Robert B.; Case, William S.

    2011-01-01

    Separation techniques are usually presented in the undergraduate organic laboratory to teach students how to purify and isolate compounds. Often the concept of liquid chromatography is introduced by having students create "silica gel columns" to separate components of a reaction mixture. Although useful, column chromatography can be a laborious…

  11. Coenzyme-like ligands for affinity isolation of cholesterol oxidase.

    PubMed

    Xin, Yu; Lu, Liushen; Wang, Qing; Zhang, Ling; Tong, Yanjun; Wang, Wu

    2016-05-15

    Two coenzyme-like chemical ligands were designed and synthesized for affinity isolation of cholesterol oxidase (COD). To simulate the structure of natural coenzyme of COD (flavin adenine dinucleotide (FAD)), on Sepharose beads, 5-aminouracil, cyanuric chloride and 1, 4-butanediamine were composed and then modified. The COD gene from Brevibacterium sp. (DQ345780) was expressed in Escherichia coli BL21 (DE3), and then the sorbents were applied to adsorption analysis with the pure enzyme. Subsequently, the captured enzyme was applied to SDS-PAGE and activity analysis. As calculated, the theoretical maximum adsorption (Qmax) of the two affinity sorbents (RL-1 and RL-2) were ∼83.5 and 46.3mg/g wet gel; and the desorption constant Kd of the two sorbents were ∼6.02×10(-4) and 1.19×10(-4)μM. The proteins after cell lysis were applied to affinity isolation, and then after one step of affinity binding on the two sorbents, the protein recoveries of RL-1 and RL-2 were 9.2% and 9.7%; the bioactivity recoveries were 92.7% and 91.3%, respectively. SDS-PAGE analysis revealed that the purities of COD isolated with the two affinity sorbents were approximately 95%.

  12. Sol-gel hybrid methyltrimethoxysilane-tetraethoxysilane as a new dispersive solid-phase extraction material for acrylamide determination in food with direct gas chromatography-mass spectrometry analysis.

    PubMed

    Omar, Mei Musa Ali; Wan Ibrahim, Wan Aini; Elbashir, Abdalla Ahmed

    2014-09-01

    A sol-gel hybrid sorbent, methyltrimethoxysilane-tetraethoxysilane (MTMOS-TEOS) was successfully used as new dispersive solid phase extraction (dSPE) sorbent material in the determination of acrylamide in several Sudanese foods and analysis using GC-MS. Several important dSPE parameters were optimised. Under the optimised conditions, excellent linearity (r(2)>0.9998) was achieved using matrix matched standard calibration in the concentration range 50-1000 μg kg(-1). The limits of detection (LOD) and limit of quantification ranged from 9.1 to 12.8 μg/kg and 27.8-38.9 μg/kg, respectively. The precision (RSD%) of the method was ⩽6.6% and recoveries of acrylamide obtained were in the range of 88-103%, (n=3). The LOD obtained is comparable with the LODs of primary secondary amine dSPE. The proposed MTMOS-TEOS dSPE method is direct and safe for acrylamide analysis, showed reliable method validation performances and good cleanup effects. It was successfully applied to the analysis of acrylamide in real food samples.

  13. Analytical performance and clinical usefulness of two binding assays for growth hormone binding protein (GHBP) measurement: high performance liquid chromatography (HPLC)-gel filtration and dextran-coated charcoal adsorption.

    PubMed

    Llopis, M A; Granada, M L; Audí, L; Sanmartí, A; Bel, J; Sánchez-Planell, L; Formiguera, X; Marin, F; Corominas, A

    1997-11-28

    We compared two binding assays for growth hormone binding protein (GHBP) measurements, which differ in the method of bound and free GH separation: HPLC-gel filtration or dextran coated-charcoal adsorption (DCC). Two pools of sera (high and medium GHBP activity) were used for quality-control assessment. Moreover, 62 samples from 34 children and 28 adults with different nutritional status were studied. Total, between- and intra-iodination coefficients of variation (CVs) from the two methods were not different. Although percentage binding measured in the pool sera significantly differed, the concentrations assessed by Scatchard plot were comparable. Results obtained by the two methods in the 62 sera were significantly correlated (r = 0.77, P < 0.001). With both methods GHBP activity correlated with chronological age and body mass index (BMI) and differed among groups with different nutritional status. Although HPLC and DCC separation methods for GHBP measurement differ in their practicability, our study demonstrates that performance and the clinical usefulness of the two methods are comparable.

  14. Optimization of a novel method for determination of benzene, toluene, ethylbenzene, and xylenes in hair and waste water samples by carbon nanotubes reinforced sol-gel based hollow fiber solid phase microextraction and gas chromatography using factorial experimental design.

    PubMed

    Es'haghi, Zarrin; Ebrahimi, Mahmoud; Hosseini, Mohammad-Saeid

    2011-05-27

    A novel design of solid phase microextraction fiber containing carbon nanotube reinforced sol-gel which was protected by polypropylene hollow fiber (HF-SPME) was developed for pre-concentration and determination of BTEX in environmental waste water and human hair samples. The method validation was included and satisfying results with high pre-concentration factors were obtained. In the present study orthogonal array experimental design (OAD) procedure with OA(16) (4(4)) matrix was applied to study the effect of four factors influencing the HF-SPME method efficiency: stirring speed, volume of adsorption organic solvent, extraction and desorption time of the sample solution, by which the effect of each factor was estimated using individual contributions as response functions in the screening process. Analysis of variance (ANOVA) was employed for estimating the main significant factors and their percentage contributions in extraction. Calibration curves were plotted using ten spiking levels of BTEX in the concentration ranges of 0.02-30,000ng/mL with correlation coefficients (r) 0.989-0.9991 for analytes. Under the optimized extraction conditions, the method showed good linearity (0.3-20,000ng/L), repeatability, low limits of detections (0.49-0.7ng/L) and excellent pre-concentration factors (185-1872). The best conditions which were estimated then applied for the analysis of BTEX compounds in the real samples.

  15. Targeting Anti-Cancer Active Compounds: Affinity-Based Chromatographic Assays

    PubMed Central

    de Moraes, Marcela Cristina; Cardoso, Carmen Lucia; Seidl, Claudia; Moaddel, Ruin; Cass, Quezia Bezerra

    2016-01-01

    Affinity-based chromatography assays encompass the use of solid supports containing immobilized biological targets to monitor binding events in the isolation , identification and/or characterization of bioactive compounds. This powerful bioanalytical technique allows the screening of potential binders through fast analyses that can be directly performed using isolated substances or complex matrices. An overview of the recent researches in frontal and zonal affinity-based chromatography screening assays, which has been used as a tool in the identification and characterization of new anti-cancer agents, is discussed. In addition, a critical evaluation of the recently emerged ligands fishing assays in complex mixtures is also discussed. PMID:27306095

  16. Green chromatography.

    PubMed

    Płotka, Justyna; Tobiszewski, Marek; Sulej, Anna Maria; Kupska, Magdalena; Górecki, Tadeusz; Namieśnik, Jacek

    2013-09-13

    Analysis of organic compounds in samples characterized by different composition of the matrix is very important in many areas. A vast majority of organic compound determinations are performed using gas or liquid chromatographic methods. It is thus very important that these methods have negligible environmental impact. Chromatographic techniques have the potential to be greener at all steps of the analysis, from sample collection and preparation to separation and final determination. The paper summarizes the approaches used to accomplish the goals of green chromatography. While complete elimination of sample preparation would be an ideal approach, it is not always practical. Solventless extraction techniques offer a very good alternative. Where solvents must be used, the focus should be on the minimization of their consumption. The approaches used to make chromatographic separations greener differ depending on the type of chromatography. In gas chromatography it is advisable to move away from using helium as the carrier gas because it is a non-renewable resource. GC separations using low thermal mass technology can be greener because of energy savings offered by this technology. In liquid chromatography the focus should be on the reduction of solvent consumption and replacement of toxic and environmentally hazardous solvents with more benign alternatives. Multidimensional separation techniques have the potential to make the analysis greener in both GC and LC. The environmental impact of the method is often determined by the location of the instrument with respect to the sample collection point.

  17. Ion Chromatography.

    ERIC Educational Resources Information Center

    Mulik, James D.; Sawicki, Eugene

    1979-01-01

    Accurate for the analysis of ions in solution, this form of analysis enables the analyst to directly assay many compounds that previously were difficult or impossible to analyze. The method is a combination of the methodologies of ion exchange, liquid chromatography, and conductimetric determination with eluant suppression. (Author/RE)

  18. A novel solid-phase microextraction using coated fiber based sol-gel technique using poly(ethylene glycol) grafted multi-walled carbon nanotubes for determination of benzene, toluene, ethylbenzene and o-xylene in water samples with gas chromatography-flame ionization detector.

    PubMed

    Sarafraz-Yazdi, Ali; Amiri, Amirhassan; Rounaghi, Gholamhossein; Hosseini, Hossein Eshtiagh

    2011-08-26

    In this study, poly(ethylene glycol) (PEG) grafted onto multi-walled carbon nanotubes (PEG-g-MWCNTs) were synthesized by the covalent functionalization of MWCNTs with hydroxyl-terminated PEG chains. For the first time, functionalized product of PEG-g-MWCNTs was used as selective stationary phase to prepare the sol-gel solid-phase microextraction (SPME) fiber in combination with gas chromatography-flame ionization detector (GC-FID) for the determination of ultra-trace levels of benzene, toluene, ethylbenzene and o-xylene (BTEX) in real water samples. The PEG-g-MWCNTs were characterized by Fourier transform infrared spectra and also thermo-gravimetric analysis, which verified that PEG chains were grafted onto the surface of the MWCNTs. The scanning electron micrographs of the fiber surface revealed a highly porous structure which greatly increases the surface area for PEG-g-MWCNTs sol-gel coating. This fiber demonstrated many inherent advantages, the main being the strong anchoring of the coating to the fused silica resulting from chemical bonding with the silanol groups on the fused-silica fiber surface. The new PEG-g-MWCNTs sol-gel fiber is simple to prepare, robust, with high thermal stability and long lifetime, up to 200 extractions. Important parameters influencing the extraction efficiency such as desorption temperature and time, extraction temperature, extraction time, stirring speed and salt effect were investigated and optimized. Under the optimal conditions, the method detection limits (S/N=3) were in the range of 0.6-3 pg mL(-1) and the limits of quantification (S/N=10) between 2 and 10 pg mL(-1). The relative standard deviations (RSDs) for one fiber (repeatability) (n=5) were obtained from 4.40 up to 5.75% and between fibers or batch to batch (n=3) (reproducibility) in the range of 4.31-6.55%. The developed method was successfully applied to real water samples while the relative recovery percentages obtained for the spiked water samples at 20 pg mL(-1

  19. A Modern Apparatus for Performing Flash Chromatography: An Experiment for the Organic Laboratory

    PubMed Central

    Naumiec, Gregory R.; Del Padre, Angela N.; Hooper, Matthew M.; St. Germaine, Alison; DeBoef, Brenton

    2013-01-01

    A modern apparatus for performing flash chromatography using commercially available, prepacked silica cartridges has been developed. The key advantage of this system, when compared to traditional flash chromatography, is its use of commercially available silica cartridges, which obviates the need for students to handle silica gel. The apparatus has been tested for its ability to perform separations that are commonly found in organic chemistry teaching laboratories, and a laboratory module that combines the techniques of thin-layer chromatography, gas chromatography, and flash chromatography is described. The performance of this new chromatography apparatus was comparable to a traditional flash chromatography column. PMID:23504657

  20. A Modern Apparatus for Performing Flash Chromatography: An Experiment for the Organic Laboratory.

    PubMed

    Naumiec, Gregory R; Del Padre, Angela N; Hooper, Matthew M; St Germaine, Alison; Deboef, Brenton

    2013-03-12

    A modern apparatus for performing flash chromatography using commercially available, prepacked silica cartridges has been developed. The key advantage of this system, when compared to traditional flash chromatography, is its use of commercially available silica cartridges, which obviates the need for students to handle silica gel. The apparatus has been tested for its ability to perform separations that are commonly found in organic chemistry teaching laboratories, and a laboratory module that combines the techniques of thin-layer chromatography, gas chromatography, and flash chromatography is described. The performance of this new chromatography apparatus was comparable to a traditional flash chromatography column.

  1. Contractions of affine spherical varieties

    SciTech Connect

    Arzhantsev, I V

    1999-08-31

    The language of filtrations and contractions is used to describe the class of G-varieties obtainable as the total spaces of the construction of contraction applied to affine spherical varieties, which is well-known in invariant theory. These varieties are local models for arbitrary affine G-varieties of complexity 1 with a one-dimensional categorical quotient. As examples, reductive algebraic semigroups and three-dimensional SL{sub 2}-varieties are considered.

  2. Odorant Screening and Quantitation of Thiols in Carmenere Red Wine by Gas Chromatography-Olfactometry and Stable Isotope Dilution Assays.

    PubMed

    Pavez, Carolina; Agosin, Eduardo; Steinhaus, Martin

    2016-05-04

    The sensory impact of thiols in Vitis vinifera 'Carmenere' red wines was evaluated. For this purpose, aroma extract dilution analysis was applied to the thiols isolated from a Carmenere red wine by affinity chromatography with a mercurated agarose gel. Results revealed the presence of four odorants, identified as 2-furanylmethanethiol, 3-sulfanylhexyl acetate, 3-sulfanyl-1-hexanol, and 2-methyl-3-sulfanyl-1-butanol, with the latter being described here for the first time in Carmenere red wines. Quantitation of the four thiols in the Carmenere wine screened by aroma extract dilution analysis and in three additional Carmenere wines by stable isotope dilution assays resulted in concentrations above the respective orthonasal odor detection threshold values. Triangle tests applied to wine model solutions with and without the addition of the four thiols showed significant differences, thus suggesting that the compounds do have the potential to influence the overall aroma of red wine.

  3. Detection of serum proteins by native polyacrylamide gel electrophoresis using Blue Sepharose CL-6B-containing stacking gels.

    PubMed

    Muratsubaki, Haruhiro; Satake, Kaoru; Yamamoto, Yasuhisa; Enomoto, Keiichiro

    2002-08-15

    Analysis of serum proteins by native polyacrylamide gel electrophoresis is difficult because albumin is abundant in serum and interferes with the resolution of other proteins, especially alpha-antitrypsin which has mobility that is very similar to that of albumin. We present here a method in which serum proteins are separated by polyacrylamide gel electrophoresis using stacking gels containing Blue Sepharose CL-6B, which has a high affinity for albumin, lipoproteins, kinases, and pyridine-nucleotide-dependent oxidoreductases. During electrophoresis, proteins that bind to Blue Sepharose CL-6B stay in the stacking gel and do not migrate into the separating gel. As a consequence, certain proteins, including alpha(1)-antitrypsin, can be detected as clear bands. This method overcomes the requirement for fractionation of serum samples prior to electrophoresis to remove albumin and allows the simultaneous analysis of many samples.

  4. Sol-Gel Glasses

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.

    1985-01-01

    Multicomponent homogeneous, ultrapure noncrystalline gels/gel derived glasses are promising batch materials for the containerless glass melting experiments in microgravity. Hence, ultrapure, homogeneous gel precursors could be used to: (1) investigate the effect of the container induced nucleation on the glass forming ability of marginally glass forming compositions; and (2) investigate the influence of gravity on the phase separation and coarsening behavior of gel derived glasses in the liquid-liquid immiscibility zone of the nonsilicate systems having a high density phase. The structure and crystallization behavior of gels in the SiO2-GeO2 as a function of gel chemistry and thermal treatment were investigated. As are the chemical principles involved in the distribution of a second network former in silica gel matrix being investigated. The procedures for synthesizing noncrystalline gels/gel-monoliths in the SiO2-GeO2, GeO2-PbO systems were developed. Preliminary investigations on the levitation and thermal treatment of germania silicate gel-monoliths in the Pressure Facility Acoustic Levitator were done.

  5. Immunoaffinity centrifugal precipitation chromatography.

    PubMed

    Qi, Lin; Ito, Yoichiro

    2007-06-01

    Purification of proteins based on immunoaffinity has been performed using a solid support coated with antibody against the target proteins. The method requires immobilizing the antibody onto the solid support using protein A or G, and has a risk of adsorptive loss of target proteins onto the solid support. Centrifugal precipitation chromatography has been successfully used to purify enzymes, such as ketosteroid isomerase and hyaluronidase without the use of solid support. The purpose of this study is to demonstrate that immunoaffinity centrifugal precipitation chromatography is capable of isolating an antigen by exploiting antigen-antibody binding. The separation was initiated by filling both channels with 40% saturated ammonium sulfate (AS) of pH 4-4.5 followed by loading 20 microl of human plasma (National Institutes of Health blood bank) mixed with 2 mg of rabbit anti-HSA (human serum protein) antibody (Sigma). Then, the sample channel was eluted with water at 0.03 ml/min and AS channel with 40% AS solution of pH 4-4.5 at 1 ml/min until all non-binding components were eluted. Then, the releasing reagent (50% AS solution containing 0.5 M glycine and 10% ammonium hydroxide at pH 10) was introduced through the AS channel to release the target protein (HSA). The retained antibody was recovered by eluting the sample channel with water at 1 ml/min. A hollow fiber membrane device at the outlet (MicroKros, Spectrum, New Brunswick, NJ, USA) was provided on-line dialysis of the eluent before fractions were collected, so that the fractions could be analyzed by SDS-PAGE (sodium dodecyl sulfate - polyacrylamide gel electrophoresis) without further dialysis. The current method does not require immobilizing the antibody onto a matrix, which is used by the conventional immunoaffinity chromatography. This method ensures full recovery of the antigen and antibody, and it may be applied to purification of other proteins.

  6. Development and application of quartz crystal microbalance sensor based on novel molecularly imprinted sol-gel polymer for rapid detection of histamine in foods.

    PubMed

    Dai, Jie; Zhang, Yan; Pan, Mingfei; Kong, Lingjie; Wang, Shuo

    2014-06-11

    To rapidly detect histamine (HA) in foods, a novel material for HA-specific recognition was synthesized by a sol-gel process and coated on a quartz crystal microbalance (QCM) sensor. The Scatchard model was used to evaluate the adsorption performance of the material; high affinity for HA was demonstrated. Based on QCM frequency change, the sensor exhibited linear behavior for HA concentrations of 0.11 × 10(-2) to 4.45 × 10(-2) mg L(-1), a detection limit of 7.49 × 10(-4) mg kg(-1) (S/N = 3), high selectivity for HA (selectivity coefficient >4) compared with structural analogues, good reproducibility, and long-term stability. The sensor was used to determine the concentration of HA in spiked fish products; the recovery values were satisfactory (93.2-100.4%) and compared well with those obtained by high-performance liquid chromatography (correlation coefficient, r(2) = 0.9965).

  7. Gas chromatography.

    PubMed

    Eiceman, G A; Hill, H H; Gardea-Torresdey, J

    1998-06-15

    This review of the fundamental developments in gas chromatography (GC) includes articles published from 1996 and 1997 and an occasional citation prior to 1996. The literature was reviewed principally using CA Selects for Gas Chromatography from Chemical Abstracts Service, and some significant articles from late 1997 may be missing from the review. In addition, the online SciSearch Database (Institute for Scientific Information) capability was used to abstract review articles or books. As with the prior recent reviews, emphasis has been given to the identification and discussion of selected developments, rather than a presentation of a comprehensive literature search, now available widely through computer-based resources. During the last two years, several themes emerged from a review of the literature. Multidimensional gas chromatography has undergone transformation encompassing a broad range of activity, including attempts to establish methods using chromatographic principles rather than a totally empirical approach. Another trend noted was a comparatively large effort in chromatographic theory through modeling efforts; these presumably became resurgent with inexpensive and powerful computing tools. Finally, an impressive level of activity was noted through the themes highlighted in this review, and this was particularly true with detectors and field instruments.

  8. Pulse Field Gel Electrophoresis

    PubMed Central

    Sharma-Kuinkel, Batu K.; Rude, Thomas H.; Fowler, Vance G.

    2015-01-01

    Pulse Field Gel Electrophoresis (PFGE) is a powerful genotyping technique used for the separation of large DNA molecules (entire genomic DNA) after digesting it with unique restriction enzymes and applying to a gel matrix under the electric field that periodically changes direction. PFGE is a variation of agarose gel electrophoresis that permits analysis of bacterial DNA fragments over an order of magnitude larger than that with conventional restriction enzyme analysis. It provides a good representation of the entire bacterial chromosome in a single gel with a highly reproducible restriction profile, providing clearly distinct and well-resolved DNA fragments. PMID:25682374

  9. Pulse Field Gel Electrophoresis.

    PubMed

    Sharma-Kuinkel, Batu K; Rude, Thomas H; Fowler, Vance G

    2016-01-01

    Pulse Field Gel Electrophoresis (PFGE) is a powerful genotyping technique used for the separation of large DNA molecules (entire genomic DNA) after digesting it with unique restriction enzymes and applying to a gel matrix under the electric field that periodically changes direction. PFGE is a variation of agarose gel electrophoresis that permits analysis of bacterial DNA fragments over an order of magnitude larger than that with conventional restriction enzyme analysis. It provides a good representation of the entire bacterial chromosome in a single gel with a highly reproducible restriction profile, providing clearly distinct and well-resolved DNA fragments.

  10. CONFORMANCE IMPROVEMENT USING GELS

    SciTech Connect

    Randall S. Seright

    2003-09-01

    This report describes work performed during the second year of the project, ''Conformance Improvement Using Gels.'' The project has two objectives. The first objective is to identify gel compositions and conditions that substantially reduce flow through fractures that allow direct channeling between wells, while leaving secondary fractures open so that high fluid injection and production rates can be maintained. The second objective is to optimize treatments in fractured production wells, where the gel must reduce permeability to water much more than that to oil. Pore-level images from X-ray computed microtomography were re-examined for Berea sandstone and porous polyethylene. This analysis suggests that oil penetration through gel-filled pores occurs by a gel-dehydration mechanism, rather than a gel-ripping mechanism. This finding helps to explain why aqueous gels can reduce permeability to water more than to oil. We analyzed a Cr(III)-acetate-HPAM gel treatment in a production well in the Arbuckle formation. The availability of accurate pressure data before, during, and after the treatment was critical for the analysis. After the gel treatment, water productivity was fairly constant at about 20% of the pre-treatment value. However, oil productivity was stimulated by a factor of 18 immediately after the treatment. During the six months after the treatment, oil productivity gradually decreased to approach the pre-treatment value. To explain this behavior, we proposed that the fracture area open to oil flow was increased substantially by the gel treatment, followed by a gradual closing of the fractures during subsequent production. For a conventional Cr(III)-acetate-HPAM gel, the delay between gelant preparation and injection into a fracture impacts the placement, leakoff, and permeability reduction behavior. Formulations placed as partially formed gels showed relatively low pressure gradients during placement, and yet substantially reduced the flow capacity of

  11. CONFORMANCE IMPROVEMENT USING GELS

    SciTech Connect

    Randall S. Seright

    2004-09-30

    This report describes work performed during the third and final year of the project, ''Conformance Improvement Using Gels.'' Corefloods revealed throughput dependencies of permeability reduction by polymers and gels that were much more prolonged during oil flow than water flow. This behavior was explained using simple mobility ratio arguments. A model was developed that quantitatively fits the results and predicts ''clean up'' times for oil productivity when production wells are returned to service after application of a polymer or gel treatment. X-ray computed microtomography studies of gels in strongly water-wet Berea sandstone and strongly oil-wet porous polyethylene suggested that oil penetration through gel-filled pores occurs by a gel-dehydration mechanism, rather than gel-ripping or gel-displacement mechanisms. In contrast, analysis of data from the University of Kansas suggests that the gel-ripping or displacement mechanisms are more important in more permeable, strongly water-wet sandpacks. These findings help to explain why aqueous gels can reduce permeability to water more than to oil under different conditions. Since cement is the most commonly used material for water shutoff, we considered when gels are preferred over cements. Our analysis and experimental results indicated that cement cannot be expected to completely fill (top to bottom) a vertical fracture of any width, except near the wellbore. For vertical fractures with apertures less than 4 mm, the cement slurry will simply not penetrate very far into the fracture. For vertical fractures with apertures greater than 4 mm, the slurry may penetrate a substantial distance into the bottom part of the fracture. However, except near the wellbore, the upper part of the fracture will remain open due to gravity segregation. We compared various approaches to plugging fractures using gels, including (1) varying polymer content, (2) varying placement (extrusion) rate, (3) using partially formed gels, (4

  12. Filtrates and Residues: Gel Filtration--An Innovative Separation Technique.

    ERIC Educational Resources Information Center

    Blumenfeld, Fred; Gardner, James

    1985-01-01

    Gel filtration is a form of liquid chromatography that separates molecules primarily on the basis of their size. Advantages of using this technique, theoretical aspects, and experiments (including procedures used) are discussed. Several questions for students to answer (with answers) are also provided. (JN)

  13. Single-chain antibody-based immunotoxins targeting Her2/neu: design optimization and impact of affinity on antitumor efficacy and off-target toxicity.

    PubMed

    Cao, Yu; Marks, James D; Huang, Qian; Rudnick, Stephen I; Xiong, Chiyi; Hittelman, Walter N; Wen, Xiaoxia; Marks, John W; Cheung, Lawrence H; Boland, Kim; Li, Chun; Adams, Gregory P; Rosenblum, Michael G

    2012-01-01

    Recombinant immunotoxins, consisting of single-chain variable fragments (scFv) genetically fused to polypeptide toxins, represent potentially effective candidates for cancer therapeutics. We evaluated the affinity of various anti-Her2/neu scFv fused to recombinant gelonin (rGel) and its effect on antitumor efficacy and off-target toxicity. A series of rGel-based immunotoxins were created from the human anti-Her2/neu scFv C6.5 and various affinity mutants (designated ML3-9, MH3-B1, and B1D3) with affinities ranging from 10(-8) to 10(-11) mol/L. Against Her2/neu-overexpressing tumor cells, immunotoxins with increasing affinity displayed improved internalization and enhanced autophagic cytotoxicity. Targeting indices were highest for the highest affinity B1D3/rGel construct. However, the addition of free Her2/neu extracellular domain (ECD) significantly reduced the cytotoxicity of B1D3/rGel because of immune complex formation. In contrast, ECD addition had little impact on the lower affinity constructs in vitro. In vivo studies against established BT474 M1 xenografts showed growth suppression by all immunotoxins. Surprisingly, therapy with the B1D3-rGel induced significant liver toxicity because of immune complex formation with shed Her2/neu antigen in circulation. The MH3-B1/rGel construct with intermediate affinity showed effective tumor growth inhibition without inducing hepatotoxicity or complex formation. These findings show that while high-affinity constructs can be potent antitumor agents, they may also be associated with mistargeting through the facile formation of complexes with soluble antigen leading to significant off-target toxicity. Constructs composed of intermediate-affinity antibodies are also potent agents that are more resistant to immune complex formation. Therefore, affinity is an exceptionally important consideration when evaluating the design and efficacy of targeted therapeutics.

  14. Electrochemical affinity biosensors for detection of mycotoxins: A review.

    PubMed

    Vidal, Juan C; Bonel, Laura; Ezquerra, Alba; Hernández, Susana; Bertolín, Juan R; Cubel, Carlota; Castillo, Juan R

    2013-11-15

    This review discusses the current state of electrochemical biosensors in the determination of mycotoxins in foods. Mycotoxins are highly toxic secondary metabolites produced by molds. The acute toxicity of these results in serious human and animal health problems, although it has been only since early 1960s when the first studied aflatoxins were found to be carcinogenic. Mycotoxins affect a broad range of agricultural products, most important cereals and cereal-based foods. A majority of countries, mentioning especially the European Union, have established preventive programs to control contamination and strict laws of the permitted levels in foods. Official methods of analysis of mycotoxins normally requires sophisticated instrumentation, e.g. liquid chromatography with fluorescence or mass detectors, combined with extraction procedures for sample preparation. For about sixteen years, the use of simpler and faster analytical procedures based on affinity biosensors has emerged in scientific literature as a very promising alternative, particularly electrochemical (i.e., amperometric, impedance, potentiometric or conductimetric) affinity biosensors due to their simplicity and sensitivity. Typically, electrochemical biosensors for mycotoxins use specific antibodies or aptamers as affinity ligands, although recombinant antibodies, artificial receptors and molecular imprinted polymers show potential utility. This article deals with recent advances in electrochemical affinity biosensors for mycotoxins and covers complete literature from the first reports about sixteen years ago.

  15. Are axial and radial flow chromatography different?

    PubMed

    Besselink, Tamara; van der Padt, Albert; Janssen, Anja E M; Boom, Remko M

    2013-01-04

    Radial flow chromatography can be a solution for scaling up a packed bed chromatographic process to larger processing volumes. In this study we compared axial and radial flow affinity chromatography both experimentally and theoretically. We used an axial flow column and a miniaturized radial flow column with a ratio of 1.8 between outer and inner surface area, both with a bed height of 5 cm. The columns were packed with affinity resin to adsorb BSA. The average velocity in the columns was set equal. No difference in performance between the two columns could be observed. To gain more insight into the design of a radial flow column, the velocity profile and resin distribution in the radial flow column were calculated. Using mathematical models we found that the breakthrough performance of radial flow chromatography is very similar to axial flow when the ratio between outer and inner radius of the radial flow column is around 2. When this ratio is increased, differences become more apparent, but remain small. However, the ratio does have a significant influence on the velocity profile inside the resin bed, which directly influences the pressure drop and potentially resin compression, especially at higher values for this ratio. The choice between axial and radial flow will be based on cost price, footprint and packing characteristics. For small-scale processes, axial flow chromatography is probably the best choice, for resin volumes of at least several tens of litres, radial flow chromatography may be preferable.

  16. CONFORMANCE IMPROVEMENT USING GELS

    SciTech Connect

    Randall S. Seright

    2004-03-01

    This technical progress report describes work performed from September 1, 2003, through February 29, 2004, for the project, ''Conformance Improvement Using Gels.'' We examined the properties of several ''partially formed'' gels that were formulated with a combination of high and low molecular weight HPAM polymers. After placement in 4-mm-wide fractures, these gels required about 25 psi/ft for brine to breach the gel (the best performance to date in fractures this wide). After this breach, stabilized residual resistance factors decreased significantly with increased flow rate. Also, residual resistance factors were up to 9 times greater for water than for oil. Nevertheless, permeability reduction factors were substantial for both water and oil flow. Gel with 2.5% chopped fiberglass effectively plugged 4-mm-wide fractures if a 0.5-mm-wide constriction was present. The ability to screen-out at a constriction appears crucial for particulate incorporation to be useful in plugging fractures. In addition to fiberglass, we examined incorporation of polypropylene fibers into gels. Once dispersed in brine or gelant, the polypropylene fibers exhibited the least gravity segregation of any particulate that we have tested to date. In fractures with widths of at least 2 mm, 24-hr-old gels (0.5% high molecular weight HPAM) with 0.5% fiber did not exhibit progressive plugging during placement and showed extrusion pressure gradients similar to those of gels without the fiber. The presence of the fiber roughly doubled the gel's resistance to first breach by brine flow. The breaching pressure gradients were not as large as for gels made with high and low molecular weight polymers (mentioned above). However, their material requirements and costs (i.e., polymer and/or particulate concentrations) were substantially lower than for those gels. A partially formed gel made with 0.5% HPAM did not enter a 0.052-mm-wide fracture when applying a pressure gradient of 65 psi/ft. This result

  17. Chemical binding affinity estimation using MSB

    NASA Astrophysics Data System (ADS)

    Weaver, John B.; Rauwerdink, Adam M.

    2011-03-01

    Binding affinity can be estimated in several ways in the laboratory but there is no viable way to estimate binding affinity in vivo without assumptions on the number of binding sites. Magnetic spectroscopy of nanoparticle Brownian motion, MSB, measures the rotational Brownian motion. The MSB signal is affected by nanoparticle binding affinity so it provides a mechanism to measure the chemical binding affinity. We present a possible mechanism to quantify the binding affinity and test that mechanism using viscous solutions.

  18. Affinity purification of the voltage-sensitive sodium channel from electroplax with resins selective for sialic acid

    SciTech Connect

    James, W.M.; Emerick, M.C.; Agnew, W.S. )

    1989-07-11

    The voltage-sensitive sodium channel present in the eel (Electrophorus electricus) has an unusually high content of sialic acid, including {alpha}-(2{yields}8)-linked polysialic acid, not found in other electroplax membrane glycopeptides. Lectins from Limax flavus (LFA) and wheat germ (WGA) proved the most effective of 11 lectin resins tried. The most selective resin was prepared from IgM antibodies against Neisseria meningitidis {alpha}-(2{yields}8)-polysialic acid which were affinity purified and coupled to Sepharose 4B. The sodium channel was found to bind to WGA, LFA, and IgM resins and was readily eluted with the appropriate soluble carbohydrates. Experiments with LFA and IgM resins demonstrated binding and unbinding rates and displacement kinetics, which suggest highly specific binding at multiple sites on the sodium channel protein. In preparative-scale purification of protein previously fractionated by anion-exchange chromatography, without stabilizing TTX, high yields were reproducibly obtained. Further, when detergent extracts were prepared from electroplax membranes fractionated by low-speed sedimentation, a single step over the IgM resin provided a 70-fold purification, yielding specific activities of 3,200 pmol of ({sup 3}H)TTX-binding sites/mg of protein and a single polypeptide of {approximately}285,000 Da on SDS-acrylamide gels. No small peptides were observed after this 5-h isolation. The authors describe a cation-dependent stabilization with millimolar levels of monovalent and micromolar levels of divalent species.

  19. Affinity purification of the voltage-sensitive sodium channel from electroplax with resins selective for sialic acid.

    PubMed

    James, W M; Emerick, M C; Agnew, W S

    1989-07-11

    The voltage-sensitive sodium channel present in the eel (Electrophorus electricus) has an unusually high content of sialic acid, including alpha-(2----8)-linked polysialic acid, not found in other electroplax membrane glycopeptides. Lectins from Limax flavus (LFA) and wheat germ (WGA) proved the most effective of 11 lectin resins tried. The most selective resin was prepared from IgM antibodies against Neisseria meningitidis alpha-(2----8)-polysialic acid which were affinity purified and coupled to Sepharose 4B. The sodium channel was found to bind to WGA, LFA, and IgM resins and was readily eluted with the appropriate soluble carbohydrates. Experiments with LFA and IgM resins demonstrated binding and unbinding rates and displacement kinetics, which suggest highly specific binding at multiple sites on the sodium channel protein. In preparative-scale purification of protein previously fractionated by anion-exchange chromatography, without stabilizing TTX, high yields were reproducibly obtained. Further, when detergent extracts were prepared from electroplax membranes fractionated by low-speed sedimentation, a single step over the IgM resin provided a 70-fold purification, yielding specific activities of 3200 pmol of [3H]TTX-binding sites/mg of protein and a single polypeptide of approximately 285,000 Da on SDS-acrylamide gels. No small peptides were observed after this 5-h isolation. We further describe a cation-dependent stabilization with millimolar levels of monovalent and micromolar levels of divalent species.

  20. Isolation of murine sialoglycoprotein using consecutive chromatography.

    PubMed

    Wilson, D J; Planas, J M

    1991-01-01

    Affinity columns and high performance liquid chromatography were employed consecutively to obtain 89, 65, 46 and 29 kilodalton sialoglycoproteins from mouse erythrocyte ghosts free of the Band 3 protein which traditionally co-purifies with these proteins. The purification scheme involves Concanavalin A, Wheat Germ Agglutinin and/or Limulus lectin Sepharose 4B columns. We have designated these glycophorin-like proteins Sialoglycoproteins 1, 2, 3, and 4, respectively. Sialoglycoprotein 2 can be isolated independently using a Limulus column combination, while Sialoglycoproteins 3 and 4 were isolated separately during high performance liquid chromatography, demonstrating heterogeneity in binding properties between these sialoglycoproteins.

  1. Adsorption characteristics, recognition properties, and preliminary application of nordihydroguaiaretic acid molecularly imprinted polymers prepared by sol-gel surface imprinting technology

    NASA Astrophysics Data System (ADS)

    Liao, Sen; Zhang, Wen; Long, Wei; Hou, Dan; Yang, Xuechun; Tan, Ni

    2016-02-01

    In this paper, a new core-shell composite of nordihydroguaiaretic acid (NDGA) molecularly imprinted polymers layer-coated silica gel (MIP@SiO2) was prepared through sol-gel technique and applied as a material for extraction of NDGA from Ephedra. It was synthesized using NDGA as the template molecule, γ-aminopropyltriethoxysilane (APTS) and methyltriethoxysilane (MTEOS) as the functional monomers, tetraethyl orthosilicate (TEOS) as the cross-linker and ethanol as the porogenic solvent in the surface of silica. The non-imprinted polymers layer-coated silica gel (NIP@SiO2) were prepared with the same procedure, but with the absence of template molecule. In addition, the optimum adsorption affinity occurred when the molar ratio of NDGA:APTS:MTEOS:TEOS was 1:6:2:80. The prepared MIP@SiO2 and NIP@SiO2 were analyzed by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Fourier transform-infrared spectroscopy (FT-IR). Their affinity properties to NDGA were evaluated through dynamic adsorption, static adsorption, and selective recognition experiments, and the results showed the saturated adsorption capacity of MIP@SiO2 could reach to 5.90 mg g-1, which was two times more than that of NIP@SiO2. High performance liquid chromatography (HPLC) was used to evaluate the extraction of NDGA from the medicinal plant ephedra by the above prepared materials, and the results indicated that the MIP@SiO2 had potential application in separation of the natural active component NDGA from medicinal plants.

  2. Affine Contractions on the Plane

    ERIC Educational Resources Information Center

    Celik, D.; Ozdemir, Y.; Ureyen, M.

    2007-01-01

    Contractions play a considerable role in the theory of fractals. However, it is not easy to find contractions which are not similitudes. In this study, it is shown by counter examples that an affine transformation of the plane carrying a given triangle onto another triangle may not be a contraction even if it contracts edges, heights or medians.…

  3. Affinity-aware checkpoint restart

    SciTech Connect

    Saini, Ajay; Rezaei, Arash; Mueller, Frank; Hargrove, Paul; Roman, Eric

    2014-12-08

    Current checkpointing techniques employed to overcome faults for HPC applications result in inferior application performance after restart from a checkpoint for a number of applications. This is due to a lack of page and core affinity awareness of the checkpoint/restart (C/R) mechanism, i.e., application tasks originally pinned to cores may be restarted on different cores, and in case of non-uniform memory architectures (NUMA), quite common today, memory pages associated with tasks on a NUMA node may be associated with a different NUMA node after restart. Here, this work contributes a novel design technique for C/R mechanisms to preserve task-to-core maps and NUMA node specific page affinities across restarts. Experimental results with BLCR, a C/R mechanism, enhanced with affinity awareness demonstrate significant performance benefits of 37%-73% for the NAS Parallel Benchmark codes and 6-12% for NAMD with negligible overheads instead of up to nearly four times longer an execution times without affinity-aware restarts on 16 cores.

  4. Affinity-aware checkpoint restart

    DOE PAGES

    Saini, Ajay; Rezaei, Arash; Mueller, Frank; ...

    2014-12-08

    Current checkpointing techniques employed to overcome faults for HPC applications result in inferior application performance after restart from a checkpoint for a number of applications. This is due to a lack of page and core affinity awareness of the checkpoint/restart (C/R) mechanism, i.e., application tasks originally pinned to cores may be restarted on different cores, and in case of non-uniform memory architectures (NUMA), quite common today, memory pages associated with tasks on a NUMA node may be associated with a different NUMA node after restart. Here, this work contributes a novel design technique for C/R mechanisms to preserve task-to-core mapsmore » and NUMA node specific page affinities across restarts. Experimental results with BLCR, a C/R mechanism, enhanced with affinity awareness demonstrate significant performance benefits of 37%-73% for the NAS Parallel Benchmark codes and 6-12% for NAMD with negligible overheads instead of up to nearly four times longer an execution times without affinity-aware restarts on 16 cores.« less

  5. ELECTRON AFFINITIES OF INORGANIC RADICALS.

    DTIC Science & Technology

    energy in the latter compound is 110 kcals/mole, distinctly higher than in ammonia. Cyanogen (CN)2 and hydrocyanic acid (HCN) yield values for the...ions very readily, and the electron affinity is 49 kcals/mole. A comparison with the results from thiocyanic acid (HNCS) indicates that the H-N bond

  6. Gas Chromatography

    NASA Astrophysics Data System (ADS)

    Qian, Michael C.

    Gas chromatography (GC) has many applications in the analysis of food products. GC has been used for the determination of fatty acids, triglycerides, cholesterol, gases, water, alcohols, pesticides, flavor compounds, and many more. While GC has been used for other food components such as sugars, oligosaccharides, amino acids, peptides, and vitamins, these substances are more suited to analysis by high performance liquid chromatography. GC is ideally suited to the analysis of volatile substances that are thermally stable. Substances such as pesticides and flavor compounds that meet these criteria can be isolated from a food and directly injected into the GC. For compounds that are thermally unstable, too low in volatility, or yield poor chromatographic separation due to polarity, a derivatization step must be done before GC analysis. The two parts of the experiment described here include the analysis of alcohols that requires no derivatization step, and the analysis of fatty acids which requires derivatization. The experiments specify the use of capillary columns, but the first experiment includes conditions for a packed column.

  7. High-affinity insulin binding to an atypical insulin-like growth factor-I receptor in human breast cancer cells.

    PubMed Central

    Milazzo, G; Yip, C C; Maddux, B A; Vigneri, R; Goldfine, I D

    1992-01-01

    We studied the nature of insulin receptor binding in MCF-7 breast cancer cells. In both intact cells and solubilized receptor preparations, high-affinity insulin binding was seen. However, unlabeled insulin-like growth factor-I (IGF-I) was five-fold more potent in inhibiting 125I-insulin binding than insulin itself. With monoclonal antibodies to the insulin receptor, 30% of 125I-insulin binding was inhibited. In contrast when alpha-IR3, a monoclonal antibody that recognizes typical IGF-I receptor, was employed over 60% of 125I-insulin binding was inhibited. The B29-MAB-125I-insulin photoprobe was then cross-linked to MCF-7 membranes. Cross-linking was inhibited by both unlabeled insulin and IGF-I. Further, the B29-MAB-125I-insulin photoprobe cross-linked to MCF-7 membranes was strongly immunoprecipitated by alpha-IR3. Employing sequential affinity chromatography with insulin-Affi-gel followed by insulin receptor monoclonal antibody agarose, atypical insulin binding activity was separated from insulin receptor binding activity. This atypical receptor had intrinsic tyrosine kinase activity. Both insulin and IGF-I stimulated the phosphorylation of the receptor's beta subunit. In MCF-7 cells both IGF-I and insulin stimulated [3H]thymidine incorporation; alpha-IR3 blocked all of the IGF-I effect but only 50-60% of the insulin effect. This study demonstrates in MCF-7 cells that, in addition to typical insulin and IGF-I receptors, there is another receptor that binds both insulin and IGF-I with high affinity. Images PMID:1311720

  8. A novel strategy for the purification of a recombinant protein using ceramic fluorapatite-binding peptides as affinity tags.

    PubMed

    Islam, Tuhidul; Aguilar-Yañez, José Manuel; Simental-Martínez, Jesús; Ortiz-Alcaraz, Cesar Ivan; Rito-Palomares, Marco; Fernandez-Lahore, Marcelo

    2014-04-25

    In recent years, affinity fusion-tag systems have become a popular technique for the purification of recombinant proteins from crude extracts. However, several drawbacks including the high expense and low stability of ligands, their leakage during operation, and difficulties in immobilization, make it important to further develop the method. The present work is concerned with the utilization of a ceramic fluorapatite (CFT)-based chromatographic matrix to overcome these drawbacks. A heptapeptide library exhibiting a range of properties have been synthesized and subjected to ceramic fluorapatite (CFT) chromatography to characterize their retention behavior as a function of pH and composition of the binding buffer. The specific binding and elution behavior demonstrates the possible application of CFT-binding peptides as tags for enhancing the selective recovery of proteins by CFT chromatography. To materialize this strategy, a phage-derived CFT-specific sequence KPRSVSG (Tag1) with/without a consecutive hexalysine sequence, KKKKKKKPRSVSG (Tag2), were fused at the C-terminus of an enhanced green fluorescent protein (eGFP). The resulting gene constructs H-eGFP, H-eGFP-Tag1 and H-eGFP-Tag2 were expressed in Escherichia coli strain BL-21, and the clarified cell lysate was applied to the CFT column equilibrated with binding buffer (20-50mM sodium phosphate, pH 6-8.4). Sodium phosphate (500mM) or 1M NaCl in the respective binding buffer was used to elute the fused proteins, and the chromatographic fractions were analyzed by gel electrophoresis. Both the yield and purity were over 90%, demonstrating the potential application of the present strategy.

  9. Drying SDS-Polyacrylamide Gels.

    PubMed

    Sambrook, Joseph; Russell, David W

    2006-09-01

    INTRODUCTIONThis protocol describes a method for drying SDS-polyacrylamide gels. Gels containing proteins radiolabeled with (35)S-labeled amino acids must be dried before autoradiographic images can be obtained. Nonradioactive gels can also be preserved by drying.

  10. Fibroblast migration in fibrin gel matrices.

    PubMed Central

    Brown, L. F.; Lanir, N.; McDonagh, J.; Tognazzi, K.; Dvorak, A. M.; Dvorak, H. F.

    1993-01-01

    In healing wounds and many solid tumors, locally increased microvascular permeability results in extravasation of fibrinogen and its extravascular coagulation to form a fibrin gel, with concomitant covalent cross-linking of fibrin by factor XIIIa. Subsequently, inflammatory cells, fibroblasts, and endothelial cells migrate into the gel and organize it into granulation tissue and later into mature collagenous connective tissue. To gain insight into some of the cell migration events associated with these processes, we developed a quantitative in vitro assay that permits the study of fibroblast migration in fibrin gels. Early passage human or rat fibroblasts were allowed to attach to tissue culture dishes and then were overlaid with a thin layer of fibrinogen that was clotted with thrombin. Fibroblasts began to migrate upwards into the fibrin within 24 hours and their numbers and the distance migrated were quantified over several days. The extent of fibroblast migration was affected importantly by the nature of the fibrin clot. Fibroblasts migrated optimally into gels prepared from fibrinogen at concentrations of -3 mg/ml; ie, near normal plasma fibrinogen levels. Migration was greatly enhanced by extensive cross-linking of the fibrin alpha-chains by factor XIIIa, as occurs when clotting takes place in vivo. When fibrinogen was clotted in Dulbecco's modified Eagle's medium, gamma-chains were cross-linked, but alpha-chain cross-linking was strikingly inhibited, and fibroblasts migrated poorly. Gels prepared from factor XIII-depleted fibrinogen exhibited neither alpha-nor gamma-chain cross-linking and did not support fibroblast migration. Further purification of fibrinogen by anion exchange high pressure liquid chromatography depleted fibrinogen of fibronectin, plasminogen, and other impurities; this purified fibrinogen clotted to form fibrin gels that supported reproducible fibroblast migration. Images Figure 1 Figure 2 Figure 4 Figure 6 PMID:8424460

  11. Agarose gel electrophoresis.

    PubMed

    Smith, D R

    1993-01-01

    After digestion of DNA with a restriction enzyme (Chapter 50), it is usually necessary, for both preparative and analytical purposes, to separate and visualize the products. In most cases, where the products are between 200 and 20,000 bp long, this is achieved by agarose gel electrophoresis. Agarose is a linear polymer that is extracted from seaweed and sold as a white powder. The powder is melted in buffer and allowed to cool, whereby the agarose forms a gel by hydrogen bonding. The hardened matrix contains pores, the size of which depends on the concentration of agarose. The concentration of agarose is referred to as a percentage of agarose to volume of buffer (w/v), and agarose gels are normally in the range of 0.3 to 3%. Many different apparatus arrangements have been devised to run agarose gels; for example, they can be run horizontally or vertically, and the current can be conducted by wicks or the buffer solution. However, today, the "submarine" gel system is almost universally used. In this method, the agarose gel is formed on a supporting plate, and then the plate is submerged into a tank containing a suitable electrophoresis buffer. Wells are preformed in the agarose gel with the aid of a "comb" that is inserted into the cooling agarose before the agarose has gelled. Into these wells are loaded the sample to be analyzed, which has been mixed with a dense solution (a loading buffer) to ensure that the sample sinks into the wells.

  12. Applicability of tandem affinity purification MudPIT to pathway proteomics in yeast.

    PubMed

    Graumann, Johannes; Dunipace, Leslie A; Seol, Jae Hong; McDonald, W Hayes; Yates, John R; Wold, Barbara J; Deshaies, Raymond J

    2004-03-01

    A combined multidimensional chromatography-mass spectrometry approach known as "MudPIT" enables rapid identification of proteins that interact with a tagged bait while bypassing some of the problems associated with analysis of polypeptides excised from SDS-polyacrylamide gels. However, the reproducibility, success rate, and applicability of MudPIT to the rapid characterization of dozens of proteins have not been reported. We show here that MudPIT reproducibly identified bona fide partners for budding yeast Gcn5p. Additionally, we successfully applied MudPIT to rapidly screen through a collection of tagged polypeptides to identify new protein interactions. Twenty-five proteins involved in transcription and progression through mitosis were modified with a new tandem affinity purification (TAP) tag. TAP-MudPIT analysis of 22 yeast strains that expressed these tagged proteins uncovered known or likely interacting partners for 21 of the baits, a figure that compares favorably with traditional approaches. The proteins identified here comprised 102 previously known and 279 potential physical interactions. Even for the intensively studied Swi2p/Snf2p, the catalytic subunit of the Swi/Snf chromatin remodeling complex, our analysis uncovered a new interacting protein, Rtt102p. Reciprocal tagging and TAP-MudPIT analysis of Rtt102p revealed subunits of both the Swi/Snf and RSC complexes, identifying Rtt102p as a common interactor with, and possible integral component of, these chromatin remodeling machines. Our experience indicates it is feasible for an investigator working with a single ion trap instrument in a conventional molecular/cellular biology laboratory to carry out proteomic characterization of a pathway, organelle, or process (i.e. "pathway proteomics") by systematic application of TAP-MudPIT.

  13. Theoretical proton affinity and fluoride affinity of nerve agent VX.

    PubMed

    Bera, Narayan C; Maeda, Satoshi; Morokuma, Keiji; Viggiano, Al A

    2010-12-23

    Proton affinity and fluoride affinity of nerve agent VX at all of its possible sites were calculated at the RI-MP2/cc-pVTZ//B3LYP/6-31G* and RI-MP2/aug-cc-pVTZ//B3LYP/6-31+G* levels, respectively. The protonation leads to various unique structures, with H(+) attached to oxygen, nitrogen, and sulfur atoms; among which the nitrogen site possesses the highest proton affinity of -ΔE ∼ 251 kcal/mol, suggesting that this is likely to be the major product. In addition some H(2), CH(4) dissociation as well as destruction channels have been found, among which the CH(4) + [Et-O-P(═O)(Me)-S-(CH(2))(2)-N(+)(iPr)═CHMe] product and the destruction product forming Et-O-P(═O)(Me)-SMe + CH(2)═N(+)(iPr)(2) are only 9 kcal/mol less stable than the most stable N-protonated product. For fluoridization, the S-P destruction channel to give Et-O-P(═O)(Me)(F) + [S-(CH(2))(2)-N-(iPr)(2)](-) is energetically the most favorable, with a fluoride affinity of -ΔE ∼ 44 kcal. Various F(-) ion-molecule complexes are also found, with the one having F(-) interacting with two hydrogen atoms in different alkyl groups to be only 9 kcal/mol higher than the above destruction product. These results suggest VX behaves quite differently from surrogate systems.

  14. Thiophilic interaction chromatography of serum albumins.

    PubMed

    Bourhim, Mustapha; Rajendran, Anita; Ramos, Yanira; Srikrishnan, Thamarapu; Sulkowski, Eugene

    2008-07-01

    An investigation of the binding of native and recombinant human serum albumin and bovine serum albumin on three thiophilic gels, PyS, 2S, and 3S was performed. In addition to these proteins, we studied serum albumins from several species such as goat, rabbit, guinea pig, rat, hamster, baboon, and pig. Our results reveal that recombinant human serum albumin (rHSA) binds completely to PyS whereas native human serum albumin and bovine serum albumin bind only partially to PyS. The binding affinities of rHSA, human serum albumin and bovine serum albumin to 2S and 3S gels are less than their binding to PyS. Serum albumins from goat, rabbit, guinea pig, rat, hamster, baboon, and pig bind much stronger to 3S gel than human and bovine serum albumins. The binding of pig and hamster serum albumins is stronger than that of rat, goat, baboon, and rabbit.

  15. Centrifugal precipitation chromatography.

    PubMed

    Ito, Yoichiro; Qi, Lin

    2010-01-15

    Centrifugal precipitation chromatography separates analytes according their solubility in ammonium sulfate (AS) solution and other precipitants. The separation column is made from a pair of long spiral channels partitioned with a semipermeable membrane. In a typical separation, concentrated ammonium sulfate is eluted through one channel while water is eluted through the other channel in the opposite direction. This countercurrent process forms an exponential AS concentration gradient through the water channel. Consequently, protein samples injected into the water channel is subjected to a steadily increasing AS concentration and at the critical AS concentration they are precipitated and deposited in the channel bed by the centrifugal force. Then the chromatographic separation is started by gradually reducing the AS concentration in the AS channel which lowers the AS gradient concentration in the water channel. This results in dissolution of deposited proteins which are again precipitated at an advanced critical point as they move through the channel. Consequently, proteins repeat precipitation and dissolution through a long channel and finally eluted out from the column in the order of their solubility in the AS solution. The present method has been successfully applied to a number of analytes including human serum proteins, recombinant ketosteroid isomerase, carotenoid cleavage enzymes, plasmid DNA, polysaccharide, polymerized pigments, PEG-protein conjugates, etc. The method is capable to single out the target species of proteins by affinity ligand or immunoaffinity separation.

  16. Conformance Improvement Using Gels

    SciTech Connect

    Seright, Randall S.; Schrader, Richard; II Hagstrom, John; Wang, Ying; Al-Dahfeeri, Abdullah; Gary, Raven; Marin; Amaury; Lindquist, Brent

    2002-09-26

    This research project had two objectives. The first objective was to identify gel compositions and conditions that substantially reduce flow through fractures that allow direct channeling between wells, while leaving secondary fractures open so that high fluid injection and production rates can be maintained. The second objective was to optimize treatments in fractured production wells, where the gel must reduce permeability to water much more than that to oil.

  17. Crystallization from Gels

    NASA Astrophysics Data System (ADS)

    Narayana Kalkura, S.; Natarajan, Subramanian

    Among the various crystallization techniques, crystallization in gels has found wide applications in the fields of biomineralization and macromolecular crystallization in addition to crystallizing materials having nonlinear optical, ferroelectric, ferromagnetic, and other properties. Furthermore, by using this method it is possible to grow single crystals with very high perfection that are difficult to grow by other techniques. The gel method of crystallization provides an ideal technique to study crystal deposition diseases, which could lead to better understanding of their etiology. This chapter focuses on crystallization in gels of compounds that are responsible for crystal deposition diseases. The introduction is followed by a description of the various gels used, the mechanism of gelling, and the fascinating phenomenon of Liesegang ring formation, along with various gel growth techniques. The importance and scope of study on crystal deposition diseases and the need for crystal growth experiments using gel media are stressed. The various crystal deposition diseases, viz. (1) urolithiasis, (2) gout or arthritis, (3) cholelithiasis and atherosclerosis, and (4) pancreatitis and details regarding the constituents of the crystal deposits responsible for the pathological mineralization are discussed. Brief accounts of the theories of the formation of urinary stones and gallstones and the role of trace elements in urinary stone formation are also given. The crystallization in gels of (1) the urinary stone constituents, viz. calcium oxalate, calcium phosphates, uric acid, cystine, etc., (2) the constituents of the gallstones, viz. cholesterol, calcium carbonate, etc., (3) the major constituent of the pancreatic calculi, viz., calcium carbonate, and (4) cholic acid, a steroidal hormone are presented. The effect of various organic and inorganic ions, trace elements, and extracts from cereals, herbs, and fruits on the crystallization of major urinary stone and gallstone

  18. First in-gel detection and purification of human xylosyltransferase II.

    PubMed

    Casanova, Javier Carrera; Roch, Christina; Kuhn, Joachim; Kleesiek, Knut; Götting, Christian

    2009-02-06

    Human xylosyltransferases I and II (XylT-I, XylT-II) are key enzymes in glycosaminoglycan biosynthesis. Knowledge about the in vivo molecular weight, oligomeric state or turnover number are essential characteristics which have been addressed in this study. XylT-II was purified from Pichia pastoris by fractionated ammonium sulfate precipitation, heparin affinity and ion exchange chromatography. XylT-II was purified over 7000-fold with a final yield of 2.6%. By utilizing mass spectra analysis we can prove its first in-gel detection showing a migration pattern behavior that confirms its in silico molecular weight of 95.8 kDa. We could determine a turnover number of 2.18 min(-1) or one transferred xylose molecule per one XylT-II molecule each 27.5s. The k(cat)/K(M) ratio was 0.357 min(-1)microM(-1) for XylT-II using the bikunin-homologous acceptor Bio-QEEEGSGGGQKK-F. The comparison to XylT-I derived from the same organism revealed a 2.4-fold higher catalytic efficiency (0.870 min(-1)microM(-1)) for XylT-I.

  19. Imprinted functionalized silica sol-gel for solid-phase extraction of triazolamin.

    PubMed

    Jin, Guoyou; Zhang, Baofei; Tang, Youwen; Zuo, Xiongjun; Wang, Songcai; Tang, Jingyi

    2011-05-15

    A triazolam-imprinted silica microsphere was prepared by combining a surface molecular-imprinting technique with the sol-gel process. The results illustrate that the triazolam-imprinted silica microspheres provided using γ-aminopropyltriethoxysilane and phenyltrimethoxysilane as monomers exhibited higher selectivity than those provided from γ-aminopropyltriethoxysilane and methyltriethoxysilane. In addition, the optimum affinity occurred when the molar ratio of γ-aminopropyltriethoxysilane, phenyltrimethoxysilane, and the template molecule was 4.2:4.7:0.6. Retention factor (k) and imprinting factor (IF) of triazolam on the imprinted and non-imprinted silica microsphere columns were characterized using high performance liquid chromatography (HPLC) with different mobile phases including methanol, acetonitrile, and water solutions. The molecular selectivity of the imprinted silica microspheres was also evaluated for triazolam and its analogue compounds in various mobile phases. The better results indicated that k and IF of triazolam on the imprinted silica microsphere column were 2.1 and 35, respectively, when using methanol/water (1/1, v/v) as the mobile phase. Finally, the imprinted silica was applied as a sorbent in solid-phase extraction (SPE), to selectively extract triazolam and its metabolite, α-hydroxytriazolam, from human urine samples. The limits of detection (LOD) for triazolam and α-hydroxytriazolam in urine samples were 30 ± 0.21 ng mL(-1) and 33 ± 0.26 ng mL(-1), respectively.

  20. Generation of an affinity column for antibody purification by intein-mediated protein ligation.

    PubMed

    Sun, Luo; Ghosh, Inca; Xu, Ming-Qun

    2003-11-01

    Coupling an antigenic peptide to a solid support is a crucial step in the affinity purification of a peptide-specific antibody. Conventional methods for generating reactive agarose, cellulose or other matrices for peptide conjugation are laborious and can result in a significant amount of chemical waste. In this report, we present a novel method for the facile production of a peptide affinity column by employing intein-mediated protein ligation (IPL) in conjunction with chitin affinity chromatography. A reactive thioester was generated at the C-terminal of the chitin binding domain (CBD) from the chitinase A1 of Bacillus circulans WL-2 by thiol-induced cleavage of the peptide bond between the CBD and a modified intein. Peptide epitopes possessing an N-terminal cysteine were ligated to the chitin bound CBD tag. We demonstrate that the resulting peptide columns permit the highly specific and efficient affinity purification of antibodies from animal sera.

  1. Affinity purification of copper chelating peptides from chickpea protein hydrolysates.

    PubMed

    Megías, Cristina; Pedroche, Justo; Yust, Maria M; Girón-Calle, Julio; Alaiz, Manuel; Millan, Francisco; Vioque, Javier

    2007-05-16

    Chickpea protein hydrolysates obtained with alcalase and flavourzyme were used for purification of copper chelating peptides by affinity chromatography using copper immobilized on solid supports. The chelating activity of purified peptides was indirectly measured by the inhibition of beta-carotene oxidation in the presence of copper. Two protein hydrolysates, obtained after 10 and 100 min of hydrolysis, were the most inhibitory of beta-carotene oxidation. Purified copper chelating peptides from these protein hydrolysates contained 19.7 and 35.1% histidine, respectively, in comparison to 2.7 and 2.6% in the protein hydrolysates. Chelating peptides from hydrolysate obtained after 10 min of hydrolysis were the most antioxidative being 8.3 times more antioxidative than the hydrolysate, while chelating peptides purified from protein hydrolysate obtained after 100 min were 3.1 times more antioxidative than its hydrolysate. However, the histidine content was higher in peptides derived from the 100 min hydrolysate (19.7 against 35.1% in 10 min hydrolysate), indicating that this amino acid is not the only factor involved in the antioxidative activity, and other factors such as peptide size or amino acid sequence are also determinant. This manuscript shows that affinity chromatography is a useful procedure for purification of copper chelating peptides. This method can be extended to other metals of interest in nutrition, such as calcium, iron, or zinc. Purified chelating peptides, in addition to their antioxidative properties, may also be useful in food mineral fortification for increasing the bioavailability of these metals.

  2. The affinities of human platelet and Acanthamoeba profilin isoforms for polyphosphoinositides account for their relative abilities to inhibit phospholipase C.

    PubMed Central

    Machesky, L M; Goldschmidt-Clermont, P J; Pollard, T D

    1990-01-01

    In light of recent work implicating profilin from human platelets as a possible regulator of both cytoskeletal dynamics and inositol phospholipid-mediated signaling, we have further characterized the interaction of platelet profilin and the two isoforms of Acanthamoeba profilin with inositol phospholipids. Profilin from human platelets binds to phosphatidylinositol-4-monophosphate (PIP) and phosphatidylinositol-4,5-bisphosphate (PIP2) with relatively high affinity (Kd approximately 1 microM for PIP2 by equilibrium gel filtration), but interacts only weakly (if at all) with phosphatidylinositol (PI) or inositol trisphosphate IP3) in small-zone gel-filtration assays. The two isoforms of Acanthamoeba profilin both have a lower affinity for PIP2 than does human platelet profilin, but the more basic profilin isoform from Acanthamoeba (profilin-II) has a much higher (approximately 10-microM Kd) affinity than the acidic isoform (profilin-I, 100 to 500-microM Kd). None of the profilins bind to phosphatidylserine (PS) or phosphatidylcholine (PC) in small-zone gel-filtration experiments. The differences in affinity for PIP2 parallel the ability of these three profilins to inhibit PIP2 hydrolysis by soluble phospholipase C (PLC). The results show that the interaction of profilins with PIP2 is specific with respect to both the lipid and the proteins. In Acanthamoeba, the two isoforms of profilin may have specialized functions on the basis of their identical (approximately 10 microM) affinities for actin monomers and different affinities for PIP2. PMID:1966040

  3. Prolactin-binding components in rabbit mammary gland: characterization by partial purification and affinity labeling

    SciTech Connect

    Katoh, M.; Djiane, J.; Kelly, P.A.

    1985-06-01

    The molecular characteristics of the PRL receptor isolated from rabbit mammary gland microsomes were investigated. Two approaches were employed: 1) affinity purification of PRL receptors and direct electrophoretic analysis, and 2) affinity cross-linking of microsomal receptors with (/sup 125/I)ovine PRL ((/sup 125/I)oPRL). PRL receptors were solubilized from mammary microsomes with 3-((3-cholamidopropyl)dimethylammonio)1-propane sulfonate and purified using an oPRL agarose affinity column. Sodium dodecylsulfate-polyacrylamide gel electrophoresis and silver staining of the gel revealed at least nine bands, including a 32,000 mol wt band which was most intensively labeled with /sup 125/I using the chloramine-T method. Covalent labeling of PRL receptors with (/sup 125/I)oPRL was performed using N-hydroxysuccinimidyl-4-azido benzoate, disuccinimidyl suberate, or ethylene glycol bis (succinimidyl succinate). A single band of 59,000 mol wt was produced by all three cross-linkers when sodium dodecylsulfate-polyacrylamide gel electrophoresis was performed under reducing conditions. Assuming 1:1 binding of hormone and binding subunit and by subtracting the mol wt of (/sup 125/I)oPRL, which was estimated from the migration distance on the gel, the mol wt of the binding subunit was calculated as 32,000. In the absence of dithiothreitol during electrophoresis, only one major hormone-receptor complex band was observed. The same mol wt binding components were also detected in microsomal fractions of rabbit kidney, ovary, and adrenal. A slightly higher mol wt binding subunit was observed in rat liver microsomes. Rabbit liver microsomes revealed five (/sup 125/I)oPRL-binding components, three of which were considered to be those of a GH receptor. Moreover, affinity labeling of detergent-solubilized and affinity purified mammary PRL receptors showed a similar major binding subunit.

  4. Separation of human IgG fragments using copper, nickel, zinc, and cobalt chelated to CM-Asp-agarose by positive and negative chromatography.

    PubMed

    Mourão, Cecília Alves; Carmignotto, Gabriela Pannunzio; Bueno, Sonia Maria Alves

    2016-04-01

    This study evaluated the feasibility of using immobilized metal-ion affinity chromatography (IMAC) for separation of human Fab fragments using four different transition metal ions copper, nickel, zinc, and cobalt chelated to CM-Asp (carboxymethylaspartate) immobilized on the agarose gel. The Fab and Fc fragments (from human IgG digested with papain) interacted differently with the chelates studied, depending on the adsorption buffer system. The interaction between chelate and Fc fragment is predominantly based on the coordination bonds using adsorption buffer containing NaCl. Negative chromatography was performed on Cu(II)-CM-Asp-agarose obtaining 2.9mg of Fab per mL of adsorbent in nonretained fractions (Fc fragment-free without uncleaved IgG). The adsorption of Fab fragments is governed by electrostatic forces in the absence of NaCl in the adsorption buffer. High selectivity was achieved on Co(II)-CM-Asp-agarose and 5.7mg of Fab per mL of adsorbent was obtained in eluted fractions without Fc fragments, although having uncleaved IgG. The results showed that chromatography on transition metal ions chetated to CM-Asp-agarose is a promising approach to separation of Fab fragments from papain-digested human IgG solution.

  5. Waste minimization via preparative scale high performance gel permeation chromatography

    SciTech Connect

    Boparai, A.S.; Parish, K.J.; Kent, S.D.; Tsai, Y.; Joe, D.A.

    1995-05-01

    The procedures developed here allow removal of radioactivity, as judged by removal of {sup 152}Europium (III) from methylene chloride solutions of CLP analytes without significantly reducing recovery of organic compounds. This allows analysis of nonradioactive extracts on instrumentation maintained in a regular nonradioactive laboratory, resulting in a significant savings in cost.

  6. CONFORMANCE IMPROVEMENT USING GELS

    SciTech Connect

    Randall S. Seright

    2002-02-28

    This technical progress report describes work performed from June 20 through December 19, 2001, for the project, ''Conformance Improvement Using Gels''. Interest has increased in some new polymeric products that purport to substantially reduce permeability to water while causing minimum permeability reduction to oil. In view of this interest, we are currently studying BJ's Aqua Con. Results from six corefloods revealed that the Aqua Con gelant consistently reduced permeability to water more than that to oil. However, the magnitude of the disproportionate permeability reduction varied significantly for the various experiments. Thus, as with most materials tested to date, the issue of reproducibility and control of the disproportionate permeability remains to be resolved. Concern exists about the ability of gels to resist washout after placement in fractures. We examined whether a width constriction in the middle of a fracture would cause different gel washout behavior upstream versus downstream of the constriction. Tests were performed using a formed Cr(III)-acetate-HPAM gel in a 48-in.-long fracture with three sections of equal length, but with widths of 0.08-, 0.02-, and 0.08-in., respectively. The pressure gradients during gel extrusion (i.e., placement) were similar in the two 0.08-in.-wide fracture sections, even though they were separated by a 0.02-in.-wide fracture section. The constriction associated with the middle fracture section may have inhibited gel washout during the first pulse of brine injection after gel placement. However, during subsequent phases of brine injection, the constriction did not inhibit washout in the upstream fracture section any more than in the downstream section.

  7. Instrumentation: Ion Chromatography.

    ERIC Educational Resources Information Center

    Fritz, James S.

    1987-01-01

    Discusses the importance of ion chromatography in separating and measuring anions. The principles of ion exchange are presented, along with some applications of ion chromatography in industry. Ion chromatography systems are described, as well as ion pair and ion exclusion chromatography, column packings, detectors, and programming. (TW)

  8. High-throughput fragment screening by affinity LC-MS.

    PubMed

    Duong-Thi, Minh-Dao; Bergström, Maria; Fex, Tomas; Isaksson, Roland; Ohlson, Sten

    2013-02-01

    Fragment screening, an emerging approach for hit finding in drug discovery, has recently been proven effective by its first approved drug, vemurafenib, for cancer treatment. Techniques such as nuclear magnetic resonance, surface plasmon resonance, and isothemal titration calorimetry, with their own pros and cons, have been employed for screening fragment libraries. As an alternative approach, screening based on high-performance liquid chromatography separation has been developed. In this work, we present weak affinity LC/MS as a method to screen fragments under high-throughput conditions. Affinity-based capillary columns with immobilized thrombin were used to screen a collection of 590 compounds from a fragment library. The collection was divided into 11 mixtures (each containing 35 to 65 fragments) and screened by MS detection. The primary screening was performed in <4 h (corresponding to >3500 fragments per day). Thirty hits were defined, which subsequently entered a secondary screening using an active site-blocked thrombin column for confirmation of specificity. One hit showed selective binding to thrombin with an estimated dissociation constant (K (D)) in the 0.1 mM range. This study shows that affinity LC/MS is characterized by high throughput, ease of operation, and low consumption of target and fragments, and therefore it promises to be a valuable method for fragment screening.

  9. Affinity binding of inclusion bodies on supermacroporous monolithic cryogels using labeling with specific antibodies.

    PubMed

    Ahlqvist, Josefin; Kumar, Ashok; Sundström, Heléne; Ledung, Erika; Hörnsten, E Gunnar; Enfors, Sven-Olof; Mattiasson, Bo

    2006-03-23

    A new chromatographic method based on affinity supermacroporous monolithic cryogels is developed for binding and analyzing inclusion bodies during fermentation. The work demonstrated that it is possible to bind specific IgG and IgY antibodies to the 15 and 17 amino acids at the terminus ends of a 33 kDa target protein aggregated as inclusion bodies. The antibody treated inclusion bodies from lysed fermentation broth can be specifically retained in protein A and pseudo-biospecific ligand sulfamethazine modified supermacroporous cryogels. The degree of binding of IgG and IgY treated inclusion bodies to the Protein A and sulfamethazine gels are investigated, as well as the influence of pH on the sulfamethazine ligand. Optimum binding of 78 and 72% was observed on both protein A and sulfamethazine modified cryogel columns, respectively, using IgG labeling of the inclusion bodies. The antibody treated inclusion bodies pass through unretained in the sulfamethazine supermacroporous gel at pH that does not favour the binding between the ligand on the gel and the antibodies on the surface of inclusion bodies. Also the unlabeled inclusion bodies went through the gel unretained, showing no non-specific binding or trapping within the gel. These findings may very well be the foundation for the building of a powerful analytical tool during fermentation of inclusion bodies as well as a convenient way to purify them from fermentation broth. These results also support our earlier findings [Kumar, A., Plieva, F.M., Galaev, I.Yu., Mattiasson, B., 2003. Affinity fractionation of lymphocytes using a monolithic cyogel. J. Immunol. Methods 283, 185-194] with mammalian cells that were surface labeled with specific antibodies and recognized on protein A supermacroporous gels. A general binding and separation system can be established on antibody binding cryogel affinity matrices.

  10. Biotin-Streptavidin Affinity Purification of RNA-Protein Complexes Assembled In Vitro.

    PubMed

    Hou, Shuai; Shi, Lei; Lei, Haixin

    2016-01-01

    RNA-protein complexes are essential for the function of different RNAs, yet purification of specific RNA-protein complexes can be complicated and is a major obstacle in understanding the mechanism of regulatory RNAs. Here we present a protocol to purify RNA-protein complexes assembled in vitro based on biotin-streptavidin affinity. In vitro transcribed RNA is labeled with (32)P and biotin, ribonucleoprotein particles or RNPs are assembled by incubation of RNA in nuclear extract and fractionated using gel filtration, and RNP fractions are pooled for biotin-streptavidin affinity purification. The amount of RNA-protein complexes purified following this protocol is sufficient for mass spectrometry.

  11. Binding of lithium dodecyl sulfate to polyacrylamide gel at 4 degrees C perturbs electrophoresis of proteins.

    PubMed

    Kubo, K; Takagi, T

    1986-07-01

    Although polyacrylamide gel has no affinity to lithium dodecyl sulfate (LDS) at 25 degrees C, the gel maximally binds 17 mg of LDS per gram dry weight at 4 degrees C. When polyacrylamide gel electrophoresis is carried out at 4 degrees C in the presence of LDS instead of sodium dodecyl sulfate (SDS) using a continuous buffer system, migration of proteins with lower molecular weight is accelerated as a result of the deficiency of LDS in the frontal region of the gel. When the gel is saturated with LDS, electrophoresis in the presence of LDS at 4 degrees C shows a resolution higher than that of SDS-polyacrylamide gel electrophoresis at 25 degrees C.

  12. Spatially resolved multicomponent gels

    NASA Astrophysics Data System (ADS)

    Draper, Emily R.; Eden, Edward G. B.; McDonald, Tom O.; Adams, Dave J.

    2015-10-01

    Multicomponent supramolecular systems could be used to prepare exciting new functional materials, but it is often challenging to control the assembly across multiple length scales. Here we report a simple approach to forming patterned, spatially resolved multicomponent supramolecular hydrogels. A multicomponent gel is first formed from two low-molecular-weight gelators and consists of two types of fibre, each formed by only one gelator. One type of fibre in this ‘self-sorted network’ is then removed selectively by a light-triggered gel-to-sol transition. We show that the remaining network has the same mechanical properties as it would have done if it initially formed alone. The selective irradiation of sections of the gel through a mask leads to the formation of patterned multicomponent networks, in which either one or two networks can be present at a particular position with a high degree of spatial control.

  13. Patterns in shrinking gels

    NASA Astrophysics Data System (ADS)

    Matsuo, Eriko Sato; Tanaka, Toyoichi

    1992-08-01

    POLYMER gels can undergo a volume phase transition (either continuous or discontinuous) when an external condition, such as temperature or solvent composition, is altered1-3. During this transition, the volume may change by a factor of several thousand, and various patterns develop in the gel. The patterns arising from swelling and shrinking differ in both their appearance and their physical mechanisms. The mechanism for the formation and evolution of patterns on swelling gels has been established as being due to a single kind of mechanical instability4-7 in contrast, the shrinking patterns seem to be sensitive to both the initial and final states of the transition. Here we classify the various shrinking patterns in the form of a phase diagram, and explain the poly-morphism in terms of macroscopic phase separation.

  14. Principles and examples of gel-based approaches for phosphoprotein analysis.

    PubMed

    Steinberger, Birgit; Mayrhofer, Corina

    2015-01-01

    Methods for analyzing the phosphorylation status of proteins are essential to investigate in detail key cellular processes, including signal transduction and cell metabolism. The transience of this post-translational modification and the generally low abundance of phosphoproteins require specific enrichment and/or detection steps prior to analysis. Here, we describe three gel-based approaches for the analysis of differentially expressed phosphoproteins. These approaches comprise (1) the sequential fluorescence staining of two-dimensional (2-D) gels using Pro-Q(®) Diamond and SYPRO(®) Ruby dyes to visualize and quantify phosphoproteins in total cellular lysates as well as (2) affinity enrichment of phosphoproteins in conjunction with sequential fluorescence staining of the 2-D gels and (3) affinity enrichment of proteins prior to pre-electrophoretic fluorescence labeling and 2-D gel electrophoresis.

  15. Affinity immunoblotting - High resolution isoelectric focusing analysis of antibody clonotype distribution

    NASA Technical Reports Server (NTRS)

    Knisley, Keith A.; Rodkey, L. Scott

    1986-01-01

    A sensitive and specific method is proposed for the analysis of specific antibody clonotype changes occurring during an immune response and for comparing multiple sera for antibody clonotype similarities. Polyclonal serum antibodies separated by isoelectric focusing (IEF) were analyzed by an affinity immunoblotting method using antigen-coated nitrocellulose membranes. Antibodies present on the surface of the acrylamide gels following IEF bind the antigen on the nitrocellulose when the coated nitrocellulose is laid over the gels. The technique has been used to analyze Ig clonotypes specific for five protein antigens and two carbohydrate antigens. Optimal antigen concentrations for coating the nitrocellulose membranes were found to range from 10-100 microgram/ml.

  16. Electroblotting from Polyacrylamide Gels.

    PubMed

    Goldman, Aaron; Ursitti, Jeanine A; Mozdzanowski, Jacek; Speicher, David W

    2015-11-02

    Transferring proteins from polyacrylamide gels onto retentive membranes is now primarily used for immunoblotting. A second application that was quite common up to about a decade ago was electroblotting of proteins for N-terminal and internal sequencing using Edman chemistry. This unit contains procedures for electroblotting proteins from polyacrylamide gels onto a variety of membranes, including polyvinylidene difluoride (PVDF) and nitrocellulose. In addition to the commonly used tank or wet transfer system, protocols are provided for electroblotting using semidry and dry systems. This unit also describes procedures for eluting proteins from membranes using detergents or acidic extraction with organic solvents for specialized applications.

  17. A luminescent affinity tag for proteins based on the terbium(III)-binding peptide.

    PubMed

    Sueda, Shinji; Tanaka, Shogo; Inoue, Sayomi; Komatsu, Hideyuki

    2012-03-01

    Genetically encoded tags attached to proteins of interest are widely exploited for proteome analysis. Here, we present Tb(3+)-binding peptides (TBPs) which can be used for both luminescent measurements and affinity purification of proteins. TBPs consist of acidic amino acid residues and tryptophan residues which serve as Tb(3+)-binding sites and sensitizers for Tb(3+) luminescence, respectively. The Tb(3+) complexes of TBPs fused to a target protein exhibited luminescence characteristic of Tb(3+) by excitation of the tryptophan residue, and fusion proteins fused to one of the TPBs were successfully isolated from Escherichia coli cell lysate by affinity chromatography with a Tb(3+)-immobilized solid support.

  18. Peptide separation by Hydrophilic-Interaction Chromatography: a review.

    PubMed

    Yoshida, Tatsunari

    2004-09-30

    Recent developments in the separation of peptides by high-performance liquid chromatography (HPLC) using polar sorbents with less polar eluents are summarized in this review. This separation mode is now commonly referred to as Hydrophilic-Interaction Chromatography (HILIC). The retention mechanism and chromatographic behavior of polar solutes under HILIC conditions are studied on TSKgel Amide-80 columns, which consist of carbamoyl groups bonded to a silica gel matrix, using a mixture of acetonitrile (MeCN)-water containing 0.1% trifluoroacetic acid (TFA). Some applications are given in peptide field using Hydrophilic-Interaction Chromatography.

  19. Determination of Vinyl Chloride at ug/l. Level in Water by Gas Chromatography

    ERIC Educational Resources Information Center

    Bellar, Thomas A.; And Others

    1976-01-01

    A quantitative method for the determination of vinyl chloride in water is presented. Vinyl chloride is transfered to the gas phase by bubbling inert gas through the water. After concentration on silica gel or Carbosieve-B, determination is by gas chromatography. Confirmation of vinyl chloride is by gas chromatography-mass spectrometry. (Author/BT)

  20. A Modern Apparatus for Performing Flash Chromatography: An Experiment for the Organic Laboratory

    ERIC Educational Resources Information Center

    Naumiec, Gregory R.; Del Padre, Angela N.; Hooper, Matthew M.; Germaine, Alison St.; DeBoef, Brenton

    2013-01-01

    A modern apparatus for performing flash chromatography using commercially available, prepacked silica cartridges has been developed. The key advantage of this system, when compared to traditional flash chromatography, is its use of commercially available silica cartridges, which obviates the need for students to handle silica gel. The apparatus…

  1. Novel royal jelly proteins identified by gel-based and gel-free proteomics.

    PubMed

    Han, Bin; Li, Chenxi; Zhang, Lan; Fang, Yu; Feng, Mao; Li, Jianke

    2011-09-28

    Royal jelly (RJ) plays an important role in caste determination of the honeybee; the genetically same female egg develops into either a queen or worker bee depending on the time and amount of RJ fed to the larvae. RJ also has numerous health-promoting properties for humans. Gel-based and gel-free proteomics approaches and high-performance liquid chromatography-chip quadruple time-of-flight tandem mass spectrometry were applied to comprehensively investigate the protein components of RJ. Overall, 37 and 22 nonredundant proteins were identified by one-dimensional gel electrophoresis and gel-free analysis, respectively, and 19 new proteins were found by these two proteomics approaches. Major royal jelly proteins (MRJPs) were identified as the principal protein components of RJ, and proteins related to carbohydrate metabolism such as glucose oxidase, α-glucosidase precursor, and glucose dehydrogenase were also successfully identified. Importantly, the 19 newly identified proteins were mainly classified into three functional categories: oxidation-reduction (ergic53 CG6822-PA isoform A isoform 1, Sec61 CG9539-PA, and ADP/ATP translocase), protein binding (regucalcin and translationally controlled tumor protein CG4800-PA isoform 1), and lipid transport (apolipophorin-III-like protein). These new findings not only significantly increase the RJ proteome coverage but also help to provide new knowledge of RJ for honeybee biology and potential use for human health promotion.

  2. Highly efficient and low-cost purification of lysozyme: a novel tris(hydroxymethyl)aminomethane immobilized affinity column.

    PubMed

    Quan, Li; Cao, Qing; Li, Zhiyu; Li, Na; Li, Kean; Liu, Feng

    2009-03-01

    A highly efficient and low-cost affinity chromatography strategy for lysozyme (LZM) purification is reported. Using tris(hydroxymethyl)aminomethane (Tris) as ligand and macroporous silica spheres as matrix, a novel affinity column was prepared. The high specificity, stability and repeatability of this Tris immobilized affinity column were proved by LZM separations from protein mixture solutions for 20 circles and 6 months test. LZM purified from chicken egg white on the Tris affinity column had even higher purity than the commercial standard and well-maintained activity of 8287 U/mg (activity of commercial LZM was 8171 U/mg). The efficient affinity process avoiding expensive or fragile ligand would bring advantages to the routine production of LZM from chicken egg white.

  3. Gravitational compression of colloidal gels

    NASA Astrophysics Data System (ADS)

    Liétor-Santos, J. J.; Kim, C.; Lu, P. J.; Fernández-Nieves, A.; Weitz, D. A.

    2009-02-01

    We study the compression of depletion gels under the influence of a gravitational stress by monitoring the time evolution of the gel interface and the local volume fraction, φ , inside the gel. We find φ is not constant throughout the gel. Instead, there is a volume fraction gradient that develops and grows along the gel height as the compression process proceeds. Our results are correctly described by a non-linear poroelastic model that explicitly incorporates the φ -dependence of the gravitational, elastic and viscous stresses acting on the gel.

  4. Studies on the binding affinity of anticancer drug mitoxantrone to chromatin, DNA and histone proteins

    PubMed Central

    Hajihassan, Zahra; Rabbani-Chadegani, Azra

    2009-01-01

    Mitoxantrone is a potent antitumor drug, widely used in the treatment of various cancers. In the present study, we have investigated and compared the affinity of anticancer drug, mitoxantrone, to EDTA-soluble chromatin (SE-chromatin), DNA and histones employing UV/Vis, fluorescence, CD spectroscopy, gel electrophoresis and equilibrium dialysis techniques. The results showed that the interaction of mitoxantrone with SE-chromatin proceeds into compaction/aggregation as revealed by reduction in the absorbencies at 608 and 260 nm (hypochromicity) and disappearance of both histones and DNA on the gels. Mitoxantrone interacts strongly with histone proteins in solution making structural changes in the molecule as shown by CD and fluorescence analysis. The binding isotherms demonstrate a positive cooperative binding pattern for the chromatin- mitoxantrone interaction. It is suggested higher binding affinity of mitoxantrone to chromatin compared to DNA implying that the histone proteins may play an important role in the chromatin- mitoxantrone interaction process. PMID:19284573

  5. Rheology of Active Gels

    NASA Astrophysics Data System (ADS)

    Chen, Daniel

    2015-03-01

    Active networks drive a diverse range of critical processes ranging from motility to division in living cells, yet a full picture of their rheological capabilities in non-cellular contexts is still emerging, e.g., How does the rheological response of a network capable of remodeling under internally-generated stresses differ from that of a passive biopolymer network? In order to address this and other basic questions, we have engineered an active gel composed of microtubules, bidirectional kinesin motors, and molecular depletant that self-organizes into a highly dynamic network of active bundles. The network continually remodels itself under ATP-tunable cycles of extension, buckling, fracturing, and self-healing. Using confocal rheometry we have simultaneously characterized the network's linear and non-linear rheological responses to shear deformation along with its dynamic morphology. We find several surprising and unique material properties for these active gels; most notably, rheological cloaking, the ability of the active gel to drive large-scale fluid mixing over several orders of flow magnitude while maintaining an invariant, solid-like rheological profile and spontaneous flow under confinement, the ability to exert micro-Newton forces to drive persistent directed motion of the rheometer tool. Taken together, these results and others to be discussed highlight the rich stress-structure-dynamics relationships in this class of biologically-derived active gels.

  6. Automated hydrophobic interaction chromatography column selection for use in protein purification.

    PubMed

    Murphy, Patrick J M; Stone, Orrin J; Anderson, Michelle E

    2011-09-21

    In contrast to other chromatographic methods for purifying proteins (e.g. gel filtration, affinity, and ion exchange), hydrophobic interaction chromatography (HIC) commonly requires experimental determination (referred to as screening or "scouting") in order to select the most suitable chromatographic medium for purifying a given protein (1). The method presented here describes an automated approach to scouting for an optimal HIC media to be used in protein purification. HIC separates proteins and other biomolecules from a crude lysate based on differences in hydrophobicity. Similar to affinity chromatography (AC) and ion exchange chromatography (IEX), HIC is capable of concentrating the protein of interest as it progresses through the chromatographic process. Proteins best suited for purification by HIC include those with hydrophobic surface regions and able to withstand exposure to salt concentrations in excess of 2 M ammonium sulfate ((NH(4;))(2;)SO(4;)). HIC is often chosen as a purification method for proteins lacking an affinity tag, and thus unsuitable for AC, and when IEX fails to provide adequate purification. Hydrophobic moieties on the protein surface temporarily bind to a nonpolar ligand coupled to an inert, immobile matrix. The interaction between protein and ligand are highly dependent on the salt concentration of the buffer flowing through the chromatography column, with high ionic concentrations strengthening the protein-ligand interaction and making the protein immobile (i.e. bound inside the column) (2). As salt concentrations decrease, the protein-ligand interaction dissipates, the protein again becomes mobile and elutes from the column. Several HIC media are commercially available in pre-packed columns, each containing one of several hydrophobic ligands (e.g. S-butyl, butyl, octyl, and phenyl) cross-linked at varying densities to agarose beads of a specific diameter (3). Automated column scouting allows for an efficient approach for determining

  7. Affinity membrane introduction mass spectrometry

    SciTech Connect

    Xu, C.; Patrick, J.S.; Cooks, R.G. )

    1995-02-15

    A new technique, affinity membrane introduction mass spectrometry, is described. In this method, a chemically modified membrane is used to selectively adsorb analytes bearing a particular functional group and concentrate them from solution. Release of the bound analyte results in its transfer across the membrane and allows it to be monitored mass spectrometrically, using, in the present case, a benchtop ion trap instrument. Alkylamine-modified cellulose membranes are used to bind substituted benzaldehydes through imine formation at high pH. Release of the bound aldehyde is achieved by acid hydrolysis of the surface-bound imine. Benzaldehyde is detected with excellent specificity at 10 ppm in a complex mixture using this method. Using the enrichment capability of the membrane, a full mass spectrum of benzaldehyde can be measured at a concentration of 10 ppb. The behavior of a variety of other aldehydes is also discussed to illustrate the capabilities of the method. 21 refs., 5 figs., 2 tabs.

  8. A comparative in vitro study of the digestibility of heat- and high pressure-induced gels prepared from industrial milk whey proteins

    NASA Astrophysics Data System (ADS)

    He, Jin-Song; Mu, Tai-Hua; Wang, Juan

    2013-06-01

    We undertook this study to compare the digestibility of heat- and high pressure-induced gels produced from whey protein isolate (WPI). To simulate in vivo gastrointestinal digestion of WPI gels, a pepsin-trypsin digestion system was used. The in vitro protein digestibility of WPI gels induced by high pressure (400 MPa and 30 min; P-gel) and those induced by heat (80°C and 30 min; H-gel) was compared using a protein concentration of 0.14 g mL-1. The in vitro protein digestibility of P-gels was significantly greater than that of H-gels (p<0.05). The size-exclusion chromatography profiles of the hydrolysates showed that the P-gel generated more and smaller peptides than natural WPI and H-gels. Furthermore, Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed some soluble disulfide-mediated aggregation in the P-gel, while there was more insoluble aggregation in the H-gel than the P-gel. The P-gel was more sensitive to proteinase than the H-gel, which was related to the content of S-S bonds, and this in turn could be attributed to the differences in the gelation mechanism between the H-gel and P-gel.

  9. Presence of proteolipid protein in coelacanth brain myelin demonstrates tetrapod affinities and questions a chondrichthyan association.

    PubMed

    Waehneldt, T V; Malotka, J

    1989-06-01

    The protein and glycoprotein compositions of CNS myelin from the living coelacanth (Latimeria chalumnae) were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. An unglycosylated component of 25 kilodaltons showed substantially stronger immunoblot reactivity with antibodies against mammalian proteolipid protein (PLP) than lungfish glycosylated PLP. DM-20 (intermediate protein) was not detectable in either fish. The presence of unglycosylated PLP in CNS myelin of the actinistian coelacanth contradicts an association with cartilaginous fishes but supports tetrapod affinities closer than those of lungfish.

  10. Expression, purification and characterization of the recombinant kringle 2 and kringle 3 domains of human plasminogen and analysis of their binding affinity for omega-aminocarboxylic acids.

    PubMed

    Marti, D; Schaller, J; Ochensberger, B; Rickli, E E

    1994-01-15

    The kringle 2 (E161T/C162S/EEE[K2HPg/C169S]TT) and the kringle 3 (TYQ[K3HPg]DS) domains of human plasminogen (HPg) were expressed in Escherichia coli in an expression vector with the phage T5 promotor/operator element N250PSN250P29 and the cDNA sequence for a hexahistidine tail to facilitate the isolation of the recombinant protein. A coagulation factor Xa (FXa)-sensitive cleavage site was introduced to remove the N-terminal histidine tag. In r-K2, mutations E161T and C162S were introduced to enhance the FXa cleavage yield and C169S to replace the cysteine residue, participating in the inter-kringle disulfide bridge between kringles 2 and 3. Recombinant proteins were isolated by affinity chromatography on Ni(2+)-nitrilotriacetic acid/agarose and refolded under denaturing and reducing conditions followed by a non-denaturing and oxidising environment. The free thiol group in position 297 in r-K3 was selectively alkylated with iodoacetamide. The hexahistidine tail was successfully removed with FXa. The N-terminal sequence, the amino acid composition and the molecular mass analyses are in agreement with the expected data. The correct arrangement of the disulfide bonds was verified by sequence analysis of the corresponding thermolytic and subtilisin fragments. r-K2 exhibits weak binding to lysine-Bio-Gel. The weak binding affinity of r-K2 for omega-aminocarboxylic acids is confirmed by intrinsic fluorescence titration with 6-aminohexanoic acid (NH2C5COOH) indicating a Kd of approximately 401 microM. In contrast, r-K3 seems to be devoid of a binding affinity for omega-aminocarboxylic acids. Considering earlier determined Kd values of kringle 1, kringle 4 and kringle 5, the binding affinity of HPg kringle domains for NH2C5COOH is proposed to decrease in the following order, kringle 1 > kringle 4 > kringle 5 > kringle 2 > kringle 3.

  11. Integrated microfluidic approach for quantitative high-throughput measurements of transcription factor binding affinities

    PubMed Central

    Glick, Yair; Orenstein, Yaron; Chen, Dana; Avrahami, Dorit; Zor, Tsaffrir; Shamir, Ron; Gerber, Doron

    2016-01-01

    Protein binding to DNA is a fundamental process in gene regulation. Methodologies such as ChIP-Seq and mapping of DNase I hypersensitive sites provide global information on this regulation in vivo. In vitro methodologies provide valuable complementary information on protein–DNA specificities. However, current methods still do not measure absolute binding affinities. There is a real need for large-scale quantitative protein–DNA affinity measurements. We developed QPID, a microfluidic application for measuring protein–DNA affinities. A single run is equivalent to 4096 gel-shift experiments. Using QPID, we characterized the different affinities of ATF1, c-Jun, c-Fos and AP-1 to the CRE consensus motif and CRE half-site in two different genomic sequences on a single device. We discovered that binding of ATF1, but not of AP-1, to the CRE half-site is highly affected by its genomic context. This effect was highly correlated with ATF1 ChIP-seq and PBM experiments. Next, we characterized the affinities of ATF1 and ATF3 to 128 genomic CRE and CRE half-site sequences. Our affinity measurements explained that in vivo binding differences between ATF1 and ATF3 to CRE and CRE half-sites are partially mediated by differences in the minor groove width. We believe that QPID would become a central tool for quantitative characterization of biophysical aspects affecting protein–DNA binding. PMID:26635393

  12. Integrated microfluidic approach for quantitative high-throughput measurements of transcription factor binding affinities.

    PubMed

    Glick, Yair; Orenstein, Yaron; Chen, Dana; Avrahami, Dorit; Zor, Tsaffrir; Shamir, Ron; Gerber, Doron

    2016-04-07

    Protein binding to DNA is a fundamental process in gene regulation. Methodologies such as ChIP-Seq and mapping of DNase I hypersensitive sites provide global information on this regulation in vivo In vitro methodologies provide valuable complementary information on protein-DNA specificities. However, current methods still do not measure absolute binding affinities. There is a real need for large-scale quantitative protein-DNA affinity measurements. We developed QPID, a microfluidic application for measuring protein-DNA affinities. A single run is equivalent to 4096 gel-shift experiments. Using QPID, we characterized the different affinities of ATF1, c-Jun, c-Fos and AP-1 to the CRE consensus motif and CRE half-site in two different genomic sequences on a single device. We discovered that binding of ATF1, but not of AP-1, to the CRE half-site is highly affected by its genomic context. This effect was highly correlated with ATF1 ChIP-seq and PBM experiments. Next, we characterized the affinities of ATF1 and ATF3 to 128 genomic CRE and CRE half-site sequences. Our affinity measurements explained that in vivo binding differences between ATF1 and ATF3 to CRE and CRE half-sites are partially mediated by differences in the minor groove width. We believe that QPID would become a central tool for quantitative characterization of biophysical aspects affecting protein-DNA binding.

  13. Antisymmetric tensor generalizations of affine vector fields

    PubMed Central

    Morisawa, Yoshiyuki; Tomoda, Kentaro

    2016-01-01

    Tensor generalizations of affine vector fields called symmetric and antisymmetric affine tensor fields are discussed as symmetry of spacetimes. We review the properties of the symmetric ones, which have been studied in earlier works, and investigate the properties of the antisymmetric ones, which are the main theme in this paper. It is shown that antisymmetric affine tensor fields are closely related to one-lower-rank antisymmetric tensor fields which are parallelly transported along geodesics. It is also shown that the number of linear independent rank-p antisymmetric affine tensor fields in n-dimensions is bounded by (n + 1)!/p!(n − p)!. We also derive the integrability conditions for antisymmetric affine tensor fields. Using the integrability conditions, we discuss the existence of antisymmetric affine tensor fields on various spacetimes. PMID:26858463

  14. Conformal field theory on affine Lie groups

    SciTech Connect

    Clubok, Kenneth Sherman

    1996-04-01

    Working directly on affine Lie groups, we construct several new formulations of the WZW model, the gauged WZW model, and the generic affine-Virasoro action. In one formulation each of these conformal field theories (CFTs) is expressed as a one-dimensional mechanical system whose variables are coordinates on the affine Lie group. When written in terms of the affine group element, this formulation exhibits a two-dimensional WZW term. In another formulation each CFT is written as a two-dimensional field theory, with a three- dimensional WZW term, whose fields are coordinates on the affine group. On the basis of these equivalent formulations, we develop a translation dictionary in which the new formulations on the affine Lie group are understood as mode formulations of the conventional formulations on the Lie group. Using this dictionary, we also express each CFT as a three-dimensional field theory on the Lie group with a four-dimensional WZW term. 36 refs.

  15. Elastic behavior and platelet retraction in low- and high-density fibrin gels.

    PubMed

    Wufsus, Adam R; Rana, Kuldeepsinh; Brown, Andrea; Dorgan, John R; Liberatore, Matthew W; Neeves, Keith B

    2015-01-06

    Fibrin is a biopolymer that gives thrombi the mechanical strength to withstand the forces imparted on them by blood flow. Importantly, fibrin is highly extensible, but strain hardens at low deformation rates. The density of fibrin in clots, especially arterial clots, is higher than that in gels made at plasma concentrations of fibrinogen (3-10 mg/mL), where most rheology studies have been conducted. Our objective in this study was to measure and characterize the elastic regimes of low (3-10 mg/mL) and high (30-100 mg/mL) density fibrin gels using shear and extensional rheology. Confocal microscopy of the gels shows that fiber density increases with fibrinogen concentration. At low strains, fibrin gels act as thermal networks independent of fibrinogen concentration. Within the low-strain regime, one can predict the mesh size of fibrin gels by the elastic modulus using semiflexible polymer theory. Significantly, this provides a link between gel mechanics and interstitial fluid flow. At moderate strains, we find that low-density fibrin gels act as nonaffine mechanical networks and transition to affine mechanical networks with increasing strains within the moderate regime, whereas high-density fibrin gels only act as affine mechanical networks. At high strains, the backbone of individual fibrin fibers stretches for all fibrin gels. Platelets can retract low-density gels by >80% of their initial volumes, but retraction is attenuated in high-density fibrin gels and with decreasing platelet density. Taken together, these results show that the nature of fibrin deformation is a strong function of fibrin fiber density, which has ramifications for the growth, embolization, and lysis of thrombi.

  16. Self-affine crossover length in a layered silicate deposit.

    PubMed

    Fossum, J O; Bergene, H H; Hansen, Alex; O'Rourke, B; Manificat, G

    2004-03-01

    Self-affine dehydrated colloidal deposits on fresh mica surfaces of the synthetic layered silicate 2:1 smectite clay laponite have been studied by means of atomic force microscopy (AFM). AFM images of these prepared assemblies of sol and gel aggregates have been analyzed both by means of standard AFM Fourier software and a wavelet method. The deposited surfaces show a persistence to antipersistent crossover with a clay concentration dependent crossover length. It is concluded that the crossover length is associated with aggregate size, and further that the persistent roughness at small length scales signals near compact clusters of fractal dimension three, whereas the antipersistent roughness at large length scales signals a sedimentation process.

  17. Self-affine crossover length in a layered silicate deposit

    NASA Astrophysics Data System (ADS)

    Fossum, J. O.; Bergene, H. H.; Hansen, Alex; O'Rourke, B.; Manificat, G.

    2004-03-01

    Self-affine dehydrated colloidal deposits on fresh mica surfaces of the synthetic layered silicate 2:1 smectite clay laponite have been studied by means of atomic force microscopy (AFM). AFM images of these prepared assemblies of sol and gel aggregates have been analyzed both by means of standard AFM Fourier software and a wavelet method. The deposited surfaces show a persistence to antipersistent crossover with a clay concentration dependent crossover length. It is concluded that the crossover length is associated with aggregate size, and further that the persistent roughness at small length scales signals near compact clusters of fractal dimension three, whereas the antipersistent roughness at large length scales signals a sedimentation process.

  18. Basic Principles of Chromatography

    NASA Astrophysics Data System (ADS)

    Ismail, Baraem; Nielsen, S. Suzanne

    Chromatography has a great impact on all areas of analysis and, therefore, on the progress of science in general. Chromatography differs from other methods of separation in that a wide variety of materials, equipment, and techniques can be used. [Readers are referred to references (1-19) for general and specific information on chromatography.]. This chapter will focus on the principles of chromatography, mainly liquid chromatography (LC). Detailed principles and applications of gas chromatography (GC) will be discussed in Chap. 29. In view of its widespread use and applications, high-performance liquid chromatography (HPLC) will be discussed in a separate chapter (Chap. 28). The general principles of extraction are first described as a basis for understanding chromatography.

  19. A Novel Vertex Affinity for Community Detection

    SciTech Connect

    Yoo, Andy; Sanders, Geoffrey; Henson, Van; Vassilevski, Panayot

    2015-10-05

    We propose a novel vertex affinity measure in this paper. The new vertex affinity quantifies the proximity between two vertices in terms of their clustering strength and is ideal for such graph analytics applications as community detection. We also developed a framework that combines simple graph searches and resistance circuit formulas to compute the vertex affinity efficiently. We study the properties of the new affinity measure empirically in comparison to those of other popular vertex proximity metrics. Our results show that the existing metrics are ill-suited for community detection due to their lack of fundamental properties that are essential for correctly capturing inter- and intra-cluster vertex proximity.

  20. Structural determinants of sigma receptor affinity

    SciTech Connect

    Largent, B.L.; Wikstroem, H.G.; Gundlach, A.L.; Snyder, S.H.

    1987-12-01

    The structural determinants of sigma receptor affinity have been evaluated by examining a wide range of compounds related to opioids, neuroleptics, and phenylpiperidine dopaminergic structures for affinity at sigma receptor-binding sites labeled with (+)-(/sup 3/H)3-PPP. Among opioid compounds, requirements for sigma receptor affinity differ strikingly from the determinants of affinity for conventional opiate receptors. Sigma sites display reverse stereoselectivity to classical opiate receptors. Multi-ringed opiate-related compounds such as morphine and naloxone have negligible affinity for sigma sites, with the highest sigma receptor affinity apparent for benzomorphans which lack the C ring of opioids. Highest affinity among opioids and other compounds occurs with more lipophilic N-substituents. This feature is particularly striking among the 3-PPP derivatives as well as the opioids. The butyrophenone haloperidol is the most potent drug at sigma receptors we have detected. Among the series of butyrophenones, receptor affinity is primarily associated with the 4-phenylpiperidine moiety. Conformational calculations for various compounds indicate a fairly wide range of tolerance for distances between the aromatic ring and the amine nitrogen, which may account for the potency at sigma receptors of structures of considerable diversity. Among the wide range of structures that bind to sigma receptor-binding sites, the common pharmacophore associated with high receptor affinity is a phenylpiperidine with a lipophilic N-substituent.

  1. Chromatography: concepts and contrasts

    SciTech Connect

    Miller, J.M.

    1988-01-01

    As the author states in the Preface, this text attempts to provide a unified approach to chromatography (hence the title) by way of contrasting similarities and differences between gas chromatography (GC), column liquid chromatography (LC), and thin-layer chromatography (TLC). This book is also said to be pitched at an elementary level, suitable for most newcomers to the field (e.g., advanced undergraduates and beginning graduate students in the academic world, as well as bench-level chemists in industry).

  2. Influence of the galloyl moiety in tea catechins on binding affinity for human serum albumin.

    PubMed

    Minoda, Kanako; Ichikawa, Tatsuya; Katsumata, Tomoharu; Onobori, Ken-ichi; Mori, Taiki; Suzuki, Yukiko; Ishii, Takeshi; Nakayama, Tsutomu

    2010-01-01

    The major catechins of green tea extract are (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECg), and (-)-epigallocatechin gallate (EGCg). Recent research has indicated that catechins form complexes with human serum albumin (HSA) in blood, and differences in their binding affinity toward HSA are believed to modulate their bioavailability. In this study, we kinetically investigated the interaction between the catechins and HSA immobilized on a quartz-crystal microbalance (QCM). The association constants obtained from the frequency changes of QCM revealed interactions of ECg and EGCg with HSA that are 100 times stronger than those of EC and EGC. Furthermore, comparisons of these catechins by native-gel electrophoresis/blotting with redox-cycling staining revealed that, in a phosphate buffer, ECg and EGCg have a higher binding affinity toward HSA than EC and EGC. These observations indicate that catechins with a galloyl moiety have higher binding affinities toward HSA than catechins lacking a galloyl moiety.

  3. A comparative study of lectin affinity based plant n-glycoproteome profiling using tomato fruit as a model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lectin affinity chromatography (LAC) can provide a valuable front-end enrichment strategy for the study of N-glycoproteins and has been used to characterize a broad range eukaryotic N-glycoproteomes. Moreover, studies with mammalian systems have suggested that the use of multiple lectins with differ...

  4. Analysis of protein composition using multidimensional chromatography and mass spectrometry.

    PubMed

    Link, Andrew J; Washburn, Michael P

    2014-11-03

    Multidimensional liquid chromatography of peptides produced by protease digestion of complex protein mixtures followed by tandem mass spectrometry can be coupled with automated database searching to identify large numbers of proteins in complex samples. These methods avoid the limitations of gel electrophoresis and in-gel digestions by directly identifying protein mixtures in solution. One method used extensively is named Multidimensional Protein Identification Technology (MudPIT), where reversed-phase chromatography and strong cation-exchange chromatography are coupled directly in a microcapillary column. This column is then placed in line between an HPLC and a mass spectrometer for complex mixture analysis. MudPIT remains a powerful approach for analyzing complex mixtures like whole proteomes and protein complexes. MudPIT is used for quantitative proteomic analysis of complex mixtures to generate novel biological insights.

  5. The Affinity of Cholesterol for Different Phospholipids Affects Lateral Segregation in Bilayers.

    PubMed

    Engberg, Oskar; Hautala, Victor; Yasuda, Tomokazu; Dehio, Henrike; Murata, Michio; Slotte, J Peter; Nyholm, Thomas K M

    2016-08-09

    Saturated and unsaturated phospholipids (PLs) can segregate into lateral domains. The preference of cholesterol for saturated acyl chains over monounsaturated, and especially polyunsaturated ones, may also affect lateral segregation. Here we have studied how cholesterol influenced the lateral segregation of saturated and unsaturated PLs, for which cholesterol had a varying degree of affinity. The fluorescence lifetime of trans-parinaric acid reported the formation of ordered domains (gel or liquid-ordered (lo)) in bilayers composed of different unsaturated phosphatidylcholines, and dipalmitoyl-phosphatidylcholine or n-palmitoyl-sphingomyelin, in the presence or absence of cholesterol. We observed that cholesterol facilitated lateral segregations and the degree of facilitation correlated with the relative affinity of cholesterol for the different PLs in the bilayers. Differential scanning calorimetry and (2)H nuclear magnetic resonance showed that cholesterol increased the thermostability of both the gel and lo-domains. Increased number of double bonds in the unsaturated PL increased the order in the lo-domains, likely by enriching the ordered domains in saturated lipids and cholesterol. This supported the conclusions from the trans-parinaric acid experiments, and offers insight into how cholesterol facilitated lateral segregation. In conclusion, the relative affinity of cholesterol for different PLs appears to be an important determinant for the formation of ordered domains. Our data suggests that knowledge of the affinity of cholesterol for the different PLs in a bilayer allows prediction of the degree to which the sterol promotes lo-domain formation.

  6. Growth factors with heparin binding affinity in human synovial fluid

    SciTech Connect

    Hamerman, D.; Taylor, S.; Kirschenbaum, I.; Klagsbrun, M.; Raines, E.W.; Ross, R.; Thomas, K.A.

    1987-12-01

    Synovial effusions were obtained from the knees of 15 subjects with joint trauma, menisceal or ligamentous injury, or osteoarthritis. Heparin-Sepharose affinity chromatography of these synovial fluids revealed, in general, three major peaks of mitogenic activity as measured by incorporation of /sup 3/H-thymidine into 3T3 cells. Gradient elution patterns showed activities at 0.5M NaCl, which is characteristic of platelet derived growth factor, and at 1.1 M NaCl and 1.6M NaCl, indicative of acidic and basic fibroblast growth factors, respectively. The identities of these mitogenic fractions were confirmed by specific immunologic and receptor-binding assays. The presence of platelet derived, acidic and basic fibroblast growth factors in the synovial fluid may contribute to wound healing in the arthritic joint.

  7. Advances in affinity ligand-functionalized nanomaterials for biomagnetic separation.

    PubMed

    Fields, Conor; Li, Peng; O'Mahony, James J; Lee, Gil U

    2016-01-01

    The downstream processing of proteins remains the most significant cost in protein production, and is largely attributed to rigorous chromatographic purification protocols, where the stringency of purity for biopharmaceutical products sometimes exceeds 99%. With an ever burgeoning biotechnology market, there is a constant demand for alternative purification methodologies, to ameliorate the dependence on chromatography, while still adhering to regulatory concerns over product purity and safety. In this article, we present an up-to-date view of bioseparation, with emphasis on magnetic separation and its potential application in the field. Additionally, we discuss the economic and performance benefits of synthetic ligands, in the form of peptides and miniaturized antibody fragments, compared to full-length antibodies. We propose that adoption of synthetic affinity ligands coupled with magnetic adsorbents, will play an important role in enabling sustainable bioprocessing in the future.

  8. Structure of classical affine and classical affine fractional W-algebras

    SciTech Connect

    Suh, Uhi Rinn

    2015-01-15

    We introduce a classical BRST complex (See Definition 3.2.) and show that one can construct a classical affine W-algebra via the complex. This definition clarifies that classical affine W-algebras can be considered as quasi-classical limits of quantum affine W-algebras. We also give a definition of a classical affine fractional W-algebra as a Poisson vertex algebra. As in the classical affine case, a classical affine fractional W-algebra has two compatible λ-brackets and is isomorphic to an algebra of differential polynomials as a differential algebra. When a classical affine fractional W-algebra is associated to a minimal nilpotent, we describe explicit forms of free generators and compute λ-brackets between them. Provided some assumptions on a classical affine fractional W-algebra, we find an infinite sequence of integrable systems related to the algebra, using the generalized Drinfel’d and Sokolov reduction.

  9. Water-Hydrogel Binding Affinity Modulates Freeze-Drying-Induced Micropore Architecture and Skeletal Myotube Formation.

    PubMed

    Rich, Max H; Lee, Min Kyung; Marshall, Nicholas; Clay, Nicholas; Chen, Jinrong; Mahmassani, Ziad; Boppart, Marni; Kong, Hyunjoon

    2015-08-10

    Freeze-dried hydrogels are increasingly used to create 3D interconnected micropores that facilitate biomolecular and cellular transports. However, freeze-drying is often plagued by variance in micropore architecture based on polymer choice. We hypothesized that water-polymer binding affinity plays a significant role in sizes and numbers of micropores formed through freeze-drying, influencing cell-derived tissue quality. Poly(ethylene glycol)diacrylate (PEGDA) hydrogels with alginate methacrylate (AM) were used due to AM's higher binding affinity for water than PEGDA. PEGDA-AM hydrogels with larger AM concentrations resulted in larger sizes and numbers of micropores than pure PEGDA hydrogels, attributed to the increased mass of water binding to the PEGDA-AM gel. Skeletal myoblasts loaded in microporous PEGDA-AM hydrogels were active to produce 3D muscle-like tissue, while those loaded in pure PEGDA gels were localized on the gel surface. We propose that this study will be broadly useful in designing and improving the performance of various microporous gels.

  10. Cation exchange displacement batch chromatography of proteins guided by screening of protein purification parameters.

    PubMed

    Kotasińska, Marta; Richter, Verena; Thiemann, Joachim; Schlüter, Hartmut

    2012-11-01

    Displacement chromatography has been shown to be an effective alternative for protein purification. We investigated in this study sample displacement chromatography, which does not require a displacer molecule. Furthermore, we performed a screening for determination of parameters for an optimal sample displacement chromatography. We screened the affinities of cytochrome C, lysozyme, myoglobin, and ribonuclease A toward a cation exchange material as a function of different pH values and to presence of different concentrations of sodium chloride in the sample application buffer. Sample displacement chromatography in batch chromatography mode for the separation of the protein mixture was studied with a sample application buffer with a pH of 5 and 7. As predicted by the screening experiments, sample displacement chromatography was most effective at pH 7 since this pH guaranteed the largest differences of the affinities of the four proteins toward the stationary phase. In summary, we describe here sample displacement chromatography in the batch chromatography mode for the separation of proteins, which is a simple and fast alternative to conventional displacement chromatography. Systematic screening of chromatographic parameters prior to sample displacement chromatography promises a successful separation of a target protein.

  11. Innate immunity probed by lipopolysaccharides affinity strategy and proteomics.

    PubMed

    Giangrande, Chiara; Colarusso, Lucia; Lanzetta, Rosa; Molinaro, Antonio; Pucci, Piero; Amoresano, Angela

    2013-01-01

    Lipopolysaccharides (LPSs) are ubiquitous and vital components of the cell surface of Gram-negative bacteria that have been shown to play a relevant role in the induction of the immune-system response. In animal and plant cells, innate immune defenses toward microorganisms are triggered by the perception of pathogen associated molecular patterns. These are conserved and generally indispensable microbial structures such as LPSs that are fundamental in the Gram-negative immunity recognition. This paper reports the development of an integrated strategy based on lipopolysaccharide affinity methodology that represents a new starting point to elucidate the molecular mechanisms elicited by bacterial LPS and involved in the different steps of innate immunity response. Biotin-tagged LPS was immobilized on streptavidin column and used as a bait in an affinity capture procedure to identify protein partners from human serum specifically interacting with this effector. The complex proteins/lipopolysaccharide was isolated and the protein partners were fractionated by gel electrophoresis and identified by mass spectrometry. This procedure proved to be very effective in specifically binding proteins functionally correlated with the biological role of LPS. Proteins specifically bound to LPS essentially gathered within two functional groups, regulation of the complement system (factor H, C4b, C4BP, and alpha 2 macroglobulin) and inhibition of LPS-induced inflammation (HRG and Apolipoproteins). The reported strategy might have important applications in the elucidation of biological mechanisms involved in the LPSs-mediated molecular recognition and anti-infection responses.

  12. Iminobiotin affinity columns and their application to retrieval of streptavidin.

    PubMed Central

    Hofmann, K; Wood, S W; Brinton, C C; Montibeller, J A; Finn, F M

    1980-01-01

    A method is described for the retrieval of streptavidin from the culture broth of Streptomyces avidinii. The key step in this procedure is the adsorption of streptavidin from culture concentrates to an affinity column in which iminobiotin is attached to AH-Sepharose 4B. This column binds streptavbidin at pH 11 and releases the protein at pH 4. The recovery of streptavidin is practically quantitative. The pH dependence of the iminobiotin-avidin affinity, discovered by Green [Green, N. M. (1966) Biochem. J. 101, 774-779], has thus found practical application. The streptavidin bound 4.07 +/- 0.02 mol of [14C]biotin per mol and was essentially homogeneous as judged by disc and slab gel electrophoresis. Streptavidin was extensively succinoylated without loss of biotin-binding capacity. The observations that 125I-labeled streptavidin and 125I-labeled succinoylstreptavidin are retained by iminobiotin-AH-Sepharose 4B columns at pH 7.5 and are eluted at pH 4.0 provides a convenient purification method for these iodinated proteins. The technique employed for the retrieval of streptavidin is generally applicable to the isolation of iminobiotinylated molecules. PMID:6933515

  13. Rheology of κ/ι-hybrid carrageenan from Mastocarpus stellatus: Critical parameters for the gel formation.

    PubMed

    Torres, M D; Chenlo, F; Moreira, R

    2016-05-01

    The sol-gel diagrams of kappa/iota-hybrid carrageenan (KI) extracted from Mastocarpus stellatus powders with two different average particle sizes of the seaweed powders (117.0 μm and 77.5 μm) prior to the biopolymer extraction, are reported for the first time, together with rheological properties of obtained KI gels. Extraction yields for KI isolated from algae and average molecular weight of KI, determined by gel permeation chromatography, decreased with increasing the particle size of the powder. Rheological results indicated that tested samples exhibited stable and weak gel properties, except those prepared at 1.5% KI in 1.0 mol/L NaCl where stronger gels were found. Aqueous KI extracts with larger molecular weight led to stronger gels and also formed gels at lower biopolymer concentration in NaCl above 0.15 mol/L. All gels reached stability after 20 min of maturation. The data sets showed a strong temperature dependency. Gel setting temperatures significantly depended on the KI and NaCl content, whereas gel melting temperatures (68.0 ± 0.7 °C) were independent of both salt concentrations.

  14. Preparation and evaluation of Ricinus communis agglutinin affinity adsorbents using polymeric supports.

    PubMed

    Cartellieri, S; Helmholz, H; Niemeyer, B

    2001-08-01

    A practicable and efficient procedure for preparation of Ricinus communis agglutinin (RCA) affinity adsorbents has been developed. For immobilization of RCA two different polymer-based supports, Toyopearl and TSKgel (TosoHaas), were used. RCA has been successfully immobilized onto these supports with amounts of coupled ligand between 15 and 23 mg/g dry support and corresponding coupling yields of 69-93% (w/w). The prepared affinity adsorbents were characterized concerning their binding capacity for the glycoprotein asialofetuin (ASF) and accessibility of the ligand binding sites. The high accessibility of 80% showed that steric hindrance was negligible at the present ligand density. RCA-Toyopearl was successfully applied in affinity chromatography of glycoproteins indicating its high specificity. A long-term stability test proved no change in capacity for a period of at least 12 months. High-performance affinity chromatography (HPLAC) was carried out using RCA-TSKgel. Experimental results showed that the prepared adsorbents are suitable for selective separation of glycoproteins and oligosaccharides and therefore can be used for investigations of adsorption characteristics of glycoconjugates and for laboratory-scale preparations.

  15. Purification of transferrins and lactoferrin using DEAE affi-gel blue.

    PubMed

    Chung, M C; Chan, S L; Shimizu, S

    1991-01-01

    1. A simple method for purifying transferrins and lactoferrin is described. 2. The method consists of a preliminary step of dye-ligand chromatography using DEAE Affi-Gel Blue as the gel matrix at pH 7.5. In this chromatographic step, the transferrins and lactoferrin were readily separated from the bulk of the other proteins by start buffer elution. 3. Differences in the chromatographic behaviour of the various serum transferrins (monkey, human, rabbit, pig, chicken and duck) and ovotransferrin upon DEAE Affi-Gel Blue chromatography can be attributed to differences in the anionic charge of the transferrins in 0.02 M potassium phosphate buffer, pH 7.5, thus resulting in the differential retardation of these protein molecules by the gel matrix. 4. The result of DEAE Affi-Gel Blue chromatography of human lactoferrin is different from that for the transferrins. This may possibly reflect the differences in the strength of interaction between lactoferrin and transferrin with this gel matrix.

  16. Bioengineering of bacteria to assemble custom-made polyester affinity resins.

    PubMed

    Hay, Iain D; Du, Jinping; Burr, Natalie; Rehm, Bernd H A

    2015-01-01

    Proof of concept for the in vivo bacterial production of a polyester resin displaying various customizable affinity protein binding domains is provided. This was achieved by engineering various protein binding domains into a bacterial polyester-synthesizing enzyme. Affinity binding domains based on various structural folds and derived from molecular libraries were used to demonstrate the potential of this technique. Designed ankyrin repeat proteins (DARPins), engineered OB-fold domains (OBodies), and VHH domains from camelid antibodies (nanobodies) were employed. The respective resins were produced in a single bacterial fermentation step, and a simple purification protocol was developed. Purified resins were suitable for most lab-scale affinity chromatography purposes. All of the affinity domains tested produced polyester beads with specific affinity for the target protein. The binding capacity of these affinity resins ranged from 90 to 600 nmol of protein per wet gram of polyester affinity resin, enabling purification of a recombinant protein target from a complex bacterial cell lysate up to a purity level of 96% in one step. The polyester resin was efficiently produced by conventional lab-scale shake flask fermentation, resulting in bacteria accumulating up to 55% of their cellular dry weight as polyester. A further proof of concept demonstrating the practicality of this technique was obtained through the intracellular coproduction of a specific affinity resin and its target. This enables in vivo binding and purification of the coproduced "target protein." Overall, this study provides evidence for the use of molecular engineering of polyester synthases toward the microbial production of specific bioseparation resins implementing previously selected binding domains.

  17. Bioengineering of Bacteria To Assemble Custom-Made Polyester Affinity Resins

    PubMed Central

    Hay, Iain D.; Du, Jinping; Burr, Natalie

    2014-01-01

    Proof of concept for the in vivo bacterial production of a polyester resin displaying various customizable affinity protein binding domains is provided. This was achieved by engineering various protein binding domains into a bacterial polyester-synthesizing enzyme. Affinity binding domains based on various structural folds and derived from molecular libraries were used to demonstrate the potential of this technique. Designed ankyrin repeat proteins (DARPins), engineered OB-fold domains (OBodies), and VHH domains from camelid antibodies (nanobodies) were employed. The respective resins were produced in a single bacterial fermentation step, and a simple purification protocol was developed. Purified resins were suitable for most lab-scale affinity chromatography purposes. All of the affinity domains tested produced polyester beads with specific affinity for the target protein. The binding capacity of these affinity resins ranged from 90 to 600 nmol of protein per wet gram of polyester affinity resin, enabling purification of a recombinant protein target from a complex bacterial cell lysate up to a purity level of 96% in one step. The polyester resin was efficiently produced by conventional lab-scale shake flask fermentation, resulting in bacteria accumulating up to 55% of their cellular dry weight as polyester. A further proof of concept demonstrating the practicality of this technique was obtained through the intracellular coproduction of a specific affinity resin and its target. This enables in vivo binding and purification of the coproduced “target protein.” Overall, this study provides evidence for the use of molecular engineering of polyester synthases toward the microbial production of specific bioseparation resins implementing previously selected binding domains. PMID:25344238

  18. Heparin-binding peptide as a novel affinity tag for purification of recombinant proteins.

    PubMed

    Morris, Jacqueline; Jayanthi, Srinivas; Langston, Rebekah; Daily, Anna; Kight, Alicia; McNabb, David S; Henry, Ralph; Kumar, Thallapuranam Krishnaswamy Suresh

    2016-10-01

    Purification of recombinant proteins constitutes a significant part of the downstream processing in biopharmaceutical industries. Major costs involved in the production of bio-therapeutics mainly depend on the number of purification steps used during the downstream process. Affinity chromatography is a widely used method for the purification of recombinant proteins expressed in different expression host platforms. Recombinant protein purification is achieved by fusing appropriate affinity tags to either N- or C- terminus of the target recombinant proteins. Currently available protein/peptide affinity tags have proved quite useful in the purification of recombinant proteins. However, these affinity tags suffer from specific limitations in their use under different conditions of purification. In this study, we have designed a novel 34-amino acid heparin-binding affinity tag (HB-tag) for the purification of recombinant proteins expressed in Escherichia coli (E. coli) cells. HB-tag fused recombinant proteins were overexpressed in E. coli in high yields. A one-step heparin-Sepharose-based affinity chromatography protocol was developed to purify HB-fused recombinant proteins to homogeneity using a simple sodium chloride step gradient elution. The HB-tag has also been shown to facilitate the purification of target recombinant proteins from their 8 M urea denatured state(s). The HB-tag has been demonstrated to be successfully released from the fusion protein by an appropriate protease treatment to obtain the recombinant target protein(s) in high yields. Results of the two-dimensional NMR spectroscopy experiments indicate that the purified recombinant target protein(s) exist in the native conformation. Polyclonal antibodies raised against the HB-peptide sequence, exhibited high binding specificity and sensitivity to the HB-fused recombinant proteins (∼10 ng) in different crude cell extracts obtained from diverse expression hosts. In our opinion, the HB-tag provides a

  19. Improving image segmentation by learning region affinities

    SciTech Connect

    Prasad, Lakshman; Yang, Xingwei; Latecki, Longin J

    2010-11-03

    We utilize the context information of other regions in hierarchical image segmentation to learn new regions affinities. It is well known that a single choice of quantization of an image space is highly unlikely to be a common optimal quantization level for all categories. Each level of quantization has its own benefits. Therefore, we utilize the hierarchical information among different quantizations as well as spatial proximity of their regions. The proposed affinity learning takes into account higher order relations among image regions, both local and long range relations, making it robust to instabilities and errors of the original, pairwise region affinities. Once the learnt affinities are obtained, we use a standard image segmentation algorithm to get the final segmentation. Moreover, the learnt affinities can be naturally unutilized in interactive segmentation. Experimental results on Berkeley Segmentation Dataset and MSRC Object Recognition Dataset are comparable and in some aspects better than the state-of-art methods.

  20. Zirconyl-containing microspheric silica gel surfaces

    NASA Astrophysics Data System (ADS)

    Lanin, S. N.; Kabulov, B. D.; Vlasenko, E. V.; Kovaleva, N. V.; Lanina, K. S.; Strepetova, T. A.; Akhundzhanov, K. A.; Yunusov, F. U.

    2011-01-01

    The adsorption properties of two samples of zirconyl-containing silica gels derived from zirconium oxychloride, polyetoxysiloxane oligomer 3% ZrOCl2/SiO2 (composite 1) and tetraetoxysilane 5% ZrOCl2/SiO2 (composite 2) were investigated by gas chromatography at low surface coverages. n-Alkanes and n-alkenes (C6-C8), C6H6 were used as test adsorbates, along with polar compounds whose molecules had different donor-acceptor interaction abilities. The dispersion and specific (electron-donor and electronacceptor) components of the energy of intermolecular interactions for the studied systems were determined from the experimental data on chromatographic retention. It was shown that composite 2 had a higher dispersion potential and higher surface energy characteristics of the surface's electron-donating and electronacceptor centers, as compared to composite 1.

  1. Protein A affinity precipitation of human immunoglobulin G.

    PubMed

    Janoschek, Lars; Freiherr von Roman, Matthias; Berensmeier, Sonja

    2014-08-15

    The potential of protein A affinity precipitation as an alternative method for traditional antibody purification techniques was investigated. Recombinant produced protein A from Staphylococcus aureus (SpA) was covalently linked to the pH-responsive copolymer Eudragit(®) S-100 and used for purification of human immunoglobulin G (hIgG). The Eudragit-SpA conjugate had a static binding capacity of 93.9 ± 2.8 mg hIgG per g conjugate and a dissociation constant of 787 ± 67 nM at 7 ± 1°C. The antibody was adsorbed rapidly onto Eudragit-SpA and reached equilibrium within 5 min. An excess of hIgG binding sites, provided by the conjugate, as well as adjusted elution conditions resulted in an appropriate hIgG purification performance. In summary, Eudragit-SpA was successfully applied to capture hIgG from a protein mixture with 65% antibody yield in the elution step. Nearly 96% purity and a purification factor of 12.4 were achieved. The Eudragit-SpA conjugate showed a stable ligand density over several cycles, which enabled reusability for repeated precipitation of hIgG. According to this, pH induced affinity precipitation can be seen as a potential alternative for protein A chromatography in antibody purification processes.

  2. Protein purification using chromatography: selection of type, modelling and optimization of operating conditions.

    PubMed

    Asenjo, J A; Andrews, B A

    2009-01-01

    To achieve a high level of purity in the purification of recombinant proteins for therapeutic or analytical application, it is necessary to use several chromatographic steps. There is a range of techniques available including anion and cation exchange, which can be carried out at different pHs, hydrophobic interaction chromatography, gel filtration and affinity chromatography. In the case of a complex mixture of partially unknown proteins or a clarified cell extract, there are many different routes one can take in order to choose the minimum and most efficient number of purification steps to achieve a desired level of purity (e.g. 98%, 99.5% or 99.9%). This review shows how an initial 'proteomic' characterization of the complex mixture of target protein and protein contaminants can be used to select the most efficient chromatographic separation steps in order to achieve a specific level of purity with a minimum number of steps. The chosen methodology was implemented in a computer- based Expert System. Two algorithms were developed, the first algorithm was used to select the most efficient purification method to separate a protein from its contaminants based on the physicochemical properties of the protein product and the protein contaminants and the second algorithm was used to predict the number and concentration of contaminants after each separation as well as protein product purity. The application of the Expert System approach was experimentally tested and validated with a mixture of four proteins and the experimental validation was also carried out with a supernatant of Bacillus subtilis producing a recombinant beta-1,3-glucanase. Once the type of chromatography is chosen, optimization of the operating conditions is essential. Chromatographic elution curves for a three-protein mixture (alpha-lactoalbumin, ovalbumin and beta-lactoglobulin), carried out under different flow rates and ionic strength conditions, were simulated using two different mathematical

  3. Improved Thermal Modulator for Gas Chromatography

    NASA Technical Reports Server (NTRS)

    Hasselbrink, Ernest Frederick, Jr.; Hunt, Patrick J.; Sacks, Richard D.

    2008-01-01

    An improved thermal modulator has been invented for use in a variant of gas chromatography (GC). The variant in question denoted as two-dimensional gas chromatography (2DGC) or GC-GC involves the use of three series-connected chromatographic columns, in the form of capillary tubes coated interiorly with suitable stationary phases (compounds for which different analytes exhibit different degrees of affinity). The two end columns are relatively long and are used as standard GC columns. The thermal modulator includes the middle column, which is relatively short and is not used as a standard GC column: instead, its temperature is modulated to affect timed adsorption and desorption of analyte gases between the two end columns in accordance with a 2DGC protocol.

  4. Determination of 16 polycyclic aromatic hydrocarbons in seawater using molecularly imprinted solid-phase extraction coupled with gas chromatography-mass spectrometry.

    PubMed

    Song, Xingliang; Li, Jinhua; Xu, Shoufang; Ying, Rongjian; Ma, Jiping; Liao, Chunyang; Liu, Dongyan; Yu, Junbao; Chen, Lingxin

    2012-09-15

    A method of solid-phase extraction (SPE) using molecularly imprinted polymers (MIPs) as adsorbent coupled with gas chromatography-mass spectrometry (GC-MS) was developed for the determination of 16 types of polycyclic aromatic hydrocarbons (PAHs) in seawater samples. The MIPs were prepared through non-covalent polymerization by using the 16 PAHs mixture as a template based on sol-gel surface imprinting. Compared with the non-imprinted polymers (NIPs), the MIPs exhibited excellent affinity towards 16 PAHs with binding capacity of 111.0-195.0 μg g(-1), and imprinting factor of 1.50-3.12. The significant binding specificity towards PAHs even in the presence of environmental parameters such as dissolved organic matter and various metal ions, suggested that this new imprinting material was capable of removing 93.2% PAHs in natural seawater. High sensitivity was attained, with the low limits of detection for 16 PAHs in natural seawater ranging from 5.2-12.6 ng L(-1). The application of MIPs with high affinity and excellent stereo-selectivity toward PAHs in SPE might offer a more attractive alternative to conventional sorbents for extraction and abatement of PAH-contaminated seawater.

  5. Affinity improvement by fine tuning of single-chain variable fragment against aflatoxin B1.

    PubMed

    Min, Won-Ki; Na, Kang-In; Yoon, Jung-Hyun; Heo, Yoon-Jee; Lee, Daesang; Kim, Sung-Gun; Seo, Jin-Ho

    2016-10-15

    Aflatoxin B1 (AFB1) produced in Aspergillus flavus is a major hepatocarcinogen found in foods and feed. For effective immunological detection of AFB1 at low concentrations, the development of high affinity antibody for AFB1 is required. Previously, an affinity-maturated single-chain variable fragment containing 6 mutations (scFv-M37) was isolated from an artificial mutagenic library, which showed a 9-fold higher affinity than its wild type scFv. In this study, the effect of the 6 mutated residues on the affinity improvement was characterized using surface plasmon resonance analysis, which identified a deleterious mutation (VH-A110T) located on a framework region of the scFv-M37. The back mutation of VH-A110T resulted in a 3.2-fold affinity improvement, which was attributed to decrease of dissociation rate constant (kd) in interaction between AFB1 and the back mutant scFv. The biophysical analyses using circular dichroism and gel filtration revealed that the back mutation of VH-A110T caused a subtle conformational change of the scFv toward tighter binding to AFB1.

  6. Undergraduate physics laboratory: Electrophoresis in chromatography paper

    NASA Astrophysics Data System (ADS)

    Hyde, Alexander; Batishchev, Oleg

    2015-12-01

    An experiment studying the physical principles of electrophoresis in liquids was developed for an undergraduate laboratory. We have improved upon the standard agarose gel electrophoresis experimental regime with a straightforward and cost-effective procedure, in which drops of widely available black food coloring were separated by electric field into their dye components on strips of chromatography paper soaked in a baking soda/water solution. Terminal velocities of seven student-safe dyes were measured as a function of the electric potential applied along the strips. The molecular mobility was introduced and calculated by analyzing data for a single dye. Sources of systematic and random errors were investigated.

  7. Polyoxometalate-based Supramolecular Gel

    NASA Astrophysics Data System (ADS)

    He, Peilei; Xu, Biao; Liu, Huiling; He, Su; Saleem, Faisal; Wang, Xun

    2013-05-01

    Self-assemblyings of surfactant-encapsulated Wells-Dawson polyoxometalates (SEPs) nanobuilding blocks in butanone and esters yielded supramolecular gels showing thermo and photo responsive properties. The gels can be further polymerized if unsaturated esters were used and subsequently electrospinned into nanowires and non-woven mats. The as-prepared non-woven mats have a Young's modulus as high as 542.55 MPa. It is believed that this supramolecular gel is a good platform for polyoxometalates processing.

  8. Chromatography resin support

    DOEpatents

    Dobos, James G.

    2002-01-01

    An apparatus and method of using an improved chromatography resin support is disclosed. The chromatography support platform is provided by a stainless steel hollow cylinder adapted for being inserted into a chromatography column. An exterior wall of the stainless steel cylinder defines a groove for carrying therein an "O"-ring. The upper surface of the stainless steel column is covered by a fine stainless steel mesh welded to the edges of the stainless steel cylinder. When placed upon a receiving ledge defined within a chromatography column, the "O"-ring provides a fluid tight seal with the inner edge wall of the chromatography cylinder. The stainless steel mesh supports the chromatography matrix and provides a back flushable support which is economical and simple to construct.

  9. Applications and Properties of Ionic Liquid- Based Gels and Soft Solid Composites

    NASA Astrophysics Data System (ADS)

    Voss, Bret Alan McGinness

    2011-12-01

    Solid-liquid composites (gels) have a combination of properties that afford new material applications in which high solute diffusion is desirable. These composites have a soft-solid mechanical integrity and will not flow under gravity, but entrain a liquid matrix (i.e. 60-98 mass %) which allows for high diffusion and high reactivity. Room temperature ionic liquid (RTILs) are molten organic salts with a melting point below room temperature and negligible vapor pressure. If the RTILs are used as the liquid component of a gel, then the gel matrix will not evaporate (unlike other organic solvents) and may be used for long term applications. This thesis research applies RTIL gels for two new applications; carbon dioxide/nitrogen separation and chemical warfare agent (CWA) barrier and decontamination. Separating CO2 from the flue gas of coal and gas fired power-plants is an increasingly economically and environmentally important gas separation. In this first study, RTIL gels are cast in a supported membrane and gas permeability and ideal selectivity are measured. The RTIL matrix has an inherent affinity for CO2 and provides a high diffusion, hence high permeability (i.e. 500-700 barrer). The solidifying component is a low molecular-weight organic gelator (LMOG) which through physical bonding interactions (i.e. hydrogen bonding, pi-pi stacking and van der Walls forces) forms an entangled network which provides mechanical stability (i.e. increase trans-membrane pressure required to expel selective material from the support). In these studies two LMOGs and five RTILs are used to make supported gel membranes and determine gas permeability and temperature dependent trends. The second application for RTIL gels is a decontaminating barrier for CWAs and toxic industrial compounds (TICs). In these studies a layer of RTIL gel is applied on top of a substrate contaminated with a CWA simulant (i.e. chloroethylethylsulfide, CEES). The gel performs well as a barrier, preventing CEES

  10. Calcium Binding Restores Gel Formation of Succinylated Gelatin and Reduces Brittleness with Preservation of the Elastically Stored Energy.

    PubMed

    Baigts Allende, Diana; de Jongh, Harmen H J

    2015-08-12

    To better tailor gelatins for textural characteristics in (food) gels, their interactions are destabilized by introduction of electrostatic repulsions and creation of affinity sites for calcium to "lock" intermolecular interactions. For that purpose gelatins with various degrees of succinylation are obtained. Extensive succinylation hampers helix formation and gel strength is slightly reduced. At high degrees of succinylation the helix propensity, gelling/melting temperatures, concomitant transition enthalpy, and gel strength become calcium-sensitive, and relatively low calcium concentrations largely restore these properties. Although succinylation has a major impact on the brittleness of the gels formed and the addition of calcium makes the material less brittle compared to nonmodified gelatin, the modification has no impact on the energy balance in the gel, where all energy applied is elastically stored in the material. This is explained by the unaffected stress relaxation by the network and high water-holding capacity related to the small mesh sizes in the gels.

  11. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, Douglas B.; Shahinpoor, Mohsen; Segalman, Daniel J.; Witkowski, Walter R.

    1993-01-01

    Electrically controlled polymeric gel actuators or synthetic muscles capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots.

  12. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, D.B.; Shahinpoor, M.; Segalman, D.J.; Witkowski, W.R.

    1993-10-05

    Electrically controlled polymeric gel actuators or synthetic muscles are described