Science.gov

Sample records for affinity ic50 values

  1. Variations in IC(50) values with purity of mushroom tyrosinase.

    PubMed

    Neeley, Elizabeth; Fritch, George; Fuller, Autumn; Wolfe, Jordan; Wright, Jessica; Flurkey, William

    2009-09-02

    The effects of various inhibitors on crude, commercial and partially purified commercial mushroom tyrosinase were examined by comparing IC(50) values. Kojic acid, salicylhydroxamic acid, tropolone, methimazole, and ammonium tetrathiomolybdate had relatively similar IC(50) values for the crude, commercial and partially purified enzyme. 4-Hexylresorcinol seemed to have a somewhat higher IC(50) value using crude extracts, compared to commercial or purified tyrosinase. Some inhibitors (NaCl, esculetin, biphenol, phloridzin) showed variations in IC(50) values between the enzyme samples. In contrast, hydroquinone, lysozyme, Zn(2+), and anisaldehyde showed little or no inhibition in concentration ranges reported to be effective inhibitors. Organic solvents (DMSO and ethanol) had IC(50) values that were similar for some of the tyrosinase samples. Depending of the source of tyrosinase and choice of inhibitor, variations in IC(50) values were observed.

  2. Impact of impurities on IC50 values of P450 inhibitors.

    PubMed

    Huang, Zeqi

    2011-08-01

    During early drug discovery, the synthetic pathways for test compounds are not well defined and impurities in the test compounds are inevitable. Compounds undergo serial screening tests at this stage to assess their biological activities and drug-like properties. Impurities in the test compounds can produce false positive results and therefore complicate the interpretation of data. P450 inhibition is one of the screens used in the early drug discovery process to assess the potential of drug-drug interactions caused by the inhibition of P450 enzymes. The impact of impurities on P450 inhibition has not been investigated. In this study, the impact of impurities on CYP2D6 IC(50) values was evaluated using model compounds. Cimetidine was chosen as the test compound. Quinidine, fluoxetine, fluvoxamine, and ibuprofen were chosen to represent impurities as they inhibit CYP2D6 to varying degrees. The IC(50) values of these model impurities for CYP2D6 were 0.11 µM, 0.98 µM, 13.4 µM, and >100 µM, respectively. Impurities with potent CYP2D6 inhibition, such as quinidine, can significantly decrease the apparent IC(50) value for the mixture. With the addition of only 2% quinidine to cimetidine (mol/mol), the apparent IC(50) value of cimetidine decreased from 98 µM to 4.4 µM. With the addition of 10% quinidine, the apparent IC(50) decreased to 1.04 µM. Such a significant decrease in apparent IC(50) values can produce a false alert and cause the inappropriate elimination of good compounds at an early stage. Impur6ities with low inhibitory potential, such as fluvoxamine and ibuprofen, did not cause a significant change in apparent IC(50) values. An impurity can have a similar effect on the IC(50) values for inhibition of other biological activities. The effect of an impurity on apparent IC(50) values can be predicted by using a simulation curve if the potency of the impurity is characterized.

  3. Effect of Inducers, Incubation Time and Heme Concentration on IC(50) Value Variation in Anti-heme Crystallization Assay.

    PubMed

    Nhien, Nguyen Thanh Thuy; Huy, Nguyen Tien; Uyen, Dinh Thanh; Deharo, Eric; Hoa, Pham Thi Le; Hirayama, Kenji; Harada, Shigeharu; Kamei, Kaeko

    2011-12-01

    Heme detoxification through crystallization into hemozoin has been suggested as a good target for the development of screening assays for new antimalarials. However, comparisons among the data obtained from different experiments are difficult, and the IC(50) values (the concentrations of drug that are required to inhibit 50% of hemozoin formation) for the same drug vary widely. We studied the effects of changes in heme concentration (precursor of β-hematin), incubation time and three inducers (SDS, Tween 20 and linoleic acid) on the IC(50) of some antimalarials (chloroquine, quinine, amodiaquine, and clotrimazole). The results showed that increasing both inducer concentration and incubation time raised the IC(50) of selected antimalarials. Any change in those factors caused the IC(50) value to vary. Standardization of assay conditions is, therefore, necessary to increase reproducibility and reduce discrepancies in assay performance. Considering all of the variables, the best choice of inducers is in the order of SDS > Tween 20 > linoleic acid.

  4. Terpenes increase the lipid dynamics in the Leishmania plasma membrane at concentrations similar to their IC50 values.

    PubMed

    Camargos, Heverton Silva; Moreira, Rodrigo Alves; Mendanha, Sebastião Antonio; Fernandes, Kelly Souza; Dorta, Miriam Leandro; Alonso, Antonio

    2014-01-01

    Although many terpenes have shown antitumor, antibacterial, antifungal, and antiparasitic activity, the mechanism of action is not well established. Electron paramagnetic resonance (EPR) spectroscopy of the spin-labeled 5-doxyl stearic acid revealed remarkable fluidity increases in the plasma membrane of terpene-treated Leishmania amazonensis promastigotes. For an antiproliferative activity assay using 5×10(6) parasites/mL, the sesquiterpene nerolidol and the monoterpenes (+)-limonene, α-terpineol and 1,8-cineole inhibited the growth of the parasites with IC50 values of 0.008, 0.549, 0.678 and 4.697 mM, respectively. The IC50 values of these terpenes increased as the parasite concentration used in the cytotoxicity assay increased, and this behavior was examined using a theoretical treatment of the experimental data. Cytotoxicity tests with the same parasite concentration as in the EPR experiments revealed a correlation between the IC50 values of the terpenes and the concentrations at which they altered the membrane fluidity. In addition, the terpenes induced small amounts of cell lysis (4-9%) at their respective IC50 values. For assays with high cell concentrations (2×10(9) parasites/mL), the incorporation of terpene into the cell membrane was very fast, and the IC50 values observed for 24 h and 5 min-incubation periods were not significantly different. Taken together, these results suggest that terpene cytotoxicity is associated with the attack on the plasma membrane of the parasite. The in vitro cytotoxicity of nerolidol was similar to that of miltefosine, and nerolidol has high hydrophobicity; thus, nerolidol might be used in drug delivery systems, such as lipid nanoparticles to treat leishmaniasis.

  5. AVP-IC50 Pred: Multiple machine learning techniques-based prediction of peptide antiviral activity in terms of half maximal inhibitory concentration (IC50).

    PubMed

    Qureshi, Abid; Tandon, Himani; Kumar, Manoj

    2015-11-01

    Peptide-based antiviral therapeutics has gradually paved their way into mainstream drug discovery research. Experimental determination of peptides' antiviral activity as expressed by their IC50 values involves a lot of effort. Therefore, we have developed "AVP-IC50 Pred," a regression-based algorithm to predict the antiviral activity in terms of IC50 values (μM). A total of 759 non-redundant peptides from AVPdb and HIPdb were divided into a training/test set having 683 peptides (T(683)) and a validation set with 76 independent peptides (V(76)) for evaluation. We utilized important peptide sequence features like amino-acid compositions, binary profile of N8-C8 residues, physicochemical properties and their hybrids. Four different machine learning techniques (MLTs) namely Support vector machine, Random Forest, Instance-based classifier, and K-Star were employed. During 10-fold cross validation, we achieved maximum Pearson correlation coefficients (PCCs) of 0.66, 0.64, 0.56, 0.55, respectively, for the above MLTs using the best combination of feature sets. All the predictive models also performed well on the independent validation dataset and achieved maximum PCCs of 0.74, 0.68, 0.59, 0.57, respectively, on the best combination of feature sets. The AVP-IC50 Pred web server is anticipated to assist the researchers working on antiviral therapeutics by enabling them to computationally screen many compounds and focus experimental validation on the most promising set of peptides, thus reducing cost and time efforts. The server is available at http://crdd.osdd.net/servers/ic50avp.

  6. A novel application of t-statistics to objectively assess the quality of IC50 fits for P-glycoprotein and other transporters.

    PubMed

    O'Connor, Michael; Lee, Caroline; Ellens, Harma; Bentz, Joe

    2015-02-01

    Current USFDA and EMA guidance for drug transporter interactions is dependent on IC50 measurements as these are utilized in determining whether a clinical interaction study is warranted. It is therefore important not only to standardize transport inhibition assay systems but also to develop uniform statistical criteria with associated probability statements for generation of robust IC50 values, which can be easily adopted across the industry. The current work provides a quantitative examination of critical factors affecting the quality of IC50 fits for P-gp inhibition through simulations of perfect data with randomly added error as commonly observed in the large data set collected by the P-gp IC50 initiative. The types of errors simulated were (1) variability in replicate measures of transport activity; (2) transformations of error-contaminated transport activity data prior to IC50 fitting (such as performed when determining an IC50 for inhibition of P-gp based on efflux ratio); and (3) the lack of well defined "no inhibition" and "complete inhibition" plateaus. The effect of the algorithm used in fitting the inhibition curve (e.g., two or three parameter fits) was also investigated. These simulations provide strong quantitative support for the recommendations provided in Bentz et al. (2013) for the determination of IC50 values for P-gp and demonstrate the adverse effect of data transformation prior to fitting. Furthermore, the simulations validate uniform statistical criteria for robust IC50 fits in general, which can be easily implemented across the industry. A calibration of the t-statistic is provided through calculation of confidence intervals associated with the t-statistic.

  7. Efavirenz concentrations in CSF exceed IC50 for wild-type HIV

    PubMed Central

    Best, Brookie M.; Koopmans, Peter P.; Letendre, Scott L.; Capparelli, Edmund V.; Rossi, Steven S.; Clifford, David B.; Collier, Ann C.; Gelman, Benjamin B.; Mbeo, Gilbert; McCutchan, J. Allen; Simpson, David M.; Haubrich, Richard; Ellis, Ronald; Grant, Igor; Grant, Igor; McCutchan, J. Allen; Ellis, Ronald J.; Marcotte, Thomas D.; Franklin, Donald; Ellis, Ronald J.; McCutchan, J. Allen; Alexander, Terry; Letendre, Scott; Capparelli, Edmund; Heaton, Robert K.; Atkinson, J. Hampton; Woods, Steven Paul; Dawson, Matthew; Wong, Joseph K.; Fennema-Notestine, Christine; Taylor, Michael J.; Theilmann, Rebecca; Gamst, Anthony C.; Cushman, Clint; Abramson, Ian; Vaida, Florin; Marcotte, Thomas D.; von Jaeger, Rodney; McArthur, Justin; Smith, Mary; Morgello, Susan; Simpson, David; Mintz, Letty; McCutchan, J. Allen; Toperoff, Will; Collier, Ann; Marra, Christina; Jones, Trudy; Gelman, Benjamin; Head, Eleanor; Clifford, David; Al-Lozi, Muhammad; Teshome, Mengesha

    2011-01-01

    Objectives HIV-associated neurocognitive disorders remain common despite use of potent antiretroviral therapy (ART). Ongoing viral replication due to poor distribution of antivirals into the CNS may increase risk for HIV-associated neurocognitive disorders. This study's objective was to determine penetration of a commonly prescribed antiretroviral drug, efavirenz, into CSF. Methods CHARTER is an ongoing, North American, multicentre, observational study to determine the effects of ART on HIV-associated neurological disease. Single random plasma and CSF samples were drawn within 1 h of each other from subjects taking efavirenz between September 2003 and July 2007. Samples were assayed by HPLC or HPLC/mass spectrometry with detection limits of 39 ng/mL (plasma) and <0.1 ng/mL (CSF). Results Eighty participants (age 44 ± 8 years; 79 ± 15 kg; 20 females) had samples drawn 12.5 ± 5.4 h post-dose. The median efavirenz concentrations after a median of 7 months [interquartile range (IQR) 2–17] of therapy were 2145 ng/mL in plasma (IQR 1384–4423) and 13.9 ng/mL in CSF (IQR 4.1–21.2). The CSF/plasma concentration ratio from paired samples drawn within 1 h of each other was 0.005 (IQR 0.0026–0.0076; n = 69). The CSF/IC50 ratio was 26 (IQR 8–41) using the published IC50 for wild-type HIV (0.51 ng/mL). Two CSF samples had concentrations below the efavirenz IC50 for wild-type HIV. Conclusions Efavirenz concentrations in the CSF are only 0.5% of plasma concentrations but exceed the wild-type IC50 in nearly all individuals. Since CSF drug concentrations reflect those in brain interstitial fluids, efavirenz reaches therapeutic concentrations in brain tissue. PMID:21098541

  8. Determining the size and concentration dependence of gold nanoparticles in vitro cytotoxicity (IC50) test using WST-1 assay

    NASA Astrophysics Data System (ADS)

    Rosli, Nur Shafawati binti; Rahman, Azhar Abdul; Aziz, Azlan Abdul; Shamsuddin, Shaharum

    2015-04-01

    Gold nanoparticles (AuNPs) received a great deal of attention for biomedical applications, especially in diagnostic imaging and therapeutics. Even though AuNPs have potential benefits in biomedical applications, the impact of AuNPs on human and environmental health still remains unclear. The use of AuNPs which is a high-atomic-number materials, provide advantages in terms of radiation dose enhancement. However, before this can become a clinical reality, cytotoxicity of the AuNPs has to be carefully evaluated. Cytotoxicity test is a rapid, standardized test that is very sensitive to determine whether the nanoparticles produced are harmful or benign on cellular components. In this work the size and concentration dependence of AuNPs cytotoxicity in breast cancer cell lines (MCF-7) are tested by using WST-1 assay. The sizes of AuNPs tested were 13 nm, 50 nm, and 70 nm. The cells were seeded in the 96-well plate and were treated with different concentrations of AuNPs by serial dilution for each size of AuNPs. The high concentration of AuNPs exhibit lower cell viability compared to low concentration of AuNPs. We quantified the toxicity of AuNPs in MCF-7 cell lines by determining the IC50 values in WST-1 assays. The IC50 values (inhibitory concentrations that effected 50% growth inhibition) of 50 nm AuNPs is lower than 13 nm and 70 nm AuNPs. Mean that, 50nm AuNPs are more toxic to the MCF-7 cells compared to smaller and larger sizes AuNPs. The presented results clearly indicate that the cytotoxicity of AuNPs depend not only on the concentration, but also the size of the nanoparticles.

  9. POxylated Polyurea Dendrimers: Smart Core-Shell Vectors with IC50 Lowering Capacity.

    PubMed

    Restani, Rita B; Conde, João; Pires, Rita F; Martins, Pedro; Fernandes, Alexandra R; Baptista, Pedro V; Bonifácio, Vasco D B; Aguiar-Ricardo, Ana

    2015-08-01

    The design and preparation of highly efficient drug delivery platforms using green methodologies is at the forefront of nanotherapeutics research. POxylated polyurea dendrimers are efficiently synthesized using a supercritical-assisted polymerization in carbon dioxide. These fluorescent, pH-responsive and water-soluble core-shell smart nanocarriers show low toxicity in terms of cell viability and absence of glutathione depletion, two of the major side effect limitations of current vectors. The materials are also found to act as good transfection agents, through a mechanism involving an endosomal pathway, being able to reduce 100-fold the IC50 of paclitaxel.

  10. The Experimental Values of Atomic Electron Affinities: Their Selection and Periodic Behavior

    ERIC Educational Resources Information Center

    Chen, E. C. M.; Wentworth, W. E.

    1975-01-01

    Describes new experimental techniques, such as dye-laser photodetachment studies, which have recently provided accurate values for the electron affinity of numerous elements. Provides a periodic chart with available electron affinity data. (MLH)

  11. A novel method to measure HLA-DM-susceptibility of peptides bound to MHC class II molecules based on peptide binding competition assay and differential IC(50) determination.

    PubMed

    Yin, Liusong; Stern, Lawrence J

    2014-04-01

    HLA-DM (DM) functions as a peptide editor that mediates the exchange of peptides loaded onto MHCII molecules by accelerating peptide dissociation and association kinetics. The relative DM-susceptibility of peptides bound to MHCII molecules correlates with antigen presentation and immunodominance hierarchy, and measurement of DM-susceptibility has been a key effort in this field. Current assays of DM-susceptibility, based on differential peptide dissociation rates measured for individually labeled peptides over a long time base, are difficult and cumbersome. Here, we present a novel method to measure DM-susceptibility based on peptide binding competition assays performed in the presence and absence of DM, reported as a delta-IC(50) (change in 50% inhibition concentration) value. We simulated binding competition reactions of peptides with various intrinsic and DM-catalyzed kinetic parameters and found that under a wide range of conditions the delta-IC(50) value is highly correlated with DM-susceptibility as measured in off-rate assay. We confirmed experimentally that DM-susceptibility measured by delta-IC(50) is comparable to that measured by traditional off-rate assay for peptides with known DM-susceptibility hierarchy. The major advantage of this method is that it allows simple, fast and high throughput measurement of DM-susceptibility for a large set of unlabeled peptides in studies of the mechanism of DM action and for identification of CD4+ T cell epitopes.

  12. Identification of a novel malonyl-CoA IC(50) for CPT-I: implications for predicting in vivo fatty acid oxidation rates.

    PubMed

    Smith, Brennan K; Perry, Christopher G R; Koves, Timothy R; Wright, David C; Smith, Jeffrey C; Neufer, P Darrell; Muoio, Deborah M; Holloway, Graham P

    2012-11-15

    Published values regarding the sensitivity (IC(50)) of CPT-I (carnitine palmitoyltransferase I) to M-CoA (malonyl-CoA) inhibition in isolated mitochondria are inconsistent with predicted in vivo rates of fatty acid oxidation. Therefore we have re-examined M-CoA inhibition kinetics under various P-CoA (palmitoyl-CoA) concentrations in both isolated mitochondria and PMFs (permeabilized muscle fibres). PMFs have an 18-fold higher IC(50) (0.61 compared with 0.034 μM) in the presence of 25 μM P-CoA and a 13-fold higher IC(50) (6.3 compared with 0.49 μM) in the presence of 150 μM P-CoA compared with isolated mitochondria. M-CoA inhibition kinetics determined in PMFs predicts that CPT-I activity is inhibited by 33% in resting muscle compared with >95% in isolated mitochondria. Additionally, the ability of M-CoA to inhibit CPT-I appears to be dependent on P-CoA concentration, as the relative inhibitory capacity of M-CoA is decreased with increasing P-CoA concentrations. Altogether, the use of PMFs appears to provide an M-CoA IC(50) that better reflects the predicted in vivo rates of fatty acid oxidation. These findings also demonstrate that the ratio of [P-CoA]/[M-CoA] is critical for regulating CPT-I activity and may partially rectify the in vivo disconnect between M-CoA content and CPT-I flux within the context of exercise and Type 2 diabetes.

  13. Identification of a novel malonyl-CoA IC50 for CPT-1: implications for predicting in vivo fatty acid oxidation rates

    PubMed Central

    Smith, Brennan K.; Perry, Christopher G.R.; Koves, Timothy R.; Wright, David C.; Smith, Jeffrey C.; Neufer, P. Darrell; Muoio, Deborah M.; Holloway, Graham P.

    2013-01-01

    Synopsis Published values regarding the sensitivity (IC50) of carnitine palmitoyl transferase I (CPT-I) to malonyl-CoA (M-CoA) inhibition in isolated mitochondria are inconsistent with predicted in vivo rates of fatty acid oxidation. Therefore, we have re-examined M-CoA inhibition kinetics under varying palmitoyl-CoA (P-CoA) concentrations in both isolated mitochondria and permeabilized muscle fibres (PMF). PMF have an 18-fold higher IC50 (0.61 vs 0.034 μM) in the presence of 25 μM P-CoA and a 13-fold higher IC50 (6.3 vs 0.49 μM) in the presence of 150 μM P-CoA compared to isolated mitochondria. M-CoA inhibition kinetics determined in PMF predicts that CPT-I activity is inhibited by 33% in resting muscle compared to >95% in isolated mitochondria. Additionally, the ability of M-CoA to inhibit CPT-I appears to be dependent on P-CoA concentration, as the relative inhibitory capacity of M-CoA is decreased with increasing P-CoA concentrations. Altogether, the use of PMF appears to provide a M-CoA IC50 that better reflects the predicted in vivo rates of fatty acid oxidation. These findings also demonstrate the ratio of [P-CoA]/[M-CoA] is critical for regulating CPT-I activity and may partially rectify the in vivo disconnect between M-CoA content and CPT-I flux within the context of exercise and type II diabetes. PMID:22928974

  14. Debunking the Idea that Ligand Efficiency Indices Are Superior to pIC50 as QSAR Activities.

    PubMed

    Sheridan, Robert P

    2016-11-28

    Several papers have appeared in which a ligand efficiency index instead of pIC50 is used as the activity in QSAR. The claim is that better fits and predictions are obtained with ligand efficiency. We show on both public-domain and in-house data sets that the apparent superiority is a statistical artifact that occurs when ligand efficiency indices are correlated with the physical property included in their definition (number of non-hydrogens, ALOGP, TPSA, etc.) and when the property is easier to predict than the original pIC50.

  15. Food and value motivation: Linking consumer affinities to different types of food products.

    PubMed

    de Boer, Joop; Schösler, Hanna

    2016-08-01

    This study uses the consumer affinity concept to examine the multiple motives that may shape consumers' relationships with food. The concept was applied in a study on four broad product types in the Netherlands, which cover a wide range of the market and may each appeal to consumers with different affinities towards foods. These product types may be denoted as 'conventional', 'efficient', 'gourmet' and 'pure'. A comparative analysis, based on Higgins' Regulatory Focus Theory, was performed to examine whether food-related value motivations could explain different consumer affinities for these product types. The affinities of consumers were measured by means of a non-verbal, visual presentation of four samples of food products in a nationwide survey (n = 742) among consumers who were all involved in food purchasing and/or cooking. The affinities found could be predicted fairly well from a number of self-descriptions relating to food and eating, which expressed different combinations of type of value motivation and involvement with food. The analysis demonstrated the contrasting role of high and low involvement as well as the potential complementarity of promotion- and prevention-focused value motivation. It is suggested that knowledge of the relationships between product types, consumer affinities and value motivation can help improve the effectiveness of interventions that seek to promote healthy and sustainable diets in developed countries.

  16. Single concentration loss of activity assay provides an improved assessment of drug-drug interaction risk compared to IC50-shift.

    PubMed

    Wong, Simon G; Lee, Mey; Wong, Bradley K

    2016-11-01

    1. The utility of two abbreviated, higher-throughput assays [IC50-shift and the loss of activity (LOA) assay] to evaluate time-dependent inhibition (TDI) of 24 structurally related compounds was compared. 2. Good correlation (R(2)  = 0.90) between % inhibition and kinact/KI suggested that the LOA assay has utility as an indicator of TDI potential. Weaker correlation was observed for the shifted IC50 (IC50(T = 30)) (R(2) = 0.61) and the fold-shift in IC50 (R(2) = 0.17). 3. Primary mechanism for poor correlation was depletion of active enzyme at concentrations > 1 μM leading to greater than predicted inhibition in the IC50-shift assay. 4. Previously reported strong correlations between IC50(T = 30) and kinact/KI were found to be dependent on potent TDI compounds with kinact/KI > 30; correlation was reduced for moderate inhibitors (kinact/KI < 30). LOA assay maintained good correlation even when strong TDI compounds were excluded. 5. LOA assay (% Inhibition at 30 min, 10 μM) was a good predictor of in vivo DDI (AUCr), providing a graded response with low potential for false negatives or positives. IC50-shift assay had bias for over-predicting in vivo DDI and was more likely to identify false positives.

  17. A strategy to model nonmonotonic dose-response curve and estimate IC50.

    PubMed

    Zhang, Hui; Holden-Wiltse, Jeanne; Wang, Jiong; Liang, Hua

    2013-01-01

    The half-maximal inhibitory concentration IC[Formula: see text] is an important pharmacodynamic index of drug effectiveness. To estimate this value, the dose response relationship needs to be established, which is generally achieved by fitting monotonic sigmoidal models. However, recent studies on Human Immunodeficiency Virus (HIV) mutants developing resistance to antiviral drugs show that the dose response curve may not be monotonic. Traditional models can fail for nonmonotonic data and ignore observations that may be of biologic significance. Therefore, we propose a nonparametric model to describe the dose response relationship and fit the curve using local polynomial regression. The nonparametric approach is shown to be promising especially for estimating the IC[Formula: see text] of some HIV inhibitory drugs, in which there is a dose-dependent stimulation of response for mutant strains. This model strategy may be applicable to general pharmacologic, toxicologic, or other biomedical data that exhibits a nonmonotonic dose response relationship for which traditional parametric models fail.

  18. Ligand Efficiency Outperforms pIC50 on Both 2D MLR and 3D CoMFA Models: A Case Study on AR Antagonists.

    PubMed

    Li, Jiazhong; Bai, Fang; Liu, Huanxiang; Gramatica, Paola

    2015-12-01

    The concept of ligand efficiency is defined as biological activity in each molecular size and is widely accepted throughout the drug design community. Among different LE indices, surface efficiency index (SEI) was reported to be the best one in support vector machine modeling, much better than the generally and traditionally used end-point pIC50. In this study, 2D multiple linear regression and 3D comparative molecular field analysis methods are employed to investigate the structure-activity relationships of a series of androgen receptor antagonists, using pIC50 and SEI as dependent variables to verify the influence of using different kinds of end-points. The obtained results suggest that SEI outperforms pIC50 on both MLR and CoMFA models with higher stability and predictive ability. After analyzing the characteristics of the two dependent variables SEI and pIC50, we deduce that the superiority of SEI maybe lie in that SEI could reflect the relationship between molecular structures and corresponding bioactivities, in nature, better than pIC50. This study indicates that SEI could be a more rational parameter to be optimized in the drug discovery process than pIC50.

  19. Evidence that cyclic AMP phosphodiesterase inhibitors suppress TNF alpha generation from human monocytes by interacting with a 'low-affinity' phosphodiesterase 4 conformer.

    PubMed Central

    Souness, J. E.; Griffin, M.; Maslen, C.; Ebsworth, K.; Scott, L. C.; Pollock, K.; Palfreyman, M. N.; Karlsson, J. A.

    1996-01-01

    1. We have investigated the inhibitory effects of RP 73401 (piclamilast) and rolipram against human monocyte cyclic AMP-specific phosphodiesterase (PDE4) in relation to their effects on prostaglandin (PG)E2-induced cyclic AMP accumulation and lipopolysaccharide (LPS)-induced TNF alpha production and TNF alpha mRNA expression. 2. PDE4 was found to be the predominant PDE isoenzyme in the cytosolic fraction of human monocytes. Cyclic GMP-inhibited PDE (PDE3) was also detected in the cytosolic and particulate fractions. Reverse transcription polymerase chain reaction (RT-PCR) of human monocyte poly (A+) mRNA revealed amplified products corresponding to PDE4 subtypes A and B of which the former was most highly expressed. A faint band corresponding in size to PDE4D was also observed. 3. RP 73401 was a potent inhibitor of cytosolic PDE4 (IC50: 1.5 +/- 0.6 nM, n = 3). (+/-)-Rolipram (IC50: 313 +/- 6.7 nM, n = 3) was at least 200 fold less potent than RP 73401. R-(-)-rolipram was approximately 3 fold more potent than S-(+)-rolipram against cytosolic PDE4. 4. RP 73401 (IC50: 9.2 +/- 2.1 nM, n = 6) was over 50 fold more potent than (+/-)-rolipram (IC50: 503 +/- 134 nM, n = 6) ) in potentiating PGE2-induced cyclic AMP accumulation. R-(-)-rolipram (IC50: 289 +/- 121 nM, n = 5) was 4.7 fold more potent than its S-(+)-enantiomer (IC50: 1356 +/- 314 nM, n = 5). A strong and highly-significant, linear correlation (r = 0.95, P < 0.01, n = 13) was observed between the inhibitory potencies of a range of structurally distinct PDE4 inhibitors against monocyte PDE4 and their ED50 values in enhancing monocyte cyclic AMP accumulation. A poorer, though still significant, linear correlation (r = 0.67, P < 0.01, n = 13) was observed between the potencies of the same compounds in potentiating PGE2-induced monocyte cyclic AMP accumulation and their abilities to displace [3H]-rolipram binding to brain membranes. 5. RP 73401 (IC50: 6.9 +/- 3.3 nM, n = 5) was 71 fold more potent than

  20. Identification of a high-affinity binding site for dinotefuran in the nerve cord of the American cockroach.

    PubMed

    Miyagi, Satoshi; Komaki, Iori; Ozoe, Yoshihisa

    2006-04-01

    The binding of the neonicotinoid insecticide dinotefuran to insect nicotinic acetylcholine receptors (nAChRs) was examined by a centrifugation method using the nerve cord membranes of American cockroaches and [3H]dinotefuran (78 Ci mmol-1). The Kd and Bmax values of [3H]dinotefuran binding were estimated to be 13.7 nM and 14.8 fmol 40 microg-1 protein respectively by Scatchard analysis. Epibatidine, an nAChR agonist, showed a rather lower affinity to the dinotefuran binding site (IC50=991 nM) than dinotefuran (IC50=5.02 nM). Imidacloprid and nereistoxin displayed lower potencies than dinotefuran but higher potencies than epibatidine. The potencies of five dinotefuran analogues in inhibiting the specific binding of [3H]dinotefuran to nerve cord membranes were determined. A good correlation (r2=0.970) was observed between the -log IC50 values of the tested compounds and their piperonyl butoxide-synergised insecticidal activities (-log LD50 values) against German cockroaches. The results indicate that a high-affinity binding site for dinotefuran is present in the nerve cord of the American cockroach and that the binding of ligands to the site leads to the manifestation of insecticidal activity.

  1. Accurate proton affinity and gas-phase basicity values for molecules important in biocatalysis

    PubMed Central

    Moser, Adam; Range, Kevin; York, Darrin M.

    2010-01-01

    Benchmark quantum calculations of proton affinities and gas phase basicities of molecules relevant to biochemical processes, particulsarly acid/base catalysis, are presented and compared for a variety of multi-level and density-functional quantum models. Included are nucleic acid bases in both keto and enol tautomeric forms, ribose in B-form and A-form sugar pucker conformations, amino acid side chains and backbone molecules, and various phosphates and phosphoranes including thio substitutions. This work presents a high-level thermodynamic characterization of biologically relevant protonation states, and provides a benchmark database for development of next-generation semiempirical and approximate density-functional quantum models, and parameterization of methods to predict pKa values and relative solvation energies. PMID:20942500

  2. Small-conductance Ca(2+)-activated K(+) channels: Heterogeneous affinity in rat brain structures and cognitive modulation by specific blockers.

    PubMed

    Mpari, Bedel; Sreng, Leam; Regaya, Imed; Mourre, Christiane

    2008-07-28

    Small-conductance calcium-activated potassium channels (K(Ca)2) generating the medium afterhyperpolarization seen after an action potential modulate the neuronal integration signal. The effects of two K(Ca)2 channel blockers, apamin, specific to K(Ca)2.2 and K(Ca)2.3 channels, and lei-Dab7, which binds to K(Ca)2.2 channels only, were compared to evaluate the involvement of K(Ca)2 channel subunits in behavior, spatial learning and memory in rats. Intracerebroventricular (9-5 ng) injections of lei-dab7 decreased locomotor activity, food intake and body weight in rats deprived of food. A dose of 3 ng lei-Dab7 had no effect on these types of behavior. We therefore used this dose for attention and memory tasks. No modification to attention or memory was observed in a spatial radial-arm maze task with rats given 3 ng lei-Dab7, whereas apamin (0.3 ng) improved reference memory and accelerated changes of strategy from egocentric to allocentric. These findings suggest that K(Ca)2.3 blockade improves memory in rats. Lei-Dab7 entirely outcompeted the binding of iodinated apamin to 64 brain structures (mean IC(50): 34.5 nM), although IC(50) values were highly variable. By contrast, overall IC(50) values for apamin were close to mean values (11.3 pM). The very low affinity of the hippocampus and neocortex for lei-Dab7 may account for the absence of a behavioral effect of this compound. The variability of IC(50) values suggests that K(Ca)2 channel composition varies considerably as a function of the brain structure considered.

  3. Pinealectomy increases ouabain high-affinity binding sites and dissociation constant in rat cerebral cortex.

    PubMed

    Acuña Castroviejo, D; del Aguila, C M; Fernández, B; Gomar, M D; Castillo, J L

    1991-06-24

    The effect of the pineal gland on the ouabain high-affinity binding sites (Kd = 3.1 +/- 0.4 nM, Bmax = 246.4 +/- 18.4 fmol/mg protein) in rat cerebral cortex was studied. Pinealectomy increased Bmax (940.7 +/- 42.8 fmol/mg protein) and Kd (7.6 +/- 1.5 nM) while melatonin injection (100 micrograms/kg b.wt.) counteracted these effects, restoring kinetic parameters (Kd = 1.9 +/- 0.05 nM; Bmax = 262.2 +/- 29.6 fmol/mg prot) to control values. Melatonin activity on ouabain binding in vitro did not depend upon a direct effect on the binding sites themselves. However, in competition experiments, melatonin increased binding affinity of ouabain as shown by the decreased IC50 values.

  4. Additive method for the prediction of protein-peptide binding affinity. Application to the MHC class I molecule HLA-A*0201.

    PubMed

    Doytchinova, Irini A; Blythe, Martin J; Flower, Darren R

    2002-01-01

    A method has been developed for prediction of binding affinities between proteins and peptides. We exemplify the method through its application to binding predictions of peptides with affinity to major histocompatibility complex class I molecule HLA-A*0201. The method is named "additive" because it is based on the assumption that the binding affinity of a peptide could be presented as a sum of the contributions of the amino acids at each position and the interactions between them. The amino acid contributions and the contributions of the interactions between adjacent side chains and every second side chain were derived using a partial least squares (PLS) statistical methodology using a training set of 420 experimental IC50 values. The predictive power of the method was assessed using rigorous cross-validation and using an independent test set of 89 peptides. The mean value of the residuals between the experimental and predicted pIC50 values was 0.508 for this test set. The additive method was implemented in a program for rapid T-cell epitope search. It is universal and can be applied to any peptide-protein interaction where binding data is known.

  5. Ligand binding affinities of arctigenin and its demethylated metabolites to estrogen receptor alpha.

    PubMed

    Jin, Jong-Sik; Lee, Jong-Hyun; Hattori, Masao

    2013-01-16

    Phytoestrogens are defined as plant-derived compounds with estrogen-like activities according to their chemical structures and activities. Plant lignans are generally categorized as phytoestrogens. It was reported that (-)-arctigenin, the aglycone of arctiin, was demethylated to (-)-dihydroxyenterolactone (DHENL) by Eubacterium (E.) sp. ARC-2. Through stepwise demethylation, E. sp. ARC-2 produced six intermediates, three mono-desmethylarctigenins and three di-desmethylarctigenins. In the present study, ligand binding affinities of (-)-arctigenin and its seven metabolites, including DHENL, were investigated for an estrogen receptor alpha, and found that demethylated metabolites had stronger binding affinities than (-)-arctigenin using a ligand binding screen assay method. The IC(50) value of (2R,3R)-2-(4-hydroxy-3-methoxybenzyl)-3-(3,4-dihydroxybenzyl)-butyrolactone was 7.9 × 10⁻⁴ M.

  6. Near-orthogonal and adaptive affine lifting scheme on vector-valued signals

    NASA Astrophysics Data System (ADS)

    Sliwa, Tadeusz; Voisin, Yvon; Diou, Alain

    2004-02-01

    Lifting Scheme is actually a widely used second generation multi-resolution technique in image and video processing field. It permits to easily create fast, reversible, separable or no, not necessarily linear, multi-resolution analysis for sound, image, video or even 3D graphics. An interesting feature of lifting scheme is the ability to build adaptive transforms, more easily than with other decompositions. Many works have already be done in this subject, especially in lossless or near-lossless compression framework where there is no orthogonal constraint. However, some applications as lossy compression or de-noising requires well conditioned transforms. Indeed, this is due to the use of shrinking or quantization which has not controlled propagation through inverse transform. Authors have recently presented a technique permitting to determine some lifting scheme filters in order to obtain a high level of adaptivity combined with near-orthogonal properties, useful for most of these applications. Naturly coming into the adaptive near orthogonal framework, the point of interest of this article is affine algebraic filters. Color images and video have especially been studied through point of view of compression. In this way, the treatment of the vector aspect of signal, not only by processing channels independently, becomes the focus point of the article.

  7. How reliable are gas-phase proton affinity values of small carbanions? A comparison of experimental data with values calculated using Gaussian-3 and CBS compound methods

    NASA Astrophysics Data System (ADS)

    Danikiewicz, Witold

    2009-08-01

    Gas-phase proton affinities (PA) of a series of 25 small, aliphatic carbanions were computed using different Gaussian-3 methods: G3, G3(B3LYP), G3(MP2) and G3(MP2, B3LYP) and Complete Basis Set Extrapolation methods: CBS-4M, CBS-Q, CBS-QB3, and CBS-APNO. The results were compared with critically selected experimental data. The analysis of the results shows that for the majority of the studied molecules all compound methods (Gaussian-3 and CBS), except for CBS-4M, give comparable results, which differ no more than +/-2 kcal mol-1 from the experimental data. Taking into account the calculation time, G3(MP2) and G3(MP2, B3LYP) methods offer the best compromise between accuracy and computational cost. As an additional proof, the results obtained by these two methods were compared with the values obtained using CCSD(T) ab initio method with large basis set. It was found also that some of the published experimental data are erroneous and should be corrected. The results described in this work show that for the majority of the studied compounds PA values calculated using compound methods can be used with the same or even higher confidence as the experimental ones because even the largest differences between Gaussian-3 and CBS methods listed above are still comparable with the accuracy of the typical PA measurements.

  8. Affinity of ceftobiprole for penicillin-binding protein 2b in Streptococcus pneumoniae strains with various susceptibilities to penicillin.

    PubMed

    Davies, Todd A; He, Wenping; Bush, Karen; Flamm, Robert K

    2010-10-01

    Wild-type penicillin-binding protein (PBP) 2b from penicillin-susceptible Streptococcus pneumoniae had high affinity for ceftobiprole and penicillin (50% inhibitory concentrations [IC(50)s] of ≤0.15 μg/ml) but not ceftriaxone (IC(50) of >8 μg/ml). In clinical isolates, ceftobiprole and PBP 2b affinities were reduced 15- to 30-fold with a Thr-446-Ala substitution and further still with an additional Ala-619-Gly PBP 2b substitution. Ceftobiprole remained active (MICs of ≤1 μg/ml) against all strains tested and behaved more like penicillin than ceftriaxone with respect to PBP 2b binding.

  9. Increasing the molecular contacts between maurotoxin and Kv1.2 channel augments ligand affinity.

    PubMed

    M'Barek, Sarrah; Chagot, Benjamin; Andreotti, Nicolas; Visan, Violeta; Mansuelle, Pascal; Grissmer, Stephan; Marrakchi, Mohamed; El Ayeb, Mohamed; Sampieri, François; Darbon, Hervé; Fajloun, Ziad; De Waard, Michel; Sabatier, Jean-Marc

    2005-08-15

    Scorpion toxins interact with their target ion channels through multiple molecular contacts. Because a "gain of function" approach has never been described to evaluate the importance of the molecular contacts in defining toxin affinity, we experimentally examined whether increasing the molecular contacts between a toxin and an ion channel directly impacts toxin affinity. For this purpose, we focused on two scorpion peptides, the well-characterized maurotoxin with its variant Pi1-like disulfide bridging (MTX(Pi1)), used as a molecular template, and butantoxin (BuTX), used as an N-terminal domain provider. BuTX is found to be 60-fold less potent than MTX(Pi1) in blocking Kv1.2 (IC(50) values of 165 nM for BuTX versus 2.8 nM for MTX(Pi1)). Removal of its N-terminal domain (nine residues) further decreases BuTX affinity for Kv1.2 by 5.6-fold, which is in agreement with docking simulation data showing the importance of this domain in BuTX-Kv1.2 interaction. Transfer of the BuTX N-terminal domain to MTX(Pi1) results in a chimera with five disulfide bridges (BuTX-MTX(Pi1)) that exhibits 22-fold greater affinity for Kv1.2 than MTX(Pi1) itself, in spite of the lower affinity of BuTX as compared to MTX(Pi1). Docking experiments performed with the 3-D structure of BuTX-MTX(Pi1) in solution, as solved by (1)H-NMR, reveal that the N-terminal domain of BuTX participates in the increased affinity for Kv1.2 through additional molecular contacts. Altogether, the data indicate that acting on molecular contacts between a toxin and a channel is an efficient strategy to modulate toxin affinity.

  10. Affinity of ceftaroline and other beta-lactams for penicillin-binding proteins from Staphylococcus aureus and Streptococcus pneumoniae.

    PubMed

    Kosowska-Shick, K; McGhee, P L; Appelbaum, P C

    2010-05-01

    We compared the affinities of ceftaroline for all penicillin-binding proteins (PBPs) with those of ceftriaxone and cefotaxime in 6 Staphylococcus aureus and 7 Streptococcus pneumoniae isolates with various resistance phenotypes. Ceftaroline MICs were affinities for penicillin-susceptible S. pneumoniae strains were in the order PBP2X and -3 > PBP1A, -1B, and -2A > PBP2B, and ceftaroline had >or=4-fold higher 50% inhibitory concentrations (IC(50)s) (0.1 to 4 microg/ml) for PBP2X, -2A, -2B, and -3 than those for the other cephalosporins tested. Among 3 penicillin-resistant S. pneumoniae strains, ceftaroline had a high affinity for PBP2X (IC(50), 0.1 to 1 microg/ml), a primary target for cephalosporin PBP binding activity, and high affinities for PBP2B (IC(50), 0.5 to 4 microg/ml) and PBP1A (IC(50), 0.125 to 0.25 microg/ml) as well, both of which are also known as major targets for PBP binding activity of cephalosporins. Ceftaroline PBP affinities in methicillin-susceptible S. aureus strains were greater than or equal to those of the 3 other beta-lactams tested. Ceftaroline bound to PBP2a in methicillin-resistant S. aureus (IC(50), 0.01 to 1 microg/ml) with up to 256-fold-higher affinity than those of other agents. Ceftaroline demonstrated very good PBP affinity against all S. aureus and S. pneumoniae strains tested, including resistant isolates.

  11. Maximum-Entropy Models of Sequenced Immune Repertoires Predict Antigen-Antibody Affinity

    PubMed Central

    Marcatili, Paolo; Pagnani, Andrea

    2016-01-01

    The immune system has developed a number of distinct complex mechanisms to shape and control the antibody repertoire. One of these mechanisms, the affinity maturation process, works in an evolutionary-like fashion: after binding to a foreign molecule, the antibody-producing B-cells exhibit a high-frequency mutation rate in the genome region that codes for the antibody active site. Eventually, cells that produce antibodies with higher affinity for their cognate antigen are selected and clonally expanded. Here, we propose a new statistical approach based on maximum entropy modeling in which a scoring function related to the binding affinity of antibodies against a specific antigen is inferred from a sample of sequences of the immune repertoire of an individual. We use our inference strategy to infer a statistical model on a data set obtained by sequencing a fairly large portion of the immune repertoire of an HIV-1 infected patient. The Pearson correlation coefficient between our scoring function and the IC50 neutralization titer measured on 30 different antibodies of known sequence is as high as 0.77 (p-value 10−6), outperforming other sequence- and structure-based models. PMID:27074145

  12. Improved pose and affinity predictions using different protocols tailored on the basis of data availability

    NASA Astrophysics Data System (ADS)

    Prathipati, Philip; Nagao, Chioko; Ahmad, Shandar; Mizuguchi, Kenji

    2016-09-01

    The D3R 2015 grand drug design challenge provided a set of blinded challenges for evaluating the applicability of our protocols for pose and affinity prediction. In the present study, we report the application of two different strategies for the two D3R protein targets HSP90 and MAP4K4. HSP90 is a well-studied target system with numerous co-crystal structures and SAR data. Furthermore the D3R HSP90 test compounds showed high structural similarity to existing HSP90 inhibitors in BindingDB. Thus, we adopted an integrated docking and scoring approach involving a combination of both pharmacophoric and heavy atom similarity alignments, local minimization and quantitative structure activity relationships modeling, resulting in the reasonable prediction of pose [with the root mean square deviation (RMSD) values of 1.75 Å for mean pose 1, 1.417 Å for the mean best pose and 1.85 Å for the mean all poses] and affinity (ROC AUC = 0.702 at 7.5 pIC50 cut-off and R = 0.45 for 180 compounds). The second protein, MAP4K4, represents a novel system with limited SAR and co-crystal structure data and little structural similarity of the D3R MAP4K4 test compounds to known MAP4K4 ligands. For this system, we implemented an exhaustive pose and affinity prediction protocol involving docking and scoring using the PLANTS software which considers side chain flexibility together with protein-ligand fingerprints analysis assisting in pose prioritization. This protocol through fares poorly in pose prediction (with the RMSD values of 4.346 Å for mean pose 1, 4.69 Å for mean best pose and 4.75 Å for mean all poses) and produced reasonable affinity prediction (AUC = 0.728 at 7.5 pIC50 cut-off and R = 0.67 for 18 compounds, ranked 1st among 80 submissions).

  13. Purification of peroxidase from red cabbage (Brassica oleracea var. capitata f. rubra) by affinity chromatography.

    PubMed

    Somtürk, Burcu; Kalın, Ramazan; Özdemir, Nalan

    2014-08-01

    Peroxidase was purified in a single step using 4-amino benzohydrazide affinity chromatography from red cabbage (Brassica oleracea var. capitata f. rubra), and some important biochemical characteristics of the purified enzyme were determined. The enzyme, with a specific activity of 3,550 EU/mg protein, was purified 120.6-fold with a yield of 2.9% from the synthesized affinity matrix. The molecular weight of the enzyme was found to be 69.3 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme exhibited maximum activity at pH 7.0 and 30 °C. For guaiacol substrate, the K m and V max values were found as 0.048 mM and 1.46 EU/mL/min, respectively. Additionally, the IC50 and K i values for 4-amino benzohydrazide were calculated to be 1.047 and 0.702±0.05 mM, respectively, and 4-amino benzohydrazide showed noncompetitive inhibition.

  14. 3-Chlorotyramine Acting as Ligand of the D2 Dopamine Receptor. Molecular Modeling, Synthesis and D2 Receptor Affinity.

    PubMed

    Angelina, Emilio; Andujar, Sebastian; Moreno, Laura; Garibotto, Francisco; Párraga, Javier; Peruchena, Nelida; Cabedo, Nuria; Villecco, Margarita; Cortes, Diego; Enriz, Ricardo D

    2015-01-01

    We synthesized and tested 3-chlorotyramine as a ligand of the D2 dopamine receptor. This compound displayed a similar affinity by this receptor to that previously reported for dopamine. In order to understand further the experimental results we performed a molecular modeling study of 3-chlorotyramine and structurally related compounds. By combining molecular dynamics simulations with semiempirical (PM6), ab initio and density functional theory calculations, a simple and generally applicable procedure to evaluate the binding energies of these ligands interacting with the D2 dopamine receptors is reported here. These results provided a clear picture of the binding interactions of these compounds from both structural and energetic view points. A reduced model for the binding pocket was used. This approach allowed us to perform more accurate quantum mechanical calculations as well as to obtain a detailed electronic analysis using the Quantum Theory of Atoms in Molecules (QTAIM) technique. Molecular aspects of the binding interactions between ligands and the D2 dopamine receptor are discussed in detail. A good correlation between the relative binding energies obtained from theoretical calculations and experimental IC50 values was obtained. These results allowed us to predict that 3-chlorotyramine possesses a significant affinity by the D2 -DR. Our theoretical predictions were experimentally corroborated when we synthesized and tested 3-chlorotyramine which displayed a similar affinity by the D2 -DR to that reported for DA.

  15. Are high-affinity progesterone binding site(s) from porcine liver microsomes members of the sigma receptor family?

    PubMed

    Meyer, C; Schmieding, K; Falkenstein, E; Wehling, M

    1998-04-24

    Membrane progesterone binding sites have been purified recently from pig liver. Since progesterone is considered as an endogenous sigma (sigma) receptor ligand, these sites were characterized pharmacologically by ligands selective for sigma receptor and dopamine receptor binding sites, and by other drugs from distinct pharmacological classes. Binding studies using the radioligand [3H]progesterone were done in crude membrane preparations and solubilized fractions to determine half-maximal inhibitory concentration (IC50) values, from which inhibitory constants (Ki values) were calculated. Radioligand binding was inhibited by the sigma receptor ligands haloperidol, carbetapentane citrate, 1,3-Di(2-tolyl)guanidine (DTG), R(-)-N-(3-phenyl-1-propyl)-1-phenyl-2 aminopropane HCl (R(-)-PPAAP HCl), or sigma receptor antagonists like (+)-3-(3-hydroxyphenyl)-N-propylpiperidine HCl (R(+)-PPP HCl) and cis-9-[3-(3,5-dimethyl-1-piperazinyl)propyl]-9H-carbazole dihydrochloride (rimcazole 2HCl). The hierarchy of inhibitory action was not fully compatible with either sigma receptor class I (moderate affinity of pentazocine, diphenylhydantoin (phenytoin) insensitivity) or II sites (high affinity of carbetapentane). The data thus suggest that progesterone binding sites in porcine liver membranes are related to the sigma receptor binding site superfamily, but may represent a particular species with progesterone specificity.

  16. 3D QSAR studies on binding affinities of coumarin natural products for glycosomal GAPDH of Trypanosoma cruzi

    NASA Astrophysics Data System (ADS)

    Menezes, Irwin R. A.; Lopes, Julio C. D.; Montanari, Carlos A.; Oliva, Glaucius; Pavão, Fernando; Castilho, Marcelo S.; Vieira, Paulo C.; Pupo, M.^onica T.

    2003-05-01

    Drug design strategies based on Comparative Molecular Field Analysis (CoMFA) have been used to predict the activity of new compounds. The major advantage of this approach is that it permits the analysis of a large number of quantitative descriptors and uses chemometric methods such as partial least squares (PLS) to correlate changes in bioactivity with changes in chemical structure. Because it is often difficult to rationalize all variables affecting the binding affinity of compounds using CoMFA solely, the program GRID was used to describe ligands in terms of their molecular interaction fields, MIFs. The program VolSurf that is able to compress the relevant information present in 3D maps into a few descriptors can treat these GRID fields. The binding affinities of a new set of compounds consisting of 13 coumarins, for one of which the three-dimensional ligand-enzyme bound structure is known, were studied. A final model based on the mentioned programs was independently validated by synthesizing and testing new coumarin derivatives. By relying on our knowledge of the real physical data (i.e., combining crystallographic and binding affinity results), it is also shown that ligand-based design agrees with structure-based design. The compound with the highest binding affinity was the coumarin chalepin, isolated from Rutaceae species, with an IC50 value of 55.5 μM towards the enzyme glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) from glycosomes of the parasite Trypanosoma cruzi, the causative agent of Chagas' disease. The proposed models from GRID MIFs have revealed the importance of lipophilic interactions in modulating the inhibition, but without excluding the dependence on stereo-electronic properties as found from CoMFA fields.

  17. Evaluation of crocin and curcumin affinity on mushroom tyrosinase using surface plasmon resonance.

    PubMed

    Patil, Sushama; Srinivas, Sistla; Jadhav, Jyoti

    2014-04-01

    Tyrosinase inhibitors have potential applications in the cosmetics and food industries for preventing browning reactions and also as therapeutic drugs for neurodegenerative diseases such as Parkinson's. In this article, crocin and curcumin were evaluated as mushroom tyrosinase inhibitors. Results showed that, both compounds strongly inhibited the diphenolase activity than monophenolase. The IC50 values for diphenolase activity were estimated to be 0.11 mM and 0.18 mM for crocin and curcumin respectively. The binding kinetics of crocin and curcumin was studied with mushroom tyrosinase using surface plasmon resonance (SPR). Tyrosinase was immobilized on the gold surface of a Biacore sensor chip through amine coupling. Binding of inhibitors was analyzed by SPR without the need to further modify the surface or the use of other reagents. The binding constant KD (M) for mushroom tyrosinase obtained was 1.21×10(-4) M for crocin and 1.64×10(-4) M for curcumin, while showing a higher affinity for L-DOPA 1.95×10(-8) M, a substrate for tyrosinase (positive control). The study reveals the SPR sensor's ability to detect binding of the inhibitors.

  18. Fabrication of enzyme-immobilized halloysite nanotubes for affinity enrichment of lipase inhibitors from complex mixtures.

    PubMed

    Wang, Haibo; Zhao, Xiaoping; Wang, Shufang; Tao, Shan; Ai, Ni; Wang, Yi

    2015-05-01

    Lipase is the key enzyme for catalyzing triglyceride hydrolysis in vivo, and lipase inhibitors have been used in the management of obesity. We present the first report on the use of lipase-adsorbed halloysite nanotubes as an efficient medium for the selective enrichment of lipase inhibitors from natural products. A simple and rapid approach was proposed to fabricate lipase-adsorbed nanotubes through electrostatic interaction. Results showed that more than 85% lipase was adsorbed into nanotubes in 90 min, and approximately 80% of the catalytic activity was maintained compared with free lipase. The specificity and reproducibility of the proposed approach were validated by screening a known lipase inhibitor (i.e., orlistat) from a mixture that contains active and inactive compounds. Moreover, we applied this approach with high performance liquid chromatography-mass spectrometry technique to screen lipase inhibitors from the Magnoliae cortex extract, a medicinal plant used for treating obesity. Two novel biphenyl-type natural lipase inhibitors magnotriol A and magnaldehyde B were identified, and their IC50 values were determined as 213.03 and 96.96 μM, respectively. The ligand-enzyme interactions of magnaldehyde B were further investigated by molecular docking. Our findings proved that enzyme-adsorbed nanotube could be used as a feasible and selective affinity medium for the rapid screening of enzyme inhibitors from complex mixtures.

  19. A simple nonradioactive method for the determination of the binding affinities of antibodies induced by hapten bioconjugates for drugs of abuse.

    PubMed

    Torres, Oscar B; Antoline, Joshua F G; Li, Fuying; Jalah, Rashmi; Jacobson, Arthur E; Rice, Kenner C; Alving, Carl R; Matyas, Gary R

    2016-02-01

    The accurate analytical measurement of binding affinities of polyclonal antibody in sera to heroin, 6-acetylmorphine (6-AM), and morphine has been a challenging task. A simple nonradioactive method that uses deuterium-labeled drug tracers and equilibrium dialysis (ED) combined with ultra performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) to measure the apparent dissociation constant (K d) of antibodies to 6-AM and morphine is described. The method can readily detect antibodies with K d in the low nanomolar range. Since heroin is rapidly degraded in sera, esterase inhibitors were included in the assay, greatly reducing heroin hydrolysis. MS/MS detection directly measured the heroin in the assay after overnight ED, thereby allowing the quantitation of % bound heroin in lieu of K d as an alternative measurement to assess heroin binding to polyclonal antibody sera. This is the first report that utilizes a solution-based assay to quantify heroin-antibody binding without being confounded by the presence of 6-AM and morphine and to measure K d of polyclonal antibody to 6-AM. Hapten surrogates 6-AcMorHap, 6-PrOxyHap, MorHap, DiAmHap, and DiPrOxyHap coupled to tetanus toxoid (TT) were used to generate high affinity antibodies to heroin, 6-AM, and morphine. In comparison to competition ED-UPLC/MS/MS which gave K d values in the nanomolar range, the commonly used competition enzyme-linked immunosorbent assay (ELISA) measured the 50% inhibition concentration (IC50) values in the micromolar range. Despite the differences in K d and IC50 values, similar trends in affinities of hapten antibodies to heroin, 6-AM, and morphine were observed by both methods. Competition ED-UPLC/MS/MS revealed that among the five TT-hapten bioconjugates, TT-6-AcMorHap and TT-6-PrOxyHap induced antibodies that bound heroin, 6-AM, and morphine. In contrast, TT-MorHap induced antibodies that poorly bound heroin, while TT-DiAmHap and TT-DiPrOxyHap induced antibodies either did not

  20. Identification and synthesis of [1,2,4]triazolo[3,4-a]phthalazine derivatives as high-affinity ligands to the alpha 2 delta-1 subunit of voltage gated calcium channel.

    PubMed

    Lebsack, Alec D; Gunzner, Janet; Wang, Bowei; Pracitto, Richard; Schaffhauser, Hervé; Santini, Angelina; Aiyar, Jayashree; Bezverkov, Robert; Munoz, Benito; Liu, Wensheng; Venkatraman, Shankar

    2004-05-17

    We have identified and synthesized a series of [1,2,4]triazolo[3,4-a]phthalazine derivatives as high-affinity ligands to alpha 2 delta-1 subunit of voltage gated calcium channels. Structure-activity relationship studies directed toward improving the potency and physical properties of 2 lead to the discovery of 20 (IC(50)=15 nM) and (S)-22 (IC(50)=30 nM). A potent and selective radioligand, [(3)H]-(S)-22 was also synthesized to demonstrate that this ligand binds to the same site as gabapentin.

  1. The synthesis and characterization of cellular membrane affinity chromatography columns for the study of human multidrug resistant proteins MRP1, MRP2 and human breast cancer resistant protein BCRP using membranes obtained from Spodoptera frugiperda (Sf9) insect cells.

    PubMed

    Bhatia, Prateek A; Moaddel, Ruin; Wainer, Irving W

    2010-06-15

    CMAC (cellular membrane affinity chromatography columns) have been developed for the study of the human multidrug transporters MRP1, MRP2 and the breast cancer resistance protein (BCRP). The columns were constructed using the immobilized artificial membrane (IAM) stationary phase and cellular membrane fragments obtained from Spodoptera frugiperda (Sf9) cells that had been stably transfected with human Mrp1, Mrp2 or Bcrp cDNA, using a baculovirus expression system. The resulting CMAC(Sf9(MRP1)), CMAC(Sf9(MRP2)) and CMAC(Sf9(BCRP)) columns and a control column produced using membrane fragments from non-transfected Sf9 cells, CMAC(Sf9), were characterized using frontal affinity chromatography using [(3)H]-etoposide as the marker ligand and etoposide, benzbromarone and MK571 as the displacers on the CMAC(Sf9(MRP1)) column, etoposide and furosemide on the CMAC(Sf9(MRP2)) column and etoposide and fumitremorgin C on the CMAC(Sf9(BCPR)) column. The binding affinities (K(i) values) obtained from the chromatographic studies were consistent with the data obtained using non-chromatographic techniques and the results indicate that the immobilized MRP1, MRP2 and BCRP transporters retained their ability to selectively bind known ligands. (S)-verapamil displaced [(3)H]-etoposide on the CMAC(Sf9(MRP1)) column to a greater extent than (R)-verapamil and the relative IC(50) values of the enantiomers were calculated using the changes in the retention times of the marker. The observed enantioselectivity and calculated IC(50) values were consistent with previously reported data. The results indicated that the CMAC(Sf9(MRP1)), CMAC(Sf9(MRP2)) and CMAC(Sf9(BCRP)) columns can be used for the study of binding to the MRP1, MRP2 and BCRP transporters and that membranes from the Sf9 cell line can be used to prepare CMAC columns. This is the first example of the use of membranes from a non-mammalian cell line in an affinity chromatographic system.

  2. Opiorphin highly improves the specific binding and affinity of MERF and MEGY to rat brain opioid receptors.

    PubMed

    Tóth, Fanni; Tóth, Géza; Benyhe, Sándor; Rougeot, Catherine; Wollemann, Mária

    2012-10-10

    Endogenously occurring opioid peptides are rapidly metabolized by different ectopeptidases. Human opiorphin is a recently discovered natural inhibitor of the enkephalin-inactivating neutral endopeptidase (NEP) and aminopeptidase-N (AP-N) (Wisner et al., 2006). To date, in vitro receptor binding experiments must be performed either in the presence of a mixture of peptidase inhibitors and/or at low temperatures, to block peptidase activity. Here we demonstrate that, compared to classic inhibitor cocktails, opiorphin dramatically increases the binding of [(3)H]MERF and [(3)H]MEGY ligands to rat brain membrane preparations. We found that at 0 °C the increase in specific binding is as high as 40-60% and at 24 °C this rise was even higher. In contrast, the binding of the control [(3)H]endomorphin-1, which is relatively slowly degraded in rat brain membrane preparations, was not enhanced by opiorphin compared to other inhibitors. In addition, in homologous binding displacement experiments, the IC(50) affinity values measured at 24 °C were also significantly improved using opiorphin compared to the inhibitor cocktail. In heterologous binding experiments the differences were less obvious, but still pronounced using [(3)H]MERF and MEGY compared to dynorphin(1-11), or naloxone and DAGO competitor ligands.

  3. Increasing the binding affinity of VEGFR-2 inhibitors by extending their hydrophobic interaction with the active site: Design, synthesis and biological evaluation of 1-substituted-4-(4-methoxybenzyl)phthalazine derivatives.

    PubMed

    Eldehna, Wagdy M; Abou-Seri, Sahar M; El Kerdawy, Ahmed M; Ayyad, Rezk R; Hamdy, Abdallah M; Ghabbour, Hazem A; Ali, Mamdouh M; Abou El Ella, Dalal A

    2016-05-04

    A series of anilinophthalazine derivatives 4a-j was initially synthesized and tested for its VEGFR-2 inhibitory activity where it showed promising activity (IC50 = 0.636-5.76 μM). Molecular docking studies guidance was used to improve the binding affinity for series 4a-j towards VEGFR-2 active site. This improvement was achieved by increasing the hydrophobic interaction with the hydrophobic back pocket of the VEGFR-2 active site lined with the hydrophobic side chains of Ile888, Leu889, Ile892, Val898, Val899, Leu1019 and Ile1044. Increasing the hydrophobic interaction was accomplished by extending the anilinophthalazine scaffold with a substituted phenyl moiety through an uriedo linker which should give this extension the flexibility required to accommodate itself deeply into the hydrophobic back pocket. As planned, the designed uriedo-anilinophthalazines 7a-i showed superior binding affinity than their anilinophthalazine parents (IC50 = 0.083-0.473 μM). In particular, compounds 7g-i showed IC50 of 0.086, 0.083 and 0.086 μM, respectively, which are better than that of the reference drug sorafenib (IC50 = 0.09 μM).

  4. Physicochemical and Biological Characterization of Fucoidan from Fucus vesiculosus Purified by Dye Affinity Chromatography

    PubMed Central

    Zayed, Ahmed; Muffler, Kai; Hahn, Thomas; Rupp, Steffen; Finkelmeier, Doris; Burger-Kentischer, Anke; Ulber, Roland

    2016-01-01

    A comparative study concerning the physicochemical, monomeric composition and biological characters among different fucoidan fractions is presented. Common purification techniques for fucoidan usually involve many steps. During these steps, the important structural features might be affected and consequently alter its biological activities. Three purified fractions were derived from Fucus vesiculosus water extract which, afterwards, were purified by a recently-developed dye affinity chromatography protocol. This protocol is based on dye-sulfated polysaccharide interactions. The first two fractions were obtained from crude precipitated fucoidan at different pH values of the adsorption phase: pH 1 and 6. This procedure resulted in fucoidan_1 and 6 fractions. The other, third, fraction: fucoidan_M, however, was obtained from a buffered crude extract at pH 1, eliminating the ethanol precipitation step. All of the three fractions were then further evaluated. Results revealed that fucoidan_M showed the highest sulfur content (S%), 12.11%, with the lowest average molecular weight, 48 kDa. Fucose, galactose, and uronic acid/glucose dimers were detected in all fractions, although, xylose was only detected in fucoidan_1 and 6. In a concentration of 10 µg·mL−1, Fucoidan_6 showed the highest heparin-like anticoagulant activity and could prolong the APTT and TT significantly to 66.03 ± 2.93 and 75.36 ± 1.37 s, respectively. In addition, fucoidan_M demonstrated the highest potency against HSV-1 with an IC50 of 2.41 µg·mL−1. The technique proved to be a candidate for fucoidan purifaction from its crude extract removing the precipitation step from common purification protocols and produced different fucoidan qualities resulted from the different incubation conditions with the immobilized thiazine toluidine blue O dye. PMID:27092514

  5. Physicochemical and Biological Characterization of Fucoidan from Fucus vesiculosus Purified by Dye Affinity Chromatography.

    PubMed

    Zayed, Ahmed; Muffler, Kai; Hahn, Thomas; Rupp, Steffen; Finkelmeier, Doris; Burger-Kentischer, Anke; Ulber, Roland

    2016-04-15

    A comparative study concerning the physicochemical, monomeric composition and biological characters among different fucoidan fractions is presented. Common purification techniques for fucoidan usually involve many steps. During these steps, the important structural features might be affected and consequently alter its biological activities. Three purified fractions were derived from Fucus vesiculosus water extract which, afterwards, were purified by a recently-developed dye affinity chromatography protocol. This protocol is based on dye-sulfated polysaccharide interactions. The first two fractions were obtained from crude precipitated fucoidan at different pH values of the adsorption phase: pH 1 and 6. This procedure resulted in fucoidan_1 and 6 fractions. The other, third, fraction: fucoidan_M, however, was obtained from a buffered crude extract at pH 1, eliminating the ethanol precipitation step. All of the three fractions were then further evaluated. Results revealed that fucoidan_M showed the highest sulfur content (S%), 12.11%, with the lowest average molecular weight, 48 kDa. Fucose, galactose, and uronic acid/glucose dimers were detected in all fractions, although, xylose was only detected in fucoidan_1 and 6. In a concentration of 10 µg·mL(-1), Fucoidan_6 showed the highest heparin-like anticoagulant activity and could prolong the APTT and TT significantly to 66.03 ± 2.93 and 75.36 ± 1.37 s, respectively. In addition, fucoidan_M demonstrated the highest potency against HSV-1 with an IC50 of 2.41 µg·mL(-1). The technique proved to be a candidate for fucoidan purifaction from its crude extract removing the precipitation step from common purification protocols and produced different fucoidan qualities resulted from the different incubation conditions with the immobilized thiazine toluidine blue O dye.

  6. High affinity P2x-purinoceptor binding sites for [35S]-adenosine 5'-O-[3-thiotriphosphate] in rat vas deferens membranes.

    PubMed Central

    Michel, A. D.; Humphrey, P. P.

    1996-01-01

    1. The binding sites labelled by [35S]-adenosine 5'-O-[3-thiotriphosphate]([35S]-ATP gamma S) at 4 degrees C in rat vas deferens membranes were studied and compared to the sites labelled by [3H]-alpha,beta-methylene ATP ([3H]-alpha beta meATP) to ascertain whether [35S]-ATP gamma S can be used to label the P2x purinoceptor. 2. In the presence of 4 mM CaCl2, the binding of 0.2 nM [35S]-ATP gamma S to vas deferens membranes was increased 3.4 fold, when compared to studies performed in the absence of calcium. However, binding did not appear to be solely to P2x purinoceptors since [35S]-ATP gamma S labelled a heterogeneous population of sites and about 72% of the sites possessed high affinity (pIC50 = 7.5) for guanosine 5'-O-[3-thiotriphosphate] (GTP gamma S). Even in the presence of 1 microM GTP gamma S, to occlude the sites with high affinity for GTP gamma S, the binding of [35S]-ATP gamma S was heterogeneous and since there was also evidence of extensive metabolism of ATP in the presence of calcium, the binding of [35S]-ATP gamma S under these conditions was not studied further. 3. In the absence of calcium ions, [35S]-ATP gamma S bound to a single population of sites (pKD = 9.23; Bmax = 4270 fmol mg-1 protein). Binding reached steady state within 3 h (t1/2 = 38 min), was stable for a further 4 h and was readily reversible upon addition of 10 microM unlabelled ATP gamma S (t1/2 = 45 min). In competition studies the binding of 0.2 nM [35S]-ATP gamma S was inhibited by a number of P2x purinoceptor agonists and antagonists, but not by adenosine receptor agonists, staurosporine (1 microM) or several ATPase inhibitors. The rank order of agonist affinity estimates (pIC50 values) in competing for the [35S]-ATP gamma S binding sites was: ATP (9.01), 2-methylthio- ATP (8.79), ATP gamma S (8.73), alpha beta meATP (7.57), ADP (7.24), beta, gamma-methylene ATP (7.18), L-beta, gamma-methylene ATP (5.83), alpha, beta-methylene ADP (4.36). 4. Affinity estimates (pIC50 values) for

  7. ELECTRON AFFINITIES OF INORGANIC RADICALS.

    DTIC Science & Technology

    energy in the latter compound is 110 kcals/mole, distinctly higher than in ammonia. Cyanogen (CN)2 and hydrocyanic acid (HCN) yield values for the...ions very readily, and the electron affinity is 49 kcals/mole. A comparison with the results from thiocyanic acid (HNCS) indicates that the H-N bond

  8. Evidence that cyclic AMP phosphodiesterase inhibitors suppress interleukin-2 release from murine splenocytes by interacting with a ‘low-affinity' phosphodiesterase 4 conformer

    PubMed Central

    Souness, John E; Houghton, Clare; Sardar, Nughat; Withnall, Michael T

    1997-01-01

    We have investigated the suppressive effects of rolipram, RP 73401 (piclamilast) and other structurally diverse inhibitors of cyclic AMP-specific phosphodiesterase 4 (PDE4) on interleukin (IL)-2 generation from Balb/c mouse splenocytes exposed to the superantigen, Staphylococcocal enterotoxin-A (Staph. A). The purpose was to determine whether their potencies are more closely correlated with inhibition of PDE4 from CTLL cells, against which rolipram displays weak potency (low-affinity PDE4), or displacement of [3H]-(±)-rolipram from its high-affinity binding site (HARBS) in mouse brain cytosol. RP 73401 (IC50 0.46±0.07 nM, n=4) was a very potent inhibitor of Staph. A-induced IL-2 release from Balb/c mouse splenocytes, being >1100 fold more potent than (±)-rolipram (IC50 540±67 nM, n=3). A close correlation (r=0.95) was observed between suppression of IL-2 release by PDE inhibitors and inhibition of PDE4. In contrast, little correlation (r=0.39) was observed between suppression of IL-2 release and their affinities for the high-affinity rolipram binding site (HARBS). RP 73401 only inhibited partially (30–40%) Staph. A-induced incorporation of [3H]-thymidine into splenocyte DNA. The PDE3 inhibitor, siguazodan (10 μM), had little or no effect on IL-2 release or DNA synthesis. This concentration of siguazodan did not enhance the inhibitory action of RP 73401 on IL-2 release but potentiated its effect on DNA synthesis, increasing potency and efficacy. Staph. A-induced DNA synthesis was only partially inhibited by anti-IL-2 neutralizing antibody, whereas dexamethazone (100 nM) and cyclosporine A (100 nM) completely blocked the response. RP 73401 (IC50 6.3±1.9 nM, n=4) was 140 fold more potent than rolipram (IC50 900±300 nM, n=3) in inhibiting Staph. A-induced [3H]-thymidine incorporation into splenocyte DNA. The results implicate a low-affinity form of PDE4 in the suppression of Staph. A-induced IL-2 release from murine splenocytes by PDE inhibitors

  9. High affinity binding of (/sup 3/H)neurotensin of rat uterus

    SciTech Connect

    Pettibone, D.J.; Totaro, J.A.

    1987-11-01

    (/sup 3/H)Neurotensin (NT) was found to bind specifically and with high affinity to crude membranes prepared from rat uterus. Scatchard analysis of saturation binding studies indicated that (/sup 3/H)NT apparently binds to two sites (high affinity Kd 0.5 nM; low affinity Kd 9 nM) with the density of high affinity sites (41 fmoles/mg prot.) being about one-third that of the low affinity sites (100 fmoles/mg prot.). In competition studies, NT and various fragments inhibited (/sup 3/H)NT binding with the following potencies (approximately IC50): NT 8-13 (0.4 nM), NT 1-13 (4 nM), NT 9-13 (130 nM), NT 1-11, NT 1-8 (greater than 100 microM). Quantitatively similar results were obtained using brain tissue. These findings raise the possibility of a role for NT in uterine function.

  10. Omega-conotoxin GVIA binding to a high-affinity receptor in brain: characterization, calcium sensitivity, and solubilization

    SciTech Connect

    Wagner, J.A.; Snowman, A.M.; Biswas, A.; Olivera, B.M.; Snyder, S.H.

    1988-09-01

    We describe unique, high-affinity binding sites for omega(/sup 125/I)conotoxin GVIA in membranes from rat brain and rabbit sympathetic ganglia which appear to be primarily associated with N-type voltage-dependent calcium channels. The dissociation constant (KD) for the toxin in rat brain membranes is 60 pM. Physiologic extracellular concentrations of calcium inhibit toxin binding noncompetitively (IC50 = 0.2 mM). The regional distribution of the binding sites in rat brain differs markedly from that of dihydropyridine calcium antagonist receptors associated with L-type calcium channels. In detergent-solubilized brain membranes, toxin binding retains the same affinity, specificity, and ionic sensitivity as in particulate preparations.

  11. A dielectric affinity microbiosensor

    NASA Astrophysics Data System (ADS)

    Huang, Xian; Li, Siqi; Schultz, Jerome S.; Wang, Qian; Lin, Qiao

    2010-01-01

    We present an affinity biosensing approach that exploits changes in dielectric properties of a polymer due to its specific, reversible binding with an analyte. The approach is demonstrated using a microsensor comprising a pair of thin-film capacitive electrodes sandwiching a solution of poly(acrylamide-ran-3-acrylamidophenylboronic acid), a synthetic polymer with specific affinity to glucose. Binding with glucose induces changes in the permittivity of the polymer, which can be measured capacitively for specific glucose detection, as confirmed by experimental results at physiologically relevant concentrations. The dielectric affinity biosensing approach holds the potential for practical applications such as long-term continuous glucose monitoring.

  12. Affinity in electrophoresis.

    PubMed

    Heegaard, Niels H H

    2009-06-01

    The journal Electrophoresis has greatly influenced my approaches to biomolecular affinity studies. The methods that I have chosen as my main tools to study interacting biomolecules--native gel and later capillary zone electrophoresis--have been the topic of numerous articles in Electrophoresis. Below, the role of the journal in the development and dissemination of these techniques and applications reviewed. Many exhaustive reviews on affinity electrophoresis and affinity CE have been published in the last few years and are not in any way replaced by the present deliberations that are focused on papers published by the journal.

  13. Affine dynamics with torsion

    NASA Astrophysics Data System (ADS)

    Gültekin, Kemal

    2016-03-01

    In this study, we give a thorough analysis of a general affine gravity with torsion. After a brief exposition of the affine gravities considered by Eddington and Schrödinger, we construct and analyze different affine gravities based on the determinants of the Ricci tensor, the torsion tensor, the Riemann tensor, and their combinations. In each case we reduce equations of motion to their simplest forms and give a detailed analysis of their solutions. Our analyses lead to the construction of the affine connection in terms of the curvature and torsion tensors. Our solutions of the dynamical equations show that the curvature tensors at different points are correlated via non-local, exponential rescaling factors determined by the torsion tensor.

  14. Lectin affinity electrophoresis.

    PubMed

    Kobayashi, Yuka

    2014-01-01

    An interaction or a binding event typically changes the electrophoretic properties of a molecule. Affinity electrophoresis methods detect changes in the electrophoretic pattern of molecules (mainly macromolecules) that occur as a result of biospecific interactions or complex formation. Lectin affinity electrophoresis is a very effective method for the detection and analysis of trace amounts of glycobiological substances. It is particularly useful for isolating and separating the glycoisomers of target molecules. Here, we describe a sensitive technique for the detection of glycoproteins separated by agarose gel-lectin affinity electrophoresis that uses antibody-affinity blotting. The technique is tested using α-fetoprotein with lectin (Lens culinaris agglutinin and Phaseolus vulgaris agglutinin)-agarose gels.

  15. Introduction of unsaturation into the N-n-alkyl chain of the nicotinic receptor antagonists, NONI and NDNI: effect on affinity and selectivity.

    PubMed

    Sumithran, Sangeetha P; Crooks, Peter A; Xu, Rui; Zhu, Jun; Deaciuc, Agripina G; Wilkins, Lincoln H; Dwoskin, Linda P

    2005-08-29

    N-n-octylnicotinium iodide (NONI) and N-n-decylnicotinium iodide (NDNI) are selective nicotinic receptor (nAChR) antagonists mediating nicotine-evoked striatal dopamine (DA) release, and inhibiting [3H]nicotine binding, respectively. This study evaluated effects of introducing unsaturation into the N-n-alkyl chains of NONI and NDNI on inhibition of [3H]nicotine and [3H]methyllycaconitine binding (alpha4beta2* and alpha7* nAChRs, respectively), (86)Rb+ efflux and [3H]DA release (agonist or antagonist effects at alpha4beta2* and alpha6beta2*-containing nAChRs, respectively). In the NONI series, introduction of a C3-cis- (NONB3c), C3-trans- (NONB3t), C7-double-bond (NONB7e), or C3-triple-bond (NONB3y) afforded a 4-fold to 250-fold increased affinity for [3H]nicotine binding sites compared with NONI. NONB7e and NONB3y inhibited nicotine-evoked 86Rb+ efflux, indicating alpha4beta2* antagonism. NONI analogs exhibited a 3-fold to 8-fold greater potency inhibiting nicotine-evoked [3H]DA overflow compared with NONI (IC50 = 0.62 microM; Imax = 89%), with no change in Imax, except for NONB3y (Imax = 50%). In the NDNI series, introduction of a C4-cis- (NDNB4c), C4-trans-double-bond (NDNB4t), or C3-triple-bond (NDNB3y) afforded a 4-fold to 80-fold decreased affinity for [3H]nicotine binding sites compared with NDNI, whereas introduction of a C9 double-bond (NDNB9e) did not alter affinity. NDNB3y and NDNB4t inhibited nicotine-evoked 86Rb+ efflux, indicating antagonism at alpha4beta2* nAChRs. Although NDNI had no effect, NDNB4t and NDNB9e potently inhibited nicotine-evoked [3H]DA overflow (IC50 = 0.02-0.14 microM, Imax = 90%), as did NDNB4c (IC50 = 0.08 microM; Imax = 50%), whereas NDNB3y showed no inhibition. None of the analogs had significant affinity for alpha7* nAChRs. Thus, unsaturated NONI analogs had enhanced affinity at alpha4beta2*- and alpha6beta2*-containing nAChRs, however a general reduction of affinity at alpha4beta2* and an uncovering of antagonist effects at

  16. Parallel synthesis and biological activity of a new class of high affinity and selective delta-opioid ligand.

    PubMed

    Barn, D R; Caulfield, W L; Cottney, J; McGurk, K; Morphy, J R; Rankovic, Z; Roberts, B

    2001-10-01

    A considerable number of research papers describing the synthesis and testing of the delta opioid receptor (DOR) ligands, SNC-80 and TAN-67, and analogues of these two compounds, have been published in recent years. However, there have been few reports of the discovery of completely new structural classes of selective DOR ligand. By optimising a hit compound identified by high throughput screening, a new series of tetrahydroisoquinoline sulphonamide-based delta opioid ligands was discovered. The main challenge in this series was to simultaneously improve both affinity and physicochemical properties, notably aqueous solubility. The most active ligand had an affinity (IC(50)) of 6 nM for the cloned human DOR, representing a 15-fold improvement relative to the original hit 1 (IC(50) 98 nM). Compounds from this new series show good selectivity for the DOR over mu and kappa opioid receptors. However the most active and selective compounds had poor aqueous solubility. Improved aqueous solubility was obtained by replacing the phthalimide group in 1 by basic groups, allowing the synthesis of salt forms. A series of compounds with improved affinity and solubility relative to 1 was identified and these compounds showed activity in an in vivo model of antinociception, the formalin paw test. In the case of compound 19, this analgesic activity was shown to be mediated primarily via a DOR mechanism. The most active compound in vivo, 46, showed superior potency in this test compared to the reference DOR ligand, TAN-67 and similar potency to morphine (68% and 58% inhibition in Phases 1 and 2, respectively, at a dose of 10 mmol/kg i.v.).

  17. Affine Sphere Relativity

    NASA Astrophysics Data System (ADS)

    Minguzzi, E.

    2017-03-01

    We investigate spacetimes whose light cones could be anisotropic. We prove the equivalence of the structures: (a) Lorentz-Finsler manifold for which the mean Cartan torsion vanishes, (b) Lorentz-Finsler manifold for which the indicatrix (observer space) at each point is a convex hyperbolic affine sphere centered on the zero section, and (c) pair given by a spacetime volume and a sharp convex cone distribution. The equivalence suggests to describe (affine sphere) spacetimes with this structure, so that no algebraic-metrical concept enters the definition. As a result, this work shows how the metric features of spacetime emerge from elementary concepts such as measure and order. Non-relativistic spacetimes are obtained replacing proper spheres with improper spheres, so the distinction does not call for group theoretical elements. In physical terms, in affine sphere spacetimes the light cone distribution and the spacetime measure determine the motion of massive and massless particles (hence the dispersion relation). Furthermore, it is shown that, more generally, for Lorentz-Finsler theories non-differentiable at the cone, the lightlike geodesics and the transport of the particle momentum over them are well defined, though the curve parametrization could be undefined. Causality theory is also well behaved. Several results for affine sphere spacetimes are presented. Some results in Finsler geometry, for instance in the characterization of Randers spaces, are also included.

  18. Proton Affinity Calculations with High Level Methods.

    PubMed

    Kolboe, Stein

    2014-08-12

    Proton affinities, stretching from small reference compounds, up to the methylbenzenes and naphthalene and anthracene, have been calculated with high accuracy computational methods, viz. W1BD, G4, G3B3, CBS-QB3, and M06-2X. Computed and the currently accepted reference proton affinities are generally in excellent accord, but there are deviations. The literature value for propene appears to be 6-7 kJ/mol too high. Reported proton affinities for the methylbenzenes seem 4-5 kJ/mol too high. G4 and G3 computations generally give results in good accord with the high level W1BD. Proton affinity values computed with the CBS-QB3 scheme are too low, and the error increases with increasing molecule size, reaching nearly 10 kJ/mol for the xylenes. The functional M06-2X fails markedly for some of the small reference compounds, in particular, for CO and ketene, but calculates methylbenzene proton affinities with high accuracy.

  19. On modality and complexity of affine embeddings

    SciTech Connect

    Arzhantsev, I V

    2001-08-31

    Let G be a reductive algebraic group and let H be a reductive subgroup of G. The modality of a G-variety X is the largest number of the parameters in a continuous family of G-orbits in X. A precise formula for the maximum value of the modality over all affine embeddings of the homogeneous space G/H is obtained.

  20. Gas-phase nitronium ion affinities.

    PubMed Central

    Cacace, F; de Petris, G; Pepi, F; Angelelli, F

    1995-01-01

    Evaluation of nitronium ion-transfer equilibria, L1NO2+ + L2 = L2NO2+ + L1 (where L1 and L2 are ligands 1 and 2, respectively) by Fourier-transform ion cyclotron resonance mass spectrometry and application of the kinetic method, based on the metastable fragmentation of L1(NO2+)L2 nitronium ion-bound dimers led to a scale of relative gas-phase nitronium ion affinities. This scale, calibrated to a recent literature value for the NO2+ affinity of water, led for 18 ligands, including methanol, ammonia, representative ketones, nitriles, and nitroalkanes, to absolute NO2+ affinities, that fit a reasonably linear general correlation when plotted vs. the corresponding proton affinities (PAs). The slope of the plot depends to a certain extent on the specific nature of the ligands and, hence, the correlations between the NO2+ affinities, and the PAs of a given class of compounds display a better linearity than the general correlation and may afford a useful tool for predicting the NO2+ affinity of a molecule based on its PA. The NO2+ binding energies are considerably lower than the corresponding PAs and well below the binding energies of related polyatomic cations, such as NO+, a trend consistent with the available theoretical results on the structure and the stability of simple NO2+ complexes. The present study reports an example of extension of the kinetic method to dimers, such as L1(NO2+)L2, bound by polyatomic ions, which may considerably widen its scope. Finally, measurement of the NO2+ affinity of ammonia allowed evaluation of the otherwise inaccessible PA of the amino group of nitramide and, hence, direct experimental verification of previous theoretical estimates. PMID:11607578

  1. Binding Kinetics versus Affinities in BRD4 Inhibition.

    PubMed

    Kuang, Ming; Zhou, Jingwei; Wang, Laiyou; Liu, Zhihong; Guo, Jiao; Wu, Ruibo

    2015-09-28

    Bromodomains (BRDs) are protein modules that selectively recognize histones as a "reader" by binding to an acetylated lysine substrate. The human BRD4 has emerged as a promising drug target for a number of disease pathways, and several potent BRD inhibitors have been discovered experimentally recently. However, the detailed inhibition mechanism especially for the inhibitor binding kinetics is not clear. Herein, by employing classical molecular dynamics (MD) and state-of-the-art density functional QM/MM MD simulations, the dynamic characteristics of ZA-loop in BRD4 are revealed. And then the correlation between binding pocket size and ZA-loop motion is elucidated. Moreover, our simulations found that the compound (-)-JQ1 could be accommodated reasonably in thermodynamics whereas it is infeasible in binding kinetics against BRD4. Its racemate (+)-JQ1 proved to be both thermodynamically reasonable and kinetically achievable against BRD4, which could explain the previous experimental results that (+)-JQ1 shows a high inhibitory effect toward BRD4 (IC50 is 77 nM) while (-)-JQ1 is inactive (>10 μM). Furthermore, the L92/L94/Y97 in the ZA-loop and Asn140 in the BC-loop are identified to be critical residues in (+)-JQ1 binding/releasing kinetics. All these findings shed light on further selective inhibitor design toward BRD family, by exploiting the non-negligible ligand binding kinetics features and flexible ZA-loop motions of BRD, instead of only the static ligand-protein binding affinity.

  2. Cannabinoid CB(1) receptor expression and affinity in the rat hippocampus following bilateral vestibular deafferentation.

    PubMed

    Baek, Jean Ha; Zheng, Yiwen; Darlington, Cynthia L; Smith, Paul F

    2011-01-10

    Numerous studies have shown that bilateral vestibular deafferentation (BVD) results in spatial memory deficits and hippocampal dysfunction in rats and humans. Since cannabinoid CB(1) receptors are well known to regulate synaptic plasticity in the hippocampus, we investigated whether BVD resulted in changes in CB(1) receptor expression and affinity in the rat hippocampus at 1, 3 and 7 days post-surgery, using a combination of Western blotting and radioligand binding. Using Western blotting, we found that CB(1) receptor expression was significantly lower in BVD animals compared to sham controls only in the CA3 area across the 3 time points (P=0.03). CB(1) receptor expression decreased significantly over time for both the BVD and sham animals (P=0.000). The radioligand binding assays showed no significant change in the IC(50) of the CB(1) receptor for the cannabinoid CB(1)/CB(2) receptor agonist, WIN55,212-2. These results suggest that the CB(1) receptor down-regulates in the CA3 region of the hippocampus following BVD, but with no changes in the affinity of the CB(1) receptor for WIN55,212-2.

  3. Kernel Affine Projection Algorithms

    NASA Astrophysics Data System (ADS)

    Liu, Weifeng; Príncipe, José C.

    2008-12-01

    The combination of the famed kernel trick and affine projection algorithms (APAs) yields powerful nonlinear extensions, named collectively here, KAPA. This paper is a follow-up study of the recently introduced kernel least-mean-square algorithm (KLMS). KAPA inherits the simplicity and online nature of KLMS while reducing its gradient noise, boosting performance. More interestingly, it provides a unifying model for several neural network techniques, including kernel least-mean-square algorithms, kernel adaline, sliding-window kernel recursive-least squares (KRLS), and regularization networks. Therefore, many insights can be gained into the basic relations among them and the tradeoff between computation complexity and performance. Several simulations illustrate its wide applicability.

  4. Adjoint affine fusion and tadpoles

    NASA Astrophysics Data System (ADS)

    Urichuk, Andrew; Walton, Mark A.

    2016-06-01

    We study affine fusion with the adjoint representation. For simple Lie algebras, elementary and universal formulas determine the decomposition of a tensor product of an integrable highest-weight representation with the adjoint representation. Using the (refined) affine depth rule, we prove that equally striking results apply to adjoint affine fusion. For diagonal fusion, a coefficient equals the number of nonzero Dynkin labels of the relevant affine highest weight, minus 1. A nice lattice-polytope interpretation follows and allows the straightforward calculation of the genus-1 1-point adjoint Verlinde dimension, the adjoint affine fusion tadpole. Explicit formulas, (piecewise) polynomial in the level, are written for the adjoint tadpoles of all classical Lie algebras. We show that off-diagonal adjoint affine fusion is obtained from the corresponding tensor product by simply dropping non-dominant representations.

  5. Compressed images for affinity prediction-2 (CIFAP-2): an improved machine learning methodology on protein-ligand interactions based on a study on caspase 3 inhibitors.

    PubMed

    Erdas, Ozlem; Andac, Cenk A; Gurkan-Alp, A Selen; Alpaslan, Ferda Nur; Buyukbingol, Erdem

    2015-01-01

    The aim of this study is to propose an improved computational methodology, which is called Compressed Images for Affinity Prediction-2 (CIFAP-2) to predict binding affinities of structurally related protein-ligand complexes. CIFAP-2 method is established based on a protein-ligand model from which computational affinity information is obtained by utilizing 2D electrostatic potential images determined for the binding site of protein-ligand complexes. The quality of the prediction of the CIFAP-2 algorithm was tested using partial least squares regression (PLSR) as well as support vector regression (SVR) and adaptive neuro-fuzzy ınference system (ANFIS), which are highly promising prediction methods in drug design. CIFAP-2 was applied on a protein-ligand complex system involving Caspase 3 (CASP3) and its 35 inhibitors possessing a common isatin sulfonamide pharmacophore. As a result, PLSR affinity prediction for the CASP3-ligand complexes gave rise to the most consistent information with reported empirical binding affinities (pIC(50)) of the CASP3 inhibitors.

  6. Electron Affinity Calculations for Thioethers

    NASA Technical Reports Server (NTRS)

    Sulton, Deley L.; Boothe, Michael; Ball, David W.; Morales, Wilfredo

    1997-01-01

    Previous work indicated that polyphenyl thioethers possessed chemical properties, related to their electron affinities, which could allow them to function as vapor phase lubricants (VPL). Indeed, preliminary tribological tests revealed that the thioethers could function as vapor phase lubricants but not over a wide temperature and hertzian pressure range. Increasing the electron affinity of the thioethers may improve their VPL properties over this range. Adding a substituent group to the thioether will alter its electron affinity in many cases. Molecular orbital calculations were undertaken to determine the effect of five different substituent groups on the electron affinity of polyphenyl thioethers. It was found that the NO2, F, and I groups increased the thioethers electron affinity by the greatest amount. Future work will involve the addition of these groups to the thioethers followed by tribological testing to assess their VPL properties.

  7. Affinity based information diffusion model in social networks

    NASA Astrophysics Data System (ADS)

    Liu, Hongli; Xie, Yun; Hu, Haibo; Chen, Zhigao

    2014-12-01

    There is a widespread intuitive sense that people prefer participating in spreading the information in which they are interested. The affinity of people with information disseminated can affect the information propagation in social networks. In this paper, we propose an information diffusion model incorporating the mechanism of affinity of people with information which considers the fitness of affinity values of people with affinity threshold of the information. We find that the final size of information diffusion is affected by affinity threshold of the information, average degree of the network and the probability of people's losing their interest in the information. We also explore the effects of other factors on information spreading by numerical simulations and find that the probabilities of people's questioning and confirming the information can affect the propagation speed, but not the final scope.

  8. Contractions of affine spherical varieties

    SciTech Connect

    Arzhantsev, I V

    1999-08-31

    The language of filtrations and contractions is used to describe the class of G-varieties obtainable as the total spaces of the construction of contraction applied to affine spherical varieties, which is well-known in invariant theory. These varieties are local models for arbitrary affine G-varieties of complexity 1 with a one-dimensional categorical quotient. As examples, reductive algebraic semigroups and three-dimensional SL{sub 2}-varieties are considered.

  9. Identification of a high-affinity monoclonal antibody against ochratoxin A and its application in enzyme-linked immunosorbent assay.

    PubMed

    Zhang, Xian; Sun, Mengjiao; Kang, Yue; Xie, Hui; Wang, Xin; Song, Houhui; Li, Xiaoliang; Fang, Weihuan

    2015-11-01

    Ochratoxin A (OTA) is one of the most commonly occurring mycotoxins produced by some species of Aspergillus and can contaminate cereal and cereal products. A high-affinity anti-OTA monoclonal antibody (mAb) was generated from a hybridoma cell line 2D8 using splenocytes from a BALB/c mouse immunized with synthesized OTA-bovine serum albumin conjugate. The mAb 2D8 is specific with high affinity (3.75 × 10(9) L/M). An indirect competitive ELISA (ic-ELISA) was then developed using this mAb for quantitative determination of OTA in corn and feed samples. Using the optimized conditions, there was good linearity between OTA concentration and competitive inhibition (y = -0.6076x + 0.2441, R(2) = 0.9923) with the working range from 2.4 to 23.6 μg/kg, IC50 at 7.6 μg/kg and lower limit of detection at 1.4 μg/kg. The recovery rates in spiked samples were 91.2-110.3%. Of the 56 corn and feed samples, this ic-ELISA and a commercial kit both found the same 13 samples positive for OTA with good linear correlation between the two methods in OTA quantification (R(2) = 0.9706). We conclude that this ic-ELISA can be used for rapid and quantitative screening of corn and feed samples for the presence of OTA.

  10. A multiplexed three-dimensional paper-based electrochemical impedance device for simultaneous label-free affinity sensing of total and glycated haemoglobin: The potential of using a specific single-frequency value for analysis.

    PubMed

    Boonyasit, Yuwadee; Chailapakul, Orawon; Laiwattanapaisal, Wanida

    2016-09-14

    A novel three-dimensional paper-based electrochemical impedance device (3D-PEID) is first introduced for measuring multiple diabetes markers. Herein, a simple 3D-PEID composed of a dual screen-printed electrode on wax-patterned paper coupled with a multilayer of magnetic paper was fabricated for label-free electrochemical detection. The results clearly demonstrated in a step-wise manner that the haptoglobin (Hp)-modified and 3-aminophenylboronic acid (APBA)-modified eggshell membranes (ESMs) were highly responsive to a clinically relevant range of total (0.5-20 g dL(-1); r(2) = 0.989) and glycated haemoglobin (HbA1c) (2.3%-14%; r(2) = 0.997) levels with detection limits (S/N = 3) of 0.08 g dL(-1) and 0.21%, respectively. The optimal binding frequencies of total haemoglobin and HbA1c to their specific recognition elements were 5.18 Hz and 9.99 Hz, respectively. The within-run coefficients of variation (CV) were 1.84%, 2.18%, 1.72%, and 2.01%, whereas the run-to-run CVs were 2.11%, 2.41%, 2.08%, and 2.21%, when assaying two levels of haemoglobin and HbA1c, respectively. The CVs for the haemoglobin and HbA1c levels measured on ten independently fabricated paper-based sheets were 1.96% and 2.10%, respectively. These results demonstrated that our proposed system achieved excellent precision for the simultaneous detection of total haemoglobin and HbA1c, with an acceptable reproducibility of fabrication. The long-term stability of the Hp-modified eggshell membrane (ESM) was 98.84% over a shelf-life of 4 weeks, enabling the possibility of storage or long-distance transport to remote regions, particularly in resource-limited settings; however, for the APBA-modified ESM, the stability was 92.35% over a one-week period. Compared with the commercial automated method, the results demonstrated excellent agreement between the techniques (p-value < 0.05), thus permitting the potential application of 3D-PEID for the monitoring of the glycaemic status in diabetic

  11. Regulation of osteosarcoma EGF receptor affinity by phorbol ester and cyclic AMP

    SciTech Connect

    Borst, S.E.; Catherwood, B.D. )

    1989-04-01

    We studied the binding and degradation of 125I-labeled epidermal growth factor (EGF) by UMR-106 osteosarcoma cells and the regulation of EGF receptor affinity for EGF by the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and by treatments that raise intracellular levels of cyclic AMP. Cell surface binding of (125I)EGF to A431 cells reached a plateau after a 30 minute incubation at 37 degrees C but was undetectable in UMR-106 cells. Degradation of (125I)EGF proceeded at a 50-fold higher rate in A431 cells on a per cell basis, but receptor-bound (125I)EGF was internalized and degraded at a 3.5-fold higher rate by UMR-106 cells on a per receptor basis. At 4 degrees C, (125I)EGF labeled a single class of surface binding sites in the UMR-106 cell. Treatment with TPA at 37 degrees C reduced subsequent cell surface binding of (125I)EGF at 4 degrees C a maximum of 80% with an IC50 of 1.25 ng/ml. Maximal TPA reduction of (125I)EGF binding was observed within 5-15 minutes and was due to a reduction in the affinity of cell surface receptors of (125I)EGF without a change in receptor density. Pretreatment of the cells for 4 h with 30 microM forskolin, 1 mM isobutylmethylxanthine (IBMX) plus 30 microM forskolin, or 1 mM IBMX plus 100 ng/ml parathyroid hormone (PTH) attenuated the loss in (125I)EGF binding caused by a subsequent dose of 10 ng/ml of TPA by 17% (p less than 0.0005), 39% (p less than 0.0002), and 35% (p less than 0.002), respectively.

  12. Chemical binding affinity estimation using MSB

    NASA Astrophysics Data System (ADS)

    Weaver, John B.; Rauwerdink, Adam M.

    2011-03-01

    Binding affinity can be estimated in several ways in the laboratory but there is no viable way to estimate binding affinity in vivo without assumptions on the number of binding sites. Magnetic spectroscopy of nanoparticle Brownian motion, MSB, measures the rotational Brownian motion. The MSB signal is affected by nanoparticle binding affinity so it provides a mechanism to measure the chemical binding affinity. We present a possible mechanism to quantify the binding affinity and test that mechanism using viscous solutions.

  13. Affine Contractions on the Plane

    ERIC Educational Resources Information Center

    Celik, D.; Ozdemir, Y.; Ureyen, M.

    2007-01-01

    Contractions play a considerable role in the theory of fractals. However, it is not easy to find contractions which are not similitudes. In this study, it is shown by counter examples that an affine transformation of the plane carrying a given triangle onto another triangle may not be a contraction even if it contracts edges, heights or medians.…

  14. Affinity-aware checkpoint restart

    SciTech Connect

    Saini, Ajay; Rezaei, Arash; Mueller, Frank; Hargrove, Paul; Roman, Eric

    2014-12-08

    Current checkpointing techniques employed to overcome faults for HPC applications result in inferior application performance after restart from a checkpoint for a number of applications. This is due to a lack of page and core affinity awareness of the checkpoint/restart (C/R) mechanism, i.e., application tasks originally pinned to cores may be restarted on different cores, and in case of non-uniform memory architectures (NUMA), quite common today, memory pages associated with tasks on a NUMA node may be associated with a different NUMA node after restart. Here, this work contributes a novel design technique for C/R mechanisms to preserve task-to-core maps and NUMA node specific page affinities across restarts. Experimental results with BLCR, a C/R mechanism, enhanced with affinity awareness demonstrate significant performance benefits of 37%-73% for the NAS Parallel Benchmark codes and 6-12% for NAMD with negligible overheads instead of up to nearly four times longer an execution times without affinity-aware restarts on 16 cores.

  15. Affinity-aware checkpoint restart

    DOE PAGES

    Saini, Ajay; Rezaei, Arash; Mueller, Frank; ...

    2014-12-08

    Current checkpointing techniques employed to overcome faults for HPC applications result in inferior application performance after restart from a checkpoint for a number of applications. This is due to a lack of page and core affinity awareness of the checkpoint/restart (C/R) mechanism, i.e., application tasks originally pinned to cores may be restarted on different cores, and in case of non-uniform memory architectures (NUMA), quite common today, memory pages associated with tasks on a NUMA node may be associated with a different NUMA node after restart. Here, this work contributes a novel design technique for C/R mechanisms to preserve task-to-core mapsmore » and NUMA node specific page affinities across restarts. Experimental results with BLCR, a C/R mechanism, enhanced with affinity awareness demonstrate significant performance benefits of 37%-73% for the NAS Parallel Benchmark codes and 6-12% for NAMD with negligible overheads instead of up to nearly four times longer an execution times without affinity-aware restarts on 16 cores.« less

  16. Acylation of the alpha-amino group in neuropeptide Y(12-36) increases binding affinity for the Y2 receptor.

    PubMed

    Murase, S; Yumoto, N; Petukhov, M G; Yoshikawa, S

    1996-01-01

    Competition assays using three series of analogs of neuropeptide Y (NPY) ([Xaa11]NPY(11-36), [Xaa12]NPY(12-36), and [Xaa13]NPY(13-36) revealed that the binding affinity for the Y2 receptor was considerably lowered by truncation of residue 11. Upon acetylation or succinylation of the alpha-amino group, the binding affinity of [Xaa12]NPY(12-36) recovered to a level similar to that of [Xaa11]NPY(11-36). No significant difference was observed between the increases caused by acetylation and those caused by succinylation, suggesting that the increase in binding affinity cannot be explained by the change in the net charge at the N-terminus as a consequence of the modification. The scattered data points on a plot of the alpha-helix content vs. IC50 of all these analogs revealed the absence of any apparent relationship, an indication that prior formation of the alpha-helix is not necessary for binding to the Y2 receptor. It has been widely accepted that fewer than 12 residues from the C-terminus are directly involved in binding of NPY to the Y2 receptor, while the remaining part of NPY only assists in the adoption of a favorable conformation by the C-terminal hexapeptide for recognition by the receptor. However, the present results suggest that the region around residue 12 does not project from the Y2 receptor.

  17. The proton affinities of saturated and unsaturated heterocyclic molecules

    NASA Astrophysics Data System (ADS)

    Kabli, Samira; van Beelen, Eric S. E.; Ingemann, Steen; Henriksen, Lars; Hammerum, Steen

    2006-03-01

    The proton affinities derived from G3-calculations of 23 five-membered ring heteroaromatic molecules agree well with the experimentally determined values available in the literature. The calculated local proton affinities show that the principal site of protonation of the heteroaromatic compounds examined is an atom of the ring, carbon when there is only one heteroatom in the ring, and nitrogen where there are two or more heteroatoms. The experimental proton affinities of non-aromatic cyclic ethers, amines and thioethers are also in excellent agreement with the calculated values, with two exceptions (oxetane, N-methylazetidine). The literature proton affinities of the four simple cyclic ethers, oxetane, tetrahydrofuran, tetrahydropyran and oxepane were confirmed by Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry, in order to examine the disagreement between the values predicted by extrapolation or additivity for tetrahydrofuran and tetrahydropyran and those determined by experiment and by calculation. The proton affinity differences between the pairs tetrahydropyran/1,4-dioxane, piperidine/morpholine and related compounds show that introduction of an additional oxygen atom in the ring considerably lowers the basicity.

  18. Theoretical proton affinity and fluoride affinity of nerve agent VX.

    PubMed

    Bera, Narayan C; Maeda, Satoshi; Morokuma, Keiji; Viggiano, Al A

    2010-12-23

    Proton affinity and fluoride affinity of nerve agent VX at all of its possible sites were calculated at the RI-MP2/cc-pVTZ//B3LYP/6-31G* and RI-MP2/aug-cc-pVTZ//B3LYP/6-31+G* levels, respectively. The protonation leads to various unique structures, with H(+) attached to oxygen, nitrogen, and sulfur atoms; among which the nitrogen site possesses the highest proton affinity of -ΔE ∼ 251 kcal/mol, suggesting that this is likely to be the major product. In addition some H(2), CH(4) dissociation as well as destruction channels have been found, among which the CH(4) + [Et-O-P(═O)(Me)-S-(CH(2))(2)-N(+)(iPr)═CHMe] product and the destruction product forming Et-O-P(═O)(Me)-SMe + CH(2)═N(+)(iPr)(2) are only 9 kcal/mol less stable than the most stable N-protonated product. For fluoridization, the S-P destruction channel to give Et-O-P(═O)(Me)(F) + [S-(CH(2))(2)-N-(iPr)(2)](-) is energetically the most favorable, with a fluoride affinity of -ΔE ∼ 44 kcal. Various F(-) ion-molecule complexes are also found, with the one having F(-) interacting with two hydrogen atoms in different alkyl groups to be only 9 kcal/mol higher than the above destruction product. These results suggest VX behaves quite differently from surrogate systems.

  19. Electrospun polyethersulfone affinity membrane: membrane preparation and performance evaluation.

    PubMed

    Ma, Zuwei; Lan, Zhengwei; Matsuura, Takeshi; Ramakrishna, Seeram

    2009-11-01

    Non-woven polyethersulfone (PES) membranes were prepared by electrospinning. After heat treatment and surface activation, the membranes were covalently functionalized with ligands to be used as affinity membranes. The membranes were characterized in terms of fiber diameter, porosity, specific area, pore size, ligand density and binding capacities. To evaluate the binding efficiency of the membrane, dynamic adsorption of bovine serum albumin (BSA) on the Cibacron blue F3GA (CB) functionalized PES membrane was studied. Experimental breakthrough curves were fitted with the theoretical curves based on the plate model to estimate plate height (H(p)) of the affinity membrane. The high value of H(p) (1.6-8 cm) of the affinity membrane implied a poor dynamic binding efficiency, which can be explained by the intrinsic microstructures of the material. Although the electrospun membrane might not be an ideal candidate for the preparative affinity membrane chromatography for large-scale production, it still can be used for fast small-scale protein purification in which a highly efficient binding is not required. Spin columns packed with protein A/G immobilized PES membranes were demonstrated to be capable of binding IgG specifically. SDS-PAGE results demonstrated that the PES affinity membrane had high specific binding selectivity for IgG molecules and low non-specific protein adsorption. Compared with other reported affinity membranes, the PES affinity membrane had a comparable IgG binding capacity of 4.5 mg/ml, and had a lower flow through pressure drop due to its larger pore size. In conclusion, the novel PES affinity membrane is an ideal spin column packing material for fast protein purification.

  20. Quantification of hydrophobic interaction affinity of colloids

    NASA Astrophysics Data System (ADS)

    Saini, G.; Nasholm, N.; Wood, B. D.

    2009-12-01

    Colloids play an important role in a wide variety of disciplines, including water and wastewater treatment, subsurface transport of metals and organic contaminants, migration of fines in oil reservoirs, biocolloid (virus and bacteria) transport in subsurface, and are integral to laboratory transport studies. Although the role of hydrophobicity in adhesion and transport of colloids, particularly bacteria, is well known; there is scarcity of literature regarding hydrophobicity measurement of non-bacterial colloids and other micron-sized particles. Here we detail an experimental approach based on differential partitioning of colloids between two liquid phases (hydrocarbon and buffer) as a measure of the hydrophobic interaction affinity of colloids. This assay, known as Microbial adhesion to hydrocarbons or MATH, is frequently used in microbiology and bacteriology for quantifying the hydrophobicity of microbes. Monodispersed colloids and particles, with sizes ranging from 1 micron to 33 micron, were used for the experiments. A range of hydrophobicity values were observed for different particles. The hydrophobicity results are also verified against water contact angle measurements of these particles. This liquid-liquid partitioning assay is quick, easy-to-perform and requires minimal instrumentation. Estimation of the hydrophobic interaction affinity of colloids would lead to a better understanding of their adhesion to different surfaces and subsequent transport in porous media.

  1. High-affinity K+ uptake in pepper plants.

    PubMed

    Martínez-Cordero, M Angeles; Martínez, Vicente; Rubio, Francisco

    2005-06-01

    High-affinity K+ uptake is an essential process for plant nutrition under K+-limiting conditions. The results presented here demonstrate that pepper (Capsicum annuum) plants grown in the absence of NH4+ and starved of K+ show an NH4+-sensitive high-affinity K+ uptake that allows plant roots to deplete external K+ to values below 1 microM. When plants are grown in the presence of NH4+, high-affinity K+ uptake is not inhibited by NH4+. Although NH4+-grown plants deplete external K+ below 1 microM in the absence of NH4+, when 1 mM NH4+ is present they do not deplete external K+ below 10 microM. A K+ transporter of the HAK family, CaHAK1, is very likely mediating the NH4+-sensitive component of the high-affinity K+ uptake in pepper roots. CaHAK1 is strongly induced in the roots that show the NH4+-sensitive high-affinity K+ uptake and its induction is reduced in K+-starved plants grown in the presence of NH4+. The NH4+-insensitive K+ uptake may be mediated by an AKT1-like K+ channel.

  2. Affine kinematics in planar fibrous connective tissues: an experimental investigation.

    PubMed

    Jayyosi, C; Affagard, J-S; Ducourthial, G; Bonod-Bidaud, C; Lynch, B; Bancelin, S; Ruggiero, F; Schanne-Klein, M-C; Allain, J-M; Bruyère-Garnier, K; Coret, M

    2017-03-29

    The affine transformation hypothesis is usually adopted in order to link the tissue scale with the fibers scale in structural constitutive models of fibrous tissues. Thanks to the recent advances in imaging techniques, such as multiphoton microscopy, the microstructural behavior and kinematics of fibrous tissues can now be monitored at different stretching within the same sample. Therefore, the validity of the affine hypothesis can be investigated. In this paper, the fiber reorientation predicted by the affine assumption is compared to experimental data obtained during mechanical tests on skin and liver capsule coupled with microstructural imaging using multiphoton microscopy. The values of local strains and the collagen fibers orientation measured at increasing loading levels are used to compute a theoretical estimation of the affine reorientation of collagen fibers. The experimentally measured reorientation of collagen fibers during loading could not be successfully reproduced with this simple affine model. It suggests that other phenomena occur in the stretching process of planar fibrous connective tissues, which should be included in structural constitutive modeling approaches.

  3. Autoradiography: (/sup 125/I)SCH 23982 binds with picomolar affinity to D1 sites on striatonigral neurons

    SciTech Connect

    Altar, C.A.; Marien, M.R.

    1986-03-01

    SCH 23390 is selective D1 antagonist. The authors show for the first time, with iodinated SCH 23390, (/sup 125/I)SCH 23982, D1 binding sites on striatonigral neurons. Rat brain sections were covered for 1 hr by a pH 7.6 TRIS buffer containing 2-770 pM (/sup 125/I)SCH 23982, rinsed 2 min at 4 /sup 0/C, dried, and exposed to film for 18 hr. (/sup 125/I)SCH 23982 was displaced by D1 (SCH 23390; IC50= 200 pM; cis-flupenthixol, 10 nM; SKF 38393, 90 nM) but not D2 (sulpiride, LY171555) ligands. Intermediate D1 binding was found in the internal capsule and entopeduncular nucleus. Striatal quinolinate (100 nmol) decreased nigral and striatal D1 binding. Intranigral 6-hydroxydopamine (6 ..mu..g) that destroyed > 90% of nigrostriatal dopamine neurons did not alter nigral or striatal D1 binding. Thus, (/sup 125/I)SCH 23982 labels with pM affinity D1 sites that reside on striatonigral neurons.

  4. Identification of Eupatilin from Artemisia argyi as a Selective PPARα Agonist Using Affinity Selection Ultrafiltration LC-MS.

    PubMed

    Choi, Yongsoo; Jung, Yujung; Kim, Su-Nam

    2015-07-28

    Peroxisome proliferator-activated receptors (PPARs) are key nuclear receptors and therapeutic targets for the treatment of metabolic diseases through the regulation of insulin resistance, diabetes, and dyslipidemia. Although a few drugs that target PPARs have been approved, more diverse and novel PPAR ligands are necessary to improve the safety and efficacy of available drugs. To expedite the search for new natural agonists of PPARs, we developed a screening assay based on ultrafiltration liquid chromatography-mass spectrometry (LC-MS) that is compatible with complex samples such as dietary foods or botanical extracts. The known PPARα and/or PPARγ ligands resveratrol and rosiglitazone were used as positive controls to validate the developed method. When applied to the screening of an Artemisia argyi extract, eupatilin was identified as a selective PPARα ligand. A PPAR competitive binding assay based on FRET detection also confirmed eupatilin as a selective PPARα agonist exhibiting a binding affinity of 1.18 μM (IC50). Furthermore, eupatilin activation of the transcriptional activity of PPARα was confirmed using a cell-based transactivation assay. Thus, ultrafiltration LC-MS is a suitable assay for the identification of PPAR ligands in complex matrixes such as extracts of dietary foods and botanicals.

  5. Cloning and functional characterization of the high-affinity K+ transporter HAK1 of pepper.

    PubMed

    Martínez-Cordero, M Angeles; Martínez, Vicente; Rubio, Francisco

    2004-10-01

    High-affinity K+ uptake in plants plays a crucial role in K+ nutrition and different systems have been postulated to contribute to the high-affinity K+ uptake. The results presented here with pepper (Capsicum annum) demonstrate that a HAK1-type transporter greatly contributes to the high-affinity K+ uptake observed in roots. Pepper plants starved of K+ for 3 d showed high-affinity K+ uptake (Km of 6 microM K+) that was very sensitive to NH and their roots expressed a high-affinity K+ transporter, CaHAK1, which clusters in group I of the KT/HAK/KUP family of transporters. When expressed in yeast ( Saccharomyces cerevisiae ), CaHAK1 mediated high-affinity K+ and Rb+ uptake with Km values of 3.3 and 1.9 microM, respectively. Rb+ uptake was competitively inhibited by micromolar concentrations of NH and Cs+, and by millimolar concentrations of Na+.

  6. Expression and Functional Properties of an Anti-Triazophos High-Affinity Single-Chain Variable Fragment Antibody with Specific Lambda Light Chain

    PubMed Central

    Liu, Rui; Liang, Xiao; Xiang, Dandan; Guo, Yirong; Liu, Yihua; Zhu, Guonian

    2016-01-01

    Triazophos is a widely used organophosphorous insecticide that has potentially adverse effects to organisms. In the present study, a high-affinity single-chain variable fragment (scFv) antibody with specific lambda light chain was developed for residue monitoring. First, the specific variable regions were correctly amplified from a hybridoma cell line 8C10 that secreted monoclonal antibody (mAb) against triazophos. The regions were then assembled as scFv via splicing by overlap extension polymerase chain reaction. Subsequently, the recombinant anti-triazophos scFv-8C10 was successfully expressed in Escherichia coli strain HB2151 in soluble form, purified through immobilized metal ion affinity chromatography, and verified via Western blot and peptide mass fingerprinting analyses. Afterward, an indirect competitive enzyme-linked immunosorbent assay was established based on the purified anti-triazophos scFv-8C10 antibody. The assay exhibited properties similar to those based on the parent mAb, with a high sensitivity (IC50 of 1.73 ng/mL) to triazophos and no cross reaction for other organophosphorus pesticides; it was reliable in detecting triazophos residues in spiked water samples. Moreover, kinetic measurement using a surface plasmon resonance biosensor indicated that the purified scFv-8C10 antibody had a high affinity of 1.8 × 10−10 M and exhibited good binding stability. Results indicated that the recombinant high-affinity scFv-8C10 antibody was an effective detection material that would be promising for monitoring triazophos residues in environment samples. PMID:27338340

  7. A β-hairpin structure in a 13-mer peptide that binds α-bungarotoxin with high affinity and neutralizes its toxicity

    PubMed Central

    Scherf, Tali; Kasher, Roni; Balass, Moshe; Fridkin, Mati; Fuchs, Sara; Katchalski-Katzir, Ephraim

    2001-01-01

    Snake-venom α-bungarotoxin is a member of the α-neurotoxin family that binds with very high affinity to the nicotinic acetylcholine receptor (AChR) at the neuromuscular junction. The structure of the complex between α-bungarotoxin and a 13-mer peptide (WRYYESSLEPYPD) that binds the toxin with high affinity, thus inhibiting its interactions with AChR with an IC50 of 2 nM, has been solved by 1H-NMR spectroscopy. The bound peptide folds into a β-hairpin structure created by two antiparallel β-strands, which combine with the already existing triple-stranded β-sheet of the toxin to form a five-stranded intermolecular, antiparallel β-sheet. Peptide residues Y3P, E5P, and L8P have the highest intermolecular contact area, indicating their importance in the binding of α-bungarotoxin; W1P, R2P, and Y4P also contribute significantly to the binding. A large number of characteristic hydrogen bonds and electrostatic and hydrophobic interactions are observed in the complex. The high-affinity peptide exhibits inhibitory potency that is better than any known peptide derived from AChR, and is equal to that of the whole α-subunit of AChR. The high degree of sequence similarity between the peptide and various types of AChRs implies that the binding mode found within the complex might possibly mimic the receptor binding to the toxin. The design of the high-affinity peptide was based on our previous findings: (i) the detection of a lead peptide (MRYYESSLKSYPD) that binds α-bungarotoxin, using a phage-display peptide library, (ii) the information about the three-dimensional structure of α-bungarotoxin/lead-peptide complex, and (iii) the amino acid sequence analysis of different AChRs. PMID:11381118

  8. Affinity membrane introduction mass spectrometry

    SciTech Connect

    Xu, C.; Patrick, J.S.; Cooks, R.G. )

    1995-02-15

    A new technique, affinity membrane introduction mass spectrometry, is described. In this method, a chemically modified membrane is used to selectively adsorb analytes bearing a particular functional group and concentrate them from solution. Release of the bound analyte results in its transfer across the membrane and allows it to be monitored mass spectrometrically, using, in the present case, a benchtop ion trap instrument. Alkylamine-modified cellulose membranes are used to bind substituted benzaldehydes through imine formation at high pH. Release of the bound aldehyde is achieved by acid hydrolysis of the surface-bound imine. Benzaldehyde is detected with excellent specificity at 10 ppm in a complex mixture using this method. Using the enrichment capability of the membrane, a full mass spectrum of benzaldehyde can be measured at a concentration of 10 ppb. The behavior of a variety of other aldehydes is also discussed to illustrate the capabilities of the method. 21 refs., 5 figs., 2 tabs.

  9. Proton affinity of methyl nitrate - Less than proton affinity of nitric acid

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Rice, Julia E.

    1992-01-01

    Several state-of-the-art ab initio quantum mechanical methods were used to investigate the equilibrium structure, dipole moments, harmonic vibrational frequencies, and IR intensities of methyl nitrate, methanol, and several structures of protonated methyl nitrate, using the same theoretical methods as in an earlier study (Lee and Rice, 1992) of nitric acid. The ab initio results for methyl nitrate and methanol were found to be in good agreement with available experimental data. The proton affinity (PA) of methyl nitrate was calculated to be 176.9 +/-5 kcal/mol, in excellent agreement with the experimental value 176 kcal/mol obtained by Attina et al. (1987) and less than the PA value of nitric acid. An explanation of the discrepancy of the present results with those of an earlier study on protonated nitric acid is proposed.

  10. Antisymmetric tensor generalizations of affine vector fields

    PubMed Central

    Morisawa, Yoshiyuki; Tomoda, Kentaro

    2016-01-01

    Tensor generalizations of affine vector fields called symmetric and antisymmetric affine tensor fields are discussed as symmetry of spacetimes. We review the properties of the symmetric ones, which have been studied in earlier works, and investigate the properties of the antisymmetric ones, which are the main theme in this paper. It is shown that antisymmetric affine tensor fields are closely related to one-lower-rank antisymmetric tensor fields which are parallelly transported along geodesics. It is also shown that the number of linear independent rank-p antisymmetric affine tensor fields in n-dimensions is bounded by (n + 1)!/p!(n − p)!. We also derive the integrability conditions for antisymmetric affine tensor fields. Using the integrability conditions, we discuss the existence of antisymmetric affine tensor fields on various spacetimes. PMID:26858463

  11. Conformal field theory on affine Lie groups

    SciTech Connect

    Clubok, Kenneth Sherman

    1996-04-01

    Working directly on affine Lie groups, we construct several new formulations of the WZW model, the gauged WZW model, and the generic affine-Virasoro action. In one formulation each of these conformal field theories (CFTs) is expressed as a one-dimensional mechanical system whose variables are coordinates on the affine Lie group. When written in terms of the affine group element, this formulation exhibits a two-dimensional WZW term. In another formulation each CFT is written as a two-dimensional field theory, with a three- dimensional WZW term, whose fields are coordinates on the affine group. On the basis of these equivalent formulations, we develop a translation dictionary in which the new formulations on the affine Lie group are understood as mode formulations of the conventional formulations on the Lie group. Using this dictionary, we also express each CFT as a three-dimensional field theory on the Lie group with a four-dimensional WZW term. 36 refs.

  12. A Novel Vertex Affinity for Community Detection

    SciTech Connect

    Yoo, Andy; Sanders, Geoffrey; Henson, Van; Vassilevski, Panayot

    2015-10-05

    We propose a novel vertex affinity measure in this paper. The new vertex affinity quantifies the proximity between two vertices in terms of their clustering strength and is ideal for such graph analytics applications as community detection. We also developed a framework that combines simple graph searches and resistance circuit formulas to compute the vertex affinity efficiently. We study the properties of the new affinity measure empirically in comparison to those of other popular vertex proximity metrics. Our results show that the existing metrics are ill-suited for community detection due to their lack of fundamental properties that are essential for correctly capturing inter- and intra-cluster vertex proximity.

  13. Structural determinants of sigma receptor affinity

    SciTech Connect

    Largent, B.L.; Wikstroem, H.G.; Gundlach, A.L.; Snyder, S.H.

    1987-12-01

    The structural determinants of sigma receptor affinity have been evaluated by examining a wide range of compounds related to opioids, neuroleptics, and phenylpiperidine dopaminergic structures for affinity at sigma receptor-binding sites labeled with (+)-(/sup 3/H)3-PPP. Among opioid compounds, requirements for sigma receptor affinity differ strikingly from the determinants of affinity for conventional opiate receptors. Sigma sites display reverse stereoselectivity to classical opiate receptors. Multi-ringed opiate-related compounds such as morphine and naloxone have negligible affinity for sigma sites, with the highest sigma receptor affinity apparent for benzomorphans which lack the C ring of opioids. Highest affinity among opioids and other compounds occurs with more lipophilic N-substituents. This feature is particularly striking among the 3-PPP derivatives as well as the opioids. The butyrophenone haloperidol is the most potent drug at sigma receptors we have detected. Among the series of butyrophenones, receptor affinity is primarily associated with the 4-phenylpiperidine moiety. Conformational calculations for various compounds indicate a fairly wide range of tolerance for distances between the aromatic ring and the amine nitrogen, which may account for the potency at sigma receptors of structures of considerable diversity. Among the wide range of structures that bind to sigma receptor-binding sites, the common pharmacophore associated with high receptor affinity is a phenylpiperidine with a lipophilic N-substituent.

  14. Affinity functions: recognizing essential parameters in fuzzy connectedness based image segmentation

    NASA Astrophysics Data System (ADS)

    Ciesielski, Krzysztof C.; Udupa, Jayaram K.

    2009-02-01

    Fuzzy connectedness (FC) constitutes an important class of image segmentation schemas. Although affinity functions represent the core aspect (main variability parameter) of FC algorithms, they have not been studied systematically in the literature. In this paper, we present a thorough study to fill this gap. Our analysis is based on the notion of equivalent affinities: if any two equivalent affinities are used in the same FC schema to produce two versions of the algorithm, then these algorithms are equivalent in the sense that they lead to identical segmentations. We give a complete characterization of the affinity equivalence and show that many natural definitions of affinity functions and their parameters used in the literature are redundant in the sense that different definitions and values of such parameters lead to equivalent affinities. We also show that two main affinity types - homogeneity based and object feature based - are equivalent, respectively, to the difference quotient of the intensity function and Rosenfeld's degree of connectivity. In addition, we demonstrate that any segmentation obtained via relative fuzzy connectedness (RFC) algorithm can be viewed as segmentation obtained via absolute fuzzy connectedness (AFC) algorithm with an automatic and adaptive threshold detection. We finish with an analysis of possible ways of combining different component affinities that result in non equivalent affinities.

  15. Design and synthesis of tricyclic JAK3 inhibitors with picomolar affinities as novel molecular probes.

    PubMed

    Gehringer, Matthias; Pfaffenrot, Ellen; Bauer, Silke; Laufer, Stefan A

    2014-02-01

    The Janus kinase (JAK) signaling pathway is of particular importance in the pathology of inflammatory diseases and oncological disorders, and the inhibition of Janus kinase 3 (JAK3) with small molecules has proven to provide therapeutic immunosuppression. A novel class of tricyclic JAK inhibitors derived from the 3-methyl-1,6-dihydrodipyrrolo[2,3-b:2',3'-d]pyridine scaffold was designed based on the tofacitinib-JAK3 crystal structure by applying a rigidization approach. A convenient synthetic strategy to access the scaffold via an intramolecular Heck reaction was developed, and a small library of inhibitors was prepared and characterized using in vitro biochemical as well as cellular assays. IC50 values as low as 220 pM could be achieved with selectivity for JAK3 over other JAK family members. Both activity and selectivity were confirmed in a cellular STAT phosphorylation assay, providing also first-time data for tofacitinib. Our novel inhibitors may serve as tool compounds and useful probes to explore the role of JAK3 inhibition in pharmacodynamics studies.

  16. A three-stage experimental strategy to evaluate and validate an interplate IC50 format.

    PubMed

    Rodrigues, Daniel J; Lyons, Richard; Laflin, Philip; Pointon, Wayne; Kammonen, Juha

    2007-12-01

    The serial dilution of compounds to establish potency against target enzymes or receptors can at times be a rate-limiting step in project progression. We have investigated the possibility of running 50% inhibitory concentration experiments in an interplate format, with dose ranges constructed across plates. The advantages associated with this format include a faster reformatting time for the compounds while also increasing the number of doses that can be potentially generated. These two factors, in particular, would lend themselves to a higher-throughput and more timely testing of compounds, while also maximizing chances to capture fully developed dose-response curves. The key objective from this work was to establish a strategy to assess the feasibility of an interplate format to ensure that the quality of data generated would be equivalent to historical formats used. A three-stage approach was adopted to assess and validate running an assay in an interplate format, compared to an intraplate format. Although the three-stage strategy was tested with two different assay formats, it would be necessary to investigate the feasibility for other assay types. The recommendation is that the three-stage experimental strategy defined here is used to assess feasibility of other assay formats used.

  17. Structure of classical affine and classical affine fractional W-algebras

    SciTech Connect

    Suh, Uhi Rinn

    2015-01-15

    We introduce a classical BRST complex (See Definition 3.2.) and show that one can construct a classical affine W-algebra via the complex. This definition clarifies that classical affine W-algebras can be considered as quasi-classical limits of quantum affine W-algebras. We also give a definition of a classical affine fractional W-algebra as a Poisson vertex algebra. As in the classical affine case, a classical affine fractional W-algebra has two compatible λ-brackets and is isomorphic to an algebra of differential polynomials as a differential algebra. When a classical affine fractional W-algebra is associated to a minimal nilpotent, we describe explicit forms of free generators and compute λ-brackets between them. Provided some assumptions on a classical affine fractional W-algebra, we find an infinite sequence of integrable systems related to the algebra, using the generalized Drinfel’d and Sokolov reduction.

  18. Improving image segmentation by learning region affinities

    SciTech Connect

    Prasad, Lakshman; Yang, Xingwei; Latecki, Longin J

    2010-11-03

    We utilize the context information of other regions in hierarchical image segmentation to learn new regions affinities. It is well known that a single choice of quantization of an image space is highly unlikely to be a common optimal quantization level for all categories. Each level of quantization has its own benefits. Therefore, we utilize the hierarchical information among different quantizations as well as spatial proximity of their regions. The proposed affinity learning takes into account higher order relations among image regions, both local and long range relations, making it robust to instabilities and errors of the original, pairwise region affinities. Once the learnt affinities are obtained, we use a standard image segmentation algorithm to get the final segmentation. Moreover, the learnt affinities can be naturally unutilized in interactive segmentation. Experimental results on Berkeley Segmentation Dataset and MSRC Object Recognition Dataset are comparable and in some aspects better than the state-of-art methods.

  19. Multiplexed protein profiling by sequential affinity capture

    PubMed Central

    Ayoglu, Burcu; Birgersson, Elin; Mezger, Anja; Nilsson, Mats; Uhlén, Mathias; Nilsson, Peter

    2016-01-01

    Antibody microarrays enable parallelized and miniaturized analysis of clinical samples, and have proven to provide novel insights for the analysis of different proteomes. However, there are concerns that the performance of such direct labeling and single antibody assays are prone to off‐target binding due to the sample context. To improve selectivity and sensitivity while maintaining the possibility to conduct multiplexed protein profiling, we developed a multiplexed and semi‐automated sequential capture assay. This novel bead‐based procedure encompasses a first antigen capture, labeling of captured protein targets on magnetic particles, combinatorial target elution and a read‐out by a secondary capture bead array. We demonstrate in a proof‐of‐concept setting that target detection via two sequential affinity interactions reduced off‐target contribution, while lowered background and noise levels, improved correlation to clinical values compared to single binder assays. We also compared sensitivity levels with single binder and classical sandwich assays, explored the possibility for DNA‐based signal amplification, and demonstrate the applicability of the dual capture bead‐based antibody microarray for biomarker analysis. Hence, the described concept enhances the possibilities for antibody array assays to be utilized for protein profiling in body fluids and beyond. PMID:26935855

  20. Semiempirical Theories of the Affinities of Negative Atomic Ions

    NASA Technical Reports Server (NTRS)

    Edie, John W.

    1961-01-01

    The determination of the electron affinities of negative atomic ions by means of direct experimental investigation is limited. To supplement the meager experimental results, several semiempirical theories have been advanced. One commonly used technique involves extrapolating the electron affinities along the isoelectronic sequences, The most recent of these extrapolations Is studied by extending the method to Include one more member of the isoelectronic sequence, When the results show that this extension does not increase the accuracy of the calculations, several possible explanations for this situation are explored. A different approach to the problem is suggested by the regularities appearing in the electron affinities. Noting that the regular linear pattern that exists for the ionization potentials of the p electrons as a function of Z, repeats itself for different degrees of ionization q, the slopes and intercepts of these curves are extrapolated to the case of the negative Ion. The method is placed on a theoretical basis by calculating the Slater parameters as functions of q and n, the number of equivalent p-electrons. These functions are no more than quadratic in q and n. The electron affinities are calculated by extending the linear relations that exist for the neutral atoms and positive ions to the negative ions. The extrapolated. slopes are apparently correct, but the intercepts must be slightly altered to agree with experiment. For this purpose one or two experimental affinities (depending on the extrapolation method) are used in each of the two short periods. The two extrapolation methods used are: (A) an isoelectronic sequence extrapolation of the linear pattern as such; (B) the same extrapolation of a linearization of this pattern (configuration centers) combined with an extrapolation of the other terms of the ground configurations. The latter method Is preferable, since it requires only experimental point for each period. The results agree within

  1. Potential antidepressant properties of SR 57746A, a novel compound with selectivity and high affinity for 5-HT1A receptors.

    PubMed

    Cervo, L; Bendotti, C; Tarizzo, G; Cagnotto, A; Skorupska, M; Mennini, T; Samanin, R

    1994-02-21

    SR 57746A, 4-(3-trifluoromethylphenyl)-N-[2-(naphth-2-yl)ethyl]-1,2,3,6- tetrahydropyridine HCl, was studied for its specific 5-HT1A receptor agonist action and antidepressant-like effects in the rat. The compound showed a high affinity for 5-HT1A specific binding sites in the rat hippocampus (IC50 3 nM), moderate affinity (10(-7)-10(-6) M) for dopamine D2 receptor, 5-HT uptake, 5-HT2 and alpha 1-adrenoceptor binding sites and practically no effect on binding sites of monoamine, GABAA, benzodiazepine and histamine receptors. It inhibited forskolin-stimulated adenylate cyclase activity in rat hippocampal membranes at concentrations of 10(-6) and 10(-5) M. The effect of 10(-6) M SR 57746A on forskolin-stimulated adenylate cyclase activity was completely antagonized by 10(-6) M (-)-propranolol. Administered per os as a three-dose course to rats, SR 57746A significantly increased struggling in the forced swimming test at doses from 0.3 to 3 mg/kg. Single doses had no such effect. The effect of a three-dose course with 1 mg/kg SR 57746A on rats' struggling was antagonized by pretreatment with 5 mg/kg i.p. metergoline, a non-selective 5-HT receptor antagonist, and by 20 mg/kg i.p. (-)-propranolol, an antagonist at 5-HT1 receptors. Three oral doses of 100 mg/kg parachlorophenylalanine, an inhibitor of 5-HT synthesis, and 100 mg/kg i.p. (+/-)-sulpiride, an antagonist at dopamine D2 receptors, also antagonized the effect of SR 57746A in the forced swimming test. The results show that SR 57746A has selectivity and high affinity for 5-HT1A receptors.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Dancing of the second aromatic residue around the 6,8-diazabicyclo[3.2.2]nonane framework: influence on sigma receptor affinity and cytotoxicity.

    PubMed

    Holl, Ralph; Schepmann, Dirk; Fröhlich, Roland; Grünert, Renate; Bednarski, Patrick J; Wünsch, Bernhard

    2009-04-09

    A series of 6,8-diazabicyclo[3.2.2]nonane derivatives bearing two aromatic moieties was prepared, the affinity toward sigma(1) and sigma(2) receptors was investigated, and the growth inhibition of six human tumor cell lines was determined. The enantiopure bicyclic ketones 5a ((+)-(1S,5S)-6-allyl-8-(4-methoxybenzyl)-6,8-diazabicyclo[3.2.2]nonane-2,7,9-trione) and 5b ((+)-(1S,5S)-6-allyl-8-(2,4-dimethoxybenzyl)-6,8-diazabicyclo[3.2.2]nonane-2,7,9-trione) as well as their enantiomers ent-5a and ent-5b served as chiral building blocks, which were derived from (S)- and (R)-glutamate, respectively. Structure-affinity relationships revealed that 11a (K(i) = 154 nM), ent-11a (K(i) = 91 nM), and ent-17a (K(i) = 104 nM) are the most potent sigma(1) ligands. High sigma(2) affinity was achieved with 17b (K(i) = 159 nM) and 8b (K(i) = 400 nM). The bicyclic sigma ligands showed a selective growth inhibition of the small cell lung cancer cell line A-427 with the benzyl ethers 11 and the benzylidene derivatives 17 being the most potent compounds. 11a has a cytotoxic potency (IC(50) = 0.92 muM), which exceeds the activity of cisplatin and interacts considerably with both sigma(1) and sigma(2) receptors.

  3. The Cutting Edge of Affinity Electrophoresis Technology

    PubMed Central

    Kinoshita, Eiji; Kinoshita-Kikuta, Emiko; Koike, Tohru

    2015-01-01

    Affinity electrophoresis is an important technique that is widely used to separate and analyze biomolecules in the fields of biology and medicine. Both quantitative and qualitative information can be gained through affinity electrophoresis. Affinity electrophoresis can be applied through a variety of strategies, such as mobility shift electrophoresis, charge shift electrophoresis or capillary affinity electrophoresis. These strategies are based on changes in the electrophoretic patterns of biological macromolecules that result from interactions or complex-formation processes that induce changes in the size or total charge of the molecules. Nucleic acid fragments can be characterized through their affinity to other molecules, for example transcriptional factor proteins. Hydrophobic membrane proteins can be identified by means of a shift in the mobility induced by a charged detergent. The various strategies have also been used in the estimation of association/disassociation constants. Some of these strategies have similarities to affinity chromatography, in that they use a probe or ligand immobilized on a supported matrix for electrophoresis. Such methods have recently contributed to profiling of major posttranslational modifications of proteins, such as glycosylation or phosphorylation. Here, we describe advances in analytical techniques involving affinity electrophoresis that have appeared during the last five years. PMID:28248262

  4. Bioskin as an affinity matrix for the separation of glycoproteins.

    PubMed

    Vicente, C; Sebastián, B; Fontaniella, B; Márquez, A; Xavier Filho, L; Legaz, M E

    2001-05-11

    Bioskin is a natural product produced by a mixed culture of Acetobacter xylinum, Saccharomyces cerevisiae and S. pombe cultured on media containing sucrose. It is of fibrillar nature able to retain some proteins, such as cytochrome c, by adsorption, and mainly composed of glucosamine and N-acetyl-D-glucosamine. This makes it possible that, at an adequate pH value, proteins charged as polyanionic molecules, such as catalase, can be retained by ionic adsorption using the positively charged amino groups of the matrix. In addition, bioskin can also be used as an affinity matrix to retain glycoproteins able to perform specific affinity reactions with the amino sugars of the matrix, such as invertase, fetuin or ovalbumin. Its possible use as a chromatographic support is discussed.

  5. A novel protein complex identification algorithm based on Connected Affinity Clique Extension (CACE).

    PubMed

    Li, Peng; He, Tingting; Hu, Xiaohua; Zhao, Junmin; Shen, Xianjun; Zhang, Ming; Wang, Yan

    2014-06-01

    A novel algorithm based on Connected Affinity Clique Extension (CACE) for mining overlapping functional modules in protein interaction network is proposed in this paper. In this approach, the value of protein connected affinity which is inferred from protein complexes is interpreted as the reliability and possibility of interaction. The protein interaction network is constructed as a weighted graph, and the weight is dependent on the connected affinity coefficient. The experimental results of our CACE in two test data sets show that the CACE can detect the functional modules much more effectively and accurately when compared with other state-of-art algorithms CPM and IPC-MCE.

  6. Visualizing Antibody Affinity Maturation in Germinal Centers

    PubMed Central

    Tas, Jeroen M.J.; Mesin, Luka; Pasqual, Giulia; Targ, Sasha; Jacobsen, Johanne T.; Mano, Yasuko M.; Chen, Casie S.; Weill, Jean-Claude; Reynaud, Claude-Agnès; Browne, Edward P.; Meyer-Hermann, Michael; Victora, Gabriel D.

    2016-01-01

    Antibodies somatically mutate to attain high affinity in germinal centers (GCs). There, competition between B cell clones and among somatic mutants of each clone drives an increase in average affinity across the population. The extent to which higher-affinity cells eliminating competitors restricts clonal diversity is unknown. By combining multiphoton microscopy and sequencing, we show that tens to hundreds of distinct B cell clones seed each GC, and that GCs lose clonal diversity at widely disparate rates. Furthermore, efficient affinity maturation can occur in the absence of homogenizing selection, ensuring that many clones can mature in parallel within the same GC. Our findings have implications for development of vaccines in which antibodies with non-immunodominant specificities must be elicited, as is the case for HIV-1 and influenza. PMID:26912368

  7. PRINCIPLES OF AFFINITY-BASED BIOSENSORS

    EPA Science Inventory

    Despite the amount of resources that have been invested by national and international academic, government, and commercial sectors to develop affinity-based biosensor products, little obvious success has been realized through commercialization of these devices for specific applic...

  8. Protein purification using PDZ affinity chromatography.

    PubMed

    Walkup, Ward G; Kennedy, Mary B

    2015-04-01

    PDZ domains function in nature as protein-binding domains within scaffold and membrane-associated proteins. They comprise approximately 90 residues and undergo specific, high-affinity interactions with complementary C-terminal peptide sequences, other PDZ domains, and/or phospholipids. We have previously shown that the specific, strong interactions of PDZ domains with their ligands make them well suited for use in affinity chromatography. This unit provides protocols for the PDZ affinity chromatography procedure that are applicable for the purification of proteins that contain PDZ domains or PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We detail the preparation of affinity resins composed of PDZ domains or PDZ domain peptide ligands coupled to solid supports. These resins can be used to purify proteins containing endogenous or genetically introduced PDZ domains or ligands, eluting the proteins with free PDZ domain peptide ligands.

  9. Affinity Electrophoresis Using Ligands Attached To Polymers

    NASA Technical Reports Server (NTRS)

    Van Alstine, James M.; Snyder, Robert S.; Harris, J. M.; Brooks, D. E.

    1990-01-01

    In new technique, reduction of electrophoretic mobilities by addition of polyethylene glycol to ligands increases electrophoretic separabilities. In immuno-affinity electrophoresis, modification of ligands extends specificity of electrophoretic separation to particles having surface electric-charge structures otherwise making them electrophoretically inseparable. Modification of antibodies by polyethylene glycol greatly reduces ability to aggregate while enhancing ability to affect electrophoretic mobilities of cells. In hydrophobic-affinity electrophoresis, addition of polyethylene glycol reduces tendency toward aggregation of cells or macromolecules.

  10. Valuing Essays: Essaying Values

    ERIC Educational Resources Information Center

    Badley, Graham

    2010-01-01

    The essay regularly comes under attack. It is criticised for being rigidly linear rather than flexible and reflective. I first challenge this view by examining reasons why the essay should be valued as an important genre. Secondly, I propose that in using the essay form students and academics necessarily exemplify their own critical values. Essays…

  11. Purification by cobalamin-Sepharose affinity chromatography and intrinsic factor-binding activity of an extramembrane proteolytic product from pig ileal mucosa.

    PubMed Central

    Yerima, A; Safi, A; Gastin, I; Michalski, J C; Saunier, M; Gueant, J L

    1996-01-01

    We have purified a cobalamin-binding protein obtained by papain digestion of pig intestine by cobalamin-AH-Sepharose affinity chromatography, with a purification factor of 17,300, a yield of 63% and a cobalamin-binding activity of 11,260 pmol/mg of protein. The protein contained 3.8% carbohydrate and was O- and N-glycosylated. Its molecular mass was 69 kDa on SDS/PAGE and its isoelectric point was 5.1. It had a binding activity for both [57Co]cobalamin and [57Co]cobalamin-intrinsic factor in native PAGE autoradiography and it inhibited the binding of intrinsic factor to the intact intestinal receptor with an IC50 of 49.31 nmol/l in a radioisotope assay. In conclusion, the purified protein shared a binding activity for both cobalamin and intrinsic factor-cobalamin complexes and could correspond to the extracellular domain of the ileal intrinsic factor receptor. PMID:8573109

  12. MCDHF calculation of electron affinities of Group I and Group IB atomic anions

    NASA Astrophysics Data System (ADS)

    Li, Junqin; Zhao, Zilong; Zhang, Xuemei

    2014-08-01

    The affinities of negative ions for elements of Group I and Group IB have been calculated using the multi-configuration Dirac-Hartree-Fock (MCDHF) method. The difference between the total energy of the ground state of the atom and that of its anion is used to obtain the electron affinity. The theoretical results for these elements agree well with measured values, and have a deviation less than 0.5% with respect to measured values for most of the elements. With a systematic calculation method, this work gives a high-accuracy theoretical value for the electron affinities of the elements of Group I and Group IB. For element Fr, there is no experimental value.

  13. Affinity learning with diffusion on tensor product graph.

    PubMed

    Yang, Xingwei; Prasad, Lakshman; Latecki, Longin Jan

    2013-01-01

    In many applications, we are given a finite set of data points sampled from a data manifold and represented as a graph with edge weights determined by pairwise similarities of the samples. Often the pairwise similarities (which are also called affinities) are unreliable due to noise or due to intrinsic difficulties in estimating similarity values of the samples. As observed in several recent approaches, more reliable similarities can be obtained if the original similarities are diffused in the context of other data points, where the context of each point is a set of points most similar to it. Compared to the existing methods, our approach differs in two main aspects. First, instead of diffusing the similarity information on the original graph, we propose to utilize the tensor product graph (TPG) obtained by the tensor product of the original graph with itself. Since TPG takes into account higher order information, it is not a surprise that we obtain more reliable similarities. However, it comes at the price of higher order computational complexity and storage requirement. The key contribution of the proposed approach is that the information propagation on TPG can be computed with the same computational complexity and the same amount of storage as the propagation on the original graph. We prove that a graph diffusion process on TPG is equivalent to a novel iterative algorithm on the original graph, which is guaranteed to converge. After its convergence we obtain new edge weights that can be interpreted as new, learned affinities. We stress that the affinities are learned in an unsupervised setting. We illustrate the benefits of the proposed approach for data manifolds composed of shapes, images, and image patches on two very different tasks of image retrieval and image segmentation. With learned affinities, we achieve the bull's eye retrieval score of 99.99 percent on the MPEG-7 shape dataset, which is much higher than the state-of-the-art algorithms. When the data

  14. Pepsin-modified chiral monolithic column for affinity capillary electrochromatography.

    PubMed

    Hong, Tingting; Chi, Cuijie; Ji, Yibing

    2014-11-01

    Pepsin-modified affinity monolithic capillary electrochromatography, a novel microanalysis system, was developed by the covalent bonding of pepsin on silica monolith. The column was successfully applied in the chiral separation of (±)-nefopam. Furthermore, the electrochromatographic performance of the pepsin-functionalized monolith for enantiomeric analysis was evaluated in terms of protein content, pH of running buffer, sample volume, buffer concentration, applied voltage, and capillary temperature. The relative standard deviation (%RSD) values of retention time (intraday <0.53, n = 10; interday <0.53, n = 10; column-to-column <0.70, n = 20; and batch-to-batch <0.80, n = 20) indicated satisfactory stability of these columns. No appreciable change was observed in retention and resolution for chiral recognition of (±)-nefopam in 50 days with 100 injections. The proteolytic activity of this stationary phase was further characterized with bovine serum albumin as substrate for online protein digestion. As for monolithic immobilized enzyme reactor, successive protein injections confirmed both the operational stability and ability to reuse the bioreactor for at least 20 digestions. It implied that the affinity monolith used in this research opens a new path of exploring particularly versatile class of enzymes to develop enzyme-modified affinity capillary monolith for enantioseparation.

  15. Production and Characterization of Desmalonichrome Relative Binding Affinity for Uranyl Ions in Relation to Other Siderophores

    SciTech Connect

    Mo, Kai-For; Dai, Ziyu; Wunschel, David S.

    2016-06-24

    Siderophores are Fe binding secondary metabolites that have been investigated for their uranium binding properties. Much of the previous work has focused on characterizing hydroxamate types of siderophores, such as desferrioxamine B, for their uranyl binding affinity. Carboxylate forms of these metabolites hold potential to be more efficient chelators of uranyl, yet they have not been widely studied and are more difficult to obtain. Desmalonichrome is a carboxylate siderophore which is not commercially available and so was obtained from the ascomycete fungus Fusarium oxysporum cultivated under Fe depleted conditions. The relative affinity for uranyl binding of desmalonichrome was investigated using a competitive analysis of binding affinities between uranyl acetate and different concentrations of iron(III) chloride using electrospray ionization mass spectrometry (ESI-MS). In addition to desmalonichrome, three other siderophores, including two hydroxamates (desferrioxamine B and desferrichrome) and one carboxylate (desferrichrome A) were studied to understand their relative affinities for the uranyl ion at two pH values. The binding affinities of hydroxymate siderophores to uranyl ion were found to decrease to a greater degree at lower pH as the concentration of Fe (III) ion increases. On the other hand, lowering pH has little impact on the binding affinities between carboxylate siderophores and uranyl ion. Desmalonichrome was shown to have the greatest relative affinity for uranyl at any pH and Fe(III) concentration. These results suggest that acidic functional groups in the ligands are critical for strong chelation with uranium at lower pH.

  16. Limits for antibody affinity maturation and repertoire diversification in hypervaccinated humans.

    PubMed

    Poulsen, Tine Rugh; Jensen, Allan; Haurum, John S; Andersen, Peter S

    2011-10-15

    The immune system is known to generate a diverse panel of high-affinity Abs by adaptively improving the recognition of pathogens during ongoing immune responses. In this study, we report the biological limits for Ag-driven affinity maturation and repertoire diversification by analyzing Ab repertoires in two adult volunteers after each of three consecutive booster vaccinations with tetanus toxoid. Maturation of on-rates and off-rates occurred independently, indicating a kinetically controlled affinity maturation process. The third vaccination induced no significant changes in the distribution of somatic mutations and binding rate constants implying that the limits for affinity maturation and repertoire diversification had been reached. These fully matured Ab repertoires remained similar in size, genetically diverse, and dynamic. Somatic mutations and kinetic rate constants showed normal and log-normal distribution profiles, respectively. Mean values can therefore be considered as biological constants defining the observed boundaries. At physiological temperature, affinity maturation peaked at k(on) = 1.6 × 10(4) M(-1) s(-1) and k(off) = 1.7 × 10(-4) s(-1) leading to a maximum mean affinity of K(D) = 1.0 × 10(-9) M. At ambient temperature, the average affinity increased to K(D) = 3.4 × 10(-10) M mainly due to slower off-rates. This experimentally determined set of constants can be used as a benchmark for analysis of the maturation level of human Abs and Ab responses.

  17. Stability of flavin semiquinones in the gas phase: the electron affinity, proton affinity, and hydrogen atom affinity of lumiflavin.

    PubMed

    Zhang, Tianlan; Papson, Kaitlin; Ochran, Richard; Ridge, Douglas P

    2013-11-07

    Examination of electron transfer and proton transfer reactions of lumiflavin and proton transfer reactions of the lumiflavin radical anion by Fourier transform ion cyclotron resonance mass spectrometry is described. From the equilibrium constant determined for electron transfer between 1,4-naphthoquinone and lumiflavin the electron affinity of lumiflavin is deduced to be 1.86 ± 0.1 eV. Measurements of the rate constants and efficiencies for proton transfer reactions indicate that the proton affinity of the lumiflavin radical anion is between that of difluoroacetate (331.0 kcal/mol) and p-formyl-phenoxide (333.0 kcal/mol). Combining the electron affinity of lumiflavin with the proton affinity of the lumiflavin radical anion gives a lumiflavin hydrogen atom affinity of 59.7 ± 2.2 kcal/mol. The ΔG298 deduced from these results for adding an H atom to gas phase lumiflavin, 52.1 ± 2.2 kcal/mol, is in good agreement with ΔG298 for adding an H atom to aqueous lumiflavin from electrochemical measurements in the literature, 51.0 kcal/mol, and that from M06-L density functional calculations in the literature, 51.2 kcal/mol, suggesting little, if any, solvent effect on the H atom addition. The proton affinity of lumiflavin deduced from the equilibrium constant for the proton transfer reaction between lumiflavin and 2-picoline is 227.3 ± 2.0 kcal mol(-1). Density functional theory calculations on isomers of protonated lumiflavin provide a basis for assigning the most probable site of protonation as position 1 on the isoalloxazine ring and for estimating the ionization potentials of lumiflavin neutral radicals.

  18. Classification of neocortical interneurons using affinity propagation.

    PubMed

    Santana, Roberto; McGarry, Laura M; Bielza, Concha; Larrañaga, Pedro; Yuste, Rafael

    2013-01-01

    In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. In fact, neuronal classification is a difficult problem because it is unclear how to designate a neuronal cell class and what are the best characteristics to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological, or molecular characteristics, have provided quantitative and unbiased identification of distinct neuronal subtypes, when applied to selected datasets. However, better and more robust classification methods are needed for increasingly complex and larger datasets. Here, we explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. Affinity propagation outperformed Ward's method, a current standard clustering approach, in classifying the neurons into 4 subtypes. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits.

  19. Classification of neocortical interneurons using affinity propagation

    PubMed Central

    Santana, Roberto; McGarry, Laura M.; Bielza, Concha; Larrañaga, Pedro; Yuste, Rafael

    2013-01-01

    In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. In fact, neuronal classification is a difficult problem because it is unclear how to designate a neuronal cell class and what are the best characteristics to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological, or molecular characteristics, have provided quantitative and unbiased identification of distinct neuronal subtypes, when applied to selected datasets. However, better and more robust classification methods are needed for increasingly complex and larger datasets. Here, we explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. Affinity propagation outperformed Ward's method, a current standard clustering approach, in classifying the neurons into 4 subtypes. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits. PMID:24348339

  20. Fluorescence measurements of the binding of cations to high-affinity and low-affinity sites on ATP-G-actin.

    PubMed

    Carlier, M F; Pantaloni, D; Korn, E D

    1986-08-15

    The binding of cations to ATP-G-actin has been assessed by measuring the kinetics of the increase in fluorescence of N-acetyl-N'-(5-sulfo-1-naphthyl)-ethylenediamine-labeled actin. Ca2+ and Mg2+ compete for a single high-affinity site on ATP-G-actin with KD values of 1.5-15 nM for Ca2+ and 0.1-1 microM for Mg2+, i.e. with affinities 3-4 orders of magnitude higher than previously reported (Frieden, C., Lieberman, D., and Gilbert, H. R. (1980) J. Biol. Chem. 255, 8991-8993). As proposed by Frieden (Frieden, C. (1982) J. Biol. Chem. 257, 2882-2886), the Mg-actin complex undergoes a slow isomerization (Kis = 0.03-0.1) to a higher affinity state (K'D = 4-40 nM). The replacement of Ca2+ by Mg2+ at this high-affinity site causes a slow 10% increase in fluorescence that is 90% complete in about 200 s at saturating concentrations of Mg2+. Independently, Ca2+, Mg2+, and K+ bind to low-affinity sites (KD values of 0.15 mM for Ca2+ and Mg2+ and 10 mM for K+) which causes a rapid 6-8% increase in fluorescence (complete in less than 5 s). We propose that the activation step that converts Ca-G-actin to a polymerizable species upon addition of Mg2+ is the binding of Mg2+ to the low-affinity sites and not the replacement of Ca2+ by Mg2+ at the high-affinity site.

  1. The local electron affinity for non-minimal basis sets.

    PubMed

    Clark, Timothy

    2010-07-01

    A technique known as intensity filtering is introduced to select valence-like virtual orbitals for calculating the local electron affinity, EA(L). Intensity filtering allows EA(L) to be calculated using semiempirical molecular orbital techniques that include polarisation functions. Without intensity filtering, such techniques yield spurious EA(L) values that are dominated by the polarisation functions. As intensity filtering should also be applicable for ab initio or density functional theory calculations with large basis sets, it also makes EA(L) available for these techniques.

  2. Identity, Affinity, Reality: Making the Case for Affinity Groups in Elementary School

    ERIC Educational Resources Information Center

    Parsons, Julie; Ridley, Kimberly

    2012-01-01

    Affinity groups are places where students build connections and process "ouch" moments from their classes. Children talk about the isolation they sometimes feel. The relationships students gain through race-based affinity groups enable them to feel less alone with their emotions and help them build a stronger sense of self. At the same…

  3. Stepparents' Affinity-Seeking and Affinity-Maintaining Strategies with Stepchildren.

    ERIC Educational Resources Information Center

    Ganong, Lawrence; Coleman, Marilyn; Fine, Mark; Martin, Patricia

    1999-01-01

    Examines the strategies that stepparents use to develop and maintain affinity with stepchildren and the effects that these strategies have on the development of stepparent-stepchildren relationships. Thirty-one affinity-seeking strategies are identified. Results show that dyadic activities worked best, but it is important that stepchildren…

  4. Calculation of negative electron affinity and aqueous anion hardness using kohn-Sham HOMO and LUMO energies.

    PubMed

    De Proft, Frank; Sablon, Nick; Tozer, David J; Geerlings, Paul

    2007-01-01

    An important chemical property emerging from density-functional theory is the hardness, which can be evaluated as half of the difference between the vertical ionisation energy and electron affinity of the system. For many gas phase molecules, however, the electron affinity is negative and standard ways of evaluating this property are troublesome. In this contribution, we investigate an unconventional approximation for the electron affinity, based on the Kohn-Sham orbital energies of the frontier orbitals and the ionisation potential. It is shown that, for a large series of molecules possessing negative electron affinities, this methodology yields reasonable values for this quantity and that the correlation of the computed values with the experimental affinities from electron transmission spectroscopy is superior to other theoretical approaches. In a second part of this contribution, the hardness of a series of stable negative ions is evaluated in aqueous solution.

  5. Cadmium accumulation characteristics of the winter farmland weeds Cardamine hirsuta Linn. and Gnaphalium affine D. Don.

    PubMed

    Lin, Lijin; Shi, Jun; Liu, Qihua; Liao, Ming'an; Mei, Luoyin

    2014-07-01

    In a preliminary study, we found that the cadmium (Cd) concentrations in shoots of the winter farmland weeds Cardamine hirsuta Linn. and Gnaphalium affine D. Don exceeded the critical value of a Cd-hyperaccumulator (100 mg kg(-1)), indicating that these two farmland weeds might be Cd-hyperaccumulators. In this study, we grew these species in soil containing various concentrations of Cd to further evaluate their Cd accumulation characteristics. The biomasses of C. hirsuta and G. affine decreased with increasing Cd concentrations in the soil, while the root/shoot ratio and the Cd concentrations in shoot tissues increased. The Cd concentrations in shoots of C. hirsuta and G. affine reached 121.96 and 143.91 mg kg(-1), respectively, at the soil Cd concentration of 50 mg kg(-1). Both of these concentrations exceeded the critical value of a Cd-hyperaccumulator (100 mg kg(-1)). The shoot bioconcentration factors of C. hirsuta and G. affine were greater than 1. The translocation factor of C. hirsuta was less than 1 and that of G. affine was greater than 1. These findings indicated that C. hirsuta is a Cd-accumulator and G. affine is Cd-hyperaccumulator. Both plants are distributed widely in the field, and they could be used to remediate Cd-contaminated farmland soil in winter.

  6. Extension of the selection of protein chromatography and the rate model to affinity chromatography.

    PubMed

    Sandoval, G; Shene, C; Andrews, B A; Asenjo, J A

    2010-01-01

    The rational selection of optimal protein purification sequences, as well as mathematical models that simulate and allow optimization of chromatographic protein purification processes have been developed for purification procedures such as ion-exchange, hydrophobic interaction and gel filtration chromatography. This paper investigates the extension of such analysis to affinity chromatography both in the selection of chromatographic processes and in the use of the rate model for mathematical modelling and simulation. Two affinity systems were used: Blue Sepharose and Protein A. The extension of the theory developed previously for ion-exchange and HIC chromatography to affinity separations is analyzed in this paper. For the selection of operations two algorithms are used. In the first, the value of η, which corresponds to the efficiency (resolution) of the actual chromatography and, Σ, which determines the amount of a particular contaminant eliminated after each separation step, which determines the purity, have to be determined. It was found that the value of both these parameters is not generic for affinity separations but will depend on the type of affinity system used and will have to be determined on a case by case basis. With Blue Sepharose a salt gradient was used and with Protein A, a pH gradient. Parameters were determined with individual proteins and simulations of the protein mixtures were done. This approach allows investigation of chromatographic protein purification in a holistic manner that includes ion-exchange, HIC, gel filtration and affinity separations for the first time.

  7. Affine coherent states and Toeplitz operators

    NASA Astrophysics Data System (ADS)

    Hutníková, Mária; Hutník, Ondrej

    2012-06-01

    We study a parameterized family of Toeplitz operators in the context of affine coherent states based on the Calderón reproducing formula (= resolution of unity on L_2( {R})) and the specific admissible wavelets (= affine coherent states in L_2( {R})) related to Laguerre functions. Symbols of such Calderón-Toeplitz operators as individual coordinates of the affine group (= upper half-plane with the hyperbolic geometry) are considered. In this case, a certain class of pseudo-differential operators, their properties and their operator algebras are investigated. As a result of this study, the Fredholm symbol algebras of the Calderón-Toeplitz operator algebras for these particular cases of symbols are described. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’.

  8. Non-affine elasticity in jammed systems

    NASA Astrophysics Data System (ADS)

    Maloney, Craig

    2006-03-01

    Symmetry dictates that perfect crystals should deform homogeneously, or affinely, under external load, and computing the elastic moduli from the underlying interaction potential is then straightforward. For disordered materials no such simple procedure exists, and recent numerical works have demonstrated that non-affine corrections can dramatically reduce the naive expectation for the shear modulus in a broad class of disordered systems and may control rigidity loss in the zero pressure limit in purely repulsive systems, i.e. the unjamming transition (c.f. [O'Hern et. al. PRE 68, 011306 (2003)]). We present numerical results and an analytical framework for the study of these non-affine corrections to the elastic response of disordered packings.

  9. Biomimetic affinity ligands for protein purification.

    PubMed

    Sousa, Isabel T; Taipa, M Angela

    2014-01-01

    The development of sophisticated molecular modeling software and new bioinformatic tools, as well as the emergence of data banks containing detailed information about a huge number of proteins, enabled the de novo intelligent design of synthetic affinity ligands. Such synthetic compounds can be tailored to mimic natural biological recognition motifs or to interact with key surface-exposed residues on target proteins and are designated as "biomimetic ligands." A well-established methodology for generating biomimetic or synthetic affinity ligands integrates rational design with combinatorial solid-phase synthesis and screening, using the triazine scaffold and analogues of amino acids side chains to create molecular diversity.Triazine-based synthetic ligands are nontoxic, low-cost, highly stable compounds that can replace advantageously natural biological ligands in the purification of proteins by affinity-based methodologies.

  10. Use of Affinity Diagrams as Instructional Tools in Inclusive Classrooms.

    ERIC Educational Resources Information Center

    Haselden, Polly G.

    2003-01-01

    This article describes how the affinity diagram, a tool for gathering information and organizing it into natural groupings, can be used in inclusive classrooms. It discusses how students can be taught to use an affinity diagram, how affinity diagrams can be used to reflect many voices, and how affinity diagrams can be used to plan class projects.…

  11. Cation affinity numbers of Lewis bases.

    PubMed

    Lindner, Christoph; Tandon, Raman; Maryasin, Boris; Larionov, Evgeny; Zipse, Hendrik

    2012-01-01

    Using selected theoretical methods the affinity of a large range of Lewis bases towards model cations has been quantified. The range of model cations includes the methyl cation as the smallest carbon-centered electrophile, the benzhydryl and trityl cations as models for electrophilic substrates encountered in Lewis base-catalyzed synthetic procedures, and the acetyl cation as a substrate model for acyl-transfer reactions. Affinities towards these cationic electrophiles are complemented by data for Lewis-base addition to Michael acceptors as prototypical neutral electrophiles.

  12. New unitary affine-Virasoro constructions

    SciTech Connect

    Halpern, M.B.; Kiritsis, E.; Obers, N.A.; Poratti, M. ); Yamron, J.P. )

    1990-06-20

    This paper reports on a quasi-systematic investigation of the Virasoro master equation. The space of all affine-Virasoro constructions is organized by K-conjugation into affine-Virasoro nests, and an estimate of the dimension of the space shows that most solutions await discovery. With consistent ansatze for the master equation, large classes of new unitary nests are constructed, including quadratic deformation nests with continuous conformal weights, and unitary irrational central charge nests, which may dominate unitary rational central charge on compact g.

  13. On the electron affinity of B2

    SciTech Connect

    Glezakou, Vanda A.; Taylor, Peter

    2009-02-02

    We present the results of high-level ab initio calculations on the electron affinity of B2. Our new best estimate of 1.93±0.03 eV is in agreement with previous calculations as well as the sole existing experimental estimate of 1.8 eV, as derived from quantities with an uncertainty of 0.4 eV. The electron affinity of atomic boron, which is much smaller, is also calculated for comparison, and again found to be in good agreement with experiment. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  14. Negative Electron Affinity Mechanism for Diamond Surfaces

    NASA Technical Reports Server (NTRS)

    Krainsky, I. L.; Asnin, V. M.

    1998-01-01

    The energy distribution of the secondary electrons for chemical vacuum deposited diamond films with Negative Electron Affinity (NEA) was investigated. It was found that while for completely hydrogenated diamond surfaces the negative electron affinity peak in the energy spectrum of the secondary electrons is present for any energy of the primary electrons, for partially hydrogenated diamond surfaces there is a critical energy above which the peak is present in the spectrum. This critical energy increases sharply when hydrogen coverage of the diamond surface diminishes. This effect was explained by the change of the NEA from the true type for the completely hydrogenated surface to the effective type for the partially hydrogenated surfaces.

  15. What Value "Value Added"?

    ERIC Educational Resources Information Center

    Richards, Andrew

    2015-01-01

    Two quantitative measures of school performance are currently used, the average points score (APS) at Key Stage 2 and value-added (VA), which measures the rate of academic improvement between Key Stage 1 and 2. These figures are used by parents and the Office for Standards in Education to make judgements and comparisons. However, simple…

  16. Evidence of multi-affinity in the Japanese stock market

    NASA Astrophysics Data System (ADS)

    Katsuragi, Hiroaki

    2000-04-01

    Fluctuations of the Japanese stock market (Tokyo Stock Price Index: TOPIX) are analyzed using a multi-affine analysis method. In the research to date, only some simulated self-affine models have shown multi-affinity. In most experiments using observations of self-affine fractal profiles, multi-affinity has not been found. However, we find evidence of multi-affinity in fluctuations of the Japanese stock market (TOPIX). The qth-order Hurst exponent Hq varies with changes in q. This multi-affinity indicates that there are plural mechanisms that affect the same time scale as stock market price fluctuation dynamics.

  17. An affinity improved single-chain antibody from phage display of a library derived from monoclonal antibodies detects fumonisins by immunoassay.

    PubMed

    Hu, Zu-Quan; Li, He-Ping; Wu, Ping; Li, Ya-Bo; Zhou, Zhu-Qing; Zhang, Jing-Bo; Liu, Jin-Long; Liao, Yu-Cai

    2015-03-31

    Fumonisin B analogs, particularly FB1, FB2, and FB3, are major mycotoxins found in cereals. Single-chain fragment variable (scFv) antibodies represent a promising alternative immunoassay system. A phage-displayed antibody library derived from four monoclonal antibodies (mAbs) generated against FB1 was used to screen high binding affinity scFv antibodies; the best candidate was designated H2. Surface plasmon resonance measurements confirmed that the H2 scFv displayed a 82-fold higher binding affinity than its parent mAb. Direct competitive enzyme-linked immunosorbent assay demonstrated that the H2 antibody could competitively bind to free FB1, FB2, and FB3, with an IC50 of 0.11, 0.04, and 0.10 μM, respectively; it had no cross-reactivity to deoxynivalenol, nivalenol and aflatoxin. Validation assays with naturally contaminated samples revealed a linear relationship between the H2 antibody-based assay results and chemical analysis results, that could be expressed as y=1.7072x+5.5606 (R(2)=0.8883). Homology modeling of H2 revealed a favorable binding structure highly complementary to the three fumonisins. Molecular docking analyses suggested that the preferential binding of the H2 scFv to FB2 was due to the presence of a hydrogen radical in its R1 position, leading to a proper electrostatic matching and hydrophobic interaction. The H2 scFv antibody can be used for the rapid, accurate, and specific detection of fumonisin contamination in agricultural samples.

  18. Isotope shift in the sulfur electron affinity: Observation and theory

    SciTech Connect

    Carette, Thomas; Scharf, Oliver; Godefroid, Michel; Froese Fischer, Charlotte

    2010-04-15

    The sulfur electron affinities {sup e}A(S) are measured by photodetachment microscopy for the two isotopes {sup 32}S and {sup 34}S (16 752.975 3(41) and 16 752.977 6(85) cm{sup -1}, respectively). The isotope shift in the electron affinity is found to be more probably positive, {sup e}A({sup 34}S)- {sup e}A({sup 32}S) =+0.0023(70) cm{sup -1}, but the uncertainty allows for the possibility that it may be either ''normal''[{sup e}A({sup 34}S) > {sup e}A({sup 32}S)] or ''anomalous''[{sup e}A({sup 34}S) < {sup e}A({sup 32}S)]. The isotope shift is estimated theoretically using elaborate correlation models, monitoring the electron affinity and the mass polarization term expectation value. The theoretical analysis predicts a very large specific mass shift (SMS) that counterbalances the normal mass shift (NMS) and produces an anomalous isotope shift {sup e}A({sup 34}S)- {sup e}A({sup 32}S) =-0.0053(24) cm{sup -1}, field shift corrections included. The total isotope shift can always be written as the sum of the NMS (here +0.0169 cm{sup -1}) and a residual isotope shift (RIS). Since the NMS has nearly no uncertainty, the comparison between experimental and theoretical RIS is more fair. With respective values of -0.0146(70) cm{sup -1} and -0.0222(24) cm{sup -1}, these residual isotope shifts are found to agree within the estimated uncertainties.

  19. The Maximum Likelihood Estimation of Signature Transformation /MLEST/ algorithm. [for affine transformation of crop inventory data

    NASA Technical Reports Server (NTRS)

    Thadani, S. G.

    1977-01-01

    The Maximum Likelihood Estimation of Signature Transformation (MLEST) algorithm is used to obtain maximum likelihood estimates (MLE) of affine transformation. The algorithm has been evaluated for three sets of data: simulated (training and recognition segment pairs), consecutive-day (data gathered from Landsat images), and geographical-extension (large-area crop inventory experiment) data sets. For each set, MLEST signature extension runs were made to determine MLE values and the affine-transformed training segment signatures were used to classify the recognition segments. The classification results were used to estimate wheat proportions at 0 and 1% threshold values.

  20. Modern affinity reagents: Recombinant antibodies and aptamers.

    PubMed

    Groff, Katherine; Brown, Jeffrey; Clippinger, Amy J

    2015-12-01

    Affinity reagents are essential tools in both basic and applied research; however, there is a growing concern about the reproducibility of animal-derived monoclonal antibodies. The need for higher quality affinity reagents has prompted the development of methods that provide scientific, economic, and time-saving advantages and do not require the use of animals. This review describes two types of affinity reagents, recombinant antibodies and aptamers, which are non-animal technologies that can replace the use of animal-derived monoclonal antibodies. Recombinant antibodies are protein-based reagents, while aptamers are nucleic-acid-based. In light of the scientific advantages of these technologies, this review also discusses ways to gain momentum in the use of modern affinity reagents, including an update to the 1999 National Academy of Sciences monoclonal antibody production report and federal incentives for recombinant antibody and aptamer efforts. In the long-term, these efforts have the potential to improve the overall quality and decrease the cost of scientific research.

  1. Validation of affinity reagents using antigen microarrays.

    PubMed

    Sjöberg, Ronald; Sundberg, Mårten; Gundberg, Anna; Sivertsson, Asa; Schwenk, Jochen M; Uhlén, Mathias; Nilsson, Peter

    2012-06-15

    There is a need for standardised validation of affinity reagents to determine their binding selectivity and specificity. This is of particular importance for systematic efforts that aim to cover the human proteome with different types of binding reagents. One such international program is the SH2-consortium, which was formed to generate a complete set of renewable affinity reagents to the SH2-domain containing human proteins. Here, we describe a microarray strategy to validate various affinity reagents, such as recombinant single-chain antibodies, mouse monoclonal antibodies and antigen-purified polyclonal antibodies using a highly multiplexed approach. An SH2-specific antigen microarray was designed and generated, containing more than 6000 spots displayed by 14 identical subarrays each with 406 antigens, where 105 of them represented SH2-domain containing proteins. Approximately 400 different affinity reagents of various types were analysed on these antigen microarrays carrying antigens of different types. The microarrays revealed not only very detailed specificity profiles for all the binders, but also showed that overlapping target sequences of spotted antigens were detected by off-target interactions. The presented study illustrates the feasibility of using antigen microarrays for integrative, high-throughput validation of various types of binders and antigens.

  2. Stabilization of the Motion of Affine Systems

    NASA Astrophysics Data System (ADS)

    Babenko, E. A.; Martynyuk, A. A.

    2016-07-01

    Sufficient conditions for the stability of a nonlinear affine system subject to interval initial conditions are established. These conditions are based on new estimates of the norms of the solutions of the systems of perturbed equations of motion. This stabilization method is used to analyze an electromechanical system with permanent magnet

  3. Fan Affinity Laws from a Collision Model

    ERIC Educational Resources Information Center

    Bhattacharjee, Shayak

    2012-01-01

    The performance of a fan is usually estimated using hydrodynamical considerations. The calculations are long and involved and the results are expressed in terms of three affinity laws. In this paper we use kinetic theory to attack this problem. A hard sphere collision model is used, and subsequently a correction to account for the flow behaviour…

  4. Vygotsky's and Buber's Pedagogical Perspectives: Some Affinities

    ERIC Educational Resources Information Center

    Bartholo, Roberto; Tunes, Elizabeth; Tacca, Maria Carmen Villela Rosa

    2010-01-01

    The purpose of this paper is to examine the dialogical and creative character of pedagogic work by analyzing the affinities between Martin Buber's "I-Thou relation" and Lev Semenovich Vygotsky's "Zone of Proximal Development". Backed up by empirical studies on the teacher-student relation, we understand that education can only result in students'…

  5. Methyl cation affinities of neutral and anionic maingroup-element hydrides: trends across the periodic table and correlation with proton affinities.

    PubMed

    Mulder, R Joshua; Guerra, Célia Fonseca; Bickelhaupt, F Matthias

    2010-07-22

    We have computed the methyl cation affinities in the gas phase of archetypal anionic and neutral bases across the periodic table using ZORA-relativistic density functional theory (DFT) at BP86/QZ4P//BP86/TZ2P. The main purpose of this work is to provide the methyl cation affinities (and corresponding entropies) at 298 K of all anionic (XH(n-1)(-)) and neutral bases (XH(n)) constituted by maingroup-element hydrides of groups 14-17 and the noble gases (i.e., group 18) along the periods 2-6. The cation affinity of the bases decreases from H(+) to CH(3)(+). To understand this trend, we have carried out quantitative bond energy decomposition analyses (EDA). Quantitative correlations are established between the MCA and PA values.

  6. Intermediate affinity and potency of clozapine and low affinity of other neuroleptics and of antidepressants at H3 receptors.

    PubMed

    Kathmann, M; Schlicker, E; Göthert, M

    1994-12-01

    It was the aim of the present study to determine the affinities of four neuroleptics and five antidepressants for histamine H3 receptors. In rat brain cortex membranes, the specifically bound [3H]-N alpha-methylhistamine was monophasically displaced by clozapine (pKi 6.15). The other drugs did not completely displace the radioligand even at 100 microM; the pKi values were: haloperidol (4.91); sulpiride (4.73); amitriptyline (4.56); desipramine (4.15); levomepromazine (4.14); fluovoxamine (4.13); maprotiline (4.09); moclobemide (< 4.0). The effect of clozapine was further examined in a functional H3 receptor model, i.e., in superfused mouse brain cortex slices preincubated with [3H]-noradrenaline. The electrically evoked tritium overflow was not affected by clozapine 0.5-32 microM. However, clozapine shifted the concentration-response curve of histamine for its inhibitory effect on the evoked overflow to the right, but did not affect the maximum effect of histamine. The Schild plot yielded a pA2 value of 6.33. In conclusion, clozapine shows an intermediate affinity and potency (as a competitive antagonist) at H3 receptors. The Ki value of clozapine at H3 receptors resembles its Ki value at D2 receptors (the target of the classical neuroleptics), but is higher than its Ki values at D4, 5-HT2 or muscarinic acetylcholine receptors, which according to current hypotheses, might be involved in the atypical profile of clozapine.

  7. Solution Equilibrium Titration for High-Throughput Affinity Estimation of Unpurified Antibodies and Antibody Fragments.

    PubMed

    Della Ducata, Daniela; Jaehrling, Jan; Hänel, Cornelia; Satzger, Marion; Wolber, Meike; Ostendorp, Ralf; Pabst, Stefan; Brocks, Bodo

    2015-12-01

    The generation of therapeutic antibodies with extremely high affinities down to the low picomolar range is today feasible with state-of-the art recombinant technologies. However, reliable and efficient identification of lead candidates with the desired affinity from a pool of thousands of antibody clones remains a challenge. Here, we describe a high-throughput procedure that allows reliable affinity screening of unpurified immunoglobulin G or antibody fragments. The method is based on the principle of solution equilibrium titration (SET) using highly sensitive electrochemiluminescence as a readout system. Because the binding partners are not labeled, the resulting KD represents a sound approximation of the real affinity. For screening, diluted bacterial lysates or cell culture supernatants are equilibrated with four different concentrations of a soluble target molecule, and unbound antibodies are subsequently quantified on 384-well Meso Scale Discovery (MSD) plates coated with the respective antigen. For determination of KD values from the resulting titration curves, fit models deduced from the law of mass action for 1:1 and 2:1 binding modes are applied to assess hundreds of interactions simultaneously. The accuracy of the method is demonstrated by comparing results from different screening campaigns from affinity optimization projects with results from detailed affinity characterization.

  8. Binding affinities of anti-acetylcholine receptor autoantibodies in myasthenia gravis

    SciTech Connect

    Bray, J.J.; Drachman, D.B.

    1982-01-01

    Antibodies directed against acetylcholine (ACh) receptors are present in the sera of nearly 90% of patients with myasthenia gravis (MG), and are involved in the pathogenesis of this autoimmune disease. However, the antibody titers measured by the standard radioimmunoassay correspond poorly with the clinical severity of the disease. To determine whether this disparity could be accounted for by differences in the binding affinities of anti-ACh receptor antibodies in different patients, we have measured the binding affinities of these autoantibodies in 15 sera from MG patients. The affinity constants (K/sub o/), as determined by Scatchard analysis, were all in the range of 10/sup 10/ M/sup -1/, comparable to the highest values reported in immunized animals. The affinity constants were truly representative of the population of autoantibodies detected by the radioimmunoassay, as shown by the remarkable linearity of the Scatchard plots (r/sup 2/>0.90) and the close correlation between the antibody titers determined by extrapolation of the Scatchard plots and by saturation analysis (r = 0.99; p < 0.001). There was only a 6-fold variation in affinity constants measured in this series of patients despite widely differing antibody titers and severity of the disease. Factors other than the titer and affinity of anti-ACh receptor antibodies may correlate better with the clinical manifestations of MG.

  9. Two measured completely different electron affinities for atomic Eu?

    NASA Astrophysics Data System (ADS)

    Msezane, A. Z.; Felfli, Z.

    2016-05-01

    Recently, the electron affinity (EA) of atomic Eu was measured to be 0.116?eV. This value is in outstanding agreement with the theoretically calculated values using the Regge pole and MCDF-RCI methods. Previously, the EA of Eu was measured to be 1.053 eV. In an attempt to resolve the discrepancy between the two measured values, we have adopted the complex angular momentum (CAM) method and investigated in the electron energy range 0.11 eV value of 2.63 eV as the EA of Eu. This leads us to conclude that neither the claimed measured EA of Eu correspond to the actual EA of Eu. We conclude that the EA in corresponds to the BE of an excited (metastable) state of the Euanion and that in to a shape resonance. We have also investigated the EA of atomic Nd and found the value of 1.88 eV, consistent with the measurement. These significant EA values of Eu and Nd could be important in the use of their negative ions in catalyzing the oxidation of water to peroxide and of methane to methanol without CO2 emission. These new results call for immediate experimental and theoretical verification.

  10. Novel Kac-Moody-type affine extensions of non-crystallographic Coxeter groups

    NASA Astrophysics Data System (ADS)

    Dechant, Pierre-Philippe; Bœhm, Céline; Twarock, Reidun

    2012-07-01

    Motivated by recent results in mathematical virology, we present novel asymmetric {Z}[\\tau ]-integer-valued affine extensions of the non-crystallographic Coxeter groups H2, H3 and H4 derived in a Kac-Moody-type formalism. In particular, we show that the affine reflection planes which extend the Coxeter group H3 generate (twist) translations along two-, three- and five-fold axes of icosahedral symmetry, and we classify these translations in terms of the Fibonacci recursion relation applied to different start values. We thus provide an explanation of previous results concerning affine extensions of icosahedral symmetry in a Coxeter group context, and extend this analysis to the case of the non-crystallographic Coxeter groups H2 and H4. These results will enable new applications of group theory in physics (quasicrystals), biology (viruses) and chemistry (fullerenes).

  11. High affinity choline uptake: an early index of cholinergic innervation in rat brain.

    PubMed

    Sorimachi, M; Kataoka, K

    1975-08-29

    The uptake of [3H]choline was investigated in nuclei-free homogenates or crude synaptosomal fractions (P2) from rat brain under various stages of development. A comparable sensitivity of uptake to treatment by hyposmotic shock suggested the involvement of synaptosomal populations in choline uptake in immature as well as in adult brains. However, significant changes in the "apparent" Km for the high affinity transport system and quantitative differences in the Na ion requirement for maximal uptake at 0.43 muM choline concentration were found during development; facts which suggested a greater contribution of the low affinity system in the more immature brains. Assuming that the uptake with high and low sensitivity to Na+ reduction reflected that via the high and low affinity system reslectively, we have attempted to obtain real Km values for the high affinity system. These Km values changed less than those measured directly, suggesting that the affinity constant for the high affinity system does not change during development. On these assumptions, the developmental changes of cholinergic synaptogenesis were examined in 5 distinct regions of the brain. It was found that the synaptogenesis begins several days earlier than the increase of choline acetyltransferase (ChAc) level in the frontal cortex, the hippocampus, the superior colliculus and the cerebellum. These regions may be included among the terminal-rich regions according to available evidence related to cholinergic systems. On the other hand, synaptogenesis accompanied the concomitant ChAc increase in the striatum, where the cholinergic interneurons are present. It is concluded that the increase of ChAc in the terminal-rich regions is delayed by the axoplasmic flow; therefore, the earlier index of cholinergic synaptogenesis in these regions is the high affinity uptake activity rather than the enzyme activity.

  12. (/sup 125/I)diiodoinsulins. Binding affinities, biologic potencies, and properties of their decay products

    SciTech Connect

    Perez Maceda, B.; Linde, S.; Sonne, O.; Gliemann, J.

    1982-07-01

    Insulin was iodinated with 0.3-0.4 mol /sup 125/I/mol insulin using the lactoperoxidase method. About one-third of the radioactivity incorporated into insulin was in diiodoinsulins and about 40% of these molecules contained diiodotyrosine in residue 14 of the A chain. Most of the remaining molecules contained one A14-monoiodotyrosine and one monoiodotyrosine in either position A19, B16, or B26. The binding affinity and biologic potency of this heterogeneous diiodoinsulin preparation was not significantly different from that of A14-(/sup 125/I)monoiodoinsulin in rat adipocytes, whereas it was slightly reduced in hepatocytes and IM-9 lymphocytes. From the iodine distribution and previous data on the binding affinity of each of the four monoiodoinsulin isomers it was calculated that A14-diiodotyrosine-insulin possesses full binding affinity and biologic potency in adipocytes. Diiodoinsulins isolated from another iodoinsulin preparation (iodate method) contained 58% A19-diiodotyrosine-insulin, and most remaining molecules contained one A19-monoiodotyrosine. The binding affinity of this mixed diiodoinsulin preparation was approximately one-fourth of that of A14-monoiodoinsulin in adipocytes, IM-9 lymphocytes, and hepatocytes. It was calculated that A19-diiodotyrosine-insulin is nearly devoid of binding affinity. The diiodoinsulins (lactoperoxidase method) decayed to iodide (probably from diiodotyrosine-insulin) or to polymers with little specific but a markedly increased nonspecific binding. In addition, the polymers had a marked tendency to adsorb to cellulose acetate filters. Conclusions: 1. The binding affinities of diiodoinsulins range from very low values to values at least as high as that of insulin depending on the positions of the iodine moieties. 2. The relative binding affinities vary among tissues. 3. Polymeric decay products give high nonspecific binding.

  13. Optimal Affine-Invariant Point Matching

    NASA Astrophysics Data System (ADS)

    Costa, Mauro S.; Haralick, Robert M.; Phillips, Tsaiyun I.; Shapiro, Linda G.

    1989-03-01

    The affine-transformation matching scheme proposed by Hummel and Wolfson (1988) is very efficient in a model-based matching system, not only in terms of the computational complexity involved, but also in terms of the simplicity of the method. This paper addresses the implementation of the affine-invariant point matching, applied to the problem of recognizing and determining the pose of sheet metal parts. It points out errors that can occur with this method due to quantization, stability, symmetry, and noise problems. By beginning with an explicit noise model which the Hummel and Wolfson technique lacks, we can derive an optimal approach which overcomes these problems. We show that results obtained with the new algorithm are clearly better than the results from the original method.

  14. Affinity Chromatography in Nonionic Detergent Solutions

    NASA Astrophysics Data System (ADS)

    Robinson, Jack B.; Strottmann, James M.; Wick, Donald G.; Stellwagen, Earle

    1980-10-01

    Anionic dye affinity chromatography is commonly unproductive in the presence of nonionic detergents used to extract particulate proteins. Using lactate dehydrogenase as a model protein, Cibacron blue F3GA as a model dye, and Triton X-100 as a model detergent, we find that the dye is encapsulated in nonionic detergent micelles, rendering the dye incapable of ligation with the enzyme. However, the dye can be liberated from the micelles without altering the nonionic detergent concentration by addition of an anionic detergent, such as deoxycholate or sodium dodecyl sulfate, forming mixed anionic/nonionic micelles that displace the anionic dye. Encapsulation of the anionic detergents prevents their activity as protein denaturants. These observations have been successfully translated to the dye affinity chromatography of a detergent extract of brain particulate cyclic nucleotide phosphodiesterase.

  15. Negative affinity X-ray photocathodes

    NASA Technical Reports Server (NTRS)

    Vanspeybroeck, L.; Kellogg, E.; Murray, S.; Duckett, S.

    1974-01-01

    A new X-ray image intensifier is described. The device should eventually have a quantum efficiency which is an order of magnitude greater than that of presently available high spatial resolution X-ray detectors, such as microchannel plates. The new intesifier is based upon a GaAs crystal photocathode which is activated to achieve negative electron affinity. Details concerning the detector concept are discussed together with the theoretical relations involved, X-ray data, and optical data.

  16. On constructing purely affine theories with matter

    NASA Astrophysics Data System (ADS)

    Cervantes-Cota, Jorge L.; Liebscher, D.-E.

    2016-08-01

    We explore ways to obtain the very existence of a space-time metric from an action principle that does not refer to it a priori. Although there are reasons to believe that only a non-local theory can viably achieve this goal, we investigate here local theories that start with Schrödinger's purely affine theory (Schrödinger in Space-time structure. Cambridge UP, Cambridge, 1950), where he gave reasons to set the metric proportional to the Ricci curvature aposteriori. When we leave the context of unified field theory, and we couple the non-gravitational matter using some weak equivalence principle, we can show that the propagation of shock waves does not define a lightcone when the purely affine theory is local and avoids the explicit use of the Ricci tensor in realizing the weak equivalence principle. When the Ricci tensor is substituted for the metric, the equations seem to have only a very limited set of solutions. This backs the conviction that viable purely affine theories have to be non-local.

  17. Phosphopeptide Enrichment by Immobilized Metal Affinity Chromatography.

    PubMed

    Thingholm, Tine E; Larsen, Martin R

    2016-01-01

    Immobilized metal affinity chromatography (IMAC) has been the method of choice for phosphopeptide enrichment prior to mass spectrometric analysis for many years and it is still used extensively in many laboratories. Using the affinity of negatively charged phosphate groups towards positively charged metal ions such as Fe(3+), Ga(3+), Al(3+), Zr(4+), and Ti(4+) has made it possible to enrich phosphorylated peptides from peptide samples. However, the selectivity of most of the metal ions is limited, when working with highly complex samples, e.g., whole-cell extracts, resulting in contamination from nonspecific binding of non-phosphorylated peptides. This problem is mainly caused by highly acidic peptides that also share high binding affinity towards these metal ions. By lowering the pH of the loading buffer nonspecific binding can be reduced significantly, however with the risk of reducing specific binding capacity. After binding, the enriched phosphopeptides are released from the metal ions using alkaline buffers of pH 10-11, EDTA, or phosphate-containing buffers. Here we describe a protocol for IMAC using Fe(3+) for phosphopeptide enrichment. The principles are illustrated on a semi-complex peptide mixture.

  18. Associations of Teacher Credibility and Teacher Affinity with Learning Outcomes in Health Classrooms

    ERIC Educational Resources Information Center

    Gray, DeLeon L.; Anderman, Eric M.; O'Connell, Ann A.

    2011-01-01

    In the present study (N = 633), we examine the role of teacher credibility and teacher affinity in classrooms. We explore the relations among these two characteristics and student gains in knowledge and valuing of learning about HIV and pregnancy prevention across high school classrooms. Results marshaled support for the notion that teacher…

  19. Engineering of Bispecific Affinity Proteins with High Affinity for ERBB2 and Adaptable Binding to Albumin

    PubMed Central

    Nilvebrant, Johan; Åstrand, Mikael; Georgieva-Kotseva, Maria; Björnmalm, Mattias; Löfblom, John; Hober, Sophia

    2014-01-01

    The epidermal growth factor receptor 2, ERBB2, is a well-validated target for cancer diagnostics and therapy. Recent studies suggest that the over-expression of this receptor in various cancers might also be exploited for antibody-based payload delivery, e.g. antibody drug conjugates. In such strategies, the full-length antibody format is probably not required for therapeutic effect and smaller tumor-specific affinity proteins might be an alternative. However, small proteins and peptides generally suffer from fast excretion through the kidneys, and thereby require frequent administration in order to maintain a therapeutic concentration. In an attempt aimed at combining ERBB2-targeting with antibody-like pharmacokinetic properties in a small protein format, we have engineered bispecific ERBB2-binding proteins that are based on a small albumin-binding domain. Phage display selection against ERBB2 was used for identification of a lead candidate, followed by affinity maturation using second-generation libraries. Cell surface display and flow-cytometric sorting allowed stringent selection of top candidates from pools pre-enriched by phage display. Several affinity-matured molecules were shown to bind human ERBB2 with sub-nanomolar affinity while retaining the interaction with human serum albumin. Moreover, parallel selections against ERBB2 in the presence of human serum albumin identified several amino acid substitutions that dramatically modulate the albumin affinity, which could provide a convenient means to control the pharmacokinetics. The new affinity proteins competed for ERBB2-binding with the monoclonal antibody trastuzumab and recognized the native receptor on a human cancer cell line. Hence, high affinity tumor targeting and tunable albumin binding were combined in one small adaptable protein. PMID:25089830

  20. Boronate affinity adsorption of RNA: possible role of conformational changes

    NASA Technical Reports Server (NTRS)

    Singh, N.; Willson, R. C.; Fox, G. E. (Principal Investigator)

    1999-01-01

    Batch equilibrium adsorption isotherm determination is used to characterize the adsorption of mixed yeast RNA on agarose-immobilized m-aminophenylboronic acid. It is shown that the affinity-enhancing influence of divalent cations depends strongly on the precise nature of the cation used, with barium being far more effective than the conventionally-used magnesium. This adsorption-promoting influence of barium is suggested to arise primarily from ionic influences on the structure and rigidity of the RNA molecule, as the adsorption of ribose-based small molecules is not similarly affected. The substitution of barium for the standard magnesium counterion does not greatly promote the adsorption of DNA, implying that the effect is specific to RNA and may be useful in boronate-based RNA separations. RNA adsorption isotherms exhibit sharp transitions as functions of temperature, and these transitions occur at different temperatures with Mg2+ and with Ba2+. Adsorption affinity and capacity were found to increase markedly at lower temperatures, suggestive of an enthalpically favored interaction process. The stoichiometric displacement parameter, Z, in Ba2+ buffer is three times the value in Mg2+ buffer, and is close to unity.

  1. Growth and mortality of larval Myctophum affine (Myctophidae, Teleostei).

    PubMed

    Namiki, C; Katsuragawa, M; Zani-Teixeira, M L

    2015-04-01

    The growth and mortality rates of Myctophum affine larvae were analysed based on samples collected during the austral summer and winter of 2002 from south-eastern Brazilian waters. The larvae ranged in size from 2·75 to 14·00 mm standard length (L(S)). Daily increment counts from 82 sagittal otoliths showed that the age of M. affine ranged from 2 to 28 days. Three models were applied to estimate the growth rate: linear regression, exponential model and Laird-Gompertz model. The exponential model best fitted the data, and L(0) values from exponential and Laird-Gompertz models were close to the smallest larva reported in the literature (c. 2·5 mm L(S)). The average growth rate (0·33 mm day(-1)) was intermediate among lanternfishes. The mortality rate (12%) during the larval period was below average compared with other marine fish species but similar to some epipelagic fishes that occur in the area.

  2. Electron attachment and detachment: Electron affinities of isomers of trifluoromethylbenzonitrile

    NASA Astrophysics Data System (ADS)

    Miller, Thomas M.; Viggiano, A. A.; Friedman, Jeffrey F.; Van Doren, Jane M.

    2004-11-01

    Rate constants for electron attachment to the three isomers of trifluoromethylbenzonitrile [(CF3)(CN)C6H4, or TFMBN] were measured over the temperature range of 303-463 K in a 133-Pa He buffer gas, using a flowing-afterglow Langmuir-probe apparatus. At 303 K, the measured attachment rate constants are 9.0×10-8 (o-TFMBN), 5.5×10-8 (m-TFMBN), and 8.9×10-8 cm3 s-1 (p-TFMBN), estimated accurate to ±25%. The attachment process formed only the parent anion in all three cases. Thermal electron detachment was observed for all three anion isomers, and rate constants for this reverse process were also measured. From the attachment and detachment results, the electron affinities of the three isomers of TFMBN were determined to be 0.70(o-TFMBN), 0.67(m-TFMBN), and 0.83 eV (p-TFMBN), all ±0.05 eV. G3(MP2) [Gaussian-3 calculations with reduced Møller-Plesset orders (MP2)] calculations were carried out for the neutrals and anions. Electron affinities derived from these calculations are in good agreement with the experimental values.

  3. Electron attachment and detachment: electron affinities of isomers of trifluoromethylbenzonitrile.

    PubMed

    Miller, Thomas M; Viggiano, A A; Friedman, Jeffrey F; Van Doren, Jane M

    2004-11-22

    Rate constants for electron attachment to the three isomers of trifluoromethylbenzonitrile [(CF(3))(CN)C(6)H(4), or TFMBN] were measured over the temperature range of 303-463 K in a 133-Pa He buffer gas, using a flowing-afterglow Langmuir-probe apparatus. At 303 K, the measured attachment rate constants are 9.0 x 10(-8) (o-TFMBN), 5.5 x 10(-8) (m-TFMBN), and 8.9 x 10(-8) cm(3) s(-1) (p-TFMBN), estimated accurate to +/-25%. The attachment process formed only the parent anion in all three cases. Thermal electron detachment was observed for all three anion isomers, and rate constants for this reverse process were also measured. From the attachment and detachment results, the electron affinities of the three isomers of TFMBN were determined to be 0.70(o-TFMBN), 0.67(m-TFMBN), and 0.83 eV (p-TFMBN), all +/-0.05 eV. G3(MP2) [Gaussian-3 calculations with reduced Møller-Plesset orders (MP2)] calculations were carried out for the neutrals and anions. Electron affinities derived from these calculations are in good agreement with the experimental values.

  4. Integrin avidity regulation: are changes in affinity and conformation underemphasized?

    PubMed

    Carman, Christopher V; Springer, Timothy A

    2003-10-01

    Integrins play critical roles in development, wound healing, immunity and cancer. Central to their function is their unique ability to modulate dynamically their adhesiveness through both affinity- and valency-based mechanisms. Recent advances have shed light on the structural basis for affinity regulation and on the signaling mechanisms responsible for both affinity and valency modes of regulation.

  5. Further characterization of the low and high affinity binding components of the thyrotropin receptor

    SciTech Connect

    McQuade, R.; Thomas, C.G. Jr.; Nayfeh, S.N.

    1986-05-29

    Following cross-linking with disuccinimdiyl suberate and analysis by SDS-PAGE and autoradiography, both the high- and low-affinity TSH binding components exhibited two similar /sup 125/I-TSH-labeled bands, with Mr values of 80,000 and 68,000. IgG fractions from patients with Graves' disease inhibited /sup 125/I-TSH binding to both components, while normal IgG had no effect. Although not entirely conclusive, these results suggest that the high- and low-affinity components share similar subunit composition and antigenic determinants.

  6. Proton affinities of candidates for positively charged ambient ions in boreal forests

    NASA Astrophysics Data System (ADS)

    Ruusuvuori, K.; Kurtén, T.; Ortega, I. K.; Faust, J.; Vehkamäki, H.

    2013-10-01

    The optimized structures and proton affinities of a total of 81 nitrogen-containing bases, chosen based on field measurements of ambient positive ions, were studied using the CBS-QB3 quantum chemical method. The results were compared to values given in the National Institute of Standards and Technology (NIST) Chemistry WebBook in cases where a value was listed. The computed values show good agreement with the values listed in NIST. Grouping the molecules based on their molecular formula, the largest calculated proton affinities for each group were also compared with experimentally observed ambient cation concentrations in a boreal forest. This comparison allows us to draw qualitative conclusions about the relative ambient concentrations of different nitrogen-containing organic base molecules.

  7. Proton affinities of candidates for positively charged ambient ions in the boreal forest

    NASA Astrophysics Data System (ADS)

    Ruusuvuori, K.; Kurtén, T.; Ortega, I. K.; Faust, J.; Vehkamäki, H.

    2013-04-01

    The optimized structures and proton affinities of a total of 81 nitrogen-containing bases, chosen based on field measurements of ambient positive ions, were studied using the CBS-QB3 quantum chemical method. The results were compared to values given in the National Institute of Standards and Technology (NIST) Chemistry WebBook in cases where a value was listed. The computed values show good agreement with the values listed in NIST. Grouping the molecules based on their molecular formula, the largest calculated proton affinities for each group were also compared with experimentally observed ambient cation concentrations in the boreal forest. This comparison allows us to draw qualitative conclusions about the relative ambient concentrations of different nitrogen-containing organic base molecules.

  8. Electron Affinity Difference in CdS/Si Solar Cells

    NASA Astrophysics Data System (ADS)

    Al Kuhaimi, Siham A.

    1998-09-01

    The electron affinity difference ΔEc=χ1-χ2, in CdS/Si solar cells fabricated by four different processes is measured from observations of the variations of open circuit voltage with temperature. For CdS/Si cells, the values of ΔEc lie between 0.43 and 0.48 eV and are found to be independent of the process of cell fabrication. The use of CdZnS in place of CdS decreases the value of ΔEc to 0.3 eV. The method used for the measurement of ΔEc is very simple. The values of the saturation current I0 for different types of cells are estimated from the slopes of qVoc versus kT characteristics and compared with those obtained from ln I versus V curves. The values of I0 found for each cell by the two methods are in good agreement.

  9. Latest European coelacanth shows Gondwanan affinities.

    PubMed

    Cavin, Lionel; Forey, Peter L; Buffetaut, Eric; Tong, Haiyan

    2005-06-22

    The last European fossil occurrence of a coelacanth is from the Mid-Cretaceous of the English Chalk (Turonian, 90 million years ago). Here, we report the discovery of a coelacanth from Late Cretaceous non-marine rocks in southern France. It consists of a left angular bone showing structures that imply close phylogenetic affinities with some extinct Mawsoniidae. The closest relatives are otherwise known from Cretaceous continental deposits of southern continents and suggest that the dispersal of freshwater organisms from Africa to Europe occurred in the Late Cretaceous.

  10. On the electron affinity of Be2

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Partridge, H.

    1984-01-01

    Calculations of the electron affinity (EA) of Be2 using a large Slater-type orbital basis set and extensive correlation based upon a CASSCF reference are reported. The adiabatic EAs are estimated to be 0.44 eV for the 2Sigma sub g(+) state and 0.56 eV for the 2Pi sub u state. The extra electron attaches into an empty bonding orbital, causing a shortening of the bond length and an increase in omega(e). The D(e) of the 2Pi sub u state of Be2 is six times as large as the D(e) of Be2.

  11. Class II-restricted T cell receptor engineered in vitro for higher affinity retains peptide specificity and function

    PubMed Central

    Weber, K. Scott; Donermeyer, David L.; Allen, Paul M.; Kranz, David M.

    2005-01-01

    The T cell receptor (TCR) αβ heterodimer determines the peptide and MHC specificity of a T cell. It has been proposed that in vivo selection processes maintain low TCR affinities because T cells with higher-affinity TCRs would (i) have reduced functional capacity or (ii) cross-react with self-peptides resulting in clonal deletion. We used the class II-restricted T cell clone 3.L2, specific for murine hemoglobin (Hb/I-Ek), to explore these possibilities by engineering higher-affinity TCR mutants. A 3.L2 single-chain TCR (Vβ-linker-Vα) was mutagenized and selected for thermal stability and surface expression in a yeast display system. Stabilized mutants were used to generate a library with CDR3 mutations that were selected with Hb/I-Ek to isolate a panel of affinity mutants with KD values as low as 25 nM. Kinetic analysis of soluble single-chain TCRs showed that increased affinities were the result of both faster on-rates and slower off-rates. T cells transfected with the mutant TCRs and wild-type TCR responded to similar concentrations of peptide, indicating that the increased affinity was not detrimental to T cell activation. T cell transfectants maintained exquisite hemoglobin peptide specificity, but an altered peptide ligand that acted as an antagonist for the wild-type TCR was converted to a strong agonist with higher-affinity TCRs. These results show that T cells with high-affinity class II reactive TCRs are functional, but there is an affinity threshold above which an increase in affinity does not result in significant enhancement of T cell activation. PMID:16365315

  12. On the structure of self-affine convex bodies

    SciTech Connect

    Voynov, A S

    2013-08-31

    We study the structure of convex bodies in R{sup d} that can be represented as a union of their affine images with no common interior points. Such bodies are called self-affine. Vallet's conjecture on the structure of self-affine bodies was proved for d = 2 by Richter in 2011. In the present paper we disprove the conjecture for all d≥3 and derive a detailed description of self-affine bodies in R{sup 3}. Also we consider the relation between properties of self-affine bodies and functional equations with a contraction of an argument. Bibliography: 10 titles.

  13. Optimized Structures and Proton Affinities of Fluorinated Dimethyl Ethers: An Ab Initio Study

    NASA Technical Reports Server (NTRS)

    Orgel, Victoria B.; Ball, David W.; Zehe, Michael J.

    1996-01-01

    Ab initio methods have been used to investigate the proton affinity and the geometry changes upon protonation for the molecules (CH3)2O, (CH2F)2O, (CHF2)2O, and (CF3)2O. Geometry optimizations were performed at the MP2/3-2 I G level, and the resulting geometries were used for single-point energy MP2/6-31G calculations. The proton affinity calculated for (CH3)2O was 7 Kjoule/mole from the experimental value, within the desired variance of +/- 8Kjoule/mole for G2 theory, suggesting that the methodology used in this study is adequate for energy difference considerations. For (CF3)20, the calculated proton affinity of 602 Kjoule/mole suggests that perfluorinated ether molecules do not act as Lewis bases under normal circumstances; e.g. degradation of commercial lubricants in tribological applications.

  14. Soybean. beta. -glucan binding sites display maximal affinity for a heptaglucoside phytoalexin-elicitor

    SciTech Connect

    Cosio, E.G.; Waldmueller, T.; Frey, T.; Ebel, J. )

    1990-05-01

    The affinity of soybean {beta}-glucan-binding sites for a synthetic heptaglucan elicitor was tested in a ligand-competition assay against a {sup 125}I-labeled 1,3-1,6-{beta}-glucan preparation (avg. DP=20). Half-maximal displacement of label (IC{sub 50}) was obtained at 9nM heptaglucan, the highest affinity of all fractions tested to date. Displacement followed a uniform sigmoidal pattern and was complete at 1{mu}M indicating access of heptaglucan to all sites available to the labeled elicitor. A mathematical model was used to predict IC{sub 50} values according to the DP of glucan fragments obtained from fungal cell walls. The lowest IC{sub 50} predicted by this model is 3nM. Binding affinity of the glucans was compared with their elicitor activity in a bioassay.

  15. Affinity filtration coupled with capillary-based affinity purification for the isolation of protein complexes.

    PubMed

    Qureshi, M S; Sheikh, Q I; Hill, R; Brown, P E; Dickman, M J; Tzokov, S B; Rice, D W; Gjerde, D T; Hornby, D P

    2013-08-01

    The isolation of complex macromolecular assemblies at the concentrations required for structural analysis represents a major experimental challenge. Here we present a method that combines the genetic power of site-specific recombination in order to selectively "tag" one or more components of a protein complex with affinity-based rapid filtration and a final step of capillary-based enrichment. This modified form of tandem affinity purification produces highly purified protein complexes at high concentrations in a highly efficient manner. The application of the method is demonstrated for the yeast Arp2/3 heptameric protein complex involved in mediating reorganization of the actin cytoskeleton.

  16. Single-experiment displacement assay for quantifying high-affinity binding by isothermal titration calorimetry.

    PubMed

    Krainer, Georg; Keller, Sandro

    2015-04-01

    Isothermal titration calorimetry (ITC) is the gold standard for dissecting the thermodynamics of a biomolecular binding process within a single experiment. However, reliable determination of the dissociation constant (KD) from a single titration is typically limited to the range 100 μM>KD>1 nM. Interactions characterized by a lower KD can be assessed indirectly by so-called competition or displacement assays, provided that a suitable competitive ligand is available whose KD falls within the directly accessible window. However, this protocol is limited by the fact that it necessitates at least two titrations to characterize one high-affinity inhibitor, resulting in considerable consumption of both sample material and time. Here, we introduce a fast and efficient ITC displacement assay that allows for the simultaneous characterization of both a high-affinity ligand and a moderate-affinity ligand competing for the same binding site on a receptor within a single experiment. The protocol is based on a titration of the high-affinity ligand into a solution containing the moderate-affinity ligand bound to the receptor present in excess. The resulting biphasic binding isotherm enables accurate and precise determination of KD values and binding enthalpies (ΔH) of both ligands. We discuss the theoretical background underlying the approach, demonstrate its practical application to metal ion chelation, explore its potential and limitations with the aid of simulations and statistical analyses, and elaborate on potential applications to protein-inhibitor interactions.

  17. Extraction of haemoglobin from human blood by affinity precipitation using a haptoglobin-based stimuli-responsive affinity macroligand.

    PubMed

    Stocker-Majd, Gisela; Hilbrig, Frank; Freitag, Ruth

    2008-06-13

    Affinity precipitation was compared to affinity chromatography and batch adsorption as the final purification step in a protocol for the isolation of haemoglobin from human blood. Haptoglobin was the affinity ligand. The first steps on the process were realized by traditional methods (lyses of red blood cells followed by ammonium sulphate precipitation). For affinity chromatography (and batch adsorption) the ligand was linked to Sepharose, for affinity precipitation to a thermoresponsive polymer, namely poly(N-isopropylacrylamide). Five haptoglobin-poly(N-isopropylacrylamide) bioconjugates (affinity macroligands) were constructed with different polymer: haptoglobin-coupling ratios. Conjugation of haptoglobin to the soluble poly(N-isopropylacrylamide) apparently does not change the interaction thermodynamics with haemoglobin, as the haemoglobin binding constants calculated by a Scatchard analysis for the affinity macroligand were of the same order of magnitude as those described in the literature for the haemoglobin-haptoglobin complex in solution. Two elution protocols were used for haemoglobin release from the various affinity materials, one at pH 2, the other with 5 M urea at pH 11. Both affinity chromatography and affinity precipitation yielded a pure haemoglobin of high quality. Compared to the affinity chromatography, affinity precipitation showed a significantly higher ligand efficiency (ratio of the experimental capacity to the theoretical one). The method thus makes better use of the expensive affinity ligands. As affinity precipitation only requires small temperature changes to bring about precipitation/redissolution of the affinity complexes and a centrifugation step for recovery of the precipitate, the method in addition has advantages in term of scalability and simplicity.

  18. Quantifying high-affinity binding of hydrophobic ligands by isothermal titration calorimetry.

    PubMed

    Krainer, Georg; Broecker, Jana; Vargas, Carolyn; Fanghänel, Jörg; Keller, Sandro

    2012-12-18

    A fast and reliable quantification of the binding thermodynamics of hydrophobic high-affinity ligands employing a new calorimetric competition experiment is described. Although isothermal titration calorimetry is the method of choice for a quantitative characterization of intermolecular interactions in solution, a reliable determination of a dissociation constant (K(D)) is typically limited to the range 100 μM > K(D) > 1 nM. Interactions displaying higher or lower K(D) values can be assessed indirectly, provided that a suitable competing ligand is available whose K(D) falls within the directly accessible affinity window. This established displacement assay, however, requires the high-affinity ligand to be soluble at high concentrations in aqueous buffer and, consequently, poses serious problems in the study of protein binding involving small-molecule ligands dissolved in organic solvents--a familiar case in many drug-discovery projects relying on compound libraries. The calorimetric competition assay introduced here overcomes this limitation, thus allowing for a detailed thermodynamic description of high-affinity receptor-ligand interactions involving poorly water-soluble compounds. Based on a single titration of receptor into a dilute mixture of the two competing ligands, this competition assay provides accurate and precise values for the dissociation constants and binding enthalpies of both high- and moderate-affinity ligands. We discuss the theoretical background underlying the approach, demonstrate its practical application to metal ion chelation and high-affinity protein-inhibitor interactions, and explore its potential and limitations with the aid of simulations and statistical analyses.

  19. Fatigue damage prognosis using affine arithmetic

    NASA Astrophysics Data System (ADS)

    Gbaguidi, Audrey; Kim, Daewon

    2014-02-01

    Among the essential steps to be taken in structural health monitoring systems, damage prognosis would be the field that is least investigated due to the complexity of the uncertainties. This paper presents the possibility of using Affine Arithmetic for uncertainty propagation of crack damage in damage prognosis. The structures examined are thin rectangular plates made of titanium alloys with central mode I cracks and a composite plate with an internal delamination caused by mixed mode I and II fracture modes, under a harmonic uniaxial loading condition. The model-based method for crack growth rates are considered using the Paris Erdogan law model for the isotropic plates and the delamination growth law model proposed by Kardomateas for the composite plate. The parameters for both models are randomly taken and their uncertainties are considered as defined by an interval instead of a probability distribution. A Monte Carlo method is also applied to check whether Affine Arithmetic (AA) leads to tight bounds on the lifetime of the structure.

  20. Affinity-based target deconvolution of safranal

    PubMed Central

    2013-01-01

    Background and the purpose of the study Affinity-based target deconvolution is an emerging method for the identification of interactions between drugs/drug candidates and cellular proteins, and helps to predict potential activities and side effects of a given compound. In the present study, we hypothesized that a part of safranal pharmacological effects, one of the major constituent of Crocus sativus L., relies on its physical interaction with target proteins. Methods Affinity chromatography solid support was prepared by covalent attachment of safranal to agarose beads. After passing tissue lysate through the column, safranal-bound proteins were isolated and separated on SDS-PAGE or two-dimensional gel electrophoresis. Proteins were identified using MALDI-TOF/TOF mass spectrometry and Mascot software. Results and major conclusion Data showed that safranal physically binds to beta actin, cytochrome b-c1 complex sub-unit 1, trifunctional enzyme sub-unit beta and ATP synthase sub-unit alpha and beta. These interactions may explain part of safranal’s pharmacological effects. However, phenotypic and/or biological relevance of these interactions remains to be elucidated by future pharmacological studies. PMID:23514587

  1. Affine conformal vectors in space-time

    NASA Astrophysics Data System (ADS)

    Coley, A. A.; Tupper, B. O. J.

    1992-05-01

    All space-times admitting a proper affine conformal vector (ACV) are found. By using a theorem of Hall and da Costa, it is shown that such space-times either (i) admit a covariantly constant vector (timelike, spacelike, or null) and the ACV is the sum of a proper affine vector and a conformal Killing vector or (ii) the space-time is 2+2 decomposable, in which case it is shown that no ACV can exist (unless the space-time decomposes further). Furthermore, it is proved that all space-times admitting an ACV and a null covariantly constant vector (which are necessarily generalized pp-wave space-times) must have Ricci tensor of Segré type {2,(1,1)}. It follows that, among space-times admitting proper ACV, the Einstein static universe is the only perfect fluid space-time, there are no non-null Einstein-Maxwell space-times, and only the pp-wave space-times are representative of null Einstein-Maxwell solutions. Otherwise, the space-times can represent anisotropic fluids and viscous heat-conducting fluids, but only with restricted equations of state in each case.

  2. Value, Value, Where Is the Value?

    ERIC Educational Resources Information Center

    Kaufman, Roger

    2003-01-01

    Discusses measurement in performance improvement, including the Kirkpatrick four-level model of evaluation for training, and adding value. Highlights include adding value at all levels of organizational performance, for the clients and society; other models of performance improvement; the major focus of HPT (human performance technology); and…

  3. Affinity Crystallography: A New Approach to Extracting High-Affinity Enzyme Inhibitors from Natural Extracts.

    PubMed

    Aguda, Adeleke H; Lavallee, Vincent; Cheng, Ping; Bott, Tina M; Meimetis, Labros G; Law, Simon; Nguyen, Nham T; Williams, David E; Kaleta, Jadwiga; Villanueva, Ivan; Davies, Julian; Andersen, Raymond J; Brayer, Gary D; Brömme, Dieter

    2016-08-26

    Natural products are an important source of novel drug scaffolds. The highly variable and unpredictable timelines associated with isolating novel compounds and elucidating their structures have led to the demise of exploring natural product extract libraries in drug discovery programs. Here we introduce affinity crystallography as a new methodology that significantly shortens the time of the hit to active structure cycle in bioactive natural product discovery research. This affinity crystallography approach is illustrated by using semipure fractions of an actinomycetes culture extract to isolate and identify a cathepsin K inhibitor and to compare the outcome with the traditional assay-guided purification/structural analysis approach. The traditional approach resulted in the identification of the known inhibitor antipain (1) and its new but lower potency dehydration product 2, while the affinity crystallography approach led to the identification of a new high-affinity inhibitor named lichostatinal (3). The structure and potency of lichostatinal (3) was verified by total synthesis and kinetic characterization. To the best of our knowledge, this is the first example of isolating and characterizing a potent enzyme inhibitor from a partially purified crude natural product extract using a protein crystallographic approach.

  4. Communication: Revised electron affinity of SF6 from kinetic data.

    PubMed

    Troe, Jürgen; Miller, Thomas M; Viggiano, Albert A

    2012-03-28

    Previously determined experimental data for thermal attachment of electrons to SF(6) and thermal detachment from SF(6)(-) over the range 590-670 K are reevaluated by a third-law analysis. Recent high precision calculations of SF(6)(-) harmonic frequences and anharmonicities (for several of the modes) lead to considerable changes in modeled vibrational partition functions which then have to be accommodated for by a smaller value of the derived adiabatic electron affinity EA of SF(6). The previously estimated value of EA = 1.20 (±0.05) eV in this way is reduced to a value of EA = 1.03 (±0.05) eV. In addition, the bond dissociation energy E(0,dis) for SF(6)(-) → SF(5)(-) + F is reduced to E(0,dis) = 1.44 (±0.05) eV. Finally, the consequences for modeled specific rate constants k(det)(E,J) of electron detachment from SF(6)(-) are discussed.

  5. Phosphatidylserine Reversibly Binds Cu2+ with Extremely High Affinity

    PubMed Central

    Monson, Christopher F.; Cong, Xiao; Robison, Aaron; Pace, Hudson P.; Liu, Chunming; Poyton, Matthew F.; Cremer, Paul S.

    2012-01-01

    Phosphatidylserine (PS) embedded within supported lipid bilayers (SLBs) was found to bind Cu2+ from solution with extraordinarily high affinity. In fact, the equilibrium dissociation constant was in the femtomolar range. The resulting complex formed in a 1:2 Cu2+ to PS ratio and quenches a broad spectrum of lipid-bound fluorophores in a reversible and pH-dependent fashion. At acidic pH values, the fluorophores were almost completely unquenched, while at basic pH values significant quenching (85–90%) was observed. The pH at which the transition occurred was dependent on the PS concentration and ranged from approximately pH 5 to 8. The quenching kinetics was slow at low Cu2+ concentrations and basic values pH (up to several hours), while the unquenching reaction was orders of magnitude more rapid upon lowering the pH. This was consistent with diffusion limited complex formation at basic pH, but rapid dissociation under acidic conditions. The tight binding of Cu2+ to PS may have physiological consequences under certain circumstances. PMID:22548290

  6. HLA class I alleles are associated with peptide-binding repertoires of different size, affinity, and immunogenicity.

    PubMed

    Paul, Sinu; Weiskopf, Daniela; Angelo, Michael A; Sidney, John; Peters, Bjoern; Sette, Alessandro

    2013-12-15

    Prediction of HLA binding affinity is widely used to identify candidate T cell epitopes, and an affinity of 500 nM is routinely used as a threshold for peptide selection. However, the fraction (percentage) of peptides predicted to bind with affinities of 500 nM varies by allele. For example, of a large collection of ~30,000 dengue virus-derived peptides only 0.3% were predicted to bind HLA A*0101, whereas nearly 5% were predicted for A*0201. This striking difference could not be ascribed to variation in accuracy of the algorithms used, as predicted values closely correlated with affinity measured in vitro with purified HLA molecules. These data raised the question whether different alleles would also vary in terms of epitope repertoire size, defined as the number of associated epitopes or, alternatively, whether alleles vary drastically in terms of the affinity threshold associated with immunogenicity. To address this issue, strains of HLA transgenic mice with wide (A*0201), intermediate (B*0702), or narrow (A*0101) repertoires were immunized with peptides of varying binding affinity and relative percentile ranking. The results show that absolute binding capacity is a better predictor of immunogenicity, and analysis of epitopes from the Immune Epitope Database revealed that predictive efficacy is increased using allele-specific affinity thresholds. Finally, we investigated the genetic and structural basis of the phenomenon. Although no stringent correlate was defined, on average HLA B alleles are associated with significantly narrower repertoires than are HLA A alleles.

  7. Kinetic and in silico studies of novel hydroxy-based thymol analogues as inhibitors of mushroom tyrosinase.

    PubMed

    Ashraf, Zaman; Rafiq, Muhammad; Seo, Sung-Yum; Kwon, Kang Sung; Babar, Mustafeez Mujtaba; Zaidi, Najam-us-Sahar Sadaf

    2015-06-15

    The present studies reports the synthesis of hydoxylated thymol analogues (4a-e) and (6a-c) as mushroom tyrosinase inhibitors. The title compounds were obtained in good yield and characterized by FTIR, (1)H NMR, (13)C NMR, Mass spectral data and X-ray crystallography in case of compound (6a). The inhibitory effects on mushroom tyrosinase and DPPH were evaluated and it was observed that 2-[5-methyl-2-(propan-2-yl)phenoxy]-2-oxoethyl (2E)-3-(4-hydroxyphenyl)prop-2-enoate (6b) showed tyrosinase inhibitory activity (IC50 15.20 μM) comparable to kojic acid (IC50 16.69 μM) while 2-[5-methyl-2-(propan-2-yl)phenoxy]-2-oxoethyl 3,4-dihydroxybenzoate (4d) exhibited higher antioxidant potential (IC50 11.30 μM) than standard ascorbic acid (IC50 24.20 μM). The docking studies of synthesized thymol analogues was also performed against tyrosinase protein (PDBID 2ZMX) to compare the binding affinities with IC50 values. The predicted binding affinities are in good agreement with the IC50 values as compound (6b) showed highest binding affinity -7.1 kcal/mol. The kinetic mechanism analyzed by Lineweaver-Burk plots exhibited that compound (4d) and (6b) inhibit the enzyme by two different pathways displayed mixed-type inhibition. The inhibition constants Ki calculated from Dixon plots for compounds (4d) and (6b) are 34 μM and 25 μM respectively. It was also found from kinetic analysis that derivative (6b) formed reversible enzyme inhibitor complex. It is propose on the basis of our investigation that title compound (6b) may serve as lead structure for the design of more potent tyrosinase inhibitors.

  8. Structure of a High-Affinity

    SciTech Connect

    Saphire, E.O.; Montero, M.; Menendez, A.; Houten, N.E.van; Irving, M.B.; Pantophlet, R.; Swick, M.B.; Parren, P.W.H.I.; Burton, D.R.; Scott, J.K.; Wilson, I.A.; /Scripps Res. Inst. /Simon Fraser U. /British Columbia U.

    2007-07-13

    The human antibody b12 recognizes a discontinuous epitope on gp120 and is one of the rare monoclonal antibodies that neutralize a broad range of primary human immunodeficiency virus type 1 (HIV-1) isolates. We previously reported the isolation of B2.1, a dimeric peptide that binds with high specificity to b12 and competes with gp120 for b12 antibody binding. Here, we show that the affinity of B2.1 was improved 60-fold over its synthetic-peptide counterpart by fusing it to the N terminus of a soluble protein. This affinity, which is within an order of magnitude of that of gp120, probably more closely reflects the affinity of the phage-borne peptide. The crystal structure of a complex between Fab of b12 and B2.1 was determined at 1.8 Angstrom resolution. The structural data allowed the differentiation of residues that form critical contacts with b12 from those required for maintenance of the antigenic structure of the peptide, and revealed that three contiguous residues mediate B2.1's critical contacts with b12. This single region of critical contact between the B2.1 peptide and the b12 paratope is unlikely to mimic the discontinuous key binding residues involved in the full b12 epitope for gp120, as previously identified by alanine scanning substitutions on the gp120 surface. These structural observations are supported by experiments that demonstrate that B2.1 is an ineffective immunogenic mimic of the b12 epitope on gp120. Indeed, an extensive series of immunizations with B2.1 in various forms failed to produce gp120 cross-reactive sera. The functional and structural data presented here, however, suggest that the mechanism by which b12 recognizes the two antigens is very different. Here, we present the first crystal structure of peptide bound to an antibody that was originally raised against a discontinuous protein epitope. Our results highlight the challenge of producing immunogens that mimic discontinuous protein epitopes, and the necessity of combining

  9. Link between Affinity and Cu(II) Binding Sites to Amyloid-β Peptides Evaluated by a New Water-Soluble UV-Visible Ratiometric Dye with a Moderate Cu(II) Affinity.

    PubMed

    Conte-Daban, Amandine; Borghesani, Valentina; Sayen, Stéphanie; Guillon, Emmanuel; Journaux, Yves; Gontard, Geoffrey; Lisnard, Laurent; Hureau, Christelle

    2017-02-07

    Being able to easily determine the Cu(II) affinity for biomolecules of moderate affinity is important. Such biomolecules include amyloidogenic peptides, such as the well-known amyloid-β peptide involved in Alzheimer's disease. Here, we report the synthesis of a new water-soluble ratiometric Cu(II) dye with a moderate affinity (10(9) M(-1) at pH 7.1) and the characterizations of the Cu(II) corresponding complex by X-ray crystallography, EPR, and XAS spectroscopic methods. UV-vis competition was performed on the Aβ peptide as well as on a wide series of modified peptides, leading to an affinity value of 1.6 × 10(9) M(-1) at pH 7.1 for the Aβ peptide and to a coordination model for the Cu(II) site within the Aβ peptide that agrees with the one mostly accepted currently.

  10. Remarkably low affinity of CD4/peptide-major histocompatibility complex class II protein interactions

    PubMed Central

    Jönsson, Peter; Southcombe, Jennifer H.; Santos, Ana Mafalda; Huo, Jiandong; Fernandes, Ricardo A.; McColl, James; Lever, Melissa; Evans, Edward J.; Hudson, Alexander; Chang, Veronica T.; Hanke, Tomáš; Godkin, Andrew; Dunne, Paul D.; Horrocks, Mathew H.; Palayret, Matthieu; Screaton, Gavin R.; Petersen, Jan; Rossjohn, Jamie; Fugger, Lars; Dushek, Omer; Xu, Xiao-Ning; Davis, Simon J.; Klenerman, David

    2016-01-01

    The αβ T-cell coreceptor CD4 enhances immune responses more than 1 million-fold in some assays, and yet the affinity of CD4 for its ligand, peptide-major histocompatibility class II (pMHC II) on antigen-presenting cells, is so weak that it was previously unquantifiable. Here, we report that a soluble form of CD4 failed to bind detectably to pMHC II in surface plasmon resonance-based assays, establishing a new upper limit for the solution affinity at 2.5 mM. However, when presented multivalently on magnetic beads, soluble CD4 bound pMHC II-expressing B cells, confirming that it is active and allowing mapping of the native coreceptor binding site on pMHC II. Whereas binding was undetectable in solution, the affinity of the CD4/pMHC II interaction could be measured in 2D using CD4- and adhesion molecule-functionalized, supported lipid bilayers, yielding a 2D Kd of ∼5,000 molecules/μm2. This value is two to three orders of magnitude higher than previously measured 2D Kd values for interacting leukocyte surface proteins. Calculations indicated, however, that CD4/pMHC II binding would increase rates of T-cell receptor (TCR) complex phosphorylation by threefold via the recruitment of Lck, with only a small, 2–20% increase in the effective affinity of the TCR for pMHC II. The affinity of CD4/pMHC II therefore seems to be set at a value that increases T-cell sensitivity by enhancing phosphorylation, without compromising ligand discrimination. PMID:27114505

  11. The affine cohomology spaces and its applications

    NASA Astrophysics Data System (ADS)

    Fraj, Nizar Ben; Laraiedh, Ismail

    2016-12-01

    We compute the nth cohomology space of the affine Lie superalgebra 𝔞𝔣𝔣(1) on the (1,1)-dimensional real superspace with coefficient in a large class of 𝔞𝔣𝔣(1)-modules M. We apply our results to the module of weight densities and the module of linear differential operators acting on a superspace of weighted densities. This work is the generalization of a result by Basdouri et al. [The linear 𝔞𝔣𝔣(n|1)-invariant differential operators on weighted densities on the superspace ℝ1|n and 𝔞𝔣𝔣(n|1)-relative cohomology, Int. J. Geom. Meth. Mod. Phys. 10 (2013), Article ID: 1320004, 9 pp.

  12. Automatic gesture analysis using constant affine velocity.

    PubMed

    Cifuentes, Jenny; Boulanger, Pierre; Pham, Minh Tu; Moreau, Richard; Prieto, Flavio

    2014-01-01

    Hand human gesture recognition has been an important research topic widely studied around the world, as this field offers the ability to identify, recognize, and analyze human gestures in order to control devices or to interact with computer interfaces. In particular, in medical training, this approach is an important tool that can be used to obtain an objective evaluation of a procedure performance. In this paper, some obstetrical gestures, acquired by a forceps, were studied with the hypothesis that, as the scribbling and drawing movements, they obey the one-sixth power law, an empirical relationship which connects path curvature, torsion, and euclidean velocity. Our results show that obstetrical gestures have a constant affine velocity, which is different for each type of gesture and based on this idea this quantity is proposed as an appropriate classification feature in the hand human gesture recognition field.

  13. Dynamic friction of self-affine surfaces

    NASA Astrophysics Data System (ADS)

    Schmittbuhl, Jean; Vilotte, Jean-Pierre; Roux, Stéphane

    1994-02-01

    We investigate the velocity dependence of the friction between two rigid blocks limited by a self-affine surface such as the one generated by a crack. The upper solid is subjected either to gravity or to an external elastic stiffness, and is driven horizontally at constant velocity, V, while the lower solid is fixed. For low velocities, the apparent friction coefficient is constant. For high velocities, the apparent friction is shown to display a velocity weakening. The weakening can be related to the variation of the mean contact time due to the occurrence of jumps during the motions. The cross-over between these two regimes corresponds to a characteristic velocity which depends on the geometry of the surfaces and on the mean normal force. In the case of simple gravity loading, the velocity dependence of the apparent friction at high velocities is proportional to 1/V^2 where V is the imposed tangential velocity. In the case of external elastic stiffness, two velocity weakening regimes can be identified, the first is identical to the gravity case with a 1/V^2 dependence, the second appears at higher velocities and is characterized by a 1/V variation. The characteristic velocity of this second cross-over depends on the roughness and the elastic stiffness. The statistical distribution of ballistic flight distances is analysed, and is shown to reveal in all cases the self-affinity of the contacting surfaces. Nous analysons la dépendence en vitesse du frottement entre deux solides limités par une surface rugueuse auto-affine comme celle d'une surface de fracture. Le solide supérieur est soumis soit à la gravité, soit à une raideur élastique externe, et est entraîné à vitesse horizontale constante V sur le solide inférieur fixe. A faible vitesse, le coefficient de friction apparent, est constant. A forte vitesse, le coefficient de friction apparent devient inversement proportionnel à la vitesse. Cette dépendance peut être reliée à la variation du temps

  14. Low- and high-affinity transport systems for citric acid in the yeast Candida utilis.

    PubMed Central

    Cássio, F; Leáo, C

    1991-01-01

    Citric acid-grown cells of the yeast Candida utilis induced two transport systems for citric acid, presumably a proton symport and a facilitated diffusion system for the charged and the undissociated forms of the acid, respectively. Both systems could be observed simultaneously when the transport was measured at 25 degrees C with labelled citric acid at pH 3.5 with the following kinetic parameters: for the low-affinity system, Vmax, 1.14 nmol of undissociated citric acid s-1 mg (dry weight) of cells-1, and Km, 0.59 mM undissociated acid; for the high-affinity system, Vmax, 0.38 nmol of citrate s-1 mg (dry weight) of cells-1, and Km, 0.056 mM citrate. At high pH values (above 5.0), the low-affinity system was absent or not measurable. The two transport systems exhibited different substrate specificities. Isocitric acid was a competitive inhibitor of citric acid for the high-affinity system, suggesting that these tricarboxylic acids used the same transport system, while aconitic, tricarballylic, trimesic, and hemimellitic acids were not competitive inhibitors. With respect to the low-affinity system, isocitric acid, L-lactic acid, and L-malic acid were competitive inhibitors, suggesting that all of these mono-, di-, and tricarboxylic acids used the same low-affinity transport system. The two transport systems were repressed by glucose, and as a consequence diauxic growth was observed. Both systems were inducible, and not only citric acid but also lactic acid and malic acid may induce those transport systems. The induction of both systems was not dependent on the relative concentration of the anionic form(s) and of undissociated citric acid in the culture medium.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1664712

  15. Smooth affine shear tight frames: digitization and applications

    NASA Astrophysics Data System (ADS)

    Zhuang, Xiaosheng

    2015-08-01

    In this paper, we mainly discuss one of the recent developed directional multiscale representation systems: smooth affine shear tight frames. A directional wavelet tight frame is generated by isotropic dilations and translations of directional wavelet generators, while an affine shear tight frame is generated by anisotropic dilations, shears, and translations of shearlet generators. These two tight frames are actually connected in the sense that the affine shear tight frame can be obtained from a directional wavelet tight frame through subsampling. Consequently, an affine shear tight frame indeed has an underlying filter bank from the MRA structure of its associated directional wavelet tight frame. We call such filter banks affine shear filter banks, which can be designed completely in the frequency domain. We discuss the digitization of affine shear filter banks and their implementations: the forward and backward digital affine shear transforms. Redundancy rate and computational complexity of digital affine shear transforms are also investigated in this paper. Numerical experiments and comparisons in image/video processing show the advantages of digital affine shear transforms over many other state-of-art directional multiscale representation systems.

  16. Noncompetitive affinity assays of glucagon and amylin using mirror-image aptamers as affinity probes.

    PubMed

    Yi, Lian; Wang, Xue; Bethge, Lucas; Klussmann, Sven; Roper, Michael G

    2016-03-21

    The ability to detect picomolar concentrations of glucagon and amylin using fluorescently labeled mirror-image aptamers, so-called Spiegelmers, is demonstrated. Spiegelmers rival the specificity of antibodies and overcome the problem of biostability of natural aptamers in a biological matrix. Using Spiegelmers as affinity probes, noncompetitive capillary electrophoresis affinity assays of glucagon and murine amylin were developed and optimized. The detection limit for glucagon was 6 pM and for amylin was 40 pM. Glucagon-like peptide-1 and -2 did not interfere with the glucagon assay, while the amylin assay showed cross-reactivity to calcitonin gene related peptide. The developed assays were combined with a competitive immunoassay for insulin to measure glucagon, amylin, and insulin secretion from batches of islets after incubation with different glucose concentrations. The development of these assays is an important step towards incorporation into an online measurement system for monitoring dynamic secretion from single islets.

  17. Kinetics and molecular docking studies of the inhibitions of angiotensin converting enzyme and renin activities by hemp seed (Cannabis sativa L.) peptides.

    PubMed

    Girgih, Abraham T; He, Rong; Aluko, Rotimi E

    2014-05-07

    Four novel peptide sequences (WVYY, WYT, SVYT, and IPAGV) identified from an enzymatic digest of hemp seed proteins were used for enzyme inhibition kinetics and molecular docking studies. Results showed that WVYY (IC50 = 0.027 mM) was a more potent (p < 0.05) ACE-inhibitory peptide than WYT (IC50 = 0.574 mM). However, WYT (IC50 = 0.054 mM) and SVYT (IC50 = 0.063 mM) had similar renin-inhibitory activity, which was significantly better than that of IPAGV (IC50 = 0.093 mM). Kinetics studies showed that WVYY had a lower inhibition constant (Ki) of 0.06 mM and hence greater affinity for ACE when compared to the 1.83 mM obtained for WYT. SVYT had lowest Ki value of 0.89 mM against renin, when compared to the values obtained for WYT and IPAGV. Molecular docking results showed that the higher inhibitory activities of WVYY and SVYT were due to the greater degree of noncovalent bond-based interactions with the enzyme protein, especially formation of higher numbers of hydrogen bonds with active site residues.

  18. Novel neonicotinoid-agarose affinity column for Drosophila and Musca nicotinic acetylcholine receptors.

    PubMed

    Tomizawa, M; Latli, B; Casida, J E

    1996-10-01

    Neonicotinoids such as the insecticide imidacloprid (IMI) act as agonists at the insect nicotinic acetylcholine receptor (nAChR). Head membranes of Drosophila melanogaster and Musca domestica have a single high-affinity binding site for [3H]IMI with KD values of 1-2 nM and Bmax values of 560-850 fmol/mg of protein. Locusta and Periplaneta nAChRs isolated with an alpha-bungarotoxin (alpha-BGT)-agarose affinity column are known to be alpha-subunit homooligomers. This study uses 1-[N-(6-chloro-3-pyridylmethyl)-N-ethyl]amino-1-amino-2-nitroethene++ + (which inhibits [3H]IMI binding to Drosophila and Musca head membranes at 2-3 nM) to develop a neonicotinoid-agarose affinity column. The procedure-introduction of Triton-solubilized Drosophila or Musca head membranes into this neonicotinoid-based column, elution with IMI, and analysis by lithium dodecyl sulfate-polyacrylamicle gel electrophoresis-gives only three proteins (69, 66, and 61 kDa) tentatively assigned as putative subunits of the nAChR; the same three proteins are obtained with Musca using the alpha-BGT-agarose affinity column. Photoaffinity labeling of the Drosophila and Musca putative subunits from the neonicotinoid column with 125I-alpha-BGT-4-azidosalicylic acid gives a labeled derivative of 66-69 kDa. The yield is 2-5 micrograms of receptor protein from 1 g of Drosophila or Musca heads. Neonicotinoid affinity chromatography to isolate native Drosophila and Musca receptors will facilitate studies on the structure and function of insect nAChRs.

  19. Associations of teacher credibility and teacher affinity with learning outcomes in health classrooms.

    PubMed

    Gray, DeLeon L; Anderman, Eric M; O'Connell, Ann A

    2011-06-01

    In the present study (N = 633), we examine the role of teacher credibility and teacher affinity in classrooms. We explore the relations among these two characteristics and student gains in knowledge and valuing of learning about HIV and pregnancy prevention across high school classrooms. Results marshaled support for the notion that teacher characteristics are associated with classroom-level gains in learning outcomes. Above and beyond student-level predictors, teacher credibility (aggregated to the classroom level) was positively related to increases in knowledge across classrooms, whereas aggregated teacher affinity was positively related to an increased valuing of learning about HIV and pregnancy prevention across classrooms. Future directions and implications for practice are discussed.

  20. High Affinity Binding of Indium and Ruthenium Ions by Gastrins.

    PubMed

    Baldwin, Graham S; George, Graham N; Pushie, M Jake

    2015-01-01

    The peptide hormone gastrin binds two ferric ions with high affinity, and iron binding is essential for the biological activity of non-amidated forms of the hormone. Since gastrins act as growth factors in gastrointestinal cancers, and as peptides labelled with Ga and In isotopes are increasingly used for cancer diagnosis, the ability of gastrins to bind other metal ions was investigated systematically by absorption spectroscopy. The coordination structures of the complexes were characterized by extended X-ray absorption fine structure (EXAFS) spectroscopy. Changes in the absorption of gastrin in the presence of increasing concentrations of Ga3+ were fitted by a 2 site model with dissociation constants (Kd) of 3.3 x 10-7 and 1.1 x 10-6 M. Although the absorption of gastrin did not change upon the addition of In3+ ions, the changes in absorbance on Fe3+ ion binding in the presence of indium ions were fitted by a 2 site model with Kd values for In3+ of 6.5 x 10-15 and 1.7 x 10-7 M. Similar results were obtained with Ru3+ ions, although the Kd values for Ru3+ of 2.6 x 10-13 and 1.2 x 10-5 M were slightly larger than observed for In3+. The structures determined by EXAFS all had metal:gastrin stoichiometries of 2:1 but, while the metal ions in the Fe, Ga and In complexes were bridged by a carboxylate and an oxygen with a metal-metal separation of 3.0-3.3 Å, the Ru complex clearly demonstrated a short range Ru-Ru separation, which was significantly shorter, at 2.4 Å, indicative of a metal-metal bond. We conclude that gastrin selectively binds two In3+ or Ru3+ ions, and that the affinity of the first site for In3+ or Ru3+ ions is higher than for ferric ions. Some of the metal ion-gastrin complexes may be useful for cancer diagnosis and therapy.

  1. Affine connection form of Regge calculus

    NASA Astrophysics Data System (ADS)

    Khatsymovsky, V. M.

    2016-12-01

    Regge action is represented analogously to how the Palatini action for general relativity (GR) as some functional of the metric and a general connection as independent variables represents the Einstein-Hilbert action. The piecewise flat (or simplicial) spacetime of Regge calculus is equipped with some world coordinates and some piecewise affine metric which is completely defined by the set of edge lengths and the world coordinates of the vertices. The conjugate variables are the general nondegenerate matrices on the three-simplices which play the role of a general discrete connection. Our previous result on some representation of the Regge calculus action in terms of the local Euclidean (Minkowsky) frame vectors and orthogonal connection matrices as independent variables is somewhat modified for the considered case of the general linear group GL(4, R) of the connection matrices. As a result, we have some action invariant w.r.t. arbitrary change of coordinates of the vertices (and related GL(4, R) transformations in the four-simplices). Excluding GL(4, R) connection from this action via the equations of motion we have exactly the Regge action for the considered spacetime.

  2. [Separation of osteoclasts by lectin affinity chromatography].

    PubMed

    Itokazu, M; Tan, A; Tanaka, S

    1991-09-01

    Newborn rat calvaria bone cells obtained by digestion were fractionated on columns of wheat-germ agglutinin (WGA) sepharose 6MB for osteoclast isolation. The initial nonspecific binding cells which were passed through the WGA sepharose column by a buffer acquired a high enzyme activity of alkaline phosphatase, but not that of acid phosphatase. However, elution of cells using a buffer with the addition of N-acetyl-D-glucosamine resulted in a high acid phosphatase activity but no alkaline phosphatase activity. The former WGA binding negative fraction enriched osteoblasts averaging 30 microns in size. The latter WGA binding positive fraction enriched osteoclasts ranging from 20 microns to 60 microns in size. The electron-microscope clearly demonstrated the cellular details of osteoclasts. Isolated cell counts showed a ratio of six to four. These results indicate that our method of osteoclast isolation is simple and useful in lectin affinity chromatography because all cells have sugar moieties on their surface and the binding of osteoclasts can be reversed by the addition of specific lectin-binding sugars to the eluting buffer.

  3. Prostate Cancer and Bone: The Elective Affinities

    PubMed Central

    2014-01-01

    The onset of metastases dramatically changes the prognosis of prostate cancer patients, determining increased morbidity and a drastic fall in survival expectancy. Bone is a common site of metastases in few types of cancer, and it represents the most frequent metastatic site in prostate cancer. Of note, the prevalence of tumor relapse to the bone appears to be increasing over the years, likely due to a longer overall survival of prostate cancer patients. Bone tropism represents an intriguing challenge for researchers also because the preference of prostate cancer cells for the bone is the result of a sequential series of targetable molecular events. Many factors have been associated with the peculiar ability of prostate cancer cells to migrate in bone marrow and to determine mixed osteoblastic/osteolytic lesions. As anticipated by the success of current targeted therapy aimed to block bone resorption, a better understanding of molecular affinity between prostate cancer and bone microenvironment will permit us to cure bone metastasis and to improve prognosis of prostate cancer patients. PMID:24971315

  4. Cambrian trilobites with Siberian affinities, southwestern Alaska

    SciTech Connect

    Palmer, A.R.; Egbert, R.M.; Sullivan, R.; Knoth, J.S.

    1985-02-01

    Cambrian trilobites occur in two levels (about 7 m apart) in the core of a large, complex anticlinal structure in the area between the Taylor Mountains and the Hoholitna River in southwestern Alaska. The lower collection contains Erbia, Macannaia (a species close to Soviet forms described as Pagetia ferox Lermontova), two species of Kootenia (including one perhaps cospecific with forms from the central Brooks range), and several species of ptychoparioid trilobites. It is clear that biogeographic affinities are with the transitional facies of the eastern Siberian platform and the south Siberian foldbelt. In Soviet terms, the age of the collection falls in a disputed interval called latest Early Cambrian (Tojonian) by some authors, and earliest Middle Cambrian (Amgan) by others. In North American terms, Macannaia is known only from early Middle Cambrian beds. The younger collection contains abundant agnostids, a variety of conocoryphids, Paradoxides, and several species of ptychoparioid trilobites. This is an assemblage of undoubted late Middle Cambrian age, comparable to faunas described from the Maya State of the Siberian platform and the Paradoxides paradoxissimus Stage of the Baltic region. Both faunas are from ocean-facing or outer shelf environments. None of the key non-agnostid or non-pagetiid elements have been seen previously in deposits of Cambrian North America.

  5. Affinity of guanosine derivatives for polycytidylate revisited

    NASA Technical Reports Server (NTRS)

    Kanavarioti, A.; Hurley, T. B.; Baird, E. E.

    1995-01-01

    Evidence is presented for complexation of guanosine 5'-monophosphate 2-methylimidazolide (2-MeImpG) with polycytidylate (poly(C)) at pH 8.0 and 23 degrees C in the presence of 1.0 M NaCl2 and 0.2 M MgCl2 in water. The association of 2-MeImpG with poly(C) was investigated using UV-vis spectroscopy as well as by monitoring the kinetics of the nucleophilic substitution reaction of the imidazole moiety by amines. The results of both methods are consistent with moderately strong poly(C) 2-MeImpG complexation and the spectrophotometric measurements allowed the construction of a binding isotherm with a concentration of 2-MeImpG equal to 5.55 +/- 0.15 mM at half occupancy. UV spectroscopy was employed to establish the binding of other guanosine derivatives on poly(C). These derivatives are guanosine 5'-monophosphate (5'GMP), guanosine 5'-monophosphate imidazolide (ImpG), and guanosine 5'-monophosphate morpholidate (morpG). Within experimental error these guanosine derivatives exhibit the same affinity for poly(C) as 2-MeImpG.

  6. Macroporous chitin affinity membranes for lysozyme separation.

    PubMed

    Ruckenstein, E; Zeng, X

    1997-12-20

    Macroporous chitin membranes with high, controlled porosity and good mechanical properties have been prepared using a technique developed in this laboratory based on silica particles as porogen. They were employed for the affinity separation of lysozyme. Chitin membranes (1 mm thickness) can be operated at high fluxes (>/=1.1 mL/min/cm(2)) corresponding to pressure drops >/=2 psi. Their adsorption capacity for lysozyme ( approximately 50 mg/mL membrane) is by an order of magnitude higher than that of the chitin beads employed in column separation. In a binary mixture of lysozyme and ovalbumin, the membranes showed very high selectivity towards lysozyme. The effect of some important operation parameters, such as the flow rates during loading and elution were investigated. Lysozyme of very high purity (>98%) was obtained from a mixture of lysozyme and ovalbumin, and from egg white. The results indicate that the macroporous chitin membranes can be used for the separation, purification, and recovery of lysozyme at large scale. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 610-617, 1997.

  7. Network-of-queues approach to B-cell-receptor affinity discrimination.

    PubMed

    Felizzi, Federico; Comoglio, Federico

    2012-06-01

    The immune system is one of the most complex signal processing machineries in biology. The adaptive immune system, consisting of B and T lymphocytes, is activated in response to a large spectrum of pathogen antigens. B cells recognize and bind the antigen through B-cell receptors (BCRs) and this is fundamental for B-cell activation. However, the system response is dependent on BCR-antigen affinity values that span several orders of magnitude. Moreover, the ability of the BCR to discriminate between affinities at the high end (e.g., 10^{9}M^{-1}-10^{10}M^{-1}) challenges the formulation of a mathematical model able to robustly separate these affinity-dependent responses. Queuing theory enables the analysis of many related processes, such as those resulting from the stochasticity of protein binding and unbinding events. Here we define a network of queues, consisting of BCR early signaling states and transition rates related to the propensity of molecular aggregates to form or disassemble. By considering the family of marginal distributions of BCRs in a given signaling state, we report a significant separation (measured as Jensen-Shannon divergence) that arises from a broad spectrum of antigen affinities.

  8. Network-of-queues approach to B-cell-receptor affinity discrimination

    NASA Astrophysics Data System (ADS)

    Felizzi, Federico; Comoglio, Federico

    2012-06-01

    The immune system is one of the most complex signal processing machineries in biology. The adaptive immune system, consisting of B and T lymphocytes, is activated in response to a large spectrum of pathogen antigens. B cells recognize and bind the antigen through B-cell receptors (BCRs) and this is fundamental for B-cell activation. However, the system response is dependent on BCR-antigen affinity values that span several orders of magnitude. Moreover, the ability of the BCR to discriminate between affinities at the high end (e.g., 109M-1-1010M-1) challenges the formulation of a mathematical model able to robustly separate these affinity-dependent responses. Queuing theory enables the analysis of many related processes, such as those resulting from the stochasticity of protein binding and unbinding events. Here we define a network of queues, consisting of BCR early signaling states and transition rates related to the propensity of molecular aggregates to form or disassemble. By considering the family of marginal distributions of BCRs in a given signaling state, we report a significant separation (measured as Jensen-Shannon divergence) that arises from a broad spectrum of antigen affinities.

  9. Germinal center reaction: antigen affinity and presentation explain it all.

    PubMed

    Oropallo, Michael A; Cerutti, Andrea

    2014-07-01

    The selection and expansion of B cells undergoing affinity maturation in the germinal center is a hallmark of humoral immunity. A recent paper in Nature provides new insights into the relationships between the affinity of the immunoglobulin receptor for antigen, the ability of B cells to present antigen to T cells, and the processes of selection, mutation, and clonal expansion in the germinal center.

  10. Striving for Empathy: Affinities, Alliances and Peer Sexuality Educators

    ERIC Educational Resources Information Center

    Fields, Jessica; Copp, Martha

    2015-01-01

    Peer sexuality educators' accounts of their work reveal two approaches to empathy with their students: affinity and alliance. "Affinity-based empathy" rests on the idea that the more commonalities sexuality educators and students share (or perceive they share), the more they will be able to empathise with one another, while…

  11. Conformational kinetics reveals affinities of protein conformational states.

    PubMed

    Daniels, Kyle G; Suo, Yang; Oas, Terrence G

    2015-07-28

    Most biological reactions rely on interplay between binding and changes in both macromolecular structure and dynamics. Practical understanding of this interplay requires detection of critical intermediates and determination of their binding and conformational characteristics. However, many of these species are only transiently present and they have often been overlooked in mechanistic studies of reactions that couple binding to conformational change. We monitored the kinetics of ligand-induced conformational changes in a small protein using six different ligands. We analyzed the kinetic data to simultaneously determine both binding affinities for the conformational states and the rate constants of conformational change. The approach we used is sufficiently robust to determine the affinities of three conformational states and detect even modest differences in the protein's affinities for relatively similar ligands. Ligand binding favors higher-affinity conformational states by increasing forward conformational rate constants and/or decreasing reverse conformational rate constants. The amounts by which forward rate constants increase and reverse rate constants decrease are proportional to the ratio of affinities of the conformational states. We also show that both the affinity ratio and another parameter, which quantifies the changes in conformational rate constants upon ligand binding, are strong determinants of the mechanism (conformational selection and/or induced fit) of molecular recognition. Our results highlight the utility of analyzing the kinetics of conformational changes to determine affinities that cannot be determined from equilibrium experiments. Most importantly, they demonstrate an inextricable link between conformational dynamics and the binding affinities of conformational states.

  12. Affine group formulation of the Standard Model coupled to gravity

    SciTech Connect

    Chou, Ching-Yi; Ita, Eyo; Soo, Chopin

    2014-04-15

    In this work we apply the affine group formalism for four dimensional gravity of Lorentzian signature, which is based on Klauder’s affine algebraic program, to the formulation of the Hamiltonian constraint of the interaction of matter and all forces, including gravity with non-vanishing cosmological constant Λ, as an affine Lie algebra. We use the hermitian action of fermions coupled to gravitation and Yang–Mills theory to find the density weight one fermionic super-Hamiltonian constraint. This term, combined with the Yang–Mills and Higgs energy densities, are composed with York’s integrated time functional. The result, when combined with the imaginary part of the Chern–Simons functional Q, forms the affine commutation relation with the volume element V(x). Affine algebraic quantization of gravitation and matter on equal footing implies a fundamental uncertainty relation which is predicated upon a non-vanishing cosmological constant. -- Highlights: •Wheeler–DeWitt equation (WDW) quantized as affine algebra, realizing Klauder’s program. •WDW formulated for interaction of matter and all forces, including gravity, as affine algebra. •WDW features Hermitian generators in spite of fermionic content: Standard Model addressed. •Constructed a family of physical states for the full, coupled theory via affine coherent states. •Fundamental uncertainty relation, predicated on non-vanishing cosmological constant.

  13. Tending to Change: Toward a Situated Model of Affinity Spaces

    ERIC Educational Resources Information Center

    Bommarito, Dan

    2014-01-01

    The concept of affinity spaces, a theoretical construct used to analyze literate activity from a spatial perspective, has gained popularity among scholars of literacy studies and, particularly, video-game studies. This article seeks to expand current notions of affinity spaces by identifying key assumptions that have limited researchers'…

  14. A study of electron affinities using the initiator approach to full configuration interaction quantum Monte Carlo.

    PubMed

    Cleland, D M; Booth, George H; Alavi, Ali

    2011-01-14

    For the atoms with Z ≤ 11, energies obtained using the "initiator" extension to full configuration interaction quantum Monte Carlo (i-FCIQMC) come to within statistical errors of the FCIQMC results. As these FCIQMC values have been shown to converge onto FCI results, the i-FCIQMC method allows similar accuracy to be achieved while significantly reducing the scaling with the size of the Slater determinant space. The i-FCIQMC electron affinities of the Z ≤ 11 atoms in the aug-cc-pVXZ basis sets are presented here. In every case, values are obtained to well within chemical accuracy [the mean absolute deviation (MAD) from the relativistically corrected experimental values is 0.41 mE(h)], and significantly improve on coupled cluster with singles, doubles and perturbative triples [CCSD(T)] results. Since the only remaining source of error is basis set incompleteness, we have investigated using CCSD(T)-F12 contributions to correct the i-FCIQMC results. By doing so, much faster convergence with respect to basis set size may be achieved for both the electron affinities and the FCIQMC ionization potentials presented in a previous paper. With this F12 correction, the MAD can be further reduced to 0.13 mE(h) for the electron affinities and 0.31 mE(h) for the ionization potentials.

  15. Stoichiometry and Substrate Affinity of the Mannitol Transporter, EnzymeIImtl, from Escherichia coli

    PubMed Central

    Veldhuis, Gertjan; Broos, Jaap; Poolman, Bert; Scheek, Ruud M.

    2005-01-01

    Uptake and consecutive phosphorylation of mannitol in Escherichia coli is catalyzed by the mannitol permease EnzymeIImtl. The substrate is bound at an extracellular-oriented binding site, translocated to an inward-facing site, from where it is phosphorylated, and subsequently released into the cell. Previous studies have shown the presence of both a high- and a low-affinity binding site with KD-values in the nano- and micromolar range, respectively. However, reported KD-values in literature are highly variable, which casts doubts about the reliability of the measurements and data analysis. Using an optimized binding measurement system, we investigated the discrepancies reported in literature, regarding both the variability in KD-values and the binding stoichiometry. By comparing the binding capacity obtained with flow dialysis with different methods to determine the protein concentration (UV-protein absorption, Bradford protein detection, and a LDH-linked protein assay to quantify the number of phosphorylation sites), we proved the existence of only one mannitol binding site per dimeric species of unphosphorylated EnzymeIImtl. Furthermore, the affinity of EnzymeIImtl for mannitol appeared to be dependent on the protein concentration and seemed to reflect the presence of an endogenous ligand. The dependency could be simulated assuming that >50% of the binding sites were occupied with a ligand that shows an affinity for EnzymeIImtl in the same range as mannitol. PMID:15879478

  16. Value Added?

    ERIC Educational Resources Information Center

    UCLA IDEA, 2012

    2012-01-01

    Value added measures (VAM) uses changes in student test scores to determine how much "value" an individual teacher has "added" to student growth during the school year. Some policymakers, school districts, and educational advocates have applauded VAM as a straightforward measure of teacher effectiveness: the better a teacher,…

  17. PTP1B, α-glucosidase, and DPP-IV inhibitory effects for chromene derivatives from the leaves of Smilax china L.

    PubMed

    Zhao, Bing Tian; Le, Duc Dat; Nguyen, Phi Hung; Ali, Md Yousof; Choi, Jae-Sue; Min, Byung Sun; Shin, Heung Mook; Rhee, Hae Ik; Woo, Mi Hee

    2016-06-25

    Two new flavonoids, bismilachinone (11) and smilachinin (14), were isolated from the leaves of Smilax china L. together with 14 known compounds. Their structures were elucidated using spectroscopic methods. The PTP1B, α-glucosidase, and DPP-IV inhibitory activities of compounds 1-16 were evaluated at the molecular level. Among them, compounds 4, 7, and 10 showed moderate DPP-IV inhibitory activities with IC50 values of 20.81, 33.12, and 32.93 μM, respectively. Compounds 3, 4, 6, 11, 12, and 16 showed strong PTP1B inhibitory activities, with respective IC50 values of 7.62, 10.80, 0.92, 2.68, 9.77, and 24.17 μM compared with the IC50 value for the positive control (ursolic acid: IC50 = 1.21 μM). Compounds 2-7, 11, 12, 15, and 16 showed potent α-glucosidase inhibitory activities, with respective IC50 values of 8.70, 81.66, 35.11, 35.92, 7.99, 26.28, 11.28, 62.68, 44.32, and 70.12 μM. The positive control, acarbose, displayed an IC50 value of 175.84 μM. In the kinetic study for the PTP1B enzyme, compounds 6, 11, and 12 displayed competitive inhibition with Ki values of 3.20, 8.56, and 5.86 μM, respectively. Compounds 3, 4, and 16 showed noncompetitive inhibition with Ki values of 18.75, 5.95, and 22.86 μM, respectively. Molecular docking study for the competitive inhibitors (6, 11, and 12) radically corroborates the binding affinities and inhibition of PTP1B enzymes. These results indicated that the leaves of Smilax china L. may contain compounds with anti-diabetic activity.

  18. A shortcut to high-affinity Ga-68 and Cu-64 radiopharmaceuticals: one-pot click chemistry trimerisation on the TRAP platform.

    PubMed

    Baranyai, Zsolt; Reich, Dominik; Vágner, Adrienn; Weineisen, Martina; Tóth, Imre; Wester, Hans-Jürgen; Notni, Johannes

    2015-06-28

    Due to its 3 carbonic acid groups being available for bioconjugation, the TRAP chelator (1,4,7-triazacyclononane-1,4,7-tris(methylene(2-carboxyethylphosphinic acid))) is chosen for the synthesis of trimeric bioconjugates for radiolabelling. We optimized a protocol for bio-orthogonal TRAP conjugation via Cu(I)-catalyzed Huisgen-cycloaddition of terminal azides and alkynes (CuAAC), including a detailed investigation of kinetic properties of Cu(II)-TRAP complexes. TRAP building blocks for CuAAC, TRAP(alkyne)3 and TRAP(azide)3 were obtained by amide coupling of propargylamine/3-azidopropyl-1-amine, respectively. For Cu(II) complexes of neat and triply amide-functionalized TRAP, the equilibrium properties as well as pseudo-first-order Cu(II)-transchelation, using 10 to 30 eq. of NOTA and EDTA, were studied by UV-spectrophotometry. Dissociation of any Cu(II)-TRAP species was found to be independent on the nature or excess of a competing chelator, confirming a proton-driven two-step mechanism. The respective thermodynamic stability constants (log K(ML): 19.1 and 17.6) and dissociation rates (k: 38 × 10(-6) and 7 × 10(-6) s(-1), 298 K, pH 4) show that the Cu(II) complex of the TRAP-conjugate possesses lower thermodynamic stability but higher kinetic inertness. At pH 2-3, its demetallation with NOTA was complete within several hours/days at room temperature, respectively, enabling facile Cu(II) removal after click coupling by direct addition of NOTA trihydrochloride to the CuAAC reaction mixture. Notwithstanding this, an extrapolated dissociation half life of >100 h at 37 °C and pH 7 confirms the suitability of TRAP-bioconjugates for application in Cu-64 PET (cf. t(1/2)(Cu-64) = 12.7 h). To showcase advantages of the method, TRAP(DUPA-Pep)3, a trimer of the PSMA inhibitor DUPA-Pep, was synthesized using 1 eq. TRAP(alkyne)3, 3.3 eq. DUPA-Pep-azide, 10 eq. Na ascorbate, and 1.2 eq. Cu(II)-acetate. Its PSMA affinity (IC50), determined by the competition assay on LNCa

  19. Camelid VHH affinity ligands enable separation of closely related biopharmaceuticals

    PubMed Central

    Pabst, Timothy M.; Wendeler, Michaela; Wang, Xiangyang; Bezemer, Sandra; Hermans, Pim

    2016-01-01

    Abstract Interest in new and diverse classes of molecules such as recombinant toxins, enzymes, and blood factors continues to grow for use a biotherapeutics. Compared to monoclonal antibodies, these novel drugs typically lack a commercially available affinity chromatography option, which leads to greater process complexity, longer development timelines, and poor platformability. To date, for both monoclonal antibodies and novel molecules, affinity chromatography has been mostly reserved for separation of process‐related impurities such as host cell proteins and DNA. Reports of affinity purification of closely related product variants and modified forms are much rarer. In this work we describe custom affinity chromatography development using camelid VHH antibody fragments as "tunable" immunoaffinity ligands for separation of product‐related impurities. One example demonstrates high selectivity for a recombinant immunotoxin where no binding was observed for an undesired deamidated species. Also discussed is affinity purification of a coagulation factor through specific recognition of the gamma‐carboxylglutamic acid domain. PMID:27677057

  20. Affinity Monolith-Integrated Microchips for Protein Purification and Concentration.

    PubMed

    Gao, Changlu; Sun, Xiuhua; Wang, Huaixin; Qiao, Wei; Hu, Bo

    2016-01-01

    Affinity chromatography is a valuable method to purify and concentrate minute amount of proteins. Monoliths with epoxy groups for affinity immobilization were prepared by direct in-situ photopolymerization of glycidyl methacrylate and ethylene glycol dimethacrylate in porogenic solvents consisting of 1-dodecanol and cyclohexanol. By integrating affinity monoliths onto a microfluidic system, targeted biomolecules can be captured and retained on affinity column, while other biomolecules having no specific interactions toward the immobilized ligands flow through the microchannel. Therefore, proteins which remain on the affinity column are purified and concentrated, and then eluted by appropriate solutions and finally, separated by microchip capillary electrophoresis. This integrated microfluidic device has been applied to the purification and separation of specific proteins (FITC-labeled human serum albumin and IgG) in a mixture.

  1. Optimal T-cell receptor affinity for inducing autoimmunity

    PubMed Central

    Koehli, Sabrina; Naeher, Dieter; Galati-Fournier, Virginie; Zehn, Dietmar; Palmer, Ed

    2014-01-01

    T-cell receptor affinity for self-antigen has an important role in establishing self-tolerance. Three transgenic mouse strains expressing antigens of variable affinity for the OVA transgenic-I T-cell receptor were generated to address how TCR affinity affects the efficiency of negative selection, the ability to prime an autoimmune response, and the elimination of the relevant target cell. Mice expressing antigens with an affinity just above the negative selection threshold exhibited the highest risk of developing experimental autoimmune diabetes. The data demonstrate that close to the affinity threshold for negative selection, sufficient numbers of self-reactive T cells escape deletion and create an increased risk for the development of autoimmunity. PMID:25411315

  2. Detection of protein-protein interactions using tandem affinity purification.

    PubMed

    Goodfellow, Ian; Bailey, Dalan

    2014-01-01

    Tandem affinity purification (TAP) is an invaluable technique for identifying interaction partners for an affinity tagged bait protein. The approach relies on the fusion of dual tags to the bait before separate rounds of affinity purification and precipitation. Frequently two specific elution steps are also performed to increase the specificity of the overall technique. In the method detailed here, the two tags used are protein G and a short streptavidin binding peptide; however, many variations can be employed. In our example the tags are separated by a cleavable tobacco etch virus protease target sequence, allowing for specific elution after the first round of affinity purification. Proteins isolated after the final elution step in this process are concentrated before being identified by mass spectrometry. The use of dual affinity tags and specific elution in this technique dramatically increases both the specificity and stringency of the pull-downs, ensuring a low level of background nonspecific interactions.

  3. Affinity Regulates Spatial Range of EGF Receptor Autocrine Ligand Binding

    SciTech Connect

    Dewitt, Ann; Iida, Tomoko; Lam, Ho-Yan; Hill, Virginia; Wiley, H S.; Lauffenburger, Douglas A.

    2002-08-08

    Proper spatial localization of EGFR signaling activated by autocrine ligands represents a critical factor in embryonic development as well as tissue organization and function, and ligand/receptor binding affinity is among the molecular and cellular properties suggested to play a role in governing this localization. The authors employ a computational model to predict how receptor-binding affinity affects local capture of autocrine ligand vis-a-vis escape to distal regions, and provide experimental test by constructing cell lines expressing EGFR along with either wild-type EGF or a low-affinity mutant, EGF{sup L47M}. The model predicts local capture of a lower affinity autocrine ligand to be less efficient when the ligand production rate is small relative to receptor appearance rate. The experimental data confirm this prediction, demonstrating that cells can use ligand/receptor binding affinity to regulate ligand spatial distribution when autocrine ligand production is limiting for receptor signaling.

  4. Chasing polys: Interdisciplinary affinity and its connection to physics identity

    NASA Astrophysics Data System (ADS)

    Scott, Tyler D.

    This research is based on two motivations that merge by means of the frameworks of interdisciplinary affinity and physics identity. First, a goal of education is to develop interdisciplinary abilities in students' thinking and work. But an often ignored factor is students interests and beliefs about being interdisciplinary. Thus, this work develops and uses a framework called interdisciplinary affinity. It encompasses students interests in making connections across disciplines and their beliefs about their abilities to make those connections. The second motivation of this research is to better understand how to engage more students with physics. Physics identity describes how a student sees themselves in relation to physics. By understanding how physics identity is developed, researchers and educators can identify factors that increase interest and engagement in physics classrooms. Therefore, physics identity was used in conjunction with interdisciplinary affinity. Using a mixed methods approach, this research used quantitative data to identify the relationships interdisciplinary affinity has with physics identity and the physics classroom. These connections were explored in more detail using a case study of three students in a high school physics class. Results showed significant and positive relationships between interdisciplinary affinity and physics identity, including the individual interest and recognition components of identity. It also identified characteristics of physics classrooms that had a significant, positive relationship with interdisciplinary affinity. The qualitative case study highlighted the importance of student interest to the relationship between interdisciplinary affinity and physics identity. It also identified interest and mastery orientation as key to understanding the link between interdisciplinary affinity and the physics classroom. These results are a positive sign that by understanding interdisciplinary affinity and physics identity

  5. Affinity capillary electrophoresis: the theory of electromigration.

    PubMed

    Dubský, Pavel; Dvořák, Martin; Ansorge, Martin

    2016-12-01

    We focus on the state-of-the-art theory of electromigration under single and multiple complexation equilibrium. Only 1:1 complexation stoichiometry is discussed because of its unique status in the field of affinity capillary electrophoresis (ACE). First, we summarize the formulas for the effective mobility in various ACE systems as they appeared since the pioneering days in 1992 up to the most recent theories till 2015. Disturbing phenomena that do not alter the mobility of the analyte directly but cause an unexpected peak broadening have been studied only recently and are also discussed in this paper. Second, we turn our attention to the viscosity effects in ACE. Change in the background electrolyte viscosity is unavoidable in ACE but numerous observations scattered throughout the literature have not been reviewed previously. This leads to an uncritical employment of correction factors that may or may not be appropriate in practice. Finally, we consider the ionic strength effects in ACE, too. Limitations of the current theories are also discussed and the tasks identified where open problems still prevail. Graphical Abstract A weak base (A) undergoes an acidic-basic equilibria (in blue) and migrates with an electrophoretic mobility of [Formula: see text]. Simultaneously, it interacts with a selector (sel) while the analyte-selector complex migrates with an electrophoretic mobility of [Formula: see text]. The strength of the interaction (in orange) is governed by the binding constant, K A , and the concentration of the selector, c sel . This all gives the analyte an effective mobility of [Formula: see text] and moves it out of the zero position (EOF; right top insert). The interaction of the positively charged analyte with the neutral selector slows down the analyte with increasing selector concentration (right bottom insert).

  6. Limited proteolysis for assaying ligand binding affinities of nuclear receptors.

    PubMed

    Benkoussa, M; Nominé, B; Mouchon, A; Lefebvre, B; Bernardon, J M; Formstecher, P; Lefebvre, P

    1997-01-01

    The binding of natural or synthetic ligands to nuclear receptors is the triggering event leading to gene transcription activation or repression. Ligand binding to the ligand binding domain of these receptors induces conformational changes that are evidenced by an increased resistance of this domain to proteases. In vitro labeled receptors were incubated with various synthetic or natural agonists or antagonists and submitted to trypsin digestion. Proteolysis products were separated by SDS-PAGE and quantified. The amount of trypsin-resistant fragments was proportional to receptor occupancy by the ligand, and allowed the determination of dissociation constants (kDa). Using the wild-type or mutated human retinoic acid receptor alpha as a model, kDa values determined by classical competition binding assays using tritiated ligands are in agreement with those measured by the proteolytic assay. This method was successfully extended to human retinoic X receptor alpha, glucocorticoid receptor, and progesterone receptor, thus providing a basis for a new, faster assay to determine simultaneously the affinity and conformation of receptors when bound to a given ligand.

  7. A designed ankyrin repeat protein evolved to picomolar affinity to Her2.

    PubMed

    Zahnd, Christian; Wyler, Emanuel; Schwenk, Jochen M; Steiner, Daniel; Lawrence, Michael C; McKern, Neil M; Pecorari, Frédéric; Ward, Colin W; Joos, Thomas O; Plückthun, Andreas

    2007-06-15

    Designed ankyrin repeat proteins (DARPins) are a novel class of binding molecules, which can be selected to recognize specifically a wide variety of target proteins. DARPins were previously selected against human epidermal growth factor receptor 2 (Her2) with low nanomolar affinities. We describe here their affinity maturation by error-prone PCR and ribosome display yielding clones with zero to seven (average 2.5) amino acid substitutions in framework positions. The DARPin with highest affinity (90 pM) carried four mutations at framework positions, leading to a 3000-fold affinity increase compared to the consensus framework variant, mainly coming from a 500-fold increase of the on-rate. This DARPin was found to be highly sensitive in detecting Her2 in human carcinoma extracts. We have determined the crystal structure of this DARPin at 1.7 A, and found that a His to Tyr mutation at the framework position 52 alters the inter-repeat H-bonding pattern and causes a significant conformational change in the relative disposition of the repeat subdomains. These changes are thought to be the reason for the enhanced on-rate of the mutated DARPin. The DARPin not bearing the residue 52 mutation has an unusually slow on-rate, suggesting that binding occurred via conformational selection of a relatively rare state, which was stabilized by this His52Tyr mutation, increasing the on-rate again to typical values. An analysis of the structural location of the framework mutations suggests that randomization of some framework residues either by error-prone PCR or by design in a future library could increase affinities and the target binding spectrum.

  8. Substituent effects in a series of 1,7-C[subscript 60](R[subscript F])[subscript 2] compounds (R[subscript F] = CF[subscript 3], C[subscript 2]F[subscript 5], n-C[subscrip 3]F[subscript 7], i-C[subscript 3]F[subscript 7], n-C[subscript 4]F[subscript 9], s-C[subscript 4]F[subscript 9], n-C[subscript 8]F[subscript 17]): electron affinities, reduction potentials and E(LUMO) values are not always correlated

    SciTech Connect

    Kuvychko, Igor V.; Whitaker, James B.; Larson, Bryon W.; Folsom, Travis C.; Shustova, Natalia B.; Avdoshenko, Stanislav M.; Chen, Yu-Sheng; Wen, Hui; Wang, Xue-Bin; Dunsch, Lothar; Popov, Alexey A.; Boltalina, Olga V.; Strauss, Steven H.

    2013-04-08

    A series of seven structurally-similar compounds with different pairs of R{sub F} groups were prepared, characterized spectroscopically, and studied by electrochemical methods (cyclic and square-wave voltammetry), low-temperature anion photoelectron spectroscopy, and DFT calculations (five of the compounds are reported here for the first time). This is the first time that a set of seven R{sub F} groups have been compared with respect to their relative effects on E{sub 1/2}(0/-), electron affinity (EA), and the DFT-calculated LUMO energy. The compounds, 1,7-C{sub 60}(R{sub F}){sub 2} (R{sub F} = CF{sub 3}, C{sub 2}F{sub 5}, i-C{sub 3}F{sub 7}, n-C{sub 3}F{sub 7}, s-C{sub 4}F{sub 9}, n-C{sub 4}F{sub 9} and n-C{sub 8}F{sub 21}), were found to have statistically different electron affinities (EA), at the {+-}10 meV level of uncertainty, but virtually identical first reduction potentials, at the {+-}10 mV level of uncertainty. The lack of a correlation between EA and E{sub 1/2}(0/-), and between E(LUMO) and E{sub 1/2}(0/-), for such similar compounds is unprecedented and suggests that explanations for differences in figures of merit for materials and/or devices that are based on equating easily measurable E{sub 1/2}(0/-) values with EAs or E(LUMO) values should be viewed with caution. The solubilities of the seven compounds in toluene varied by nearly a factor of six, but in an unpredictable way, with the C{sub 2}F{sub 5} and s-C{sub 4}F{sub 9} compounds being the most soluble and the i-C{sub 3}F{sub 7} compound being the least soluble. The effects of the different R{sub F} groups on EAs, E(LUMO) values, and solubilities should help fluorine chemists choose the right R{sub F} group to design new materials with improved morphological, electronic, optical, and/or magnetic properties.

  9. Analysis of biomolecular interactions using affinity microcolumns: A review

    PubMed Central

    Zheng, Xiwei; Li, Zhao; Beeram, Sandya; Podariu, Maria; Matsuda, Ryan; Pfaunmiller, Erika L.; White, Christopher J.; Carter, NaTasha; Hage, David S.

    2014-01-01

    Affinity chromatography has become an important tool for characterizing biomolecular interactions. The use of affinity microcolumns, which contain immobilized binding agents and have volumes in the mid-to-low microliter range, has received particular attention in recent years. Potential advantages of affinity microcolumns include the many analysis and detection formats that can be used with these columns, as well as the need for only small amounts of supports and immobilized binding agents. This review examines how affinity microcolumns have been used to examine biomolecular interactions. Both capillary-based microcolumns and short microcolumns are considered. The use of affinity microcolumns with zonal elution and frontal analysis methods are discussed. The techniques of peak decay analysis, ultrafast affinity extraction, split-peak analysis, and band-broadening studies are also explored. The principles of these methods are examined and various applications are provided to illustrate the use of these methods with affinity microcolumns. It is shown how these techniques can be utilized to provide information on the binding strength and kinetics of an interaction, as well as on the number and types of binding sites. It is further demonstrated how information on competition or displacement effects can be obtained by these methods. PMID:24572459

  10. Affinity+: Semi-Structured Brainstorming on Large Displays

    SciTech Connect

    Burtner, Edwin R.; May, Richard A.; Scarberry, Randall E.; LaMothe, Ryan R.; Endert, Alexander

    2013-04-27

    Affinity diagraming is a powerful method for encouraging and capturing lateral thinking in a group environment. The Affinity+ Concept was designed to improve the collaborative brainstorm process through the use of large display surfaces in conjunction with mobile devices like smart phones and tablets. The system works by capturing the ideas digitally and allowing users to sort and group them on a large touch screen manually. Additionally, Affinity+ incorporates theme detection, topic clustering, and other processing algorithms that help bring structured analytic techniques to the process without requiring explicit leadership roles and other overhead typically involved in these activities.

  11. Binding Affinities Controlled by Shifting Conformational Equilibria: Opportunities and Limitations

    PubMed Central

    Michielssens, Servaas; de Groot, Bert L.; Grubmüller, Helmut

    2015-01-01

    Conformational selection is an established mechanism in molecular recognition. Despite its power to explain binding events, it is hardly used in protein/ligand design to modulate molecular recognition. Here, we explore the opportunities and limitations of design by conformational selection. Using appropriate thermodynamic cycles, our approach predicts the effects of a conformational shift on binding affinity and also allows one to disentangle the effects induced by a conformational shift from other effects influencing the binding affinity. The method is assessed and applied to explain the contribution of a conformational shift on the binding affinity of six ubiquitin mutants showing different conformational shifts in six different complexes. PMID:25992736

  12. Protein-binding affinity of leucaena condensed tannins of differing molecular weights.

    PubMed

    Huang, Xiao Dan; Liang, Juan Boo; Tan, Hui Yin; Yahya, Rosiyah; Long, Ruijun; Ho, Yin Wan

    2011-10-12

    Depending on their source, concentration, chemical structure, and molecular weight, condensed tannins (CTs) form insoluble complexes with protein, which could lead to ruminal bypass protein, benefiting animal production. In this study, CTs from Leuceana leucocephala hybrid were fractionated into five fractions by a size exclusion chromatography procedure. The molecular weights of the CT fractions were determined using Q-TOF LC-MS, and the protein-binding affinities of the respective CT fractions were determined using a protein precipitation assay with bovine serum albumin (BSA) as the standard protein. The calculated number-average molecular weights (M(n)) were 1348.6, 857.1, 730.1, 726.0, and 497.1, and b values (the b value represents the CT quantity that is needed to bind half of the maximum precipitable BSA) of the different molecular weight fractions were 0.381, 0.510, 0.580, 0.636, and 0.780 for fractions 1, 2, 3, 4, and 5, respectively. The results indicated that, in general, CTs of higher molecular weight fractions have stronger protein-binding affinity than those of lower molecular weights. However, the number of hydroxyl units within the structure of CT polymers also affects the protein-binding affinity.

  13. Modulation of affinity of a marine pseudomonad for toluene and benzene by hydrocarbon exposure.

    PubMed

    Law, A T; Button, D K

    1986-03-01

    Trace (microgram liter) quantities of either toluene or benzene injected into an amino-acid-limited continuous culture of Pseudomonas sp. strain T2 were utilized immediately with affinities of 2.6 and 6.8 liters g of cells h, respectively, and yielded large amounts of organic products, carbon dioxide, and cells. The immediate utilization of hydrocarbons by hydrocarbon-deprived organisms helps to establish the nutritional value of nonpolar substrates in the environment. The observation of small Michaelis constants for toluene transport led to tests of metabolic competition between hydrocarbons; however, competitive inhibition of toluene metabolism was not found for benzene, naphthalene, xylene, dodecane, or amino acids. Benzene and terpenes were inhibitory at milligram liter concentrations. Toluene was metabolized by a strongly inducible system when compared with benzene. The capacity of toluene to effect larger affinity values increased with exposure time and concentration. The kinetics of induction suggested saturation phenomena, resulting in an induction constant, K(ind), of 96 mug of toluene liter. Maximal induction of amino-acid-grown cells required about 80 h, with the affinity reaching 317 liters g of cells h.

  14. The development of mitochondrial membrane affinity chromatography columns for the study of mitochondrial transmembrane proteins

    PubMed Central

    Habicht, K-L.; Singh, N.S.; Indig, F.E.; Wainer, I.W.; Moaddel, R.; Shimmo, R.

    2015-01-01

    Mitochondrial membrane fragments from U-87 MG (U87MG) and HEK-293 cells were successfully immobilized on to Immobilized Artificial Membrane (IAM) chromatographic support and surface of activated open tubular (OT) silica capillary resulting in mitochondrial membrane affinity chromatography (MMAC) columns. Translocator protein (TSPO), located in mitochondrial outer membrane as well as sulfonylurea and mitochondrial permeability transition pore (mPTP) receptors, localized to the inner membrane, were characterized. Frontal displacement experiments with multiple concentrations of dipyridamole (DIPY) and PK-11195 were run on MMAC-(U87MG) column and the binding affinities (Kd) determined were 1.08 ± 1.49 and 0.0086 ± 0.0006 μM respectively, which was consistent with previously reported values. Further, binding affinities (Ki) for DIPY binding site were determined for TSPO ligands, PK-11195, mesoporphyrin IX, protoporphyrin IX and rotenone. Additionally, the relative ranking of these TSPO ligands based on single displacement studies using DIPY as marker on MMAC-(U87MG) was consistent with the obtained Ki values. The immobilization of mitochondrial membrane fragments was also confirmed by confocal microscopy. PMID:26049098

  15. Affine Maps of the Polarization Vector for Quantum Systems of Arbitrary Dimension

    NASA Astrophysics Data System (ADS)

    Byrd, Mark; Bishop, C. Allen; Ou, Yong-Cheng

    2011-03-01

    The operator-sum decomposition (OS) of a mapping from one density matrix to another has many applications in quantum information science. To this mapping there corresponds an affine map which provides a geometric description of the density matrix in terms of the polarization vector representation. This has been thoroughly explored for qubits since the components of the polarization vector are measurable quantities (corresponding to expectation values of Hermitian operators) and also because it enables the description of map domains geometrically. Here we extend the OS-affine map correspondence to qudits, briefly discuss general properties of the map, the form for particular important cases, and provide several explicit results for qutrit maps. We use the affine map and a singular-value-like decomposition, to find positivity constraints that provide a symmetry for small polarization vector magnitudes (states which are closer to the maximally mixed state) which is broken as the polarization vector increases in magnitude (a state becomes more pure). The dependence of this symmetry on the magnitude of the polarization vector implies the polar decomposition of the map can not be used as it can for the qubit case. However, it still leads us to a connection between positivity and purity for general d-state systems. This material is based upon work supported by NSF-Grant No. 0545798 to MSB.

  16. Theoretical and Experimental Determination of the Proton Affinity of (CF3CH2)2O

    NASA Technical Reports Server (NTRS)

    Zehe, Michael J.; Ball, David W.

    1998-01-01

    We report the experimental determination of the proton affinity of the molecule (CF3CH2)2O using chemical ionization mass spectrometry, and we compare it to the theoretical value obtained for protonation at the oxygen atom using the calculational methodology (MP2/6-31G**//MP2/3-21G). The proton affinity for this molecule as measured by bracketing experiments was between 724 kJ/mole and 741 kJ/mole. Ab initio (MP2/6-31G**//MP2/3-21G) calculations yield a value of about 729 kJ/mole, in agreement with the chemical ionization experiments. The results of these and related calculations suggest that the (MP2/6-31G**//MP2/3-21G) methodology is acceptable for estimating the proton affinities of partially-and fully-fluorinated methyl and ethyl ethers. We submit that any conclusions about the chemistry of fluoroether polymer lubricants based on their basicity can also be predicted reliably with such calculations.

  17. Antiparkinson therapeutic potencies correlate with their affinities at dopamine D2(High) receptors.

    PubMed

    Seeman, Philip

    2007-12-01

    To determine whether antiparkinson dopamine agonists preferentially act on the high-affinity or the low-affinity states of dopamine D1 and D2 receptors, the agonist potencies were obtained by competition against [(3)H]SCH23390 for D1(High) and D1(Low), and against [(3)H]domperidone for D2(High) and D2(Low). N-propylnorapomorphine and cabergoline were the most potent at D2(High), with dissociation constants of 0.18 and 0.36 nM, respectively. Other agonists had D2(High)K(i) values of 0.52 nM for quinagolide, 0.6 nM for (+)PHNO, 0.9 for bromocriptine, 1.8 nM for apomorphine, 2.4 nM for pergolide, 3 nM for quinpirole, and 6.2 nM for lergotrile. There was a clear correlation between the K(i) values at D2(High) and their therapeutic concentrations in the plasma water, as derived from the known concentrations after correction for the fraction bound to the human plasma proteins. The data suggest that D2(High) is the primary and common target for the antiparkinson action of dopamine agonists. Bromocriptine, cabergoline, lergotrile, pergolide, and pramipexole had no affinity for D1(High), consistent with the clinical observations that the D2-selective bromocriptine and pramipexole elicit low levels of dyskinesia.

  18. Real-valued Delayless Subband Affine Projection Algorithm for Acoustic Echo Cancellation

    DTIC Science & Technology

    2006-01-01

    Signal Processing, vol. 5, pp.3023-3026, 1995. [8] Vaidyanathan, P., Multirate systems and filter banks , Prentice Hall, Inc., 1993 Fig.3(a): ERLE...of filter banks for subband adaptive systems ", Proc. IEEE Workshop on Signal Processing Systems , pp. 172-181, 1998. [6] Huo, J., Nordholm, S. and...mainly use DFT or GDFT based analysis/synthesis filter banks and gener- ate “complex-valued” subband signals. This is particularly inefficient when

  19. Affinities, Seeing and Feeling Like Family: Exploring Why Children Value Face-to-Face Contact

    ERIC Educational Resources Information Center

    Davies, Hayley

    2012-01-01

    This article examines face-to-face contact as a way in which children practise, imagine and constitute their closest relationships. Based on the findings of a qualitative school-based study, the article shows that children regard "seeing" as a family and relational practice that enables them to feel connected to and develop affinities…

  20. Community Development, Transitional Value, and Institutional Affinity: Outdoor Orientation Program Impacts

    ERIC Educational Resources Information Center

    Howard, Ryan A.; O'Connell, Timothy S.; Lathrop, Anna H.

    2016-01-01

    This article examines the impact of an outdoor orientation program (OOP) on a cohort of first-year university students who participated in a canoe trip facilitated by peer leaders. The curriculum included training for outdoor skills and transitional guidance to university life (i.e., strategies for time management, critical thinking, becoming…

  1. Determinants of the Differential Antizyme-Binding Affinity of Ornithine Decarboxylase

    PubMed Central

    Liu, Yen-Chin; Hsu, Den-Hua; Huang, Chi-Liang; Liu, Yi-Liang; Liu, Guang-Yaw; Hung, Hui-Chih

    2011-01-01

    Ornithine decarboxylase (ODC) is a ubiquitous enzyme that is conserved in all species from bacteria to humans. Mammalian ODC is degraded by the proteasome in a ubiquitin-independent manner by direct binding to the antizyme (AZ). In contrast, Trypanosoma brucei ODC has a low binding affinity toward AZ. In this study, we identified key amino acid residues that govern the differential AZ binding affinity of human and Trypanosoma brucei ODC. Multiple sequence alignments of the ODC putative AZ-binding site highlights several key amino acid residues that are different between the human and Trypanosoma brucei ODC protein sequences, including residue 119, 124,125, 129, 136, 137 and 140 (the numbers is for human ODC). We generated a septuple human ODC mutant protein where these seven bases were mutated to match the Trypanosoma brucei ODC protein sequence. The septuple mutant protein was much less sensitive to AZ inhibition compared to the WT protein, suggesting that these amino acid residues play a role in human ODC-AZ binding. Additional experiments with sextuple mutants suggest that residue 137 plays a direct role in AZ binding, and residues 119 and 140 play secondary roles in AZ binding. The dissociation constants were also calculated to quantify the affinity of the ODC-AZ binding interaction. The Kd value for the wild type ODC protein-AZ heterodimer ([ODC_WT]-AZ) is approximately 0.22 μM, while the Kd value for the septuple mutant-AZ heterodimer ([ODC_7M]-AZ) is approximately 12.4 μM. The greater than 50-fold increase in [ODC_7M]-AZ binding affinity shows that the ODC-7M enzyme has a much lower binding affinity toward AZ. For the mutant proteins ODC_7M(-Q119H) and ODC_7M(-V137D), the Kd was 1.4 and 1.2 μM, respectively. These affinities are 6-fold higher than the WT_ODC Kd, which suggests that residues 119 and 137 play a role in AZ binding. PMID:22073206

  2. Ab initio calculation of anion proton affinity and ionization potential for energetic ionic liquids.

    PubMed

    Carlin, Caleb; Gordon, Mark S

    2015-04-05

    Developing a better understanding of the bulk properties of ionic liquids requires accurate measurements of the underlying molecular properties that help to determine the bulk behavior. Two computational methods are used in this work: second-order perturbation theory (MP2) and completely renormalized coupled cluster theory [CR-CC(2,3)], to calculate the proton affinity and ionization potential of a set of anions that are of interest for use in protic, energetic ionic liquids. Compared with experimental values, both methods predict similarly accurate proton affinities, but CR-CC(2,3) predicts significantly more accurate ionization potentials. It is concluded that more time intensive methods like CR-CC(2,3) are required in calculations involving open shell states like the ionization potential.

  3. Self-Affinity, Self-Similarity and Disturbance of Soil Seed Banks by Tillage

    PubMed Central

    Dias, Luís S.

    2013-01-01

    Soil seed banks were sampled in undisturbed soil and after soil had been disturbed by tillage (tine, harrow or plough). Seeds were sorted by size and shape, and counted. Size-number distributions were fitted by power law equations that allowed the identification of self-similarity and self-affinity. Self-affinity and thus non-random size-number distribution prevailed in undisturbed soil. Self-similarity and thus randomness of size-number distribution prevailed after tillage regardless of the intensity of disturbance imposed by cultivation. The values of fractal dimensions before and after tillage were low, suggesting that short-term, short-range factors govern size-number distribution of soil seed banks. PMID:27137387

  4. Method for resurrecting negative electron affinity photocathodes after exposure to an oxidizing gas

    DOEpatents

    Mulhollan, Gregory A; Bierman, John C

    2012-10-30

    A method by which negative electron affinity photocathodes (201), single crystal, amorphous, or otherwise ordered, can be made to recover their quantum yield following exposure to an oxidizing gas has been discovered. Conventional recovery methods employ the use of cesium as a positive acting agent (104). In the improved recovery method, an electron beam (205), sufficiently energetic to generate a secondary electron cloud (207), is applied to the photocathode in need of recovery. The energetic beam, through the high secondary electron yield of the negative electron affinity surface (203), creates sufficient numbers of low energy electrons which act on the reduced-yield surface so as to negate the effects of absorbed oxidizing atoms thereby recovering the quantum yield to a pre-decay value.

  5. Interaction of alkali metal cations and short chain alcohols: effect of core size on theoretical affinities

    NASA Astrophysics Data System (ADS)

    Ma, N. L.; Siu, F. M.; Tsang, C. W.

    2000-05-01

    The effect of core size on the calculated binding energies of alkali metal cations (Li +, Na +, K +) to methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, s-butanol, and t-butanol are evaluated using G2(MP2,SVP) protocol. The K + affinities, reported for the first time, were found to be negative if a core size larger than that of neon (2s 22p 6) was used. Given this, we suggest that the 1s 2, 2s 22p 6, and 3s 23p 6 electrons have to be included in the electron correlation treatment for Li +, Na + and K + containing species, respectively. With these core sizes, our G2(MP2,SVP) Li + and Na + affinities are in excellent agreement with values obtained from the newly developed G3 protocol. The nature of alkali metal cation-alcohol interaction is also discussed.

  6. Pre-Yield Non-Affine Fluctuations and A Hidden Critical Point in Strained Crystals

    PubMed Central

    Das, Tamoghna; Ganguly, Saswati; Sengupta, Surajit; Rao, Madan

    2015-01-01

    A crystalline solid exhibits thermally induced localised non-affine droplets in the absence of external stress. Here we show that upon an imposed shear, the size of these droplets grow until they percolate at a critical strain, well below the value at which the solid begins to yield. This critical point does not manifest in most thermodynamic or mechanical properties, but is hidden and reveals itself in the onset of inhomogeneities in elastic moduli, marked changes in the appearance and local properties of non-affine droplets and a sudden enhancement in defect pair concentration. Slow relaxation of stress and an-elasticity appear as observable dynamical consequences of this hidden criticality. Our results may be directly verified in colloidal crystals with video microscopy techniques but are expected to have more general validity. PMID:26039380

  7. KW-3902, a selective high affinity antagonist for adenosine A1 receptors.

    PubMed Central

    Nonaka, H.; Ichimura, M.; Takeda, M.; Kanda, T.; Shimada, J.; Suzuki, F.; Kase, H.

    1996-01-01

    1. We demonstrate that 8-(noradamantan-3-yl)-1,3-dipropylxanthine (KW-3902) is a very potent and selective adenosine A1 receptor antagonist, assessed by radioligand binding and cyclic AMP response in cells. 2. In rat forebrain adenosine A1 receptors labelled with [3H]-cyclohexyladenosine (CHA), KW-3902 had a Ki value of 0.19 nM, whereas it showed a Ki value of 170 nM in rat striatal A2A receptors labelled with [3H]-2-[p-(2-carboxyethyl)-phenethylamino]-5'-N-ethylcarboxamidoad enosine (CGS21680), indicating 890 fold A1 receptor selectivity versus the A2A receptor. KW-3902 at 10 microM showed no effect on recombinant rat A3 receptors expressed on CHO cells. 3. Saturation studies with [3H]-KW-3902 revealed that it bound with high affinity (Kd = 77 pM) and limited capacity (Bmax = 470 fmol mg-1 of protein) to a single class of recognition sites. A high positive correlation was observed between the pharmacological profile of adenosine ligands inhibiting the binding of [3H]-KW-3902 and that of [3H]-CHA. 4. KW-3902 showed potent A1 antagonism against the inhibition of forskolin-induced cyclic AMP accumulation in DDT1 MF-2 cells by the A1-selective agonist, cyclopentyladenosine with a dissociation constant (KB value) of 0.34 nM. KW-3902 antagonized 5'-N-ethylcarboxamidoadenosine-elicited cyclic AMP accumulation via A2B receptors with a KB value of 52 nM. 5. KW-3902 exhibited marked species-dependent differences in the binding affinities. The highest affinity was for the rat A1 receptor (ki = 0.19 nM) and these values for guinea-pig and dog A1 receptors were 1.3 and 10 nM, respectively. PMID:8732272

  8. Adding Value.

    ERIC Educational Resources Information Center

    Orsini, Larry L.; Hudack, Lawrence R.; Zekan, Donald L.

    1999-01-01

    The value-added statement (VAS), relatively unknown in the United States, is used in financial reports by many European companies. Saint Bonaventure University (New York) has adapted a VAS to make it appropriate for not-for-profit universities by identifying stakeholder groups (students, faculty, administrators/support personnel, creditors, the…

  9. Value Added

    ERIC Educational Resources Information Center

    Wilson, M. Roy

    2015-01-01

    With more than a thousand honors programs or colleges in the United States and that number growing every year, defining the value of honors is a significant undertaking. Honors seems to have become an obligatory upgrade that no college or university president can afford to be without, but there is more than institutional trending to be considered,…

  10. Redeeming Value.

    ERIC Educational Resources Information Center

    Whitwell, Stuart C. A.

    1995-01-01

    Presents an essay on organizational transformation and the way successful marketing transformations redeem a sense of value. Focuses on challenges faced by not-for-profit institutions, current changes in the library profession, and implications of the American Library Association's Goal 2000. A sidebar summarizes an interview with the director of…

  11. Value Added

    ERIC Educational Resources Information Center

    Welch, Matt

    2004-01-01

    This article profiles retiring values teacher Gene Doxey and describes his foundational contributions to the students of California's Ramona Unified School District. Every one of the Ramona Unified School District's 7,200 students is eventually funneled through Doxey's Contemporary Issues class, a required rite of passage between elementary school…

  12. Bidirectional elastic image registration using B-spline affine transformation.

    PubMed

    Gu, Suicheng; Meng, Xin; Sciurba, Frank C; Ma, Hongxia; Leader, Joseph; Kaminski, Naftali; Gur, David; Pu, Jiantao

    2014-06-01

    A registration scheme termed as B-spline affine transformation (BSAT) is presented in this study to elastically align two images. We define an affine transformation instead of the traditional translation at each control point. Mathematically, BSAT is a generalized form of the affine transformation and the traditional B-spline transformation (BST). In order to improve the performance of the iterative closest point (ICP) method in registering two homologous shapes but with large deformation, a bidirectional instead of the traditional unidirectional objective/cost function is proposed. In implementation, the objective function is formulated as a sparse linear equation problem, and a sub-division strategy is used to achieve a reasonable efficiency in registration. The performance of the developed scheme was assessed using both two-dimensional (2D) synthesized dataset and three-dimensional (3D) volumetric computed tomography (CT) data. Our experiments showed that the proposed B-spline affine model could obtain reasonable registration accuracy.

  13. Bidirectional Elastic Image Registration Using B-Spline Affine Transformation

    PubMed Central

    Gu, Suicheng; Meng, Xin; Sciurba, Frank C.; Wang, Chen; Kaminski, Naftali; Pu, Jiantao

    2014-01-01

    A registration scheme termed as B-spline affine transformation (BSAT) is presented in this study to elastically align two images. We define an affine transformation instead of the traditional translation at each control point. Mathematically, BSAT is a generalized form of the affine transformation and the traditional B-Spline transformation (BST). In order to improve the performance of the iterative closest point (ICP) method in registering two homologous shapes but with large deformation, a bi-directional instead of the traditional unidirectional objective / cost function is proposed. In implementation, the objective function is formulated as a sparse linear equation problem, and a sub-division strategy is used to achieve a reasonable efficiency in registration. The performance of the developed scheme was assessed using both two-dimensional (2D) synthesized dataset and three-dimensional (3D) volumetric computed tomography (CT) data. Our experiments showed that the proposed B-spline affine model could obtain reasonable registration accuracy. PMID:24530210

  14. A thermodynamic approach to the affinity optimization of drug candidates.

    PubMed

    Freire, Ernesto

    2009-11-01

    High throughput screening and other techniques commonly used to identify lead candidates for drug development usually yield compounds with binding affinities to their intended targets in the mid-micromolar range. The affinity of these molecules needs to be improved by several orders of magnitude before they become viable drug candidates. Traditionally, this task has been accomplished by establishing structure activity relationships to guide chemical modifications and improve the binding affinity of the compounds. As the binding affinity is a function of two quantities, the binding enthalpy and the binding entropy, it is evident that a more efficient optimization would be accomplished if both quantities were considered and improved simultaneously. Here, an optimization algorithm based upon enthalpic and entropic information generated by Isothermal Titration Calorimetry is presented.

  15. Antibody Affinity Maturation in Fishes—Our Current Understanding

    PubMed Central

    Magor, Brad G.

    2015-01-01

    It has long been believed that fish lack antibody affinity maturation, in part because they were thought to lack germinal centers. Recent research done on sharks and bony fishes indicates that these early vertebrates are able to affinity mature their antibodies. This article reviews the functionality of the fish homologue of the immunoglobulin (Ig) mutator enzyme activation-induced cytidine deaminase (AID). We also consider the protein and molecular evidence for Ig somatic hypermutation and antibody affinity maturation. In the context of recent evidence for a putative proto-germinal center in fishes we propose some possible reasons that observed affinity maturation in fishes often seems lacking and propose future work that might shed further light on this process in fishes. PMID:26264036

  16. Receptor binding profiles and quantitative structure-affinity relationships of some 5-substituted-N,N-diallyltryptamines.

    PubMed

    Cozzi, Nicholas V; Daley, Paul F

    2016-02-01

    correlations among physicochemical properties of the congeneric 5-substituted-DALT compounds. The descriptors included electronic (σp), hydrophobic (π), and steric (CMR) parameters. The binding affinity at 5-HT1A, 5-HT1D, 5-HT7, and κ opioid receptors was positively correlated with the steric volume parameter CMR. At α2A, α2B, and α2C receptors, and at the histamine H1 receptor, binding affinity was correlated with the Hammett substituent parameter σp; higher affinity was associated with larger σp values. At the σ2 receptor, higher affinity was correlated with increasing π. These correlations should aid in the development of more potent and selective drugs within this family of compounds.

  17. Considering affinity: an ethereal conversation (part two of three).

    PubMed

    Winsor, Mary P

    2015-06-01

    In 1840 Hugh Strickland published a diagram showing the relationships of genera of birds in the kingfisher family. Three years later he applied this mapping idea to genera of birds of prey and songbirds, creating a large wall chart that he displayed to colleagues but never published. Both of his diagrams featured a scale of degrees of affinity. The meaning of taxonomic affinity was something Darwin thought about deeply. Details in the chart undermine Strickland's claim that his method was purely inductive.

  18. Protection against measles virus-induced encephalitis by anti-mimotope antibodies: the role of antibody affinity.

    PubMed

    Olszewska, W; Obeid, O E; Steward, M W

    2000-06-20

    Synthetic peptides mimicking a conformational B-cell epitope (M2) of the measles virus fusion protein (MVF) were used for the immunization of BALB/c mice and the anti-peptide and anti-virus antibody titers induced were compared. Of the panel of tested peptides, a chimeric peptide consisting of two copies of a T-helper epitope (residues 288-302 of MVF) and one copy of the mimotope M2 (TTM2) and a multiple antigen peptide with eight copies of M2 (MAP-M2) induced the highest titers of anti-M2 and anti-MV antibodies. Furthermore, peptides TTM2 and MAP-M2 induced antibodies with highest affinity for the mimotope and highest avidity for measles virus. Immunization with the MAP-M2 construct induced high titers of high-affinity anti-M2 antibody despite the absence of a T-helper epitope, and lymphocyte proliferation data suggest that the addition of M2 to the MAP resulted in the generation of a structure capable of stimulating T-cell help. Sera with anti-M2 reactivity were pooled according to affinity values for binding to M2, and high- and low-affinity pools were tested for their ability to prevent MV-induced encephalitis in a mouse model. The high-affinity serum pool conferred protection in 100% of mice, whereas the lower affinity pool conferred protection to only 50% of animals. These results indicate the potential of mimotopes for use as synthetic peptide immunogens and highlight the importance of designing vaccines to induce antibodies of high affinity.

  19. Direct measurement of equilibrium constants for high-affinity hemoglobins.

    PubMed

    Kundu, Suman; Premer, Scott A; Hoy, Julie A; Trent, James T; Hargrove, Mark S

    2003-06-01

    The biological functions of heme proteins are linked to their rate and affinity constants for ligand binding. Kinetic experiments are commonly used to measure equilibrium constants for traditional hemoglobins comprised of pentacoordinate ligand binding sites and simple bimolecular reaction schemes. However, kinetic methods do not always yield reliable equilibrium constants with more complex hemoglobins for which reaction mechanisms are not clearly understood. Furthermore, even where reaction mechanisms are clearly understood, it is very difficult to directly measure equilibrium constants for oxygen and carbon monoxide binding to high-affinity (K(D) < 1 micro M) hemoglobins. This work presents a method for direct measurement of equilibrium constants for high-affinity hemoglobins that utilizes a competition for ligands between the "target" protein and an array of "scavenger" hemoglobins with known affinities. This method is described for oxygen and carbon monoxide binding to two hexacoordinate hemoglobins: rice nonsymbiotic hemoglobin and Synechocystis hemoglobin. Our results demonstrate that although these proteins have different mechanisms for ligand binding, their affinities for oxygen and carbon monoxide are similar. Their large affinity constants for oxygen, 285 and approximately 100 micro M(-1) respectively, indicate that they are not capable of facilitating oxygen transport.

  20. Functionalized multi-walled carbon nanotubes as affinity ligands

    NASA Astrophysics Data System (ADS)

    Yu, L.; Li, C. M.; Zhou, Q.; Gan, Y.; Bao, Q. L.

    2007-03-01

    Functionalization of carbon nanotubes is very challenging for their applications. The paper here describes a new method to functionalize multi-walled carbon nanotubes (MWCNTs) as specific affinity adsorbents. MWCNTs were acid purified and pretreated with (3-aminopropyl)-triethoxysilane (APTES) in order to introduce abundant amino groups on the surface of MWCNTs. After the conversion of amino groups to carboxyl groups by succinic acid anhydride, MWCNTs were attached to protein A or aminodextran using 1-ethyl-3,3' (dimethylamion)-propylcarbodiimide as a biofunctional crosslinker. The incorporation of aminodextran as a spacer arm noticeably increased the binding capacity of the APTES-modified MWCNTs for protein A. The application of affinity MWCNTs for purification of immunoglobulin G was then evaluated. The affinity of MWCNTs with AMD spacer exhibited a high adsorption capacity of ~361 µg IgG/mg MWCNT (wet basis). About 75% of bound IgG was eluted from affinity MWCNTs (ANT-I and ANT-II) and ELISA confirmed that the biological activity of IgG was well preserved during the course of affinity separation. The functionalized MWCNTs could be potentially used in affinity chromatography.

  1. Local BLyS production by T follicular cells mediates retention of high affinity B cells during affinity maturation

    PubMed Central

    Goenka, Radhika; Matthews, Andrew H.; Zhang, Bochao; O’Neill, Patrick J.; Scholz, Jean L.; Migone, Thi-Sau; Leonard, Warren J.; Stohl, William; Hershberg, Uri

    2014-01-01

    We have assessed the role of B lymphocyte stimulator (BLyS) and its receptors in the germinal center (GC) reaction and affinity maturation. Despite ample BLyS retention on B cells in follicular (FO) regions, the GC microenvironment lacks substantial BLyS. This reflects IL-21–mediated down-regulation of the BLyS receptor TACI (transmembrane activator and calcium modulator and cyclophilin ligand interactor) on GC B cells, thus limiting their capacity for BLyS binding and retention. Within the GC, FO helper T cells (TFH cells) provide a local source of BLyS. Whereas T cell–derived BLyS is dispensable for normal GC cellularity and somatic hypermutation, it is required for the efficient selection of high affinity GC B cell clones. These findings suggest that during affinity maturation, high affinity clones rely on TFH-derived BLyS for their persistence. PMID:24367004

  2. Characterization of the Staphylococcal enterotoxin A: Vβ receptor interaction using human receptor fragments engineered for high affinity.

    PubMed

    Sharma, P; Postel, S; Sundberg, E J; Kranz, D M

    2013-12-01

    Staphylococcal food poisoning is a gastrointestinal disorder caused by the consumption of food containing Staphylococcal enterotoxins. Staphylococcal enterotoxin A (SEA) is the most common enterotoxin recovered from food poisoning outbreaks in the USA. In addition to its enteric activity, SEA also acts as a potent superantigen through stimulation of T cells, although less is known about its interactions than the superantigens SEB, SEC and toxic shock syndrome toxin-1. To understand more about SEA:receptor interactions, and to develop toxin-detection systems for use in food testing, we engineered various SEA-binding receptor mutants. The extracellular domain of the receptor, a variable region of the beta chain (Vβ22) of the T-cell receptor, was engineered for stability as a soluble protein and for high affinity, using yeast-display technology. The highest affinity mutant was shown to bind SEA with a Kd value of 4 nM. This was a 25 000-fold improvement in affinity compared with the wild-type receptor, which bound to SEA with low affinity (Kd value of 100 µM), similar to other superantigen:Vβ interactions. The SEA:Vβ interface was centered around residues within the complementarity determining region 2 loop. The engineered receptor was specific for SEA, in that it did not bind to two other closely related enterotoxins SEE or SED, providing information on the SEA residues possibly involved in the interaction. The specificity and affinity of these high-affinity Vβ proteins also provide useful agents for the design of more sensitive and specific systems for SEA detection.

  3. Planning Value vs Earned Value

    DTIC Science & Technology

    2011-05-01

    20 196 10 98 7 Postmortem 4 200 2 100 Les Dupaix - 17Earned Value Duration Charts Gantt (Bar) Chart Si lmp e Can show dependencies Tracking planned vs...7 7 4 2 Identify Requirements 78 86 39 43 4 6 96 103 43 3 Match Requirements 20 106 10 53 5 7 24 127 53 to Phases 4 Identify Risk Areas 20 126 10 63

  4. Nanoparticle multivalency counterbalances the ligand affinity loss upon PEGylation.

    PubMed

    Hennig, Robert; Pollinger, Klaus; Veser, Anika; Breunig, Miriam; Goepferich, Achim

    2014-11-28

    The conjugation of receptor ligands to shielded nanoparticles is a widely used strategy to precisely control nanoparticle-cell interactions. However, it is often overlooked that a ligand's affinity can be severely impaired by its attachment to the polyethylene glycol (PEG) chains that are frequently used to protect colloids from serum protein adsorption. Using the model ligand EXP3174, a small-molecule antagonist for the angiotensin II receptor type 1 (AT1R), we investigated the ligand's affinity before and after its PEGylation and when attached to PEGylated nanoparticles. The PEGylated ligand displayed a 580-fold decreased receptor affinity compared to the native ligand. Due to their multivalency, the nanoparticles regained a low nanomolar receptor affinity, which is in the range of the affinity of the native ligand. Moreover, a four orders of magnitude higher concentration of free ligand was required to displace PEGylated nanoparticles carrying EXP3174 from the receptor. On average, one nanoparticle was decorated with 11.2 ligand molecules, which led to a multivalent enhancement factor of 22.5 compared to the monovalent PEGylated ligand. The targeted nanoparticles specifically bound the AT1R and showed no interaction to receptor negative cells. Our study shows that the attachment of a small-molecule ligand to a PEG chain can severely affect its receptor affinity. Concomitantly, when the ligand is tethered to nanoparticles, the immense avidity greatly increases the ligand-receptor interaction. Based on our results, we highly recommend the affinity testing of receptor ligands before and after PEGylation to identify potent molecules for active nanoparticle targeting.

  5. Protein Complex Affinity Capture from Cryomilled Mammalian Cells.

    PubMed

    LaCava, John; Jiang, Hua; Rout, Michael P

    2016-12-09

    Affinity capture is an effective technique for isolating endogenous protein complexes for further study. When used in conjunction with an antibody, this technique is also frequently referred to as immunoprecipitation. Affinity capture can be applied in a bench-scale and in a high-throughput context. When coupled with protein mass spectrometry, affinity capture has proven to be a workhorse of interactome analysis. Although there are potentially many ways to execute the numerous steps involved, the following protocols implement our favored methods. Two features are distinctive: the use of cryomilled cell powder to produce cell extracts, and antibody-coupled paramagnetic beads as the affinity medium. In many cases, we have obtained superior results to those obtained with more conventional affinity capture practices. Cryomilling avoids numerous problems associated with other forms of cell breakage. It provides efficient breakage of the material, while avoiding denaturation issues associated with heating or foaming. It retains the native protein concentration up to the point of extraction, mitigating macromolecular dissociation. It reduces the time extracted proteins spend in solution, limiting deleterious enzymatic activities, and it may reduce the non-specific adsorption of proteins by the affinity medium. Micron-scale magnetic affinity media have become more commonplace over the last several years, increasingly replacing the traditional agarose- and Sepharose-based media. Primary benefits of magnetic media include typically lower non-specific protein adsorption; no size exclusion limit because protein complex binding occurs on the bead surface rather than within pores; and ease of manipulation and handling using magnets.

  6. Protein Complex Affinity Capture from Cryomilled Mammalian Cells

    PubMed Central

    LaCava, John; Jiang, Hua; Rout, Michael P.

    2016-01-01

    Affinity capture is an effective technique for isolating endogenous protein complexes for further study. When used in conjunction with an antibody, this technique is also frequently referred to as immunoprecipitation. Affinity capture can be applied in a bench-scale and in a high-throughput context. When coupled with protein mass spectrometry, affinity capture has proven to be a workhorse of interactome analysis. Although there are potentially many ways to execute the numerous steps involved, the following protocols implement our favored methods. Two features are distinctive: the use of cryomilled cell powder to produce cell extracts, and antibody-coupled paramagnetic beads as the affinity medium. In many cases, we have obtained superior results to those obtained with more conventional affinity capture practices. Cryomilling avoids numerous problems associated with other forms of cell breakage. It provides efficient breakage of the material, while avoiding denaturation issues associated with heating or foaming. It retains the native protein concentration up to the point of extraction, mitigating macromolecular dissociation. It reduces the time extracted proteins spend in solution, limiting deleterious enzymatic activities, and it may reduce the non-specific adsorption of proteins by the affinity medium. Micron-scale magnetic affinity media have become more commonplace over the last several years, increasingly replacing the traditional agarose- and Sepharose-based media. Primary benefits of magnetic media include typically lower non-specific protein adsorption; no size exclusion limit because protein complex binding occurs on the bead surface rather than within pores; and ease of manipulation and handling using magnets. PMID:28060343

  7. Selecting highly affine and well-expressed TCRs for gene therapy of melanoma.

    PubMed

    Jorritsma, Annelies; Gomez-Eerland, Raquel; Dokter, Maarten; van de Kasteele, Willeke; Zoet, Yvonne M; Doxiadis, Ilias I N; Rufer, Nathalie; Romero, Pedro; Morgan, Richard A; Schumacher, Ton N M; Haanen, John B A G

    2007-11-15

    A recent phase 1 trial has demonstrated that the generation of tumor-reactive T lymphocytes by transfer of specific T-cell receptor (TCR) genes into autologous lymphocytes is feasible. However, compared with results obtained by infusion of tumor-infiltrating lymphocytes, the response rate observed in this first TCR gene therapy trial is low. One strategy that is likely to enhance the success rate of TCR gene therapy is the use of tumor-reactive TCRs with a higher capacity for tumor cell recognition. We therefore sought to develop standardized procedures for the selection of well-expressed, high-affinity, and safe human TCRs. Here we show that TCR surface expression can be improved by modification of TCR alpha and beta sequences and that such improvement has a marked effect on the in vivo function of TCR gene-modified T cells. From a panel of human, melanoma-reactive TCRs we subsequently selected the TCR with the highest affinity. Furthermore, a generally applicable assay was used to assess the lack of alloreactivity of this TCR against a large series of common human leukocyte antigen alleles. The procedures described in this study should be of general value for the selection of well- and stably expressed, high-affinity, and safe human TCRs for subsequent clinical testing.

  8. Color-weak compensation using local affine isometry based on discrimination threshold matching.

    PubMed

    Mochizuki, Rika; Kojima, Takanori; Lenz, Reiner; Chao, Jinhui

    2015-11-01

    We develop algorithms for color-weak compensation and color-weak simulation based on Riemannian geometry models of color spaces. The objective function introduced measures the match of color discrimination thresholds of average normal observers and a color-weak observer. The developed matching process makes use of local affine maps between color spaces of color-normal and color-weak observers. The method can be used to generate displays of images that provide color-normal and color-weak observers with a similar color difference experience. It can also be used to simulate the perception of a color-weak observer for color-normal observers. We also introduce a new database of measurements of color discrimination threshold data for color-normal and color-weak observers obtained at different lightness levels in CIELUV space. The compensation methods include compensations of chromaticity using local affine maps between chromaticity planes of color-normal and color-weak observers, and one-dimensional (1D) compensation on lightness. We describe how to determine correspondences between the origins of local coordinates in color spaces of color-normal and color-weak observers using a neighborhood expansion method. After matching the origins of the two coordinate systems, a local affine map is estimated by solving a nonlinear equation, or singular-value-decomposition (SVD). We apply the methods to natural images and evaluate their performance using the semantic differential (SD) method.

  9. Size and shape dependent deprotonation potential and proton affinity of nanodiamond

    NASA Astrophysics Data System (ADS)

    Barnard, Amanda S.; Per, Manolo C.

    2014-11-01

    Many important reactions in biology and medicine involve proton abstraction and transfer, and it is integral to applications such as drug delivery. Unlike electrons, which are quantum mechanically delocalized, protons are instantaneously localized on specific residues in these reactions, which can be a distinct advantage. However, the introduction of nanoparticles, such as non-toxic nanodiamonds, to this field complicates matters, as the number of possible sites increases as the inverse radius of the particle. In this paper we present \\gt {{10}4} simulations that map the size- and shape-dependence of the deprotonation potential and proton affinity of nanodiamonds in the range 1.8-2.7 nm in average diameter. We find that while the average deprotonation potential and proton affinities decrease with size, the site-specific values are inhomogeneous over the surface of the particles, exhibiting strong shape-dependence. The proton affinity is strongly facet-dependent, whereas the deprotonation potential is edge/corner-dependent, which creates a type of spatial hysteresis in the transfer of protons to and from the nanodiamond, and provides new opportunities for selective functionalization.

  10. Predicting Adsorption Affinities of Small Molecules on Carbon Nanotubes Using Molecular Dynamics Simulation.

    PubMed

    Comer, Jeffrey; Chen, Ran; Poblete, Horacio; Vergara-Jaque, Ariela; Riviere, Jim E

    2015-12-22

    Computational techniques have the potential to accelerate the design and optimization of nanomaterials for applications such as drug delivery and contaminant removal; however, the success of such techniques requires reliable models of nanomaterial surfaces as well as accurate descriptions of their interactions with relevant solutes. In the present work, we evaluate the ability of selected models of naked and hydroxylated carbon nanotubes to predict adsorption equilibrium constants for about 30 small aromatic compounds with a variety of functional groups. The equilibrium constants determined using molecular dynamics coupled with free-energy calculation techniques are directly compared to those derived from experimental measurements. The calculations are highly predictive of the relative adsorption affinities of the compounds, with excellent correlation (r ≥ 0.9) between calculated and measured values of the logarithm of the adsorption equilibrium constant. Moreover, the agreement in absolute terms is also reasonable, with average errors of less than one decade. We also explore possible effects of surface loading, although we demonstrate that they are negligible for the experimental conditions considered. Given the degree of reliability demonstrated, we move on to employing the in silico techniques in the design of nanomaterials, using the optimization of adsorption affinity for the herbacide atrazine as an example. Our simulations suggest that, compared to other modifications of graphenic carbon, polyvinylpyrrolidone conjugation gives the highest affinity for atrazine-substantially greater than that of graphenic carbon alone-and may be useful as a nanomaterial for delivery or sequestration of atrazine.

  11. An SF1 affinity model to identify branch point sequences in human introns

    PubMed Central

    Pastuszak, Alexander W.; Joachimiak, Marcin P.; Blanchette, Marco; Rio, Donald C.; Brenner, Steven E.; Frankel, Alan D.

    2011-01-01

    Splicing factor 1 (SF1) binds to the branch point sequence (BPS) of mammalian introns and is believed to be important for the splicing of some, but not all, introns. To help identify BPSs, particularly those that depend on SF1, we generated a BPS profile model in which SF1 binding affinity data, validated by branch point mapping, were iteratively incorporated into computational models. We searched a data set of 117 499 human introns for best matches to the SF1 Affinity Model above a threshold, and counted the number of matches at each intronic position. After subtracting a background value, we found that 87.9% of remaining high-scoring matches identified were located in a region upstream of 3′-splice sites where BPSs are typically found. Since U2AF65 recognizes the polypyrimidine tract (PPT) and forms a cooperative RNA complex with SF1, we combined the SF1 model with a PPT model computed from high affinity binding sequences for U2AF65. The combined model, together with binding site location constraints, accurately identified introns bound by SF1 that are candidates for SF1-dependent splicing. PMID:21071404

  12. Specificity and affinity motifs for Grb2 SH2-ligand interactions

    PubMed Central

    Kessels, Helmut W. H. G.; Ward, Alister C.; Schumacher, Ton N. M.

    2002-01-01

    Protein–protein interactions are often mediated by the recognition of short continuous amino acid stretches on target proteins by specific binding domains. Affinity-based selection strategies have successfully been used to define recognition motifs for a large series of such protein domains. However, in many biological systems specificity of interaction may be of equal or greater importance than affinity. To address this issue we have developed a peptide library screening technology that can be used to directly define ligands for protein domains based on both affinity and specificity of interaction. We demonstrate the value of this approach by the selection of peptide ligands that are either highly specific for the Grb2 Src homology 2 (SH2) domain or that are cross-reactive between a group of related SH2 domains. Examination of previously identified physiological ligands for the Grb2 SH2 domain suggests that for these ligands regulation of the specificity of interaction may be an important factor for in vivo ligand selection. PMID:12084912

  13. Development of an epoxy-based monolith used for the affinity capturing of Escherichia coli bacteria.

    PubMed

    Peskoller, Caroline; Niessner, Reinhard; Seidel, Michael

    2009-05-01

    An epoxy-based monolith has been developed for use as hydrophilic support in bioseparation. This monolith is produced by self-polymerization of polyglycerol-3-glycidyl ether in organic solvents as porogens at room temperature within 1 h. One receives a highly cross-linked structure that provides useful mechanical properties. The porosity and pore diameter can be controlled by varying the composition of the porogen. In this work, an epoxy-based monolith with a high porosity (79%) and large pore size (22 microm) is prepared and used in affinity capturing of bacterial cells. These features allow the passage of bacterial cells through the column. As affinity ligand polymyxin B is used, which allows the binding of gram-negative bacteria. The efficiency of the monolithic affinity column is studied with Escherichia coli spiked in water. Bacterial cells are concentrated on the column at pH 4 and eluted with a recovery of 97+/-3% in 200 microL by changing the pH value without impairing viability of bacteria. The dynamic capacity for the monolithic column is nearly independent of the flow rate (4x10(9)cells/column). Thereby, it is possible to separate and enrich gram-negative bacterial cells, such as E. coli, with high flow rates (10 mL/min) and low back pressure (<1 bar) in a volume as low as 200 microL compatible for real-time polymerase chain reaction, microarray formats, and biosensors.

  14. Reconstitution of high-affinity opioid agonist binding in brain membranes

    SciTech Connect

    Remmers, A.E.; Medzihradsky, F. )

    1991-03-15

    In synaptosomal membranes from rat brain cortex, the {mu} selective agonist ({sup 3}H)dihydromorphine in the absence of sodium, and the nonselective antagonist ({sup 3}H)naltrexone in the presence of sodium, bound to two populations of opioid receptor sites with K{sub d} values of 0.69 and 8.7 nM for dihydromorphine, and 0.34 and 5.5 nM for naltrexone. The addition of 5 {mu}M guanosine 5{prime}-({gamma}-thio)triphosphate (GTP({gamma}S)) strongly reduced high-affinity agonist but not antagonist binding. Exposure of the membranes to high pH reduced the number of GTP({gamma}-{sup 35}S) binding sites by 90% and low K{sub m}, opioid-sensitive GTPase activity by 95%. In these membranes, high-affinity agonist binding was abolished and modulation of residual binding by GTP({gamma}S) was diminished. Alkali treatment of the glioma cell membranes prior to fusion inhibited most of the low K{sub m} GTPase activity and prevented the reconstitution of agonist binding. The results show that high-affinity opioid agonist binding reflects the ligand-occupied receptor - guanine nucleotide binding protein complex.

  15. Isolation of Anti-Ricin Protective Antibodies Exhibiting High Affinity from Immunized Non-Human Primates

    PubMed Central

    Noy-Porat, Tal; Rosenfeld, Ronit; Ariel, Naomi; Epstein, Eyal; Alcalay, Ron; Zvi, Anat; Kronman, Chanoch; Ordentlich, Arie; Mazor, Ohad

    2016-01-01

    Ricin, derived from the castor bean plant Ricinus communis, is one of the most potent and lethal toxins known, against which there is no available antidote. To date, the use of neutralizing antibodies is the most promising post-exposure treatment for ricin intoxication. The aim of this study was to isolate high affinity anti-ricin antibodies that possess potent toxin-neutralization capabilities. Two non-human primates were immunized with either a ricin-holotoxin- or subunit-based vaccine, to ensure the elicitation of diverse high affinity antibodies. By using a comprehensive set of primers, immune scFv phage-displayed libraries were constructed and panned. A panel of 10 antibodies (five directed against the A subunit of ricin and five against the B subunit) was isolated and reformatted into a full-length chimeric IgG. All of these antibodies were found to neutralize ricin in vitro, and several conferred full protection to ricin-intoxicated mice when given six hours after exposure. Six antibodies were found to possess exceptionally high affinity toward the toxin, with KD values below pM (koff < 1 × 10−7 s−1) that were well correlated with their ability to neutralize ricin. These antibodies, alone or in combination, could be used for the development of a highly-effective therapeutic preparation for post-exposure treatment of ricin intoxication. PMID:26950154

  16. Global Existence and Asymptotic Behavior of Affine Motion of 3D Ideal Fluids Surrounded by Vacuum

    NASA Astrophysics Data System (ADS)

    Sideris, Thomas C.

    2017-03-01

    The 3D compressible and incompressible Euler equations with a physical vacuum free boundary condition and affine initial conditions reduce to a globally solvable Hamiltonian system of ordinary differential equations for the deformation gradient in {GL^+(3, R)} . The evolution of the fluid domain is described by a family of ellipsoids whose diameter grows at a rate proportional to time. Upon rescaling to a fixed diameter, the asymptotic limit of the fluid ellipsoid is determined by a positive semi-definite quadratic form of rank r = 1, 2, or 3, corresponding to the asymptotic degeneration of the ellipsoid along 3-r of its principal axes. In the compressible case, the asymptotic limit has rank r = 3, and asymptotic completeness holds, when the adiabatic index {γ} satisfies {4/3 < γ < 2} . The number of possible degeneracies, 3-r, increases with the value of the adiabatic index {γ} . In the incompressible case, affine motion reduces to geodesic flow in {SL(3, R)} with the Euclidean metric. For incompressible affine swirling flow, there is a structural instability. Generically, when the vorticity is nonzero, the domains degenerate along only one axis, but the physical vacuum boundary condition fails over a finite time interval. The rescaled fluid domains of irrotational motion can collapse along two axes.

  17. Affine and polynomial mutual information coregistration for artifact elimination in diffusion tensor imaging of newborns.

    PubMed

    Nielsen, Jon F; Ghugre, Nilesh R; Panigrahy, Ashok

    2004-11-01

    We have investigated the use of two different image coregistration algorithms for identifying local regions of erroneously high fractional anisotropy (FA) as derived from diffusion tensor imaging (DTI) data sets in newborns. The first algorithm uses conventional affine registration of each of the diffusion-weighted images to the unweighted (b = 0) image for each slice, while the second algorithm uses second-order polynomial warping. Similarity between images was determined using the mutual information (MI) criterion, which is the preferred 'cost' criterion for coregistration of images with significantly different image intensity distributions. We have found that subtle differences exist in the FA values resulting from affine and second-order polynomial coregistration and demonstrate that nonlinear distortions introduce artifacts of spatial extent similar to real white matter structures in the newborn subcortex. We show that polynomial coregistration systematically reduces the presence of erroneous regions of high FA and that such artifacts can be identified by visual inspection of FA maps resulting from affine and polynomial coregistrations. Furthermore, we show that nonlinear distortions may be particularly pronounced when acquiring image slices of axial orientation at the height of the nasal cavity. Finally, we show that third-order polynomial MI coregistration (using the images resulting from second-order coregistration as input) has no observable effect on the resulting FA maps.

  18. Isolation of Anti-Ricin Protective Antibodies Exhibiting High Affinity from Immunized Non-Human Primates.

    PubMed

    Noy-Porat, Tal; Rosenfeld, Ronit; Ariel, Naomi; Epstein, Eyal; Alcalay, Ron; Zvi, Anat; Kronman, Chanoch; Ordentlich, Arie; Mazor, Ohad

    2016-03-03

    Ricin, derived from the castor bean plant Ricinus communis, is one of the most potent and lethal toxins known, against which there is no available antidote. To date, the use of neutralizing antibodies is the most promising post-exposure treatment for ricin intoxication. The aim of this study was to isolate high affinity anti-ricin antibodies that possess potent toxin-neutralization capabilities. Two non-human primates were immunized with either a ricin-holotoxin- or subunit-based vaccine, to ensure the elicitation of diverse high affinity antibodies. By using a comprehensive set of primers, immune scFv phage-displayed libraries were constructed and panned. A panel of 10 antibodies (five directed against the A subunit of ricin and five against the B subunit) was isolated and reformatted into a full-length chimeric IgG. All of these antibodies were found to neutralize ricin in vitro, and several conferred full protection to ricin-intoxicated mice when given six hours after exposure. Six antibodies were found to possess exceptionally high affinity toward the toxin, with KD values below pM (k(off )< 1 × 10(-7) s(-1)) that were well correlated with their ability to neutralize ricin. These antibodies, alone or in combination, could be used for the development of a highly-effective therapeutic preparation for post-exposure treatment of ricin intoxication.

  19. Ethylene binding site affinity in ripening apples

    SciTech Connect

    Blankenship, S.M. . Dept. of Horticultural Science); Sisler, E.C. )

    1993-09-01

    Scatchard plots for ethylene binding in apples (Malus domestica Borkh.), which were harvested weekly for 5 weeks to include the ethylene climacteric rise, showed C[sub 50] values (concentration of ethylene needed to occupy 50% of the ethylene binding sites) of 0.10, 0.11, 0.34, 0.40, and 0.57 [mu]l ethylene/liter[sup [minus]1], respectively, for each of the 5 weeks. Higher ethylene concentrations were required to saturate the binding sites during the climacteric rise than at other times. Diffusion of [sup 14]C-ethylene from the binding sites was curvilinear and did not show any indication of multiple binding sites. Ethylene was not metabolized by apple tissue.

  20. Valuing hope.

    PubMed

    McMillan, John; Walker, Simon; Hope, Tony

    2014-01-01

    This article argues that hope is of value in clinical ethics and that it can be important for clinicians to be sensitive to both the risks of false hope and the importance of retaining hope. However, this sensitivity requires an understanding of the complexity of hope and how it bears on different aspects of a well-functioning doctor-patient relationship. We discuss hopefulness and distinguish it, from three different kinds of hope, or 'hopes for', and then relate these distinctions back to differing accounts of autonomy. This analysis matters because it shows how an overly narrow view of the ethical obligations of a clinician to their patient, and autonomy, might lead to scenarios where patients regret the choices they make.

  1. Chromosome pairing affinities in interspecific hybrids reflect phylogenetic distances among lady's slipper orchids (Paphiopedilum)

    PubMed Central

    Lee, Yung-I; Chang, Fang-Chi; Chung, Mei-Chu

    2011-01-01

    Background and Aims Lady's slipper orchids (Paphiopedilum) are of high value in floriculture, and interspecific hybridization has long been used for breeding improved cultivars; however, information regarding the genome affinities of species and chromosome pairing behaviour of the hybrids remains almost unknown. The present work analyses the meiotic behaviour of interspecific hybrids by genomic in situ hybridization and cytologically evaluates the genomic relationships among parental species. Methods Eight interspecific F1 hybrids of Paphiopedilum species in various subgenera or sections were investigated in this study. The chromosome behaviour in meiosis of these interspecific hybrids was analysed and subjected to genomic in situ hybridization and fluorescent in situ hybridization. Key Results Genomic in situ hybridization was demonstrated as an efficient method to differentiate between Paphiopedilum genomes and to visualize the chromosome pairing affinities in interspecific F1 hybrids, clarifying the phylogenetic distances among these species. Comparatively regular chromosome pairing observed in the hybrids of P. delenatii × P. bellatulum, P. delenatii × P. rothschildianum and P. rothschildianum × P. bellatulum suggested high genomic affinities and close relationships between parents of each hybrid. In contrast, irregular chromosome associations, such as univalents, trivalents and quadrivalents occurred frequently in the hybrids derived from distant parents with divergent karyotypes, such as P. delenatii × P. callosum, P. delenatii × P. glaucophyllum, P. rothschildianum × P. micranthum and P. rothschildianum × P. moquetteanum. The existence of multivalents and autosyndesis demonstrated by genomic in situ hybridization in this study indicates that some micro-rearrangements and other structural alterations may also play a part in differentiating Paphiopedilum species at chromosomal level, demonstrated as different chromosome pairing affinities in

  2. Application of volcanic ash particles for protein affinity purification with a minimized silica-binding tag.

    PubMed

    Abdelhamid, Mohamed A A; Ikeda, Takeshi; Motomura, Kei; Tanaka, Tatsuya; Ishida, Takenori; Hirota, Ryuichi; Kuroda, Akio

    2016-11-01

    We recently reported that the spore coat protein, CotB1 (171 amino acids), from Bacillus cereus mediates silica biomineralization and that the polycationic C-terminal sequence of CotB1 (14 amino acids), designated CotB1p, serves as a silica-binding tag when fused to other proteins. Here, we reduced the length of this silica-binding tag to only seven amino acids (SB7 tag: RQSSRGR) while retaining its affinity for silica. Alanine scanning mutagenesis indicated that the three arginine residues in the SB7 tag play important roles in binding to a silica surface. Monomeric l-arginine, at concentrations of 0.3-0.5 M, was found to serve as a competitive eluent to release bound SB7-tagged proteins from silica surfaces. To develop a low-cost, silica-based affinity purification procedure, we used natural volcanic ash particles with a silica content of ∼70%, rather than pure synthetic silica particles, as an adsorbent for SB7-tagged proteins. Using green fluorescent protein, mCherry, and mKate2 as model proteins, our purification method achieved 75-90% recovery with ∼90% purity. These values are comparable to or even higher than that of the commonly used His-tag affinity purification. In addition to low cost, another advantage of our method is the use of l-arginine as the eluent because its protein-stabilizing effect would help minimize alteration of the intrinsic properties of the purified proteins. Our approach paves the way for the use of naturally occurring materials as adsorbents for simple, low-cost affinity purification.

  3. [Affinity of the elements in group VI of the periodic table to tumors and organs].

    PubMed

    Ando, A; Hisada, K; Ando, I

    1976-10-01

    In order to investigate the tumor affinity radioisotopes, chromium (51Cr), molybdenum (99Mo), tungsten (181W), selenium (75Se) and tellurium (127mTe)--the elements of group VI in the periodic table--were examined, using the rats which were subcutaneously transplanted with Yoshida sarcoma. Seven preprarations, sodium chromate (Na251CrO4), chromium chloride (51CrCl3), normal ammonium molybdate ((NH4)299MoO7), sodium tungstate (Na2181WO4), sodium selenate (Na275SeO4), sodium selenite (Na275SeO3) and tellurous acid (H2127mTeO3) were injected intravenously to each group of tumor bearing rats. These rats were sacrificed at various periods after injection of each preparation: 3 hours, 24 hours and 48 hours in all preparations. The radioactivities of the tumor, blood, muscle, liver, kidney and spleen were measured by a well-type scintillation counter, and retention values (in every tissue including the tumor) were calculated in percent of administered dose per g-tissue weight. All of seven preparations did not have any affinity for malignant tumor. Na251CrO4 and H2127mTeO3 had some affinity for the kidneys, and Na275SeO3 had some affinity for the liver. Na2181WO4 and (NH4)299MoO4 disappeared very rapidly from the blood and soft tissue, and about seventy-five percent of radioactivity was excreted in urine within first 3 hours.

  4. Surface plasmon resonance imaging for affinity analysis of aptamer-protein interactions with PDMS microfluidic chips.

    PubMed

    Wang, Zhuangzhi; Wilkop, Thomas; Xu, Danke; Dong, Yi; Ma, Guangyu; Cheng, Quan

    2007-10-01

    We report on the use of PDMS multichannels for affinity studies of DNA aptamer-human Immunoglobulin E (IgE) interactions by surface plasmon resonance imaging (SPRi). The sensing surface was prepared with thiol-terminated aptamers through a self-assembling process in the PDMS channels defined on a gold substrate. Cysteamine was codeposited with the thiol aptamers to promote proper spatial arrangement of the aptamers and thus maintain their optimal binding efficiencies. Four aptamers with different nucleic acid sequences were studied to test their interaction affinity toward IgE, and the results confirmed that aptamer I (5'-SH-GGG GCA CGT TTA TCC GTC CCT CCT AGT GGC GTG CCC C-3') has the strongest binding affinity. Control experiments were conducted with a PEG-functionalized surface and IgG was used to replace IgE in order to verify the selective binding of aptamer I to the IgE molecules. A linear concentration-dependent relationship between IgE and aptamer I was obtained, and a 2-nM detection limit was achieved. SPRi data were further analyzed by global fitting, and the dissociation constant of aptamer I-IgE complex was found to be 2.7 x 10(-7) M, which agrees relatively well with the values reported in the literature. Aptamer affinity screening by SPR imaging demonstrates marked advantages over competing methods because it does not require labeling, can be used in real-time, and is potentially high-throughput. The ability to provide both qualitative and quantitative results on a multichannel chip further establishes SPRi as a powerful tool for the study of biological interactions in a multiplexed format.

  5. Neuroimaging of the serotonin reuptake site requires high-affinity ligands.

    PubMed

    Elfving, Betina; Madsen, Jacob; Knudsen, Gitte M

    2007-11-01

    Numerous attempts have been made to develop suitable radiolabeled tracers for positron emission tomography or single photon emission computed tomography imaging of the serotonin transporter (SERT), but most often, negative outcomes are reported. The aim of this study is to define characteristics of a good SERT radioligand and to investigate species differences. We examined seven different selective serotonin reuptake inhibitors (SSRIs) and that except for one all have been previously tested as emission tomography ligands. The outcome of the ligands as emission tomography tracers was compared in relation with receptor density (Bmax) and/or ligand affinity (Kd) in rat and monkey cerebrum and cerebellum (reference region) membranes. [3H]-(S)-Citalopram and [3H]-(+)-McN5652 display statistically significantly lower affinity, whereas [3H]paroxetine displays statistically significantly higher affinity for SERT in monkey cortex when compared with the rat cerebrum. The affinity of [3H]MADAM, [123I]ADAM, and [11C]DASB for SERT obtained with rat cerebrum and monkey cortex are similar. In monkey cortex, Kd and Bmax could not be determined with [3H]fluoxetine. Of the seven SSRIs, [3H]-(S)-citalopram, [3H]MADAM, and [11C]DASB displayed significant specific binding to SERT in monkey cerebellum, with Bmax cortex:cerebellum ratios being 17, 3, and 4, respectively. In rat brain tissue the ratios were 12, 6, and 3, respectively. In conclusion, it can be estimated that imaging of the human SERT in a high-density region requires radioligands with Kd values between 0.03 and a maximum of 0.3 nM (at 37 degrees C). The differential specific cerebellar binding raises the question of the suitability of cerebellum as a reference region for nonspecific binding.

  6. Valuing Stillbirths

    PubMed Central

    Phillips, John; Millum, Joseph

    2016-01-01

    Estimates of the burden of disease assess the mortality and morbidity that affect a population by producing summary measures of health such as quality-adjusted life years (QALYs) and disability-adjusted life years (DALYs). These measures typically do not include stillbirths (fetal deaths occurring during the later stages of pregnancy or during labor) among the negative health outcomes they count. Priority setting decisions that rely on these measures are therefore likely to place little value on preventing the more than three million stillbirths that occur annually worldwide. In contrast, neonatal deaths, which occur in comparable numbers, have a substantial impact on burden of disease estimates and are commonly seen as a pressing health concern. In this paper we argue in favor of incorporating unintended fetal deaths that occur late in pregnancy into estimates of the burden of disease. Our argument is based on the similarity between late-term fetuses and newborn infants and the assumption that protecting newborns is important. We respond to four objections to counting stillbirths: (1) that fetuses are not yet part of the population and so their deaths should not be included in measures of population health; (2) that valuing the prevention of stillbirths will undermine women’s reproductive rights; (3) that including stillbirths implies that miscarriages (fetal deaths early in pregnancy) should also be included; and (4) that birth itself is in fact ethically significant. We conclude that our proposal is ethically preferable to current practice and, if adopted, is likely to lead to improved decisions about health spending. PMID:25395144

  7. Gradient-based habitat affinities predict species vulnerability to drought.

    PubMed

    Debinski, Diane M; Caruthers, Jennet C; Cook, Dianne; Crowley, Jason; Wickham, Hadley

    2013-05-01

    Ecological fingerprints of climate change are becoming increasingly evident at broad geographical scales as measured by species range shifts and changes in phenology. However, finer-scale species-level responses to environmental fluctuations may also provide an important bellwether of impending future community responses. Here we examined changes in abundance of butterfly species along a hydrological gradient of six montane meadow habitat types in response to drought. Our data collection began prior to the drought, and we were able to track changes for 11 years, of which eight were considered mild to extreme drought conditions. We separated the species into those that had an affinity for hydric vs. xeric habitats. We suspected that drought would favor species with xeric habitat affinities, but that there could be variations in species-level responses along the hydrological gradient. We also suspected that mesic meadows would be most sensitive to drought conditions. Temporal trajectories were modeled for both species groups (hydric vs. xeric affinity) and individual species. Abundances of species with affinity for xeric habitats increased in virtually all meadow types. Conversely, abundances of species with affinity for hydric habitats decreased, particularly in mesic and xeric meadows. Mesic meadows showed the most striking temporal abundance trajectory: Increasing abundances of species with xeric habitat affinity were offset by decreasing or stable abundances of species with hydric habitat affinity. The one counterintuitive finding was that, in some hydric meadows, species with affinity for hydric habitats increased. In these cases, we suspect that decreasing moisture conditions in hydric meadows actually increased habitat suitability because sites near the limit of moisture extremes for some species became more acceptable. Thus, species responses were relatively predictable based upon habitat affinity and habitat location along the hydrological gradient, and

  8. Learning a peptide-protein binding affinity predictor with kernel ridge regression

    PubMed Central

    2013-01-01

    Background The cellular function of a vast majority of proteins is performed through physical interactions with other biomolecules, which, most of the time, are other proteins. Peptides represent templates of choice for mimicking a secondary structure in order to modulate protein-protein interaction. They are thus an interesting class of therapeutics since they also display strong activity, high selectivity, low toxicity and few drug-drug interactions. Furthermore, predicting peptides that would bind to a specific MHC alleles would be of tremendous benefit to improve vaccine based therapy and possibly generate antibodies with greater affinity. Modern computational methods have the potential to accelerate and lower the cost of drug and vaccine discovery by selecting potential compounds for testing in silico prior to biological validation. Results We propose a specialized string kernel for small bio-molecules, peptides and pseudo-sequences of binding interfaces. The kernel incorporates physico-chemical properties of amino acids and elegantly generalizes eight kernels, comprised of the Oligo, the Weighted Degree, the Blended Spectrum, and the Radial Basis Function. We provide a low complexity dynamic programming algorithm for the exact computation of the kernel and a linear time algorithm for it’s approximation. Combined with kernel ridge regression and SupCK, a novel binding pocket kernel, the proposed kernel yields biologically relevant and good prediction accuracy on the PepX database. For the first time, a machine learning predictor is capable of predicting the binding affinity of any peptide to any protein with reasonable accuracy. The method was also applied to both single-target and pan-specific Major Histocompatibility Complex class II benchmark datasets and three Quantitative Structure Affinity Model benchmark datasets. Conclusion On all benchmarks, our method significantly (p-value ≤ 0.057) outperforms the current state-of-the-art methods at predicting

  9. Coenzyme-like ligands for affinity isolation of cholesterol oxidase.

    PubMed

    Xin, Yu; Lu, Liushen; Wang, Qing; Zhang, Ling; Tong, Yanjun; Wang, Wu

    2016-05-15

    Two coenzyme-like chemical ligands were designed and synthesized for affinity isolation of cholesterol oxidase (COD). To simulate the structure of natural coenzyme of COD (flavin adenine dinucleotide (FAD)), on Sepharose beads, 5-aminouracil, cyanuric chloride and 1, 4-butanediamine were composed and then modified. The COD gene from Brevibacterium sp. (DQ345780) was expressed in Escherichia coli BL21 (DE3), and then the sorbents were applied to adsorption analysis with the pure enzyme. Subsequently, the captured enzyme was applied to SDS-PAGE and activity analysis. As calculated, the theoretical maximum adsorption (Qmax) of the two affinity sorbents (RL-1 and RL-2) were ∼83.5 and 46.3mg/g wet gel; and the desorption constant Kd of the two sorbents were ∼6.02×10(-4) and 1.19×10(-4)μM. The proteins after cell lysis were applied to affinity isolation, and then after one step of affinity binding on the two sorbents, the protein recoveries of RL-1 and RL-2 were 9.2% and 9.7%; the bioactivity recoveries were 92.7% and 91.3%, respectively. SDS-PAGE analysis revealed that the purities of COD isolated with the two affinity sorbents were approximately 95%.

  10. Improving antibody binding affinity and specificity for therapeutic development.

    PubMed

    Bostrom, Jenny; Lee, Chingwei V; Haber, Lauric; Fuh, Germaine

    2009-01-01

    Affinity maturation is an important part of the therapeutic antibody development process as in vivo activity often requires high binding affinity. Here, we describe a targeted approach for affinity improvement of therapeutic antibodies. Sets of CDR residues that are solvent accessible and relatively diverse in natural antibodies are targeted for diversification. Degenerate oligonucleotides are used to generate combinatorial phage-displayed antibody libraries with varying degree of diversity at randomized positions from which high-affinity antibodies can be selected. An advantage of using antibodies for therapy is their exquisite target specificity, which enables selective antigen binding and reduces off-target effects. However, it can be useful, and often it is necessary, to generate cross-reactive antibodies binding to not only the human antigen but also the corresponding non-human primate or rodent orthologs. Such cross-reactive antibodies can be used to validate the therapeutic targeting and examine the safety profile in preclinical animal models before committing to a costly development track. We show how affinity improvement and cross-species binding can be achieved in a one-step process.

  11. Biphasic Affinity Chromatographic Approach for Deep Tyrosine Phosphoproteome Analysis.

    PubMed

    Deng, Zhenzhen; Dong, Mingming; Wang, Yan; Dong, Jing; Li, Shawn S-C; Zou, Hanfa; Ye, Mingliang

    2017-02-21

    Tyrosine phosphorylation (pTyr) is important for normal physiology and implicated in many human diseases, particularly cancer. Identification of pTyr sites is critical to dissecting signaling pathways and understanding disease pathologies. However, compared with serine/threonine phosphorylation (pSer/pThr), the analysis of pTyr at the proteome level is more challenging due to its low abundance. Here, we developed a biphasic affinity chromatographic approach where Src SH2 superbinder was coupled with NeutrAvidin affinity chromatography, for tyrosine phosphoproteome analysis. With the use of competitive elution agent biotin-pYEEI, this strategy can distinguish high-affinity phosphotyrosyl peptides from low-affinity ones, while the excess competitive agent is readily removed by using NeutrAvidin agarose resin in an integrated tip system. The excellent performance of this system was demonstrated by analyzing tyrosine phosphoproteome of Jurkat cells from which 3,480 unique pTyr sites were identified. The biphasic affinity chromatography method for deep Tyr phosphoproteome analysis is rapid, sensitive, robust, and cost-effective. It is widely applicable to the global analysis of the tyrosine phosphoproteome associated with tyrosine kinase signal transduction.

  12. Protein purification by aminosquarylium cyanine dye-affinity chromatography.

    PubMed

    Silva, M S; Graça, V C; Reis, L V; Santos, P F; Almeida, P; Queiroz, J A; Sousa, F

    2013-12-01

    The most selective purification method for proteins and other biomolecules is affinity chromatography. This method is based on the unique biological-based specificity of the biomolecule-ligand interaction and commonly uses biological ligands. However, these ligands may present some drawbacks, mainly because of their cost and lability. Dye-affinity chromatography overcomes the limitations of biological ligands and is widely used owing to the low cost of synthetic dyes and to their resistance to biological and chemical degradation. In this work, immobilized aminosquarylium cyanine dyes are used in order to exploit affinity interactions with standard proteins such as lysozyme, α-chymotrypsin and trypsin. These studies evaluate the affinity interactions occurring between the immobilized ligand and the different proteins, as a reflection of the sum of several molecular interactions, namely ionic, hydrophobic and van der Waals, spread throughout the structure, in a defined spatial manner. The results show the possibility of using an aminosquarylium cyanine dye bearing a N-hexyl pendant chain, with a ligand density of 1.8 × 10(-2) mmol of dye/g of chromatographic support, to isolate lysozyme, α-chymotrypsin and trypsin from a mixture. The application of a decreasing ammonium sulfate gradient resulted in the recovery of lysozyme in the flowthrough. On the other hand, α-chymotrypsin and trypsin were retained, involving different interactions with the ligand. In conclusion, this study demonstrates the potential applicability of ligands such as aminosquarylium cyanine dyes for the separation and purification of proteins by affinity chromatography.

  13. Epitope structure and binding affinity of single chain llama anti-β-amyloid antibodies revealed by proteolytic excision affinity-mass spectrometry.

    PubMed

    Paraschiv, Gabriela; Vincke, Cécile; Czaplewska, Paulina; Manea, Marilena; Muyldermans, Serge; Przybylski, Michael

    2013-01-01

    ß-Amyloid (Aß) immunotherapy has become a promising strategy for reducing the level of Aß in brain. New immunological approaches have been recently proposed for rapid, early diagnosis, and molecular treatment of neurodegenerative diseases related to Alzheimer's Disease (AD). The combination of proteolytic epitope excision and extraction and mass spectrometry using digestion with various proteases has been shown to be an efficient tool for the identification and molecular characterization of antigenic determinants. Here, we report the identification of the Aβ epitope recognized by the variable domain of single chain llama anti-Aβ-antibodies, termed Aβ-nanobodies, that have been discovered in the blood of camelids and found to be promising candidates for immunotherapy of AD. The epitope recognized by two Aβ-specific nanobodies was identified by proteolytic epitope extraction- and excision-mass spectrometry using a series of proteases (trypsin, chymotrypsin, GluC-protease, and LysC-protease). Matrix-assisted laser desorption ionization--mass spectrometric analysis of the affinity--elution fraction provided the epitope, Aβ(17-28), in the mid- to carboxy-terminal domain of Aβ, which has been shown to exert an Aß-fibril inhibiting effect. Affinity studies of the synthetic epitope confirmed that the Aβ(17-28) peptide is the minimal fragment that binds to the nanobodies. The interactions between the nanobodies and full length Aβ(1-40) or Aβ-peptides containing or lacking the epitope sequence were further characterized by enzyme linked immunosorbent assay and bioaffinity analysis. Determinations of binding affinities between the Aβ-nanobodies and Aβ(1-40) and the Aβ(17-28) epitope provided K(D) values of approximately 150 and 700 nmol, respectively. Thus, the knowledge of the epitope may be highly useful for future studies of Aβ-aggregation (oligomerization and fibril formation) and for designing new aggregation inhibitors.

  14. AB-Bind: Antibody binding mutational database for computational affinity predictions.

    PubMed

    Sirin, Sarah; Apgar, James R; Bennett, Eric M; Keating, Amy E

    2016-02-01

    Antibodies (Abs) are a crucial component of the immune system and are often used as diagnostic and therapeutic agents. The need for high-affinity and high-specificity antibodies in research and medicine is driving the development of computational tools for accelerating antibody design and discovery. We report a diverse set of antibody binding data with accompanying structures that can be used to evaluate methods for modeling antibody interactions. Our Antibody-Bind (AB-Bind) database includes 1101 mutants with experimentally determined changes in binding free energies (ΔΔG) across 32 complexes. Using the AB-Bind data set, we evaluated the performance of protein scoring potentials in their ability to predict changes in binding free energies upon mutagenesis. Numerical correlations between computed and observed ΔΔG values were low (r = 0.16-0.45), but the potentials exhibited predictive power for classifying variants as improved vs weakened binders. Performance was evaluated using the area under the curve (AUC) for receiver operator characteristic (ROC) curves; the highest AUC values for 527 mutants with |ΔΔG| > 1.0 kcal/mol were 0.81, 0.87, and 0.88 using STATIUM, FoldX, and Discovery Studio scoring potentials, respectively. Some methods could also enrich for variants with improved binding affinity; FoldX and Discovery Studio were able to correctly rank 42% and 30%, respectively, of the 80 most improved binders (those with ΔΔG < -1.0 kcal/mol) in the top 5% of the database. This modest predictive performance has value but demonstrates the continuing need to develop and improve protein energy functions for affinity prediction.

  15. Natural mutations change the affinity of μ-theraphotoxin-Hhn2a to voltage-gated sodium channels.

    PubMed

    Zhang, Fan; Liu, Yu; Zhang, Changxin; Li, Jing; Yang, Zuqin; Gong, Xue; Gan, Yunxiang; Chen, Ping; Liu, Zhonghua; Liang, Songping

    2015-01-01

    μ-Theraphotoxin-Hhn2a (HNTX-III) isolated from the venom of the spider Ornithoctonus hainana is a selective antagonist of neuronal tetrodotoxin-sensitive (TTX-S) voltage-gated sodium channels (VGSCs). Intriguingly, previous transcriptomic study revealed HNTX-III family consists of more than 15 precursors, in which the 20(th) and 24(th) residues of the mature sequences are variable. Try20 and Ser24 of HNTX-III are mutated to His20 and Asn24 of other members, respectively. In addition, the alkaline residue His26 of the potent VGSC inhibitor HNTX-III is substituted by acidic residue Asp of the weak VGSC inhibitor HNTX-I. Therefore, four mutants of HNTX-III, HNTX-III-Y20H, -S24N, -H26D and -Y20H/24N, were synthesized to examine the effects of these natural mutations on the inhibitory activity of HNTX-III. They were subjected to an electrophysiological screening on five VGSC subtypes (Nav1.3-1.5, Nav1.7 and Nav1.8) expressed on HEK293 cells by whole-cell patch clamp. Like HNTX-III, all mutants only displayed inhibitory activity on Nav1.3 and Nav1.7 among the five subtypes, but the inhibitory potency was much lower than that of HNTX-III. Regarding Nav1.7, the IC50 values of HNTX-III-Y20H, -S24N, -H26D and -Y20H/S24N were increased by approximately 62-, 8.4-, 49- and 19.5-folds compared with that of HNTX-III, respectively. Similar data were obtained for Nav1.3. Our results provide new insights into the activity-related residues of HNTX-III at genic level. Furthermore, the reduced potency of the four mutants probably reflects natural selection might favor and reserve the most potent bioactivity of HNTX-III which is one of the most abundant fractions of the venom.

  16. Synthetic cannabinoids: In silico prediction of the cannabinoid receptor 1 affinity by a quantitative structure-activity relationship model.

    PubMed

    Paulke, Alexander; Proschak, Ewgenij; Sommer, Kai; Achenbach, Janosch; Wunder, Cora; Toennes, Stefan W

    2016-03-14

    The number of new synthetic psychoactive compounds increase steadily. Among the group of these psychoactive compounds, the synthetic cannabinoids (SCBs) are most popular and serve as a substitute of herbal cannabis. More than 600 of these substances already exist. For some SCBs the in vitro cannabinoid receptor 1 (CB1) affinity is known, but for the majority it is unknown. A quantitative structure-activity relationship (QSAR) model was developed, which allows the determination of the SCBs affinity to CB1 (expressed as binding constant (Ki)) without reference substances. The chemically advance template search descriptor was used for vector representation of the compound structures. The similarity between two molecules was calculated using the Feature-Pair Distribution Similarity. The Ki values were calculated using the Inverse Distance Weighting method. The prediction model was validated using a cross validation procedure. The predicted Ki values of some new SCBs were in a range between 20 (considerably higher affinity to CB1 than THC) to 468 (considerably lower affinity to CB1 than THC). The present QSAR model can serve as a simple, fast and cheap tool to get a first hint of the biological activity of new synthetic cannabinoids or of other new psychoactive compounds.

  17. Species with negative electron affinity and standard DFT methods. Finding the valence anions.

    PubMed

    Puiatti, Marcelo; Vera, D Mariano A; Pierini, Adriana B

    2008-03-14

    Recently, we have shown that traditional bound-electron DFT models are reliable enough to reproduce negative electron affinities (EA) within a few meV, as long as the valence anion state is found, but they seem to fail in predicting the lowest EA when the ground anion state obtained is non-valence, which holds the extra electron in a diffuse orbital around the molecule; here we propose an alternative approach for finding the valence anion state, based on the stabilization exerted by a polar solvent; the methodology yields correct EA values (i.e. beyond the Koopman's theorem approximation) by gradually decreasing the dielectric constant of the medium.

  18. Photodetachment of electrons from phosphide ion - The electron affinity of PH2.

    NASA Technical Reports Server (NTRS)

    Smyth, K. C.; Brauman, J. I.

    1972-01-01

    Measurement of the relative cross section for photodetachment of electrons from PH2(-) in the wavelength region 725 to 1020 nm (1.71 to 1.22 eV). An ion cyclotron resonance spectrometer was used to generate, trap, and detect the negative ions, and two light sources were employed to study photodetachment: a 1000-W xenon arc lamp with a grating monochromator and a continuously tunable laser. A single sharp threshold in the cross-section curve was observed, and a detailed analysis yielded an electron affinity value of 1.25 plus or minus 0.03 eV.

  19. Increased blood oxygen affinity during digestion in the snake Python molurus.

    PubMed

    Overgaard, Johannes; Wang, Tobias

    2002-11-01

    Many snakes exhibit large increases in metabolic rate during digestion that place extensive demands on efficient oxygen transport. In the present study, we describe blood oxygen affinity following three weeks of fasting and 48 h after feeding in the Burmese python (Python molurus). We also report simultaneous measurements of arterial blood gases and haematological parameters. Arterial blood was obtained from chronically implanted catheters, and blood oxygen-dissociation curves were constructed from oxygen content measurements at known oxygen partial pressure (P(O(2))) values at 2% and 5% CO(2). Arterial pH remained constant at approximately 7.6 after feeding, but digestion was associated with an approximately 6 mmol l(-1) increase in [HCO(3)(-)], while CO(2) partial pressure (P(CO(2))) increased from 2.21+/-0.13 kPa in fasted animals to 2.89+/-0.17 kPa at 48 h after feeding. Blood oxygen affinity in vivo was predicted on the basis of pH in vivo and the blood oxygen-dissociation curves obtained in vitro. The blood oxygen affinity in vivo increased during digestion, with P(50) values decreasing from 4.58+/-0.11 kPa to 3.53+/-0.24 kPa. This increase was associated with a significant decrease in the red blood cell [NTP]/[Hb(4)] ratio (relationship between the concentrations of organic phosphates and total haemoglobin) and a significant decrease in mean cellular haemoglobin content, which is indicative of swelling of the red blood cells. Our data for blood oxygen affinity and arterial oxygen levels, together with previously published values of oxygen uptake and blood flows, allow for a quantitative evaluation of oxygen transport during digestion. This analysis shows that a large part of the increased metabolism during digestion is supported by an increased venous extraction, while arterial P(O(2)) (Pa(O(2))) and haemoglobin saturation do not vary with digestive status. Thus, we predict that venous P(O(2)) (Pv(O(2))) is reduced from a fasting value of 5.2 kPa to 1.6 k

  20. In silico assessment of kinetics and state dependent binding properties of drugs causing acquired LQTS.

    PubMed

    Lee, William; Mann, Stefan A; Windley, Monique J; Imtiaz, Mohammad S; Vandenberg, Jamie I; Hill, Adam P

    2016-01-01

    The Kv11.1 or hERG potassium channel is responsible for one of the major repolarising currents (IKr) in cardiac myocytes. Drug binding to hERG can result in reduction in IKr, action potential prolongation, acquired long QT syndrome and fatal cardiac arrhythmias. The current guidelines for pre-clinical assessment of drugs in development is based on the measurement of the drug concentration that causes 50% current block, i.e., IC50. However, drugs with the same apparent IC50 may have very different kinetics of binding and unbinding, as well as different affinities for the open and inactivated states of Kv11.1. Therefore, IC50 measurements may not reflect the true risk of drug induced arrhythmias. Here we have used an in silico approach to test the hypothesis that drug binding kinetics and differences in state-dependent affinity will influence the extent of cardiac action potential prolongation independent of apparent IC50 values. We found, in general that drugs with faster overall kinetics and drugs with higher affinity for the open state relative to the inactivated state cause more action potential prolongation. These characteristics of drug-hERG interaction are likely to be more arrhythmogenic but cannot be predicted by IC50 measurement alone. Our results suggest that the pre-clinical assessment of Kv11.1-drug interactions should include descriptions of the kinetics and state dependence of drug binding. Further, incorporation of this information into sophisticated in silico models should be able to better predict arrhythmia risk and therefore more accurately assess safety of new drugs in development.

  1. Valuing vaccination

    PubMed Central

    Bärnighausen, Till; Bloom, David E.; Cafiero-Fonseca, Elizabeth T.; O’Brien, Jennifer Carroll

    2014-01-01

    Vaccination has led to remarkable health gains over the last century. However, large coverage gaps remain, which will require significant financial resources and political will to address. In recent years, a compelling line of inquiry has established the economic benefits of health, at both the individual and aggregate levels. Most existing economic evaluations of particular health interventions fail to account for this new research, leading to potentially sizable undervaluation of those interventions. In line with this new research, we set forth a framework for conceptualizing the full benefits of vaccination, including avoided medical care costs, outcome-related productivity gains, behavior-related productivity gains, community health externalities, community economic externalities, and the value of risk reduction and pure health gains. We also review literature highlighting the magnitude of these sources of benefit for different vaccinations. Finally, we outline the steps that need to be taken to implement a broad-approach economic evaluation and discuss the implications of this work for research, policy, and resource allocation for vaccine development and delivery. PMID:25136129

  2. The affine structure of gravitational theories: Symplectic groups and geometry

    NASA Astrophysics Data System (ADS)

    Capozziello, Salvatore; Cirilo-Lombardo, D. J.; de Laurentis, Mariafelicia

    2014-09-01

    We give a geometrical description of gravitational theories from the viewpoint of symmetries and affine structure. We show how gravity, considered as a gauge theory, can be consistently achieved by the nonlinear realization of the conformal-affine group in an indirect manner: due to the partial isomorphism between CA(3, 1) and the centrally extended Sp( 8), we perform a nonlinear realization of the centrally extended (CE)Sp( 8) in its semi-simple version. In particular, starting from the bundle structure of gravity, we derive the conformal-affine Lie algebra and then, by the nonlinear realization, we define the coset field transformations, the Cartan forms and the inverse Higgs constraints. Finally, we discuss the geometrical Lagrangians where all the information on matter fields and their interactions can be contained.

  3. Affinity maturation of antibodies requires integrity of the adult thymus.

    PubMed

    AbuAttieh, Mouhammed; Bender, Diane; Liu, Esther; Wettstein, Peter; Platt, Jeffrey L; Cascalho, Marilia

    2012-02-01

    The generation of B-cell responses to proteins requires a functional thymus to produce CD4(+) T cells which helps in the activation and differentiation of B cells. Because the mature T-cell repertoire has abundant cells with the helper phenotype, one might predict that in mature individuals, the generation of B-cell memory would proceed independently of the thymus. Contrary to that prediction, we show here that the removal of the thymus after the establishment of the T-cell compartment or sham surgery without removal of the thymus impairs the affinity maturation of antibodies. Because removal or manipulation of the thymus did not decrease the frequency of mutation of the Ig variable heavy chain exons encoding antigen-specific antibodies, we conclude that the thymus controls affinity maturation of antibodies in the mature individual by facilitating the selection of B cells with high-affinity antibodies.

  4. A fast quantum algorithm for the affine Boolean function identification

    NASA Astrophysics Data System (ADS)

    Younes, Ahmed

    2015-02-01

    Bernstein-Vazirani algorithm (the one-query algorithm) can identify a completely specified linear Boolean function using a single query to the oracle with certainty. The first aim of the paper is to show that if the provided Boolean function is affine, then one more query to the oracle (the two-query algorithm) is required to identify the affinity of the function with certainty. The second aim of the paper is to show that if the provided Boolean function is incompletely defined, then the one-query and the two-query algorithms can be used as bounded-error quantum polynomial algorithms to identify certain classes of incompletely defined linear and affine Boolean functions respectively with probability of success at least 2/3.

  5. Enhancing Community Detection By Affinity-based Edge Weighting Scheme

    SciTech Connect

    Yoo, Andy; Sanders, Geoffrey; Henson, Van; Vassilevski, Panayot

    2015-10-05

    Community detection refers to an important graph analytics problem of finding a set of densely-connected subgraphs in a graph and has gained a great deal of interest recently. The performance of current community detection algorithms is limited by an inherent constraint of unweighted graphs that offer very little information on their internal community structures. In this paper, we propose a new scheme to address this issue that weights the edges in a given graph based on recently proposed vertex affinity. The vertex affinity quantifies the proximity between two vertices in terms of their clustering strength, and therefore, it is ideal for graph analytics applications such as community detection. We also demonstrate that the affinity-based edge weighting scheme can improve the performance of community detection algorithms significantly.

  6. On the electron affinity of the oxygen atom

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Langhoff, S. R.; Partridge, H.; Taylor, P. R.

    1986-01-01

    The electron affinity (EA) of oxygen is computed to be 1.287 eV, using 2p electron full configuration-interaction (CI) wave functions expanded in a 6s5p3d2f Slater-type orbital basis. The best complete active space self-consistent field - multireference CI (CASSCF-MRCI) result including only 2p correlation is 1.263 eV. However, inclusion of 2s intrashell and 2s2p intershell correlation increases the computed EA to 1.290 at the CASSCF-MRCI level. At the full CI basis set limit, the 2s contribution to the electron affinity is estimated to be as large as 0.1 eV. This study clearly establishes the synergistic effect between the higher excitations and basis set completeness on the electron affinity when the 2s electrons are correlated.

  7. On the electron affinity of the oxygen atom

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Langhoff, S. R.; Partridge, H.; Taylor, P. R.

    1986-01-01

    The electron affinity of oxygen is computed to be 1.287 eV, at the full CI level using a 6s5p3d 2f Slater-type orbital basis and correlating only the 2p electrons. The best CASSCF-MRCI result including only 2p correlation is 1.263 eV. However, inclusion of 2s intrashell and 2s2p intershell coorelation increases the computed EA to 1.290 eV at the CASSCF-MRCI level. At the full CI basis set limit, the 2s contribution to the electron affinity is estimated to be as large as 0.1 eV. The higher excitation contribution to the electron affinity is found to increase substantially with basis set completeness, especially when the 2s electrons are correlated. Relativistic effects are shown to make a small (less than 0.01 eV) change in the EA.

  8. AMPK beta subunits display isoform specific affinities for carbohydrates.

    PubMed

    Koay, Ann; Woodcroft, Ben; Petrie, Emma J; Yue, Helen; Emanuelle, Shane; Bieri, Michael; Bailey, Michael F; Hargreaves, Mark; Park, Jong-Tae; Park, Kwan-Hwa; Ralph, Stuart; Neumann, Dietbert; Stapleton, David; Gooley, Paul R

    2010-08-04

    AMP-activated protein kinase (AMPK) is a heterotrimer of catalytic (alpha) and regulatory (beta and gamma) subunits with at least two isoforms for each subunit. AMPK beta1 is widely expressed whilst AMPK beta2 is highly expressed in muscle and both beta isoforms contain a mid-molecule carbohydrate-binding module (beta-CBM). Here we show that beta2-CBM has evolved to contain a Thr insertion and increased affinity for glycogen mimetics with a preference for oligosaccharides containing a single alpha-1,6 branched residue. Deletion of Thr-101 reduces affinity for single alpha-1,6 branched oligosaccharides by 3-fold, while insertion of this residue into the equivalent position in the beta1-CBM sequence increases affinity by 3-fold, confirming the functional importance of this residue.

  9. Solid support resins and affinity purification mass spectrometry.

    PubMed

    Havis, Spencer; Moree, Wilna J; Mali, Sujina; Bark, Steven J

    2017-02-28

    Co-affinity purification-mass spectrometry (CoAP-MS) is a primary technology for elucidating the protein-protein interactions that form the basis of all biological processes. A critical component of CoAP-MS is the affinity purification (AP) of the bait protein, usually by immobilization of an antibody to a solid-phase resin. This Minireview discusses common resins, reagents, tagging methods, and their consideration for successful AP of tagged proteins. We discuss our experiences with different solid supports, their impact in AP experiments, and propose areas where chemistry can advance this important technology.

  10. Affine generalization of the Komar complex of general relativity

    NASA Astrophysics Data System (ADS)

    Mielke, Eckehard W.

    2001-02-01

    On the basis of the ``on shell'' Noether identities of the metric-affine gauge approach of gravity, an affine superpotential is derived which comprises the energy- and angular-momentum content of exact solutions. In the special case of general relativity (GR) or its teleparallel equivalent, the Komar or Freud complex, respectively, are recovered. Applying this to the spontaneously broken anti-de Sitter gauge model of McDowell and Mansouri with an induced Euler term automatically yields the correct mass and spin of the Kerr-AdS solution of GR with a (induced) cosmological constant without the factor two discrepancy of the Komar formula.

  11. A quantum affine algebra for the deformed Hubbard chain

    NASA Astrophysics Data System (ADS)

    Beisert, Niklas; Galleas, Wellington; Matsumoto, Takuya

    2012-09-01

    The integrable structure of the one-dimensional Hubbard model is based on Shastry's R-matrix and the Yangian of a centrally extended \\mathfrak {sl}(2|2) superalgebra. Alcaraz and Bariev have shown that the model admits an integrable deformation whose R-matrix has recently been found. This R-matrix is of trigonometric type and here we derive its underlying exceptional quantum affine algebra. We also show how the algebra reduces to the above-mentioned Yangian and to the conventional quantum affine \\mathfrak {sl}(2|2) algebra in two special limits.

  12. Water properties in fern spores: sorption characteristics relating to water affinity, glassy states, and storage stability.

    PubMed

    Ballesteros, Daniel; Walters, Christina

    2007-01-01

    Ex situ conservation of ferns may be accomplished by maintaining the viability of stored spores for many years. Storage conditions that maximize spore longevity can be inferred from an understanding of the behaviour of water within fern spores. Water sorption properties were measured in spores of five homosporeous species of ferns and compared with properties of pollen, seeds, and fern leaf tissue. Isotherms were constructed at 5, 25, and 45 degrees C and analysed using different physicochemical models in order to quantify chemical affinity and heat (enthalpy) of sorption of water in fern spores. Fern spores hydrate slowly but dry rapidly at ambient relative humidity. Low Brunauer-Emmet-Teller monolayer values, few water-binding sites according to the D'Arcy-Watt model, and limited solute-solvent compatibility according to the Flory-Huggins model suggest that fern spores have low affinity for water. Despite the low water affinity, fern spores demonstrate relatively high values of sorption enthalpy (DeltaH(sorp)). Parameters associated with binding sites and DeltaH(sorp) decrease with increasing temperature, suggesting temperature- and hydration-dependent changes in volume of spore macromolecules. Collectively, these data may relate to the degree to which cellular structures within fern spores are stabilized during drying and cooling. Water sorption properties within fern spores suggest that storage at subfreezing temperatures will give longevities comparable with those achieved with seeds. However, the window of optimum water contents for fern spores is very narrow and much lower than that measured in seeds, making precise manipulation of water content imperative for achieving maximum longevity.

  13. Modeling the binding affinity of structurally diverse industrial chemicals to carbon using the artificial intelligence approaches.

    PubMed

    Gupta, Shikha; Basant, Nikita; Rai, Premanjali; Singh, Kunwar P

    2015-11-01

    Binding affinity of chemical to carbon is an important characteristic as it finds vast industrial applications. Experimental determination of the adsorption capacity of diverse chemicals onto carbon is both time and resource intensive, and development of computational approaches has widely been advocated. In this study, artificial intelligence (AI)-based ten different qualitative and quantitative structure-property relationship (QSPR) models (MLPN, RBFN, PNN/GRNN, CCN, SVM, GEP, GMDH, SDT, DTF, DTB) were established for the prediction of the adsorption capacity of structurally diverse chemicals to activated carbon following the OECD guidelines. Structural diversity of the chemicals and nonlinear dependence in the data were evaluated using the Tanimoto similarity index and Brock-Dechert-Scheinkman statistics. The generalization and prediction abilities of the constructed models were established through rigorous internal and external validation procedures performed employing a wide series of statistical checks. In complete dataset, the qualitative models rendered classification accuracies between 97.04 and 99.93%, while the quantitative models yielded correlation (R(2)) values of 0.877-0.977 between the measured and the predicted endpoint values. The quantitative prediction accuracies for the higher molecular weight (MW) compounds (class 4) were relatively better than those for the low MW compounds. Both in the qualitative and quantitative models, the Polarizability was the most influential descriptor. Structural alerts responsible for the extreme adsorption behavior of the compounds were identified. Higher number of carbon and presence of higher halogens in a molecule rendered higher binding affinity. Proposed QSPR models performed well and outperformed the previous reports. A relatively better performance of the ensemble learning models (DTF, DTB) may be attributed to the strengths of the bagging and boosting algorithms which enhance the predictive accuracies. The

  14. Student Engagement and Neoliberalism: Mapping an Elective Affinity

    ERIC Educational Resources Information Center

    Zepke, Nick

    2015-01-01

    The purpose of this article is to argue that student engagement, an important area for research about learning and teaching in formal higher education, has an elective affinity with neoliberalism, a hegemonic ideology in many countries of the developed world. The paper first surveys an extensive research literature examining student engagement and…

  15. "The Hunger Games": Literature, Literacy, and Online Affinity Spaces

    ERIC Educational Resources Information Center

    Curwood, Jen Scott

    2013-01-01

    This article examines adolescent literacy practices related to "The Hunger Games," a young adult novel and the first of a trilogy. By focusing on the interaction of social identities, discourses, and media paratexts within an online affinity space, this ethnographic study offers insight into how young adults engage with contemporary…

  16. Affinities and beyond! Developing Ways of Seeing in Online Spaces

    ERIC Educational Resources Information Center

    Davies, Julia

    2006-01-01

    This article presents an insider view of an online community of adults involved in sharing digital photography through a host website, Flickr. It describes how reciprocal teaching and learning partnerships in a dynamic multimodal environment are achieved through the creation of a "Third Space" or "Affinity Space", where "Funds of Knowledge" are…

  17. Electrochemical affinity biosensors for detection of mycotoxins: A review.

    PubMed

    Vidal, Juan C; Bonel, Laura; Ezquerra, Alba; Hernández, Susana; Bertolín, Juan R; Cubel, Carlota; Castillo, Juan R

    2013-11-15

    This review discusses the current state of electrochemical biosensors in the determination of mycotoxins in foods. Mycotoxins are highly toxic secondary metabolites produced by molds. The acute toxicity of these results in serious human and animal health problems, although it has been only since early 1960s when the first studied aflatoxins were found to be carcinogenic. Mycotoxins affect a broad range of agricultural products, most important cereals and cereal-based foods. A majority of countries, mentioning especially the European Union, have established preventive programs to control contamination and strict laws of the permitted levels in foods. Official methods of analysis of mycotoxins normally requires sophisticated instrumentation, e.g. liquid chromatography with fluorescence or mass detectors, combined with extraction procedures for sample preparation. For about sixteen years, the use of simpler and faster analytical procedures based on affinity biosensors has emerged in scientific literature as a very promising alternative, particularly electrochemical (i.e., amperometric, impedance, potentiometric or conductimetric) affinity biosensors due to their simplicity and sensitivity. Typically, electrochemical biosensors for mycotoxins use specific antibodies or aptamers as affinity ligands, although recombinant antibodies, artificial receptors and molecular imprinted polymers show potential utility. This article deals with recent advances in electrochemical affinity biosensors for mycotoxins and covers complete literature from the first reports about sixteen years ago.

  18. Toward an Affinity Space Methodology: Considerations for Literacy Research

    ERIC Educational Resources Information Center

    Lammers, Jayne C.; Curwood, Jen Scott; Magnifico, Alecia Marie

    2012-01-01

    As researchers seek to make sense of young people's online literacy practices and participation, questions of methodology are important to consider. In our work to understand the culture of physical, virtual and blended spheres that adolescents inhabit, we find it necessary to expand Gee's (2004) notion of affinity spaces. In this article, we draw…

  19. A molecular determinant of phosphoinositide affinity in mammalian TRPV channels

    PubMed Central

    Velisetty, Phanindra; Borbiro, Istvan; Kasimova, Marina A.; Liu, Luyu; Badheka, Doreen; Carnevale, Vincenzo; Rohacs, Tibor

    2016-01-01

    Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is an important cofactor for ion channels. Affinity for this lipid is a major determinant of channel inhibition by depletion of PI(4,5)P2 upon phospholipase C (PLC) activation. Little is known about what determines PI(4,5)P2 affinity in mammalian ion channels. Here we report that two members of the Transient Receptor Potential Vanilloid (TRPV) ion channel family, TRPV5 and TRPV6 lack a positively charged residue in the TM4-TM5 loop that was shown to interact with PI(4,5)P2 in TRPV1, which shows high affinity for this lipid. When this positively charged residue was introduced to either TRPV6 or TRPV5, they displayed markedly higher affinities for PI(4,5)P2, and were largely resistant to inhibition by PI(4,5)P2 depletion. Furthermore, Ca2+-induced inactivation of TRPV6 was essentially eliminated in the G488R mutant, showing the importance of PLC-mediated PI(4,5)P2 depletion in this process. Computational modeling shows that the introduced positive charge interacts with PI(4,5)P2 in TRPV6. PMID:27291418

  20. Kinetic Studies of Biological Interactions By Affinity Chromatography

    PubMed Central

    Schiel, John E.; Hage, David S.

    2009-01-01

    The rates at which biological interactions occur can provide important information on the mechanism and behavior of such processes in living systems. This review will discuss how affinity chromatography can be used as a tool to examine the kinetics of biological interactions. This approach, referred to here as biointeraction chromatography, uses a column with an immobilized binding agent to examine the association or dissociation of this agent with other compounds. The use of HPLC-based affinity columns in kinetic studies has received particular attention in recent years. Advantages of using HPLC with affinity chromatography for this purpose include the ability to reuse the same ligand within a column for a large number of experiments, and the good precision and accuracy of this approach. A number of techniques are available for kinetic studies through the use of affinity columns and biointeraction chromatography. These approaches include plate height measurements, peak profiling, peak fitting, split-peak measurements, and peak decay analysis. The general principles for each of these methods are discussed in this review and some recent applications of these techniques are presented. The advantages and potential limitations of each approach are also considered. PMID:19391173

  1. Affinity of cefoperazone for penicillin-binding proteins.

    PubMed Central

    Matsubara, N; Minami, S; Matsuhashi, M; Takaoka, M; Mitsuhashi, S

    1980-01-01

    Cefoperazone (T-1551, CFP) a new semisynthetic cephalosporin, has a broad spectrum of antibacterial activity. We investigated the affinity of CFP to penicillin-binding proteins (PBPs) and the inhibition of peptidoglycan synthesis by CFP. CFP had high affinities for Escherichia coli PBP-3, -1Bs, -2, and -1A, in descending order, and low affinities for PBP-4, -5, and -6. Similarly, CFP showed high affinity for Pseudomonas aeruginosa PBP-3, -1A, -1B, -2, and -4, in descending order. It is known that E. coli PBP-3 and P. aeruginosa PBP-3 participate in cell division. These results are in good agreement with the formation of filamentous cells of E. coli and P. aeruginosa treated with CFP. CFP had lower inhibitory activities on D-alanine carboxypeptidase IA and IB of E. coli than that of penicillin G, but its inhibitory activities on the cross-link formation in peptidoglycan synthesis were the same as those of penicillin G and higher than those of ampicillin. Images PMID:6448021

  2. A molecular determinant of phosphoinositide affinity in mammalian TRPV channels

    NASA Astrophysics Data System (ADS)

    Velisetty, Phanindra; Borbiro, Istvan; Kasimova, Marina A.; Liu, Luyu; Badheka, Doreen; Carnevale, Vincenzo; Rohacs, Tibor

    2016-06-01

    Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is an important cofactor for ion channels. Affinity for this lipid is a major determinant of channel inhibition by depletion of PI(4,5)P2 upon phospholipase C (PLC) activation. Little is known about what determines PI(4,5)P2 affinity in mammalian ion channels. Here we report that two members of the Transient Receptor Potential Vanilloid (TRPV) ion channel family, TRPV5 and TRPV6 lack a positively charged residue in the TM4-TM5 loop that was shown to interact with PI(4,5)P2 in TRPV1, which shows high affinity for this lipid. When this positively charged residue was introduced to either TRPV6 or TRPV5, they displayed markedly higher affinities for PI(4,5)P2, and were largely resistant to inhibition by PI(4,5)P2 depletion. Furthermore, Ca2+-induced inactivation of TRPV6 was essentially eliminated in the G488R mutant, showing the importance of PLC-mediated PI(4,5)P2 depletion in this process. Computational modeling shows that the introduced positive charge interacts with PI(4,5)P2 in TRPV6.

  3. Limit measures for affine cellular automata on topological Markov subgroups

    NASA Astrophysics Data System (ADS)

    Maass, Alejandro; Martínez, Servet; Sobottka, Marcelo

    2006-09-01

    Consider a topological Markov subgroup which is ps-torsion (with p prime) and an affine cellular automaton defined on it. We show that the Cesàro mean of the iterates, by the automaton of a probability measure with complete connections and summable memory decay that is compatible with the topological Markov subgroup, converges to the Haar measure.

  4. Affinity through Mathematical Activity: Cultivating Democratic Learning Communities

    ERIC Educational Resources Information Center

    Sengupta-Irving, Tesha

    2014-01-01

    In this article, the author demonstrates how a broader view of what shapes affinity is ideologically and practically linked to creating democratic learning communities. Specifically, the author explores how a teacher employed complex instruction (an equity pedagogy) with her ethnically and racially diverse students in the "lowest track"…

  5. Univalent and bivalent ligands of butorphan: characteristics of the linking chain determine the affinity and potency of such opioid ligands.

    PubMed

    Decker, Michael; Fulton, Brian S; Zhang, Bin; Knapp, Brian I; Bidlack, Jean M; Neumeyer, John L

    2009-12-10

    Bivalent morphinan compounds containing ester linkers were synthesized and their binding affinities at the mu, delta, and kappa opioid receptors determined. Addition of methyl groups adjacent to the hydrolytically labile ester linkage increased stability while only partially affecting binding affinity. The resulting bivalent ligands with optimized spacer length and structure show potent binding profiles with the most potent compound (4b), having K(i) values of 0.47 nM for both the mu and kappa opioid receptors, and 4a, having K(i) values of 0.95 and 0.62 nM for the mu and kappa receptors, respectively. Both 4a and 4b were partial agonists at the kappa and micro receptors in the [(35)S]GTPgammaS binding assay.

  6. Synthesis, characterization and binding affinities of rhenium(I) thiosemicarbazone complexes for the estrogen receptor (α/β).

    PubMed

    Núñez-Montenegro, Ara; Carballo, Rosa; Vázquez-López, Ezequiel M

    2014-11-01

    The binding affinities towards estrogen receptors (ERs) α and β of a set of thiosemicarbazone ligands (HL(n)) and their rhenium(I) carbonyl complexes [ReX(HL(n))(CO)3] (X=Cl, Br) were determined by a competitive standard radiometric assay with [(3)H]-estradiol. The ability of the coordinated thiosemicarbazone ligands to undergo deprotonation and the lability of the ReX bond were used as a synthetic strategy to obtain [Re(hpy)(L(n))(CO)3] (hpy=3- or 4-hydroxypyridine). The inclusion of the additional hpy ligand endows the new thiosemicarbazonate complexes with an improved affinity towards the estrogen receptors and, consequently, the values of the inhibition constant (Ki) could be determined for some of them. In general, the values of Ki for both ER subtypes suggest an appreciable selectivity towards ERα.

  7. Self-affinities for the amplitude and the wavelength of folds: A general renormalization-group argument

    NASA Astrophysics Data System (ADS)

    Kikuchi, K.; Nagahama, H.

    2013-12-01

    A method to analyze self-affinities is introduced and applied to the large scale fold geometries of Quaternary and Tertiary sediments in the inner belt of the Northeast Honshu Arc, Japan (Kikuchi et al. 2013). Based on this analysis, their geometries are self-affine and can be differently scaled in different directions. They recognize the self-affinities for the amplitude and the wavelength of folds and a crossover from local to global altitude (vertical) variation of the geometries of folds in the Northeast Honshu Arc. Moreover, they discuss self-affinity for the crustal deformation is related to the b-value in Gutenberg-Richter's law, the fractal dimension and the uniformity of the crustal fragmentation. Softening behaviour can lead to localisation of fold packets in layered materials and a progression to chaos with fractal geometries (Hunt and Wadee, 1991). Why do fractal geometries exist and what is the control on the fractal dimension that is responsible for temperature and strain-rate dependence?(Ord and Hobbs, 2011). Shimamoto (1974) examined the conditions of similarity for geometrically similar systems of inhomogeneous viscous Newtonian fluids under similar boundary conditions, making use of the method of dimensional analysis (Buckingham's Pi-theorem). Then, based on the completely similarity, he vividly derived a relationship between the wavelength of fold and initial thickness of folded layer. Buckingham's Pi-theorem is sufficient to the first problems of fold systems. But the complete similarity can not give us the self-affinities of folds. A general renormalization-group argument is proposed to the applicability of the incomplete self-similarity theory (Barenblatt, 1979). So in this paper, based on the general renormalization-group argument, we derive the self-affinities for the amplitude and the wavelength of folds. Keywords: Fold, Self-Affinities, Dimensional Analysis, Pi-theorem, Incomplete self-similarity R e f e r e n c e s Barenblatt, G.I. (1979

  8. Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance

    SciTech Connect

    Kuziemko, G.M.; Stroh, M.; Stevens, R.C. |

    1996-05-21

    The present study determines the affinity of cholera toxin for the ganglioside series GM1, GM2, GM3, GD1A, GD1B, GT1B, asialo GM1, globotriosyl ceramide, and lactosyl ceramide using real time biospecific interaction analysis (surface plasmon resonance, SPR). SPR shows that cholera toxin preferably binds to gangliosides in the following sequence: GM1 > GM2 > GD1A > GM3 > GT1B > GD1B > asialo-GM1. The measured binding affinity of cholera toxin for the ganglioside sequence ranges from 4.61 {times} 10{sup {minus}12} M for GM1 to 1.88 {times} 10{sup {minus}10} M for asialo GM1. The picomolar values obtained by surface plasmon resonance are similar to K{sub d} values determined with whole-cell binding assays. Both whole-cell assays ans SPR measurements on synthetic membranes are higher than free solution measurements by several orders of magnitude. This difference may be caused by the effects of avidity and charged lipid head-groups, which may play a major role in the binding between cholera toxin, the receptor, and the membrane surface. The primary difference between free solution binding studies and surface plasmon resonance studies is that the latter technique is performed on surfaces resembling the cell membrane. Surface plasmon resonance has the further advantage of measuring apparent kinetic association and dissociation rates in real time, providing direct information about binding events at the membrane surface. 34 refs., 8 figs., 2 tabs.

  9. In Vitro Opioid Receptor Affinity and in Vivo Behavioral Studies of Nelumbo nucifera Flower

    PubMed Central

    Kumarihamy, Mallika; León, Francisco; Pettaway, Sara; Wilson, Lisa; Lambert, Janet A.; Wang, Mei; Hill, Christopher; McCurdy, Christopher R.; ElSohly, Mahmoud A.; Cutler, Stephen J.; Muhammad, Ilias

    2015-01-01

    Ethnopharmacological relevance Nelumbo nucifera Geartn., known as sacred lotus, has been used traditionally in South East Asia as a traditional medicine for various CNS disorders including stress, fever, depression, insomnia, and cognitive conditions. Aim of the study To investigate the in vitro cannabinoid and opioid receptor binding affinities, and in vivo behavioral actions of Nelumbo flower extracts and to isolate the potential compounds to treat CNS associated disorders. Materials and methods The white and pink flowers of N. nucifera were extracted with 95% EtOH, followed by acid-base partitioning using CHCl3 to give acidic and basic partitions. These partitions were subjected to Centrifugal Preparative TLC (CPTLC) to yield benzyltetrahydroisoquinoline (BTIQ) alkaloids and long chain fatty acids, identified by physical and spectroscopic methods. In addition, EtOH extracts and partitions were analyzed for chemical markers by UHPLC/MS and GC/MS. In vitro neuropharmacological effects were evaluated by cannabinoid (CB1 and CB2) and opioid [delta (δ), kappa (κ), and mu (μ)] competitive radioligand binding and GTPγS functional assays. The in vivo behavioral effect was studied through the use of the mouse tetrad assay at 10, 30, 75 and 100 mg/kg/ip doses that revealed the effect on locomotion, catalepsy, body temperature, and nociception of acidic and basic CHCl3 partitions, fractions, and compounds. Results Three aporphines, nuciferine (1), N-nor-nuciferine (2), asimilobine (3), and five BTIQs, armepavine (4), O-methylcoclaurine (5), N-methylcoclaurine (6), coclaurine (7), neferine (10), and a mixture of linoleic and palmitic acids (LA and PA), were identified and evaluated for cannabinoid and opioid receptor displacement activities. Compounds 5–7 showed binding affinities for the κ opioid receptor with equilibrium dissociation constant (Ki) values of 3.5±0.3, 0.9±0.1, 2.2±0.2 µM, respectively. Compound 10 displayed affinities for δ-and μ- opioid

  10. Novel trends in affinity biosensors: current challenges and perspectives

    NASA Astrophysics Data System (ADS)

    Arugula, Mary A.; Simonian, Aleksandr

    2014-03-01

    Molecular biorecognition processes facilitate physical and biochemical interactions between molecules in all crucial metabolic pathways. Perhaps the target analyte and the biorecognition element interactions have the most impactful use in biosensing applications. Traditional analytical sensing systems offer excellent biorecognition elements with the ability to detect and determine the presence of analytes. High affinity antibodies and DNA play an important role in the development of affinity biosensors based on electrochemical, optical and mass sensitive approaches. Advancements in this area routinely employ labels, label free, nanoparticles, multifunctional matrices, carbon nanotubes and other methods to meet the requirements of its own application. However, despite increasing affinity ceilings for conventional biosensors, the field draws back in meeting specifically important demands, such as long-term stability, ultrasensitivity, rapid detection, extreme selectivity, strong biological base, calibration, in vivo measurements, regeneration, satisfactory performance and ease of production. Nevertheless, recent efforts through this line have produced novel high-tech nanosensing systems such as ‘aptamers’ and ‘phages’ which exhibit high-throughput sensing. Aptamers and phages are powerful tools that excel over antibodies in sensibility, stability, multi-detection, in vivo measurements and regeneration. Phages are superior in stability, screening for affinity-based target molecules ranging from small to proteins and even cells, and easy production. In this review, we focus mainly on recent developments in affinity-based biosensors such as immunosensors, DNA sensors, emphasizing aptasensors and phage-based biosensors basing on novel electrochemical, optical and mass sensitive detection techniques. We also address enzyme inhibition-based biosensors and the current problems associated with the above sensors and their future perspectives.

  11. Affine Covariant Features for Fisheye Distortion Local Modelling.

    PubMed

    Furnari, Antonino; Farinella, Giovanni; Bruna, Arcangelo; Battiato, Sebastiano

    2016-11-10

    Perspective cameras are the most popular imaging sensors used in Computer Vision. However, many application fields including automotive, surveillance and robotics, require the use of wide angle cameras (e.g., fisheye), which allow to acquire a larger portion of the scene using a single device at the cost of the introduction of noticeable radial distortion in the images. Affine covariant feature detectors have proven successful in a variety of Computer Vision applications including object recognition, image registration and visual search. Moreover, their robustness to a series of variabilities related to both the scene and the image acquisition process has been thoroughly studied in the literature. In this paper, we investigate their effectiveness on fisheye images providing both theoretical and experimental analyses. As theoretical outcome, we show that the inherently non-linear radial distortion can be locally approximated by linear functions with a reasonably small error. The experimental analysis builds on Mikolajczyk's benchmark to assess the robustness of three popular affine region detectors (i.e., Maximally Stable Extremal Regions (MSER), Harris and Hessian affine region detectors), with respect to different variabilities as well as to radial distortion. To support the evaluations, we rely on the Oxford dataset and introduce a novel benchmark dataset comprising 50 images depicting different scene categories. Experiments are carried out on rectilinear images to which radial distortion is artificially added, and on real-world images acquired using fisheye lenses. Our analysis points out that affine region detectors can be effectively employed directly on fisheye images and that the radial distortion is locally modelled as an additional affine variability.

  12. Feature selection and classification of protein-protein complexes based on their binding affinities using machine learning approaches.

    PubMed

    Yugandhar, K; Gromiha, M Michael

    2014-09-01

    Protein-protein interactions are intrinsic to virtually every cellular process. Predicting the binding affinity of protein-protein complexes is one of the challenging problems in computational and molecular biology. In this work, we related sequence features of protein-protein complexes with their binding affinities using machine learning approaches. We set up a database of 185 protein-protein complexes for which the interacting pairs are heterodimers and their experimental binding affinities are available. On the other hand, we have developed a set of 610 features from the sequences of protein complexes and utilized Ranker search method, which is the combination of Attribute evaluator and Ranker method for selecting specific features. We have analyzed several machine learning algorithms to discriminate protein-protein complexes into high and low affinity groups based on their Kd values. Our results showed a 10-fold cross-validation accuracy of 76.1% with the combination of nine features using support vector machines. Further, we observed accuracy of 83.3% on an independent test set of 30 complexes. We suggest that our method would serve as an effective tool for identifying the interacting partners in protein-protein interaction networks and human-pathogen interactions based on the strength of interactions.

  13. Non-affine fields in solid-solid transformations: the structure and stability of a product droplet.

    PubMed

    Paul, Arya; Sengupta, Surajit; Rao, Madan

    2014-01-08

    We describe the microstructure, morphology, and dynamics of growth of a droplet of martensite nucleating in a parent austenite during a solid-solid transformation, using a Landau theory written in terms of both conventional affine elastic deformations and non-affine deformations. Non-affineness, φ, serves as a source of strain incompatibility and screens long-ranged elastic interactions. It is produced wherever the local stress exceeds a threshold and anneals diffusively thereafter. Using a variational calculation, we find three types of stable solution (labeled I, II, and III) for the structure of the product droplet, depending on the stress threshold and the scaled mobilities of φ parallel and perpendicular to the parent-product interface. The profile of the non-affine field φ is different in these three solutions: I is characterized by a vanishingly small φ, II admits large values of φ localized in regions of high stress within the parent-product interface, and III is a structure in which φ completely wets the parent-product interface. The width l and size W of the twins follow the relation l is proportional to √W in solution I; this relation does not hold for II or III. We obtain a dynamical phase diagram featuring these solutions, and argue that they represent specific solid-state microstructures.

  14. Design of Bcl-2 and Bcl-xL Inhibitors with Subnanomolar Binding Affinities Based upon a New Scaffold

    SciTech Connect

    Zhou, Haibin; Chen, Jianfang; Meagher, Jennifer L.; Yang, Chao-Yie; Aguilar, Angelo; Liu, Liu; Bai, Longchuan; Cong, Xin; Cai, Qian; Fang, Xueliang; Stuckey, Jeanne A.; Wang, Shaomeng

    2014-10-02

    Employing a structure-based strategy, we have designed a new class of potent small-molecule inhibitors of the anti-apoptotic proteins Bcl-2 and Bcl-xL. An initial lead compound with a new scaffold was designed based upon the crystal structure of Bcl-xL and U.S. Food and Drug Administration (FDA) approved drugs and was found to have an affinity of 100 {micro}M for both Bcl-2 and Bcl-xL. Linking this weak lead to another weak-affinity fragment derived from Abbott's ABT-737 led to an improvement of the binding affinity by a factor of >10,000. Further optimization ultimately yielded compounds with subnanomolar binding affinities for both Bcl-2 and Bcl-xL and potent cellular activity. The best compound (21) binds to Bcl-xL and Bcl-2 with K{sub i} < 1 nM, inhibits cell growth in the H146 and H1417 small-cell lung cancer cell lines with IC{sub 50} values of 60-90 nM, and induces robust cell death in the H146 cancer cell line at 30-100 nM.

  15. Density Functional Study of Structures and Electron Affinities of BrO4F/BrO4F−

    PubMed Central

    Gong, Liangfa; Xiong, Jieming; Wu, Xinmin; Qi, Chuansong; Li, Wei; Guo, Wenli

    2009-01-01

    The structures, electron affinities and bond dissociation energies of BrO4F/BrO4F− species have been investigated with five density functional theory (DFT) methods with DZP++ basis sets. The planar F-Br…O2…O2 complexes possess 3A′ electronic state for neutral molecule and 4A′ state for the corresponding anion. Three types of the neutral-anion energy separations are the adiabatic electron affinity (EAad), the vertical electron affinity (EAvert), and the vertical detachment energy (VDE). The EAad value predicted by B3LYP method is 4.52 eV. The bond dissociation energies De (BrO4F → BrO4-mF + Om) (m = 1–4) and De− (BrO4F− → BrO4-mF− + Om and BrO4F− → BrO4-mF + Om−) are predicted. The adiabatic electron affinities (EAad) were predicted to be 4.52 eV for F-Br…O2…O2 (3A′←4A′) (B3LYP method). PMID:19742128

  16. An electron paramagnetic resonance method for measuring the affinity of a spin-labeled analog of cholesterol for phospholipids.

    PubMed

    Williams, Justin A; Wassall, Cynthia D; Kemple, Marvin D; Wassall, Stephen R

    2013-09-01

    Cholesterol (chol)-lipid interactions are thought to play an intrinsic role in determining lateral organization within cellular membranes. Steric compatibility of the rigid steroid moiety for ordered saturated chains contributes to the high affinity that holds chol and sphingomyelin together in lipid rafts whereas, conversely, poor affinity of the sterol for highly disordered polyunsaturated fatty acids (PUFAs) is hypothesized to drive the formation of PUFA-containing phospholipid domains depleted in chol. Here, we describe a novel method using electron paramagnetic resonance (EPR) to measure the relative affinity of chol for different phospholipids. We monitor the partitioning of 3β-doxyl-5α-cholestane (chlstn), a spin-labeled analog of chol, between large unilamellar vesicles (LUVs) and cyclodextrin (mβCD) through analysis of EPR spectra. Because the shape of the EPR spectrum for chlstn is sensitive to the very different tumbling rates of the two environments, the ratio of the population of chlstn in LUVs and mβCD can be determined directly from spectra. Partition coefficients (K(B)(A)) between lipids derived from our results for chlstn agree with values obtained for chol and confirm that decreased affinity for the sterol accompanies increasing acyl chain unsaturation. The virtue of this EPR method is that it provides a measure of chol binding that is quick, employs a commercially available probe and avoids the necessity for physical separation of LUVs and mβCD.

  17. Measuring affinity constants of 1450 monoclonal antibodies to peptide targets with a microarray-based label-free assay platform.

    PubMed

    Landry, J P; Ke, Yaohuang; Yu, Guo-Liang; Zhu, X D

    2015-02-01

    Monoclonal antibodies (mAbs) are major reagents for research and clinical diagnosis. For their inherently high specificities to intended antigen targets and thus low toxicity in general, they are pursued as one of the major classes of new drugs. Yet binding properties of most monoclonal antibodies are not well characterized in terms of affinity constants and how they vary with presentations and/or conformational isomers of antigens, buffer compositions, and temperature. We here report a microarray-based label-free assay platform for high-throughput measurements of monoclonal antibody affinity constants to antigens immobilized on solid surfaces. Using this platform we measured affinity constants of over 1410 rabbit monoclonal antibodies and 46 mouse monoclonal antibodies to peptide targets that are immobilized through a terminal cysteine residue to a glass surface. The experimentally measured affinity constants vary from 10 pM to 200 pM with the median value at 66 pM. We compare the results obtained from the microarray-based platform with those from a benchmarking surface-plasmon-resonance-based (SPR) sensor (Biacore 3000).

  18. Positron-attachment to small molecules: Vibrational enhancement of positron affinities with configuration interaction level of multi-component molecular orbital approach

    SciTech Connect

    Tachikawa, Masanori

    2015-12-31

    To theoretically demonstrate the binding of a positron to small polarized molecules, we have calculated the vibrational averaged positron affinity (PA) values along the local vibrational contribution with the configuration interaction level of multi-component molecular orbital method. This method can take the electron-positron correlation contribution into account through single electronic - single positronic excitation configurations. The PA values are enhanced by including the local vibrational contribution from vertical PA values due to the anharmonicity of the potential.

  19. Experimental allergic encephalomyelitis (EAE) in mice selectively bred to produce high affinity (HA) or low affinity (LA) antibody responses.

    PubMed Central

    Devey, M E; Major, P J; Bleasdale-Barr, K M; Holland, G P; Dal Canto, M C; Paterson, P Y

    1990-01-01

    Induction of experimental allergic encephalomyelitis (EAE) in mice genetically selected to produce either high affinity (HA) or low affinity (LA) antibody responses has revealed significant differences in disease susceptibility between the two lines. HA mice were highly susceptible to EAE following subcutaneous sensitization to mouse central nervous system (CNS) tissue emulsified in Freund's complete adjuvant (FCA). Furthermore, of HA mice surviving acute EAE, up to 93% subsequently developed chronic relapsing disease (CREAE) characterized by variable demyelinating inflammatory changes within the spinal cord. In contrast, LA mice, despite having a major histocompatability complex (MHC) haplotype associated with susceptibility to EAE, were highly resistant to the disease and showed no signs of CREAE when observed for up to 100 days post-sensitization. Antibodies to myelin basic protein (MBP) were detected in both lines but rising titres of high functional affinity antibodies were only seen in HA mice. These HA and LA lines of mice provide a new approach to the study of EAE and, in particular, the role of antibody and antibody affinity in the chronic relapsing form of the disease. Images Figure 2 PMID:2335373

  20. Compound Selectivity and Target Residence Time of Kinase Inhibitors Studied with Surface Plasmon Resonance.

    PubMed

    Willemsen-Seegers, Nicole; Uitdehaag, Joost C M; Prinsen, Martine B W; de Vetter, Judith R F; de Man, Jos; Sawa, Masaaki; Kawase, Yusuke; Buijsman, Rogier C; Zaman, Guido J R

    2017-02-17

    Target residence time (τ) has been suggested to be a better predictor of the biological activity of kinase inhibitors than inhibitory potency (IC50) in enzyme assays. Surface plasmon resonance binding assays for 46 human protein and lipid kinases were developed. The association and dissociation constants of 80 kinase inhibitor interactions were determined. τ and equilibrium affinity constants (KD) were calculated to determine kinetic selectivity. Comparison of τ and KD or IC50 values revealed a strikingly different view on the selectivity of several kinase inhibitors, including the multi-kinase inhibitor ponatinib, which was tested on 10 different kinases. In addition, known pan-Aurora inhibitors resided much longer on Aurora B than on Aurora A, despite having comparable affinity for Aurora A and B. Furthermore, the γ/δ-selective PI3K inhibitor duvelisib and the δ-selective drug idelalisib had similar 20-fold selectivity for δ- over γ-isoform but duvelisib resided much longer on both targets.

  1. Differences in receptor binding affinity of several phytocannabinoids do not explain their effects on neural cell cultures.

    PubMed

    Rosenthaler, Sarah; Pöhn, Birgit; Kolmanz, Caroline; Huu, Chi Nguyen; Krewenka, Christopher; Huber, Alexandra; Kranner, Barbara; Rausch, Wolf-Dieter; Moldzio, Rudolf

    2014-01-01

    Phytocannabinoids are potential candidates for neurodegenerative disease treatment. Nonetheless, the exact mode of action of major phytocannabinoids has to be elucidated, but both, receptor and non-receptor mediated effects are discussed. Focusing on the often presumed structure-affinity-relationship, Ki values of phytocannabinoids cannabidiol (CBD), cannabidivarin (CBDV), cannabichromene (CBC), cannabigerol (CBG), cannabinol (CBN), THC acid (THCA) and THC to human CB1 and CB2 receptors were detected by using competitive inhibition between radioligand [(3)H]CP-55,940 and the phytocannabinoids. The resulting Ki values to CB1 range from 23.5 nM (THCA) to 14711 nM (CBDV), whereas Ki values to CB2 range from 8.5 nM (THC) to 574.2 nM (CBDV). To study the relationship between binding affinity and effects on neurons, we investigated possible CB1 related cytotoxic properties in murine mesencephalic primary cell cultures and N18TG2 neuroblastoma cell line. Most of the phytocannabinoids did not affect the number of dopaminergic neurons in primary cultures, whereas propidium iodide and resazurin formation assays revealed cytotoxic properties of CBN, CBDV and CBG. However, THC showed positive effects on N18TG2 cell viability at a concentration of 10 μM, whereas CBC and THCA also displayed slightly positive activities. These findings are not linked to the receptor binding affinity therewith pointing to another mechanism than a receptor mediated one. [Corrected

  2. Inhibition and structural reliability of prenylated flavones from the stem bark of Morus lhou on β-secretase (BACE-1).

    PubMed

    Cho, Jung Keun; Ryu, Young Bae; Curtis-Long, Marcus J; Kim, Ji Young; Kim, Doman; Lee, Sun; Lee, Woo Song; Park, Ki Hun

    2011-05-15

    The action of β-secretase is strongly tied to the onset of Alzheimer's disease. The development of inhibitors of β-secretase is thus critical to combating this disease, which threatens an ever increasing number of the population and grows in importance as the population ages. Herein we show that flavones from Morus lhou potently inhibit β-secretase. Our aim in this manuscript is to explore the inhibitory kinetics of natural compounds and develop a phamacophore model which details the critical features responsible for inhibitory activity. The IC(50) values of compounds for β-secretase inhibition were determined to range between 3.4 and 146.1 μM. Prenylated flavone 2 (IC(50)=3.4 μM) was 20 times more effective than its parent compound, noratocarpetin 1 (IC(50)=60.6 μM). The stronger activity was related with resorcinol moiety on B-ring and isoprenyl functionality at C-3. Kinetic analysis shows that the four effective compounds (1-4) have a noncompetitive mode of action. The binding affinity of flavones for β-secretase calculated using in silico docking experiments correlated well with their IC(50) values and noncompetitive inhibition modes.

  3. The effect of Cu2+ on interaction between flavonoids with different C-ring substituents and bovine serum albumin: structure-affinity relationship aspect.

    PubMed

    Zhang, Yuping; Shi, Shuyun; Sun, Xiaorui; Xiong, Xiang; Peng, Mijun

    2011-12-01

    Four flavonoids quercetin (QU), luteolin (LU), taxifolin (TA) and (+)-catechin (CA) with the same A- and B-rings but different C-ring substituents have been investigated for their binding to bovine serum albumin (BSA) in the absence and presence of Cu(2+) by means of various spectroscopic methods such as fluorescence, UV-visible and circular dichroism (CD). The results indicated that hydroxyl group at 3-position increased the binding affinities between flavonoids and BSA. The values of the binding affinities were in the order: QU>CA>TA>LU. The presence of Cu(2+) affected the interactions of flavonoids with BSA significantly. The binding affinities of QU and TA for BSA were decreased about 6.7% and 13.2%. However, the binding affinities of LU and CA for BSA were increased about 43.0% and 20.7%. The formation of Cu(2+)-flavonoid complex and steric hindrance together influenced the binding affinities of QU, LU and TA for BSA, while the conformational change of BSA may be the main reason for the increased binding affinity of CA for BSA. However, the quenching mechanism for QU, LU, TA and CA to BSA was based on static quenching combined with non-radiative energy transfer irrespective of the absence or presence of Cu(2+). The UV-visible results showed the change in BSA conformation and the formation of flavonoid-Cu(2+) complex. The CD results also explained the conformational changes of BSA on binding with flavonoids.

  4. PDZ Affinity Chromatography: A general method for affinity purification of proteins based on PDZ domains and their ligands

    PubMed Central

    Walkup, Ward G.; Kennedy, Mary B.

    2014-01-01

    PDZ (PSD-95, DiscsLarge, ZO1) domains function in nature as protein binding domains within scaffold and membrane-associated proteins. They comprise ~ 90 residues and make specific, high affinity interactions with complementary C-terminal peptide sequences, with other PDZ domains, and with phospholipids. We hypothesized that the specific, strong interactions of PDZ domains with their ligands would make them well suited for use in affinity chromatography. Here we describe a novel affinity chromatography method applicable for the purification of proteins that contain PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We created a series of affinity resins comprised of PDZ domains from the scaffold protein PSD-95, or from neuronal nitric oxide synthase (nNOS), coupled to solid supports. We used them to purify heterologously expressed neuronal proteins or protein domains containing endogenous PDZ domain ligands, eluting the proteins with free PDZ domain peptide ligands. We show that Proteins of Interest (POIs) lacking endogenous PDZ domain ligands can be engineered as fusion products containing C-terminal PDZ domain ligand peptides or internal, N- or C-terminal PDZ domains and then can be purified by the same method. Using this method, we recovered recombinant GFP fused to a PDZ-domain ligand in active form as verified by fluorescence yield. Similarly, chloramphenicol acetyltransferase (CAT) and β-Galactosidase (LacZ) fused to a C-terminal PDZ domain ligand or an N-terminal PDZ domain were purified in active form as assessed by enzymatic assay. In general, PDZ domains and ligands derived from PSD-95 were superior to those from nNOS for this method. PDZ Domain Affinity Chromatography promises to be a versatile and effective method for purification of a wide variety of natural and recombinant proteins. PMID:24607360

  5. PDZ affinity chromatography: a general method for affinity purification of proteins based on PDZ domains and their ligands.

    PubMed

    Walkup, Ward G; Kennedy, Mary B

    2014-06-01

    PDZ (PSD-95, DiscsLarge, ZO1) domains function in nature as protein binding domains within scaffold and membrane-associated proteins. They comprise ∼90 residues and make specific, high affinity interactions with complementary C-terminal peptide sequences, with other PDZ domains, and with phospholipids. We hypothesized that the specific, strong interactions of PDZ domains with their ligands would make them well suited for use in affinity chromatography. Here we describe a novel affinity chromatography method applicable for the purification of proteins that contain PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We created a series of affinity resins comprised of PDZ domains from the scaffold protein PSD-95, or from neuronal nitric oxide synthase (nNOS), coupled to solid supports. We used them to purify heterologously expressed neuronal proteins or protein domains containing endogenous PDZ domain ligands, eluting the proteins with free PDZ domain peptide ligands. We show that Proteins of Interest (POIs) lacking endogenous PDZ domain ligands can be engineered as fusion products containing C-terminal PDZ domain ligand peptides or internal, N- or C-terminal PDZ domains and then can be purified by the same method. Using this method, we recovered recombinant GFP fused to a PDZ domain ligand in active form as verified by fluorescence yield. Similarly, chloramphenicol acetyltransferase (CAT) and β-Galactosidase (LacZ) fused to a C-terminal PDZ domain ligand or an N-terminal PDZ domain were purified in active form as assessed by enzymatic assay. In general, PDZ domains and ligands derived from PSD-95 were superior to those from nNOS for this method. PDZ Domain Affinity Chromatography promises to be a versatile and effective method for purification of a wide variety of natural and recombinant proteins.

  6. Neurotensin decreases high affinity [3H]-ouabain binding to cerebral cortex membranes.

    PubMed

    Rosin, Carina; Ordieres, María Graciela López; Arnaiz, Georgina Rodríguez de Lores

    2011-12-10

    Previous work from this laboratory showed the ability of neurotensin to inhibit synaptosomal membrane Na(+), K(+)-ATPase activity, the effect being blocked by SR 48692, a non-peptidic antagonist for high affinity neurotensin receptor (NTS1) [López Ordieres and Rodríguez de Lores Arnaiz 2000; 2001]. To further study neurotensin interaction with Na(+), K(+)-ATPase, peptide effect on high affinity [(3)H]-ouabain binding was studied in cerebral cortex membranes. It was observed that neurotensin modified binding in a dose-dependent manner, leading to 80% decrease with 1 × 10(-4)M concentration. On the other hand, the single addition of 1 × 10(-6)M, 1 × 10(-5)M and 1 × 10(-4)M SR 48692 (Sanofi-Aventis, U.S., Inc.) decreased [(3)H]-ouabain binding (in %) to 87 ± 16; 74 ± 16 and 34 ± 17, respectively. Simultaneous addition of neurotensin and SR 48692 led to additive or synergic effects. Partial NTS2 agonist levocabastine inhibited [(3)H]-ouabain binding likewise. Saturation assays followed by Scatchard analyses showed that neurotensin increased K(d) value whereas failed to modify B(max) value, indicating a competitive type interaction of the peptide at Na(+), K(+)-ATPase ouabain site. At variance, SR 48692 decreased B(max) value whereas it did not modify K(d) value. [(3)H]-ouabain binding was also studied in cerebral cortex membranes obtained from rats injected i. p. 30 min earlier with 100 μg and 250 μg/kg SR 48692. It was observed that the 250 μg/kg SR 48692 dose led to 19% decrease in basal [(3)H]-ouabain binding. After SR 48692 treatments, addition of 1 × 10(-6)M led to additive or synergic effect. Results suggested that [(3)H]-ouabain binding inhibition by neurotensin hardly involves NTS1 receptor.

  7. F+ and F⁻ affinities of simple N(x)F(y) and O(x)F(y) compounds.

    PubMed

    Grant, Daniel J; Wang, Tsang-Hsiu; Vasiliu, Monica; Dixon, David A; Christe, Karl O

    2011-03-07

    Atomization energies at 0 K and heats of formation at 0 and 298 K are predicted for the neutral and ionic N(x)F(y) and O(x)F(y) systems using coupled cluster theory with single and double excitations and including a perturbative triples correction (CCSD(T)) method with correlation consistent basis sets extrapolated to the complete basis set (CBS) limit. To achieve near chemical accuracy (±1 kcal/mol), three corrections to the electronic energy were added to the frozen core CCSD(T)/CBS binding energies: corrections for core-valence, scalar relativistic, and first order atomic spin-orbit effects. Vibrational zero point energies were computed at the CCSD(T) level of theory where possible. The calculated heats of formation are in good agreement with the available experimental values, except for FOOF because of the neglect of higher order correlation corrections. The F(+) affinity in the N(x)F(y) series increases from N(2) to N(2)F(4) by 63 kcal/mol, while that in the O(2)F(y) series decreases by 18 kcal/mol from O(2) to O(2)F(2). Neither N(2) nor N(2)F(4) is predicted to bind F(-), and N(2)F(2) is a very weak Lewis acid with an F(-) affinity of about 10 kcal/mol for either the cis or trans isomer. The low F(-) affinities of the nitrogen fluorides explain why, in spite of the fact that many stable nitrogen fluoride cations are known, no nitrogen fluoride anions have been isolated so far. For example, the F(-) affinity of NF is predicted to be only 12.5 kcal/mol which explains the numerous experimental failures to prepare NF(2)(-) salts from the well-known strong acid HNF(2). The F(-) affinity of O(2) is predicted to have a small positive value and increases for O(2)F(2) by 23 kcal/mol, indicating that the O(2)F(3)(-) anion might be marginally stable at subambient temperatures. The calculated adiabatic ionization potentials and electron affinities are in good agreement with experiment considering that many of the experimental values are for vertical processes.

  8. Blood oxygen affinity increases during digestion in the South American rattlesnake, Crotalus durissus terrificus.

    PubMed

    Bovo, Rafael P; Fuga, Adriana; Micheli-Campbell, Mariana A; Carvalho, José E; Andrade, Denis V

    2015-08-01

    Digesting snakes experience massive increases in metabolism that can last for many days and are accompanied by adjustments in the oxygen transport cascade. Accordingly, we examined the oxygen-binding properties of the blood in the South American rattlesnake (Crotalus durissus terrificus) during fasting and 24 and 48h after the snakes have ingested a rodent meal corresponding to 15% (±2%) of its own body mass. In general, oxygen-hemoglobin (Hb-O2) affinity was significantly increased 24h post-feeding, and then returned toward fasting values within 48h post-feeding. Content of organic phosphates ([NTP] and [NTP]/[Hb]), hemoglobin cooperativity (Hill's n), and Bohr Effect (ΔlogP50/ΔpH) were not affected by feeding. The postprandial increase in Hb-O2 affinity in the South American rattlesnake can be almost entirely ascribed by the moderate alkaline tide that follows meal ingestion. In general, digesting snakes were able to regulate blood metabolites at quite constant levels (e.g., plasma osmolality, lactate, glucose, and total protein levels). The level of circulating lipids, however, was considerably increased, which may be related to their mobilization, since lipids are known to be incorporated by the enterocytes after snakes have fed. In conclusion, our results indicate that the exceptional metabolic increment exhibited by C. d. terrificus during meal digestion is entirely supported by the aerobic pathways and that among the attending cardiorespiratory adjustments, pulmonary Hb-O2 loading is likely improved due to the increment in blood O2 affinity.

  9. Carbohydrate-binding protein identification by coupling structural similarity searching with binding affinity prediction.

    PubMed

    Zhao, Huiying; Yang, Yuedong; von Itzstein, Mark; Zhou, Yaoqi

    2014-11-15

    Carbohydrate-binding proteins (CBPs) are potential biomarkers and drug targets. However, the interactions between carbohydrates and proteins are challenging to study experimentally and computationally because of their low binding affinity, high flexibility, and the lack of a linear sequence in carbohydrates as exists in RNA, DNA, and proteins. Here, we describe a structure-based function-prediction technique called SPOT-Struc that identifies carbohydrate-recognizing proteins and their binding amino acid residues by structural alignment program SPalign and binding affinity scoring according to a knowledge-based statistical potential based on the distance-scaled finite-ideal gas reference state (DFIRE). The leave-one-out cross-validation of the method on 113 carbohydrate-binding domains and 3442 noncarbohydrate binding proteins yields a Matthews correlation coefficient of 0.56 for SPalign alone and 0.63 for SPOT-Struc (SPalign + binding affinity scoring) for CBP prediction. SPOT-Struc is a technique with high positive predictive value (79% correct predictions in all positive CBP predictions) with a reasonable sensitivity (52% positive predictions in all CBPs). The sensitivity of the method was changed slightly when applied to 31 APO (unbound) structures found in the protein databank (14/31 for APO versus 15/31 for HOLO). The result of SPOT-Struc will not change significantly if highly homologous templates were used. SPOT-Struc predicted 19 out of 2076 structural genome targets as CBPs. In particular, one uncharacterized protein in Bacillus subtilis (1oq1A) was matched to galectin-9 from Mus musculus. Thus, SPOT-Struc is useful for uncovering novel carbohydrate-binding proteins. SPOT-Struc is available at http://sparks-lab.org.

  10. Relative Proton Affinities from Kinetic Energy Release Distributions for Dissociation of Proton-Bound Dimers

    SciTech Connect

    Hache, John J.; Laskin, Julia ); Futrell, Jean H. )

    2002-12-19

    Kinetic energy release distributions (KERDs) upon dissociation of proton-bound dimers are utilized along with Finite Heat Bath theory analysis to obtain relative proton affinities of monomeric species composing the dimer. The proposed approach allows accurate measurement of relative proton affinities based on KERD measurements for the compound with unknown thermochemical properties versus a single reference base. It also allows distinguishing the cases when dissociation of proton-bound dimers is associated with reverse activation barrier, for which both our approach and the kinetic method become inapplicable. Results are reported for the n-butanol-n-propanol dimer, for which there is no significant difference in entropy effects for two reactions and for the pyrrolidine-1,2-ethylenediamine dimer, which is characterized by a significant difference in entropy effects for the two competing reactions. Relative protonation affinities of -1.0?0.3 kcal/mol for the n-butanol-n-propanol pair and 0.27?0.10 kcal/mol for the pyrrolidine-1,2-ethylenediamine pair are in good agreement with literature values. Relative reaction entropies were extracted from the branching ratio and KERD measurements. Good correspondence was found between the relative reaction entropies for the n-butanol-n-propanol dimer (D(DS?)=-0.3?1.5 cal/mol K) and the relative protonation entropy for the two monomers (D(DSp)=0). However, the relative reaction entropy for the pyrrolidine-1,2-ethylenediamine dimer is higher than the difference in protonation entropies (D(DS?)=8.2?0.5 cal/mol K vs. D(DSp)=5 cal/mol K).

  11. Liposomes as chaperone mimics with controllable affinity toward heat-denatured formate dehydrogenase from Candida boidinii.

    PubMed

    Yoshimoto, Makoto; Kozono, Ryohei; Tsubomura, Naoki

    2015-01-20

    Chaperone machinery in living systems can catch denatured enzymes and induce their reactivation. Chaperone mimics are beneficial for applying enzymatic reactions in vitro. In this work, the affinity between liposomes and thermally denatured enzymes was controlled to stabilize the enzyme activity. The model enzyme is formate dehydrogenase from Candida boidinii (CbFDH) which is a homodimer and negatively charged in the phosphate buffer solution (pH 7.2) used. The activity of free CbFDH readily decreased at 58 °C following the first-order kinetics with the half-life t1/2 of 27 min. The turbidity measurements showed that the denatured enzyme molecules formed aggregates. The liposomes composed of zwitterionic phosphatidylcholines (PCs) stabilized the CbFDH activity at 58 °C, as revealed with six different PCs. The PC liposomes were indicated to bind to the aggregate-prone enzyme molecules, allowing reactivation at 25 °C. The cofactor β-reduced nicotinamide adenine dinucleotide (NADH) also stabilized the enzyme activity. The affinity between liposomes and denatured CbFDH could be modulated by incorporating cationic 1,2-dioleoyloxy-3-trimethylammonium propane chloride (DOTAP) in PC membranes. The t1/2 values significantly increased in the presence of liposomes ([lipid] = 1.5 mM) composed of PC and DOTAP at the mole fraction f(D) of 0.1. On the other hand, the DOTAP-rich liposomes (f(D) ≥ 0.7) showed strong affinity toward denatured CbFDH, accelerating its deactivation. The liposomes with low charge density function as chaperone mimics that can efficiently catch the denatured enzymes without interfering with their intramolecular interaction for reactivation.

  12. Radiotracers for Cardiac Sympathetic Innervation: Transport Kinetics and Binding Affinities for the Human Norepinephrine Transporter

    PubMed Central

    Raffel, David M.; Chen, Wei; Jung, Yong-Woon; Jang, Keun Sam; Gu, Guie; Cozzi, Nicholas V.

    2013-01-01

    Introduction Most radiotracers for imaging of cardiac sympathetic innervation are substrates of the norepinephrine transporter (NET). The goal of this study was to characterize the NET transport kinetics and binding affinities of several sympathetic nerve radiotracers, including [11C]-(−)-meta-hydroxyephedrine, [11C]-(−)-epinephrine, and a series of [11C]-labeled phenethylguanidines under development in our laboratory. For comparison, the NET transport kinetics and binding affinities of some [3H]-labeled biogenic amines were also determined. Methods Transport kinetics studies were performed using rat C6 glioma cells stably transfected with the human norepinephrine transporter (C6-hNET cells). For each radiolabeled NET substrate, saturation transport assays with C6-hNET cells measured the Michaelis-Menten transport constants Km and Vmax for NET transport. Competitive inhibition binding assays with homogenized C6-hNET cells and [3H]mazindol provided estimates of binding affinities (KI) for NET. Results Km, Vmax and KI values were determined for each NET substrate with a high degree of reproducibility. Interestingly, C6-hNET transport rates for ‘tracer concentrations’ of substrate, given by the ratio Vmax/Km, were found to be highly correlated with neuronal transport rates measured previously in isolated rat hearts (r2 = 0.96). This suggests that the transport constants Km and Vmax measured using the C6-hNET cells accurately reflect in vivo transport kinetics. Conclusion The results of these studies show how structural changes in NET substrates influence NET binding and transport constants, providing valuable insights that can be used in the design of new tracers with more optimal kinetics for quantifying regional sympathetic nerve density. PMID:23306137

  13. Relations between high-affinity binding sites of markers for binding regions on human serum albumin.

    PubMed Central

    Kragh-Hansen, U

    1985-01-01

    Binding of warfarin, digitoxin, diazepam, salicylate and Phenol Red, individually or in different pair combinations, to defatted human serum albumin at ligand/protein molar ratios less than 1:1 was studied at pH 7.0. The binding was determined by ultrafiltration. Some of the experiments were repeated with the use of equilibrium dialysis in order to strengthen the results. Irrespective of the method used, all ligands bind to one high-affinity binding site with an association constant in the range 10(4)-10(6) M-1. High-affinity binding of the following pair of ligands took place independently: warfarin-Phenol Red, warfarin-diazepam, warfarin-digitoxin and digitoxin-diazepam. Simultaneous binding of warfarin and salicylate led to a mutual decrease in binding of one another, as did simultaneous binding of digitoxin and Phenol Red. Both effects could be accounted for by a coupling constant. The coupling constant is the factor by which the primary association constants are affected; in these examples of anti-co-operativity the factor has a value between 0 and 1. In the first example it was calculated to be 0.8 and in the latter 0.5. Finally, digitoxin and salicylate were found to compete for a common high-affinity binding site. The present findings support the proposal of four separate primary binding sites for warfarin, digitoxin (and salicylate), diazepam and Phenol Red. An attempt to correlate this partial binding model for serum albumin with other models in the literature is made. PMID:3977850

  14. Isolation, identification and characterisation of starch-interacting proteins by 2-D affinity electrophoresis.

    PubMed

    Kosar-Hashemi, Behjat; Irwin, Jennifer A; Higgins, Jody; Rahman, Sadequr; Morell, Matthew K

    2006-05-01

    A 2-D affinity electrophoretic technique (2-DAE) has been used to isolate proteins that interact with various starch components from total barley endosperm extracts. In the first dimension, proteins are separated by native PAGE. The second-dimensional gel contains polysaccharides such as amylopectin and glycogen. The migration of starch-interacting proteins in this dimension is determined by their affinity towards a particular polysaccharide and these proteins are therefore spatially separated from the bulk of proteins in the crude extract. Four distinct proteins demonstrate significant affinity for amylopectin and have been identified as starch branching enzyme I (SBEI), starch branching enzyme IIa (SBEIIa), SBEIIb and starch phosphorylase using polyclonal antibodies and zymogram activity analysis. In the case of starch phosphorylase, a protein spot was excised from a 2-DAE polyacrylamide gel and analysed using Q-TOF MS/MS, resulting in the alignment of three internal peptide sequences with the known sequence of the wheat plastidic starch phosphorylase isoform. This assignment was confirmed by the determination of the enzyme's function using zymogram analysis. Dissociation constants (Kd) were calculated for the three enzymes at 4 degrees C and values of 0.20, 0.21 and 1.3 g/L were determined for SBEI, SBEIIa and starch phosphorylase, respectively. Starch synthase I could also be resolved from the other proteins in the presence of glycogen and its identity was confirmed using a polyclonal antibody and by activity analysis. The 2-DAE method described here is simple, though powerful, enabling protein separation from crude extracts on the basis of function.

  15. Model updating based on an affine scaling interior optimization algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Y. X.; Jia, C. X.; Li, Jian; Spencer, B. F.

    2013-11-01

    Finite element model updating is usually considered as an optimization process. Affine scaling interior algorithms are powerful optimization algorithms that have been developed over the past few years. A new finite element model updating method based on an affine scaling interior algorithm and a minimization of modal residuals is proposed in this article, and a general finite element model updating program is developed based on the proposed method. The performance of the proposed method is studied through numerical simulation and experimental investigation using the developed program. The results of the numerical simulation verified the validity of the method. Subsequently, the natural frequencies obtained experimentally from a three-dimensional truss model were used to update a finite element model using the developed program. After updating, the natural frequencies of the truss and finite element model matched well.

  16. Learning factorizations in estimation of distribution algorithms using affinity propagation.

    PubMed

    Santana, Roberto; Larrañaga, Pedro; Lozano, José A

    2010-01-01

    Estimation of distribution algorithms (EDAs) that use marginal product model factorizations have been widely applied to a broad range of mainly binary optimization problems. In this paper, we introduce the affinity propagation EDA (AffEDA) which learns a marginal product model by clustering a matrix of mutual information learned from the data using a very efficient message-passing algorithm known as affinity propagation. The introduced algorithm is tested on a set of binary and nonbinary decomposable functions and using a hard combinatorial class of problem known as the HP protein model. The results show that the algorithm is a very efficient alternative to other EDAs that use marginal product model factorizations such as the extended compact genetic algorithm (ECGA) and improves the quality of the results achieved by ECGA when the cardinality of the variables is increased.

  17. Affinity-Driven Immobilization of Proteins to Hematite Nanoparticles.

    PubMed

    Zare-Eelanjegh, Elaheh; Bora, Debajeet K; Rupper, Patrick; Schrantz, Krisztina; Thöny-Meyer, Linda; Maniura-Weber, Katharina; Richter, Michael; Faccio, Greta

    2016-08-10

    Functional nanoparticles are valuable materials for energy production, bioelectronics, and diagnostic devices. The combination of biomolecules with nanosized material produces a new hybrid material with properties that can exceed the ones of the single components. Hematite is a widely available material that has found application in various sectors such as in sensing and solar energy production. We report a single-step immobilization process based on affinity and achieved by genetically engineering the protein of interest to carry a hematite-binding peptide. Fabricated hematite nanoparticles were then investigated for the immobilization of the two biomolecules C-phycocyanin (CPC) and laccase from Bacillus pumilus (LACC) under mild conditions. Genetic engineering of biomolecules with a hematite-affinity peptide led to a higher extent of protein immobilization and enhanced the catalytic activity of the enzyme.

  18. Reflection symmetry detection using locally affine invariant edge correspondence.

    PubMed

    Wang, Zhaozhong; Tang, Zesheng; Zhang, Xiao

    2015-04-01

    Reflection symmetry detection receives increasing attentions in recent years. The state-of-the-art algorithms mainly use the matching of intensity-based features (such as the SIFT) within a single image to find symmetry axes. This paper proposes a novel approach by establishing the correspondence of locally affine invariant edge-based features, which are superior to the intensity based in the aspects that it is insensitive to illumination variations, and applicable to textureless objects. The locally affine invariance is achieved by simple linear algebra for efficient and robust computations, making the algorithm suitable for detections under object distortions like perspective projection. Commonly used edge detectors and a voting process are, respectively, used before and after the edge description and matching steps to form a complete reflection detection pipeline. Experiments are performed using synthetic and real-world images with both multiple and single reflection symmetry axis. The test results are compared with existing algorithms to validate the proposed method.

  19. Structural origins of high-affinity biotin binding to streptavidin.

    PubMed

    Weber, P C; Ohlendorf, D H; Wendoloski, J J; Salemme, F R

    1989-01-06

    The high affinity of the noncovalent interaction between biotin and streptavidin forms the basis for many diagnostic assays that require the formation of an irreversible and specific linkage between biological macromolecules. Comparison of the refined crystal structures of apo and a streptavidin:biotin complex shows that the high affinity results from several factors. These factors include the formation of multiple hydrogen bonds and van der Waals interactions between biotin and the protein, together with the ordering of surface polypeptide loops that bury the biotin in the protein interior. Structural alterations at the biotin binding site produce quaternary changes in the streptavidin tetramer. These changes apparently propagate through cooperative deformations in the twisted beta sheets that link tetramer subunits.

  20. Robust Spectral Clustering Using Statistical Sub-Graph Affinity Model

    PubMed Central

    Eichel, Justin A.; Wong, Alexander; Fieguth, Paul; Clausi, David A.

    2013-01-01

    Spectral clustering methods have been shown to be effective for image segmentation. Unfortunately, the presence of image noise as well as textural characteristics can have a significant negative effect on the segmentation performance. To accommodate for image noise and textural characteristics, this study introduces the concept of sub-graph affinity, where each node in the primary graph is modeled as a sub-graph characterizing the neighborhood surrounding the node. The statistical sub-graph affinity matrix is then constructed based on the statistical relationships between sub-graphs of connected nodes in the primary graph, thus counteracting the uncertainty associated with the image noise and textural characteristics by utilizing more information than traditional spectral clustering methods. Experiments using both synthetic and natural images under various levels of noise contamination demonstrate that the proposed approach can achieve improved segmentation performance when compared to existing spectral clustering methods. PMID:24386111

  1. Tandem affinity purification vectors for use in gram positive bacteria.

    PubMed

    Yang, Xiao; Doherty, Geoff P; Lewis, Peter J

    2008-01-01

    Tandem affinity purification has become a valuable tool for the isolation of protein complexes. Here we describe the construction and use of a series of plasmid vectors for Gram positive bacteria. The vectors utilize the SPA tag as well as variants containing a 3C rather than the TEV protease site as 3C protease has been shown to work efficiently at the low temperatures (4 degrees C) used to isolate protein complexes. In addition, a further vector incorporates a GST moiety in place of the 3xFLAG of the SPA tag which provides an additional tagging option for situations where SPA binding may be inefficient. The vectors are all compatible with previously constructed fluorescent protein fusion vectors enabling construction of a suite of affinity and fluorescently tagged genes using a single PCR product.

  2. Complex high affinity interactions occur between MHCI and superantigens

    NASA Technical Reports Server (NTRS)

    Chapes, S. K.; Herpich, A. R.; Spooner, B. S. (Principal Investigator)

    1998-01-01

    Staphylococcal enterotoxins A and C1 (SEA or SEC1) bound to major histocompatibility-I (MHCI) molecules with high affinity (binding constants ranging from 1.1 microM to 79 nM). SEA and SEC1 directly bound MHCI molecules that had been captured by monoclonal antibodies specific for H-2Kk, H-2Dk, or both. In addition, MHCI-specific antibodies inhibited the binding of SEC1 to LM929 cells and SEA competitively inhibited SEC1 binding; indicating that the superantigens bound to MHCI on the cell surface. The affinity and number of superantigen binding sites differed depending on whether MHCI was expressed in the membrane of LM929 cells or whether it was captured. These data support the hypothesis that MHCI molecules can serve as superantigen receptors.

  3. "Clickable" affinity ligands for effective separation of glycoproteins.

    PubMed

    Suksrichavalit, Thummaruk; Yoshimatsu, Keiichi; Prachayasittikul, Virapong; Bülow, Leif; Ye, Lei

    2010-06-04

    In this paper, we present a new modular approach to immobilize boronic acid ligands that can offer effective separation of glycoproteins. A new "clickable" boronic acid ligand was synthesized by introducing a terminal acetylene group into commercially available 3-aminophenyl boronic acid. The clickable ligand, 3-(prop-2-ynyloxycarbonylamino)phenylboronic acid (2) could be easily coupled to azide-functionalized hydrophilic Sepharose using Cu(I)-catalyzed 1,3-dipolar cycloaddition reaction under mild condition. Compared to other boronic acid affinity gels, the new affinity gel displayed superior effectiveness in separating model glycoproteins (ovalbumin and RNase B) from closely related bovine serum albumin and RNase A in the presence of crude Escherichia coli proteins. Because of the simplicity of the immobilization through "click chemistry", the new ligand 2 is expected to not only offer improved glycoprotein separation in other formats, but also act as a useful building block to develop new chemical sensors for analysis of other glycan compounds.

  4. Polysulfone affinity membranes for the treatment of amino acid mixtures.

    PubMed

    Rodemann, K; Staude, E

    1995-06-20

    Affinity membranes for the treatment of solutions containing amino acids were obtained via lithiating polysulfone that was subsequently converted with glycidylether. From this polymer asymmetric ultrafiltration membranes were cast. The membranes were reacted with iminodiacetic acid yielding membranes fitted out with bidentate chelates. The same reaction path was applied to commercially available symmetric microfiltration membranes. The chelate-bearing membranes were complexed with Cu, Ni, and Zn ions. For the experiments with amino acids only the Cu-complexed membranes were used. The complexation constants for histidine and tryptophan for six different membranes were determined. Because of the affinity of these two amino acids for the complexed Cu ions, they could easily be separated from solutions containing amino acids such as alanine, glycine, and valine. Also, concentrating very dilute amino acid solutions was carried out successfully.

  5. Mullerian inhibiting substance fractionation by dye affinity chromatography.

    PubMed

    Budzik, G P; Powell, S M; Kamagata, S; Donahoe, P K

    1983-08-01

    Mullerian inhibiting substance (MIS), a large glycoprotein secreted by the fetal and neonatal testis, is responsible for regression of the Mullerian ducts in the male embryo. This fetal growth regulator has been purified more than 2000-fold from crude testicular incubation medium following fractionation on a triazinyl dye affinity support. A high yield of 60% recovered activity was achieved in the absence of exogenous carrier protein by stabilizing MIS with 2-mercaptoethanol, EDTA, and Nonidet-P40 and eliminating losses in the handling and concentration of MIS fractions. Although affinity elution with nucleotides has proved successful in other systems, MIS could not be eluted with ATP, GTP, or AMP, with or without divalent metal ions. Nucleotide elution, however, does remove contaminating proteins prior to MIS recovery with high ionic strength. The 2000-fold-purified MIS fraction, although not homogeneous, shows a reduction-sensitive band after SDS-gel electrophoresis that has been proposed to be the MIS dimer.

  6. Selective high affinity polydentate ligands and methods of making such

    DOEpatents

    DeNardo, Sally; DeNardo, Gerald; Balhorn, Rodney

    2010-02-16

    This invention provides novel polydentate selective high affinity ligands (SHALs) that can be used in a variety of applications in a manner analogous to the use of antibodies. SHALs typically comprise a multiplicity of ligands that each bind different region son the target molecule. The ligands are joined directly or through a linker thereby forming a polydentate moiety that typically binds the target molecule with high selectivity and avidity.

  7. Optimizing molecular electrostatic interactions: Binding affinity and specificity

    NASA Astrophysics Data System (ADS)

    Kangas, Erik

    The design of molecules that bind tightly and specifically to designated target molecules is an important goal in many fields of molecular science. While the shape of the molecule to be designed is a relatively well defined problem with an intuitive answer, determination of the distribution of electrostatic charge that it should have in order to possess high affinity and/or specificity for a target is a subtle problem involving a tradeoff between an unfavorable electrostatic desolvation penalty incurred due to the removal of solvent from the interacting surfaces of the reactants, and the generally favorable intermolecular interactions made in the bound state. In this thesis, a theoretical formalism based on a continuum electrostatic approximation is developed in which charge distributions leading to optimal affinity and/or high specificity may be obtained. Methods for obtaining these charge distributions are developed in detail and analytical solutions are obtained in several special cases (where the molecules are shaped as infinite membranes, spheres, and spheroids). Their existence and non-uniqueness are also shown, and it is proven that the resulting optimized electrostatic binding free energies are favorable (negative) in many cases of physical interest. Affinity and specificity optimization is then applied to the chorismate mutase family of enzymes, including the catalytic antibody 1F7. It is shown that affinity optimization can be used to suggest better molecular inhibitors and that specificity optimization can be used to help elucidate molecular function and possibly aid in the creation of improved haptens. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  8. Targeting Synaptic Pathology with a Novel Affinity Mass Spectrometry Approach*

    PubMed Central

    Brinkmalm, Ann; Brinkmalm, Gunnar; Honer, William G.; Moreno, Julie A.; Jakobsson, Joel; Mallucci, Giovanna R.; Zetterberg, Henrik; Blennow, Kaj; Öhrfelt, Annika

    2014-01-01

    We report a novel strategy for studying synaptic pathology by concurrently measuring levels of four SNARE complex proteins from individual brain tissue samples. This method combines affinity purification and mass spectrometry and can be applied directly for studies of SNARE complex proteins in multiple species or modified to target other key elements in neuronal function. We use the technique to demonstrate altered levels of presynaptic proteins in Alzheimer disease patients and prion-infected mice. PMID:24973420

  9. Self-affinity and Crossover of A Clay Deposit

    NASA Astrophysics Data System (ADS)

    Fossum, J. O.; Huru Bergene, H.; Hansen, A.; Manificat, G.

    Self-affine dehydrated colloidal deposits on fresh mica surfaces of the synthetic 2:1 smectite clay laponite have been studied by means of Atomic Force Microscopy. AFM images of these prepared assemblies of sol and gel aggregates have been analyzed both by means of standard AFM software, and wavelet methods. The deposited surfaces show an anti-persistent to persistent crossover with a clay concentration dependent crossover length. It is thus concluded that the investigated electrolyte concentrations play a minor role

  10. Protein separation using affinity-based reversed micelles

    PubMed

    Sun; Gu; Tong; Bai; Ichikawa; Furusaki

    1999-05-01

    Reversed micellar two-phase extraction is a developing technique for protein separation. Introduction of an affinity ligand is considered to be an effective approach to increase the selectivity and capacity of reversed micelles. In this article, Cibacron Blue F3G-A (CB) as an affinity ligand was immobilized to reversed micelles composed of soybean lecithin by a two-phase reaction. The affinity partitioning of lysozyme and bovine serum albumin (BSA) to the CB-lecithin micelles was studied. Formation of mixed micelles by additionally introducing a nonionic surfactant, Tween 85, to the CB-lecithin micelles was effective to increase the solubilization of lysozyme due to the increase of W0 (water/surfactant molar ratio)/micellar size. The partitioning isotherms of lysozyme to the CB-lecithin micelles with and without Tween 85 were expressed by the Langmuir equation. The dissociation constants in the Langmuir equation decreased on addition of Tween 85, indicating the increase of the effectiveness of lysozyme binding to the immobilized CB. On addition of 20 g/L Tween 85 to 50 g/L lecithin/hexane micellar phase containing 0.1 mmol/L CB, the extraction capacity for lysozyme could be increased by 42%. Moreover, the CB-lecithin micelles with or without Tween 85 showed significant size exclusion for BSA due to its high molecular weight. Thus, lysozyme and BSA were separated from artificial solutions containing the two proteins. In addition, the affinity-based reversed micellar phase containing Tween 85 was recycled three times for lysozyme purification from crude egg-white solutions. Lysozyme purity increased by 16-18-fold, reaching 60-70% in the recycled use.

  11. Use of thermodynamic coupling between antibody-antigen binding and phospholipid acyl chain phase transition energetics to predict immunoliposome targeting affinity.

    PubMed

    Klegerman, Melvin E; Zou, Yuejiao; Golunski, Eva; Peng, Tao; Huang, Shao-Ling; McPherson, David D

    2014-09-01

    Thermodynamic analysis of ligand-target binding has been a useful tool for dissecting the nature of the binding mechanism and, therefore, potentially can provide valuable information regarding the utility of targeted formulations. Based on a consistent coupling of antibody-antigen binding and gel-liquid crystal transition energetics observed for antibody-phosphatidylethanolamine (Ab-PE) conjugates, we hypothesized that the thermodynamic parameters and the affinity for antigen of the Ab-PE conjugates could be effectively predicted once the corresponding information for the unconjugated antibody is determined. This hypothesis has now been tested in nine different antibody-targeted echogenic liposome (ELIP) preparations, where antibody is conjugated to dipalmitoylphosphatidylethanolamine (DPPE) head groups through a thioether linkage. Predictions were satisfactory (affinity not significantly different from the population of values found) in five cases (55.6%), but the affinity of the unconjugated antibody was not significantly different from the population of values found in six cases (66.7%), indicating that the affinities of the conjugated antibody tended not to deviate appreciably from those of the free antibody. While knowledge of the affinities of free antibodies may be sufficient to judge their suitability as targeting agents, thermodynamic analysis may still provide valuable information regarding their usefulness for specific applications.

  12. Calcium-independent inhibition of PCSK9 by affinity-improved variants of the LDL receptor EGF(A) domain.

    PubMed

    Zhang, Yingnan; Zhou, Lijuan; Kong-Beltran, Monica; Li, Wei; Moran, Paul; Wang, Jianyong; Quan, Clifford; Tom, Jeffrey; Kolumam, Ganesh; Elliott, J Michael; Skelton, Nicholas J; Peterson, Andrew S; Kirchhofer, Daniel

    2012-10-05

    LDL (low-density lipoprotein) receptor (LDLR) binds to its negative regulator proprotein convertase subtilisin/kexin type 9 (PCSK9) through the first EGF (epidermal growth factor-like) domain [EGF(A)]. The isolated EGF(A) domain is a poor antagonist due to its low affinity for PCSK9. To improve binding affinity, we used a phage display approach by randomizing seven PCSK9 contact residues of EGF(A), including the Ca(2+)-coordinating Asp310. The library was panned in Ca(2+)-free solution, and 26 unique clones that bind to PCSK9 were identified. Four selected variants demonstrated improved inhibitory activities in a PCSK9-LDLR competition binding ELISA. The Fc fusion protein of variant EGF66 bound to PCSK9 with a K(d) value of 71 nM versus 935 nM of wild type [EGF(A)-Fc] and showed significantly improved potency in inhibiting LDLR degradation in vitro and in vivo. The five mutations in EGF66 could be modeled in the EGF(A) structure without perturbation of the EGF domain fold, and their contribution to affinity improvement could be rationalized. The most intriguing change was the substitution of the Ca(2+)-coordinating Asp310 by a Lys residue, whose side-chain amine may have functionally replaced Ca(2+). EGF66-Fc and other EGF variants having the Asp310Lys change bound to PCSK9 in a Ca(2+)-independent fashion. The findings indicate that randomization of an important Ca(2+)-chelating residue in conjunction with "selection pressure" applied by Ca(2+)-free phage selection conditions can yield variants with an alternatively stabilized Ca(2+) loop and with increased binding affinities. This approach may provide a new paradigm for the use of diversity libraries to improve affinities of members of the Ca(2+)-binding EGF domain subfamily.

  13. When is Mass Spectrometry Combined with Affinity Approaches Essential? A Case Study of Tyrosine Nitration in Proteins

    NASA Astrophysics Data System (ADS)

    Petre, Brînduşa-Alina; Ulrich, Martina; Stumbaum, Mihaela; Bernevic, Bogdan; Moise, Adrian; Döring, Gerd; Przybylski, Michael

    2012-11-01

    Tyrosine nitration in proteins occurs under physiologic conditions and is increased at disease conditions associated with oxidative stress, such as inflammation and Alzheimer's disease. Identification and quantification of tyrosine-nitrations are crucial for understanding nitration mechanism(s) and their functional consequences. Mass spectrometry (MS) is best suited to identify nitration sites, but is hampered by low stabilities and modification levels and possible structural changes induced by nitration. In this insight, we discuss methods for identifying and quantifying nitration sites by proteolytic affinity extraction using nitrotyrosine (NT)-specific antibodies, in combination with electrospray-MS. The efficiency of this approach is illustrated by identification of specific nitration sites in two proteins in eosinophil granules from several biological samples, eosinophil-cationic protein (ECP) and eosinophil-derived neurotoxin (EDN). Affinity extraction combined with Edman sequencing enabled the quantification of nitration levels, which were found to be 8 % and 15 % for ECP and EDN, respectively. Structure modeling utilizing available crystal structures and affinity studies using synthetic NT-peptides suggest a tyrosine nitration sequence motif comprising positively charged residues in the vicinity of the NT- residue, located at specific surface- accessible sites of the protein structure. Affinities of Tyr-nitrated peptides from ECP and EDN to NT-antibodies, determined by online bioaffinity- MS, provided nanomolar KD values. In contrast, false-positive identifications of nitrations were obtained in proteins from cystic fibrosis patients upon using NT-specific antibodies, and were shown to be hydroxy-tyrosine modifications. These results demonstrate affinity- mass spectrometry approaches to be essential for unequivocal identification of biological tyrosine nitrations.

  14. Development of Enhanced Capacity Affinity Microcolumns by using a Hybrid of Protein Cross-linking/Modification and Immobilization

    PubMed Central

    Zheng, Xiwei; Podariu, Maria; Bi, Cong; Hage, David S.

    2015-01-01

    A hybrid method was examined for increasing the binding capacity and activity of protein-based affinity columns by using a combination of protein cross-linking/modification and covalent immobilization. Various applications of this approach in the study of drug-protein interactions and in use with affinity microcolumns were considered. Human serum albumin (HSA) was utilized as a model protein for this work. Bismaleimidohexane (BMH, a homobifunctional maleimide) was used to modify and/or cross-link HSA through the single free sulfhydryl group that is present on this protein. Up to a 75-113% increase in protein content was obtained when comparing affinity supports that were prepared with BMH versus reference supports that were made by using only covalent immobilization. Several drugs that are known to bind HSA (e.g., warfarin, verapamil and carbamazepine) were further found to have a significant increase in retention on HSA microcolumns that were treated with BMH (i.e., a 70-100% increase in protein-based retention). These BMH-treated HSA microcolumns were used in chiral separations and in ultrafast affinity extraction to measure free drug fractions in drug/protein mixtures, with the latter method giving association equilibrium constants that had good agreement with literature values. In addition, it was found that the reversible binding of HSA with ethacrynic acid, an agent that can combine irreversibly with the free sulfhydryl group on this protein, could be examined by using the BMH-treated HSA microcolumns. The same hybrid immobilization method could be extended to other proteins or alternative applications that may require protein-based affinity columns with enhanced binding capacities and activities. PMID:25981291

  15. Recombinant spider silk genetically functionalized with affinity domains.

    PubMed

    Jansson, Ronnie; Thatikonda, Naresh; Lindberg, Diana; Rising, Anna; Johansson, Jan; Nygren, Per-Åke; Hedhammar, My

    2014-05-12

    Functionalization of biocompatible materials for presentation of active protein domains is an area of growing interest. Herein, we describe a strategy for functionalization of recombinant spider silk via gene fusion to affinity domains of broad biotechnological use. Four affinity domains of different origin and structure; the IgG-binding domains Z and C2, the albumin-binding domain ABD, and the biotin-binding domain M4, were all successfully produced as soluble silk fusion proteins under nondenaturing purification conditions. Silk films and fibers produced from the fusion proteins were demonstrated to be chemically and thermally stable. Still, the bioactive domains are concluded to be folded and accessible, since their respective targets could be selectively captured from complex samples, including rabbit serum and human plasma. Interestingly, materials produced from mixtures of two different silk fusion proteins displayed combined binding properties, suggesting that tailor-made materials with desired stoichiometry and surface distributions of several binding domains can be produced. Further, use of the IgG binding ability as a general mean for presentation of desired biomolecules could be demonstrated for a human vascular endothelial growth factor (hVEGF) model system, via a first capture of anti-VEGF IgG to silk containing the Z-domain, followed by incubation with hVEGF. Taken together, this study demonstrates the potential of recombinant silk, genetically functionalized with affinity domains, for construction of biomaterials capable of presentation of almost any desired biomolecule.

  16. Measurement of the Electron Affinities of Indium and Thallium

    SciTech Connect

    Thompson, J. S.; Carpenter, D. L.; Covington, A. M.; Williams, W. W.; Kvale, T. J.; Seely, D. G.

    1999-03-20

    The electron affinities of indium and thallium were measured in separate experiments using the laser-photodetachment electron spectroscopy technique. The measurements were performed at the University of Nevada, Reno. Negative ion beams of both indium and thallium were extracted from a cesium-sputter negative ion source, and mass analyzed using a 90{sup o} bending magnet. The negative ion beam of interest was then crossed at 90{sup o} with a photon beam from a cw 25-Watt Ar{sup +} laser. The resulting photoelectrons were energy analyzed with a 160{sup o} spherical-sector spectrometer. The electron affinity of In({sup 2}P{sub 1/2}) was determined to be 0.404 {+-} 0.009 eV and the electron affinity of thallium was determined to be 0.377 {+-} 0.013 eV. The fine-structure splittings in the ground states of the negative ions were also determined. The experimental measurements will be compared to several recent theoretical predictions.

  17. Affine sphere spacetimes which satisfy the relativity principle

    NASA Astrophysics Data System (ADS)

    Minguzzi, E.

    2017-01-01

    In the context of Lorentz-Finsler spacetime theories the relativity principle holds at a spacetime point if the indicatrix (observer space) is homogeneous. We point out that in four spacetime dimensions there are just three kinematical models which respect an exact form of the relativity principle and for which all observers agree on the spacetime volume. They have necessarily affine sphere indicatrices. For them every observer which looks at a flash of light emitted by a point would observe, respectively, an expanding (a) sphere, (b) tetrahedron, or (c) cone, with barycenter at the point. The first model corresponds to Lorentzian relativity, the second one has been studied by several authors though the relationship with affine spheres passed unnoticed, and the last one has not been previously recognized and it is studied here in some detail. The symmetry groups are O+(3 ,1 ),R3,O+(2 ,1 )×R , respectively. In the second part, devoted to the general relativistic theory, we show that the field equations can be obtained by gauging the Finsler Lagrangian symmetry while avoiding direct use of Finslerian curvatures. We construct some notable affine sphere spacetimes which in the appropriate velocity limit return the Schwarzschild, Kerr-Schild, Kerr-de Sitter, Kerr-Newman, Taub, and Friedmann-Lemaître-Robertson-Walker spacetimes, respectively.

  18. Affinity-tuning leukocyte integrin for development of safe therapeutics

    NASA Astrophysics Data System (ADS)

    Park, Spencer

    Much attention has been given to the molecular and cellular pathways linking inflammation with cancer and the local tumor environment to identify new target molecules that could lead to improved diagnosis and treatment. Among the many molecular players involved in the complex response, central to the induction of inflammation is intercellular adhesion molecule (ICAM)-1, which is of particular interest for its highly sensitive and localized expression in response to inflammatory signals. ICAM-1, which has been implicated to play a critical role in tumor progression in various types of cancer, has also been linked to cancer metastases, where ICAM-1 facilitates the spread of metastatic cancer cells to secondary sites. This unique expression profile of ICAM-1 throughout solid tumor microenvironment makes ICAM-1 an intriguing molecular target, which holds great potential as an important diagnostic and therapeutic tool. Herein, we have engineered the ligand binding domain, or the inserted (I) domain of a leukocyte integrin, to exhibit a wide range of monovalent affinities to the natural ligand, ICAM-1. Using the resulting I domain variants, we have created drug and gene delivery nanoparticles, as well as targeted immunotherapeutics that have the ability to bind and migrate to inflammatory sites prevalent in tumors and the associated microenvironment. Through the delivery of diagnostic agents, chemotherapeutics, and immunotherapeutics, the following chapters demonstrate that the affinity enhancements achieved by directed evolution bring the affinity of I domains into the range optimal for numerous applications.

  19. Generation of recombinant antibodies and means for increasing their affinity.

    PubMed

    Altshuler, E P; Serebryanaya, D V; Katrukha, A G

    2010-12-01

    Highly specific interaction with foreign molecules is a unique feature of antibodies. Since 1975, when Keller and Milstein proposed the method of hybridoma technology and prepared mouse monoclonal antibodies, many antibodies specific to various antigens have been obtained. Recent development of methods for preparation of recombinant DNA libraries and in silico bioinformatics approaches for protein structure analysis makes possible antibody preparation using gene engineering approaches. The development of gene engineering methods allowed creating recombinant antibodies and improving characteristics of existing antibodies; this significantly extends the applicability of antibodies. By modifying biochemical and immunochemical properties of antibodies by changing their amino acid sequences it is possible to create antibodies with properties optimal for certain tasks. For example, application of recombinant technologies resulted in antibody preparation of high affinity significantly exceeding the initial affinity of natural antibodies. In this review we summarize information about the structure, modes of preparation, and application of recombinant antibodies and their fragments and also consider the main approaches used to increase antibody affinity.

  20. Structure of Greyhound hemoglobin: origin of high oxygen affinity.

    PubMed

    Bhatt, Veer S; Zaldívar-López, Sara; Harris, David R; Couto, C Guillermo; Wang, Peng G; Palmer, Andre F

    2011-05-01

    This study presents the crystal structure of Greyhound hemoglobin (GrHb) determined to 1.9 Å resolution. GrHb was found to crystallize with an α₁β₁ dimer in the asymmetric unit and belongs to the R2 state. Oxygen-affinity measurements combined with the fact that GrHb crystallizes in the R2 state despite the high-salt conditions used for crystallization strongly indicate that GrHb can serve as a model high-oxygen-affinity hemoglobin (Hb) for higher mammals, especially humans. Structural analysis of GrHb and its comparison with the R2-state of human Hb revealed several regions that can potentially contribute to the high oxygen affinity of GrHb and serve to rationalize the additional stability of the R2-state of GrHb. A previously well studied hydrophobic cluster of bar-headed goose Hb near α119 was also incorporated in the comparison between GrHb and human Hb. Finally, a structural comparison with generic dog Hb and maned wolf Hb was conducted, revealing that in contrast to GrHb these structures belong to the R state of Hb and raising the intriguing possibility of an additional allosteric factor co-purifying with GrHb that can modulate its quaternary structure.

  1. High-throughput fragment screening by affinity LC-MS.

    PubMed

    Duong-Thi, Minh-Dao; Bergström, Maria; Fex, Tomas; Isaksson, Roland; Ohlson, Sten

    2013-02-01

    Fragment screening, an emerging approach for hit finding in drug discovery, has recently been proven effective by its first approved drug, vemurafenib, for cancer treatment. Techniques such as nuclear magnetic resonance, surface plasmon resonance, and isothemal titration calorimetry, with their own pros and cons, have been employed for screening fragment libraries. As an alternative approach, screening based on high-performance liquid chromatography separation has been developed. In this work, we present weak affinity LC/MS as a method to screen fragments under high-throughput conditions. Affinity-based capillary columns with immobilized thrombin were used to screen a collection of 590 compounds from a fragment library. The collection was divided into 11 mixtures (each containing 35 to 65 fragments) and screened by MS detection. The primary screening was performed in <4 h (corresponding to >3500 fragments per day). Thirty hits were defined, which subsequently entered a secondary screening using an active site-blocked thrombin column for confirmation of specificity. One hit showed selective binding to thrombin with an estimated dissociation constant (K (D)) in the 0.1 mM range. This study shows that affinity LC/MS is characterized by high throughput, ease of operation, and low consumption of target and fragments, and therefore it promises to be a valuable method for fragment screening.

  2. Composite affinity sorbents and their cleaning in place.

    PubMed

    Girot, P; Moroux, Y; Duteil, X P; Nguyen, C; Boschetti, E

    1990-06-27

    Making large-scale affinity sorbents that are reusable under acceptable hygienic conditions implies specific treatments for cleaning in place with known aqueous solutions of chemical agents. However, common agents such as sodium hydroxide are frequently considered too drastic for the stability of macromolecular biologically active immobilized ligands. According to a large series of trials, it was found that only a mixture of sodium hydroxide and ethanol was actually effective in sterilizing a sorbent in a single step. When hydroxide or an ethanol-acetic acid mixture were used alone, they were not totally efficient in the inactivation of sporulated Bacillus subtilis. Conversely, they were efficient when used sequentially. All these solutions were able to remove pyrogens from chromatographic sorbents. As the sterilizing solutions contained a certain amount of ethanol, the most suitable chromatographic affinity sorbents had to be based on an incompressible matrix. When washing an affinity silica sorbent that had proteins as ligands with solutions such as sodium hydroxide, ethanol-acetic acid or ethanol-sodium hydroxide, it was found that certain sorbents were able to tolerate the treatments without a noticeable decrease in their biochemical activity.

  3. Conformational equilibria and intrinsic affinities define integrin activation.

    PubMed

    Li, Jing; Su, Yang; Xia, Wei; Qin, Yan; Humphries, Martin J; Vestweber, Dietmar; Cabañas, Carlos; Lu, Chafen; Springer, Timothy A

    2017-03-01

    We show that the three conformational states of integrin α5β1 have discrete free energies and define activation by measuring intrinsic affinities for ligand of each state and the equilibria linking them. The 5,000-fold higher affinity of the extended-open state than the bent-closed and extended-closed states demonstrates profound regulation of affinity. Free energy requirements for activation are defined with protein fragments and intact α5β1 On the surface of K562 cells, α5β1 is 99.8% bent-closed. Stabilization of the bent conformation by integrin transmembrane and cytoplasmic domains must be overcome by cellular energy input to stabilize extension. Following extension, headpiece opening is energetically favored. N-glycans and leg domains in each subunit that connect the ligand-binding head to the membrane repel or crowd one another and regulate conformational equilibria in favor of headpiece opening. The results suggest new principles for regulating signaling in the large class of receptors built from extracellular domains in tandem with single-span transmembrane domains.

  4. Relative binding affinities of monolignols to horseradish peroxidase

    SciTech Connect

    Sangha, Amandeep K.; Petridis, Loukas; Cheng, Xiaolin; Smith, Jeremy C.

    2016-07-22

    Monolignol binding to the peroxidase active site is the first step in lignin polymerization in plant cell walls. Using molecular dynamics, docking, and free energy perturbation calculations, we investigate the binding of monolignols to horseradish peroxidase C. Our results suggest that p-coumaryl alcohol has the strongest binding affinity followed by sinapyl and coniferyl alcohol. Stacking interactions between the monolignol aromatic rings and nearby phenylalanine residues play an important role in determining the calculated relative binding affinities. p-Coumaryl and coniferyl alcohols bind in a pose productive for reaction in which a direct H-bond is formed between the phenolic –OH group and a water molecule (W2) that may facilitate proton transfer during oxidation. In contrast, in the case of sinapyl alcohol there is no such direct interaction, the phenolic –OH group instead interacting with Pro139. Furthermore, since proton and electron transfer is the rate-limiting step in monolignol oxidation by peroxidase, the binding pose (and thus the formation of near attack conformation) appears to play a more important role than the overall binding affinity in determining the oxidation rate.

  5. Relative binding affinities of monolignols to horseradish peroxidase

    DOE PAGES

    Sangha, Amandeep K.; Petridis, Loukas; Cheng, Xiaolin; ...

    2016-07-22

    Monolignol binding to the peroxidase active site is the first step in lignin polymerization in plant cell walls. Using molecular dynamics, docking, and free energy perturbation calculations, we investigate the binding of monolignols to horseradish peroxidase C. Our results suggest that p-coumaryl alcohol has the strongest binding affinity followed by sinapyl and coniferyl alcohol. Stacking interactions between the monolignol aromatic rings and nearby phenylalanine residues play an important role in determining the calculated relative binding affinities. p-Coumaryl and coniferyl alcohols bind in a pose productive for reaction in which a direct H-bond is formed between the phenolic –OH group andmore » a water molecule (W2) that may facilitate proton transfer during oxidation. In contrast, in the case of sinapyl alcohol there is no such direct interaction, the phenolic –OH group instead interacting with Pro139. Furthermore, since proton and electron transfer is the rate-limiting step in monolignol oxidation by peroxidase, the binding pose (and thus the formation of near attack conformation) appears to play a more important role than the overall binding affinity in determining the oxidation rate.« less

  6. Affinity approaches in RNAi-based therapeutics purification.

    PubMed

    Pereira, Patrícia; Queiroz, João A; Figueiras, Ana; Sousa, Fani

    2016-05-15

    The recent investigation on RNA interference (RNAi) related mechanisms and applications led to an increased awareness of the importance of RNA in biology. Nowadays, RNAi-based technology has emerged as a potentially powerful tool for silencing gene expression, being exploited to develop new therapeutics for treating a vast number of human disease conditions, as it is expected that this technology can be translated onto clinical applications in a near future. This approach makes use of a large number of small (namely short interfering RNAs, microRNAs and PIWI-interacting RNAs) and long non-coding RNAs (ncRNAs), which are likely to have a crucial role as the next generation therapeutics. The commercial and biomedical interest in these RNAi-based therapy applications have fostered the need to develop innovative procedures to easily and efficiently purify RNA, aiming to obtain the final product with high purity degree, good quality and biological activity. Recently, affinity chromatography has been applied to ncRNAs purification, in view of the high specificity. Therefore, this article intends to review the biogenesis pathways of regulatory ncRNAs and also to discuss the most significant and recent developments as well as applications of affinity chromatography in the challenging task of purifying ncRNAs. In addition, the importance of affinity chromatography in ncRNAs purification is addressed and prospects for what is forthcoming are presented.

  7. Values in Education and Education in Values.

    ERIC Educational Resources Information Center

    Halstead, J. Mark, Ed.; Taylor, Monica J., Ed.

    The major purpose of this book is to set out some of the key issues and debates relating to the importance of values in education and of education in values. After an introductory chapter about the concept of values and values education, part 1 provides a variety of perspectives on the values that underpin contemporary education. The introduction…

  8. Affinity chromatography of GroEL chaperonin based on denatured proteins: role of electrostatic interactions in regulation of GroEL affinity for protein substrates.

    PubMed

    Marchenko, N Iu; Marchenkov, V V; Kaĭsheva, A L; Kashparov, I A; Kotova, N V; Kaliman, P A; Semisotnov, G V

    2006-12-01

    The chaperonin GroEL of the heat shock protein family from Escherichia coli cells can bind various polypeptides lacking rigid tertiary structure and thus prevent their nonspecific association and provide for acquisition of native conformation. In the present work we studied the interaction of GroEL with six denatured proteins (alpha-lactalbumin, ribonuclease A, egg lysozyme in the presence of dithiothreitol, pepsin, beta-casein, and apocytochrome c) possessing negative or positive total charge at neutral pH values and different in hydrophobicity (affinity for a hydrophobic probe ANS). To prevent the influence of nonspecific association of non-native proteins on their interaction with GroEL and make easier the recording of the complexing, the proteins were covalently attached to BrCN-activated Sepharose. At low ionic strength (lower than 60 mM), tight binding of the negatively charged denatured proteins with GroEL (which is also negatively charged) needed relatively low concentrations (approximately 10 mM) of bivalent cations Mg2+ or Ca2+. At the high ionic strength (approximately 600 mM), a tight complex was produced also in the absence of bivalent cations. In contrast, positively charged denatured proteins tightly interacted with GroEL irrespectively of the presence of bivalent cations and ionic strength of the solution (from 20 to 600 mM). These features of GroEL interaction with positively and negatively charged denatured proteins were confirmed by polarized fluorescence (fluorescence anisotropy). The findings suggest that the affinity of GroEL for denatured proteins can be determined by the balance of hydrophobic and electrostatic interactions.

  9. Robust adaptive control for a class of uncertain non-affine nonlinear systems using affine-type neural networks

    NASA Astrophysics Data System (ADS)

    Zhao, Shitie; Gao, Xianwen

    2016-08-01

    A robust adaptive control is proposed for a class of single-input single-output non-affine nonlinear systems. In order to approximate the unknown nonlinear function, a novel affine-type neural network is used, and then to compensate the approximation error and external disturbance a robust control term is employed. By Lyapunov stability analysis for the closed-loop system, it is proved that tracking errors asymptotically converge to zero. Moreover, an observer is designed to estimate the system states because all the states may not be available for measurements. Furthermore, the adaptation laws of neural networks and the robust controller are given out based on the Lyapunov stability theory. Finally, two simulation examples are presented to demonstrate the effectiveness of the proposed control method.

  10. 77 FR 28411 - Adrenalina, Affinity Technology Group, Inc., Braintech, Inc., Builders Transport, Incorporated...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION Adrenalina, Affinity Technology Group, Inc., Braintech, Inc., Builders Transport, Incorporated... concerning the securities of Affinity Technology Group, Inc. because it has not filed any periodic...

  11. The Purification of a Blood Group A Glycoprotein: An Affinity Chromatography Experiment.

    ERIC Educational Resources Information Center

    Estelrich, J.; Pouplana, R.

    1988-01-01

    Describes a purification process through affinity chromatography necessary to obtain specific blood group glycoproteins from erythrocytic membranes. Discusses the preparation of erythrocytic membranes, extraction of glycoprotein from membranes, affinity chromatography purification, determination of glycoproteins, and results. (CW)

  12. Importance in catalysis of a magnesium ion with very low affinity for a hammerhead ribozyme

    PubMed Central

    Inoue, Atsushi; Takagi, Yasuomi; Taira, Kazunari

    2004-01-01

    Available evidence suggests that Mg2+ ions are involved in reactions catalyzed by hammerhead ribozymes. However, the activity in the presence of exclusively monovalent ions led us to question whether divalent metal ions really function as catalysts when they are present. We investigated ribozyme activity in the presence of high levels of Mg2+ ions and the effects of Li+ ions in promoting ribozyme activity. We found that catalytic activity increased linearly with increasing concentrations of Mg2+ ions and did not reach a plateau value even at 1 M Mg2+ ions. Furthermore, this dependence on Mg2+ ions was observed in the presence of a high concentration of Li+ ions. These results indicate that the Mg2+ ion is a very effective cofactor but that the affinity of the ribozyme for a specific Mg2+ ion is very low. Moreover, cleavage by the ribozyme in the presence of both Li+ and Mg2+ ions was more effective than expected, suggesting the existence of a new reaction pathway—a cooperative pathway—in the presence of these multiple ions, and the possibility that a Mg2+ ion with weak affinity for the ribozyme is likely to function in structural support and/or act as a catalyst. PMID:15302920

  13. Regulator of insulin receptor affinity in rat skeletal muscle sarcolemmal vesicles

    SciTech Connect

    Whitson, R.H.; Barnard, K.J.; Kaplan, S.A.; Itakura, K.

    1986-05-01

    Wheat germ agglutinin (WGA) affinity purification of detergent solubilized insulin receptors (IR) from rat skeletal muscle sarcolemmal vesicles resulted in an apparent increase in total insulin binding activity of greater than 5-fold, suggesting that an inhibitory component had been removed. This was verified when the flow-through fraction from the WGA column was dialyzed and added back to the partially purified receptor. The addition of a 100-fold dilution of the inhibitor preparation caused a 50% reduction in binding to trace amounts of /sup 125/I-insulin. Scatchard analysis revealed that the effect of the inhibitor was to decrease the affinity of the muscle IR. The inhibitor appeared to be tissue specific, inasmuch as the I/sub 50/'s for WGA-purified IR from rat fat and liver were 10 times the I/sub 50/ for muscle IR. The I/sub 50/ for insulin binding to intact IM-9 cells was 30 times the value for muscle IR. The inhibitor eluted in the void volume of Sephadex G-50 columns. Its activity was not destroyed by heating at 90/sup 0/C for 10 minutes, or by prolonged incubation with trypsin or dithiothreitol. The inhibitor described here may have a role in modulating insulin sensitivity in skeletal muscle.

  14. Protection against anthrax toxin by recombinant antibody fragments correlates with antigen affinity.

    PubMed

    Maynard, Jennifer A; Maassen, Catharina B M; Leppla, Stephen H; Brasky, Kathleen; Patterson, Jean L; Iverson, Brent L; Georgiou, George

    2002-06-01

    The tripartite toxin produced by Bacillus anthracis is the key determinant in the etiology of anthrax. We have engineered a panel of toxin-neutralizing antibodies, including single-chain variable fragments (scFvs) and scFvs fused to a human constant kappa domain (scAbs), that bind to the protective antigen subunit of the toxin with equilibrium dissociation constants (K(d)) between 63 nM and 0.25 nM. The entire antibody panel showed high serum, thermal, and denaturant stability. In vitro, post-challenge protection of macrophages from the action of the holotoxin correlated with the K(d) of the scFv variants. Strong correlations among antibody construct affinity, serum half-life, and protection were also observed in a rat model of toxin challenge. High-affinity toxin-neutralizing antibodies may be of therapeutic value for alleviating the symptoms of anthrax toxin in infected individuals and for medium-term prophylaxis to infection.

  15. Sodium Cation Affinities of Commonly Used MALDI Matrices Determined by Guided Ion Beam Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Chinthaka, S. D. M.; Rodgers, M. T.

    2012-04-01

    The sodium cation affinities of six commonly used MALDI matrices are determined here using guided ion beam tandem mass spectrometry techniques. The collision-induced dissociation behavior of six sodium cationized MALDI matrices, Na+(MALDI), with Xe is studied as a function of kinetic energy. The MALDI matrices examined here include: nicotinic acid, quinoline, 3-aminoquinoline, 4-nitroaniline, picolinic acid, and 3-hydroxypicolinic acid. In all cases, the primary dissociation pathway corresponds to endothermic loss of the intact MALDI matrix. The cross section thresholds are interpreted to yield zero and 298 K Na+-MALDI bond dissociation energies (BDEs), or sodium cation affinities, after accounting for the effects of multiple ion-neutral collisions, the kinetic and internal energy distributions of the reactants, and dissociation lifetimes. Density functional theory calculations at the B3LYP/6-311+G(2d,2p)//B3LYP/6-31G* and MP2(full)/6-311+G(2d,2p)//B3LYP/6-31G* levels of theory are used to characterized the structures and energetics for these systems. The calculated BDEs exhibit very good agreement with the measured values for most systems. The experimental and theoretical Na+-MALDI BDEs determined here are compared with those previously measured by cation transfer equilibrium methods.

  16. An affine point-set and line invariant algorithm for photo-identification of gray whales

    NASA Astrophysics Data System (ADS)

    Chandan, Chandan; Kehtarnavaz, Nasser; Hillman, Gilbert; Wursig, Bernd

    2004-05-01

    This paper presents an affine point-set and line invariant algorithm within a statistical framework, and its application to photo-identification of gray whales (Eschrichtius robustus). White patches (blotches) appearing on a gray whale's left and right flukes (the flattened broad paddle-like tail) constitute unique identifying features and have been used here for individual identification. The fluke area is extracted from a fluke image via the live-wire edge detection algorithm, followed by optimal thresholding of the fluke area to obtain the blotches. Affine point-set and line invariants of the blotch points are extracted based on three reference points, namely the left and right tips and the middle notch-like point on the fluke. A set of statistics is derived from the invariant values and used as the feature vector representing a database image. The database images are then ranked depending on the degree of similarity between a query and database feature vectors. The results show that the use of this algorithm leads to a reduction in the amount of manual search that is normally done by marine biologists.

  17. Characterization of a high affinity cocaine binding site in rat brain

    SciTech Connect

    Calligaro, D.; Eldefrawi, M.

    1986-03-05

    Binding of (/sup 3/H)cocaine to synaptic membranes from whole rat brain was reversible and saturable. Nonlinear regression analysis of binding isotherms indicated two binding affinities: one with k/sub d/ = 16 nM, B/sub max/ = 0.65 pmoles/mg protein and the other with K/sub d/ = 660 nM, B/sub max/ = 5.1 pmoles/mg protein. The high-affinity binding of (/sup 3/H)cocaine was sensitive to the actions of trypsin and chymotrypsin but not carboxypeptidase, and was eliminated by exposure of the membranes to 95/sup 0/C for 5 min. Specific binding at 2 nM was higher at pH 8.8 than at pH 7.0. Binding of (/sup 3/H)cocaine (15 nM) was inhibited by increasing concentrations of Na/sup +/ ions. Several cocaine analogues, neurotransmitter uptake inhibitors and local anesthetics displaced specific (/sup 3/H)cocaine binding at 2 nM with various potencies. The cocaine analogue (-)-norcocaine was the most potent (IC/sub 50/ = 10 nM), while the local anesthetic tetracaine was the least potent in inhibiting (/sup 3/H)cocaine binding. Several biogenic amine uptake inhibitors, including tricyclic antidepressants and phencyclidine, had IC/sub 50/ values below ..mu..M concentrations.

  18. Temperature Effects on Kinetic Parameters and Substrate Affinity of Cel7A Cellobiohydrolases*

    PubMed Central

    Sørensen, Trine Holst; Cruys-Bagger, Nicolaj; Windahl, Michael Skovbo; Badino, Silke Flindt; Borch, Kim; Westh, Peter

    2015-01-01

    We measured hydrolytic rates of four purified cellulases in small increments of temperature (10–50 °C) and substrate loads (0–100 g/liter) and analyzed the data by a steady state kinetic model that accounts for the processive mechanism. We used wild type cellobiohydrolases (Cel7A) from mesophilic Hypocrea jecorina and thermophilic Rasamsonia emersonii and two variants of these enzymes designed to elucidate the role of the carbohydrate binding module (CBM). We consistently found that the maximal rate increased strongly with temperature, whereas the affinity for the insoluble substrate decreased, and as a result, the effect of temperature depended strongly on the substrate load. Thus, temperature had little or no effect on the hydrolytic rate in dilute substrate suspensions, whereas strong temperature activation (Q10 values up to 2.6) was observed at saturating substrate loads. The CBM had a dual effect on the activity. On one hand, it diminished the tendency of heat-induced desorption, but on the other hand, it had a pronounced negative effect on the maximal rate, which was 2-fold larger in variants without CBM throughout the investigated temperature range. We conclude that although the CBM is beneficial for affinity it slows down the catalytic process. Cel7A from the thermophilic organism was moderately more activated by temperature than the mesophilic analog. This is in accord with general theories on enzyme temperature adaptation and possibly relevant information for the selection of technical cellulases. PMID:26183777

  19. Synthetic Receptors for the High‐Affinity Recognition of O‐GlcNAc Derivatives

    PubMed Central

    Rios, Pablo; Carter, Tom S.; Crump, Matthew P.; Lisbjerg, Micke; Pittelkow, Michael; Supekar, Nitin T.; Boons, Geert‐Jan

    2016-01-01

    Abstract The combination of a pyrenyl tetraamine with an isophthaloyl spacer has led to two new water‐soluble carbohydrate receptors (“synthetic lectins”). Both systems show outstanding affinities for derivatives of N‐acetylglucosamine (GlcNAc) in aqueous solution. One receptor binds the methyl glycoside GlcNAc‐β‐OMe with K a≈20 000 m −1, whereas the other one binds an O‐GlcNAcylated peptide with K a≈70 000 m −1. These values substantially exceed those usually measured for GlcNAc‐binding lectins. Slow exchange on the NMR timescale enabled structural determinations for several complexes. As expected, the carbohydrate units are sandwiched between the pyrenes, with the alkoxy and NHAc groups emerging at the sides. The high affinity of the GlcNAcyl–peptide complex can be explained by extra‐cavity interactions, raising the possibility of a family of complementary receptors for O‐GlcNAc in different contexts. PMID:26822115

  20. Shape matching under affine transformation using normalization and multi-scale area integral features

    NASA Astrophysics Data System (ADS)

    Cai, Huiying; Zhu, Feng; Hao, Yingming; Lu, Rongrong

    2016-10-01

    Shape Matching under Affine Transformation (SMAT) is an important issue in shape analysis. Most of the existing SMAT methods are sensitive to noise or complicated because they usually need to extract the edge points or compute the high order function of the shape. To solve these problems, a new SMAT method which combines the low order shape normalization and the multi-scale area integral features is proposed. First, the shapes with affine transformation are normalized into their orthogonal representations according to the moments and an equivalent resample. This procedure transforms the shape by several linear operations: translations, scaling, and rotation, following by a resample operation. Second, the Multi-Scale Area Integral Features (MSAIF) of the shapes which are invariant to the orthogonal transformation (rotation and reflection transformation) are extracted. The MSAIF is a signature achieved through concatenating the area integral feature at a range of scales from fine to coarse. The area integral feature is an integration of the feature values, which are computed by convoluting the shape with an isotropic kernel and taking the complement, over the shape domain following by the normalization using the area of the shape. Finally, the matching of different shapes is performed according to the dissimilarity which is measured with the optimal transport distance. The performance of the proposed method is tested on the car dataset and the multi-view curve dataset. Experimental results show that the proposed method is efficient and robust, and can be used in many shape analysis works.

  1. Improved accuracy of low affinity protein-ligand equilibrium dissociation constants directly determined by electrospray ionization mass spectrometry.

    PubMed

    Jaquillard, Lucie; Saab, Fabienne; Schoentgen, Françoise; Cadene, Martine

    2012-05-01

    There is continued interest in the determination by ESI-MS of equilibrium dissociation constants (K(D)) that accurately reflect the affinity of a protein-ligand complex in solution. Issues in the measurement of K(D) are compounded in the case of low affinity complexes. Here we present a K(D) measurement method and corresponding mathematical model dealing with both gas-phase dissociation (GPD) and aggregation. To this end, a rational mathematical correction of GPD (f(sat)) is combined with the development of an experimental protocol to deal with gas-phase aggregation. A guide to apply the method to noncovalent protein-ligand systems according to their kinetic behavior is provided. The approach is validated by comparing the K(D) values determined by this method with in-solution K(D) literature values. The influence of the type of molecular interactions and instrumental setup on f(sat) is examined as a first step towards a fine dissection of factors affecting GPD. The method can be reliably applied to a wide array of low affinity systems without the need for a reference ligand or protein.

  2. Synthesis and binding affinity of novel mono- and bivalent morphinan ligands for κ, μ, and δ opioid receptors.

    PubMed

    Zhang, Bin; Zhang, Tangzhi; Sromek, Anna W; Scrimale, Thomas; Bidlack, Jean M; Neumeyer, John L

    2011-05-01

    A novel series of homo- and heterodimeric ligands containing κ/μ agonist and μ agonist/antagonist pharmacophores joined by a 10-carbon ester linker chain were synthesized and evaluated for their in vitro binding affinity at κ, μ, and δ opioid receptors, and their functional activities were determined at κ and μ receptors in [(35)S]GTPγS functional assays. Most of these compounds had high binding affinity at μ and κ receptors (K(i) values less than 1nM). Compound 15b, which contains butorphan (1) at one end of linking chain and butorphanol (5) at the other end, was the most potent ligand in this series with binding affinity K(i) values of 0.089nM at the μ receptor and 0.073nM at the κ receptor. All of the morphinan-derived ligands were found to be partial κ and μ agonists; ATPM-derived ligands 12 and 11 were found to be full κ agonists and partial μ agonists.

  3. Direct detection of thrombin binding to 8-bromodeoxyguanosine-modified aptamer: effects of modification on affinity and kinetics.

    PubMed

    Goji, Shou; Matsui, Jun

    2011-01-01

    The affinity of an 8-bromodeoxyguanosine- (8-BrdG-) substituted thrombin-binding aptamer (TBA-Br), which has the 1st and 10th guanosine residues replaced with 8-BrdG, was estimated using reflectometric interference spectroscopy (RIfS). When comparing TBA-Br with unmodified TBA (TBA-H), it was demonstrated that the modification effectively improved the affinity of TBA; dissociation constants (K(D)) of TBA-H and TBA-Br were 45.4 nM and 1.99 nM, respectively. These values, which were obtained by direct observation of thrombin binding using RIfS, have the same order of magnitude as those obtained in our previous study utilizing conformational changes in TBA to detect thrombin binding, thus confirming the validity of the obtained K(D) values. RIfS measurements also revealed that the 8-BrdG modification resulted in a lower dissociation rate constant (k(d)), which suggests that the enhancement of affinity can be attributed to the stabilization of the G-quadruplex structure on introduction of 8-BrdG.

  4. The classical competitive antagonism of phentolamine on smooth muscle preparations, investigated by two procedures.

    PubMed

    Patil, P N

    2007-01-01

    1. In isolated smooth muscle tissues taken from rats, rabbits and guinea-pigs, all at 37.5 degrees C, the equilibrium dissociation constant (K(beta)) of the competitive, reversible alpha-adrenoceptor antagonist phentolamine varied between 4 and 28 nm. 2. The concentration of the antagonist required to inhibit contractions to direct- or indirect-acting alpha-adrenenoceptor agonists by 50% (IC50) also varied between 5 and 30 nm. 3. From one tissue to another, the IC50/K(beta) ratio of the blocker varied from 1 to 2.5, the values being close to those predicted by classical receptor theory based on the law of mass action. 4. At 27.5 degrees C, using phenylephrine as the spasmogen in rat aorta, the IC50/K(beta) ratio for phentolamine was 3.1. 5. A significantly higher IC50 compared with K(beta) for phentolamine indicates that the procedures for estimating affinity constants for a competitive antagonist are not equivalent.

  5. Shark Attack: high affinity binding proteins derived from shark vNAR domains by stepwise in vitro affinity maturation.

    PubMed

    Zielonka, Stefan; Weber, Niklas; Becker, Stefan; Doerner, Achim; Christmann, Andreas; Christmann, Christine; Uth, Christina; Fritz, Janine; Schäfer, Elena; Steinmann, Björn; Empting, Martin; Ockelmann, Pia; Lierz, Michael; Kolmar, Harald

    2014-12-10

    A novel method for stepwise in vitro affinity maturation of antigen-specific shark vNAR domains is described that exclusively relies on semi-synthetic repertoires derived from non-immunized sharks. Target-specific molecules were selected from a CDR3-randomized bamboo shark (Chiloscyllium plagiosum) vNAR library using yeast surface display as platform technology. Various antigen-binding vNAR domains were easily isolated by screening against several therapeutically relevant antigens, including the epithelial cell adhesion molecule (EpCAM), the Ephrin type-A receptor 2 (EphA2), and the human serine protease HTRA1. Affinity maturation was demonstrated for EpCAM and HTRA1 by diversifying CDR1 of target-enriched populations which allowed for the rapid selection of nanomolar binders. EpCAM-specific vNAR molecules were produced as soluble proteins and more extensively characterized via thermal shift assays and biolayer interferometry. Essentially, we demonstrate that high-affinity binders can be generated in vitro without largely compromising the desirable high thermostability of the vNAR scaffold.

  6. Four-body atomic potential for modeling protein-ligand binding affinity: application to enzyme-inhibitor binding energy prediction

    PubMed Central

    2013-01-01

    Background Models that are capable of reliably predicting binding affinities for protein-ligand complexes play an important role the field of structure-guided drug design. Methods Here, we begin by applying the computational geometry technique of Delaunay tessellation to each set of atomic coordinates for over 1400 diverse macromolecular structures, for the purpose of deriving a four-body statistical potential that serves as a topological scoring function. Next, we identify a second, independent set of three hundred protein-ligand complexes, having both high-resolution structures and known dissociation constants. Two-thirds of these complexes are randomly selected to train a predictive model of binding affinity as follows: two tessellations are generated in each case, one for the entire complex and another strictly for the isolated protein without its bound ligand, and a topological score is computed for each tessellation with the four-body potential. Predicted protein-ligand binding affinity is then based on an empirically derived linear function of the difference between both topological scores, one that appropriately scales the value of this difference. Results A comparison between experimental and calculated binding affinity values over the two hundred complexes reveals a Pearson's correlation coefficient of r = 0.79 with a standard error of SE = 1.98 kcal/mol. To validate the method, we similarly generated two tessellations for each of the remaining protein-ligand complexes, computed their topological scores and the difference between the two scores for each complex, and applied the previously derived linear transformation of this topological score difference to predict binding affinities. For these one hundred complexes, we again observe a correlation of r = 0.79 (SE = 1.93 kcal/mol) between known and calculated binding affinities. Applying our model to an independent test set of high-resolution structures for three hundred diverse enzyme-inhibitor complexes

  7. Application of high-throughput affinity-selection mass spectrometry for screening of chemical compound libraries in lead discovery.

    PubMed

    Zehender, Hartmut; Mayr, Lorenz M

    2007-02-01

    High-throughput screening of chemical libraries for compounds that interfere with a particular molecular target is among the most powerful methodologies applied in lead discovery at present. In this review, the authors describe a label-free, homogeneous, affinity-selection-based technology developed at Novartis, termed SpeedScreen, which is compared with similar technologies used for high-throughput screening in the pharmaceutical and biotechnology industries. The focus at present of SpeedScreen is twofold: first, this technology is applied to orphan genomic targets and to those targets that are non-tractable by a functional assay; second, this technology is applied complementary to the well-established traditional methodologies for the screening of molecular targets. In summary, the authors discuss the value of affinity-selection-based high-throughput screening as a complementary technology to the common functional screening platforms and the benefits as well as the limitations of this new technology are outlined.

  8. PHARMACEUTICAL AND BIOMEDICAL APPLICATIONS OF AFFINITY CHROMATOGRAPHY: RECENT TRENDS AND DEVELOPMENTS

    PubMed Central

    Hage, David S.; Anguizola, Jeanethe A.; Bi, Cong; Li, Rong; Matsuda, Ryan; Papastavros, Efthimia; Pfaunmiller, Erika; Vargas, John; Zheng, Xiwei

    2012-01-01

    Affinity chromatography is a separation technique that has become increasingly important in work with biological samples and pharmaceutical agents. This method is based on the use of a biologically-related agent as a stationary phase to selectively retain analytes or to study biological interactions. This review discusses the basic principles behind affinity chromatography and examines recent developments that have occurred in the use of this method for biomedical and pharmaceutical analysis. Techniques based on traditional affinity supports are discussed, but an emphasis is placed on methods in which affinity columns are used as part of HPLC systems or in combination with other analytical methods. General formats for affinity chromatography that are considered include step elution schemes, weak affinity chromatography, affinity extraction and affinity depletion. Specific separation techniques that are examined include lectin affinity chromatography, boronate affinity chromatography, immunoaffinity chromatography, and immobilized metal ion affinity chromatography. Approaches for the study of biological interactions by affinity chromatography are also presented, such as the measurement of equilibrium constants, rate constants, or competition and displacement effects. In addition, related developments in the use of immobilized enzyme reactors, molecularly imprinted polymers, dye ligands and aptamers are briefly considered. PMID:22305083

  9. Evaluation of phytochemical content, nutritional value and antioxidant activity of Phanji - Rivea hypocrateriformis (Desr.) Choisy leaf

    PubMed Central

    Borkar, Sneha D.; Naik, Raghavendra; Shukla, Vinay J.; Acharya, Rabinarayan

    2015-01-01

    Background: Rivea hypocrateriformis (Desr.) Choisy is known to be the source plant of Phanji, a classically delineated leafy vegetable which is till date used by some hill dwelling Kandha tribes of Odisha. Though it is in use since a long time, it is not yet evaluated for its nutritive value. Aim: The leaves of R. hypocrateriformis were evaluated for its nutritive value and antioxidant potential. Materials and Methods: The in vitro antioxidant properties of the leaf of R. hypocrateriformis were screened through 1,1-diphenyl-2-picrylhydrazyl (DPPH) and total antioxidant capacity. Phytochemicals, crude protein, fat, carbohydrate, energy value, and mineral content of the leaves of the plant were evaluated with standard procedures. Results: In phytochemical analysis, tannin, alkaloids, flavonoids, and carbohydrates were present in leaf powder of R. hypocrateriformis. Energy content was found to be highest (331.54 kcals/100 g). Carbohydrate, fat, protein, calcium, magnesium, phosphorous, and zinc were present in 57.63%, 2.66%, 19.27%, 0.99%, 0.34%, 0.32%, and 0.011%, respectively. The IC50 values of the extract and ascorbic acid were found to be 254 ± 5.29 μg/ml and 11.67 ± 0.58 μg/ml, respectively. Percentage scavenging of DPPH radical was found to rise with increasing concentration of the crude extract. Total antioxidant capacity of the extract was found to be 111.30 ± 0.003 mcg. Conclusion: The results of this study indicate that the leaves of R. hypocrateriformis contain secondary metabolites such as tannin and possess mild antioxidant properties. Nutritional analysis indicates the presence of energy in highest amount, carbohydrates, proteins, fats, calcium, phosphorous, zinc, and magnesium. PMID:27313417

  10. Sertraline and its metabolite desmethylsertraline, but not bupropion or its three major metabolites, have high affinity for P-glycoprotein.

    PubMed

    Wang, Jun-Sheng; Zhu, Hao-Jie; Gibson, Bryan Bradford; Markowitz, John Seth; Donovan, Jennifer Lyn; DeVane, Carl Lindsay

    2008-02-01

    The ATP-binding cassette (ABC) transporter protein subfamily B1 line (ABCB1) transporter P-glycoprotein (P-gp) plays an important role in the blood-brain barrier limiting a broad spectrum of substrates from entering the central nervous system. In the present study, the transport activity of P-gp for sertraline, desmethylsertraline, bupropion, and the major metabolites of bupropion, threo-amino alcohol (TB), erythro-amino alcohol (EB), and hydroxy metabolite (HB) was studied using an ATPase assay in expressed human P-gp membranes by measuring concentrations of inorganic P(i) in expressed human P-gp membranes. Verapamil was included as a positive control. The Michaelis-Menten equation was used for characterizing the kinetic data. Sertraline and desmethylsertraline showed high affinity for P-gp. The V(max)/K(m) values of sertraline (1.6 min(-1) x 10(-3)) and desmethylsertraline (1.4 min(-1) x 10(-3)) were comparable with that of verapamil (1.7 min(-1) x 10(-3)). Bupropion and its three metabolites showed very weak affinity for P-gp, with V(max)/K(m) values lower than 0.01 min(-1) x 10(-3). The results of the present study indicate that sertraline and desmethylsertraline have high affinity for P-gp, whereas bupropion and its three major metabolites TB, EB, and HB have very weak affinity for P-gp. These findings may help to explain observed drug-drug interactions among antidepressants.

  11. Lipophilicity as a determinant of binding of procaine analogs to rat α3β4 nicotinic acetylcholine receptor.

    PubMed

    Cheffer, Arquimedes; Mustafa, Elba Vieira; T-do Amaral, Antonia; Ulrich, Henning

    2012-08-01

    Nicotinic acetylcholine receptors (nAChRs) have been studied in detail with regard to their interaction with therapeutic and drug addiction-related compounds. Using a structure-activity approach, we have examined the relationship among the molecular features of a set of eight para-R-substituted N,N-[(dimethylamino)ethyl] benzoate hydrochlorides, structurally related to procaine and their affinity for the α(3)β(4) nAChR heterologously expressed in KXα3β4R2 cells. Affinity values (log[1/IC50]) of these compounds for the α(3)β(4) nAChR were determined by their competition with [(3)H]TCP binding. Log(1/IC50) values were analyzed considering different hydrophobic and electronic parameters and those related to molar refractivity. These have been experimentally determined or were taken from published literature. In accordance with literature observations, the generated cross-validated quantitative structure-activity relationship (QSAR) equations indicated a significant contribution of hydrophobic term to binding affinity of procaine analogs to the receptor and predicted affinity values for several local anesthetics (LAs) sets taken from the literature. The predicted values by using the QSAR model correlated well with the published values both for neuronal and for electroplaque nAChRs. Our work also reveals the general structure features of LAs that are important for interaction with nAChRs as well as the structural modifications that could be made to enhance binding affinity.

  12. Low energy Mott polarimetry of electrons from negative electron affinity photocathodes

    SciTech Connect

    Ciccacci, F.; De Rossi, S.; Campbell, D.M.

    1995-08-01

    We present data on the spin polarization {ital P} and quantum yield {ital Y} of electrons photoemitted from negative electron affinity semiconductors, including GaAs(100), GaAsP(100) alloy, and strained GaAs layer epitaxially grown on a GaAsP(100) buffer. Near photothreshold the following values for {ital P}({ital Y}) are, respectively, obtained: 26% (2.5{times}10{sup {minus}2}), 40% (1{times}10{sup {minus}3}), and 60% (1.5{times}10{sup {minus}4}). We describe in detail the apparatus used containing a low energy (10--25 keV) Mott polarimeter. The system, completely fitted in a small volume ({similar_to}10{sup 4} cm{sup 3}) ultrahigh vacuum chamber, is intended as a test facility for characterizing candidate photocathode materials for spin polarized electron sources. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  13. Novel phosphorus-containing cyclodextrin polymers and their affinity for calcium cations and hydroxyapatite.

    PubMed

    Wintgens, Véronique; Dalmas, Florent; Sébille, Bernard; Amiel, Catherine

    2013-10-15

    Novel phosphorous-containing β-cyclodextrin (βCD) polymers (CDP) were synthesized easily under "green chemistry" conditions. A simple polycondensation between the hydroxyl groups of βCD and non-toxic sodium trimetaphosphate (STMP) under basic conditions led to soluble, non-reticulated CDPs with molecular weights (Mw) higher than 10(4) g mol(-1), the actual value depending on the NaOH:βCD and STMP:βCD weight ratios. The presence of both βCD and phosphate groups in the polymer allows for strong interactions with amphiphilic probes, such as 1-adamantyl acetic acid, or with divalent cations, such as Ca(2+), whose strengths were characterized by isothermal titration microcalorimetry. The obtained phosphated compounds also display high affinity towards hydroxyapatite (HA), leading to HA nanoparticles that could easily be recovered by CDPs, as demonstrated by transmission electron microscopy and quantitative determination of the total amount of phosphated molecules fixed on HA.

  14. Study on CCR5 analogs and affinity peptides.

    PubMed

    Wu, Yingping; Deng, Riqiang; Wu, Wenyan

    2012-03-01

    The G protein-coupled receptor of human chemokine receptor 5 (CCR5) is a key target in the human immunodeficiency virus (HIV) infection process due to its major involvement in binding to the HIV type 1 (HIV-1) envelope glycoprotein gp120 and facilitating virus entry into the cells. The identification of naturally occurring CCR5 mutations (especially CCR5 delta-32) has allowed us to address the CCR5 molecule as a promising target to prevent or resist HIV infection in vivo. To obtain high-affinity peptides that can be used to block CCR5, CCR5 analogs with high conformational similarity are required. In this study, two recombinant proteins named CCR5 N-Linker-E2 and CCR5 mN-E1-E2 containing the fragments of the CCR5 N-terminal, the first extracellular loop or the second extracellular loop are cloned from a full-length human CCR5 cDNA. The recombinant human CCR5 analogs with self-cleavage activity of the intein Mxe or Ssp in the vector pTwinI were then produced with a high-yield expression and purification system in Escherichia coli. Experiments of extracellular epitope-activity identification (such as immunoprecipitation and indirective/competitive enzyme-linked immunosorbent assay) confirmed the close similarity between the epitope activity of the CCR5 analogs and that of the natural CCR5, suggesting the applicability of the recombinant CCR5 analogs as antagonists of the chemokine ligands. Subsequent screening of high-affinity peptides from the phage random-peptides library acquired nine polypeptides, which could be used as CCR5 peptide antagonists. The CCR5 analogs and affinity peptides elucidated in this paper provide us with a basis for further study of the mechanism of inhibition of HIV-1 infection.

  15. The affinity of magnetic microspheres for Schistosoma eggs.

    PubMed

    Candido, Renata R F; Favero, Vivian; Duke, Mary; Karl, Stephan; Gutiérrez, Lucía; Woodward, Robert C; Graeff-Teixeira, Carlos; Jones, Malcolm K; St Pierre, Timothy G

    2015-01-01

    Schistosomiasis is a chronic parasitic disease of humans, with two species primarily causing the intestinal infection: Schistosoma mansoni and Schistosoma japonicum. Traditionally, diagnosis of schistosomiasis is achieved through direct visualisation of eggs in faeces using techniques that lack the sensitivity required to detect all infections, especially in areas of low endemicity. A recently developed method termed Helmintex™ is a very sensitive technique for detection of Schistosoma eggs and exhibits 100% sensitivity at 1.3 eggs per gram of faeces, enough to detect even low-level infections. The Helminthex™ method is based on the interaction of magnetic microspheres and schistosome eggs. Further understanding the underlying egg-microsphere interactions would enable a targeted optimisation of egg-particle binding and may thus enable a significant improvement of the Helmintex™ method and diagnostic sensitivity in areas with low infection rates. We investigated the magnetic properties of S. mansoni and S. japonicum eggs and their interactions with microspheres with different magnetic properties and surface functionalization. Eggs of both species exhibited higher binding affinity to the magnetic microspheres than the non-magnetic microspheres. Binding efficiency was further enhanced if the particles were coated with streptavidin. Schistosoma japonicum eggs bound more microspheres compared with S. mansoni. However, distinct differences within eggs of each species were also observed when the distribution of the number of microspheres bound per egg was modelled with double Poisson distributions. Using this approach, both S. japonicum and S. mansoni eggs fell into two groups, one having greater affinity for magnetic microspheres than the other, indicating that not all eggs of a species exhibit the same binding affinity. Our observations suggest that interaction between the microspheres and eggs is more likely to be related to surface charge-based electrostatic

  16. Surface affinity role in graphoepitaxy of lamellar block copolymers

    NASA Astrophysics Data System (ADS)

    Claveau, Guillaume; Quemere, Patrick; Argoud, Maxime; Hazart, Jerome; Barros, Patricia Pimenta; Sarrazin, Aurelien; Posseme, Nicolas; Tiron, Raluca; Chevalier, Xavier; Nicolet, Celia; Navarro, Christophe

    2016-07-01

    Overcoming the optical limitations of 193-nm immersion lithography can be achieved using directed self-assembly (DSA) of block-copolymers (BCPs) as a low-cost and versatile complementary technique. The goal of this paper is to investigate the potential of DSA to address line and space (L/S) high-resolution patterning by performing the density multiplication of lines with the graphoepitaxy approach. As surface affinity is a key parameter in self-assembly, three variations, or "flavors," of DSA template affinity are investigated regarding several success criteria such as morphology control or defectivity. More precisely, both the methodology to register DSA defects and the impact of process parameters on defectivity are detailed. Using the 300-mm pilot line available in LETI and Arkema's advanced materials, we investigate process optimization of DSA line/space patterning of a 38-nm period lamellar PS-b-PMMA BCP (L38). Our integration scheme is based on BCP self-assembly inside organic hard mask guiding patterns obtained using 193i-nm lithography. Defect analysis coupled with the fine tuning of process parameters (annealing, brush material) provided the optimum conditions for the L38 self-assembly. Using such conditions, DSA using the three affinity flavors is investigated by means of SEM top-view and cross-section review. Lithographic performances of one selected flavor are then evaluated with the comparison of process windows function of either commensurability, morphology, or roughness. This work is meant as a guideline for the graphoepitaxy optimization of materials and process parameters on a 300-mm platform.

  17. Affine transformations from aerial photos to computer compatible tapes

    NASA Technical Reports Server (NTRS)

    Peet, F. G.; Mack, A. R.; Crosson, L. S.

    1974-01-01

    During the development of a project to estimate wheat production, it became necessary to pull data, corresponding to particular fields in a test site, off an ERTS computer compatible tape. Aerial photographs and topographic maps were on hand for the test site. A method was devised, using an affine transformation, to relate the aerial photographs or topographic maps to the tapes. One can thereby access data on the tape corresponding to regions covered by only a few pixels. The theory can be used for the registration of two tapes for the same area and for the geometric correction of images.

  18. Nine switch-affine neurons suffice for Turing universality.

    PubMed

    Siegelmann, H T.; Margenstern, M

    1999-06-01

    In a previous work Pollack showed that a particular type of heterogeneous processor network is Turing universal. Siegelmann and Sontag (1991) showed the universality of homogeneous networks of first-order neurons having piecewise-linear activation functions. Their result was generalized by Kilian and Siegelmann (1996) to include various sigmoidal activation functions. Here we focus on a type of high-order neurons called switch-affine neurons, with piecewise-linear activation functions, and prove that nine such neurons suffice for simulating universal Turing machines.

  19. Friction and plasticity between self-affine surfaces

    NASA Astrophysics Data System (ADS)

    Luan, Binquan; Robbins, Mark; Harrison, Judith

    2006-03-01

    Simulations are used to study the contact area and adhesion between two amorphous solids with self-affine fractal surfaces, and the results are compared to continuum calculations. The friction between non-adhesive surfaces is proportional to load, but the coefficient of friction increases with roughness. The friction is much higher than expected for elasticallly deforming surfaces,^* and substantial plastic deformation is observed. Indeed, friction forces for different surface roughness collapse when plotted against the number of plastic rearrangements per unit sliding distance. Including adhesion leads to an increase in both friction and plasticity. ^* M. H. Müser, L. Wenning, and M. O. Robbins, Phys. Rev. Lett. 86, 1295 (2001).

  20. An affine projection algorithm using grouping selection of input vectors

    NASA Astrophysics Data System (ADS)

    Shin, JaeWook; Kong, NamWoong; Park, PooGyeon

    2011-10-01

    This paper present an affine projection algorithm (APA) using grouping selection of input vectors. To improve the performance of conventional APA, the proposed algorithm adjusts the number of the input vectors using two procedures: grouping procedure and selection procedure. In grouping procedure, the some input vectors that have overlapping information for update is grouped using normalized inner product. Then, few input vectors that have enough information for for coefficient update is selected using steady-state mean square error (MSE) in selection procedure. Finally, the filter coefficients update using selected input vectors. The experimental results show that the proposed algorithm has small steady-state estimation errors comparing with the existing algorithms.

  1. Statistical geometric affinity in human brain electric activity

    NASA Astrophysics Data System (ADS)

    Chornet-Lurbe, A.; Oteo, J. A.; Ros, J.

    2007-05-01

    The representation of the human electroencephalogram (EEG) records by neurophysiologists demands standardized time-amplitude scales for their correct conventional interpretation. In a suite of graphical experiments involving scaling affine transformations we have been able to convert electroencephalogram samples corresponding to any particular sleep phase and relaxed wakefulness into each other. We propound a statistical explanation for that finding in terms of data collapse. As a sequel, we determine characteristic time and amplitude scales and outline a possible physical interpretation. An analysis for characteristic times based on lacunarity is also carried out as well as a study of the synchrony between left and right EEG channels.

  2. Affine reflection groups for tiling applications: Knot theory and DNA

    NASA Astrophysics Data System (ADS)

    Bodner, M.; Patera, J.; Peterson, M.

    2012-01-01

    We present in this paper some non-conventional applications of affine Weyl groups Waff of rank 2, the symmetry group of the tiling/lattice. We first develop and present the tools for applications requiring tilings of a real Euclidean plane {R}^2. We then elucidate the equivalence of these tilings with 2D projections of knots. The resulting mathematical structure provides a framework within which is encompassed recent work utilizing knot theory for modeling the structure and function of genetic molecules, specifically the action of particular enzymes in altering the topology of DNA in site-specific recombination.

  3. Linear algorithms of affine synthesis in the Lebesgue space L^1 \\lbrack 0,1 \\rbrack

    NASA Astrophysics Data System (ADS)

    Terekhin, Pavel A.

    2010-10-01

    We prove that there are no linear algorithms of affine synthesis for affine systems in the Lebesgue space L^1 \\lbrack 0,1 \\rbrack with respect to the model space \\ell^1, although the corresponding affine synthesis problem has a positive solution under the most general assumptions. At the same time, by imposing additional conditions on the generating function of the affine system, we can give an explicit linear algorithm of affine synthesis in the Lebesgue space when the model space is that of the coefficients of the system. This linear algorithm generalizes the Fourier-Haar expansion into orthogonal series.

  4. [Progresses in screening active compounds from herbal medicine by affinity chromatography].

    PubMed

    Feng, Ying-shu; Tong, Shan-shan; Xu, Xi-ming; Yu, Jiang-nan

    2015-03-01

    Affinity chromatography is a chromatographic method for separating molecules using the binding characteristics of the stationary phase with potential drug molecules. This method can be performed as a high throughput screening method and a chromatographic separation method to screen a variety of active drugs. This paper summarizes the history of affinity chromatography, screening technology of affinity chromatography, and application of affinity chromatography in screening bio-active compounds in herbal medicines, and then discusses its application prospects, in order to broaden applications of the affinity chromatography in drug screening.

  5. Ionization potentials and electron affinities of the superheavy elements 115-117 and their sixth-row homologues Bi, Po, and At

    NASA Astrophysics Data System (ADS)

    Borschevsky, A.; Pašteka, L. F.; Pershina, V.; Eliav, E.; Kaldor, U.

    2015-02-01

    Calculations of the first and second ionization potentials and electron affinities of superheavy elements 115-117 are presented. The calculations are performed in the framework of the Dirac-Coulomb Hamiltonian, and the results are corrected for the Breit and QED contributions. Correlation is treated by the relativistic coupled cluster approach with single, double, and perturbative triple excitations [CCSD(T)]. The same approach is used to calculate the ionization potentials and electron affinities of the lighter homologues, Bi, Po, and At. Comparison of the available experimental values for these atoms, namely, the first ionization potentials (IPs) of Bi, Po, and At and the second IP and EA of Bi, with our results shows excellent agreement, within a few hundredths of an eV, lending credence to our predictions for their superheavy homologues. High-accuracy predictions are also made for the second ionization potentials and electron affinities of Po and At, where no experiment is available.

  6. Putative M2 muscarinic receptors of rat heart have high affinity for organophosphorus anticholinesterases

    SciTech Connect

    Silveira, C.L.; Eldefrawi, A.T.; Eldefrawi, M.E. )

    1990-05-01

    The M2 subtype of muscarinic receptor is predominant in heart, and such receptors were reported to be located in muscles as well as in presynaptic cholinergic and adrenergic nerve terminals. Muscarinic receptors of rat heart were identified by the high affinity binding of the agonist (+)-(3H)cis-methyldioxolane ((3H)CD), which has been used to label a high affinity population of M2 receptors. A single population of sites was detected and (3H)CD binding was sensitive to the M2 antagonist himbacine but much less so to pirenzepine, the M1 antagonist. These cardiac receptors had different sensitivities to NiCl2 and N-ethylmaleimide from brain muscarinic receptors, that were also labeled with (3H)CD and considered to be of the M2 subtype. Up to 70% of the (3H)CD-labeled cardiac receptors had high affinities for several organophosphate (OP) anticholinesterases. (3H)CD binding was inhibited by the nerve agents soman, VX, sarin, and tabun, with K0.5 values of 0.8, 2, 20, and 50 nM, respectively. It was also inhibited by echothiophate and paraoxon with K0.5 values of 100 and 300 nM, respectively. The apparent competitive nature of inhibition of (3H)CD binding by both sarin and paraoxon suggests that the OPs bind to the acetylcholine binding site of the muscarinic receptor. Other OP insecticides had lower potencies, inhibiting less than 50% of 5 nM (3H)CD binding by 1 microM of EPN, coumaphos, dioxathion, dichlorvos, or chlorpyriphos. There was poor correlation between the potencies of the OPs in reversibly inhibiting (3H)CD binding, and their anticholinesterase activities and toxicities. Acetylcholinesterases are the primary targets for these OP compounds because of the irreversible nature of their inhibition, which results in building of acetylcholine concentrations that activate muscarinic and nicotinic receptors and desensitize them, thereby inhibiting respiration.

  7. Transmembrane segments 1, 5, 7 and 8 are required for high-affinity glucose transport by Saccharomyces cerevisiae Hxt2 transporter.

    PubMed Central

    Kasahara, Toshiko; Kasahara, Michihiro

    2003-01-01

    Hxt2 is a high-affinity facilitative glucose transporter of Saccharomyces cerevisiae and belongs to the major facilitator superfamily. Hxt1 shares approximately 70% amino acid identity with Hxt2 in its transmembrane segments (TMs) and inter-TM loops, but transports D-glucose with an affinity about one-tenth of that of Hxt2. To determine which TMs of Hxt2 are important for high-affinity glucose transport, we constructed chimaeras of Hxt2 and Hxt1 by randomly replacing each of the 12 TMs of Hxt2 with the corresponding segment of Hxt1, for a total of 4096 different transporters. Among > 20000 yeast transformants screened, 39 different clones were selected by plate assays of high-affinity glucose-transport activity and sequenced. With only two exceptions, the selected chimaeras contained Hxt2 TMs 1, 5, 7 and 8. We then constructed chimaeras corresponding to all 16 possible combinations of Hxt2 TMs 1, 5, 7 and 8. Only one chimaera, namely that containing all four Hxt2 TMs, exhibited transport activity comparable with that of Hxt2. The K (m) and V (max) values for D-glucose transport, and the substrate specificity of this chimaera were almost identical with those of Hxt2. These results indicate that TMs 1, 5, 7 and 8 are necessary for exhibiting high-affinity glucose-transport activity of Hxt2. PMID:12603199

  8. Experimental and theoretical binding affinity between polyvinylpolypyrrolidone and selected phenolic compounds from food matrices.

    PubMed

    Durán-Lara, Esteban F; López-Cortés, Xaviera A; Castro, Ricardo I; Avila-Salas, Fabián; González-Nilo, Fernando D; Laurie, V Felipe; Santos, Leonardo S

    2015-02-01

    Polyvinylpolypyrrolidone (PVPP) is a fining agent, widely used in winemaking and brewing, whose mode of action in removing phenolic compounds has not been fully characterised. The aim of this study was to evaluate the experimental and theoretical binding affinity of PVPP towards six phenolic compounds representing different types of phenolic species. The interaction between PVPP and phenolics was evaluated in model solutions, where hydroxyl groups, hydrophobic bonding and steric hindrance were characterised. The results of the study indicated that PVPP exhibits high affinity for quercetin and catechin, moderate affinity for epicatechin, gallic acid and lower affinity for 4-methylcatechol and caffeic acid. The affinity has a direct correlation with the hydroxylation degree of each compound. The results show that the affinity of PVPP towards phenols is related with frontier orbitals. This work demonstrates a direct correlation between the experimental affinity and the interaction energy calculations obtained through computational chemistry methods.

  9. Synthesis and structure-affinity relationships of selective high-affinity 5-HT(4) receptor antagonists: application to the design of new potential single photon emission computed tomography tracers.

    PubMed

    Dubost, Emmanuelle; Dumas, Noé; Fossey, Christine; Magnelli, Rosa; Butt-Gueulle, Sabrina; Ballandonne, Céline; Caignard, Daniel H; Dulin, Fabienne; Sopkova de-Oliveira Santos, Jana; Millet, Philippe; Charnay, Yves; Rault, Sylvain; Cailly, Thomas; Fabis, Frederic

    2012-11-26

    The work described herein aims at finding new potential ligands for the brain imaging of 5-HT(4) receptors (5-HT(4)Rs) using single-photon emission computed tomography (SPECT). Starting from the nonsubstituted phenanthridine compound 4a, exhibiting a K(i) value of 51 nM on the 5-HT(4)R, we explored the structure-affinity in this series. We found that substitution in position 4 of the tricycle with a fluorine atom gave the best result. Introduction of an additional nitrogen atom inside the tricyclic framework led to an increase of both the affinity and selectivity for 5-HT(4)R, suggesting the design of the antagonist 4v, exhibiting a high affinity of 0.04 nM. Several iodinated analogues were then synthesized as potential SPECT tracers. The iodinated compound 11d was able to displace the reference radioiodinated 5-HT(4)R antagonist (1-butylpiperidin-4-yl)methyl-8-amino-7-iodo[(123)I]-2,3-dihydrobenzo[b][1,4]dioxine-5-carboxylate {[(123)I]1, [(123)I]SB 207710} both in vitro and in vivo in brain. Compound 11d was radiolabeled with [(125)I]iodine, providing a potential SPECT candidate for brain imaging of 5-HT(4)R.

  10. Synthesis and Structure-Affinity Relationships of Selective High-Affinity 5-HT4 Receptor Antagonists: Application to the Design of New Potential Single Photon Emission Computed Tomography (SPECT) Tracers

    PubMed Central

    Dubost, Emmanuelle; Dumas, Noé; Fossey, Christine; Magnelli, Rosa; Butt-Gueulle, Sabrina; Ballandonne, Céline; Caignard, Daniel H.; Dulin, Fabienne; de-Oliveira Santos, Jana Sopkova; Millet, Philippe; Charnay, Yves; Rault, Sylvain; Cailly, Thomas; Fabis, Frederic

    2012-01-01

    The work described herein aims at finding new potential ligands for the brain imaging of 5-HT4 receptors using single-photon emission computed tomography (SPECT). Starting from the non-substituted phenanthridine compound 4a exhibiting a Ki value of 51 nM on 5-HT4R, we explored structure-affinity in this series. We found that substitution in position 4 of the tricycle with a fluorine atom gave the best result. Introduction of an additional nitrogen atom inside the tricyclic framework led to increase both the affinity and the selectivity for 5-HT4R suggesting the design of the antagonist 4v exhibiting a high affinity of 0.04 nM. Several iodinated analogues were then synthesized as potential SPECT tracers. The iodinated compound 11d was able to displace the reference radioiodinated 5-HT4R antagonist (1-butylpiperidin-4-yl)methyl-8-amino-7-iodo[123I]-2,3-dihydrobenzo[b][1,4]dioxine-5-carboxylate ([123I]1, [123I]SB 207710) both in vitro and in vivo in brain. Compound 11d was radiolabeled with [125I]iodine, providing a potential SPECT candidate for brain imaging of 5-HT4R. PMID:23102207

  11. Investigating Metabotropic Glutamate Receptor 5 Allosteric Modulator Cooperativity, Affinity, and Agonism: Enriching Structure-Function Studies and Structure-Activity Relationships

    PubMed Central

    Gregory, Karen J.; Noetzel, Meredith J.; Rook, Jerri M.; Vinson, Paige N.; Stauffer, Shaun R.; Rodriguez, Alice L.; Emmitte, Kyle A.; Zhou, Ya; Chun, Aspen C.; Felts, Andrew S.; Chauder, Brian A.; Lindsley, Craig W.; Niswender, Colleen M.

    2012-01-01

    Drug discovery programs increasingly are focusing on allosteric modulators as a means to modify the activity of G protein-coupled receptor (GPCR) targets. Allosteric binding sites are topographically distinct from the endogenous ligand (orthosteric) binding site, which allows for co-occupation of a single receptor with the endogenous ligand and an allosteric modulator that can alter receptor pharmacological characteristics. Negative allosteric modulators (NAMs) inhibit and positive allosteric modulators (PAMs) enhance the affinity and/or efficacy of orthosteric agonists. Established approaches for estimation of affinity and efficacy values for orthosteric ligands are not appropriate for allosteric modulators, and this presents challenges for fully understanding the actions of novel modulators of GPCRs. Metabotropic glutamate receptor 5 (mGlu5) is a family C GPCR for which a large array of allosteric modulators have been identified. We took advantage of the many tools for probing allosteric sites on mGlu5 to validate an operational model of allosterism that allows quantitative estimation of modulator affinity and cooperativity values. Affinity estimates derived from functional assays fit well with affinities measured in radioligand binding experiments for both PAMs and NAMs with diverse chemical scaffolds and varying degrees of cooperativity. We observed modulation bias for PAMs when we compared mGlu5-mediated Ca2+ mobilization and extracellular signal-regulated kinase 1/2 phosphorylation data. Furthermore, we used this model to quantify the effects of mutations that reduce binding or potentiation by PAMs. This model can be applied to PAM and NAM potency curves in combination with maximal fold-shift data to derive reliable estimates of modulator affinities. PMID:22863693

  12. Detection of multiple H3 receptor affinity states utilizing [3H]A-349821, a novel, selective, non-imidazole histamine H3 receptor inverse agonist radioligand.

    PubMed

    Witte, David G; Yao, Betty Bei; Miller, Thomas R; Carr, Tracy L; Cassar, Steven; Sharma, Rahul; Faghih, Ramin; Surber, Bruce W; Esbenshade, Timothy A; Hancock, Arthur A; Krueger, Kathleen M

    2006-07-01

    1. A-349821 is a selective histamine H3 receptor antagonist/inverse agonist. Herein, binding of the novel non-imidazole H3 receptor radioligand [3H]A-349821 to membranes expressing native or recombinant H3 receptors from rat or human sources was characterized and compared with the binding of the agonist [3H]N--methylhistamine ([3H]NMH). 2. [3H]A-349821 bound with high affinity and specificity to an apparent single class of saturable sites and recognized human H3 receptors with 10-fold higher affinity compared to rat H3 receptors. [3H]A-349821 detected larger populations of receptors compared to [3H]NMH. 3. Displacement of [3H]A-349821 binding by H3 receptor antagonists/inverse agonists was monophasic, suggesting recognition of a single binding site, while that of H3 receptor agonists was biphasic, suggesting recognition of both high- and low-affinity H3 receptor sites. 4. pKi values of high-affinity binding sites for H3 receptor competitors utilizing [3H]A-349821 were highly correlated with pKi values obtained with [3H]NalphaMH, consistent with labelling of H3 receptors by [3H]A-349821. 5. Unlike assays utilizing [3H]NMH, addition of GDP had no effect on saturation parameters measured with [3H]A-349821, while displacement of [3H]A-349821 binding by the H3 receptor agonist histamine was sensitive to GDP. 6. In conclusion, [3H]A-349821 labels interconvertible high- and low-affinity states of the H3 receptor, and displays improved selectivity over imidazole-containing H3 receptor antagonist radioligands. [3H]A-349821 competition studies showed significant differences in the proportions and potencies of high- and low-affinity sites across species, providing new information about the fundamental pharmacological nature of H3 receptors.

  13. Bicarbonate-form anion exchange: affinity, regeneration, and stoichiometry.

    PubMed

    Rokicki, Christopher A; Boyer, Treavor H

    2011-01-01

    Magnetic ion exchange (MIEX) is an effective process for removing dissolved organic carbon (DOC) from natural waters, but its implementation has been limited due to production of waste sodium chloride solution (i.e., brine) from the regeneration process. Chloride is of concern because elevated concentrations can have adverse effects on engineered and natural systems. The goal of this research was to explore the efficacy of using anion exchange resin with bicarbonate as the mobile counter ion, which would produce a non-chloride regeneration solution. It was found that bicarbonate-form MIEX resin had a similar affinity as chloride-form MIEX resin for sulfate, nitrate, DOC, and ultraviolet-absorbing substances. Both bicarbonate-form and chloride-form MIEX resins showed the greatest removal efficiencies as fresh resin, and removal efficiency decreased with multiple regeneration cycles. Nevertheless, sodium bicarbonate solution was as effective as sodium chloride solution at regenerating MIEX resin. Regeneration of the bicarbonate-form MIEX resin was illustrated by sparging carbon dioxide gas in a water/resin slurry. This regeneration process would eliminate the need for the addition of salts such as sodium chloride or sodium bicarbonate. The stoichiometry of the bicarbonate-form resin revealed that the bicarbonate was deprotonating within the resin matrix leading to a mixture of both carbonate and bicarbonate mobile counter ions. This work makes an important contribution to ion exchange applications for water treatment by evaluating the affinity, regeneration, and stoichiometry of bicarbonate-form anion exchange.

  14. Flexible Molybdenum Electrodes towards Designing Affinity Based Protein Biosensors

    PubMed Central

    Kamakoti, Vikramshankar; Panneer Selvam, Anjan; Radha Shanmugam, Nandhinee; Muthukumar, Sriram; Prasad, Shalini

    2016-01-01

    Molybdenum electrode based flexible biosensor on porous polyamide substrates has been fabricated and tested for its functionality as a protein affinity based biosensor. The biosensor performance was evaluated using a key cardiac biomarker; cardiac Troponin-I (cTnI). Molybdenum is a transition metal and demonstrates electrochemical behavior upon interaction with an electrolyte. We have leveraged this property of molybdenum for designing an affinity based biosensor using electrochemical impedance spectroscopy. We have evaluated the feasibility of detection of cTnI in phosphate-buffered saline (PBS) and human serum (HS) by measuring impedance changes over a frequency window from 100 mHz to 1 MHz. Increasing changes to the measured impedance was correlated to the increased dose of cTnI molecules binding to the cTnI antibody functionalized molybdenum surface. We achieved cTnI detection limit of 10 pg/mL in PBS and 1 ng/mL in HS medium. The use of flexible substrates for designing the biosensor demonstrates promise for integration with a large-scale batch manufacturing process. PMID:27438863

  15. Expression and affinity purification of recombinant proteins from plants

    NASA Technical Reports Server (NTRS)

    Desai, Urvee A.; Sur, Gargi; Daunert, Sylvia; Babbitt, Ruth; Li, Qingshun

    2002-01-01

    With recent advances in plant biotechnology, transgenic plants have been targeted as an inexpensive means for the mass production of proteins for biopharmaceutical and industrial uses. However, the current plant purification techniques lack a generally applicable, economic, large-scale strategy. In this study, we demonstrate the purification of a model protein, beta-glucuronidase (GUS), by employing the protein calmodulin (CaM) as an affinity tag. In the proposed system, CaM is fused to GUS. In the presence of calcium, the calmodulin fusion protein binds specifically to a phenothiazine-modified surface of an affinity column. When calcium is removed with a complexing agent, e.g., EDTA, calmodulin undergoes a conformational change allowing the dissociation of the calmodulin-phenothiazine complex and, therefore, permitting the elution of the GUS-CaM fusion protein. The advantages of this approach are the fast, efficient, and economical isolation of the target protein under mild elution conditions, thus preserving the activity of the target protein. Two types of transformation methods were used in this study, namely, the Agrobacterium-mediated system and the viral-vector-mediated transformation system. Copyright 2002 Elsevier Science (USA).

  16. The Mobile Phone Affinity Scale: Enhancement and Refinement

    PubMed Central

    Rosen, Rochelle K

    2016-01-01

    Background Existing instruments that assess individuals’ relationships with mobile phones tend to focus on negative constructs such as addiction or dependence, and appear to assume that high mobile phone use reflects pathology. Mobile phones can be beneficial for health behavior change, disease management, work productivity, and social connections, so there is a need for an instrument that provides a more balanced assessment of the various aspects of individuals’ relationships with mobile phones. Objective The purpose of this research was to develop, revise, and validate the Mobile Phone Affinity Scale, a multi-scale instrument designed to assess key factors associated with mobile phone use. Methods Participants (N=1058, mean age 33) were recruited from Amazon Mechanical Turk between March and April of 2016 to complete a survey that assessed participants’ mobile phone attitudes and use, anxious and depressive symptoms, and resilience. Results Confirmatory factor analysis supported a 6-factor model. The final measure consisted of 24 items, with 4 items on each of 6 factors: Connectedness, Productivity, Empowerment, Anxious Attachment, Addiction, and Continuous Use. The subscales demonstrated strong internal consistency (Cronbach alpha range=0.76-0.88, mean 0.83), and high item factor loadings (range=0.57-0.87, mean 0.75). Tests for validity further demonstrated support for the individual subscales. Conclusions Mobile phone affinity may have an important impact in the development and effectiveness of mobile health interventions, and continued research is needed to assess its predictive ability in health behavior change interventions delivered via mobile phones. PMID:27979792

  17. Compensating Enthalpic and Entropic Changes Hinder Binding Affinity Optimization

    SciTech Connect

    Lafont,V.; Armstrong, A.; Ohtaka, H.; Kiso, Y.; Amzel, L.; Freire, E.

    2007-01-01

    A common strategy to improve the potency of drug candidates is to introduce chemical functionalities, like hydrogen bond donors or acceptors, at positions where they are able to establish strong interactions with the target. However, it is often observed that the added functionalities do not necessarily improve potency even if they form strong hydrogen bonds. Here, we explore the thermodynamic and structural basis for those observations. KNI-10033 is a potent experimental HIV-1 protease inhibitor with picomolar affinity against the wild-type enzyme (Kd = 13 pm). The potency of the inhibitor is the result of favorable enthalpic (?H = -8.2 kcal/mol) and entropic (-T?S = -6.7 kcal/mol) interactions. The replacement of the thioether group in KNI-10033 by a sulfonyl group (KNI-10075) results in a strong hydrogen bond with the amide of Asp 30B of the HIV-1 protease. This additional hydrogen bond improves the binding enthalpy by 3.9 kcal/mol; however, the enthalpy gain is completely compensated by an entropy loss, resulting in no affinity change. Crystallographic and thermodynamic analysis of the inhibitor/protease complexes indicates that the entropy losses are due to a combination of conformational and solvation effects. These results provide a set of practical guidelines aimed at overcoming enthalpy/entropy compensation and improve binding potency.

  18. 01-ERD-111 - The Development of Synthetic High Affinity Ligands

    SciTech Connect

    Perkins, J; Balhorn, R; Cosman, M; Lightstone, F; Zeller, L

    2004-02-05

    The aim of this project was to develop Synthetic High-Affinity Ligands (SHALs), which bind with high affinity and specificity to proteins of interest for national security and cancer therapy applications. The aim of producing synthetic ligands for sensory devices as an alternative to antibody-based detection assays and therapeutic agents is to overcome the drawbacks associated with antibody-based in next-generation sensors and systems. The focus area of the project was the chemical synthesis of the SHALs. The project concentrated on two different protein targets. (a) The C fragment of tetanus and botulinum toxin, potential biowarfare agents. A SHAL for tetanus or botulinum toxin would be incorporated into a sensory device for the toxins. (b) HLA-DR10, a protein found in high abundance on the surface of Non-Hodgkins Lymphoma. A SHAL specific to a tumor marker, labeled with a radionuclide, would enable the targeted delivery of radiation therapy to metastatic disease. The technical approach used to develop a SHAL for each protein target will be described in more detail below. However, in general, the development of a SHAL requires a combination of computational modeling techniques, modern nuclear magnetic resonance spectroscopy (NMR) and synthetic chemistry.

  19. Robust activation method for negative electron affinity photocathodes

    DOEpatents

    Mulhollan, Gregory A.; Bierman, John C.

    2011-09-13

    A method by which photocathodes(201), single crystal, amorphous, or otherwise ordered, can be surface modified to a robust state of lowered and in best cases negative, electron affinity has been discovered. Conventional methods employ the use of Cs(203) and an oxidizing agent(207), typically carried by diatomic oxygen or by more complex molecules, for example nitrogen trifluoride, to achieve a lowered electron affinity(404). In the improved activation method, a second alkali, other than Cs(205), is introduced onto the surface during the activation process, either by co-deposition, yo-yo, or sporadic or intermittent application. Best effect for GaAs photocathodes has been found through the use of Li(402) as the second alkali, though nearly the same effect can be found by employing Na(406). Suitable photocathodes are those which are grown, cut from boules, implanted, rolled, deposited or otherwise fabricated in a fashion and shape desired for test or manufacture independently supported or atop a support structure or within a framework or otherwise affixed or suspended in the place and position required for use.

  20. Affinity purification of copper chelating peptides from chickpea protein hydrolysates.

    PubMed

    Megías, Cristina; Pedroche, Justo; Yust, Maria M; Girón-Calle, Julio; Alaiz, Manuel; Millan, Francisco; Vioque, Javier

    2007-05-16

    Chickpea protein hydrolysates obtained with alcalase and flavourzyme were used for purification of copper chelating peptides by affinity chromatography using copper immobilized on solid supports. The chelating activity of purified peptides was indirectly measured by the inhibition of beta-carotene oxidation in the presence of copper. Two protein hydrolysates, obtained after 10 and 100 min of hydrolysis, were the most inhibitory of beta-carotene oxidation. Purified copper chelating peptides from these protein hydrolysates contained 19.7 and 35.1% histidine, respectively, in comparison to 2.7 and 2.6% in the protein hydrolysates. Chelating peptides from hydrolysate obtained after 10 min of hydrolysis were the most antioxidative being 8.3 times more antioxidative than the hydrolysate, while chelating peptides purified from protein hydrolysate obtained after 100 min were 3.1 times more antioxidative than its hydrolysate. However, the histidine content was higher in peptides derived from the 100 min hydrolysate (19.7 against 35.1% in 10 min hydrolysate), indicating that this amino acid is not the only factor involved in the antioxidative activity, and other factors such as peptide size or amino acid sequence are also determinant. This manuscript shows that affinity chromatography is a useful procedure for purification of copper chelating peptides. This method can be extended to other metals of interest in nutrition, such as calcium, iron, or zinc. Purified chelating peptides, in addition to their antioxidative properties, may also be useful in food mineral fortification for increasing the bioavailability of these metals.

  1. Innate immunity probed by lipopolysaccharides affinity strategy and proteomics.

    PubMed

    Giangrande, Chiara; Colarusso, Lucia; Lanzetta, Rosa; Molinaro, Antonio; Pucci, Piero; Amoresano, Angela

    2013-01-01

    Lipopolysaccharides (LPSs) are ubiquitous and vital components of the cell surface of Gram-negative bacteria that have been shown to play a relevant role in the induction of the immune-system response. In animal and plant cells, innate immune defenses toward microorganisms are triggered by the perception of pathogen associated molecular patterns. These are conserved and generally indispensable microbial structures such as LPSs that are fundamental in the Gram-negative immunity recognition. This paper reports the development of an integrated strategy based on lipopolysaccharide affinity methodology that represents a new starting point to elucidate the molecular mechanisms elicited by bacterial LPS and involved in the different steps of innate immunity response. Biotin-tagged LPS was immobilized on streptavidin column and used as a bait in an affinity capture procedure to identify protein partners from human serum specifically interacting with this effector. The complex proteins/lipopolysaccharide was isolated and the protein partners were fractionated by gel electrophoresis and identified by mass spectrometry. This procedure proved to be very effective in specifically binding proteins functionally correlated with the biological role of LPS. Proteins specifically bound to LPS essentially gathered within two functional groups, regulation of the complement system (factor H, C4b, C4BP, and alpha 2 macroglobulin) and inhibition of LPS-induced inflammation (HRG and Apolipoproteins). The reported strategy might have important applications in the elucidation of biological mechanisms involved in the LPSs-mediated molecular recognition and anti-infection responses.

  2. Self-affinity in the dengue fever time series

    NASA Astrophysics Data System (ADS)

    Azevedo, S. M.; Saba, H.; Miranda, J. G. V.; Filho, A. S. Nascimento; Moret, M. A.

    2016-06-01

    Dengue is a complex public health problem that is common in tropical and subtropical regions. This disease has risen substantially in the last three decades, and the physical symptoms depict the self-affine behavior of the occurrences of reported dengue cases in Bahia, Brazil. This study uses detrended fluctuation analysis (DFA) to verify the scale behavior in a time series of dengue cases and to evaluate the long-range correlations that are characterized by the power law α exponent for different cities in Bahia, Brazil. The scaling exponent (α) presents different long-range correlations, i.e. uncorrelated, anti-persistent, persistent and diffusive behaviors. The long-range correlations highlight the complex behavior of the time series of this disease. The findings show that there are two distinct types of scale behavior. In the first behavior, the time series presents a persistent α exponent for a one-month period. For large periods, the time series signal approaches subdiffusive behavior. The hypothesis of the long-range correlations in the time series of the occurrences of reported dengue cases was validated. The observed self-affinity is useful as a forecasting tool for future periods through extrapolation of the α exponent behavior. This complex system has a higher predictability in a relatively short time (approximately one month), and it suggests a new tool in epidemiological control strategies. However, predictions for large periods using DFA are hidden by the subdiffusive behavior.

  3. Impact of crystalline quality on neuronal affinity of pristine graphene.

    PubMed

    Veliev, Farida; Briançon-Marjollet, Anne; Bouchiat, Vincent; Delacour, Cécile

    2016-04-01

    Due to its outstanding mechanical and electrical properties as well as chemical inertness, graphene has attracted a growing interest in the field of bioelectric interfacing. Herein, we investigate the suitability of pristine, i.e. without a cell adhesive coating, chemical vapor deposition (CVD) grown monolayer graphene to act as a platform for neuronal growth. We study the development of primary hippocampal neurons grown on bare graphene (transferred on glass coverslip) for up to 5 days and show that pristine graphene significantly improves the neurons adhesion and outgrowth at the early stage of culture (1-2 days in vitro). At the later development stage, neurons grown on coating free graphene (untreated with poly-L-lysine) show remarkably well developed neuritic architecture similar to those cultured on conventional poly-L-lysine coated glass coverslips. This exceptional possibility to bypass the adhesive coating allows a direct electrical contact of graphene to the cells and reveals its great potential for chronic medical implants and tissue engineering. Moreover, regarding the controversial results obtained on the neuronal affinity of pristine graphene and its ability to support neuronal growth without the need of polymer or protein coating, we found that the crystallinity of CVD grown graphene plays an important role in neuronal attachment, outgrowth and axonal specification. In particular, we show that the decreasing crystalline quality of graphene tunes the neuronal affinity from highly adhesive to fully repellent.

  4. Purification of cytochrome c oxidase by lysine-affinity chromatography.

    PubMed

    Felsch, J; Kotake, S; Copeland, R A

    1992-02-01

    A method for the purification of cytochrome c oxidase that is based on the affinity of this enzyme for polycations such as poly-L-lysine is described. When detergent extracts of bovine cardiac mitochondria were applied to either a poly-L-lysine-agarose or a lysine-Sepharose column at low ionic strength, cytochrome c oxidase was found to adhere tightly, whereas the bulk of the proteins were eluted by washing with the same buffer. The cytochrome c oxidase was eluted by application of a linear potassium chloride gradient to the columns. The resulting enzyme was identical to that obtained by more traditional purification methods in terms of its subunit composition, optical and resonance Raman spectra, and cytochrome c oxidizing activity. When detergent extracts of spheroplasts from Paracoccus denitrificans were applied to these columns, the cytochrome c oxidase from this organism was also found to adhere tightly. Thus this purification method appears applicable to both prokaryotic and eukaryotic forms of the enzyme. The advantages of this new purification method are that it is less labor intensive than the traditional procedure and less expensive than methods based on cytochrome c-affinity chromatography.

  5. Specific affinity between fibronectin and the epidermolysis bullosa acquisita antigen.

    PubMed Central

    Woodley, D T; O'Keefe, E J; McDonald, J A; Reese, M J; Briggaman, R A; Gammon, W R

    1987-01-01

    Autoantibodies in the skin and sera of patients with epidermolysis bullosa acquisita bind to a large matrix molecule within the lamina densa region of skin basement membrane. At the site of these immune complexes, the epidermis separates from the dermis, which creates a subepidermal blister just below the lamina densa. The target molecule for the autoantibodies is in close apposition to fibronectin, a major extracellular matrix molecule that is abundant in the upper dermis of skin. In this report, we show specific affinity between fibronectin and the 290,000-D chain of the epidermolysis bullosa acquisita antigen, and that this affinity is mediated by the gelatin/collagen-binding domain of fibronectin (Mr = 60,000). Since blistering in epidermolysis bullosa acquisita often occurs in the absence of clinical and histological inflammation, a direct interruption in the fibronectin-epidermolysis bullosa acquisita antigen bond may be involved in the pathogenesis of epidermal-dermal disadherence that occurs in this bullous disease. Images PMID:3584471

  6. High-affinity carbamate analogues of morphinan at opioid receptors.

    PubMed

    Peng, Xuemei; Knapp, Brian I; Bidlack, Jean M; Neumeyer, John L

    2007-03-15

    A series of carbamate analogues were synthesized from levorphanol (1a), cyclorphan (2a) or butorphan (3a) and evaluated in vitro for their binding affinity at mu, delta, and kappa opioid receptors. Functional activities of these compounds were measured in the [(35)S]GTPgammaS binding assay. Phenyl carbamate derivatives 2d and 3d showed the highest binding affinity for kappa receptor (K(i)=0.046 and 0.051 nM) and for mu receptor (K(i)=0.11 and 0.12 nM). Compound 1c showed the highest mu selectivity. The preliminary assay for agonist and antagonist properties of these ligands in stimulating [(35)S]GTPgammaS binding mediated by the kappa opioid receptor illustrated that all of these ligands were kappa agonists. At the mu receptor, compounds 1b, 1c, 2b, and 3b were agonists, while compounds 2c-e and 3c-e were mu agonists/antagonists.

  7. Flexible Molybdenum Electrodes towards Designing Affinity Based Protein Biosensors.

    PubMed

    Kamakoti, Vikramshankar; Panneer Selvam, Anjan; Radha Shanmugam, Nandhinee; Muthukumar, Sriram; Prasad, Shalini

    2016-07-18

    Molybdenum electrode based flexible biosensor on porous polyamide substrates has been fabricated and tested for its functionality as a protein affinity based biosensor. The biosensor performance was evaluated using a key cardiac biomarker; cardiac Troponin-I (cTnI). Molybdenum is a transition metal and demonstrates electrochemical behavior upon interaction with an electrolyte. We have leveraged this property of molybdenum for designing an affinity based biosensor using electrochemical impedance spectroscopy. We have evaluated the feasibility of detection of cTnI in phosphate-buffered saline (PBS) and human serum (HS) by measuring impedance changes over a frequency window from 100 mHz to 1 MHz. Increasing changes to the measured impedance was correlated to the increased dose of cTnI molecules binding to the cTnI antibody functionalized molybdenum surface. We achieved cTnI detection limit of 10 pg/mL in PBS and 1 ng/mL in HS medium. The use of flexible substrates for designing the biosensor demonstrates promise for integration with a large-scale batch manufacturing process.

  8. Iminobiotin affinity columns and their application to retrieval of streptavidin.

    PubMed Central

    Hofmann, K; Wood, S W; Brinton, C C; Montibeller, J A; Finn, F M

    1980-01-01

    A method is described for the retrieval of streptavidin from the culture broth of Streptomyces avidinii. The key step in this procedure is the adsorption of streptavidin from culture concentrates to an affinity column in which iminobiotin is attached to AH-Sepharose 4B. This column binds streptavbidin at pH 11 and releases the protein at pH 4. The recovery of streptavidin is practically quantitative. The pH dependence of the iminobiotin-avidin affinity, discovered by Green [Green, N. M. (1966) Biochem. J. 101, 774-779], has thus found practical application. The streptavidin bound 4.07 +/- 0.02 mol of [14C]biotin per mol and was essentially homogeneous as judged by disc and slab gel electrophoresis. Streptavidin was extensively succinoylated without loss of biotin-binding capacity. The observations that 125I-labeled streptavidin and 125I-labeled succinoylstreptavidin are retained by iminobiotin-AH-Sepharose 4B columns at pH 7.5 and are eluted at pH 4.0 provides a convenient purification method for these iodinated proteins. The technique employed for the retrieval of streptavidin is generally applicable to the isolation of iminobiotinylated molecules. PMID:6933515

  9. Membrane Affinity of Platensimycin and Its Dialkylamine Analogs

    PubMed Central

    Rowe, Ian; Guo, Min; Yasmann, Anthony; Cember, Abigail; Sintim, Herman O.; Sukharev, Sergei

    2015-01-01

    Membrane permeability is a desired property in drug design, but there have been difficulties in quantifying the direct drug partitioning into native membranes. Platensimycin (PL) is a new promising antibiotic whose biosynthetic production is costly. Six dialkylamine analogs of PL were synthesized with identical pharmacophores but different side chains; five of them were found inactive. To address the possibility that their activity is limited by the permeation step, we calculated polarity, measured surface activity and the ability to insert into the phospholipid monolayers. The partitioning of PL and the analogs into the cytoplasmic membrane of E. coli was assessed by activation curve shifts of a re-engineered mechanosensitive channel, MscS, in patch-clamp experiments. Despite predicted differences in polarity, the affinities to lipid monolayers and native membranes were comparable for most of the analogs. For PL and the di-myrtenyl analog QD-11, both carrying bulky sidechains, the affinity for the native membrane was lower than for monolayers (half-membranes), signifying that intercalation must overcome the lateral pressure of the bilayer. We conclude that the biological activity among the studied PL analogs is unlikely to be limited by their membrane permeability. We also discuss the capacity of endogenous tension-activated channels to detect asymmetric partitioning of exogenous substances into the native bacterial membrane and the different contributions to the thermodynamic force which drives permeation. PMID:26247942

  10. Influence of affinity on antibody determination in microtiter ELISA systems

    SciTech Connect

    Peterman, J.H.; Voss, E.W. Jr.; Butler, J.E.

    1986-03-01

    Theoretically, all immunoassays are affinity (Ka) dependent when the product of the antibody (Ab) Ka and the free epitope concentration is less than 10. Thus, the degree of dependence on Ka depends on the concentration of available antigen in the system. The authors examined the binding of /sup 125/I-anti-fluorescein (a-FLU) monoclonal antibodies of different affinities to FLU-gelatin adsorbed on Immunlon 2 microtiter plates. Data obtained were in general agreement with our theoretical predictions; the percent of /sup 125/I-a-FLU which bound correlated with Ka, as did the shape of the titration curves. Measurement of 5 a-FLU monoclonals by the ELISA showed that the determination of Ab concentrations depends on the FLU-gelatin concentration, epitope density, and on the relationship between the Kas of test samples and the reference standard Ab preparation. Thus the ELISA is Ka dependent and should not be used routinely to estimate the absolute amount to Ab in unknown samples. However, the Ka dependency of the ELISA might provide a convenient assay for the estimation of the relative functional Ka (rfKa) of antibody preparations.

  11. Altered catecholamine receptor affinity in rabbit aortic intimal hyperplasia

    SciTech Connect

    O'Malley, M.K.; Cotecchia, S.; Hagen, P.O. )

    1991-08-01

    Intimal thickening is a universal response to endothelial denudation and is also thought to be a precursor of atherosclerosis. The authors have demonstrated selective supersensitivity in arterial intimal hyperplasia to norepinephrine and they now report a possible mechanism for this. Binding studies in rabbit aorta with the selective alpha 1-adrenergic radioligand 125I-HEAT demonstrated that there was no change in receptor density (20 {plus minus} 4 fmole/10(6) cells) in intact vascular smooth muscle cells at either 5 or 14 days after denudation. However, competition studies showed a 2.6-fold increase in alpha 1-adrenergic receptor affinity for norepinephrine in intimal hyperplastic tissue (P less than 0.05). This increased affinity for norepinephrine was associated with a greater increase in 32P-labeled phosphatidylinositol (148% intimal thickening versus 76% control) and phosphatidic acid (151% intimal thickening versus 56% control) following norepinephrine stimulation of free floating rings of intimal hyperplastic aorta. These data suggest that the catecholamine supersensitivity in rabbit aortic intimal hyperplasia is receptor mediated and may be linked to the phosphatidylinositol cycle.

  12. Binding Affinity of Glycoconjugates to BACILLUS Spores and Toxins

    NASA Astrophysics Data System (ADS)

    Rasol, Aveen; Eassa, Souzan; Tarasenko, Olga

    2010-04-01

    Early recognition of Bacillus cereus group species is important since they can cause food-borne illnesses and deadly diseases in humans. Glycoconjugates (GCs) are carbohydrates covalently linked to non-sugar moieties including lipids, proteins or other entities. GCs are involved in recognition and signaling processes intrinsic to biochemical functions in cells. They also stimulate cell-cell adhesion and subsequent recognition and activation of receptors. We have demonstrated that GCs are involved in Bacillus cereus spore recognition. In the present study, we have investigated whether GCs possess the ability to bind and recognize B. cereus spores and Bacillus anthracis recombinant single toxins (sTX) and complex toxins (cTX). The affinity of GCs to spores + sTX and spores + cTX toxins was studied in the binding essay. Our results demonstrated that GC9 and GC10 were able to selectively bind to B. cereus spores and B. anthracis toxins. Different binding affinities for GCs were found toward Bacillus cereus spores + sTX and spores + cTX. Dilution of GCs does not impede the recognition and binding. Developed method provides a tool for simultaneous recognition and targeting of spores, bacteria toxins, and/or other entities.

  13. Protein A affinity precipitation of human immunoglobulin G.

    PubMed

    Janoschek, Lars; Freiherr von Roman, Matthias; Berensmeier, Sonja

    2014-08-15

    The potential of protein A affinity precipitation as an alternative method for traditional antibody purification techniques was investigated. Recombinant produced protein A from Staphylococcus aureus (SpA) was covalently linked to the pH-responsive copolymer Eudragit(®) S-100 and used for purification of human immunoglobulin G (hIgG). The Eudragit-SpA conjugate had a static binding capacity of 93.9 ± 2.8 mg hIgG per g conjugate and a dissociation constant of 787 ± 67 nM at 7 ± 1°C. The antibody was adsorbed rapidly onto Eudragit-SpA and reached equilibrium within 5 min. An excess of hIgG binding sites, provided by the conjugate, as well as adjusted elution conditions resulted in an appropriate hIgG purification performance. In summary, Eudragit-SpA was successfully applied to capture hIgG from a protein mixture with 65% antibody yield in the elution step. Nearly 96% purity and a purification factor of 12.4 were achieved. The Eudragit-SpA conjugate showed a stable ligand density over several cycles, which enabled reusability for repeated precipitation of hIgG. According to this, pH induced affinity precipitation can be seen as a potential alternative for protein A chromatography in antibody purification processes.

  14. Benzodiazepines: electron affinity, receptors and cell signaling - a multifaceted approach.

    PubMed

    Kovacic, Peter; Ott, Nadia; Cooksy, Andrew L

    2013-12-01

    This report entails a multifaceted approach to benzodiazepine (BZ) action, involving electron affinity, receptors, cell signaling and other aspects. Computations of the electron affinities (EAs) of different BZs have been carried out to establish the effect of various substituents on their EA. These computations were undertaken to serve as a first step in determining what role electron transfer (ET) plays in BZ activity. The calculations were conducted on the premise that the nature of the substituent will either decrease or increase the electron density of the benzene ring, thus altering the ability of the molecule to accept an electron. Investigations were performed on the effect of drug protonation on EA. Similarities involving substituent effects in prior electrochemical studies are also discussed. As part of the multifaceted approach, EA is linked to ET, which appears to play a role in therapeutic activity and toxicity. There is extensive literature dealing with the role of receptors in BZ activity. Significant information on receptor involvement was reported more than 40 years ago. Gamma-aminobutyric acid (GABA) is known to be importantly involved. GABA is a probable mediator of BZ effects. BZ and GABA receptors, although not identical, are physiologically linked. Cell signaling is known to play a part in the biochemistry of BZ action. Various factors participated, such as gene expression, allosteric influence, toxic effects and therapeutic action. Evidence points to involvement of EA and ET in the mode of action in cell signaling. Oxidative stress and antioxidant effects are also addressed.

  15. Telonemia, a new protist phylum with affinity to chromist lineages

    PubMed Central

    Shalchian-Tabrizi, K; Eikrem, W; Klaveness, D; Vaulot, D; Minge, M.A; Le Gall, F; Romari, K; Throndsen, J; Botnen, A; Massana, R; Thomsen, H.A; Jakobsen, K.S

    2006-01-01

    Recent molecular investigations of marine samples taken from different environments, including tropical, temperate and polar areas, as well as deep thermal vents, have revealed an unexpectedly high diversity of protists, some of them forming deep-branching clades within important lineages, such as the alveolates and heterokonts. Using the same approach on coastal samples, we have identified a novel group of protist small subunit (SSU) rDNA sequences that do not correspond to any phylogenetic group previously identified. Comparison with other sequences obtained from cultures of heterotrophic protists showed that the environmental sequences grouped together with Telonema, a genus known since 1913 but of uncertain taxonomic affinity. Phylogenetic analyses using four genes (SSU, Hsp90, alpha-tubulin and beta-tubulin), and accounting for gamma- and covarion-distributed substitution rates, revealed Telonema as a distinct group of species branching off close to chromist lineages. Consistent with these gene trees, Telonema possesses ultrastructures revealing both the distinctness of the group and the evolutionary affinity to chromist groups. Altogether, the data suggest that Telonema constitutes a new eukaryotic phylum, here defined as Telonemia, possibly representing a key clade for the understanding of the early evolution of bikont protist groups, such as the proposed chromalveolate supergroup. PMID:16790418

  16. A global benchmark study using affinity-based biosensors

    PubMed Central

    Rich, Rebecca L.; Papalia, Giuseppe A.; Flynn, Peter J.; Furneisen, Jamie; Quinn, John; Klein, Joshua S.; Katsamba, Phini S.; Waddell, M. Brent; Scott, Michael; Thompson, Joshua; Berlier, Judie; Corry, Schuyler; Baltzinger, Mireille; Zeder-Lutz, Gabrielle; Schoenemann, Andreas; Clabbers, Anca; Wieckowski, Sebastien; Murphy, Mary M.; Page, Phillip; Ryan, Thomas E.; Duffner, Jay; Ganguly, Tanmoy; Corbin, John; Gautam, Satyen; Anderluh, Gregor; Bavdek, Andrej; Reichmann, Dana; Yadav, Satya P.; Hommema, Eric; Pol, Ewa; Drake, Andrew; Klakamp, Scott; Chapman, Trevor; Kernaghan, Dawn; Miller, Ken; Schuman, Jason; Lindquist, Kevin; Herlihy, Kara; Murphy, Michael B.; Bohnsack, Richard; Andrien, Bruce; Brandani, Pietro; Terwey, Danny; Millican, Rohn; Darling, Ryan J.; Wang, Liann; Carter, Quincy; Dotzlaf, Joe; Lopez-Sagaseta, Jacinto; Campbell, Islay; Torreri, Paola; Hoos, Sylviane; England, Patrick; Liu, Yang; Abdiche, Yasmina; Malashock, Daniel; Pinkerton, Alanna; Wong, Melanie; Lafer, Eileen; Hinck, Cynthia; Thompson, Kevin; Primo, Carmelo Di; Joyce, Alison; Brooks, Jonathan; Torta, Federico; Bagge Hagel, Anne Birgitte; Krarup, Janus; Pass, Jesper; Ferreira, Monica; Shikov, Sergei; Mikolajczyk, Malgorzata; Abe, Yuki; Barbato, Gaetano; Giannetti, Anthony M.; Krishnamoorthy, Ganeshram; Beusink, Bianca; Satpaev, Daulet; Tsang, Tiffany; Fang, Eric; Partridge, James; Brohawn, Stephen; Horn, James; Pritsch, Otto; Obal, Gonzalo; Nilapwar, Sanjay; Busby, Ben; Gutierrez-Sanchez, Gerardo; Gupta, Ruchira Das; Canepa, Sylvie; Witte, Krista; Nikolovska-Coleska, Zaneta; Cho, Yun Hee; D’Agata, Roberta; Schlick, Kristian; Calvert, Rosy; Munoz, Eva M.; Hernaiz, Maria Jose; Bravman, Tsafir; Dines, Monica; Yang, Min-Hsiang; Puskas, Agnes; Boni, Erica; Li, Jiejin; Wear, Martin; Grinberg, Asya; Baardsnes, Jason; Dolezal, Olan; Gainey, Melicia; Anderson, Henrik; Peng, Jinlin; Lewis, Mark; Spies, Peter; Trinh, Quyhn; Bibikov, Sergei; Raymond, Jill; Yousef, Mohammed; Chandrasekaran, Vidya; Feng, Yuguo; Emerick, Anne; Mundodo, Suparna; Guimaraes, Rejane; McGirr, Katy; Li, Yue-Ji; Hughes, Heather; Mantz, Hubert; Skrabana, Rostislav; Witmer, Mark; Ballard, Joshua; Martin, Loic; Skladal, Petr; Korza, George; Laird-Offringa, Ite; Lee, Charlene S.; Khadir, Abdelkrim; Podlaski, Frank; Neuner, Phillippe; Rothacker, Julie; Rafique, Ashique; Dankbar, Nico; Kainz, Peter; Gedig, Erk; Vuyisich, Momchilo; Boozer, Christina; Ly, Nguyen; Toews, Mark; Uren, Aykut; Kalyuzhniy, Oleksandr; Lewis, Kenneth; Chomey, Eugene; Pak, Brian J.; Myszka, David G.

    2013-01-01

    To explore the variability in biosensor studies, 150 participants from 20 countries were given the same protein samples and asked to determine kinetic rate constants for the interaction. We chose a protein system that was amenable to analysis using different biosensor platforms as well as by users of different expertise levels. The two proteins (a 50-kDa Fab and a 60-kDa glutathione S-transferase [GST] antigen) form a relatively high-affinity complex, so participants needed to optimize several experimental parameters, including ligand immobilization and regeneration conditions as well as analyte concentrations and injection/dissociation times. Although most participants collected binding responses that could be fit to yield kinetic parameters, the quality of a few data sets could have been improved by optimizing the assay design. Once these outliers were removed, the average reported affinity across the remaining panel of participants was 620 pM with a standard deviation of 980 pM. These results demonstrate that when this biosensor assay was designed and executed appropriately, the reported rate constants were consistent, and independent of which protein was immobilized and which biosensor was used. PMID:19133223

  17. Affinity Labeling of Membrane Receptors Using Tissue-Penetrating Radiations

    PubMed Central

    Wong, Franklin C.; Boja, John; Ho, Beng; Kuhar, Michael J.; Wong, Dean F.

    2013-01-01

    Photoaffinity labeling, a useful in vivo biochemical tool, is limited when applied in vivo because of the poor tissue penetration by ultraviolet (UV) photons. This study investigates affinity labeling using tissue-penetrating radiation to overcome the tissue attenuation and irreversibly label membrane receptor proteins. Using X-ray (115 kVp) at low doses (<50 cGy or Rad), specific and irreversible binding was found on striatal dopamine transporters with 3 photoaffinity ligands for dopamine transporters, to different extents. Upon X-ray exposure (115 kVp), RTI-38 and RTI-78 ligands showed irreversible and specific binding to the dopamine transporter similar to those seen with UV exposure under other conditions. Similarly, gamma rays at higher energy (662 keV) also affect irreversible binding of photoreactive ligands to peripheral benzodiazepine receptors (by PK14105) and to the dopamine (D2) membrane receptors (by azidoclebopride), respectively. This study reports that X-ray and gamma rays induced affinity labeling of membrane receptors in a manner similar to UV with photoreactive ligands of the dopamine transporter, D2 dopamine receptor (D2R), and peripheral benzodiazepine receptor (PBDZR). It may provide specific noninvasive irreversible block or stimulation of a receptor using tissue-penetrating radiation targeting selected anatomic sites. PMID:23936811

  18. Lipid solvation effects contribute to the affinity of Gly-xxx-Gly motif-mediated helix-helix interactions.

    PubMed

    Johnson, Rachel M; Rath, Arianna; Melnyk, Roman A; Deber, Charles M

    2006-07-18

    Interactions between transmembrane helices are mediated by the concave Gly-xxx-Gly motif surface. Whether Gly residues per se are sufficient for selection of this motif has not been established. Here, we used the in vivo TOXCAT assay to measure the relative affinities of all 18 combinations of Gly, Ala, and Ser "small-xxx-small" mutations in glycophorin A (GpA) and bacteriophage M13 major coat protein (MCP) homodimers. Affinity values were compared with the accessibility to a methylene-sized probe of the total surface area of each helix monomer as a measure of solvation by membrane components. A strong inverse correlation was found between nonpolar-group lipid accessibility and dimer affinity (R = 0.75 for GpA, p = 0.013, and R = 0.81 for MCP, p = 0.004), suggesting that lipid as a poor membrane protein solvent, conceptually analogous to water in soluble protein folding, can contribute to dimer stability and help to define helix-helix interfaces.

  19. Affinity and Specificity of Protein U1A-RNA Complex Formation Based on an Additive Component Free Energy Model

    PubMed Central

    Kormos, Bethany L.; Benitex, Yulia; Baranger, Anne M.; Beveridge, David L.

    2007-01-01

    Summary A MM-GBSA computational protocol was used successfully to account for wild type U1A-RNA and F56 U1A mutant experimental binding free energies. The trend in mutant binding free energies compared to wild type is well-reproduced. Following application of a linear-response-like equation to scale the various energy components, the binding free energies agree quantitatively with observed experimental values. Conformational adaptation contributes to the binding free energy for both the protein and the RNA in these systems. Small differences in ΔGs are the result of different and sometimes quite large relative contributions from various energetic components. Residual free energy decomposition indicates differences not only at the site of mutation, but throughout the entire protein. MM-GBSA and ab initio calculations performed on model systems suggest that stacking interactions may nearly, but not completely, account for observed differences in mutant binding affinities. This study indicates that there may be different underlying causes of ostensibly similar experimentally observed binding affinities of different mutants, and thus recommends caution in the interpretation of binding affinities and specificities purely by inspection. PMID:17603075

  20. Low density and high affinity of platelet [3H]paroxetine binding in women with bulimia nervosa.

    PubMed

    Ekman, Agneta; Sundblad-Elverfors, Charlotta; Landén, Mikael; Eriksson, Tomas; Eriksson, Elias

    2006-06-15

    Impaired serotonin transmission has been suggested to be implicated in the pathophysiology of bulimia nervosa. As an indirect measure of brain serotonergic activity, the binding of tritiated ligands to platelet serotonin transporters has been studied in bulimia nervosa as well as in other putatively serotonin-related psychiatric disorders. In this study, the density and affinity of platelet serotonin transporters were assessed in 20 women meeting the DSM-IV criteria for bulimia nervosa and in 14 controls without previous or ongoing eating disorder using [(3)H]paroxetine as a ligand. In comparison to controls, women with bulimia nervosa had a significantly reduced number of platelet binding sites (B(max) = 721 +/- 313 vs. 1145 +/- 293 fmol/mg protein) and an increase in the affinity for the ligand demonstrated by a lower dissociaton constant (K(d) = 33 +/- 10 vs. 44 +/- 10 pM). A significant correlation between B(max) and K(d) values was found in patients but not in controls. Our results support the notion that bulimia nervosa is associated with a reduction in platelet serotonin transporter density. In addition, our study is the first to report that this reduced transporter density in women with bulimia nervosa is accompanied by an increase in the affinity of the transporter for the ligand.

  1. Tryptophan tags and de novo designed complementary affinity ligands for the expression and purification of recombinant proteins.

    PubMed

    Pina, Ana Sofia; Carvalho, Sara; Dias, Ana Margarida G C; Guilherme, Márcia; Pereira, Alice S; Caraça, Luciana T; Coroadinha, Ana Sofia; Lowe, Christopher R; Roque, A Cecília A

    2016-11-11

    A common strategy for the production and purification of recombinant proteins is to fuse a tag to the protein terminal residues and employ a "tag-specific" ligand for fusion protein capture and purification. In this work, we explored the effect of two tryptophan-based tags, NWNWNW and WFWFWF, on the expression and purification of Green Fluorescence Protein (GFP) used as a model fusion protein. The titers obtained with the expression of these fusion proteins in soluble form were 0.11mgml(-1) and 0.48mgml(-1) for WFWFWF and NWNWNW, respectively. A combinatorial library comprising 64 ligands based on the Ugi reaction was prepared and screened for binding GFP-tagged and non-tagged proteins. Complementary ligands A2C2 and A3C1 were selected for the effective capture of NWNWNW and WFWFWF tagged proteins, respectively, in soluble forms. These affinity pairs displayed 10(6)M(-1) affinity constants and Qmax values of 19.11±2.60ugg(-1) and 79.39ugg(-1) for the systems WFWFWF AND NWNWNW, respectively. GFP fused to the WFWFWF affinity tag was also produced as inclusion bodies, and a refolding-on column strategy was explored using the ligand A4C8, selected from the combinatorial library of ligands but in presence of denaturant agents.

  2. Structure-guided development of a high-affinity human Programmed Cell Death-1: Implications for tumor immunotherapy.

    PubMed

    Lázár-Molnár, Eszter; Scandiuzzi, Lisa; Basu, Indranil; Quinn, Thomas; Sylvestre, Eliezer; Palmieri, Edith; Ramagopal, Udupi A; Nathenson, Stanley G; Guha, Chandan; Almo, Steven C

    2017-02-06

    Programmed Cell Death-1 (PD-1) is an inhibitory immune receptor, which plays critical roles in T cell co-inhibition and exhaustion upon binding to its ligands PD-L1 and PD-L2. We report the crystal structure of the human PD-1 ectodomain and the mapping of the PD-1 binding interface. Mutagenesis studies confirmed the crystallographic interface, and resulted in mutant PD-1 receptors with altered affinity and ligand-specificity. In particular, a high-affinity mutant PD-1 (HA PD-1) exhibited 45 and 30-fold increase in binding to PD-L1 and PD-L2, respectively, due to slower dissociation rates. This mutant (A132L) was used to engineer a soluble chimeric Ig fusion protein for cell-based and in vivo studies. HA PD-1 Ig showed enhanced binding to human dendritic cells, and increased T cell proliferation and cytokine production in a mixed lymphocyte reaction (MLR) assay. Moreover, in an experimental model of murine Lewis lung carcinoma, HA PD-1 Ig treatment synergized with radiation therapy to decrease local and metastatic tumor burden, as well as in the establishment of immunological memory responses. Our studies highlight the value of structural considerations in guiding the design of a high-affinity chimeric PD-1 Ig fusion protein with robust immune modulatory properties, and underscore the power of combination therapies to selectively manipulate the PD-1 pathway for tumor immunotherapy.

  3. Development of predictive models for predicting binding affinity of endocrine disrupting chemicals to fish sex hormone-binding globulin.

    PubMed

    Liu, Huihui; Yang, Xianhai; Yin, Cen; Wei, Mengbi; He, Xiao

    2017-02-01

    Disturbing the transport process is a crucial pathway for endocrine disrupting chemicals (EDCs) exerting disrupting endocrine function. However, this mechanism has not received enough attention compared with that of hormones receptors and synthetase. Recently, we have explored the interaction between EDCs and sex hormone-binding globulin of human (hSHBG). In this study, interactions between EDCs and sex hormone-binding globulin of eight fish species (fSHBG) were investigated by employing classification methods and quantitative structure-activity relationships (QSAR). In the modeling, the relative binding affinity (RBA) of a chemical with 17β-estradiol binding to fSHBG was selected as the endpoint. Classification models were developed for two fish species, while QSAR models were established for the other six fish species. Statistical results indicated that the models had satisfactory goodness of fit, robustness and predictive ability, and that application domain covered a large number of endogenous and exogenous steroidal and non-steroidal chemicals. Additionally, by comparing the log RBA values, it was found that the same chemical may have different affinities for fSHBG from different fish species, thus species diversity should be taken into account. However, the affinity of fSHBG showed a high correlation for fishes within the same Order (i.e., Salmoniformes, Cypriniformes, Perciformes and Siluriformes), thus the fSHBG binding data for one fish species could be used to extrapolate other fish species in the same Order.

  4. Electron Affinity of Phenyl-C61-Butyric Acid Methyl Ester (PCBM)

    SciTech Connect

    Larson, Bryon W.; Whitaker, James B.; Wang, Xue B.; Popov, Alexey A.; Rumbles, Garry; Kopidakis, Nikos; Strauss, Steven H.; Boltalina, Olga V.

    2013-07-25

    The gas-phase electron affinity (EA) of phenyl-C61-butyric acid methyl ester (PCBM), one of the best-performing electron acceptors in organic photovoltaic devices, is measured by lowtemperature photoelectron spectroscopy for the first time. The obtained value of 2.63(1) eV is only ca. 0.05 eV lower than that of C60 (2.68(1) eV), compared to a 0.09 V difference in their E1/2 values measured in this work by cyclic voltammetry. Literature E(LUMO) values for PCBM that are typically estimated from cyclic voltammetry, and commonly used as a quantitative measure of acceptor properties, are dispersed over a wide range between -4.3 and -3.62 eV; the reasons for such a huge discrepancy are analyzed here, and the protocol for reliable and consistent estimations of relative fullerene-based acceptor strength in solution is proposed.

  5. Lower the electron affinity by halogenation: an unusual strategy to design superalkali cations.

    PubMed

    Hou, Na; Wu, Di; Li, Ying; Li, Zhi-Ru

    2014-02-19

    A new kind of cationic superatom compounds (M-F)(+) (M = OLi4, NLi5, CLi6, BLi7, and Al14) with low vertical electron affinities (VEA) has been designed based on the distinctive electronic structure of superalkaline-earth atom. The stability of the studied superatom architectures is guaranteed by strong M-fluorine interactions, considerable HOMO-LUMO gaps, as well as large dissociation energies. What is extraordinary is that fluorination plays an important role in lowering the VEA value of M(+) and enables the resulting (M-F)(+) fluorides to join the superalkali family. However, the same strategy does not work as well for the alkaline-earth atoms whose valence electrons are more tightly bound. The comparative study on (OLi4-X)(+) (X = F, Cl, Br) reveals that fluorination is more effective than chlorination and bromination to reduce the VEA value of the OLi4(+) cation. As for the (Al14-X)(+) species, there is no obvious dependence of VEA values on halogen atomic number.

  6. Autoradiographic imaging and quantification of the high-affinity GHB binding sites in rodent brain using (3)H-HOCPCA.

    PubMed

    Klein, A B; Bay, T; Villumsen, I S; Falk-Petersen, C B; Marek, A; Frølund, B; Clausen, R P; Hansen, H D; Knudsen, G M; Wellendorph, P

    2016-11-01

    GHB (γ-hydroxybutyric acid) is a compound endogenous to mammalian brain with high structural resemblance to GABA. GHB possesses nanomolar-micromolar affinity for a unique population of binding sites, but the exact nature of these remains elusive. In this study we utilized the highly selective GHB analogue, 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA) as a tritiated version ((3)H-HOCPCA) to radioactively label the specific GHB high-affinity binding site and gain further insight into the density, distribution and developmental profile of this protein. We show that, in low nanomolar concentrations, (3)H-HOCPCA displays excellent signal-to-noise ratios using rodent brain autoradiography, which makes it a valuable ligand for anatomical quantification of native GHB binding site levels. Our data confirmed that (3)H-HOCPCA labels only the high-affinity specific GHB binding site, found in high density in cortical and hippocampal regions. The experiments revealed markedly stronger binding at pH 6.0 (Kd 73.8 nM) compared to pH 7.4 (Kd 2312 nM), as previously reported for other GHB radioligands but similar Bmax values. Using (3)H-HOCPCA we analyzed the GHB binding protein profile during mouse brain development. Due to the high sensitivity of this radioligand, we were able to detect low levels of specific binding already at E15 in mouse brain, which increased progressively until adulthood. Collectively, we show that (3)H-HOCPCA is a highly sensitive radioligand, offering advantages over the commonly used radioligand (3)H-NCS-382, and thus a very suitable in vitro tool for qualitative and quantitative autoradiography of the GHB high-affinity site.

  7. Recombinant human nerve growth factor is biologically active and labels novel high-affinity binding sites in rat brain

    SciTech Connect

    Altar, C.A.; Burton, L.E.; Bennett, G.L.; Dugich-Djordjevic, M. )

    1991-01-01

    Iodinated recombinant human nerve growth factor (125I-rhNGF) stimulated neurite formation in PC12 cell cultures with a half-maximal potency of 35-49 pg/ml, compared with 39-52 pg/ml for rhNGF. In quantitative ligand autoradiography, the in vitro equilibrium binding of 125I-rhNGF to brain sections showed a 10-fold regional variation in density and was saturable, reversible, and specifically displaced by up to 74% with rhNGF or murine NGF (muNGF). At equilibrium, 125I-rhNGF bound to these sites with high affinity and low capacity (Bmax less than or equal to 13.2 fmol/mg of protein). Calculation of 125I-rhNGF binding affinity by kinetic methods gave average Kd values of 24 and 31 pM. Computer-generated maps revealed binding in brain regions not identified previously with 125I-muNGF, including hippocampus; dentate gyrus; amygdala; paraventricular thalamus; frontal, parietal, occipital, and cingulate cortices; nucleus accumbens; olfactory tubercle; subiculum; pineal gland; and medial geniculate nucleus. NGF binding sites were distributed in a 2-fold increasing medial-lateral gradient in the caudate-putamen and a 2-fold lateral-medial gradient in the nucleus accumbens. 125I-rhNGF binding sites were also found in most areas labeled by 125I-muNGF, including the interpedunucular nucleus, cerebellum, forebrain cholinergic nuclei, caudoventral caudate-putamen, and trigeminal nerve nucleus. 125I-rhNGF binding sites were absent from areas replete with low-affinity NGF binding sites, including circumventricular organs, myelinated fiber bundles, and choroid plexus. The present analysis provides an anatomical differentiation of high-affinity 125I-rhNGF binding sites and greatly expands the number of brain structures that may respond to endogenous NGF or exogenously administered rhNGF.

  8. Copper(II)-based metal affinity chromatography for the isolation of the anticancer agent bleomycin from Streptomyces verticillus culture.

    PubMed

    Gu, Jiesi; Codd, Rachel

    2012-10-01

    The glycopeptide-based bleomycins are structurally complex natural products produced by Streptomyces verticillus used in combination therapy against testicular and other cancers. Bleomycin has a high affinity towards a range of transition metal ions with the 1:1 Fe(II) complex relevant to its mechanism of action in vivo and the 1:1 Cu(II) complex relevant to its production from culture. The affinity between Cu(II) and bleomycin was the underlying principle for using Cu(II)-based metal affinity chromatography in this work to selectively capture bleomycin from crude S. verticillus culture. A solution of standard bleomycin was retained at a binding capacity of 300 nmol mL(-1) on a 1-mL bed volume of Cu(II)-loaded iminodiacetate (IDA) resin at pH 9 via the formation of the heteroleptic immobilized complex [Cu(IDA)(bleomycin)]. Bleomycin was eluted from the resin at pH 5 as the metal-free ligand under conditions where pK(a) (IDA)affinity chromatography as a green chemistry platform for streamlined access to this high-value therapeutic agent.

  9. Fatigue damage prognosis of internal delamination in composite plates under cyclic compression loadings using affine arithmetic as uncertainty propagation tool

    NASA Astrophysics Data System (ADS)

    Gbaguidi, Audrey J.-M.

    compressive-buckling loadings is experimentally studied, and the delamination lengths obtained are compared with the predicted values to check the performance of Affine Arithmetic as an uncertainty propagation tool.

  10. The Value of Reciprocity

    ERIC Educational Resources Information Center

    Molm, Linda D.; Schaefer, David R.; Collett, Jessica L.

    2007-01-01

    The value of reciprocity in social exchange potentially comprises both instrumental value (the value of the actual benefits received from exchange) and communicative or symbolic value (the expressive and uncertainty reduction value conveyed by features of the act of reciprocity itself). While all forms of exchange provide instrumental value, we…

  11. Low-affinity Na+ uptake in the halophyte Suaeda maritima.

    PubMed

    Wang, Suo-Min; Zhang, Jin-Lin; Flowers, Timothy J

    2007-10-01

    Na(+) uptake by plant roots has largely been explored using species that accumulate little Na(+) into their shoots. By way of contrast, the halophyte Suaeda maritima accumulates, without injury, concentrations of the order of 400 mM NaCl in its leaves. Here we report that cAMP and Ca(2+) (blockers of nonselective cation channels) and Li(+) (a competitive inhibitor of Na(+) uptake) did not have any significant effect on the uptake of Na(+) by the halophyte S. maritima when plants were in 25 or 150 mM NaCl (150 mM NaCl is near optimal for growth). However, the inhibitors of K(+) channels, TEA(+) (10 mM), Cs(+) (3 mM), and Ba(2+) (5 mM), significantly reduced the net uptake of Na(+) from 150 mM NaCl over 48 h, by 54%, 24%, and 29%, respectively. TEA(+) (10 mM), Cs(+) (3 mM), and Ba(2+) (1 mm) also significantly reduced (22)Na(+) influx (measured over 2 min in 150 mM external NaCl) by 47%, 30%, and 31%, respectively. In contrast to the situation in 150 mm NaCl, neither TEA(+) (1-10 mM) nor Cs(+) (0.5-10 mM) significantly reduced net Na(+) uptake or (22)Na(+) influx in 25 mM NaCl. Ba(2+) (at 5 mm) did significantly decrease net Na(+) uptake (by 47%) and (22)Na(+) influx (by 36% with 1 mM Ba(2+)) in 25 mM NaCl. K(+) (10 or 50 mM) had no effect on (22)Na(+) influx at concentrations below 75 mM NaCl, but the influx of (22)Na(+) was inhibited by 50 mM K(+) when the external concentration of NaCl was above 75 mM. The data suggest that neither nonselective cation channels nor a low-affinity cation transporter are major pathways for Na(+) entry into root cells. We propose that two distinct low-affinity Na(+) uptake pathways exist in S. maritima: Pathway 1 is insensitive to TEA(+) or Cs(+), but sensitive to Ba(2+) and mediates Na(+) uptake under low salinities (25 mM NaCl); pathway 2 is sensitive to TEA(+), Cs(+), and Ba(2+) and mediates Na(+) uptake under higher external salt concentrations (150 mM NaCl). Pathway 1 might be mediated by a high-affinity K transporter

  12. Picomolar affinity fibronectin domains engineered utilizing loop length diversity, recursive mutagenesis, and loop shuffling.

    PubMed

    Hackel, Benjamin J; Kapila, Atul; Wittrup, K Dane

    2008-09-19

    The 10th type III domain of human fibronectin (Fn3) has been validated as an effective scaffold for molecular recognition. In the current work, it was desired to improve the robustness of selection of stable, high-affinity Fn3 domains. A yeast surface display library of Fn3 was created in which three solvent-exposed loops were diversified in terms of amino acid composition and loop length. The library was screened by fluorescence-activated cell sorting to isolate binders to lysozyme. An affinity maturation scheme was developed to rapidly and broadly diversify populations of clones by random mutagenesis as well as homologous recombination-driven shuffling of mutagenized loops. The novel library and affinity maturation scheme combined to yield stable, monomeric Fn3 domains with 3 pM affinity for lysozyme. A secondary affinity maturation identified a stable 1.1 pM binder, the highest affinity yet reported for an Fn3 domain. In addition to extension of the affinity limit for this scaffold, the results demonstrate the ability to achieve high-affinity binding while preserving stability and the monomeric state. This library design and affinity maturation scheme is highly efficient, utilizing an initial diversity of 2x10(7) clones and screening only 1x10(8) mutants (totaled over all affinity maturation libraries). Analysis of intermediate populations revealed that loop length diversity, loop shuffling, and recursive mutagenesis of diverse populations are all critical components.

  13. Interaction of natural polyphenols with α-amylase in vitro: molecular property-affinity relationship aspect.

    PubMed

    Xiao, Jianbo; Kai, Guoyin; Ni, Xiaoling; Yang, Fan; Chen, Xiaoqing

    2011-06-01

    The relationship between the structural properties of natural polyphenols and their affinities for α-amylase were investigated by fluorescence titration analysis. The binding process with α-amylase was strongly influenced by the structural differences of the compounds under study. For instance, the methylation of the hydroxyl group in flavonoids increased their binding affinities for α-amylase by 2.14 to 7.76 times. The hydroxylation on rings A, B, and C of flavonoids also significantly affected their affinities for α-amylase. The glycosylation of isoflavones and flavanones reduced their affinities for α-amylase and the glycosylation of flavones and flavonols enhanced their affinities for α-amylase. Hydrogenation of the C2=C3 double bond of flavonoids decreased the binding affinities. The galloylated catechins had higher binding affinities with α-amylase than non-galloylated catechins and the pyrogallol-type catechins had higher affinities than the catechol-type catechins. The presence of the galloyl moiety is the most decisive factor. The glycosylation of resveratrol decreased its affinity for α-amylase. The esterification of gallic acid significantly reduced the affinity for α-amylase. The binding interaction between polyphenols and α-amylase was mainly caused by hydrophobic forces.

  14. Boronate affinity materials for separation and molecular recognition: structure, properties and applications.

    PubMed

    Li, Daojin; Chen, Yang; Liu, Zhen

    2015-11-21

    Boronate affinity materials, as unique sorbents, have emerged as important media for the selective separation and molecular recognition of cis-diol-containing compounds. With the introduction of boronic acid functionality, boronate affinity materials exhibit several significant advantages, including broad-spectrum selectivity, reversible covalent binding, pH-controlled capture/release, fast association/desorption kinetics, and good compatibility with mass spectrometry. Because cis-diol-containing biomolecules, including nucleosides, saccharides, glycans, glycoproteins and so on, are the important targets in current research frontiers such as metabolomics, glycomics and proteomics, boronate affinity materials have gained rapid development and found increasing applications in the last decade. In this review, we critically survey recent advances in boronate affinity materials. We focus on fundamental considerations as well as important progress and new boronate affinity materials reported in the last decade. We particularly discuss on the effects of the structure of boronate ligands and supporting materials on the properties of boronate affinity materials, such as binding pH, affinity, selectivity, binding capacity, tolerance for interference and so on. A variety of promising applications, including affinity separation, proteomics, metabolomics, disease diagnostics and aptamer selection, are introduced with main emphasis on how boronate affinity materials can solve the issues in the applications and what merits boronate affinity materials can provide.

  15. Characterization of high affinity (/sup 3/H)triazolam binding in rat brain

    SciTech Connect

    Earle, M.; Concas, A.; Yamamura, H.I.

    1986-03-01

    The hypnotic Triazolam (TZ), a triazolo (1,4)-benzodiazepine, displays a short physiological half life and has been used for the treatment of insomnia related to anxiety states. Specific binding properties of this recently tritiated TZ were characterized. The authors major objectives were the direct measurement of the temperature dependence and the GABA effect on (/sup 3/H)TZ binding. Saturation studies showed a shift to lower affinity at 37/sup 0/C (K/sub d/ = 0.25 +/- 0.01 nM at O/sup 0/C; K/sub d/ = 1.46 +/- 0.03 nM at 37/sup 0/C) while the B/sub max/ values remained unchanged (1003 +/- 37 fmoles/mg prot. at 0/sup 0/C and 1001 +/- 43 fmoles/mg prot. at 37/sup 0/C). Inhibition studies showed that (/sup 3/H)TZ binding displayed no GABA shift at 0/sup 0/C(K/sub i/ 0.37 +/- 0.03 nM/- GABA and K/sub i/ = 0.55 +/- 0.13 nM/+GABA) but a nearly two-fold shift was apparent at 37/sup 0/C (K/sub i/ = 2.92 +/- 0.2 nM/-GABA; K/sub i/ = 1.37 +/- 0.11 mM/+GABA). These results were also confirmed by saturation studies in the presence or absence of GABA showing a shift to higher affinity in the presence of GABA only at 37/sup 0/C. In Ro 15-1788/(/sup 3/H)TZ competition experiments the presence of GABA did not affect the inhibitory potency of Ro 15-1788 on (/sup 3/H)TZ binding at both temperatures. In conclusion (/sup 3/H)TZ binding showed an extremely high affinity for benzodiazepine receptors. In contrast to reported literature, the findings suggest that TZ interacts with benzodiazepine receptors similar to other benzodiazepine agonists.

  16. Microcalorimetric study of the anaerobic growth of Escherichia coli: measurements of the affinity of whole cells for various energy substrates.

    PubMed Central

    Belaich, A; Belaich, J P

    1976-01-01

    Microcalorimetry has been used to determine the affinity of whole cells of Escherichia coli for glucose, galactose, fructose, and lactose. Anaerobic growth thermograms were analyzed, and the Km and Vmax values for these energy substrates were measured at pH 7.8. Results obtained with this technique using various organisms growing anaerobically on different sugars are compared. This comparison shows that in practically all cases the cellular rate of catabolic activity is a hyperbolic function of the energy substrate concentrations at low sugar concentrations. In some cases this technique also allows determination of kinetics at high sugar concentrations. PMID:1373

  17. Ionization potentials, electron affinities, resonance excitation energies, oscillator strengths, and ionic radii of element Uus (Z = 117) and astatine.

    PubMed

    Chang, Zhiwei; Li, Jiguang; Dong, Chenzhong

    2010-12-30

    Multiconfiguration Dirac-Fock (MCDF) method was employed to calculate the first five ionization potentials, electron affinities, resonance excitation energies, oscillator strengths, and radii for the element Uus and its homologue At. Main valence correlation effects were taken into account. The Breit interaction and QED effects were also estimated. The uncertainties of calculated IPs, EAs, and IR for Uus and At were reduced through an extrapolation procedure. The good consistency with available experimental and other theoretical values demonstrates the validity of the present results. These theoretical data therefore can be used to predict some unknown physicochemical properties of element Uus, Astatine, and their compounds.

  18. An Affinity Propagation-Based DNA Motif Discovery Algorithm.

    PubMed

    Sun, Chunxiao; Huo, Hongwei; Yu, Qiang; Guo, Haitao; Sun, Zhigang

    2015-01-01

    The planted (l, d) motif search (PMS) is one of the fundamental problems in bioinformatics, which plays an important role in locating transcription factor binding sites (TFBSs) in DNA sequences. Nowadays, identifying weak motifs and reducing the effect of local optimum are still important but challenging tasks for motif discovery. To solve the tasks, we propose a new algorithm, APMotif, which first applies the Affinity Propagation (AP) clustering in DNA sequences to produce informative and good candidate motifs and then employs Expectation Maximization (EM) refinement to obtain the optimal motifs from the candidate motifs. Experimental results both on simulated data sets and real biological data sets show that APMotif usually outperforms four other widely used algorithms in terms of high prediction accuracy.

  19. Affinity sensor based on immobilized molecular imprinted synthetic recognition elements.

    PubMed

    Lenain, Pieterjan; De Saeger, Sarah; Mattiasson, Bo; Hedström, Martin

    2015-07-15

    An affinity sensor based on capacitive transduction was developed to detect a model compound, metergoline, in a continuous flow system. This system simulates the monitoring of low-molecular weight organic compounds in natural flowing waters, i.e. rivers and streams. During operation in such scenarios, control of the experimental parameters is not possible, which poses a true analytical challenge. A two-step approach was used to produce a sensor for metergoline. Submicron spherical molecularly imprinted polymers, used as recognition elements, were obtained through emulsion polymerization and subsequently coupled to the sensor surface by electropolymerization. This way, a robust and reusable sensor was obtained that regenerated spontaneously under the natural conditions in a river. Small organic compounds could be analyzed in water without manipulating the binding or regeneration conditions, thereby offering a viable tool for on-site application.

  20. High-affinity ammonium transporters and nitrogen sensing in mycorrhizas.

    PubMed

    Javelle, Arnaud; André, Bruno; Marini, Anne Marie; Chalot, Michel

    2003-02-01

    Most terrestrial plants live in mutualistic symbiosis with root-infecting mycorrhizal fungi. This association requires a molecular dialogue between the two partners. However, the nature of the chemical signals that induce hyphal differentiation are not well characterized and the mechanisms for signal reception are still unknown. In addition to its role in ammonium scavenging, the Mep2 protein from Saccharomyces cerevisiae has been proposed to act as an ammonium sensor that is essential for pseudohyphal differentiation in response to ammonium limitation. We propose that the high-affinity ammonium transporters from mycorrhizal fungi act in a similar manner to sense the environment and induce, via as-yet-unidentified signal transduction cascades, the switch in the mode of fungal growth observed during the formation of mycorrhiza.

  1. Predicting protein-ligand affinity with a random matrix framework.

    PubMed

    Lee, Alpha A; Brenner, Michael P; Colwell, Lucy J

    2016-11-29

    Rapid determination of whether a candidate compound will bind to a particular target receptor remains a stumbling block in drug discovery. We use an approach inspired by random matrix theory to decompose the known ligand set of a target in terms of orthogonal "signals" of salient chemical features, and distinguish these from the much larger set of ligand chemical features that are not relevant for binding to that particular target receptor. After removing the noise caused by finite sampling, we show that the similarity of an unknown ligand to the remaining, cleaned chemical features is a robust predictor of ligand-target affinity, performing as well or better than any algorithm in the published literature. We interpret our algorithm as deriving a model for the binding energy between a target receptor and the set of known ligands, where the underlying binding energy model is related to the classic Ising model in statistical physics.

  2. Chelators whose affinity for calcium is decreased by illumination

    NASA Technical Reports Server (NTRS)

    Tsien, Roger Y. (Inventor); Grynkiewicz, Grzegorz (Inventor); Minta, Akwasi (Inventor)

    1987-01-01

    The present invention discloses a group of calcium chelating compounds which have a descreased affinity for calcium following illumination. These new compounds contain a photolabile nitrobenzyl derivative coupled to a tetracarboxylate Ca.sup.2+ chelating parent compound having the octacoordinate chelating groups characteristic of EGTA or BAPTA. In a first form, the new compounds are comprised of a BAPTA-like chelator coupled to a single 2-nitrobenzyl derivative, which in turn is a photochemical precursor of a 2-nitrosobenzophenone. In a second form, the new compounds are comprised of a BAPTA-like chelator coupled to two 2-nitrobenzyl derivatives, themselves photochemical prcursors of the related 2-nitrosobenzophenones. The present invention also discloses a novel method for preparing 1-hydroxy- or 1-alkoxy-1-(2-nitroaryl)-1-aryl methanes. Methanes of this type are critical to the preparation of, or actually constitute, the photolabile Ca.sup.2+ chelating compounds disclosed and claimed herein.

  3. Bioavailable affinity label for collagen prolyl 4-hydroxylase

    PubMed Central

    Vasta, James D.; Higgin, Joshua J.; Kersteen, Elizabeth A.

    2013-01-01

    Collagen is the most abundant protein in animals. Its prevalent 4-hydroxyproline residues contribute greatly to its conformational stability. The hydroxyl groups arise from a post-translational modification catalyzed by the non-heme iron-dependent enzyme, collagen prolyl 4-hydroxylase (P4H). Here, we report that 4-oxo-5,6-epoxyhexanoate, a mimic of the α-ketoglutarate co-substrate, inactivates human P4H. The inactivation installs a ketone functionality in P4H, providing a handle for proteomic experiments. Caenorhabditis elegans exposed to the esterified epoxy ketone displays the phenotype of a worm lacking P4H. Thus, this affinity label can be used to mediate collagen stability in an animal, as is desirable in the treatment of a variety of fibrotic diseases. PMID:23702396

  4. HIGH AFFINITY, DSRNA BINDING BY DISCONNECTED INTERACTING PROTEIN 1†

    PubMed Central

    Catanese, Daniel J.; Matthews, Kathleen S.

    2010-01-01

    Disconnected Interacting Protein 1 (DIP1) appears from sequence analysis and preliminary binding studies to be a member of the dsRNA-binding protein family. Of interest, DIP1 was shown previously to interact with and influence multiple proteins involved in transcription regulation in Drosophila melanogaster. We show here that the longest isoform of this protein, DIP1-c, exhibits a 500-fold preference for dsRNA over dsDNA of similar nucleotide sequence. Further, DIP1-c demonstrated very high affinity for a subset of dsRNA ligands, with binding in the picomolar range for VA1 RNA and miR-iab-4 precursor stem-loop, a potential physiological RNA target involved in regulating expression of its protein partner, Ultrabithorax. PMID:20643095

  5. Approximated affine projection algorithm for feedback cancellation in hearing aids.

    PubMed

    Lee, Sangmin; Kim, In-Young; Park, Young-Cheol

    2007-09-01

    We propose an approximated affine projection (AP) algorithm for feedback cancellation in hearing aids. It is based on the conventional approach using the Gauss-Seidel (GS) iteration, but provides more stable convergence behaviour even with small step sizes. In the proposed algorithm, a residue of the weighted error vector, instead of the current error sample, is used to provide stable convergence. A new learning rate control scheme is also applied to the proposed algorithm to prevent signal cancellation and system instability. The new scheme determines step size in proportion to the prediction factor of the input, so that adaptation is inhibited whenever tone-like signals are present in the input. Simulation results verified the efficiency of the proposed algorithm.

  6. Genetic affinities of Ukrainians from the maternal perspective.

    PubMed

    Pshenichnov, Andrey; Balanovsky, Oleg; Utevska, Olga; Metspalu, Ene; Zaporozhchenko, Valery; Agdzhoyan, Anastasia; Churnosov, Mikhail; Atramentova, Lyubov; Balanovska, Elena

    2013-12-01

    The area of what is now the Ukraine has been the arena of large-scale demographic processes that may have left their traces in the contemporary gene pool of Ukrainians. In this study, we present new mitochondrial DNA data for 607 Ukrainians (hypervariable segment I sequences and coding region polymorphisms). To study the maternal affinities of Ukrainians at the level of separate mitochondrial haplotypes, we apply an original technique, the haplotype co-occurrence analysis. About 20% of the Ukrainian maternal gene pool is represented by lineages highly specific to Ukrainians, but is scarcely found in other populations. About 9% of Ukrainian mtDNA lineages are typical for peoples of the Volga region. We also identified minor gene pool strata (1.6-3.3%), each of which is common in Lithuanians, Estonians, Saami, Nenets, Cornish, and the populations of the North Caucasus.

  7. Deformation of supersymmetric and conformal quantum mechanics through affine transformations

    NASA Technical Reports Server (NTRS)

    Spiridonov, Vyacheslav

    1993-01-01

    Affine transformations (dilatations and translations) are used to define a deformation of one-dimensional N = 2 supersymmetric quantum mechanics. Resulting physical systems do not have conserved charges and degeneracies in the spectra. Instead, superpartner Hamiltonians are q-isospectral, i.e. the spectrum of one can be obtained from another (with possible exception of the lowest level) by q(sup 2)-factor scaling. This construction allows easily to rederive a special self-similar potential found by Shabat and to show that for the latter a q-deformed harmonic oscillator algebra of Biedenharn and Macfarlane serves as the spectrum generating algebra. A general class of potentials related to the quantum conformal algebra su(sub q)(1,1) is described. Further possibilities for q-deformation of known solvable potentials are outlined.

  8. Calculation of Electron Affinity and Partial Cross Sections of Hf^-

    NASA Astrophysics Data System (ADS)

    Pan, Lin; Beck, Donald

    2008-05-01

    We have calculated for the first time the electron affinity (EA) of Hf^-, using the relativistic configuration interaction method. Our calculations show Hf^- has only one bound state 5d^26s^26p J=5/2, which is a 6p attachment to the ground state of Hf I. By combining our valence stage result with the separate estimate for the modest core-valence contribution, the EA of Hf^- is about 0.114 eV. So far there have been only two experimental results [1,2] for the EA of Hf^-, but both gave only the limits. Our result falls within both of the limits. We also calculate the partial cross sections for photodetachment to the lower lying neutral thresholds. [1] M-J. Nadeau et al, Nucl. Instr. and Meth. B 123, 521 (1997) [2] Vernon T. Davis et al, Nucl. Instr. and Meth. B 241, 118 (2005)

  9. Self-affine crossover length in a layered silicate deposit.

    PubMed

    Fossum, J O; Bergene, H H; Hansen, Alex; O'Rourke, B; Manificat, G

    2004-03-01

    Self-affine dehydrated colloidal deposits on fresh mica surfaces of the synthetic layered silicate 2:1 smectite clay laponite have been studied by means of atomic force microscopy (AFM). AFM images of these prepared assemblies of sol and gel aggregates have been analyzed both by means of standard AFM Fourier software and a wavelet method. The deposited surfaces show a persistence to antipersistent crossover with a clay concentration dependent crossover length. It is concluded that the crossover length is associated with aggregate size, and further that the persistent roughness at small length scales signals near compact clusters of fractal dimension three, whereas the antipersistent roughness at large length scales signals a sedimentation process.

  10. Self-affine crossover length in a layered silicate deposit

    NASA Astrophysics Data System (ADS)

    Fossum, J. O.; Bergene, H. H.; Hansen, Alex; O'Rourke, B.; Manificat, G.

    2004-03-01

    Self-affine dehydrated colloidal deposits on fresh mica surfaces of the synthetic layered silicate 2:1 smectite clay laponite have been studied by means of atomic force microscopy (AFM). AFM images of these prepared assemblies of sol and gel aggregates have been analyzed both by means of standard AFM Fourier software and a wavelet method. The deposited surfaces show a persistence to antipersistent crossover with a clay concentration dependent crossover length. It is concluded that the crossover length is associated with aggregate size, and further that the persistent roughness at small length scales signals near compact clusters of fractal dimension three, whereas the antipersistent roughness at large length scales signals a sedimentation process.

  11. Affinity constants for small molecules from SPR competition experiments.

    PubMed

    de Mol, Nico J

    2010-01-01

    Direct assay of small molecules by SPR in general is troublesome and at least tedious procedures have to be applied. Competition experiments offer an attractive alternative. A small ligand known to bind to the analyte is immobilized on an SPR sensor surface, and the binding of the larger analyte in the presence of compounds under investigation in a concentration range is assayed. The resulting inhibition curves of the equilibrium SPR signal as function of the compound concentration can be analyzed to yield thermodynamic binding constants for the interaction in solution between analyte and the compounds under investigation. An additional advantage of this method is that series of compounds can be analyzed using the same sensor surface, so there is no immobilization needed for each compound. An adaptation of the method to analyze interactions with bivalent analytes (e.g., antibodies) is also included. Some observed different affinities in solution compared to that on the SPR surface are discussed.

  12. Vibrational photodetachment spectroscopy near the electron affinity of S2

    NASA Astrophysics Data System (ADS)

    Barrick, J. B.; Yukich, J. N.

    2016-02-01

    We have conducted laser photodetachment spectroscopy near the detachment threshold of the electron affinity of S2 in a 1.8-T field. The ions are prepared by dissociative electron attachment to carbonyl sulfide. The experiment is conducted in a Penning ion trap and with a narrow-band, tunable, Ti:sapphire laser. A hybrid model for photodetachment in an ion trap is fit to the data using the appropriate Franck-Condon factors. The observations reveal detachment from and to the first few vibrational levels of the anion and the neutral molecule, respectively. Evaporative cooling of the anion ensemble condenses the thermal distribution to the lowest initial vibrational states. The subsequent detachment spectroscopy yields results consistent with a vibrationally cooled anion population.

  13. Growth factors with heparin binding affinity in human synovial fluid

    SciTech Connect

    Hamerman, D.; Taylor, S.; Kirschenbaum, I.; Klagsbrun, M.; Raines, E.W.; Ross, R.; Thomas, K.A.

    1987-12-01

    Synovial effusions were obtained from the knees of 15 subjects with joint trauma, menisceal or ligamentous injury, or osteoarthritis. Heparin-Sepharose affinity chromatography of these synovial fluids revealed, in general, three major peaks of mitogenic activity as measured by incorporation of /sup 3/H-thymidine into 3T3 cells. Gradient elution patterns showed activities at 0.5M NaCl, which is characteristic of platelet derived growth factor, and at 1.1 M NaCl and 1.6M NaCl, indicative of acidic and basic fibroblast growth factors, respectively. The identities of these mitogenic fractions were confirmed by specific immunologic and receptor-binding assays. The presence of platelet derived, acidic and basic fibroblast growth factors in the synovial fluid may contribute to wound healing in the arthritic joint.

  14. The anatomy, affinity, and phylogenetic significance of Markuelia.

    PubMed

    Dong, Xi-Ping; Donoghue, Philip C J; Cunningham, John A; Liu, Jian-Bo; Cheng, Hong

    2005-01-01

    The fossil record provides a paucity of data on the development of extinct organisms, particularly for their embryology. The recovery of fossilized embryos heralds new insight into the evolution of development but advances are limited by an almost complete absence of phylogenetic constraint. Markuelia is an exception to this, known from cleavage and pre-hatchling stages as a vermiform and profusely annulated direct-developing bilaterian with terminal circumoral and posterior radial arrays of spines. Phylogenetic analyses have hitherto suggested assignment to stem-Scalidophora (phyla Kinorhyncha, Loricifera, Priapulida). We test this assumption with additional data and through the inclusion of additional taxa. The available evidence supports stem-Scalidophora affinity, leading to the conclusion that scalidophorans, cyclonerualians, and ecdysozoans are primitive direct developers, and the likelihood that scalidophorans are primitively metameric.

  15. DNA Shape Dominates Sequence Affinity in Nucleosome Formation

    NASA Astrophysics Data System (ADS)

    Freeman, Gordon S.; Lequieu, Joshua P.; Hinckley, Daniel M.; Whitmer, Jonathan K.; de Pablo, Juan J.

    2014-10-01

    Nucleosomes provide the basic unit of compaction in eukaryotic genomes, and the mechanisms that dictate their position at specific locations along a DNA sequence are of central importance to genetics. In this Letter, we employ molecular models of DNA and proteins to elucidate various aspects of nucleosome positioning. In particular, we show how DNA's histone affinity is encoded in its sequence-dependent shape, including subtle deviations from the ideal straight B-DNA form and local variations of minor groove width. By relying on high-precision simulations of the free energy of nucleosome complexes, we also demonstrate that, depending on DNA's intrinsic curvature, histone binding can be dominated by bending interactions or electrostatic interactions. More generally, the results presented here explain how sequence, manifested as the shape of the DNA molecule, dominates molecular recognition in the problem of nucleosome positioning.

  16. Advances in affinity ligand-functionalized nanomaterials for biomagnetic separation.

    PubMed

    Fields, Conor; Li, Peng; O'Mahony, James J; Lee, Gil U

    2016-01-01

    The downstream processing of proteins remains the most significant cost in protein production, and is largely attributed to rigorous chromatographic purification protocols, where the stringency of purity for biopharmaceutical products sometimes exceeds 99%. With an ever burgeoning biotechnology market, there is a constant demand for alternative purification methodologies, to ameliorate the dependence on chromatography, while still adhering to regulatory concerns over product purity and safety. In this article, we present an up-to-date view of bioseparation, with emphasis on magnetic separation and its potential application in the field. Additionally, we discuss the economic and performance benefits of synthetic ligands, in the form of peptides and miniaturized antibody fragments, compared to full-length antibodies. We propose that adoption of synthetic affinity ligands coupled with magnetic adsorbents, will play an important role in enabling sustainable bioprocessing in the future.

  17. Virus inactivation by protein denaturants used in affinity chromatography.

    PubMed

    Roberts, Peter L; Lloyd, David

    2007-10-01

    Virus inactivation by a number of protein denaturants commonly used in gel affinity chromatography for protein elution and gel recycling has been investigated. The enveloped viruses Sindbis, herpes simplex-1 and vaccinia, and the non-enveloped virus polio-1 were effectively inactivated by 0.5 M sodium hydroxide, 6 M guanidinium thiocyanate, 8 M urea and 70% ethanol. However, pH 2.6, 3 M sodium thiocyanate, 6 M guanidinium chloride and 20% ethanol, while effectively inactivating the enveloped viruses, did not inactivate polio-1. These studies demonstrate that protein denaturants are generally effective for virus inactivation but with the limitation that only some may inactivate non-enveloped viruses. The use of protein denaturants, together with virus reduction steps in the manufacturing process should ensure that viral cross contamination between manufacturing batches of therapeutic biological products is prevented and the safety of the product ensured.

  18. A High-Affinity Adenosine Kinase from Anopheles Gambiae

    SciTech Connect

    M Cassera; M Ho; E Merino; E Burgos; A Rinaldo-Matthis; S Almo; V Schramm

    2011-12-31

    Genome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines. AgAK was kinetically characterized and found to have the highest affinity for adenosine (K{sub m} = 8.1 nM) of any known adenosine kinase. AgAK is specific for adenosine at the nucleoside site, but several nucleotide triphosphate phosphoryl donors are tolerated. The AgAK crystal structure with a bound bisubstrate analogue Ap{sub 4}A (2.0 {angstrom} resolution) reveals interactions for adenosine and ATP and the geometry for phosphoryl transfer. The polyphosphate charge is partly neutralized by a bound Mg{sup 2+} ion and an ion pair to a catalytic site Arg. The AgAK structure consists of a large catalytic core in a three-layer {alpha}/{beta}/{alpha} sandwich, and a small cap domain in contact with adenosine. The specificity and tight binding for adenosine arise from hydrogen bond interactions of Asn14, Leu16, Leu40, Leu133, Leu168, Phe168, and Thr171 and the backbone of Ile39 and Phe168 with the adenine ring as well as through hydrogen bond interactions between Asp18, Gly64, and Asn68 and the ribosyl 2'- and 3'-hydroxyl groups. The structure is more similar to that of human adenosine kinase (48% identical) than to that of AK from Toxoplasma gondii (31% identical). With this extraordinary affinity for AgAK, adenosine is efficiently captured and converted to AMP at near the diffusion limit, suggesting an important role for this enzyme in the maintenance of the adenine nucleotide pool. mRNA analysis verifies that AgAK transcripts are produced in the adult insects.

  19. Triazine dyes as inhibitors and affinity ligands of glycosyltransferases.

    PubMed

    Kamińska, J; Dziecioł, J; Kościelak, J

    1999-11-01

    The triazine dyes: Cibacron Blue 3GA, Reactive Red 120, Reactive Yellow 86, Reactive Green 19, Reactive Blue 4, Reactive Brown 10 inhibited the activity of a purified preparation of alpha1,6fucosyltransferase (GDP-L-fucose: N-acetyl beta-glucosaminide 6-alpha-L-fucosyltransferase, EC 2.4.1.68) from human blood platelets. Cibacron Blue 3GA and Reactive Red 120 were examined for the nature of the inhibition and both were found to be competitive inhibitors of the enzyme, with Ki = 11 microM and 2 microM, respectively. The two dyes inhibited also serum glycosyltransferases: alpha1,2fucosyltransferase (GDP-L-fucose: beta-D-galactosyl-R2-alpha-L-fucosyltransferase, EC 2.4.1.69), beta1,4galactosyltransferase (UDP-galactose: N-acetyl-D-glucosamine 4-beta-D-galactosyltransferase, EC 2.4.1.90) and beta1,3N-acetylglucosaminyltransferase (UDP-GlcNAc: 4-beta-D-galactosyl-D-glucose). Cibacron Blue 3GA was a more effective inhibitor of the glycosyltransferases that use UDP-linked sugar donors than Reactive Red 120 while the latter was a stronger inhibitor of the fucosyltransferases that use GDP-linked donor. All four glycosyltransferases could be affinity purified on Cibacron Blue 3GA-Agarose columns. The order of elution of glycosyltransferases from the columns with solutions of 0.25-1.0 M potassium iodide also depended upon the structure of nucleotide sugar donor, i.e. whether it contained UDP or GDP. Thus, triazine dyes should interact with the sugar donor binding sites of glycosyltransferases. The main advantages of the use of triazine dyes as affinity ligands for isolation of glycosyltransferases are their universal applicability regardless of enzyme specificity, low cost, and insensitivity to high concentration of other proteins present in the solution.

  20. Brain structure resolves the segmental affinity of anomalocaridid appendages.

    PubMed

    Cong, Peiyun; Ma, Xiaoya; Hou, Xianguang; Edgecombe, Gregory D; Strausfeld, Nicholas J

    2014-09-25

    Despite being among the most celebrated taxa from Cambrian biotas, anomalocaridids (order Radiodonta) have provoked intense debate about their affinities within the moulting-animal clade that includes Arthropoda. Current alternatives identify anomalocaridids as either stem-group euarthropods, crown-group euarthropods near the ancestry of chelicerates, or a segmented ecdysozoan lineage with convergent similarity to arthropods in appendage construction. Determining unambiguous affinities has been impeded by uncertainties about the segmental affiliation of anomalocaridid frontal appendages. These structures are variably homologized with jointed appendages of the second (deutocerebral) head segment, including antennae and 'great appendages' of Cambrian arthropods, or with the paired antenniform frontal appendages of living Onychophora and some Cambrian lobopodians. Here we describe Lyrarapax unguispinus, a new anomalocaridid from the early Cambrian Chengjiang biota, southwest China, nearly complete specimens of which preserve traces of muscles, digestive tract and brain. The traces of brain provide the first direct evidence for the segmental composition of the anomalocaridid head and its appendicular organization. Carbon-rich areas in the head resolve paired pre-protocerebral ganglia at the origin of paired frontal appendages. The ganglia connect to areas indicative of a bilateral pre-oral brain that receives projections from the eyestalk neuropils and compound retina. The dorsal, segmented brain of L. unguispinus reinforces an alliance between anomalocaridids and arthropods rather than cycloneuralians. Correspondences in brain organization between anomalocaridids and Onychophora resolve pre-protocerebral ganglia, associated with pre-ocular frontal appendages, as characters of the last common ancestor of euarthropods and onychophorans. A position of Radiodonta on the euarthropod stem-lineage implies the transformation of frontal appendages to another structure in crown