Science.gov

Sample records for affinity human antibodies

  1. A novel high affinity human monoclonal antibody to mesothelin

    PubMed Central

    Ho, Mitchell; Feng, Mingqian; Fisher, Robert J.; Rader, Christoph; Pastan, Ira

    2010-01-01

    Mesothelin is a glycosylphosphatidylinisotol-anchored glycoprotein that is highly expressed on the cell surface of mesothelioma, ovarian cancer and other malignant tumors. The interaction between mesothelin and CA125 (also called MUC16) may facilitate the implantation and metastasis of tumors in the peritoneal cavity. A desirable therapeutic agent involves finding a fully human monoclonal antibody (mAb) that binds to mesothelin or CA125 and inhibits their interaction. Here we report the identification of a novel human mAb to mesothelin. HN1, a human single chain Fv specific for mesothelin, was isolated from a naïve human scFv phage display library. To investigate HN1 as a potential therapeutic, we generated a fully human IgG with the γ 1 heavy chain and the κ light chain, and an immuntoxin by fusing the HN1 scFv to a truncated Pseudomonas exotoxin A. The HN1 IgG kills cancer cells with very strong antibody-dependent cell-mediated cytotoxicity. HN1 binds a conformation-sensitive epitope in human mesothelin with high affinity (KD = 3 nM). The HN1 epitope is different from that of SS1, a mouse Fv used to develop therapeutic antibodies that are currently in clinical trials. HN1 binds to cell surface-associated mesothelin on human mesothelioma, ovarian cancer, lung adenocarcinoma and pancreatic cancer cells. In addition, HN1 can functionally block the interaction of mesothelin and CA125 on cancer cells. Most importantly, because the HN1 immuntoxin kills mesothelin-expressing cancer cells with high cytotoxic activity, we believe that it has significant potential for mesothelin-expressing cancer treatment and diagnosis. PMID:20635390

  2. In vitro affinity maturation of a natural human antibody overcomes a barrier to in vivo affinity maturation

    PubMed Central

    Li, Bing; Fouts, Ashley E; Stengel, Katharina; Luan, Peng; Dillon, Michael; Liang, Wei-Ching; Feierbach, Becket; Kelley, Robert F; Hötzel, Isidro

    2014-01-01

    Antibodies isolated from human donors are increasingly being developed for anti-infective therapeutics. These antibodies undergo affinity maturation in vivo, minimizing the need for engineering of therapeutic leads for affinity. However, the affinities required for some therapeutic applications may be higher than the affinities of the leads obtained, requiring further affinity maturation in vitro. To improve the neutralization potency of natural human antibody MSL-109 targeting human cytomegalovirus (CMV), we affinity matured the antibody against the gH/gL glycoprotein complex. A phage display library where most of the six complementary-determining regions (CDRs) were allowed to vary in only one amino acid residue at a time was used to scan for mutations that improve binding affinity. A T55R mutation and multiple mutations in position 53 of the heavy chain were identified that, when present individually or in combination, resulted in higher apparent affinities to gH/gL and improved CMV neutralization potency of Fab fragments expressed in bacterial cells. Three of these mutations in position 53 introduced glycosylation sites in heavy chain CDR 2 (CDR H2) that impaired binding of antibodies expressed in mammalian cells. One high affinity (KD < 10 pM) variant was identified that combined the D53N and T55R mutations while avoiding glycosylation of CDR H2. However, all the amino acid substitutions identified by phage display that improved binding affinity without introducing glycosylation sites required between two and four simultaneous nucleotide mutations to avoid glycosylation. These results indicate that the natural human antibody MSL-109 is close to a local affinity optimum. We show that affinity maturation by phage display can be used to identify and bypass barriers to in vivo affinity maturation of antibodies imposed by glycosylation and codon usage. These constraints may be relatively prevalent in human antibodies due to the codon usage and the amino acid

  3. Affinity Maturation to Improve Human Monoclonal Antibody Neutralization Potency and Breadth against Hepatitis C Virus*

    PubMed Central

    Wang, Yong; Keck, Zhen-yong; Saha, Anasuya; Xia, Jinming; Conrad, Fraser; Lou, Jianlong; Eckart, Michael; Marks, James D.; Foung, Steven K. H.

    2011-01-01

    A potent neutralizing antibody to a conserved hepatitis C virus (HCV) epitope might overcome its extreme variability, allowing immunotherapy. The human monoclonal antibody HC-1 recognizes a conformational epitope on the HCV E2 glycoprotein. Previous studies showed that HC-1 neutralizes most HCV genotypes but has modest potency. To improve neutralization, we affinity-matured HC-1 by constructing a library of yeast-displayed HC-1 single chain Fv (scFv) mutants, using for selection an E2 antigen from one of the poorly neutralized HCVpp. We developed an approach by parallel mutagenesis of the heavy chain variable (VH) and κ-chain variable (Vk) genes separately, then combining the optimized VH and Vk mutants. This resulted in the generation of HC-1-related scFv variants exhibiting improved affinities. The best scFv variant had a 92-fold improved affinity. After conversion to IgG1, some of the antibodies exhibited a 30-fold improvement in neutralization activity. Both surface plasmon resonance and solution kinetic exclusion analysis showed that the increase in affinity was largely due to a lowering of the dissociation rate constant, Koff. Neutralization against a panel of HCV pseudoparticles and infectious 2a HCV virus improved with the affinity-matured IgG1 antibodies. Interestingly, some of these antibodies neutralized a viral isolate that was not neutralized by wild-type HC-1. Moreover, propagating 2a HCVcc under the selective pressure of WT HC-1 or affinity-matured HC-1 antibodies yielded no viral escape mutants and, with the affinity-matured IgG1, needed 100-fold less antibody to achieve complete virus elimination. Taken together, these findings suggest that affinity-matured HC-1 antibodies are excellent candidates for therapeutic development. PMID:22002064

  4. A high affinity monoclonal antibody recognizing the light chain of human coagulating factor VII.

    PubMed

    Sarial, Sheila; Asadi, Farzad; Jeddi-Tehrani, Mahmood; Hadavi, Reza; Bayat, Ali Ahmad; Mahmoudian, Jafar; Taghizadeh-Jahed, Masoud; Shokri, Fazel; Rabbani, Hodjattallah

    2012-12-01

    Factor VII (FVII) is a serine protease-coagulating element responsible for the initiation of an extrinsic pathway of clot formation. Here we generated and characterized a high affinity monoclonal antibody that specifically recognizes human FVII. Recombinant human FVII (rh-FVII) was used for the production of a monoclonal antibody using BALB/c mice. The specificity of the antibody was determined by Western blot using plasma samples from human, mouse, sheep, goat, bovine, rabbit, and rat. Furthermore, the antibody was used to detect transiently expressed rh-FVII in BHK21 cell line using Western blot and sandwich ELISA. A mouse IgG1 (kappa chain) monoclonal antibody clone 1F1-B11 was produced against rh-FVII. The affinity constant (K(aff)) of the antibody was calculated to be 6.4×10(10) M(-1). The antibody could specifically recognize an epitope on the light chain of hFVII, with no reactivity with factor VII from several other animals. In addition, transiently expressed rh-FVII in BHK21 cells was recognized by 1F1-B11. The high affinity as well as the specificity of 1F1-B11 for hFVII will facilitate the affinity purification of hFVII and also production of FVII deficient plasma and minimizes the risk of bovine FVII contamination when fetal bovine serum-supplemented media are used for production and subsequent purification of rh-FVII. PMID:23244324

  5. A High-Affinity Native Human Antibody Neutralizes Human Cytomegalovirus Infection of Diverse Cell Types

    PubMed Central

    Liu, Keyi; Park, Minha; DeChene, Neal; Stephenson, Robert; Tenorio, Edgar; Ellsworth, Stote L.; Tabata, Takako; Petitt, Matthew; Tsuge, Mitsuru; Fang-Hoover, June; Adler, Stuart P.; Cui, Xiaohong; McVoy, Michael A.; Pereira, Lenore

    2014-01-01

    Human cytomegalovirus (HCMV) is the most common infection causing poor outcomes among transplant recipients. Maternal infection and transplacental transmission are major causes of permanent birth defects. Although no active vaccines to prevent HCMV infection have been approved, passive immunization with HCMV-specific immunoglobulin has shown promise in the treatment of both transplant and congenital indications. Antibodies targeting the viral glycoprotein B (gB) surface protein are known to neutralize HCMV infectivity, with high-affinity binding being a desirable trait, both to compete with low-affinity antibodies that promote the transmission of virus across the placenta and to displace nonneutralizing antibodies binding nearby epitopes. Using a miniaturized screening technology to characterize secreted IgG from single human B lymphocytes, 30 antibodies directed against gB were previously cloned. The most potent clone, TRL345, is described here. Its measured affinity was 1 pM for the highly conserved site I of the AD-2 epitope of gB. Strain-independent neutralization was confirmed for 15 primary HCMV clinical isolates. TRL345 prevented HCMV infection of placental fibroblasts, smooth muscle cells, endothelial cells, and epithelial cells, and it inhibited postinfection HCMV spread in epithelial cells. The potential utility for preventing congenital transmission is supported by the blockage of HCMV infection of placental cell types central to virus transmission to the fetus, including differentiating cytotrophoblasts, trophoblast progenitor cells, and placental fibroblasts. Further, TRL345 was effective at controlling an ex vivo infection of human placental anchoring villi. TRL345 has been utilized on a commercial scale and is a candidate for clinical evaluation. PMID:25534746

  6. Isolation of Anti-Ricin Protective Antibodies Exhibiting High Affinity from Immunized Non-Human Primates.

    PubMed

    Noy-Porat, Tal; Rosenfeld, Ronit; Ariel, Naomi; Epstein, Eyal; Alcalay, Ron; Zvi, Anat; Kronman, Chanoch; Ordentlich, Arie; Mazor, Ohad

    2016-01-01

    Ricin, derived from the castor bean plant Ricinus communis, is one of the most potent and lethal toxins known, against which there is no available antidote. To date, the use of neutralizing antibodies is the most promising post-exposure treatment for ricin intoxication. The aim of this study was to isolate high affinity anti-ricin antibodies that possess potent toxin-neutralization capabilities. Two non-human primates were immunized with either a ricin-holotoxin- or subunit-based vaccine, to ensure the elicitation of diverse high affinity antibodies. By using a comprehensive set of primers, immune scFv phage-displayed libraries were constructed and panned. A panel of 10 antibodies (five directed against the A subunit of ricin and five against the B subunit) was isolated and reformatted into a full-length chimeric IgG. All of these antibodies were found to neutralize ricin in vitro, and several conferred full protection to ricin-intoxicated mice when given six hours after exposure. Six antibodies were found to possess exceptionally high affinity toward the toxin, with KD values below pM (koff < 1 × 10(-7) s(-1)) that were well correlated with their ability to neutralize ricin. These antibodies, alone or in combination, could be used for the development of a highly-effective therapeutic preparation for post-exposure treatment of ricin intoxication. PMID:26950154

  7. Isolation of Anti-Ricin Protective Antibodies Exhibiting High Affinity from Immunized Non-Human Primates

    PubMed Central

    Noy-Porat, Tal; Rosenfeld, Ronit; Ariel, Naomi; Epstein, Eyal; Alcalay, Ron; Zvi, Anat; Kronman, Chanoch; Ordentlich, Arie; Mazor, Ohad

    2016-01-01

    Ricin, derived from the castor bean plant Ricinus communis, is one of the most potent and lethal toxins known, against which there is no available antidote. To date, the use of neutralizing antibodies is the most promising post-exposure treatment for ricin intoxication. The aim of this study was to isolate high affinity anti-ricin antibodies that possess potent toxin-neutralization capabilities. Two non-human primates were immunized with either a ricin-holotoxin- or subunit-based vaccine, to ensure the elicitation of diverse high affinity antibodies. By using a comprehensive set of primers, immune scFv phage-displayed libraries were constructed and panned. A panel of 10 antibodies (five directed against the A subunit of ricin and five against the B subunit) was isolated and reformatted into a full-length chimeric IgG. All of these antibodies were found to neutralize ricin in vitro, and several conferred full protection to ricin-intoxicated mice when given six hours after exposure. Six antibodies were found to possess exceptionally high affinity toward the toxin, with KD values below pM (koff < 1 × 10−7 s−1) that were well correlated with their ability to neutralize ricin. These antibodies, alone or in combination, could be used for the development of a highly-effective therapeutic preparation for post-exposure treatment of ricin intoxication. PMID:26950154

  8. Purification of antibodies to O antigen of Salmonella Typhimurium from human serum by affinity chromatography.

    PubMed

    O'Shaughnessy, Colette M; Micoli, Francesca; Gavini, Massimiliano; Goodall, Margaret; Cobbold, Mark; Saul, Allan; Maclennan, Calman A

    2013-01-31

    Nontyphoidal Salmonellae (NTS) are a common cause of bacteraemia in children and HIV-infected adults in Sub-Saharan Africa. We have previously shown that antibodies play a key role in both bactericidal and cellular mechanisms of immunity to NTS, but found that high concentrations of antibody to Salmonella Typhimurium O antigen (OAg) in the serum of some HIV-infected African adults is associated with impaired killing of NTS. To further investigate the function of antibodies to the OAg of NTS, we developed a method to purify these antibodies from human serum by affinity chromatography. Purified Salmonella Typhimurium OAg was activated with adipic acid dihydrazide (ADH) via two different chemistries before linking to N-hydroxysuccinamide-Sepharose resin: one ADH molecule was introduced per OAg chain on its terminal 3-deoxy-D-manno-octulosonic acid sugar (OAg-ADH), or multiple ADH molecules were attached along the OAg chain after oxidation with sodium periodate (OAgoxADH). Both resulting columns worked well when tested with commercial polyclonal anti-O:4,5 antibodies from rabbit serum. Over 90% of the applied antibodies bound to the resin and 89% of these antibodies were then eluted as detected by ELISA. OAg-ADH was preferred as the method for OAg derivatisation as it does not modify the saccharide chain and can be applied to OAg from different bacteria. Both columns were able to bind OAg-specific antibodies in human serum, but antibody recovery was initially low. Different elution buffers were tested and different amounts of OAg-ADH were linked to the resin to improve the yield. Optimal recovery (51%) was obtained by loading 1mg of activated OAg per ml of resin and eluting with 0.1M glycine, 0.1M NaCl pH2.4. The column matrix could be regenerated following elution with no detectable loss in performance for over ten uses. This method offers the potential to purify antibodies to Salmonella OAg from polyclonal serum following vaccination or natural exposure to Salmonella

  9. A high-affinity human antibody that targets tumoral blood vessels.

    PubMed

    Tarli, L; Balza, E; Viti, F; Borsi, L; Castellani, P; Berndorff, D; Dinkelborg, L; Neri, D; Zardi, L

    1999-07-01

    Angiogenesis is a characteristic feature of many aggressive tumors and of other relevant disorders. Molecules capable of specifically binding to new-forming blood vessels, but not to mature vessels, could be used as selective vehicles and would, therefore, open diagnostic and therapeutic opportunities. We have studied the distribution of the ED-B oncofetal domain of fibronectin, a marker of angiogenesis, in four different tumor animal models: the F9 murine teratocarcinoma, SKMEL-28 human melanoma, N592 human small cell lung carcinoma, and C51 human colon carcinoma. In all of these experimental models we observed accumulation of the fibronectin isoform containing the ED-B domain around neovascular structures when the tumors were in the exponentially growing phase, but not in the slow-growing phase. Then we performed biodistribution studies in mice bearing a subcutaneously implanted F9 murine teratocarcinoma, using a high-affinity human antibody fragment (L19) directed against the ED-B domain of fibronectin. Radiolabeled L19, but not an irrelevant anti-lysozyme antibody fragment (D1.3), efficiently localizes in the tumoral vessels. The maximal dose of L19 accumulated in the tumor was observed 3 hours after injection (8.2% injected dose per gram). By virtue of the rapid clearance of the antibody fragment from the circulation, tumor-to-blood ratios of 1.9, 3.7, and 11.8 were obtained at 3, 5, and 24 hours, respectively. The tumor-targeting performance of L19 was not dose-dependent in the 0.7 to 10 microg range of injected antibody. The integral of the radioactivity localized in tumoral vessels over 24 hours was greater than 70-fold higher than the integral of the radioactivity in blood over the same time period, normalized per gram of tissue or fluid. These findings quantitatively show that new-forming blood vessels can selectively be targeted in vivo using specific antibodies, and suggest that L19 may be of clinical utility for the immunoscintigraphic detection of

  10. High-Affinity Self-Reactive Human Antibodies by Design and Selection: Targeting the Integrin Ligand Binding Site

    NASA Astrophysics Data System (ADS)

    Barbas, Carlos F., III; Languino, Lucia R.; Smith, Jeffrey W.

    1993-11-01

    A strategy for the design and selection of human antibodies that bind receptors is described. We have demonstrated the validity of the approach by producing semisynthetic human antibodies that bind integrins α_vβ_3 and αIIbβ_3 with high affinity (10-10 M). The selected antibodies mimic the integrins' natural ligands as demonstrated by their ability to compete with these ligands and Arg-Gly-Asp (RGD)-containing peptides for binding to the integrins. Furthermore, the antibodies bind in a cation-dependent fashion and are functional in cell adhesion assays. Antibodies that are high-affinity inhibitors of cell adhesion receptors should be of use in assessing receptor function and dissecting mechanisms of adhesion. Semisynthetic human antibodies that target integrins are potential therapeutic agents for the treatment of a number of diseases including thrombosis and metastasis. Furthermore, antibodies that are optimized to bind by a single complementarity determining region may be important lead compounds for the design of small molecule pharmaceuticals.

  11. Affinity purification of antibodies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antibodies are provided in a variety of formats that includes antiserum, hybridoma culture supernatant or ascites. They can all be used successfully in crude form for the detection of target antigens by immunoassay. However, it is advantageous to use purified antibody in defined quantity to facil...

  12. Affinity Purification of Antibodies.

    PubMed

    Hnasko, Robert M; McGarvey, Jeffery A

    2015-01-01

    Antibodies are provided in a variety of formats that include antiserum, hybridoma culture supernatant, or ascites. They can all be used successfully in crude form for the detection of target antigens by immunoassay. However, it is advantageous to use purified antibody in defined quantity to facilitate assay reproducibility, economy, and reduced interference of nonspecific components as well as improved storage, stability, and bio-conjugation. Although not always necessary, the relative simplicity of antibody purification using commercially available protein-A, protein-G, or protein-L resins with basic chromatographic principles warrants purification when antibody source material is available in sufficient quantity. Here, we define three simple methods using immobilized (1) protein-A, (2) protein-G, and (3) protein-L agarose beads to yield highly purified antibody. PMID:26160561

  13. AGIA Tag System Based on a High Affinity Rabbit Monoclonal Antibody against Human Dopamine Receptor D1 for Protein Analysis

    PubMed Central

    Yano, Tomoya; Takeda, Hiroyuki; Uematsu, Atsushi; Yamanaka, Satoshi; Nomura, Shunsuke; Nemoto, Keiichirou; Iwasaki, Takahiro; Takahashi, Hirotaka; Sawasaki, Tatsuya

    2016-01-01

    Polypeptide tag technology is widely used for protein detection and affinity purification. It consists of two fundamental elements: a peptide sequence and a binder which specifically binds to the peptide tag. In many tag systems, antibodies have been used as binder due to their high affinity and specificity. Recently, we obtained clone Ra48, a high-affinity rabbit monoclonal antibody (mAb) against dopamine receptor D1 (DRD1). Here, we report a novel tag system composed of Ra48 antibody and its epitope sequence. Using a deletion assay, we identified EEAAGIARP in the C-terminal region of DRD1 as the minimal epitope of Ra48 mAb, and we named this sequence the “AGIA” tag, based on its central sequence. The tag sequence does not include the four amino acids, Ser, Thr, Tyr, or Lys, which are susceptible to post-translational modification. We demonstrated performance of this new tag system in biochemical and cell biology applications. SPR analysis demonstrated that the affinity of the Ra48 mAb to the AGIA tag was 4.90 × 10−9 M. AGIA tag showed remarkably high sensitivity and specificity in immunoblotting. A number of AGIA-fused proteins overexpressed in animal and plant cells were detected by anti-AGIA antibody in immunoblotting and immunostaining with low background, and were immunoprecipitated efficiently. Furthermore, a single amino acid substitution of the second Glu to Asp (AGIA/E2D) enabled competitive dissociation of AGIA/E2D-tagged protein by adding wild-type AGIA peptide. It enabled one-step purification of AGIA/E2D-tagged recombinant proteins by peptide competition under physiological conditions. The sensitivity and specificity of the AGIA system makes it suitable for use in multiple methods for protein analysis. PMID:27271343

  14. AGIA Tag System Based on a High Affinity Rabbit Monoclonal Antibody against Human Dopamine Receptor D1 for Protein Analysis.

    PubMed

    Yano, Tomoya; Takeda, Hiroyuki; Uematsu, Atsushi; Yamanaka, Satoshi; Nomura, Shunsuke; Nemoto, Keiichirou; Iwasaki, Takahiro; Takahashi, Hirotaka; Sawasaki, Tatsuya

    2016-01-01

    Polypeptide tag technology is widely used for protein detection and affinity purification. It consists of two fundamental elements: a peptide sequence and a binder which specifically binds to the peptide tag. In many tag systems, antibodies have been used as binder due to their high affinity and specificity. Recently, we obtained clone Ra48, a high-affinity rabbit monoclonal antibody (mAb) against dopamine receptor D1 (DRD1). Here, we report a novel tag system composed of Ra48 antibody and its epitope sequence. Using a deletion assay, we identified EEAAGIARP in the C-terminal region of DRD1 as the minimal epitope of Ra48 mAb, and we named this sequence the "AGIA" tag, based on its central sequence. The tag sequence does not include the four amino acids, Ser, Thr, Tyr, or Lys, which are susceptible to post-translational modification. We demonstrated performance of this new tag system in biochemical and cell biology applications. SPR analysis demonstrated that the affinity of the Ra48 mAb to the AGIA tag was 4.90 × 10-9 M. AGIA tag showed remarkably high sensitivity and specificity in immunoblotting. A number of AGIA-fused proteins overexpressed in animal and plant cells were detected by anti-AGIA antibody in immunoblotting and immunostaining with low background, and were immunoprecipitated efficiently. Furthermore, a single amino acid substitution of the second Glu to Asp (AGIA/E2D) enabled competitive dissociation of AGIA/E2D-tagged protein by adding wild-type AGIA peptide. It enabled one-step purification of AGIA/E2D-tagged recombinant proteins by peptide competition under physiological conditions. The sensitivity and specificity of the AGIA system makes it suitable for use in multiple methods for protein analysis. PMID:27271343

  15. Selection of Recombinant Human Antibodies.

    PubMed

    Tomszak, Florian; Weber, Susanne; Zantow, Jonas; Schirrmann, Thomas; Hust, Michael; Frenzel, André

    2016-01-01

    Since the development of therapeutic antibodies the demand of recombinant human antibodies is steadily increasing. Traditionally, therapeutic antibodies were generated by immunization of rat or mice, the generation of hybridoma clones, cloning of the antibody genes and subsequent humanization and engineering of the lead candidates. In the last few years, techniques were developed that use transgenic animals with a human antibody gene repertoire. Here, modern recombinant DNA technologies can be combined with well established immunization and hybridoma technologies to generate already affinity maturated human antibodies. An alternative are in vitro technologies which enabled the generation of fully human antibodies from antibody gene libraries that even exceed the human antibody repertoire. Specific antibodies can be isolated from these libraries in a very short time and therefore reduce the development time of an antibody drug at a very early stage.In this review, we describe different technologies that are currently used for the in vitro and in vivo generation of human antibodies. PMID:27236551

  16. Visualizing antibody affinity maturation in germinal centers.

    PubMed

    Tas, Jeroen M J; Mesin, Luka; Pasqual, Giulia; Targ, Sasha; Jacobsen, Johanne T; Mano, Yasuko M; Chen, Casie S; Weill, Jean-Claude; Reynaud, Claude-Agnès; Browne, Edward P; Meyer-Hermann, Michael; Victora, Gabriel D

    2016-03-01

    Antibodies somatically mutate to attain high affinity in germinal centers (GCs). There, competition between B cell clones and among somatic mutants of each clone drives an increase in average affinity across the population. The extent to which higher-affinity cells eliminating competitors restricts clonal diversity is unknown. By combining multiphoton microscopy and sequencing, we show that tens to hundreds of distinct B cell clones seed each GC and that GCs lose clonal diversity at widely disparate rates. Furthermore, efficient affinity maturation can occur in the absence of homogenizing selection, ensuring that many clones can mature in parallel within the same GC. Our findings have implications for development of vaccines in which antibodies with nonimmunodominant specificities must be elicited, as is the case for HIV-1 and influenza. PMID:26912368

  17. Antibody-Free Magnetic Cell Sorting of Genetically Modified Primary Human CD4+ T Cells by One-Step Streptavidin Affinity Purification

    PubMed Central

    Matheson, Nicholas J.; Peden, Andrew A.; Lehner, Paul J.

    2014-01-01

    Existing methods for phenotypic selection of genetically modified mammalian cells suffer disadvantages of time, cost and scalability and, where antibodies are used to bind exogenous cell surface markers for magnetic selection, typically yield cells coated with antibody-antigen complexes and beads. To overcome these limitations we have developed a method termed Antibody-Free Magnetic Cell Sorting in which the 38 amino acid Streptavidin Binding Peptide (SBP) is displayed at the cell surface by the truncated Low Affinity Nerve Growth Receptor (LNGFRF) and used as an affinity tag for one-step selection with streptavidin-conjugated magnetic beads. Cells are released through competition with the naturally occurring vitamin biotin, free of either beads or antibody-antigen complexes and ready for culture or use in downstream applications. Antibody-Free Magnetic Cell Sorting is a rapid, cost-effective, scalable method of magnetic selection applicable to either viral transduction or transient transfection of cell lines or primary cells. We have optimised the system for enrichment of primary human CD4+ T cells expressing shRNAs and exogenous genes of interest to purities of >99%, and used it to isolate cells following Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 genome editing. PMID:25360777

  18. FYWHCLDE-based affinity chromatography of IgG: effect of ligand density and purifications of human IgG and monoclonal antibody.

    PubMed

    Zhao, Wei-Wei; Shi, Qing-Hong; Sun, Yan

    2014-08-15

    This work reports the development of an octapeptide-based affinity adsorbent for the purification of human IgG (hIgG) and monoclonal antibody (mAb). The octapeptide was FYWHCLDE selected earlier by the biomimetic design of affinity peptide ligands for hIgG. The ligand was coupled to Sepharose gel at four densities from 10.4 to 31.0μmol/mL, and the effect of peptide density on the adsorption of hIgG and bovine serum albumin (BSA) was first investigated. The binding capacity of hIgG increased from 104.2 to 176.4mg/mL within the ligand density range, and the binding affinity (dissociation constant) kept at 2.4-3.7μM. Batch adsorption revealed that the selectivity of FYWHCLDE-Sepharose for IgG was 30-40 times over BSA. The effective pore diffusivity of IgG decreased somewhat with increasing ligand density, but the dynamic binding capacity at 10% breakthrough, measured by using 10-fold diluted human serum as feedstock, doubled with increasing ligand density from 10.4 to 31.0μmol/mL due to the remarkable increase of static binding capacity. By using the affinity column with a ligand density of 23.9μmol/mL, hIgG and humanized mAb purifications from human serum and cell culture supernatant, respectively, were achieved at high purities and recovery yields. Finally, the robustness of the peptide gel was demonstrated by recycled use of the affinity column in 20 breakthrough cycles. PMID:24947889

  19. Molecular engineering of high affinity single-chain antibody fragment for endothelial targeting of proteins and nanocarriers in rodents and humans.

    PubMed

    Greineder, Colin F; Hood, Elizabeth D; Yao, Anning; Khoshnejad, Makan; Brenner, Jake S; Johnston, Ian H; Poncz, Mortimer; Gottstein, Claudia; Muzykantov, Vladimir R

    2016-03-28

    Endothelial cells (EC) represent an important target for pharmacologic intervention, given their central role in a wide variety of human pathophysiologic processes. Studies in lab animal species have established that conjugation of drugs and carriers with antibodies directed to surface targets like the Platelet Endothelial Cell Adhesion Molecule-1 (PECAM-1, a highly expressed endothelial transmembrane protein) help to achieve specific therapeutic interventions in ECs. To translate such "vascular immunotargeting" to clinical practice, it is necessary to replace antibodies by advanced ligands that are more amenable to use in humans. We report the molecular design of a single chain variable antibody fragment (scFv) that binds with high affinity to human PECAM-1 and cross-reacts with its counterpart in rats and other animal species, allowing parallel testing in vivo and in human endothelial cells in microfluidic model. Site-specific modification of the scFv allows conjugation of protein cargo and liposomes, enabling their endothelial targeting in these models. This study provides a template for molecular engineering of ligands, enabling studies of drug targeting in animal species and subsequent use in humans. PMID:26855052

  20. Tailoring in vitro selection for a picomolar affinity human antibody directed against vascular endothelial growth factor receptor 2 for enhanced neutralizing activity.

    PubMed

    Lu, Dan; Shen, Juqun; Vil, Marie D; Zhang, Haifan; Jimenez, Xenia; Bohlen, Peter; Witte, Larry; Zhu, Zhenping

    2003-10-31

    Vascular endothelial growth factor (VEGF) and its receptors have been implicated in promoting solid tumor growth and metastasis via stimulating tumor-associated angiogenesis. We previously identified several fully human neutralizing anti-VEGF receptor 2 (or kinase inserting domain-containing receptor (KDR)) antibodies from a large antibody phage display library. These antibodies bind specifically to KDR, block VEGF/KDR interaction, and inhibit VEGF-induced proliferation of human endothelial cells and migration of KDR+ leukemia cells. Three of these antibodies, interestingly, share an identical heavy chain variable (VH) sequence. In this report, we constructed a new library comprising the single VH paired with the variable light chain (VL) repertoire obtained from the original naïve human library. Initial in vitro selection revealed that the single VH could pair with a number of different VL while retaining its specificity for KDR. However, a consensus VH/VL pair, clone 1121, was identified after three or four rounds of selection by tailoring the stringency of the panning conditions. Clone 1121 showed a >30-fold higher binding affinity to KDR (Kd, 100 pm) because of improvement on both association and dissociation constants and blocked VEGF/KDR interaction with an IC50 of approximately 1 nm, compared with that of 3-4 nm for the parent Fab fragments. Further, clone 1121 was more potent in inhibiting VEGF-stimulated KDR phosphorylation in endothelial cells. A binding epitope mapping study on clone 1121 and one of the parent clones, 2C6, demonstrated that both antibodies interacted with the third immunoglobulin domain within the extracellular region of KDR. Several peptide phage display libraries were utilized to further examine the fine binding specificities of the two antibodies. All of the 2C6-binding peptides are cysteine-constrained, whereas clone 1121 binds to both cysteine-constrained and linear peptides. It is noteworthy that most of the 2C6-binding peptides

  1. Selective targeting of the IL23 pathway: Generation and characterization of a novel high-affinity humanized anti-IL23A antibody.

    PubMed

    Singh, Sanjaya; Kroe-Barrett, Rachel R; Canada, Keith A; Zhu, Xiang; Sepulveda, Eliud; Wu, Helen; He, Yaqin; Raymond, Ernest L; Ahlberg, Jennifer; Frego, Lee E; Amodeo, Laura M; Catron, Katrina M; Presky, David H; Hanke, Jeffrey H

    2015-01-01

    Herein, we describe the generation and characterization of BI 655066, a novel, highly potent neutralizing anti-interleukin-23 (IL23) monoclonal antibody in clinical development for autoimmune conditions, including psoriasis and Crohn's disease. IL23 is a key driver of the differentiation, maintenance, and activity of a number of immune cell subsets, including T helper 17 (Th17) cells, which are believed to mediate the pathogenesis of several immune-mediated disorders. Thus, IL23 neutralization is an attractive therapeutic approach. Designing an antibody for clinical activity and convenience for the patient requires certain properties, such as high affinity, specificity, and solubility. These properties were achieved by directed design of the immunization, lead identification, and humanization procedures. Favorable substance and pharmacokinetic properties were established by biophysical assessments and studies in cynomolgus monkeys. PMID:25905918

  2. Selective targeting of the IL23 pathway: Generation and characterization of a novel high-affinity humanized anti-IL23A antibody

    PubMed Central

    Singh, Sanjaya; Kroe-Barrett, Rachel R; Canada, Keith A; Zhu, Xiang; Sepulveda, Eliud; Wu, Helen; He, Yaqin; Raymond, Ernest L; Ahlberg, Jennifer; Frego, Lee E; Amodeo, Laura M; Catron, Katrina M; Presky, David H; Hanke, Jeffrey H

    2015-01-01

    Herein, we describe the generation and characterization of BI 655066, a novel, highly potent neutralizing anti-interleukin-23 (IL23) monoclonal antibody in clinical development for autoimmune conditions, including psoriasis and Crohn's disease. IL23 is a key driver of the differentiation, maintenance, and activity of a number of immune cell subsets, including T helper 17 (Th17) cells, which are believed to mediate the pathogenesis of several immune-mediated disorders. Thus, IL23 neutralization is an attractive therapeutic approach. Designing an antibody for clinical activity and convenience for the patient requires certain properties, such as high affinity, specificity, and solubility. These properties were achieved by directed design of the immunization, lead identification, and humanization procedures. Favorable substance and pharmacokinetic properties were established by biophysical assessments and studies in cynomolgus monkeys. PMID:25905918

  3. The effect of immunological adjuvants on the relative affinity of anti-protein antibodies.

    PubMed Central

    Petty, R E; Steward, M W

    1977-01-01

    Inbred mice of a strain (B1OD2 new) known to produce either no detectable antibody or antibody of low affinity to two protein antigens administered in saline, were immunized with human serum transferrin (HST) in one of nine adjuvants. Such immunization increases the level and relative affinity of anti-HST antibody. The adjuvants used varied in the degree to which they augmented these parameters of the antibody response--that is, FCA and FIA were capable of inducing high levels of high affinity antibody, whereas other adjuvants elicited lower levels of high affinity antibody. The possibility is discussed that substances with adjuvant activity may effect antibody production at two stages: (1) at the stage of antigen selection of cells for proliferation and (2) at the stage or proliferation of antibody producing cell precursors. PMID:844888

  4. Measuring an antibody affinity distribution molecule by molecule

    SciTech Connect

    Bradbury, Andrew M; Werner, James H; Temirov, Jamshid

    2008-01-01

    Single molecule fluorescence mIcroscopy was used to observe the binding and unbinding of hapten decorated quantum dots with individual surface immobilized antibodies. The fluorescence time history from an individual antibody site can be used to calculate its binding affinity. While quantum dot blinking occurs during these measurements, we describe a simple empirical method to correct the apparent/observed affinity to account for the blinking contribution. The combination of many single molecule affinity measurements from different antibodies yields not only the average affinity, it directly measures the full shape and character of the surface affinity distribution function.

  5. Isoelectric focusing-affinity immunoblot analysis of mouse monoclonal antibodies to the four human IgG subclasses

    NASA Technical Reports Server (NTRS)

    Hamilton, Robert G.; Roebber, Marianne; Rodkey, L. Scott; Reimer, Charles B.

    1987-01-01

    Isoelectric focusing (IEF)/affinity immunoblotting and enzyme-linked immunosorbent assay (ELISA) were used for parallel analysis of murine monoclonal antihuman IgG-subclass antisera (MoAbs). Coomassie Blue-stained protein bands in the pH region 5.5-8.0 were shown to be murine IgG by direct blotting onto nitrocellulose followed by detection with conjugated antimouse IgG. Use of IgG myeloma antigen-coated nitrocellulose in the IEF-affinity immunoblot allowed detection of the charge microheterogeneity of MoAbs. The MoAb group contained one to five major dense bands flanked by up to four minor fainter bands, all with pIs ranging from 6.1 to 7.8. Semiquantitative estimates of binding specificity in the IEF-affinity blot compared well with cross-reactivity data obtained from a quantitative ELISA.

  6. Strategies to guide the antibody affinity maturation process.

    PubMed

    Doria-Rose, Nicole A; Joyce, M Gordon

    2015-04-01

    Antibodies with protective activity are critical for vaccine efficacy. Affinity maturation increases antibody activity through multiple rounds of somatic hypermutation and selection in the germinal center. Identification of HIV-1 specific and influenza-specific antibody developmental pathways, as well as characterization of B cell and virus co-evolution in patients, has informed our understanding of antibody development. In order to counteract HIV-1 and influenza viral diversity, broadly neutralizing antibodies precisely target specific sites of vulnerability and require high levels of affinity maturation. We present immunization strategies that attempt to recapitulate these natural processes and guide the affinity maturation process. PMID:25913818

  7. Strategies to guide the antibody affinity maturation process

    PubMed Central

    Doria-Rose, Nicole A.; Joyce, M. Gordon

    2015-01-01

    Antibodies with protective activity are critical for vaccine efficacy. Affinity maturation increases antibody activity through multiple rounds of somatic hypermutation and selection in the germinal center. Identification of HIV-1 specific and influenza-specific antibody developmental pathways, as well as characterization of B cell and virus co-evolution in patients, has informed our understanding of antibody development. In order to counteract HIV-1 and Influenza viral diversity, broadly neutralizing antibodies precisely target specific sites of vulnerability and require high levels of affinity maturation. We present immunization strategies that attempt to recapitulate these natural processes and guide the affinity maturation process. PMID:25913818

  8. Antibody response and antibody affinity maturation in cats with experimental proliferative immune complex glomerulonephritis.

    PubMed

    Bishop, S A; Bailey, M; Lucke, V M; Stokes, C R

    1992-07-01

    An experimental model of proliferative glomerulonephritis (GN) in the cat, which closely resembles human proliferative forms of GN, has been used to study the role of antibody and antibody affinity in the development of immune complex-mediated renal disease. The serum IgG and IgM antibody response to antigen, average antibody affinity (avidity) and affinity heterogeneity of the IgG and IgM populations was assessed at varying times after commencement of chronic immunization with the antigen, human serum albumin (HSA), by enzyme immunoassay. Cats could be classified according to whether they were "low", "intermediate" or "high" IgG responders, by quantification of serum IgG values. Cats with the lowest serum IgG values failed to develop glomerulonephritis. However, there was no relationship between actual IgG values and the severity of the induced disease. In contrast to IgG, there was no division of cats into low or high IgM anti-HSA responders. Again, cats with the lowest IgM values failed to develop GN, but, more interestingly, a late, marked increase in serum IgM anti-HSA occurred only in cats that developed clinical signs of GN (anterior uveitis and nephrotic syndrome). Maturation of average, functional IgG affinity (avidity) for HSA following chronic immunization was clearly demonstrated for all cats. At the end of the experiment, all cats had IgG of high affinity for HSA and the average affinity heterogeneity of the IgG populations was less than in measurements taken earlier. Values of IgG affinity at the end of the experiment were very similar both in cats which developed GN and in those which remained clinically, biochemically and pathologically normal. In contrast to IgG antibody, some cats developed IgM of increased affinity, whilst others produced antibody of reduced affinity, following chronic immunization. There was no correlation between the development of disease and the production of either low or high affinity IgM antibody. Data indicated that an

  9. Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation

    PubMed Central

    Mouquet, Hugo; Scheid, Johannes F.; Zoller, Markus J.; Krogsgaard, Michelle; Ott, Rene G.; Shukair, Shetha; Artyomov, Maxim N.; Pietzsch, John; Connors, Mark; Pereyra, Florencia; Walker, Bruce D.; Ho, David D.; Wilson, Patrick C.; Seaman, Michael S.; Eisen, Herman N.; Chakraborty, Arup K.; Hope, Thomas J.; Ravetch, Jeffrey V.; Wardemann, Hedda; Nussenzweig, Michel C.

    2013-01-01

    During immune responses, antibodies are selected for their ability to bind to foreign antigens with high affinity, in part by their ability to undergo homotypic bivalent binding. However, this type of binding is not always possible. For example, the small number of gp140 glycoprotein spikes displayed on the surface of the human immunodeficiency virus (HIV disfavours homotypic bivalent antibody binding1–3. Here we show that during the human antibody response to HIV, somatic mutations that increase antibody affinity also increase breadth and neutralizing potency. Surprisingly, the responding naive and memory B cells produce polyreactive antibodies, which are capable of bivalent heteroligation between one high-affinity anti-HIV-gp140 combining site and a second low-affinity site on another molecular structure on HIV. Although cross-reactivity to self-antigens or polyreactivity is strongly selected against during B-cell development4, it is a common serologic feature of certain infections in humans, including HIV, Epstein-Barr virus and hepatitis C virus. Seventy-five per cent of the 134 monoclonal anti-HIV-gp140 antibodies cloned from six patients5 with high titres of neutralizing antibodies are polyreactive. Despite the low affinity of the polyreactive combining site, heteroligation demonstrably increases the apparent affinity of polyreactive antibodies to HIV. PMID:20882016

  10. A High-Affinity Native Human Antibody Disrupts Biofilm from Staphylococcus aureus Bacteria and Potentiates Antibiotic Efficacy in a Mouse Implant Infection Model.

    PubMed

    Estellés, Angeles; Woischnig, Anne-Kathrin; Liu, Keyi; Stephenson, Robert; Lomongsod, Evelene; Nguyen, Da; Zhang, Jianzhong; Heidecker, Manfred; Yang, Yifan; Simon, Reyna J; Tenorio, Edgar; Ellsworth, Stote; Leighton, Anton; Ryser, Stefan; Gremmelmaier, Nina Khanna; Kauvar, Lawrence M

    2016-04-01

    Many serious bacterial infections are difficult to treat due to biofilm formation, which provides physical protection and induces a sessile phenotype refractory to antibiotic treatment compared to the planktonic state. A key structural component of biofilm is extracellular DNA, which is held in place by secreted bacterial proteins from the DNABII family: integration host factor (IHF) and histone-like (HU) proteins. A native human monoclonal antibody, TRL1068, has been discovered using single B-lymphocyte screening technology. It has low-picomolar affinity against DNABII homologs from important Gram-positive and Gram-negative bacterial pathogens. The disruption of established biofilm was observedin vitroat an antibody concentration of 1.2 μg/ml over 12 h. The effect of TRL1068in vivowas evaluated in a murine tissue cage infection model in which a biofilm is formed by infection with methicillin-resistantStaphylococcus aureus(MRSA; ATCC 43300). Treatment of the established biofilm by combination therapy of TRL1068 (15 mg/kg of body weight, intraperitoneal [i.p.] administration) with daptomycin (50 mg/kg, i.p.) significantly reduced adherent bacterial count compared to that after daptomycin treatment alone, accompanied by significant reduction in planktonic bacterial numbers. The quantification of TRL1068 in sample matrices showed substantial penetration of TRL1068 from serum into the cage interior. TRL1068 is a clinical candidate for combination treatment with standard-of-care antibiotics to overcome the drug-refractory state associated with biofilm formation, with potential utility for a broad spectrum of difficult-to-treat bacterial infections. PMID:26833157

  11. Mechanism-Based Competitive Binding Model to Investigate the Effect of Neonatal Fc Receptor Binding Affinity on the Pharmacokinetic of Humanized Anti-VEGF Monoclonal IgG1 Antibody in Cynomolgus Monkey.

    PubMed

    Ng, Chee M; Fielder, Paul J; Jin, Jin; Deng, Rong

    2016-07-01

    The quantitative relationship between neonatal Fc receptor (FcRn) binding affinity at both acidic and physiological pH and the pharmacokinetics of protein engineered FcRn IgG1 variants has not yet been reported. Our objective was to develop a quantitatively mechanism-based competitive binding model to describe the effects of FcRn binding affinity at acidic and physiological pH on the pharmacokinetics of anti-VEGF IgG1 antibodies when both endogenous and exogenous antibodies are competing for the same FcRn. Pharmacokinetic (PK) and FcRn binding data from five Fc variants of humanized anti-VEGF IgG1 monoclonal antibodies with wide range of FcRn binding affinity were used for the analysis. Sixty-seven anti-VEGF IgG1 antibody-treated animals and 25 control animals with simulated endogenous IgG levels were used to develop the final model. A hybrid iterative two stages and Monte Carlo parametric expectation-maximization method was used to obtain the final model parameters estimates. The final model well described the observed PK data. Quantitative FcRn binding affinity-pharmacokinetics relationships was constructed to provide important biological insights in better understanding of the FcRn binding effect on pharmacokinetics of anti-VEGF IgG1 antibodies in cynomolgus monkeys and served as an important model-based drug discovery platform to guide the design and development of the future generation of anti-VEGF or other therapeutic IgG1 antibodies. PMID:27075465

  12. Antibody Affinity Maturation in Fishes—Our Current Understanding

    PubMed Central

    Magor, Brad G.

    2015-01-01

    It has long been believed that fish lack antibody affinity maturation, in part because they were thought to lack germinal centers. Recent research done on sharks and bony fishes indicates that these early vertebrates are able to affinity mature their antibodies. This article reviews the functionality of the fish homologue of the immunoglobulin (Ig) mutator enzyme activation-induced cytidine deaminase (AID). We also consider the protein and molecular evidence for Ig somatic hypermutation and antibody affinity maturation. In the context of recent evidence for a putative proto-germinal center in fishes we propose some possible reasons that observed affinity maturation in fishes often seems lacking and propose future work that might shed further light on this process in fishes. PMID:26264036

  13. Three Recombinant Engineered Antibodies against Recombinant Tags with High Affinity and Specificity

    PubMed Central

    Zhao, Hongyu; Shen, Ao; Xiang, Yang K.; Corey, David P.

    2016-01-01

    We describe three recombinant engineered antibodies against three recombinant epitope tags, constructed with divalent binding arms to recognize divalent epitopes and so achieve high affinity and specificity. In two versions, an epitope is inserted in tandem into a protein of interest, and a homodimeric antibody is constructed by fusing a high-affinity epitope-binding domain to a human or mouse Fc domain. In a third, a heterodimeric antibody is constructed by fusing two different epitope-binding domains which target two different binding sites in GFP, to polarized Fc fragments. These antibody/epitope pairs have affinities in the low picomolar range and are useful tools for many antibody-based applications. PMID:26943906

  14. Generation of acetyllysine antibodies and affinity enrichment of acetylated peptides

    PubMed Central

    Guan, Kun-Liang; Yu, Wei; Lin, Yan; Xiong, Yue; Zhao, Shimin

    2016-01-01

    Lysine acetylation has emerged as one of the major post-translational modifications, as indicated by its roles in chromatin remodeling, activation of transcription factors and, most recently, regulation of metabolic enzymes. Identification of acetylation sites in a protein is the first essential step for functional characterization of acetylation in physiological regulation. However, the study of the acetylome is hindered by the lack of suitable physical and biochemical properties of the acetyl group and existence of high-abundance acetylated histones in the cell, and needs a robust method to overcome these problems. Here we present protocols for (i) using chemically acetylated ovalbumin and synthetic acetylated peptide to generate a pan-acetyllysine antibody and a site-specific antibody to Lys288-acetylated argininosuccinate lyase, respectively; (ii) using subcellular fractionation to reduce highly abundant acetylated histones; and (iii) using acetyllysine antibody affinity purification and mass spectrometry to characterize acetylome of human liver tissue. The entire characterization procedure takes ~2–3 d to complete. PMID:21085124

  15. Production Of Human Antibodies

    NASA Technical Reports Server (NTRS)

    Sammons, David W.; Neil, Garry A.

    1993-01-01

    Process for making human monoclonal antibodies based on combination of techniques. Antibodies made active against specific antigen. Process involves in vivo immunization of human B lymphocyte cells in mice. B cells of interest enriched in vitro before fusion. Method potentially applicable to any antigen. Does not rely on use of Epstein-Barr virus at any step. Human lymphocytes taken from any source.

  16. Novel Human Three-Domain Antibody Fragments Against sTNFα as Well as tmTNFα with High Affinity Generated by the Combination of Ribosome Display and E. coli Expression System.

    PubMed

    Zhao, X-L; Tian, L-F; Zhang, S-J; Li, J-M; Feng, H; Wang, L-M; Wang, S; Wang, J; Wang, T; Chen, W-Q

    2016-04-01

    Human tumour necrosis factor α (hTNFα) has been proved to be a validated therapeutic target in a number of immune-mediated inflammatory diseases (IMIDs). Fully human monoclonal antibodies (mAbs) that can neutralize soluble hTNFα (sTNFα) as well as transmembrane hTNFα (tmTNFα) are more desirable hTNFα antagonists. Here, we report that novel anti-hTNFα human low-molecular-weight MAbs have been selected and identified using both sTNFα and tmTNFα as target antigens by the combination of ribosome display and E. coli expression system for the first time. As a newly born engineering small molecular antibody, three-domain antibody fragment (VH /κ) provides an alternative promising molecular principle to generate biological agents for TNFα-dependent IMIDs. In this study, a panel of novel human VH /κs (F09, F21, F49 and F409) with high affinity (10(-10) -10(-9) mol/l) to neutralize sTNFα as well as tmTNFα was generated by the combination of ribosome display and E. coli expression system. Among the four clones, F21 and F409 could reduce cytotoxicity on L929 cells induced by sTNFα as well as tmTNFα effectively, and both of them had great potential to inhibit hTNFα-mediated NF-κB activation. Soluble F21 and F409 were also able to inhibit the binding of hTNFα to TNFR1 and TNFR2. The new human antibodies described here have desirable capability to neutralize sTNFα as well as tmTNFα effectively with high affinity and reasonable stability; this may provide an alternative approach for patients who are not responding adequately to currently available anti-TNFα agents. PMID:26860639

  17. Off-rate screening for selection of high-affinity anti-drug antibodies.

    PubMed

    Ylera, Francisco; Harth, Stefan; Waldherr, Dirk; Frisch, Christian; Knappik, Achim

    2013-10-15

    The rapidly increasing number of therapeutic antibodies in clinical development and on the market requires corresponding detection reagents for monitoring the concentration of these drugs in patient samples and as positive controls for measurement of anti-drug antibodies. Phage display of large recombinant antibody libraries has been shown to enable the rapid development of fully human anti-idiotypic antibodies binding specifically to antibody drugs, since the in vitro panning approach allows for incorporation of suitable blockers to drive selection toward the paratope of the drug. A typical bottleneck in antibody generation projects is ranking of the many candidates obtained after panning on the basis of antibody binding strength. Ideally, such method will work without prior labeling of antigens and with crude bacterial lysates. We developed an off-rate screening method of crude Escherichia coli lysates containing monovalent Fab fragments obtained after phage display of the HuCAL PLATINUM® antibody library. We used the antibody drugs trastuzumab and cetuximab as antigen examples. Using the Octet® RED384 label-free sensor instrument we show that antibody off rates can be reliably determined in crude bacterial lysates with high throughput. We also demonstrate that the method can be applied to screening for high-affinity antibodies typically obtained after affinity maturation. PMID:23906643

  18. Affinity and Avidity in Antibody-Based Tumor Targeting

    PubMed Central

    Rudnick, Stephen I.

    2009-01-01

    Summation Many factors contribute to successful tumor targeting by antibodies. Besides properties of the tumor tissue and general antibody pharmacology, a relationship exists between an antibody and its antigen that can shape penetration, catabolism, specificity, and efficacy. The affinity and avidity of the binding interactions play critical roles in these dynamics. In this work, we review the principles that guide models predicting tumor penetration and cellular internalization while providing a critical overview of studies aimed at experimentally determining the specific role of affinity and avidity in these processes. One should gain the perspective that binding affinity can, in part, dictate the localization of antibodies in tumors, leading to high concentrations in the perivascular space or low concentrations diffused throughout the tumor. These patterns can be simply due to the diminution of available dose by binding antigen and are complicated by internalization and degradation stemming from slow rates of dissociation. As opposed to the trend of simply increasing affinity to increase efficacy, novel strategies that increase avidity and broaden specificity have made significant progress in tumor targeting. PMID:19409036

  19. Molecular modeling of the affinity chromatography of monoclonal antibodies.

    PubMed

    Paloni, Matteo; Cavallotti, Carlo

    2015-01-01

    Molecular modeling is a methodology that offers the possibility of studying complex systems such as protein-ligand complexes from an atomistic point of view, making available information that can be difficultly obtained from experimental studies. Here, a protocol for the construction of molecular models of the interaction between antibodies and ligands that can be used for an affinity chromatography process is presented. The outlined methodology focuses mostly on the description of a procedure that may be adopted to determine the structure and free energy of interaction between the antibody and the affinity ligand. A procedure to extend the proposed methodology to include the effect of the environment (buffer solution, spacer, support matrix) is also briefly outlined. PMID:25749965

  20. Binding Affinity, Specificity and Comparative Biodistribution of the Parental Murine Monoclonal Antibody MX35 (Anti-NaPi2b) and Its Humanized Version Rebmab200.

    PubMed

    Lindegren, Sture; Andrade, Luciana N S; Bäck, Tom; Machado, Camila Maria L; Horta, Bruno Brasil; Buchpiguel, Carlos; Moro, Ana Maria; Okamoto, Oswaldo Keith; Jacobsson, Lars; Cederkrantz, Elin; Washiyama, Kohshin; Aneheim, Emma; Palm, Stig; Jensen, Holger; Tuma, Maria Carolina B; Chammas, Roger; Hultborn, Ragnar; Albertsson, Per

    2015-01-01

    The aim of this preclinical study was to evaluate the characteristics of the monoclonal antibody Rebmab200, which is a humanized version of the ovarian-specific murine antibody MX35. This investigation contributes to the foundation for future clinical α-radioimmunotherapy of minimal residual ovarian cancer with 211At-Rebmab200. Here, the biodistribution of 211At-Rebmab200 was evaluated, as was the utility of 99mTc-Rebmab200 for bioimaging. Rebmab200 was directly compared with its murine counterpart MX35 in terms of its in-vitro capacity for binding the immobilized NaPi2B epitope and live cells; we also assessed its biodistribution in nude mice carrying subcutaneous OVCAR-3 tumors. Tumor antigen and cell binding were similar between Rebmab200 and murine MX35, as was biodistribution, including normal tissue uptake and in-vivo tumor binding. We also demonstrated that 99mTc-Rebmab200 can be used for single-photon emission computed tomography of subcutaneous ovarian carcinomas in tumor-bearing mice. Taken together, our data support the further development of Rebmab200 for radioimmunotherapy and diagnostics. PMID:25970341

  1. Binding Affinity, Specificity and Comparative Biodistribution of the Parental Murine Monoclonal Antibody MX35 (Anti-NaPi2b) and Its Humanized Version Rebmab200

    PubMed Central

    Lindegren, Sture; Andrade, Luciana N. S.; Bäck, Tom; Machado, Camila Maria L.; Horta, Bruno Brasil; Buchpiguel, Carlos; Moro, Ana Maria; Okamoto, Oswaldo Keith; Jacobsson, Lars; Cederkrantz, Elin; Washiyama, Kohshin; Aneheim, Emma; Palm, Stig; Jensen, Holger; Tuma, Maria Carolina B.; Chammas, Roger; Hultborn, Ragnar; Albertsson, Per

    2015-01-01

    The aim of this preclinical study was to evaluate the characteristics of the monoclonal antibody Rebmab200, which is a humanized version of the ovarian-specific murine antibody MX35. This investigation contributes to the foundation for future clinical α-radioimmunotherapy of minimal residual ovarian cancer with 211At-Rebmab200. Here, the biodistribution of 211At-Rebmab200 was evaluated, as was the utility of 99mTc-Rebmab200 for bioimaging. Rebmab200 was directly compared with its murine counterpart MX35 in terms of its in-vitro capacity for binding the immobilized NaPi2B epitope and live cells; we also assessed its biodistribution in nude mice carrying subcutaneous OVCAR-3 tumors. Tumor antigen and cell binding were similar between Rebmab200 and murine MX35, as was biodistribution, including normal tissue uptake and in-vivo tumor binding. We also demonstrated that 99mTc-Rebmab200 can be used for single-photon emission computed tomography of subcutaneous ovarian carcinomas in tumor-bearing mice. Taken together, our data support the further development of Rebmab200 for radioimmunotherapy and diagnostics. PMID:25970341

  2. Influence of affinity on antibody determination in microtiter ELISA systems

    SciTech Connect

    Peterman, J.H.; Voss, E.W. Jr.; Butler, J.E.

    1986-03-01

    Theoretically, all immunoassays are affinity (Ka) dependent when the product of the antibody (Ab) Ka and the free epitope concentration is less than 10. Thus, the degree of dependence on Ka depends on the concentration of available antigen in the system. The authors examined the binding of /sup 125/I-anti-fluorescein (a-FLU) monoclonal antibodies of different affinities to FLU-gelatin adsorbed on Immunlon 2 microtiter plates. Data obtained were in general agreement with our theoretical predictions; the percent of /sup 125/I-a-FLU which bound correlated with Ka, as did the shape of the titration curves. Measurement of 5 a-FLU monoclonals by the ELISA showed that the determination of Ab concentrations depends on the FLU-gelatin concentration, epitope density, and on the relationship between the Kas of test samples and the reference standard Ab preparation. Thus the ELISA is Ka dependent and should not be used routinely to estimate the absolute amount to Ab in unknown samples. However, the Ka dependency of the ELISA might provide a convenient assay for the estimation of the relative functional Ka (rfKa) of antibody preparations.

  3. A Yeast Glycoprotein Shows High-Affinity Binding to the Broadly Neutralizing Human Immunodeficiency Virus Antibody 2G12 and Inhibits gp120 Interactions with 2G12 and DC-SIGN▿

    PubMed Central

    Luallen, Robert J.; Fu, Hu; Agrawal-Gamse, Caroline; Mboudjeka, Innocent; Huang, Wei; Lee, Fang-Hua; Wang, Lai-Xi; Doms, Robert W.; Geng, Yu

    2009-01-01

    The human immunodeficiency virus type 1 (HIV-1) envelope (Env) protein contains numerous N-linked carbohydrates that shield conserved peptide epitopes and promote trans infection by dendritic cells via binding to cell surface lectins. The potent and broadly neutralizing monoclonal antibody 2G12 binds a cluster of high-mannose-type oligosaccharides on the gp120 subunit of Env, revealing a conserved and highly exposed epitope on the glycan shield. To find an effective antigen for eliciting 2G12-like antibodies, we searched for endogenous yeast proteins that could bind to 2G12 in a panel of Saccharomyces cerevisiae glycosylation knockouts and discovered one protein that bound weakly in a Δpmr1 strain deficient in hyperglycosylation. 2G12 binding to this protein, identified as Pst1, was enhanced by adding the Δmnn1 deletion to the Δpmr1 background, ensuring the exposure of terminal α1,2-linked mannose residues on the D1 and D3 arms of high-mannose glycans. However, optimum 2G12 antigenicity was found when Pst1, a heavily N-glycosylated protein, was expressed with homogenous Man8GlcNAc2 structures in Δoch1 Δmnn1 Δmnn4 yeast. Surface plasmon resonance analysis of this form of Pst1 showed high affinity for 2G12, which translated into Pst1 efficiently inhibiting gp120 interactions with 2G12 and DC-SIGN and blocking 2G12-mediated neutralization of HIV-1 pseudoviruses. The high affinity of the yeast glycoprotein Pst1 for 2G12 highlights its potential as a novel antigen to induce 2G12-like antibodies. PMID:19264785

  4. High throughput solution-based measurement of antibody-antigen affinity and epitope binning.

    PubMed

    Estep, Patricia; Reid, Felicia; Nauman, Claire; Liu, Yuqi; Sun, Tingwan; Sun, Joanne; Xu, Yingda

    2013-01-01

    Advances in human antibody discovery have allowed for the selection of hundreds of high affinity antibodies against many therapeutically relevant targets. This has necessitated the development of reproducible, high throughput analytical techniques to characterize the output from these selections. Among these characterizations, epitopic coverage and affinity are among the most critical properties for lead identification. Biolayer interferometry (BLI) is an attractive technique for epitope binning due to its speed and low antigen consumption. While surface-based methods such as BLI and surface plasmon resonance (SPR) are commonly used for affinity determinations, sensor chemistry and surface related artifacts can limit the accuracy of high affinity measurements. When comparing BLI and solution equilibrium based kinetic exclusion assays, significant differences in measured affinity (10-fold and above) were observed. KinExA direct association (k(a)) rate constant measurements suggest that this is mainly caused by inaccurate k(a) measurements associated with BLI related surface phenomena. Based on the kinetic exclusion assay principle used for KinExA, we developed a high throughput 96-well plate format assay, using a Meso Scale Discovery (MSD) instrument, to measure solution equilibrium affinity. This improved method combines the accuracy of solution-based methods with the throughput formerly only achievable with surface-based methods. PMID:23575269

  5. Development of humanized antibodies as cancer therapeutics.

    PubMed

    Qu, Zhengxing; Griffiths, Gary L; Wegener, William A; Chang, Chien-Hsing; Govindan, Serengulam V; Horak, Ivan D; Hansen, Hans J; Goldenberg, David M

    2005-05-01

    Recent success in the development of monoclonal antibody-based anti-cancer drugs has largely benefitted from the advancements made in recombinant technologies and cell culture production. These reagents, derived from the antibodies of mouse origin, while maintaining the exquisite specificity and affinity to the tumor antigens, have low immunogenicity and toxicity in human. High-level expressing cell clones are generated and used to produce large quantities of the recombinant antibodies in bioreactors in order to meet the clinical demand for therapeutic applications. In this report, the systems and general methodologies developed by us to construct and produce humanized antibodies from the parent mouse antibodies are described. Once the humanized antibodies are available, they can be applied in three principal forms for cancer therapy: (1) naked antibodies, (2) drug- or toxin conjugates, and (3) radioconjugates. Using the humanized anti-CD22 (epratuzumab) and anti-carcinoembryonic antigen (ant-CEA; labetuzumab) antibody prototypes, clinical applications of naked and radiolabeled humanized monoclonal antibodies are described. PMID:15848077

  6. High-Affinity Recombinant Antibody Fragments (Fabs) Can Be Applied in Peptide Enrichment Immuno-MRM Assays

    PubMed Central

    2015-01-01

    High-affinity antibodies binding to linear peptides in solution are a prerequisite for performing immuno-MRM, an emerging technology for protein quantitation with high precision and specificity using peptide immunoaffinity enrichment coupled to stable isotope dilution and targeted mass spectrometry. Recombinant antibodies can be generated from appropriate libraries in high-throughput in an automated laboratory and thus may offer advantages over conventional monoclonal antibodies. However, recombinant antibodies are typically obtained as fragments (Fab or scFv) expressed from E. coli, and it is not known whether these antibody formats are compatible with the established protocols and whether the affinities necessary for immunocapture of small linear peptides can be achieved with this technology. Hence, we performed a feasibility study to ask: (a) whether it is feasible to isolate high-affinity Fabs to small linear antigens and (b) whether it is feasible to incorporate antibody fragments into robust, quantitative immuno-MRM assays. We describe successful isolation of high-affinity Fab fragments against short (tryptic) peptides from a human combinatorial Fab library. We analytically characterize three immuno-MRM assays using recombinant Fabs, full-length IgGs constructed from these Fabs, or traditional monoclonals. We show that the antibody fragments show similar performance compared with traditional mouse- or rabbit-derived monoclonal antibodies. The data establish feasibility of isolating and incorporating high-affinity Fabs into peptide immuno-MRM assays. PMID:24568200

  7. Enhanced antigen-antibody binding affinity mediated by an anti-idiotypic antibody

    SciTech Connect

    Sawutz, D.G.; Koury, R.; Homcy, C.J.

    1987-08-25

    The authors previously described the production of four monoclonal antibodies to the ..beta..-adrenergic receptor antagonist alprenolol. One of these antibodies, 5B7 (IgG/sub 2a/, kappa), was used to raise anti-idiotypic antisera in rabbits. In contrast to the expected results, one of the anti-idiotypic antisera (R9) promotes (/sup 125/I)iodocyanopinodolol (ICYP) binding to antibody 5B7. In the presence of R9, the dissociation constant decreases 100-fold from 20 to 0.3 nM. This increase in binding affinity of antibody 5B7 for ICYP is not observed in the presence of preimmune, rabbit anti-mouse or anti-idiotypic antisera generated to a monoclonal antibody of a different specificity. Furthermore, R9 in the absence of 5B7 does not bind ICYP. The F(ab) fragments of 5B7 and T9 behaved in a similar manner, and the soluble complex responsible for the high-affinity interaction with ICYP can be identified by gel filtration chromatography. The elution position of the complex is consistent with a 5B7 F(ab)-R9 F(ab) dimer, indicating that polyvalency is not responsible for the enhanced ligand binding. Kinetic analysis of ICYP-5B7 binding revealed that the rate of ICYP dissociation from 5B7 in the presence of R9 is approximately 100 times slower than in the absence of R9, consistent with the 100-fold change in binding affinity of 5B7 for ICYP. The available data best fit a model in which an anti-idiotypic antibody binds at or near the binding site of the idiotype participating in the formation of a hybrid ligand binding site. This would allow increased contact of the ligand with the idiotype-anti-idiotype complex and result in an enhanced affinity of the ligand interaction.

  8. Humanized Antibodies for Antiviral Therapy

    NASA Astrophysics Data System (ADS)

    Co, Man Sung; Deschamps, Marguerite; Whitley, Richard J.; Queen, Cary

    1991-04-01

    Antibody therapy holds great promise for the treatment of cancer, autoimmune disorders, and viral infections. Murine monoclonal antibodies are relatively easy to produce but are severely restricted for therapeutic use by their immunogenicity in humans. Production of human monoclonal antibodies has been problematic. Humanized antibodies can be generated by introducing the six hypervariable regions from the heavy and light chains of a murine antibody into a human framework sequence and combining it with human constant regions. We humanized, with the aid of computer modeling, two murine monoclonal antibodies against herpes simplex virus gB and gD glycoproteins. The binding, virus neutralization, and cell protection results all indicate that both humanized antibodies have retained the binding activities and the biological properties of the murine monoclonal antibodies.

  9. Affinity measurement of single chain antibodies: a mathematical method facilitated by statistical software SigmaPlot.

    PubMed

    Safdari, Yaghoub; Farajnia, Safar; Asgharzadeh, Mohammad; Khalili, Masoumeh; Jaliani, Hossein Zarei

    2014-02-01

    Because they are monovalent for antigen, single chain antibodies display a different antibody-antigen interaction pattern from that of full-length antibodies. Using the law of mass action and considering the antibody-antigen binding pattern at OD-100% and OD-50% points, we introduced a formula for estimating single chain antibody affinity. Sigmoid curves of optical density values versus antibody concentrations were drawn and used to determine antibody concentrations at OD-50% points using statistical software SigmaPlot. The OD-50% points were then used to calculate the affinity via the mathematical formula. A software-adapted format of the equation is also presented for further facilitation of the calculation process. The accuracy of this method for affinity calculation was proved by surface plasma resonance. This method offers a precise evaluation of antibody affinity without requiring special material or apparatus, making it possible to be performed in any biological laboratory with minimum facilities. PMID:24555931

  10. Experimental Immunization Based on Plasmodium Antigens Isolated by Antibody Affinity

    PubMed Central

    Kamali, Ali N.; Marín-García, Patricia; Azcárate, Isabel G.; Puyet, Antonio; Diez, Amalia; Bautista, José M.

    2015-01-01

    Vaccines blocking malaria parasites in the blood-stage diminish mortality and morbidity caused by the disease. Here, we isolated antigens from total parasite proteins by antibody affinity chromatography to test an immunization against lethal malaria infection in a murine model. We used the sera of malaria self-resistant ICR mice to lethal Plasmodium yoelii yoelii 17XL for purification of their IgGs which were subsequently employed to isolate blood-stage parasite antigens that were inoculated to immunize BALB/c mice. The presence of specific antibodies in vaccinated mice serum was studied by immunoblot analysis at different days after vaccination and showed an intensive immune response to a wide range of antigens with molecular weight ranging between 22 and 250 kDa. The humoral response allowed delay of the infection after the inoculation to high lethal doses of P. yoelii yoelii 17XL resulting in a partial protection against malaria disease, although final survival was managed in a low proportion of challenged mice. This approach shows the potential to prevent malaria disease with a set of antigens isolated from blood-stage parasites. PMID:26539558

  11. Optimal fusion of antibody binding domains resulted in higher affinity and wider specificity.

    PubMed

    Dong, Jinhua; Kojima, Tomoki; Ohashi, Hiroyuki; Ueda, Hiroshi

    2015-11-01

    Antibody is a very important protein in biotechnological and biomedical fields because of its high affinity and specificity to various antigens. Due to the rise of human antibody therapeutics, its cost-effective purification is an urgent issue for bio-industry. In this study, we made novel fusion proteins PAxPG with a flexible (DDAKK)n linker between the two Ig binding domains derived from Staphylococcus protein A and Streptococcus protein G. The fusion proteins bound human and mouse IgGs and their fragments with up to 58-times higher affinity and wider specificity than the parental binding domains. Interestingly, the optimal linker for human Fab fragment was n = 4, which was close to the modeled distance between the termini of domains bound to heavy chain, implying increased avidity as a possible mechanism. For binding to Fc, the longest n=6 linker gave the highest affinity, implying longer interchain distance between the two binding sites. The novel fusion protein with optimized interdomain linker length will be a useful tool for the purification and detection of various IgGs including mouse IgG1 that binds only weakly to natural protein A. PMID:25910963

  12. Combining somatic mutations present in different in vivo affinity-matured antibodies isolated from immunized Lama glama yields ultra-potent antibody therapeutics.

    PubMed

    Klarenbeek, Alex; Blanchetot, Christophe; Schragel, Georg; Sadi, Ava S; Ongenae, Nico; Hemrika, Wieger; Wijdenes, John; Spinelli, Silvia; Desmyter, Aline; Cambillau, Christian; Hultberg, Anna; Kretz-Rommel, Anke; Dreier, Torsten; De Haard, Hans J W; Roovers, Rob C

    2016-04-01

    Highly potent human antibodies are required to therapeutically neutralize cytokines such as interleukin-6 (IL-6) that is involved in many inflammatory diseases and malignancies. Although a number of mutagenesis approaches exist to perform antibody affinity maturation, these may cause antibody instability and production issues. Thus, a robust and easy antibody affinity maturation strategy to increase antibody potency remains highly desirable. By immunizing llama, cloning the 'immune' antibody repertoire and using phage display, we selected a diverse set of IL-6 antagonistic Fabs. Heavy chain shuffling was performed on the Fab with lowest off-rate, resulting in a panel of variants with even lower off-rate. Structural analysis of the Fab:IL-6 complex suggests that the increased affinity was partly due to a serine to tyrosine switch in HCDR2. This translated into neutralizing capacity in an in vivo model of IL-6 induced SAA production. Finally, a novel Fab library was designed, encoding all variations found in the natural repertoire of VH genes identified after heavy chain shuffling. High stringency selections resulted in identification of a Fab with 250-fold increased potency when re-formatted into IgG1. Compared with a heavily engineered anti-IL-6 monoclonal antibody currently in clinical development, this IgG was at least equally potent, showing the engineering process to have had led to a highly potent anti-IL-6 antibody. PMID:26945588

  13. Affinity improvement of a therapeutic antibody to methamphetamine and amphetamine through structure-based antibody engineering

    PubMed Central

    Thakkar, Shraddha; Nanaware-Kharade, Nisha; Celikel, Reha; Peterson, Eric C.; Varughese, Kottayil I.

    2014-01-01

    Methamphetamine (METH) abuse is a worldwide threat, without any FDA approved medications. Anti-METH IgGs and single chain fragments (scFvs) have shown efficacy in preclinical studies. Here we report affinity enhancement of an anti-METH scFv for METH and its active metabolite amphetamine (AMP), through the introduction of point mutations, rationally designed to optimize the shape and hydrophobicity of the antibody binding pocket. The binding affinity was measured using saturation binding technique. The mutant scFv-S93T showed 3.1 fold enhancement in affinity for METH and 26 fold for AMP. The scFv-I37M and scFv-Y34M mutants showed enhancement of 94, and 8 fold for AMP, respectively. Structural analysis of scFv-S93T:METH revealed that the substitution of Ser residue by Thr caused the expulsion of a water molecule from the cavity, creating a more hydrophobic environment for the binding that dramatically increases the affinities for METH and AMP. PMID:24419156

  14. Designing and optimizing library selection strategies for generating high-affinity antibodies.

    PubMed

    Hoogenboom, H R

    1997-02-01

    Since its invention at the beginning of the 1990s, antibody phage display has revolutionized the generation of monoclonal antibodies and their engineering. It is now possible to create antibodies binding to any chosen target antigen without the use of laboratory animals or hybridomas, in a system that completely by-passes the immune system. Making antibodies from single-pot phage libraries, and improving their affinity up to the picomolar range if necessary, has never appeared easier. In this review, a variety of phage library-based strategies for the isolation of high-affinity antibodies are presented. PMID:9081300

  15. In vivo neutralization of α-cobratoxin with high-affinity llama single-domain antibodies (VHHs) and a VHH-Fc antibody.

    PubMed

    Richard, Gabrielle; Meyers, Ashley J; McLean, Michael D; Arbabi-Ghahroudi, Mehdi; MacKenzie, Roger; Hall, J Christopher

    2013-01-01

    Small recombinant antibody fragments (e.g. scFvs and VHHs), which are highly tissue permeable, are being investigated for antivenom production as conventional antivenoms consisting of IgG or F(ab')2 antibody fragments do not effectively neutralize venom toxins located in deep tissues. However, antivenoms composed entirely of small antibody fragments may have poor therapeutic efficacy due to their short serum half-lives. To increase serum persistence and maintain tissue penetration, we prepared low and high molecular mass antivenom antibodies. Four llama VHHs were isolated from an immune VHH-displayed phage library and were shown to have high affinity, in the low nM range, for α-cobratoxin (α-Cbtx), the most lethal component of Naja kaouthia venom. Subsequently, our highest affinity VHH (C2) was fused to a human Fc fragment to create a VHH2-Fc antibody that would offer prolonged serum persistence. After in planta (Nicotiana benthamiana) expression and purification, we show that our VHH2-Fc antibody retained high affinity binding to α-Cbtx. Mouse α-Cbtx challenge studies showed that our highest affinity VHHs (C2 and C20) and the VHH2-Fc antibody effectively neutralized lethality induced by α-Cbtx at an antibody:toxin molar ratio as low as ca. 0.75×:1. Further research towards the development of an antivenom therapeutic involving these anti-α-Cbtx VHHs and VHH2-Fc antibody molecules should involve testing them as a combination, to determine whether they maintain tissue penetration capability and low immunogenicity, and whether they exhibit improved serum persistence and therapeutic efficacy. PMID:23894495

  16. In Vivo Neutralization of α-Cobratoxin with High-Affinity Llama Single-Domain Antibodies (VHHs) and a VHH-Fc Antibody

    PubMed Central

    Richard, Gabrielle; Meyers, Ashley J.; McLean, Michael D.; Arbabi-Ghahroudi, Mehdi; MacKenzie, Roger; Hall, J. Christopher

    2013-01-01

    Small recombinant antibody fragments (e.g. scFvs and VHHs), which are highly tissue permeable, are being investigated for antivenom production as conventional antivenoms consisting of IgG or F(ab’)2 antibody fragments do not effectively neutralize venom toxins located in deep tissues. However, antivenoms composed entirely of small antibody fragments may have poor therapeutic efficacy due to their short serum half-lives. To increase serum persistence and maintain tissue penetration, we prepared low and high molecular mass antivenom antibodies. Four llama VHHs were isolated from an immune VHH-displayed phage library and were shown to have high affinity, in the low nM range, for α-cobratoxin (α–Cbtx), the most lethal component of Naja kaouthia venom. Subsequently, our highest affinity VHH (C2) was fused to a human Fc fragment to create a VHH2-Fc antibody that would offer prolonged serum persistence. After in planta (Nicotiana benthamiana) expression and purification, we show that our VHH2-Fc antibody retained high affinity binding to α–Cbtx. Mouse α–Cbtx challenge studies showed that our highest affinity VHHs (C2 and C20) and the VHH2-Fc antibody effectively neutralized lethality induced by α–Cbtx at an antibody:toxin molar ratio as low as ca. 0.75×:1. Further research towards the development of an antivenom therapeutic involving these anti-α-Cbtx VHHs and VHH2-Fc antibody molecules should involve testing them as a combination, to determine whether they maintain tissue penetration capability and low immunogenicity, and whether they exhibit improved serum persistence and therapeutic efficacy. PMID:23894495

  17. Antibody purification using affinity chromatography: a case study with a monoclonal antibody to ractopamine.

    PubMed

    Wang, Zhanhui; Liang, Qi; Wen, Kai; Zhang, Suxia; Shen, Jianzhong

    2014-11-15

    The application of antibodies to small molecules in the field of bioanalytics requires antibodies with stable biological activity and high purity; thus, there is a growing interest in developing rapid, inexpensive and effective procedures to obtain such antibodies. In this work, a ractopamine (RAC) derivative, N-4-aminobutyl ractopamine (ABR), was synthesized for preparing new specific affinity chromatography to purify a murine monoclonal antibody (mAb) against RAC from ascites. The performance of the new specific chromatography was compared with four other purification methods in terms of recovery, purity and biological activity of mAb. These four purification methods were prepared by using specific ligands (RAC and RAC-ovalbumin) and commercial ligands (protein G and protein A), respectively. The results showed that the highest recovery (88.1%) was achieved using the new chromatography; in comparison, the recoveries from the other methods were all below 70%. The purity of the mAbs from the new chromatography was 88.3%, while, the highest purity of 97.6% was from protein G chromatography and the lowest purity of 84.7% was from protein A chromatography. The biological activity of the purified mAb from all of the chromatography methods was comparable in enzyme-linked immunosorbent immunoassay (ELISA). PMID:25261834

  18. Affinity Inequality among Serum Antibodies That Originate in Lymphoid Germinal Centers

    PubMed Central

    Eisen, Ellen A.; Chakraborty, Arup K.

    2015-01-01

    Upon natural infection with pathogens or vaccination, antibodies are produced by a process called affinity maturation. As affinity maturation ensues, average affinity values between an antibody and ligand increase with time. Purified antibodies isolated from serum are invariably heterogeneous with respect to their affinity for the ligands they bind, whether macromolecular antigens or haptens (low molecular weight approximations of epitopes on antigens). However, less is known about how the extent of this heterogeneity evolves with time during affinity maturation. To shed light on this issue, we have taken advantage of previously published data from Eisen and Siskind (1964). Using the ratio of the strongest to the weakest binding subsets as a metric of heterogeneity (or affinity inequality), we analyzed antibodies isolated from individual serum samples. The ratios were initially as high as 50-fold, and decreased over a few weeks after a single injection of small antigen doses to around unity. This decrease in the effective heterogeneity of antibody affinities with time is consistent with Darwinian evolution in the strong selection limit. By contrast, neither the average affinity nor the heterogeneity evolves much with time for high doses of antigen, as competition between clones of the same affinity is minimal. PMID:26444899

  19. Enhancement of alpha -helicity in the HIV-1 inhibitory peptide DP178 leads to an increased affinity for human monoclonal antibody 2F5 but does not elicit neutralizing responses in vitro. Implications for vaccine design.

    PubMed

    Joyce, Joseph G; Hurni, William M; Bogusky, Michael J; Garsky, Victor M; Liang, Xiaoping; Citron, Michael P; Danzeisen, Renee C; Miller, Michael D; Shiver, John W; Keller, Paul M

    2002-11-29

    The synthetic peptide DP178, derived from the carboxyl-terminal heptad repeat region of human immunodeficiency virus type 1 GP41 protein is a potent inhibitor of viral-mediated fusion and contains the sequence ELDKWA, which constitutes the recognition epitope for the broadly neutralizing human monoclonal antibody 2F5. Efforts at eliciting a 2F5-like immune response by immunization with peptides or fusion proteins containing this sequence have not met with success, possibly because of incorrect structural presentation of the epitope. Although the structure of the carboxyl-terminal heptad repeat on the virion is not known, several recent reports have suggested a propensity for alpha-helical conformation. We have examined DP178 in the context of a model for optimized alpha-helices and show that the native sequence conforms poorly to the model. Solution conformation of DP178 was studied by circular dichroism and NMR spectroscopy and found to be predominantly random, consistent with previous reports. NMR mapping was used to show that the low percentage of alpha-helix present was localized to residues Glu(662) through Asn(671), a region encompassing the 2F5 epitope. Using NH(2)-terminal extensions derived from either GP41 or the yeast GCN4 leucine zipper dimerization domain, we designed peptide analogs in which the average helicity is significantly increased compared with DP178 and show that these peptides exhibit both a modest increase in affinity for 2F5 using a novel competitive solution-based binding assay and an increased ability to inhibit viral entry in a single-cycle infectivity model. Selected peptides were conjugated to carrier protein and used for guinea pig immunizations. High peptide-specific titers were achieved using these immunogens, but the resulting sera were incapable of viral neutralization. We discuss these findings in terms of structural and immunological considerations as to the utility of a 2F5-like response. PMID:12237296

  20. Tailored Immunogens Direct Affinity Maturation toward HIV Neutralizing Antibodies.

    PubMed

    Briney, Bryan; Sok, Devin; Jardine, Joseph G; Kulp, Daniel W; Skog, Patrick; Menis, Sergey; Jacak, Ronald; Kalyuzhniy, Oleksandr; de Val, Natalia; Sesterhenn, Fabian; Le, Khoa M; Ramos, Alejandra; Jones, Meaghan; Saye-Francisco, Karen L; Blane, Tanya R; Spencer, Skye; Georgeson, Erik; Hu, Xiaozhen; Ozorowski, Gabriel; Adachi, Yumiko; Kubitz, Michael; Sarkar, Anita; Wilson, Ian A; Ward, Andrew B; Nemazee, David; Burton, Dennis R; Schief, William R

    2016-09-01

    Induction of broadly neutralizing antibodies (bnAbs) is a primary goal of HIV vaccine development. VRC01-class bnAbs are important vaccine leads because their precursor B cells targeted by an engineered priming immunogen are relatively common among humans. This priming immunogen has demonstrated the ability to initiate a bnAb response in animal models, but recall and maturation toward bnAb development has not been shown. Here, we report the development of boosting immunogens designed to guide the genetic and functional maturation of previously primed VRC01-class precursors. Boosting a transgenic mouse model expressing germline VRC01 heavy chains produced broad neutralization of near-native isolates (N276A) and weak neutralization of fully native HIV. Functional and genetic characteristics indicate that the boosted mAbs are consistent with partially mature VRC01-class antibodies and place them on a maturation trajectory that leads toward mature VRC01-class bnAbs. The results show how reductionist sequential immunization can guide maturation of HIV bnAb responses. PMID:27610570

  1. New high affinity monoclonal antibodies recognize non-overlapping epitopes on mesothelin for monitoring and treating mesothelioma.

    PubMed

    Zhang, Yi-Fan; Phung, Yen; Gao, Wei; Kawa, Seiji; Hassan, Raffit; Pastan, Ira; Ho, Mitchell

    2015-01-01

    Mesothelin is an emerging cell surface target in mesothelioma and other solid tumors. Most antibody drug candidates recognize highly immunogenic Region I (296-390) on mesothelin. Here, we report a group of high-affinity non-Region I rabbit monoclonal antibodies. These antibodies do not compete for mesothelin binding with the immunotoxin SS1P that binds Region I of mesothelin. One pair of antibodies (YP218 and YP223) is suitable to detect soluble mesothelin in a sandwich ELISA with high sensitivity. The new assay can also be used to measure serum mesothelin concentration in mesothelioma patients, indicating its potential use for monitoring patients treated with current antibody therapies targeting Region I. The antibodies are highly specific and sensitive in immunostaining of mesothelioma. To explore their use in tumor therapy, we have generated the immunotoxins based on the Fv of these antibodies. One immunotoxin (YP218 Fv-PE38) exhibits potent anti-tumor cytotoxicity towards primary mesothelioma cell lines in vitro and an NCI-H226 xenograft tumor in mice. Furthermore, we have engineered a humanized YP218 Fv that retains full binding affinity for mesothelin-expressing cancer cells. In conclusion, with their unique binding properties, these antibodies may be promising candidates for monitoring and treating mesothelioma and other mesothelin-expressing cancers. PMID:25996440

  2. New High Affinity Monoclonal Antibodies Recognize Non-Overlapping Epitopes On Mesothelin For Monitoring And Treating Mesothelioma

    PubMed Central

    Zhang, Yi-Fan; Phung, Yen; Gao, Wei; Kawa, Seiji; Hassan, Raffit; Pastan, Ira; Ho, Mitchell

    2015-01-01

    Mesothelin is an emerging cell surface target in mesothelioma and other solid tumors. Most antibody drug candidates recognize highly immunogenic Region I (296–390) on mesothelin. Here, we report a group of high-affinity non-Region I rabbit monoclonal antibodies. These antibodies do not compete for mesothelin binding with the immunotoxin SS1P that binds Region I of mesothelin. One pair of antibodies (YP218 and YP223) is suitable to detect soluble mesothelin in a sandwich ELISA with high sensitivity. The new assay can also be used to measure serum mesothelin concentration in mesothelioma patients, indicating its potential use for monitoring patients treated with current antibody therapies targeting Region I. The antibodies are highly specific and sensitive in immunostaining of mesothelioma. To explore their use in tumor therapy, we have generated the immunotoxins based on the Fv of these antibodies. One immunotoxin (YP218 Fv-PE38) exhibits potent anti-tumor cytotoxicity towards primary mesothelioma cell lines in vitro and an NCI-H226 xenograft tumor in mice. Furthermore, we have engineered a humanized YP218 Fv that retains full binding affinity for mesothelin-expressing cancer cells. In conclusion, with their unique binding properties, these antibodies may be promising candidates for monitoring and treating mesothelioma and other mesothelin-expressing cancers. PMID:25996440

  3. Preparation and Affinity-Purification of Supervillin Isoform 4 (SV4) Specific Polyclonal Antibodies.

    PubMed

    Chen, Xueran; Li, Hao; Wang, Hongzhi; Yang, Haoran; Ye, Fang; Liang, Chaozhao; Fang, Zhiyou

    2016-04-01

    Human Supervillin isoform 4 (SV4), a bigger splicing isoform of Supervillin, contains extra coding exons 3, 4 and 5 (E345), compared to Supervillin isoform 1. Although previous studies have shown that SV4 associated with membrane and cytoskeleton, regulated cell migration and cell survival, its functions are still largely unknown. To broaden our understanding, SV4 specific antibody is important for further study in signaling pathway. The His-SV4 (E345) and GST-SV4 (E345) fusion proteins, which contained SV4 specific domain E345, were purified from bacteria. The His-SV4 (E345) proteins were injected in rabbits as immunogen to produce anti-SV4 serum, and SV4 antibodies were purified by GST-SV4 (E345) proteins cross-linked to affinity resins. SV4 antibodies exclusively recognized SV4 protein both in vitro and in vivo through multi-step testing by ELISA, western blot, immunoprecipitation, and immunofluorescence. Taken together, our data demonstrate a novel SV4-specific polyclonal antibody which will provide a useful tool for further characterization of SV4 function. PMID:27015936

  4. Humanization of a chicken anti-IL-12 monoclonal antibody.

    PubMed

    Tsurushita, Naoya; Park, Minha; Pakabunto, Kanokwan; Ong, Kelly; Avdalovic, Anamarija; Fu, Helen; Jia, Audrey; Vásquez, Max; Kumar, Shankar

    2004-12-01

    Chicken anti-IL-12 monoclonal antibodies were isolated by phage display using spleen cells from a chicken immunized with human and mouse IL-12 as a source for library construction. One of the chicken monoclonal antibodies, DD2, exhibited binding to both human and mouse IL-12 in the single-chain Fv form and also after conversion to chicken-human chimeric IgG1/lambda antibody. The chicken DD2 variable regions were humanized by transferring their CDRs and several framework amino acids onto human acceptor variable regions. In the Vlambda, six chicken framework amino acids were identified to be important for the conformation of the CDR structure by computer modeling and therefore were retained in the humanized form; likewise, five chicken amino acids in the VH framework regions were retained in the humanized VH. The affinities of humanized DD2 IgG1/lambda to human and mouse IL-12 measured by competitive binding were nearly identical to those of chicken-human chimeric DD2 IgG1/lambda. This work demonstrates that humanization of chicken monoclonal antibodies assisted by computer modeling is possible, leading to a new way to generate therapeutic humanized antibodies against antigens to which the rodent immune system may fail to efficiently raise high affinity antibodies. PMID:15627607

  5. Assessment of Solvated Interaction Energy Function for Ranking Antibody-Antigen Binding Affinities.

    PubMed

    Sulea, Traian; Vivcharuk, Victor; Corbeil, Christopher R; Deprez, Christophe; Purisima, Enrico O

    2016-07-25

    Affinity modulation of antibodies and antibody fragments of therapeutic value is often required in order to improve their clinical efficacies. Virtual affinity maturation has the potential to quickly focus on the critical hotspot residues without the combinatorial explosion problem of conventional display and library approaches. However, this requires a binding affinity scoring function that is capable of ranking single-point mutations of a starting antibody. We focus here on assessing the solvated interaction energy (SIE) function that was originally developed for and is widely applied to scoring of protein-ligand binding affinities. To this end, we assembled a structure-function data set called Single-Point Mutant Antibody Binding (SiPMAB) comprising several antibody-antigen systems suitable for this assessment, i.e., based on high-resolution crystal structures for the parent antibodies and coupled with high-quality binding affinity measurements for sets of single-point antibody mutants in each system. Using this data set, we tested the SIE function with several mutation protocols based on the popular methods SCWRL, Rosetta, and FoldX. We found that the SIE function coupled with a protocol limited to sampling only the mutated side chain can reasonably predict relative binding affinities with a Spearman rank-order correlation coefficient of about 0.6, outperforming more aggressive sampling protocols. Importantly, this performance is maintained for each of the seven system-specific component subsets as well as for other relevant subsets including non-alanine and charge-altering mutations. The transferability and enrichment in affinity-improving mutants can be further enhanced using consensus ranking over multiple methods, including the SIE, Talaris, and FOLDEF energy functions. The knowledge gained from this study can lead to successful prospective applications of virtual affinity maturation. PMID:27367467

  6. Defining the human gallbladder proteome by transcriptomics and affinity proteomics.

    PubMed

    Kampf, Caroline; Mardinoglu, Adil; Fagerberg, Linn; Hallström, Björn M; Danielsson, Angelika; Nielsen, Jens; Pontén, Fredrik; Uhlen, Mathias

    2014-11-01

    Global protein analysis of human gallbladder tissue is vital for identification of molecular regulators and effectors of its physiological activity. Here, we employed a genome-wide deep RNA sequencing analysis in 28 human tissues to identify the genes overrepresented in the gallbladder and complemented it with antibody-based immunohistochemistry in 48 human tissues. We characterized human gallbladder proteins and identified 140 gallbladder-specific proteins with an elevated expression in the gallbladder as compared to the other analyzed tissues. Five genes were categorized as enriched, with at least fivefold higher levels in gallbladder, 60 genes were categorized as group enriched with elevated transcript levels in gallbladder shared with at least one other tissue and 75 genes were categorized as enhanced with higher expression than the average expression in other tissues. We explored the localization of the genes within the gallbladder through cell-type specific antibody-based protein profiling and the subcellular localization of the genes through immunofluorescent-based profiling. Finally, we revealed the biological processes and metabolic functions carried out by these genes through the use of GO, KEGG Pathway, and HMR2.0 that is compilation of the human metabolic reactions. We demonstrated the results of the combined analysis of the transcriptomics and affinity proteomics. PMID:25175928

  7. Antibody affinity maturation through combining display of two-chain paired antibody and precision flow cytometric sorting.

    PubMed

    Sun, Shuang; Yang, Xiao; Wang, Haifeng; Zhao, Yun; Lin, Yan; Ye, Chen; Fang, Xiangdong; Hang, Haiying

    2016-07-01

    Recombination of antibody light and heavy chain libraries greatly increases the size of a two-chain paired antibody library, thus easing the construction of large antibody libraries. Here, light and heavy chain variable domains paired by a coiled coil were applied to a bacterial inner membrane display system. However, the probability of the correct pairing of light and heavy chains through random recombination after each round of flow cytometric sorting and cloning was very low in the presence of mostly unmatched light and heavy chain genes, resulting in inefficient enrichment; a target antibody clone in the ratio of 1:100,000 negative control spheroplasts was unable to be enriched by six rounds of sorting and cloning by a conventional sorting strategy (sorting the top 1 %). By just sorting the top 0.000025 % of spheroplasts, we succeeded in enriching the target antibody clone mixed with negative control spheroplasts in a ratio of 1:10(8) by just one round of sorting and cloning. Furthermore, using this gating strategy, we efficiently enriched for an antibody clone with an affinity slightly better than the parent antibody clone from mixed spheroplasts which were present in the ratio of 1 better affinity clone to 10 parent clones to 10(6) negative control clones after just two rounds of sorting and cloning, suggesting that this gating strategy is highly sensitive in distinguishing between clones with a small difference in affinity and also enriching for clones with a higher affinity. Taken together, the combination of the display of a two-chain paired antibody library and the use of stringent gating has significantly increased the efficiency of the antibody maturation system. PMID:27142297

  8. Analytical FcRn affinity chromatography for functional characterization of monoclonal antibodies

    PubMed Central

    Schlothauer, Tilman; Rueger, Petra; Stracke, Jan Olaf; Hertenberger, Hubert; Fingas, Felix; Kling, Lothar; Emrich, Thomas; Drabner, Georg; Seeber, Stefan; Auer, Johannes; Koch, Stefan; Papadimitriou, Apollon

    2013-01-01

    The neonatal Fc receptor (FcRn) is important for the metabolic fate of IgG antibodies in vivo. Analysis of the interaction between FcRn and IgG in vitro might provide insight into the structural and functional integrity of therapeutic IgG that may affect pharmacokinetics (PK) in vivo. We developed a standardized pH gradient FcRn affinity liquid chromatography method with conditions closely resembling the physiological mechanism of interaction between IgG and FcRn. This method allows the separation of molecular IgG isoforms, degradation products and engineered molecules based on their affinity to FcRn. Human FcRn was immobilized on the column and a linear pH gradient from pH 5.5 to 8.8 was applied. FcRn chromatography was used in comparison to surface plasmon resonance to characterize different monoclonal IgG preparations, e.g., oxidized or aggregated species. Wild-type and engineered IgGs were compared in vitro by FcRn chromatography and in vivo by PK studies in huFcRn transgenic mice. Analytical FcRn chromatography allows differentiation of IgG samples and variants by peak pattern and retention time profile. The method can distinguish: 1) IgGs with different Fabs, 2) oxidized from native IgG, 3) aggregates from monomer and 4) antibodies with mutations in the Fc part from wild-type IgGs. Changes in the FcRn chromatographic behavior of mutant IgGs relative to the wild-type IgG correlate to changes in the PK profile in the FcRn transgenic mice. These results demonstrate that FcRn affinity chromatography is a useful new method for the assessment of IgG integrity. PMID:23765230

  9. Co-evolution of affinity and stability of grafted amyloid-motif domain antibodies.

    PubMed

    Julian, Mark C; Lee, Christine C; Tiller, Kathryn E; Rabia, Lilia A; Day, Evan K; Schick, Arthur J; Tessier, Peter M

    2015-10-01

    An attractive approach for designing lead antibody candidates is to mimic natural protein interactions by grafting peptide recognition motifs into the complementarity-determining regions (CDRs). We are using this approach to generate single-domain (VH) antibodies specific for amyloid-forming proteins such as the Alzheimer's Aβ peptide. Here, we use random mutagenesis and yeast surface display to improve the binding affinity of a lead VH domain grafted with Aβ residues 33-42 in CDR3. Interestingly, co-selection for improved Aβ binding and VH display on the surface of yeast yields antibody domains with improved affinity and reduced stability. The highest affinity VH domains were strongly destabilized on the surface of yeast as well as unfolded when isolated as autonomous domains. In contrast, stable VH domains with improved affinity were reliably identified using yeast surface display by replacing the display antibody that recognizes a linear epitope tag at the terminus of both folded and unfolded VH domains with a conformational ligand (Protein A) that recognizes a discontinuous epitope on the framework of folded VH domains. Importantly, we find that selection for improved stability using Protein A without simultaneous co-selection for improved Aβ binding leads to strong enrichment for stabilizing mutations that reduce antigen binding. Our findings highlight the importance of simultaneously optimizing affinity and stability to improve the rapid isolation of well-folded and specific antibody fragments. PMID:26386257

  10. Isolation and optimization for affinity and biophysical characteristics of anti-CCL17 antibodies from the VH1-69 germline gene.

    PubMed

    Kehoe, John W; Whitaker, Brian; Bethea, Deidra; Lacy, Eilyn R; Boakye, Ken; Santulli-Marotto, Sandra; Ryan, Mary H; Feng, Yiqing; Wheeler, John C

    2014-06-01

    CCL17 is a homeostatic chemokine associated with several human inflammatory pathologies. This makes CCL17 a potential point of intervention in inflammatory diseases. Using a Fab-pIX phage display system we were able to select antibodies that specifically bind to CCL17 and neutralize CCL17-mediated signaling. Many of the selected antibodies belong to the VH1-69 germline gene family. The VH1-69 germline gene is represented at a high frequency in the human antibody repertoire and is seen in the early immune response to a variety of pathogens. The heavy chain CDR2 of this germline gene is notably hydrophobic and can insert into hydrophobic pockets of antigens, providing much of the binding energy for these antibodies. Affinity maturation of our primary binders by light chain mutagenesis produced antibodies with sub-nanomolar affinities, with affinity improvements up to 100-fold. These were screened for non-specific protein-protein interactions as a filter for solubility. All of our high affinity antibodies were found to have high levels of non-specific protein-protein interactions. We speculated that this was due to the hydrophobicity within the germline heavy chain CDR1 and CDR2. To ameliorate this problem, we generated a phage display library for one of the clones, where the surface-exposed residues within H-CDR1 and H-CDR2 were randomized. High stringency panning of this library against human CCL17 resulted in further affinity improvement, along with reduction in protein-protein interaction in some new variants. In addition, we improved the cross-reactivity to cynomolgus CCL17. We demonstrate that affinity maturation through targeted libraries in the VH1-69 germline gene can improve both affinity and biophysical characteristics of antibodies derived from this gene scaffold. PMID:24742503

  11. Quality control of murine monoclonal antibodies using isoelectric focusing affinity immunoblot analysis

    NASA Technical Reports Server (NTRS)

    Hamilton, Robert G.; Rodkey, L. Scott; Reimer, Charles B.

    1987-01-01

    The quality control of murine hybridoma secretory products has been performed using two approaches for isoelectric focusing affinity immunoblot analysis: (1) a method in which antigen-coated nitrocellulose is placed on top of an acrylamide gel containing isoelectrically focused ascites to bind the antigen specific monoclonal antibody; and (2) a method in which focused ascite proteins were passively blotted onto nitrocellulose and specific monoclonal antibodies were detected with enzyme-conjugated antigen. Analysis by both methods of batches of ascites containing antihuman IgG antibodies that were produced by six hybridomas permitted effective monitoring of immunoreactive antibodies for pI microheterogeneity.

  12. Affinity immunoblotting - High resolution isoelectric focusing analysis of antibody clonotype distribution

    NASA Technical Reports Server (NTRS)

    Knisley, Keith A.; Rodkey, L. Scott

    1986-01-01

    A sensitive and specific method is proposed for the analysis of specific antibody clonotype changes occurring during an immune response and for comparing multiple sera for antibody clonotype similarities. Polyclonal serum antibodies separated by isoelectric focusing (IEF) were analyzed by an affinity immunoblotting method using antigen-coated nitrocellulose membranes. Antibodies present on the surface of the acrylamide gels following IEF bind the antigen on the nitrocellulose when the coated nitrocellulose is laid over the gels. The technique has been used to analyze Ig clonotypes specific for five protein antigens and two carbohydrate antigens. Optimal antigen concentrations for coating the nitrocellulose membranes were found to range from 10-100 microgram/ml.

  13. Development of new versions of anti-human CD34 monoclonal antibodies with potentially reduced immunogenicity

    SciTech Connect

    Qian Weizhu; Wang Ling; Li Bohua; Wang Hao; Hou Sheng; Hong Xueyu; Zhang Dapeng; Guo Yajun

    2008-03-07

    Despite the widespread clinical use of CD34 antibodies for the purification of human hematopoietic stem/progenitor cells, all the current anti-human CD34 monoclonal antibodies (mAbs) are murine, which have the potential to elicit human antimouse antibody (HAMA) immune response. In the present study, we developed three new mouse anti-human CD34 mAbs which, respectively, belonged to class I, class II and class III CD34 epitope antibodies. In an attempt to reduce the immunogenicity of these three murine mAbs, their chimeric antibodies, which consisted of mouse antibody variable regions fused genetically to human antibody constant regions, were constructed and characterized. The anti-CD34 chimeric antibodies were shown to possess affinity and specificity similar to that of their respective parental murine antibodies. Due to the potentially better safety profiles, these chimeric antibodies might become alternatives to mouse anti-CD34 antibodies routinely used for clinical application.

  14. Topography of the high-affinity lysine binding site of plasminogen as defined with a specific antibody probe

    SciTech Connect

    Miles, L.A.; Plow, E.F.

    1986-11-04

    An antibody population that reacted with the high-affinity lysine binding site of human plasminogen was elicited by immunizing rabbits with an elastase degradation product containing kringles 1-3 (EDP I). This antibody was immunopurified by affinity chromatography on plasminogen-Sepharose and elution with 0.2 M 6-aminohexanoic acid. The eluted antibodies bound (/sup 125/I)EDP I, (/sup 125/I)Glu-plasminogen, and (/sup 125/I)Lys-plasminogen in radioimmunoassays, and binding of each ligand was at least 99% inhibited by 0.2 M 6-aminohexanoic acid. The concentrations for 50% inhibition of (/sup 125/I)EDP I binding by tranexamic acid, 6-aminohexanoic acid, and lysine were 2.6, 46, and l730 ..mu..M, respectively. Similar values were obtained with plasminogen and suggested that an unoccupied high-affinity lysine binding site was required for antibody recognition. The antiserum reacted exclusively with plasminogen derivatives containing the EDP I region and did not react with those lacking an EDP I region, or with tissue plasminogen activator or prothrombin, which also contains kringles. By immunoblotting analyses, a chymotryptic degradation product of M/sub r/ 20,000 was derived from EDP I that retained reactivity with the antibody. ..cap alpha../sub 2/-Antiplasmin inhibited the binding of radiolabeled EDP I, Glu-plasminogen, or Lys-plasminogen by the antiserum, suggesting that the recognized site is involved in the noncovalent interaction of the inhibitor with plasminogen. The binding of (/sup 125/I)EDP I to fibrin was also inhibited by the antiserum. The observations provide independent evidence for the role of the high-affinity lysine binding site in the functional interactions of plasminogen with its primary substrate and inhibitor.

  15. Affinity maturation of T-cell receptor-like antibodies for Wilms tumor 1 peptide greatly enhances therapeutic potential

    PubMed Central

    Zhao, Qi; Ahmed, Mahiuddin; Tassev, Dimiter V.; Hasan, Aisha; Kuo, Tzu-Yun; Guo, Hong-fen; O’Reilly, Richard J.; Cheung, Nai-Kong V.

    2016-01-01

    WT1126 (RMFPNAPYL) is a human leukocyte antigen-A2 (HLA-A2) restricted peptide derived from Wilms tumor protein (WT1), which is widely expressed in a broad spectrum of leukemias, lymphomas and solid tumors. A novel T-cell-receptor (TCR)-like single chain variable fragment (scFv) antibody specific for the T cell epitope consisting of the WT1/HLA-A2 complex was isolated from a human scFv phage library. This scFv was affinity-matured by mutagenesis combined with yeast display, and structurally analyzed using a homology model. This monovalent scFv showed a 100-fold affinity improvement (dissociation constant [KD]= 3nM) and exquisite specificity towards its targeted epitope or HLA-A2+/WT1+ tumor cells. Bivalent scFv-huIgG1-Fc fusion protein demonstrated an even higher avidity (KD = 2pM) binding to the T cell epitope and to tumor targets, and was capable of mediating antibody-dependent cell-mediated cytotoxicity or tumor lysis by chimeric antigen receptor (CAR)-expressing human T or NK-92-MI transfected cells. This antibody demonstrated specific and potent cytotoxicity in vivo towards WT1-positive leukemia xenograft that was HLA-A2 restricted. In summary, T cell epitopes can provide novel targets for antibody-based therapeutics. By combining phage and yeast displays and scFv-Fc fusion platforms, a strategy for developing high affinity TCR-like antibodies could be rapidly explored for potential clinical development. PMID:25987253

  16. The use of C1q, conglutinin and low affinity rabbit IgM antibody to human Fc in a ligand coctail radioassay for detecting and characterizing immune complexes in pathological sera.

    PubMed Central

    Harkiss, G D; Brown, D L

    1980-01-01

    A ligand radioassay for the detection of IC which utilizes C1q, bovine conglutinin and low affinity rabbit IgM anti-human Fc in a reagent coctail, is presented. IC are first isolated from serum by precipitation in polyethylene glycol, then analysed for their ability to react with the ligand coctail. Dual-label studies with 125I and 131I-tagged ligands, designed to determine whether the ligands bound independently to IC, indicate that the binding of each ligand to IC is not significantly affected by the presence of the other two ligands. The results of assaying pathological sera for IC by the ligand coctail radioassay correlate well with the results of three other assays. The assay system is also flexible enough to allow other low affinity IgM reagents to be used which could potentially cover the whole range of immunoglobulin classes occurring in pathological IC. PMID:7379330

  17. A strategy of designing the ligand of antibody affinity chromatography based on molecular dynamics simulation.

    PubMed

    Dai, Lu; Li, Weikang; Sun, Fei; Li, Baizhi; Li, Hongrui; Zhang, Hongxing; Zheng, Qingchuan; Liang, Chongyang

    2016-09-01

    Designing affinity ligands has always been the development focus of affinity chromatography. Previous antibody affinity ligand designs were mostly based on the crystal structure of protein A (UniProt code number: P38507), and the antibody-binding domains were modified according to the properties of amino acid residues. Currently, more effective bioinformatic prediction and experimental validation has been used to improve the design of antibody affinity ligands. In the present study, the complex crystal structure (the domain D of protein A and the Fab segment of IgM, PDB code: 1DEE) was used as the model. The vital site that inhibits the binding between domain D and IgM was estimated by means of molecular dynamics (MD) simulation, then MM-GBSA calculations were used to design a mutant of domain D (K46E) for improving affinity on the above vital site. The binding analysis using Biacore showed the association and dissociation parameters of K46E mutant that were optimized with IgM. The affinity increase of K46E mutant preferred for IgM, the affinity order is K46E tetramer (KD=6.02×10(-9)M)>K46E mutant (KD=6.66×10(-8)M)>domain D (KD=2.17×10(-7)M). Similar results were obtained when the optimized ligands were immobilized to the chromatography medium. A complete designing strategy was validated in this study, which will provide a novel insight into designing new ligands of antibody affinity chromatography media. PMID:27524303

  18. Localization of the binding site for the human high-affinity Fc receptor on IgG.

    PubMed

    Duncan, A R; Woof, J M; Partridge, L J; Burton, D R; Winter, G

    1988-04-01

    A major pathway in the clearance of pathogens involves the coating of the pathogen with specific antibodies, and the binding of the antibody Fc region to cell receptors. This can trigger engulfment of the pathogen by phagocytes or lysis by killer cells. By oligonucleotide site-directed mutagenesis we have engineered a single amino acid change in a mouse IgG2b antibody (Glu 235----Leu) which now enables the antibody to bind to the FcRI (high affinity) receptor on human monocytes with a 100-fold improvement in affinity. This indicates that Leu 235 is a major determinant in the binding of antibody to FcRI and that the receptor may interact directly with the region linking the CH2 domain to the hinge. Tailoring the affinity of antibodies for cell receptors could help dissect their role in clearing pathogen. PMID:2965792

  19. A humanized monoclonal antibody targeting Staphylococcus aureus.

    PubMed

    Patti, Joseph M

    2004-12-01

    This current presentation describes the in vitro and in vivo characterization of Aurexis (tefibazumab), a humanized monoclonal antibody that exhibits a high affinity and specificity and for the Staphylococcus aureus MSCRAMM (Microbial Surface Components Recognizing Adhesive Matrix Molecules) protein ClfA. Aurexis inhibited ClfA binding to human fibrinogen, and enhanced the opsonophagocytic uptake of ClfA-coated beads. Preclinical in vivo testing revealed that a single administration of Aurexis significantly protected against an IV challenge with a methicillin resistant S. aureus (MRSA) strain in murine septicemia and rabbit infective endocarditis (IE) models. Safety and pharmacokinetic data from a 19-patient phase I study support continued evaluation of Aurexis in phase II studies. PMID:15576200

  20. Systematic fractionation of serum antibodies using multiple antigen homologous peptides as affinity ligands.

    PubMed

    Tribbick, G; Triantafyllou, B; Lauricella, R; Rodda, S J; Mason, T J; Geysen, H M

    1991-06-01

    The fractionation of polyclonal antibodies on multiple peptide ligands is described. The method is an application of a procedure for the synthesis of large numbers of peptides on individual polyethylene pins (Geysen et al., 1987). In this application, each pin-bound peptide is used as an affinity support. Antibodies bound to the peptides are then eluted, using buffers of either high or low pH. Each eluted antibody is then tested for specific binding to peptides or proteins, using ELISA procedures. A rabbit antiserum raised to gonococcal pilin was fractionated on a complete set of octapeptides homologous with the sequence of the pilin protein. Antibodies eluted from some of the peptides bound to pilin in solution. In a second example three hyperimmune sera raised to three different potyviruses were fractionated on their respective homologous peptide sequences. Testing the eluted antibodies on the three virus coat proteins revealed peptides which bound cross-reacting antibodies. Thus the method can be used to confirm direct peptide binding evidence for sequential epitopes. These peptides can then be used in affinity chromatography to increase the specificity of polyclonal sera. This can be achieved either by elution of the specific antibody from the peptide or by removal of cross-reacting antibodies from the whole serum by absorption on peptide. PMID:1904463

  1. Maximum-Entropy Models of Sequenced Immune Repertoires Predict Antigen-Antibody Affinity.

    PubMed

    Asti, Lorenzo; Uguzzoni, Guido; Marcatili, Paolo; Pagnani, Andrea

    2016-04-01

    The immune system has developed a number of distinct complex mechanisms to shape and control the antibody repertoire. One of these mechanisms, the affinity maturation process, works in an evolutionary-like fashion: after binding to a foreign molecule, the antibody-producing B-cells exhibit a high-frequency mutation rate in the genome region that codes for the antibody active site. Eventually, cells that produce antibodies with higher affinity for their cognate antigen are selected and clonally expanded. Here, we propose a new statistical approach based on maximum entropy modeling in which a scoring function related to the binding affinity of antibodies against a specific antigen is inferred from a sample of sequences of the immune repertoire of an individual. We use our inference strategy to infer a statistical model on a data set obtained by sequencing a fairly large portion of the immune repertoire of an HIV-1 infected patient. The Pearson correlation coefficient between our scoring function and the IC50 neutralization titer measured on 30 different antibodies of known sequence is as high as 0.77 (p-value 10-6), outperforming other sequence- and structure-based models. PMID:27074145

  2. Maximum-Entropy Models of Sequenced Immune Repertoires Predict Antigen-Antibody Affinity

    PubMed Central

    Marcatili, Paolo; Pagnani, Andrea

    2016-01-01

    The immune system has developed a number of distinct complex mechanisms to shape and control the antibody repertoire. One of these mechanisms, the affinity maturation process, works in an evolutionary-like fashion: after binding to a foreign molecule, the antibody-producing B-cells exhibit a high-frequency mutation rate in the genome region that codes for the antibody active site. Eventually, cells that produce antibodies with higher affinity for their cognate antigen are selected and clonally expanded. Here, we propose a new statistical approach based on maximum entropy modeling in which a scoring function related to the binding affinity of antibodies against a specific antigen is inferred from a sample of sequences of the immune repertoire of an individual. We use our inference strategy to infer a statistical model on a data set obtained by sequencing a fairly large portion of the immune repertoire of an HIV-1 infected patient. The Pearson correlation coefficient between our scoring function and the IC50 neutralization titer measured on 30 different antibodies of known sequence is as high as 0.77 (p-value 10−6), outperforming other sequence- and structure-based models. PMID:27074145

  3. Rational development of high-affinity T-cell receptor-like antibodies.

    PubMed

    Stewart-Jones, Guillaume; Wadle, Andreas; Hombach, Anja; Shenderov, Eugene; Held, Gerhard; Fischer, Eliane; Kleber, Sascha; Nuber, Natko; Stenner-Liewen, Frank; Bauer, Stefan; McMichael, Andrew; Knuth, Alexander; Abken, Hinrich; Hombach, Andreas A; Cerundolo, Vincenzo; Jones, E Yvonne; Renner, Christoph

    2009-04-01

    T-cell interaction with a target cell is a key event in the adaptive immune response and primarily driven by T-cell receptor (TCR) recognition of peptide-MHC (pMHC) complexes. TCR avidity for a given pMHC is determined by number of MHC molecules, availability of coreceptors, and TCR affinity for MHC or peptide, respectively, with peptide recognition being the most important factor to confer target specificity. Here we present high-resolution crystal structures of 2 Fab antibodies in complex with the immunodominant NY-ESO-1(157-165) peptide analogue (SLLMWITQV) presented by HLA-A*0201 and compare them with a TCR recognizing the same pMHC. Binding to the central methionine-tryptophan peptide motif and orientation of binding were almost identical for Fabs and TCR. As the MW "peg" dominates the contacts between Fab and peptide, we estimated the contributions of individual amino acids between the Fab and peptide to provide the rational basis for a peptide-focused second-generation, high-affinity antibody library. The final Fab candidate achieved better peptide binding by 2 light-chain mutations, giving a 20-fold affinity improvement to 2-4 nM, exceeding the affinity of the TCR by 1,000-fold. The high-affinity Fab when grafted as recombinant TCR on T cells conferred specific killing of HLA-A*0201/NY-ESO-1(157-165) target cells. In summary, we prove that affinity maturation of antibodies mimicking a TCR is possible and provide a strategy for engineering high-affinity antibodies that can be used in targeting specific pMHC complexes for diagnostic and therapeutic purposes. PMID:19307587

  4. Rational development of high-affinity T-cell receptor-like antibodies

    PubMed Central

    Stewart-Jones, Guillaume; Wadle, Andreas; Hombach, Anja; Shenderov, Eugene; Held, Gerhard; Fischer, Eliane; Kleber, Sascha; Nuber, Natko; Stenner-Liewen, Frank; Bauer, Stefan; McMichael, Andrew; Knuth, Alexander; Abken, Hinrich; Hombach, Andreas A.; Cerundolo, Vincenzo; Jones, E. Yvonne; Renner, Christoph

    2009-01-01

    T-cell interaction with a target cell is a key event in the adaptive immune response and primarily driven by T-cell receptor (TCR) recognition of peptide-MHC (pMHC) complexes. TCR avidity for a given pMHC is determined by number of MHC molecules, availability of coreceptors, and TCR affinity for MHC or peptide, respectively, with peptide recognition being the most important factor to confer target specificity. Here we present high-resolution crystal structures of 2 Fab antibodies in complex with the immunodominant NY-ESO-1157–165 peptide analogue (SLLMWITQV) presented by HLA-A*0201 and compare them with a TCR recognizing the same pMHC. Binding to the central methionine-tryptophan peptide motif and orientation of binding were almost identical for Fabs and TCR. As the MW “peg” dominates the contacts between Fab and peptide, we estimated the contributions of individual amino acids between the Fab and peptide to provide the rational basis for a peptide-focused second-generation, high-affinity antibody library. The final Fab candidate achieved better peptide binding by 2 light-chain mutations, giving a 20-fold affinity improvement to 2–4 nM, exceeding the affinity of the TCR by 1,000-fold. The high-affinity Fab when grafted as recombinant TCR on T cells conferred specific killing of HLA-A*0201/NY-ESO-1157–165 target cells. In summary, we prove that affinity maturation of antibodies mimicking a TCR is possible and provide a strategy for engineering high-affinity antibodies that can be used in targeting specific pMHC complexes for diagnostic and therapeutic purposes. PMID:19307587

  5. Identification and subcellular localization of a 21-kilodalton molecule using affinity-purified antibodies against. cap alpha. -transforming growth factor

    SciTech Connect

    Hazarika, P.; Pardue, R.L.; Earls, R.; Dedman, J.R.

    1987-04-07

    Monospecific antibodies were generated against each of six different peptide sequences derived from rat and human ..cap alpha..-transforming growth factor (..cap alpha..-TGF). The affinity-purified antibody to the 17 amino acid carboxyl-terminal portion of the molecule proved most useful in detecting ..cap alpha..-TGF. When used in a peptide-based radioimmunoassay, it was possible to measure nanogram quantities of native ..cap alpha..-TGF in conditioned cell culture media. When used to analyze cell lysate, these antibodies specifically recognized a 21-kilodalton protein species. Indirect immunofluorescence localization procedures revealed a high concentration of ..cap alpha..-TCF in a perinuclear ring with a diffuse cytoplasmic distribution. These results suggest that a precursor form of ..cap alpha..-TGF has a cellular role beyond that of an autocrine growth factor.

  6. Production of a High-affinity Monoclonal Antibody Reactive with Folate Receptors Alpha and Beta.

    PubMed

    Nagai, Taku; Furusho, Yuko; Li, Hua; Hasui, Kazuhisa; Matsukita, Sumika; Sueyoshi, Kazunobu; Yanagi, Masakazu; Hatae, Masaki; Takao, Sonshin; Matsuyama, Takami

    2015-06-01

    Folate receptors α (FRα) and β (FRβ) are two isoforms of the cell surface glycoprotein that binds folate. The expression of FRα is rare in normal cells and elevated in cancer cells. Thus, FRα-based tumor-targeted therapy has been a focus area of laboratory research and clinical trials. Recently, it was shown that a significant fraction of tumor-associated macrophages expresses FRβ and that these cells can enhance tumor growth. Although FRα and FRβ share 70% identity in their deduced amino acid sequence, a monoclonal antibody (MAb) reactive with both receptors has not been developed. A MAb that can target both FRα-expressing cancer cells and FRβ-expressing tumor-associated macrophages may provide a more potent therapeutic tool for cancer than individual anti-FRα or anti-FRβ MAbs. In this study, we developed a MAb that recognizes both FRα and FRβ (anti-FRαβ). The anti-FRαβ specifically stained trophoblasts and macrophages from human placenta, synovial macrophages from rheumatoid arthritis patient, liver macrophages from cynomolgus monkey and common marmoset, and cancer cells and tumor-associated macrophages from ovary and lung carcinomas. Surface plasmon resonance showed that the anti-FRαβ bound to soluble forms of the FRα and FRβ proteins with high affinity (KD=6.26×10(-9) M and 4.33×10(-9) M, respectively). In vitro functional analysis of the anti-FRαβ showed that this MAb mediates complement-dependent cytotoxicity, antibody-dependent cellular cytotoxicity, and antibody-dependent cellular phagocytosis of FRα-expressing and FRβ-expressing cell lines. The anti-FRαβ MAb is a promising therapeutic candidate for cancers in which macrophages promote tumor progression. PMID:26090596

  7. CD4+ T Cells Promote Antibody Production but Not Sustained Affinity Maturation during Borrelia burgdorferi Infection

    PubMed Central

    Elsner, Rebecca A.; Hastey, Christine J.

    2014-01-01

    CD4 T cells are crucial for enhancing B cell-mediated immunity, supporting the induction of high-affinity, class-switched antibody responses, long-lived plasma cells, and memory B cells. Previous studies showed that the immune response to Borrelia burgdorferi appears to lack robust T-dependent B cell responses, as neither long-lived plasma cells nor memory B cells form for months after infection, and nonswitched IgM antibodies are produced continuously during this chronic disease. These data prompted us to evaluate the induction and functionality of B. burgdorferi infection-induced CD4 TFH cells. We report that CD4 T cells were effectively primed and TFH cells induced after B. burgdorferi infection. These CD4 T cells contributed to the control of B. burgdorferi burden and supported the induction of B. burgdorferi-specific IgG responses. However, while affinity maturation of antibodies against a prototypic T-dependent B. burgdorferi protein, Arthritis-related protein (Arp), were initiated, these increases were reversed later, coinciding with the previously observed involution of germinal centers. The cessation of affinity maturation was not due to the appearance of inhibitory or exhausted CD4 T cells or a strong induction of regulatory T cells. In vitro T-B cocultures demonstrated that T cells isolated from B. burgdorferi-infected but not B. burgdorferi-immunized mice supported the rapid differentiation of B cells into antibody-secreting plasma cells rather than continued proliferation, mirroring the induction of rapid short-lived instead of long-lived T-dependent antibody responses in vivo. The data further suggest that B. burgdorferi infection drives the humoral response away from protective, high-affinity, and long-lived antibody responses and toward the rapid induction of strongly induced, short-lived antibodies of limited efficacy. PMID:25312948

  8. Manipulating the selection forces during affinity maturation to generate cross-reactive HIV antibodies

    PubMed Central

    Wang, Shenshen; Mata-Fink, Jordi; Kriegsman, Barry; Hanson, Melissa; Irvine, Darrell J.; Eisen, Herman N.; Burton, Dennis R.; Wittrup, K. Dane; Kardar, Mehran; Chakraborty, Arup K.

    2015-01-01

    Summary Generation of potent antibodies by a mutation-selection process called affinity maturation is a key component of effective immune responses. Antibodies that protect against highly mutable pathogens must neutralize diverse strains. Developing effective immunization strategies to drive their evolution requires understanding how affinity maturation happens in an enviroment where variants of the same antigen are present. We present an in silico model of affinity maturation driven by antigen variants which reveals that induction of cross-reactive antibodies often occurs with low probability because conflicting selection forces, imposed by different antigen variants, can frustrate affinity maturation. We describe how variables such as temporal pattern of antigen administration influence the outcome of this frustrated evolutionary process. Our calculations predict, and experiments in mice with variant gp120 constructs of the HIV envelope protein confirm, that sequential immunization with antigen variants is preferred over a cocktail for induction of cross-reactive antibodies focused on the shared CD4 binding site epitope. PMID:25662010

  9. A humanized antibody that binds to the interleukin 2 receptor.

    PubMed Central

    Queen, C; Schneider, W P; Selick, H E; Payne, P W; Landolfi, N F; Duncan, J F; Avdalovic, N M; Levitt, M; Junghans, R P; Waldmann, T A

    1989-01-01

    The anti-Tac monoclonal antibody is known to bind to the p55 chain of the human interleukin 2 receptor and to inhibit proliferation of T cells by blocking interleukin 2 binding. However, use of anti-Tac as an immunosuppressant drug would be impaired by the human immune response against this murine antibody. We have therefore constructed a "humanized" antibody by combining the complementarity-determining regions (CDRs) of the anti-Tac antibody with human framework and constant regions. The human framework regions were chosen to maximize homology with the anti-Tac antibody sequence. In addition, a computer model of murine anti-Tac was used to identify several amino acids which, while outside the CDRs, are likely to interact with the CDRs or antigen. These mouse amino acids were also retained in the humanized antibody. The humanized anti-Tac antibody has an affinity for p55 of 3 x 10(9) M-1, about 1/3 that of murine anti-Tac. Images PMID:2513570

  10. Monoclonal antibodies to human glycophorin a and cell lines for the production thereof

    SciTech Connect

    Vanderlaan, M.; Bigbee, W.L.; Jensen, R.H.; Fong, S.S.N.; Langlois, R.G.

    1988-06-21

    Cloned mouse hybridoma cell lines have been established which continuously produce antibodies that are highly specific to and exhibit high affinity for glycophorin A/sup N/ and differentiate between the M and N forms of human glycophorin A.

  11. Monoclonal antibodies to human glycophorin A and cell lines for the production thereof

    DOEpatents

    Vanderlaan, Martin; Bigbee, William L.; Jensen, Ronald H.; Fong, Stella S. N.; Langlois, Richard G.

    1988-01-01

    Cloned mouse hybridoma cell lines have been established which continuously produce antibodies that are highly specific to and exhibit high affinity for glycophorin A.sup.N and differentiate between the M and N forms of human glycophorin A.

  12. Deconvolution of antibody affinities and concentrations by non-linear regression analysis of competitive ELISA data.

    SciTech Connect

    Stevens, F. J.; Bobrovnik, S. A.; Biosciences Division; Palladin Inst. Biochemistry

    2007-12-01

    Physiological responses of the adaptive immune system are polyclonal in nature whether induced by a naturally occurring infection, by vaccination to prevent infection or, in the case of animals, by challenge with antigen to generate reagents of research or commercial significance. The composition of the polyclonal responses is distinct to each individual or animal and changes over time. Differences exist in the affinities of the constituents and their relative proportion of the responsive population. In addition, some of the antibodies bind to different sites on the antigen, whereas other pairs of antibodies are sterically restricted from concurrent interaction with the antigen. Even if generation of a monoclonal antibody is the ultimate goal of a project, the quality of the resulting reagent is ultimately related to the characteristics of the initial immune response. It is probably impossible to quantitatively parse the composition of a polyclonal response to antigen. However, molecular regression allows further parameterization of a polyclonal antiserum in the context of certain simplifying assumptions. The antiserum is described as consisting of two competing populations of high- and low-affinity and unknown relative proportions. This simple model allows the quantitative determination of representative affinities and proportions. These parameters may be of use in evaluating responses to vaccines, to evaluating continuity of antibody production whether in vaccine recipients or animals used for the production of antisera, or in optimizing selection of donors for the production of monoclonal antibodies.

  13. Structure-based affinity maturation of a chimeric anti-ricin antibody C4C13.

    PubMed

    Luo, Longlong; Luo, Qun; Guo, Leiming; Lv, Ming; Lin, Zhou; Geng, Jing; Li, Xinying; Li, Yan; Shen, Beifen; Qiao, Chunxia; Feng, Jiannan

    2014-01-01

    Ricin is a highly lethal toxin. Anti-ricin chimeric monoclonal antibody (mAb) C4C13 was prepared in our lab; however, its binding affinity was much weaker than that of the parent antibody 4C13. In this study, based on the computer-guided homology modeling and conformational optimization methods, the 3-D structure of C4C13 variable regions Fv was constructed and optimized. Using molecular docking and dynamics simulation methods, the 3-D complex structure of ricin and C4C13 Fv was obtained. Considering the orientation property, surface electrostatic distribution, residues chemical and physical character and intermolecular hydrogen bond, the binding mode and key residues were predicted. According to C4C13 Fv fragment and ricin complementary binding surface, electrostatic attraction periphery and van der Waals interaction interface, three mutants (i.e., M1 (N(H102)F, W(H103)Y); M2 (W(H103)Y) and M3 (R(L90)G)) were designed, in which M1 and M2 were predicted to possess higher antigen-binding activity than C4C13, while M3 was weaker. The relative affinity assays by ELISA showed that M1 and M2 mutations had higher affinity (9.6 and 18.3 nmol/L) than C4C13 (130 nmol/L) and M3 had weaker affinity (234.5 nmol/L) than C4C13. The results showed that the modeling complex structure of the antigen (ricin) and antibody (C4C13) is reasonable. Our work offered affinity maturated antibodies by site mutations, which were beneficial for valuable anti-ricin antibody design and preparation in future. PMID:23527922

  14. Alga-produced malaria transmission-blocking vaccine candidate Pfs25 formulated with a human use-compatible potent adjuvant induces high-affinity antibodies that block Plasmodium falciparum infection of mosquitoes.

    PubMed

    Patra, Kailash P; Li, Fengwu; Carter, Darrick; Gregory, James A; Baga, Sheyenne; Reed, Steven G; Mayfield, Stephen P; Vinetz, Joseph M

    2015-05-01

    A vaccine to prevent the transmission of malaria parasites from infected humans to mosquitoes is an important component for the elimination of malaria in the 21st century, yet it remains neglected as a priority of malaria vaccine development. The lead candidate for Plasmodium falciparum transmission-blocking vaccine development, Pfs25, is a sexual stage surface protein that has been produced for vaccine testing in a variety of heterologous expression systems. Any realistic malaria vaccine will need to optimize proper folding balanced against cost of production, yield, and potentially reactogenic contaminants. Here Chlamydomonas reinhardtii microalga-produced recombinant Pfs25 protein was formulated with four different human-compatible adjuvants (alum, Toll-like receptor 4 [TLR-4] agonist glucopyranosal lipid A [GLA] plus alum, squalene-oil-in-water emulsion, and GLA plus squalene-oil-in-water emulsion) and compared for their ability to induce malaria transmission-blocking antibodies. Alga-produced recombinant Pfs25 plus GLA plus squalene-oil-in-water adjuvant induced the highest titer and avidity in IgG antibodies, measured using alga-produced recombinant Pfs25 as the enzyme-linked immunosorbent assay (ELISA) antigen. These antibodies specifically reacted with the surface of P. falciparum macrogametes and zygotes and effectively prevented parasites from developing within the mosquito vector in standard membrane feeding assays. Alga-produced Pfs25 in combination with a human-compatible adjuvant composed of a TLR-4 agonist in a squalene-oil-in-water emulsion is an attractive new vaccine candidate that merits head-to-head comparison with other modalities of vaccine production and administration. PMID:25690099

  15. Alga-Produced Malaria Transmission-Blocking Vaccine Candidate Pfs25 Formulated with a Human Use-Compatible Potent Adjuvant Induces High-Affinity Antibodies That Block Plasmodium falciparum Infection of Mosquitoes

    PubMed Central

    Patra, Kailash P.; Li, Fengwu; Carter, Darrick; Gregory, James A.; Baga, Sheyenne; Reed, Steven G.; Mayfield, Stephen P.

    2015-01-01

    A vaccine to prevent the transmission of malaria parasites from infected humans to mosquitoes is an important component for the elimination of malaria in the 21st century, yet it remains neglected as a priority of malaria vaccine development. The lead candidate for Plasmodium falciparum transmission-blocking vaccine development, Pfs25, is a sexual stage surface protein that has been produced for vaccine testing in a variety of heterologous expression systems. Any realistic malaria vaccine will need to optimize proper folding balanced against cost of production, yield, and potentially reactogenic contaminants. Here Chlamydomonas reinhardtii microalga-produced recombinant Pfs25 protein was formulated with four different human-compatible adjuvants (alum, Toll-like receptor 4 [TLR-4] agonist glucopyranosal lipid A [GLA] plus alum, squalene–oil-in-water emulsion, and GLA plus squalene–oil-in-water emulsion) and compared for their ability to induce malaria transmission-blocking antibodies. Alga-produced recombinant Pfs25 plus GLA plus squalene–oil-in-water adjuvant induced the highest titer and avidity in IgG antibodies, measured using alga-produced recombinant Pfs25 as the enzyme-linked immunosorbent assay (ELISA) antigen. These antibodies specifically reacted with the surface of P. falciparum macrogametes and zygotes and effectively prevented parasites from developing within the mosquito vector in standard membrane feeding assays. Alga-produced Pfs25 in combination with a human-compatible adjuvant composed of a TLR-4 agonist in a squalene–oil-in-water emulsion is an attractive new vaccine candidate that merits head-to-head comparison with other modalities of vaccine production and administration. PMID:25690099

  16. Affinity Chromatography of Native and Recombinant Proteins from Receptors for Insulin and IGF-I to Recombinant Single Chain Antibodies.

    PubMed

    Fujita-Yamaguchi, Yoko

    2015-01-01

    Affinity chromatography is an efficient method to isolate proteins by taking advantage of their affinities for specific molecules such as substrates, inhibitors, antigens, ligands, antibodies, and other interacting molecules, including subunits. Nowadays, we take the effectiveness and excellence of this technology for granted. This essay will mainly cover the use of affinity chromatography based on my experience. PMID:26579073

  17. Affinity Chromatography of Native and Recombinant Proteins from Receptors for Insulin and IGF-I to Recombinant Single Chain Antibodies

    PubMed Central

    Fujita-Yamaguchi, Yoko

    2015-01-01

    Affinity chromatography is an efficient method to isolate proteins by taking advantage of their affinities for specific molecules such as substrates, inhibitors, antigens, ligands, antibodies, and other interacting molecules, including subunits. Nowadays, we take the effectiveness and excellence of this technology for granted. This essay will mainly cover the use of affinity chromatography based on my experience. PMID:26579073

  18. Human antibodies to vascular endothelium

    PubMed Central

    Lindqvist, K. J.; Osterland, C. K.

    1971-01-01

    Certain human sera were found to produce specific staining of vascular endothelium by the immunofluorescent technique. The antibody nature of this reaction was confirmed by using fluorescein-conjugated antisera specific for human immunoglobulins and the component of complement, and by physicochemical characterization of isolated immunoglobulins giving this reaction. This activity was present in sera from patients with a wide variety of diseases (17·8%). The highest incidence was found in chronic pulmonary tuberculosis (26·6%). An incidence of 14% was found in presumably normal blood donors. The stimulus for the production of these antibodies is unknown. The antigen is fairly widely distributed among different species, since tissues from a variety of animals could be used as substrate in the reaction. Experiments have shown that neither the classic Forssman antigen nor ABO blood groups are involved. The possible role of these antibodies in human disease remains to be elucidated. The finding of anti-endothelial activity in two recipients of renal transplants may be significant. PMID:4945736

  19. On the Meaning of Affinity Limits in B-Cell Epitope Prediction for Antipeptide Antibody-Mediated Immunity

    PubMed Central

    Caoili, Salvador Eugenio C.

    2012-01-01

    B-cell epitope prediction aims to aid the design of peptide-based immunogens (e.g., vaccines) for eliciting antipeptide antibodies that protect against disease, but such antibodies fail to confer protection and even promote disease if they bind with low affinity. Hence, the Immune Epitope Database (IEDB) was searched to obtain published thermodynamic and kinetic data on binding interactions of antipeptide antibodies. The data suggest that the affinity of the antibodies for their immunizing peptides appears to be limited in a manner consistent with previously proposed kinetic constraints on affinity maturation in vivo and that cross-reaction of the antibodies with proteins tends to occur with lower affinity than the corresponding reaction of the antibodies with their immunizing peptides. These observations better inform B-cell epitope prediction to avoid overestimating the affinity for both active and passive immunization; whereas active immunization is subject to limitations of affinity maturation in vivo and of the capacity to accumulate endogenous antibodies, passive immunization may transcend such limitations, possibly with the aid of artificial affinity-selection processes and of protein engineering. Additionally, protein disorder warrants further investigation as a possible supplementary criterion for B-cell epitope prediction, where such disorder obviates thermodynamically unfavorable protein structural adjustments in cross-reactions between antipeptide antibodies and proteins. PMID:23209458

  20. Analysis of monoclonal antibody heterogeneity by post-capillary affinity detection for capillary electrophoresis

    SciTech Connect

    Kelly, J.A.; Lee, Cheng S.

    1997-12-31

    Production of monoclonal antibodies seldom results in a single uniform product. Although the use of hybridomas yields antibodies with a homogeneous amino acid sequence, differences exist in degree of glycosylation. Oligosaccharide variation is known to vary with culture conditions as well as proliferation state. Glycosylation is significant biologically, particularly agalactosyl glycoforms of IgG which can be pathogenic. This suggests a need for rapid analysis of antibody heterogeneity, including glycosylation, during production to optimize quality and yield. Post-capillary affinity detection for capillary electrophoresis is a novel bioanalytical tool which analyzes protein microheterogeneity without interference from complex sample matrices. Mouse monoclonal antibody samples from cell culture media are selectively analyzed by post-capillary affinity detection. Separation of IgG variants is accomplished by capillary zone electrophoresis (CZE) prior to on-line affinity detection with fragment B of Protein A lagged with fluorescein (BF). IgG isoforms are observed while serum proteins and cell culture media are discriminated against.

  1. A Novel Antibody Humanization Method Based on Epitopes Scanning and Molecular Dynamics Simulation

    PubMed Central

    Zhao, Bin-Bin; Gong, Lu-Lu; Jin, Wen-Jing; Liu, Jing-Jun; Wang, Jing-Fei; Wang, Tian-Tian; Yuan, Xiao-Hui; He, You-Wen

    2013-01-01

    1-17-2 is a rat anti-human DEC-205 monoclonal antibody that induces internalization and delivers antigen to dendritic cells (DCs). The potentially clinical application of this antibody is limited by its murine origin. Traditional humanization method such as complementarity determining regions (CDRs) graft often leads to a decreased or even lost affinity. Here we have developed a novel antibody humanization method based on computer modeling and bioinformatics analysis. First, we used homology modeling technology to build the precise model of Fab. A novel epitope scanning algorithm was designed to identify antigenic residues in the framework regions (FRs) that need to be mutated to human counterpart in the humanization process. Then virtual mutation and molecular dynamics (MD) simulation were used to assess the conformational impact imposed by all the mutations. By comparing the root-mean-square deviations (RMSDs) of CDRs, we found five key residues whose mutations would destroy the original conformation of CDRs. These residues need to be back-mutated to rescue the antibody binding affinity. Finally we constructed the antibodies in vitro and compared their binding affinity by flow cytometry and surface plasmon resonance (SPR) assay. The binding affinity of the refined humanized antibody was similar to that of the original rat antibody. Our results have established a novel method based on epitopes scanning and MD simulation for antibody humanization. PMID:24278299

  2. SNAP-Tag Technology: A Useful Tool To Determine Affinity Constants and Other Functional Parameters of Novel Antibody Fragments.

    PubMed

    Niesen, Judith; Sack, Markus; Seidel, Melanie; Fendel, Rolf; Barth, Stefan; Fischer, Rainer; Stein, Christoph

    2016-08-17

    Antibody derivatives, such as the single chain fragment variable (scFv), can be developed as diagnostic and therapeutic tools in cancer research, especially in the form of fusion proteins. Such derivatives are easier to produce and modify than monoclonal antibodies (mAbs) and achieve better tissue/tumor penetration. The genetic modification of scFvs is also much more straightforward than the challenging chemical modification of mAbs. Therefore, we constructed two scFvs derived from the approved monoclonal antibodies cetuximab (scFv2112) and panitumumab (scFv1711), both of which are specific for the epidermal growth factor receptor (EGFR), a well-characterized solid tumor antigen. Both scFvs were genetically fused to the SNAP-tag, an engineered version of the human DNA repair enzyme O(6)-alkylguanine DNA alkyltransferase that allows the covalent coupling of benzylguanine (BG)-modified substrates such as fluorescent dyes. The SNAP-tag achieves controllable and irreversible protein modification and is an important tool for experimental studies in vitro and in vivo. The affinity constant of a scFv is a key functional parameter, especially in the context of a fusion protein. Therefore, we developed a method to define the affinity constants of scFv-SNAP fusion proteins by surface plasmon resonance (SPR) spectroscopy. We could confirm that both scFvs retained their functionality after fusion to the SNAP-tag in a variety of procedures and assays, including ELISA, flow cytometry, and confocal microscopy. The experimental procedures described herein, and the new protocol for affinity determination by SPR spectroscopy, are suitable for the preclinical evaluation of diverse antibody formats and derivatives. PMID:27391930

  3. High affinity anti-Internalin B VHH antibody fragments isolated from naturally and artificially immunized repertoires.

    PubMed

    Gene, Robert W; Kumaran, Jyothi; Aroche, Cristina; van Faassen, Henk; Hall, J Christopher; MacKenzie, C Roger; Arbabi-Ghahroudi, Mehdi

    2015-01-01

    The need for rapid and easy technologies for the detection of food-borne and environmental pathogens is essential for safeguarding the health of populations. Furthermore, distribution of tainted food and water can have consequences which can affect whole economies. Antibodies and antibody fragments have been historically used in detection platforms due to their antigen specificity and robust physicochemical properties. In this study, we report the isolation and characterization of antibody fragments from the heavy chain antibody repertoire (VHH) of Camelidae which bind with specificity and high affinity to the Listeria monocytogenes invasin, Internalin B (InlB). To the best of our knowledge, this is the first report of anti-InlB VHHs from camelids. These anti-InlB VHHs were not cross-reactive to the structurally related Listeria invasin Internalin A (InlA) and are potential reagents to be used in the development of detection and medical technologies. PMID:25450000

  4. AB-Bind: Antibody binding mutational database for computational affinity predictions.

    PubMed

    Sirin, Sarah; Apgar, James R; Bennett, Eric M; Keating, Amy E

    2016-02-01

    Antibodies (Abs) are a crucial component of the immune system and are often used as diagnostic and therapeutic agents. The need for high-affinity and high-specificity antibodies in research and medicine is driving the development of computational tools for accelerating antibody design and discovery. We report a diverse set of antibody binding data with accompanying structures that can be used to evaluate methods for modeling antibody interactions. Our Antibody-Bind (AB-Bind) database includes 1101 mutants with experimentally determined changes in binding free energies (ΔΔG) across 32 complexes. Using the AB-Bind data set, we evaluated the performance of protein scoring potentials in their ability to predict changes in binding free energies upon mutagenesis. Numerical correlations between computed and observed ΔΔG values were low (r = 0.16-0.45), but the potentials exhibited predictive power for classifying variants as improved vs weakened binders. Performance was evaluated using the area under the curve (AUC) for receiver operator characteristic (ROC) curves; the highest AUC values for 527 mutants with |ΔΔG| > 1.0 kcal/mol were 0.81, 0.87, and 0.88 using STATIUM, FoldX, and Discovery Studio scoring potentials, respectively. Some methods could also enrich for variants with improved binding affinity; FoldX and Discovery Studio were able to correctly rank 42% and 30%, respectively, of the 80 most improved binders (those with ΔΔG < -1.0 kcal/mol) in the top 5% of the database. This modest predictive performance has value but demonstrates the continuing need to develop and improve protein energy functions for affinity prediction. PMID:26473627

  5. Isolation of a high affinity scFv from a monoclonal antibody recognising the oncofoetal antigen 5T4.

    PubMed

    Shaw, D M; Embleton, M J; Westwater, C; Ryan, M G; Myers, K A; Kingsman, S M; Carroll, M W; Stern, P L

    2000-12-15

    The oncofoetal antigen 5T4 is a 72 kDa glycoprotein expressed at the cell surface. It is defined by a monoclonal antibody, mAb5T4, that recognises a conformational extracellular epitope in the molecule. Overexpression of 5T4 antigen by tumours of several types has been linked with disease progression and poor clinical outcome. Its restricted expression in non-malignant tissue makes 5T4 antigen a suitable target for the development of antibody directed therapies. The use of murine monoclonal antibodies for targeted therapy allows the tumour specific delivery of therapeutic agents. However, their use has several drawbacks, including a strong human anti-mouse immune (HAMA) response and limited tumour penetration due to the size of the molecules. The use of antibody fragments leads to improved targeting, pharmacokinetics and a reduced HAMA. A single chain antibody (scFv) comprising the variable regions of the mAb5T4 heavy and light chains has been expressed in Escherichia coli. The addition of a eukaryotic leader sequence allowed production in mammalian cells. The two 5T4 single chain antibodies, scFv5T4WT19 and LscFv5T4, described the same pattern of 5T4 antigen expression as mAb5T4 in normal human placenta and by FACS. Construction of a 5T4 extracellular domain-IgGFc fusion protein and its expression in COS-7 cells allowed the relative affinities of the antibodies to be compared by ELISA and measured in real time using a biosensor based assay. MAb5T4 has a high affinity, K(D)=1.8x10(-11) M, as did both single chain antibodies, scFv5T4WT19 K(D)=2.3x10(-9) M and LscFv5T4 K(D)=7.9x10(-10) M. The small size of this 5T4 specific scFv should allow construction of fusion proteins with a range of biological response modifiers to be prepared whilst retaining the improved pharmacokinetic properties of scFvs. PMID:11113573

  6. Purification of anti-bromelain antibodies by affinity precipitation using pNIPAm-linked bromelain.

    PubMed

    Mahmood, Rubab

    2016-01-01

    Affinity precipitation has emerged as a very useful technique for the purification of proteins. Here it has been employed for the purification of anti-bromelain antibodies from rabbit serum. A system has been developed for reversibly binding and thermoprecipitating antibodies. Anti-bromelain antibodies were raised in rabbit by immunizing it with bromelain. Poly-N-isopropylacrylamide (pNIPAm)-bromelain conjugate was prepared and incubated with rabbit serum. After that the temperature was raised for thermal precipitation of the polymer. Antibodies were then eluted from the complex by incubating it with a small volume of buffer, pH 3.0. This method is very effective in concentrating the antibodies. Purity and specificity of the antibodies were checked by gel electrophoresis and enzyme-linked immunosorbent assay (ELISA), respectively. The study of the effect of pH and temperature on the binding of the antibodies to the conjugate showed that the optimum binding occurred at pH 8.0 and 25°C.The polymer enzyme conjugate was further used for another cycle. PMID:25569629

  7. Purification of infective bluetongue virus particles by immuno-affinity chromatography using anti-core antibody.

    PubMed

    Chand, Karam; Biswas, Sanchay K; Mondal, Bimalendu

    2016-03-01

    An immuno-affinity chromatography technique for purification of infective bluetongue virus (BTV) has been descried using anti-core antibodies. BTV anti-core antibodies (prepared in guinea pig) were mixed with cell culture-grown BTV-1 and then the mixture was added to the cyanogens bromide-activated protein-A Sepharose column. Protein A binds to the antibody which in turn binds to the antigen (i.e. BTV). After thorough washing, antigen-antibody and antibody-protein A couplings were dissociated with 4M MgCl2, pH6.5. Antibody molecules were removed by dialysis and virus particles were concentrated by spin column ultrafiltration. Dialyzed and concentrated material was tested positive for BTV antigen by a sandwich ELISA and the infectivity of the chromatography-purified virus was demonstrated in cell culture. This method was applied for selective capture of BTV from a mixture of other viruses. As group-specific antibodies (against BTV core) were used to capture the virus, it is expected that virus of all BTV serotypes could be purified by this method. This method will be helpful for selective capture and enrichment of BTV from concurrently infected blood or tissue samples for efficient isolation in cell culture. Further, this method can be used for small scale purification of BTV avoiding ultracentrifugation. PMID:26925450

  8. Production of Monoclonal Antibody against Human Nestin.

    PubMed

    Hadavi, Reza; Zarnani, Amir Hassan; Ahmadvand, Negah; Mahmoudi, Ahmad Reza; Bayat, Ali Ahmad; Mahmoudian, Jafar; Sadeghi, Mohammad-Reza; Soltanghoraee, Haleh; Akhondi, Mohammad Mehdi; Tarahomi, Majid; Jeddi-Tehrani, Mahmood; Rabbani, Hodjattallah

    2010-04-01

    We have employed a peptide-based antibody generation protocol for producing antibody against human nestin. Using a 12-mer synthetic peptide from repetitive region of human nestin protein devoid of any N- or O-glyco-sylation sequences, we generated a mouse monoclonal antibody capable of recognizing human, mouse, bovine, and rat nestin. A wide variety of nestin proteins ranging from 140-250 kDa was detected by this antibody. This antibody is highly specific and functional in applications such as ELISA, flow cytometry, immunocytochemistry, and Western blot assays. PMID:23407796

  9. Production of Monoclonal Antibody against Human Nestin

    PubMed Central

    Hadavi, Reza; Zarnani, Amir Hassan; Ahmadvand, Negah; Mahmoudi, Ahmad Reza; Bayat, Ali Ahmad; Mahmoudian, Jafar; Sadeghi, Mohammad-Reza; Soltanghoraee, Haleh; Akhondi, Mohammad Mehdi; Tarahomi, Majid; Jeddi-Tehrani, Mahmood; Rabbani, Hodjattallah

    2010-01-01

    We have employed a peptide-based antibody generation protocol for producing antibody against human nestin. Using a 12-mer synthetic peptide from repetitive region of human nestin protein devoid of any N- or O-glyco-sylation sequences, we generated a mouse monoclonal antibody capable of recognizing human, mouse, bovine, and rat nestin. A wide variety of nestin proteins ranging from 140–250 kDa was detected by this antibody. This antibody is highly specific and functional in applications such as ELISA, flow cytometry, immunocytochemistry, and Western blot assays. PMID:23407796

  10. High-throughput kinetic screening of hybridomas to identify high-affinity antibodies using bio-layer interferometry.

    PubMed

    Lad, Latesh; Clancy, Sheila; Kovalenko, Maria; Liu, Chian; Hui, Terence; Smith, Victoria; Pagratis, Nikos

    2015-04-01

    Kinetic analysis of antibodies is crucial in both clone selection and characterization. Historically, antibodies in supernatants from hybridomas are selected based on a solid-phase enzyme-linked immunosorbent assay (ELISA) in which the antigen is immobilized on the assay plate. ELISA selects clones based on a combination of antibody concentration in the supernatant and affinity. The antibody concentration in the supernatant can vary significantly and is typically unknown. Using the ELISA method, clones that express high levels of a low-affinity antibody can give an equivalent signal as clones that express low levels of a high-affinity antibody. As a consequence, using the ELISA method, superior clones can be overshadowed by inferior clones. In this study, we have applied Bio-Layer Interferometry to screen hybridoma clones based on disassociation rates using the OctetRED 384 platform. Using the OctetRED platform, we were able to screen 2000 clones within 24 hours and select clones containing high-affinity antibodies for further expansion and subsequent characterization. Using this method, we were able to identify several clones producing high-affinity antibodies that were missed by ELISA. PMID:25425568

  11. Characterization of Humanized Antibodies Secreted by Aspergillus niger

    PubMed Central

    Ward, Michael; Lin, Cherry; Victoria, Doreen C.; Fox, Bryan P.; Fox, Judith A.; Wong, David L.; Meerman, Hendrik J.; Pucci, Jeff P.; Fong, Robin B.; Heng, Meng H.; Tsurushita, Naoya; Gieswein, Christine; Park, Minha; Wang, Huaming

    2004-01-01

    Two different humanized immunoglobulin G1(κ) antibodies and an Fab′ fragment were produced by Aspergillus niger. The antibodies were secreted into the culture supernatant. Both light and heavy chains were initially synthesized as fusion proteins with native glucoamylase. After antibody assembly, cleavage by A. niger KexB protease allowed the release of free antibody. Purification by hydrophobic charge induction chromatography proved effective at removing any antibody to which glucoamylase remained attached. Glycosylation at N297 in the Fc region of the heavy chain was observed, but this site was unoccupied on approximately 50% of the heavy chains. The glycan was of the high-mannose type, with some galactose present, and the size ranged from Hex6GlcNAc2 to Hex15GlcNAc2. An aglycosyl mutant form of antibody was also produced. No significant difference between the glycosylated antibody produced by Aspergillus and that produced by mammalian cell cultures was observed in tests for affinity, avidity, pharmacokinetics, or antibody-dependent cellular cytotoxicity function. PMID:15128505

  12. BIOINTERACTION ANALYSIS BY HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY: KINETIC STUDIES OF IMMOBILIZED ANTIBODIES

    PubMed Central

    Nelson, Mary Anne; Moser, Annette; Hage, David S.

    2009-01-01

    A system based on high-performance affinity chromatography was developed for characterizing the binding, elution and regeneration kinetics of immobilized antibodies and immunoaffinity supports. This information was provided by using a combination of frontal analysis, split-peak analysis and peak decay analysis to determine the rate constants for antibody-antigen interactions under typical sample application and elution conditions. This technique was tested using immunoaffinity supports that contained monoclonal antibodies for 2,4-dichlorophenoxyacetic acid (2,4-D). Association equilibrium constants measured by frontal analysis for 2,4-D and related compounds with the immobilized antibodies were 1.7–12 × 106 M−1 at pH 7.0 and 25°C. Split-peak analysis gave association rate constants of 1.4–12 × 105 M−1s−1 and calculated dissociation rate constants of 0.01–0.4 s−1 under the application conditions. Elution at pH 2.5 for the analytes from the antibodies was examined by peak decay analysis and gave dissociation rate constants of 0.056–0.17 s−1. A comparison of frontal analysis results after various periods of column regeneration allowed the rate of antibody regeneration to be examined, with the results giving a first-order regeneration rate constant of 2.4 × 10−4 s−1. This combined approach and the information it provides should be useful in the design and optimization of immunoaffinity chromatography and other analytical methods that employ immobilized antibodies. The methods described are not limited to the particular analytes and antibodies employed in this study but should be useful in characterizing other targets, ligands and supports. PMID:19394281

  13. Effective Optimization of Antibody Affinity by Phage Display Integrated with High-Throughput DNA Synthesis and Sequencing Technologies

    PubMed Central

    Hu, Dongmei; Hu, Siyi; Wan, Wen; Xu, Man; Du, Ruikai; Zhao, Wei; Gao, Xiaolian; Liu, Jing; Liu, Haiyan; Hong, Jiong

    2015-01-01

    Phage display technology has been widely used for antibody affinity maturation for decades. The limited library sequence diversity together with excessive redundancy and labour-consuming procedure for candidate identification are two major obstacles to widespread adoption of this technology. We hereby describe a novel library generation and screening approach to address the problems. The approach started with the targeted diversification of multiple complementarity determining regions (CDRs) of a humanized anti-ErbB2 antibody, HuA21, with a small perturbation mutagenesis strategy. A combination of three degenerate codons, NWG, NWC, and NSG, were chosen for amino acid saturation mutagenesis without introducing cysteine and stop residues. In total, 7,749 degenerate oligonucleotides were synthesized on two microchips and released to construct five single-chain antibody fragment (scFv) gene libraries with 4 x 106 DNA sequences. Deep sequencing of the unselected and selected phage libraries using the Illumina platform allowed for an in-depth evaluation of the enrichment landscapes in CDR sequences and amino acid substitutions. Potent candidates were identified according to their high frequencies using NGS analysis, by-passing the need for the primary screening of target-binding clones. Furthermore, a subsequent library by recombination of the 10 most abundant variants from four CDRs was constructed and screened, and a mutant with 158-fold increased affinity (Kd = 25.5 pM) was obtained. These results suggest the potential application of the developed methodology for optimizing the binding properties of other antibodies and biomolecules. PMID:26046845

  14. Water channel in the binding site of a high affinity anti-methotrexate antibody.

    PubMed

    Gayda, Susan; Longenecker, Kenton L; Manoj, Sharmila; Judge, Russell A; Saldana, Sylvia C; Ruan, Qiaoqiao; Swift, Kerry M; Tetin, Sergey Y

    2014-06-17

    In the present study, we report the structure of the free and drug-bound Fab fragment of a high affinity anti-methotrexate antibody and perform a thermodynamic analysis of the binding process. The anti-methotrexate Fab fragment features a remarkably rigid tunnel-like binding site that extends into a water channel serving as a specialized route to move solvent out and into the site upon ligand binding and dissociation. This new finding in antibody structure-function relationships directly relates to the fast association (1 × 10⁷ M⁻¹ s⁻¹) and slow dissociation (4 × 10⁻⁵ s⁻¹) rates determined for mAb ADD056, resulting in a very strong binding with a K(D) ~ 3.6 pM at 20 °C. As follows from the X-ray data analysis, the methotrexate-antibody complex is stabilized by an extended network of hydrogen bonds and stacking interactions. The analysis also shows structural involvement of the CDR H3 in formation of the water channel revealing another important role of this hypervariable region. This suggests a new direction in natural affinity maturation and opens a new possibility in antibody engineering. Methotrexate is a widely used therapeutic agent for many malignant diseases and inflammatory disorders. Unfortunately, it may also interfere with central aspects of metabolism and thereby cause inevitable side effects. Therefore, methotrexate therapy requires careful monitoring of drug blood levels, which is traditionally done by immunoassays. An understanding of the structure-function properties of antibodies selected for drug monitoring substantiates the performance and robustness of such tests. PMID:24832237

  15. Affinity binding of antibodies to supermacroporous cryogel adsorbents with immobilized protein A for removal of anthrax toxin protective antigen.

    PubMed

    Ingavle, Ganesh C; Baillie, Les W J; Zheng, Yishan; Lis, Elzbieta K; Savina, Irina N; Howell, Carol A; Mikhalovsky, Sergey V; Sandeman, Susan R

    2015-05-01

    Polymeric cryogels are efficient carriers for the immobilization of biomolecules because of their unique macroporous structure, permeability, mechanical stability and different surface chemical functionalities. The aim of the study was to demonstrate the potential use of macroporous monolithic cryogels for biotoxin removal using anthrax toxin protective antigen (PA), the central cell-binding component of the anthrax exotoxins, and covalent immobilization of monoclonal antibodies. The affinity ligand (protein A) was chemically coupled to the reactive hydroxyl and epoxy-derivatized monolithic cryogels and the binding efficiencies of protein A, monoclonal antibodies to the cryogel column were determined. Our results show differences in the binding capacity of protein A as well as monoclonal antibodies to the cryogel adsorbents caused by ligand concentrations, physical properties and morphology of surface matrices. The cytotoxicity potential of the cryogels was determined by an in vitro viability assay using V79 lung fibroblast as a model cell and the results reveal that the cryogels are non-cytotoxic. Finally, the adsorptive capacities of PA from phosphate buffered saline (PBS) were evaluated towards a non-glycosylated, plant-derived human monoclonal antibody (PANG) and a glycosylated human monoclonal antibody (Valortim(®)), both of which were covalently attached via protein A immobilization. Optimal binding capacities of 108 and 117 mg/g of antibody to the adsorbent were observed for PANG attached poly(acrylamide-allyl glycidyl ether) [poly(AAm-AGE)] and Valortim(®) attached poly(AAm-AGE) cryogels, respectively, This indicated that glycosylation status of Valortim(®) antibody could significantly increase (8%) its binding capacity relative to the PANG antibody on poly(AAm-AGE)-protien-A column (p < 0.05). The amounts of PA which remained in the solution after passing PA spiked PBS through PANG or Valortim bound poly(AAm-AGE) cryogel were significantly (p < 0

  16. Affitins as robust tailored reagents for affinity chromatography purification of antibodies and non-immunoglobulin proteins.

    PubMed

    Béhar, Ghislaine; Renodon-Cornière, Axelle; Mouratou, Barbara; Pecorari, Frédéric

    2016-04-01

    Affinity chromatography is a convenient way of purifying proteins, as a high degree of purity can be reached in one step. The use of tags has greatly contributed to the popularity of this technique. However, the addition of tags may not be desirable or possible for the production of biopharmaceuticals. There is thus a need for tailored artificial affinity ligands. We have developed the use of archaeal extremophilic proteins as scaffolds to generate affinity proteins (Affitins). Here, we explored the potential of Affitins as ligand to design affinity columns. Affitins specific for human immunoglobulin G (hIgG), bacterial PulD protein, and chicken egg lysozyme were immobilized on an agarose matrix. The columns obtained were functional and highly selective for their cognate target, even in the presence of exogenous proteins as found in cell culture media, ascites and bacterial lysates, which result in a high degree of purity (∼95%) and recovery (∼100%) in a single step. Anti-hIgG Affitin columns withstand repetitive cycles of purification and cleaning-in-place treatments with 0.25 M NaOH as well as Protein A does. High levels of Affitin productions in Escherichia coli makes it possible to produce these affinity columns at low cost. Our results validate Affitins as a new class of tailored ligands for the affinity chromatography purification of potentially any proteins of interest including biopharmaceuticals. PMID:26952369

  17. TRIM21 Immune Signaling Is More Sensitive to Antibody Affinity Than Its Neutralization Activity.

    PubMed

    Foss, Stian; Watkinson, Ruth E; Grevys, Algirdas; McAdam, Martin B; Bern, Malin; Høydahl, Lene Stokken; Dalhus, Bjørn; Michaelsen, Terje E; Sandlie, Inger; James, Leo C; Andersen, Jan Terje

    2016-04-15

    Ab-coated viruses can be detected in the cytosol by the FcR tripartite motif-containing 21 (TRIM21), which rapidly recruits the proteasomal machinery and triggers induction of immune signaling. As such, TRIM21 plays a key role in intracellular protection by targeting invading viruses for destruction and alerting the immune system. A hallmark of immunity is elicitation of a balanced response that is proportionate to the threat, to avoid unnecessary inflammation. In this article, we show how Ab affinity modulates TRIM21 immune function. We constructed a humanized monoclonal IgG1 against human adenovirus type 5 (AdV5) and a panel of Fc-engineered variants with a wide range of affinities for TRIM21. We found that IgG1-coated viral particles were neutralized via TRIM21, even when affinity was reduced by as much as 100-fold. In contrast, induction of NF-κB signaling was more sensitive to reduced affinity between TRIM21 and the Ab variants. Thus, TRIM21 mediates neutralization under suboptimal conditions, whereas induction of immune signaling is balanced according to the functional affinity for the incoming immune stimuli. Our findings have implications for engineering of antiviral IgG therapeutics with tailored effector functions. PMID:26962230

  18. Alteration of Electrostatic Surface Potential Enhances Affinity and Tumor Killing Properties of Anti-ganglioside GD2 Monoclonal Antibody hu3F8*

    PubMed Central

    Zhao, Qi; Ahmed, Mahiuddin; Guo, Hong-fen; Cheung, Irene Y.; Cheung, Nai-Kong V.

    2015-01-01

    Ganglioside GD2 is highly expressed on neuroectodermal tumors and an attractive therapeutic target for antibodies that have already shown some clinical efficacy. To further improve the current antibodies, which have modest affinity, we sought to improve affinity by using a combined method of random mutagenesis and in silico assisted design to affinity-mature the anti-GD2 monoclonal antibody hu3F8. Using yeast display, mutants in the Fv with enhanced binding over the parental clone were FACS-sorted and cloned. In silico modeling identified the minimal key interacting residues involved in the important charged interactions with the sialic acid groups of GD2. Two mutations, D32H (L-CDR1) and E1K (L-FR1) altered the electrostatic surface potential of the antigen binding site, allowing for an increase in positive charge to enhance the interaction with the negatively charged GD2-pentasaccharide headgroup. Purified scFv and IgG mutant forms were then tested for antigen specificity by ELISA, for tissue specificity by immunohistochemistry, for affinity by BIACORE, for antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-mediated cytotoxicity in vitro, and for anti-tumor efficacy in xenografted humanized mice. The nearly 7-fold improvement in affinity of hu3F8 with a single D32H (L-CDR1) mutation translated into a ∼12-fold improvement in NK92MI-transfected CD16-mediated ADCC, a 6-fold improvement in CD32-mediated ADCC, and a 2.5-fold improvement in complement-mediated cytotoxicity while maintaining restricted normal tissue cross-reactivity and achieving substantial improvement in tumor ablation in vivo. Despite increasing GD2 affinity, the double mutation D32H (L-CDR1) and E1K (L-FR1) did not further improve anti-tumor efficacy. PMID:25851904

  19. Alteration of Electrostatic Surface Potential Enhances Affinity and Tumor Killing Properties of Anti-ganglioside GD2 Monoclonal Antibody hu3F8.

    PubMed

    Zhao, Qi; Ahmed, Mahiuddin; Guo, Hong-fen; Cheung, Irene Y; Cheung, Nai-Kong V

    2015-05-22

    Ganglioside GD2 is highly expressed on neuroectodermal tumors and an attractive therapeutic target for antibodies that have already shown some clinical efficacy. To further improve the current antibodies, which have modest affinity, we sought to improve affinity by using a combined method of random mutagenesis and in silico assisted design to affinity-mature the anti-GD2 monoclonal antibody hu3F8. Using yeast display, mutants in the Fv with enhanced binding over the parental clone were FACS-sorted and cloned. In silico modeling identified the minimal key interacting residues involved in the important charged interactions with the sialic acid groups of GD2. Two mutations, D32H (L-CDR1) and E1K (L-FR1) altered the electrostatic surface potential of the antigen binding site, allowing for an increase in positive charge to enhance the interaction with the negatively charged GD2-pentasaccharide headgroup. Purified scFv and IgG mutant forms were then tested for antigen specificity by ELISA, for tissue specificity by immunohistochemistry, for affinity by BIACORE, for antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-mediated cytotoxicity in vitro, and for anti-tumor efficacy in xenografted humanized mice. The nearly 7-fold improvement in affinity of hu3F8 with a single D32H (L-CDR1) mutation translated into a ∼12-fold improvement in NK92MI-transfected CD16-mediated ADCC, a 6-fold improvement in CD32-mediated ADCC, and a 2.5-fold improvement in complement-mediated cytotoxicity while maintaining restricted normal tissue cross-reactivity and achieving substantial improvement in tumor ablation in vivo. Despite increasing GD2 affinity, the double mutation D32H (L-CDR1) and E1K (L-FR1) did not further improve anti-tumor efficacy. PMID:25851904

  20. Mass Spectrometric Detection of Neuropeptides Using Affinity-Enhanced Microdialysis with Antibody-Coated Magnetic Nanoparticles

    PubMed Central

    Schmerberg, Claire M.; Li, Lingjun

    2012-01-01

    Microdialysis (MD) is a useful sampling tool for many applications due to its ability to permit sampling from an animal concurrent with normal activity. MD is of particular importance in the field of neuroscience, in which it is used to sample neurotransmitters (NTs) while the animal is behaving in order to correlate dynamic changes in NTs with behavior. One important class of signaling molecules, the neuropeptides (NPs), however, presented significant challenges when studied with MD, due to the low relative recovery (RR) of NPs by this technique. Affinity-enhanced microdialysis (AE-MD) has previously been used to improve recovery of NPs and similar molecules. For AE-MD, an affinity agent (AA), such as an antibody-coated particle or free antibody, is added to the liquid perfusing the MD probe. This AA provides an additional mass transport driving force for analyte to pass through the dialysis membrane, and thus increases the RR. In this work, a variety of AAs have been investigated for AE-MD of NPs in vitro and in vivo, including particles with C18 surface functionality and antibody-coated particles. Antibody-coated magnetic nanoparticles (AbMnP) provided the best RR enhancement in vitro, with statistically significant (p<0.05) enhancements for 4 out of 6 NP standards tested, and RR increases up to 41-fold. These particles were then used for in vivo MD in the Jonah crab, Cancer borealis, during a feeding study, with mass spectrometric (MS) detection. 31 NPs were detected in a 30 min collection sample, compared to 17 when no AA was used. The use of AbMnP also increased the temporal resolution from 4–18 hrs in previous studies to just 30 min in this study. The levels of NPs detected were also sufficient for reliable quantitation with the MS system in use, permitting quantitative analysis of the concentration changes for 7 identified NPs on a 30 min time course during feeding. PMID:23249250

  1. Monoclonal Antibody That Defines Human Myoepithelium

    NASA Astrophysics Data System (ADS)

    Dairkee, Shahnaz Hashmi; Blayney, Carlene; Smith, Helene S.; Hackett, Adeline J.

    1985-11-01

    We have isolated a mouse monoclonal antibody that, upon immunohistochemical localization in frozen sections, displays specificity for human myoepithelial cells in the resting mammary gland, sweat glands, and salivary glands. Furthermore, this antibody was strongly and homogeneously reactive with frozen sections of 3 of 60 breast carcinoma specimens. Using immunolocalization techniques in conjunction with polyacrylamide gel electrophoresis, we have determined that the reactivity of this monoclonal antibody is directed toward a 51,000-dalton keratin polypeptide. The potential uses of this antibody in the prognosis of human mammary carcinoma and in understanding the role of the myoepithelium in development and differentiation are discussed.

  2. Theoretical analysis of antibody targeting of tumor spheroids: importance of dosage for penetration, and affinity for retention.

    PubMed

    Graff, Christilyn P; Wittrup, K Dane

    2003-03-15

    The interplay among antibody/antigen binding kinetics, antibody diffusion, and antigen metabolic turnover together determines the depth of penetration of antitumor antibodies into prevascular tumor spheroid cell clumps. A sharp boundary between an outer shell of bound high-affinity antibody and an inner antibody-free core has been previously observed and mathematically modeled and was termed the "binding site barrier." We show here that this process is well described by a simplified shrinking core model wherein binding equilibration is much more rapid than diffusion. This analysis provides the following experimentally testable predictions: (a) the binding site barrier is a moving boundary whose velocity is proportional to the time integral of antibody concentration at the spheroid surface (i.e. plasma antibody AUC); (b) the velocity of this moving boundary is independent of binding affinity, if the affinity is sufficiently high to strongly favor antibody/antigen complex formation at prevailing antibody concentrations; and (c) maximum tumor retention is achieved when the antibody/antigen dissociation rate approaches the rate of antigen metabolic turnover. The consistency of these predictions with published experimental results is demonstrated. The shrinking core model provides a simple analytic relationship predicting the effects of altered antibody pharmacokinetics, antibody molecular weight, antigen turnover rate, antigen expression level, and micrometastasis size on antibody penetration and retention. For example, a formula is provided for predicting the bolus dose necessary to accomplish tumor saturation as a function of antibody and tumor properties. Furthermore, this analysis indicates certain attributes necessary for an optimal tumor targeting agent. PMID:12649189

  3. Reshaping Human Antibodies: Grafting an Antilysozyme Activity

    NASA Astrophysics Data System (ADS)

    Verhoeyen, Martine; Milstein, Cesar; Winter, Greg

    1988-03-01

    The production of therapeutic human monoclonal antibodies by hybridoma technology has proved difficult, and this has prompted the ``humanizing'' of mouse monoclonal antibodies by recombinant DNA techniques. It was shown previously that the binding site for a small hapten could be grafted from the heavy-chain variable domain of a mouse antibody to that of a human myeloma protein by transplanting the hypervariable loops. It is now shown that a large binding site for a protein antigen (lysozyme) can also be transplanted from mouse to human heavy chain. The success of such constructions may be facilitated by an induced-fit mechanism.

  4. Preparation and characterization of novel IgG affinity resin coupling anti-Fc camelid single-domain antibodies.

    PubMed

    Tu, Zhui; Xu, Yang; Fu, Jinheng; Huang, Zhibing; Wang, Yao; Liu, Bin; Tao, Yong

    2015-03-01

    This work aimed to evaluate novel affinity resin used to purify immunoglobulin G (IgG) with a variable domain of the heavy chain of the heavy-chain antibody (VHH) as an affinity ligand. The VHH, isolated from a naïve camelid single-domain phage display library, exhibits not only affinity to the fragment crystallizable (Fc) region of IgG but also high thermal stability. This anti-Fc VHH (AFV) was expressed as a soluble protein in Escherichia coli and purified using a simple heat treatment procedure. The effects of pH and NaCl concentrations on the capacity of AFV resin were also investigated. Results showed a robust property of the AFV resin. It could bind IgGs at various pH conditions (from 6.0 to 9.0) and NaCl concentrations. The static binding capacities of AFV resin ranged from 3.40±0.53mg/ml to 15.04±0.37mg/ml measured using rabbit, mouse, and human IgGs. The bound IgGs can be efficiently eluted at pH 5.0, which is conducive to acid-sensitive IgGs and prevents the aggregation of IgGs. After 10 purification cycles or a 7-day period of storage at 37°C, recovery did not decrease. These findings suggested that VHHs from non-immunized library could also be robust and functional reagent as an affinity purification ligand. PMID:25614967

  5. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies

    NASA Astrophysics Data System (ADS)

    Boulet-Audet, Maxime; Kazarian, Sergei G.; Byrne, Bernadette

    2016-07-01

    In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan.

  6. Quantitation of tyrosine hydroxylase, protein levels: Spot immunolabeling with an affinity-purified antibody

    SciTech Connect

    Haycock, J.W. )

    1989-09-01

    Tyrosine hydroxylase was purified from bovine adrenal chromaffin cells and rat pheochromocytoma using a rapid (less than 2 days) procedure performed at room temperature. Rabbits were immunized with purified enzyme that was denatured with sodium dodecylsulfate, and antibodies to tyrosine hydroxylase were affinity-purified from immune sera. A Western blot procedure using the affinity-purified antibodies and {sup 125}I-protein A demonstrated a selective labeling of a single Mr approximately 62,000 band in samples from a number of different tissues. The relative lack of background {sup 125}I-protein A binding permitted the development of a quantitative spot immunolabeling procedure for tyrosine hydroxylase protein. The sensitivity of the assay is 1-2 ng of enzyme. Essentially identical standard curves were obtained with tyrosine hydroxylase purified from rat pheochromocytoma, rat corpus striatum, and bovine adrenal medulla. An extract of PC 12 cells (clonal rat pheochromocytoma cells) was calibrated against purified rat pheochromocytoma tyrosine hydroxylase and used as an external standard against which levels of tyrosine hydroxylase in PC12 cells and other tissue were quantified. With this procedure, qualitative assessment of tyrosine hydroxylase protein levels can be obtained in a few hours and quantitative assessment can be obtained in less than a day.

  7. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies

    PubMed Central

    Boulet-Audet, Maxime; Kazarian, Sergei G.; Byrne, Bernadette

    2016-01-01

    In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan. PMID:27470880

  8. In-column ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal antibodies.

    PubMed

    Boulet-Audet, Maxime; Kazarian, Sergei G; Byrne, Bernadette

    2016-01-01

    In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity chromatography resin accounts for a large proportion of the raw material cost. Cleaning-in-place (CIP) procedures were developed to extend Protein A resin lifespan, but chromatograms cannot reliably quantify any remaining contaminants over repeated cycles. To study resin fouling in situ, we coupled affinity chromatography and Fourier transform infrared (FTIR) spectroscopy for the first time, by embedding an attenuated total reflection (ATR) sensor inside a micro-scale column while measuring the UV 280 nm and conductivity. Our approach quantified the in-column protein concentration in the resin bed and determined protein conformation. Our results show that Protein A ligand leached during CIP. We also found that host cell proteins bound to the Protein A resin even more strongly than mAbs and that typical CIP conditions do not remove all fouling contaminants. The insights derived from in-column ATR-FTIR spectroscopic monitoring could contribute to mAb purification quality assurance as well as guide the development of more effective CIP conditions to optimise resin lifespan. PMID:27470880

  9. Human and murine antibodies to rye grass pollen allergen LolpIV share a common idiotope.

    PubMed Central

    Bose, R; Ekramoddoullah, A K; Kisil, F T; Sehon, A H

    1988-01-01

    The possibility that a murine monoclonal antibody (mAb 12) to Rye grass pollen allergen LolpIV and LolpIV-specific antibodies in the sera of grass allergic individuals share a common idiotope (Id) was investigated. It was first established that mAb 12 and human IgE antibodies recognized the same (or similar) epitope(s) on LolpIV; i.e. mAb 12 could inhibit, to the extent of 35-60%, the binding of 125I-LolpIV to the human IgE antibodies present in the sera of grass pollen-allergic individuals. Subsequently, a rabbit anti-Id antiserum was produced against mAb 12 and rendered Id-specific by appropriate immune absorptions, and its IgG antibody fraction was isolated (Rb-aId). The specificity of Rb-aId was demonstrated by the fact that the antibodies bound only to mAb 12 and not to any other murine monoclonal antibody tested. Observations that Rb-aId inhibited the binding of 125I-LolpIV to mAb 12 indicated that the Id determinants recognized on mAb 12 were located at or near the antibody-combining sites. The Rb-aId also bound specifically to affinity-purified human anti-LolpIV antibodies isolated from human sera, but not to affinity-purified human anti-tetanus toxoid antibodies. This indicated that the human anti-LolpIV antibodies share a cross-reactive Id. The binding of Rb-aId to human anti-LolpIV antibody could also be inhibited by mAb 12. Therefore, it was concluded that the murine and human antibodies to LolpIV share a cross-reactive idiotope. PMID:2452788

  10. Isolation, identification and expression of specific human CD133 antibodies.

    PubMed

    Xia, Jing; Zhang, Ying; Qian, Jun; Zhu, Xiaojun; Zhang, Yafen; Zhang, Jianqiong; Zhao, Gang

    2013-01-01

    CD133, a 120 KDa glycoprotein is a transmembrane glycoprotein which has been recently used as a cancer stem cell (CSCs) marker in a variety of carcinomas. CD133(+) cells possess strong tumorigenicity, responsible for tumor initiation and maintenance. Therefore, the goal of our study was to develop a novel CD133 humanized antibody as a promising target for cancer therapy. CD133 purified proteins were used for panning the naive human-semi-synthetic Tomlinson I + J phagemid library. The second extracellular domain (loop1) and the third extracellular domain (loop2) of CD133 were expressed in E. coli. In this study, we adopted a novel five-round selection strategy based on moderate stringent selection during the first rounds. This unique strategy was aimed at avoiding the loss of rare phages with high affinity to target proteins. After the five rounds of specific panning, six phage-antibody clones which specifically recognized recombinant human CD133 protein were obtained. The desirable phage clone named CD133-scFv-1 was cloned into the expression vector, then induced and purified. We show that CD133-scFv-1 and commercial murine antibody 293C3 could compete with each other in the indirect competitive immunoassay. Our work may lay the groundwork for future studies involving biological functions and applications of the CD133 humanized antibody. PMID:24271022

  11. Generation of “LYmph Node Derived Antibody Libraries” (LYNDAL) for selecting fully human antibody fragments with therapeutic potential

    PubMed Central

    Diebolder, Philipp; Keller, Armin; Haase, Stephanie; Schlegelmilch, Anne; Kiefer, Jonathan D; Karimi, Tamana; Weber, Tobias; Moldenhauer, Gerhard; Kehm, Roland; Eis-Hübinger, Anna M; Jäger, Dirk; Federspil, Philippe A; Herold-Mende, Christel; Dyckhoff, Gerhard; Kontermann, Roland E; Arndt, Michaela AE; Krauss, Jürgen

    2014-01-01

    The development of efficient strategies for generating fully human monoclonal antibodies with unique functional properties that are exploitable for tailored therapeutic interventions remains a major challenge in the antibody technology field. Here, we present a methodology for recovering such antibodies from antigen-encountered human B cell repertoires. As the source for variable antibody genes, we cloned immunoglobulin G (IgG)-derived B cell repertoires from lymph nodes of 20 individuals undergoing surgery for head and neck cancer. Sequence analysis of unselected “LYmph Node Derived Antibody Libraries” (LYNDAL) revealed a naturally occurring distribution pattern of rearranged antibody sequences, representing all known variable gene families and most functional germline sequences. To demonstrate the feasibility for selecting antibodies with therapeutic potential from these repertoires, seven LYNDAL from donors with high serum titers against herpes simplex virus (HSV) were panned on recombinant glycoprotein B of HSV-1. Screening for specific binders delivered 34 single-chain variable fragments (scFvs) with unique sequences. Sequence analysis revealed extensive somatic hypermutation of enriched clones as a result of affinity maturation. Binding of scFvs to common glycoprotein B variants from HSV-1 and HSV-2 strains was highly specific, and the majority of analyzed antibody fragments bound to the target antigen with nanomolar affinity. From eight scFvs with HSV-neutralizing capacity in vitro, the most potent antibody neutralized 50% HSV-2 at 4.5 nM as a dimeric (scFv)2. We anticipate our approach to be useful for recovering fully human antibodies with therapeutic potential. PMID:24256717

  12. Affinity maturation of anti-(4-hydroxy-3-nitrophenyl)acetyl antibodies accompanies a modulation of antigen specificity.

    PubMed

    Oda, Masayuki; Azuma, Takachika

    2016-02-01

    Anti-(4-hydroxy-3-nitrophenyl)acetyl (NP) antibodies bearing λ1 chains are known to possess fine specificity, referred to as heterocliticity, which causes these antibodies to bind to hapten analogues such as (4-hydroxy-3-iodo-5-nitrophenyl)acetyl (NIP) and (4-hydroxy-3,5-dinitrophenyl)acetyl (NNP) with higher affinity than to the autologous hapten, NP. They also show preferential binding to the phenolate form of hapten than to the phenolic form. We address here the question of whether affinity maturation accompanies in the fine specificity of these antibodies by analyzing the interaction between NP1-, NIP1-, or NNP1-hen egg lysozyme and anti-NP antibodies that possess different association constants to NP using a surface plasmon resonance biosensor. We measured interactions at various pH values and found that heterocliticity as well as preferential binding to the phenolate form of hapten were most prominent in a germline antibody having immature affinity and that fine specificity becomes less evident, i.e., anti-NP antibodies become more specific to the immunizing antigen, NP during the process of affinity maturation. PMID:26688069

  13. Development and characterization of human monoclonal antibodies that neutralize multiple TGFβ isoforms

    PubMed Central

    Bedinger, Daniel; Lao, Llewelyn; Khan, Shireen; Lee, Steve; Takeuchi, Toshihiko; Mirza, Amer M.

    2016-01-01

    ABSTRACT Transforming growth factor (TGF)β levels are elevated in, and drive the progression of, numerous disease states such as advanced metastatic cancer and systemic and ocular fibrosis. There are 3 main isoforms, TGFβ1, 2, and 3. As multiple TGFβ isoforms are involved in disease processes, maximal therapeutic efficacy may require neutralization of 2 or more of the TGFβ isoforms. Fully human antibody phage display libraries were used to discover a number of antibodies that bind and neutralize various combinations of TGFβ1, 2 or 3. The primary panning did not yield any uniformly potent pan-isoform neutralizing antibodies; therefore, an antibody that displayed potent TGFβ 1, 2 inhibition, but more modest affinity versus TGFβ3, was affinity matured by shuffling with a light chain sub-library and further screening. This process yielded a high affinity pan-isoform neutralizing clone. Antibodies were analyzed and compared by binding affinity, as well as receptor and epitope competition by surface plasmon resonance methods. The antibodies were also shown to neutralize TGFβ effects in vitro in 3 assays: 1) interleukin (IL)-4 induced HT-2 cell proliferation; 2) TGFβ-mediated IL-11 release by A549 cells; and 3) decreasing SMAD2 phosphorylation in Detroit 562 cells. The antibodies’ potency in these in vitro assays correlated well with their isoform-specific affinities. Furthermore, the ability of the affinity-matured clone to decrease tumor burden in a Detroit 562 xenograft study was superior to that of the parent clone. This affinity-matured antibody acts as a very potent inhibitor of all 3 main isoforms of TGFβ and may have utility for therapeutic intervention in human disease. PMID:26563652

  14. Production, isolation, and characterization of rabbit anti-idiotypic antibodies directed against human antithyrotrophin receptor antibodies.

    PubMed Central

    Baker, J R; Lukes, Y G; Burman, K D

    1984-01-01

    Previous studies have shown that anti-idiotypic antibodies can be developed in vivo through animal immunization with idiotype, and that these antibodies can be isolated from other anti-immunoglobulin antibodies by affinity purification. These techniques have relied on large amounts of idiotype, which were produced either by hyperimmunization or by monoclonal antibodies, to serve as the affinity adsorbent. In the present study, we produced anti-idiotypic antibodies to human anti-thyroid-stimulating hormone (TSH) receptor antibodies by first injecting rabbits with (TSH receptor purified) IgG from Graves' patients. The resulting antiserum was then adsorbed with Sepharose-coupled TSH in an attempt to specifically bind and isolate the anti-idiotype. The antibody obtained from this process was shown to bind specifically to TSH receptor-binding antibodies from Graves' patients, and this binding could be inhibited by 56% with the addition of 10(-4) M TSH but not by HCG (10(-2) M). The anti-idiotype also bound to TSH, and this binding could be specifically inhibited by receptor-purified Graves' IgG (60% inhibition at 10 micrograms/ml IgG), but not by IgG from normal subjects (no inhibition at 50 micrograms/ml IgG). In a TSH receptor binding assay, the anti-idiotype could inhibit TSH receptor binding in Graves' sera at a 1,000-fold lower concentration than could anti-kappa/lambda antiserum; the anti-idiotypic antiserum also inhibited in vitro TSH-mediated adenylate cyclase stimulation at an IgG concentration of 5 micrograms/ml, while heterologous anti-TSH antisera and normal IgG at similar concentrations had no effect. Finally, despite being generated against a single patient's TSH receptor binding antibody, the anti-idiotype was able to block TSH receptor binding in the serum of six other Graves' patients, thus suggesting that there may be conformational conservation in the antigen that is recognized by different individuals' TSH receptor-binding immunoglobulins. PMID

  15. Human monoclonal antibodies specific to hepatitis B virus generated in a human/mouse radiation chimera: the Trimera system.

    PubMed

    Eren, R; Lubin, I; Terkieltaub, D; Ben-Moshe, O; Zauberman, A; Uhlmann, R; Tzahor, T; Moss, S; Ilan, E; Shouval, D; Galun, E; Daudi, N; Marcus, H; Reisner, Y; Dagan, S

    1998-02-01

    An approach to develop fully human monoclonal antibodies in a human/mouse radiation chimera, the Trimera system, is described. In this system, functional human lymphocytes are engrafted in normal strains of mice which are rendered immuno-incompetent by lethal total body irradiation followed by radioprotection with severe combined immunodeficient (SCID) mouse bone marrow. Following transplantation, human lymphocytes colonize murine lymphatic organs and secrete human immunoglobulins. We have established this system as a tool to develop fully human monoclonal antibodies, and applied it for the generation of monoclonal antibodies specific for hepatitis B virus surface antigen. A strong memory response to hepatitis B surface antigen was elicited in Trimera engrafted with lymphocytes from human donors positive for antibodies to hepatitis B surface antigen. The human specific antibody fraction in the Trimera was 10(2)-10(3)-fold higher as compared with that found in the donors. Spleens were harvested from Trimera mice showing high specific-antibody titres and cells were fused to a human-mouse heteromyeloma fusion partner. Several stable hybridoma clones were isolated and characterized. These hybridomas produce high-affinity, IgG, anti-hepatitis B surface antigen antibodies demonstrating the potential of the Trimera system for generating fully human monoclonal antibodies. The biological function and the neutralizing activity of these antibodies are currently being tested. PMID:9616363

  16. Human anti-tetanus toxin precipitating and co-precipitating antibodies

    PubMed Central

    Perdigón, Gabriela; Margni, R. A.; Gentile, Teresa; Abatángelo, Carmen; Dokmetjian, J.

    1982-01-01

    A comparative study has been made of human precipitating and co-precipitating anti-tetanus toxin antibodies. IgG co-precipitating antibody represented 10% of the total antibodies in the serum and had immunological and biological properties similar to those described for co-precipitating antibodies of other animal species. Human precipitating and co-precipitating antibodies had the same electrophoretic mobility and were localized in the same immunoglobulin fraction. By immunoprecipitation it was not possible to find antigenic differences between precipitating and co-precipitating antibodies. Both antibodies were localized in the IgG1 and IgG3 subclasses and neither were in the IgG4 subclass. Only the precipitating antibody can form insoluble complexes with antigen. Precipitating and co-precipitating antibodies agglutinated sensitized sheep red cells, however, only the precipitating antibody agglutinated human red cells. Eight to ten times more co-precipitating antibody was required to obtain a positive reaction in PCA. Precipitating antibody activated the complement system while co-precipitating antibody lacked this capacity. This difference in behaviour could not be attributed to localization of both antibodies in different IgG subclasses. Precipitating and co-precipitating antibodies were cytophilic. Only the former activated phagocytosis and increased clearance of antigen from the blood. These results are not surprising since co-precipitating antibody does not fix complement. Competition between human precipitating and co-precipitating antibodies in opsonization was analysed. In this test competition of both antibodies for the antigen depends on their respective amounts. The K = 0.18 diminished to 0.05 when the ratio of pp:cop. antibody changed from 70:30 to 30:70. The fact that co-precipitating antibody was isolated from the sera of vertebrates other than man indicate that this antibody could possibly play a role in some immune mechanisms. Taking into account

  17. Direct binding of radioiodinated monoclonal antibody to tumor cells: significance of antibody purity and affinity for drug targeting or tumor imaging

    SciTech Connect

    Kennel, S.J.; Foote, L.J.; Lankford, P.K.; Johnson, M.; Mitchell, T.; Braslawsky, G.R.

    1983-01-01

    For MoAb to be used efficiently for drug targeting and tumor imaging, the fraction of antibody binding to tumor cells must be maximized. We have studied the binding of 125I MoAb in three different tumor systems. The fraction of antibody that could be bound to the cell surface was directly proportional to the antibody purity. The affinity constant also limits the fraction of antibody that can bind to cells at a given antigen concentration. Rearrangement of the standard expression for univalent equilibrium binding between two reactants shows that in antigen excess, the maximum fraction of antibody that can bind (formula; see text). Binding data using four different MoAb with three cell systems confirm this relationship. Estimates for reasonable concentrations of tumor antigens in vivo indicate that antibodies with binding constants less than 10(8) M-1 are not likely to be useful for drug targeting or tumor imaging.

  18. Aflatoxin metabolism in humans: detection of metabolites and nucleic acid adducts in urine by affinity chromatography

    SciTech Connect

    Groopman, J.D.; Donahue, P.R.; Zhu, J.Q.; Chen, J.S.; Wogan, G.N.

    1985-10-01

    A high-affinity IgM monoclonal antibody specific for aflatoxins was covalently bound to Sepharose 4B and used as a preparative column to isolate aflatoxin derivatives from the urine of people and experimental animals who had been exposed to the carcinogen environmentally or under laboratory conditions. Aflatoxin levels were quantified by radioimmunoassay and high-performance liquid chromatography after elution from the affinity column. In studies on rats injected with ( UC)aflatoxin B1, the authors identified the major aflatoxin-DNA adduct, 2,3-dihydro-2-(N7-guanyl)-3-hydroxy-aflatoxin B1 (AFB1-N7-Gua), and the oxidative metabolites M1 and P1 as the major aflatoxin species present in the urine. When this methodology was applied to human urine samples obtained from people from the Guangxi Province of China exposed to aflatoxin B1 through dietary contamination, the aflatoxin metabolites detected were also AFB1-N7-Gua and aflatoxins M1 and P1. Therefore, affinity chromatography using a monoclonal antibody represents a useful and rapid technique with which to isolate this carcinogen and its metabolites in biochemical epidemiology and for subsequent quantitative measurements, providing exposure information that can be used for risk assessment.

  19. Discovery of high affinity anti-ricin antibodies by B cell receptor sequencing and by yeast display of combinatorial VH:VL libraries from immunized animals.

    PubMed

    Wang, Bo; Lee, Chang-Han; Johnson, Erik L; Kluwe, Christien A; Cunningham, Josephine C; Tanno, Hidetaka; Crooks, Richard M; Georgiou, George; Ellington, Andrew D

    2016-01-01

    Ricin is a toxin that could potentially be used as a bioweapon. We identified anti-ricin A chain antibodies by sequencing the antibody repertoire from immunized mice and by selecting high affinity antibodies using yeast surface display. These methods led to the isolation of multiple antibodies with high (sub-nanomolar) affinity. Interestingly, the antibodies identified by the 2 independent approaches are from the same clonal lineages, indicating for the first time that yeast surface display can identify native antibodies. The new antibodies represent well-characterized reagents for biodefense diagnostics and therapeutics development. PMID:27224530

  20. Antibody humanization by molecular dynamics simulations-in-silico guided selection of critical backmutations.

    PubMed

    Margreitter, Christian; Mayrhofer, Patrick; Kunert, Renate; Oostenbrink, Chris

    2016-06-01

    Monoclonal antibodies represent the fastest growing class of biotherapeutic proteins. However, as they are often initially derived from rodent organisms, there is a severe risk of immunogenic reactions, hampering their applicability. The humanization of these antibodies remains a challenging task in the context of rational drug design. "Superhumanization" describes the direct transfer of the complementarity determining regions to a human germline framework, but this humanization approach often results in loss of binding affinity. In this study, we present a new approach for predicting promising backmutation sites using molecular dynamics simulations of the model antibody Ab2/3H6. The simulation method was developed in close conjunction with novel specificity experiments. Binding properties of mAb variants were evaluated directly from crude supernatants and confirmed using established binding affinity assays for purified antibodies. Our approach provides access to the dynamical features of the actual binding sites of an antibody, based solely on the antibody sequence. Thus we do not need structural data on the antibody-antigen complex and circumvent cumbersome methods to assess binding affinities. © 2016 The Authors Journal of Molecular Recognition Published by John Wiley & Sons Ltd. PMID:26748949

  1. Generation of Recombinant Antibodies to Rat GABAA Receptor Subunits by Affinity Selection on Synthetic Peptides

    PubMed Central

    Koduvayur, Sujatha P.; Gussin, Hélène A.; Parthasarathy, Rajni; Hao, Zengping; Kay, Brian K.; Pepperberg, David R.

    2014-01-01

    The abundance and physiological importance of GABAA receptors in the central nervous system make this neurotransmitter receptor an attractive target for localizing diagnostic and therapeutic biomolecules. GABAA receptors are expressed within the retina and mediate synaptic signaling at multiple stages of the visual process. To generate monoclonal affinity reagents that can specifically recognize GABAA receptor subunits, we screened two bacteriophage M13 libraries, which displayed human scFvs, by affinity selection with synthetic peptides predicted to correspond to extracellular regions of the rat α1 and β2 GABAA subunits. We isolated three anti-β2 and one anti-α1 subunit specific scFvs. Fluorescence polarization measurements revealed all four scFvs to have low micromolar affinities with their cognate peptide targets. The scFvs were capable of detecting fully folded GABAA receptors heterologously expressed by Xenopus laevis oocytes, while preserving ligand-gated channel activity. Moreover, A10, the anti-α1 subunit-specific scFv, was capable of detecting native GABAA receptors in the mouse retina, as observed by immunofluorescence staining. In order to improve their apparent affinity via avidity, we dimerized the A10 scFv by fusing it to the Fc portion of the IgG. The resulting scFv-Fc construct had a Kd of ∼26 nM, which corresponds to an approximately 135-fold improvement in binding, and a lower detection limit in dot blots, compared to the monomeric scFv. These results strongly support the use of peptides as targets for generating affinity reagents to membrane proteins and encourage investigation of molecular conjugates that use scFvs as anchoring components to localize reagents of interest at GABAA receptors of retina and other neural tissues, for studies of receptor activation and subunit structure. PMID:24586298

  2. Prospective Design of Anti-Transferrin Receptor Bispecific Antibodies for Optimal Delivery into the Human Brain.

    PubMed

    Kanodia, J S; Gadkar, K; Bumbaca, D; Zhang, Y; Tong, R K; Luk, W; Hoyte, K; Lu, Y; Wildsmith, K R; Couch, J A; Watts, R J; Dennis, M S; Ernst, J A; Scearce-Levie, K; Atwal, J K; Ramanujan, S; Joseph, S

    2016-05-01

    Anti-transferrin receptor (TfR)-based bispecific antibodies have shown promise for boosting antibody uptake in the brain. Nevertheless, there are limited data on the molecular properties, including affinity required for successful development of TfR-based therapeutics. A complex nonmonotonic relationship exists between affinity of the anti-TfR arm and brain uptake at therapeutically relevant doses. However, the quantitative nature of this relationship and its translatability to humans is heretofore unexplored. Therefore, we developed a mechanistic pharmacokinetic-pharmacodynamic (PK-PD) model for bispecific anti-TfR/BACE1 antibodies that accounts for antibody-TfR interactions at the blood-brain barrier (BBB) as well as the pharmacodynamic (PD) effect of anti-BACE1 arm. The calibrated model correctly predicted the optimal anti-TfR affinity required to maximize brain exposure of therapeutic antibodies in the cynomolgus monkey and was scaled to predict the optimal affinity of anti-TfR bispecifics in humans. Thus, this model provides a framework for testing critical translational predictions for anti-TfR bispecific antibodies, including choice of candidate molecule for clinical development. PMID:27299941

  3. Octapeptide-based affinity chromatography of human immunoglobulin G: comparisons of three different ligands.

    PubMed

    Zhao, Wei-Wei; Liu, Fu-Feng; Shi, Qing-Hong; Sun, Yan

    2014-09-12

    In an earlier work, we have developed a biomimetic design strategy based on the human IgG (hIgG)-Protein A interactions and identified an affinity ligand for hIgG, FYWHCLDE, which ranked top one in a pool of 14 potential candidates. Herein, two more octapeptides, FYCHWALE and FYCHTIDE, were identified, and the binding and purification of hIgG on the affinity columns packed with the three octapeptide-modified Sepharose gels were extensively studied and compared to find more effective octapeptide-based affinity ligands. It was found that all the three ligands bound hIgG and Fc fragment but barely bound Fab fragment, and the binding to hIgG and Fc was mainly by electrostatic interactions. The optimum binding pH values for the three ligands were different from each other, but kept in the range of 5.0-6.0. Ligand binding competition revealed that the binding sites on hIgG for the three octapeptides were similar to those for Protein A. Adsorption isotherms revealed that hIgG binding capacity was in the range of 64-104mg/mL drained gel in the order of FYWHCLDE>FYCHWALE>FYCHTIDE. Then, purifications of hIgG and human monoclonal antibody from human serum and cell culture supernatant, respectively, were achieved with the three affinity columns at high purities and recovery yields. Finally, the molecular basis for the binding affinity of the peptides for the Fc fragment of hIgG was elucidated by molecular dynamics simulations. PMID:25064536

  4. Allosteric antibody inhibition of human hepsin protease.

    PubMed

    Koschubs, Tobias; Dengl, Stefan; Dürr, Harald; Kaluza, Klaus; Georges, Guy; Hartl, Christiane; Jennewein, Stefan; Lanzendörfer, Martin; Auer, Johannes; Stern, Alvin; Huang, Kuo-Sen; Packman, Kathryn; Gubler, Ueli; Kostrewa, Dirk; Ries, Stefan; Hansen, Silke; Kohnert, Ulrich; Cramer, Patrick; Mundigl, Olaf

    2012-03-15

    Hepsin is a type II transmembrane serine protease that is expressed in several human tissues. Overexpression of hepsin has been found to correlate with tumour progression and metastasis, which is so far best studied for prostate cancer, where more than 90% of such tumours show this characteristic. To enable improved future patient treatment, we have developed a monoclonal humanized antibody that selectively inhibits human hepsin and does not inhibit other related proteases. We found that our antibody, hH35, potently inhibits hepsin enzymatic activity at nanomolar concentrations. Kinetic characterization revealed non-linear, slow, tight-binding inhibition. This correlates with the crystal structure we obtained for the human hepsin-hH35 antibody Fab fragment complex, which showed that the antibody binds hepsin around α3-helix, located far from the active centre. The unique allosteric mode of inhibition of hH35 is distinct from the recently described HGFA (hepatocyte growth factor activator) allosteric antibody inhibition. We further explain how a small change in the antibody design induces dramatic structural rearrangements in the hepsin antigen upon binding, leading to complete enzyme inactivation. PMID:22132769

  5. Conformation-Dependent High-Affinity Potent Ricin-Neutralizing Monoclonal Antibodies

    PubMed Central

    Hu, Wei-Gang; Yin, Junfei; Chau, Damon; Hu, Charles Chen; Lillico, Dustin; Yu, Justin; Negrych, Laurel M.; Cherwonogrodzky, John W.

    2013-01-01

    Ricin is a potential biothreat agent with no approved antidote available for ricin poisoning. The aim of this study was to develop potent antibody-based antiricin antidotes. Four strong ricin resistant hybridoma clones secreting antiricin monoclonal antibodies (mAbs) were developed. All four mAbs are bound to conformational epitopes of ricin toxin B (RTB) with high affinity (KD values from 2.55 to 36.27 nM). RTB not only triggers cellular uptake of ricin, but also facilitates transport of the ricin toxin A (RTA) from the endoplasmic reticulum to the cytosol, where RTA exerts its toxic activity. The four mAbs were found to have potent ricin-neutralizing capacities and synergistic effects among them as determined by an in vitro neutralization assay. In vivo protection assay demonstrated that all four mAbs had strong efficacy against ricin challenges. D9 was found to be exceptionally effective. Intraperitoneal (i.p.) administration of D9, at a dose of 5 μg, 6 weeks before or 6 hours after an i.p. challenge with 5 × LD50 of ricin was able to protect or rescue 100% of the mice, indicating that mAb D9 is an excellent candidate to be developed as a potent antidote against ricin poisoning for both prophylactic and therapeutic purposes. PMID:23484120

  6. Conformation-dependent high-affinity potent ricin-neutralizing monoclonal antibodies.

    PubMed

    Hu, Wei-Gang; Yin, Junfei; Chau, Damon; Hu, Charles Chen; Lillico, Dustin; Yu, Justin; Negrych, Laurel M; Cherwonogrodzky, John W

    2013-01-01

    Ricin is a potential biothreat agent with no approved antidote available for ricin poisoning. The aim of this study was to develop potent antibody-based antiricin antidotes. Four strong ricin resistant hybridoma clones secreting antiricin monoclonal antibodies (mAbs) were developed. All four mAbs are bound to conformational epitopes of ricin toxin B (RTB) with high affinity (KD values from 2.55 to 36.27 nM). RTB not only triggers cellular uptake of ricin, but also facilitates transport of the ricin toxin A (RTA) from the endoplasmic reticulum to the cytosol, where RTA exerts its toxic activity. The four mAbs were found to have potent ricin-neutralizing capacities and synergistic effects among them as determined by an in vitro neutralization assay. In vivo protection assay demonstrated that all four mAbs had strong efficacy against ricin challenges. D9 was found to be exceptionally effective. Intraperitoneal (i.p.) administration of D9, at a dose of 5 μ g, 6 weeks before or 6 hours after an i.p. challenge with 5 × LD50 of ricin was able to protect or rescue 100% of the mice, indicating that mAb D9 is an excellent candidate to be developed as a potent antidote against ricin poisoning for both prophylactic and therapeutic purposes. PMID:23484120

  7. Fluorescent antibody responses to adenoviruses in humans.

    PubMed Central

    Ariyawansa, J P; Tobin, J O

    1976-01-01

    Specific IgG, IgA, and IgM immunoglobulin antibody responses to adenovirus infections were studied by the indirect immunofluorescent technique in six pairs of human sera obtained during acute and convalescent phases of the illness. In addition, 70 single specimens of sera showing adenovirus IgG antibody from different age groups from birth to the 60th year of life were titrated for the same antibody to adenovirus types 1, 2, 3, 5, and 7, and 170 serum specimens from the same age groups were screened for specific immunoglobulin antibodies against types 1 and 5. Specific immunoglobulin antibodies lacked type specificity and in acute infections measured heterologous antibody response as well. On the other hand, IgG antibodies detected in single specimens of sera by immunofluorescence correlate with surveys of the isolation of virus from patients and neutralizing antibody studies by other workers. Fluorescent antibodies appeared in all three fractions of the immunoglobulins in acute adenovirus infections. Although this technique may be used in the diagnosis of adenovirus infections there is no advantage compared to complement-fixation testing. However, the use of sera absorbed with group antigen may have a more useful place in serological epidemiology than in diagnostic work. In five pairs of sera obtained during acute and convalescent phases of adenoviral illness and in 70 random single specimens from different age groups, "T" antibodies were detected only in the IgG fraction. The paired sera did not show a significant rise to indicate the usefulness of "T" antibody study in diagnosis. PMID:180061

  8. Fluorescent antibody responses to adenoviruses in humans.

    PubMed

    Ariyawansa, J P; Tobin, J O

    1976-05-01

    Specific IgG, IgA, and IgM immunoglobulin antibody responses to adenovirus infections were studied by the indirect immunofluorescent technique in six pairs of human sera obtained during acute and convalescent phases of the illness. In addition, 70 single specimens of sera showing adenovirus IgG antibody from different age groups from birth to the 60th year of life were titrated for the same antibody to adenovirus types 1, 2, 3, 5, and 7, and 170 serum specimens from the same age groups were screened for specific immunoglobulin antibodies against types 1 and 5. Specific immunoglobulin antibodies lacked type specificity and in acute infections measured heterologous antibody response as well. On the other hand, IgG antibodies detected in single specimens of sera by immunofluorescence correlate with surveys of the isolation of virus from patients and neutralizing antibody studies by other workers. Fluorescent antibodies appeared in all three fractions of the immunoglobulins in acute adenovirus infections. Although this technique may be used in the diagnosis of adenovirus infections there is no advantage compared to complement-fixation testing. However, the use of sera absorbed with group antigen may have a more useful place in serological epidemiology than in diagnostic work. In five pairs of sera obtained during acute and convalescent phases of adenoviral illness and in 70 random single specimens from different age groups, "T" antibodies were detected only in the IgG fraction. The paired sera did not show a significant rise to indicate the usefulness of "T" antibody study in diagnosis. PMID:180061

  9. Mouse-human immunoglobulin G1 chimeric antibodies with activities against Cryptococcus neoformans.

    PubMed Central

    Zebedee, S L; Koduri, R K; Mukherjee, J; Mukherjee, S; Lee, S; Sauer, D F; Scharff, M D; Casadevall, A

    1994-01-01

    Passive antibody administration is a potentially useful approach for the therapy of human Cryptococcus neoformans infections. To evaluate the efficacy of the human immunoglobulin G1 (IgG1) constant region against C. neoformans and to construct murine antibody derivatives with reduced immunogenicities and longer half-lives in humans, two mouse-human IgG1 chimeric antibodies were generated from the protective murine monoclonal antibodies 2D10 (IgM) and 18B7 (IgG1). The 2D10 mouse-human IgG1 chimeric antibody (ch2D10) had significantly lower binding affinity than its parent murine antibody (m2D10), presumably because of a loss of avidity contribution on switching from IgM to IgG. The 18B7 mouse-human IgG1 chimeric antibody (ch18B7) had higher affinity for cryptococcal polysaccharide antigen than its parent murine antibody (m18B7). ch18B7 and ch2D10 promoted phagocytosis of C. neoformans by primary human microglial cells and the murine J774.16 macrophage-like cell line. ch18B7 and m18B7 enhanced fungistatic or fungicidal activity of J774.16 cells and prolonged the survival of lethally infected mice. We conclude that the human IgG1 constant chain can be effective in mediating antifungal activity against C. neoformans. ch18B7 or similar antibodies are potential candidates for passive antibody therapy of human cryptococcosis. PMID:7979280

  10. A novel human anti-interleukin-1β neutralizing monoclonal antibody showing in vivo efficacy

    PubMed Central

    Goh, Angeline XH; Bertin-Maghit, Sebastien; Ping Yeo, Siok; Ho, Adrian; Derks, Heidi; Mortellaro, Alessandra; Wang, Cheng-I

    2014-01-01

    The pro-inflammatory cytokine interleukin (IL)-1β is a clinical target in many conditions involving dysregulation of the immune system; therapeutics that block IL-1β have been approved to treat diseases such as rheumatoid arthritis (RA), neonatal onset multisystem inflammatory diseases, cryopyrin-associated periodic syndromes, active systemic juvenile idiopathic arthritis. Here, we report the generation and engineering of a new fully human antibody that binds tightly to IL-1β with a neutralization potency more than 10 times higher than that of the marketed antibody canakinumab. After affinity maturation, the derived antibody shows a >30-fold increased affinity to human IL-1β compared with its parent antibody. This anti-human IL-1β IgG also cross-reacts with mouse and monkey IL-1β, hence facilitating preclinical development. In a number of mouse models, this antibody efficiently reduced or abolished signs of disease associated with IL-1β pathology. Due to its high affinity for the cytokine and its potency both in vitro and in vivo, we propose that this novel fully human anti-IL-1β monoclonal antibody is a promising therapeutic candidate and a potential alternative to the current therapeutic arsenal. PMID:24671001

  11. Deep sequencing and human antibody repertoire analysis.

    PubMed

    Boyd, Scott D; Crowe, James E

    2016-06-01

    In the past decade, high-throughput DNA sequencing (HTS) methods and improved approaches for isolating antigen-specific B cells and their antibody genes have been applied in many areas of human immunology. This work has greatly increased our understanding of human antibody repertoires and the specific clones responsible for protective immunity or immune-mediated pathogenesis. Although the principles underlying selection of individual B cell clones in the intact immune system are still under investigation, the combination of more powerful genetic tracking of antibody lineage development and functional testing of the encoded proteins promises to transform therapeutic antibody discovery and optimization. Here, we highlight recent advances in this fast-moving field. PMID:27065089

  12. Isolation of human lactate dehydrogenase isoenzyme X by affinity chromatography.

    PubMed Central

    Kolk, A H; van Kuyk, L; Boettcher, B

    1978-01-01

    Human isoenzyme LDH-X (lactate dehydrogenase isoenzyme X) was isolated from seminal fluid of frozen semen samples by affinity chromatography by using oxamate-Sepharose and AMP-Sepharose. In the presence of 1.6 mM-NAD+, isoenzyme LDH-X does not bind to AMP-Sepharose, whereas the other lactate dehydrogenase isoenzymes do. This is the crucial point in the isolation of isoenzyme LDH-X from the other isoenzymes. The purified human isoenzyme LDH-X had a specific activity of 146 units/mg of protein. Images Fig. 2. Fig. 3. PMID:213050

  13. Glycosylation of plant produced human antibodies.

    PubMed

    Kallolimath, Somanath; Steinkellner, Herta

    2015-12-23

    Human immunoglobulins circulate as highly heterogeneously glycosylated mixture of otherwise homogeneous protein backbones. A series of studies, mainly on IgG, have unequivocally proven that antibodies modulate their effector function through sugars present in the Fc domain. However, our limited technology in producing complex proteins such as antibodies, with defined glycan structures hamper in depths studies. This review introduces a plant based expression platform enabling engineering of antibody glycans. The procedure is based on the simultaneous delivery of appropriate constructs, carrying cDNAs of target proteins (e.g. heavy and light chain of antibodies) in combination with human glycosylation enzymes into plant leaves. Harvesting of recombinant proteins one week post construct delivery allows high speed and flexibility. Major achievements include the production of functional active slialylated pentameric IgMs in tobacco leaves. The system provides a viable approach to the generation of antibodies with defined glycoforms on demand, contributing to studies on antibody glycans and the development of novel antibody based drugs. PMID:27472861

  14. HIV-1 Vaccine-elicited Antibodies Reverted to Their Inferred Naive Germline Reveal Associations between Binding Affinity and in vivo Activation

    PubMed Central

    Dai, Kaifan; Khan, Salar N; Wang, Yimeng; He, Linling; Guenaga, Javier; Ingale, Jidnyasa; Sundling, Christopher; O’Dell, Sijy; McKee, Krisha; Phad, Ganesh; Corcoran, Martin; Wilson, Richard; Mascola, John R; Zhu, Jiang; Li, Yuxing; Hedestam, Gunilla B Karlsson; Wyatt, Richard T

    2016-01-01

    The elicitation of HIV-1 broadly neutralizing antibodies following envelope glycoprotein (Env) vaccination is exceedingly difficult. Suboptimal engagement of naïve B cells is suggested to limit these low frequency events, especially at the conserved CD4bs. Here, we analyzed CD4bs-directed monoclonal antibodies (mAbs) elicited by YU2 gp140-foldon trimers in a non-human primate by selective sorting using CD4bs “knock out” trimers. Following two inoculations, the CD4bs-directed mAbs efficiently recognized the eliciting immunogen in their affinity-maturing state but did not recognize CD4bs-defective probes. We reverted these mAbs to their most likely inferred germline (igL) state, leaving the HCDR3 unaltered, to establish correlates of in vitro affinity to in vivo activation. Most igL-reverted mAbs bound the eliciting gp140 immunogen, indicating that CD4bs-directed B cells possessing reasonable affinity existed in the naïve repertoire. We detected relatively high affinities for the majority of the igL mAbs to gp120 and of Fabs to gp140, which, as expected, increased when the antibodies ‘matured’ following vaccination. Affinity increases were associated with slower off-rates as well as with acquisition of neutralizing capacity. These data reveal in vitro binding properties associated with in vivo activation that result in functional archiving of antigen-specific B cells elicited by a complex glycoprotein antigen following immunization. PMID:26879974

  15. HIV-1 Vaccine-elicited Antibodies Reverted to Their Inferred Naive Germline Reveal Associations between Binding Affinity and in vivo Activation.

    PubMed

    Dai, Kaifan; Khan, Salar N; Wang, Yimeng; He, Linling; Guenaga, Javier; Ingale, Jidnyasa; Sundling, Christopher; O'Dell, Sijy; McKee, Krisha; Phad, Ganesh; Corcoran, Martin; Wilson, Richard; Mascola, John R; Zhu, Jiang; Li, Yuxing; Karlsson Hedestam, Gunilla B; Wyatt, Richard T

    2016-01-01

    The elicitation of HIV-1 broadly neutralizing antibodies following envelope glycoprotein (Env) vaccination is exceedingly difficult. Suboptimal engagement of naïve B cells is suggested to limit these low frequency events, especially at the conserved CD4bs. Here, we analyzed CD4bs-directed monoclonal antibodies (mAbs) elicited by YU2 gp140-foldon trimers in a non-human primate by selective sorting using CD4bs "knock out" trimers. Following two inoculations, the CD4bs-directed mAbs efficiently recognized the eliciting immunogen in their affinity-maturing state but did not recognize CD4bs-defective probes. We reverted these mAbs to their most likely inferred germline (igL) state, leaving the HCDR3 unaltered, to establish correlates of in vitro affinity to in vivo activation. Most igL-reverted mAbs bound the eliciting gp140 immunogen, indicating that CD4bs-directed B cells possessing reasonable affinity existed in the naïve repertoire. We detected relatively high affinities for the majority of the igL mAbs to gp120 and of Fabs to gp140, which, as expected, increased when the antibodies 'matured' following vaccination. Affinity increases were associated with slower off-rates as well as with acquisition of neutralizing capacity. These data reveal in vitro binding properties associated with in vivo activation that result in functional archiving of antigen-specific B cells elicited by a complex glycoprotein antigen following immunization. PMID:26879974

  16. Orthobunyavirus Antibodies in Humans, Yucatan Peninsula, Mexico

    PubMed Central

    Saiyasombat, Rungrat; Talavera-Aguilar, Lourdes G.; Garcia-Rejon, Julian E.; Farfan-Ale, Jose A.; Machain-Williams, Carlos; Loroño-Pino, Maria A.

    2012-01-01

    We performed a serologic investigation to determine whether orthobunyaviruses commonly infect humans in the Yucatan Peninsula of Mexico. Orthobunyavirus-specific antibodies were detected by plaque reduction neutralization test in 146 (18%) of 823 persons tested. Further studies are needed to determine health risks for humans from this potentially deadly group of viruses. PMID:23017592

  17. Mannosylerythritol lipid, a yeast extracellular glycolipid, shows high binding affinity towards human immunoglobulin G

    PubMed Central

    Im, Jae Hong; Nakane, Takashi; Yanagishita, Hiroshi; Ikegami, Toru; Kitamoto, Dai

    2001-01-01

    Background There have been many attempts to develop new materials with stability and high affinity towards immunoglobulins. Some of glycolipids such as gangliosides exhibit a high affinity toward immunoglobulins. However, it is considerably difficult to develop these glycolipids into the practical separation ligand due to their limited amounts. We thus focused our attention on the feasible use of "mannosylerythritol lipid A", a yeast glycolipid biosurfactant, as an alternative ligand for immunoglobulins, and undertook the investigation on the binding between mannosylerythritol lipid A (MEL-A) and human immunoglobulin G (HIgG). Results In ELISA assay, MEL-A showed nearly the same binding affinity towards HIgG as that of bovine ganglioside GM1. Fab of human IgG was considered to play a more important role than Fc in the binding of HIgG by MEL-A. The bound amount of HIgG increased depending on the attached amount of MEL-A onto poly (2-hydroxyethyl methacrylate) (polyHEMA) beads, whereas the amount of human serum albumin slightly decreased. Binding-amount and -selectivity of HIgG towards MEL-A were influenced by salt species, salt concentration and pH in the buffer solution. The composite of MEL-A and polyHEMA, exhibited a significant binding constant of 1.43 × 106 (M-1) for HIgG, which is approximately 4-fold greater than that of protein A reported. Conclusions MEL-A shows high binding-affinity towards HIgG, and this is considered to be due to "multivalent effect" based on the binding molar ratio. This is the first report on the binding of a natural human antibody towards a yeast glycolipid. PMID:11604104

  18. XGFR*, a novel affinity-matured bispecific antibody targeting IGF-1R and EGFR with combined signaling inhibition and enhanced immune activation for the treatment of pancreatic cancer.

    PubMed

    Schanzer, Juergen M; Wartha, Katharina; Moessner, Ekkehard; Hosse, Ralf J; Moser, Samuel; Croasdale, Rebecca; Trochanowska, Halina; Shao, Cuiying; Wang, Peng; Shi, Lei; Weinzierl, Tina; Rieder, Natascha; Bacac, Marina; Ries, Carola H; Kettenberger, Hubert; Schlothauer, Tilman; Friess, Thomas; Umana, Pablo; Klein, Christian

    2016-01-01

    The epidermal growth factor receptor (EGFR) and the insulin-like growth factor-1 receptor (IGF-1R) play critical roles in tumor growth, providing a strong rationale for the combined inhibition of IGF-1R and EGFR signaling in cancer therapy. We describe the design, affinity maturation, in vitro and in vivo characterization of the bispecific anti-IGF-1R/EGFR antibody XGFR*. XGFR* is based on the bispecific IgG antibody XGFR, which enabled heterodimerization of an IGF-1R binding scFab heavy chain with an EGFR-binding light and heavy chain by the "knobs-into-holes" technology. XGFR* is optimized for monovalent binding of human EGFR and IGF-1R with increased binding affinity for IGF-1R due to affinity maturation and highly improved protein stability to oxidative and thermal stress. It bears an afucosylated Fc-portion for optimal induction of antibody-dependent cell-mediated cytotoxicity (ADCC). Stable Chinese hamster ovary cell clones with production yields of 2-3 g/L were generated, allowing for large scale production of the bispecific antibody. XGFR* potently inhibits EGFR- and IGF-1R-dependent receptor phosphorylation, reduces tumor cell proliferation in cells with heterogeneous levels of IGF-1R and EGFR receptor expression and induces strong ADCC in vitro. A comparison of pancreatic and colorectal cancer lines demonstrated superior responsiveness to XGFR*-mediated signaling and tumor growth inhibition in pancreatic cancers that frequently show a high degree of IGF-1R/EGFR co-expression. XGFR* showed potent anti-tumoral efficacy in the orthotopic MiaPaCa-2 pancreatic xenograft model, resulting in nearly complete tumor growth inhibition with significant number of tumor remissions. In summary, the bispecific anti-IGF-1R/EGFR antibody XGFR* combines potent signaling and tumor growth inhibition with enhanced ADCC induction and represents a clinical development candidate for the treatment of pancreatic cancer. PMID:26984378

  19. XGFR*, a novel affinity-matured bispecific antibody targeting IGF-1R and EGFR with combined signaling inhibition and enhanced immune activation for the treatment of pancreatic cancer

    PubMed Central

    Schanzer, Juergen M.; Wartha, Katharina; Moessner, Ekkehard; Hosse, Ralf J.; Moser, Samuel; Croasdale, Rebecca; Trochanowska, Halina; Shao, Cuiying; Wang, Peng; Shi, Lei; Weinzierl, Tina; Rieder, Natascha; Bacac, Marina; Ries, Carola H.; Kettenberger, Hubert; Schlothauer, Tilman; Friess, Thomas; Umana, Pablo; Klein, Christian

    2016-01-01

    ABSTRACT The epidermal growth factor receptor (EGFR) and the insulin-like growth factor-1 receptor (IGF-1R) play critical roles in tumor growth, providing a strong rationale for the combined inhibition of IGF-1R and EGFR signaling in cancer therapy. We describe the design, affinity maturation, in vitro and in vivo characterization of the bispecific anti-IGF-1R/EGFR antibody XGFR*. XGFR* is based on the bispecific IgG antibody XGFR, which enabled heterodimerization of an IGF-1R binding scFab heavy chain with an EGFR-binding light and heavy chain by the “knobs-into-holes” technology. XGFR* is optimized for monovalent binding of human EGFR and IGF-1R with increased binding affinity for IGF-1R due to affinity maturation and highly improved protein stability to oxidative and thermal stress. It bears an afucosylated Fc-portion for optimal induction of antibody-dependent cell-mediated cytotoxicity (ADCC). Stable Chinese hamster ovary cell clones with production yields of 2–3 g/L were generated, allowing for large scale production of the bispecific antibody. XGFR* potently inhibits EGFR- and IGF-1R-dependent receptor phosphorylation, reduces tumor cell proliferation in cells with heterogeneous levels of IGF-1R and EGFR receptor expression and induces strong ADCC in vitro. A comparison of pancreatic and colorectal cancer lines demonstrated superior responsiveness to XGFR*-mediated signaling and tumor growth inhibition in pancreatic cancers that frequently show a high degree of IGF-1R/EGFR co-expression. XGFR* showed potent anti-tumoral efficacy in the orthotopic MiaPaCa-2 pancreatic xenograft model, resulting in nearly complete tumor growth inhibition with significant number of tumor remissions. In summary, the bispecific anti-IGF-1R/EGFR antibody XGFR* combines potent signaling and tumor growth inhibition with enhanced ADCC induction and represents a clinical development candidate for the treatment of pancreatic cancer. PMID:26984378

  20. Selection and characterization of a human neutralizing antibody to human fibroblast growth factor-2

    SciTech Connect

    Tao, Jun; Xiang, Jun-Jian; Li, Dan; Deng, Ning; Wang, Hong; Gong, Yi-Ping

    2010-04-09

    Compelling evidences suggest that fibroblast growth factor-2 (FGF-2) plays important roles in tumor growth, angiogenesis and metastasis. Molecules blocking the FGF-2 signaling have been proposed as anticancer agents. Through screening of a human scFv phage display library, we have isolated several human single-chain Fv fragments (scFvs) that bind to human FGF-2. After expression and purification in bacteria, one scFv, named 1A2, binds to FGF-2 with a high affinity and specificity, and completes with FGF-2 binding to its receptor. This 1A2 scFv was then cloned into the pIgG1 vector and expressed in 293T cells. The purified hIgG1-1A2 antibody showed a high binding affinity of 8 x 10{sup -9} M to rhFGF-2. In a set of vitro assays, it inhibited various biological activities of FGF-2 such as the proliferation, migration and tube formation of human umbilical vein endothelial cells. More importantly, hIgG1-1A2 antibody also efficiently blocked the growth while inducing apoptosis of glioma cells. For the first time, we generated a human anti-FGF-2 antibody with proven in vitro anti-tumor activity. It may therefore present a new therapeutic candidate for the treatment of cancers that are dependent on FGF-2 signaling for growth and survival.

  1. Antibody humanization by molecular dynamics simulations—in-silico guided selection of critical backmutations

    PubMed Central

    Kunert, Renate; Oostenbrink, Chris

    2016-01-01

    Monoclonal antibodies represent the fastest growing class of biotherapeutic proteins. However, as they are often initially derived from rodent organisms, there is a severe risk of immunogenic reactions, hampering their applicability. The humanization of these antibodies remains a challenging task in the context of rational drug design. “Superhumanization” describes the direct transfer of the complementarity determining regions to a human germline framework, but this humanization approach often results in loss of binding affinity. In this study, we present a new approach for predicting promising backmutation sites using molecular dynamics simulations of the model antibody Ab2/3H6. The simulation method was developed in close conjunction with novel specificity experiments. Binding properties of mAb variants were evaluated directly from crude supernatants and confirmed using established binding affinity assays for purified antibodies. Our approach provides access to the dynamical features of the actual binding sites of an antibody, based solely on the antibody sequence. Thus we do not need structural data on the antibody–antigen complex and circumvent cumbersome methods to assess binding affinities. PMID:26748949

  2. Prospective Design of Anti‐Transferrin Receptor Bispecific Antibodies for Optimal Delivery into the Human Brain

    PubMed Central

    Kanodia, JS; Gadkar, K; Bumbaca, D; Zhang, Y; Tong, RK; Luk, W; Hoyte, K; Lu, Y; Wildsmith, KR; Couch, JA; Watts, RJ; Dennis, MS; Ernst, JA; Scearce‐Levie, K; Atwal, JK; Joseph, S

    2016-01-01

    Anti‐transferrin receptor (TfR)‐based bispecific antibodies have shown promise for boosting antibody uptake in the brain. Nevertheless, there are limited data on the molecular properties, including affinity required for successful development of TfR‐based therapeutics. A complex nonmonotonic relationship exists between affinity of the anti‐TfR arm and brain uptake at therapeutically relevant doses. However, the quantitative nature of this relationship and its translatability to humans is heretofore unexplored. Therefore, we developed a mechanistic pharmacokinetic‐pharmacodynamic (PK‐PD) model for bispecific anti‐TfR/BACE1 antibodies that accounts for antibody‐TfR interactions at the blood‐brain barrier (BBB) as well as the pharmacodynamic (PD) effect of anti‐BACE1 arm. The calibrated model correctly predicted the optimal anti‐TfR affinity required to maximize brain exposure of therapeutic antibodies in the cynomolgus monkey and was scaled to predict the optimal affinity of anti‐TfR bispecifics in humans. Thus, this model provides a framework for testing critical translational predictions for anti‐TfR bispecific antibodies, including choice of candidate molecule for clinical development. PMID:27299941

  3. The Use of Monoclonal Antibodies in Human Prion Disease

    NASA Astrophysics Data System (ADS)

    Bodemer, Walter

    Detection of PrP and its pathological isoform(s) is the key to understanding the etiology and pathogenesis of transmissible spongiform encephalopathy. There is ample evidence that PrP isoforms constitute a major component of an unknown and perhaps unconventional infectious agent. An etiological relationship between human and zoonotic transmissible spongiform encephalopathies may be revealed with monoclonal antibodies. Knowledge of the conformational transition rendering a nonpathogenic, almost ubiquitous cellular protein into a pathogenic one is crucial to defining pathomechanisms. The stepwise or even continuous formation of pathogenic molecules can be monitored. Any improvement in the early diagnosis could help to conceive new therapeutic measures which are not currently available. Determination of PrP isoforms in tissue, cells, or body fluids may be of prognostic value. Many experimental approaches in molecular medicine and molecular biology of the prion protein already rely on monoclonal antibodies. Recombinant antibodies such as the single-chain Fv may soon replace traditional hybridoma techniques. Binding affinity can easily be manipulated by a number of techniques, including in vitro mutagenesis - a step which could never be carried out using the traditional hybridoma technology. Monoclonal antibodies are and will remain an essential support for ongoing research on the prion protein in general and on the unconventional infectious prions.

  4. Calcium affinity of human α-actinin 1

    PubMed Central

    2015-01-01

    Due to alternative splicing, the human ACTN1 gene codes for three different transcripts of α-actinin; one isoform that is expressed only in the brain and two with a more general expression pattern. The sequence difference is located to the C-terminal domains and the EF-hand motifs. Therefore, any functional or structural distinction should involve this part of the protein. To investigate this further, the calcium affinities of these three isoforms of α-actinin 1 have been determined by isothermal calorimetry. PMID:26020004

  5. Characterization of the Native and Denatured Herceptin by ELISA and QCM using a High-Affinity Single Chain Fragment Variable (scFv) Recombinant Antibody

    PubMed Central

    Shang, Yuqin; Mernaugh, Ray

    2012-01-01

    Herceptin/Trastuzumab is a humanized IgG1κ light chain antibody used to treat some forms of breast cancer. A phage-displayed recombinant antibody library was used to obtain an scFv (designated 2B4) to a linear synthetic peptide representing Herceptin’s heavy chain CDR3. ELISAs and piezoimmunosensor/quartz crystal microbalance (QCM) assays were used to characterize 2B4-binding activity to both native and heat denatured Herceptin. The 2B4 scFv specifically bound to heat denatured Herceptin in a concentration dependent manner over a wide (35–220.5 nM) dynamic range. Herceptin denatures and forms significant amount of aggregates when heated. UV-Vis characterization confirms that Herceptin forms aggregates as the temperature used to heat Herceptin increases. QCM affinity assay shows that binding stoichiometry between 2B4 scFv and Herceptin follows a 1:2 relationship proving that 2B4 scFv binds strongly to the dimers of heat denatured Herceptin aggregates and exhibits an affinity constant of 7.17 × 1013 M−2. The 2B4-based QCM assay was more sensitive than the corresponding ELISA. Combining QCM with ELISA can be used to more fully characterize non-specific binding events in assays. The potential theoretical and clinical implications of these results and the advantages of using QCM to characterize human therapeutic antibodies in samples are also discussed. PMID:22934911

  6. Evidence for a novel human-specific xeno-auto-antibody response against vascular endothelium.

    PubMed

    Pham, Tho; Gregg, Christopher J; Karp, Felix; Chow, Renee; Padler-Karavani, Vered; Cao, Hongzhi; Chen, Xi; Witztum, Joseph L; Varki, Nissi M; Varki, Ajit

    2009-12-10

    Humans are genetically unable to synthesize the common mammalian sialic acid N-glycolylneuraminic acid (Neu5Gc). However, Neu5Gc can be metabolically incorporated and covalently expressed on cultured human cell surfaces. Meanwhile, humans express varying and sometimes high titers of polyclonal anti-Neu5Gc antibodies. Here, a survey of human tissues by immunohistochemistry with both a monospecific chicken anti-Neu5Gc antibody and with affinity-purified human anti-Neu5Gc antibodies demonstrates endothelial expression of Neu5Gc, likely originating from Neu5Gc-rich foods like red meats. We hypothesized that the combination of Neu5Gc incorporation and anti-Neu5Gc antibodies can induce endothelial activation. Indeed, the incubation of high-titer human sera with Neu5Gc-fed endothelial cells led to Neu5Gc-dependent antibody binding, complement deposition, endothelial activation, selectin expression, increased cytokine secretion, and monocyte binding. The proinflammatory cytokine tumor necrosis factor-alpha also selectively enhanced human anti-Neu5Gc antibody reactivity. Anti-Neu5Gc antibodies affinity-purified from human serum also directed Neu5Gc-dependent complement deposition onto cultured endothelial cells. These data indicate a novel human-specific mechanism in which Neu5Gc-rich foods deliver immunogenic Neu5Gc to the endothelium, giving anti-Neu5Gc antibody- and complement-dependent activation, and potentially contributing to human vascular pathologies. In the case of atherosclerosis, Neu5Gc is present both in endothelium overlying plaques and in subendothelial regions, providing multiple pathways for accelerating inflammation in this disease. PMID:19828701

  7. Functional Analysis of the Human Antibody Response to Meningococcal Factor H Binding Protein

    PubMed Central

    Beernink, Peter T.; Giuntini, Serena; Costa, Isabella; Lucas, Alexander H.

    2015-01-01

    ABSTRACT Two licensed serogroup B meningococcal vaccines contain factor H binding protein (FHbp). The antigen specifically binds human FH, which downregulates complement. In wild-type mice whose mouse FH does not bind to FHbp vaccines, the serum anti-FHbp antibody response inhibited binding of human FH to FHbp. The inhibition was important for eliciting broad anti-FHbp serum bactericidal activity. In human FH transgenic mice and some nonhuman primates, FHbp was able to form a complex with FH and FHbp vaccination elicited anti-FHbp antibodies that did not inhibit FH binding. To investigate the human anti-FHbp repertoire, we cloned immunoglobulin heavy- and light-chain-variable-region genes of individual B cells from three adults immunized with FHbp vaccines and generated 10 sequence-distinct native anti-FHbp antibody fragments (Fabs). All 10 Fabs bound to live meningococci; only 1 slightly inhibited binding of human FH, while 4 enhanced FH binding. Affinity-purified anti-FHbp antibody from serum of a fourth immunized adult also enhanced binding of human FH to live meningococcal bacteria. Despite the bound FH, the affinity-purified serum anti-FHbp antibodies elicited human complement-mediated bactericidal activity that was amplified by the alternative pathway. The lack of FH inhibition by the human anti-FHbp Fabs and serum antibodies suggests that binding of human FH to the vaccine antigen skews the anti-FHbp antibody repertoire to epitopes outside the FH-binding site. Mutant FHbp vaccines with decreased FH binding may represent a means to redirect the human antibody repertoire to epitopes within the FH binding site, which can inhibit FH binding and, potentially, increase safety and protective activity. PMID:26106082

  8. Comparison of biosensor platforms in the evaluation of high affinity antibody-antigen binding kinetics.

    PubMed

    Yang, Danlin; Singh, Ajit; Wu, Helen; Kroe-Barrett, Rachel

    2016-09-01

    The acquisition of reliable kinetic parameters for the characterization of biomolecular interactions is an important component of the drug discovery and development process. While several benchmark studies have explored the variability of kinetic rate constants obtained from multiple laboratories and biosensors, a direct comparison of these instruments' performance has not been undertaken, and systematic factors contributing to data variability from these systems have not been discussed. To address these questions, a panel of ten high-affinity monoclonal antibodies was simultaneously evaluated for their binding kinetics against the same antigen on four biosensor platforms: GE Healthcare's Biacore T100, Bio-Rad's ProteOn XPR36, ForteBio's Octet RED384, and Wasatch Microfluidics's IBIS MX96. We compared the strengths and weaknesses of these systems and found that despite certain inherent systematic limitations in instrumentation, the rank orders of both the association and dissociation rate constants were highly correlated between these instruments. Our results also revealed a trade-off between data reliability and sample throughput. Biacore T100, followed by ProteOn XPR36, exhibited excellent data quality and consistency, whereas Octet RED384 and IBIS MX96 demonstrated high flexibility and throughput with compromises in data accuracy and reproducibility. Our results support the need for a "fit-for-purpose" approach in instrument selection for biosensor studies. PMID:27365220

  9. Kinetic exclusion assay of monoclonal antibody affinity to the membrane protein Roundabout 1 displayed on baculovirus.

    PubMed

    Kusano-Arai, Osamu; Fukuda, Rie; Kamiya, Wakana; Iwanari, Hiroko; Hamakubo, Takao

    2016-07-01

    The reliable assessment of monoclonal antibody (mAb) affinity against membrane proteins in vivo is a major issue in the development of cancer therapeutics. We describe here a simple and highly sensitive method for the evaluation of mAbs against membrane proteins by means of a kinetic exclusion assay (KinExA) in combination with our previously developed membrane protein display system using budded baculovirus (BV). In our BV display system, the membrane proteins are displayed on the viral surface in their native form. The BVs on which the liver cancer antigen Roundabout 1 (Robo1) was displayed were adsorbed onto magnetic beads without fixative (BV beads). The dissociation constant (Kd, ∼10(-11) M) that was measured on the Robo1 expressed BV beads correlated well with the value from a whole cell assay (the coefficient of determination, R(2) = 0.998) but not with the value for the soluble extracellular domains of Robo1 (R(2) = 0.834). These results suggest that the BV-KinExA method described here provides a suitably accurate Kd evaluation of mAbs against proteins on the cell surface. PMID:27095060

  10. “Velcro” Engineering of High Affinity CD47 Ectodomain as Signal Regulatory Protein α (SIRPα) Antagonists That Enhance Antibody-dependent Cellular Phagocytosis*

    PubMed Central

    Ho, Chia Chi M.; Guo, Nan; Sockolosky, Jonathan T.; Ring, Aaron M.; Weiskopf, Kipp; Özkan, Engin; Mori, Yasuo; Weissman, Irving L.; Garcia, K. Christopher

    2015-01-01

    CD47 is a cell surface protein that transmits an anti-phagocytic signal, known as the “don't-eat-me” signal, to macrophages upon engaging its receptor signal regulatory protein α (SIRPα). Molecules that antagonize the CD47-SIRPα interaction by binding to CD47, such as anti-CD47 antibodies and the engineered SIRPα variant CV1, have been shown to facilitate macrophage-mediated anti-tumor responses. However, these strategies targeting CD47 are handicapped by large antigen sinks in vivo and indiscriminate cell binding due to ubiquitous expression of CD47. These factors reduce bioavailability and increase the risk of toxicity. Here, we present an alternative strategy to antagonize the CD47-SIRPα pathway by engineering high affinity CD47 variants that target SIRPα, which has restricted tissue expression. CD47 proved to be refractive to conventional affinity maturation techniques targeting its binding interface with SIRPα. Therefore, we developed a novel engineering approach, whereby we augmented the existing contact interface via N-terminal peptide extension, coined “Velcro” engineering. The high affinity variant (Velcro-CD47) bound to the two most prominent human SIRPα alleles with greatly increased affinity relative to wild-type CD47 and potently antagonized CD47 binding to SIRPα on human macrophages. Velcro-CD47 synergizes with tumor-specific monoclonal antibodies to enhance macrophage phagocytosis of tumor cells in vitro, with similar potency as CV1. Finally, Velcro-CD47 interacts specifically with a subset of myeloid-derived cells in human blood, whereas CV1 binds all myeloid, lymphoid, and erythroid populations interrogated. This is consistent with the restricted expression of SIRPα compared with CD47. Herein, we have demonstrated that “Velcro” engineering is a powerful protein-engineering tool with potential applications to other systems and that Velcro-CD47 could be an alternative adjuvant to CD47-targeting agents for cancer immunotherapy

  11. Postbooster Antibodies from Humans as Source of Diphtheria Antitoxin

    PubMed Central

    Avila-Alonso, Ana; González-Rivera, Milagros; Tamayo, Eduardo; Eiros, Jose María; Almansa, Raquel

    2016-01-01

    Diphtheria antitoxin for therapeutic use is in limited supply. A potential source might be affinity-purified antibodies originally derived from plasma of adults who received a booster dose of a vaccine containing diphtheria toxoid. These antibodies might be useful for treating even severe cases of diphtheria. PMID:27314309

  12. Postbooster Antibodies from Humans as Source of Diphtheria Antitoxin.

    PubMed

    Bermejo-Martin, Jesús F; Avila-Alonso, Ana; González-Rivera, Milagros; Tamayo, Eduardo; Eiros, Jose María; Almansa, Raquel

    2016-07-01

    Diphtheria antitoxin for therapeutic use is in limited supply. A potential source might be affinity-purified antibodies originally derived from plasma of adults who received a booster dose of a vaccine containing diphtheria toxoid. These antibodies might be useful for treating even severe cases of diphtheria. PMID:27314309

  13. Affinity of HIV-1 antibody 2G12 with monosaccharides: a theoretical study based on explicit and implicit water models.

    PubMed

    Koyama, Yuka; Ueno-Noto, Kaori; Takano, Keiko

    2014-04-01

    In order to develop potential ligands to HIV-1 antibody 2G12 toward HIV-1 vaccine, binding mechanisms of the antibody 2G12 with the glycan ligand of D-mannose and D-fructose were theoretically examined. D-Fructose, whose molecular structure is slightly different from D-mannose, has experimentally shown to have stronger binding affinity to the antibody than that of D-mannose. To clarify the nature of D-fructose's higher binding affinity over D-mannose, we studied interaction between the monosaccharides and the antibody using ab initio fragment molecular orbital (FMO) method considering solvation effect as implicit model (FMO-PCM) as well as explicit water model. The calculated binding free energies of the glycans were qualitatively well consistent with the experimentally reported order of their affinities with the antibody 2G12. In addition, the FMO-PCM calculation elucidated the advantages of D-fructose over D-mannose in the solvation energy as well as the entropic contribution term obtained by MD simulations. The effects of explicit water molecules observed in the X-ray crystal structure were also scrutinized by means of FMO methods. Significant pair interaction energies among D-fructose, amino acids, and water molecules were uncovered, which indicated contributions from the water molecules to the strong binding ability of D-fructose to the antibody 2G12. These FMO calculation results of explicit water model as well as implicit water model indicated that the strong binding of D-fructose over D-mannose was due to the solvation effects on the D-fructose interaction energy. PMID:24583603

  14. Antigen-Antibody Affinity for Dry Eye Biomarkers by Label Free Biosensing. Comparison with the ELISA Technique

    PubMed Central

    Laguna, Maríafe; Holgado, Miguel; Hernandez, Ana L.; Santamaría, Beatriz; Lavín, Alvaro; Soria, Javier; Suarez, Tatiana; Bardina, Carlota; Jara, Mónica; Sanza, Francisco J.; Casquel, Rafael

    2015-01-01

    The specificity and affinity of antibody-antigen interactions is a fundamental way to achieve reliable biosensing responses. Different proteins involved with dry eye dysfunction: ANXA1, ANXA11, CST4, PRDX5, PLAA and S100A6; were validated as biomarkers. In this work several antibodies were tested for ANXA1, ANXA11 and PRDX5 to select the best candidates for each biomarker. The results were obtained by using Biophotonic Sensing Cells (BICELLs) as an efficient methodology for label-free biosensing and compared with the Enzyme-Linked Immuno Sorbent Assay (ELISA) technique. PMID:26287192

  15. The Interplay of Antigen Affinity, Internalization, and Pharmacokinetics on CD44-Positive Tumor Targeting of Monoclonal Antibodies.

    PubMed

    Glatt, Dylan M; Beckford Vera, Denis R; Parrott, Matthew C; Luft, J Christopher; Benhabbour, S Rahima; Mumper, Russell J

    2016-06-01

    Monoclonal antibodies (mAbs) offer promise as effective tumor targeting and drug delivery agents for cancer therapy. However, comparative biological and clinical characteristics of mAbs targeting the same tumor-associated antigen (TAA) often differ widely. This study examined the characteristics of mAbs that impact tumor targeting using a panel of mAb clones specific to the cancer-associated cell-surface receptor and cancer stem cell marker CD44. CD44 mAbs were screened for cell-surface binding, antigen affinity, internalization, and CD44-mediated tumor uptake by CD44-positive A549 cells. It was hypothesized that high-affinity, rapidly internalizing CD44 mAbs would result in high tumor uptake and prolonged tumor retention. Although high-affinity clones rapidly bound and were internalized by A549 cells in vitro, an intermediate-affinity clone demonstrated significantly greater tumor uptake and retention than high-affinity clones in vivo. Systemic exposure, rather than high antigen affinity or rapid internalization, best associated with tumor targeting of CD44 mAbs in A549 tumor-bearing mice. PMID:27079967

  16. Peptide-based protein capture agents with high affinity, selectivity, and stability as antibody replacements in biodetection assays

    NASA Astrophysics Data System (ADS)

    Coppock, Matthew B.; Farrow, Blake; Warner, Candice; Finch, Amethist S.; Lai, Bert; Sarkes, Deborah A.; Heath, James R.; Stratis-Cullum, Dimitra

    2014-05-01

    Current biodetection assays that employ monoclonal antibodies as primary capture agents exhibit limited fieldability, shelf life, and performance due to batch-to-batch production variability and restricted thermal stability. In order to improve upon the detection of biological threats in fieldable assays and systems for the Army, we are investigating protein catalyzed capture (PCC) agents as drop-in replacements for the existing antibody technology through iterative in situ click chemistry. The PCC agent oligopeptides are developed against known protein epitopes and can be mass produced using robotic methods. In this work, a PCC agent under development will be discussed. The performance, including affinity, selectivity, and stability of the capture agent technology, is analyzed by immunoprecipitation, western blotting, and ELISA experiments. The oligopeptide demonstrates superb selectivity coupled with high affinity through multi-ligand design, and improved thermal, chemical, and biochemical stability due to non-natural amino acid PCC agent design.

  17. Ebolavirus Nucleoprotein C-Termini Potently Attract Single Domain Antibodies Enabling Monoclonal Affinity Reagent Sandwich Assay (MARSA) Formulation

    PubMed Central

    Sherwood, Laura J.; Hayhurst, Andrew

    2013-01-01

    Background Antigen detection assays can play an important part in environmental surveillance and diagnostics for emerging threats. We are interested in accelerating assay formulation; targeting the agents themselves to bypass requirements for a priori genome information or surrogates. Previously, using in vitro affinity reagent selection on Marburg virus we rapidly established monoclonal affinity reagent sandwich assay (MARSA) where one recombinant antibody clone was both captor and tracer for polyvalent nucleoprotein (NP). Hypothesizing that the closely related Ebolavirus genus may share the same Achilles' heel, we redirected the scheme to see whether similar assays could be delivered and began to explore their mechanism. Methods and Findings In parallel we selected panels of llama single domain antibodies (sdAb) from a semi-synthetic library against Zaire, Sudan, Ivory Coast, and Reston Ebola viruses. Each could perform as both captor and tracer in the same antigen sandwich capture assay thereby forming MARSAs. All sdAb were specific for NP and those tested required the C-terminal domain for recognition. Several clones were cross-reactive, indicating epitope conservation across the Ebolavirus genus. Analysis of two immune shark sdAb revealed they also targeted the C-terminal domain, and could be similarly employed, yet were less sensitive than a comparable llama sdAb despite stemming from immune selections. Conclusions The C-terminal domain of Ebolavirus NP is a strong attractant for antibodies and enables sensitive sandwich immunoassays to be rapidly generated using a single antibody clone. The polyvalent nature of nucleocapsid borne NP and display of the C-terminal region likely serves as a bountiful affinity sink during selections, and a highly avid target for subsequent immunoassay capture. Combined with the high degree of amino acid conservation through 37 years and across wide geographies, this domain makes an ideal handle for monoclonal affinity reagent

  18. A human monoclonal antibody specific to placental alkaline phosphatase, a marker of ovarian cancer

    PubMed Central

    Ravenni, Niccolò; Weber, Marcel; Neri, Dario

    2014-01-01

    Placental alkaline phosphatase (PLAP) is a promising ovarian cancer biomarker. Here, we describe the isolation, affinity-maturation and characterization of two fully human monoclonal antibodies (termed B10 and D9) able to bind to human PLAP with a dissociation constant (Kd) of 10 and 30 nM, respectively. The ability of B10 and D9 antibodies to recognize the native antigen was confirmed by Biacore analysis, FACS and immunofluorescence studies using ovarian cancer cell lines and freshly-frozen human tissues. A quantitative biodistribution study in nude mice revealed that the B10 antibody preferentially localizes to A431 tumors, following intravenous administration. Anti-PLAP antibodies may serve as a modular building blocks for the development of targeted therapeutic products, armed with cytotoxic drugs, radionuclides or cytokines as payloads. PMID:24247025

  19. Direct binding of radioiodinated monoclonal antibody to tumor cells: significance of antibody purity and affinity for drug targeting or tumor imaging

    SciTech Connect

    Kennel, S.J.; Foote, L.J.; Lankford, P.K.; Johnson, M.; Mitchell, T.; Braslawsky, G.R.

    1983-01-01

    For MoAb to be used efficiently for drug targeting and tumor imaging, the fraction of antibody binding to tumor cells must be maximized. The authors have studied the binding of /sup 125/I MoAb in three different tumor systems. The fraction of antibody that could be bound to the cell surface was directly proportional to the antibody purity. The affinity constant also limits the fraction of antibody that can bind to cells at a given antigen concentration. Rearrangement of the standard expression for univalent equilibrium binding between two reactants shows that in antigen excess, the maximum fraction of antibody that can bind =Ka(Ag total)/1 + Ka(Ag total). Binding data using four different MoAb with three cell systems confirm this relationship. Estimates for reasonable concentrations of tumor antigens in vivo indicate that antibodies with binding constants less than 10/sup 8/ M/sup -1/ are not likely to be useful for drug targeting or tumor imaging.

  20. A Highly Functional Synthetic Phage Display Library Containing over 40 Billion Human Antibody Clones

    PubMed Central

    Weber, Marcel; Bujak, Emil; Putelli, Alessia; Villa, Alessandra; Matasci, Mattia; Gualandi, Laura; Hemmerle, Teresa; Wulhfard, Sarah; Neri, Dario

    2014-01-01

    Several synthetic antibody phage display libraries have been created and used for the isolation of human monoclonal antibodies. The performance of antibody libraries, which is usually measured in terms of their ability to yield high-affinity binding specificities against target proteins of interest, depends both on technical aspects (such as library size and quality of cloning) and on design features (which influence the percentage of functional clones in the library and their ability to be used for practical applications). Here, we describe the design, construction and characterization of a combinatorial phage display library, comprising over 40 billion human antibody clones in single-chain fragment variable (scFv) format. The library was designed with the aim to obtain highly stable antibody clones, which can be affinity-purified on protein A supports, even when used in scFv format. The library was found to be highly functional, as >90% of randomly selected clones expressed the corresponding antibody. When selected against more than 15 antigens from various sources, the library always yielded specific and potent binders, at a higher frequency compared to previous antibody libraries. To demonstrate library performance in practical biomedical research projects, we isolated the human antibody G5, which reacts both against human and murine forms of the alternatively spliced BCD segment of tenascin-C, an extracellular matrix component frequently over-expressed in cancer and in chronic inflammation. The new library represents a useful source of binding specificities, both for academic research and for the development of antibody-based therapeutics. PMID:24950200

  1. Detection of low-affinity anti-drug antibodies and improved drug tolerance in immunogenicity testing by Octet(®) biolayer interferometry.

    PubMed

    Li, Jian; Schantz, Allen; Schwegler, Maureen; Shankar, Gopi

    2011-01-25

    We assessed the utility of the FortéBio Octet(®) system for detection of anti-drug antibodies (ADAs) against an investigational therapeutic human IgG1 monoclonal antibody (mAb), CNTO X. To understand the relative merits of this technology, key performance requirements were compared with two popularly accepted ADA detection methods, a step-wise bridging ELISA and a Meso Scale Discovery (MSD) homogeneous (single step binding) bridging ECLIA. When used to detect 13 monoclonal ADAs of varying affinities and one polyclonal ADA, all three methods demonstrated their greatest apparent sensitivity to the polyclonal sample (1, 6, and 130 ng/mL, respectively for ECLIA, ELISA, and Octet). Sensitivity to monoclonal ADAs tended to vary in accordance with their affinities, however, the sensitivity of the Octet method varied much less between ADAs. As a result, the above ranking became reversed such that Octet was the most and ELISA least sensitive for detection of low-affinity ADAs. With regard to drug tolerance, the presence of CNTO X could lead to false-negative assay results, although each method was affected to a different degree, with the Octet method tolerating up to 10 times more drug than the ECLIA method, which in turn tolerated up to 10 times more than the ELISA. Finally, the ECLIA and Octet methods were applied to the bioanalysis of cynomolgus monkey sera from a pre-clinical multiple dose study of CNTO X. Octet indicated 3 positive animals developed ADA as early as day 15 of the dosing phase while drug was present at nearly 1mg/mL. ECLIA detected only one of these, and only in a day 57 recovery sample after drug had cleared from circulation. We conclude that the Octet is a promising platform for detection of lower affinity ADAs and is particularly suitable for ADA detection when drug persists at levels that negatively impact bridging immunoassays. PMID:20869832

  2. mCSM-AB: a web server for predicting antibody-antigen affinity changes upon mutation with graph-based signatures.

    PubMed

    Pires, Douglas E V; Ascher, David B

    2016-07-01

    Computational methods have traditionally struggled to predict the effect of mutations in antibody-antigen complexes on binding affinity. This has limited their usefulness during antibody engineering and development, and their ability to predict biologically relevant escape mutations. Here we present mCSM-AB, a user-friendly web server for accurately predicting antibody-antigen affinity changes upon mutation which relies on graph-based signatures. We show that mCSM-AB performs better than comparable methods that have been previously used for antibody engineering. mCSM-AB web server is available at http://structure.bioc.cam.ac.uk/mcsm_ab. PMID:27216816

  3. Development of monoclonal antibodies against parathyroid hormone: genetic control of the immune response to human PTH

    SciTech Connect

    Nussbaum, S.R.; Lin, C.S.; Potts, J.T. Jr.; Rosenthal, A.S.; Rosenblatt, M.

    1985-01-01

    Seventeen monocloanl antibodies against the aminoterminal portion of parathyroid hormone (PTH) were generated by using BALB/c mouse for immunization fully biologically active synthetic human PTH-(1-34) and bovine PTH-(1-84) as immunogens, monoclonal antibody methods, and a solid-phase screening assay. Isotypic analysis of these monoclonal antibodies was performed using affinity purified goat antimouse immunoglobulins specific for IgG heavy chains and ..mu..(IgM). All antibodies were IgM as evidenced by 40 times greater than background activity when 25,000 cpm of /sup 125/I-labelled goat anti-mouse IgM was used as second antibody in a radioimmunoassay.

  4. Characterization of novel neutralizing monoclonal antibodies specific to human neurturin.

    PubMed

    Hongo, J A; Tsai, S P; Moffat, B; Schroeder, K A; Jung, C; Chuntharapai, A; Lampe, P A; Johnson, E M; de Sauvage, F J; Armanini, M; Phillips, H; Devaux, B

    2000-08-01

    Neurturin (NTN) a structural and functional relative of glial cell line-derived neurotrophic factor, was originally identified based on its ability to support the survival of sympathetic neurons in culture. Similar to glial cell line-derived neurotrophic factor (GDNF), Neurturin has been shown to bind to a high affinity glycosylphosphatidylinositol (GPI)-linked receptor (GFRalpha2) and induce phosphorylation of the tyrosine kinase receptor Ret, resulting in the activation of the mitogen activated protein kinase (MAPK) signalling pathway. A panel of six novel murine monoclonal antibodies (MAbs) specific to human Neurturin has been developed and characterized. Four of the MAbs tested inhibit, to varying degrees, binding of NTN to the GPI-linked GFRalpha2 receptor. Three MAbs cross-react with the murine homolog. These antibodies have been shown to be useful reagents for Western blotting, immunohistochemistry, and also for the development of a sensitive, quantitative enzyme-linked immunosorbent assay (ELISA) for human NTN. Novel, specific MAbs with varying epitope specificities and blocking activity will be valuable tools for both the in vitro and in vivo characterization of NTN and its relationship to the GFRalpha2 and Ret receptors. PMID:11001403

  5. Selection and characterization of human antibody fragments specific for psoriasin - a cancer associated protein.

    PubMed

    Cyranka-Czaja, Anna; Wulhfard, Sarah; Neri, Dario; Otlewski, Jacek

    2012-03-01

    S100A7 (psoriasin) is a calcium-binding protein that is upregulated in many types of cancer and often associated with poor prognosis. Its role in carcinogenesis has been associated with the stimulation of VEGF and EGF activity. The recent research showed that psoriasin directly interacts with αvβ6 integrin, a protein related to the invasive phenotype of cancer. Moreover, this interaction promotes the αvβ6-dependent invasive activity. The important function of S100A7 in carcinoma development determines a great need for valuable tools enabling its detection, quantification and also activity inhibition. Here, we show the selection of S100A7 specific antibody fragments from the human scFv phage library ETH-2 Gold. We have selected antibody fragments specific for psoriasin, purified them and analyzed by BIAcore affinity measurements. The best clone was subjected to affinity maturation procedure yielding molecule with a subnanomolar affinity towards human S100A7 protein. Selected clone was expressed in a bivalent format and applied for immunostaining analysis, which confirmed the ability of the antigen recognition in physiological conditions. We therefore propose that obtained antibody, that is the first phage display-derived human antibody against psoriasin, can serve as a useful psoriasin binding platform in research, diagnostics and therapy of cancer. PMID:22342672

  6. Cross-neutralizing human anti-poliovirus antibodies bind the recognition site for cellular receptor

    PubMed Central

    Chen, Zhaochun; Fischer, Elizabeth R.; Kouiavskaia, Diana; Hansen, Bryan T.; Ludtke, Steven J.; Bidzhieva, Bella; Makiya, Michelle; Agulto, Liane; Purcell, Robert H.; Chumakov, Konstantin

    2013-01-01

    Most structural information about poliovirus interaction with neutralizing antibodies was obtained in the 1980s in studies of mouse monoclonal antibodies. Recently we have isolated a number of human/chimpanzee anti-poliovirus antibodies and demonstrated that one of them, MAb A12, could neutralize polioviruses of both serotypes 1 and 2. This communication presents data on isolation of an additional cross-neutralizing antibody (F12) and identification of a previously unknown epitope on the surface of poliovirus virions. Epitope mapping was performed by sequencing of antibody-resistant mutants and by cryo-EM of complexes of virions with Fab fragments. The results have demonstrated that both cross-neutralizing antibodies bind the site located at the bottom of the canyon surrounding the fivefold axis of symmetry that was previously shown to interact with cellular poliovirus receptor CD155. However, the same antibody binds to serotypes 1 and 2 through different specific interactions. It was also shown to interact with type 3 poliovirus, albeit with about 10-fold lower affinity, insufficient for effective neutralization. Antibody interaction with the binding site of the cellular receptor may explain its broad reactivity and suggest that further screening or antibody engineering could lead to a universal antibody capable of neutralizing all three serotypes of poliovirus. PMID:24277851

  7. Importance of Hypervariable Region 2 for Stability and Affinity of a Shark Single-Domain Antibody Specific for Ebola Virus Nucleoprotein

    PubMed Central

    Anderson, George P.; Teichler, Daniel D.; Zabetakis, Dan; Shriver-Lake, Lisa C.; Liu, Jinny L.; Lonsdale, Stephen G.; Goodchild, Sarah A.; Goldman, Ellen R.

    2016-01-01

    Single-domain antibodies derived from the unique New Antigen Receptor found in sharks have numerous potential applications, ranging from diagnostic reagents to therapeutics. Shark-derived single-domain antibodies possess the same characteristic ability to refold after heat denaturation found in single-domain antibodies derived from camelid heavy-chain-only antibodies. Recently, two shark derived single-domain antibodies specific for the nucleoprotein of Ebola virus were described. Our evaluation confirmed their high affinity for the nucleoprotein, but found their melting temperatures to be low relative to most single-domain antibodies. Our first approach towards improving their stability was grafting antigen-binding regions (complementarity determining regions) of one of these single-domain antibodies onto a high melting temperature shark single-domain antibody. This resulted in two variants: one that displayed excellent affinity with a low melting temperature, while the other had poor affinity but a higher melting temperature. These new proteins, however, differed in only 3 amino acids within the complementarity determining region 2 sequence. In shark single-domain antibodies, the complementarity determining region 2 is often referred to as hypervariable region 2, as this segment of the antibody domain is truncated compared to the sequence in camelid single-domain antibodies and conventional heavy chain variable domains. To elucidate which of the three amino acids or combinations thereof were responsible for the affinity and stability we made the 6 double and single point mutants that covered the intermediates between these two clones. We found a single amino acid change that achieved a 10°C higher melting temperature while maintaining sub nM affinity. This research gives insights into the impact of the shark sdAb hypervariable 2 region on both stability and affinity. PMID:27494523

  8. Importance of Hypervariable Region 2 for Stability and Affinity of a Shark Single-Domain Antibody Specific for Ebola Virus Nucleoprotein.

    PubMed

    Anderson, George P; Teichler, Daniel D; Zabetakis, Dan; Shriver-Lake, Lisa C; Liu, Jinny L; Lonsdale, Stephen G; Goodchild, Sarah A; Goldman, Ellen R

    2016-01-01

    Single-domain antibodies derived from the unique New Antigen Receptor found in sharks have numerous potential applications, ranging from diagnostic reagents to therapeutics. Shark-derived single-domain antibodies possess the same characteristic ability to refold after heat denaturation found in single-domain antibodies derived from camelid heavy-chain-only antibodies. Recently, two shark derived single-domain antibodies specific for the nucleoprotein of Ebola virus were described. Our evaluation confirmed their high affinity for the nucleoprotein, but found their melting temperatures to be low relative to most single-domain antibodies. Our first approach towards improving their stability was grafting antigen-binding regions (complementarity determining regions) of one of these single-domain antibodies onto a high melting temperature shark single-domain antibody. This resulted in two variants: one that displayed excellent affinity with a low melting temperature, while the other had poor affinity but a higher melting temperature. These new proteins, however, differed in only 3 amino acids within the complementarity determining region 2 sequence. In shark single-domain antibodies, the complementarity determining region 2 is often referred to as hypervariable region 2, as this segment of the antibody domain is truncated compared to the sequence in camelid single-domain antibodies and conventional heavy chain variable domains. To elucidate which of the three amino acids or combinations thereof were responsible for the affinity and stability we made the 6 double and single point mutants that covered the intermediates between these two clones. We found a single amino acid change that achieved a 10°C higher melting temperature while maintaining sub nM affinity. This research gives insights into the impact of the shark sdAb hypervariable 2 region on both stability and affinity. PMID:27494523

  9. Monoclonal antibodies to human hemoglobin S and cell lines for the production thereof

    DOEpatents

    Jensen, R.H.; Vanderlaan, M.; Bigbee, W.L.; Stanker, L.H.; Branscomb, E.W.; Grabske, R.J.

    1984-11-29

    The present invention provides monoclonal antibodies specific to and distinguishing between hemoglobin S and hemoglobin A and methods for their production and use. These antibodies are capable of distinguishing between two hemoglobin types which differ from each other by only a single amino acid residue. The antibodies produced according to the present method are useful as immunofluorescent markers to enumerate circulating red blood cells which have the property of altered expression of the hemoglobin gene due to somatic mutation in stem cells. Such a measurement is contemplated as an assay for in vivo cellular somatic mutations in humans. Since the monoclonal antibodies produced in accordance with the instant invention exhibit a high degree of specificity to and greater affinity for hemoglobin S, they are suitable for labeling human red blood cells for flow cytometric detection of hemoglobin genotype. 4 figs.

  10. Monoclonal antibodies to human hemoglobin S and cell lines for the production thereof

    DOEpatents

    Jensen, Ronald H.; Vanderlaan, Martin; Bigbee, William L.; Stanker, Larry H.; Branscomb, Elbert W.; Grabske, Robert J.

    1988-01-01

    The present invention provides monoclonal antibodies specific to and distinguish between hemoglobin S and hemoglobin A and methods for their production and use. These antibodies are capable of distinguishing between two hemoglobin types which differ from each other by only a single amino acid residue. The antibodies produced according to the present method are useful as immunofluorescent markers to enumerate circulating red blood cells which have the property of altered expression of the hemoglobin gene due to somatic mutation in stem cells. Such a measurement is contemplated as an assay for in vivo cellular somatic mutations in humans. Since the monoclonal antibodies produced in accordance with the instant invention exhibit a high degree of specificity to and greater affinity for hemoglobin S, they are suitable for labeling human red blood cells for flow cytometric detection of hemoglobin genotype.

  11. Development and Preclinical Testing of a High Affinity Single Chain Antibody against (+)-Methamphetamine

    PubMed Central

    Peterson, Eric C.; Laurenzana, Elizabeth M.; Atchley, William T.; Hendrickson, Howard; Owens, S. Michael

    2009-01-01

    Chronic or excessive (+)-methamphetamine (METH) use often leads to addiction and toxicity to critical organs like the brain. With medical treatment as a goal, a novel single chain variable fragment (scFv) against METH was engineered from anti-METH monoclonal antibody mAb6H4 (IgG, κ light chain, KD = 11 nM) and found to have similar ligand affinity (KD = 10 nM) and specificity as mAb6H4. The anti-METH scFv (scFv6H4) was cloned, expressed in yeast, purified and formulated as a naturally occurring mixture of monomer (~75%) and dimer (~25%). To test the in vivo efficacy of the scFv6H4, male Sprague Dawley rats (n=5) were implanted with 3-day sc osmotic pumps delivering 3.2 mg/kg/day METH. After reaching steady-state METH concentrations, an i.v. dose of scFv6H4 (36.5 mg/kg, equimolar to the METH body burden) was administered along with a [3H]-scFv6H4 tracer. Serum pharmacokinetic (PCKN) analysis of METH and [3H]-scFv6H4 showed that the scFv6H4 caused an immediate 65-fold increase in the METH concentrations and a 12-fold increase in the serum METH area under the concentration-time curve from 0–480 min after scFv6H4 administration. The scFv6H4 monomer was quickly cleared or converted to multivalent forms with an apparent t1/2λz of 5.8 min. In contrast, the larger scFv6H4 multivalent forms (dimers, trimers, etc.) showed a much longer t1/2λz (228 min), and the significantly increased METH serum molar concentrations correlated directly with scFv6H4 serum molar concentrations. Considered together these data suggested that the scFv6H4 multimers (and not the monomer) were responsible for the prolonged redistribution of METH into the serum. PMID:18192498

  12. Convergent antibody signatures in human dengue.

    PubMed

    Parameswaran, Poornima; Liu, Yi; Roskin, Krishna M; Jackson, Katherine K L; Dixit, Vaishali P; Lee, Ji-Yeun; Artiles, Karen L; Zompi, Simona; Vargas, Maria José; Simen, Birgitte B; Hanczaruk, Bozena; McGowan, Kim R; Tariq, Muhammad A; Pourmand, Nader; Koller, Daphne; Balmaseda, Angel; Boyd, Scott D; Harris, Eva; Fire, Andrew Z

    2013-06-12

    Dengue is the most prevalent mosquito-borne viral disease in humans, and the lack of early prognostics, vaccines, and therapeutics contributes to immense disease burden. To identify patterns that could be used for sequence-based monitoring of the antibody response to dengue, we examined antibody heavy-chain gene rearrangements in longitudinal peripheral blood samples from 60 dengue patients. Comparing signatures between acute dengue, postrecovery, and healthy samples, we found increased expansion of B cell clones in acute dengue patients, with higher overall clonality in secondary infection. Additionally, we observed consistent antibody sequence features in acute dengue in the highly variable major antigen-binding determinant, complementarity-determining region 3 (CDR3), with specific CDR3 sequences highly enriched in acute samples compared to postrecovery, healthy, or non-dengue samples. Dengue thus provides a striking example of a human viral infection where convergent immune signatures can be identified in multiple individuals. Such signatures could facilitate surveillance of immunological memory in communities. PMID:23768493

  13. Conversion of murine antibodies to human antibodies and their optimization for ovarian cancer therapy targeted to the folate receptor.

    PubMed

    Figini, Mariangela; Martin, Franck; Ferri, Renata; Luison, Elena; Ripamonti, Elena; Zacchetti, Alberto; Mortarino, Mimosa; Di Cioccio, Vito; Maurizi, Giovanni; Allegretti, Marcello; Canevari, Silvana

    2009-04-01

    We previously developed murine and chimeric antibodies against a specific epithelial ovarian carcinoma (EOC) marker, named folate receptor (FR), and promising results were obtained in phase II trials. More recently, we successfully generated a completely human Fab fragment, C4, by conversion of one of the murine anti-FR antibodies to human antibody using phage display and guided selection. However, subsequent efforts to obtain C4 in a dimer format, which seems especially desirable for EOC locoregional treatment, resulted in a highly heterogeneous product upon natural dimerization and in a very poor production yield upon chemical dimerization by a non-hydrolyzable linker to a di-Fab-maleimide (DFM). We therefore designed, constructed and characterized a large Fab dual combinatorial human antibody phage display library obtained from EOC patients and potentially biased toward an anti-tumor response in an effort to obtain new anti-FR human antibodies suitable for therapy. Using this library and guiding the selection on FR-expressing cells with murine/human antibody chains, we generated four new human anti-FR antibody (AFRA) Fab fragments, one of which was genetically and chemically manipulated to obtain a chemical dimer, designated AFRA-DFM5.3, with high yield production and the capability for purification scaled-up to clinical grade. Overall affinity of AFRA-DFM5.3 was in the 2-digit nanomolar range, and immunohistochemistry indicated that the reagent recognized the FR expressed on EOC samples. (131)I-AFRA-DFM5.3 showed high immunoreactivity, in vitro stability and integrity, and specifically accumulated only in FR-expressing tumors in subcutaneous preclinical in vivo models. Overall, our studies demonstrate the successful conversion of murine to completely human anti-FR antibodies through the combined use of antibody phage display libraries biased toward an anti-tumor response, guided selection and chain shuffling, and point to the suitability of AFRA5.3 for future

  14. Human Monoclonal Antibodies to Pf 155, a Major Antigen of Malaria Parasite Plasmodium falciparum

    NASA Astrophysics Data System (ADS)

    Udomsangpetch, Rachanee; Lundgren, Katarina; Berzins, Klavs; Wahlin, Birgitta; Perlmann, Hedvig; Troye-Blomberg, Marita; Carlsson, Jan; Wahlgren, Mats; Perlmann, Peter; Bjorkman, Anders

    1986-01-01

    Pf 155, a protein of the human malaria parasite Plasmodium falciparum, is strongly immunogenic in humans and is believed to be a prime candidate for the preparation of a vaccine. Human monoclonal antibodies to Pf 155 were obtained by cloning B cells that had been prepared from an immune donor and transformed with Epstein-Barr virus. When examined by indirect immunofluorescence, these antibodies stained the surface of infected erythrocytes, free merozoites, segmented schizonts, and gametocytes. They bound to a major polypeptide with a relative molecular weight of 155K and to two minor ones (135K and 120K), all having high affinity for human glycophorin. The antibodies strongly inhibited merozoite reinvasion in vitro, suggesting that they might be appropriate reagents for therapeutic administration in vivo.

  15. Structural basis for the inhibition of HIV-1 Nef by a high-affinity binding single-domain antibody

    PubMed Central

    2014-01-01

    Background The HIV-1 Nef protein is essential for AIDS pathogenesis by its interaction with host cell surface receptors and signaling factors. Despite its critical role as a virulence factor Nef is not targeted by current antiviral strategies. Results We have determined the crystal structure of the complex formed by a camelid single-domain antibody fragment, termed sdAb19, bound to HIV-1 Nef together with a stabilizing SH3 domain. sdAb19 forms a stoichiometric 1:1 complex with Nef and binds to a conformationally conserved surface at the C-terminus of Nef that overlaps with functionally important interaction sites involved in Nef-induced perturbations of signaling and trafficking pathways. The antibody fragment binds Nef with low nanomolar affinity, which could be attenuated to micromolar affinity range by site-directed mutagenesis of key interaction residues in sdAb19. Fusion of the SH3 domain to sdAb19, termed Neffin, leads to a significantly increased affinity for Nef and formation of a stoichiometric 2:2 Nef–Neffin complex. The 19 kDa Neffin protein inhibits all functions of Nef as CD4 and MHC-I downregulation, association with Pak2, and the increase in virus infectivity and replication. Conclusions Together, sdAb19 and Neffin thus represent efficient tools for the rational development of antiviral strategies against HIV-1 Nef. PMID:24620746

  16. Affinity Maturation of a Potent Family of HIV Antibodies Is Primarily Focused on Accommodating or Avoiding Glycans.

    PubMed

    Garces, Fernando; Lee, Jeong Hyun; de Val, Natalia; de la Pena, Alba Torrents; Kong, Leopold; Puchades, Cristina; Hua, Yuanzi; Stanfield, Robyn L; Burton, Dennis R; Moore, John P; Sanders, Rogier W; Ward, Andrew B; Wilson, Ian A

    2015-12-15

    The high-mannose patch on the HIV-1 envelope (Env) glycoprotein is the epicenter for binding of the potent broadly neutralizing PGT121 family of antibodies, but strategies for generating such antibodies by vaccination have not been defined. We generated structures of inferred antibody intermediates by X-ray crystallography and electron microscopy to elucidate the molecular events that occurred during evolution of this family. Binding analyses revealed that affinity maturation was primarily focused on avoiding, accommodating, or binding the N137 glycan. The overall antibody approach angle to Env was defined very early in the maturation process, yet some variation evolved in the PGT121 family branches that led to differences in glycan specificities in their respective epitopes. Furthermore, we determined a crystal structure of the recombinant BG505 SOSIP.664 HIV-1 trimer with a PGT121 family member at 3.0 Å that, in concert with these antibody intermediate structures, provides insights to advance design of HIV vaccine candidates. PMID:26682982

  17. Framework selection can influence pharmacokinetics of a humanized therapeutic antibody through differences in molecule charge

    PubMed Central

    Li, Bing; Tesar, Devin; Boswell, C Andrew; Cahaya, Hendry S; Wong, Anne; Zhang, Jianhuan; Meng, Y Gloria; Eigenbrot, Charles; Pantua, Homer; Diao, Jinyu; Kapadia, Sharookh B; Deng, Rong; Kelley, Robert F

    2014-01-01

    Pharmacokinetic (PK) testing of a humanized (κI, VH3 framework) and affinity matured anti-hepatitis C virus E2-glycoprotein (HCV-E2) antibody (hu5B3.κ1VH3.v3) in rats revealed unexpected fast clearance (34.9 mL/day/kg). This antibody binds to the rat recycling receptor FcRn as expected for a human IgG1 antibody and does not display non-specific binding to baculovirus particles in an assay that is correlated with fast clearance in cynomolgus monkey. The antigen is not expressed in rat so target-dependent clearance does not contribute to PK. Removal of the affinity maturation changes (hu5B3.κ1VH3.v1) did not restore normal clearance. The antibody was re-humanized on a κ4, VH1 framework and the non-affinity matured version (hu5B3.κ4VH1.v1) was shown to have normal clearance (8.5 mL/day/kg). Since the change in framework results in a lower pI, primarily due to more negative charge on the κ4 template, the effect of additional charge variation on antibody PK was tested by incorporating substitutions obtained through phage display affinity maturation of hu5B3.κ1VH3.v1. A variant having a pI of 8.61 gave very fast clearance (140 mL/day/kg) whereas a molecule with pI of 6.10 gave slow clearance (5.8 mL/kg/day). Both antibodies exhibited comparable binding to rat FcRn, but biodistribution experiments showed that the high pI variant was catabolized in liver and spleen. These results suggest antibody charge can have an effect on PK through alterations in antibody catabolism independent of FcRn-mediated recycling. Furthermore, introduction of affinity maturation changes into the lower pI framework yielded a candidate with PK and virus neutralization properties suitable for clinical development. PMID:25517310

  18. Competitive Selection from Single Domain Antibody Libraries Allows Isolation of High-Affinity Antihapten Antibodies That Are Not Favored in the llama Immune Response

    PubMed Central

    Rosa, Sofia Tabares-da; Rossotti, Martin; Carleiza, Carmen; Carrión, Federico; Pritsch, Otto; Ahn, Ki Chang; Last, Jerold A.; Hammock, Bruce D; González-Sapienza, Gualberto

    2011-01-01

    Single-domain antibodies (sdAbs) found in camelids, lack a light chain and their antigen-binding site sits completely in the heavy-chain variable domain (VHH). Their simplicity, thermostability, and ease in expression have made VHHs highly attractive. While this has been successfully exploited for macromolecular antigens, their application to the detection of small molecules is still limited to a very few reports, mostly describing low affinity VHHs. Using triclocarban (TCC) as a model hapten, we found that conventional antibodies, IgG1 fraction, reacted with free TCC with a higher relative affinity (IC50 51.0 ng/mL) than did the sdAbs (IgG2 and IgG3, 497 and 370 ng/mL, respectively). A VHH library was prepared, and by elution of phage with limiting concentrations of TCC and competitive selection of binders, we were able to isolate high-affinity clones, KD 0.98–1.37 nM (SPR) which allowed development of a competitive assay for TCC with an IC50 = 3.5 ng/mL (11 nM). This represents a 100-fold improvement with regard to the performance of the sdAb serum fraction, and it is 100-fold better than the IC50 attained with other anti-hapten VHHs reported thus far. Despite the modest overall anti-hapten sdAbs response in llamas, a small subpopulation of high affinity VHHs are generated that can be isolated by carefully design of the selection process. PMID:21827167

  19. A comparison of binding surfaces for SPR biosensing using an antibody-antigen system and affinity distribution analysis

    PubMed Central

    Zhao, Huaying; Gorshkova, Inna I.; Fu, Gregory L.; Schuck, Peter

    2013-01-01

    The application of optical biosensors in the study of macromolecular interactions requires immobilization of one binding partner to the surface. It is often highly desirable that the immobilization is uniform and does not affect the thermodynamic and kinetic binding parameters to soluble ligands. To achieve this goal, a variety of sensor surfaces, coupling strategies and surface chemistries are available. Previously, we have introduced a technique for increasing the level of detail on the immobilized sites beyond an average affinity by determining the distribution of affinities and kinetic rate constants from families of binding and dissociation traces acquired at different concentrations of soluble ligand. In the present work, we explore how this affinity distribution analysis can be useful in the assessment and optimization of surface immobilization. With this goal, using an antibody-antigen interaction as a model system, we study the activity, thermodynamic and kinetic binding parameters, and heterogeneity of surface sites produced with different commonly used sensor surfaces, at different total surface densities and with direct immobilization or affinity capture. PMID:23270815

  20. Characterization of specific high affinity receptors for human tumor necrosis factor on mouse fibroblasts

    SciTech Connect

    Hass, P.E.; Hotchkiss, A.; Mohler, M.; Aggarwal, B.B.

    1985-10-05

    Mouse L-929 fibroblasts, an established line of cells, are very sensitive to lysis by human lymphotoxin (hTNF-beta). Specific binding of a highly purified preparation of hTNF-beta to these cells was examined. Recombinant DNA-derived hTNF-beta was radiolabeled with (TH)propionyl succinimidate at the lysine residues of the molecule to a specific activity of 200 microCi/nmol of protein. (TH)hTNF-beta was purified by high performance gel permeation chromatography and the major fraction was found to be monomeric by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The labeled hTNF-beta was fully active in causing lysis of L-929 fibroblasts and bound specifically to high affinity binding sites on these cells. Scatchard analysis of the binding data revealed the presence of a single class of high affinity receptors with an apparent Kd of 6.7 X 10(-11) M and a capacity of 3200 binding sites/cell. Unlabeled recombinant DNA-derived hTNF-beta was found to be approximately 5-fold more effective competitive inhibitor of binding than the natural hTNF-beta. The binding of hTNF-beta to these mouse fibroblasts was also correlated with the ultimate cell lysis. Neutralizing polyclonal antibodies to hTNF-beta efficiently inhibited the binding of (TH)hTNF-beta to the cells. The authors conclude that the specific high affinity binding site is the receptor for hTNF-beta and may be involved in lysis of cells.

  1. Redirecting adenoviruses to tumour cells using therapeutic antibodies: Generation of a versatile human bispecific adaptor.

    PubMed

    Vasiljevic, Snezana; Beale, Emma V; Bonomelli, Camille; Easthope, Iona S; Pritchard, Laura K; Seabright, Gemma E; Caputo, Alessandro T; Scanlan, Christopher N; Dalziel, Martin; Crispin, Max

    2015-12-01

    Effective use of adenovirus-5 (Ad5) in cancer therapy is heavily dependent on the degree to which the virus's natural tropism can be subverted to one that favours tumour cells. This is normally achieved through either engineering of the viral fiber knob or the use of bispecific adaptors that display both adenovirus and tumour antigen receptors. One of the main limitations of these strategies is the need to tailor each engineering event to any given tumour antigen. Here, we explore bispecific adaptors that can utilise established anti-cancer therapeutic antibodies. Conjugates containing bacterially derived antibody binding motifs are efficient at retargeting virus to antibody targets. Here, we develop a humanized strategy whereby we synthesise a re-targeting adaptor based on a chimeric Ad5 ligand/antibody receptor construct. This adaptor acts as a molecular bridge analogous to therapeutic antibody mediated cross-linking of cytotoxic effector and tumour cells during immunotherapy. As a proof or principle, we demonstrate how this adaptor allows efficient viral recognition and entry into carcinoma cells through the therapeutic monoclonal antibodies Herceptin/trastuzumab and bavituximab. We show that targeting can be augmented by use of contemporary antibody enhancement strategies such as the selective elimination of competing serum IgG using "receptor refocusing" enzymes and we envisage that further improvements are achievable by enhancing the affinities between the adaptor and its ligands. Humanized bispecific adaptors offer the promise of a versatile retargeting technology that can exploit both clinically approved adenovirus and therapeutic antibodies. PMID:26391350

  2. A novel antibody discovery platform identifies anti-influenza A broadly neutralizing antibodies from human memory B cells.

    PubMed

    Xiao, Xiaodong; Chen, Yan; Varkey, Reena; Kallewaard, Nicole; Koksal, Adem C; Zhu, Qing; Wu, Herren; Chowdhury, Partha S; Dall'Acqua, William F

    2016-07-01

    Monoclonal antibody isolation directly from circulating human B cells is a powerful tool to delineate humoral responses to pathological conditions and discover antibody therapeutics. We have developed a platform aimed at improving the efficiencies of B cell selection and V gene recovery. Here, memory B cells are activated and amplified using Epstein-Barr virus infection, co-cultured with CHO-muCD40L cells, and then assessed by functional screenings. An in vitro transcription and translation (IVTT) approach was used to analyze variable (V) genes recovered from each B cell sample and identify the relevant heavy/light chain pair(s). We achieved efficient amplification and activation of memory B cells, and eliminated the need to: 1) seed B cells at clonal level (≤1 cell/well) or perform limited dilution cloning; 2) immortalize B cells; or 3) assemble V genes into an IgG expression vector to confirm the relevant heavy/light chain pairing. Cross-reactive antibodies targeting a conserved epitope on influenza A hemagglutinin were successfully isolated from a healthy donor. In-depth analysis of the isolated antibodies suggested their potential uses as anti-influenza A antibody therapeutics and uncovered a distinct affinity maturation pathway. Importantly, our results showed that cognate heavy/light chain pairings contributed to both the expression level and binding abilities of our newly isolated VH1-69 family, influenza A neutralizing antibodies, contrasting with previous observations that light chains do not significantly contribute to the function of this group of antibodies. Our results further suggest the potential use of the IVTT as a powerful antibody developability assessment tool. PMID:27049174

  3. Isolation and characterization of human neutralizing antibodies to rabies virus derived from a recombinant immune antibody library.

    PubMed

    Houimel, Mehdi; Dellagi, Koussay

    2009-11-01

    A human immune Fab library was constructed using RNAs from peripheral blood lymphocytes obtained from rabies virus hyperimmune volunteers on phagemid vector. The size of the constructed Fab library was 2 x 10(7) Escherichia coli transformants. After four rounds of panning on whole inactivated rabies virus (PV-11), phage clones displaying rabies virus-specific human Fab were selected. The specificity of soluble Fab antibody fragments, derived from positive phage clones was verified by ELISA. Among 20 specific Fab clones, the genetic sequence of 6 of them (FabRV01, FabRV02, FabRV03, FabRV04, FabRV05, and FabRV06) was analyzed. The variable heavy (VH) and variable light (VL) domains were found to share 90% and 93% homology with sequences encoded by the corresponding human germline genes, respectively. The soluble Fab fragments, expressed in Escherichia coli were purified by a single step Nickel-NTA affinity chromatography via a hexa-histidine tag and their binding specificities to rabies virus were confirmed. Three of the Fab antibodies, FabRV01, FabRV02 and FabRV03, showed binding characteristics to rabies virus glycoprotein antigenic site III with affinities in the K(D) range 7 x 10(-9) to 5 x 10(-8)M. The Fab fragments showed dose-dependent neutralization properties for the challenge virus standard (CVS-11). PMID:19559727

  4. Deep Sequencing-guided Design of a High Affinity Dual Specificity Antibody to Target Two Angiogenic Factors in Neovascular Age-related Macular Degeneration.

    PubMed

    Koenig, Patrick; Lee, Chingwei V; Sanowar, Sarah; Wu, Ping; Stinson, Jeremy; Harris, Seth F; Fuh, Germaine

    2015-09-01

    The development of dual targeting antibodies promises therapies with improved efficacy over mono-specific antibodies. Here, we engineered a Two-in-One VEGF/angiopoietin 2 antibody with dual action Fab (DAF) as a potential therapeutic for neovascular age-related macular degeneration. Crystal structures of the VEGF/angiopoietin 2 DAF in complex with its two antigens showed highly overlapping binding sites. To achieve sufficient affinity of the DAF to block both angiogenic factors, we turned to deep mutational scanning in the complementarity determining regions (CDRs). By mutating all three CDRs of each antibody chain simultaneously, we were able not only to identify affinity improving single mutations but also mutation pairs from different CDRs that synergistically improve both binding functions. Furthermore, insights into the cooperativity between mutations allowed us to identify fold-stabilizing mutations in the CDRs. The data obtained from deep mutational scanning reveal that the majority of the 52 CDR residues are utilized differently for the two antigen binding function and permit, for the first time, the engineering of several DAF variants with sub-nanomolar affinity against two structurally unrelated antigens. The improved variants show similar blocking activity of receptor binding as the high affinity mono-specific antibodies against these two proteins, demonstrating the feasibility of generating a dual specificity binding surface with comparable properties to individual high affinity mono-specific antibodies. PMID:26088137

  5. Neutralization of Japanese Encephalitis Virus by heme-induced broadly reactive human monoclonal antibody

    PubMed Central

    Gupta, Nimesh; de Wispelaere, Mélissanne; Lecerf, Maxime; Kalia, Manjula; Scheel, Tobias; Vrati, Sudhanshu; Berek, Claudia; Kaveri, Srinivas V.; Desprès, Philippe; Lacroix-Desmazes, Sébastien; Dimitrov, Jordan D.

    2015-01-01

    Geographical expansion and re-emerging new genotypes of the Japanese encephalitis virus (JEV) require the development of novel therapeutic approaches. Here, we studied a non-conventional approach for antibody therapy and show that, upon exposure to heme, a fraction of natural human immunoglobulins acquires high-affinity reactivity with the antigenic domain-III of JEV E glycoprotein. These JEV-reactive antibodies exhibited neutralizing activity against recently dominant JEV genotypes. This study opens new therapeutic options for Japanese encephalitis. PMID:26542535

  6. Human tumor antigens identified with monoclonal antibodies

    SciTech Connect

    AlSedairy, S.T.

    1987-01-01

    MoAbLc1 (IgM) and MoAbLc2 (IgG/sub 2a/) were produced against human lung carcinoma cell line (ChaGo). Lc1 recognizes a approx. = 330-kd/approx. = 310-kd glycoprotein complexes, and Lc2 recognizes a approx. = 60-kd/approx. = 47-kd protein complex. With a panel of cell lines of different tissue origin, Lc1 showed a more restricted reactivity to ChaGo; it cross-reacted with another lung carcinoma cell line (SK-Lc-2) and two breast carcinoma cell lines, but failed to react with cell lines of fetal lung, of colon, esophageal, prostate, stomach, and ovarian carcinomas, of B and T lymphoblastoid cells, neuroblastomas, glioblastoma, astrocytoma, and human peripheral blood lymphocytes. New and improved methods were developed for the production of indium-111-labeled MoAbs for tumor imaging. To facilitate the application of bicyclic anhydride diethylenetriaminepentaacetic acid (BADTPA) to In-111 labeling of antibodies, we have modified the original method by using C-14-labeled BADTPA, which allows precise quantitation of DTPA molecules incorporated. A new heterobifunctional reagent, 2,6-dioxo-N-(carboxyl)morpholine (DCM) was synthesized for chelating In-111 to MoAbs, and demonstrated higher retention of immunoreactivity of the labeled antibody.

  7. Discovery of highly soluble antibodies prior to purification using affinity-capture self-interaction nanoparticle spectroscopy.

    PubMed

    Wu, Jiemin; Schultz, Jason S; Weldon, Caroline L; Sule, Shantanu V; Chai, Qing; Geng, Steven B; Dickinson, Craig D; Tessier, Peter M

    2015-10-01

    Self-association of monoclonal antibodies (mAbs) at high concentrations can result in developability challenges such as poor solubility, aggregation, opalescence and high viscosity. There is a significant unmet need for methods that can evaluate self-association propensities of concentrated mAbs at the earliest stages in antibody discovery to avoid downstream issues. We have previously developed a method (affinity-capture self-interaction nanoparticle spectroscopy, AC-SINS) that is capable of detecting weak antibody self-interactions using unusually dilute mAb solutions (tens of µg/ml). Here we optimize and implement this assay for characterization of unpurified and highly dilute mAbs directly in cell culture media. This assay was applied to screen 87 mAbs obtained via immunization. Our measurements reveal a wide range of self-associative propensities for mAbs that bind to the same antigen and which differ mainly in their complementarity-determining regions. The least associative mAbs identified by AC-SINS were confirmed to be highly soluble when purified and concentrated by three to five orders of magnitude. This approach represents a key advance in screening mAb variants using unpurified antibody samples, and it holds significant potential to both improve initial candidate selection as well as to guide protein engineering efforts to improve the properties of specific mAb candidates. PMID:26363633

  8. The cytokines effect on EBV-immortalized human B cells producing antisperm antibody.

    PubMed

    Fiszer, D; Niedbała, W; Fernandez, N; Kurpisz, M

    1992-01-01

    We have analyzed the antisperm antibody production of autoimmunized male subjects using Epstein-Barr virus (EBV) immortalization of B lymphocytes. We evaluated the influence of several in vitro culture variants applied prior to EBV infection on the frequence of antibody-producing cells and affinity of secreted antibodies. The following variants were applied: a) polyclonal antigenic stimulation of lymphocytes with PWM, b) PWM (pokeweed mitogen) + IL-2 + interferon gamma and c) PWM + IL-2 + interferon gamma + sperm antigenic extract. The variants where the cytokines were added did not increase the frequency of EBV-infected antibody-producing cells as comparing to EBV infection previously amplified by the use of polyclonal activator. Furthermore the cytokine activation either in combination with mitogen or in vitro secondary antigenic sensitization (prior to EBV transformation) did not seem to have beneficial effect on affinity of antibodies produced by EBV-infected cells in comparison to straight EBV infection. On the other hand, the attempt to promote an immunoglobulin secretion (IgM) by previously obtained human-human antisperm hybridomas by adding of IL-2 was quite successful. PMID:1338684

  9. High affinity binding of beta 2-glycoprotein I to human endothelial cells is mediated by annexin II.

    PubMed

    Ma, K; Simantov, R; Zhang, J C; Silverstein, R; Hajjar, K A; McCrae, K R

    2000-05-19

    Beta(2)-glycoprotein I (beta(2)GPI) is an abundant plasma phospholipid-binding protein and an autoantigen in the antiphospholipid antibody syndrome. Binding of beta(2)GPI to endothelial cells targets them for activation by anti-beta(2)GPI antibodies, which circulate and are associated with thrombosis in patients with the antiphospholipid antibody syndrome. However, the binding of beta(2)GPI to endothelial cells has not been characterized and is assumed to result from association of beta(2)GPI with membrane phospholipid. Here, we characterize the binding of beta(2)GPI to endothelial cells and identify the beta(2)GPI binding site. (125)I-beta(2)GPI bound with high affinity (K(d) approximately 18 nm) to human umbilical vein endothelial cells (HUVECs). Using affinity purification, we isolated beta(2)GPI-binding proteins of approximately 78 and approximately 36 kDa from HUVECs and EAHY.926 cells. Amino acid sequences of tryptic peptides from each of these were identical to sequences within annexin II. A role for annexin II in binding of beta(2)GPI to cells was confirmed by the observations that annexin II-transfected HEK 293 cells bound approximately 10-fold more (125)I-beta(2)GPI than control cells and that anti-annexin II antibodies inhibited the binding of (125)I-beta(2)GPI to HUVECs by approximately 90%. Finally, surface plasmon resonance studies revealed high affinity binding between annexin II and beta(2)GPI. These results demonstrate that annexin II mediates the binding of beta(2)GPI to endothelial cells. PMID:10809787

  10. A monoclonal antibody against leptin.

    PubMed

    Mahmoudian, Jafar; Jeddi-Tehrani, Mahmood; Bayat, Ali Ahmad; Mahmoudi, Ahmad Reza; Vojgani, Yasaman; Tavangar, Banafsheh; Hadavi, Reza; Zarei, Saeed

    2012-10-01

    Leptin is an important protein that regulates energy storage and homeostasis in humans and animals. Leptin deficiency results in various abnormalities such as diabetes, obesity, and infertility. Producing a high affinity monoclonal antibody against human leptin provides an important tool to monitor and trace leptin function in different biological fluids. In this study, recombinant human leptin was conjugated to KLH and injected into mice. After immunization, mouse myeloma SP2/0 cells were fused with murine splenocytes followed by selection of antibody-producing hybridoma cells. After screening of different hybridoma colonies by ELISA, a high affinity antibody was selected and purified by affinity chromatography. The affinity constant of the antibody was measured by ELISA. Western blot, immunocytochemistry, and flow cytometry experiments were used to characterize the antibody. The anti-leptin antibody had a high affinity (around 1.13 × 10(-9) M) for its antigen. The saturation of the antibody with leptin (20 moles leptin per 1 mole antibody) in Western blot analysis proved that the antibody had specific binding to its antigen. Immunocytochemistry and flow cytometry on JEG-3 (human placental choriocarcinoma cell) cells revealed that the anti-leptin antibody recognized intracellular leptin. In conclusion, we report here the production and characterization of a murine anti-leptin antibody with high affinity for human leptin. PMID:23098305

  11. Single domain antibody-alkaline phosphatase fusion proteins for antigen detection--analysis of affinity and thermal stability of single domain antibody.

    PubMed

    Liu, Jinny L; Zabetakis, Dan; Lee, Audrey Brozozog; Goldman, Ellen R; Anderson, George P

    2013-07-31

    Single domain antibody (sdAb)-alkaline phosphatase (AP) fusion proteins have been demonstrated to be useful immunodiagnostic reagents for bio-threat agent detection. The bivalent nature of sdAb-AP fusion proteins significantly increases effective affinity and thus the sensitivity of detection, but the thermal stability of the fusion protein had not been explored. This property is critical for the development of immunoassays for use in austere environments. In this study four sdAbs with specificity for MS2 phage coat protein (CP) were expressed as fusions with AP in order to evaluate the thermal stability and affinity of the resulting constructs. The melting temperature (Tm) of the sdAb and sdAb-AP fusion proteins was measured by a combination of Circular Dichroism (CD), differential scanning calorimetry (DSC) and Fluorescence-based Thermal Shift assay. Binding kinetics were assessed using surface plasmon resonance (SPR). Our results indicated that the AP fusion protein did not increase the Tm or enhance thermal stability of the sdAb, but did provide the expected increase in binding affinity as compared to the original sdAb. PMID:23570946

  12. Fully human monoclonal antibody inhibitors of the neonatal fc receptor reduce circulating IgG in non-human primates.

    PubMed

    Nixon, Andrew E; Chen, Jie; Sexton, Daniel J; Muruganandam, Arumugam; Bitonti, Alan J; Dumont, Jennifer; Viswanathan, Malini; Martik, Diana; Wassaf, Dina; Mezo, Adam; Wood, Clive R; Biedenkapp, Joseph C; TenHoor, Chris

    2015-01-01

    The therapeutic management of antibody-mediated autoimmune disease typically involves immunosuppressant and immunomodulatory strategies. However, perturbing the fundamental role of the neonatal Fc receptor (FcRn) in salvaging IgG from lysosomal degradation provides a novel approach - depleting the body of pathogenic immunoglobulin by preventing IgG binding to FcRn and thereby increasing the rate of IgG catabolism. Herein, we describe the discovery and preclinical evaluation of fully human monoclonal IgG antibody inhibitors of FcRn. Using phage display, we identified several potent inhibitors of human-FcRn in which binding to FcRn is pH-independent, with over 1000-fold higher affinity for human-FcRn than human IgG-Fc at pH 7.4. FcRn antagonism in vivo using a human-FcRn knock-in transgenic mouse model caused enhanced catabolism of exogenously administered human IgG. In non-human primates, we observed reductions in endogenous circulating IgG of >60% with no changes in albumin, IgM, or IgA. FcRn antagonism did not disrupt the ability of non-human primates to mount IgM/IgG primary and secondary immune responses. Interestingly, the therapeutic anti-FcRn antibodies had a short serum half-life but caused a prolonged reduction in IgG levels. This may be explained by the high affinity of the antibodies to FcRn at both acidic and neutral pH. These results provide important preclinical proof of concept data in support of FcRn antagonism as a novel approach to the treatment of antibody-mediated autoimmune diseases. PMID:25954273

  13. What limits affinity maturation of antibodies in Xenopus--the rate of somatic mutation or the ability to select mutants?

    PubMed Central

    Wilson, M; Hsu, E; Marcuz, A; Courtet, M; Du Pasquier, L; Steinberg, C

    1992-01-01

    Although the Xenopus immunoglobulin heavy chain locus is structurally and functionally similar to mammalian IgH loci, Xenopus antibodies are limited in heterogeneity, and they mature only slightly in affinity during immune responses. During the antibody response of isogenic frogs to DNP-KLH, mu and upsilon cDNA sequences using elements of the VH1 family were cloned, sequenced and compared with germline counterparts. There were zero to four mutations per sequence, mostly single base substitutions, in the framework and CDRs 1 and 2 of VH. No mutations were found in JH. Since the point mutation rate was only 4- to 7-fold lower than that calculated for mice, affinity maturation does not seem to be limited by mutant availability. Because of a relatively low ratio of replacement to silent mutations in the CDRs and a very high ratio of GC to AT base pairs altered by mutation, it is suggested that the problem results from the absence of an effective mechanism for selecting mutants, which in turn might be related to the absence of germinal centers in Xenopus. Images PMID:1425571

  14. Structural Basis of Human Parechovirus Neutralization by Human Monoclonal Antibodies

    PubMed Central

    Shakeel, Shabih; Westerhuis, Brenda M.; Ora, Ari; Koen, Gerrit; Bakker, Arjen Q.; Claassen, Yvonne; Wagner, Koen; Beaumont, Tim; Wolthers, Katja C.

    2015-01-01

    ABSTRACT Since it was first recognized in 2004 that human parechoviruses (HPeV) are a significant cause of central nervous system and neonatal sepsis, their clinical importance, primarily in children, has started to emerge. Intravenous immunoglobulin treatment is the only treatment available in such life-threatening cases and has given moderate success. Direct inhibition of parechovirus infection using monoclonal antibodies is a potential treatment. We have developed two neutralizing monoclonal antibodies against HPeV1 and HPeV2, namely, AM18 and AM28, which also cross-neutralize other viruses. Here, we present the mapping of their epitopes using peptide scanning, surface plasmon resonance, fluorescence-based thermal shift assays, electron cryomicroscopy, and image reconstruction. We determined by peptide scanning and surface plasmon resonance that AM18 recognizes a linear epitope motif including the arginine-glycine-aspartic acid on the C terminus of capsid protein VP1. This epitope is normally used by the virus to attach to host cell surface integrins during entry and is found in 3 other viruses that AM18 neutralizes. Therefore, AM18 is likely to cause virus neutralization by aggregation and by blocking integrin binding to the capsid. Further, we show by electron cryomicroscopy, three-dimensional reconstruction, and pseudoatomic model fitting that ordered RNA interacts with HPeV1 VP1 and VP3. AM28 recognizes quaternary epitopes on the capsid composed of VP0 and VP3 loops from neighboring pentamers, thereby increasing the RNA accessibility temperature for the virus-AM28 complex compared to the virus alone. Thus, inhibition of RNA uncoating probably contributes to neutralization by AM28. IMPORTANCE Human parechoviruses can cause mild infections to severe diseases in young children, such as neonatal sepsis, encephalitis, and cardiomyopathy. Intravenous immunoglobulin treatment is the only treatment available in such life-threatening cases. In order to develop more

  15. Phase Transitions in Antibody Solutions: from Pharmaceuticals to Human Disease

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Lomakin, Aleksey; Benedek, George; Dana Farber Cancer Institute Collaboration; Amgen Inc. Collaboration

    2014-03-01

    Antibodies are very important proteins. Natural antibodies play essential role in the immune system of human body. Pharmaceutical antibodies are used as drugs. Antibodies are also indispensable tools in biomedical research and diagnostics. Recently, a number of observations of phase transitions of pharmaceutical antibodies have been reported. These phase transitions are undesirable from the perspective of colloid stability of drug solutions in processing and storage, but can be used for protein purification, X-ray crystallography, and improving pharmokinetics of drugs. Phase transitions of antibodies can also take place in human body, particularly in multiple myeloma patients who overproduce monoclonal antibodies. These antibodies, in some cases, crystallize at body temperature and cause severe complications called cryoglobulinemia. I will present the results of our current studies on phase transitions of both pharmaceutical antibodies and cryoglobulinemia-associated antibodies. These studies have shown that different antibodies have different propensity to undergo phase transitions, but their phase behavior has universal features which are remarkably different from those of spherical proteins. I will discuss how studies of phase behavior can be useful in assessing colloid stability of pharmaceutical antibodies and in early diagnostics of cryoglobulinemia, as well as general implications of the fact that some antibodies can precipitate at physiological conditions.

  16. Flow-Cytometric Isolation of Human Antibodies from a Nonimmune Saccharomyces cerevisiae Surface Display Library

    SciTech Connect

    Feldhaus, Michael ); Siegel, Robert W. ); Opresko, Lee ); Coleman, James R. ); Feldhaus, Jane M. ); Yeung, Yik A.; Cochran, Jennifer R.; Heinzelman, Peter; Colby, David; Swers, Jeffrey; Graff, Christilyn; Wiley, H Steven ); Wittrup, K D.

    2003-02-28

    A nonimmune library of 109 human antibody scFv fragments has been cloned and expressed on the surface of yeast, and nanomolar-affinity scFvs routinely obtained by magnetic bead screening and flow cytometric sorting. The yeast library can be amplified 1010-fold without measurable loss of clonal diversity, enabling effectively indefinite expansion of the library. The expression, stability, and antigen binding properties of more than 50 isolated scFv clones were assessed directly on the yeast cell surface by immunofluorescent labeling and flow cytometry, obviating separate subcloning, expression, and purification steps and thereby expediting the isolation of novel affinity reagents. The ability to use multiplex library screening demonstrates the utility of this approach for high throughput antibody isolation for proteomics applications.

  17. Humanization of predicted T-cell epitopes reduces the immunogenicity of chimeric antibodies: new evidence supporting a simple method.

    PubMed

    Roque-Navarro, Lourdes; Mateo, Cristina; Lombardero, Josefa; Mustelier, Geraudis; Fernández, Alicia; Sosa, Katya; Morrison, Sherrie L; Pérez, Rolando

    2003-08-01

    Genetic engineering has provided several approaches to reduce immunogenicity of murine antibodies. We described previously a new method based on the humanization of the linear epitopes presented to T cells. In brief, potential immunogenic epitopes in the variable region were identified and subjected to point mutations to make them human and/or to modify amphipatic motifs. The resulting recombinant antibody retained its antigen binding affinity and was less immunogenic in monkeys than their murine or chimeric predecessors are. The present study provides two new examples of this T-cell epitope humanization approach: ior-t1A murine monoclonal antibody (mMAb), which recognizes the human-CD6 molecule, and ior-C5 mMAb, which recognizes a novel glycoprotein expressed on the surface of malignant colorectal cells. Seven amino acids were substituted in ior-C5 and eleven residues in ior-t1A, by the corresponding residues from the highest homologous human sequences. Surprisingly, the homology between re-shaped chimeric antibody variable region frameworks and human sequences was 80-90%. Experiments in monkeys showed that T1AhT and C5hT "detopes" antibodies were less immunogenic than their chimeric analogues while they retained 30-50% of antigen binding affinities. The proposed method might be of general applicability to reduce immunogenicity of chimeric antibodies with therapeutic potential. PMID:14511570

  18. Microselection – affinity selecting antibodies against a single rare cell in a heterogeneous population

    PubMed Central

    Sørensen, Morten Dræby; Agerholm, Inge Errebo; Christensen, Britta; Kølvraa, Steen; Kristensen, Peter

    2010-01-01

    Abstract Rare cells not normally present in the peripheral bloodstream, such as circulating tumour cells, have potential applications for development of non-invasive methods for diagnostics or follow up. Obtaining these cells however require some means of discrimination, achievable by cell type specific antibodies. Here we have generated a microselection method allowing antibody selection, by phage display, targeting a single cell in a heterogeneous population. One K562 cell (female origin) was positioned on glass slide among millions of lymphocytes from male donor, identifying the K562 cell by FISH (XX). Several single cell selections were performed on such individual slides. The phage particles bound to the target cell is protected by a minute disc, while inactivating all remaining phage by UV-irradiation; leaving only the phage bound to the target cell viable. We hereby retrieved up to eight antibodies per single cell selection, including three highly K562 cell type specific. PMID:20726925

  19. STRUCTURE OF A HIGH-AFFINITY “MIMOTOPE” PEPTIDE BOUND TO HIV-1-NEUTRALIZING ANTIBODY b12 EXPLAINS ITS INABILITY TO ELICIT gp120 CROSS-REACTIVE ANTIBODIES

    PubMed Central

    Saphire, Erica Ollmann; Montero, Marinieve; Menendez, Alfredo; van Houten, Nienke E.; Irving, Melita B.; Pantophlet, Ralph; Zwick, Michael B.; Parren, Paul W. H. I.; Burton, Dennis R.; Scott, Jamie K.; Wilson, Ian A.

    2007-01-01

    The human antibody b12 recognizes a discontinuous epitope on gp120 and is one of the rare monoclonal antibodies that neutralize a broad range of primary HIV-1 isolates. We previously reported the isolation of B2.1, a dimeric peptide that binds with high specificity to b12 and competes with gp120 for b12 antibody binding. Here, we show that the affinity of B2.1 was improved 60-fold over its synthetic-peptide counterpart by fusing it to the N-terminus of a soluble protein. This affinity, which is within an order of magnitude of that of gp120, probably more closely reflects the affinity of the phage-borne peptide. The crystal structure of a complex between Fab of b12 and B2.1 was determined at 1.8 Å resolution. The structural data allowed the differentiation of residues that form critical contacts with b12 from those required for maintenance of the antigenic structure of the peptide, and revealed that three contiguous residues mediate B2.1's critical contacts with b12. This single region of critical contact between the B2.1 peptide and the b12 paratope is unlikely to mimic the discontinuous key binding residues involved in the full b12 epitope for gp120, as previously identified by alanine scanning substitutions on the gp120 surface. These structural observations are supported by experiments that demonstrate that B2.1 is an ineffective immunogenic mimic of the b12 epitope on gp120. Indeed, an extensive series of immunizations with B2.1 in various forms failed to produce gp120 cross-reactive sera. The functional and structural data presented here, however, suggest that the mechanism by which b12 recognizes the two antigens is very different. Here, we present the first crystal structure of peptide bound to an antibody that was originally raised against a discontinuous protein epitope. Our results highlight the challenge of producing immunogens that mimic discontinuous protein epitopes, and the necessity of combining complementary experimental approaches in analyzing

  20. Analysis of free drug fractions in human serum by ultrafast affinity extraction and two-dimensional affinity chromatography.

    PubMed

    Zheng, Xiwei; Podariu, Maria; Matsuda, Ryan; Hage, David S

    2016-01-01

    Ultrafast affinity extraction and a two-dimensional high performance affinity chromatographic system were used to measure the free fractions for various drugs in serum and at typical therapeutic concentrations. Pooled samples of normal serum or serum from diabetic patients were utilized in this work. Several drug models (i.e., quinidine, diazepam, gliclazide, tolbutamide, and acetohexamide) were examined that represented a relatively wide range of therapeutic concentrations and affinities for human serum albumin (HSA). The two-dimensional system consisted of an HSA microcolumn for the extraction of a free drug fraction, followed by a larger HSA analytical column for the further separation and measurement of this fraction. Factors that were optimized in this method included the flow rates, column sizes, and column switching times that were employed. The final extraction times used for isolating the free drug fractions were 333-665 ms or less. The dissociation rate constants for several of the drugs with soluble HSA were measured during system optimization, giving results that agreed with reference values. In the final system, free drug fractions in the range of 0.7-9.5% were measured and gave good agreement with values that were determined by ultrafiltration. Association equilibrium constants or global affinities were also estimated by this approach for the drugs with soluble HSA. The results for the two-dimensional system were obtained in 5-10 min or less and required only 1-5 μL of serum per injection. The same approach could be adapted for work with other drugs and proteins in clinical samples or for biomedical research. PMID:26462924

  1. Spread of Mutant Middle East Respiratory Syndrome Coronavirus with Reduced Affinity to Human CD26 during the South Korean Outbreak

    PubMed Central

    Kim, Yuri; Cheon, Shinhye; Min, Chan-Ki; Sohn, Kyung Mok; Kang, Ying Jin; Cha, Young-Je; Kang, Ju-Il; Han, Seong Kyu; Ha, Na-Young; Kim, Gwanghun; Aigerim, Abdimadiyeva; Shin, Hyun Mu; Choi, Myung-Sik; Kim, Sanguk; Cho, Hyun-Soo

    2016-01-01

    ABSTRACT The newly emerging Middle East respiratory syndrome coronavirus (MERS-CoV) causes a severe respiratory infection with a high mortality rate (~35%). MERS-CoV has been a global threat due to continuous outbreaks in the Arabian peninsula and international spread by infected travelers since 2012. From May to July 2015, a large outbreak initiated by an infected traveler from the Arabian peninsula swept South Korea and resulted in 186 confirmed cases with 38 deaths (case fatality rate, 20.4%). Here, we show the rapid emergence and spread of a mutant MERS-CoV with reduced affinity to the human CD26 receptor during the South Korean outbreak. We isolated 13 new viral genomes from 14 infected patients treated at a hospital and found that 12 of these genomes possess a point mutation in the receptor-binding domain (RBD) of viral spike (S) protein. Specifically, 11 of these genomes have an I529T mutation in RBD, and 1 has a D510G mutation. Strikingly, both mutations result in reduced affinity of RBD to human CD26 compared to wild-type RBD, as measured by surface plasmon resonance analysis and cellular binding assay. Additionally, pseudotyped virus bearing an I529T mutation in S protein showed reduced entry into host cells compared to virus with wild-type S protein. These unexpected findings suggest that MERS-CoV adaptation during human-to-human spread may be driven by host immunological pressure such as neutralizing antibodies, resulting in reduced affinity to host receptor, and thereby impairs viral fitness and virulence, rather than positive selection for a better affinity to CD26. PMID:26933050

  2. Synthetic antibodies with a human framework that protect mice from lethal Sudan ebolavirus challenge.

    PubMed

    Chen, Gang; Koellhoffer, Jayne F; Zak, Samantha E; Frei, Julia C; Liu, Nina; Long, Hua; Ye, Wei; Nagar, Kaajal; Pan, Guohua; Chandran, Kartik; Dye, John M; Sidhu, Sachdev S; Lai, Jonathan R

    2014-10-17

    The ebolaviruses cause severe and rapidly progressing hemorrhagic fever. There are five ebolavirus species; although much is known about Zaire ebolavirus (EBOV) and its neutralization by antibodies, little is known about Sudan ebolavirus (SUDV), which is emerging with increasing frequency. Here we describe monoclonal antibodies containing a human framework that potently inhibit infection by SUDV and protect mice from lethal challenge. The murine antibody 16F6, which binds the SUDV envelope glycoprotein (GP), served as the starting point for design. Sequence and structural alignment revealed similarities between 16F6 and YADS1, a synthetic antibody with a humanized scaffold. A focused phage library was constructed and screened to impart 16F6-like recognition properties onto the YADS1 scaffold. A panel of 17 antibodies were characterized and found to have a range of neutralization potentials against a pseudotype virus infection model. Neutralization correlated with GP binding as determined by ELISA. Two of these clones, E10 and F4, potently inhibited authentic SUDV and conferred protection and memory immunity in mice from lethal SUDV challenge. E10 and F4 were further shown to bind to the same epitope on GP as 16F6 with comparable affinities. These antibodies represent strong immunotherapeutic candidates for treatment of SUDV infection. PMID:25140871

  3. A Therapeutic Antibody for Cancer, Derived from Single Human B Cells.

    PubMed

    Bushey, Ryan T; Moody, M Anthony; Nicely, Nathan L; Haynes, Barton F; Alam, S Munir; Keir, Stephen T; Bentley, Rex C; Roy Choudhury, Kingshuk; Gottlin, Elizabeth B; Campa, Michael J; Liao, Hua-Xin; Patz, Edward F

    2016-05-17

    Some patients with cancer never develop metastasis, and their host response might provide cues for innovative treatment strategies. We previously reported an association between autoantibodies against complement factor H (CFH) and early-stage lung cancer. CFH prevents complement-mediated cytotoxicity (CDC) by inhibiting formation of cell-lytic membrane attack complexes on self-surfaces. In an effort to translate these findings into a biologic therapy for cancer, we isolated and expressed DNA sequences encoding high-affinity human CFH antibodies directly from single, sorted B cells obtained from patients with the antibody. The co-crystal structure of a CFH antibody-target complex shows a conformational change in the target relative to the native structure. This recombinant CFH antibody causes complement activation and release of anaphylatoxins, promotes CDC of tumor cell lines, and inhibits tumor growth in vivo. The isolation of anti-tumor antibodies derived from single human B cells represents an alternative paradigm in antibody drug discovery. PMID:27160908

  4. Affinity purification of antibodies using immobilized FB domain of protein A.

    PubMed

    Solomon, B; Raviv, O; Leibman, E; Fleminger, G

    1992-04-24

    A continuous method for the efficient digestion of protein A into active fragments (FB, Mr = 7000) using immobilized trypsin was developed. These fragments originate from almost identical five-repeated monovalent Fc-binding units of 58 residues each. The fragments obtained were found to be similar to the recently described genetically engineered fragment B. Antibody-binding characteristics of the FB domain and also of intact protein A, immobilized on to adipic dihydrazide-modified Eupergit CB6200 beads, were investigated. Based on the experimental data obtained, a high-performance liquid chromatographic column containing C30N Eupergit C-immobilized FB domain was prepared and its performance in antibody purification was compared with that of Eupergit C-immobilized intact protein A. PMID:1517325

  5. Applying bioinformatics for antibody epitope prediction using affinity-selected mimotopes - relevance for vaccine design.

    PubMed

    Denisova, Galina F; Denisov, Dimitri A; Bramson, Jonathan L

    2010-01-01

    To properly characterize protective polyclonal antibody responses, it is necessary to examine epitope specificity. Most antibody epitopes are conformational in nature and, thus, cannot be identified using synthetic linear peptides. Cyclic peptides can function as mimetics of conformational epitopes (termed mimotopes), thereby providing targets, which can be selected by immunoaffinity purification. However, the management of large collections of random cyclic peptides is cumbersome. Filamentous bacteriophage provides a useful scaffold for the expression of random peptides (termed phage display) facilitating both the production and manipulation of complex peptide libraries. Immunoaffinity selection of phage displaying random cyclic peptides is an effective strategy for isolating mimotopes with specificity for a given antiserum. Further epitope prediction based on mimotope sequence is not trivial since mimotopes generally display only small homologies with the target protein. Large numbers of unique mimotopes are required to provide sufficient sequence coverage to elucidate the target epitope. We have developed a method based on pattern recognition theory to deal with the complexity of large collections of conformational mimotopes. The analysis consists of two phases: 1) The learning phase where a large collection of epitope-specific mimotopes is analyzed to identify epitope specific "signs" and 2) The identification phase where immunoaffinity-selected mimotopes are interrogated for the presence of the epitope specific "signs" and assigned to specific epitopes. We are currently using computational methods to define epitope "signs" without the need for prior knowledge of specific mimotopes. This technology provides an important tool for characterizing the breadth of antibody specificities within polyclonal antisera. PMID:21067548

  6. Arginine as an eluent overcomes the hindrance of monoclonal antibody quantification by dextran sulfate in protein A affinity chromatography.

    PubMed

    Kim, Bong Gyun; Park, Hong Woo

    2015-01-01

    Analytical chromatography using protein A affinity columns was employed for the fast and simple quantitative analysis of monoclonal antibodies (mAb) from suspension cultures of recombinant Chinese hamster ovary (rCHO) cells. Reliable results could not be obtained from analysis of rCHO cell culture supernatants containing dextran sulfate using elution buffers such as phosphate, glycine, or MgCl2 . These problems increased as the number of analysis and the concentration of dextran sulfate in samples increased. Arginine was identified as an alternative eluent to overcome the hindrance by dextran sulfate. When the samples contain dextran sulfate up to 100 mg/L, the elution buffer containing 0.6-1.0 M arginine at pH 3.0-3.8 is useful for the effective analysis. Reproducible results in the mAb quantification could be obtained by this developed arginine elution buffer from rCHO cell culture supernatants containing dextran sulfate. PMID:26363185

  7. Label-free Fab and Fc affinity/avidity profiling of the antibody complex half-life for polyclonal and monoclonal efficacy screening.

    PubMed

    Read, Thomas; Olkhov, Rouslan V; Williamson, E Diane; Shaw, Andrew M

    2015-09-01

    A unified approach to affinity screening for Fab and Fc interactions of an antibody for its antigen and FcγR receptor has been developed. An antigen array is used for the Fab affinity and cross-reactivity screening and protein A/G proxy is the FcγR receptor. The affinities are derived using a simple 1:1 binding model with a consistent error analysis. The association and dissociation kinetics are measured over optimised times for accurate determination. The Fab/Fc affinities are derived for ten antibodies: mAb-actin (mouse), pAb-BSA (sheep), pAb-collagen V (rabbit), pAb-CRP (goat), mAb-F1 (mouse), mAbs (mouse) 7.3, 12.3, 29.3, 36.3 and 46.3 raised against LcrV in Yersinia pestis. The rate of the dissociation of antigen-antibody complexes relates directly to their immunological function as does the Fc-FcγR complex and a new half-life plot has been defined with a Fab/Fc half-life range of 17-470 min. The upper half-life value points to surface avidity. Two antibodies that are protective as an immunotherapy define a Fab half-life >250 min and an Fc half-life >50 min as characteristics of ideal interactions which can form the basis of an antibody screen for immunotherapy. PMID:26187320

  8. Co-administration of CpG oligonucleotides enhances the late affinity maturation process of human anti-hepatitis B vaccine response.

    PubMed

    Siegrist, Claire-Anne; Pihlgren, Maria; Tougne, Chantal; Efler, Sue M; Morris, Mary Lou; AlAdhami, Mohammed J; Cameron, D William; Cooper, Curtis L; Heathcote, Jenny; Davis, Heather L; Lambert, Paul-Henri

    2004-12-16

    We assessed the avidity maturation process elicited by human immunization with alum-adsorbed HBsAg alone or with a novel adjuvant containing CpG motifs (CpG 7909). Mean avidity indexes and distribution of low- and high-avidity anti-HBs indicated that avidity maturation essentially takes place late after priming. CpG 7909 markedly enhanced this affinity maturation process, increasing the pool of high-avidity antibodies. The influence of CpG 7909 was antigen-specific, isotype-specific and distinct from the influence on anti-HBs production, as avidity did not correlate with anti-HBs IgG titers. This is the first demonstration that a novel human adjuvant may induce antibodies with higher antigen-binding affinity. PMID:15542181

  9. A humanized anti-DLL4 antibody promotes dysfunctional angiogenesis and inhibits breast tumor growth

    PubMed Central

    Jia, Xuelian; Wang, Wenyi; Xu, Zhuobin; Wang, Shijing; Wang, Tong; Wang, Min; Wu, Min

    2016-01-01

    Blockage of Delta-like 4 (DLL4)-directed Notch signaling induces excessive tip cell formation and endothelial proliferation resulting in dysfunctional angiogenesis in tumors. MMGZ01, as a murine anti-human DLL4 monoclonal antibody, specifically binds to human DLL4 and blocks Notch pathway. Here, the structure of MMGZ01 variable fragment (Fv) was established and framework region (FR) residues which supported complementarily determining region (CDR) loop conformation were identified. Important residues interactions were also identified through docking MMGZ01 Fv with antigen epitope in DLL4. To humanize the murine antibody, we modified MMGZ01 Fv through CDR grafting and the reconstructed antibody (H3L2) maintained similar structure and binding affinity to parental MMGZ01 after back mutation of 12 canonical murine residues in the FRs. Meanwhile, H3L2 promoted human umbilical vein endothelial cell (HUVEC) proliferation through inhibiting DLL4-directed Notch pathway. Moreover, in MDA-MB-231-bearing nude mice, H3L2 induced dysfunctional angiogenesis and tumor cell apoptosis and showed superior anti-tumor activity. In conclusion, H3L2 is an ideal humanized antibody that inhibits tumor growth through targeting DLL4-Notch pathway and has attracting potentials for clinical applications. PMID:27301650

  10. A humanized anti-DLL4 antibody promotes dysfunctional angiogenesis and inhibits breast tumor growth.

    PubMed

    Jia, Xuelian; Wang, Wenyi; Xu, Zhuobin; Wang, Shijing; Wang, Tong; Wang, Min; Wu, Min

    2016-01-01

    Blockage of Delta-like 4 (DLL4)-directed Notch signaling induces excessive tip cell formation and endothelial proliferation resulting in dysfunctional angiogenesis in tumors. MMGZ01, as a murine anti-human DLL4 monoclonal antibody, specifically binds to human DLL4 and blocks Notch pathway. Here, the structure of MMGZ01 variable fragment (Fv) was established and framework region (FR) residues which supported complementarily determining region (CDR) loop conformation were identified. Important residues interactions were also identified through docking MMGZ01 Fv with antigen epitope in DLL4. To humanize the murine antibody, we modified MMGZ01 Fv through CDR grafting and the reconstructed antibody (H3L2) maintained similar structure and binding affinity to parental MMGZ01 after back mutation of 12 canonical murine residues in the FRs. Meanwhile, H3L2 promoted human umbilical vein endothelial cell (HUVEC) proliferation through inhibiting DLL4-directed Notch pathway. Moreover, in MDA-MB-231-bearing nude mice, H3L2 induced dysfunctional angiogenesis and tumor cell apoptosis and showed superior anti-tumor activity. In conclusion, H3L2 is an ideal humanized antibody that inhibits tumor growth through targeting DLL4-Notch pathway and has attracting potentials for clinical applications. PMID:27301650

  11. A high-affinity anti-salbutamol monoclonal antibody: key to a robust lateral-flow immunochromatographic assay.

    PubMed

    Xie, Chun-hua; Chen, Fa-ju; Yang, Tang-bin

    2012-07-15

    Among the components that make up a lateral-flow immunochromatographic assay (ICA), antibody is the key. In this paper, salbutamol (SAL) as a model analyte was meticulously designed to prepare immunogen and coating antigen in distinctly different ways. Four hybridoma cell lines were prepared and identified. Among them, C9 had highest affinity, best dose-response behavior, lowest limit of detection, and highest specificity and was chosen to be labeled with colloidal gold as the detector reagent and applied on the conjugate pad. Goat anti-mouse antibody and SAL-BSA conjugate were sprayed on a nitrocellulose membrane as test line and control line, respectively. Under the optimized conditions, the ICA strip was constructed based on a binding inhibition format. Color intensity on the test line was visually distinguishable from that of the negative sample within 5 min, with the visual detection limit of 1 ngml(-1) in phosphate-buffered saline. Cross-reactions with other β-agonists were not found (<1%). The results from ICA were in a good agreement with those obtained by enzyme-linked immunosorbent assay. The developed ICA has potential as a useful on-site screening tool for SAL in swine urine. PMID:22507376

  12. A cocktail of humanized anti-pertussis toxin antibodies limits disease in murine and baboon models of whooping cough.

    PubMed

    Nguyen, Annalee W; Wagner, Ellen K; Laber, Joshua R; Goodfield, Laura L; Smallridge, William E; Harvill, Eric T; Papin, James F; Wolf, Roman F; Padlan, Eduardo A; Bristol, Andy; Kaleko, Michael; Maynard, Jennifer A

    2015-12-01

    Despite widespread vaccination, pertussis rates are rising in industrialized countries and remain high worldwide. With no specific therapeutics to treat disease, pertussis continues to cause considerable infant morbidity and mortality. The pertussis toxin is a major contributor to disease, responsible for local and systemic effects including leukocytosis and immunosuppression. We humanized two murine monoclonal antibodies that neutralize pertussis toxin and expressed them as human immunoglobulin G1 molecules with no loss of affinity or in vitro neutralization activity. When administered prophylactically to mice as a binary cocktail, antibody treatment completely mitigated the Bordetella pertussis-induced rise in white blood cell counts and decreased bacterial colonization. When administered therapeutically to baboons, antibody-treated, but not untreated control animals, experienced a blunted rise in white blood cell counts and accelerated bacterial clearance rates. These preliminary findings support further investigation into the use of these antibodies to treat human neonatal pertussis in conjunction with antibiotics and supportive care. PMID:26631634

  13. Immunoreactive properties of anti-thyroglobulin autoantibodies isolated by affinity chromatography from human thyroiditis serum.

    PubMed Central

    Davoli, C; Salabé, G B; Andreoli, M

    1978-01-01

    A Sepharose-coupled 19S human thyroglobulin has been used as an immunoadsorbent to isolate anti-thyroglobulin autoantibodies and to evaluate the antigen-antibody interactions. With the system proposed a high yield of active antibody molecules was obtained. It is possible to evaluate both the soluble and precipitating 'immunological interactions', thus avoiding the use of the double antibody technique. Images FIG. 6 PMID:25731

  14. Growth factors with heparin binding affinity in human synovial fluid

    SciTech Connect

    Hamerman, D.; Taylor, S.; Kirschenbaum, I.; Klagsbrun, M.; Raines, E.W.; Ross, R.; Thomas, K.A.

    1987-12-01

    Synovial effusions were obtained from the knees of 15 subjects with joint trauma, menisceal or ligamentous injury, or osteoarthritis. Heparin-Sepharose affinity chromatography of these synovial fluids revealed, in general, three major peaks of mitogenic activity as measured by incorporation of /sup 3/H-thymidine into 3T3 cells. Gradient elution patterns showed activities at 0.5M NaCl, which is characteristic of platelet derived growth factor, and at 1.1 M NaCl and 1.6M NaCl, indicative of acidic and basic fibroblast growth factors, respectively. The identities of these mitogenic fractions were confirmed by specific immunologic and receptor-binding assays. The presence of platelet derived, acidic and basic fibroblast growth factors in the synovial fluid may contribute to wound healing in the arthritic joint.

  15. Cellular cytotoxicity mediated by isotype-switch variants of a monoclonal antibody to human neuroblastoma.

    PubMed Central

    d'Uscio, C. H.; Jungi, T. W.; Blaser, K.

    1991-01-01

    The biological property of an antibody is determined by its antigen binding characteristics and its isotype-related effector functions. We have established monoclonal antibodies of different isotypes by stepwise selection and cloning of the hybridoma CE7. The original CE7 secretes an IgG1/kappa (CE7 gamma 1) antibody that recognises a 185 kD cell surface glycoprotein expressed on all human sympatho-adrenomedullary cells. Isotype-switch variants were isolated in the following sequence: from the original CE7 gamma 1, CE7 gamma 2b variants were isolated, and from a CE7 gamma 2b variant CE7 gamma 2a variants were isolated. The antibodies of three different isotype variant cell lines possess identical antigen binding characteristics, but display distinct effector functions as demonstrated by antibody dependent cell-mediated cytotoxicity (ADCC). ADCC was performed with the neuroblastoma line IMR-32 as the target cells, and different FcR gamma positive cells were either freshly isolated from human peripheral blood leukocytes or cultured for 6-10 days and tested as potential effector cells. Tumour lysis mediated by monocyte-derived macrophages depended on the presence of CE7 gamma 2a antibodies; antibodies from the CE7 hybridomas of gamma 2b and gamma 1 isotypes were virtually inactive in ADCC assay. Pre-exposure of macrophages to rIFN-gamma enhanced their ADCC activity, a result that is compatible with the notion that the high affinity Fc IgG receptor (FcR gamma I/CD64) is involved in the triggering of ADCC in macrophages. In contrast to macrophages, mononuclear cells, nonadherent cells and monocytes displayed considerable non-specific lytic activity, which was little influenced by the presence of antibody regardless of the isotype added. PMID:1911183

  16. Purification of human copper, zinc superoxide dismutase by copper chelate affinity chromatography

    SciTech Connect

    Weslake, R.J.; Chesney, S.L.; Petkau, A.; Friesen, A.D.

    1986-05-15

    Copper, zinc superoxide dismutase was isolated from human red blood cell hemolysate by DEAE-Sepharose and copper chelate affinity chromatography. Enzyme preparations had specific activities ranging from 3400 to 3800 U/mg and recoveries were approximately 60% of the enzyme activity in the lysate. Copper chelate affinity chromatography resulted in a purification factor of about 60-fold. The homogeneity of the superoxide dismutase preparation was analyzed by sodium dodecyl sulfate-gel electrophoresis, analytical gel filtration chromatography, and isoelectric focusing.

  17. Oral Priming with Replicating Adenovirus Serotype 4 Followed by Subunit H5N1 Vaccine Boost Promotes Antibody Affinity Maturation and Expands H5N1 Cross-Clade Neutralization

    PubMed Central

    Khurana, Surender; Coyle, Elizabeth M.; Manischewitz, Jody; King, Lisa R.; Ishioka, Glenn; Alexander, Jeff; Smith, Jon; Gurwith, Marc; Golding, Hana

    2015-01-01

    A Phase I trial conducted in 2009–2010 demonstrated that oral vaccination with a replication competent Ad4-H5 (A/Vietnam) vector with dosages ranging from 107-1011 viral particles was well tolerated. HA-specific T-cell responses were efficiently induced, but very limited hemagglutination-inhibiting (HI) humoral responses were measured. However, a single boost of Ad4-H5-Vtn vaccinated individuals with a unadjuvanted licensed H5N1 (A/Vietnam) subunit vaccine resulted in superior HI titers compared with unprimed subjects. In the current study, the impact of Ad4-H5 priming on the quality of the polyclonal humoral immune response was evaluated using a real-time kinetics assay by surface plasmon resonance (SPR). Total binding of serum polyclonal antibodies from the Ad4-H5-Vtn primed groups against both homologous H5N1-A/Vietnam/1194/2004 (clade 1) and heterologous A/Indonesia-5/2005 (clade 2.1) HA1 head domain was significantly higher compared with sera from individuals that received subunit H5N1 vaccination alone. SPR measurements also demonstrated that the antigen-antibody complex dissociation rates (a surrogate for antibody affinity) of serum antibodies against the HA1 of H5N1-A/Vietnam were significantly higher in the Ad4-H5 primed groups compared with those from the unprimed group. Furthermore, strong correlations were observed between the antibody affinities for HA1 (but not HA2) and the virus neutralization titers against the homologous strain and a panel of heterologous clade 2 H5N1 strains. These findings support the concept of oral prime-boost vaccine approaches against pandemic influenza to elicit long-term memory B cells with high affinity capable of rapid response to variant pandemic viruses likely to emerge and adapt to human transmissions. PMID:25629161

  18. Oral priming with replicating adenovirus serotype 4 followed by subunit H5N1 vaccine boost promotes antibody affinity maturation and expands H5N1 cross-clade neutralization.

    PubMed

    Khurana, Surender; Coyle, Elizabeth M; Manischewitz, Jody; King, Lisa R; Ishioka, Glenn; Alexander, Jeff; Smith, Jon; Gurwith, Marc; Golding, Hana

    2015-01-01

    A Phase I trial conducted in 2009-2010 demonstrated that oral vaccination with a replication competent Ad4-H5 (A/Vietnam) vector with dosages ranging from 107-1011 viral particles was well tolerated. HA-specific T-cell responses were efficiently induced, but very limited hemagglutination-inhibiting (HI) humoral responses were measured. However, a single boost of Ad4-H5-Vtn vaccinated individuals with a unadjuvanted licensed H5N1 (A/Vietnam) subunit vaccine resulted in superior HI titers compared with unprimed subjects. In the current study, the impact of Ad4-H5 priming on the quality of the polyclonal humoral immune response was evaluated using a real-time kinetics assay by surface plasmon resonance (SPR). Total binding of serum polyclonal antibodies from the Ad4-H5-Vtn primed groups against both homologous H5N1-A/Vietnam/1194/2004 (clade 1) and heterologous A/Indonesia-5/2005 (clade 2.1) HA1 head domain was significantly higher compared with sera from individuals that received subunit H5N1 vaccination alone. SPR measurements also demonstrated that the antigen-antibody complex dissociation rates (a surrogate for antibody affinity) of serum antibodies against the HA1 of H5N1-A/Vietnam were significantly higher in the Ad4-H5 primed groups compared with those from the unprimed group. Furthermore, strong correlations were observed between the antibody affinities for HA1 (but not HA2) and the virus neutralization titers against the homologous strain and a panel of heterologous clade 2 H5N1 strains. These findings support the concept of oral prime-boost vaccine approaches against pandemic influenza to elicit long-term memory B cells with high affinity capable of rapid response to variant pandemic viruses likely to emerge and adapt to human transmissions. PMID:25629161

  19. Antibody Response to Cryptococcus neoformans Proteins in Rodents and Humans

    PubMed Central

    Chen, Lin-Chi; Goldman, David L.; Doering, Tamara L.; Pirofski, Liise-anne; Casadevall, Arturo

    1999-01-01

    The prevalence and specificity of serum antibodies to Cryptococcus neoformans proteins was studied in mice and rats with experimental infection, in individuals with or without a history of potential laboratory exposure to C. neoformans, human immunodeficiency virus (HIV)-positive individuals who developed cryptococcosis, in matched samples from HIV-positive individuals who did not develop cryptococcosis, and in HIV-negative individuals. Rodents had little or no serum antibody reactive with C. neoformans proteins prior to infection. The intensity and specificity of the rodent antibody response were dependent on the species, the mouse strain, and the viability of the inoculum. All humans had serum antibodies reactive with C. neoformans proteins regardless of the potential exposure, the HIV infection status, or the subsequent development of cryptococcosis. Our results indicate (i) a high prevalence of antibodies reactive with C. neoformans proteins in the sera of rodents after cryptococcal infection and in humans with or without HIV infection; (ii) qualitative and quantitative differences in the antibody profiles of HIV-positive individuals; and (iii) similarities and differences between humans, mice, and rats with respect to the specificity of the antibodies reactive with C. neoformans proteins. The results are consistent with the view that C. neoformans infections are common in human populations, and the results have implications for the development of vaccination strategies against cryptococcosis. PMID:10225877

  20. An HLA-B27 Homodimer Specific Antibody Recognizes a Discontinuous Mixed-Disulfide Epitope as Identified by Affinity-Mass Spectrometry.

    PubMed

    Iuraşcu, Marius-Ionuţ; Marroquin Belaunzanar, Osiris; Cozma, Claudia; Petrausch, Ulf; Renner, Christoph; Przybylski, Michael

    2016-06-01

    HLA-B27 homodimer formation is believed to be a hallmark of HLA-B27 associated spondyloarthritides. Recently, we have generated a homodimer-specific monoclonal antibody (HD6) and have demonstrated that HLA-B27 homodimer complexes are present on monocytes of healthy HLA-B27 gene carriers at low levels, with significantly increased levels at active disease. The capability of the HD6 antibody to discriminate between correctly formed HLA-B27 heterotrimers and pathology-associated homodimers is striking and cannot be explained by the primary structure of HLA-B27. We hypothesized that HD6 accesses a unique epitope and used affinity-mass spectrometry for its identification. The HD6 antibody was immobilized on an activated sepharose affinity column, and HLA-B27 homodimer characterized for affinity. The epitope was identified by proteolytic epitope excision and MALDI mass spectrometry, and shown to comprise a discontinuous Cys-203- 257-Cys mixed-disulfide peptide structure that is not accessible in HLA-B27 heterotrimers due to protection by noncovalently linked β2-microglobulin. The epitope peptides were synthesized by solid phase peptide synthesis, and the two monomeric peptide components, HLA-B27(203-219) and HLA-B27(257-273), as well as the homo- and hetero-dimeric disulfide linked combinations prepared. The affinity binding constants KD towards the antibodies were determined using a surface acoustic wave (SAW) biosensor, and showed the highest affinity with a KD of approximately 40 nM to the HD6 antibody for the (203-219)-SS-(257-273) mixed disulfide epitope. Graphical Abstract ᅟ. PMID:27067900

  1. An HLA-B27 Homodimer Specific Antibody Recognizes a Discontinuous Mixed-Disulfide Epitope as Identified by Affinity-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Iuraşcu, Marius-Ionuţ; Marroquin Belaunzanar, Osiris; Cozma, Claudia; Petrausch, Ulf; Renner, Christoph; Przybylski, Michael

    2016-06-01

    HLA-B27 homodimer formation is believed to be a hallmark of HLA-B27 associated spondyloarthritides. Recently, we have generated a homodimer-specific monoclonal antibody (HD6) and have demonstrated that HLA-B27 homodimer complexes are present on monocytes of healthy HLA-B27 gene carriers at low levels, with significantly increased levels at active disease. The capability of the HD6 antibody to discriminate between correctly formed HLA-B27 heterotrimers and pathology-associated homodimers is striking and cannot be explained by the primary structure of HLA-B27. We hypothesized that HD6 accesses a unique epitope and used affinity-mass spectrometry for its identification. The HD6 antibody was immobilized on an activated sepharose affinity column, and HLA-B27 homodimer characterized for affinity. The epitope was identified by proteolytic epitope excision and MALDI mass spectrometry, and shown to comprise a discontinuous Cys-203- 257-Cys mixed-disulfide peptide structure that is not accessible in HLA-B27 heterotrimers due to protection by noncovalently linked β2-microglobulin. The epitope peptides were synthesized by solid phase peptide synthesis, and the two monomeric peptide components, HLA-B27(203-219) and HLA-B27(257-273), as well as the homo- and hetero-dimeric disulfide linked combinations prepared. The affinity binding constants KD towards the antibodies were determined using a surface acoustic wave (SAW) biosensor, and showed the highest affinity with a KD of approximately 40 nM to the HD6 antibody for the (203-219)-SS-(257-273) mixed disulfide epitope.

  2. An HLA-B27 Homodimer Specific Antibody Recognizes a Discontinuous Mixed-Disulfide Epitope as Identified by Affinity-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Iuraşcu, Marius-Ionuţ; Marroquin Belaunzanar, Osiris; Cozma, Claudia; Petrausch, Ulf; Renner, Christoph; Przybylski, Michael

    2016-04-01

    HLA-B27 homodimer formation is believed to be a hallmark of HLA-B27 associated spondyloarthritides. Recently, we have generated a homodimer-specific monoclonal antibody (HD6) and have demonstrated that HLA-B27 homodimer complexes are present on monocytes of healthy HLA-B27 gene carriers at low levels, with significantly increased levels at active disease. The capability of the HD6 antibody to discriminate between correctly formed HLA-B27 heterotrimers and pathology-associated homodimers is striking and cannot be explained by the primary structure of HLA-B27. We hypothesized that HD6 accesses a unique epitope and used affinity-mass spectrometry for its identification. The HD6 antibody was immobilized on an activated sepharose affinity column, and HLA-B27 homodimer characterized for affinity. The epitope was identified by proteolytic epitope excision and MALDI mass spectrometry, and shown to comprise a discontinuous Cys-203- 257-Cys mixed-disulfide peptide structure that is not accessible in HLA-B27 heterotrimers due to protection by noncovalently linked β2-microglobulin. The epitope peptides were synthesized by solid phase peptide synthesis, and the two monomeric peptide components, HLA-B27(203-219) and HLA-B27(257-273), as well as the homo- and hetero-dimeric disulfide linked combinations prepared. The affinity binding constants KD towards the antibodies were determined using a surface acoustic wave (SAW) biosensor, and showed the highest affinity with a KD of approximately 40 nM to the HD6 antibody for the (203-219)-SS-(257-273) mixed disulfide epitope.

  3. Preclinical evaluation of multistep targeting of diasialoganglioside GD2 using a IgG-scFv bispecific antibody with high affinity for GD2 and DOTA metal complex

    PubMed Central

    Cheal, Sarah M.; Xu, Hong; Guo, Hong-fen; Zanzonico, Pat B.; Larson, Steven M.; Cheung, Nai-Kong

    2014-01-01

    Bispecific antibodies (BsAb) have proven to be useful targeting vectors for pretargeted radioimmunotherapy (PRIT). We sought to overcome key PRIT limitations such as high renal radiation exposure and immunogenicity (e.g. of streptavidin-antibody fusions), to advance clinical translation of this PRIT strategy for diasialoganglioside GD2-positive (GD2(+)) tumors. For this purpose, a IgG-scFv BsAb was engineered using the sequences for the anti-GD2 humanized monoclonal antibody hu3F8 (1) and C825, a murine scFv antibody with high affinity for the chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) complexed with beta-particle emitting radiometals such as 177Lu and 90Y (2, 3). A three-step regimen including hu3F8-C825, a dextran-based clearing agent, and p-aminobenzyl-DOTA radiolabeled with 177Lu (as 177Lu-DOTA-Bn; t1/2 = 6.71 days (d)) was optimized in immunocompromised mice carrying subcutaneous (s.c.) human GD2(+) neuroblastoma (NB) xenografts. Absorbed doses for tumor and normal tissues were ∼85 cGy/MBq and ≤3.7 cGy/MBq, respectively, with therapeutic indicies (TI) of 142 for blood and 23 for kidney. A therapy study (n = 5 per group; tumor volume: 240 ± 160 mm3) with three successive PRIT cycles (total 177Lu: ∼33 MBq; tumor dose ∼3400 cGy), revealed complete tumor response in 5/5 animals, with no recurrence up to 28 d post-treatment. Tumor ablation was confirmed histologically in 4/5 mice, and normal organs showed minimal overall toxicities. All non-treated mice required sacrifice within 12 d (>1.0 cm3 tumor volume). We conclude that this novel anti-GD2 PRIT approach has sufficient TI to successfully ablate s.c. GD2(+)–NB in mice while sparing kidney and bone marrow. PMID:24944121

  4. Immunoglobulin Gene Insertions and Deletions in the Affinity Maturation of HIV-1 Broadly Reactive Neutralizing Antibodies

    PubMed Central

    Kepler, Thomas B.; Liao, Hua-Xin; Alam, S. Munir; Bhaskarabhatla, Rekha; Zhang, Ruijun; Stewart, Shelley; Anasti, Kara; Kelsoe, Garnett; Parks, Robert; Lloyd, Krissey E.; Stolarchuk, Christina; Pritchett, Jamie; Solomon, Erika; Friberg, Emma; Morris, Lynn; Karim, Salim S. Abdool; Cohen, Myron S.; Walter, Emmanuel; Moody, M. Anthony; Wu, Xueling; Altae-Tran, Han R.; Georgiev, Ivelin S.; Kwong, Peter D.; Boyd, Scott D.; Fire, Andrew Z.; Mascola, John R.; Haynes, Barton F.

    2014-01-01

    Summary Induction of HIV-1 broad neutralizing antibodies (bnAbs) is a goal of HIV-1 vaccine development but has remained challenging partially due to unusual traits of bnAbs, including high somatic hypermutation (SHM) frequencies and in-frame insertions and deletions (indels). Here we examined the propensity and functional requirement for indels within HIV-1 bnAbs. High-throughput sequencing of the immunoglobulin (Ig) VHDJH genes in HIV-1 infected and uninfected individuals revealed that the indel frequency was elevated among HIV-1-infected subjects, with no unique properties attributable to bnAb-producing individuals. This increased indel occurrence depended only on the frequency of SHM point-mutations. Indel-encoded regions were generally proximal to antigen binding sites. Additionally, reconstruction of a HIV-1 CD4-binding site bnAb clonal lineage revealed that a large compound VHDJH indel was required for bnAb activity. Thus, vaccine development should focus on designing regimens targeted at sustained activation of bnAb lineages to achieve the required SHM and indel events. PMID:25211073

  5. Design, expression and evaluation of a novel humanized single chain antibody against epidermal growth factor receptor (EGFR).

    PubMed

    Akbari, Bahman; Farajnia, Safar; Zarghami, Nosratollah; Mahdieh, Nejat; Rahmati, Mohammad; Khosroshahi, Shiva Ahdi; Rahbarnia, Leila

    2016-11-01

    Various strategies have been attempted for targeting of epidermal growth factor receptor (EGFR), as an essential biomarker in a variety of cancers. Several anti-EGFR antibodies including cetuximab are used in clinics for treatment of EGFR-overexpressing colorectal and head and neck cancers but the efficiency of these antibodies is threatened by their large size and chimeric nature. Humanized single chains antibodies (huscFv) are smaller generation of antibodies with lower immunogenicity may overcome these limitations. This article reports production and evaluation of a novel humanized anti-EGFR scFv. The CDRs of cetuximab heavy and light chains were grafted onto human antibody frameworks as framework donors. To maintain the antigen binding affinity of murine antibody, the murine vernier zone residues were retained in framework regions of huscFv. Additionally, two point mutations in CDR-L1 and CDR-L3 and three point mutations in CDR-H2 and CDR-H3 loops of the humanized scFv (huscFv) were introduced to increase affinity of the huscFv to EGFR. Analysis of results demonstrated that the humanness degree of resultant huscFv was increased as 19%. HuscFv was expressed in BL21 (DE3) and affinity purified via Ni-NTA column. The reactivity of huscFv with EGFR was evaluated by ELISA and dot blot techniques. Analysis by ELISA and dot blot showed that the huscFv was able to recognize and react with EGFR. Toxicity analysis by MTT assay indicated an inhibitory effect on growth of EGFR-overexpressing A431 cells. In conclusion, the huscFv produced in this study revealed decreased immunogenicity while retained growth inhibitory effect on EGFR-overexpressing tumor cells. PMID:27298212

  6. Human-like antibodies neutralizing Western equine encephalitis virus

    PubMed Central

    Hülseweh, Birgit; Rülker, Torsten; Pelat, Thibaut; Langermann, Claudia; Frenzel, Andrè; Schirrmann, Thomas; Dübel, Stefan; Thullier, Philippe; Hust, Michael

    2014-01-01

    This study describes the development of the first neutralizing antibodies against Western equine encephalitis virus (WEEV), a member of the genus Alphavirus. WEEV is transmitted by mosquitoes and can spread to the human central nervous system, causing symptoms ranging from mild febrile reactions to life-threatening encephalitis. WEEV has been classified as a biological warfare agent by the US Centers for Disease Control and Prevention. No anti-WEEV drugs are currently commercially available. Neutralizing antibodies are useful for the pre- and post-exposure treatment of WEEV infections. In this study, two immune antibody gene libraries were constructed from two macaques immunized with inactivated WEEV. Four antibodies were selected from these libraries and recloned as scFv-Fc, with a human Fc part. These antibodies bound WEEV specifically in ELISA with little or no cross-reaction with other alphaviruses. They were further analyzed by immunohistochemistry. All binders were suitable for the intracellular detection of WEEV particles. Neutralizing activity was determined in vitro. Three of the four antibodies were found to be neutralizing; about 1 ng/mL of the best antibody (ToR69–3A2) neutralized 50% of 5x104 TCID50/mL. Due to its human-like nature with a germinality index of 89% (VH) and 91% (VL), the ToR69–3A2 antibody is a promising candidate for future passive vaccine development. PMID:24518197

  7. Computational protein design suggests that human PCNA-partner interactions are not optimized for affinity.

    PubMed

    Fridman, Yearit; Gur, Eyal; Fleishman, Sarel J; Aharoni, Amir

    2013-02-01

    Increasing the affinity of binding proteins is invaluable for basic and applied biological research. Currently, directed protein evolution experiments are the main approach for generating such proteins through the construction and screening of large mutant libraries. Proliferating cell nuclear antigen (PCNA) is an essential hub protein that interacts with many different partners to tightly regulate DNA replication and repair in all eukaryotes. Here, we used computational design to generate human PCNA mutants with enhanced affinity for several different partners. We identified double mutations in PCNA, outside the main partner binding site, that were predicted to increase PCNA-partner binding affinities compared to the wild-type protein by forming additional hydrophobic interactions with conserved residues in the PCNA partners. Affinity increases were experimentally validated with four different PCNA partners, demonstrating that computational design can reveal unexpected regions where affinity enhancements in natural systems are possible. The designed PCNA mutants can be used as a valuable tool for further examination of the regulation of PCNA-partner interactions during DNA replication and repair both in vitro and in vivo. More broadly, the ability to engineer affinity increases toward several PCNA partners suggests that interaction affinity is not an evolutionarily optimized trait of this system. PMID:23011891

  8. Initial Characterization of Monoclonal Antibodies against Human Monocytes

    NASA Astrophysics Data System (ADS)

    Ugolini, Valentina; Nunez, Gabriel; Smith, R. Graham; Stastny, Peter; Capra, J. Donald

    1980-11-01

    Three monoclonal antibodies against human monocytes have been produced by somatic cell fusion. Extensive specificity analysis suggests that these antibodies react with most if not all human peripheral blood monocytes and not with highly purified T or B cells. Initial chemical characterization of the monocyte antigen recognized by two of these antibodies is presented. The molecule is a single polypeptide chain with an apparent molecular weight of 200,000. These reagents should prove useful in the clinical definition of disorders of monocyte differentiation, in studies of monocyte function, and in the elucidation of the genetics and structure of monocyte cell surface antigens.

  9. Monoclonal Antibody Cross-Reactions between Drosophila and Human Brain

    NASA Astrophysics Data System (ADS)

    Miller, Carol A.; Benzer, Seymour

    1983-12-01

    A panel of 146 monoclonal antibodies (MAbs), obtained with Drosophila melanogaster tissue as primary immunogen, was tested for cross-reactivity with the human central nervous system. Sites examined included spinal cord, cerebellum, hippocampus, and optic nerve. Nonnervous tissues tested were liver and lymph node. Approximately half of the antibodies reacted with one or more sites in the human central nervous system, identifying regional, cell class, and subcellular antigens. Some recognized neuronal, glial, or axonal subsets. Immunoblot analysis revealed that some antibodies reacted with similar antigen patterns in both species.

  10. Human plasma contains cross-reactive Abeta conformer-specific IgG antibodies.

    PubMed

    O'Nuallain, Brian; Acero, Luis; Williams, Angela D; Koeppen, Helen P McWilliams; Weber, Alfred; Schwarz, Hans P; Wall, Jonathan S; Weiss, Deborah T; Solomon, Alan

    2008-11-25

    Two conformers of aggregated Abeta, i.e., fibrils and oligomers, have been deemed important in the pathogenesis of Alzheimer's disease. We now report that intravenous immune globulin (IVIG) derived from pools of human plasma contains IgGs that recognize conformational epitopes present on fibrils and oligomers, but not their soluble monomeric precursor. We have used affinity chromatography to isolate these antibodies and have shown that they cross-reacted with comparable nanomolar avidity with both types of Abeta aggregates; notably, binding was not inhibited by soluble Abeta monomers. Our studies provide further support for investigating the therapeutic use of IVIG in Alzheimer's disease. PMID:18956886

  11. Purification of human immunoglobulins A, G and M from Cohn fraction II/III by small peptide affinity chromatography.

    PubMed

    Liu, Zhuo; Gurgel, Patrick V; Carbonell, Ruben G

    2012-11-01

    This work describes attempts to purify human IgG, IgA and IgM from Cohn fraction II/III using HWRGWV affinity peptide resin. The effects of peptide density and different elution additives on recovery of the three antibodies were investigated. At low peptide density, salting-in salts such as magnesium chloride and calcium chloride facilitated antibody elution. Ethylene glycol, urea and arginine also facilitated elution because of their ability to decrease hydrophobic interactions, hydrogen bonding and electrostatic interactions. However, at high peptide density, no recovery improvements were observed because of increased non-specific hydrophobic interactions. The final elution conditions for each antibody were chosen based on the resulting yields and purities when a 10:2:1mg/mL mixture of human IgG, IgA and IgM was used as starting material. Different pretreatment methods were employed in order to improve the purity of antibodies from Cohn fraction II/III. After pretreatment with caprylic acid precipitation or combination of caprylic acid and polyethylene glycol precipitation, purities over 95% and yields of about 60% were obtained for hIgG, which are comparable to current chromatographic purification methods involving two chromatography steps when hIgG is isolated from plasma fractions. A hIgA-enriched fraction with 42% hIgA and 56% hIgG, as well as a hIgM enriched fraction with 46% hIgM, 28% hIgA and 24% hIgG, were obtained as the by-products. PMID:23026261

  12. Normally Occurring Human Anti-GM1 Immunoglobulin M Antibodies and the Immune Response to Bacteria

    PubMed Central

    Alaniz, María E.; Lardone, Ricardo D.; Yudowski, Silvia L.; Farace, María I.; Nores, Gustavo A.

    2004-01-01

    Anti-GM1 antibodies of the immunoglobulin M (IgM) isotype are normal components of the antibody repertoire of adult human serum. Using a sensitive high-performance thin-layer chromatography (HPTLC) immunostaining assay, we found that these antibodies were absent in the umbilical vein and children <1 month of age but could be detected after 1 month of age. Although most of the children older than 6 months of age were positive, there were still a few negative children. The appearance of anti-GM1 IgM antibodies showed a perfect concordance with two well-characterized antibacterial antibodies, anti-Forssman and anti-blood group A, which indicates a similar origin. We also studied IgM reactivity with lipopolysaccharides (LPSs) from gram-negative bacteria isolated from stool samples from healthy babies and from Escherichia coli HB101 in serum from individuals of different ages. We found a positive reaction with both LPSs in all the children more than 1 month of age analyzed, even in those that were negative for anti-GM1 antibodies. Anti-GM1 IgM antibodies were purified from adult serum by affinity chromatography and tested for the ability to bind LPSs from different bacteria. This highly specific preparation showed reactivity only with LPS from a strain of Campylobacter jejuni isolated from a patient with diarrhea. We conclude that normally occurring IgM antibodies are generated after birth, probably during the immune defense against specific bacterial strains. PMID:15039337

  13. A Fully Human Inhibitory Monoclonal Antibody to the Wnt Receptor RYK

    PubMed Central

    Parish, Clare L.; Takano, Elena A.; Fox, Stephen; Layton, Daniel; Nice, Edouard; Stacker, Steven A.

    2013-01-01

    RYK is an unusual member of the receptor tyrosine kinase (RTK) family that is classified as a putative pseudokinase. RYK regulates fundamental biological processes including cell differentiation, migration and target selection, axon outgrowth and pathfinding by transducing signals across the plasma membrane in response to the high affinity binding of Wnt family ligands to its extracellular Wnt inhibitory factor (WIF) domain. Here we report the generation and initial characterization of a fully human inhibitory monoclonal antibody to the human RYK WIF domain. From a naïve human single chain fragment variable (scFv) phage display library, we identified anti-RYK WIF domain–specific scFvs then screened for those that could compete with Wnt3a for binding. Production of a fully human IgG1κ from an inhibitory scFv yielded a monoclonal antibody that inhibits Wnt5a-responsive RYK function in a neurite outgrowth assay. This antibody will have immediate applications for modulating RYK function in a range of settings including development and adult homeostasis, with significant potential for therapeutic use in human pathologies. PMID:24058687

  14. A fully human inhibitory monoclonal antibody to the Wnt receptor RYK.

    PubMed

    Halford, Michael M; Macheda, Maria L; Parish, Clare L; Takano, Elena A; Fox, Stephen; Layton, Daniel; Nice, Edouard; Stacker, Steven A

    2013-01-01

    RYK is an unusual member of the receptor tyrosine kinase (RTK) family that is classified as a putative pseudokinase. RYK regulates fundamental biological processes including cell differentiation, migration and target selection, axon outgrowth and pathfinding by transducing signals across the plasma membrane in response to the high affinity binding of Wnt family ligands to its extracellular Wnt inhibitory factor (WIF) domain. Here we report the generation and initial characterization of a fully human inhibitory monoclonal antibody to the human RYK WIF domain. From a naïve human single chain fragment variable (scFv) phage display library, we identified anti-RYK WIF domain-specific scFvs then screened for those that could compete with Wnt3a for binding. Production of a fully human IgG1κ from an inhibitory scFv yielded a monoclonal antibody that inhibits Wnt5a-responsive RYK function in a neurite outgrowth assay. This antibody will have immediate applications for modulating RYK function in a range of settings including development and adult homeostasis, with significant potential for therapeutic use in human pathologies. PMID:24058687

  15. Toward a Universal Method for Preparing Molecularly Imprinted Polymer Nanoparticles with Antibody-like Affinity for Proteins.

    PubMed

    Xu, Jingjing; Ambrosini, Serena; Tamahkar, Emel; Rossi, Claire; Haupt, Karsten; Tse Sum Bui, Bernadette

    2016-01-11

    We describe a potentially universal, simple and cheap method to prepare water-compatible molecularly imprinted polymer nanoparticles (MIP-NPs) as synthetic antibodies against proteins. The strategy is based on a solid phase synthesis approach where glass beads (GBs) are functionalized with a metal chelate, acting as a general affinity ligand to attract surface-bound histidines present on proteins. This configuration enables an oriented immobilization of the proteins, upon which thermoresponsive MIP-NPs are synthesized. The GBs play the role of both a reactor and a separation column since, after synthesis, the MIP-NPs are released from the support by a simple temperature change, resulting in protein-free polymers. The resulting MIP-NPs are endowed with improved binding site homogeneity, since the binding sites have the same orientation. Moreover, they are stable (no aggregation) in a buffer solution for prolonged storage time and exhibit apparent dissociation constants in the nanomolar range, with little or no cross-reactivity toward other proteins. PMID:26644006

  16. Development of Human Monoclonal Antibodies Against Respiratory Syncytial Virus Using a High Efficiency Human Hybridoma Technique.

    PubMed

    Alvarado, Gabriela; Crowe, James E

    2016-01-01

    Human monoclonal antibodies against RSV have high potential for use as prophylaxis or therapeutic molecules, and they also can be used to define the structure of protective epitopes for rational vaccine design. In the past, however, isolation of human monoclonal antibodies was difficult and inefficient. Here, we describe contemporary methods for activation and proliferation of primary human memory B cells followed by cytofusion to non-secreting myeloma cells by dielectrophoresis to generate human hybridomas secreting RSV-specific monoclonal antibodies. We also provide experimental methods for screening human B cell lines to obtain RSV-specific lines, especially lines secreting neutralizing antibodies. PMID:27464688

  17. Development and Characterization of a New Antipeptide Monoclonal Antibody Directed to Human CD20 Antigen.

    PubMed

    Habibi-Anbouhi, Mahdi; Azadmanesh, Kayhan; Behdani, Mahdi; Hajizadeh-Saffar, Ensiyeh; Vahabpour, Rouhollah; Shokrgozar, Mohammad Ali

    2015-09-01

    The rapid expansion of immunotherapeutic approaches for treatment of various diseases, including cancers, has been greatly facilitated by the invention of new generation of antibodies. Clinical studies have indicated that anti-CD20 mAb-based therapies represent an effective treatment for various diseases with overexpression of CD20 on their cell surface, such as non-Hodgkin's lymphoma, hemolytic anemia, as well as autoimmune diseases like rheumatoid arthritis. Technically, due to a short extra membrane domain, the recombinant CD20 protein is a difficult antigen to raise immune responses. In search for new monoclonal antibodies, the authors used an antigenic polypeptide, which yielded numbers of new binders that may lead to production of anti-CD20 antibodies, with improved diagnostic or clinical attributes. Mice were immunized with extra membrane loop of human CD20 (exCD20) polypeptide. The exCD20 antigen showed a desired immune response and was able to develop a monoclonal antibody, 3B4C10, which reacted well with peptide antigen as well as native antigen on the surface of Raji B-cell line. The antibody 3B4C10 with a balanced K(on) and K(off) may be applicable in the construction of affinity columns or beads for isolation and purification of CD20-positive cells and cancer stem cells. PMID:26352927

  18. A simple nonradioactive method for the determination of the binding affinities of antibodies induced by hapten bioconjugates for drugs of abuse.

    PubMed

    Torres, Oscar B; Antoline, Joshua F G; Li, Fuying; Jalah, Rashmi; Jacobson, Arthur E; Rice, Kenner C; Alving, Carl R; Matyas, Gary R

    2016-02-01

    The accurate analytical measurement of binding affinities of polyclonal antibody in sera to heroin, 6-acetylmorphine (6-AM), and morphine has been a challenging task. A simple nonradioactive method that uses deuterium-labeled drug tracers and equilibrium dialysis (ED) combined with ultra performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) to measure the apparent dissociation constant (K d) of antibodies to 6-AM and morphine is described. The method can readily detect antibodies with K d in the low nanomolar range. Since heroin is rapidly degraded in sera, esterase inhibitors were included in the assay, greatly reducing heroin hydrolysis. MS/MS detection directly measured the heroin in the assay after overnight ED, thereby allowing the quantitation of % bound heroin in lieu of K d as an alternative measurement to assess heroin binding to polyclonal antibody sera. This is the first report that utilizes a solution-based assay to quantify heroin-antibody binding without being confounded by the presence of 6-AM and morphine and to measure K d of polyclonal antibody to 6-AM. Hapten surrogates 6-AcMorHap, 6-PrOxyHap, MorHap, DiAmHap, and DiPrOxyHap coupled to tetanus toxoid (TT) were used to generate high affinity antibodies to heroin, 6-AM, and morphine. In comparison to competition ED-UPLC/MS/MS which gave K d values in the nanomolar range, the commonly used competition enzyme-linked immunosorbent assay (ELISA) measured the 50% inhibition concentration (IC50) values in the micromolar range. Despite the differences in K d and IC50 values, similar trends in affinities of hapten antibodies to heroin, 6-AM, and morphine were observed by both methods. Competition ED-UPLC/MS/MS revealed that among the five TT-hapten bioconjugates, TT-6-AcMorHap and TT-6-PrOxyHap induced antibodies that bound heroin, 6-AM, and morphine. In contrast, TT-MorHap induced antibodies that poorly bound heroin, while TT-DiAmHap and TT-DiPrOxyHap induced antibodies either did not

  19. Expression and Functional Properties of an Anti-Triazophos High-Affinity Single-Chain Variable Fragment Antibody with Specific Lambda Light Chain

    PubMed Central

    Liu, Rui; Liang, Xiao; Xiang, Dandan; Guo, Yirong; Liu, Yihua; Zhu, Guonian

    2016-01-01

    Triazophos is a widely used organophosphorous insecticide that has potentially adverse effects to organisms. In the present study, a high-affinity single-chain variable fragment (scFv) antibody with specific lambda light chain was developed for residue monitoring. First, the specific variable regions were correctly amplified from a hybridoma cell line 8C10 that secreted monoclonal antibody (mAb) against triazophos. The regions were then assembled as scFv via splicing by overlap extension polymerase chain reaction. Subsequently, the recombinant anti-triazophos scFv-8C10 was successfully expressed in Escherichia coli strain HB2151 in soluble form, purified through immobilized metal ion affinity chromatography, and verified via Western blot and peptide mass fingerprinting analyses. Afterward, an indirect competitive enzyme-linked immunosorbent assay was established based on the purified anti-triazophos scFv-8C10 antibody. The assay exhibited properties similar to those based on the parent mAb, with a high sensitivity (IC50 of 1.73 ng/mL) to triazophos and no cross reaction for other organophosphorus pesticides; it was reliable in detecting triazophos residues in spiked water samples. Moreover, kinetic measurement using a surface plasmon resonance biosensor indicated that the purified scFv-8C10 antibody had a high affinity of 1.8 × 10−10 M and exhibited good binding stability. Results indicated that the recombinant high-affinity scFv-8C10 antibody was an effective detection material that would be promising for monitoring triazophos residues in environment samples. PMID:27338340

  20. Expression and Functional Properties of an Anti-Triazophos High-Affinity Single-Chain Variable Fragment Antibody with Specific Lambda Light Chain.

    PubMed

    Liu, Rui; Liang, Xiao; Xiang, Dandan; Guo, Yirong; Liu, Yihua; Zhu, Guonian

    2016-01-01

    Triazophos is a widely used organophosphorous insecticide that has potentially adverse effects to organisms. In the present study, a high-affinity single-chain variable fragment (scFv) antibody with specific lambda light chain was developed for residue monitoring. First, the specific variable regions were correctly amplified from a hybridoma cell line 8C10 that secreted monoclonal antibody (mAb) against triazophos. The regions were then assembled as scFv via splicing by overlap extension polymerase chain reaction. Subsequently, the recombinant anti-triazophos scFv-8C10 was successfully expressed in Escherichia coli strain HB2151 in soluble form, purified through immobilized metal ion affinity chromatography, and verified via Western blot and peptide mass fingerprinting analyses. Afterward, an indirect competitive enzyme-linked immunosorbent assay was established based on the purified anti-triazophos scFv-8C10 antibody. The assay exhibited properties similar to those based on the parent mAb, with a high sensitivity (IC50 of 1.73 ng/mL) to triazophos and no cross reaction for other organophosphorus pesticides; it was reliable in detecting triazophos residues in spiked water samples. Moreover, kinetic measurement using a surface plasmon resonance biosensor indicated that the purified scFv-8C10 antibody had a high affinity of 1.8 × 10(-10) M and exhibited good binding stability. Results indicated that the recombinant high-affinity scFv-8C10 antibody was an effective detection material that would be promising for monitoring triazophos residues in environment samples. PMID:27338340

  1. Tetanus Neurotoxin Neutralizing Antibodies Screened from a Human Immune scFv Antibody Phage Display Library.

    PubMed

    Wang, Han; Yu, Rui; Fang, Ting; Yu, Ting; Chi, Xiangyang; Zhang, Xiaopeng; Liu, Shuling; Fu, Ling; Yu, Changming; Chen, Wei

    2016-01-01

    Tetanus neurotoxin (TeNT) produced by Clostridium tetani is one of the most poisonous protein substances. Neutralizing antibodies against TeNT can effectively prevent and cure toxicosis. Using purified Hc fragments of TeNT (TeNT-Hc) as an antigen, three specific neutralizing antibody clones recognizing different epitopes were selected from a human immune scFv antibody phage display library. The three antibodies (2-7G, 2-2D, and S-4-7H) can effectively inhibit the binding between TeNT-Hc and differentiated PC-12 cells in vitro. Moreover, 2-7G inhibited TeNT-Hc binding to the receptor via carbohydrate-binding sites of the W pocket while 2-2D and S-4-7H inhibited binding of the R pocket. Although no single mAb completely protected mice from the toxin, they could both prolong survival when challenged with 20 LD50s (50% of the lethal dose) of TeNT. When used together, the mAbs completely neutralized 1000 LD50s/mg Ab, indicating their high neutralizing potency in vivo. Antibodies recognizing different carbohydrate-binding pockets could have higher synergistic toxin neutralization activities than those that recognize the same pockets. These results could lead to further production of neutralizing antibody drugs against TeNT and indicate that using TeNT-Hc as an antigen for screening human antibodies for TeNT intoxication therapy from human immune antibody library was convenient and effective. PMID:27626445

  2. The binding affinity of a soluble TCR-Fc fusion protein is significantly improved by crosslinkage with an anti-C{beta} antibody

    SciTech Connect

    Ozawa, Tatsuhiko; Horii, Masae; Kobayashi, Eiji; Jin, Aishun; Kishi, Hiroyuki; Muraguchi, Atsushi

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer A novel soluble TCR composed of TCR V and C regions with Ig Fc region is generated. Black-Right-Pointing-Pointer TCR-Fc protein immobilized by an anti-C{beta} antibody bound to a p/MHC tetramer. Black-Right-Pointing-Pointer Binding affinity of TCR-Fc was markedly increased by binding with anti-C{beta} antibody. -- Abstract: The identification and cloning of tumor antigen-specific T cell receptors (TCRs) and the production of the soluble form of the TCR (sTCR) contributed to the development of diagnostic and therapeutic tools for cancer. Recently, several groups have reported the development of technologies for the production of sTCRs. The native sTCR has a very low binding affinity for the antigenic peptide/MHC (p/MHC) complex. In this study, we established a technology to produce high affinity, functional sTCRs. We generated a novel sTCR-Fc fusion protein composed of the TCR V and C regions of the TCR linked to the immunoglobulin (Ig) Fc region. A Western blot analysis revealed that the molecular weight of the fusion protein was approximately 60 kDa under reducing conditions and approximately 100-200 kDa under non-reducing conditions. ELISAs using various antibodies showed that the structure of each domain of the TCR-Fc protein was intact. The TCR-Fc protein immobilized by an anti-C{beta} antibody effectively bound to a p/MHC tetramer. An SPR analysis showed that the TCR-Fc protein had a low binding affinity (KD; 1.1 Multiplication-Sign 10{sup -5} M) to the p/MHC monomer. Interestingly, when the TCR-Fc protein was pre-incubated with an anti-C{beta} antibody, its binding affinity for p/MHC increased by 5-fold (2.2 Multiplication-Sign 10{sup -6} M). We demonstrated a novel method for constructing a functional soluble TCR using the Ig Fc region and showed that the binding affinity of the functional sTCR-Fc was markedly increased by an anti-C{beta} antibody, which is probably due to the stabilization of the V

  3. Germline V-genes sculpt the binding site of a family of antibodies neutralizing human cytomegalovirus

    SciTech Connect

    Thomson, Christy A.; Bryson, Steve; McLean, Gary R.; Creagh, A. Louise; Pai, Emil F.; Schrader, John W.

    2008-10-17

    Immunoglobulin genes are generated somatically through specialized mechanisms resulting in a vast repertoire of antigen-binding sites. Despite the stochastic nature of these processes, the V-genes that encode most of the antigen-combining site are under positive evolutionary selection, raising the possibility that V-genes have been selected to encode key structural features of binding sites of protective antibodies against certain pathogens. Human, neutralizing antibodies to human cytomegalovirus that bind the AD-2S1 epitope on its gB envelope protein repeatedly use a pair of well-conserved, germline V-genes IGHV3-30 and IGKV3-11. Here, we present crystallographic, kinetic and thermodynamic analyses of the binding site of such an antibody and that of its primary immunoglobulin ancestor. These show that these germline V-genes encode key side chain contacts with the viral antigen and thereby dictate key structural features of the hypermutated, high-affinity neutralizing antibody. V-genes may thus encode an innate, protective immunological memory that targets vulnerable, invariant sites on multiple pathogens.

  4. Inhibitory activity of antibodies against the human atrial 5-HT(4)receptor.

    PubMed

    Sallé, L; Eftekhari, P; Aupart, M; Cosnay, P; Hoebeke, J; Argibay, J A

    2001-03-01

    Antibodies directed against the second extracellular loop of G protein-coupled receptors have been shown to exert "agonist-like" activities. In order to test the hypothesis that this is a general phenomenon, antibodies were raised in rabbits against a synthetic peptide corresponding to the second extracellular loop of the newly sequenced human cardiac 5-HT(4)receptor. The antibodies were affinity-purified and shown to recognize the 5-HT(4)receptor in immunoblots of Chinese hamster ovary (CHO) cells expressing the receptor. The antibodies had no intrinsic effect but could depress the activation of L -type calcium channel induced by serotonin in human atrial cells. This antagonist-like effect was exerted both by intact IgG and by Fab fragments. These results are physiologically important since it has been shown that the 5-HT(4)receptor could be a target for autoantibodies in mothers at risk of giving birth to children with neonatal atrio-ventricular block. PMID:11181010

  5. Intein-mediated one-step purification of Escherichia coli secreted human antibody fragments.

    SciTech Connect

    Wu, Wan-Yi; Miller, Keith D.; Coolbaugh, Michael; Wood, David W.

    2011-02-25

    In this work, we apply self-cleaving affinity tag technology to several target proteins secreted into the Escherichia coli periplasm, including two with disulfide bonds. The target proteins were genetically fused to a self-cleaving chitin-binding domain intein tag for purification via a chitin agarose affinity resin. By attaching the intein-tagged fusion genes to the PelB secretion leader sequence, the tagged target proteins were secreted to the periplasmic space and could be recovered in active form by simple osmotic shock. After chitin-affinity purification, the target proteins were released from the chitin-binding domain tag via intein self-cleaving. This was induced by a small change in pH from 8.5 to 6.5 at room temperature, allowing direct elution of the cleaved target protein from the chitin affinity resin. The target proteins include the E. coli maltose-binding protein and b-lactamase enzyme, as well as two human antibody fragments that contain disulfide bonds. In all cases, the target proteins were purified with good activity and yield, without the need for refolding. Overall, this work demonstrates the compatibility of the DI-CM intein with the PelB secretion system in E. coli, greatly expanding its potential to more complex proteins.

  6. Human monoclonal antibodies targeting carbonic anhydrase IX for the molecular imaging of hypoxic regions in solid tumours

    PubMed Central

    Ahlskog, J K J; Schliemann, C; Mårlind, J; Qureshi, U; Ammar, A; Pedley, R B; Neri, D

    2009-01-01

    Background: Hypoxia, which is commonly observed in areas of primary tumours and of metastases, influences response to treatment. However, its characterisation has so far mainly been restricted to the ex vivo analysis of tumour sections using monoclonal antibodies specific to carbonic anhydrase IX (CA IX) or by pimonidazole staining, after the intravenous administration of this 2-nitroimidazole compound in experimental animal models. Methods: In this study, we describe the generation of high-affinity human monoclonal antibodies (A3 and CC7) specific to human CA IX, using phage technology. Results: These antibodies were able to stain CA IX ex vivo and to target the cognate antigen in vivo. In one of the two animal models of colorectal cancer studied (LS174T), CA IX imaging closely matched pimonidazole staining, with a preferential staining of tumour areas characterised by little vascularity and low perfusion. In contrast, in a second animal model (SW1222), distinct staining patterns were observed for pimonidazole and CA IX targeting. We observed a complementary pattern of tumour regions targeted in vivo by the clinical-stage vascular-targeting antibody L19 and the anti-CA IX antibody A3, indicating that a homogenous pattern of in vivo tumour targeting could be achieved by a combination of the two antibodies. Conclusion: The new human anti-CA IX antibodies are expected to be non-immunogenic in patients with cancer and may serve as broadly applicable reagents for the non-invasive imaging of hypoxia and for pharmacodelivery applications. PMID:19623173

  7. Affinities of human histo-blood group antigens for norovirus capsid protein complexes

    PubMed Central

    Han, Ling; Kitova, Elena N; Tan, Ming; Jiang, Xi; Pluvinage, Benjamin; Boraston, Alisdair B; Klassen, John S

    2015-01-01

    The binding profiles of many human noroviruses (huNoVs) for human histo-blood group antigens have been characterized. However, quantitative-binding data for these important virus–host interactions are lacking. Here, we report on the intrinsic (per binding site) affinities of HBGA oligosaccharides for the huNoV VA387 virus-like particles (VLPs) and the associated subviral P particles measured using electrospray ionization mass spectrometry. The affinities of 13 HBGA oligosaccharides, containing A, B and H epitopes, with variable sizes (disaccharide to tetrasaccharide) and different precursor chain types (types 1, 2, 3, 5 and 6), were measured for the P particle, while the affinities of the A and B trisaccharides and A and B type 6 tetrasaccharides for the VLP were determined. The intrinsic affinities of the HBGA oligosaccharides for the P particle range from 500 to 2300 M−1, while those of the A and B trisaccharides and the A and B type 6 tetrasaccharides for the VLP range from 1000 to 4000 M−1. Comparison of these binding data with those measured previously for the corresponding P dimer reveals that the HBGA oligosaccharides tested exhibit similar intrinsic affinities for the P dimer and P particle. The intrinsic affinities for the VLP are consistently higher than those measured for the P particle, but within a factor of three. While the cause of the subtle differences in HBGA oligosaccharide affinities for the P dimer and P particle and those for the VLP remains unknown, the present data support the use of P dimers or P particles as surrogates to the VLP for huNoV-receptor-binding studies. PMID:25395406

  8. Preliminary study of the metal binding site of an anti-DTPA-indium antibody by equilibrium binding immunoassays and immobilized metal ion affinity chromatography.

    PubMed

    Boden, V; Colin, C; Barbet, J; Le Doussal, J M; Vijayalakshmi, M

    1995-01-01

    Creating metal coordination sites by modifying an existing enzyme or by eliciting antibodies against metal chelate haptens is of great interest in biotechnology to create enzyme catalysts with novel specificities. Here, we investigate the metal binding potential of a monoclonal antibody raised against a DTPA-In(III) hapten (mAb 734). We study its relative binding efficiency to metals of biological relevance by equilibrium binding immunoassays and immobilized metal ion affinity chromatography, two approaches which can give complementary information regarding composition and/or structure of the metal binding site(s). Fe(III), Fe(II), Cu(II), Mg(II), Ca(II), and Zn(II) binding was compared to In(III). All of them were shown to displace indium, but their affinity for mAb 734 decreased by 100-fold compared to indium. Competitive metal binding immunoassays between Zn(II) and In(III) revealed an unusual behavior by Zn(II) which remains to be explained. Moreover, IMAC allowed us to predict the metal binding amino acids involved in the antibody paratope. The antibody metal binding site was shown to contain at least two histidine residues in a cluster, and the presence of aspartic and glutamic acid as well as cysteine residues could not be excluded. Thus, simple competition studies allows us to obtain some partial information on the metal binding structural features of this anti-metal chelate antibody and to guide our screening of its catalytic potential. PMID:7578356

  9. Purification of polyclonal anti-conformational antibodies for use in affinity selection from random peptide phage display libraries: A study using the hydatid vaccine EG95

    PubMed Central

    Read, A.J.; Gauci, C.G.; Lightowlers, M.W.

    2009-01-01

    The use of polyclonal antibodies to screen random peptide phage display libraries often results in the recognition of a large number of peptides that mimic linear epitopes on various proteins. There appears to be a bias in the use of this technology toward the selection of peptides that mimic linear epitopes. In many circumstances the correct folding of a protein immunogen is required for conferring protection. The use of random peptide phage display libraries to identify peptide mimics of conformational epitopes in these cases requires a strategy for overcoming this bias. Conformational epitopes on the hydatid vaccine EG95 have been shown to result in protective immunity in sheep, whereas linear epitopes are not protective. In this paper we describe a strategy that results in the purification of polyclonal antibodies directed against conformational epitopes while eliminating antibodies directed against linear epitopes. These affinity purified antibodies were then used to select a peptide from a random peptide phage display library that has the capacity to mimic conformational epitopes on EG95. This peptide was subsequently used to affinity purify monospecific antibodies against EG95. PMID:19349218

  10. High efficiency reconstitution of a human-mouse chimeric Fab of CAb-1 antibody specific to human colon cancer.

    PubMed

    Yang, X-M; Xing, J-L; Liao, C-G; Yao, X-Y; Li, Y; Chen, Z-N

    2008-07-01

    Monoclonal antibody (mAb) has been widely applied in the treatment of human diseases, especially in malignant tumours. However, most antibodies produced in mouse by hybridoma technology might induce severe human anti-mouse reactions. We had reported a murine mAb CAb-1 of therapeutic interest for its specifically binding to a cell surface glycoprotein of human colon cancer. Here, we attempted to generate a reconstituted human-mouse chimeric Fab (cFab) of CAb-1 in vitro to reduce its antigenicity and increase its capacity of penetration. First, the genes of heavy and light chain variable region (VH, VL) of CAb-1 were cloned. Then, the chimeric light chain (cL) and Fd (cFd) were constructed and expressed in Escherichia coli. Finally, the reconstituted cFab was obtained by gradient dialysis of the mixture of cFd and cL. SDS-PAGE and western blot analysis showed the reconstituted cFab with a recovery rate of 70.2% when the initial total concentration of cL and cFd proteins to be 100 microg/ml. The reconstituted cFab maintained the affinity and specificity to colon cancer cells compared with its parental antibody as determined by immunostaining analysis, FACS and ELISA. Our results established a foundation for further application of the cFab in diagnosis and treatment of colon cancer. PMID:18482205

  11. Development of a novel engineered antibody targeting human CD123.

    PubMed

    Moradi-Kalbolandi, Shima; Habibi-Anbouhi, Mahdi; Golkar, Majid; Behdani, Mahdi; Rezaei, Gashin; Ghazizadeh, Leila; Abolhassani, Mohsen; Shokrgozar, Mohammad Ali

    2016-10-15

    Antibody engineering involves a range of custom modifications of immunoglobulins to improve their affinity, valency, and pharmacokinetics, ensuring a better target therapy achievement. A number of therapeutic antibodies have been used for cell surface receptor blockage, interfering with the ligand binding and inhibiting receptor-driven activation of cells. Here we describe the construction and characterization of a recombinant bivalent single-chain Fv (biscFv) that targets CD123. On conversion of anti-CD123 scFv to biscFv format, the recognition of the cognate ligand is not altered. Moreover, the increased overall efficacy of the anti-CD123 biscFv in binding and inhibition of CD123/IL-3 (interleukin-3) interactions in TF-1 cells is demonstrated. PMID:27156812

  12. Construction of a Semisynthetic Human VH Single-Domain Antibody Library and Selection of Domain Antibodies against α-Crystalline of Mycobacterium tuberculosis.

    PubMed

    Hairul Bahara, Nur Hidayah; Chin, Siang Tean; Choong, Yee Siew; Lim, Theam Soon

    2016-01-01

    The use of human variable heavy (VH) domain antibodies has been on the rise due to their small scaffold size and simple folding mechanism. A highly diverse library is largely dependent on the diversity introduced within the complementarity-determining region (CDR) cassettes. Here we introduced diversity with the use of a single framework diversifying all three CDRs using tailored codons consisting of degenerate trinucleotides (NNK). The length of the degeneracy in the CDRs was also taken into consideration based on the most frequently occurring length of CDRs and the canonical confirmation for each antibody subfamily. The semisynthetic human VH domain genes were assembled in a single pot using a temperature cascading process. The affinity selection process with Mycobacterium tuberculosis (MTb) α-crystalline was done using a semiautomated process. Enrichment of target-specific clones was observed with successful identification of monoclonal VH domain antibodies for MTb α-crystalline. In short, the semisynthetic library generated was able to select monoclonal VH domain antibodies against full MTb α-crystalline protein with complete semisynthetic CDRs displayed on a single scaffold. The library has the potential to be applied for the isolation of antibodies against other pathogenic proteins. PMID:26423338

  13. Low-affinity IgM antibodies lacking somatic hypermutations are produced in the secondary response of C57BL/6 mice to (4-hydroxy-3-nitrophenyl)acetyl hapten.

    PubMed

    Murakami, Akikazu; Moriyama, Hayato; Osako-Kabasawa, Mina; Endo, Kanako; Nishimura, Miyuki; Udaka, Keiko; Muramatsu, Masamichi; Honjo, Tasuku; Azuma, Takachika; Shimizu, Takeyuki

    2014-04-01

    Class-switched memory B cells, which are generated through the processes of somatic hypermutation (SHM) and affinity-based selection in germinal centers, contribute to the production of affinity-matured IgG antibodies in the secondary immune response. However, changes in the affinity of IgM antibodies during the immune response have not yet been studied, although IgM(+) memory B cells have been shown to be generated. In order to understand the relationship between IgM affinity and the recall immune response, we prepared hybridomas producing anti-(4-hydroxy-3-nitrophenyl)acetyl (NP) IgM antibodies from C57BL/6 mice and from activation-induced cytidine deaminase (AID)-deficient mice. Binding analysis by ELISA showed that mAbs obtained from the secondary immune response contained IgM mAbs with affinity lower than the affinity of mAbs obtained from the primary response. By analyzing sequences of the IgM genes of hybridomas and plasma cells, we found many unmutated VH genes. VH genes that had neither tyrosine nor glycine at position 95 were frequent. The repertoire change may correlate with the lower affinity of IgM antibodies in the secondary response. The sequence and affinity changes in IgM antibodies were shown to be independent of SHM by analyzing hybridomas from AID-deficient mice. A functional assay revealed a reciprocal relationship between affinity and complement-dependent hemolytic activity toward NP-conjugated sheep RBCs; IgM antibodies with lower affinities had higher hemolytic activity. These findings indicate that lower affinity IgM antibodies with enhanced complement activation function are produced in the secondary immune response. PMID:24285827

  14. Pathogen-specific recombinant human polyclonal antibodies: biodefence applications.

    PubMed

    Bregenholt, Søren; Haurum, John

    2004-03-01

    The potential use of biological agents such as viruses, bacteria or bacterial toxins as weapons of mass destruction has fuelled significant national and international research and development in novel prophylactic or therapeutic countermeasures. Such measures need to be fast-acting and broadly specific, a hallmark of target-specific polyclonal antibodies (pAbs). As reviewed here, pathogen-specific antibodies in the form of human or animal serum have long been recognised as effective therapies in a number of infectious diseases. This review focuses in particular on the potential biowarfare agents prioritised by the National Institute of Allergy and Infectious Diseases and the Centers for Disease Control and Prevention (CDC), referred to as the category A organisms. Furthermore, it is propose that the last decade of development in recombinant antibody technologies offers the possibility for developing highly specific human monoclonal or polyclonal pathogen-specific antibodies. In particular, pathogen-specific polyclonal human antibodies offer certain advantages over existing hyperimmune serum products, monoclonal antibodies, small molecule drugs and vaccines. Here, the rationale for designing pAb-based therapeutics against the CDC category A microbial agents causing anthrax, botulism, plague, smallpox, tularaemia and viral haemorrhagic fevers, as well as the overall design of such therapeutics, are discussed. PMID:15006732

  15. Antibodies to human caudate nucleus neurons in Huntington's chorea.

    PubMed Central

    Husby, G; Li, L; Davis, L E; Wedege, E; Kokmen, E; Williams, R C

    1977-01-01

    Antibodies reacting with neuronal cytoplasmic antigens present in normal human caudate and subthalamic nuclei were detected in 37 of 80 probands afflicted with Huntington's disease (HD). IgG antibodies were detected by immunofluorescence using frozen sections of unfixed normal human and rat brain. Specificity of IgG binding was confirmed using pepsin F(ab')2 fragments of IgG isolated from positive sera. In vitro complement fixation of IgG antibody was detected in 22 of 31 sera tested. Neuronal cytoplasmic antigens reacting with positive HD sera were diminished after trypsin or RNAase treatment of tissue sections but were not removed by DNAase, neuraminidase, EDTA, or dithiothreitol treatment. Antibody staining of neurons could be removed after absorption with isolated caudate nucleus neurons or by using perchloroacetic acid extracts of caudate nucleus. Prevalence of antibody reacting with neuronal cytoplasm was 3% in 60 normal controls and 6% among a wide variety of patients with diverse neurological disorders. However, one-third of 33 patients with Parkinson's disease showed presence of antineuronal antibody. Among patients with HD, a significant association was noted between duration of clinical disease greater than 7 yr and titers of antibody of 1:2 or greater (P less than 0.001). When 115 family members of HD probands were tested, 30% of unaffected spouses showed presence of antineuronal antibody. 23.2% of first-degree relatives at risk for developing HD was also positive (P less than 0.001). 10.5% of second-degree relatives showed presence of antineuronal antibody. These data may support an environmental or infectious factor somehow involved in the ultimate expression of HD. Images PMID:140183

  16. Separation of human breast cancer cells from blood by differential dielectric affinity.

    PubMed Central

    Becker, F F; Wang, X B; Huang, Y; Pethig, R; Vykoukal, J; Gascoyne, P R

    1995-01-01

    Electrorotation measurements were used to demonstrate that the dielectric properties of the metastatic human breast cancer cell line MDA231 were significantly different from those of erythrocytes and T lymphocytes. These dielectric differences were exploited to separate the cancer cells from normal blood cells by appropriately balancing the hydrodynamic and dielectrophoretic forces acting on the cells within a dielectric affinity column containing a microelectrode array. The operational criteria for successful particle separation in such a column are analyzed and our findings indicate that the dielectric affinity technique may prove useful in a wide variety of cell separation and characterization applications. Images Fig. 3 PMID:7846067

  17. Broadly neutralizing human monoclonal JC polyomavirus VP1–specific antibodies as candidate therapeutics for progressive multifocal leukoencephalopathy

    PubMed Central

    Jelcic, Ivan; Combaluzier, Benoit; Jelcic, Ilijas; Faigle, Wolfgang; Senn, Luzia; Reinhart, Brenda J.; Ströh, Luisa; Nitsch, Roger M.; Stehle, Thilo; Sospedra, Mireia; Grimm, Jan; Martin, Roland

    2016-01-01

    In immunocompromised individuals, JC polyomavirus (JCPyV) may mutate and gain access to the central nervous system resulting in progressive multifocal leukoencephalopathy (PML), an often fatal opportunistic infection for which no treatments are currently available. Despite recent progress, the contribution of JCPyV-specific humoral immunity to controlling asymptomatic infection throughout life and to eliminating JCPyV from the brain is poorly understood. We examined antibody responses against JCPyV major capsid protein VP1 (viral protein 1) variants in the serum and cerebrospinal fluid (CSF) of healthy donors (HDs), JCPyV-positive multiple sclerosis patients treated with the anti-VLA-4 monoclonal antibody natalizumab (NAT), and patients with NAT-associated PML. Before and during PML, CSF antibody responses against JCPyV VP1 variants show “recognition holes”; however, upon immune reconstitution, CSF antibody titers rise, then recognize PML-associated JCPyV VP1 variants, and may be involved in elimination of the virus. We therefore reasoned that the memory B cell repertoire of individuals who recovered from PML could be a source for the molecular cloning of broadly neutralizing antibodies for passive immunization. We generated a series of memory B cell-derived JCPyV VP1-specific human monoclonal antibodies from HDs and a patient with NAT-associated PML-immune reconstitution inflammatory syndrome (IRIS). These antibodies exhibited diverse binding affinity, cross-reactivity with the closely related BK polyomavirus, recognition of PML-causing VP1 variants, and JCPyV neutralization. Almost all antibodies with exquisite specificity for JCPyV, neutralizing activity, recognition of all tested JCPyV PML variants, and high affinity were derived from one patient who had recovered from PML. These antibodies are promising drug candidates for the development of a treatment of PML. PMID:26400911

  18. Broadly neutralizing human monoclonal JC polyomavirus VP1-specific antibodies as candidate therapeutics for progressive multifocal leukoencephalopathy.

    PubMed

    Jelcic, Ivan; Combaluzier, Benoit; Jelcic, Ilijas; Faigle, Wolfgang; Senn, Luzia; Reinhart, Brenda J; Ströh, Luisa; Nitsch, Roger M; Stehle, Thilo; Sospedra, Mireia; Grimm, Jan; Martin, Roland

    2015-09-23

    In immunocompromised individuals, JC polyomavirus (JCPyV) may mutate and gain access to the central nervous system resulting in progressive multifocal leukoencephalopathy (PML), an often fatal opportunistic infection for which no treatments are currently available. Despite recent progress, the contribution of JCPyV-specific humoral immunity to controlling asymptomatic infection throughout life and to eliminating JCPyV from the brain is poorly understood. We examined antibody responses against JCPyV major capsid protein VP1 (viral protein 1) variants in the serum and cerebrospinal fluid (CSF) of healthy donors (HDs), JCPyV-positive multiple sclerosis patients treated with the anti-VLA-4 monoclonal antibody natalizumab (NAT), and patients with NAT-associated PML. Before and during PML, CSF antibody responses against JCPyV VP1 variants show "recognition holes"; however, upon immune reconstitution, CSF antibody titers rise, then recognize PML-associated JCPyV VP1 variants, and may be involved in elimination of the virus. We therefore reasoned that the memory B cell repertoire of individuals who recovered from PML could be a source for the molecular cloning of broadly neutralizing antibodies for passive immunization. We generated a series of memory B cell-derived JCPyV VP1-specific human monoclonal antibodies from HDs and a patient with NAT-associated PML-immune reconstitution inflammatory syndrome (IRIS). These antibodies exhibited diverse binding affinity, cross-reactivity with the closely related BK polyomavirus, recognition of PML-causing VP1 variants, and JCPyV neutralization. Almost all antibodies with exquisite specificity for JCPyV, neutralizing activity, recognition of all tested JCPyV PML variants, and high affinity were derived from one patient who had recovered from PML. These antibodies are promising drug candidates for the development of a treatment of PML. PMID:26400911

  19. Current status of cancer immunodetection with radiolabeled human monoclonal antibodies.

    PubMed

    De Jager, R; Abdel-Nabi, H; Serafini, A; Pecking, A; Klein, J L; Hanna, M G

    1993-04-01

    The use of radiolabeled murine monoclonal antibodies (MoAbs) for cancer immunodetection has been limited by the development of human antimouse antibodies (HAMA). Human monoclonal antibodies do not elicit a significant human antihuman (HAHA) response. The generation and production of human monoclonal antibodies met with technical difficulties that resulted in delaying their clinical testing. Human monoclonal antibodies of all isotypes have been obtained. Most were immunoglobulin (Ig) M directed against intracellular antigens. Two antibodies, 16.88 (IgM) and 88BV59 (IgG3k), recognize different epitopes on a tumor-associated antigen, CTA 16.88, homologous to cytokeratins 8, 18, and 19. CTA 16.88 is expressed by most epithelial-derived tumors including carcinomas of the colon, pancreas, breast, ovary, and lung. The in vivo targeting by these antibodies is related to their localization in nonnecrotic areas of tumors. Repeated administration of 16.88 over 5 weeks to a cumulative dose of 1,000 mg did not elicit a HAHA response. Two of 53 patients developed a low titer of HAHA 1 to 3 months after a single administration of 88BV59. Planar imaging of colorectal cancer with Iodine-131 (131I)-16.88 was positive in two studies in 9 of 12 and 16 of 20 patients preselected by immunohistochemistry. Tumors less than 2 cm in diameter are usually not detected. The lack of immunogenicity and long tumor residence time (average = 17 days) makes 16.88 a good candidate for therapy. Radioimmunlymphoscintigraphy with indium-111 (111In)-LiLo-16.88 administered by an intramammary route was used in the presurgical staging of primary breast cancer. The negative predictive value of lymph node metastases for tumors less than 3 cm was 90.5%. Planar and single photon emission computed tomography imaging of colorectal carcinoma with technetium-99m (99mTc) 88BV59 was compared with computed tomography (CT) scan in 36 surgical patients. The antibody scan was more sensitive than the CT scan in detecting

  20. Evaluation of capillary chromatographic supports for immobilized human purine nucleoside phosphorylase in frontal affinity chromatography studies.

    PubMed

    de Moraes, Marcela Cristina; Temporini, Caterina; Calleri, Enrica; Bruni, Giovanna; Ducati, Rodrigo Gay; Santos, Diógenes Santiago; Cardoso, Carmen Lucia; Cass, Quezia Bezerra; Massolini, Gabriella

    2014-04-18

    The aim of this work was to optimize the preparation of a capillary human purine nucleoside phosphorylase (HsPNP) immobilized enzyme reactor (IMER) for characterization and affinity screening studies of new inhibitors by frontal affinity chromatography coupled to mass spectrometry (FAC-MS). For this purpose two monolithic supports, a Chromolith Speed Rod (0.1mm I.D.×5cm) and a methacrylate-based monolithic epoxy polymeric capillary column (0.25mm I.D.×5cm) with epoxy reactive groups were considered and compared to an IMER previously developed using an open fused silica capillary. Each HsPNP-IMER was characterized in terms of catalytic activity using Inosine as standard substrate. Furthermore, they were also explored for affinity ranking experiments. Kd determination was carried out with the based fused silica HsPNP-IMER and the results are herein discussed. PMID:24630982

  1. Human recombinant neutralizing antibodies against hantaan virus G2 protein.

    PubMed

    Koch, Joachim; Liang, Mifang; Queitsch, Iris; Kraus, Annette A; Bautz, Ekkehard K F

    2003-03-30

    Old world hantaviruses, causing hemorrhagic fever with renal syndrome (HFRS), still present a public health problem in Asia and Eastern Europe. The majority of cases has been recorded in China. The aim of our study was to generate human recombinant neutralizing antibodies to a hantavirus by phage display technology. To preserve the structural identity of viral protein, the panning procedure was performed on native Hantaan (HTN) (76-118) virus propagated in Vero-E6 cells. In total, five complete human recombinant IgG antibodies were produced in a baculovirus expression system. All of them were able to completely neutralize HTN, and Seoul (SEO) virus in a plaque reduction neutralization test (PRNT). Three of these antibodies could also completely neutralize Dobrava (DOB) virus but not Puumala (PUU) virus. All antibodies bind to Hantaan virus G2 protein localized in the virus envelope. The sequence areas within the HTN (76-118)-G2 protein detected by five selected antibodies were mapped using peptide scans. Two partial epitopes, 916-KVMATIDSF-924 and 954-LVTKDIDFD-963, were recognized, which presumably are of paramount importance for docking of the virus to host cell receptors. A consensus motif 916-KVXATIXSF-924 could be identified by mutational analysis. The neutralizing antibodies to the most widely distributed hantaviruses causing HFRS might be promising candidates for the development of an agent for prevention and treatment of HFRS in patients. PMID:12706090

  2. Development of human monoclonal antibodies against diseases caused by emerging and biodefense-related viruses.

    PubMed

    Zhu, Zhongyu; Dimitrov, Antony S; Chakraborti, Samitabh; Dimitrova, Dimana; Xiao, Xiaodong; Broder, Christopher C; Dimitrov, Dimiter S

    2006-02-01

    Polyclonal antibodies have a century-old history of being effective against some viruses; recently, monoclonal antibodies (mAbs) have also shown success. The humanized mAb Synagis (palivizumab), which is still the only mAb against a viral disease approved by the US FDA, has been widely used as a prophylactic measure against respiratory syncytial virus infections in neonates and immunocompromised individuals. The first fully human mAbs against two other paramyxoviruses, Hendra and Nipah virus, which can cause high (up to 75%) mortality, were recently developed; one of them, m101, showed exceptional potency against infectious virus. In an amazing pace of research, several potent human mAbs targeting the severe acute respiratory syndrome coronavirus S glycoprotein that can affect infections in animal models have been developed months after the virus was identified in 2003. A potent humanized mAb with therapeutic potential was recently developed against the West Nile virus. The progress in developing neutralizing human mAbs against Ebola, Crimean-Congo hemorrhagic fever, vaccinia and other emerging and biodefense-related viruses is slow. A major problem in the development of effective therapeutic agents against viruses, including therapeutic antibodies, is the viruses' heterogeneity and mutability. A related problem is the low binding affinity of crossreactive antibodies able to neutralize a variety of primary isolates. Combinations of mAbs or mAbs with other drugs, and/or the identification of potent new mAbs and their derivatives that target highly conserved viral structures, which are critical for virus entry into cells, are some of the possible solutions to these problems, and will continue to be a major focus of antiviral research. PMID:16441209

  3. Development of neutralizing monoclonal antibodies for oncogenic human papillomavirus types 31, 33, 45, 52, and 58.

    PubMed

    Brown, Martha J; Seitz, Hanna; Towne, Victoria; Müller, Martin; Finnefrock, Adam C

    2014-04-01

    Human papillomavirus (HPV) is the etiological agent for all cervical cancers, a significant number of other anogenital cancers, and a growing number of head and neck cancers. Two licensed vaccines offer protection against the most prevalent oncogenic types, 16 and 18, responsible for approximately 70% of cervical cancer cases worldwide and one of these also offers protection against types 6 and 11, responsible for 90% of genital warts. The vaccines are comprised of recombinantly expressed major capsid proteins that self-assemble into virus-like particles (VLPs) and prevent infection by eliciting neutralizing antibodies. Adding the other frequently identified oncogenic types 31, 33, 45, 52, and 58 to a vaccine would increase the coverage against HPV-induced cancers to approximately 90%. We describe the generation and characterization of panels of monoclonal antibodies to these five additional oncogenic HPV types, and the selection of antibody pairs that were high affinity and type specific and recognized conformation-dependent neutralizing epitopes. Such characteristics make these antibodies useful tools for monitoring the production and potency of a prototype vaccine as well as monitoring vaccine-induced immune responses in the clinic. PMID:24574536

  4. Characterization of a human antibody fragment Fab and its calcium phosphate nanoparticles that inhibit rabies virus infection with vaccine.

    PubMed

    Liu, Xinjian; Lin, Hong; Tang, Qi; Li, Chen; Yang, Songtao; Wang, Zhongcan; Wang, Changjun; He, Qing; Cao, Brian; Feng, Zhenqing; Guan, Xiaohong; Zhu, Jin

    2011-01-01

    Recombinant antibody phage display technology has been used to mimic many aspects of the processes that govern the generation and selection of high-affinity natural human antibodies in the human immune system, especially for infectious disease prophylaxis. An anti-rabies virus immunized phage-display Fab library was constructed from peripheral blood lymphocytes from vaccinated volunteers. The immunized antibody library, with a diversity of 6.7×10(8), was used to select and produce antibodies that bound to rabies virus glycoprotein. After five rounds of immobilized fixed rabies virion panning, four unique DNA sequences were found in the higher binding clones, and only one, Fab094, showed neutralization activity. Fab094 components were analyzed by ELISA, immunoprecipitation and immunofluorescent staining. ELISA and immunofluorescence showed that Fab094 bound specifically to rabies virions. Immunoprecipitation and mass spectrometry showed that Fab094 reacted with rabies virus glycoprotein. To improve the penetration power of Fab094 antibodies, we developed Fab094 calcium phosphate nanoparticles (Fab094-CPNPs) and tested their efficacy. The rapid fluorescent focus inhibition test indicated that the neutralizing antibody titers of Fab094 and Fab094-CPNPs were reached at 200.17 IU/Kg and 246.12 IU/Kg, respectively. These findings were confirmed in vivo in a Kunming mouse challenge model. Our results demonstrate that human Fab094 and Fab094-CPNPs are efficacious candidate drugs to replace rabies immunoglobulin in post-exposure prophylaxis (PEP). PMID:21573024

  5. Characterization of germline antibody libraries from human umbilical cord blood and selection of monoclonal antibodies to viral envelope glycoproteins: Implications for mechanisms of immune evasion and design of vaccine immunogens.

    PubMed

    Chen, Weizao; Streaker, Emily D; Russ, Daniel E; Feng, Yang; Prabakaran, Ponraj; Dimitrov, Dimiter S

    2012-01-27

    We have previously observed that all known HIV-1 broadly neutralizing antibodies (bnAbs) are highly divergent from germline antibodies in contrast to bnAbs against Hendra virus, Nipah virus and SARS coronavirus (SARS CoV). We have hypothesized that because the germline antibodies are so different from the mature HIV-1-specific bnAbs they may not bind the epitopes of the mature antibodies and provided the first evidence to support this hypothesis by using individual putative germline-like predecessor antibodies. To further validate the hypothesis and understand initial immune responses to different viruses, two phage-displayed human cord blood-derived IgM libraries were constructed which contained mostly germline antibodies or antibodies with very low level of somatic hypermutations. They were panned against different HIV-1 envelope glycoproteins (Envs), SARS CoV protein receptor-binding domain (RBD), and soluble Hendra virus G protein (sG). Despite a high sequence and combinatorial diversity observed in the cord blood-derived IgM antibody repertoire, no enrichment for binders of Envs was observed in contrast to considerable specific enrichments produced with panning against RBD and sG; one of the selected monoclonal antibodies (against the RBD) was of high (nM) affinity with only few somatic mutations. These results further support and expand our initial hypothesis for fundamental differences in immune responses leading to elicitation of bnAbs against HIV-1 compared to SARS CoV and Hendra virus. HIV-1 uses a strategy to minimize or eliminate strong binding of germline antibodies to its Env; in contrast, SARS CoV and Hendra virus, and perhaps other viruses causing acute infections, can bind germline antibody or minimally somatically mutated antibodies with relatively high affinity which could be one of the reasons for the success of sG and RBD as vaccine immunogens. PMID:22226962

  6. Dissection of the Antibody Response against Herpes Simplex Virus Glycoproteins in Naturally Infected Humans

    PubMed Central

    Huang, Zhen-Yu; Whitbeck, J. Charles; Ponce de Leon, Manuel; Lou, Huan; Wald, Anna; Krummenacher, Claude; Eisenberg, Roselyn J.; Cohen, Gary H.

    2014-01-01

    ABSTRACT Relatively little is known about the extent of the polyclonal antibody (PAb) repertoire elicited by herpes simplex virus (HSV) glycoproteins during natural infection and how these antibodies affect virus neutralization. Here, we examined IgGs from 10 HSV-seropositive individuals originally classified as high or low virus shedders. All PAbs neutralized virus to various extents. We determined which HSV entry glycoproteins these PAbs were directed against: glycoproteins gB, gD, and gC were recognized by all sera, but fewer sera reacted against gH/gL. We previously characterized multiple mouse monoclonal antibodies (MAbs) and mapped those with high neutralizing activity to the crystal structures of gD, gB, and gH/gL. We used a biosensor competition assay to determine whether there were corresponding human antibodies to those epitopes. All 10 samples had neutralizing IgGs to gD epitopes, but there were variations in which epitopes were seen in individual samples. Surprisingly, only three samples contained neutralizing IgGs to gB epitopes. To further dissect the nature of these IgGs, we developed a method to select out gD- and gB-specific IgGs from four representative sera via affinity chromatography, allowing us to determine the contribution of antibodies against each glycoprotein to the overall neutralization capacity of the serum. In two cases, gD and gB accounted for all of the neutralizing activity against HSV-2, with a modest amount of HSV-1 neutralization directed against gC. In the other two samples, the dominant response was to gD. IMPORTANCE Antibodies targeting functional epitopes on HSV entry glycoproteins mediate HSV neutralization. Virus-neutralizing epitopes have been defined and characterized using murine monoclonal antibodies. However, it is largely unknown whether these same epitopes are targeted by the humoral response to HSV infection in humans. We have shown that during natural infection, virus-neutralizing antibodies are principally

  7. Interaction of anti-phospholipid antibodies with late endosomes of human endothelial cells.

    PubMed

    Galve-de Rochemonteix, B; Kobayashi, T; Rosnoblet, C; Lindsay, M; Parton, R G; Reber, G; de Maistre, E; Wahl, D; Kruithof, E K; Gruenberg, J; de Moerloose, P

    2000-02-01

    Anti-phospholipid antibodies (APLAs) are associated with thrombosis and/or recurrent pregnancy loss. APLAs bind to anionic phospholipids directly or indirectly via a cofactor such as beta(2)-glycoprotein 1 (beta(2)GPI). The lipid target of APLA is not yet established. Recently, we observed that APLAs in vitro can bind lysobisphosphatidic acid (LBPA). The internal membranes of late endosomes are enriched in this phospholipid. The current study was undertaken to determine to what extent binding of APLA to LBPA is correlated with binding to cardiolipin and to beta(2)GPI and to determine whether patient antibodies interact with late endosomes of human umbilical vein endothelial cells (HUVECs) and thus modify the intracellular trafficking of proteins. Binding of patient immunoglobulin G (n=37) to LBPA was correlated significantly with binding to cardiolipin. Although LBPA binding was correlated to a lesser extent with beta(2)GPI binding, we observed that beta(2)GPI binds with high affinity to LBPA. Immunofluorescence studies showed that late endosomes of HUVECs contain LBPA. Patient but not control antibodies recognized late endosomes, but not cardiolipin-rich mitochondria, even when we used antibodies that were immunopurified on cardiolipin. Incubation of HUVECs with patient plasma samples immunoreactive toward LBPA resulted in an accumulation of the antibodies in late endosomes and led to a redistribution of the insulinlike growth factor 2/mannose-6-phosphate receptor from the Golgi apparatus to late endosomes. Our results suggest that LBPA is an important lipid target of APLA in HUVECs. These antibodies are internalized by the cells and accumulate in late endosomes. By modifying the intracellular trafficking of proteins, APLA could contribute to several of the proposed pathogenic mechanisms leading to the antiphospholipid syndrome. PMID:10669657

  8. Inhibition of fibroblast growth factor receptor 3-dependent lung adenocarcinoma with a human monoclonal antibody.

    PubMed

    Yin, Yongjun; Ren, Xiaodi; Smith, Craig; Guo, Qianxu; Malabunga, Maria; Guernah, Ilhem; Zhang, Yiwei; Shen, Juqun; Sun, Haijun; Chehab, Nabil; Loizos, Nick; Ludwig, Dale L; Ornitz, David M

    2016-05-01

    Activating mutations in fibroblast growth factor receptor 3 (FGFR3) have been identified in multiple types of human cancer and in congenital birth defects. In human lung cancer, fibroblast growth factor 9 (FGF9), a high-affinity ligand for FGFR3, is overexpressed in 10% of primary resected non-small cell lung cancer (NSCLC) specimens. Furthermore, in a mouse model where FGF9 can be induced in lung epithelial cells, epithelial proliferation and ensuing tumorigenesis is dependent on FGFR3. To develop new customized therapies for cancers that are dependent on FGFR3 activation, we have used this mouse model to evaluate a human monoclonal antibody (D11) with specificity for the extracellular ligand-binding domain of FGFR3, that recognizes both human and mouse forms of the receptor. Here, we show that D11 effectively inhibits signaling through FGFR3 in vitro, inhibits the growth of FGFR3-dependent FGF9-induced lung adenocarcinoma in mice, and reduces tumor-associated morbidity. Given the potency of FGF9 in this mouse model and the absolute requirement for signaling through FGFR3, this study validates the D11 antibody as a potentially useful and effective reagent for treating human cancers or other pathologies that are dependent on activation of FGFR3. PMID:27056048

  9. Inhibition of fibroblast growth factor receptor 3-dependent lung adenocarcinoma with a human monoclonal antibody

    PubMed Central

    Yin, Yongjun; Ren, Xiaodi; Smith, Craig; Guo, Qianxu; Malabunga, Maria; Guernah, Ilhem; Zhang, Yiwei; Shen, Juqun; Sun, Haijun; Chehab, Nabil; Loizos, Nick; Ludwig, Dale L.; Ornitz, David M.

    2016-01-01

    ABSTRACT Activating mutations in fibroblast growth factor receptor 3 (FGFR3) have been identified in multiple types of human cancer and in congenital birth defects. In human lung cancer, fibroblast growth factor 9 (FGF9), a high-affinity ligand for FGFR3, is overexpressed in 10% of primary resected non-small cell lung cancer (NSCLC) specimens. Furthermore, in a mouse model where FGF9 can be induced in lung epithelial cells, epithelial proliferation and ensuing tumorigenesis is dependent on FGFR3. To develop new customized therapies for cancers that are dependent on FGFR3 activation, we have used this mouse model to evaluate a human monoclonal antibody (D11) with specificity for the extracellular ligand-binding domain of FGFR3, that recognizes both human and mouse forms of the receptor. Here, we show that D11 effectively inhibits signaling through FGFR3 in vitro, inhibits the growth of FGFR3-dependent FGF9-induced lung adenocarcinoma in mice, and reduces tumor-associated morbidity. Given the potency of FGF9 in this mouse model and the absolute requirement for signaling through FGFR3, this study validates the D11 antibody as a potentially useful and effective reagent for treating human cancers or other pathologies that are dependent on activation of FGFR3. PMID:27056048

  10. High-affinity recognition of lanthanide(III) chelate complexes by a reprogrammed human lipocalin 2.

    PubMed

    Kim, Hyun Jin; Eichinger, Andreas; Skerra, Arne

    2009-03-18

    Human lipocalin 2 (Lcn2), also known as neutrophil gelatinase-associated lipocalin (NGAL), which naturally scavenges bacterial ferric siderophores, has been engineered to specifically bind rare-earth and related metal ions as chelate complexes with [(R)-2-amino-3-(4-aminophenyl)propyl]-trans-(S,S)-cyclohexane-1,2-diaminepentaacetic acid (p-NH(2)-Bn-CHX-A''-DTPA). To this end, 12 amino acid residues in the ligand pocket of Lcn2, which is formed by four loops at the open end of an eight-stranded beta-barrel, were subjected to targeted random mutagenesis, and from the resulting library, variants with binding activity for the Me x DTPA group were selected using the method of bacterial phage display. One promising candidate was further developed in several cycles of in vitro affinity maturation using partial random mutagenesis and selection (via phage display and/or Escherichia coli colony screening) under conditions of increasing stringency. As result, an Lcn2 variant was obtained that binds Y x DTPA with a dissociation constant as low as 400 pM. The Lcn2 variant specifically recognizes the artificial ligand, as exemplified in (competitive) ELISA and real-time surface plasmon resonance analyses. DTPA-complexed Y(3+), Tb(3+), Gd(3+), and Lu(3+) are most tightly bound, comprising metal ions whose isotopes are in common use for radiotherapy and imaging. All of the Lcn2 variants are stably folded and can be functionally produced in high yield in E. coli. X-ray crystallographic analyses show that the new ligand is well-accommodated in the central cavity of the engineered lipocalin, whose fold is largely preserved, but that the mode of binding differs from the one seen with the natural ligand Fe x enterobactin. This structural study reveals analogies but also differences with respect to previously described antibody-metal chelate complexes. Notably, the functionalized side chain of DTPA protrudes from the ligand pocket of the lipocalin in such a way that its conjugates (with

  11. Human cysticercosis: antigens, antibodies and non-responders.

    PubMed Central

    Flisser, A; Woodhouse, E; Larralde, C

    1980-01-01

    Immunoelectrophoresis of sera from patients with brain cysticercosis against a crude antigenic extract from Cysticercus cellulosae indicates that nearly 50% of the patients do not make sufficient antibodies to ostensively precipitate. The other 50% of the patients who do make precipitating antibodies show a very heterogeneous response in the number of antigens they recognize as well as in the type of antigen--as classified by their electrophoretic mobilities. The most favoured, called antigen B, is recognized by 84% of positive sera and corresponds to one or a limited number of antigens isoelectric at pH 8.6. Indirect immunofluorescence with monospecific anti-human immunoglobulins, performed upon the immunoelectrophoretic preparations, reveal that all cysticercus antigens induced the synthesis of antibodies in the immunoglobulin classes in the order G greater than M greater than E greater than A greater than D. Finally, antigen H (an anodic component) seems to favour IgE relative to its ability to induce IgG. Thus, although in natural infection a good proportion of cysticercotic patients do not seem to mount an energetic antibody response against the parasite, giving rise to some speculations about immunosuppression, the fact that 50% do synthesize antibodies allows for some optimistic expectations from vaccination of humans--in view of the good results of vaccination in experimental animals mediated by IgG antibodies. A likely prospect for a human vaccine would be antigen B because it is the most frequently detected by humans, although its immunizing and toxic properties remain to be properly studied. Images FIG. 1 FIG. 3 FIG. 6 PMID:7389197

  12. Immunohistochemical identification of cytotoxic lymphocytes using human perforin monoclonal antibody.

    PubMed Central

    Hameed, A.; Olsen, K. J.; Cheng, L.; Fox, W. M.; Hruban, R. H.; Podack, E. R.

    1992-01-01

    Perforin is a potent cytolytic pore-forming protein expressed in cytoplasmic granules of cytotoxic T lymphocytes and natural killer cells. A new monoclonal antibody raised against human perforin was used to detect both in vitro and in vivo perforin expression in cytotoxic cells. Immunohistochemical analysis of human peripheral blood mononuclear cells cultured in recombinant interleukin-2 (rIL-2) showed strong granular cytoplasmic staining of the IL-2 activated cytotoxic cells. Fresh-frozen tissue sections from patients with heart allograft rejection were also stained. Strong granular cytoplasmic staining of the mononuclear inflammatory infiltrate characteristic for perforin in cardiac allograft rejection was observed. The detection and quantitative analysis of perforin-associated cytotoxic cells by the human anti-perforin monoclonal antibody will help to evaluate the significance of these functionally distinct cytotoxic cells in human tissue. Images Figure 1 PMID:1374586

  13. A simple physiologically based pharmacokinetic model evaluating the effect of anti-nicotine antibodies on nicotine disposition in the brains of rats and humans.

    PubMed

    Saylor, Kyle; Zhang, Chenming

    2016-09-15

    Physiologically based pharmacokinetic (PBPK) modeling was applied to investigate the effects of anti-nicotine antibodies on nicotine disposition in the brains of rats and humans. Successful construction of both rat and human models was achieved by fitting model outputs to published nicotine concentration time course data in the blood and in the brain. Key parameters presumed to have the most effect on the ability of these antibodies to prevent nicotine from entering the brain were selected for investigation using the human model. These parameters, which included antibody affinity for nicotine, antibody cross-reactivity with cotinine, and antibody concentration, were broken down into different, clinically-derived in silico treatment levels and fed into the human PBPK model. Model predictions suggested that all three parameters, in addition to smoking status, have a sizable impact on anti-nicotine antibodies' ability to prevent nicotine from entering the brain and that the antibodies elicited by current human vaccines do not have sufficient binding characteristics to reduce brain nicotine concentrations. If the antibody binding characteristics achieved in animal studies can similarly be achieved in human studies, however, nicotine vaccine efficacy in terms of brain nicotine concentration reduction is predicted to meet threshold values for alleviating nicotine dependence. PMID:27473014

  14. Human antibody fragments specific for the epidermal growth factor receptor selected from large non-immunised phage display libraries.

    PubMed

    Souriau, Christelle; Rothacker, Julie; Hoogenboom, Hennie R; Nice, Edouard

    2004-09-01

    Antibodies to EGFR have been shown to display anti-tumour effects mediated in part by inhibition of cellular proliferation and angiogenesis, and by enhancement of apoptosis. Humanised antibodies are preferred for clinical use to reduce complications with HAMA and HAHA responses frequently seen with murine and chimaeric antibodies. We have used depletion and subtractive selection strategies on cells expressing the EGFR to sample two large antibody fragment phage display libraries for the presence of human antibodies which are specific for the EGFR. Four Fab fragments and six scFv fragments were identified, with affinities of up to 2.2nM as determined by BIAcore analysis using global fitting of the binding curves to obtain the individual rate constants (ka and kd). This overall approach offers a generic screening method for the identification of growth factor specific antibodies and antibody fragments from large expression libraries and has potential for the rapid development of new therapeutic and diagnostic reagents. PMID:15518242

  15. Lineage tracing of human B cells reveals the in vivo landscape of human antibody class switching.

    PubMed

    Horns, Felix; Vollmers, Christopher; Croote, Derek; Mackey, Sally F; Swan, Gary E; Dekker, Cornelia L; Davis, Mark M; Quake, Stephen R

    2016-01-01

    Antibody class switching is a feature of the adaptive immune system which enables diversification of the effector properties of antibodies. Even though class switching is essential for mounting a protective response to pathogens, the in vivo patterns and lineage characteristics of antibody class switching have remained uncharacterized in living humans. Here we comprehensively measured the landscape of antibody class switching in human adult twins using antibody repertoire sequencing. The map identifies how antibodies of every class are created and delineates a two-tiered hierarchy of class switch pathways. Using somatic hypermutations as a molecular clock, we discovered that closely related B cells often switch to the same class, but lose coherence as somatic mutations accumulate. Such correlations between closely related cells exist when purified B cells class switch in vitro, suggesting that class switch recombination is directed toward specific isotypes by a cell-autonomous imprinted state. PMID:27481325

  16. Human antibody-Fc receptor interactions illuminated by crystal structures.

    PubMed

    Woof, Jenny M; Burton, Dennis R

    2004-02-01

    Immunoglobulins couple the recognition of invading pathogens with the triggering of potent effector mechanisms for pathogen elimination. Different immunoglobulin classes trigger different effector mechanisms through interaction of immunoglobulin Fc regions with specific Fc receptors (FcRs) on immune cells. Here, we review the structural information that is emerging on three human immunoglobulin classes and their FcRs. New insights are provided, including an understanding of the antibody conformational adjustments that are required to bring effector cell and target cell membranes sufficiently close for efficient killing and signal transduction to occur. The results might also open up new possibilities for the design of therapeutic antibodies. PMID:15040582

  17. Tau Monoclonal Antibody Generation Based on Humanized Yeast Models

    PubMed Central

    Rosseels, Joëlle; Van den Brande, Jeff; Violet, Marie; Jacobs, Dirk; Grognet, Pierre; Lopez, Juan; Huvent, Isabelle; Caldara, Marina; Swinnen, Erwin; Papegaey, Anthony; Caillierez, Raphaëlle; Buée-Scherrer, Valerie; Engelborghs, Sebastiaan; Lippens, Guy; Colin, Morvane; Buée, Luc; Galas, Marie-Christine; Vanmechelen, Eugeen; Winderickx, Joris

    2015-01-01

    A link between Tau phosphorylation and aggregation has been shown in different models for Alzheimer disease, including yeast. We used human Tau purified from yeast models to generate new monoclonal antibodies, of which three were further characterized. The first antibody, ADx201, binds the Tau proline-rich region independently of the phosphorylation status, whereas the second, ADx215, detects an epitope formed by the Tau N terminus when Tau is not phosphorylated at Tyr18. For the third antibody, ADx210, the binding site could not be determined because its epitope is probably conformational. All three antibodies stained tangle-like structures in different brain sections of THY-Tau22 transgenic mice and Alzheimer patients, and ADx201 and ADx210 also detected neuritic plaques in the cortex of the patient brains. In hippocampal homogenates from THY-Tau22 mice and cortex homogenates obtained from Alzheimer patients, ADx215 consistently stained specific low order Tau oligomers in diseased brain, which in size correspond to Tau dimers. ADx201 and ADx210 additionally reacted to higher order Tau oligomers and presumed prefibrillar structures in the patient samples. Our data further suggest that formation of the low order Tau oligomers marks an early disease stage that is initiated by Tau phosphorylation at N-terminal sites. Formation of higher order oligomers appears to require additional phosphorylation in the C terminus of Tau. When used to assess Tau levels in human cerebrospinal fluid, the antibodies permitted us to discriminate patients with Alzheimer disease or other dementia like vascular dementia, indicative that these antibodies hold promising diagnostic potential. PMID:25540200

  18. Characterization of a recombinant humanized anti-cocaine monoclonal antibody and its Fab fragment.

    PubMed

    Kirley, Terence L; Norman, Andrew B

    2015-01-01

    Variations of post-translational modifications are important for stability and in vivo behavior of therapeutic antibodies. A recombinant humanized anti-cocaine monoclonal antibody (h2E2) was characterized for heterogeneity of N-linked glycosylation and disulfide bonds. In addition, charge heterogeneity, which is partially due to the presence or absence of C-terminal lysine on the heavy chains, was examined. For cocaine overdose therapy, Fab fragments may be therapeutic, and thus, a simplified method of generation, purification, and characterization of the Fab fragment generated by Endoproteinase Lys-C digestion was devised. Both the intact h2E2 antibody and purified Fab fragments were analyzed for their affinities for cocaine and 2 of its metabolites, benzoylecgonine and cocaethylene, by fluorescence quenching of intrinsic antibody tyrosine and tryptophan fluorescence resulting from binding of these drugs. Binding constants obtained from fluorescence quenching measurements are in agreement with recently published radioligand and ELISA binding assays. The dissociation constants determined for the h2E2 monoclonal and its Fab fragment are approximately 1, 5, and 20 nM for cocaethylene, cocaine, and benzoylecgonine, respectively. Tryptophan fluorescence quenching (emission at 330 nm) was measured after either excitation of tyrosine and tryptophan (280 nm) or selective excitation of tryptophan alone (295 nm). More accurate binding constants are obtained using tryptophan selective excitation at 295 nm, likely due to interfering absorption of cocaine and metabolites at 280 nm. These quenching results are consistent with multiple tryptophan and tyrosine residues in or near the predicted binding location of cocaine in a previously published 3-D model of this antibody's variable region. PMID:25692880

  19. Characterization of a recombinant humanized anti-cocaine monoclonal antibody and its Fab fragment

    PubMed Central

    Kirley, Terence L; Norman, Andrew B

    2015-01-01

    Variations of post-translational modifications are important for stability and in vivo behavior of therapeutic antibodies. A recombinant humanized anti-cocaine monoclonal antibody (h2E2) was characterized for heterogeneity of N-linked glycosylation and disulfide bonds. In addition, charge heterogeneity, which is partially due to the presence or absence of C-terminal lysine on the heavy chains, was examined. For cocaine overdose therapy, Fab fragments may be therapeutic, and thus, a simplified method of generation, purification, and characterization of the Fab fragment generated by Endoproteinase Lys-C digestion was devised. Both the intact h2E2 antibody and purified Fab fragments were analyzed for their affinities for cocaine and 2 of its metabolites, benzoylecgonine and cocaethylene, by fluorescence quenching of intrinsic antibody tyrosine and tryptophan fluorescence resulting from binding of these drugs. Binding constants obtained from fluorescence quenching measurements are in agreement with recently published radioligand and ELISA binding assays. The dissociation constants determined for the h2E2 monoclonal and its Fab fragment are approximately 1, 5, and 20 nM for cocaethylene, cocaine, and benzoylecgonine, respectively. Tryptophan fluorescence quenching (emission at 330 nm) was measured after either excitation of tyrosine and tryptophan (280 nm) or selective excitation of tryptophan alone (295 nm). More accurate binding constants are obtained using tryptophan selective excitation at 295 nm, likely due to interfering absorption of cocaine and metabolites at 280 nm. These quenching results are consistent with multiple tryptophan and tyrosine residues in or near the predicted binding location of cocaine in a previously published 3-D model of this antibody's variable region. PMID:25692880

  20. Multiplex suspension array for human anti-carbohydrate antibody profiling.

    PubMed

    Pochechueva, Tatiana; Chinarev, Alexander; Spengler, Marianne; Korchagina, Elena; Heinzelmann-Schwarz, Viola; Bovin, Nicolai; Rieben, Robert

    2011-02-01

    Glycan-binding antibodies form a significant subpopulation of both natural and acquired antibodies and play an important role in various immune processes. They are for example involved in innate immune responses, cancer, autoimmune diseases, and neurological disorders. In the present study, a microsphere-based flow-cytometric immunoassay (suspension array) was applied for multiplexed detection of glycan-binding antibodies in human serum. Several approaches for immobilization of glycoconjugates onto commercially available fluorescent microspheres were compared, and as the result, the design based on coupling of end-biotinylated glycopolymers has been selected. This method requires only minute amounts of glycans, similar to a printed glycan microarray. The resulting glyco-microspheres were used for detection of IgM and IgG antibodies directed against ABO blood group antigens. The possibility of multiplexing this assay was demonstrated with mixtures of microspheres modified with six different ABO related glycans. Multiplexed detection of anti-glycan IgM and IgG correlated well with singleplex assays (Pearson's correlation coefficient r = 0.95-0.99 for sera of different blood groups). The suspension array in singleplex format for A/B trisaccharide, H(di) and Le(x) microspheres corresponded well to the standard ELISA (r > 0.94). Therefore, the described method is promising for rapid, sensitive, and reproducible detection of anti-glycan antibodies in a multiplexed format. PMID:21107457

  1. An Insertion Mutation That Distorts Antibody Binding Site Architecture Enhances Function of a Human Antibody

    SciTech Connect

    Krause, Jens C.; Ekiert, Damian C.; Tumpey, Terrence M.; Smith, Patricia B.; Wilson, Ian A.; Crowe, Jr., James E.

    2011-09-02

    The structural and functional significance of somatic insertions and deletions in antibody chains is unclear. Here, we demonstrate that a naturally occurring three-amino-acid insertion within the influenza virus-specific human monoclonal antibody 2D1 heavy-chain variable region reconfigures the antibody-combining site and contributes to its high potency against the 1918 and 2009 pandemic H1N1 influenza viruses. The insertion arose through a series of events, including a somatic point mutation in a predicted hot-spot motif, introduction of a new hot-spot motif, a molecular duplication due to polymerase slippage, a deletion due to misalignment, and additional somatic point mutations. Atomic resolution structures of the wild-type antibody and a variant in which the insertion was removed revealed that the three-amino-acid insertion near the base of heavy-chain complementarity-determining region (CDR) H2 resulted in a bulge in that loop. This enlarged CDR H2 loop impinges on adjacent regions, causing distortion of the CDR H1 architecture and its displacement away from the antigen-combining site. Removal of the insertion restores the canonical structure of CDR H1 and CDR H2, but binding, neutralization activity, and in vivo activity were reduced markedly because of steric conflict of CDR H1 with the hemagglutinin antigen.

  2. Recognition of N-glycoforms in human chorionic gonadotropin by monoclonal antibodies and their interaction motifs.

    PubMed

    Li, Daoyuan; Zhang, Ping; Li, Fei; Chi, Lequan; Zhu, Deyu; Zhang, Qunye; Chi, Lianli

    2015-09-11

    The glycosylation of human chorionic gonadotropin (hCG) plays an important role in reproductive tumors. Detecting hCG N-glycosylation alteration may significantly improve the diagnostic accuracy and sensitivity of related cancers. However, developing an immunoassay directly against the N-linked oligosaccharides is unlikely because of the heterogeneity and low immunogenicity of carbohydrates. Here, we report a hydrogen/deuterium exchange and MS approach to investigate the effect of N-glycosylation on the binding of antibodies against different hCG glycoforms. Hyperglycosylated hCG was purified from the urine of invasive mole patients, and the structure of its N-linked oligosaccharides was confirmed to be more branched by MS. The binding kinetics of the anti-hCG antibodies MCA329 and MCA1024 against hCG and hyperglycosylated hCG were compared using biolayer interferometry. The binding affinity of MCA1024 changed significantly in response to the alteration of hCG N-linked oligosaccharides. Hydrogen/deuterium exchange-MS reveals that the peptide β65-83 of the hCG β subunit is the epitope for MCA1024. Site-specific N-glycosylation analysis suggests that N-linked oligosaccharides at Asn-13 and Asn-30 on the β subunit affect the binding affinity of MCA1024. These results prove that some antibodies are sensitive to the structural change of N-linked oligosaccharides, whereas others are not affected by N-glycosylation. It is promising to improve glycoprotein biomarker-based cancer diagnostics by developing combined immunoassays that can determine the level of protein and measure the degree of N-glycosylation simultaneously. PMID:26240146

  3. Assessment of Binding Affinity between Drugs and Human Serum Albumin Using Nanoporous Anodic Alumina Photonic Crystals.

    PubMed

    Nemati, Mahdieh; Santos, Abel; Law, Cheryl Suwen; Losic, Dusan

    2016-06-01

    In this study, we report an innovative approach aiming to assess the binding affinity between drug molecules and human serum albumin by combining nanoporous anodic alumina rugate filters (NAA-RFs) modified with human serum albumin (HSA) and reflectometric interference spectroscopy (RIfS). NAA-RFs are photonic crystal structures produced by sinusoidal pulse anodization of aluminum that present two characteristic optical parameters, the characteristic reflection peak (λPeak), and the effective optical thickness of the film (OTeff), which can be readily used as sensing parameters. A design of experiments strategy and an ANOVA analysis are used to establish the effect of the anodization parameters (i.e., anodization period and anodization offset) on the sensitivity of HSA-modified NAA-RFs toward indomethacin, a model drug. To this end, two sensing parameters are used, that is, shifts in the characteristic reflection peak (ΔλPeak) and changes in the effective optical thickness of the film (ΔOTeff). Subsequently, optimized NAA-RFs are used as sensing platforms to determine the binding affinity between a set of drugs (i.e., indomethacin, coumarin, sulfadymethoxine, warfarin, and salicylic acid) and HSA molecules. Our results verify that the combination of HSA-modified NAA-RFs with RIfS can be used as a portable, low-cost, and simple system for establishing the binding affinity between drugs and plasma proteins, which is a critical factor to develop efficient medicines for treating a broad range of diseases and medical conditions. PMID:27128744

  4. Production of monoclonal and polyclonal antibodies against human alphafetoprotein, a hepatocellular tumor marker.

    PubMed

    Chou, Shu-Fen; Hsu, Wen-Lin; Hwang, Jing-Min; Chen, Chien-Yuan

    2002-08-01

    The objective of this study is to produce and purify monoclonal antibodies and polyclonal antibodies (PAbs) against human alphafetoprotein (AFP). Hyperimmune ICR mice produced PAbs after injection with 0.5 mL pristane, and were injected with NS-1 myeloma cells 2 weeks later. Hyperimmune Balb/c mice were used for the production of MAbs. Mice were immunized four times, given a final boost, and their spleen cells were collected and fused with NS-1 myeloma cells under the presence of PEG 1500. The fused cells were then selected in the hypoxanthine, aminopterine, and thymidine (HAT)-RPMIX medium. Anti-AFP antibody-secreting hybridoma cell lines with high titer were cloned by enzyme-linked immunosorbent assay (ELISA) and then subcloned by limiting dilution in 15% fetal bovine serum (FBS), hypoxanthine, thymidine (HT)-RPMIX medium. Twelve murine hybridoma producing anti-AFP MAbs were obtained and designated as A73F3, A73E8, B73C5, A73G3, A73F8, 67B3, B73C2, B73E1, A73G2, B73G7, B73D7, and B73F4. Isotypes of these MAbs were identified as IgG(1) heavy chain and kappa light chain. The MAbs with high purity were obtained by affinity chromatography. The purity analysis of AFP and the MAbs was performed by capillary electrophoresis. PMID:12193284

  5. Recognition determinants of broadly neutralizing human antibodies against dengue viruses.

    PubMed

    Rouvinski, Alexander; Guardado-Calvo, Pablo; Barba-Spaeth, Giovanna; Duquerroy, Stéphane; Vaney, Marie-Christine; Kikuti, Carlos M; Navarro Sanchez, M Erika; Dejnirattisai, Wanwisa; Wongwiwat, Wiyada; Haouz, Ahmed; Girard-Blanc, Christine; Petres, Stéphane; Shepard, William E; Desprès, Philippe; Arenzana-Seisdedos, Fernando; Dussart, Philippe; Mongkolsapaya, Juthathip; Screaton, Gavin R; Rey, Félix A

    2015-04-01

    Dengue disease is caused by four different flavivirus serotypes, which infect 390 million people yearly with 25% symptomatic cases and for which no licensed vaccine is available. Recent phase III vaccine trials showed partial protection, and in particular no protection for dengue virus serotype 2 (refs 3, 4). Structural studies so far have characterized only epitopes recognized by serotype-specific human antibodies. We recently isolated human antibodies potently neutralizing all four dengue virus serotypes. Here we describe the X-ray structures of four of these broadly neutralizing antibodies in complex with the envelope glycoprotein E from dengue virus serotype 2, revealing that the recognition determinants are at a serotype-invariant site at the E-dimer interface, including the exposed main chain of the E fusion loop and the two conserved glycan chains. This 'E-dimer-dependent epitope' is also the binding site for the viral glycoprotein prM during virus maturation in the secretory pathway of the infected cell, explaining its conservation across serotypes and highlighting an Achilles' heel of the virus with respect to antibody neutralization. These findings will be instrumental for devising novel immunogens to protect simultaneously against all four serotypes of dengue virus. PMID:25581790

  6. Mechanistic Study of Broadly Neutralizing Human Monoclonal Antibodies against Dengue Virus That Target the Fusion Loop

    PubMed Central

    Costin, Joshua M.; Zaitseva, Elena; Kahle, Kristen M.; Nicholson, Cindo O.; Rowe, Dawne K.; Graham, Amanda S.; Bazzone, Lindsey E.; Hogancamp, Greg; Figueroa Sierra, Marielys; Fong, Rachel H.; Yang, Sung-Tae; Lin, Li; Robinson, James E.; Doranz, Benjamin J.; Chernomordik, Leonid V.; Michael, Scott F.; Schieffelin, John S.

    2013-01-01

    There are no available vaccines for dengue, the most important mosquito-transmitted viral disease. Mechanistic studies with anti-dengue virus (DENV) human monoclonal antibodies (hMAbs) provide a rational approach to identify and characterize neutralizing epitopes on DENV structural proteins that can serve to inform vaccine strategies. Here, we report a class of hMAbs that is likely to be an important determinant in the human humoral response to DENV infection. In this study, we identified and characterized three broadly neutralizing anti-DENV hMAbs: 4.8A, D11C, and 1.6D. These antibodies were isolated from three different convalescent patients with distinct histories of DENV infection yet demonstrated remarkable similarities. All three hMAbs recognized the E glycoprotein with high affinity, neutralized all four serotypes of DENV, and mediated antibody-dependent enhancement of infection in Fc receptor-bearing cells at subneutralizing concentrations. The neutralization activities of these hMAbs correlated with a strong inhibition of virus-liposome and intracellular fusion, not virus-cell binding. We mapped epitopes of these antibodies to the highly conserved fusion loop region of E domain II. Mutations at fusion loop residues W101, L107, and/or G109 significantly reduced the binding of the hMAbs to E protein. The results show that hMAbs directed against the highly conserved E protein fusion loop block viral entry downstream of virus-cell binding by inhibiting E protein-mediated fusion. Characterization of hMAbs targeting this region may provide new insights into DENV vaccine and therapeutic strategies. PMID:23077306

  7. Presence of Antibodies against Genogroup VI Norovirus in Humans

    PubMed Central

    2013-01-01

    Background Noroviruses are important enteric pathogens in humans and animals. Recently, we reported a novel canine norovirus (CaNoV) in dogs with diarrhea belonging to a new genogroup (GVI). No data are available on exposure of humans to this virus. Methods Sera from 373 small animal veterinarians and 120 age-matched population controls were tested for IgG antibodies to CaNoV by a recombinant virus like particle based enzyme-linked immunosorbent assay. Results Antibodies to CaNoV were found in 22.3% of the veterinarians and 5.8% of the control group (p < 0.001). Mean corrected OD450 values for CaNoV antibodies were significantly higher in small animal veterinarians compared to the control group. Conclusions These findings suggest that CaNoV may infect humans and small animal veterinarians are at an increased risk for exposure to this virus. Additional studies are needed to assess if this virus is able to cause disease in humans. PMID:23735311

  8. Method for removal of human antibodies to native DNA from serum

    SciTech Connect

    Diamond, B.A.

    1987-09-01

    A method is described for removing human anti-native DNA antibody from a liquid sample comprising coupling monoclonal, antiidiotypic antibodies capable of binding to a shared idiotype on human anti-native DNA antibody to a medium. The idiotype shares between genetically nonidentical individuals, contacting a liquid sample to the medium to permit binding of human anti-native DNA antibody in the sample to the anti-idiotypic antibodies and separating the sample from the medium to remove the human anti-native DNA antibodies therefrom.

  9. Fibulin-1 purification from human plasma using affinity chromatography on Factor H-Sepharose.

    PubMed

    DiScipio, Richard G; Liddington, Robert C; Schraufstatter, Ingrid U

    2016-05-01

    A method is reported to purify Fibulin-1 from human plasma resulting in a 36% recovery. The steps involve removal of the cryoglobulin and the vitamin K dependent proteins followed by polyethylene glycol and ammonium sulfate precipitations, DEAE-Sephadex column chromatography and finally Factor H-Sepharose affinity purification. The procedure is designed to be integrated into an overall scheme for the isolation of over 30 plasma proteins from a single batch of human plasma. Results from mass spectroscopy, SDS-PAGE, and Western blotting indicate that human plasma Fibulin-1 is a single chain of the largest isotype. Functional binding assays demonstrated calcium ion dependent interaction of Fibulin-1 for fibrinogen, fibronectin, and Factor H. The procedure described is the first to our knowledge that enables a large scale purification of Fibulin-1 from human plasma. PMID:26826315

  10. Quantum dot immunoassays in renewable surface column and 96-well plate formats for the fluorescence detection of Botulinum neurotoxin using high-affinity antibodies

    PubMed Central

    Grate, Jay W.; Tyler, Abby; Ozanich, Richard M.; Miller, Keith D.; Lou, Jianlong; Marks, James D.; Bruckner-Lea, Cynthia J.

    2009-01-01

    A fluorescence sandwich immunoassay using high affinity antibodies and quantum dot (QD) reporters has been developed for detection of botulinum neurotoxin serotype A (BoNT/A) using a nontoxic recombinant fragment of the holotoxin (BoNT/A-HC-fragment) as a structurally valid simulant for the full toxin molecule. The antibodies used, AR4 and RAZ1, bind to nonoverlapping epitopes present on both the full toxin and on the recombinant fragment. In one format, the immunoassay is carried out in a 96-well plate with detection in a standard plate reader using AR4 as the capture antibody and QD-coupled RAZ1 as the reporter. Detection to 31 pM with a total incubation time of 3 hours was demonstrated. In a second format, the AR4 capture antibody was coupled to Sepharose beads, and the reactions were carried out in microcentrifuge tubes with an incubation time of 1 hour. The beads were subsequently captured and concentrated in a rotating rod “renewable surface” flow cell equipped with a fiber optic system for fluorescence measurements. In PBS buffer, the BoNT/A-HC-fragment was detected to concentrations as low as 5 pM using the fluidic measurement approach. PMID:19643593

  11. Quantum dot immunoassays in renewable surface column and 96-well plate formats for the fluorescence detection of Botulinum neurotoxin using high-affinity antibodies

    SciTech Connect

    Warner, Marvin G.; Grate, Jay W.; Tyler, Abby J.; Ozanich, Richard M.; Miller, Keith D.; Lou, Jianlong; Marks, James D.; Bruckner-Lea, Cindy J.

    2009-09-01

    A fluorescence sandwich immunoassay using high affinity antibodies and quantum dot (QD) reporters has been developed for detection of botulinum toxin serotype A (BoNT/A). For the development of the assay, a nontoxic recombinant fragment of the holotoxin (BoNT/A-HC-fragment) has been used as a structurally valid simulant for the full toxin molecule. The antibodies used, AR4 and RAZ1, bind to nonoverlapping epitopes present on both the full toxin and on the recombinant fragment. In one format, the immunoassay is carried out in a 96-well plate with detection in a standard plate reader. Detection down to 31 pM of the BoNT/Hc-fragment was demonstrated with a total incubation time of 3 hours, using AR4 as the capture antibody and QD-coupled RAZ1 as the reporter. In a second format, the AR4 capture antibody was coupled to Sepharose beads, and the immunochemical reactions were carried out in microcentrifuge tubes with an incubation time of 1 hour. These beads were subsequently captured and concentrated in a rotating rod “renewable surface” flow cell as part of a sequential injection fluidic system. This flow cell was equipped with a fiber optic system for fluorescence measurements. In PBS buffer solution matrix, the BoNT/A-HC-fragment was detected to concentrations as low as 5 pM using the fluidic measurement approach.

  12. Anti-human immunodeficiency virus type 1 antibody complexes on platelets of seropositive thrombocytopenic homosexuals and narcotic addicts.

    PubMed Central

    Karpatkin, S; Nardi, M; Lennette, E T; Byrne, B; Poiesz, B

    1988-01-01

    Patients with human immunodeficiency virus type 1 (HIV-1) infection develop an immunologic thrombocytopenic purpura associated with markedly elevated platelet IgG, IgM, and C3C4 as well as serum immune complexes determined by the polyethylene glycol (PEG) method. Analysis of their serum PEG-precipitable immune complexes as well as platelet acid eluates revealed the presence of anti-HIV-1 antibody existing as a complex that eluted in the void volume of a Sephadex G-200 gel-filtration column. The complex binds to washed normal platelets, whereas affinity-purified anti-HIV-1 (gp120) antibody does not. HIV-1 antigen or proviral DNA was not detectable in the immune complexes or platelet extracts. However, anti-antibodies directed against anti-HIV-1 antibody were detectable in the immune complexes as well as platelet eluates. Approximately 50% of eluted platelet IgG contained anti-HIV-1 antibody. Thus the markedly elevated platelet immunoglobulin is partly due to the presence of anti-HIV-1 antibody complexes. This may be responsible for the enhanced platelet clearance and thrombocytopenia in patients with acquired immunodeficiency syndrome-related immunologic thrombocytopenia. Images PMID:3200854

  13. A single domain of human prostatic acid phosphatase shows antibody-mediated restoration of catalytic activity.

    PubMed Central

    Choe, B K; Dong, M K; Walz, D; Gleason, S; Rose, N R

    1982-01-01

    By limited proteolysis with mouse submaxillaris protease, human prostatic acid phosphatase (EC 3.1.3.2) was cleaved into three fragments, Sp1, Sp2, and Sp3, which individually had no enzymatic activity. One of the fragments, Sp3, regained enzymatic activity after interaction with rabbit antibody to prostatic acid phosphatase. The Sp3 fragment was purified and characterized as to its molecular weight, amino acid composition, and carbohydrate content. The Sp3 fragment behaved like the parent molecule in L(+)-tartrate affinity and in trapping of a phosphoryl intermediate. The same Sp3 fragment also bears the most prominent antigenic determinants. This evidence suggest that Sp3 is the enzymatically active domain of prostatic acid phosphatase. Images PMID:6193513

  14. Simplified testing for antibodies to human immunodeficiency virus.

    PubMed

    Pagcharoenpol, P; Burgess-Cassler, A; Schramm, W

    1996-04-01

    Test strips for the detection of antibodies to human immunodeficiency virus type 1 were investigated using specimens from risk groups in Thailand (141 reactive; 445 nonreactive) in a local Thai laboratory. The diagnostic sensitivity and specificity were both 100%. Using a set of seroconversion panels, the sensitivity of the test strips was within the range of sensitivities obtained with enzyme immunoassays. The test was developed for performance at decentralized settings under nonlaboratory conditions. PMID:8815120

  15. Human domain antibodies to conserved sterically restricted regions on gp120 as exceptionally potent cross-reactive HIV-1 neutralizers

    PubMed Central

    Chen, Weizao; Zhu, Zhongyu; Feng, Yang; Dimitrov, Dimiter S.

    2008-01-01

    The antibody access to some conserved structures on the HIV-1 envelope glycoprotein (Env) is sterically restricted. We have hypothesized that the smallest independently folded antibody fragments (domains) could exhibit exceptionally potent and broadly cross-reactive neutralizing activity by targeting hidden conserved epitopes that are not accessible by larger antibodies. To test this hypothesis, we constructed a large (size 2.5 × 1010), highly diversified library of human antibody variable domains (domain antibodies) and used it for selection of binders to conserved Env structures by panning sequentially against Envs from different isolates. The highest affinity binder, m36, neutralized all tested HIV-1 isolates from clades A– D with an activity on average higher than that of C34, a peptide similar to the fusion inhibitor T20, which is in clinical use, and that of m9, which exhibits a neutralizing activity superior to known potent cross-reactive antibodies. Large-size fusion proteins of m36 exhibited diminished neutralizing activity but preincubation of virions with soluble CD4 restored it, suggesting that m36 epitope is sterically restricted and induced by CD4 (CD4i). M36 bound to gp120-CD4 complexes better than to gp120 alone and competed with CD4i antibodies. M36 is the only reported representative of a promising class of potent, broadly cross-reactive HIV-1 inhibitors based on human domain antibodies. It has potential for prevention and therapy and as an agent for exploration of the closely guarded conserved Env structures with implications for design of small molecule inhibitors and elucidation of mechanisms of virus entry and evasion of immune responses. PMID:18957538

  16. The High Affinity IgE Receptor FcεRI Is Expressed by Human Intestinal Epithelial Cells

    PubMed Central

    Starkl, Philipp; Bevins, Charles L.; Scheiner, Otto; Boltz-Nitulescu, George; Wrba, Fritz; Jensen-Jarolim, Erika

    2010-01-01

    Background IgE antibodies play a paramount role in the pathogenesis of various intestinal disorders. To gain insights in IgE-mediated pathophysiology of the gut, we investigated the expression of the high affinity IgE receptor FcεRI in human intestinal epithelium. Methodology/Principal Findings FcεRI α-chain, as detected by immunohistochemistry, was positive in epithelial cells for eight of eleven (8/11) specimens from colon cancer patients and 5/11 patients with inflammation of the enteric mucosa. The FcεRIα positive epithelial cells co-expressed FcεRIγ, whereas with one exception, none of the samples was positive for the β-chain in the epithelial layer. The functionality of FcεRI was confirmed in situ by human IgE binding. In experiments with human intestinal tumor cell lines, subconfluent Caco-2/TC7 and HCT-8 cells were found to express the α- and γ-chains of FcεRI and to bind IgE, whereas confluent cells were negative for γ-chains. Conclusions/Significance Our data provide the first evidence that the components of a functional FcεRI are in vitro expressed by the human intestinal epithelial cells depending on differentiation and, more importantly, in situ in epithelia of patients with colon cancer or gastrointestinal inflammations. Thus, a contribution of FcεRI either to immunosurveillance or pathophysiology of the intestinal epithelium is suggested. PMID:20126404

  17. Antibody

    MedlinePlus

    An antibody is a protein produced by the body's immune system when it detects harmful substances, called antigens. Examples ... microorganisms (bacteria, fungi, parasites, and viruses) and chemicals. Antibodies may be produced when the immune system mistakenly ...

  18. [One amino acid mutation in an anti-CD20 antibody fragment that affects the yield bacterial secretion and the affinity].

    PubMed

    Liu, Yin-Xing; Xiong, Dong-Sheng; Fan, Dong-Mei; Shao, Xiao-Feng; Xu, Yuan-Fu; Zhu, Zhen-Ping; Yang, Chun-Zheng

    2003-05-01

    Monoclonal antibodies (mAb) directed against CD20, either unmodified or in radiolabeled forms, have been successfully exploited in clinic as effective therapeutic agents in the management of non-Hodgkin's B-cell lymphoma. The antibody fragment is a potential agent in image and therapy of tumor. To further improve the soluble expression of anti-CD20 antibody Fab' fragment, PCR was used to mutate the anti-CD20 VL and VH genes and its biological activity was identified. The expression vector of chimeric antibody Fab' was constructed and expressed in E. coli. The data of mutant clone DNA sequence showed that the amino acid of light chain gene of the parent anti-CD20 antibody (H47) was successful mutated as Ser (GAG)-Asn (CAG). The soluble expression of mutated anti-CD20 Fab' (CD20-7) was 3.8 mg/g dry cell weight, while the parent (CD20-2) was 1.3 mg/g dry cell weight. The affinity constant Ka of CD20-7 was 2.2 x 10(9) L/mol. The primary results of competitive assays by FACS showed that CD20-7 could partially block the sites through which parent antibody (HI47) bind to Raji cells. There was difference in the Raji cells (CD20+)-binding activity between the mutant CD20-7 and parent CD20-2. The site mutation of anti-CD20 Fab' gene make it possible that the anti-CD20 antibody fragment was succeeded to obtain higher expression. In this thesis, we succeeded in completing mutation and expression of anti-CD20 Fab' genes, distinguishing its biological activity, and obtaining its highly expression. These period results will lay a foundation for development of other kind of anti-CD20 engineering antibody (for instance: Fab' Diabody and miniantibody), and make it possible for anti-CD20 antibody to be applied to tumor therapy in civil in the future. PMID:15969005

  19. Glycoengineered Monoclonal Antibodies with Homogeneous Glycan (M3, G0, G2, and A2) Using a Chemoenzymatic Approach Have Different Affinities for FcγRIIIa and Variable Antibody-Dependent Cellular Cytotoxicity Activities

    PubMed Central

    Kurogochi, Masaki; Mori, Masako; Osumi, Kenji; Tojino, Mami; Sugawara, Shu-ichi; Takashima, Shou; Hirose, Yuriko; Tsukimura, Wataru; Mizuno, Mamoru; Amano, Junko; Matsuda, Akio; Tomita, Masahiro; Takayanagi, Atsushi; Shoda, Shin-Ichiro; Shirai, Takashi

    2015-01-01

    Many therapeutic antibodies have been developed, and IgG antibodies have been extensively generated in various cell expression systems. IgG antibodies contain N-glycans at the constant region of the heavy chain (Fc domain), and their N-glycosylation patterns differ during various processes or among cell expression systems. The Fc N-glycan can modulate the effector functions of IgG antibodies, such as antibody-dependent cellular cytotoxicity (ADCC) and complement dependent cytotoxicity (CDC). To control Fc N-glycans, we performed a rearrangement of Fc N-glycans from a heterogeneous N-glycosylation pattern to homogeneous N-glycans using chemoenzymatic approaches with two types of endo-β-N-acetyl glucosaminidases (ENG’ases), one that works as a hydrolase to cleave all heterogeneous N-glycans, another that is used as a glycosynthase to generate homogeneous N-glycans. As starting materials, we used an anti-Her2 antibody produced in transgenic silkworm cocoon, which consists of non-fucosylated pauci-mannose type (Man2-3GlcNAc2), high-mannose type (Man4-9GlcNAc2), and complex type (Man3GlcNAc3-4) N-glycans. As a result of the cleavage of several ENG’ases (endoS, endoM, endoD, endoH, and endoLL), the heterogeneous glycans on antibodies were fully transformed into homogeneous-GlcNAc by a combination of endoS, endoD, and endoLL. Next, the desired N-glycans (M3; Man3GlcNAc1, G0; GlcNAc2Man3GlcNAc1, G2; Gal2GlcNAc2Man3GlcNAc1, A2; NeuAc2Gal2GlcNAc2Man3GlcNAc1) were transferred from the corresponding oxazolines to the GlcNAc residue on the intact anti-Her2 antibody with an ENG’ase mutant (endoS-D233Q), and the glycoengineered anti-Her2 antibody was obtained. The binding assay of anti-Her2 antibody with homogenous N-glycans with FcγRIIIa-V158 showed that the glycoform influenced the affinity for FcγRIIIa-V158. In addition, the ADCC assay for the glycoengineered anti-Her2 antibody (mAb-M3, mAb-G0, mAb-G2, and mAb-A2) was performed using SKBR-3 and BT-474 as target cells

  20. A Humanized Anti-CD22-Onconase Antibody-Drug Conjugate Mediates Highly Potent Destruction of Targeted Tumor Cells

    PubMed Central

    Weber, Tobias; Mavratzas, Athanasios; Kiesgen, Stefan; Haase, Stephanie; Bötticher, Benedikt; Exner, Evelyn; Mier, Walter; Grosse-Hovest, Ludger; Jäger, Dirk; Arndt, Michaela A. E.; Krauss, Jürgen

    2015-01-01

    Antibody-drug conjugates (ADCs) have evolved as a new class of potent cancer therapeutics. We here report on the development of ADCs with specificity for the B-cell lineage specific (surface) antigen CD22 being expressed in the majority of hematological malignancies. As targeting moiety a previously generated humanized anti-CD22 single-chain variable fragment (scFv) derivative from the monoclonal antibody RFB4 was reengineered into a humanized IgG1 antibody format (huRFB4). Onconase (ranpirnase), a clinically active pancreatic-type ribonuclease, was employed as cytotoxic payload moiety. Chemical conjugation via thiol-cleavable disulfide linkage retained full enzymatic activity and full binding affinity of the ADC. Development of sophisticated purification procedures using size exclusion and ion exchange chromatography allowed the separation of immunoconjugate species with stoichiometrically defined number of Onconase cargos. A minimum of two Onconase molecules per IgG was required for achieving significant in vitro cytotoxicity towards lymphoma and leukemia cell lines. Antibody-drug conjugates with an Onconase to antibody ratio of 3 : 1 exhibited an IC50 of 0.08 nM, corresponding to more than 18,400-fold increased cytotoxicity of the ADC when compared with unconjugated Onconase. These results justify further development of this ADC as a promising first-in-class compound for the treatment of CD22-positive malignancies. PMID:26605343

  1. Recombinant human antibodies: linkage of an Fab fragment from a combinatorial library to an Fc fragment for expression in mammalian cell culture.

    PubMed

    Bender, E; Woof, J M; Atkin, J D; Barker, M D; Bebbington, C R; Burton, D R

    1993-04-01

    The combinatorial phage library approach to immunoglobulin repertoire cloning recently made it possible to isolate gene fragments encoding human immunoglobulin G1 Fabs binding with high affinity to specific antigens. Here we describe the construction of genes encoding whole human anti-tetanus toxoid antibodies based on one of these gene fragments and the efficient expression of these constructs by co-transfection of separate heavy and light chain vectors into a Chinese hamster ovary cell line constitutively expressing a viral transactivator protein. This system will be generally useful for the rapid analysis of recombinant antibodies derived from combinatorial libraries. PMID:8518367

  2. Human antiglioma monoclonal antibodies from patients with astrocytic tumors.

    PubMed

    Dan, M D; Schlachta, C M; Guy, J; McKenzie, R G; Dorscheid, D R; Sandor, V A; Villemure, J G; Price, G B

    1992-04-01

    The current management of malignant gliomas is unsatisfactory compared to that of other solid tumors; the expected median survival period is less than 1 year with the patient undergoing conventional surgery, radiotherapy, and chemotherapy treatment. Immunological reagents could be a useful adjunct. Human monoclonal antibodies derived from patients with astrocytic tumors might recognize subtle antigenic specificities that would differ from those recognized by xenogeneic (murine) systems. Five hybridomas, designated as BT27/1A2, BT27/2A3, BT32/A6, BT34/A5, and BT54/B8, were produced from the fusion of peripheral blood lymphocytes of four patients with astrocytic tumors to the human myeloma-like cell line TM-H2-SP2. This cell line has a 46, XX karyotype and is negative for hypoxanthine guanine phosphoribosyltransferase. All five human monoclonal antibodies produced 2.4 to 44 micrograms/ml of immunoglobulin M, had a similar but not identical pattern of reactivity against a panel of human tumor cell lines, and failed to react with normal human astrocytes. Labeling of four neuroectodermal tumor explant cultures by BT27/2A3 was demonstrated by flow cytometry. Karyotyping of three of the five hybridomas demonstrated that two were pseudodiploid (2-3n) and one hypodiploid (less than 2n). The monoclonality of the hybridomas was evaluated by Southern blot analysis of JH gene rearrangements, revealing two types of rearrangements for each hybridoma, both consistent with monoclonality. Preliminary antigen characterization indicated that at least four of the five human monoclonal antibodies were directed to cell-surface glycolipids. PMID:1545260

  3. Isolation of human monoclonal antibodies from peripheral blood B cells.

    PubMed

    Huang, Jinghe; Doria-Rose, Nicole A; Longo, Nancy S; Laub, Leo; Lin, Chien-Li; Turk, Ellen; Kang, Byong H; Migueles, Stephen A; Bailer, Robert T; Mascola, John R; Connors, Mark

    2013-10-01

    Isolation of monoclonal antibodies is an important technique for understanding the specificities and characteristics of antibodies that underlie the humoral immune response to a given antigen. Here we describe a technique for isolating monoclonal antibodies from human peripheral blood mononuclear cells. The protocol includes strategies for the isolation of switch-memory B cells from peripheral blood, the culture of B cells, the removal of the supernatant for screening and the lysis of B cells in preparation for immunoglobulin heavy-chain and light-chain amplification and cloning. We have observed that the addition of cytokines IL-2, IL-21 and irradiated 3T3-msCD40L feeder cells can successfully stimulate switch-memory B cells to produce high concentrations of IgG in the supernatant. The supernatant may then be screened by appropriate assays for binding or for other functions. This protocol can be completed in 2 weeks. It is adaptable to use in other species and enables the efficient isolation of antibodies with a desired functional characteristic without prior knowledge of specificity. PMID:24030440

  4. Specificity of human anti-carbohydrate IgG antibodies as probed with polyacrylamide-based glycoconjugates.

    PubMed

    Smorodin, E P; Kurtenkov, O A; Sergeyev, B L; Pazynina, G V; Bovin, N V

    2004-01-01

    The TF, Tn, and SiaTn glycotopes are frequently expressed in cancer-associated mucins. Antibodies to these glycotopes were found in human serum. A set of polyacrylamide (PAA)--based glycoconjugates was applied to the direct and competitive enzyme-linked immunosorbent assays (ELISA) to characterize the specificity of serum IgG antibodies. The anti-TF, -Tn and -SiaTn IgG were affinity purified from serum of cancer patients and characterized using PAA-conjugates and free saccharides. The anti-TF and -Tn antibodies were shown to be specific. The anti-TF IgG bound both Galbeta1-3GalNAcalpha- and Galbeta1-3GalNAcbeta-PAA, the latter was three-four times more effective inhibitor of antibody binding. The anti-Tn IgG reacted only with GalNAcalpha-PAA. The anti-SiaTn IgG cross-reacted with Tn-PAA but SiaTn-PAA was five-six times more effective inhibitor in a competitive assay. The IC50 values for PAA-conjugates with the corresponding antibodies typically ranged from 2 to 5 x 10(-8) M. The antibodies display a low specificity to mucin-type glycoconjugates in comparison with PAA-conjugates as was shown for mucins isolated from human malignant tumor tissues, ovine submaxillary mucin (OSM) and asialo-OSM. The unusual IgG-antibody specificity to GalNAcbeta and GalNAcbeta1-3GalNAcbeta ligands was found in human serum. PMID:15001840

  5. Serodiagnosis of human neurocysticercosis using antigenic components of Taenia solium metacestodes derived from the unbound fraction from jacalin affinity chromatography

    PubMed Central

    Machado, Gleyce Alves; de Oliveira, Heliana Batista; Gennari-Cardoso, Margareth Leitão; Mineo, José Roberto; Costa-Cruz, Julia Maria

    2013-01-01

    The aim of the present study was to analyse Taenia solium metacestode antigens that were derived from the unbound fraction of jacalin affinity chromatography and subsequent tert-octylphenoxy poly (oxyethylene) ethanol Triton X-114 (TX-114) partitioning in the diagnosis of human neurocysticercosis (NCC). Immunoassays were designed to detect T. solium-specific IgG antibodies by ELISA and immunoblot. Serum samples were collected from 132 individuals who were categorised as follows: 40 had NCC, 62 presented Taenia spp or other parasitic diseases and 30 were healthy individuals. The jacalin-unbound (Junbound) fraction presented higher sensitivity and specificity rates than the jacalin-bound fraction and only this fraction was subjected to subsequent TX-114 partitioning, resulting in detergent (DJunbound) and aqueous (AJunbound) fractions. The ELISA sensitivity and specificity were 85% and 84.8% for Junbound, 92.5% and 93.5% for DJunboundand 82.5% and 82.6% for AJunbound. By immunoblot, the DJunboundfraction showed 100% sensitivity and specificity and only serum samples from patients with NCC recognised the 50-70 kDa T. solium-specific components. We conclude that the DJunboundfraction can serve as a useful tool for the differential immunodiagnosis of NCC by immunoblot. PMID:23778661

  6. Human cord blood contains an IGM antibody to the 41KD flagellar antigen of Borrelia burgdorferi.

    PubMed

    Cooke, W D; Orr, A S; Wiseman, B L; Rouse, S B; Murray, W C; Ranck, S G

    1993-10-01

    Natural antibodies are the IgM products of fetal and neonatal B cells. These are germline encoded low affinity antibodies with multiple specificities to self and exogenous antigens. Lyme borreliosis is the disease resulting from infection with the spirochete, Borrelia burgdorferi. The humoral response to this organism is brisk, directed at multiple proteins, and persistent. Antibody to the 41kd flagellar antigen is found early in disease, but may also be found in non-exposed individuals. These properties suggest that the anti-41kd antibody may be a natural antibody. We report here the finding of an IgM anti-41kd reactivity in 29% of cord blood samples from patients in an area non-endemic for Lyme disease. The results are consistent with the hypothesis that antibody to flagellin may be a germline encoded natural antibody, and could be important in the immunopathogenesis of Lyme arthritis and other arthritides. PMID:8211003

  7. A Humanized Anti-VEGF Rabbit Monoclonal Antibody Inhibits Angiogenesis and Blocks Tumor Growth in Xenograft Models

    PubMed Central

    Zhang, Yongke; Yu, Qiu; Lee, Jonathan; Li, Mingzhen; Song, Jialiang; Chen, Jungang; Dai, Jihong; Couto, Fernando Jose Rebelo Do; An, Zhiqiang; Zhu, Weimin; Yu, Guo-Liang

    2010-01-01

    Rabbit antibodies have been widely used in research and diagnostics due to their high antigen specificity and affinity. Though these properties are also highly desirable for therapeutic applications, rabbit antibodies have remained untapped for human disease therapy. To evaluate the therapeutic potential of rabbit monoclonal antibodies (RabMAbs), we generated a panel of neutralizing RabMAbs against human vascular endothelial growth factor-A (VEGF). These neutralizing RabMAbs are specific to VEGF and do not cross-react to other members of the VEGF protein family. Guided by sequence and lineage analysis of a panel of neutralizing RabMAbs, we humanized the lead candidate by substituting non-critical residues with human residues within both the frameworks and the CDR regions. We showed that the humanized RabMAb retained its parental biological properties and showed potent inhibition of the growth of H460 lung carcinoma and A673 rhabdomyosarcoma xenografts in mice. These studies provide proof of principle for the feasibility of developing humanized RabMAbs as therapeutics. PMID:20140208

  8. Selection and application of broad-specificity human domain antibody for simultaneous detection of Bt Cry toxins.

    PubMed

    Xu, Chongxin; Zhang, Xiao; Liu, Xiaoqin; Liu, Yuan; Hu, Xiaodan; Zhong, Jianfeng; Zhang, Cunzheng; Liu, Xianjin

    2016-11-01

    Bt Cry toxin is a kind of bio-toxins that used for genetically modified crops (GMC) transformation widely. In this study, total 15 positive clones could bind the Bt Cry toxins which isolated from a human domain antibody library by 5 rounds affinity selection. According to analyzing of PCR amplification and enzyme-linked immunosorbent assay (ELISA), the most positive phage domain antibody (named F5) gene was cloned into the pET26b vector and expressed in E. coli BL21. The purified antibody was used to develop an indirect competitive ELISA (IC-ELISA) for Cry1Ab, Cry1Ac, Cry1B, Cry1C and Cry1F toxins, respectively. The working range of detection for standard curves in IC-ELISA were 0.258-1.407 μg/mL, the medium inhibition concentration (IC50) were 0.727-0.892 μg/mL and detection limit (IC10) were 0.029-0.074 μg/mL for those Bt Cry toxins. The affinity of F5 domain antibody with Cry1Ab, Cry1Ac, Cry1B, Cry1C and Cry1F toxins were 1.21-5.94 × 10(7) M(-1). The average recoveries of the 5 kinds of Bt Cry toxins from spiked wheat samples were ranged from 81.2%-100.8% with a CV at 2.5%-9.4%. The results showed that we successfully obtained the broad-specificity human domain antibody for simultaneous detection of Bt Cry toxins in agricultural product samples. PMID:27544649

  9. NaLi-H1: A universal synthetic library of humanized nanobodies providing highly functional antibodies and intrabodies

    PubMed Central

    Moutel, Sandrine; Bery, Nicolas; Bernard, Virginie; Keller, Laura; Lemesre, Emilie; de Marco, Ario; Ligat, Laetitia; Rain, Jean-Christophe; Favre, Gilles; Olichon, Aurélien; Perez, Franck

    2016-01-01

    In vitro selection of antibodies allows to obtain highly functional binders, rapidly and at lower cost. Here, we describe the first fully synthetic phage display library of humanized llama single domain antibody (NaLi-H1: Nanobody Library Humanized 1). Based on a humanized synthetic single domain antibody (hs2dAb) scaffold optimized for intracellular stability, the highly diverse library provides high affinity binders without animal immunization. NaLi-H1 was screened following several selection schemes against various targets (Fluorescent proteins, actin, tubulin, p53, HP1). Conformation antibodies against active RHO GTPase were also obtained. Selected hs2dAb were used in various immunoassays and were often found to be functional intrabodies, enabling tracking or inhibition of endogenous targets. Functionalization of intrabodies allowed specific protein knockdown in living cells. Finally, direct selection against the surface of tumor cells produced hs2dAb directed against tumor-specific antigens further highlighting the potential use of this library for therapeutic applications. DOI: http://dx.doi.org/10.7554/eLife.16228.001 PMID:27434673

  10. NaLi-H1: A universal synthetic library of humanized nanobodies providing highly functional antibodies and intrabodies.

    PubMed

    Moutel, Sandrine; Bery, Nicolas; Bernard, Virginie; Keller, Laura; Lemesre, Emilie; de Marco, Ario; Ligat, Laetitia; Rain, Jean-Christophe; Favre, Gilles; Olichon, Aurélien; Perez, Franck

    2016-01-01

    In vitro selection of antibodies allows to obtain highly functional binders, rapidly and at lower cost. Here, we describe the first fully synthetic phage display library of humanized llama single domain antibody (NaLi-H1: Nanobody Library Humanized 1). Based on a humanized synthetic single domain antibody (hs2dAb) scaffold optimized for intracellular stability, the highly diverse library provides high affinity binders without animal immunization. NaLi-H1 was screened following several selection schemes against various targets (Fluorescent proteins, actin, tubulin, p53, HP1). Conformation antibodies against active RHO GTPase were also obtained. Selected hs2dAb were used in various immunoassays and were often found to be functional intrabodies, enabling tracking or inhibition of endogenous targets. Functionalization of intrabodies allowed specific protein knockdown in living cells. Finally, direct selection against the surface of tumor cells produced hs2dAb directed against tumor-specific antigens further highlighting the potential use of this library for therapeutic applications. PMID:27434673

  11. Nerve growth factor binds to normal human keratinocytes through high and low affinity receptors and stimulates their growth by a novel autocrine loop.

    PubMed

    Di Marco, E; Mathor, M; Bondanza, S; Cutuli, N; Marchisio, P C; Cancedda, R; De Luca, M

    1993-10-25

    Normal human keratinocytes synthesize and secrete biologically active nerve growth factor (NGF) in a growth regulated fashion (Di Marco, E., Marchisio, P. C., Bondanza, S., Franzi, A. T., Cancedda, R., and De Luca, M. (1991) J. Biol. Chem. 266, 21718-21722). Here we show that the same human keratinocytes bind NGF via low and high affinity receptors. In parallel with the course of NGF synthesis, the expression of low affinity NGF receptor (p75NGFr) decreases when a confluent, differentiated, and fully stratified epithelium is obtained. In skin sections, p75NGFr is present in basal keratinocytes and absent from suprabasal, terminally differentiated cells. The trkA protooncogene product (p140trkA), a component of the NGF receptor, is not expressed by keratinocytes. Instead, keratinocytes express a new member of the trk family (that we termed trkE), which generates 3.9-kilobase transcripts. Keratinocyte-derived NGF plays a key role in the autocrine epidermal cell proliferation. This has been proven by (i) direct effect of NGF on [3H]thymidine incorporation, (ii) inhibition of autocrine keratinocyte growth by monoclonal antibodies (alpha D11) inhibiting human NGF biological activity, and (iii) inhibition of autocrine keratinocyte proliferation by a trk-specific inhibitor, the natural alkaloid K252a. These data provide evidence that NGF, in addition to its effect as a survival and differentiation factor, is a potent regulator of cell proliferation, at least in human epithelial cells. PMID:7693679

  12. 78 FR 7438 - Prospective Grant of Exclusive License: Development of Human Monoclonal Antibodies Against DR4

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... Human Monoclonal Antibodies Against DR4 AGENCY: National Institutes of Health, Public Health Service... Monoclonal Antibodies Against DR4'' (HHS Ref. No. E-158-2010/0) to Customized Biosciences, Inc., which is... relates to the development of two human monoclonal antibodies (mAbs) that bind to death receptor 4...

  13. Impact of Intranasal Insulin on Insulin Antibody Affinity and Isotypes in Young Children With HLA-Conferred Susceptibility to Type 1 Diabetes

    PubMed Central

    Ryhänen, Samppa J.; Härkönen, Taina; Siljander, Heli; Näntö-Salonen, Kirsti; Simell, Tuula; Hyöty, Heikki; Ilonen, Jorma; Veijola, Riitta; Simell, Olli; Knip, Mikael

    2011-01-01

    OBJECTIVE Despite promising results from studies on mouse models, intranasal insulin failed to prevent or delay the development of type 1 diabetes in autoantibody-positive children with HLA-conferred disease susceptibility. To analyze whether the insulin dose was inadequate to elicit an immunomodulatory response, we compared the changes observed in insulin antibody (IA) affinity and isotypes after treatment with nasal insulin or placebo. RESEARCH DESIGN AND METHODS Ninety-five children (47 in the placebo group and 48 in the insulin group of the total of 224 children randomized for the trial) with HLA-conferred susceptibility to type 1 diabetes derived from the intervention arm of the Finnish Type 1 Diabetes Prediction and Prevention study were included in these analyses. Blood samples drawn before or at the beginning of the treatment and after treatment for 3 and 6 months were analyzed for IA affinity and isotype-specific IAs (IgG1–4, IgA, IgM, and IgE). RESULTS IgG3- and IgA-IA levels (P = 0.031 and 0.015, respectively) and the number of IgG3-IA–positive subjects (P = 0.022) were significantly higher at 6 months after the initiation of the treatment in the insulin group. No significant differences were observed between the two groups in IA affinity or other IA isotypes. CONCLUSIONS The insulin dose administered induced a modest change in the IA isotype profile. The lack of impact of nasal insulin on IA affinity implies that the immune response of study subjects was already mature at the beginning of the intervention. PMID:21515841

  14. Study of a humanized inhibitory anti-platelet glycoprotein VI phage antibody from a phage antibody library.

    PubMed

    Liu, Qinghong; Zhang, Chunmei; Yu, Lingjia; Shi, Yongyu; Zhang, Liping; Peng, Jun; Ji, Xuebin; Hou, Ming

    2016-01-01

    Objective The aims of the study were to study the effect of anti-platelet glycoprotein (GP) VI auto-antibodies on platelet aggregation and use phage surface display technology to produce anti-platelet GPVI phage antibody fragment, which may be developed to inhibit platelet aggregation in the treatment of cardiovascular disease. Methods Plasma samples from patients with immune thrombocytopenia (ITP) were screened by monoclonal antibody immobilization of the platelet antigen assay and the platelet aggregation test for anti-platelet GPVI auto-antibody with an inhibitory effect. The humanized anti-platelet GPVI phage antibody was produced by phage surface display technology. The function of the phage antibody fragment against platelet aggregation was examined by the platelet aggregation test. Results Of 726 ITP patients, 2 (0.27%) patients' plasma significantly inhibited platelet aggregation induced by collagen-1. After five rounds of selection, enrichment, and purification, a soluble phage antibody fragment was produced, which can inhibit platelet aggregation induced by collagen-1. The results demonstrate that only a few of the screened anti-platelet GPVI auto-antibodies showed an inhibitory effect on platelet aggregation. Discussion A completely humanized anti-GPVI soluble phage antibody can be produced by phage surface display technology. The antibody was able to specifically block collagen-induced platelet aggregation without influencing the aggregation responses to other agonists. Conclusions Results of the present study suggest that very few anti-platelet GPVI auto-antibodies inhibit the aggregation function of platelet. The humanized anti-platelet GPVI produced by phage surface display technology is promising to be used to inhibit platelet aggregation in the treatment of cardiovascular disease. PMID:26330203

  15. Polyreactive Antibodies: Function and Quantification

    PubMed Central

    Gunti, Sreenivasulu; Notkins, Abner Louis

    2015-01-01

    Polyreactive antibodies, a major component of the natural antibody repertoire, bind with low affinity to a variety of structurally unrelated antigens. Many of these antibodies are germline or near germline in sequence. Little is known, however, about the function of these antibodies. In the present mini-review we show: (1) that the broad antibacterial activity of the natural antibody repertoire is largely due to polyreactive antibodies, which in the presence of complement lyse bacteria and enhance phagocytosis; (2) that polyreactive antibodies bind to UV- or human immunodeficiency virus-induced apoptotic cells and with complement enhance the phagocytosis of these cells by macrophages; and (3) that dinitrophenol can be used as a surrogate for quantitating the level of polyreactive antibodies in serum. We conclude that polyreactive antibodies protect the host against both foreign invaders and its own damaged/apoptotic cells. PMID:26116731

  16. Identification of high affinity folate binding proteins in human erythrocyte membranes.

    PubMed

    Antony, A C; Kincade, R S; Verma, R S; Krishnan, S R

    1987-09-01

    Mature human erythrocyte membranes contained specific, high affinity (Kd 3.3 X 10(-11) M) folate binding moieties. Folate binding was pH, time- and temperature-dependent, saturable, and was much greater for pteroylmonoglutamate and 5-methyltetrahydrofolate than 5-formyltetrahydrofolate and amethopterin. On detergent solubilization of membranes, two peaks of specific folate binding with Mr greater than or equal to 200,000 and 160,000 were identified on Sephacryl S-200 gel filtration chromatography in Triton X-100, and this corresponded to two similar peaks of immunoprecipitated material when solubilized iodinated membranes were probed with anti-human placental folate receptor antiserum. Age-dependent separation of erythrocytes by Stractan density gradients revealed a sevenfold greater folate binding capacity in membranes purified from younger compared with aged erythrocytes. Since this difference was not reflected in proportionately higher immunoreactive folate binding protein, (as determined by a specific radioimmunoassay for these proteins), or differences in affinity in younger than aged cells, these findings indicate that erythrocyte folate binding proteins become progressively nonfunctional at the onset of red cell aging. PMID:3624486

  17. Development of purification processes for fully human bispecific antibodies based upon modification of protein A binding avidity

    PubMed Central

    Tustian, Andrew D.; Endicott, Christine; Adams, Benjamin; Mattila, John; Bak, Hanne

    2016-01-01

    ABSTRACT There is strong interest in the design of bispecific monoclonal antibodies (bsAbs) that can simultaneously bind 2 distinct targets or epitopes to achieve novel mechanisms of action and efficacy. Multiple bispecific formats have been proposed and are currently under development. Regeneron's bispecific technology is based upon a standard fully human IgG antibody in order to minimize immunogenicity and improve the pharmacokinetic profile. A single common light chain and 2 distinct heavy chains combine to form the bispecific molecule. One of the heavy chains contains a chimeric Fc sequence form (called Fc*) that ablates binding to Protein A via the constant region. As a result of co-expression of the 2 heavy chains and the common light chain, 3 products are created, 2 of which are homodimeric for the heavy chains and one that is the desired heterodimeric bispecific product. The Fc* sequence allows selective purification of the FcFc* bispecific product on commercially available affinity columns, due to intermediate binding affinity for Protein A compared to the high avidity FcFc heavy chain homodimer, or the weakly binding Fc*Fc* homodimer. This platform requires the use of Protein A chromatography in both a capture and polishing modality. Several challenges, including variable region Protein A binding, resin selection, selective elution optimization, and impacts upon subsequent non-affinity downstream unit operations, were addressed to create a robust and selective manufacturing process. PMID:26963837

  18. OX48, a monoclonal antibody against a 70,000 MW rat activation antigen expressed by T cells bearing the high-affinity interleukin-2 receptor.

    PubMed Central

    Somoza, C; Fernández-Ruiz, E; Rebollo, A; Sanz, E; Ramírez, F; Silva, A

    1990-01-01

    The monoclonal antibody (mAb) OX48 recognizes a 70,000 MW cell-surface protein present in a small percentage of activated rat T cells and in CD8+ rat x BW5147 interleukin-2 (IL-2)-dependent T-cell hybridomas, but not in resting spleen cells or in IL-2-independent T-cell hybrids. OX48 antibody added simultaneously with concanavalin A (Con A) to resting spleen cells inhibits the cell proliferation and reduces the IL-2 production. However, addition of IL-2 does not restore the mitogenic response. Growth of rat blast T cells or IL-2-dependent hybrids is not affected by the OX48 antibody. There is a close correlation between the expression of high-affinity IL-2 receptors (IL-2R) and the OX48 antigen in T-cell hybridomas. In spite of this striking correlation, OX48 mAb does not inhibit the binding of 125I-IL-2 to the IL-2-dependent hybrids, and is unable to immunoprecipitate any of the proteins chemically cross-linked to 125I-IL-2. Therefore, the OX48 molecule represents a new rat activation antigen, undefined in other species, and probably involved in the early steps of T-cell activation. Images Figure 5 Figure 7 PMID:2373518

  19. The Fingerprint of Anti-Bromodeoxyuridine Antibodies and Its Use for the Assessment of Their Affinity to 5-Bromo-2'-Deoxyuridine in Cellular DNA under Various Conditions

    PubMed Central

    Ligasová, Anna; Liboska, Radek; Rosenberg, Ivan; Koberna, Karel

    2015-01-01

    We have developed a simple system for the analysis of the affinity of anti-bromodeoxyuridine antibodies. The system is based on the anchored oligonucleotides containing 5-bromo-2'-deoxyuridine (BrdU) at three different positions. It allows a reliable estimation of the reactivity of particular clones of monoclonal anti-bromodeoxyuridine antibodies with BrdU in fixed and permeabilized cells. Using oligonucleotide probes and four different protocols for the detection of BrdU incorporated in cellular DNA, we identified two antibody clones that evinced sufficient reactivity to BrdU in all the tested protocols. One of these clones exhibited higher reactivity to 5-iodo-2'-deoxyuridine (IdU) than to BrdU. It allowed us to increase the sensitivity of the used protocols without a negative effect on the cell physiology as the cytotoxicity of IdU was comparable with BrdU and negligible when compared to 5-ethynyl-2'-deoxyuridine. The combination of IdU and the improved protocol for oxidative degradation of DNA provided a sensitive and reliable approach for the situations when the low degradation of DNA and high BrdU signal is a priority. PMID:26161977

  20. Antibody Stabilization of Peptide–MHC Multimers Reveals Functional T Cells Bearing Extremely Low-Affinity TCRs

    PubMed Central

    Tungatt, Katie; Bianchi, Valentina; Crowther, Michael D.; Powell, Wendy E.; Schauenburg, Andrea J.; Trimby, Andrew; Donia, Marco; Miles, John J.; Holland, Christopher J.; Cole, David K.; Godkin, Andrew J.; Peakman, Mark; Straten, Per Thor; Svane, Inge Marie; Dolton, Garry

    2015-01-01

    Fluorochrome-conjugated peptide–MHC (pMHC) multimers are commonly used in combination with flow cytometry for direct ex vivo visualization and characterization of Ag-specific T cells, but these reagents can fail to stain cells when TCR affinity and/or TCR cell-surface density are low. pMHC multimer staining of tumor-specific, autoimmune, or MHC class II–restricted T cells can be particularly challenging, as these T cells tend to express relatively low-affinity TCRs. In this study, we attempted to improve staining using anti-fluorochrome unconjugated primary Abs followed by secondary staining with anti-Ab fluorochrome-conjugated Abs to amplify fluorescence intensity. Unexpectedly, we found that the simple addition of an anti-fluorochrome unconjugated Ab during staining resulted in considerably improved fluorescence intensity with both pMHC tetramers and dextramers and with PE-, allophycocyanin-, or FITC-based reagents. Importantly, when combined with protein kinase inhibitor treatment, Ab stabilization allowed pMHC tetramer staining of T cells even when the cognate TCR–pMHC affinity was extremely low (KD >1 mM) and produced the best results that we have observed to date. We find that this inexpensive addition to pMHC multimer staining protocols also allows improved recovery of cells that have recently been exposed to Ag, improvements in the recovery of self-specific T cells from PBMCs or whole-blood samples, and the use of less reagent during staining. In summary, Ab stabilization of pMHC multimers during T cell staining extends the range of TCR affinities that can be detected, yields considerably enhanced staining intensities, and is compatible with using reduced amounts of these expensive reagents. PMID:25452566

  1. Design of protease-resistant peptide ligands for the purification of antibodies from human plasma.

    PubMed

    Menegatti, Stefano; Bobay, Benjamin G; Ward, Kevin L; Islam, Tuhidul; Kish, William S; Naik, Amith D; Carbonell, Ruben G

    2016-05-01

    A strategy is presented for developing variants of peptide ligands with enhanced biochemical stability for the purification of antibodies from animal sera. Antibody-binding sequences HWRGWV, HYFKFD, and HFRRHL, previously discovered by our group, were modified with non-natural amino acids to gain resistance to proteolysis, while maintaining target affinity and selectivity. As trypsin and α-chymotrypsin were chosen as models of natural proteolytic enzymes, the basic (arginine and lysine) and aromatic (tryptophan, phenylalanine, and tyrosine) amino acids were replaced with non-natural analogs. Using the docking software HADDOCK, a virtual library of peptide variants was designed and screened in-silico against the known HWRGWV binding site on the pFc fragment of IgG. A pool of selected sequences with the highest predicted free energy of binding was synthesized on chromatographic resin, and the resulting adsorbents were tested for IgG binding and resistance to proteases. The ligand variants exhibited binding capacities and specificities comparable to the original sequences, yet with much higher proteolytic resistances. The sequences HWMetCitGWMetV and HFMetCitCitHL was used for purifying polyclonal IgG from IgG-rich fractions of human plasma, with yields and purity above 90%. Notably, due to electrical neutrality, the variant showed higher selectivity than the original sequence. Binding isotherms were also constructed, which confirmed the docking predictions. This method represents a general strategy for enhancing the biochemical stability as well as the affinity and selectivity of natural or synthetic peptide ligands for bioseparations. PMID:27072524

  2. Yawn contagion in humans and bonobos: emotional affinity matters more than species

    PubMed Central

    Norscia, Ivan; Demuru, Elisa

    2014-01-01

    In humans and apes, yawn contagion echoes emotional contagion, the basal layer of empathy. Hence, yawn contagion is a unique tool to compare empathy across species. If humans are the most empathic animal species, they should show the highest empathic response also at the level of emotional contagion. We gathered data on yawn contagion in humans (Homo sapiens) and bonobos (Pan paniscus) by applying the same observational paradigm and identical operational definitions. We selected a naturalistic approach because experimental management practices can produce different psychological and behavioural biases in the two species, and differential attention to artificial stimuli. Within species, yawn contagion was highest between strongly bonded subjects. Between species, sensitivity to others’ yawns was higher in humans than in bonobos when involving kin and friends but was similar when considering weakly-bonded subjects. Thus, emotional contagion is not always highest in humans. The cognitive components concur in empowering emotional affinity between individuals. Yet, when they are not in play, humans climb down from the empathic podium to return to the “understory”, which our species shares with apes. PMID:25165630

  3. Yawn contagion in humans and bonobos: emotional affinity matters more than species.

    PubMed

    Palagi, Elisabetta; Norscia, Ivan; Demuru, Elisa

    2014-01-01

    In humans and apes, yawn contagion echoes emotional contagion, the basal layer of empathy. Hence, yawn contagion is a unique tool to compare empathy across species. If humans are the most empathic animal species, they should show the highest empathic response also at the level of emotional contagion. We gathered data on yawn contagion in humans (Homo sapiens) and bonobos (Pan paniscus) by applying the same observational paradigm and identical operational definitions. We selected a naturalistic approach because experimental management practices can produce different psychological and behavioural biases in the two species, and differential attention to artificial stimuli. Within species, yawn contagion was highest between strongly bonded subjects. Between species, sensitivity to others' yawns was higher in humans than in bonobos when involving kin and friends but was similar when considering weakly-bonded subjects. Thus, emotional contagion is not always highest in humans. The cognitive components concur in empowering emotional affinity between individuals. Yet, when they are not in play, humans climb down from the empathic podium to return to the "understory", which our species shares with apes. PMID:25165630

  4. Estimation of interaction between oriented immobilized green fluorescent protein and its antibody by high performance affinity chromatography and molecular docking.

    PubMed

    Li, Qian; Wang, Jing; Yang, Lingjian; Gao, Xiaokang; Chen, Hongwei; Zhao, Xinfeng; Bian, Liujiao; Zheng, Xiaohui

    2015-07-01

    Although green fluorescence protein (GFP) and its antibody are widely used to track a protein or a cell in life sciences, the binding behavior between them remains unclear. In this work, diazo coupling method that synthesized a new stationary GFP was oriented immobilized on the surface of macro-porous silica gel by a phase. The stationary phase was utilized to confirm the validation of injection amount-dependent analysis in exploring protein-protein interaction that use GFP antibody as a probe. GFP antibody was proved to have one type of binding site on immobilized GFP. The number of binding site and association constant were calculated to be (6.41 ± 0.76) × 10(-10) M and (1.39 ± 0.12) × 10(9) M(-1). Further analysis by molecular docking showed that the binding of GFP to its antibody is mainly driven by hydrogen bonds and salt bridges. These results indicated that injection amount-dependent analysis is capable of exploring the protein-protein interactions with the advantages of ligand and time saving. It is a valuable methodology for the ligands, which are expensive or difficult to obtain. PMID:25727342

  5. RA8, A human anti-CD25 antibody against human treg cells

    SciTech Connect

    Arias, Robyn; Flanagan, Meg; Miller, Keith D.; Nien, Yu-Chih; Hu, Peisheng; Gray, Dixon; Khawli, Leslie A.; Epstein, Alan L.

    2007-06-01

    Although anti-CD25 antibodies exist for clinical use in patients, there is a need for the development of a human Treg antibody that will abrogate the immunosuppressive function of this small but critical T cell subtype. Based upon mounting evidence that the level of Treg cells in the tumor microenvironment correlates with clinical prognosis and stage in man, it appears that Treg cells play an important role in the tumor's ability to overcome host immune responses. In mice, the rat anti-mouse CD25 antibody PC61 causes depletion of CD25-bearing Treg cells both peripherally in lymphatic tissues and in the tumor microenvironment, without inducing symptoms of autoimmunity. A similar antibody, though with the ability to delete Treg cells specifically, would be an important new tool for reversing tumor escape associated with Treg immunosuppression in man. To begin to generate such a reagent, we now describe the development of a human anti-CD25 antibody using a novel yeast display library. The target antigen CD25-Fc was constructed and used for five rounds of selection using a non-immune yeast display library that contained as many as 109 single chain variable fragments (scFv). Two unique clones with low KD values (RA4 and RA8) were then selected to construct fully human anti-CD25 antibodies (IgG1/kappa) for stable expression. One antibody, RA8, showed excellent binding to human CD25+ cell lines and to human Treg cells and appears to be an excellent candidate for the generation of a human reagent that may be used in man for the immunotherapy of cancer.

  6. Antibody-dependent haemolytic activity of human leukaemic cells.

    PubMed Central

    Holm, G; Björkholm, M; Böttiger, B; Mellstedt, H; Pettersson, D; Simonsson-Lindemalm, C

    1980-01-01

    Antibody-dependent cellular cytotoxicity (ADCC) of human leukaemic blood cells against human RBC treated with IgG isoantibody was studied by the 51Cr-release method. ADCC in this particular system is a property of normal phagocytic cells of the monocytic and myeloid series while lymphocytes are inactive. Well differentiated leukaemic monocytes from patients with acute monocytic leukaemia were highly cytotoxic and engulfed opsonized RBC. Promyelocytic leukaemic cells from two patients with acute promyelocytic leukaemia were cytotoxic and phagocytic. Seven patients with low differentiated acute myeloblastic leukaemia had no cytotoxic or phagocytic blood cells. Leukaemic B cells from patients with chronic lymphocytic leukaemia or prolymphocytic leukaemia lacked cytotoxic and phagocytic properties. It is concluded that ADCC against isoantibody-treated human RBC may be a tool to distinguish between well and poorly differentiated leukaemic cells of the monocytic or myeloid series. PMID:7460388

  7. Human CD4+ T-Cells: A Role for Low-Affinity Fc Receptors

    PubMed Central

    Chauhan, Anil K.

    2016-01-01

    Both lymphoid and myeloid cells express Fc receptors (FcRs). Low-affinity FcRs engage circulating immune complexes, which results in the cellular activation and pro-inflammatory cytokine production. FcRs participate in the internalization, transport, and/or recycling of antibodies and antigens. Cytosolic FcRs also route these proteins to proteasomes and antigen-presentation pathways. Non-activated CD4+ T-cells do not express FcRs. Once activated, naive CD4+ T-cells express FcγRIIIa, which, upon IC ligation, provide a costimulatory signal for the differentiation of these cells into effector cell population. FcγRIIIa present on CD4+ T-cell membrane could internalize nucleic acid-containing ICs and elicit a cross-talk with toll-like receptors. FcγRIIIa common γ-chain forms a heterodimer with the ζ-chain of T-cell receptor complex, suggesting a synergistic role for these receptors. This review first summarizes our current understanding of FcRs on CD4+ T-cells. Thereafter, I will attempt to correlate the findings from the recent literature on FcRs and propose a role for these receptors in modulating adaptive immune responses via TLR signaling, nucleic acid sensing, and epigenetic changes in CD4+ T-cells. PMID:27313579

  8. Quantitative and qualitative effects of N10-methylfolate on high-affinity folate binding in human leukocytes.

    PubMed

    Holm, J; Hansen, S I; Lyngbye, J

    1984-01-01

    N10-methylfolate acted as a potent competitive inhibitor of high-affinity [3H] folate binding in human leukocytes, while methotrexate had no effect. Furthermore, folate binding changed into a non-cooperative type in the presence of N10-methylfolate. Hence, in qualitative and quantitative respects, the substrate specificity characteristics of leukocyte folate binding resemble those of other high-affinity folate binding systems. PMID:6500843

  9. Antibody-based Protein Profiling of the Human Chromosome 21*

    PubMed Central

    Uhlén, Mathias; Oksvold, Per; Älgenäs, Cajsa; Hamsten, Carl; Fagerberg, Linn; Klevebring, Daniel; Lundberg, Emma; Odeberg, Jacob; Pontén, Fredrik; Kondo, Tadashi; Sivertsson, Åsa

    2012-01-01

    The Human Proteome Project has been proposed to create a knowledge-based resource based on a systematical mapping of all human proteins, chromosome by chromosome, in a gene-centric manner. With this background, we here describe the systematic analysis of chromosome 21 using an antibody-based approach for protein profiling using both confocal microscopy and immunohistochemistry, complemented with transcript profiling using next generation sequencing data. We also describe a new approach for protein isoform analysis using a combination of antibody-based probing and isoelectric focusing. The analysis has identified several genes on chromosome 21 with no previous evidence on the protein level, and the isoform analysis indicates that a large fraction of human proteins have multiple isoforms. A chromosome-wide matrix is presented with status for all chromosome 21 genes regarding subcellular localization, tissue distribution, and molecular characterization of the corresponding proteins. The path to generate a chromosome-specific resource, including integrated data from complementary assay platforms, such as mass spectrometry and gene tagging analysis, is discussed. PMID:22042635

  10. [Towards an industrial control of the cloning of lymphocytes B human for the manufacturing of monoclonal antibodies stemming from the human repertoire].

    PubMed

    Guillot-Chene, P; Lebecque, S; Rigal, D

    2009-05-01

    Monoclonal antibodies (mAbs) are efficient drugs for treating infectious, inflammatory and cancer diseases. Antibodies secreted by human lymphocytes that have been isolated from either peripheral blood or tissues present the definite interest of being part of the physiological or disease-related response to antigens present in the human body. However, attempts to generate hybridomas with human B cells have been largely unsuccessful, and cloning of human B cells has been achieved only via their inefficient immortalization with Epstein Barr Virus (EBV). However, recent progress in our understanding of the molecular mechanisms of polyclonal B cell activation has dramatically increased the capacity to clone human B cells. In particular, activation of human naïve and memory B cells through CD40 or memory B cells only through TLR9 was shown to greatly facilitate their immortalization by EBV. Industrial development based on these observations will soon provide large collections of high affinity human mAbs of every isotype directly selected by the human immune system directed to recognize epitopes relevant for individual patients. Moreover, after CD40 activation, these mAbs will cover the full human repertoire, including the natural auto-immune repertoire. Full characterization of the biological activity of these mAbs will in turn bring useful information for selecting vaccine epitopes. This breakthrough in human B cell cloning opens the way into new areas for therapeutic use of mAbs. PMID:19446667

  11. Optimizing Production of Antigens and Fabs in the Context of Generating Recombinant Antibodies to Human Proteins

    PubMed Central

    Zhong, Nan; Loppnau, Peter; Seitova, Alma; Ravichandran, Mani; Fenner, Maria; Jain, Harshika; Bhattacharya, Anandi; Hutchinson, Ashley; Paduch, Marcin; Lu, Vincent; Olszewski, Michal; Kossiakoff, Anthony A.; Dowdell, Evan; Koide, Akiko; Koide, Shohei; Huang, Haiming; Nadeem, Vincent; Sidhu, Sachdev S.; Greenblatt, Jack F.; Marcon, Edyta; Arrowsmith, Cheryl H.; Edwards, Aled M.; Gräslund, Susanne

    2015-01-01

    We developed and optimized a high-throughput project workflow to generate renewable recombinant antibodies to human proteins involved in epigenetic signalling. Three different strategies to produce phage display compatible protein antigens in bacterial systems were compared, and we found that in vivo biotinylation through the use of an Avi tag was the most productive method. Phage display selections were performed on 265 in vivo biotinylated antigen domains. High-affinity Fabs (<20nM) were obtained for 196. We constructed and optimized a new expression vector to produce in vivo biotinylated Fabs in E. coli. This increased average yields up to 10-fold, with an average yield of 4 mg/L. For 118 antigens, we identified Fabs that could immunoprecipitate their full-length endogenous targets from mammalian cell lysates. One Fab for each antigen was converted to a recombinant IgG and produced in mammalian cells, with an average yield of 15 mg/L. In summary, we have optimized each step of the pipeline to produce recombinant antibodies, significantly increasing both efficiency and yield, and also showed that these Fabs and IgGs can be generally useful for chromatin immunoprecipitation (ChIP) protocols. PMID:26437229

  12. Radiotracers for Cardiac Sympathetic Innervation: Transport Kinetics and Binding Affinities for the Human Norepinephrine Transporter

    PubMed Central

    Raffel, David M.; Chen, Wei; Jung, Yong-Woon; Jang, Keun Sam; Gu, Guie; Cozzi, Nicholas V.

    2013-01-01

    Introduction Most radiotracers for imaging of cardiac sympathetic innervation are substrates of the norepinephrine transporter (NET). The goal of this study was to characterize the NET transport kinetics and binding affinities of several sympathetic nerve radiotracers, including [11C]-(−)-meta-hydroxyephedrine, [11C]-(−)-epinephrine, and a series of [11C]-labeled phenethylguanidines under development in our laboratory. For comparison, the NET transport kinetics and binding affinities of some [3H]-labeled biogenic amines were also determined. Methods Transport kinetics studies were performed using rat C6 glioma cells stably transfected with the human norepinephrine transporter (C6-hNET cells). For each radiolabeled NET substrate, saturation transport assays with C6-hNET cells measured the Michaelis-Menten transport constants Km and Vmax for NET transport. Competitive inhibition binding assays with homogenized C6-hNET cells and [3H]mazindol provided estimates of binding affinities (KI) for NET. Results Km, Vmax and KI values were determined for each NET substrate with a high degree of reproducibility. Interestingly, C6-hNET transport rates for ‘tracer concentrations’ of substrate, given by the ratio Vmax/Km, were found to be highly correlated with neuronal transport rates measured previously in isolated rat hearts (r2 = 0.96). This suggests that the transport constants Km and Vmax measured using the C6-hNET cells accurately reflect in vivo transport kinetics. Conclusion The results of these studies show how structural changes in NET substrates influence NET binding and transport constants, providing valuable insights that can be used in the design of new tracers with more optimal kinetics for quantifying regional sympathetic nerve density. PMID:23306137

  13. High-Affinity Fc Receptor Expression Indicates Relative Immaturity in Human Monocytes.

    PubMed

    Clanchy, Felix I L

    2016-05-01

    Within monocyte heterogeneity, subsets represent discrete, well-characterized phenotypes. Although many studies have highlighted differences between subsets, there is evidence that subpopulations represent contiguous stages in a maturational series. As CD14(hi)CD64(hi) monocytes have higher proliferative potential than CD14(hi)CD64(lo) monocytes, the surface marker profile on 4 subsets defined by CD14 and CD64 was measured. The profiles were compared to that of subsets defined by the high-affinity IgE receptor (FcɛRIα), CD16, and CD14; further differences in size, granularity, and buoyancy were measured in subsets delineated by these markers. There was a positive correlation between proliferative monocyte (PM) prevalence and CD64 expression on the classical monocyte subset, and also between PM prevalence and circulating FcɛRIα(+) monocytes. The expression of CD64, the high-affinity IgG receptor, on canonical human monocyte subsets was determined before and after short-term culture, and in response to interleukin (IL)-6, IL-10, macrophage colony-stimulating factor, granulocyte/macrophage colony-stimulating factor and interferon-γ; the influence of these cytokines on monocyte subset transition was also measured. The loss of FcɛRIα expression preceded an increase in CD16 expression in whole blood cultures. These data indicate that high-affinity Fc receptors are expressed on less mature monocytes and that FcɛRIα(+) monocytes are developmentally antecedent to the canonical classical and intermediate monocyte subsets. PMID:26714112

  14. Development of human-like scFv-Fc antibodies neutralizing Botulinum toxin serotype B

    PubMed Central

    Rasetti-Escargueil, Christine; Avril, Arnaud; Chahboun, Siham; Tierney, Rob; Bak, Nicola; Miethe, Sebastian; Mazuet, Christelle; Popoff, Michel R; Thullier, Philippe; Hust, Michael; Pelat, Thibaut; Sesardic, Dorothea

    2015-01-01

    Botulinum neurotoxins (BoNTs) are responsible for human botulism, a life-threatening disease characterized by flaccid muscle paralysis that occurs naturally by food poisoning or colonization of the gastrointestinal tract by BoNT-producing clostridia. BoNTs have been classified as category A agents by the Centers for Disease Control and Prevention. To date, 7 subtypes of BoNT/B were identified showing that subtypes B1 (16 strains) and B2 (32 strains) constitute the vast majority of BoNT/B strains. Neutralizing antibodies are required for the development of anti-botulism drugs to deal with the potential risk. In this study, macaques (Macaca fascicularis) were immunized with recombinant light chain (LC) or heavy chain (HC) of BoNT/B2, followed by the construction of 2 hyper-immune phage display libraries. The best single-chain variable fragments (scFvs) isolated from each library were selected according to their affinities and cross reactivity with BoNT/B1 toxin subtype. These scFvs against LC and HC were further analyzed by assessing the inhibition of in vitro endopeptidase activity of BoNT/B1 and B2 and neutralization of BoNT/B1 and B2 toxin-induced paralysis in the mouse ex vivo phrenic nerve assay. The antibodies B2–7 (against HC) and BLC3 (against LC) were produced as scFv-Fc, and, when tested individually, neutralized BoNT/B1 and BoNT/B2 in a mouse ex vivo phrenic nerve assay. Whereas only scFv-Fc BLC3 alone protected mice against BoNT/B2-induced paralysis in vivo, when B2–7 and BLC3 were combined they exhibited potent synergistic protection. The present study provided an opportunity to assess the extent of antibody-mediated neutralization of BoNT/B1 and BoNT/B2 subtypes in ex vivo and in vitro assays, and to confirm the benefit of the synergistic effect of antibodies targeting the 2 distinct functional domains of the toxin in vivo. Notably, the framework regions of the most promising antibodies (B2–7 and BLC3) are close to the human germline sequences

  15. Development of human-like scFv-Fc antibodies neutralizing Botulinum toxin serotype B.

    PubMed

    Rasetti-Escargueil, Christine; Avril, Arnaud; Chahboun, Siham; Tierney, Rob; Bak, Nicola; Miethe, Sebastian; Mazuet, Christelle; Popoff, Michel R; Thullier, Philippe; Hust, Michael; Pelat, Thibaut; Sesardic, Dorothea

    2015-01-01

    Botulinum neurotoxins (BoNTs) are responsible for human botulism, a life-threatening disease characterized by flaccid muscle paralysis that occurs naturally by food poisoning or colonization of the gastrointestinal tract by BoNT-producing clostridia. BoNTs have been classified as category A agents by the Centers for Disease Control and Prevention. To date, 7 subtypes of BoNT/B were identified showing that subtypes B1 (16 strains) and B2 (32 strains) constitute the vast majority of BoNT/B strains. Neutralizing antibodies are required for the development of anti-botulism drugs to deal with the potential risk. In this study, macaques (Macaca fascicularis) were immunized with recombinant light chain (LC) or heavy chain (HC) of BoNT/B2, followed by the construction of 2 hyper-immune phage display libraries. The best single-chain variable fragments (scFvs) isolated from each library were selected according to their affinities and cross reactivity with BoNT/B1 toxin subtype. These scFvs against LC and HC were further analyzed by assessing the inhibition of in vitro endopeptidase activity of BoNT/B1 and B2 and neutralization of BoNT/B1 and B2 toxin-induced paralysis in the mouse ex vivo phrenic nerve assay. The antibodies B2-7 (against HC) and BLC3 (against LC) were produced as scFv-Fc, and, when tested individually, neutralized BoNT/B1 and BoNT/B2 in a mouse ex vivo phrenic nerve assay. Whereas only scFv-Fc BLC3 alone protected mice against BoNT/B2-induced paralysis in vivo, when B2-7 and BLC3 were combined they exhibited potent synergistic protection. The present study provided an opportunity to assess the extent of antibody-mediated neutralization of BoNT/B1 and BoNT/B2 subtypes in ex vivo and in vitro assays, and to confirm the benefit of the synergistic effect of antibodies targeting the 2 distinct functional domains of the toxin in vivo. Notably, the framework regions of the most promising antibodies (B2-7 and BLC3) are close to the human germline sequences, which

  16. A Novel Humanized GLP-1 Receptor Model Enables Both Affinity Purification and Cre-LoxP Deletion of the Receptor

    PubMed Central

    Jun, Lucy S.; Showalter, Aaron D.; Ali, Nosher; Dai, Feihan; Ma, Wenzhen; Coskun, Tamer; Ficorilli, James V.; Wheeler, Michael B.; Michael, M. Dodson; Sloop, Kyle W.

    2014-01-01

    Class B G protein-coupled receptors (GPCRs) are important regulators of endocrine physiology, and peptide-based therapeutics targeting some of these receptors have proven effective at treating disorders such as hypercalcemia, osteoporosis, and type 2 diabetes mellitus (T2DM). As next generation efforts attempt to develop novel non-peptide, orally available molecules for these GPCRs, new animal models expressing human receptor orthologs may be required because small molecule ligands make fewer receptor contacts, and thus, the impact of amino acid differences across species may be substantially greater. The objective of this report was to generate and characterize a new mouse model of the human glucagon-like peptide-1 receptor (hGLP-1R), a class B GPCR for which established peptide therapeutics exist for the treatment of T2DM. hGLP-1R knock-in mice express the receptor from the murine Glp-1r locus. Glucose tolerance tests and gastric emptying studies show hGLP-1R mice and their wild-type littermates display similar physiological responses for glucose metabolism, insulin secretion, and gastric transit, and treatment with the GLP-1R agonist, exendin-4, elicits similar responses in both groups. Further, ex vivo assays show insulin secretion from humanized islets is glucose-dependent and enhanced by GLP-1R agonists. To enable additional utility, the targeting construct of the knock-in line was engineered to contain both flanking LoxP sites and a C-terminal FLAG epitope. Anti-FLAG affinity purification shows strong expression of hGLP-1R in islets, lung, and stomach. We crossed the hGLP-1R line with Rosa26Cre mice and generated global Glp-1r−/− animals. Immunohistochemistry of pancreas from humanized and knock-out mice identified a human GLP-1R-specific antibody that detects the GLP-1R in human pancreas as well as in the pancreas of hGLP-1r knock-in mice. This new hGLP-1R model will allow tissue-specific deletion of the GLP-1R, purification of potential GLP-1R partner

  17. Monoclonal antibodies specific for human monocytes, granulocytes and endothelium.

    PubMed Central

    Hogg, N; MacDonald, S; Slusarenko, M; Beverley, P C

    1984-01-01

    Four monoclonal antibodies against antigens of human myeloid cells have been produced and thoroughly characterized in terms of their reactions with peripheral blood cells, cell lines, nine lymphoid and non-lymphoid tissues and the polypeptides with which they react. UCHM1 and SmO identify antigens present on the majority of blood monocytes and a variable, but lower, proportion of tissue macrophages. From their morphology and location in tissues, these cells appear to be recirculating monocytes. SMO antigen is also present on platelets. In addition, both antibodies stained endothelial cells, SMO in all tissues examined and UCHM1 variably. Biochemical investigation indicated that the UCHM1 antigen is a protein of 52,000 MW while the SMO antigen could not be indentified. The antibodies TG1 and 28 identify antigens mainly present on granulocytes. While mAb 28 reacted with neutrophils, TG1 also stained eosinophils and stained strongly a proportion of monocytes. TG1 also reacted variably with some non-haemopoietic cell lines. Both antibodies reacted predominantly with granulocytes in tissue sections. MAb TG1 precipitated a single polypeptide of 156,000 MW from monocytes and granulocytes, while mAb 28 precipitated non-convalently associated polypeptides of 83,000 and 155,000 MW from granulocytes but only a single molecule from monocytes, corresponding to the lower MW chain of 83,000. The epitope with which mAb 28 reacts appears not to be exposed on the surface of intact monocytes. This suggests that a similar or identical 83,000 MW molecule is made by both neutrophils and monocytes, but that its expression differs according to cell type. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:6389324

  18. Expression of human protein S100A7 (psoriasin), preparation of antibody and application to human larynx squamous cell carcinoma

    PubMed Central

    2011-01-01

    Background Up-regulation of S100A7 (Psoriasin), a small calcium-binding protein, is associated with the development of several types of carcinomas, but its function and possibility to serve as a diagnostic or prognostic marker have not been fully defined. In order to prepare antibodies to the protein for immunohistochemical studies we produced the recombinant S100A7 protein in E. coli. mRNA extracted from human tracheal tumor tissue which was amplified by RT-PCR to provide the region coding for the S100A7 gene. The amplified fragment was cloned in the vector pCR2.1-TOPO and sub-cloned in the expression vector pAE. The protein rS100A7 (His-tag) was expressed in E. coli BL21::DE3, purified by affinity chromatography on an Ni-NTA column, recovered in the 2.0 to 3.5 mg/mL range in culture medium, and used to produce a rabbit polyclonal antibody anti-rS100A7 protein. The profile of this polyclonal antibody was evaluated in a tissue microarray. Results The rS100A7 (His-tag) protein was homogeneous by SDS-PAGE and mass spectrometry and was used to produce an anti-recombinant S100A7 (His-tag) rabbit serum (polyclonal antibody anti-rS100A7). The molecular weight of rS100A7 (His-tag) protein determined by linear MALDI-TOF-MS was 12,655.91 Da. The theoretical mass calculated for the nonapeptide attached to the amino terminus is 12,653.26 Da (delta 2.65 Da). Immunostaining with the polyclonal anti-rS100A7 protein generated showed reactivity with little or no background staining in head and neck squamous cell carcinoma cells, detecting S100A7 both in nucleus and cytoplasm. Lower levels of S100A7 were detected in non-neoplastic tissue. Conclusions The polyclonal anti-rS100A7 antibody generated here yielded a good signal-to-noise contrast and should be useful for immunohistochemical detection of S100A7 protein. Its potential use for other epithelial lesions besides human larynx squamous cell carcinoma and non-neoplastic larynx should be explored in future. PMID:22082027

  19. Antibodies specific for Epstein-Barr virus nuclear antigen-1 cross-react with human heterogeneous nuclear ribonucleoprotein L.

    PubMed

    Lindsey, J William; deGannes, Samantha L; Pate, Kimberly A; Zhao, Xiurong

    2016-01-01

    Epstein-Barr virus (EBV) is associated with multiple sclerosis (MS), and antibodies to the EBV nuclear antigen-1 (EBNA-1) are consistently increased in MS patients. The hypothesis of this study is that anti-EBNA-1 antibodies cross-react with a self antigen in MS patients. We affinity purified anti-EBNA-1 antibodies from human plasma, used the anti-EBNA-1 to immunoprecipitate antigens from human brain, and identified bound antigens with mass spectrometry. Anti-EBNA-1 consistently bound heterogeneous nuclear ribonucleoprotein L (HNRNPL). We expressed both the long and short isoforms of this protein, and verified with Western blots and ELISA that the long isoform cross-reacts with EBNA-1. Immunohistochemistry demonstrated that anti-EBNA-1 bound to an antigen in the nucleus of cultured rat central nervous system cells. ELISA demonstrated the presence of antibodies to HNRNPL in the plasma of both healthy controls and MS patients, but anti-HNRNPL was not increased in MS patients. We conclude that HNRNPL is an autoantigen which cross-reacts with EBNA-1. The relevance of this autoantigen to MS and other autoimmune diseases remains to be investigated. PMID:26637929

  20. Antibody-dependent, cell-mediated cytolysis (ADCC) with antibody-coated effectors: rat and human effectors versus tumor targets.

    PubMed

    Jones, J F; Titus, J A; Segal, D M

    1981-06-01

    We have previously described techniques that cause antibody molecules to remain bound to P388D1 cells for at least 18 hr, and enable these cells to lyse hapten-coated erythrocytes not sensitized with antibody. These methods collectively are called "franking." In this study, we have determined that these methods are applicable to other systems. We franked rat splenocytes and human peripheral blood leukocytes with rabbit anti-TNP antibody, and showed that they were capable of lysing TNP-tumor and erythrocyte targets (not coated with antibody) in a hapten-specific, antibody-dependent fashion. Both the mononuclear and the polymorphonuclear (PMN) leukocyte fractions of the human cells were capable of mediating lysis. Additionally, human leukocytes franked with rabbit antibody were stained with fluorescent goat anti-rabbit IgG Fab, and were analyzed for fluorescence by flow microfluorometry. Nearly all of the PMN cells and about one-half of the mononuclear cells had IgG on their surfaces after franking. Clearly, not all cells can be franked, but those that can retain significant numbers of antibody molecules (approximately 5 X 10(4), in the case of PMN cells) on their surfaces. PMID:7014718

  1. Affinity of Luliconazole to Keratin Prepared from Healthy Human Nailand Porcine Hoof.

    PubMed

    Hasuko, Masayuki; Toga, Tetsuo; Tsunemitsu, Toshiya; Matsumoto, Takahiro; Koga, Hiroyasu; Hirano, Hirofumi; Tsuboi, Ryoji

    2016-01-01

    Luliconazole (LLCZ), an imidazole derivative with a broad spectrum of potent antifungal activity especially for T. rubrum and T. mentagrophytes, is under development as a new drug for treatment of tinea unguium. It is well known that curative effect of an antifungal agent in dermatophytosis is affected by the pharmacokinetics of an agent at the infection loci as well as its antifungal activity, but there is no report about the affinity of LLCZ to nail keratin. We studied LLCZ affinity to keratin powder prepared from healthy human nail and porcine hoof. The LLCZ adsorbed to keratin preparations was washed with phosphate buffer, and its concentration in the buffer supernatant was measured by HPLC. Antifungal titer of the supernatant was also biologically confirmed by disk diffusion assay. Adsorption rate of LLCZ was 80% or more, and LLCZ was gradually liberated into washing buffer. Cumulative liberation rate in 10 times repeated washing against initially adsorbed drug amount was 47.4% for keratin from human nail and was either 52.5% or 50.8% (depending on the LLCZ concentration) for keratin from porcine hoof. The supernatant showed antifungal potential to T. rubrum. These results indicate that LLCZ applied to the nail surface is fully adsorbed to nail keratin and gradually liberated from it. The nail keratin could function as drug reservoir to supply biologically active LLCZ to the nail tissue region of infection loci. The LLCZ delivered to the loci would exert its antifungal potential on tinea unguium. This study also suggests the versatility of porcine hoof powder as an alternative to human nail keratin preparation for non-clinical study. PMID:26936352

  2. [Preparation of human soluble FcepsilonR1α and detection of serum FcepsilonR1α antibodies in patients with allergic rhinitis].

    PubMed

    Xing, Huihui; Shao, Hui; Cao, Xiuqin; Yang, Zhiwei

    2016-05-01

    Objective To induce the expression of human soluble Fc epsilon receptor I alpha (sFcepsilonR1α) in a prokaryotic expression vector, purify the recombinant human sFcepsilonR1α protein, detect its binding affinity for human serum IgE antibodies and detect the levels of sFcepsilonR1α, sFcepsilonR1α-IgE and FcepsilonR1α antibodies. Methods The FcepsilonR1α extracellular region gene was amplified using nested polymerase chain reaction (PCR) and was expressed in a prokaryotic expression vector pET-sFcepsilonR1α using recombinant DNA technology under optimal conditions. The human sFcepsilonR1α protein was purified using iminodiacetic acid (IDA) His binding resin and identified using Western blotting. The affinity between the recombinant human sFcepsilonR1α and serum IgE antibodies and the levels of total sFcepsilonR1α, sFcepsilonR1α-IgE and FcepsilonR1α antibodies were measured using ELISA. Results The amplified gene corresponding to the extracellular region FcepsilonR1α was approximately 600 bp. PCR, double enzyme digestion and sequencing confirmed the correct sequence of the expression vector pET-sFcepsilonR1α. After human sFcepsilonR1α protein was induced in the expression vector pET-FcepsilonR1α and purified, Western blotting showed that its relative molecular mass (Mr) was approximately 42 000. ELISA revealed that the human sFcepsilonR1α bound with a high affinity to serum IgE, and the lower levels of total sFcepsilonR1α and sFcepsilonR1α-IgE and higher levels of serum anti-FcepsilonR1α antibodies in the patients with allergic rhinitis than in the normal subjects. Conclusion We successfully synthesized human sFcepsilonR1α which had a strong binding affinity for human serum IgE. The higher levels of serum anti-FcepsilonR1α antibodies in the patients with allergic rhinitis than the normal subjects. PMID:27126944

  3. Tetrapyrrole binding affinity of the murine and human p22HBP heme-binding proteins.

    PubMed

    Micaelo, Nuno M; Macedo, Anjos L; Goodfellow, Brian J; Félix, Vítor

    2010-11-01

    We present the first systematic molecular modeling study of the binding properties of murine (mHBP) and human (hHBP) p22HBP protein (heme-binding protein) with four tetrapyrrole ring systems belonging to the heme biosynthetic pathway: iron protoporphyrin IX (HEMIN), protoporphyrin IX (PPIX), coproporphyrin III (CPIII), coproporphyrin I (CPI). The relative binding affinities predicted by our computational study were found to be similar to those observed experimentally, providing a first rational structural analysis of the molecular recognition mechanism, by p22HBP, toward a number of different tetrapyrrole ligands. To probe the structure of these p22HBP protein complexes, docking, molecular dynamics and MM-PBSA methodologies supported by experimental NMR ring current shift data have been employed. The tetrapyrroles studied were found to bind murine p22HBP with the following binding affinity order: HEMIN> PPIX> CPIII> CPI, which ranged from -22.2 to -6.1 kcal/mol. In general, the protein-tetrapyrrole complexes are stabilized by non-bonded interactions between the tetrapyrrole propionate groups and basic residues of the protein, and by the preferential solvation of the complex compared to the unbound components. PMID:20800521

  4. The human organic cation transporter OCT1 mediates high affinity uptake of the anticancer drug daunorubicin.

    PubMed

    Andreev, Emil; Brosseau, Nicolas; Carmona, Euridice; Mes-Masson, Anne-Marie; Ramotar, Dindial

    2016-01-01

    Anthracyclines such as daunorubicin are anticancer agents that are transported into cells, and exert cytotoxicity by blocking DNA metabolism. Although there is evidence for active uptake of anthracyclines into cells, the specific transporter involved in this process has not been identified. Using the high-grade serous ovarian cancer cell line TOV2223G, we show that OCT1 mediated the high affinity (Km ~ 5 μM) uptake of daunorubicin into the cells, and that micromolar amounts of choline completely abolished the drug entry. OCT1 downregulation by shRNA impaired daunorubicin uptake into the TOV2223G cells, and these cells were significantly more resistant to the drug in comparison to the control shRNA. Transfection of HEK293T cells, which accommodated the ectopic expression of OCT1, with a plasmid expressing OCT1-EYFP showed that the transporter was predominantly localized to the plasma membrane. These transfected cells exhibited an increase in the uptake of daunorubicin in comparison to control cells transfected with an empty EYFP vector. Furthermore, a variant of OCT1, OCT1-D474C-EYFP, failed to enhance daunorubicin uptake. This is the first report demonstrating that human OCT1 is involved in the high affinity transport of anthracyclines. We postulate that OCT1 defects may contribute to the resistance of cancer cells treated with anthracyclines. PMID:26861753

  5. ANALYSIS OF DRUG-PROTEIN BINDING BY ULTRAFAST AFFINITY CHROMATOGRAPHY USING IMMOBILIZED HUMAN SERUM ALBUMIN

    PubMed Central

    Mallik, Rangan; Yoo, Michelle J.; Briscoe, Chad J.; Hage, David S.

    2010-01-01

    Human serum albumin (HSA) was explored for use as a stationary phase and ligand in affinity microcolumns for the ultrafast extraction of free drug fractions and the use of this information for the analysis of drug-protein binding. Warfarin, imipramine, and ibuprofen were used as model analytes in this study. It was found that greater than 95% extraction of all these drugs could be achieved in as little as 250 ms on HSA microcolumns. The retained drug fraction was then eluted from the same column under isocratic conditions, giving elution in less than 40 s when working at 4.5 mL/min. The chromatographic behavior of this system gave a good fit with that predicted by computer simulations based on a reversible, saturable model for the binding of an injected drug with immobilized HSA. The free fractions measured by this method were found to be comparable to those determined by ultrafiltration, and equilibrium constants estimated by this approach gave good agreement with literature values. Advantages of this method include its speed and the relatively low cost of microcolumns that contain HSA. The ability of HSA to bind many types of drugs also creates the possibility of using the same affinity microcolumn to study and measure the free fractions for a variety of pharmaceutical agents. These properties make this technique appealing for use in drug binding studies and in the high-throughput screening of new drug candidates. PMID:20227701

  6. The human organic cation transporter OCT1 mediates high affinity uptake of the anticancer drug daunorubicin

    PubMed Central

    Andreev, Emil; Brosseau, Nicolas; Carmona, Euridice; Mes-Masson, Anne-Marie; Ramotar, Dindial

    2016-01-01

    Anthracyclines such as daunorubicin are anticancer agents that are transported into cells, and exert cytotoxicity by blocking DNA metabolism. Although there is evidence for active uptake of anthracyclines into cells, the specific transporter involved in this process has not been identified. Using the high-grade serous ovarian cancer cell line TOV2223G, we show that OCT1 mediated the high affinity (Km ~ 5 μM) uptake of daunorubicin into the cells, and that micromolar amounts of choline completely abolished the drug entry. OCT1 downregulation by shRNA impaired daunorubicin uptake into the TOV2223G cells, and these cells were significantly more resistant to the drug in comparison to the control shRNA. Transfection of HEK293T cells, which accommodated the ectopic expression of OCT1, with a plasmid expressing OCT1-EYFP showed that the transporter was predominantly localized to the plasma membrane. These transfected cells exhibited an increase in the uptake of daunorubicin in comparison to control cells transfected with an empty EYFP vector. Furthermore, a variant of OCT1, OCT1-D474C-EYFP, failed to enhance daunorubicin uptake. This is the first report demonstrating that human OCT1 is involved in the high affinity transport of anthracyclines. We postulate that OCT1 defects may contribute to the resistance of cancer cells treated with anthracyclines. PMID:26861753

  7. The function and affinity maturation of HIV-1 gp120-specific monoclonal antibodies derived from colostral B cells

    PubMed Central

    Jeffries, Thomas L; Sacha, CR; Pollara, Justin; Himes, Jon; Jaeger, Frederick H; Dennison, S Moses; McGuire, Erin; Kunz, Erika; Eudailey, Joshua A; Trama, Ashley M; LaBranche, Celia; Fouda, Genevieve G; Wiehe, Kevin; Montefiori, David C; Haynes, Barton F; Liao, Hua-Xin; Ferrari, Guido; Alam, S Munir; Moody, M Anthony; Permar, Sallie R

    2015-01-01

    Despite the risk of transmitting HIV-1, mothers in resource-poor areas are encouraged to breastfeed their infants due to beneficial immunologic and nutritional factors in milk. Interestingly, in the absence of antiretroviral prophylaxis, the overwhelming majority of HIV-1-exposed, breastfeeding infants are naturally protected from infection. To understand the role of HIV-1 Envelope (Env)-specific antibodies in breast milk in natural protection against infant virus transmission, we produced 19 HIV-1 Env-specific monoclonal antibodies (mAbs) isolated from colostrum B cells of HIV-1-infected mothers and investigated their specificity, evolution and anti-HIV-1 functions. Despite the previously reported genetic compartmentalization and gp120-specific bias of colostrum HIV Env-specific B cells, the colostrum Env-specific mAbs described here demonstrated a broad range of gp120 epitope specificities and functions, including inhibition of epithelial cell binding and dendritic cell mediated virus transfer, neutralization, and antibody-dependent cellular cytotoxicity. Interestingly, we also identified divergent patterns of colostrum Env-specific B cell lineage evolution with respect to cross-reactivity to gastrointestinal commensal bacteria, indicating that commensal bacterial antigens play a role in shaping the local breast milk IgG repertoire. Maternal vaccine strategies to specifically target this breast milk B cell population may be necessary to achieve safe breastfeeding for all HIV-1-exposed infants. PMID:26242599

  8. The function and affinity maturation of HIV-1 gp120-specific monoclonal antibodies derived from colostral B cells.

    PubMed

    Jeffries, T L; Sacha, C R; Pollara, J; Himes, J; Jaeger, F H; Dennison, S M; McGuire, E; Kunz, E; Eudailey, J A; Trama, A M; LaBranche, C; Fouda, G G; Wiehe, K; Montefiori, D C; Haynes, B F; Liao, H-X; Ferrari, G; Alam, S M; Moody, M A; Permar, S R

    2016-03-01

    Despite the risk of transmitting HIV-1, mothers in resource-poor areas are encouraged to breastfeed their infants because of beneficial immunologic and nutritional factors in milk. Interestingly, in the absence of antiretroviral prophylaxis, the overwhelming majority of HIV-1-exposed, breastfeeding infants are naturally protected from infection. To understand the role of HIV-1 envelope (Env)-specific antibodies in breast milk in natural protection against infant virus transmission, we produced 19 HIV-1 Env-specific monoclonal antibodies (mAbs) isolated from colostrum B cells of HIV-1-infected mothers and investigated their specificity, evolution, and anti-HIV-1 functions. Despite the previously reported genetic compartmentalization and gp120-specific bias of colostrum HIV Env-specific B cells, the colostrum Env-specific mAbs described here demonstrated a broad range of gp120 epitope specificities and functions, including inhibition of epithelial cell binding and dendritic cell-mediated virus transfer, neutralization, and antibody-dependent cellular cytotoxicity. We also identified divergent patterns of colostrum Env-specific B-cell lineage evolution with respect to crossreactivity to gastrointestinal commensal bacteria, indicating that commensal bacterial antigens play a role in shaping the local breast milk immunoglobulin G (IgG) repertoire. Maternal vaccine strategies to specifically target this breast milk B-cell population may be necessary to achieve safe breastfeeding for all HIV-1-exposed infants. PMID:26242599

  9. Substitution of Heavy Complementarity Determining Region 3 (CDR-H3) Residues Can Synergistically Enhance Functional Activity of Antibody and Its Binding Affinity to HER2 Antigen

    PubMed Central

    Moon, Seung Kee; Park, So Ra; Park, Ami; Oh, Hyun Mi; Shin, Hyun Jung; Jeon, Eun Ju; Kim, Seiwhan; Park, Hyun June; Yeon, Young Joo; Yoo, Young Je

    2016-01-01

    To generate a biobetter that has improved therapeutic activity, we constructed scFv libraries via random mutagenesis of several residues of CDR-H3 and -L3 of hu4D5. The scFv clones were isolated from the phage display libraries by stringent panning, and their anti-proliferative activity against HER2-positive cancer cells was evaluated as a primary selection criterion. Consequently, we selected AH06 as a biobetter antibody that had a 7.2-fold increase in anti-proliferative activity (IC50: 0.81 nM) against the gastric cancer cell line NCI-N87 and a 7.4-fold increase in binding affinity (KD: 60 pM) to HER2 compared to hu4D5. The binding energy calculation and molecular modeling suggest that the substitution of residues of CDR-H3 to W98, F100c, A101 and L102 could stabilize binding of the antibody to HER2 and there could be direct hydrophobic interactions between the aromatic ring of W98 and the aliphatic group of I613 within HER2 domain IV as well as the heavy and light chain hydrophobic interactions by residues F100c, A101 and L102 of CDR-H3. Therefore, we speculate that two such interactions were exerted by the residues W98 and F100c. A101 and L102 may have a synergistic effect on the increase in the binding affinity to HER2. AH06 specifically binds to domain IV of HER2, and it decreased the phosphorylation level of HER2 and AKT. Above all, it highly increased the overall level of p27 compared to hu4D5 in the gastric cancer cell line NCI-N82, suggesting that AH06 could potentially be a more efficient therapeutic agent than hu4D5. PMID:26743905

  10. The binding modes and binding affinities of epipodophyllotoxin derivatives with human topoisomerase IIα.

    PubMed

    Naik, Pradeep Kumar; Dubey, Abhishek; Soni, Komal; Kumar, Rishay; Singh, Harvinder

    2010-12-01

    Epipodophyllotoxin derivatives have important therapeutic value in the treatment of human cancers. These drugs kill cells by inhibiting the ability of topoisomerase II (TP II) to ligate nucleic acids that it cleaves during the double-stranded DNA passage reaction. The 3D structure of human TP IIα was modeled by homology modeling. A virtual library consisting of 143 epipodophyllotoxin derivatives has been developed. Their molecular interactions and binding affinities with modeled human TP IIα have been studied using the docking and Bimolecular Association with Energetics (eMBrAcE) developed by Schrödinger. Structure activity relationship models were developed between the experimental activity expressed in terms of percentage of intracellular covalent TP II-DNA complexes (log PCPDCF) of these compounds and molecular descriptors like docking score and free energy of binding. For both the cases the r2 was in the range of 0.624-0.800 indicating good data fit and r2(cv) was in the range of 0.606-774 indicating that the predictive capabilities of the models were acceptable. Low levels of root mean square error for the majority of inhibitors establish the docking and eMBrAcE based prediction model as an efficient tool for generating more potent and specific inhibitors of human TP IIα by testing rationally designed lead compounds based on epipodophyllotoxin derivatization. PMID:21075653

  11. Lineage tracing of human B cells reveals the in vivo landscape of human antibody class switching

    PubMed Central

    Horns, Felix; Vollmers, Christopher; Croote, Derek; Mackey, Sally F; Swan, Gary E; Dekker, Cornelia L; Davis, Mark M; Quake, Stephen R

    2016-01-01

    Antibody class switching is a feature of the adaptive immune system which enables diversification of the effector properties of antibodies. Even though class switching is essential for mounting a protective response to pathogens, the in vivo patterns and lineage characteristics of antibody class switching have remained uncharacterized in living humans. Here we comprehensively measured the landscape of antibody class switching in human adult twins using antibody repertoire sequencing. The map identifies how antibodies of every class are created and delineates a two-tiered hierarchy of class switch pathways. Using somatic hypermutations as a molecular clock, we discovered that closely related B cells often switch to the same class, but lose coherence as somatic mutations accumulate. Such correlations between closely related cells exist when purified B cells class switch in vitro, suggesting that class switch recombination is directed toward specific isotypes by a cell-autonomous imprinted state. DOI: http://dx.doi.org/10.7554/eLife.16578.001 PMID:27481325

  12. Epitope location for two monoclonal antibodies against human cystatin C, representing opposite aggregation inhibitory properties.

    PubMed

    Behrendt, Izabela; Prądzińska, Martyna; Spodzieja, Marta; Kołodziejczyk, Aleksandra S; Rodziewicz-Motowidło, Sylwia; Szymańska, Aneta; Czaplewska, Paulina

    2016-07-01

    Human cystatin C (hCC), like many other amyloidogenic proteins, dimerizes and possibly makes aggregates by subdomain swapping. Inhibition of the process should suppress the fibrillogenesis leading to a specific amyloidosis (hereditary cystatin C amyloid angiopathy, HCCAA). It has been reported that exogenous agents like monoclonal antibodies against cystatin C are able to suppress formation of cystatin C dimers and presumably control the neurodegenerative disease. We have studied in detail two monoclonal antibodies (mAbs) representing very different aggregation inhibitory potency, Cyst10 and Cyst28, to find binding sites in hCC sequence responsible for the immunocomplex formation and pave the way for possible immunotherapy of HCCAA. We used the epitope extraction/excision mass spectrometry approach with the use of different enzymes complemented by affinity studies with synthetic hCC fragments as a basic technique for epitope identification. The results were analyzed in the context of hCC structure allowing us to discuss the binding sites for both antibodies. Epitopic sequences for clone Cyst28 which is a highly potent dimerization inhibitor were found in N-terminus, loop 1 and 2 (L1, L2) and fragments of β2 and β3 strands. The crucial difference between conformational epitope sequences found for both mAbs seems to be the lack of interactions with hCC via N-terminus and the loop 1 in the case of mAb Cyst10. Presumably the interactions of mAbs with hCC via L1 and β sheet fragments make the hCC structure rigid and unable to undergo the swapping process. PMID:27143169

  13. Human Monoclonal Antibodies Against a Plethora of Viral Pathogens From Single Combinatorial Libraries

    NASA Astrophysics Data System (ADS)

    Williamson, R. Anthony; Burioni, Roberto; Sanna, Pietro P.; Partridge, Lynda J.; Barbas, Carlos F., III; Burton, Dennis R.

    1993-05-01

    Conventional antibody generation usually requires active immunization with antigen immediately prior to the preparation procedure. Combinatorial antibody library technology offers the possibility of cloning a range of antibody specificities at a single point in time and then accessing these specificities at will. Here we show that human monoclonal antibody Fab fragments against a plethora of infectious agents can be readily derived from a single library. Further examination of a number of libraries shows that whenever antibody against a pathogen can be detected in the serum of the donor, then specific antibodies can be derived from the corresponding library. We describe the generation of human Fab fragments against herpes simplex virus types 1 and 2, human cytomegalovirus, varicella zoster virus, rubella, human immunodeficiency virus type 1, and respiratory syncytial virus. The antibodies are shown to be highly specific and a number are effective in neutralizing virus in vitro.

  14. Human monoclonal antibodies against a plethora of viral pathogens from single combinatorial libraries.

    PubMed Central

    Williamson, R A; Burioni, R; Sanna, P P; Partridge, L J; Barbas, C F; Burton, D R

    1993-01-01

    Conventional antibody generation usually requires active immunization with antigen immediately prior to the preparation procedure. Combinatorial antibody library technology offers the possibility of cloning a range of antibody specificities at a single point in time and then accessing these specificities at will. Here we show that human monoclonal antibody Fab fragments against a plethora of infectious agents can be readily derived from a single library. Further examination of a number of libraries shows that whenever antibody against a pathogen can be detected in the serum of the donor, then specific antibodies can be derived from the corresponding library. We describe the generation of human Fab fragments against herpes simplex virus types 1 and 2, human cytomegalovirus, varicella zoster virus, rubella, human immunodeficiency virus type 1, and respiratory syncytial virus. The antibodies are shown to be highly specific and a number are effective in neutralizing virus in vitro. Images Fig. 1 Fig. 2 PMID:7683424

  15. Affinity of rosmarinic acid to human serum albumin and its effect on protein conformation stability.

    PubMed

    Peng, Xin; Wang, Xiangchao; Qi, Wei; Su, Rongxin; He, Zhimin

    2016-02-01

    Rosmarinic acid (RA) is a natural polyphenol contained in many aromatic plants with promising biological activities. The interaction between RA and human serum albumin (HSA) was investigated by multi-spectroscopic, electrochemistry, molecular docking and molecular dynamics simulation methods. The fluorescence emission of HSA was quenched by RA through a combined static and dynamic quenching mechanism, but the static quenching was the major constituent. Fluorescence experiments suggested that RA was bound to HSA with moderately strong binding affinity through hydrophobic interaction. The probable binding location of RA was located near site I of HSA. Additionally, as shown by the Fourier transform infrared (FT-IR) and circular dichroism (CD) spectra, RA can result in conformational and structural alterations of HSA. Furthermore, the molecular dynamics studies were used to investigate the stability of the HSA and HSA-RA system. Altogether, the results can provide an important insight for the applications of RA in the food industry. PMID:26304336

  16. Most neutralizing human monoclonal antibodies target novel epitopes requiring both Lassa virus glycoprotein subunits

    PubMed Central

    Robinson, James E.; Hastie, Kathryn M.; Cross, Robert W.; Yenni, Rachael E.; Elliott, Deborah H.; Rouelle, Julie A.; Kannadka, Chandrika B.; Smira, Ashley A.; Garry, Courtney E.; Bradley, Benjamin T.; Yu, Haini; Shaffer, Jeffrey G.; Boisen, Matt L.; Hartnett, Jessica N.; Zandonatti, Michelle A.; Rowland, Megan M.; Heinrich, Megan L.; Martínez-Sobrido, Luis; Cheng, Benson; de la Torre, Juan C.; Andersen, Kristian G.; Goba, Augustine; Momoh, Mambu; Fullah, Mohamed; Gbakie, Michael; Kanneh, Lansana; Koroma, Veronica J.; Fonnie, Richard; Jalloh, Simbirie C.; Kargbo, Brima; Vandi, Mohamed A.; Gbetuwa, Momoh; Ikponmwosa, Odia; Asogun, Danny A.; Okokhere, Peter O.; Follarin, Onikepe A.; Schieffelin, John S.; Pitts, Kelly R.; Geisbert, Joan B.; Kulakoski, Peter C.; Wilson, Russell B.; Happi, Christian T.; Sabeti, Pardis C.; Gevao, Sahr M.; Khan, S. Humarr; Grant, Donald S.; Geisbert, Thomas W.; Saphire, Erica Ollmann; Branco, Luis M.; Garry, Robert F.

    2016-01-01

    Lassa fever is a severe multisystem disease that often has haemorrhagic manifestations. The epitopes of the Lassa virus (LASV) surface glycoproteins recognized by naturally infected human hosts have not been identified or characterized. Here we have cloned 113 human monoclonal antibodies (mAbs) specific for LASV glycoproteins from memory B cells of Lassa fever survivors from West Africa. One-half bind the GP2 fusion subunit, one-fourth recognize the GP1 receptor-binding subunit and the remaining fourth are specific for the assembled glycoprotein complex, requiring both GP1 and GP2 subunits for recognition. Notably, of the 16 mAbs that neutralize LASV, 13 require the assembled glycoprotein complex for binding, while the remaining 3 require GP1 only. Compared with non-neutralizing mAbs, neutralizing mAbs have higher binding affinities and greater divergence from germline progenitors. Some mAbs potently neutralize all four LASV lineages. These insights from LASV human mAb characterization will guide strategies for immunotherapeutic development and vaccine design. PMID:27161536

  17. Most neutralizing human monoclonal antibodies target novel epitopes requiring both Lassa virus glycoprotein subunits.

    PubMed

    Robinson, James E; Hastie, Kathryn M; Cross, Robert W; Yenni, Rachael E; Elliott, Deborah H; Rouelle, Julie A; Kannadka, Chandrika B; Smira, Ashley A; Garry, Courtney E; Bradley, Benjamin T; Yu, Haini; Shaffer, Jeffrey G; Boisen, Matt L; Hartnett, Jessica N; Zandonatti, Michelle A; Rowland, Megan M; Heinrich, Megan L; Martínez-Sobrido, Luis; Cheng, Benson; de la Torre, Juan C; Andersen, Kristian G; Goba, Augustine; Momoh, Mambu; Fullah, Mohamed; Gbakie, Michael; Kanneh, Lansana; Koroma, Veronica J; Fonnie, Richard; Jalloh, Simbirie C; Kargbo, Brima; Vandi, Mohamed A; Gbetuwa, Momoh; Ikponmwosa, Odia; Asogun, Danny A; Okokhere, Peter O; Follarin, Onikepe A; Schieffelin, John S; Pitts, Kelly R; Geisbert, Joan B; Kulakoski, Peter C; Wilson, Russell B; Happi, Christian T; Sabeti, Pardis C; Gevao, Sahr M; Khan, S Humarr; Grant, Donald S; Geisbert, Thomas W; Saphire, Erica Ollmann; Branco, Luis M; Garry, Robert F

    2016-01-01

    Lassa fever is a severe multisystem disease that often has haemorrhagic manifestations. The epitopes of the Lassa virus (LASV) surface glycoproteins recognized by naturally infected human hosts have not been identified or characterized. Here we have cloned 113 human monoclonal antibodies (mAbs) specific for LASV glycoproteins from memory B cells of Lassa fever survivors from West Africa. One-half bind the GP2 fusion subunit, one-fourth recognize the GP1 receptor-binding subunit and the remaining fourth are specific for the assembled glycoprotein complex, requiring both GP1 and GP2 subunits for recognition. Notably, of the 16 mAbs that neutralize LASV, 13 require the assembled glycoprotein complex for binding, while the remaining 3 require GP1 only. Compared with non-neutralizing mAbs, neutralizing mAbs have higher binding affinities and greater divergence from germline progenitors. Some mAbs potently neutralize all four LASV lineages. These insights from LASV human mAb characterization will guide strategies for immunotherapeutic development and vaccine design. PMID:27161536

  18. Immunosuppressive human anti-CD83 monoclonal antibody depletion of activated dendritic cells in transplantation.

    PubMed

    Seldon, T A; Pryor, R; Palkova, A; Jones, M L; Verma, N D; Findova, M; Braet, K; Sheng, Y; Fan, Y; Zhou, E Y; Marks, J D; Munro, T; Mahler, S M; Barnard, R T; Fromm, P D; Silveira, P A; Elgundi, Z; Ju, X; Clark, G J; Bradstock, K F; Munster, D J; Hart, D N J

    2016-03-01

    Current immunosuppressive/anti-inflammatory agents target the responding effector arm of the immune response and their nonspecific action increases the risk of infection and malignancy. These effects impact on their use in allogeneic haematopoietic cell transplantation and other forms of transplantation. Interventions that target activated dendritic cells (DCs) have the potential to suppress the induction of undesired immune responses (for example, graft versus host disease (GVHD) or transplant rejection) and to leave protective T-cell immune responses intact (for example, cytomegalovirus (CMV) immunity). We developed a human IgG1 monoclonal antibody (mAb), 3C12, specific for CD83, which is expressed on activated but not resting DC. The 3C12 mAb and an affinity improved version, 3C12C, depleted CD83(+) cells by CD16(+) NK cell-mediated antibody-dependent cellular cytotoxicity, and inhibited allogeneic T-cell proliferation in vitro. A single dose of 3C12C prevented human peripheral blood mononuclear cell-induced acute GVHD in SCID mouse recipients. The mAb 3C12C depleted CMRF-44(+)CD83(bright) activated DC but spared CD83(dim/-) DC in vivo. It reduced human T-cell activation in vivo and maintained the proportion of CD4(+) FoxP3(+) CD25(+) Treg cells and also viral-specific CD8(+) T cells. The anti-CD83 mAb, 3C12C, merits further evaluation as a new immunosuppressive agent in transplantation. PMID:26286117

  19. Preclinical development of AMG 139, a human antibody specifically targeting IL-23

    PubMed Central

    Köck, K; Pan, W J; Gow, J M; Horner, M J; Gibbs, J P; Colbert, A; Goletz, T J; Newhall, K J; Rees, W A; Sun, Y; Zhang, Y; O'Neill, J C; Umble-Romero, A N; Prokop, S P; Krill, C D; Som, L; Buntich, S A; Trimble, M W; Tsuji, W H; Towne, J E

    2015-01-01

    BACKGROUND AND PURPOSE AMG 139 is a human anti-IL-23 antibody currently in a phase II trial for treating Crohn's disease. To support its clinical development in humans, in vitro assays and in vivo studies were conducted in cynomolgus monkeys to determine the pharmacology, preclinical characteristics and safety of this monoclonal antibody. EXPERIMENTAL APPROACH The in vitro pharmacology, pharmacokinetics (PK), pharmacodynamics and toxicology of AMG 139, after single or weekly i.v. or s.c. administration for up to 26 weeks, were evaluated in cynomolgus monkeys. KEY RESULTS AMG 139 bound with high affinity to both human and cynomolgus monkey IL-23 and specifically neutralized the biological activity of IL-23 without binding or blocking IL-12. After a single dose, linear PK with s.c. bioavailability of 81% and mean half-life of 8.4–13 days were observed. After weekly s.c. dosing for 3 or 6 months, AMG 139 exposure increased approximately dose-proportionally from 30 to 300 mg·kg−1 and mean accumulation between the first and last dose ranged from 2- to 3.5-fold. Peripheral blood immunophenotyping, T-cell-dependent antigen responses and bone formation markers were not different between AMG 139 and vehicle treatment. No adverse clinical signs, effects on body weight, vital signs, ophthalmic parameters, clinical pathology, ECG, organ weights or histopathology were observed in the monkeys with the highest dose of AMG 139 tested (300 mg·kg−1 s.c. or i.v.). CONCLUSIONS AND IMPLICATIONS The in vitro pharmacology, PK, immunogenicity and safety characteristics of AMG 139 in cynomolgus monkeys support its continued clinical development for the treatment of various inflammatory diseases. PMID:25205227

  20. Identification and Characterization of a New Cross-Reactive Human Immunodeficiency Virus Type 1-Neutralizing Human Monoclonal Antibody

    PubMed Central

    Zhang, Mei-Yun; Xiao, Xiaodong; Sidorov, Igor A.; Choudhry, Vidita; Cham, Fatim; Zhang, Peng Fei; Bouma, Peter; Zwick, Michael; Choudhary, Anil; Montefiori, David C.; Broder, Christopher C.; Burton, Dennis R.; Quinnan, Gerald V.; Dimitrov, Dimiter S.

    2004-01-01

    The identification and characterization of new human monoclonal antibodies (hMAbs) able to neutralize primary human immunodeficiency virus type 1 (HIV-1) isolates from different subtypes may help in our understanding of the mechanisms of virus entry and neutralization and in the development of entry inhibitors and vaccines. For enhanced selection of broadly cross-reactive antibodies, soluble HIV-1 envelope glycoproteins (Envs proteins) from two isolates complexed with two-domain soluble CD4 (sCD4) were alternated during panning of a phage-displayed human antibody library; these two Env proteins (89.6 and IIIB gp140s), and one additional Env (JR-FL gp120) alone and complexed with sCD4 were used for screening. An antibody with relatively long HCDR3 (17 residues), designated m14, was identified that bound to all antigens and neutralized heterologous HIV-1 isolates in multiple assay formats. Fab m14 potently neutralized selected well-characterized subtype B isolates, including JRCSF, 89.6, IIIB, and Yu2. Immunoglobulin G1 (IgG1) m14 was more potent than Fab m14 and neutralized 7 of 10 other clade B isolates; notably, although the potency was on average significantly lower than that of IgG1 b12, IgG1 m14 neutralized two of the isolates with significantly lower 50% inhibitory concentrations than did IgG1 b12. IgG1 m14 neutralized four of four selected clade C isolates with potency higher than that of IgG1 b12. It also neutralized 7 of 17 clade C isolates from southern Africa that were difficult to neutralize with other hMAbs and sCD4. IgG1 m14 neutralized four of seven primary HIV-1 isolates from other clades (A, D, E, and F) much more efficiently than did IgG1 b12; for the other three isolates, IgG b12 was much more potent. Fab m14 bound with high (nanomolar range) affinity to gp120 and gp140 from various isolates; its binding was reduced by soluble CD4 and antibodies recognizing the CD4 binding site (CD4bs) on gp120, and its footprint as defined by alanine

  1. Specific high-affinity binding of high density lipoproteins to cultured human skin fibroblasts and arterial smooth muscle cells.

    PubMed

    Biesbroeck, R; Oram, J F; Albers, J J; Bierman, E L

    1983-03-01

    Binding of human high density lipoproteins (HDL, d = 1.063-1.21) to cultured human fibroblasts and human arterial smooth muscle cells was studied using HDL subjected to heparin-agarose affinity chromatography to remove apoprotein (apo) E and B. Saturation curves for binding of apo E-free 125I-HDL showed at least two components: low-affinity nonsaturable binding and high-affinity binding that saturated at approximately 20 micrograms HDL protein/ml. Scatchard analysis of high-affinity binding of apo E-free 125I-HDL to normal fibroblasts yielded plots that were significantly linear, indicative of a single class of binding sites. Saturation curves for binding of both 125I-HDL3 (d = 1.125-1.21) and apo E-free 125I-HDL to low density lipoprotein (LDL) receptor-negative fibroblasts also showed high-affinity binding that yielded linear Scatchard plots. On a total protein basis, HDL2 (d = 1.063-1.10), HDL3 and very high density lipoproteins (VHDL, d = 1.21-1.25) competed as effectively as apo E-free HDL for binding of apo E-free 125I-HDL to normal fibroblasts. Also, HDL2, HDL3, and VHDL competed similarly for binding of 125I-HDL3 to LDL receptor-negative fibroblasts. In contrast, LDL was a weak competitor for HDL binding. These results indicate that both human fibroblasts and arterial smooth muscle cells possess specific high affinity HDL binding sites. As indicated by enhanced LDL binding and degradation and increased sterol synthesis, apo E-free HDL3 promoted cholesterol efflux from fibroblasts. These effects also saturated at HDL3 concentrations of 20 micrograms/ml, suggesting that promotion of cholesterol efflux by HDL is mediated by binding to the high-affinity cell surface sites. PMID:6826722

  2. Tn Antigen Mimics Based on sp(2)-Iminosugars with Affinity for an anti-MUC1 Antibody.

    PubMed

    Fernández, Elena M Sánchez; Navo, Claudio D; Martínez-Sáez, Nuria; Gonçalves-Pereira, Rita; Somovilla, Víctor J; Avenoza, Alberto; Busto, Jesús H; Bernardes, Gonçalo J L; Jiménez-Osés, Gonzalo; Corzana, Francisco; Fernández, José M García; Mellet, Carmen Ortiz; Peregrina, Jesús M

    2016-08-01

    The first examples of amino acid (Ser/Thr)-sp(2)-iminosugar glycomimetic conjugates featuring an α-O-linked pseudoanomeric linkage are reported. The key synthetic step involves the completely diastereoselective α-glycosylation of Ser/Thr due to strong stereoelectronic and conformational bias imposed by the bicyclic sp(2)-iminosugar scaffold. Mucin-related glycopeptides incorporating these motifs were recognized by the monoclonal antibody (mAb) scFv-SM3, with activities depending on both the hydroxylation pattern (Glc/Gal/GlcNAc/GalNAc) of the sp(2)-iminosugar and the peptide aglycone structure (Ser/Thr). PMID:27453399

  3. Potent neutralization of VEGF biological activities with a fully human antibody Fab fragment directed against VEGF receptor 2

    SciTech Connect

    Miao, H.-Q. . E-mail: hua-quan.miao@imclone.com; Hu, Kun; Jimenez, Xenia; Navarro, Elizabeth; Zhang, Haifan; Lu Dan; Ludwig, Dale L.; Balderes, Paul; Zhu Zhenping . E-mail: zhenping.zhu@imclone.com

    2006-06-23

    Compelling evidence suggest that vascular endothelial growth factor (VEGF) and its receptors, especially receptor 2 (VEGFR2, or kinase insert domain-containing receptor, KDR), play a critical role in angiogenesis under both physiological and pathological conditions, including cancer and angiogenic retinopathies such as age-related macular degeneration (AMD). To this end, inhibition of angiogenesis with antagonists to either VEGF or KDR has yielded significant therapeutic efficacy both in preclinical studies in animal models and in clinical trials in patients with cancer and AMD. We previously reported the identification of a high affinity, fully human anti-KDR antibody fragment, 1121B Fab, through a highly stringent affinity maturation process with a Fab originally isolated from a naive human antibody phage display library. In this study, we demonstrate that 1121B Fab is able to strongly block KDR/VEGF interaction, resulting in potent inhibition of an array of biological activities of VEGF, including activation of the receptor and its signaling pathway, intracellular calcium mobilization, and migration and proliferation of endothelial cells. Taken together, our data lend strong support to the further development of 1121B Fab fragment as an anti-angiogenesis agent in both cancer and angiogenic retinopathies.

  4. The molecular basis for high affinity of a universal ligand for human bombesin receptor (BnR) family members

    PubMed Central

    Uehara, Hirotsugu; Hocart, Simon J.; González, Nieves; Mantey, Samuel A.; Nakagawa, Tomoo; Katsuno, Tatsuro; Coy, David H.; Jensen, Robert T.

    2012-01-01

    There is increased interest in the Bn-receptor family because they are frequently over/ectopically-expressed by tumors and thus useful as targets for imaging or receptor-targeted-cytotoxicity. The synthetic Bn-analog,[D-Tyr6,β-Ala11,Phe13,Nle14]Bn(6-14)[Univ.Lig] has the unique property of having high affinity for all three human BNRs(GRPR,NMBR,BRS-3), and thus could be especially useful for this approach. However, the molecular basis of this property is unclear and is the subject of this study. To accomplish this, site-directed mutagenesis was used after identifying potentially important amino acids using sequence homology analysis of all BnRs with high affinity for Univ.Lig compared to the Cholecystokinin-receptor(CCKAR), which has low affinity. Using various criteria 74 amino acids were identified and 101 mutations made in GRPR by changing each to those of CCKAR or to alanine. 22 GRPR mutations showed a significant decrease in affinity for Univ.Lig(>2-fold) with 2 in EC2[ D97N,G112V], 1 in UTM6[Y284A], 2 in EC4[R287N,H300S] showing >10-fold decrease in Univ.Lig affinity. Additional mutations were made to explore the molecular basis for these changes. Our results show that high affinity for Univ.Lig by human Bn-receptors requires positively charged amino acids in extracellular (EC)-domain 4 and to a lesser extent EC2 and EC3 suggesting charge-charge interactions may be particularly important for determining the general high affinity of this ligand. Furthermore, transmembrane amino acids particularly in UTM6 are important contributing both charge-charge interactions as well as interaction with a tyrosine residue in close proximity suggesting possible receptor-peptide cation-pi or H–bonding interactions are also important for determining its high affinity. PMID:22828605

  5. [IgG antibodies against toxic shock syndrome toxin 1 in human immunoglobulins].

    PubMed

    Dickgiesser, N; Kustermann, B

    1986-07-15

    IgG antibodies against toxic shock syndrome toxin-1 in human immunoglobulins were determined using the ELISA technique. Of the drugs for intramuscular application, hemogamma and beriglobin contained the highest amount of antibodies. The highest concentration of antibodies in drugs for intravenous application was found in Pseudomonas polyglobin and in Venimmun. PMID:3762013

  6. Cell lines for the production of monoclonal antibodies to human glycophorin A

    SciTech Connect

    Bigbee, W.L.; Fong, S.S.N.; Jensen, R.H.; Vanderlaan, M.; Langlois, R.G.

    1988-08-30

    Cloned mouse hybridoma cell lines have been established which continuously produce antibodies that differentiate between the M and N forms of human glycophorin A. These antibodies have potential application as human blood group reagents, as markers for terminally differentiated erythroid cells and as immunofluorescent labels of somatically variant human erythrocytes.

  7. Method and cell lines for the production of monoclonal antibodies to human glycophorin A

    DOEpatents

    Bigbee, W.L.; Fong, S.S.N.; Jensen, R.H.; Vanderlaan, M.

    Cloned mouse hybridoma cell lines have been established which continuously produce antibodies that differentiate between the M and N forms of human glycophorin A. These antibodies have potential application as human blood group reagents, as markers for terminally differentiated erythroid cells and as immunofluorescent labels of somatically variant human erythrocytes.

  8. Cell lines for the production of monoclonal antibodies to human glycophorin A

    DOEpatents

    Bigbee, William L.; Fong, Stella S. N.; Jensen, Ronald H.; Vanderlaan, Martin; Langlois, Richard G.

    1988-01-01

    Cloned mouse hybridoma cell lines have been established which continuously produce antibodies that differentiate between the M and N forms of human glycophorin A. These antibodies have potential application as human blood group reagents, as markers for terminally differentiated erythroid cells and as immunofluorescent labels of somatically variant human erythrocytes.

  9. A human antibody recognizing a conserved epitope of H5 hemagglutinin broadly neutralizes highly pathogenic avian influenza H5N1 viruses.

    PubMed

    Hu, Hongxing; Voss, Jarrod; Zhang, Guoliang; Buchy, Philippi; Zuo, Teng; Wang, Lulan; Wang, Feng; Zhou, Fan; Wang, Guiqing; Tsai, Cheguo; Calder, Lesley; Gamblin, Steve J; Zhang, Linqi; Deubel, Vincent; Zhou, Boping; Skehel, John J; Zhou, Paul

    2012-03-01

    Influenza A virus infection is a persistent threat to public health worldwide due to its ability to evade immune surveillance through rapid genetic drift and shift. Current vaccines against influenza A virus provide immunity to viral isolates that are similar to vaccine strains. High-affinity neutralizing antibodies against conserved epitopes could provide immunity to diverse influenza virus strains and protection against future pandemic viruses. In this study, by using a highly sensitive H5N1 pseudotype-based neutralization assay to screen human monoclonal antibodies produced by memory B cells from an H5N1-infected individual and molecular cloning techniques, we developed three fully human monoclonal antibodies. Among them, antibody 65C6 exhibited potent neutralization activity against all H5 clades and subclades except for subclade 7.2 and prophylactic and therapeutic efficacy against highly pathogenic avian influenza H5N1 viruses in mice. Studies on hemagglutinin (HA)-antibody complexes by electron microscopy and epitope mapping indicate that antibody 65C6 binds to a conformational epitope comprising amino acid residues at positions 118, 121, 161, 164, and 167 (according to mature H5 numbering) on the tip of the membrane-distal globular domain of HA. Thus, we conclude that antibody 65C6 recognizes a neutralization epitope in the globular head of HA that is conserved among almost all divergent H5N1 influenza stains. PMID:22238297

  10. [Detection of antigen-antibody interaction of human adenovirus by the method of surface plasmon resonance].

    PubMed

    Nosach, L M; Boltovets', P M; Povnytsia, O Iu; Zhovnovata, V L; Zakharenko, O M; Snopok, B A; Shyrshov, Iu M; Diachenko, N S

    2005-01-01

    A possibility to detect adenoviral protein--hexon, using specific antibodies by surface plasmon resonance (SPR) was demonstrated. The hexon of the human adenovirus 2 (Ad2) binds to antibodies immobilized on the sensor surface treated by KNCS and protein A Staphylococcus aureus. The specificity of antihexon antibodies was demonstrated by indirect method of fluorescent antibodies (MFA) and cellular variant of the immunoassay (cELISA). PMID:16250237

  11. Affinity precipitation of human serum albumin using a thermo-response polymer with an L-thyroxin ligand

    PubMed Central

    2013-01-01

    Background Affinity precipitation has been reported as a potential technology for the purification of proteins at the early stage of downstream processing. The technology could be achieved using reversible soluble-insoluble polymers coupled with an affinity ligand to purify proteins from large volumes of dilute solution material such as fermentation broths or plasma. In this study, a thermo-response polymer was synthesized using N-methylol acrylamide, N-isopropyl acrylamide and butyl acrylate as monomers. The molecular weight of the polymer measured by the viscosity method was 3.06 × 104 Da and the lower critical solution temperature (LCST) was 28.0°C.The recovery of the polymer above the LCST was over 95.0%. Human serum albumin (HSA) is the most abundant protein in the human serum system, and it has important functions in the human body. High purity HSA is required in pharmaceuticals. Safe and efficient purification is a crucial process during HSA production. Results A thermo-response polymer was synthesized and L-thyroxin immobilized on the polymer as an affinity ligand to enable affinity precipitation of HSA. The LCST of the affinity polymer was 31.0°C and the recovery was 99.6% of its original amount after recycling three times. The optimal adsorption condition was 0.02 M Tris–HCl buffer (pH 7.0) and the HSA adsorption capacity was 14.9 mg/g polymer during affinity precipitation. Circular dichroism spectra and a ForteBio Octet system were used to analyze the interactions between the affinity polymer and HSA during adsorption and desorption. The recovery of total HSA by elution with 1.0 mol/L NaSCN was 93.6%. When the affinity polymer was applied to purification of HSA from human serum, HSA could be purified to single-band purity according to SDS-PAGE. Conclusion A thermo-response polymer was synthesized and L-thyroxin was attached to the polymer. Affinity precipitation was used to purify HSA from human serum. PMID:24341315

  12. Inclusion of a non-immunoglobulin binding protein in two-site ELISA for quantification of human serum proteins without interference by heterophilic serum antibodies.

    PubMed

    Andersson, Mårten; Rönnmark, Jenny; Areström, Iréne; Nygren, Per Ake; Ahlborg, Niklas

    2003-12-01

    Measurement of human serum molecules with two-site ELISA can be biased by the presence of human heterophilic anti-animal immunoglobulin antibodies (HAIA) that cause false-positive signals by cross-linking the monoclonal (mAb) and/or polyclonal antibodies (pAb) used for the pre- (capture) and post-analyte steps (detection). To evaluate a novel ELISA format designed to avoid interference by HAIA, a target-specific non-immunoglobulin (Ig) affinity protein (affibody) was used to replace one of the antibodies. First, a human IgA-binding affibody (Z(IgA)) selected by phage display technology from a combinatorial library of a single Staphylococcus aureus protein A domain was used. The detection range of IgA standard using an ELISA based on Z(IgA) for capture and goat pAb against IgA (pAb(IgA)) for detection was comparable with that of using pAb(IgA) for both capture and detection. Secondly, another affibody (Z(Apo)) was combined with mAb and used to detect recombinant human apolipoprotein A-1. The affibody/antibody ELISAs were also used to quantify human serum levels of IgA and apolipoprotein A1. To verify that human serum did not cause false-positive signals in the affibody/antibody ELISA format, the ability of human serum to cross-link affibodies, mAb (mouse or rat) and/or pAb (goat) displaying non-matched specificities was assessed; affibodies and antibodies were not cross-linked whereas all combinations of mAb and/or pAb were cross-linked. The combination of affibodies and antibodies for analysis of human serum molecules represents a novel two-site ELISA format which precludes false-positive signals caused by HAIA. PMID:14659914

  13. 2-Substituted adenosine derivatives: affinity and efficacy at four subtypes of human adenosine receptors.

    PubMed

    Gao, Zhan-Guo; Mamedova, Liaman K; Chen, Peiran; Jacobson, Kenneth A

    2004-11-15

    The affinity and efficacy at four subtypes (A(1), A(2A), A(2B) and A(3)) of human adenosine receptors (ARs) of a wide range of 2-substituted adenosine derivatives were evaluated using radioligand binding assays and a cyclic AMP functional assay in intact CHO cells stably expressing these receptors. Similar to previous studies of the N(6)-position, several 2-substituents were found to be critical structural determinants for the A(3)AR activation. The following adenosine 2-ethers were moderately potent partial agonists (K(i), nM): benzyl (117), 3-chlorobenzyl (72), 2-(3-chlorophenyl)ethyl (41), and 2-(2-naphthyl)ethyl (130). The following adenosine 2-ethers were A(3)AR antagonists: 2,2-diphenylethyl, 2-(2-norbornan)ethyl, R- and S-2-phenylbutyl, and 2-(2-chlorophenyl)ethyl. 2-(S-2-Phenylbutyloxy)adenosine as an A(3)AR antagonist right-shifted the concentration-response curve for the inhibition by NECA of cyclic AMP accumulation with a K(B) value of 212 nM, which is similar to its binding affinity (K(i) = 175 nM). These 2-substituted adenosine derivatives were generally less potent at the A(1)AR in comparison to the A(3)AR, but fully efficacious, with binding K(i) values over 100 nM. The 2-phenylethyl moiety resulted in higher A(3)AR affinity (K(i) in nM) when linked to the 2-position of adenosine through an ether group (54), than when linked through an amine (310) or thioether (1960). 2-[2-(l-Naphthyl)ethyloxy]adenosine (K(i) = 3.8 nM) was found to be the most potent and selective (>50-fold) A(2A) agonist in this series. Mixed A(2A)/A(3)AR agonists have been identified. Interestingly, although most of these compounds were extremely weak at the A(2B)AR, 2-[2-(2-naphthyl)ethyloxy]adenosine (EC(50) = 1.4 microM) and 2-[2-(2-thienyl)-ethyloxy]adenosine (EC(50) = 1.8 microM) were found to be relatively potent A(2B) agonists, although less potent than NECA (EC(50) = 140 nM). PMID:15476669

  14. 2-Substituted adenosine derivatives: affinity and efficacy at four subtypes of human adenosine receptors

    PubMed Central

    Gao, Zhan-Guo; Mamedova, Liaman K.; Chen, Peiran; Jacobson, Kenneth A.

    2012-01-01

    The affinity and efficacy at four subtypes (A1, A2A, A2B and A3) of human adenosine receptors (ARs) of a wide range of 2-substituted adenosine derivatives were evaluated using radioligand binding assays and a cyclic AMP functional assay in intact CHO cells stably expressing these receptors. Similar to previous studies of the N6-position, several 2-substituents were found to be critical structural determinants for the A3AR activation. The following adenosine 2-ethers were moderately potent partial agonists (Ki, nM): benzyl (117), 3-chlorobenzyl (72), 2-(3-chlorophenyl)ethyl (41), and 2-(2-naphthyl)ethyl (130). The following adenosine 2-ethers were A3AR antagonists: 2,2-diphenylethyl, 2-(2-norbornan)ethyl, R- and S-2-phenylbutyl, and 2-(2-chlorophenyl)ethyl. 2-(S-2-Phenylbutyloxy)a-denosine as an A3AR antagonist right-shifted the concentration–response curve for the inhibition by NECA of cyclic AMP accumulation with a KB value of 212 nM, which is similar to its binding affinity (Ki = 175 nM). These 2-substituted adenosine derivatives were generally less potent at the A1AR in comparison to the A3AR, but fully efficacious, with binding Ki values over 100 nM. The 2-phenylethyl moiety resulted in higher A3AR affinity (Ki in nM) when linked to the 2-position of adenosine through an ether group (54), than when linked through an amine (310) or thioether (1960). 2-[2-(l-Naphthyl)ethyloxy]adenosine (Ki = 3.8 nM) was found to be the most potent and selective (>50-fold) A2A agonist in this series. Mixed A2A/A3AR agonists have been identified. Interestingly, although most of these compounds were extremely weak at the A2BAR, 2-[2-(2-naphthyl)ethyloxy]adenosine (EC50 = 1.4 µM) and 2-[2-(2-thienyl)-ethyloxy]adenosine (EC50 = 1.8 (M) were found to be relatively potent A2B agonists, although less potent than NECA (EC50 = 140 nM). PMID:15476669

  15. A plasmid containing the human metallothionein II gene can function as an antibody-assisted electrophoretic biosensor for heavy metals.

    PubMed

    Wooten, Dennis C; Starr, Clarise R; Lyon, Wanda J

    2016-01-01

    Different forms of heavy metals affect biochemical systems in characteristic ways that cannot be detected with typical metal analysis methods like atomic absorption spectrometry. Further, using living systems to analyze interaction of heavy metals with biochemical systems can be laborious and unreliable. To generate a reliable easy-to-use biologically-based biosensor system, the entire human metallothionein-II (MT-II) gene was incorporated into a plasmid (pUC57-MT) easily replicated in Escherichia coli. In this system, a commercial polyclonal antibody raised against human metal-responsive transcription factor-1 protein (MTF-1 protein) could modify the electrophoretic migration patterns (i.e. cause specific decreases in agarose gel electrophoretic mobility) of the plasmid in the presence or absence of heavy metals other than zinc (Zn). In the study here, heavy metals, MTF-1 protein, and polyclonal anti-MTF-1 antibody were used to assess pUC57-MT plasmid antibody-assisted electrophoretic mobility. Anti-MTF-1 antibody bound both MTF-1 protein and pUC57-MT plasmid in a non-competitive fashion such that it could be used to differentiate specific heavy metal binding. The results showed that antibody-inhibited plasmid migration was heavy metal level-dependent. Zinc caused a unique mobility shift pattern opposite to that of other metals tested, i.e. Zn blocked the antibody ability to inhibit plasmid migration, despite a greatly increased affinity for DNA by the antibody when Zn was present. The Zn effect was reversed/modified by adding MTF-1 protein. Additionally, antibody inhibition of plasmid mobility was resistant to heat pre-treatment and trypsinization, indicating absence of residual DNA extraction-resistant bacterial DNA binding proteins. DNA binding by anti-DNA antibodies may be commonly enhanced by xenobiotic heavy metals and elevated levels of Zn, thus making them potentially effective tools for assessment of heavy metal bioavailability in aqueous solutions and

  16. Ca2+-induced exocytosis in individual human neutrophils: high- and low-affinity granule populations and submaximal responses.

    PubMed Central

    Nüsse, O; Serrander, L; Lew, D P; Krause, K H

    1998-01-01

    We have investigated Ca2+-induced exocytosis from human neutrophils using the whole cell patch-clamp capacitance technique. Microperfusion of Ca2+ buffer solutions (<30 nM to 5 mM free Ca2+) through the patch-clamp pipette revealed a biphasic activation of exocytosis by Ca2+. The first phase was characterized by high affinity (1.5-5 microM) and low apparent cooperativity (<=2) for Ca2+, and the second phase by low affinity (approximately 100 microM) and high cooperativity (>6). Only the second phase was accompanied by loss of myeloperoxidase, suggesting that the low-affinity exocytosis reflected release of peroxidase-positive (primary) granules, while the high-affinity exocytosis reflected release of peroxidase-negative (secondary and tertiary) granules. At submaximal Ca2+ concentrations, only a fraction of a given granule population was released. This submaximal release cannot simply be explained by Ca2+ modulation of the rate of exocytosis, and it suggests that the secretory response of individual cells is adjusted to the strength of the stimulus. The Ca2+ dependence of the high- and low-affinity phases of neutrophil exocytosis bears a resemblance to endocrine and neuronal exocytosis, respectively. The occurrence of such high- and low-affinity exocytosis in the same cell is novel, and suggests that the Ca2+ sensitivity of secretion is granule-, rather than cell-specific. PMID:9482725

  17. A sensitive and specific two-site enzyme-immunoassay for human calcitonin using monoclonal antibodies.

    PubMed

    Seth, R; Motté, P; Kehely, A; Wimalawansa, S J; Self, C H; Bellet, D; Bohuon, C; MacIntyre, I

    1988-11-01

    A highly sensitive, specific and rapid two-site enzyme-immunometric assay (EIA) for the measurement of immunoreactive (ir) human calcitonin (hCT) in human plasma was developed using high-affinity monoclonal antibodies. The assay was validated in terms of sensitivity, specificity and reproducibility and its performance compared with that of a radioimmunoassay (RIA) employing a polyclonal antiserum. The sensitivity of the overnight EIA (2 pmol/l) was comparable with the long-incubation (7 days) RIA. The overnight RIA had a sensitivity of 10 pmol/l. The inter- and intra-assay variations of the EIA were less than 12%. Some related and non-related peptides were compared with synthetic hCT for cross-reactivity in the assay and were found to be negative. The mean recovery of added synthetic hCT from plasma of normal volunteers was 96%. Both RIA and EIA have been applied to the measurement of ir-hCT in normal volunteers and in patients with medullary carcinoma of the thyroid. In both groups, the level of ir-hCT measured by EIA was found to be lower than that measured by RIA, presumably due to the ability of the more specific EIA to detect only the 'mature' form of the hormone. EIA offers an attractive alternative to the more cumbersome and lengthy RIA in current usage, with the added advantage of employing a non-isotopic label. PMID:3058855

  18. Neutralization of Botulinum Neurotoxin Type E by a Humanized Antibody.

    PubMed

    Derman, Yağmur; Selby, Katja; Miethe, Sebastian; Frenzel, André; Liu, Yvonne; Rasetti-Escargueil, Christine; Avril, Arnaud; Pelat, Thibaut; Urbain, Remi; Fontayne, Alexandre; Thullier, Philippe; Sesardic, Dorothea; Lindström, Miia; Hust, Michael; Korkeala, Hannu

    2016-01-01

    Botulinum neurotoxins (BoNTs) cause botulism and are the deadliest naturally-occurring substances known to humans. BoNTs have been classified as one of the category A agents by the Centers for Disease Control and Prevention, indicating their potential use as bioweapons. To counter bio-threat and naturally-occurring botulism cases, well-tolerated antibodies by humans that neutralize BoNTs are relevant. In our previous work, we showed the neutralizing potential of macaque (Macaca fascicularis)-derived scFv-Fc (scFv-Fc ELC18) by in vitro endopeptidase immunoassay and ex vivo mouse phrenic nerve-hemidiaphragm assay by targeting the light chain of the botulinum neurotoxin type E (BoNT/E). In the present study, we germline-humanized scFv-Fc ELC18 into a full IgG hu8ELC18 to increase its immunotolerance by humans. We demonstrated the protection and prophylaxis capacity of hu8ELC18 against BoNT/E in a mouse model. A concentration of 2.5 ng/mouse of hu8ELC18 protected against 5 mouse lethal dose (MLD) in a mouse protection assay and complete neutralization of 1 LD50 of pure BoNT/E toxin was achieved with 8 ng of hu8ELC18 in mouse paralysis assay. Furthermore, hu8ELC18 protected mice from 5 MLD if injected up to 14 days prior to intraperitoneal BoNT/E administration. This newly-developed humanized IgG is expected to have high tolerance in humans. PMID:27626446

  19. Human immunodeficiency virus antibody test and seroprevalence in psychiatric patients.

    PubMed

    Naber, D; Pajonk, F G; Perro, C; Löhmer, B

    1994-05-01

    Psychiatric inpatients are at risk for human immunodeficiency virus (HIV) infection. Investigations in the United States revealed seroprevalence rates of 5.5-8.9%. Therefore, inclusion of HIV antibody testing in routine laboratory screening is sometimes suggested. To investigate this issue for inpatients in the Department of Psychiatry, University of Munich, the incidence, reason for HIV testing and results were analyzed. Of 12,603 patients, hospitalized from 1985 to 1993, 4.9% (623 patients, 265 in risk groups) underwent the HIV test after informed consent. Thirty patients (4.8% of those tested) were found to be positive, but only in 5 cases (all of risk groups) was infection newly detected. Data indicate that, in psychiatry, HIV testing is reasonable only in patients in risk groups or if clinical variables suggest HIV infection. PMID:8067276

  20. Protective properties of anticholera antibodies in human colostrum.

    PubMed Central

    Majumdar, A S; Ghose, A C

    1982-01-01

    A comparative immunological study between two colostrum pools of Indian and Swedish mothers was carried out to evaluate their protective properties against Vibrio cholerae. Antibacterial and antitoxin titers were significantly higher in the Indian colostrum pool (ICP) than in the Swedish colostrum pool (SCP). Antilipopolysaccharide as well as antitoxin antibodies belonged to secretory immunoglobulin A (IgA) and IgM classes as determined by the enzyme-linked immunosorbent assay. ICP could significantly inhibit the adherence of V. cholerae to intestinal slices in vitro, whereas such activity was virtually absent in SCP. Moreover, ICP could induce significant protection against live vibrio challenge in rabbit ileal loops, whereas only a weak protective activity was observed with SCP. A secretory IgA fraction was obtained from ICP by using gel filtration and immunoadsorbent techniques. Human secretory IgA thus obtained exhibited antiadherence as well as protective activities against V. cholerae. PMID:7095856

  1. Neanderthal and Denisova genetic affinities with contemporary humans: introgression versus common ancestral polymorphisms.

    PubMed

    Lowery, Robert K; Uribe, Gabriel; Jimenez, Eric B; Weiss, Mark A; Herrera, Kristian J; Regueiro, Maria; Herrera, Rene J

    2013-11-01

    Analyses of the genetic relationships among modern humans, Neanderthals and Denisovans have suggested that 1-4% of the non-Sub-Saharan African gene pool may be Neanderthal derived, while 6-8% of the Melanesian gene pool may be the product of admixture between the Denisovans and the direct ancestors of Melanesians. In the present study, we analyzed single nucleotide polymorphism (SNP) diversity among a worldwide collection of contemporary human populations with respect to the genetic constitution of these two archaic hominins and Pan troglodytes (chimpanzee). We partitioned SNPs into subsets, including those that are derived in both archaic lineages, those that are ancestral in both archaic lineages and those that are only derived in one archaic lineage. By doing this, we have conducted separate examinations of subsets of mutations with higher probabilities of divergent phylogenetic origins. While previous investigations have excluded SNPs from common ancestors in principal component analyses, we included common ancestral SNPs in our analyses to visualize the relative placement of the Neanderthal and Denisova among human populations. To assess the genetic similarities among the various hominin lineages, we performed genetic structure analyses to provide a comparison of genetic patterns found within contemporary human genomes that may have archaic or common ancestral roots. Our results indicate that 3.6% of the Neanderthal genome is shared with roughly 65.4% of the average European gene pool, which clinally diminishes with distance from Europe. Our results suggest that Neanderthal genetic associations with contemporary non-Sub-Saharan African populations, as well as the genetic affinities observed between Denisovans and Melanesians most likely result from the retention of ancient mutations in these populations. PMID:23872234

  2. A catecholamine transporter from the human parasite Schistosoma mansoni with low affinity for psychostimulants

    PubMed Central

    Larsen, Mads B.; Fontana, Andréia C. K.; Magalhães, Lizandra G.; Rodrigues, Vanderlei; Mortensen, Ole V.

    2011-01-01

    The trematode Schistosoma mansoni is the primary cause of schistosomiasis, a devastating neglected tropical disease that affects 200 million individuals. Identifying novel therapeutic targets for the treatment of schistosomiasis is therefore of great public interest. The catecholamines norepinephrine (NE) and dopamine (DA) are essential for the survival of the parasite as they cause muscular relaxation and a lengthening in the parasite and thereby control movement. Here we characterize a novel dopamine/norepinephrine transporter (SmDAT) gene transcript, from Schistosoma mansoni. The SmDAT is expressed in the adult form and in the sporocyst form (infected snails) of the parasite, and also in the egg and miracidium stage. It is absent in the cercaria stage but curiously a transcript missing the exon encoding transmembrane domain 8 was identified in this stage. Heterologous expression of the cDNA in mammalian cells resulted in saturable, dopamine transport activity with an apparent affinity for dopamine comparable to that of the human dopamine transporter. Efflux experiments reveal notably higher substrate selectivity compared with its mammalian counterparts as amphetamine is a much less potent efflux elicitor against SmDAT compared to the human DAT. Pharmacological characterization of the SmDAT revealed that most human DAT inhibitors including psychostimulants such as cocaine were significantly less potent in inhibiting SmDAT. Like DATs from other simpler organisms the pharmacology for SmDAT was more similar to the human norepinephrine transporter. We were not able to identify other dopamine transporting carriers within the completed parasite genome and we hypothesize that the SmDAT is the only catecholamine transporter in the parasite and could be responsible for not only clearing DA but also NE. PMID:21251927

  3. Generation and Characterization of Human Monoclonal Antibodies Targeting Anthrax Protective Antigen following Vaccination with a Recombinant Protective Antigen Vaccine

    PubMed Central

    Chi, Xiangyang; Li, Jianmin; Liu, Weicen; Wang, Xiaolin; Yin, Kexin; Liu, Ju; Zai, Xiaodong; Li, Liangliang; Song, Xiaohong; Zhang, Jun; Zhang, Xiaopeng; Yin, Ying; Fu, Ling; Xu, Junjie

    2015-01-01

    The anthrax protective antigen (PA) is the central component of the three-part anthrax toxin, and it is the primary immunogenic component in the approved AVA anthrax vaccine and the “next-generation” recombinant PA (rPA) anthrax vaccines. Animal models have indicated that PA-specific antibodies (AB) are sufficient to protect against infection with Bacillus anthracis. In this study, we investigated the PA domain specificity, affinity, mechanisms of neutralization, and synergistic effects of PA-specific antibodies from a single donor following vaccination with the rPA vaccine. Antibody-secreting cells were isolated 7 days after the donor received a boost vaccination, and 34 fully human monoclonal antibodies (hMAb) were identified. Clones 8H6, 4A3, and 22F1 were able to neutralize lethal toxin (LeTx) both in vitro and in vivo. Clone 8H6 neutralized LeTx by preventing furin cleavage of PA in a dose-dependent manner. Clone 4A3 enhanced degradation of nicked PA, thereby interfering with PA oligomerization. The mechanism of 22F1 is still unclear. A fourth clone, 2A6, that was protective only in vitro was found to be neutralizing in vivo in combination with a toxin-enhancing antibody, 8A7, which binds to domain 3 of PA and PA oligomers. These results provide novel insights into the antibody response elicited by the rPA vaccine and may be useful for PA-based vaccine and immunotherapeutic cocktail design. PMID:25787135

  4. Generation and Characterization of Human Monoclonal Antibodies Targeting Anthrax Protective Antigen following Vaccination with a Recombinant Protective Antigen Vaccine.

    PubMed

    Chi, Xiangyang; Li, Jianmin; Liu, Weicen; Wang, Xiaolin; Yin, Kexin; Liu, Ju; Zai, Xiaodong; Li, Liangliang; Song, Xiaohong; Zhang, Jun; Zhang, Xiaopeng; Yin, Ying; Fu, Ling; Xu, Junjie; Yu, Changming; Chen, Wei

    2015-05-01

    The anthrax protective antigen (PA) is the central component of the three-part anthrax toxin, and it is the primary immunogenic component in the approved AVA anthrax vaccine and the "next-generation" recombinant PA (rPA) anthrax vaccines. Animal models have indicated that PA-specific antibodies (AB) are sufficient to protect against infection with Bacillus anthracis. In this study, we investigated the PA domain specificity, affinity, mechanisms of neutralization, and synergistic effects of PA-specific antibodies from a single donor following vaccination with the rPA vaccine. Antibody-secreting cells were isolated 7 days after the donor received a boost vaccination, and 34 fully human monoclonal antibodies (hMAb) were identified. Clones 8H6, 4A3, and 22F1 were able to neutralize lethal toxin (LeTx) both in vitro and in vivo. Clone 8H6 neutralized LeTx by preventing furin cleavage of PA in a dose-dependent manner. Clone 4A3 enhanced degradation of nicked PA, thereby interfering with PA oligomerization. The mechanism of 22F1 is still unclear. A fourth clone, 2A6, that was protective only in vitro was found to be neutralizing in vivo in combination with a toxin-enhancing antibody, 8A7, which binds to domain 3 of PA and PA oligomers. These results provide novel insights into the antibody response elicited by the rPA vaccine and may be useful for PA-based vaccine and immunotherapeutic cocktail design. PMID:25787135

  5. Development of recombinant human IgA for anticardiolipin antibodies assay standardization.

    PubMed

    Knappik, Achim; Capuano, Francesco; Frisch, Christian; Ylera, Francisco; Bonelli, Fabrizio

    2009-09-01

    Controls and calibrators in autoimmune assays are typically developed from patient sera. However, the use of sera is accompanied by a number of disadvantages, such as lack of monospecificity, lack of assay comparability, and supply limitations. Ideally, the control reagent would be an antigen-specific human monoclonal antibody preparation that is defined and pure, easy to produce without any supply limitations, and of defined isotype (IgG, IgM, or IgA). The generation of antigen-specific human monoclonal antibodies has been complicated, but recent advances in development of fully human antibodies by means of in vitro antibody gene library selection has opened a way for the isolation of human antibodies to virtually any antigen, including self-antigens. Such antibodies can be converted to any isotype by gene cloning. Here we developed a set of human monoclonal IgA antibodies specific for the cardiolipin-beta2-glycoprotein 1 complex, using the HuCAL technology. We evaluated the IgA variants of those antibodies for their use as standards in IgA anticardiolipin antibody assays and compared these reagents with serum controls. Such recombinant antibodies may ultimately replace patient sera as assay control and calibration reagents. PMID:19758150

  6. In Vitro and In Vivo Pharmacology and Pharmacokinetics of a Human Engineered™ Monoclonal Antibody to Epithelial Cell Adhesion Molecule

    PubMed Central

    Ammons, W Steve; Bauer, Robert J; Horwitz, Arnold H; Chen, Zhi J; Bautista, Eddie; Ruan, Harry H; Abramova, Marina; Scott, Kristen R; Dedrick, Russell L

    2003-01-01

    Abstract ING-1(heMAb), a Human Engineered™ monoclonal antibody to epithelial cell adhesion molecule (Ep-CAM), was evaluated for its in vitro and in vivo activity. The dissociation constant of ING-1(heMAb) for binding to Ep-CAM on HT-29 human colon tumor cells was 2 to 5 nM, similar to chimeric ING-1. In antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity assays, ING-1(heMAb) caused a concentration -dependent lysis of BT-20 breast, MCF-7 breast, HT-29 colon, and CACO-2 colon tumor cells, with maximum cytolysis at approximately 1 µg/ml. After an intravenous injection in rats, plasma ING-1(heMAb) levels declined with an alpha half-life of 8 to 11 hours, and a beta half-life of 20 days, typical of an IgG in a species without the target for ING-1. In nude mice with human HT-29 colon tumors, plasma ING-1(heMAb) levels declined more rapidly than in non-tumor-bearing mice, suggesting an enhanced clearance via the tumor-associated human Ep-CAM. In nude mice, intravenous treatments with ING-1(heMAb) twice a week for 3 weeks significantly suppressed the growth of human HT-29 colon and PC-3 prostate tumors in a dose-dependent manner, with 1.0 mg/kg providing the greatest benefit. These results indicate that Human Engineered™ ING-1(heMAb) is a high-affinity antibody with potent in vitro activity that targets and suppresses the growth of human tumors in vivo. PMID:12659687

  7. Preclinical pharmacokinetics, tolerability, and pharmacodynamics of metuzumab, a novel CD147 human-mouse chimeric and glycoengineered antibody.

    PubMed

    Zhang, Zheng; Zhang, Yang; Sun, Qian; Feng, Fei; Huhe, Muren; Mi, Li; Chen, Zhinan

    2015-01-01

    Metuzumab is an affinity-optimized and nonfucosylated anti-CD147 human-mouse chimeric IgG1 monoclonal antibody with enhanced antibody-dependent cellular cytotoxicity (ADCC). The purpose of this study was to characterize the pharmacokinetics, safety, and antitumor activities of metuzumab in mouse, rat, and monkey. The ADCC activity was assessed by a lactate dehydrogenase release assay. The pharmacokinetics of metuzumab were determined in Sprague-Dawley rats and in cynomolgus monkeys. Single- and repeat-dose toxicology studies of the i.v. administration of high-dose metuzumab were conducted in cynomolgus monkeys. Mice bearing human tumor xenografts were used to evaluate the antitumor efficacy of metuzumab. The ADCC potency of metuzumab was enhanced compared with the nonglycoengineered parental antibody. Metuzumab also effectively inhibited tumor growth in A549 and NCI-H520 xenograft models. In the monkey model, the total clearance of metuzumab decreased with increasing dose. The nonspecific clearance in monkeys was estimated to be 0.53 to 0.92 mL/h/kg. In single- and repeat-dose toxicology studies in cynomolgus monkeys, metuzumab did not induce any distinct or novel adverse findings and was well tolerated at all tested doses. These preclinical safety data facilitated the initiation of an ongoing clinical trial of metuzumab for the treatment of non-small cell lung cancer (NSCLC) in China. PMID:25376611

  8. Seroprevalence of Antibodies against Pkn1, a Novel Potential Immunogen, in Chlamydia trachomatis-Infected Macaca nemestrina and Human Patients

    PubMed Central

    Patel, Achchhe L.; Mishra, Prashant K.; Sachdev, Divya; Chaudhary, Uma; Patton, Dorothy L.; Saluja, Daman

    2014-01-01

    Chlamydia trachomatis (CT) is an important cause of sexually transmitted genital tract infections (STIs) and trachoma. Despite major research into chlamydial pathogenesis and host immune responses, immunoprotection has been hampered by the incomplete understanding of protective immunity in the genital tract. Characterized vaccine candidates have shown variable efficacy ranging from no protection to partial protection in vivo. It is therefore a research priority to identify novel chlamydial antigens that may elicit protective immune responses against CT infection. In the present study we assessed the seroprevalence of antibodies against protein kinase1 (Pkn1), DNA ligaseA (LigA), and major outer membrane protein A (OmpA) following natural CT infection in humans and in experimentally induced CT infection in Macaca nemestrina. Antigenic stretches of Pkn1, LigA, and OmpA were identified using bioinformatic tools. Pkn1, LigA, and OmpA genes were cloned in bacterial expression vector and purified by affinity chromatography. Our results demonstrate significantly high seroprevalence of antibodies against purified Pkn1 and OmpA in sera obtained from the macaque animal model and human patients infected with CT. In contrast no significant seroreactivity was observed for LigA. The seroprevalence of antibodies against Pkn1 suggest that nonsurface chlamydial proteins could also be important for developing vaccines for C. trachomatis. PMID:25032212

  9. Anti-MET immunoPET for non-small cell lung cancer using novel fully human antibody fragments

    PubMed Central

    Li, Keyu; Tavaré, Richard; Zettlitz, Kirstin A.; Mumenthaler, Shannon M.; Mallick, Parag; Zhou, Yu; Marks, James D.; Wu, Anna M.

    2014-01-01

    MET, the receptor of hepatocyte growth factor, plays important roles in tumorigenesis and drug resistance in numerous cancers including non-small cell lung cancer. As increasing numbers of MET inhibitors are being developed for clinical applications, antibody fragment based immuno-positron emission tomography (immunoPET) has the potential to rapidly quantify in vivo MET expression levels for drug response evaluation and patient stratification for these targeted therapies. Here, fully human single-chain variable fragments (scFvs) isolated from a phage display library were re-formatted into bivalent cys-diabodies (scFv-cys dimers) with affinities to MET ranging from 0.7 nM to 5.1 nM. The candidate with the highest affinity, H2, was radiolabeled with 89Zr for immunoPET studies targeting non-small cell lung cancer xenografts: low MET expressing Hcc827 and the gefitinib-resistant Hcc827-GR6 with 4-fold MET over-expression. ImmunoPET at as early as 4 hours post injection produced high contrast images, and ex vivo biodistribution analysis at 20 hours post injection showed about 2-fold difference in tracer uptake levels between the parental and resistant tumors (p < 0.01). Further immunoPET studies using a larger fragment, the H2 minibody (scFv-CH3 dimer) produced similar results at later time points. Two of the antibody clones (H2 and H5) showed in vitro growth inhibitory effects on MET-dependent gefitinib-resistant cell lines, while no effects were observed on resistant lines lacking MET activation. In conclusion, these fully human antibody fragments inhibit MET-dependent cancer cells and enable rapid immunoPET imaging to assess MET expression levels, showing potential for both therapeutic and diagnostic applications. PMID:25143449

  10. Neutralization of Botulinum Neurotoxin by a Human Monoclonal Antibody Specific for the Catalytic Light Chain

    PubMed Central

    Adekar, Sharad P.; Takahashi, Tsuyoshi; Jones, R. Mark; Al-Saleem, Fetweh H.; Ancharski, Denise M.; Root, Michael J.; Kapadnis, B. P.; Simpson, Lance L.; Dessain, Scott K.

    2008-01-01

    Background Botulinum neurotoxins (BoNT) are a family of category A select bioterror agents and the most potent biological toxins known. Cloned antibody therapeutics hold considerable promise as BoNT therapeutics, but the therapeutic utility of antibodies that bind the BoNT light chain domain (LC), a metalloprotease that functions in the cytosol of cholinergic neurons, has not been thoroughly explored. Methods and Findings We used an optimized hybridoma method to clone a fully human antibody specific for the LC of serotype A BoNT (BoNT/A). The 4LCA antibody demonstrated potent in vivo neutralization when administered alone and collaborated with an antibody specific for the HC. In Neuro-2a neuroblastoma cells, the 4LCA antibody prevented the cleavage of the BoNT/A proteolytic target, SNAP-25. Unlike an antibody specific for the HC, the 4LCA antibody did not block entry of BoNT/A into cultured cells. Instead, it was taken up into synaptic vesicles along with BoNT/A. The 4LCA antibody also directly inhibited BoNT/A catalytic activity in vitro. Conclusions An antibody specific for the BoNT/A LC can potently inhibit BoNT/A in vivo and in vitro, using mechanisms not previously associated with BoNT-neutralizing antibodies. Antibodies specific for BoNT LC may be valuable components of an antibody antidote for BoNT exposure. PMID:18714390

  11. Rapid Generation of Human-Like Neutralizing Monoclonal Antibodies in Urgent Preparedness for Influenza Pandemics and Virulent Infectious Diseases

    PubMed Central

    Meng, Weixu; Pan, Weiqi; Zhang, Anna J. X.; Li, Zhengfeng; Wei, Guowei; Feng, Liqiang; Dong, Zhenyuan; Li, Chufang; Hu, Xiangjing; Sun, Caijun; Luo, Qinfang; Yuen, Kwok-Yung; Zhong, Nanshan; Chen, Ling

    2013-01-01

    Background The outbreaks of emerging infectious diseases caused by pathogens such as SARS coronavirus, H5N1, H1N1, and recently H7N9 influenza viruses, have been associated with significant mortality and morbidity in humans. Neutralizing antibodies from individuals who have recovered from an infection confer therapeutic protection to others infected with the same pathogen. However, survivors may not always be available for providing plasma or for the cloning of monoclonal antibodies (mAbs). Methodology/Principal Findings The genome and the immunoglobulin genes in rhesus macaques and humans are highly homologous; therefore, we investigated whether neutralizing mAbs that are highly homologous to those of humans (human-like) could be generated. Using the H5N1 influenza virus as a model, we first immunized rhesus macaques with recombinant adenoviruses carrying a synthetic gene encoding hemagglutinin (HA). Following screening an antibody phage display library derived from the B cells of immunized monkeys, we cloned selected macaque immunoglobulin heavy chain and light chain variable regions into the human IgG constant region, which generated human-macaque chimeric mAbs exhibiting over 97% homology to human antibodies. Selected mAbs demonstrated potent neutralizing activities against three clades (0, 1, 2) of the H5N1 influenza viruses. The in vivo protection experiments demonstrated that the mAbs effectively protected the mice even when administered up to 3 days after infection with H5N1 influenza virus. In particular, mAb 4E6 demonstrated sub-picomolar binding affinity to HA and superior in vivo protection efficacy without the loss of body weight and obvious lung damage. The analysis of the 4E6 escape mutants demonstrated that the 4E6 antibody bound to a conserved epitope region containing two amino acids on the globular head of HA. Conclusions/Significance Our study demonstrated the generation of neutralizing mAbs for potential application in humans in urgent

  12. The demonstration of αKlotho deficiency in human chronic kidney disease with a novel synthetic antibody

    PubMed Central

    Barker, Sarah L.; Pastor, Johanne; Carranza, Danielle; Quiñones, Henry; Griffith, Carolyn; Goetz, Regina; Mohammadi, Moosa; Ye, Jianfeng; Zhang, Jianning; Hu, Ming Chang; Kuro-o, Makoto; Moe, Orson W.; Sidhu, Sachdev S.

    2015-01-01

    Background αKlotho is the prototypic member of the Klotho family and is most highly expressed in the kidney. αKlotho has pleiotropic biologic effects, and in the kidney, its actions include regulation of ion transport, cytoprotection, anti-oxidation and anti-fibrosis. In rodent models of chronic kidney disease (CKD), αKlotho deficiency has been shown to be an early biomarker as well as a pathogenic factor. The database for αKlotho in human CKD remains controversial even after years of study. Methods We used a synthetic antibody library to identify a high-affinity human antigen-binding fragment that recognizes human, rat and mouse αKlotho primarily in its native, rather than denatured, form. Results Using an immunoprecipitation–immunoblot (IP-IB) assay, we measured both serum and urinary levels of full-length soluble αKlotho in humans and established that human CKD is associated with αKlotho deficiency in serum and urine. αKlotho levels were detectably lower in early CKD preceding disturbances in other parameters of mineral metabolism and progressively declined with CKD stages. We also found that exogenously added αKlotho is inherently unstable in the CKD milieu suggesting that decreased production may not be the sole reason for αKlotho deficiency. Conclusion Synthetic antibody libraries harbor tremendous potential for a variety of biomedical and clinical applications. Using such a reagent, we furnish data in support of αKlotho deficiency in human CKD, and we set the foundation for the development of diagnostic and therapeutic applications of anti-αKlotho antibodies. PMID:25324355

  13. Endogenous myelin basic protein-serum factors (MBP-SFs) and anti-MBP antibodies in humans. Occurrence in sera of clinically well subjects and patients with multiple sclerosis.

    PubMed

    Paterson, P Y; Day, E D; Whitacre, C C; Berenberg, R A; Harter, D H

    1981-10-01

    Sera of normal subjects and patients wtih multiple sclerosis (MS) have been frequently found to contain picomolar quantities of endogenous myelin basic protein-serum factors (MBP-SFs). These serum factors, collectively representing a heterogeneous spectrum, were detected and measured by means of a competitive inhibition radioimmunoassay (RIA) designed to distinguish their respective binding affinities with anti-MBP reagent antiserum. Anti-MBP antibodies in these same normal and patient sera were also detected and their differing binding affinities determined. In general, when sera of normal subjects were found to contain free MBP-SFs, the reagent anti-MBP antibodies in the reagent antiserum used to detect them were of relatively high binding affinity (8 X 10(8) M-1). When normal sera were found to contain free anti-MBP antibodies, the affinities of such antibodies were invariably lower (0.06-0.7 X 10(8) M-1). In contrast, sera of patients with active MS and exhibiting clinical fluctuations in their disease, infrequently contained high or medium high affinity MBP-SFs, whereas higher affinity anti-MBP antibodies were commonly detected. These patterns of MBP-SFs and anti-MBP antibodies in normal and MS human sera resemble those previously observed in studies of normal Lewis rats and rats developing experimental allergic encephalomyelitis (EAE). The findings here reported provide additional support for the view that circulating endogenous MBP-SFs may function as neuroautotolerogens that restrict expansion of MBP-reactive lymphoid cell clones having potentially injurious effector activity for central nervous system (CNS) tissue. PMID:6170739

  14. Humanized mouse G6 anti-idiotypic monoclonal antibody has therapeutic potential against IGHV1-69 germline gene-based B-CLL.

    PubMed

    Chang, De-Kuan; Kurella, Vinodh B; Biswas, Subhabrata; Avnir, Yuval; Sui, Jianhua; Wang, Xueqian; Sun, Jiusong; Wang, Yanyan; Panditrao, Madhura; Peterson, Eric; Tallarico, Aimee; Fernandes, Stacey; Goodall, Margaret; Zhu, Quan; Brown, Jennifer R; Jefferis, Roy; Marasco, Wayne A

    2016-01-01

    In 10-20% of the cases of chronic lymphocytic leukemia of B-cell phenotype (B-CLL), the IGHV1-69 germline is utilized as VH gene of the B cell receptor (BCR). Mouse G6 (MuG6) is an anti-idiotypic monoclonal antibody discovered in a screen against rheumatoid factors (RFs) that binds with high affinity to an idiotope expressed on the 51p1 alleles of IGHV1-69 germline gene encoded antibodies (G6-id(+)). The finding that unmutated IGHV1-69 encoded BCRs are frequently expressed on B-CLL cells provides an opportunity for anti-idiotype monoclonal antibody immunotherapy. In this study, we first showed that MuG6 can deplete B cells encoding IGHV1-69 BCRs using a novel humanized GTL mouse model. Next, we humanized MuG6 and demonstrated that the humanized antibodies (HuG6s), especially HuG6.3, displayed ∼2-fold higher binding affinity for G6-id(+) antibody compared to the parental MuG6. Additional studies showed that HuG6.3 was able to kill G6-id(+) BCR expressing cells and patient B-CLL cells through antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Finally, both MuG6 and HuG6.3 mediate in vivo depletion of B-CLL cells in NSG mice. These data suggest that HuG6.3 may provide a new precision medicine to selectively kill IGHV1-69-encoding G6-id(+) B-CLL cells. PMID:26963739

  15. Antipeptide antibodies confirm the topology of the human norepinephrine transporter.

    PubMed

    Brüss, M; Hammermann, R; Brimijoin, S; Bönisch, H

    1995-04-21

    We have raised polyclonal antibodies (N6-28, L211-226, L371-384, and C590-607) against peptides corresponding to hydrophilic sequences of the human norepinephrine transporter (hNET). The antisera immunoprecipitated the [35S]Met-labeled hNET. Antiserum L211-226, directed against a sequence of the putative second (large) extracellular loop of hNET, also immunoprecipitated the human dopamine transporter. Antisera N6-28 and C590-607, raised against a hNET peptide region of the N and the C termini, respectively, recognized a 58-kDa protein from transfected COS-7 cells expressing the hNET. This 58-kDa species represents a functional, glycosylated form of the hNET and not a degradation product. Tunicamycin treatment of transfected COS-7 cells as well as peptide-N-glycosidase F digestion of the transporter converted the 58-kDa species to a 50-kDa form, indicating that the latter represents the hNET core protein. In indirect immunofluorescence studies, our antisera confirmed the originally proposed topology of hNET. Antisera N6-28 and C590-607 detected hNET only in permeabilized cells. In contrast, antisera L211-226 and L371-384 directed against peptide sequences of the second and fourth putative extracellular loop displayed fluorescence signals with the intact cells. PMID:7721836

  16. Generation and characterization of ixekizumab, a humanized monoclonal antibody that neutralizes interleukin-17A

    PubMed Central

    Liu, Ling; Lu, Jirong; Allan, Barrett W; Tang, Ying; Tetreault, Jonathan; Chow, Chi-kin; Barmettler, Barbra; Nelson, James; Bina, Holly; Huang, Lihua; Wroblewski, Victor J; Kikly, Kristine

    2016-01-01

    Interleukin (IL)-17A exists as a homodimer (A/A) or as a heterodimer (A/F) with IL-17F. IL-17A is expressed by a subset of T-cells, called Th17 cells, at inflammatory sites. Most cell types can respond to the local production of IL-17A because of the near ubiquitous expression of IL-17A receptors, IL-17RA and IL-17RC. IL-17A stimulates the release of cytokines and chemokines designed to recruit and activate both neutrophils and memory T-cells to the site of injury or inflammation and maintain a proinflammatory state. IL-17A-producing pathogenic T-cells contribute to the pathogenesis of autoimmune diseases, including psoriasis, psoriatic arthritis, rheumatoid arthritis, and ankylosing spondylitis. This study describes the generation and characterization of ixekizumab, a humanized IgG4 variant IL-17A-neutralizing antibody. Ixekizumab binds human and cynomolgus monkey IL-17A with high affinity and binds rabbit IL-17A weakly but does not bind to rodent IL-17A or other IL-17 family members. Ixekizumab effectively inhibits the interaction between IL-17A and its receptor in binding assays and potently blocks IL-17A-induced GRO or KC secretion in cell-based assays. In an in vivo mouse pharmcodynamic model, ixekizumab blocks human IL-17A-induced mouse KC secretion. These data provide a comprehensive preclinical characterization of ixekizumab, for which the efficacy and safety have been demonstrated in human clinical trials in psoriasis and psoriatic arthritis. PMID:27143947

  17. Isolation of a human-like antibody fragment (scFv) that neutralizes ricin biological activity

    PubMed Central

    Pelat, Thibaut; Hust, Michael; Hale, Martha; Lefranc, Marie-Paule; Dübel, Stefan; Thullier, Philippe

    2009-01-01

    Background Ricin is a lethal toxin that inhibits protein synthesis. It is easily extracted from a ubiquitously grown plant, Ricinus communis, and thus readily available for use as a bioweapon (BW). Anti-ricin antibodies provide the only known therapeutic against ricin intoxication. Results In this study, after immunizing a non-human primate (Macaca fascicularis) with the ricin chain A (RTA), a phage-displayed immune library was built (2 × 108 clones), that included the λ light chain fragment. The library was screened against ricin, and specific binders were sequenced and further analyzed. The best clone, 43RCA, was isolated using a new, stringent neutralization test. 43RCA had a high, picomolar affinity (41 pM) and neutralized ricin efficiently (IC50 = 23 ± 3 ng/ml, corresponding to a [scFv]/[ricin] molar ratio of 4). The neutralization capacity of 43RCA compared favourably with that of polyclonal anti-deglycosylated A chain (anti-dgRCA) IgGs, obtained from hyperimmune mouse serum, which were more efficient than any monoclonal at our disposal. The 43RCA sequence is very similar to that for human IgG germline genes, with 162 of 180 identical amino acids for the VH and VL (90% sequence identity). Conclusion Results of the characterization studies, and the high degree of identity with human germline genes, altogether make this anti-ricin scFv, or an IgG derived from it, a likely candidate for use in humans to minimize effects caused by ricin intoxication. PMID:19563687

  18. Both LCCL-domains of human CRISPLD2 have high affinity for lipid A.

    PubMed

    Vásárhelyi, Viktor; Trexler, Mária; Patthy, László

    2014-02-01

    The LCCL-domain is a recently defined protein module present in diverse extracellular multidomain proteins. Practically nothing is known about the molecular function of these domains; based on functional features of proteins harboring LCCL-domains it has been suggested that these domains might function as lipopolysaccharide-binding domains. Here we show that the two LCCL-domains of human CRISPLD2 protein, a lipopolysaccharide-binding serum protein involved in defense against endotoxin shock, have higher affinity for the lipid A, the toxic moiety of lipopolysaccharides than for ipopolysaccharide. Our observation that the LCCL-domains of CRISPLD2 are specific for the toxic lipid A moiety of the endotoxin suggests that it may block the interaction between endotoxins and the host endotoxin receptors without interfering with the development of antibacterial immunity against the polysaccharide moiety of LPS. We suggest that the anti-inflammatory function of CRISPLD2 protein may account for its role in various pathological and developmental processes. PMID:24090571

  19. Studies of drug interactions with glycated human serum albumin by high-performance affinity chromatography

    PubMed Central

    Matsuda, Ryan; Kye, So-Hwang; Anguizola, Jeanethe; Hage, David S.

    2015-01-01

    Diabetes is a health condition associated with elevated levels of glucose in the bloodstream and affects 366 million people worldwide. Type II diabetes is often treated with sulfonylurea drugs, which are known to bind tightly in blood to the transport protein human serum albumin (HSA). One consequence of the elevated levels of glucose in diabetes is the non-enzymatic glycation of proteins such as HSA. Several areas of HSA are now known to be affected by glycation-related modifications, which may in turn affect the binding of sulfonylurea drugs and other solutes to this protein. This review discusses some recent studies that have examined these changes in drug-protein binding by employing high-performance affinity chromatography (HPAC). A description of the theoretical and experimental techniques that were used in these studies is given. The information on drug interactions with glycated HSA, as obtained through this method, is also summarized. In addition, the potential advantages of this approach in the areas of biointeraction analysis and personalized medicine are considered. PMID:26526139

  20. Studies of drug interactions with glycated human serum albumin by high-performance affinity chromatography.

    PubMed

    Matsuda, Ryan; Kye, So-Hwang; Anguizola, Jeanethe; Hage, David S

    2014-08-01

    Diabetes is a health condition associated with elevated levels of glucose in the bloodstream and affects 366 million people worldwide. Type II diabetes is often treated with sulfonylurea drugs, which are known to bind tightly in blood to the transport protein human serum albumin (HSA). One consequence of the elevated levels of glucose in diabetes is the non-enzymatic glycation of proteins such as HSA. Several areas of HSA are now known to be affected by glycation-related modifications, which may in turn affect the binding of sulfonylurea drugs and other solutes to this protein. This review discusses some recent studies that have examined these changes in drug-protein binding by employing high-performance affinity chromatography (HPAC). A description of the theoretical and experimental techniques that were used in these studies is given. The information on drug interactions with glycated HSA, as obtained through this method, is also summarized. In addition, the potential advantages of this approach in the areas of biointeraction analysis and personalized medicine are considered. PMID:26526139

  1. A tale of two paralogs: human Transformer2 proteins with differential RNA-binding affinities.

    PubMed

    Ghosh, Pritha; Grellscheid, Sushma Nagaraja; Sowdhamini, R

    2016-09-01

    The Transformer2 (Tra2) proteins in humans are homologues of the Drosophila Tra2 protein. One of the two RNA-binding paralogs, Tra2β, has been very well-studied over the past decade, but not much is known about Tra2α. It was very recently shown that the two proteins demonstrate the phenomenon of paralog compensation. Here, we provide a structural basis for this genetic backup circuit, using molecular modelling and dynamics studies. We show that the two proteins display similar binding specificities, but differential affinities to a short GAA-rich RNA stretch. Starting from the 6-nucleotide RNA in the solution structure, close to 4000 virtual mutations were modelled on RNA and the domain-RNA interactions were studied after energy minimisation to convergence. Separately, another known 13-nucleotide stretch was docked and the domain-RNA interactions were observed through a 100-ns dynamics trajectory. We have also demonstrated the 'compensatory' mechanism at the level of domains in one of the domain repeat-containing RNA-binding proteins. PMID:26414300

  2. Antibodies with specificity to native gp120 and neutralization activity against primary human immunodeficiency virus type 1 isolates elicited by immunization with oligomeric gp160.

    PubMed Central

    VanCott, T C; Mascola, J R; Kaminski, R W; Kalyanaraman, V; Hallberg, P L; Burnett, P R; Ulrich, J T; Rechtman, D J; Birx, D L

    1997-01-01

    Current human immunodeficiency virus type 1 (HIV-1) envelope vaccine candidates elicit high antibody binding titers with neutralizing activity against T-cell line-adapted but not primary HIV-1 isolates. Serum antibodies from these human vaccine recipients were also found to be preferentially directed to linear epitopes within gp120 that are poorly exposed on native gp120. Systemic immunization of rabbits with an affinity-purified oligomeric gp160 protein formulated with either Alhydrogel or monophosphoryl lipid A-containing adjuvants resulted in the induction of high-titered serum antibodies that preferentially bound epitopes exposed on native forms of gp120 and gp160, recognized a restricted number of linear epitopes, efficiently bound heterologous strains of monomeric gp120 and cell surface-expressed oligomeric gp120/gp41, and neutralized several strains of T-cell line-adapted HIV-1. Additionally, those immune sera with the highest oligomeric gp160 antibody binding titers had neutralizing activity against some primary HIV-1 isolates, using phytohemagglutinin-stimulated peripheral blood mononuclear cell targets. Induction of an antibody response preferentially reactive with natively folded gp120/gp160 was dependent on the tertiary structure of the HIV-1 envelope immunogen as well as its adjuvant formulation, route of administration, and number of immunizations administered. These studies demonstrate the capacity of a soluble HIV-1 envelope glycoprotein vaccine to elicit an antibody response capable of neutralizing primary HIV-1 isolates. PMID:9151820

  3. Column affinity chromatography for bound/free separation in ligand assays. I. Radioimmunoassay of choriomammotropin (human placental lactogen).

    PubMed

    Cornale, P; Bonazzi, M; Multinu, C; Romelli, P; Vancheri, L; Pennisi, F

    1981-06-01

    A method is described for separating antibody-bound from free fractions in ligand assays by column affinity chromatography, and its application to radioimmunoassay of choriomammotropin. In the method, 70 x 10 mm (i.d.) polypropylene columns containing about 150 mg of immunosorbent (goat anti-rabbit gamma-globulins covalently linked to Sepharose CL-4B) are used. Standards or unknowns, tracer and antiserum, pipetted into bottom-capped columns, are kept separated from the immunosorbent bed by a porous polyethylene disc and allowed to react for 15 min at room temperature. The reaction mixture is then allowed to pass through the columns by removing the bottom caps. Free antigen is eluted by washing the column, and discarded; antibody-bound fractions remain bound to the immunosorbent. The radioactivity in the columns is counted. The major advantages of the present technique, arising from the liquid-phase reaction combined with the solid-phase separation by column affinity chromatography, are the very low nonspecific binding (less than 1%), good sensitivity (0.02 mg/L), good precision (CV 3.4%), and simple and fast (30-min) assay. For 50 clinical samples so assayed (gamma) and compared with a polyethylene glycol precipitation technique (x), the regression equation was: y - 0.14 + 0.98x (r = 0.994). The assay method was clinical validated by 3493 determinations. PMID:7237770

  4. Potent anti-angiogenesis and anti-tumor activity of a novel human anti-VEGF antibody, MIL60.

    PubMed

    Yang, Jing; Wang, Qun; Qiao, Chunxia; Lin, Zhou; Li, Xinying; Huang, Yifei; Zhou, Tingting; Li, Yan; Shen, Beifen; Lv, Ming; Feng, Jiannan

    2014-05-01

    Angiogenesis is crucial for tumor development, growth and metastasis. Vascular endothelial growth factor (VEGF) has been implicated in promoting solid tumor growth and metastasis via stimulating tumor-associated angiogenesis, and blocking the activity of VEGF can starve tumors. Avastin, which is a humanized anti-VEGF antibody, has been successfully applied in clinics since 2004. However, the price of Avastin is extremely high for Chinese people. Here, we report a novel human anti-VEGF neutralizing antibody, MIL60, which shows an affinity comparable to that of Avastin (the KD value of MIL60 was 44.5 pM, while that of Avastin was 42.7 pM). MIL60 displays favorable actions in inhibiting VEGF-triggered endothelial cell proliferation (the IC50 value of MIL60 was 31±6.4 ng/ml and that of Avastin was 47±8.1 ng/ml), migration (8 µg/ml or 0.8 µg/ml MIL60 versus the control: P<0.05) and tube formation (2 µg/ml or 0.2 µg/ml MIL60 versus the control: P<0.05) via the VEGFR2 signaling pathway. Moreover, MIL60 was shown to inhibit tumor growth and angiogenesis in vivo in xenograft models of human colon carcinoma and ovarian cancer using immunotherapy and immunohistochemistry analysis (MIL60 versus N.S.: P=0.0007; Avastin versus N.S.: P=0.00046). These data suggest that MIL60 is a potential therapeutic, anti-angiogenic agent. Our work provides a novel anti-VEGF antibody, which can be considered an anti-tumor antibody candidate and a new option for patients with various cancers. PMID:24608894

  5. Bilirubin removal from human plasma by Cibacron Blue F3GA using immobilized microporous affinity membranous capillary method.

    PubMed

    Zhang, Lei; Jin, Gu

    2005-07-01

    A novel affinity sorbent system for direct bilirubin removal from human plasma was developed. These new adsorbents comprise Cibacron Blue F3GA as the specific ligand, and microporous membranous poly(tetrafluoroethylene) capillary (modified by coating with a hydrophilic layer of poly(vinyl alcohol) after activation) as the carrier matrix. The affinity adsorbents carrying 126.5 micromol Cibacron Blue F3GA/g polymer was then used to remove bilirubin in a flow-injection system. Non-specific adsorption on the poly(vinyl alcohol) coated capillary remains low, and higher affinity adsorption capacity, of up to 76.2 mg/g polymer was obtained after dye immobilization. The bilirubin adsorption capacity of the affinity capillary decreased with increase in the recirculation rate of plasma. The adsorption capacity increased with increase the temperature while decreased with increase the ionic strength. The maximum adsorption was only observed in neutral solution (pH 6-7). The adsorption isotherm fitted the Langmuir model well. These new adsorbents have higher velocity of mass transfer, better adsorption capacity, less fouling, longer service life and good reusability. The results of blood tests suggested the dye affinity capillary has good blood compatibility. PMID:15894520

  6. Inhibition of Human Colon Cancer Growth by Antibody-Directed Human LAK Cells in SCID Mice

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroshi; Nakada, Tetsuya; Puisieux, Isabelle

    1993-03-01

    Advanced human colon cancer does not respond to lymphokine-activated killer (LAK) cells. In order to direct cytotoxic cells to the tumor, human LAK cells linked with antibodies to a tumor cell surface antigen were tested with established hepatic metastases in severe combined immunodeficient (SCID) mice. These cells had increased uptake into the tumor and suppression of tumor growth as compared with LAK cells alone, thereby improving the survival of tumor-bearing mice. Thus, tumor growth can be inhibited by targeted LAK cells, and SCID mice can be used to test the antitumor properties of human effector cells.

  7. Sensitive Targeted Quantification of ERK Phosphorylation Dynamics and Stoichiometry in Human Cells without Affinity Enrichment

    DOE PAGESBeta

    Shi, Tujin; Gao, Yuqian; Gaffrey, Matthew J.; Nicora, Carrie D.; Fillmore, Thomas L.; Chrisler, William B.; Gritsenko, Marina A.; Wu, Chaochao; He, Jintang; Bloodsworth, Kent J.; et al

    2014-12-17

    Mass spectrometry-based targeted quantification is a promising technology for site-specific quantification of posttranslational modifications (PTMs). However, a major constraint of most targeted MS approaches is the limited sensitivity for quantifying low-abundance PTMs, requiring the use of affinity reagents to enrich specific PTMs. Herein, we demonstrate the direct site-specific quantification of ERK phosphorylation isoforms (pT, pY, pTpY) and their relative stoichiometries using a highly sensitive targeted MS approach termed high-pressure, high-resolution separations with intelligent selection and multiplexing (PRISM). PRISM provides effective enrichment of target peptides within a given fraction from complex biological matrix with minimal sample losses, followed by selected reactionmore » monitoring (SRM) quantification. The PRISM-SRM approach enabled direct quantification of ERK phosphorylation in human mammary epithelial cells (HMEC) from as little as 25 µg tryptic peptides from whole cell lysates. Compared to immobilized metal-ion affinity chromatography, PRISM provided >10-fold improvement in signal intensities, presumably due to the better peptide recovery of PRISM for handling small size samples. This approach was applied to quantify ERK phosphorylation dynamics in HMEC treated by different doses of EGF at both the peak activation (10 min) and steady state (2 h). At 10 min, the maximal ERK activation was observed with 0.3 ng/mL dose, whereas the maximal steady state level of ERK activation at 2 h was at 3 ng/ml dose, corresponding to 1200 and 9000 occupied receptors, respectively. At 10 min, the maximally activated pTpY isoform represented ~40% of total ERK, falling to less than 10% at 2 h. The time course and dose-response profiles of individual phosphorylated ERK isoforms indicated that singly phosphorylated pT-ERK never increases significantly, while the increase of pY-ERK paralleled that of pTpY-ERK. This data supports for a processive, rather than

  8. Sensitive Targeted Quantification of ERK Phosphorylation Dynamics and Stoichiometry in Human Cells without Affinity Enrichment

    SciTech Connect

    Shi, Tujin; Gao, Yuqian; Gaffrey, Matthew J.; Nicora, Carrie D.; Fillmore, Thomas L.; Chrisler, William B.; Gritsenko, Marina A.; Wu, Chaochao; He, Jintang; Bloodsworth, Kent J.; Zhao, Rui; Camp II, David G.; Liu, Tao; Rodland, Karin D.; Smith, Richard D.; Wiley, H. Steven; Qian, Weijun

    2014-12-17

    Mass spectrometry-based targeted quantification is a promising technology for site-specific quantification of posttranslational modifications (PTMs). However, a major constraint of most targeted MS approaches is the limited sensitivity for quantifying low-abundance PTMs, requiring the use of affinity reagents to enrich specific PTMs. Herein, we demonstrate the direct site-specific quantification of ERK phosphorylation isoforms (pT, pY, pTpY) and their relative stoichiometries using a highly sensitive targeted MS approach termed high-pressure, high-resolution separations with intelligent selection and multiplexing (PRISM). PRISM provides effective enrichment of target peptides within a given fraction from complex biological matrix with minimal sample losses, followed by selected reaction monitoring (SRM) quantification. The PRISM-SRM approach enabled direct quantification of ERK phosphorylation in human mammary epithelial cells (HMEC) from as little as 25 µg tryptic peptides from whole cell lysates. Compared to immobilized metal-ion affinity chromatography, PRISM provided >10-fold improvement in signal intensities, presumably due to the better peptide recovery of PRISM for handling small size samples. This approach was applied to quantify ERK phosphorylation dynamics in HMEC treated by different doses of EGF at both the peak activation (10 min) and steady state (2 h). At 10 min, the maximal ERK activation was observed with 0.3 ng/mL dose, whereas the maximal steady state level of ERK activation at 2 h was at 3 ng/ml dose, corresponding to 1200 and 9000 occupied receptors, respectively. At 10 min, the maximally activated pTpY isoform represented ~40% of total ERK, falling to less than 10% at 2 h. The time course and dose-response profiles of individual phosphorylated ERK isoforms indicated that singly phosphorylated pT-ERK never increases significantly, while the increase of pY-ERK paralleled that of pTpY-ERK. This data supports for a processive, rather than

  9. Nephropathia epidemica in Norway: antigen and antibodies in rodent reservoirs and antibodies in selected human populations.

    PubMed Central

    Traavik, T.; Sommer, A. I.; Mehl, R.; Berdal, B. P.; Stavem, K.; Hunderi, O. H.; Dalrymple, J. M.

    1984-01-01

    Nephropathia epidemica (NE) antigen was detected by IFAT (indirect fluorescent antibody technique) in the lungs of 14 of 97 bank voles (Clethrionomys glareolus) collected in three endemic areas. The distribution of antigen positive voles within an endemic location was scattered. Antibodies to Korean hemorrhagic fever (KHF) virus antigens were detected by IFAT in 12 of 14 NE antigen positive bank voles and in 15 of 83 that were antigen negative. NE antigen positive voles exhibited higher antibody titres. Antibodies to KHF were demonstrated in sera from C. rutilus and C. rufocanus collected more than 200 km north of the distribution area for C. glareolus. It appears likely that these vole species can serve as virus vectors for NE cases occurring north of the bank vole area. NE antibodies cross-reacting with KHF virus seem to diminish with time after infection in some NE patients, while for others such cross-reacting antibodies were detected up to 12 years after the disease. Antibodies to KHF were detected in eight of 106 healthy forestry workers with no clinical history of NE. No serological cross-reactions were detected between NE/KHF antigens and representative Bunyaviridae present in Norway. NE/KHF-like viruses appear widespread in Norway, both within and outside of the distribution area of the bank vole. PMID:6146649

  10. Generation and Characterization of Neutralizing Human Monoclonal Antibodies against Human Immunodeficiency Virus Type 1 Tat Antigen

    PubMed Central

    Moreau, Emmanuel; Hoebeke, Johan; Zagury, Daniel; Muller, Sylviane; Desgranges, Claude

    2004-01-01

    The human immunodeficiency virus Tat regulatory protein is essential for virus replication and pathogenesis. From human peripheral blood mononuclear cells of three Tat toxoid-immunized volunteers, we isolated five Tat-specific human monoclonal antibodies (HMAbs): two full-length immunoglobulin G (IgG) antibodies and three single-chain fragment-variable (scFv) antibodies. The two IgGs were mapped to distinct epitopes within the basic region of Tat, and the three scFvs were mapped to the N-terminal domain of Tat. The three scFvs were highly reactive with recombinant Tat in Western blotting or immunoprecipitation, but results were in contrast to those for the two IgGs, which are sensitive to a particular folding of the protein. In transactivation assays, scFvs were able to inhibit both active recombinant Tat and native Tat secreted by a transfected CEM cell line while IgGs neutralized only native Tat. These HMAbs were able to reduce viral p24 production in human immunodeficiency virus type 1 strain IIIB chronically infected cell lines in a dose-dependent manner. PMID:15016898

  11. Reaction of human smooth muscle antibody with thyroid cells

    PubMed Central

    Biberfeld, Gunnel; Fagraeus, Astrid; Lenkei, Rodica

    1974-01-01

    Sera from cases of active chronic hepatitis or acute hepatitis containing smooth muscle antibodies reacted by immunofluorescence with the membrane region of sectioned thyroid cells from thyrotoxic glands. With non-toxic glands the reaction was negative or weak. The prerequisite for a positive reaction was that the complement of the sera had been heat-inactivated. Absorption with smooth muscle antigen abolished the reaction of smooth muscle antibody positive sera with thyroid cells. Some smooth muscle antibody negative sera from cases with disorders other than liver disease were found to give a similar immunofluorescence staining of the membrane region of sectioned thyroid cells, but these antibodies were not absorbed with smooth muscle antigen. Culture of thyroid cells was found to increase the number of cells reacting with smooth muscle antibody. In contrast, the thyroid cell antigen reacting with smooth muscle antibody negative sera was lost during culture. PMID:4619977

  12. Characterization of Two Human Monoclonal Antibodies Neutralizing Influenza A H7N9 Viruses

    PubMed Central

    Wang, Jianmin; Chen, Zhe; Bao, Linlin; Zhang, Weijia; Xue, Ying; Pang, XingHuo; Zhang, Xi

    2015-01-01

    H7N9 was a cause of significant global health concern due to its severe infection and approximately 35% mortality in humans. By screening a Fab antibody phage library derived from patients who recovered from H7N9 infections, we characterized two human monoclonal antibodies (HuMAbs), HNIgGD5 and HNIgGH8. The epitope of these two antibodies was dependent on two residues in the receptor binding site at positions V186 and L226 of the hemagglutinin glycoprotein. Both antibodies possessed high neutralizing activity. PMID:26063436

  13. ANGPTL3 blockade with a human monoclonal antibody reduces plasma lipids in dyslipidemic mice and monkeys.

    PubMed

    Gusarova, Viktoria; Alexa, Corey A; Wang, Yan; Rafique, Ashique; Kim, Jee Hae; Buckler, David; Mintah, Ivory J; Shihanian, Lisa M; Cohen, Jonathan C; Hobbs, Helen H; Xin, Yurong; Valenzuela, David M; Murphy, Andrew J; Yancopoulos, George D; Gromada, Jesper

    2015-07-01

    Angiopoietin-like protein 3 (ANGPTL3) is a circulating protein synthesized exclusively in the liver that inhibits LPL and endothelial lipase (EL), enzymes that hydrolyze TGs and phospholipids in plasma lipoproteins. Here we describe the development and testing of a fully human monoclonal antibody (REGN1500) that binds ANGPTL3 with high affinity. REGN1500 reversed ANGPTL3-induced inhibition of LPL activity in vitro. Intravenous administration of REGN1500 to normolipidemic C57Bl/6 mice increased LPL activity and decreased plasma TG levels by ≥50%. Chronic administration of REGN1500 to dyslipidemic C57Bl/6 mice for 8 weeks reduced circulating plasma levels of TG, LDL-cholesterol (LDL-C), and HDL-cholesterol (HDL-C) without any changes in liver, adipose, or heart TG contents. Studies in EL knockout mice revealed that REGN1500 reduced serum HDL-C through an EL-dependent mechanism. Finally, administration of a single dose of REGN1500 to dyslipidemic cynomolgus monkeys caused a rapid and pronounced decrease in plasma TG, nonHDL-C, and HDL-C. REGN1500 normalized plasma TG levels even in monkeys with a baseline plasma TG greater than 400 mg/dl. Collectively, these data demonstrate that neutralization of ANGPTL3 using REGN1500 reduces plasma lipids in dyslipidemic mice and monkeys, and thus provides a potential therapeutic agent for treatment of patients with hyperlipidemia. PMID:25964512

  14. Efficacy, but not antibody titer or affinity, of a heroin hapten conjugate vaccine correlates with increasing hapten densities on tetanus toxoid, but not on CRM197 carriers.

    PubMed

    Jalah, Rashmi; Torres, Oscar B; Mayorov, Alexander V; Li, Fuying; Antoline, Joshua F G; Jacobson, Arthur E; Rice, Kenner C; Deschamps, Jeffrey R; Beck, Zoltan; Alving, Carl R; Matyas, Gary R

    2015-06-17

    Vaccines against drugs of abuse have induced antibodies in animals that blocked the biological effects of the drug by sequestering the drug in the blood and preventing it from crossing the blood-brain barrier. Drugs of abuse are too small to induce antibodies and, therefore, require conjugation of drug hapten analogs to a carrier protein. The efficacy of these conjugate vaccines depends on several factors including hapten design, coupling strategy, hapten density, carrier protein selection, and vaccine adjuvant. Previously, we have shown that 1 (MorHap), a heroin/morphine hapten, conjugated to tetanus toxoid (TT) and mixed with liposomes containing monophosphoryl lipid A [L(MPLA)] as adjuvant, partially blocked the antinociceptive effects of heroin in mice. Herein, we extended those findings, demonstrating greatly improved vaccine induced antinociceptive effects up to 3% mean maximal potential effect (%MPE). This was obtained by evaluating the effects of vaccine efficacy of hapten 1 vaccine conjugates with varying hapten densities using two different commonly used carrier proteins, TT and cross-reactive material 197 (CRM197). Immunization of mice with these conjugates mixed with L(MPLA) induced very high anti-1 IgG peak levels of 400-1500 μg/mL that bound to both heroin and its metabolites, 6-acetylmorphine and morphine. Except for the lowest hapten density for each carrier, the antibody titers and affinity were independent of hapten density. The TT carrier based vaccines induced long-lived inhibition of heroin-induced antinociception that correlated with increasing hapten density. The best formulation contained TT with the highest hapten density of ≥30 haptens/TT molecule and induced %MPE of approximately 3% after heroin challenge. In contrast, the best formulation using CRM197 was with intermediate 1 densities (10-15 haptens/CRM197 molecule), but the %MPE was approximately 13%. In addition, the chemical synthesis of 1, the optimization of the conjugation

  15. Antibody and T-cell responses associated with experimental human malaria infection or vaccination show limited relationships

    PubMed Central

    Walker, Karen M; Okitsu, Shinji; Porter, David W; Duncan, Christopher; Amacker, Mario; Pluschke, Gerd; Cavanagh, David R; Hill, Adrian V S; Todryk, Stephen M

    2015-01-01

    This study examined specific antibody and T-cell responses associated with experimental malaria infection or malaria vaccination, in malaria-naive human volunteers within phase I/IIa vaccine trials, with a view to investigating inter-relationships between these types of response. Malaria infection was via five bites of Plasmodium falciparum-infected mosquitoes, with individuals reaching patent infection by 11–12 days, having harboured four or five blood-stage cycles before drug clearance. Infection elicited a robust antibody response against merozoite surface protein-119, correlating with parasite load. Classical class switching was seen from an early IgM to an IgG1-dominant response of increasing affinity. Malaria-specific T-cell responses were detected in the form of interferon-γ and interleukin-4 (IL-4) ELIspot, but their magnitude did not correlate with the magnitude of antibody or its avidity, or with parasite load. Different individuals who were immunized with a virosome vaccine comprising influenza antigens combined with P. falciparum antigens, demonstrated pre-existing interferon-γ, IL-2 and IL-5 ELIspot responses against the influenza antigens, and showed boosting of anti-influenza T-cell responses only for IL-5. The large IgG1-dominated anti-parasite responses showed limited correlation with T-cell responses for magnitude or avidity, both parameters being only negatively correlated for IL-5 secretion versus anti-apical membrane antigen-1 antibody titres. Overall, these findings suggest that cognate T-cell responses across a range of magnitudes contribute towards driving potentially effective antibody responses in infection-induced and vaccine-induced immunity against malaria, and their existence during immunization is beneficial, but magnitudes are mostly not inter-related. PMID:25471322

  16. Antibody and T-cell responses associated with experimental human malaria infection or vaccination show limited relationships.

    PubMed

    Walker, Karen M; Okitsu, Shinji; Porter, David W; Duncan, Christopher; Amacker, Mario; Pluschke, Gerd; Cavanagh, David R; Hill, Adrian V S; Todryk, Stephen M

    2015-05-01

    This study examined specific antibody and T-cell responses associated with experimental malaria infection or malaria vaccination, in malaria-naive human volunteers within phase I/IIa vaccine trials, with a view to investigating inter-relationships between these types of response. Malaria infection was via five bites of Plasmodium falciparum-infected mosquitoes, with individuals reaching patent infection by 11-12 days, having harboured four or five blood-stage cycles before drug clearance. Infection elicited a robust antibody response against merozoite surface protein-119 , correlating with parasite load. Classical class switching was seen from an early IgM to an IgG1-dominant response of increasing affinity. Malaria-specific T-cell responses were detected in the form of interferon-γ and interleukin-4 (IL-4) ELIspot, but their magnitude did not correlate with the magnitude of antibody or its avidity, or with parasite load. Different individuals who were immunized with a virosome vaccine comprising influenza antigens combined with P. falciparum antigens, demonstrated pre-existing interferon-γ, IL-2 and IL-5 ELIspot responses against the influenza antigens, and showed boosting of anti-influenza T-cell responses only for IL-5. The large IgG1-dominated anti-parasite responses showed limited correlation with T-cell responses for magnitude or avidity, both parameters being only negatively correlated for IL-5 secretion versus anti-apical membrane antigen-1 antibody titres. Overall, these findings suggest that cognate T-cell responses across a range of magnitudes contribute towards driving potentially effective antibody responses in infection-induced and vaccine-induced immunity against malaria, and their existence during immunization is beneficial, but magnitudes are mostly not inter-related. PMID:25471322

  17. Preferential affinity of /sup 3/H-2-oxo-quazepam for type I benzodiazepine recognition sites in the human brain

    SciTech Connect

    Corda, M.G.; Giorgi, O.; Longoni, B.; Ongini, E.; Montaldo, S.; Biggio, G.

    1988-01-01

    The hypnotic drug quazepam and its active metabolite 2-oxo-quazepam (2-oxo-quaz) are two benzodiazepines (BZ) containing a trifluoroethyl moiety on the ring nitrogen at position 1, characterized by their preferential affinity for Type I BZ recognition sites. In the present study we characterized the binding of /sup 3/H-2-oxo-quaz in discrete areas of the human brain. Saturation analysis demonstrated specific and saturable binding of /sup 3/H-2-oxo-quaz to membrane preparations from human cerebellum. Hill plot analysis of displacement curves of /sup 3/H-flunitrazepam binding by 2-oxo-quaz yielded Hill coefficients of approximately 1 in the cerebellum and significantly less than 1 in the cerebral cortex, hippocampus, caudate nucleus, thalamus and pons. Self and cross displacement curves for /sup 3/H-FNT and /sup 3/H-2-oxo-quaz binding in these brain areas indicated that 2-oxo-quaz binds with different affinities to two populations of binding sites. High affinity binding sites were more abundant in the cerebellum, cerebral cortex, hippocampus and thalamus, whereas low affinity sites were predominant in the caudate nucleus and pons. Competition studies of /sup 3/H-2-oxo-quaz and /sup 3/H-FNT using unlabelled ligands indicated that compounds which preferentially bind to Type I sites are more potent at displacing /sup 3/H-2-oxo-quaz than /sup 3/H-FNT from cerebral cortex membrane preparations. 26 references, 2 figures, 3 tables.

  18. Current concepts. I. High affinity receptors for bombesin/GRP-like peptides on human small cell lung cancer

    SciTech Connect

    Moody, T.W.; Carney, D.N.; Cuttitta, F.; Quattrocchi, K.; Minna, J.D.

    1985-07-15

    The binding of a radiolabeled bombesin analogue to human small cell lung cancer (SCLC) cell lines was investigated. (/sup 125/I-Tyr/sup 4/)bombesin bound with high affinity (Kd = 0.5 nM) to a single class of sites (2000/cell) using SCLC line NCI-H446. Binding was reversible, saturable and specific. The pharmacology of binding was investigated, using NCI-H466 and SCLC line NCI-H345. Bombesin and structurally related peptides, such as gastrin releasing peptide (GRP), but not other peptides, such as substance P or vasopressin, inhibited high affinity (/sup 125/I-Tyr/sup 4/)BN binding activity. Finally, the putative receptor, a 78,000 dalton polypeptide, was identified by purifying radiolabeled cell lysates on bombesin or GRP affinity resins and then displaying the bound polypeptides on sodium dodecylsulfate polyacrylamide gels. Because SCLC both produces bombesin/GRP-like peptides and contains high affinity receptors for these peptides, they may function as important autocrine regulatory factors for human SCLC. 31 references, 6 figures, 2 tables.

  19. A review of human anti-globulin antibody (HAGA, HAMA, HACA, HAHA) responses to monoclonal antibodies. Not four letter words.

    PubMed

    Mirick, G R; Bradt, B M; Denardo, S J; Denardo, G L

    2004-12-01

    The United States Food and Drug Administration (FDA) has approved unconjugated monoclonal antibodies (MAbs) for immunotherapy (IT) of B-cell lymphoma, breast cancer and acute myeloid leukemia. More recently, approval has been given for conjugated ZevalinTM ((90)yttrium ibritumomab tiuxetan, IDEC-Y2B8, Biogen Idec, Cambridge, MA) and BexxarTM ((131)I-tositumomab, Corixa, Corp., Seattle, WA and GlaxoSmithKline, Philadelphia, PA) anti-CD20 MAbs for use in radioimmunotherapy (RIT) of non-Hodgkin's lymphoma (NHL), thus redefining the standard care of cancer patients. Because of, and despite a lack of basis for concern about allergic reactions due to human antibody responses to these foreign proteins, assays were developed to determine HAGA (human anti-globulin antibody) levels that developed in patient sera following treatment with MAbs. Strategies were also devised to ''humanize'' MAbs and to temporarily block patient immune function with drugs in order to decrease the seroconversion rates, with considerable success. On the other hand, a survival advantage has been observed in some patients who developed a HAGA following treatment. This correlates with development of an anti-idiotype antibody cascade directed toward the MAbs used to treat these patients. What follows is a selective review of HAGA and its effect on cancer treatment over the past 2 decades. PMID:15640788

  20. Generation of a panel of antibodies against proteins encoded on human chromosome 21

    PubMed Central

    2010-01-01

    Background Down syndrome (DS) is caused by trisomy of all or part of chromosome 21. To further understanding of DS we are working with a mouse model, the Tc1 mouse, which carries most of human chromosome 21 in addition to the normal mouse chromosome complement. This mouse is a model for human DS and recapitulates many of the features of the human syndrome such as specific heart defects, and cerebellar neuronal loss. The Tc1 mouse is mosaic for the human chromosome such that not all cells in the model carry it. Thus to help our investigations we aimed to develop a method to identify cells that carry human chromosome 21 in the Tc1 mouse. To this end, we have generated a panel of antibodies raised against proteins encoded by genes on human chromosome 21 that are known to be expressed in the adult brain of Tc1 mice Results We attempted to generate human specific antibodies against proteins encoded by human chromosome 21. We selected proteins that are expressed in the adult brain of Tc1 mice and contain regions of moderate/low homology with the mouse ortholog. We produced antibodies to seven human chromosome 21 encoded proteins. Of these, we successfully generated three antibodies that preferentially recognise human compared with mouse SOD1 and RRP1 proteins on western blots. However, these antibodies did not specifically label cells which carry a freely segregating copy of Hsa21 in the brains of our Tc1 mouse model of DS. Conclusions Although we have successfully isolated new antibodies to SOD1 and RRP1 for use on western blots, in our hands these antibodies have not been successfully used for immunohistochemistry studies. These antibodies are freely available to other researchers. Our data high-light the technical difficulty of producing species-specific antibodies for both western blotting and immunohistochemistry. PMID:20727138

  1. Directed Selection of Recombinant Human Monoclonal Antibodies to Herpes Simplex Virus Glycoproteins from Phage Display Libraries

    NASA Astrophysics Data System (ADS)

    Sanna, Pietro Paolo; Williamson, R. Anthony; de Logu, Alessandro; Bloom, Floyd E.; Burton, Dennis R.

    1995-07-01

    Human monoclonal antibodies have considerable potential in the prophylaxis and treatment of viral disease. However, only a few such antibodies suitable for clinical use have been produced to date. We have previously shown that large panels of human recombinant monoclonal antibodies against a plethora of infectious agents, including herpes simplex virus types 1 and 2, can be established from phage display libraries. Here we demonstrate that facile cloning of recombinant Fab fragments against specific viral proteins in their native conformation can be accomplished by panning phage display libraries against viral glycoproteins "captured" from infected cell extracts by specific monoclonal antibodies immobilized on ELISA plates. We have tested this strategy by isolating six neutralizing recombinant antibodies specific for herpes simplex glycoprotein gD or gB, some of which are against conformationally sensitive epitopes. By using defined monoclonal antibodies for the antigen-capture step, this method can be used for the isolation of antibodies to specific regions and epitopes within the target viral protein. For instance, monoclonal antibodies to a nonneutralizing epitope can be used in the capture step to clone antibodies to neutralizing epitopes, or antibodies to a neutralizing epitope can be used to clone antibodies to a different neutralizing epitope. Furthermore, by using capturing antibodies to more immunodominant epitopes, one can direct the cloning to less immunogenic ones. This method should be of value in generating antibodies to be used both in the prophylaxis and treatment of viral infections and in the characterization of the mechanisms of antibody protective actions at the molecular level.

  2. Identification of HBsAg-specific antibodies from a mammalian cell displayed full-length human antibody library of healthy immunized donor.

    PubMed

    Li, Chang-Zheng; Liang, Zhong-Kun; Chen, Zhen-Rui; Lou, Hai-Bo; Zhou, Ye; Zhang, Zhe-Huan; Yu, Fei; Liu, Shuwen; Zhou, Yuanping; Wu, Shuguang; Zheng, Wenling; Tan, Wanlong; Jiang, Shibo; Zhou, Chen

    2012-03-01

    Hepatitis B immunoglobulin (HBIG) is important in the management of hepatitis B virus (HBV) infection. Aiming to develop recombinant monoclonal antibodies as an alternative to HBIG, we report the successful identification of HBV surface antigen (HBsAg)-specific antibodies from a full-length human antibody library displayed on mammalian cell surface. Using total RNA of peripheral blood mononuclear cells of a natively immunized donor as template, the antibody repertoire was amplified. Combining four-way ligation and the Flp recombinase-mediated integration (Flp-In) system, we constructed a mammalian cell-based, fully human, full-length antibody display library in which each cell displayed only one kind of antibody molecule. By screening the cell library using fluorescence-activated cell sorting (FACS), eight cell clones that displayed HBsAg-specific antibodies on cell surfaces were identified. DNA sequence analysis of the antibody genes revealed three unique antibodies. FACS data indicated that fluorescent strength of expression (FSE), fluorescent strength of binding (FSB) and relative binding ability (RBA) were all different among them. These results demonstrated that by using our antibody mammalian display and screening platform, we can successfully identify antigen-specific antibodies from an immunized full-length antibody library. Therefore, this platform is very useful for the development of therapeutic antibodies. PMID:22179672

  3. Increased in vivo effector function of human IgG4 isotype antibodies through afucosylation.

    PubMed

    Gong, Qian; Hazen, Meredith; Marshall, Brett; Crowell, Susan R; Ou, Qinglin; Wong, Athena W; Phung, Wilson; Vernes, Jean-Michel; Meng, Y Gloria; Tejada, Max; Andersen, Dana; Kelley, Robert F

    2016-01-01

    For some antibodies intended for use as human therapeutics, reduced effector function is desired to avoid toxicities that might be associated with depletion of target cells. Since effector function(s), including antibody-dependent cell-mediated cytotoxicity (ADCC), require the Fc portion to be glycosylated, reduced ADCC activity antibodies can be obtained through aglycosylation of the human IgG1 isotype. An alternative is to switch to an IgG4 isotype in which the glycosylated antibody is known to have reduced effector function relative to glycosylated IgG1 antibody. ADCC activity of glycosylated IgG1 antibodies is sensitive to the fucosylation status of the Fc glycan, with both in vitro and in vivo ADCC activity increased upon fucose removal ("afucosylation"). The effect of afucosylation on activity of IgG4 antibodies is less well characterized, but it has been shown to increase the in vitro ADCC activity of an anti-CD20 antibody. Here, we show that both in vitro and in vivo activity of anti-CD20 IgG4 isotype antibodies is increased via afucosylation. Using blends of material made in Chinese hamster ovary (CHO) and Fut8KO-CHO cells, we show that ADCC activity of an IgG4 version of an anti-human CD20 antibody is directly proportional to the fucose content. In mice transgenic for human FcγRIIIa, afucosylation of an IgG4 anti-mouse CD20 antibody increases the B cell depletion activity to a level approaching that of the mIgG2a antibody. PMID:27216702

  4. Molecular Structure-Affinity Relationship of Bufadienolides and Human Serum Albumin In Vitro and Molecular Docking Analysis

    PubMed Central

    Wang, Honglan; Zhang, Junfeng; Duan, Jinao; Ma, Hongyue; Wu, Qinan

    2015-01-01

    The development of bufadienolides as anti-tumor agents is limited due to poor pharmacokinetic properties regarding drug half-lives and toxicity in vivo. These serious factors might be improved by increasing the drug/albumin-binding ratio. This study therefore investigated the relationship between the structural properties of nine bufadienolides and their affinities for human serum albumin (HSA) by a fluorescence spectroscopy-based analysis and molecular docking. Fluorescence quenching data showed that the interaction of each bufadienolide with HSA formed a non-fluorescent complex, while thermodynamic parameters revealed negative ΔS and ΔH values, corresponding to changes in enthalpy and entropy, respectively. The structural differences between the various bufadienolides markedly influenced their binding affinity for HSA. With the exception of a C = O bond at the C12 position that decreased the binding affinity for HSA, other polar groups tended to increase the affinity, especially a hydroxyl (OH) group at assorted bufadienolide sites. The rank order of binding affinities for drugs with tri-hydroxyl groups was as follows: 11-OH > 5-OH > 16-OH; in addition, 16-acetoxy (OAc), 10-aldehyde and 14-epoxy constituents notably enhanced the binding affinity. Among these groups, 11-OH and 16-acetyl were especially important for a seamless interaction between the bufadienolides and HSA. Furthermore, molecular docking analysis revealed that either an 11-OH or a 16-OAc group spatially close to a five-membered lactone ring significantly facilitated the anchoring of these compounds within site I of the HSA pocket via hydrogen bonding (H-bonding) with Tyr150 or Lys199, respectively. In summary, bufadienolide structure strongly affects binding with HSA, and 11-OH or 16-OAc groups improve the drug association with key amino acid residues. This information is valuable for the prospective development of bufadienolides with improved pharmacological profiles as novel anti-tumor drugs