Science.gov

Sample records for affinity iron permease

  1. High Affinity Iron Permease is Required for Virulence of Rhizopus oryzae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizopus oryzae is the most common cause of mucormycosis. Clinical and animal model data clearly demonstrate that the presence of elevated available serum iron predisposes the host to develop mucormycosis. The high affinity iron permease gene (rFTR1) is required for R. oryzae iron transport in iro...

  2. The High Affinity Iron Permease is a Key Virulence Factor Required for Rhizopus oryzae Pathogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizopus oryzae is the most common cause of mucormycosis, an angioinvasive fungal infection that causes a >/=50% mortality rate despite first-line therapy. Clinical and animal model data clearly demonstrate that the presence of elevated available serum iron predisposes the host to mucormycosis. Th...

  3. Identification of a PutP proline permease gene homolog from Staphylococcus aureus by expression cloning of the high-affinity proline transport system in Escherichia coli.

    PubMed Central

    Wengender, P A; Miller, K J

    1995-01-01

    The important food-borne pathogen Staphylococcus aureus is distinguished by its ability to grow at low water activity values. Previous work in our laboratory and by others has revealed that proline accumulation via transport is an important osmoregulatory strategy employed by this bacterium. Furthermore, proline uptake by this bacterium has been shown to be mediated by two distinct transport systems: a high-affinity system and a low-affinity system (J.-H. Bae, and K. J. Miller, Appl. Environ. Microbiol. 58:471-475, 1992; D. E. Townsend and B. J. Wilkinson, J. Bacteriol. 174:2702-2710, 1992). In the present study, we report the cloning of the high-affinity proline transport system of S. aureus by functional expression in an Escherichia coli host. The sequence of the staphylococcal proline permease gene was predicted to encode a protein of 497 amino acids which shares 49% identity with the PutP high-affinity proline permease of E. coli. Analysis of hydropathy also indicated a common overall structure for these proteins. PMID:7887605

  4. Analysis of the high-affinity iron uptake system at the Chlamydomonas reinhardtii plasma membrane.

    PubMed

    Terzulli, Alaina; Kosman, Daniel J

    2010-05-01

    Multicopper ferroxidases play a vital role in iron metabolism in bacteria, fungi, algae, and mammals. Saccharomyces cerevisiae utilizes a channeling mechanism to couple the ferroxidase activity of Fet3p to Fe(3+) transport into the cell by Ftr1p. In contrast, the mechanisms by which mammals couple the ferroxidase reaction to iron trafficking is unclear. The human ferroxidases ceruloplasmin and hephaestin are twice the size of Fet3p and interact with proteins that are not expressed in fungi. Chlamydomonas FOX1 is a homolog of the human ferroxidases but likely supports iron uptake in a manner similar to that of yeast, since Chlamydomonas reinhardtii expresses a ferric iron permease homolog, FTR1. The results presented support this hypothesis. We show that FOX1 is trafficked to the plasma membrane and is oriented with its multicopper oxidase/ferroxidase domain in the exocytoplasmic space. Our analysis of FTR1 indicates its topology is similar to that of S. cerevisiae Ftr1p, with a potential exocytoplasmic iron channeling motif and two potential iron permeation motifs in membrane-spanning regions. We demonstrate that high-affinity iron uptake is dependent on FOX1 and the copper status of the cell. Kinetic inhibition of high-affinity iron uptake by a ferric iron chelator does not reflect the strength of the chelator, supporting a ferric iron channeling mechanism for high-affinity iron uptake in Chlamydomonas. Last, recombinant FOX1 (rFOX1) has been isolated in a partially holo form that exhibits the UV-visible absorbance spectrum of a multicopper oxidase and the catalytic activity of a ferroxidase. PMID:20348389

  5. Crystal structure of lactose permease in complex with an affinity inactivator yields unique insight into sugar recognition

    SciTech Connect

    Chaptal, Vincent; Kwon, Seunghyug; Sawaya, Michael R.; Guan, Lan; Kaback, H. Ronald; Abramson, Jeff

    2011-08-29

    Lactose permease of Escherichia coli (LacY) with a single-Cys residue in place of A122 (helix IV) transports galactopyranosides and is specifically inactivated by methanethiosulfonyl-galactopyranosides (MTS-gal), which behave as unique suicide substrates. In order to study the mechanism of inactivation more precisely, we solved the structure of single-Cys122 LacY in complex with covalently bound MTS-gal. This structure exhibits an inward-facing conformation similar to that observed previously with a slight narrowing of the cytoplasmic cavity. MTS-gal is bound covalently, forming a disulfide bond with C122 and positioned between R144 and W151. E269, a residue essential for binding, coordinates the C-4 hydroxyl of the galactopyranoside moiety. The location of the sugar is in accord with many biochemical studies.

  6. The Bacillus subtilis EfeUOB transporter is essential for high-affinity acquisition of ferrous and ferric iron.

    PubMed

    Miethke, Marcus; Monteferrante, Carmine G; Marahiel, Mohamed A; van Dijl, Jan Maarten

    2013-10-01

    Efficient uptake of iron is of critical importance for growth and viability of microbial cells. Nevertheless, several mechanisms for iron uptake are not yet clearly defined. Here we report that the widely conserved transporter EfeUOB employs an unprecedented dual-mode mechanism for acquisition of ferrous (Fe[II]) and ferric (Fe[III]) iron in the bacterium Bacillus subtilis. We show that the binding protein EfeO and the permease EfeU form a minimal complex for ferric iron uptake. The third component EfeB is a hemoprotein that oxidizes ferrous iron to ferric iron for uptake by EfeUO. Accordingly, EfeB promotes growth under microaerobic conditions where ferrous iron is more abundant. Notably, EfeB also fulfills a vital role in cell envelope stress protection by eliminating reactive oxygen species that accumulate in the presence of ferrous iron. In conclusion, the EfeUOB system contributes to the high-affinity uptake of iron that is available in two different oxidation states. PMID:23764491

  7. Pressure-induced endocytic degradation of the Saccharomyces cerevisiae low-affinity tryptophan permease Tat1 is mediated by Rsp5 ubiquitin ligase and functionally redundant PPxY motif proteins.

    PubMed

    Suzuki, Asaha; Mochizuki, Takahiro; Uemura, Satoshi; Hiraki, Toshiki; Abe, Fumiyoshi

    2013-07-01

    Cells of Saccharomyces cerevisiae express two tryptophan permeases, Tat1 and Tat2, which have different characteristics in terms of their affinity for tryptophan and intracellular localization. Although the high-affinity permease Tat2 has been well documented in terms of its ubiquitin-dependent degradation, the low-affinity permease Tat1 has not yet been characterized fully. Here we show that a high hydrostatic pressure of 25 MPa triggers a degradation of Tat1 which depends on Rsp5 ubiquitin ligase and the EH domain-containing protein End3. Tat1 was resistant to a 3-h cycloheximide treatment, suggesting that it is highly stable under normal growth conditions. The ubiquitination of Tat1 most likely occurs at N-terminal lysines 29 and 31. Simultaneous substitution of arginine for the two lysines prevented Tat1 degradation, but substitution of either of them alone did not, indicating that the roles of lysines 29 and 31 are redundant. When cells were exposed to high pressure, Tat1-GFP was completely lost from the plasma membrane, while substantial amounts of Tat1(K29R-K31R)-GFP remained. The HPG1-1 (Rsp5(P514T)) and rsp5-ww3 mutations stabilized Tat1 under high pressure, but any one of the rsp5-ww1, rsp5-ww2, and bul1Δ bul2Δ mutations or single deletions of genes encoding arrestin-related trafficking adaptors did not. However, simultaneous loss of 9-arrestins and Bul1/Bul2 prevented Tat1 degradation at 25 MPa. The results suggest that multiple PPxY motif proteins share some essential roles in regulating Tat1 ubiquitination in response to high hydrostatic pressure. PMID:23666621

  8. A Rhodobacter capsulatus Member of a Universal Permease Family Imports Molybdate and Other Oxyanions▿

    PubMed Central

    Gisin, Jonathan; Müller, Alexandra; Pfänder, Yvonne; Leimkühler, Silke; Narberhaus, Franz; Masepohl, Bernd

    2010-01-01

    Molybdenum (Mo) is an important trace element that is toxic at high concentrations. To resolve the mechanisms underlying Mo toxicity, Rhodobacter capsulatus mutants tolerant to high Mo concentrations were isolated by random transposon Tn5 mutagenesis. The insertion sites of six independent isolates mapped within the same gene predicted to code for a permease of unknown function located in the cytoplasmic membrane. During growth under Mo-replete conditions, the wild-type strain accumulated considerably more Mo than the permease mutant. For mutants defective for the permease, the high-affinity molybdate importer ModABC, or both transporters, in vivo Mo-dependent nitrogenase (Mo-nitrogenase) activities at different Mo concentrations suggested that ModABC and the permease import molybdate in nanomolar and micromolar ranges, respectively. Like the permease mutants, a mutant defective for ATP sulfurylase tolerated high Mo concentrations, suggesting that ATP sulfurylase is the main target of Mo inhibition in R. capsulatus. Sulfate-dependent growth of a double mutant defective for the permease and the high-affinity sulfate importer CysTWA was reduced compared to those of the single mutants, implying that the permease plays an important role in sulfate uptake. In addition, permease mutants tolerated higher tungstate and vanadate concentrations than the wild type, suggesting that the permease acts as a general oxyanion importer. We propose to call this permease PerO (for oxyanion permease). It is the first reported bacterial molybdate transporter outside the ABC transporter family. PMID:20851900

  9. The phytopathogen Pseudomonas syringae pv. tomato DC3000 has three high-affinity iron-scavenging systems functional under iron limitation conditions but dispensable for pathogenesis.

    PubMed

    Jones, Alexander M; Wildermuth, Mary C

    2011-06-01

    High-affinity iron scavenging through the use of siderophores is a well-established virulence determinant in mammalian pathogenesis. However, few examples have been reported for plant pathogens. Here, we use a genetic approach to investigate the role of siderophores in Pseudomonas syringae pv. tomato DC3000 (DC3000) virulence in tomato. DC3000, an agronomically important pathogen, has two known siderophores for high-affinity iron scavenging, yersiniabactin and pyoverdin, and we uncover a third siderophore, citrate, required for growth when iron is limiting. Though growth of a DC3000 triple mutant unable to either synthesize or import these siderophores is severely restricted in iron-limited culture, it is fully pathogenic. One explanation for this phenotype is that the DC3000 triple mutant is able to directly pirate plant iron compounds such as heme/hemin or iron-nicotianamine, and our data indicate that DC3000 can import iron-nicotianamine with high affinity. However, an alternative explanation, supported by data from others, is that the pathogenic environment of DC3000 (i.e., leaf apoplast) is not iron limited but is iron replete, with available iron of >1 μM. Growth of the triple mutant in culture is restored to wild-type levels by supplementation with a variety of iron chelates at >1 μM, including iron(III) dicitrate, a dominant chelate of the leaf apoplast. This suggests that lower-affinity iron import would be sufficient for DC3000 iron nutrition in planta and is in sharp contrast to the high-affinity iron-scavenging mechanisms required in mammalian pathogenesis. PMID:21441525

  10. Hydroxamate Production as a High Affinity Iron Acquisition Mechanism in Paracoccidioides Spp

    PubMed Central

    Silva-Bailão, Mirelle Garcia; Bailão, Elisa Flávia Luiz Cardoso; Lechner, Beatrix Elisabeth; Gauthier, Gregory M.; Lindner, Herbert; Bailão, Alexandre Melo; Haas, Hubertus; de Almeida Soares, Célia Maria

    2014-01-01

    Iron is a micronutrient required by almost all living organisms, including fungi. Although this metal is abundant, its bioavailability is low either in aerobic environments or within mammalian hosts. As a consequence, pathogenic microorganisms evolved high affinity iron acquisition mechanisms which include the production and uptake of siderophores. Here we investigated the utilization of these molecules by species of the Paracoccidioides genus, the causative agents of a systemic mycosis. It was demonstrated that iron starvation induces the expression of Paracoccidioides ortholog genes for siderophore biosynthesis and transport. Reversed-phase HPLC analysis revealed that the fungus produces and secretes coprogen B, which generates dimerumic acid as a breakdown product. Ferricrocin and ferrichrome C were detected in Paracoccidioides as the intracellular produced siderophores. Moreover, the fungus is also able to grow in presence of siderophores as the only iron sources, demonstrating that beyond producing, Paracoccidioides is also able to utilize siderophores for growth, including the xenosiderophore ferrioxamine. Exposure to exogenous ferrioxamine and dimerumic acid increased fungus survival during co-cultivation with macrophages indicating that these molecules play a role during host-pathogen interaction. Furthermore, cross-feeding experiments revealed that Paracoccidioides siderophores promotes growth of Aspergillus nidulans strain unable to produce these iron chelators. Together, these data denote that synthesis and utilization of siderophores is a mechanism used by Paracoccidioides to surpass iron limitation. As iron paucity is found within the host, siderophore production may be related to fungus pathogenicity. PMID:25157575

  11. Starvation Induces Vacuolar Targeting and Degradation of the Tryptophan Permease in Yeast

    PubMed Central

    Beck, Thomas; Schmidt, Anja; Hall, Michael N.

    1999-01-01

    In Saccharomyces cerevisiae, amino acid permeases are divided into two classes. One class, represented by the general amino acid permease GAP1, contains permeases regulated in response to the nitrogen source. The other class, including the high affinity tryptophan permease, TAT2, consists of the so-called constitutive permeases. We show that TAT2 is regulated at the level of protein stability. In exponentially growing cells, TAT2 is in the plasma membrane and also accumulates in internal compartments of the secretory pathway. Upon nutrient deprivation or rapamycin treatment, TAT2 is transported to and degraded in the vacuole. The ubiquitination machinery and lysine residues within the NH2-terminal 31 amino acids of TAT2 mediate ubiquitination and degradation of the permease. Starvation-induced degradation of internal TAT2 is blocked in sec18, sec23, pep12, and vps27 mutants, but not in sec4, end4, and apg1 mutants, suggesting that, upon nutrient limitation, internal TAT2 is diverted from the late secretory pathway to the vacuolar pathway. Furthermore, our results suggest that TAT2 stability and sorting are controlled by the TOR signaling pathway, and regulated inversely to that of GAP1. PMID:10491387

  12. Accurate Electron Affinity of Iron and Fine Structures of Negative Iron ions

    PubMed Central

    Chen, Xiaolin; Luo, Zhihong; Li, Jiaming; Ning, Chuangang

    2016-01-01

    Ionization potential (IP) is defined as the amount of energy required to remove the most loosely bound electron of an atom, while electron affinity (EA) is defined as the amount of energy released when an electron is attached to a neutral atom. Both IP and EA are critical for understanding chemical properties of an element. In contrast to accurate IPs and structures of neutral atoms, EAs and structures of negative ions are relatively unexplored, especially for the transition metal anions. Here, we report the accurate EA value of Fe and fine structures of Fe− using the slow electron velocity imaging method. These measurements yield a very accurate EA value of Fe, 1235.93(28) cm−1 or 153.236(34) meV. The fine structures of Fe− were also successfully resolved. The present work provides a reliable benchmark for theoretical calculations, and also paves the way for improving the EA measurements of other transition metal atoms to the sub cm−1 accuracy. PMID:27138292

  13. Accurate Electron Affinity of Iron and Fine Structures of Negative Iron ions.

    PubMed

    Chen, Xiaolin; Luo, Zhihong; Li, Jiaming; Ning, Chuangang

    2016-01-01

    Ionization potential (IP) is defined as the amount of energy required to remove the most loosely bound electron of an atom, while electron affinity (EA) is defined as the amount of energy released when an electron is attached to a neutral atom. Both IP and EA are critical for understanding chemical properties of an element. In contrast to accurate IPs and structures of neutral atoms, EAs and structures of negative ions are relatively unexplored, especially for the transition metal anions. Here, we report the accurate EA value of Fe and fine structures of Fe(-) using the slow electron velocity imaging method. These measurements yield a very accurate EA value of Fe, 1235.93(28) cm(-1) or 153.236(34) meV. The fine structures of Fe(-) were also successfully resolved. The present work provides a reliable benchmark for theoretical calculations, and also paves the way for improving the EA measurements of other transition metal atoms to the sub cm(-1) accuracy. PMID:27138292

  14. Accurate Electron Affinity of Iron and Fine Structures of Negative Iron ions

    NASA Astrophysics Data System (ADS)

    Chen, Xiaolin; Luo, Zhihong; Li, Jiaming; Ning, Chuangang

    2016-05-01

    Ionization potential (IP) is defined as the amount of energy required to remove the most loosely bound electron of an atom, while electron affinity (EA) is defined as the amount of energy released when an electron is attached to a neutral atom. Both IP and EA are critical for understanding chemical properties of an element. In contrast to accurate IPs and structures of neutral atoms, EAs and structures of negative ions are relatively unexplored, especially for the transition metal anions. Here, we report the accurate EA value of Fe and fine structures of Fe‑ using the slow electron velocity imaging method. These measurements yield a very accurate EA value of Fe, 1235.93(28) cm‑1 or 153.236(34) meV. The fine structures of Fe‑ were also successfully resolved. The present work provides a reliable benchmark for theoretical calculations, and also paves the way for improving the EA measurements of other transition metal atoms to the sub cm‑1 accuracy.

  15. Paracoccidioides spp. ferrous and ferric iron assimilation pathways

    PubMed Central

    Bailão, Elisa Flávia L. C.; Lima, Patrícia de Sousa; Silva-Bailão, Mirelle G.; Bailão, Alexandre M.; Fernandes, Gabriel da Rocha; Kosman, Daniel J.; Soares, Célia Maria de Almeida

    2015-01-01

    Iron is an essential micronutrient for almost all organisms, including fungi. Usually, fungi can uptake iron through receptor-mediated internalization of a siderophore or heme, and/or reductive iron assimilation (RIA). Traditionally, the RIA pathway consists of ferric reductases (Fres), ferroxidase (Fet3) and a high-affinity iron permease (Ftr1). Paracoccidioides spp. genomes do not present an Ftr1 homolog. However, this fungus expresses zinc regulated transporter homologs (Zrts), members of the ZIP family of membrane transporters that are able in some organisms to transport zinc and iron. A 2,3,5-triphenyltetrazolium chloride (TTC)-overlay assay indicates that both Pb01 and Pb18 express a ferric reductase activity; however, 59Fe uptake assays indicate that only in Pb18 is this activity coupled to a reductase-dependent iron uptake pathway. In addition, Zrts are up-regulated in iron deprivation, as indicated by RNAseq and qRT-PCR using Pb01 transcripts. RNAseq strategy also demonstrated that transcripts related to siderophore uptake and biosynthesis are up-regulated in iron-deprived condition. The data suggest that the fungus could use both a non-classical RIA, comprising ferric reductases and Fe/Zn permeases (Zrts), and siderophore uptake pathways under iron-limited conditions. The study of iron metabolism reveals novel surface molecules that could function as accessible targets for drugs to block iron uptake and, consequently, inhibit pathogen's proliferation. PMID:26441843

  16. Dual Regulation of the Arabidopsis High-Affinity Root Iron Uptake System by Local and Long-Distance Signals1

    PubMed Central

    Vert, Grégory A.; Briat, Jean-François; Curie, Catherine

    2003-01-01

    Regulation of the root high-affinity iron uptake system by whole-plant signals was investigated at the molecular level in Arabidopsis, through monitoring FRO2 and IRT1 gene expression. These two genes encode the root ferric-chelate reductase and the high-affinity iron transporter, respectively, involved in the iron deficiency-induced uptake system. Recovery from iron-deficient conditions and modulation of apoplastic iron pools indicate that iron itself plays a major role in the regulation of root iron deficiency responses at the mRNA and protein levels. Split-root experiments show that the expression of IRT1 and FRO2 is controlled both by a local induction from the root iron pool and through a systemic pathway involving a shoot-borne signal, both signals being integrated to tightly control production of the root iron uptake proteins. We also show that IRT1 and FRO2 are expressed during the day and down-regulated at night and that this additional control is overruled by iron starvation, indicating that the nutritional status prevails on the diurnal regulation. Our work suggests, for the first time to our knowledge, that like in grasses, the root iron acquisition in strategy I plants may also be under diurnal regulation. On the basis of the new molecular insights provided in this study and given the strict coregulation of IRT1 and FRO2 observed, we present a model of local and long-distance regulation of the root iron uptake system in Arabidopsis. PMID:12805609

  17. Dual regulation of the Arabidopsis high-affinity root iron uptake system by local and long-distance signals.

    PubMed

    Vert, Grégory A; Briat, Jean-François; Curie, Catherine

    2003-06-01

    Regulation of the root high-affinity iron uptake system by whole-plant signals was investigated at the molecular level in Arabidopsis, through monitoring FRO2 and IRT1 gene expression. These two genes encode the root ferric-chelate reductase and the high-affinity iron transporter, respectively, involved in the iron deficiency-induced uptake system. Recovery from iron-deficient conditions and modulation of apoplastic iron pools indicate that iron itself plays a major role in the regulation of root iron deficiency responses at the mRNA and protein levels. Split-root experiments show that the expression of IRT1 and FRO2 is controlled both by a local induction from the root iron pool and through a systemic pathway involving a shoot-borne signal, both signals being integrated to tightly control production of the root iron uptake proteins. We also show that IRT1 and FRO2 are expressed during the day and down-regulated at night and that this additional control is overruled by iron starvation, indicating that the nutritional status prevails on the diurnal regulation. Our work suggests, for the first time to our knowledge, that like in grasses, the root iron acquisition in strategy I plants may also be under diurnal regulation. On the basis of the new molecular insights provided in this study and given the strict coregulation of IRT1 and FRO2 observed, we present a model of local and long-distance regulation of the root iron uptake system in Arabidopsis. PMID:12805609

  18. PHOS-Select Iron Affinity beads enrich peptides for detection of organophosphorus adducts on albumin

    PubMed Central

    Jiang, Wei; Dubrovskii, Yaroslav A; Podolskaya, Ekaterina P; Murashko, Ekaterina A; Babakov, Vladimir; Nachon, Florian; Masson, Patrick; Schopfer, Lawrence M; Lockridge, Oksana

    2013-01-01

    Albumin is covalently modified by organophosphorus toxicants (OP) on tyrosine 411, but less than 1% of albumin is modified in humans by lethal OP doses that inhibit 95% of plasma butyrylcholinesterase. A method that enriches OP-modified albumin peptides could aid analysis of low dose exposures. Soman or chlorpyrifos oxon treated human plasma was digested with pepsin. Albumin peptides were enriched by binding to Fe3+ beads at pH 11 and eluted with pH 2.6 buffer. Similarly, mouse and guinea pig albumin modified by chlorpyrifos oxon were digested with pepsin and enriched by binding to Fe3+ beads. Peptides were identified by MALDI-TOF/TOF mass spectrometry. PHOS-select Iron Affinity beads specifically enriched albumin peptides VRY411TKKVPQVST and LVRY411TKKVPQVST in a pepsin digest of human plasma. The unmodified as well as OP-modified peptides bound to the beads. The binding capacity of 500 μl beads was the pepsin digest of 2.1 μL human plasma. The limit of detection was 0.2% of OP-modified albumin peptide in 0.43 μL plasma. Enrichment of OP-modified albumin peptides by binding to Fe3+ beads is a method with potential application to diagnosis of OP pesticide and nerve agent exposure in humans, mice, and guinea pigs. PMID:24187955

  19. PHOS-select iron affinity beads enrich peptides for the detection of organophosphorus adducts on albumin.

    PubMed

    Jiang, Wei; Dubrovskii, Yaroslav A; Podolskaya, Ekaterina P; Murashko, Ekaterina A; Babakov, Vladimir; Nachon, Florian; Masson, Patrick; Schopfer, Lawrence M; Lockridge, Oksana

    2013-12-16

    Albumin is covalently modified by organophosphorus toxicants (OP) on tyrosine 411, but less than 1% of albumin is modified in humans by lethal OP doses that inhibit 95% of plasma butyrylcholinesterase. A method that enriches OP-modified albumin peptides could aid analysis of low dose exposures. Soman or chlorpyrifos oxon treated human plasma was digested with pepsin. Albumin peptides were enriched by binding to Fe(3+) beads at pH 11 and eluted with pH 2.6 buffer. Similarly, mouse and guinea pig albumin modified by chlorpyrifos oxon were digested with pepsin and enriched by binding to Fe(3+) beads. Peptides were identified by MALDI-TOF/TOF mass spectrometry. PHOS-select iron affinity beads specifically enriched albumin peptides VRY411TKKVPQVST and LVRY411TKKVPQVST in a pepsin digest of human plasma. The unmodified as well as OP-modified peptides bound to the beads. The binding capacity of 500 μL of beads was the pepsin digest of 2.1 μL of human plasma. The limit of detection was 0.2% of OP-modified albumin peptide in 0.43 μL of plasma. Enrichment of OP-modified albumin peptides by binding to Fe(3+) beads is a method with potential application to diagnosis of OP pesticide and nerve agent exposure in humans, mice, and guinea pigs. PMID:24187955

  20. Arabidopsis IRT2 cooperates with the high-affinity iron uptake system to maintain iron homeostasis in root epidermal cells.

    PubMed

    Vert, Grégory; Barberon, Marie; Zelazny, Enric; Séguéla, Mathilde; Briat, Jean-François; Curie, Catherine

    2009-05-01

    Iron is an essential nutrient for all organisms but toxic when present in excess. Consequently, plants carefully regulate their iron uptake, dependent on the FRO2 ferric reductase and the IRT1 transporter, to control its homeostasis. Arabidopsis IRT2 gene, whose expression is induced in root epidermis upon iron deprivation, was shown to encode a functional iron/zinc transporter in yeast, and proposed to function in iron acquisition from the soil. In this study, we demonstrate that, unlike its close homolog IRT1, IRT2 is not involved in iron absorption from the soil since overexpression of IRT2 does not rescue the iron uptake defect of irt1-1 mutant and since a null irt2 mutant shows no chlorosis in low iron. Consistently, an IRT2-green fluorescent fusion protein, transiently expressed in culture cells, localizes to intracellular vesicles. However, IRT2 appears strictly co-regulated with FRO2 and IRT1, supporting the view that IRT2 is an integral component of the root response to iron deficiency in root epidermal cells. We propose a model where IRT2 likely prevents toxicity from IRT1-dependent iron fluxes in epidermal cells, through compartmentalization. PMID:19252923

  1. Effect of Detergents on Galactoside Binding by Melibiose Permeases.

    PubMed

    Amin, Anowarul; Hariharan, Parameswaran; Chae, Pil Seok; Guan, Lan

    2015-09-29

    The effect of various detergents on the stability and function of the melibiose permeases of Escherichia coli (MelBEc) and Salmonella typhimurium (MelBSt) was studied. In n-dodecyl-β-d-maltoside (DDM) or n-undecyl-β-d-maltoside (UDM), WT MelBSt binds melibiose with an affinity similar to that in the membrane. However, with WT MelBEc or MelBSt mutants (Arg141 → Cys, Arg295 → Cys, or Arg363 → Cys), galactoside binding is not detected in these detergents, but binding to the phosphotransferase protein IIA(Glc) is maintained. In the amphiphiles lauryl maltose neopentyl glycol (MNG-3) or glyco-diosgenin (GDN), galactoside binding with all of the MelB proteins is observed, with slightly reduced affinities. MelBSt is more thermostable than MelBEc, and the thermostability of either MelB is largely increased in MNG-3 or GDN. Therefore, the functional defect with DDM or UDM likely results from the relative instability of the sensitive MelB proteins, and stability, as well as galactoside binding, is retained in MNG-3 or GDN. Furthermore, isothermal titration calorimetry of melibiose binding with MelBSt shows that the favorable entropic contribution to the binding free energy is decreased in MNG-3, indicating that the conformational dynamics of MelB is restricted in this detergent. PMID:26352464

  2. Effect of detergents on galactoside binding by melibiose permeases

    PubMed Central

    Amin, Anowarul; Hariharan, Parameswaran; Chae, Pil Seok; Guan, Lan

    2015-01-01

    The effect of various detergents on the stability and function of melibiose permeases of Escherichia coli (MelBEc) or Salmonella typhimurium (MelBSt) were studied. In n-dodecyl-β-d-maltoside (DDM) or n-undecyl-β-d-maltoside (UDM), WT MelBSt binds melibiose with an affinity similar to that in the membrane. However, with WT MelBEc or MelBSt mutants (Arg141→Cys, Arg295→Cys or Arg363→Cys), galactoside binding is not detected in these detergents, but binding to the phosphotransferase protein IIAGlc is maintained. In the amphiphiles lauryl maltose neopentyl glycol (MNG-3) or glyco-diosgenin (GDN), galactoside binding with all the MelB proteins is observed, with slightly reduced affinities. MelBSt is more thermostable than MelBEc, and the thermostability of either MelB is largely increased in MNG-3 or GDN. Therefore, the functional defect with DDM or UDM likely results from relative instability of the sensitive MelB proteins, and stability, as well as galactoside binding, is retained in MNG-3 or GDN. Furthermore, isothermal titration calorimetry of melibiose binding with MelBSt shows that the favorable entropic contribution to the binding free energy is decreased in MNG-3, indicating that the conformational dynamics of MelB is restricted in this detergent. PMID:26352464

  3. Functional reconstitution of a purified proline permease from Candida albicans: interaction with the antifungal cispentacin.

    PubMed

    Jethwaney, D; Höfer, M; Khaware, R K; Prasad, R

    1997-02-01

    We have purified proline permease to homogeneity from Candida albicans using an L-proline-linked agarose matrix as an affinity column. The eluted protein produced two bands of 64 and 67 kDa by SDS-PAGE, whereas it produced a single band of 67 kDa by native PAGE and Western blotting. The apparent Km for L-proline binding to the purified protein was 153 microM. The purified permease was reconstituted into proteoliposomes and its functionality was tested by imposing a valinomycin-induced membrane potential. The main features of L-proline transport in reconstituted systems, viz. specificity and sensitivity to N-ethylmaleimide, were very similar to those of intact cells, The antifungal cispentacin, which enters C. albicans cells via an inducible proline permease, competitively inhibited the L-proline binding and translocation in reconstituted proteoliposomes. However, the uptake of L-proline in proteoliposomes reconstituted with the purified protein displayed monophasic kinetics with an apparent Km of 40 microM. PMID:9043117

  4. Thermodynamic mechanism for inhibition of lactose permease by the phosphotransferase protein IIAGlc

    PubMed Central

    Hariharan, Parameswaran; Balasubramaniam, Dhandayuthapani; Peterkofsky, Alan; Kaback, H. Ronald

    2015-01-01

    In a variety of bacteria, the phosphotransferase protein IIAGlc plays a key regulatory role in catabolite repression in addition to its role in the vectorial phosphorylation of glucose catalyzed by the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). The lactose permease (LacY) of Escherichia coli catalyzes stoichiometric symport of a galactoside with an H+, using a mechanism in which sugar- and H+-binding sites become alternatively accessible to either side of the membrane. Both the expression (via regulation of cAMP levels) and the activity of LacY are subject to regulation by IIAGlc (inducer exclusion). Here we report the thermodynamic features of the IIAGlc–LacY interaction as measured by isothermal titration calorimetry (ITC). The studies show that IIAGlc binds to LacY with a Kd of about 5 μM and a stoichiometry of unity and that binding is driven by solvation entropy and opposed by enthalpy. Upon IIAGlc binding, the conformational entropy of LacY is restrained, which leads to a significant decrease in sugar affinity. By suppressing conformational dynamics, IIAGlc blocks inducer entry into cells and favors constitutive glucose uptake and utilization. Furthermore, the studies support the notion that sugar binding involves an induced-fit mechanism that is inhibited by IIAGlc binding. The precise mechanism of the inhibition of LacY by IIAGlc elucidated by ITC differs from the inhibition of melibiose permease (MelB), supporting the idea that permeases can differ in their thermodynamic response to binding IIAGlc. PMID:25675534

  5. Ovarian endometriosis-associated stromal cells reveal persistently high affinity for iron

    PubMed Central

    Mori, Masahiko; Ito, Fumiya; Shi, Lei; Wang, Yue; Ishida, Chiharu; Hattori, Yuka; Niwa, Masato; Hirayama, Tasuku; Nagasawa, Hideko; Iwase, Akira; Kikkawa, Fumitaka; Toyokuni, Shinya

    2015-01-01

    Ovarian endometriosis is a recognized risk for infertility and epithelial ovarian cancer, presumably due to iron overload resulting from repeated hemorrhage. To find a clue for early detection and prevention of ovarian endometriosis-associated cancer, it is mandatory to evaluate catalytic (labile) ferrous iron (catalytic Fe(II)) and to study iron manipulation in ovarian endometriotic lesions. By the use of tissues from women of ovarian endometriosis as well as endometrial tissue from women with and without endometriosis, we for the first time performed histological analysis and cellular detection of catalytic Fe(II) with a specific fluorescent probe (HMRhoNox-M), and further evaluated iron transport proteins in the human specimens and in co-culture experiments using immortalized human eutopic/ectopic endometrial stromal cells (ESCs) in the presence or absence of epithelial cells (EpCs). The amounts of catalytic Fe(II) were higher in ectopic endometrial stromal cells (ecESCs) than in normal eutopic endometrial stromal cells (n-euESCs) both in the tissues and in the corresponding immortalized ESCs. ecESCs exhibited higher transferrin receptor 1 expression both in vivo and in vitro and lower ferroportin expression in vivo than n-euESCs, leading to sustained iron uptake. In co-culture experiments of ESCs with iron-loaded EpCs, ecESCs received catalytic ferrous iron from EpCs, but n-euESCs did not. These data suggest that ecESC play a protective role for cancer-target epithelial cells by collecting excess iron, and that these characteristics are retained in the immortalized ecESCs. PMID:26498255

  6. Immobilized metal affinity chromatography on collapsed Langmuir-Blodgett iron(III) stearate films and iron(III) oxide nanoparticles for bottom-up phosphoproteomics.

    PubMed

    Gladilovich, Vladimir; Greifenhagen, Uta; Sukhodolov, Nikolai; Selyutin, Artem; Singer, David; Thieme, Domenika; Majovsky, Petra; Shirkin, Alexey; Hoehenwarter, Wolfgang; Bonitenko, Evgeny; Podolskaya, Ekaterina; Frolov, Andrej

    2016-04-22

    Phosphorylation is the enzymatic reaction of site-specific phosphate transfer from energy-rich donors to the side chains of serine, threonine, tyrosine, and histidine residues in proteins. In living cells, reversible phosphorylation underlies a universal mechanism of intracellular signal transduction. In this context, analysis of the phosphoproteome is a prerequisite to better understand the cellular regulatory networks. Conventionally, due to the low contents of signaling proteins, selective enrichment of proteolytic phosphopeptides by immobilized metal affinity chromatography (IMAC) is performed prior to their LC-MS or -MS/MS analysis. Unfortunately, this technique still suffers from low selectivity and compromised analyte recoveries. To overcome these limitations, we propose IMAC systems comprising stationary phases based on collapsed Langmuir-Blodgett films of iron(III) stearate (FF) or iron(III) oxide nanoparticles (FO) and mobile phases relying on ammonia, piperidine and heptadecafluorooctanesulfonic acid (PFOS). Experiments with model phosphopeptides and phosphoprotein tryptic digests showed superior binding capacity, selectivity and recovery for both systems in comparison to the existing commercial analogs. As evidenced by LC-MS/MS analysis of the HeLa phosphoproteome, these features of the phases resulted in increased phosphoproteome coverage in comparison to the analogous commercially available phases, indicating that our IMAC protocol is a promising chromatographic tool for in-depth phosphoproteomic research. PMID:27016113

  7. Short communication: Identification of iron-binding peptides from whey protein hydrolysates using iron (III)-immobilized metal ion affinity chromatography and reversed phase-HPLC-tandem mass spectrometry.

    PubMed

    Cruz-Huerta, Elvia; Martínez Maqueda, Daniel; de la Hoz, Lucia; da Silva, Vera S Nunes; Pacheco, Maria Teresa Bertoldo; Amigo, Lourdes; Recio, Isidra

    2016-01-01

    Peptides with iron-binding capacity obtained by hydrolysis of whey protein with Alcalase (Novozymes, Araucaria, PR, Brazil), pancreatin, and Flavourzyme (Novozymes) were identified. Hydrolysates were subjected to iron (III)-immobilized metal ion affinity chromatography, and the bound peptides were sequenced by mass spectrometry. Regardless of the enzyme used, the domains f(42-59) and f(125-137) from β-lactoglobulin enclosed most of identified peptides. This trend was less pronounced in the case of peptides derived from α-lactalbumin, with sequences deriving from diverse regions. Iron-bound peptides exhibited common structural characteristics, such as an abundance of Asp, Glu, and Pro, as revealed by mass spectrometry and AA analysis. In conclusion, this characterization of iron-binding peptides helps clarify the relationship between peptide structure and iron-chelating activity and supports the promising role of whey protein hydrolysates as functional ingredients in iron supplementation treatments. PMID:26601589

  8. Comprehensive and Reproducible Phosphopeptide Enrichment Using Iron Immobilized Metal Ion Affinity Chromatography (Fe-IMAC) Columns

    PubMed Central

    Ruprecht, Benjamin; Koch, Heiner; Medard, Guillaume; Mundt, Max; Kuster, Bernhard; Lemeer, Simone

    2015-01-01

    Advances in phosphopeptide enrichment methods enable the identification of thousands of phosphopeptides from complex samples. Current offline enrichment approaches using TiO2, Ti, and Fe immobilized metal ion affinity chromatography (IMAC) material in batch or microtip format are widely used, but they suffer from irreproducibility and compromised selectivity. To address these shortcomings, we revisited the merits of performing phosphopeptide enrichment in an HPLC column format. We found that Fe-IMAC columns enabled the selective, comprehensive, and reproducible enrichment of phosphopeptides out of complex lysates. Column enrichment did not suffer from bead-to-sample ratio issues and scaled linearly from 100 μg to 5 mg of digest. Direct measurements on an Orbitrap Velos mass spectrometer identified >7500 unique phosphopeptides with 90% selectivity and good quantitative reproducibility (median cv of 15%). The number of unique phosphopeptides could be increased to more than 14,000 when the IMAC eluate was subjected to a subsequent hydrophilic strong anion exchange separation. Fe-IMAC columns outperformed Ti-IMAC and TiO2 in batch or tip mode in terms of phosphopeptide identification and intensity. Permutation enrichments of flow-throughs showed that all materials largely bound the same phosphopeptide species, independent of physicochemical characteristics. However, binding capacity and elution efficiency did profoundly differ among the enrichment materials and formats. As a result, the often quoted orthogonality of the materials has to be called into question. Our results strongly suggest that insufficient capacity, inefficient elution, and the stochastic nature of data-dependent acquisition in mass spectrometry are the causes of the experimentally observed complementarity. The Fe-IMAC enrichment workflow using an HPLC format developed here enables rapid and comprehensive phosphoproteome analysis that can be applied to a wide range of biological systems. PMID

  9. Fob1 and Fob2 Proteins Are Virulence Determinants of Rhizopus oryzae via Facilitating Iron Uptake from Ferrioxamine

    PubMed Central

    Liu, Mingfu; Lin, Lin; Gebremariam, Teclegiorgis; Luo, Guanpingsheng; Skory, Christopher D.; French, Samuel W.; Chou, Tsui-Fen; Edwards, John E.; Ibrahim, Ashraf S.

    2015-01-01

    Dialysis patients with chronic renal failure receiving deferoxamine for treating iron overload are uniquely predisposed for mucormycosis, which is most often caused by Rhizopus oryzae. Although the deferoxamine siderophore is not secreted by Mucorales, previous studies established that Rhizopus species utilize iron from ferrioxamine (iron-rich form of deferoxamine). Here we determined that the CBS domain proteins of Fob1 and Fob2 act as receptors on the cell surface of R. oryzae during iron uptake from ferrioxamine. Fob1 and Fob2 cell surface expression was induced in the presence of ferrioxamine and bound radiolabeled ferrioxamine. A R. oryzae strain with targeted reduced Fob1/Fob2 expression was impaired for iron uptake, germinating, and growing on medium with ferrioxamine as the sole source of iron. This strain also exhibited reduced virulence in a deferoxamine-treated, but not the diabetic ketoacidotic (DKA), mouse model of mucormycosis. The mechanism by which R. oryzae obtains iron from ferrioxamine involves the reductase/permease uptake system since the growth on ferrioxamine supplemented medium is associated with elevated reductase activity and the use of the ferrous chelator bathophenanthroline disulfonate abrogates iron uptake and growth on medium supplemented with ferrioxamine as a sole source of iron. Finally, R. oryzae mutants with reduced copies of the high affinity iron permease (FTR1) or with decreased FTR1 expression had an impaired iron uptake from ferrioxamine in vitro and reduced virulence in the deferoxamine-treated mouse model of mucormycosis. These two receptors appear to be conserved in Mucorales, and can be the subject of future novel therapy to maintain the use of deferoxamine for treating iron-overload. PMID:25974051

  10. Diversity and Evolutionary History of Iron Metabolism Genes in Diatoms

    PubMed Central

    Groussman, Ryan D.; Parker, Micaela S.; Armbrust, E. Virginia

    2015-01-01

    Ferroproteins arose early in Earth’s history, prior to the emergence of oxygenic photosynthesis and the subsequent reduction of bioavailable iron. Today, iron availability limits primary productivity in about 30% of the world’s oceans. Diatoms, responsible for nearly half of oceanic primary production, have evolved molecular strategies for coping with variable iron concentrations. Our understanding of the evolutionary breadth of these strategies has been restricted by the limited number of species for which molecular sequence data is available. To uncover the diversity of strategies marine diatoms employ to meet cellular iron demands, we analyzed 367 newly released marine microbial eukaryotic transcriptomes, which include 47 diatom species. We focused on genes encoding proteins previously identified as having a role in iron management: iron uptake (high-affinity ferric reductase, multi-copper oxidase, and Fe(III) permease); iron storage (ferritin); iron-induced protein substitutions (flavodoxin/ferredoxin, and plastocyanin/cytochrome c6) and defense against reactive oxygen species (superoxide dismutases). Homologs encoding the high-affinity iron uptake system components were detected across the four diatom Classes suggesting an ancient origin for this pathway. Ferritin transcripts were also detected in all Classes, revealing a more widespread utilization of ferritin throughout diatoms than previously recognized. Flavodoxin and plastocyanin transcripts indicate possible alternative redox metal strategies. Predicted localization signals for ferredoxin identify multiple examples of gene transfer from the plastid to the nuclear genome. Transcripts encoding four superoxide dismutase metalloforms were detected, including a putative nickel-coordinating isozyme. Taken together, our results suggest that the majority of iron metabolism genes in diatoms appear to be vertically inherited with functional diversity achieved via possible neofunctionalization of paralogs. This

  11. Retention of chimeric Tat2-Gap1 permease in the endoplasmic reticulum induces unfolded protein response in Saccharomyces cerevisiae.

    PubMed

    Mochizuki, Takahiro; Kimata, Yukio; Uemura, Satoshi; Abe, Fumiyoshi

    2015-08-01

    In Saccharomyces cerevisiae, high-affinity tryptophan import is performed by subtle mechanisms involving tryptophan permease Tat2. We have shown that Tat2 requires 15 amino acid residues in the transmembrane domains (TMDs) for its import activity, whereas leucine permease Bap2 requires only seven corresponding residues for its leucine import. For this reason, the structure of Tat2 is elaborately designed to transport the hydrophobic and bulky tryptophan. Newly synthesized cell surface proteins first undergo endoplasmic reticulum (ER)-associated quality check before entering the secretory pathway. In this study, we used domain replacement with general amino acid permease Gap1 to show that Tat2 chimeric proteins were dysfunctional when TMD10 or TMD11 was replaced. These chimeras formed large 270-800-kDa protein complexes and were stably retained in the ER membrane without efficient degradation. In contrast, Tat2 chimeras of TMD9 or TMD12 retained some of their tryptophan import activity and underwent vacuolar degradation as observed with wild-type Tat2. Thus, ours results suggest that TMD10 and TMD11 are essential for the correct folding of Tat2, probably because of their interdomain interactions. Notably, overexpression of Tat2-Gap1 chimera of TMD10 activated the unfolded protein response (UPR) element-lacZ reporter, suggesting that ER retention of the protein aggregates induces the UPR. PMID:26071436

  12. Effects of three permeases on arginine utilization in Saccharomyces cerevisiae.

    PubMed

    Zhang, Peng; Du, Guocheng; Zou, Huijun; Chen, Jian; Xie, Guangfa; Shi, Zhongping; Zhou, Jingwen

    2016-01-01

    Arginine plays an important role in cellular function and metabolism. Arginine uptake mainly occurs through three amino acid permeases, Alp1p, Gap1p and Can1p, which act as both transporters and receptors for amino acid utilization. In this study, seven mutants were constructed with different combinations of permease deficiencies that inhibit arginine utilization. Their effects on arginine metabolism were measured. The three amino acid permeases were also individually overexpressed in wild-type (WT), Δalp1Δgap1Δcan1 and Δnpr1 strains. The growth and arginine utilization of Δcan1, Δgap1Δcan1 and Δalp1Δgap1Δcan1 mutants were suppressed in YNB medium when arginine was the sole nitrogen source. Meanwhile, overexpression of Alp1p and Can1p enhanced growth and arginine utilization in WT, Δalp1Δgap1Δcan1 and Δnpr1. Besides, overexpression of Can1p caused a 26.7% increase in OD600 and 29.3% increase in arginine utilization compared to that of Alp1p in Δalp1Δgap1Δcan1. Transcription analysis showed that the effects of three amino acid permeases on the arginine utilization and the regulation of related genes, were tightly related to their individual characteristics. However, their overall effects were different for different combinations of mutants. The results presented here suggest some possible synergistic effects of different amino acid permeases on regulation of amino acid utilization and metabolism. PMID:26865023

  13. Geochemical affinities of cobalt and germanium toward metal, silicate, and sulfide phases at high temperature. [in iron meteorites

    NASA Technical Reports Server (NTRS)

    Wai, C. M.

    1974-01-01

    Hydrothermal studies indicate that Co and Ge are strongly siderophile when metallic iron is in equilibrium with olivine at 900 C and 500 bars. If the metal is replaced by troilite (FeS), Ge is strongly lithophile whereas Co tends to concentrate in the sulfide phase. If iron meteorites were formed in a core derived from the sulfide phase, they would be depleted in Ge but retain Co.

  14. Mammalian iron transport.

    PubMed

    Anderson, Gregory Jon; Vulpe, Christopher D

    2009-10-01

    Iron is essential for basic cellular processes but is toxic when present in excess. Consequently, iron transport into and out of cells is tightly regulated. Most iron is delivered to cells bound to plasma transferrin via a process that involves transferrin receptor 1, divalent metal-ion transporter 1 and several other proteins. Non-transferrin-bound iron can also be taken up efficiently by cells, although the mechanism is poorly understood. Cells can divest themselves of iron via the iron export protein ferroportin in conjunction with an iron oxidase. The linking of an oxidoreductase to a membrane permease is a common theme in membrane iron transport. At the systemic level, iron transport is regulated by the liver-derived peptide hepcidin which acts on ferroportin to control iron release to the plasma. PMID:19484405

  15. Iron

    MedlinePlus

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  16. Transport Function of Rice Amino Acid Permeases (AAPs).

    PubMed

    Taylor, Margaret R; Reinders, Anke; Ward, John M

    2015-07-01

    The transport function of four rice (Oryza sativa) amino acid permeases (AAPs), OsAAP1 (Os07g04180), OsAAP3 (Os06g36180), OsAAP7 (Os05g34980) and OsAAP16 (Os12g08090), was analyzed by expression in Xenopus laevis oocytes and electrophysiology. OsAAP1, OsAAP7 and OsAAP16 functioned, similarly to Arabidopsis AAPs, as general amino acid permeases. OsAAP3 had a distinct substrate specificity compared with other rice or Arabidopsis AAPs. OsAAP3 transported the basic amino acids lysine and arginine well but selected against aromatic amino acids. The transport of basic amino acids was further analyzed for OsAAP1 and OsAAP3, and the results support the transport of both neutral and positively charged forms of basic amino acids by the rice AAPs. Cellular localization using the tandem enhanced green fluorescent protein (EGFP)-red fluorescent protein (RFP) reporter pHusion showed that OsAAP1 and OsAAP3 localized to the plasma membrane after transient expression in onion epidermal cells or stable expression in Arabidopsis. PMID:25907566

  17. Lactose permease of Escherichia coli: properties of mutants defective in substrate translocation.

    PubMed Central

    Overath, P; Weigel, U; Neuhaus, J M; Soppa, J; Seckler, R; Riede, I; Bocklage, H; Müller-Hill, B; Aichele, G; Wright, J K

    1987-01-01

    Mutants of lactose permease of Escherichia coli with amino acid changes (Gly-24----Glu; Gly-24----Arg; Pro-28---Ser; Gly-24, Pro-28----Glu-Ser and Gly-24, Pro-28----Arg-Ser) within a putative membrane-spanning alpha-helix (Phe-Gly-Leu-Phe-Phe-Phe-Phe-Tyr-Phe-Phe-Ile-Met-Gly- Ala-Tyr-Phe-Pro-Phe-Phe-Pro-Ile) are incorporated into the cytoplasmic membrane. The mutant proteins retain the ability to bind galactosides, and the affinity for several substrates is actually increased. However, the rate of active transport is decreased to 0.01% of the wild-type rate in the mutants carrying Arg-24 or Arg-24, Ser-28. Kinetic analysis demonstrates that the two mutants require 10 min to cause occupied binding sites for galactoside and H+ to change their exposure from the periplasm to the cytoplasm as compared to 50 ms in the wild type. The effect is less pronounced when these sites are unoccupied. PMID:3303027

  18. IRON

    EPA Science Inventory

    The document surveys the effects of organic and inorganic iron that are relevant to humans and their environment. The biology and chemistry of iron are complex and only partially understood. Iron participates in oxidation reduction processes that not only affect its geochemical m...

  19. Effects of oligopeptide permease in group a streptococcal infection.

    PubMed

    Wang, Chih-Hung; Lin, Chia-Yu; Luo, Yueh-Hsia; Tsai, Pei-Jane; Lin, Yee-Shin; Lin, Ming T; Chuang, Woei-Jer; Liu, Ching-Chuan; Wu, Jiunn-Jong

    2005-05-01

    The oligopeptide permease (Opp) of group A streptococci (GAS) is a membrane-associated protein and belongs to the ATP-binding cassette transporter family. It is encoded by a polycistronic operon containing oppA, oppB, oppC, oppD, and oppF. The biological function of these genes in GAS is poorly understood. In order to understand more about the effects of Opp on GAS virulence factors, an oppA isogenic mutant was constructed by using an integrative plasmid to disrupt the opp operon and confirmed by Southern blot hybridization. No transcript was detected in the oppA isogenic mutant by Northern blot analysis and reverse transcriptase PCR. The growth curve for the oppA isogenic mutant was similar to that for wild-type strain A-20. The oppA isogenic mutant not only decreased the transcription of speB, speX, and rofA but also increased the transcription of speF, sagA (streptolysin S-associated gene A), slo (streptolysin O), pel (pleotrophic effect locus), and dppA (dipeptide permease). No effects on the transcription of emm, sda, speJ, speG, rgg, and csrR were found. The phenotypes of the oppA mutant were restored by the oppA revertant and by the complementation strain. The oppA mutant caused less mortality and tissue damage than the wild-type strain when inoculated into BALB/c mice via an air pouch. Based on these data, we suggest that the opp operon plays an important role in the pathogenesis of GAS infection. PMID:15845494

  20. Mössbauer Properties of the Diferric Cluster and the Differential Iron(II)-Binding Affinity of the Iron Sites in Protein R2 of Class Ia Escherichia coli Ribonucleotide Reductase: A DFT/Electrostatics Study

    PubMed Central

    Han, Wen-Ge; Sandala, Gregory M.; Giammona, Debra Ann; Bashford, Donald; Noodleman, Louis

    2013-01-01

    The R2 subunit of class-Ia ribonucleotide reductase (RNR) from Escherichia coli (E. coli) contains a diiron active site. Starting from the apo-protein and Fe(II) in solution at low Fe(II)/apoR2 ratios, mononuclear Fe(II) binding is observed indicating possible different Fe(II) binding affinities for the two alternative sites. Further, based on their Mössbauer spectroscopy and two-iron-isotope reaction experiments, Bollinger et al. (J. Am. Chem. Soc., 1997, 119, 5976–5977) proposed that the site Fe1, which bonds to Asp84, should be associated with the higher observed 57Fe Mössbauer quadrupole splitting (2.41 mm s−1) and lower isomer shift (0.45 mm s−1) in the Fe(III)Fe(III) state, site Fe2, which is further from Tyr122, should have a greater affinity for Fe(II) binding than site Fe1, and Fe(IV) in the intermediate X state should reside at site Fe2. In this paper, using density functional theory (DFT) incorporated with the conductor like screening (COSMO) solvation model and with the finite-difference Poisson-Boltzmann self-consistent reaction field (PB-SCRF) methodologies, we have demonstrated that the observed large quadrupole splitting for the diferric state R2 does come from site Fe1(III) and it is mainly caused by the binding position of the carboxylate group of Asp84 sidechain. Further, a series of active site clusters with mononuclear Fe(II) binding at either site Fe1 or Fe2 have been studied, which show that with single dielectric medium outside the active site quantum region, there is no energetic preference for Fe(II) binding at one site over another. However, when including the explicit extended protein environment in the PB-SCRF model, the reaction field favors the Fe(II) binding at site Fe2 rather than at site Fe1 by ~9 kcal mol−1. Therefore our calculations support the proposal of the previous Mössbauer spectroscopy and two-iron-isotope reaction experiments by Bollinger et al. PMID:21837345

  1. Iron

    MedlinePlus

    ... organ failure, coma, convulsions, and death. Child-proof packaging and warning labels on iron supplements have greatly ... levodopa that the body absorbs, making it less effective. Levodopa, found in Sinemet® and Stalevo®, is used ...

  2. Elevated temperature inhibits recruitment of transferrin-positive vesicles and induces iron-deficiency genes expression in Aiptasia pulchella host-harbored Symbiodinium.

    PubMed

    Song, Po-Ching; Wu, Tsung-Meng; Hong, Ming-Chang; Chen, Ming-Chyuan

    2015-10-01

    Coral bleaching is the consequence of disruption of the mutualistic Cnidaria-dinoflagellate association. Elevated seawater temperatures have been proposed as the most likely cause of coral bleaching whose severity is enhanced by a limitation in the bioavailability of iron. Iron is required by numerous organisms including the zooxanthellae residing inside the symbiosome of cnidarian cells. However, the knowledge of how symbiotic zooxanthellae obtain iron from the host cells and how elevated water temperature affects the association is very limited. Since cellular iron acquisition is known to be mediated through transferrin receptor-mediated endocytosis, a vesicular trafficking pathway specifically regulated by Rab4 and Rab5, we set out to examine the roles of these key proteins in the iron acquisition by the symbiotic Symbiodinium. Thus, we hypothesized that the iron recruitments into symbiotic zooxanthellae-housed symbiosomes may be dependent on rab4/rab5-mediated fusion with vesicles containing iron-bound transferrins and will be retarded under elevated temperature. In this study, we cloned a novel monolobal transferrin (ApTF) gene from the tropical sea anemone Aiptasia pulchella and confirmed that the association of ApTF with A. pulchella Rab4 (ApRab4) or A. pulchella Rab5 (ApRab5) vesicles is inhibited by elevated temperature through immunofluorescence analysis. We confirmed the iron-deficient phenomenon by demonstrating the induced overexpression of iron-deficiency-responsive genes, flavodoxin and high-affinity iron permease 1, and reduced intracellular iron concentration in zooxanthellae under desferrioxamine B (iron chelator) and high temperature treatment. In conclusion, our data are consistent with algal iron deficiency being a contributing factor for the thermal stress-induced bleaching of symbiotic cnidarians. PMID:25997368

  3. Multiple sugar: phosphotransferase system permeases participate in catabolite modification of gene expression in Streptococcus mutans.

    PubMed

    Zeng, Lin; Burne, Robert A

    2008-10-01

    Streptococcus mutans is particularly well adapted for high-affinity, high-capacity catabolism of multiple carbohydrate sources. S. mutansenzyme II (EII(Lev)), a fructose/mannose permease encoded by the levDEFG genes, and fruA, which encodes a hydrolase that releases fructose from fructan polymers, are transcriptionally regulated by the LevQRST four-component signal transduction system. Here, we demonstrate that: (i) levDEFGX are co-transcribed and the levE/F intergenic region is required for optimal expression of levFGX; (ii) D-mannose is a potent inducer of the levD and fruA operons; (iii) CcpA regulates levD expression in a carbohydrate-specific manner; (iv) deletion of the genes for the fructose/mannose-EII enzymes of S. mutans (manL, fruI and levD) enhances levD expression; (v) repression of the LevQRST regulon by EII enzymes depends on the presence of their substrates and requires LevR, but not LevQST; and (vi) CcpA inhibits expression of the manL and fruI genes to indirectly control the LevQRST regulon. Further, the manL, ccpA, fruI/fruCD and levD gene products differentially exert control over the cellobiose and lactose operons. Collectively, the results reveal the existence of a global regulatory network in S. mutans that governs the utilization of non-preferred carbohydrates in response to the availability and source of multiple preferred carbohydrates. PMID:18699864

  4. CovR activation of the dipeptide permease promoter (PdppA) in Group A Streptococcus.

    PubMed

    Gusa, Asiya A; Froehlich, Barbara J; Desai, Devak; Stringer, Virginia; Scott, June R

    2007-02-01

    CovR, the two-component response regulator of Streptococcus pyogenes (group A streptococcus [GAS]) directly or indirectly represses about 15% of the genome, including genes encoding many virulence factors and itself. Transcriptome analyses also showed that some genes are activated by CovR. We asked whether the regulation by CovR of one of these genes, dppA, the first gene in an operon encoding a dipeptide permease, is direct or indirect. Direct regulation by CovR was suggested by the presence of five CovR consensus binding sequences (CBs) near the putative promoter. In this study, we identified the 5' end of the dppA transcript synthesized in vivo and showed that the start of dppA transcription in vitro is the same. We found that CovR binds specifically to the dppA promoter region (PdppA) in vitro with an affinity similar to that at which it binds to other CovR-regulated promoters. Disruption of any of the five CBs by a substitution of GG for TT inhibited CovR binding to that site in vitro, and binding at two of the CBs appeared cooperative. In vivo, CovR activation of transcription was not affected by individual mutations of any of the four CBs that we could study. This suggests that the binding sites are redundant in vivo. In vitro, CovR did not activate transcription from PdppA in experiments using purified GAS RNA polymerase and either linear or supercoiled DNA template. Therefore, we propose that in vivo, CovR may interfere with the binding of a repressor of PdppA. PMID:16997962

  5. Observing a Lipid-Dependent Alteration in Single Lactose Permeases

    PubMed Central

    Serdiuk, Tetiana; Sugihara, Junichi; Mari, Stefania A.; Kaback, H. Ronald; Müller, Daniel J.

    2015-01-01

    SUMMARY Lipids of the Escherichia coli membrane are mainly composed of 70–80% phosphatidylethanolamine (PE) and 20–25% phosphatidylglycerol (PG). Biochemical studies indicate that the depletion of PE causes inversion of the N-terminal helix bundle of the lactose permease (LacY), and helix VII becomes extramembraneous. Here we study this phenomenon using single-molecule force spectroscopy, which is sensitive to the structure of membrane proteins. In PE and PG at a ratio of 3:1, ~95% of the LacY molecules adopt a native structure. However, when PE is omitted and the membrane contains PG only, LacY almost equally populates a native and a perturbed conformation. The most drastic changes occur at helices VI and VII and the intervening loop. Since helix VII contains Asp237 and Asp240, zwitterionic PE may suppress electrostatic repulsion between LacY and PG in the PE:PG environment. Thus, PE promotes a native fold and prevents LacY from populating a functionally defective, non-native conformation. PMID:25800555

  6. Root uptake of cationic amino acids by Arabidopsis depends on functional expression of amino acid permease 5.

    PubMed

    Svennerstam, Henrik; Ganeteg, Ulrika; Näsholm, Torgny

    2008-01-01

    * Specific transporters mediate uptake of amino acids by plant roots. Earlier studies have indicated that the lysine histidine transporter 1 and amino acid permease 1 participate in this process, but although plant roots have been shown to absorb cationic amino acids with high affinity, neither of these transporters seems to mediate transport of L-arginine (L-Arg) or L-lysine (L-Lys). * Here, a collection of T-DNA knockout mutants were screened for alterations in Arabidopsis root uptake rates of L-Arg and it was found that only the AAP5 mutant displayed clear phenotypic divergence on high concentrations of L-Arg. A second screen using low concentrations of (15)N-labelled L-Arg in the growth media also identified AAP5 as being involved in L-Arg acquisition. * Momentaneous root uptake of basic amino acids was strongly affected in AAP5 mutant lines, but their uptake of other types of amino acids was only marginally affected. Comparisons of the root uptake characteristics of AAP5 and LHT1 mutants corroborated the hypothesis that the two transporters have distinct affinity spectra in planta. * Root uptake of all tested amino acids, except L-aspartic acid (L-Asp), was significantly affected in double AAP5*LHT1 mutants, suggesting that these two transporters account for a major proportion of roots' uptake of amino acids at low concentrations. PMID:18681934

  7. Affinity Chromatography.

    ERIC Educational Resources Information Center

    Gray, Gary R.

    1980-01-01

    Presents selected recent advances in immobilization chemistry which have important connections to affinity chromatography. Discusses ligand immobilization and support modification. Cites 51 references. (CS)

  8. Siderophore Biosynthesis but Not Reductive Iron Assimilation Is Essential for the Dimorphic Fungus Nomuraea rileyi Conidiation, Dimorphism Transition, Resistance to Oxidative Stress, Pigmented Microsclerotium Formation, and Virulence.

    PubMed

    Li, Yan; Wang, Zhongkang; Liu, Xuee; Song, Zhangyong; Li, Ren; Shao, Changwen; Yin, Youping

    2016-01-01

    Iron is an indispensable factor for the dimorphic insect pathogenic Nomuraea rileyi to form persistent microsclerotia which can replace conidia or blastospores for commercial mass production. There are two high affinity iron acquisition pathways in N. rileyi, siderophore-assisted iron mobilization and reductive iron assimilation systems. Transcription of the two iron uptake pathways related genes is induced under iron-limiting conditions. Stage-specific iron uptake-related genes expression during microsclerotia development shows siderophore-mediated iron acquisition genes are rigorously upregulated specifically during the formation and mature period while reductive iron assimilation related genes just display a higher expression at the late maturation period. Abrogation of reductive iron assimilation, by the deletion of the high affinity iron permease (NrFtrA), has no visible effect on microsclerotia biogenesis in N. rileyi. In sharp contrast, N. rileyi L-ornithine-N(5)-monooxygenase (NrSidA), required for synthesis of all siderophores, is absolutely necessary for the development of pigmented microsclerotia. In agreement with the lower intracellular iron contents of microsclerotia in ΔNrSidA strains, not only the pigments, but both the number and the biomass are also noticeably reduced. Certain concentration of ROS is required for promoting microsclerotia biogenesis. Combined with expression pattern analysis of related genes and quantitative of intracellular iron or extracellular siderophore in WT and mutants, these data demonstrate the lack of adequate intracellular iron caused by the loss of the siderophore results in the deficiency of ROS detoxication. Furthermore, ΔNrSidA strains show significantly increased sensitivity to hydrogen peroxide. Besides, NrSidA, but not NrFtrA, play a crucial role in vegetative growth under iron-limiting conditions, conidiation, and dimorphic switching. Remarkably, the slower growth of the ΔNrSidA strains in vivo due to a

  9. Siderophore Biosynthesis but Not Reductive Iron Assimilation Is Essential for the Dimorphic Fungus Nomuraea rileyi Conidiation, Dimorphism Transition, Resistance to Oxidative Stress, Pigmented Microsclerotium Formation, and Virulence

    PubMed Central

    Li, Yan; Wang, Zhongkang; Liu, Xuee; Song, Zhangyong; Li, Ren; Shao, Changwen; Yin, Youping

    2016-01-01

    Iron is an indispensable factor for the dimorphic insect pathogenic Nomuraea rileyi to form persistent microsclerotia which can replace conidia or blastospores for commercial mass production. There are two high affinity iron acquisition pathways in N. rileyi, siderophore-assisted iron mobilization and reductive iron assimilation systems. Transcription of the two iron uptake pathways related genes is induced under iron-limiting conditions. Stage-specific iron uptake-related genes expression during microsclerotia development shows siderophore-mediated iron acquisition genes are rigorously upregulated specifically during the formation and mature period while reductive iron assimilation related genes just display a higher expression at the late maturation period. Abrogation of reductive iron assimilation, by the deletion of the high affinity iron permease (NrFtrA), has no visible effect on microsclerotia biogenesis in N. rileyi. In sharp contrast, N. rileyi L-ornithine-N5-monooxygenase (NrSidA), required for synthesis of all siderophores, is absolutely necessary for the development of pigmented microsclerotia. In agreement with the lower intracellular iron contents of microsclerotia in ΔNrSidA strains, not only the pigments, but both the number and the biomass are also noticeably reduced. Certain concentration of ROS is required for promoting microsclerotia biogenesis. Combined with expression pattern analysis of related genes and quantitative of intracellular iron or extracellular siderophore in WT and mutants, these data demonstrate the lack of adequate intracellular iron caused by the loss of the siderophore results in the deficiency of ROS detoxication. Furthermore, ΔNrSidA strains show significantly increased sensitivity to hydrogen peroxide. Besides, NrSidA, but not NrFtrA, play a crucial role in vegetative growth under iron-limiting conditions, conidiation, and dimorphic switching. Remarkably, the slower growth of the ΔNrSidA strains in vivo due to a reduced

  10. Functional characterization of solute carrier (SLC) 26/sulfate permease (SulP) proteins in membrane mimetic systems.

    PubMed

    Srinivasan, Lakshmi; Baars, Tonie Luise; Fendler, Klaus; Michel, Hartmut

    2016-04-01

    Solute carrier (SLC) 26 or sulfate permease (SulP) anion transporters, belong to a phylogenetically ancient family of secondary active transporters. Members of the family are involved in several human genetic diseases and cell physiological processes. Despite their importance, the substrates for transport by this family of proteins have been poorly characterized. In this study, recombinant StmYchM/DauA, a SulP from Salmonella typhimurium was purified to homogeneity and functionally characterized. StmYchM/DauA was found to be a dimer in solution as determined by size exclusion chromatography coupled to multiple angle light scattering. We report a functional characterization of the SulP proteins in two membrane mimetic systems and reveal a dual nature of anionic substrates for SulP. StmYchM/DauA functionally incorporated into nanodiscs could bind fumarate with millimolar affinities (KD = 4.6 ± 0.29 mM) as detected by intrinsic tryptophan fluorescence quench studies. In contrast, electrophysiological experiments performed in reconstituted liposomes indicate a strong bicarbonate transport in the presence of chloride but no detectable electrogenic fumarate transport. We hence suggest that while SulP acts as an electrogenic bicarbonate transporter, fumarate may serve as substrate under different conditions indicating multiple functions of SulP. PMID:26774215

  11. Cloning, expression, purification, crystallization and preliminary X-ray diffraction of a lysine-specific permease from Pseudomonas aeruginosa

    PubMed Central

    Nji, Emmanuel; Li, Dianfan; Doyle, Declan A.; Caffrey, Martin

    2014-01-01

    The prokaryotic lysine-specific permease (LysP) belongs to the amino acid–polyamine–organocation (APC) transporter superfamily. In the cell, members of this family are responsible for the uptake and recycling of nutrients, for the maintenance of a constant internal ion concentration and for cell volume regulation. The detailed mechanism of substrate selectivity and transport of l-lysine by LysP is not understood. A high-resolution crystal structure would enormously facilitate such an understanding. To this end, LysP from Pseudomonas aeruginosa was recombinantly expressed in Escherichia coli and purified to near homogeneity by immobilized metal ion-affinity chromatography (IMAC) and size-exclusion chromatography (SEC). Hexagonal- and rod-shaped crystals were obtained in the presence of l-lysine and the l-lysine analogue l-4-thialysine by vapour diffusion and diffracted to 7.5 Å resolution. The diffraction data were indexed in space group P21, with unit-cell parameters a = 169.53, b = 169.53, c = 290.13 Å, γ = 120°. PMID:25286940

  12. Identification and characterization of trimethylamine N-oxide (TMAO) demethylase and TMAO permease in Methylocella silvestris BL2.

    PubMed

    Zhu, Yijun; Jameson, Eleanor; Parslow, Rosemary A; Lidbury, Ian; Fu, Tiantian; Dafforn, Timothy R; Schäfer, Hendrik; Chen, Yin

    2014-10-01

    Methylocella silvestris, an alphaproteobacterium isolated from a forest soil, can grow on trimethylamine N-oxide (TMAO) as a sole nitrogen source; however, the molecular and biochemical mechanisms underpinning its growth remain unknown. Marker-exchange mutagenesis enabled the identification of several genes involved in TMAO metabolism, including Msil_3606, a permease of the amino acids-polyamine (APC) superfamily, and Msil_3603, consisting of an N-terminal domain of unknown function (DUF1989) and a C-terminal tetrahydrofolate-binding domain. Null mutants of Msil_3603 and Msil_3606 can no longer grow on TMAO. Purified Msil_3603 from recombinant Escherichia coli can convert TMAO to dimethylamine and formaldehyde (1 TMAO → 1 dimethylamine + 1 formaldehyde), confirming that it encodes a bona fide TMAO demethylase (Tdm). Tdm of M. silvestris and eukaryotic Tdms have no sequence homology and contrasting characteristics. Recombinant Tdm of M. silvestris appears to be hexameric, has a high affinity for TMAO (Km = 3.3 mM; Vmax = 21.7 nmol min(-1)  mg(-1) ) and only catalyses demethylation of TMAO and a structural homologue, dimethyldodecylamine N-oxide. Our study has contributed to the understanding of the genetic and biochemical mechanisms for TMAO degradation in M. silvestris. PMID:25088783

  13. Phosphotransferase system-independent glucose utilization in corynebacterium glutamicum by inositol permeases and glucokinases.

    PubMed

    Lindner, Steffen N; Seibold, Gerd M; Henrich, Alexander; Krämer, Reinhard; Wendisch, Volker F

    2011-06-01

    Phosphoenolpyruvate-dependent glucose phosphorylation via the phosphotransferase system (PTS) is the major path of glucose uptake in Corynebacterium glutamicum, but some growth from glucose is retained in the absence of the PTS. The growth defect of a deletion mutant lacking the general PTS component HPr in glucose medium could be overcome by suppressor mutations leading to the high expression of inositol utilization genes or by the addition of inositol to the growth medium if a glucokinase is overproduced simultaneously. PTS-independent glucose uptake was shown to require at least one of the inositol transporters IolT1 and IolT2 as a mutant lacking IolT1, IolT2, and the PTS component HPr could not grow with glucose as the sole carbon source. Efficient glucose utilization in the absence of the PTS necessitated the overexpression of a glucokinase gene in addition to either iolT1 or iolT2. IolT1 and IolT2 are low-affinity glucose permeases with K(s) values of 2.8 and 1.9 mM, respectively. As glucose uptake and phosphorylation via the PTS differs from glucose uptake via IolT1 or IolT2 and phosphorylation via glucokinase by the requirement for phosphoenolpyruvate, the roles of the two pathways for l-lysine production were tested. The l-lysine yield by C. glutamicum DM1729, a rationally engineered l-lysine-producing strain, was lower than that by its PTS-deficient derivate DM1729Δhpr, which, however, showed low production rates. The combined overexpression of iolT1 or iolT2 with ppgK, the gene for PolyP/ATP-dependent glucokinase, in DM1729Δhpr enabled l-lysine production as fast as that by the parent strain DM1729 but with 10 to 20% higher l-lysine yield. PMID:21478323

  14. Engineering of yeast Put4 permease and its application to lager yeast for efficient proline assimilation.

    PubMed

    Omura, Fumihiko; Fujita, Atsushi; Miyajima, Keiji; Fukui, Nobuyuki

    2005-06-01

    The Saccharomyces cerevisiae Put4 permease is significant for the transport of proline, alanine, and glycine. Put4p downregulation is counteracted by npi1 mutation that affects the cellular ubiquitination function. Here we describe mutant Put4 permeases, in which up to nine lysine residues in the cytoplasmic N-terminal domain have been replaced by arginine. The steady-state protein level of the mutant permease Put4-20p (Lys9, Lys34, Lys35, Lys60, Lys68, Lys71, Lys93, Lys105, Lys107 --> Arg) was largely higher compared to that of the wild-type Put4p, indicating that the N-terminal lysines can undergo ubiquitination and the subsequent degradation steps. Proline is the only amino acid that yeast assimilates with difficulty under standard brewing conditions. A lager yeast strain provided with Put4-20p was able to assimilate proline efficiently during beer fermentations. These results suggest possible industrial applications of the mutant Put4 permeases in improved fermentation systems for beer and other alcoholic beverages based on proline-rich fermentable sources. PMID:15973048

  15. Microbial iron management mechanisms in extremely acidic environments: comparative genomics evidence for diversity and versatility

    PubMed Central

    Osorio, Héctor; Martínez, Verónica; Nieto, Pamela A; Holmes, David S; Quatrini, Raquel

    2008-01-01

    Background Iron is an essential nutrient but can be toxic at high intracellular concentrations and organisms have evolved tightly regulated mechanisms for iron uptake and homeostasis. Information on iron management mechanisms is available for organisms living at circumneutral pH. However, very little is known about how acidophilic bacteria, especially those used for industrial copper bioleaching, cope with environmental iron loads that can be 1018 times the concentration found in pH neutral environments. This study was motivated by the need to fill this lacuna in knowledge. An understanding of how microorganisms thrive in acidic ecosystems with high iron loads requires a comprehensive investigation of the strategies to acquire iron and to coordinate this acquisition with utilization, storage and oxidation of iron through metal responsive regulation. In silico prediction of iron management genes and Fur regulation was carried out for three Acidithiobacilli: Acidithiobacillus ferrooxidans (iron and sulfur oxidizer) A. thiooxidans and A. caldus (sulfur oxidizers) that can live between pH 1 and pH 5 and for three strict iron oxidizers of the Leptospirillum genus that live at pH 1 or below. Results Acidithiobacilli have predicted FeoB-like Fe(II) and Nramp-like Fe(II)-Mn(II) transporters. They also have 14 different TonB dependent ferri-siderophore transporters of diverse siderophore affinity, although they do not produce classical siderophores. Instead they have predicted novel mechanisms for dicitrate synthesis and possibly also for phosphate-chelation mediated iron uptake. It is hypothesized that the unexpectedly large number and diversity of Fe(III)-uptake systems confers versatility to this group of acidophiles, especially in higher pH environments (pH 4–5) where soluble iron may not be abundant. In contrast, Leptospirilla have only a FtrI-Fet3P-like permease and three TonB dependent ferri-dicitrate siderophore systems. This paucity of iron uptake systems could

  16. Iron bound to the high-affinity Mn-binding site of the oxygen-evolving complex shifts the pK of a component controlling electron transport via Y(Z).

    PubMed

    Semin, Boris K; Seibert, Michael

    2004-06-01

    Flash-probe fluorescence spectroscopy was used to compare the pH dependence of charge recombination between Y(Z)(*) and Q(a)(-) in Mn-depleted, photosystem II membranes [PSII(-Mn)] and in membranes with the high-affinity (HA(Z)) Mn-binding site blocked by iron [PSII(-Mn,+Fe); Semin, B. K., Ghirardi, M. L., and Seibert, M. (2002) Biochemistry 41, 5854-5864]. The apparent half-time for fluorescence decay (t(1/2)) in PSII(-Mn) increased from 9 ms at pH 4.4 to 75 ms at pH 9.0 [with an apparent pK (pK(app)) of 7.1]. The actual fluorescence decay kinetics can be fit to one exponential component at pH <6.0 (t(1/2) = 9.5 ms), but it requires an additional component at pH >6.0 (t(1/2) = 385 ms). Similar measurements with PSII(-Mn,+Fe) membranes show that iron binding has little effect on the maximum and minimum t(1/2) values measured at alkaline and acidic pHs but that it does shift the pK(app) from 7.1 to 6.1 toward the more acidic pK(app) value typical of intact membranes. Light-induced Fe(II) blocking of the PSII(-Mn) membrane is accompanied by a decrease in buffer Fe(II) concentration. This decrease was not the result of Fe(II) binding, but rather of its oxidation at two sites, the HA(Z) site and the low-affinity site. Mössbauer spectroscopy at 80 K on PSII(-Mn,+Fe) samples, prepared under conditions providing the maximal blocking effect but minimizing the amount of nonspecifically bound iron cations, supports this conclusion since this method detected only Fe(III) cations bound to the membranes. Correlation of the kinetics of Fe(II) oxidation with the blocking parameters showed that blocking occurs after four to five Fe(II) cations were oxidized at the HA(Z) site. In summary, the blocking of the HA(Z) Mn-binding site by iron in PSII(-Mn) membranes not only prevents the access of exogenous donors to Y(Z) but also partially restores the properties of the hydrogen bond net found in intact PS(II), which in turn controls the rate of electron transport to Y(Z). PMID

  17. The Role of Amino Acid Permeases and Tryptophan Biosynthesis in Cryptococcus neoformans Survival

    PubMed Central

    Fernandes, João Daniel Santos; Martho, Kevin; Tofik, Veridiana; Vallim, Marcelo A.; Pascon, Renata C.

    2015-01-01

    Metabolic diversity is an important factor during microbial adaptation to different environments. Among metabolic processes, amino acid biosynthesis has been demonstrated to be relevant for survival for many microbial pathogens, whereas the association between pathogenesis and amino acid uptake and recycling are less well-established. Cryptococcus neoformans is an opportunistic fungal pathogen with many habitats. As a result, it faces frequent metabolic shifts and challenges during its life cycle. Here we studied the C. neoformans tryptophan biosynthetic pathway and found that the pathway is essential. RNAi indicated that interruptions in the biosynthetic pathway render strains inviable. However, auxotroph complementation can be partially achieved by tryptophan uptake when a non preferred nitrogen source and lower growth temperature are applied, suggesting that amino acid permeases may be the target of nitrogen catabolism repression (NCR). We used bioinformatics to search for amino acid permeases in the C. neoformans and found eight potential global permeases (AAP1 to AAP8). The transcriptional profile of them revealed that they are subjected to regulatory mechanisms which are known to respond to nutritional status in other fungi, such as (i) quality of nitrogen (Nitrogen Catabolism Repression, NCR) and carbon sources (Carbon Catabolism Repression, CCR), (ii) amino acid availability in the extracellular environment (SPS-sensing) and (iii) nutritional deprivation (Global Amino Acid Control, GAAC). This study shows that C. neoformans has fewer amino acid permeases than other model yeasts, and that these proteins may be subjected to complex regulatory mechanisms. Our data suggest that the C. neoformans tryptophan biosynthetic pathway is an excellent pharmacological target. Furthermore, inhibitors of this pathway cause Cryptococcus growth arrest in vitro. PMID:26162077

  18. Contribution of chloride channel permease to fluoride resistance in Streptococcus mutans.

    PubMed

    Murata, Takatoshi; Hanada, Nobuhiro

    2016-06-01

    Genes encoding fluoride transporters have been identified in bacterial and archaeal species. The genome sequence of the cariogenic Streptococcus mutans bacteria suggests the presence of a putative fluoride transporter, which is referred to as a chloride channel permease. Two homologues of this gene (GenBank locus tags SMU_1290c and SMU_1289c) reside in tandem in the genome of S. mutans The aim of this study was to determine whether the chloride channel permeases contribute to fluoride resistance. We constructed SMU_1290c- and SMU_1289c-knockout S. mutans UA159 strains. We also constructed a double-knockout strain lacking both genes. SMU_1290c or SMU_1289c was transformed into a fluoride transporter- disrupted Escherichia coli strain. All bacterial strains were cultured under appropriate conditions with or without sodium fluoride, and fluoride resistance was evaluated. All three gene-knockout S. mutans strains showed lower resistance to sodium fluoride than did the wild-type strain. No significant changes in resistance to other sodium halides were recognized between the wild-type and double-knockout strains. Both SMU_1290c and SMU_1289c transformation rescued fluoride transporter-disrupted E. coli cell from fluoride toxicity. We conclude that the chloride channel permeases contribute to fluoride resistance in S. mutans. PMID:27190286

  19. Genetic Analysis of the Glutamate Permease in Escherichia coli K-121

    PubMed Central

    Marcus, Menashe; Halpern, Yeheskel S.

    1969-01-01

    The glutamate permeation system in Escherichia coli K-12 consists of three genes: gltC, gltS, and gltR. The genes gltC and gltS are very closely linked, and are located between the pyrE and tna loci, in the following order: tna, gltC, gltS, pyrE; gltR is located near the metA gene. The three glt genes constitute a regulatory system in which gltR is the regulator gene responsible for the formation of repressor, gltS is the structural gene of the glutamate permease, and gltC is most probably the operator locus. The synthesis of glutamate permease is partially repressed in wild-type K-12 strains, resulting in the inability of these strains to utilize glutamate as the sole source of carbon. Derepression due to mutation at the gltC locus enables growth on glutamate as a carbon source both at 30 C and at 42 C. Temperature-sensitive gltR mutants capable of utilizing glutamate for growth at 42 C but not at 30 C were found to be derepressed for glutamate permease when grown at 42 C and partially repressed (wild-type phenotype) upon growth at 30 C. These mutants produce an altered thermolabile repressor which can be inactivated by mild heat treatment (10 min at 44 C) in the absence of growth. PMID:4887500

  20. PcaK, a high-affinity permease for the aromatic compounds 4-hydroxybenzoate and protocatechuate from Pseudomonas putida.

    PubMed Central

    Nichols, N N; Harwood, C S

    1997-01-01

    PcaK is a transporter and chemoreceptor protein from Pseudomonas putida that is encoded as part of the beta-ketoadipate pathway regulon for aromatic acid degradation. When expressed in Escherichia coli, PcaK was localized to the membrane and catalyzed the accumulation of two aromatic substrates, 4-hydroxybenzoate and protocatechuate, against a concentration gradient. Benzoate inhibited 4-hydroxybenzoate uptake but was not a substrate for PcaK-catalyzed transport. A P. putida pcaK mutant was defective in its ability to accumulate micromolar amounts of 4-hydroxybenzoate and protocatechuate. The mutant was also impaired in growth on millimolar concentrations of these aromatic acids. In contrast, the pcaK mutant grew at wild-type rates on benzoate. The Vmax for uptake of 4-hydroxybenzoate was at least 25 nmol/min/mg of protein, and the Km was 6 microM. PcaK-mediated transport is energized by the proton motive force. These results show that although aromatic acids in the undissociated (uncharged) form can diffuse across bacterial membranes, high-specificity active transport systems probably also contribute to the ability of bacteria to grow on the micromolar concentrations of these compounds that are typically present in soil. A variety of aromatic molecules, including naturally occurring lignin derivatives and xenobiotics, are metabolized by bacteria and may be substrates for transport proteins. The characterization of PcaK provides a foundation for understanding active transport as a critical step in the metabolism of aromatic carbon sources. PMID:9260946

  1. pH Regulation of Electrogenic Sugar/H+ Symport in MFS Sugar Permeases.

    PubMed

    Bazzone, Andre; Madej, M Gregor; Kaback, H Ronald; Fendler, Klaus

    2016-01-01

    Bacterial sugar symporters in the Major Facilitator Superfamily (MFS) use the H+ (and in a few cases Na+) electrochemical gradients to achieve active transport of sugar into the cell. Because a number of structures of MFS sugar symporters have been solved recently, molecular insight into the transport mechanism is possible from detailed functional analysis. We present here a comparative electrophysiological study of the lactose permease (LacY), the fucose permease (FucP) and the xylose permease (XylE), which reveals common mechanistic principles and differences. In all three symporters energetically downhill electrogenic sugar/H+ symport is observed. Comparison of the pH dependence of symport at symmetrical pH exhibits broad bell-shaped pH profiles extending over 3 to 6 pH units and a decrease at extremely alkaline pH ≥ 9.4 and at acidic to neutral pH = 4.6-7.5. The pH dependence can be described by an acidic to neutral apparent pK (pKapp) and an alkaline pKapp. Experimental evidence suggests that the alkaline pKapp is due to H+ depletion at the protonation site, while the acidic pKapp is due to inhibition of deprotonation. Since previous studies suggest that a single carboxyl group in LacY (Glu325) may be the only side chain directly involved in H+ translocation and a carboxyl side chain with similar properties has been identified in FucP (Asp46) and XylE (Asp27), the present results imply that the pK of this residue is switched during H+/sugar symport in all three symporters. PMID:27227677

  2. pH Regulation of Electrogenic Sugar/H+ Symport in MFS Sugar Permeases

    PubMed Central

    Bazzone, Andre; Madej, M. Gregor; Kaback, H. Ronald

    2016-01-01

    Bacterial sugar symporters in the Major Facilitator Superfamily (MFS) use the H+ (and in a few cases Na+) electrochemical gradients to achieve active transport of sugar into the cell. Because a number of structures of MFS sugar symporters have been solved recently, molecular insight into the transport mechanism is possible from detailed functional analysis. We present here a comparative electrophysiological study of the lactose permease (LacY), the fucose permease (FucP) and the xylose permease (XylE), which reveals common mechanistic principles and differences. In all three symporters energetically downhill electrogenic sugar/H+ symport is observed. Comparison of the pH dependence of symport at symmetrical pH exhibits broad bell-shaped pH profiles extending over 3 to 6 pH units and a decrease at extremely alkaline pH ≥ 9.4 and at acidic to neutral pH = 4.6–7.5. The pH dependence can be described by an acidic to neutral apparent pK (pKapp) and an alkaline pKapp. Experimental evidence suggests that the alkaline pKapp is due to H+ depletion at the protonation site, while the acidic pKapp is due to inhibition of deprotonation. Since previous studies suggest that a single carboxyl group in LacY (Glu325) may be the only side chain directly involved in H+ translocation and a carboxyl side chain with similar properties has been identified in FucP (Asp46) and XylE (Asp27), the present results imply that the pK of this residue is switched during H+/sugar symport in all three symporters. PMID:27227677

  3. Characterization of aquatic humic substances and their metal complexes by immobilized metal-chelate affinity chromatography on iron(III)-loaded ion exchangers.

    PubMed

    Burba, P; Jakubowski, B; Kuckuk, R; Küllmer, K; Heumann, K G

    2000-12-01

    The analytical fractionation of aquatic humic substances (HS) by means of immobilized metal-chelate affinity chromatography (IMAC) on metal-loaded chelating ion exchangers is described. The cellulose HYPHAN, loaded with different trivalent ions, and the chelate exchanger Chelex 100, loaded to 90% of its capacity with Fe(III), were used. The cellulose HYPHAN, loaded with 2% Fe(III), resulted in HS distribution coefficients Kd of up to 10(3.7) mL/g at pH 4.0 continuously decreasing down to 10(1.5) at pH 12, which were appropriate for HS fractionation by a pH-depending chromatographic procedure. Similar distribution coefficients Kd were obtained for HS sorption onto Fe(III)-loaded Chelex 100. On the basis of Fe-loaded HYPHAN both, a low-pressure and high-pressure IMAC technique, were developed for the fractionation of dissolved HS applying a buffer-based pH gradient for their gradual elution between pH 4.0 and 12.0. By coupling the Chelex 100 column under high-pressure conditions with an inductively coupled plasma mass spectrometer an on-line characterization of HS metal species could be achieved. Using these fractionation procedures a number of reference HS were characterized. Accordingly, the HA (humic acids) and FA (fulvic acids) studied could be discriminated into up to 6 fractions by applying cellulose HYPHAN, significantly differing in their Cu(II) complexation capacity but hardly in their substructures assessed by conventional FTIR. In the case of using Chelex 100 exchanger resin two major UV active HS fractions were obtained, which significantly differ in their complexation properties for Cu(II) and Pb(II), respectively. PMID:11227549

  4. Evidencing the role of lactose permease in IPTG uptake by Escherichia coli in fed-batch high cell density cultures.

    PubMed

    Fernández-Castané, Alfred; Vine, Claire E; Caminal, Glòria; López-Santín, Josep

    2012-02-10

    The lac-operon and its components have been studied for decades and it is widely used as one of the common systems for recombinant protein production in Escherichia coli. However, the role of the lactose permease, encoded by the lacY gene, when using the gratuitous inducer IPTG for the overexpression of heterologous proteins, is still a matter of discussion. A lactose permease deficient strain was successfully constructed. Growing profiles and acetate production were compared with its parent strain at shake flask scale. Our results show that the lac-permease deficient strain grows slower than the parent in defined medium at shake flask scale, probably due to a downregulation of the phosphotransferase system (PTS). The distributions of IPTG in the medium and inside the cells, as well as recombinant protein production were measured by HPLC-MS and compared in substrate limiting fed-batch fermentations at different inducer concentrations. For the mutant strain, IPTG concentration in the medium depletes slower, reaching at the end of the culture higher concentration values compared with the parent strain. Final intracellular and medium concentrations of IPTG were similar for the mutant strain, while higher intracellular concentrations than in medium were found for the parent strain. Comparison of the distribution profiles of IPTG of both strains in fed-batch fermentations showed that lac-permease is crucially involved in IPTG uptake. In the absence of the transporter, apparently IPTG only diffuses, while in the presence of lac-permease, the inducer accumulates in the cytoplasm at higher rates emphasizing the significant contribution of the permease-mediated transport. PMID:22202176

  5. Report: Affinity Chromatography.

    ERIC Educational Resources Information Center

    Walters, Rodney R.

    1985-01-01

    Supports, affinity ligands, immobilization, elution methods, and a number of applications are among the topics considered in this discussion of affinity chromatography. An outline of the basic principles of affinity chromatography is included. (JN)

  6. Characterization of a novel tyrosine permease of lager brewing yeast shared by Saccharomyces cerevisiae strain RM11-1a.

    PubMed

    Omura, Fumihiko; Hatanaka, Haruyo; Nakao, Yoshihiro

    2007-12-01

    In Saccharomyces cerevisiae yeast, the uptake of aromatic amino acids is mediated by the relatively specific permeases Tat1p, Tat2p, Bap2p, and Bap3p, as well as by two other permeases with broader specificities: Gap1p and Agp1p. Here, a novel permease gene TAT3 (Tyrosine Amino acid Transporter) identified in the S. cerevisiae-type subset genome of the lager brewing yeast strain Weihenstephan Nr.34 (34/70) is reported. The TAT3 sequence was also found in the genome of S. cerevisiae strain RM11-1a, but not in S. cerevisiae strain S288C. Tat3p showed a significant similarity to Penicillium chrysogenum ArlP permease, which has transport activity for aromatic amino acids and leucine. When overexpressed in ssy1Delta gap1Delta mutant cells, Tat3p exhibited a tyrosine transport activity with an apparent K(m) of 160 microM. TAT3 transcription in lager brewing yeast was subjected to nitrogen catabolite repression in a manner similar to that of GAP1. Furthermore, the subcellular localization of Tat3p-green fluorescent protein (GFP) fusion protein was dependent on the quality of the nitrogen source, indicating a post-translational control of Tat3p function. PMID:17825063

  7. PheP, a putative amino acid permease of Staphylococcus aureus, contributes to survival in vivo and during starvation.

    PubMed

    Horsburgh, Malcolm J; Wiltshire, Michael D; Crossley, Howard; Ingham, Eileen; Foster, Simon J

    2004-05-01

    PheP, a putative amino acid permease in Staphylococcus aureus, contributes to starvation survival under glucose-limiting conditions and virulence. A pheP mutation led to poor growth after microaerobic or anaerobic incubation on pig serum agar, which was recovered by phenylalanine addition. Genetic complementation of pheP restored growth and starvation survival. PMID:15102825

  8. Diverse roles of the GlcP glucose permease in free-living and symbiotic cyanobacteria.

    PubMed

    Picossi, Silvia; Flores, Enrique; Ekman, Martin

    2013-01-01

    Certain cyanobacteria can form symbiotic associations with plants, where the symbiont supplies the plant partner with nitrogen and in return obtains sugars. We recently showed that in the symbiotic cyanobacterium Nostoc punctiforme, a glucose specific permease, GlcP, is necessary for the symbiosis to be formed. Results presented here from growth yield measurements of mutant strains with inactivated or overexpressing sugar transporters suggest that GlcP could be induced by a symbiosis specific substance. We also discuss that the transporter may have a role other than nutritional once the symbiosis is established, i.e., during infection, and more specifically in the chemotaxis of the symbiont. Phylogenetic analysis shows that the distribution of GlcP among cyanobacteria is likely influenced by horizontal gene transfer, but also that it is not correlated with symbiotic competence. Instead, regulatory patterns of the transporter in Nostoc punctiforme likely constitute symbiosis specific adaptations. PMID:24675169

  9. Diverse roles of the GlcP glucose permease in free-living and symbiotic cyanobacteria

    PubMed Central

    Picossi, Silvia; Flores, Enrique; Ekman, Martin

    2013-01-01

    Certain cyanobacteria can form symbiotic associations with plants, where the symbiont supplies the plant partner with nitrogen and in return obtains sugars. We recently showed that in the symbiotic cyanobacterium Nostoc punctiforme, a glucose specific permease, GlcP, is necessary for the symbiosis to be formed. Results presented here from growth yield measurements of mutant strains with inactivated or overexpressing sugar transporters suggest that GlcP could be induced by a symbiosis specific substance. We also discuss that the transporter may have a role other than nutritional once the symbiosis is established, i.e., during infection, and more specifically in the chemotaxis of the symbiont. Phylogenetic analysis shows that the distribution of GlcP among cyanobacteria is likely influenced by horizontal gene transfer, but also that it is not correlated with symbiotic competence. Instead, regulatory patterns of the transporter in Nostoc punctiforme likely constitute symbiosis specific adaptations. PMID:24675169

  10. Functional expression of the lactate permease Jen1p of Saccharomyces cerevisiae in Pichia pastoris.

    PubMed Central

    Soares-Silva, Isabel; Schuller, Dorit; Andrade, Raquel P; Baltazar, Fátima; Cássio, Fernanda; Casal, Margarida

    2003-01-01

    In Saccharomyces cerevisiae the activity for the lactate-proton symporter is dependent on JEN1 gene expression. Pichia pastoris was transformed with an integrative plasmid containing the JEN1 gene. After 24 h of methanol induction, Northern and Western blotting analyses indicated the expression of JEN1 in the transformants. Lactate permease activity was obtained in P. pastoris cells with a V (max) of 2.1 nmol x s(-1) x mg of dry weight(-1). Reconstitution of the lactate permease activity was achieved by fusing plasma membranes of P. pastoris methanol-induced cells with Escherichia coli liposomes containing cytochrome c oxidase, as proton-motive force. These assays in reconstituted heterologous P. pastoris membrane vesicles demonstrate that S. cerevisiae Jen1p is a functional lactate transporter. Moreover, a S. cerevisiae strain deleted in the JEN1 gene was transformed with a centromeric plasmid containing JEN1 under the control of the glyceraldehyde-3-phosphate dehydrogenase constitutive promotor. Constitutive JEN1 expression and lactic acid uptake were observed in cells grown on either glucose and/or acetic acid. The highest V (max) (0.84 nmol x s(-1) x mg of dry weight(-1)) was obtained in acetic acid-grown cells. Thus overexpression of the S. cerevisiae JEN1 gene in both S. cerevisiae and P. pastoris cells resulted in increased activity of lactate transport when compared with the data previously reported in lactic acid-grown cells of native S. cerevisiae strains. Jen1p is the only S. cerevisiae secondary porter characterized so far by heterologous expression in P. pastoris at both the cell and the membrane-vesicle levels. PMID:12962538

  11. Expression cloning in yeast of a cDNA encoding a broad specificity amino acid permease from Arabidopsis thaliana.

    PubMed Central

    Frommer, W B; Hummel, S; Riesmeier, J W

    1993-01-01

    To study amino acid transport in plants at the molecular level, we have isolated an amino acid permease cDNA from Arabidopsis thaliana by complementation of a yeast mutant defective in proline uptake with a cDNA. The predicted polypeptide of 53 kDa is highly hydrophobic with 12 putative membrane-spanning regions and shows no significant homologies to other known transporters. Expression of the cDNA enables the yeast mutant to take up L-[14C]proline. Competition studies argue for a broad but stereospecific substrate recognition by the permease, which resembles neutral or general amino acid transport systems from Chlorella and higher plants. Both pH dependence and inhibition by protonophores are consistent with a proton symport mechanism. Images Fig. 1 PMID:8327465

  12. The permease homologue Ssy1p controls the expression of amino acid and peptide transporter genes in Saccharomyces cerevisiae.

    PubMed

    Didion, T; Regenberg, B; Jørgensen, M U; Kielland-Brandt, M C; Andersen, H A

    1998-02-01

    Amino acid transporters of the yeast plasma membrane (permeases) belong to a family of integral membrane proteins with pronounced structural similarity. We present evidence that a member of this family, encoded by the open reading frame (ORF) YDR160w (SSY1), is required for the expression of a set of transporter genes. Thus, deletion of the SSY1 gene causes loss of leucine-inducible transcription of the amino acid permease genes BAP2, TAT1 and BAP3 (ORF YDR046c) and the peptide transporter, PTR2. D-leucine can generate the signal without entering the cell. We propose that Ssy1p is situated in the plasma membrane and is involved in sensing leucine in the medium. PMID:9489675

  13. Flash-induced blocking of the high-affinity manganese-binding site in photosystem II by iron cations: dependence on the dark interval between flashes and binary oscillations of fluorescence yield.

    PubMed

    Semin, Boris K; Seibert, Michael

    2006-12-21

    Incubation of Fe(II) cations with Mn-depleted PSII membranes (PSII(-Mn)) under weak continuous light is accompanied by blocking of the high-affinity, Mn-binding (HAZ) site with ferric cations (Semin, B.K. et al. Biochemistry 2002, 41, 5854-5864). In this study we investigated the blocking yield under single-turnover flash conditions. The flash-probe fluorescence method was used to estimate the blocking efficiency. We found that the yield of blocking increases with flash number and reaches 50% after 7 flashes. When the dark interval between the flashes (Delta t) was varied, we found that the percentage of blocking decreases at Delta t < 100 ms (t 1/2, 4-10 ms). No inhibition of the blocking yield was found at longer time intervals (as with photoactivation). This result shows the necessity of a dark rearrangement during the blocking process (the dual-site hypothesis described in the text) and indicates the formation of a binuclear iron center. During the blocking experiments, we found a binary oscillation of the Fmax elicited during a train of flashes. The oscillations were observed only in the presence of Fe(II) cations or other electron donors (including Mn(II)) but not in the presence of Ca2+. Chelators had no effect on the oscillations. Our results indicate that the oscillations are due to processes on the acceptor side of PSII and to the appearance of "acceptor X" after odd flashes. Acceptor X is reduced by QA- at very high rate (<2 ms), is not sensitive to DCMU, and is rather stable in the dark (t l/2 approximately 2 min). These properties are similar to those of nonheme Fe(III) (Fe(III)NHI). When Fe(II)NHI was oxidized with ferricyanide (Fe(CN)6), the fluorescence decay kinetics and yield of fluorescence were identical to those observed when the sample was exposed to 1 flash prior to the fluorescence measurement. We suggest that acceptor X is Fe(III)NHI, oxidized by the semiquinone form of QB-. This is similar to the mechanism of "reduction-induced oxidation

  14. Various cytosine/adenine permease homologues are involved in the toxicity of 5-fluorocytosine in Saccharomyces cerevisiae.

    PubMed

    Paluszynski, John P; Klassen, Roland; Rohe, Matthias; Meinhardt, Friedhelm

    2006-07-15

    5-Fluorocytosine (5-FC), a medically applied antifungal agent (Ancotil), is also active against the model organism Saccharomyces cerevisiae. 5-FC uptake in S. cerevisiae was considered to be mediated by the FCY2-encoded cytosine/adenine permease. By applying a highly sensitive assay, a low-level but dose-dependent toxicity of 5-FC in fcy2 mutants was detected, whereas cells deficient in the cytosine deaminase (encoded by FCY1), which is essential for intracellular conversion of 5-FC to 5-fluorouracil, display strong dose-independent resistance. Thus, an alternative, Fcy2-independent access pathway for 5-FC exists in S. cerevisiae. A genome-wide search for cytosine permease homologues identified two uncharacterized candidate genes, designated FCY21 and FCY22, both of which exhibit highest similarity to FCY2. Disruption of either FCY21 or FCY22 resulted in strains displaying low-level resistance, indicating the functional involvement of both gene products in 5-FC toxicity. When mutations in FCY21 or FCY22 were combined with the FCY2 disruption, both double mutants displayed stronger resistance when compared to the FCY2 mutant alone. Disruptions in all three permease genes consequently conferred the highest degree of resistance, not only towards 5-FC but also to the toxic adenine analogon 8-azaadenine. As residual 5-FC sensitivity was, however, even detectable in the fcy2 fcy21 fcy22 mutant, we analysed the relevance of other FCY2 homologues, i.e. TPN1, FUR4, DAL4, FUI1 and yOR071c, for 5-FC toxicity. Among these, Tpn1, Fur4 and the one encoded by yOR071c were found to contribute significantly to 5-FC toxicity, thus revealing alternative entry routes for 5-FC via other cytosine/adenine permease homologues. PMID:16845689

  15. Secondary structure components and properties of the melibiose permease from Escherichia coli: a fourier transform infrared spectroscopy analysis.

    PubMed

    Dave, N; Troullier, A; Mus-Veteau, I; Duñach, M; Leblanc, G; Padrós, E

    2000-08-01

    The structure of the melibiose permease from Escherichia coli has been investigated by Fourier transform infrared spectroscopy, using the purified transporter either in the solubilized state or reconstituted in E. coli lipids. In both instances, the spectra suggest that the permease secondary structure is dominated by alpha-helical components (up to 50%) and contains beta-structure (20%) and additional components assigned to turns, 3(10) helix, and nonordered structures (30%). Two distinct and strong absorption bands are recorded at 1660 and 1653 cm(-1), i.e., in the usual range of absorption of helices of membrane proteins. Moreover, conditions that preserve the transporter functionality (reconstitution in liposomes or solubilization with dodecyl maltoside) make possible the detection of two separate alpha-helical bands of comparable intensity. In contrast, a single intense band, centered at approximately 1656 cm(-1), is recorded from the inactive permease in Triton X-100, or a merged and broader signal is recorded after the solubilized protein is heated in dodecyl maltoside. It is suggested that in the functional permease, distinct signals at 1660 and 1653 cm(-1) arise from two different populations of alpha-helical domains. Furthermore, the sodium- and/or melibiose-induced changes in amide I line shape, and in particular, in the relative amplitudes of the 1660 and 1653 cm(-1) bands, indicate that the secondary structure is modified during the early step of sugar transport. Finally, the observation that approximately 80% of the backbone amide protons can be exchanged suggests high conformational flexibility and/or a large accessibility of the membrane domains to the aqueous solvent. PMID:10920008

  16. Alteration of Sugar-Induced Conformational Changes of the Melibiose Permease by Mutating Arg141 in Loop 4-5

    PubMed Central

    León, Xavier; Leblanc, Gérard; Padrós, Esteve

    2009-01-01

    Abstract The melibiose permease (MelB) from Escherichia coli couples the uptake of melibiose to that of Na+, Li+, or H+. In this work, we applied attenuated total reflection Fourier transform infrared (ATR-FTIR) difference spectroscopy to obtain information about the structural changes involved in substrate interaction with the R141C mutant and with the wild-type MelB reacted with N-ethylmaleimide (NEM). These modified permeases have the ability to bind the substrates but fail to transport them. It is shown that the sugar-induced ATR-FTIR difference spectra of the R141C mutant are different from those corresponding to the Cys-less permease from which it is derived. There are alterations of peaks assigned to turns and β-structures located most likely in loop 4-5. In addition, and quite notably, a peak at 1659 cm−1, assigned to changes at the level of one α-helix subpopulation, disappears in the melibiose-induced difference spectrum in the presence of Na+, suggesting a reduction of the conformational change capacity of the mutated MelB. These helices may involve structural components that couple the cation- and sugar-binding sites. On the other hand, MelB-NEM difference spectra are proportionally less disrupted than the R141C ones. Hence, the transport cycle of these two permeases, modified at two different loops, is most likely impaired at a different stage. It is proposed that the R141C mutant leads to the generation of a partially defective ternary complex that is unable to catalyze the subsequent conformational change necessary for substrate translocation. PMID:19527646

  17. The Antifungal Eugenol Perturbs Dual Aromatic and Branched-Chain Amino Acid Permeases in the Cytoplasmic Membrane of Yeast

    PubMed Central

    Darvishi, Emad; Omidi, Mansoor; Bushehri, Ali Akbar Shahnejat; Golshani, Ashkan; Smith, Myron L.

    2013-01-01

    Eugenol is an aromatic component of clove oil that has therapeutic potential as an antifungal drug, although its mode of action and precise cellular target(s) remain ambiguous. To address this knowledge gap, a chemical-genetic profile analysis of eugenol was done using ∼4700 haploid Saccharomyces cerevisiae gene deletion mutants to reveal 21 deletion mutants with the greatest degree of susceptibility. Cellular roles of deleted genes in the most susceptible mutants indicate that the main targets for eugenol include pathways involved in biosynthesis and transport of aromatic and branched-chain amino acids. Follow-up analyses showed inhibitory effects of eugenol on amino acid permeases in the yeast cytoplasmic membrane. Furthermore, phenotypic suppression analysis revealed that eugenol interferes with two permeases, Tat1p and Gap1p, which are both involved in dual transport of aromatic and branched-chain amino acids through the yeast cytoplasmic membrane. Perturbation of cytoplasmic permeases represents a novel antifungal target and may explain previous observations that exposure to eugenol results in leakage of cell contents. Eugenol exposure may also contribute to amino acid starvation and thus holds promise as an anticancer therapeutic drug. Finally, this study provides further evidence of the usefulness of the yeast Gene Deletion Array approach in uncovering the mode of action of natural health products. PMID:24204588

  18. Iron toxicity in yeast.

    PubMed

    Wiśnicka, R; Krzepiłko, A; Wawryn, J; Biliński, T

    1997-01-01

    It has been found that yeast cells are sensitive to iron overload only when grown on glucose as a carbon source. Effective concentration of ferrous iron is much higher than that found in natural environments. Effects of ferrous iron are strictly oxygen dependent, what suggest that the formation of hydroxyl radicals in the Fenton reaction is a cause of the toxicity. Respiratory deficiency and pretreatment of cells with antimycin A prevent toxic effects in the late exponential phase of growth, whereas uncouplers and 2mM magnesium salts completely protect even the most vulnerable exponential cells. Generally, toxic effects correlate with the ability of cells to take up this metal. The results presented suggest that during ferrous iron overload iron is transported through the unspecific divalent cation uptake system which is known in fungi. The data suggest that recently described high and low affinity systems of iron uptake in yeast are the only source of iron in natural environments. PMID:9516981

  19. PUTATIVE FERROXIDASES IN THE FLAVINOGENIC YEAST PICHIA GUILLIERMONDII ARE REGULATED BY IRON ACQUISITION.

    PubMed

    Fedorovych, D; Boretsky, Y; Bobak, Ya; Prokopiv, T; Sybirny, A

    2015-01-01

    Using similarity search we identified Candida (Pichia) guilliermondii genes involved in iron acquisition. This yeast possesses at least four genes potentially coding for ferri-reductases, four genes encoding iron permeases and two genes codingforferroxidases. Identified C.(P.) guilliermondii genes encoding ferroxidases possess different patterns of expression under iron repletion conditions whereas their expression is activated under iron deficiency conditions or in mutant strains defective in regulation of iron acquisition. C.(P.) guilliermondii has no homologue of Saccharomyces cerevisiae transcriptional regulator of iron metabolism, Aft1p and possess an iron regulatory network similar to that of Candida albicans. Since most of C.(P.) guilliermondii known strains are not pathogenic, in contrast to that of C. albicans, we propose C.(P.) guilliermondii as safe and useful model for studying iron-dependent regulation of metabolism in yeasts belonging to CUG clade. PMID:26638492

  20. Localization of a filarial phosphate permease that is up-regulated in response to depletion of essential Wolbachia endobacteria.

    PubMed

    Arumugam, Sridhar; Hoerauf, Achim; Pfarr, Kenneth M

    2014-03-01

    Wolbachia of filarial nematodes are essential, obligate endobacteria. When depleted by doxycycline worm embryogenesis, larval development and worm survival are inhibited. The molecular basis governing the endosymbiosis between Wolbachia and their filarial host is still being deciphered. In rodent filarial nematode Litomosoides sigmodontis, a nematode encoded phosphate permease gene (Ls-ppe-1) was up-regulated at the mRNA level in response to Wolbachia depletion and this gene promises to have an important role in Wolbachia-nematode endosymbiosis. To further characterize this gene, the regulation of phosphate permease during Wolbachia depletion was studied at the protein level in L. sigmodontis and in the human filaria Onchocerca volvulus. And the localization of phosphate permease (PPE) and Wolbachia in L. sigmodontis and O. volvulus was investigated in untreated and antibiotic treated worms. Depletion of Wolbachia by tetracycline (Tet) resulted in up-regulation of Ls-ppe-1 in L. sigmodontis. On day 36 of Tet treatment, compared to controls (Con), >98% of Wolbachia were depleted with a 3-fold increase in mRNA levels of Ls-ppe-1. Anti-Ls-PPE serum used in Western blots showed up-regulation of Ls-PPE at the protein level in Tet worms on day 15 and 36 of treatment. Immunohistology revealed the localization of Wolbachia and Ls-PPE in the embryos, microfilariae and hypodermis of L. sigmodontis female worms and up-regulation of Ls-PPE in response to Wolbachia depletion. Expression of O. volvulus phosphate permease (Ov-PPE) studied using anti-Ov-PPE serum, showed up-regulation of Ov-PPE at the protein level in doxycycline treated Wolbachia depleted O. volvulus worms and immunohistology revealed localization of Ov-PPE and Wolbachia and up-regulation of Ov-PPE in the hypodermis and embryos of doxycycline treated worms. Ls-PPE and Ov-PPE are upregulated upon Wolbachia depletion in same tissues and regions where Wolbachia are located in untreated worms, reinforcing a link

  1. Isolation and characterization of Escherichia coli pantothenate permease (panF) mutants.

    PubMed Central

    Vallari, D S; Rock, C O

    1985-01-01

    Mutants of Escherichia coli K-12 defective in the pantothenate permease (panF) were isolated and characterized. The panF mutation resulted in the complete loss of pantothenate uptake and of the ability to use extracellular vitamin for growth. The growth phenotypes of panF panD, panF panB, and panF panC double mutants showed that the cytoplasmic membrane was impermeable to external pantothenate. Analysis of the intracellular and extracellular metabolites from strain DV1 (panF panD) labeled with beta-[3-3H]alanine demonstrated that a carrier-mediated mechanism for efficient pantothenate efflux remained in the panF mutant. Genetic mapping of this nonselectable allele was facilitated by the isolation of three independent Tn10 insertions close to panF. Two- and three-factor crosses located panF at minute 72 of the E. coli chromosome and established the gene order fabE panF aroE. PMID:2995306

  2. Characterization and Evaluation of the Moraxella catarrhalis Oligopeptide Permease A as a Mucosal Vaccine Antigen▿

    PubMed Central

    Yang, Min; Johnson, Antoinette; Murphy, Timothy F.

    2011-01-01

    Moraxella catarrhalis is a common cause of otitis media in children and of lower respiratory tract infections in adults with chronic obstructive pulmonary disease; therefore, these two groups would benefit from a vaccine to prevent M. catarrhalis infections. A genome mining approach for vaccine antigens identified oligopeptide permease protein A (OppA), an oligopeptide binding protein of an apparent oligopeptide transport system. Analysis of the oppA gene by PCR and sequence analysis revealed that OppA is highly conserved among clinical isolates of M. catarrhalis. Recombinant OppA was expressed as a lipoprotein and purified, and an oppA knockout mutant was constructed. Antiserum raised to recombinant purified OppA recognized epitopes on the bacterial surface of the wild type but not the OppA knockout mutant. Antibodies raised to purified recombinant OppA recognized native OppA in multiple strains. Intranasal immunization of mice induced systemic and mucosal antibodies to OppA and resulted in enhanced clearance of M. catarrhalis in a mouse pulmonary clearance model. OppA is a highly conserved, immunogenic protein that expresses epitopes on the bacterial surface and that induces potentially protective immune responses in a mouse model. OppA should be evaluated further as a vaccine antigen for M. catarrhalis. PMID:21134967

  3. Variability of a glucose phosphotransferase system permease in Mycoplasma mycoides subsp. mycoides Small Colony.

    PubMed

    Gaurivaud, Patrice; Persson, Anja; Grand, Dominique Le; Westberg, Joakim; Solsona, Michel; Johansson, Karl-Erik; Poumarat, François

    2004-12-01

    Intraclonal antigenic variation in pathogenic mycoplasma species is considered an important feature of host-pathogen interaction. Such intraclonal protein variation was observed for the interaction of Mycoplasma mycoides subsp. mycoides Small Colony, the agent of contagious bovine pleuropneumonia, with mAb 3F3. Colony immunostaining allows the definition of 3F3 ON- and 3F3 OFF-type variants, which revert at low frequency. Targets of mAb 3F3 were shown to be surface located, and resided on multiple polypeptides in the 58-68 kDa size range. Phage display and a genomic database were combined to determine the gene encoding the proteins recognized by mAb 3F3. A gene encoding the putative permease of the glucose phosphotransferase system was identified. Genome sequence analysis of strain PG1 revealed two highly similar copies of this gene, resulting from duplication of the chromosomal region carrying the gene. Southern blot analysis demonstrated the presence of this duplication in almost every African strain tested, but not in European strains. DNA analysis revealed that ON/OFF switching is governed by a base substitution occurring upstream of the coding region for the 3F3 epitope. This event generates a stop codon that results in the premature termination of the PtsG protein. PMID:15583154

  4. Bioinformatic Characterization of the 4-Toluene Sulfonate Uptake Permease (TSUP) Family of Transmembrane Proteins

    PubMed Central

    Shlykov, Maksim A.; Zheng, Wei Hao; Chen, Jonathan S.; Saier, Milton H.

    2012-01-01

    The ubiquitous sequence diverse 4-Toluene Sulfonate Uptake Permease (TSUP) family contains few characterized members and is believed to catalyze the transport of several sulfur-based compounds. Prokaryotic members of the TSUP family outnumber the eukaryotic members substantially, and in prokaryotes, but not eukaryotes, extensive lateral gene transfer occurred during family evolution. Despite unequal representation, homologues from the three taxonomic domains of life share well-conserved motifs. We show that the prototypical eight TMS topology arose from an intragenic duplication of a four TMS unit. Possibly, a two TMS α-helical hairpin structure was the precursor of the 4 TMS repeat unit. Genome context analyses confirmed the proposal of a sulfur-based compound transport role for many TSUP homologues, but functional outliers appear to be prevalent as well. Preliminary results suggest that the TSUP family is a member of a large novel superfamily that includes rhodopsins, integral membrane chaperone proteins, transmembrane electron flow carriers and several transporter families. All of these proteins probably arose via the same pathway: 2 → 4 → 8 TMSs followed by loss of a TMS either at the N- or C-terminus, depending on the family, to give the more frequent 7 TMS topology. PMID:22192777

  5. Leaf permease1 gene of maize is required for chloroplast development.

    PubMed Central

    Schultes, N P; Brutnell, T P; Allen, A; Dellaporta, S L; Nelson, T; Chen, J

    1996-01-01

    Adjacent bundle sheath and mesophyll cells cooperate for carbon fixation in the leaves of C4 plants. Mutants with compromised plastid development should reveal the degree to which this cooperation is obligatory, because one can assay whether mesophyll cells with defective bundle sheath neighbors retain C4 characteristics or revert to C3 photosynthesis. The leaf permease1-mutable1 (lpe1-m1) mutant of maize exhibits disrupted chloroplast ultrastructure, preferentially affecting bundle sheath choroplasts under lower light. Despite the disrupted ultrastructure, the metabolic cooperation of bundle sheath and mesophyll cells for C4 photosynthesis remains intact. To investigate this novel mutation, the Activator transposon-tagged allele and cDNAs corresponding to the Lpe1 mRNA from wild-type plants were cloned. The Lpe1 gene encodes a polypeptide with significant similarity to microbial pyrimidine and purine transport proteins. An analysis of revertant sectors generated by Activator excision suggests that the Lpe1 gene product is cell autonomous and can be absent up to the last cell divisions in the leaf primordium without blocking bundle sheath chloroplast development. PMID:8721750

  6. Structure and function of the mannitol permease of the Escherichia coli phosphotransferase sugar transport system

    SciTech Connect

    Stephan, M.M.

    1988-01-01

    The mannitol permease, or mannitol enzyme II, is responsible for the phosphorylation and transmembrane transport of the hexitol mannitol via the phosphotransferase sugar transport system (PTS) in Escherichia coli. Neither the detailed molecular mechanisms by which this protein carries out these functions nor its three dimensional structure in the membrane are known. An in vivo selective radiolabeling system was used to study the enzyme's subunits interactions as they related to function, as well as its membrane topography, by polyacrylamide gel electrophoresis. The intramembrane topography of the mannitol enzyme II was investigated using proteases as probes of enzyme structure in the membrane. The enzyme was found to have two distinct domains, a very hydrophobic, membrane-bound, N-terminal domain, and a relatively hyprophilic C-terminal domain which protrudes into the cytoplasm. The membrane-bound domain was further dissected, and an extra-membrane loop region was identified using peptide-specific antibodies. The cytoplasmic domain was found to contain a site of covalent phosphorylation using (/sup 32/p)-labeled PEP, as well as the binding site for the phosphodonor HPr.

  7. Expression of the Oligopeptide Permease Operon of Moraxella catarrhalis Is Regulated by Temperature and Nutrient Availability.

    PubMed

    Jones, Megan M; Murphy, Timothy F

    2015-09-01

    Moraxella catarrhalis causes otitis media in children and exacerbations of chronic obstructive pulmonary disease in adults. Together, these two conditions contribute to enormous morbidity and mortality worldwide. The oligopeptide permease (opp) ABC transport system is a nutritional virulence factor important for the utilization of peptides. The substrate binding protein OppA, which binds peptides for uptake, is a potential vaccine antigen, but little was known about the regulation of gene expression. The five opp genes oppB, oppC, oppD, oppF, and oppA are in the same open reading frame. Sequence analysis predicted two promoters, one located upstream of oppB and one within the intergenic region between oppF and oppA. We have characterized the gene cluster as an operon with two functional promoters and show that cold shock at 26°C for ≤ 0.5 h and the presence of a peptide substrate increase gene transcript levels. Additionally, the putative promoter upstream of oppA contributes to the transcription of oppA but is not influenced by the same environmental cues as the promoter upstream of oppB. We conclude that temperature and nutrient availability contribute to the regulation of the Opp system, which is an important nutritional virulence factor in M. catarrhalis. PMID:26099587

  8. High-throughput genome sequencing of lichenizing fungi to assess gene loss in the ammonium transporter/ammonia permease gene family

    PubMed Central

    2013-01-01

    Background Horizontal gene transfer has shaped the evolution of the ammonium transporter/ammonia permease gene family. Horizontal transfers of ammonium transporter/ammonia permease genes into the fungi include one transfer from archaea to the filamentous ascomycetes associated with the adaptive radiation of the leotiomyceta. The horizontally transferred gene has subsequently been lost in most of the group but has been selectively retained in lichenizing fungi. However, some groups of lichens appear to have secondarily lost the archaeal ammonium transporter. Definitive assessment of gene loss can only be made via whole genome sequencing. Results Ammonium transporter/ammonia permease gene sequences were recovered from the assembled genomes of eight lichenizing fungi in key clades including the Caliciales, the Peltigerales, the Ostropomycetidae, the Acarosporomycetidae, the Verrucariales, the Arthoniomycetidae and the Lichinales. The genes recovered were included in a refined phylogenetic analysis. The hypothesis that lichens symbiotic with a nitrogen-fixing cyanobacterium as a primary photobiont or lichens living in high nitrogen environments lose the plant-like ammonium transporters was upheld, but did not account for additional losses of ammonium transporters/ammonia permeases in the lichens from the Acarosporomycetidae, Chaetotheriomycetes and Arthoniomycetes. In addition, the four ammonium transporter/ammonia permease genes from Cladonia grayi were shown to be functional by expressing the lichen genes in a strain of Saccharomyces cerevisiae in which all three native ammonium transporters were deleted, and assaying for growth on limiting ammonia as a sole nitrogen source. Conclusions Given sufficient coverage, next-generation sequencing technology can definitively address the loss of a gene in a genome when using environmental DNA isolated from lichen thalli collected from their natural habitats. Lichen-forming fungi have been losing ammonium transporters

  9. Pseudomonas aeruginosa β-lactamase induction requires two permeases, AmpG and AmpP

    PubMed Central

    2010-01-01

    Background In Enterobacteriaceae, β-lactam antibiotic resistance involves murein recycling intermediates. Murein recycling is a complex process with discrete steps taking place in the periplasm and the cytoplasm. The AmpG permease is critical to this process as it transports N-acetylglucosamine anhydrous N-acetylmuramyl peptides across the inner membrane. In Pseudomonadaceae, this intrinsic mechanism remains to be elucidated. Since the mechanism involves two cellular compartments, the characterization of transporters is crucial to establish the link. Results Pseudomonas aeruginosa PAO1 has two ampG paralogs, PA4218 (ampP) and PA4393 (ampG). Topology analysis using β-galactosidase and alkaline phosphatase fusions indicates ampP and ampG encode proteins which possess 10 and 14 transmembrane helices, respectively, that could potentially transport substrates. Both ampP and ampG are required for maximum expression of β-lactamase, but complementation and kinetic experiments suggest they act independently to play different roles. Mutation of ampG affects resistance to a subset of β-lactam antibiotics. Low-levels of β-lactamase induction occur independently of either ampP or ampG. Both ampG and ampP are the second members of two independent two-gene operons. Analysis of the ampG and ampP operon expression using β-galactosidase transcriptional fusions showed that in PAO1, ampG operon expression is β-lactam and ampR-independent, while ampP operon expression is β-lactam and ampR-dependent. β-lactam-dependent expression of the ampP operon and independent expression of the ampG operon is also dependent upon ampP. Conclusions In P. aeruginosa, β-lactamase induction occurs in at least three ways, induction at low β-lactam concentrations by an as yet uncharacterized pathway, at intermediate concentrations by an ampP and ampG dependent pathway, and at high concentrations where although both ampP and ampG play a role, ampG may be of greater importance. Both ampP and amp

  10. Coarse-grained simulations of proton-dependent conformational changes in lactose permease.

    PubMed

    Jewel, Yead; Dutta, Prashanta; Liu, Jin

    2016-08-01

    During lactose/H(+) symport, the Escherichia coli lactose permease (LacY) undergoes a series of global conformational transitions between inward-facing (open to cytoplasmic side) and outward-facing (open to periplasmic side) states. However, the exact local interactions and molecular mechanisms dictating those large-scale structural changes are not well understood. All-atom molecular dynamics simulations have been performed to investigate the molecular interactions involved in conformational transitions of LacY, but the simulations can only explore early or partial global structural changes because of the computational limits (< 100 ns). In this work, we implement a hybrid force field that couples the united-atom protein models with the coarse-grained MARTINI water/lipid, to investigate the proton-dependent dynamics and conformational changes of LacY. The effects of the protonation states on two key glutamate residues (Glu325 and Glu269) have been studied. Our results on the salt-bridge dynamics agreed with all-atom simulations at early short time period, validating our simulations. From our microsecond simulations, we were able to observe the complete transition from inward-facing to outward-facing conformations of LacY. Our results showed that all helices have participated during the global conformational transitions and helical movements of LacY. The inter-helical distances measured in our simulations were consistent with the double electron-electron resonance experiments at both cytoplasmic and periplasmic sides. Our simulations indicated that the deprotonation of Glu325 induced the opening of the periplasmics side and partial closure of the cytoplasmic side of LacY, while protonation of the Glu269 caused a stable cross-domain salt-bridge (Glu130-Arg344) and completely closed the cytoplasmic side. Proteins 2016; 84:1067-1074. © 2016 Wiley Periodicals, Inc. PMID:27090495

  11. Structure of the IIA domain of the glucose permease of Bacillus subtilis at 2.2-A resolution.

    PubMed

    Liao, D I; Kapadia, G; Reddy, P; Saier, M H; Reizer, J; Herzberg, O

    1991-10-01

    The crystal structure of the IIA domain of the glucose permease of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) from Bacillus subtilis has been determined at 2.2-A resolution. Refinement of the structure is in progress, and the current R-factor is 0.201 (R = sigma h parallel Fo magnitude of - Fc parallel/sigma h magnitude of Fo, where magnitude of Fo and magnitude of Fc are the observed and calculated structure factor amplitudes, respectively) for data between 6.0- and 2.2-A resolution for which F greater than or equal to 2 sigma (F). This is an antiparallel beta-barrel structure that incorporates "Greek key" and "jellyroll" topological motifs. A shallow depression is formed at the active site by part of the beta-sheet and an omega-loop flanking one side of the sheet. His83, the histidyl residue which is the phosphorylation target of HPr and which transfers the phosphoryl group to the IIB domain of the permease, is located at the C-terminus of a beta-strand. The N epsilon atom is partially solvated and also interacts with the N epsilon atom of a second histidyl residue, His68, located at the N-terminus of an adjacent beta-strand, suggesting they share a proton. The geometry of the hydrogen bond is imperfect, though. Electrostatic interactions with other polar groups and van der Waals contacts with the side chains of two flanking phenylalanine residues assure the precise orientation of the imidazole rings. The hydrophobic nature of the surface around the His83-His68 pair may be required for protein-protein recognition by HPr or/and by the IIB domain of the permease. The side chains of two aspartyl residues, Asp31 and Asp87, are oriented toward each other across a narrow groove, about 7 A from the active-site His83, suggesting they may play a role in protein-protein interaction. A model of the phosphorylated form of the molecule is proposed, in which oxygen atoms of the phosphoryl group interact with the side chain of His68 and with the main

  12. Special Report: Affinity Chromatography.

    ERIC Educational Resources Information Center

    Parikh, Indu; Cuatrecasas, Pedro

    1985-01-01

    Describes the nature of affinity chromatography and its use in purifying enzymes, studying cell interactions, exploring hormone receptors, and other areas. The potential the technique may have in treating disease is also considered. (JN)

  13. Iron starvation induces apoptosis in Rhizopus oryzae in vitro.

    PubMed

    Shirazi, Fazal; Kontoyiannis, Dimitrios P; Ibrahim, Ashraf S

    2015-01-01

    Mortality associated with mucormycosis remains high despite current antifungals. Iron-starvation strategies have been shown to have promising activity against Mucorales. We hypothesized that iron starvation enhances apoptosis in Rhizopus oryzae. Apoptosis was characterized in R. oryzae transformed with RNAi plasmid targeting FTR1 expression (iron permease mutant) or empty plasmid grown in iron rich (0.125% FeCl3) and iron depleted media (YNB+1mM ferrozine and 1 mM ascorbic acid). Increased apoptosis was observed with dihydrorhodamine-123 and rhodamine-123 staining in the iron starved mutant FTR1 when compared to empty plasmid, followed by increased extracellular ATP levels. In addition, DNA fragmentation and metacaspase activity were prominent in FTR1. In contrast, Rhizopus strains grown in iron-rich medium displayed minimal apoptosis. Our results demonstrate a metacaspase dependent apoptotic process in iron deprived condition and further support the role of iron starvation strategies as an adjunct treatment for mucormycosis, a mechanism by which iron starvation affects R. oryzae. PMID:25830548

  14. A cell biological view of the siderophore pyochelin iron uptake pathway in Pseudomonas aeruginosa.

    PubMed

    Cunrath, Olivier; Gasser, Véronique; Hoegy, Françoise; Reimmann, Cornelia; Guillon, Laurent; Schalk, Isabelle J

    2015-01-01

    Pyochelin (PCH) is a siderophore produced and secreted by Pseudomonas aeruginosa for iron capture. Using (55) Fe uptake and binding assays, we showed that PCH-Fe uptake in P. aeruginosa involves, in addition to the highly studied outer membrane transporter FptA, the inner membrane permease FptX, which recognizes PCH-(55) Fe with an affinity of 0.6 ± 0.2 nM and transports the ferri-siderophore complex from the periplasm into the cytoplasm: fptX deletion inhibited (55) Fe accumulation in the bacterial cytoplasm. Chromosomal replacement was used to generate P. aeruginosa strains producing fluorescent fusions with FptX, PchR (an AraC regulator), PchA (the first enzyme involved in the PCH biosynthesis) and PchE (a non-ribosomic peptide-synthetase involved in a further step). Fluorescence imaging and cellular fractionation showed a uniform repartition of FptX in the inner membrane. PchA and PchE were found in the cytoplasm, associated to the inner membrane all over the bacteria and also concentrated at the bacterial poles. PchE clustering at the bacterial poles was dependent on PchA expression, but on the opposite PchA clustering and membrane association was PchE-independent. PchA and PchE cellular organization suggests the existence of a siderosome for PCH biosynthesis as previously proposed for pyoverdine biosynthesis (another siderophore produced by P. aeruginosa). PMID:24947078

  15. Iron Test

    MedlinePlus

    ... detect and help diagnose iron deficiency or iron overload. In people with anemia , these tests can help ... also be ordered when iron deficiency or iron overload is suspected. Early iron deficiency often goes unnoticed. ...

  16. Effects of iron deficiency on iron binding and internalization into acidic vacuoles in Dunaliella salina.

    PubMed

    Paz, Yakov; Shimoni, Eyal; Weiss, Meira; Pick, Uri

    2007-07-01

    Uptake of iron in the halotolerant alga Dunaliella salina is mediated by a transferrin-like protein (TTf), which binds and internalizes Fe(3+) ions. Recently, we found that iron deficiency induces a large enhancement of iron binding, which is associated with accumulation of three other plasma membrane proteins that associate with TTf. In this study, we characterized the kinetic properties of iron binding and internalization and identified the site of iron internalization. Iron deficiency induces a 4-fold increase in Fe binding, but only 50% enhancement in the rate of iron uptake and also increases the affinity for iron and bicarbonate, a coligand for iron binding. These results indicate that iron deprivation leads to accumulation and modification of iron-binding sites. Iron uptake in iron-sufficient cells is preceded by an apparent time lag, resulting from prebound iron, which can be eliminated by unloading iron-binding sites. Iron is tightly bound to surface-exposed sites and hardly exchanges with medium iron. All bound iron is subsequently internalized. Accumulation of iron inhibits further iron binding and internalization. The vacuolar inhibitor bafilomycin inhibits iron uptake and internalization. Internalized iron was localized by electron microscopy within vacuolar structures that were identified as acidic vacuoles. Iron internalization is accompanied by endocytosis of surface proteins into these acidic vacuoles. A novel kinetic mechanism for iron uptake is proposed, which includes two pools of bound/compartmentalized iron separated by a rate-limiting internalization stage. The major parameter that is modulated by iron deficiency is the iron-binding capacity. We propose that excessive iron binding in iron-deficient cells serves as a temporary reservoir for iron that is subsequently internalized. This mechanism is particularly suitable for organisms that are exposed to large fluctuations in iron availability. PMID:17513481

  17. The expression of superoxide dismutase (SOD) and a putative ABC transporter permease is inversely correlated during biofilm formation in Listeria monocytogenes 4b G

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about the molecular basis of biofilm formation in Listeria monocytogenes. The superoxide dismutase (SOD) of the deletion mutant of lm.G_1771 gene, which encodes for a putative ABC_transporter permease, is highly expressed in biofilm. In this study, the sod gene deletion mutant delta ...

  18. Structure of the Mycobacterium tuberculosis antigen 88, a protein related to the Escherichia coli PstA periplasmic phosphate permease subunit.

    PubMed Central

    Braibant, M; De Wit, L; Peirs, P; Kalai, M; Ooms, J; Drowart, A; Huygen, K; Content, J

    1994-01-01

    We report the cloning and sequencing of the gene coding for antigen 88 from Mycobacterium tuberculosis by using monoclonal antibodies to screen an expression library in lambda gt11. The gene encodes a 403-amino-acid-residue protein with a calculated molecular mass of 43,790 Da which contains seven putative transmembrane alpha-helical domains and presents a significant homology to the PstA protein of Escherichia coli. In its N-terminal region, it contains a 61-amino-acid region highly homologous to the fifth transmembrane helix of E. coli PstC. PstA and PstC are the two hydrophobic subunits of an E. coli periplasmic phosphate permease. Since the phosphate-binding subunit of this putative permease in M. tuberculosis has previously been characterized, i.e., the 38-kDa mycobacterial protein (also called protein antigen b, Ag 5, and Ag 78) homologous to PstS of E. coli, it seems likely that functional permeases analogous to the periplasmic permeases of gram-negative bacteria also exist in mycobacteria. Images PMID:8112854

  19. Enolase and Glycolytic Flux Play a Role in the Regulation of the Glucose Permease Gene RAG1 of Kluyveromyces lactis

    PubMed Central

    Lemaire, Marc; Wésolowski-Louvel, Micheline

    2004-01-01

    We isolated a mutant, rag17, which is impaired in glucose induction of expression of the major glucose transporter gene RAG1. The RAG17 gene encodes a protein 87% identical to S. cerevisiae enolases (Eno1 and Eno2). The Kleno null mutant showed no detectable enolase enzymatic activity and has severe growth defects on glucose and gluconeogenic carbon sources, indicating that K. lactis has a single enolase gene. In addition to RAG1, the transcription of several glycolytic genes was also strongly reduced in the ΔKleno mutant. Moreover, the defect in RAG1 expression was observed in other mutants of the glycolytic pathway (hexokinase and phosphoglycerate kinase). Therefore, it seems that the enolase and a functional glycolytic flux are necessary for induction of expression of the Rag1 glucose permease in K. lactis. PMID:15514048

  20. Hydrogen-producing Escherichia coli strains overexpressing lactose permease: FT-IR analysis of the lactose-induced stress.

    PubMed

    Grube, Mara; Dimanta, Ilze; Gavare, Marita; Strazdina, Inese; Liepins, Janis; Juhna, Talis; Kalnenieks, Uldis

    2014-01-01

    The lactose permease gene (lacY) was overexpressed in the septuple knockout mutant of Escherichia coli, previously engineered for hydrogen production from glucose. It was expected that raising the lactose transporter activity would elevate the intracellular lactose concentration, inactivate the lactose repressor, induce the lactose operon, and as a result stimulate overall lactose consumption and conversion. However, overexpression of the lactose transporter caused a considerable growth delay in the recombinant strain on lactose, resembling to some extent the "lactose killing" phenomenon. Therefore, the recombinant strain was subjected to selection on lactose-containing media. Selection on plates with 3% lactose yielded a strain with a decreased content of the recombinant plasmid but with an improved ability to grow and produce hydrogen on lactose. Macromolecular analysis of its biomass by means of Fourier transform-infrared spectroscopy demonstrated that increase of the cellular polysaccharide content might contribute to the adaptation of E. coli to lactose stress. PMID:23725289

  1. Seryl-phosphorylated HPr regulates CcpA-independent carbon catabolite repression in conjunction with PTS permeases in Streptococcus mutans.

    PubMed

    Zeng, Lin; Burne, Robert A

    2010-03-01

    Carbohydrate catabolite repression (CCR) in Streptococcus mutans can be independent of catabolite control protein A (CcpA) and requires specific components of phosphoenolpyruvate-dependent sugar:phosphotransferase system (PTS) permeases. Here, the effects of various ptsH (HPr) and hprK (HPr kinase/phosphatase) mutations on growth and CCR were evaluated. An hprKV265F mutation, which enhanced Ser46 phosphorylation of HPr, inhibited growth on multiple PTS sugars. A ptsHS46A mutation reversed the effects of hprKV265F in most cases. A strain carrying a ptsHS46D mutation, which mimics HPr(Ser-P), presented with more severe growth defects than the hprKV265F mutant. The hprKV265F mutant enhanced CCR of the fruA and levD operons, a phenotype reversible by the ptsHS46A mutation. The effects of the hprKV265F mutation on fruA and levD expression were independent of CcpA, but dependent on ManL (IIAB(Man)) and, to a lesser extent, on FruI (IIABC(Fru)), in a carbohydrate-specific fashion. Expression of the Bacillus subtilis ptsG gene in the manL mutant did not restore CCR of the lev or fru operons. The hprKV265F mutation inhibited growth on cellobiose and lactose, but only the transcription of the cel operon was decreased. Thus, in S. mutans, serine-phosphorylated HPr functions in concert with particular PTS permeases to prioritize carbohydrate utilization by modulating sugar transport and transcription of catabolic operons. PMID:20487301

  2. Role of the Oligopeptide Permease ABC Transporter of Moraxella catarrhalis in Nutrient Acquisition and Persistence in the Respiratory Tract

    PubMed Central

    Jones, Megan M.; Johnson, Antoinette; Koszelak-Rosenblum, Mary; Kirkham, Charmaine; Brauer, Aimee L.; Malkowski, Michael G.

    2014-01-01

    Moraxella catarrhalis is a strict human pathogen that causes otitis media in children and exacerbations of chronic obstructive pulmonary disease in adults, resulting in significant worldwide morbidity and mortality. M. catarrhalis has a growth requirement for arginine; thus, acquiring arginine is important for fitness and survival. M. catarrhalis has a putative oligopeptide permease ABC transport operon (opp) consisting of five genes (oppB, oppC, oppD, oppF, and oppA), encoding two permeases, two ATPases, and a substrate binding protein. Thermal shift assays showed that the purified recombinant substrate binding protein OppA binds to peptides 3 to 16 amino acid residues in length regardless of the amino acid composition. A mutant in which the oppBCDFA gene cluster is knocked out showed impaired growth in minimal medium where the only source of arginine came from a peptide 5 to 10 amino acid residues in length. Whether methylated arginine supports growth of M. catarrhalis is important in understanding fitness in the respiratory tract because methylated arginine is abundant in host tissues. No growth of wild-type M. catarrhalis was observed in minimal medium in which arginine was present only in methylated form, indicating that the bacterium requires l-arginine. An oppA knockout mutant showed marked impairment in its capacity to persist in the respiratory tract compared to the wild type in a mouse pulmonary clearance model. We conclude that the Opp system mediates both uptake of peptides and fitness in the respiratory tract. PMID:25156736

  3. Regulators of pseudohyphal differentiation in Saccharomyces cerevisiae identified through multicopy suppressor analysis in ammonium permease mutant strains.

    PubMed Central

    Lorenz, M C; Heitman, J

    1998-01-01

    Nitrogen-starved diploid cells of the yeast Saccharomyces cerevisiae differentiate into a filamentous, pseudohyphal growth form. Recognition of nitrogen starvation is mediated, at least in part, by the ammonium permease Mep2p and the Galpha subunit Gpa2p. Genetic activation of the pheromone-responsive MAP kinase cascade, which is also required for filamentous growth, only weakly suppresses the filamentation defect of Deltamep2/Deltamep2 and Deltagpa2/Deltagpa2 strain. Surprisingly, deletion of Mep1p, an ammonium permease not previously thought to regulate differentiation, significantly enhances the potency of MAP kinase activation, such that the STE11-4 allele induces filamentation to near wild-type levels in Deltamep1/Deltamep1 Deltamep2/Deltamep2 and Deltamep1/Deltamep1 Deltagpa2/Deltagpa2 strains. To identify additional regulatory components, we isolated high-copy suppressors of the filamentation defect of the Deltamep1/Deltamep1 Deltamep2/Deltamep2 mutant. Multicopy expression of TEC1, PHD1, PHD2 (MSS10/MSN1/FUP4), MSN5, CDC6, MSS11, MGA1, SKN7, DOT6, HMS1, HMS2, or MEP2 each restored filamentation in a Deltamep1/Deltamep1 Deltamep2/Deltamep2 strain. Overexpression of SRK1 (SSD1), URE2, DAL80, MEP1, or MEP3 suppressed only the growth defect of the Deltamep1/Deltamep1 Deltamep2/Deltamep2 mutant strain. Characterization of these genes through deletion analysis and epistasis underscores the complexity of this developmental pathway and suggests that stress conditions other than nitrogen deprivation may also promote filamentous growth. PMID:9832522

  4. Tor Signaling Regulates Transcription of Amino Acid Permeases through a GATA Transcription Factor Gaf1 in Fission Yeast

    PubMed Central

    Liu, Qingbin; Qi, Yao; Manabe, Ri-ichiroh; Furuyashiki, Tomoyuki

    2015-01-01

    In the fission yeast, two Tor isoforms, Tor1 and Tor2, oppositely regulate gene expression of amino acid permeases. To elucidate the transcriptional machinery for these regulations, here we have employed the cap analysis of gene expression (CAGE), a method of analyzing expression profiles and identifying transcriptional start sites (TSSs). The loss of Tor1 decreased, and Tor2 inhibition by its temperature sensitive mutation increased, mRNA expression of isp5+, per1+, put4+ and SPBPB2B2.01. In contrast, the loss of Tor1 increased, and Tor2 inhibition decreased, the expression of cat1+. These changes were confirmed by semi-quantitative RT-PCR. These opposite effects by the loss of Tor1 and Tor2 inhibition appeared to occur evenly across multiple TSSs for the respective genes. The motif discovery analysis based on the CAGE results identified the GATA motifs as a potential cis-regulatory element for Tor-mediated regulation. In the luciferase reporter assay, the loss of Tor1 reduced, and Tor2 inhibition and nitrogen depletion increased, the activity of isp5+ promoter as well as that of a GATAAG reporter. One of the GATAAG motifs in isp5+ promoter was critical for its transcriptional activity, and a GATA transcription factor Gaf1 was critical for the activities of isp5+ promoter and the GATAAG reporter. Furthermore, Tor2 inhibition and nitrogen depletion induced nuclear localization of Gaf1 from the cytosol and its dephosphorylation. These results suggest that Tor2 inhibition, which is known to be induced by nitrogen depletion, promotes nuclear localization of Gaf1, thereby inducing isp5+ transcription through Gaf1 binding to the GATAAG motif in its promoter. Since Gaf1 was also critical for transcription of per1+ and put4+, Tor-Gaf1 signaling may coordinate transcription of multiple amino acid permeases according to nutrient availability. PMID:26689777

  5. Iron Chelation

    MedlinePlus

    ... iron overload and need treatment. What is iron overload? Iron chelation therapy is used when you have ... may want to perform: How quickly does iron overload happen? This is different for each person. It ...

  6. Choline uptake in Agrobacterium tumefaciens by the high-affinity ChoXWV transporter.

    PubMed

    Aktas, Meriyem; Jost, Kathinka A; Fritz, Christiane; Narberhaus, Franz

    2011-10-01

    Agrobacterium tumefaciens is a facultative phytopathogen that causes crown gall disease. For successful plant transformation A. tumefaciens requires the membrane lipid phosphatidylcholine (PC), which is produced via the methylation and the PC synthase (Pcs) pathways. The latter route is dependent on choline. Although choline uptake has been demonstrated in A. tumefaciens, the responsible transporter(s) remained elusive. In this study, we identified the first choline transport system in A. tumefaciens. The ABC-type choline transporter is encoded by the chromosomally located choXWV operon (ChoX, binding protein; ChoW, permease; and ChoV, ATPase). The Cho system is not critical for growth and PC synthesis. However, [14C]choline uptake is severely reduced in A. tumefaciens choX mutants. Recombinant ChoX is able to bind choline with high affinity (equilibrium dissociation constant [KD] of ≈2 μM). Since other quaternary amines are bound by ChoX with much lower affinities (acetylcholine, KD of ≈80 μM; betaine, KD of ≈470 μM), the ChoXWV system functions as a high-affinity transporter with a preference for choline. Two tryptophan residues (W40 and W87) located in the predicted ligand-binding pocket are essential for choline binding. The structural model of ChoX built on Sinorhizobium meliloti ChoX resembles the typical structure of substrate binding proteins with a so-called "Venus flytrap mechanism" of substrate binding. PMID:21803998

  7. Local Affinity Release.

    PubMed

    Delplace, Vianney; Obermeyer, Jaclyn; Shoichet, Molly S

    2016-07-26

    The use of hydrogels for therapeutic delivery is a burgeoning area of investigation. These water-swollen polymer matrices are ideal platforms for localized drug delivery that can be further combined with specific ligands or nanotechnologies to advance the controlled release of small-molecule drugs and proteins. Due to the advantage of hydrophobic, electrostatic, or specific extracellular matrix interactions, affinity-based strategies can overcome burst release and challenges associated with encapsulation. Future studies will provide innovative binding tools, truly stimuli-responsive systems, and original combinations of emerging technologies to control the release of therapeutics spatially and temporally. Local drug delivery can be achieved by directly injecting a therapeutic to its site of action and is advantageous because off-target effects associated with systemic delivery can be minimized. For prolonged benefit, a vehicle that provides sustained drug release is required. Hydrogels are versatile platforms for localized drug release, owing to the large library of biocompatible building blocks from which they can be formed. Injectable hydrogel formulations that gel quickly in situ and provide sustained release of therapeutics are particularly advantageous to minimize invasiveness. The incorporation of polymers, ligands or nanoparticles that have an affinity for the therapeutic of interest improve control over the release of small-molecule drugs and proteins from hydrogels, enabling spatial and temporal control over the delivery. Such affinity-based strategies can overcome drug burst release and challenges associated with protein instability, allowing more effective therapeutic molecule delivery for a range of applications from therapeutic contact lenses to ischemic tissue regeneration. PMID:27403513

  8. The levanase operon of Bacillus subtilis expressed in Escherichia coli can substitute for the mannose permease in mannose uptake and bacteriophage lambda infection.

    PubMed Central

    Martin-Verstraete, I; Michel, V; Charbit, A

    1996-01-01

    Bacteriophage lambda adsorbs to its Escherichia coli K-12 host by interacting with LamB, a maltose- and maltodextrin-specific porin of the outer membrane. LamB also serves as a receptor for several other bacteriophages. Lambda DNA requires, in addition to LamB, the presence of two bacterial cytoplasmic integral membrane proteins for penetration, namely, the IIC(Man) and IID(Man) proteins of the E. coli mannose transporter, a member of the sugar-specific phosphoenolpyruvate:sugar phosphotransferase system (PTS). The PTS transporters for mannose of E. coli, for fructose of Bacillus subtilis, and for sorbose of Klebsiella pneumoniae were shown to be highly similar to each other but significantly different from other PTS transporters. These three enzyme II complexes are the only ones to possess distinct IIC and IID transmembrane proteins. In the present work, we show that the fructose-specific permease encoded by the levanase operon of B. subtilis is inducible by mannose and allows mannose uptake in B. subtilis as well as in E. coli. Moreover, we show that the B. subtilis permease can substitute for the E. coli mannose permease cytoplasmic membrane components for phage lambda infection. In contrast, a series of other bacteriophages, also using the LamB protein as a cell surface receptor, do not require the mannose transporter for infection. PMID:8955391

  9. Interrelated Effects of Cold Shock and Osmotic Pressure on the Permeability of the Escherichia coli Membrane to Permease Accumulated Substrates1

    PubMed Central

    Leder, Irwin G.

    1972-01-01

    Permease studies are generally carried out by incubating cells in growth medium with labeled substrate, collecting the cells on microporous membrane filters, and washing them free from extracellular radioactivity with ice-cold medium. Studies of thiomethylgalactoside, valine, and galactose accumulation indicate that in several strains of Escherichia coli the bacterial membrane is exquisitely sensitive to isosmotic cold shock. Substrate pools formed at 25 C may suffer almost total loss if the cells are rapidly chilled to approximately 0 C during sampling. In glycerol-grown cells, this rapid efflux of substrate is prevented or minimized if the cells are subjected at the moment of cold shock to a simultaneous hyperosmotic transition. Because of this protective effect, the apparent size of a permease accumulated substrate pool is extremely sensitive to the osmotic composition of the incubation medium and may appear to be increased as much as 10-fold when the osmolarity is reduced from approximately 0.3 to 0.1 osmolar. These differences vanish when sampling and washing are carried out with medium at room temperature. It is suggested that isosmotic cold shock causes crystallization of the liquid-like lipids within the membrane. The hydrophilic channels created in this process would facilitate the rapid efflux of permease accumulated substrates. The imposition of a simultaneous hyperosmotic transition by dehydrating the cell periphery would cause increased lipid interaction, thus preserving the integrity of the cells membrane. PMID:4591477

  10. Genome-wide Screening Identifies Phosphotransferase System Permease BepA to Be Involved in Enterococcus faecium Endocarditis and Biofilm Formation.

    PubMed

    Paganelli, Fernanda L; Huebner, Johannes; Singh, Kavindra V; Zhang, Xinglin; van Schaik, Willem; Wobser, Dominique; Braat, Johanna C; Murray, Barbara E; Bonten, Marc J M; Willems, Rob J L; Leavis, Helen L

    2016-07-15

    Enterococcus faecium is a common cause of nosocomial infections, of which infective endocarditis is associated with substantial mortality. In this study, we used a microarray-based transposon mapping (M-TraM) approach to evaluate a rat endocarditis model and identified a gene, originally annotated as "fruA" and renamed "bepA," putatively encoding a carbohydrate phosphotransferase system (PTS) permease (biofilm and endocarditis-associated permease A [BepA]), as important in infective endocarditis. This gene is highly enriched in E. faecium clinical isolates and absent in commensal isolates that are not associated with infection. Confirmation of the phenotype was established in a competition experiment of wild-type and a markerless bepA mutant in a rat endocarditis model. In addition, deletion of bepA impaired biofilm formation in vitro in the presence of 100% human serum and metabolism of β-methyl-D-glucoside. β-glucoside metabolism has been linked to the metabolism of glycosaminoglycans that are exposed on injured heart valves, where bacteria attach and form vegetations. Therefore, we propose that the PTS permease BepA is directly implicated in E. faecium pathogenesis. PMID:26984142

  11. Morphometric affinities of gigantopithecus.

    PubMed

    Gelvin, B R

    1980-11-01

    Multivariate analyses, supplemented by univariate statistical methods, of measurements from mandibular tooth crown dimensions and the mandible of Gigantopithecus blacki, G. bilaspurensis, Plio-Plelstocene hominids, Homo erectus, and seven Neogene ape species from the genera Proconsul, Sivapithecus, Ouranopithecus, and Dryopithecus were used to assess the morphometric affinities of Gigantopithecus. The results show that Gigantopithecus displays affinities to Ouranopithecus and to the hominids, particularly the Plio-Plelstocene hominids, rather than to the apes. Ouranopithecus demonstrated dental resemblances to G. bilaspurensis and the Plio-Pleistocene hominids but mandibular similarities to the apes. Results of analyses of tooth and mandibular shape indices, combined with multivariate distance and temporal relationships, suggest that Ouranopithecus is a more likely candidate for Gigantopithecus ancestry than is Silvapithecus indicus. Shape and allometric differences between G. bilaspurensis and the robust australopithecines weaken the argument for an ancestral-descendant relationship between these groups. The results support the hypothesis that Gigantopithecus is an extinct side branch of the Hominidae. PMID:7468790

  12. The ergosterol biosynthesis inhibitor zaragozic acid promotes vacuolar degradation of the tryptophan permease Tat2p in yeast.

    PubMed

    Daicho, Katsue; Maruyama, Hironori; Suzuki, Asuka; Ueno, Masaru; Uritani, Masahiro; Ushimaru, Takashi

    2007-07-01

    Ergosterol is the yeast functional equivalent of cholesterol in mammalian cells. Deletion of the ERG6 gene, which encodes an enzyme catalyzing a late step of ergosterol biosynthesis, impedes targeting of the tryptophan permease Tat2p to the plasma membrane, but does not promote vacuolar degradation. It is unknown whether similar features appear when other steps of ergosterol biogenesis are inhibited. We show herein that the ergosterol biosynthesis inhibitor zaragozic acid (ZA) evoked massive vacuolar degradation of Tat2p, accompanied by a decrease in tryptophan uptake. ZA inhibits squalene synthetase (SQS, EC 2.5.1.21), which catalyzes the first committed step in the formation of cholesterol/ergosterol. The degradation of Tat2p was dependent on the Rsp5p-mediated ubiquitination of Tat2p and was not suppressed by deletions of VPS1, VPS27, VPS45 or PEP12. We will discuss ZA-mediated Tat2p degradation in the context of lipid rafts. PMID:17531951

  13. Lag in adaptation to lactose as a probe to the timing of permease incorporation into the cell membrane.

    PubMed Central

    Koch, A L

    1975-01-01

    If bacteria are incapable of forming and incorporating proteins into the cytoplasmic membranes in all phases of the cell cycle, then not all cells from an asynchronous culture should be capable of growth when switched to a new carbon and energy source whose metabolism requires new membrane function. The transfer of an inducible culture to low lactose provides such a situation since the cells cannot grow unless galactoside permease can function to concentrate the lactose internally. From such experiments, it was concluded that the Y gene product of the lac operon is synthesized, incorporated, and can start functioning in active transport, at any time throughout the bulk of the cell cycle. Not only were the lags before growth re-ensued much shorter than would be expected if the membrane transport capability could only be developed in a small portion of the cycle, but brief pulses of a gratuitous inducer shortened the lags much further. Three types of Escherichia coli ML 30 culture were studied: cells that had exhausted the limiting glucose; cells taken directly from glucose-limited chemostats; and a washed suspension of highly catabolite repressed cells from cultures grown in high levels of glucose and gluconate. The growth studies reported here were performed on-line with a minicomputer. They represent at least an order of magnitude increase in accuracy in estimating growth parameters over previous instrumentation. PMID:1100610

  14. The Oligopeptide Permease Opp Mediates Illicit Transport of the Bacterial P-site Decoding Inhibitor GE81112 †

    PubMed Central

    Maio, Alessandro; Brandi, Letizia; Donadio, Stefano; Gualerzi, Claudio O.

    2016-01-01

    GE81112 is a tetrapeptide antibiotic that binds to the 30S ribosomal subunit and specifically inhibits P-site decoding of the mRNA initiation codon by the fMet-tRNA anticodon. GE81112 displays excellent microbiological activity against some Gram-positive and Gram-negative bacteria in both minimal and complete, chemically defined, broth, but is essentially inactive in complete complex media. This is due to the presence of peptides that compete with the antibiotic for the oligopeptide permease system (Opp) responsible for its illicit transport into the bacterial cells as demonstrated in the cases of Escherichia coli and Bacillus subtilis. Mutations that inactivate the Opp system and confer GE81112 resistance arise spontaneously with a frequency of ca. 1 × 10−6, similar to that of the mutants resistant to tri-l-ornithine, a known Opp substrate. On the contrary, cells expressing extrachromosomal copies of the opp genes are extremely sensitive to GE81112 in rich medium and GE81112-resistant mutations affecting the molecular target of the antibiotic were not detected upon examining >109 cells of this type. However, some mutations introduced in the 16S rRNA to confer kasugamycin resistance were found to reduce the sensitivity of the cells to GE81112. PMID:27231947

  15. C. elegans patched-3 is an essential gene implicated in osmoregulation and requiring an intact permease transporter domain

    PubMed Central

    Soloviev, Alexander; Gallagher, Joseph; Marnef, Aline; Kuwabara, Patricia E.

    2011-01-01

    The nematode Caenorhabditis elegans has retained a rudimentary Hedgehog (Hh) signalling pathway; Hh and Smoothened (Smo) homologs are absent, but two highly related Patched gene homologs, ptc-1 and ptc-3, and 24 ptc-related (ptr) genes are present. We previously showed that ptc-1 is essential for germ line cytokinesis. Here, we report that ptc-3 is also an essential gene; the absence of ptc-3 results in a late embryonic lethality due to an apparent defect in osmoregulation. Rescue of a ptc-3 mutant with a ptc-3::gfp translational reporter reveals that ptc-3 is dynamically expressed in multiple tissues across development. Consistent with this pattern of expression, ptc-3(RNAi) reveals an additional postembryonic requirement for ptc-3 activity. Tissue-specific promoter studies indicate that hypodermal expression of ptc-3 is required for normal development. Missense changes in key residues of the sterol sensing domain (SSD) and the permease transporter domain GxxxD/E motif reveal that the transporter domain is essential for PTC-3 activity, whereas an intact SSD is dispensable. Taken together, our studies indicate that PTC proteins have retained essential roles in C. elegans that are independent of Smoothened (Smo). These observations reveal novel, and perhaps ancestral, roles for PTC proteins. PMID:21215260

  16. The Oligopeptide Permease Opp Mediates Illicit Transport of the Bacterial P-site Decoding Inhibitor GE81112.

    PubMed

    Maio, Alessandro; Brandi, Letizia; Donadio, Stefano; Gualerzi, Claudio O

    2016-01-01

    GE81112 is a tetrapeptide antibiotic that binds to the 30S ribosomal subunit and specifically inhibits P-site decoding of the mRNA initiation codon by the fMet-tRNA anticodon. GE81112 displays excellent microbiological activity against some Gram-positive and Gram-negative bacteria in both minimal and complete, chemically defined, broth, but is essentially inactive in complete complex media. This is due to the presence of peptides that compete with the antibiotic for the oligopeptide permease system (Opp) responsible for its illicit transport into the bacterial cells as demonstrated in the cases of Escherichia coli and Bacillus subtilis. Mutations that inactivate the Opp system and confer GE81112 resistance arise spontaneously with a frequency of ca. 1 × 10(-6), similar to that of the mutants resistant to tri-l-ornithine, a known Opp substrate. On the contrary, cells expressing extrachromosomal copies of the opp genes are extremely sensitive to GE81112 in rich medium and GE81112-resistant mutations affecting the molecular target of the antibiotic were not detected upon examining >10⁸ cells of this type. However, some mutations introduced in the 16S rRNA to confer kasugamycin resistance were found to reduce the sensitivity of the cells to GE81112. PMID:27231947

  17. Long non-coding RNA-mediated transcriptional interference of a permease gene confers drug tolerance in fission yeast

    PubMed Central

    Ard, Ryan; Tong, Pin; Allshire, Robin C.

    2014-01-01

    Most long non-coding RNAs (lncRNAs) encoded by eukaryotic genomes remain uncharacterized. Here we focus on a set of intergenic lncRNAs in fission yeast. Deleting one of these lncRNAs exhibited a clear phenotype: drug sensitivity. Detailed analyses of the affected locus revealed that transcription of the nc-tgp1 lncRNA regulates drug tolerance by repressing the adjacent phosphate-responsive permease gene transporter for glycerophosphodiester 1 (tgp1+). We demonstrate that the act of transcribing nc-tgp1 over the tgp1+ promoter increases nucleosome density, prevents transcription factor access and thus represses tgp1+ without the need for RNA interference or heterochromatin components. We therefore conclude that tgp1+ is regulated by transcriptional interference. Accordingly, decreased nc-tgp1 transcription permits tgp1+ expression upon phosphate starvation. Furthermore, nc-tgp1 loss induces tgp1+ even in repressive conditions. Notably, drug sensitivity results directly from tgp1+ expression in the absence of the nc-tgp1 RNA. Thus, transcription of an lncRNA governs drug tolerance in fission yeast. PMID:25428589

  18. Molecular characterization of group A streptococcal (GAS) oligopeptide permease (opp) and its effect on cysteine protease production.

    PubMed

    Podbielski, A; Pohl, B; Woischnik, M; Körner, C; Schmidt, K H; Rozdzinski, E; Leonard, B A

    1996-09-01

    Bacterial oligopeptide permeases are membrane-associated complexes of five proteins belonging to the ABC-transporter family, which have been found to be involved in obtaining nutrients, cell-wall metabolism, competence, and adherence to host cells. A lambda library of the strain CS101 group A streptococcal (GAS) genome was used to sequence 10,192 bp containing the five genes oppA to oppF of the GAS opp operon. The deduced amino acid sequences exhibited 50-84% homology to pneumococcal AmiA to AmiF sequences. The operon organization of the five genes was confirmed by transcriptional analysis and an additional shorter oppA transcript was detected. Insertional inactivation was used to create serotype M49 strains which did not express either the oppA gene or the ATPase genes, oppD and oppF. The mutation in oppA confirmed that the additional shorter oppA transcript originated from the opp operon and was probably due to an intra-operon transcription terminator site located downstream of oppA. While growth kinetics, binding of serum proteins, and attachment to eukaryotic cells were unaffected, the oppD/F mutants showed reduced production of the cysteine protease, SpeB, and a change in the pattern of secreted proteins. Thus, the GAS opp operon appears to contribute to both protease production and export/processing of secreted proteins. PMID:8885277

  19. Isolation and characterization of a gene specific to lager brewing yeast that encodes a branched-chain amino acid permease.

    PubMed

    Kodama, Y; Omura, F; Ashikari, T

    2001-08-01

    We found two types of branched-chain amino acid permease gene (BAP2) in the lager brewing yeast Saccharomyces pastorianus BH-225 and cloned one type of BAP2 gene (Lg-BAP2), which is identical to that of Saccharomyces bayanus (by-BAP2-1). The other BAP2 gene of the lager brewing yeast (cer-BAP2) is very similar to the Saccharomyces cerevisiae BAP2 gene. This result substantiates the notion that lager brewing yeast is a hybrid of S. cerevisiae and S. bayanus. The amino acid sequence homology between S. cerevisiae Bap2p and Lg-Bap2p was 88%. The transcription of Lg-BAP2 was not induced by the addition of leucine to the growth medium, while that of cer-BAP2 was induced. The transcription of Lg-BAP2 was repressed by the presence of ethanol and weak organic acid, while that of cer-BAP2 was not affected by these compounds. Furthermore, Northern analysis during beer fermentation revealed that the transcription of Lg-BAP2 was repressed at the beginning of the fermentation, while cer-BAP2 was highly expressed throughout the fermentation. These results suggest that the transcription of Lg-BAP2 is regulated differently from that of cer-BAP2 in lager brewing yeasts. PMID:11472919

  20. Synergistic interaction of glyceraldehydes-3-phosphate dehydrogenase and ArsJ, a novel organoarsenical efflux permease, confers arsenate resistance.

    PubMed

    Chen, Jian; Yoshinaga, Masafumi; Garbinski, Luis D; Rosen, Barry P

    2016-06-01

    Microbial biotransformations are major contributors to the arsenic biogeocycle. In parallel with transformations of inorganic arsenic, organoarsenicals pathways have recently been recognized as important components of global cycling of arsenic. The well-characterized pathway of resistance to arsenate is reduction coupled to arsenite efflux. Here, we describe a new pathway of arsenate resistance involving biosynthesis and extrusion of an unusual pentavalent organoarsenical. A number of arsenic resistance (ars) operons have two genes of unknown function that are linked in these operons. One, gapdh, encodes the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase. The other, arsJ, encodes a major facilitator superfamily (MFS) protein. The two genes were cloned from the chromosome of Pseudomonas aeruginosa. When expressed together, but not alone, in Escherichia coli, gapdh and arsJ specifically conferred resistance to arsenate and decreased accumulation of As(V). Everted membrane vesicles from cells expressing arsJ accumulated As(V) in the presence of purified GAPDH, D-glceraldehylde 3-phosphate (G3P) and NAD(+) . GAPDH forms the unstable organoarsenical 1-arseno-3-phosphoglycerate (1As3PGA). We propose that ArsJ is an efflux permease that extrudes 1As3PGA from cells, where it rapidly dissociates into As(V) and 3-phosphoglycerate (3PGA), creating a novel pathway of arsenate resistance. PMID:26991003

  1. Iron overdose

    MedlinePlus

    Iron is an ingredient in many mineral and vitamin supplements. Iron supplements are also sold by themselves. Types include: Ferrous sulfate (Feosol, Slow Fe) Ferrous gluconate (Fergon) Ferrous fumarate (Femiron, Feostat) Other products may also contain iron.

  2. Iron-blocking the high-affinity Mn-binding site in photosystem II facilitates identification of the type of hydrogen bond participating in proton-coupled electron transport via YZ.

    PubMed

    Semin, Boris K; Lovyagina, Elena R; Timofeev, Kirill N; Ivanov, Ilya I; Rubin, Andrei B; Seibert, Michael

    2005-07-19

    Incubation of Mn-depleted PSII membranes [PSII(-Mn)] with Fe(II) is accompanied by the blocking of Y(Z)(*) at the high-affinity Mn-binding site to exogenous electron donors [Semin et al. (2002) Biochemistry 41, 5854-5864] and a shift of the pK(app) of the hydrogen bond partner for Y(Z) (base B) from 7.1 to 6.1 [Semin, B. K., and Seibert, M. (2004) Biochemistry 43, 6772-6782]. Here we calculate activation energies (E(a)) for Y(Z)(*) reduction in PSII(-Mn) and Fe-blocked PSII(-Mn) samples [PSII(-Mn, +Fe)] from temperature dependencies of the rate constants of the fast and slow components of the flash-probe fluorescence decay kinetics. At pH < pK(app) (e.g., 5.5), the decays are fit with one (fast) component in both types of samples, and E(a) is equal to 42.2 +/- 2.9 kJ/mol in PSII(-Mn) and 46.4 +/- 3.3 kJ/mol in PSII(-Mn, +Fe) membranes. At pH > pK(app), the decay kinetics exhibit an additional slow component in PSII(-Mn, +Fe) membranes (E(a) = 36.1 +/- 7.5 kJ/mol), which is much lower than the E(a) of the corresponding component observed for Y(Z)(*) reduction in PSII(-Mn) samples (48.1 +/- 1.7 kJ/mol). We suggest that the above difference results from the formation of a strong low barrier hydrogen bond (LBHB) between Y(Z) and base B in PSII(-Mn, +Fe) samples. To confirm this, Fe-blocking was performed in D(2)O to insert D(+), which has an energetic barrier distinct from H(+), into the LBHB. Measurement of the pH effects on the rates of Y(Z)(*) reduction in PSII(-Mn, +Fe) samples blocked in D(2)O shows a shift of the pK(app) from 6.1 to 7.6, and an increase in the E(a) of the slow component. This approach was also used to measure the stability of the Y(Z)(*) EPR signal at various temperatures in both kinds of membranes. In PSII(-Mn) membranes, the freeze-trapped Y(Z)(*) radical is stable below 190 K, but half of the Y(Z)(*) EPR signal disappears after a 1-min incubation when the sample is warmed to 253 K. In PSII(-Mn, +Fe) samples, the trapped Y(Z)(*) radical is

  3. Adjoint affine fusion and tadpoles

    NASA Astrophysics Data System (ADS)

    Urichuk, Andrew; Walton, Mark A.

    2016-06-01

    We study affine fusion with the adjoint representation. For simple Lie algebras, elementary and universal formulas determine the decomposition of a tensor product of an integrable highest-weight representation with the adjoint representation. Using the (refined) affine depth rule, we prove that equally striking results apply to adjoint affine fusion. For diagonal fusion, a coefficient equals the number of nonzero Dynkin labels of the relevant affine highest weight, minus 1. A nice lattice-polytope interpretation follows and allows the straightforward calculation of the genus-1 1-point adjoint Verlinde dimension, the adjoint affine fusion tadpole. Explicit formulas, (piecewise) polynomial in the level, are written for the adjoint tadpoles of all classical Lie algebras. We show that off-diagonal adjoint affine fusion is obtained from the corresponding tensor product by simply dropping non-dominant representations.

  4. rFTR1 is Required for Pathogenesis, and appears to be an Essential Gene, of Rhizopus oryzae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Rhizopus oryzae is a multinucleated fungus responsible for the majority of cases of mucormycosis. The high affinity iron permease gene (rFTR1) is required for R. oryzae iron transport in iron-limited environments. We sought to disrupt the gene to define its role in virulence. METHODS: ...

  5. Metagenomic Study of Iron Homeostasis in Iron Depositing Hot Spring Cyanobacterial Community

    NASA Technical Reports Server (NTRS)

    Brown, I.; Franklin H.; Tringe, S. G.; Klatt, C. G.; Bryant, D. A.; Sarkisova, S. A.; Guevara, M.

    2010-01-01

    Introduction: It is not clear how an iron-rich thermal hydrosphere could be hospitable to cyanobacteria, since reduced iron appears to stimulate oxidative stress in all domains of life and particularly in oxygenic phototrophs. Therefore, metagenomic study of cyanobacterial community in iron-depositing hot springs may help elucidate how oxygenic prokaryotes can withstand the extremely high concentrations of reactive oxygen species (ROS) produced by interaction between environmental Fe2+ and O2. Method: Anchor proteins from various species of cyanobacteria and some anoxygenic phototrophs were selected on the basis of their hypothetical role in Fe homeostasis and the suppression of oxidative stress and were BLASTed against the metagenomes of iron-depositing Chocolate Pots and freshwater Mushroom hot springs. Results: BLASTing proteins hypothesized to be involved in Fe homeostasis against the microbiomes from the two springs revealed that iron-depositing hot spring has a greater abundance of defensive proteins such as bacterioferritin comigratory protein (Bcp) and DNA-binding Ferritin like protein (Dps) than a fresh-water hot spring. One may speculate that the abundance of Bcp and Dps in an iron-depositing hot spring is connected to the need to suppress oxidative stress in bacteria inhabiting environments with high Fe2+ concnetration. In both springs, Bcp and Dps are concentrated within the cyanobacterial fractions of the microbial community (regardless of abundance). Fe3+ siderophore transport (from the transport system permease protein query) may be less essential to the microbial community of CP because of the high [Fe]. Conclusion: Further research is needed to confirm that these proteins are unique to photoautotrophs such as those living in iron-depositing hot spring.

  6. Affinity chromatography: a historical perspective.

    PubMed

    Hage, David S; Matsuda, Ryan

    2015-01-01

    Affinity chromatography is one of the most selective and versatile forms of liquid chromatography for the separation or analysis of chemicals in complex mixtures. This method makes use of a biologically related agent as the stationary phase, which provides an affinity column with the ability to bind selectively and reversibly to a given target in a sample. This review examines the early work in this method and various developments that have lead to the current status of this technique. The general principles of affinity chromatography are briefly described as part of this discussion. Past and recent efforts in the generation of new binding agents, supports, and immobilization methods for this method are considered. Various applications of affinity chromatography are also summarized, as well as the influence this field has played in the creation of other affinity-based separation or analysis methods. PMID:25749941

  7. Comprehensive Mutational Analysis of Sucrose-Metabolizing Pathways in Streptococcus mutans Reveals Novel Roles for the Sucrose Phosphotransferase System Permease

    PubMed Central

    Zeng, Lin

    2013-01-01

    Sucrose is perhaps the most efficient carbohydrate for the promotion of dental caries in humans, and the primary caries pathogen Streptococcus mutans encodes multiple enzymes involved in the metabolism of this disaccharide. Here, we engineered a series of mutants lacking individual or combinations of sucrolytic pathways to understand the control of sucrose catabolism and to determine whether as-yet-undisclosed pathways for sucrose utilization were present in S. mutans. Growth phenotypes indicated that gtfBCD (encoding glucan exopolysaccharide synthases), ftf (encoding the fructan exopolysaccharide synthase), and the scrAB pathway (sugar-phosphotransferase system [PTS] permease and sucrose-6-PO4 hydrolase) constitute the majority of the sucrose-catabolizing activity; however, mutations in any one of these genes alone did not affect planktonic growth on sucrose. The multiple-sugar metabolism pathway (msm) contributed minimally to growth on sucrose. Notably, a mutant lacking gtfBC, which cannot produce water-insoluble glucan, displayed improved planktonic growth on sucrose. Meanwhile, loss of scrA led to growth stimulation on fructooligosaccharides, due in large part to increased expression of the fruAB (fructanase) operon. Using the LevQRST four-component signal transduction system as a model for carbohydrate-dependent gene expression in strains lacking extracellular sucrases, a PlevD-cat (EIIALev) reporter was activated by pulsing with sucrose. Interestingly, ScrA was required for activation of levD expression by sucrose through components of the LevQRST complex, but not for activation by the cognate LevQRST sugars fructose or mannose. Sucrose-dependent catabolite repression was also evident in strains containing an intact sucrose PTS. Collectively, these results reveal a novel regulatory circuitry for the control of sucrose catabolism, with a central role for ScrA. PMID:23222725

  8. Allantoin accumulation mediated by allantoinase downregulation and transport by Ureide Permease 5 confers salt stress tolerance to Arabidopsis plants.

    PubMed

    Lescano, Carlos Ignacio; Martini, Carolina; González, Claudio Alejandro; Desimone, Marcelo

    2016-07-01

    Allantoin, a metabolite generated in the purine degradation pathway, was primarily considered an intermediate for recycling of the abundant nitrogen assimilated in plant purines. More specifically, tropical legumes utilize allantoin and allantoic acid as major nodule-to-shoot nitrogen transport compounds. In other species, an increase in allantoin content was observed under different stress conditions, but the underlying molecular mechanisms remain poorly understood. In this work, Arabidopsis thaliana was used as a model system to investigate the effects of salt stress on allantoin metabolism and to know whether its accumulation results in plant protection. Plant seedlings treated with NaCl at different concentrations showed higher allantoin and lower allantoic acid contents. Treatments with NaCl favored the expression of genes involved in allantoin synthesis, but strongly repressed the unique gene encoding allantoinase (AtALN). Due to the potential regulatory role of this gene for allantoin accumulation, AtALN promoter activity was studied using a reporter system. GUS mediated coloration was found in specific plant tissues and was diminished with increasing salt concentrations. Phenotypic analysis of knockout, knockdown and stress-inducible mutants for AtALN revealed that allantoin accumulation is essential for salt stress tolerance. In addition, the possible role of allantoin transport was investigated. The Ureide Permease 5 (UPS5) is expressed in the cortex and endodermis of roots and its transcription is enhanced by salt treatment. Ups5 knockout plants under salt stress presented a susceptible phenotype and altered allantoin root-to-shoot content ratios. Possible roles of allantoin as a protectant compound in oxidative events or signaling are discussed. PMID:27209043

  9. Modeling structural transitions from the periplasmic-open state of lactose permease and interpretations of spin label experiments.

    PubMed

    Zhuang, Xiaohong; Klauda, Jeffery B

    2016-07-01

    Lactose permease of E. coli (LacY) is a secondary active transporter (SAT) that belongs to the major facilitator superfamily (MFS). Experimental structures of the cytoplasmic-open and more recently occluded-like structure have been determined, however, the crystal structure of LacY in the periplasmic-open state is still not available. The periplasmic-open LacY structure is important for understanding complete proton/sugar transport process of LacY as well as other similar SAT proteins. Previously, a structural model of periplasmic-open LacY has been obtained through a two-step hybrid implicit-explicit (IM-EX) simulation method (JMB404: 506). Molecular dynamics simulations are performed to further test the IM-EX model for the periplasmic-open LacY with ββ-(Galp)2 in a lipid membrane. The comparison of the calculated pore radii to the data of the crystal structure indicates that the IM-EX model of LacY remains periplasmic-open in E269-protonated states. The neighbor residue distance change based on Cα are very similar in simulation results, but they are significantly different in double electron-electron resonance (DEER) experimental data, which motivates us to perform the molecular dynamics dummy spin-label (MDDS) simulations to test the effect of spin labels (size and internal flexibility) on DEER spin label distance measurements. The MDDS simulation results show that the orientation and movement of the spin labels significantly affect the residue pair distance measurement. DEER data alone may not provide an accurate guide for predicting protein structures. MDDS simulations can be applied to analyze the distance distribution due to spin labels and also aid in proper interpretation of DEER experimental data. PMID:27107553

  10. Impact of Ammonium Permeases MepA, MepB, and MepC on Nitrogen-Regulated Secondary Metabolism in Fusarium fujikuroi▿

    PubMed Central

    Teichert, Sabine; Rutherford, Julian C.; Wottawa, Marieke; Heitman, Joseph; Tudzynski, Bettina

    2008-01-01

    In Fusarium fujikuroi, the production of gibberellins and bikaverin is repressed by nitrogen sources such as glutamine or ammonium. Sensing and uptake of ammonium by specific permeases play key roles in nitrogen metabolism. Here, we describe the cloning of three ammonium permease genes, mepA, mepB, and mepC, and their participation in ammonium uptake and signal transduction in F. fujikuroi. The expression of all three genes is strictly regulated by the nitrogen regulator AreA. Severe growth defects of ΔmepB mutants on low-ammonium medium and methylamine uptake studies suggest that MepB functions as the main ammonium permease in F. fujikuroi. In ΔmepB mutants, nitrogen-regulated genes such as the gibberellin and bikaverin biosynthetic genes are derepressed in spite of high extracellular ammonium concentrations. mepA mepB and mepC mepB double mutants show a similar phenotype as ΔmepB mutants. All three F. fujikuroi mep genes fully complemented the Saccharomyces cerevisiae mep1 mep2 mep3 triple mutant to restore growth on low-ammonium medium, whereas only MepA and MepC restored pseudohyphal growth in the mep2/mep2 mutant. Overexpression of mepC in the ΔmepB mutants partially suppressed the growth defect but did not prevent derepression of AreA-regulated genes. These studies provide evidence that MepB functions as a regulatory element in a nitrogen sensing system in F. fujikuroi yet does not provide the sensor activity of Mep2 in yeast, indicating differences in the mechanisms by which nitrogen is sensed in S. cerevisiae and F. fujikuroi. PMID:18083831

  11. A sigma(54)-dependent PTS permease of the mannose family is responsible for sensitivity of Listeria monocytogenes to mesentericin Y105.

    PubMed

    Dalet, K; Cenatiempo, Y; Cossart, P; Héchard, Y

    2001-12-01

    Sensitivity of Listeria monocytogenes to the bacteriocin mesentericin Y105 was previously shown to be dependent on the sigma(54) subunit of the RNA polymerase. This points towards expression of particular sigma(54)-dependent genes. The present study describes first, ManR, a new sigma(54)-associated activator, and second, Ell(t)(Man), a new sigma(54)-dependent PTS permease of the mannose family, both involved in sensitivity to mesentericin Y105, since interruption of their corresponding genes led to resistance of L. monocytogenes EGDe. Ell(t)(Man) is likely composed of three subunits encoded by the mpt operon (mptA, mptC and mptD genes). Interruption of either the proximal (mptA) or distal (mptD) gene led to resistance, supporting results obtained in Enterococcus faecalis. Accordingly, such PTS permeases of the mannose family should be involved in sensitivity of different target strains to mesentericin Y105. In L. monocytogenes, expression of the mpt operon is shown to be controlled by sigma(54) and ManR and to be induced by both glucose and mannose. The latter result indicates that these sugars are transported by the Ell(t)(Man) permease. Moreover, these sugars correlatively induce sensitivity of L. monocytogenes to mesentericin Y105, strongly favouring the primary role of Ell(t)(Man). MptD, a membrane subunit of Ell(t)(Man), presents an additional domain compared to most IID(Man) subunits described in data banks. An in-frame deletion of this domain in mptD led to resistance of L. monocytogenes, showing its connection with sensitivity and suggesting that it could be directly involved in the recognition of the target cell by mesentericin Y105. Taken together, the results of this work demonstrate that Ell(t)(Man) is prominent in sensitivity to mesentericin Y105 and could be a receptor for subclass IIa bacteriocins. PMID:11739758

  12. Iron deficiency.

    PubMed

    Scrimshaw, N S

    1991-10-01

    The world's leading nutritional problem is iron deficiency. 66% of children and women aged 15-44 years in developing countries have it. Further, 10-20% of women of childbearing age in developed countries are anemic. Iron deficiency is identified with often irreversible impairment of a child's learning ability. It is also associated with low capacity for adults to work which reduces productivity. In addition, it impairs the immune system which reduces the body's ability to fight infection. Iron deficiency also lowers the metabolic rate and the body temperature when exposed to cold. Hemoglobin contains nearly 73% of the body's iron. This iron is always being recycled as more red blood cells are made. The rest of the needed iron does important tasks for the body, such as binds to molecules that are reservoirs of oxygen for muscle cells. This iron comes from our diet, especially meat. Even though some plants, such as spinach, are high in iron, the body can only absorb 1.4-7% of the iron in plants whereas it can absorb 20% of the iron in red meat. In many developing countries, the common vegetarian diets contribute to high rates of iron deficiency. Parasitic diseases and abnormal uterine bleeding also promote iron deficiency. Iron therapy in anemic children can often, but not always, improve behavior and cognitive performance. Iron deficiency during pregnancy often contributes to maternal and perinatal mortality. Yet treatment, if given to a child in time, can lead to normal growth and hinder infections. However, excess iron can be damaging. Too much supplemental iron in a malnourished child promotes fatal infections since the excess iron is available for the pathogens use. Many countries do not have an effective system for diagnosing, treating, and preventing iron deficiency. Therefore a concerted international effort is needed to eliminate iron deficiency in the world. PMID:1745900

  13. Iron-chelating activity of chickpea protein hydrolysate peptides.

    PubMed

    Torres-Fuentes, Cristina; Alaiz, Manuel; Vioque, Javier

    2012-10-01

    Chickpea-chelating peptides were purified and analysed for their iron-chelating activity. These peptides were purified after affinity and gel filtration chromatography from a chickpea protein hydrolysate produced with pepsin and pancreatin. Iron-chelating activity was higher in purified peptide fractions than in the original hydrolysate. Histidine contents were positively correlated with the iron-chelating activity. Hence fractions with histidine contents above 20% showed the highest chelating activity. These results show that iron-chelating peptides are generated after chickpea protein hydrolysis with pepsin plus pancreatin. These peptides, through metal chelation, may increase iron solubility and bioavailability and improve iron absorption. PMID:25005984

  14. Robust Utilization of Phospholipase-Generated Metabolites, Glycerophosphodiesters, by Candida albicans: Role of the CaGit1 Permease

    PubMed Central

    Bishop, Andrew C.; Sun, Tao; Johnson, Mitchell E.; Bruno, Vincent M.; Patton-Vogt, Jana

    2011-01-01

    Glycerophosphodiesters are the products of phospholipase-mediated deacylation of phospholipids. In Saccharomyces cerevisiae, a single gene, GIT1, encodes a permease responsible for importing glycerophosphodiesters, such as glycerophosphoinositol and glycerophosphocholine, into the cell. In contrast, the Candida albicans genome contains four open reading frames (ORFs) with a high degree of similarity to S. cerevisiae GIT1 (ScGIT1) Here, we report that C. albicans utilizes glycerophosphoinositol (GroPIns) and glycerophosphocholine (GroPCho) as sources of phosphate at both mildly acidic and physiological pHs. Insertional mutagenesis of C. albicans GIT1 (CaGIT1) (orf19.34), the ORF most similar to ScGit1, abolished the ability of cells to use GroPIns as a phosphate source at acidic pH and to transport [3H]GroPIns at acidic and physiological pHs, while reintegration of a GIT1 allele into the genome restored those functions. Several lines of evidence, including the detection of internal [3H]GroPIns, indicated that GroPIns is transported intact through CaGit1. GroPIns transport was shown to conform to Michaelis-Menten kinetics, with an apparent Km of 28 ± 6 μM. Notably, uptake of label from [3H]GroPCho was found to be roughly 50-fold greater than uptake of label from [3H]GroPIns and roughly 500-fold greater than the equivalent activity in S. cerevisiae. Insertional mutagenesis of CaGIT1 had no effect on the utilization of GroPCho as a phosphate source or on the uptake of label from [3H]GroPCho. Growth under low-phosphate conditions was shown to increase label uptake from both [3H]GroPIns and [3H]GroPCho. Screening of a transcription factor deletion set identified CaPHO4 as required for the utilization of GroPIns, but not GroPCho, as a phosphate source. PMID:21984707

  15. Utilization of green fluorescent protein as a marker for studying the expression and turnover of the monocarboxylate permease Jen1p of Saccharomyces cerevisiae.

    PubMed

    Paiva, Sandra; Kruckeberg, Arthur L; Casal, Margarida

    2002-05-01

    Green fluorescent protein (GFP) from Aequorea victoria was used as an in vivo reporter protein when fused to the C-terminus of the Jen1 lactate permease of Saccharomyces cerevisiae. The Jen1 protein tagged with GFP is a functional lactate transporter with a cellular abundance of 1670 molecules/cell, and a catalytic-centre activity of 123 s(-1). It is expressed and tagged to the plasma membrane under induction conditions. The factors involved in proper localization and turnover of Jen1p were revealed by expression of the Jen1p-GFP fusion protein in a set of strains bearing mutations in specific steps of the secretory and endocytic pathways. The chimaeric protein Jen1p-GFP is targeted to the plasma membrane via a Sec6-dependent process; upon treatment with glucose, it is endocytosed via END3 and targeted for degradation in the vacuole. Experiments performed in a Deltadoa4 mutant strain showed that ubiquitination is associated with the turnover of the permease. PMID:11964174

  16. Iron, transferrin and myelinogenesis

    NASA Astrophysics Data System (ADS)

    Sergeant, C.; Vesvres, M. H.; Devès, G.; Baron, B.; Guillou, F.

    2003-09-01

    Transferrin (Tf), the iron binding protein of vertebrates serum, is known to be synthesized by oligodendrocytes (Ols) in the central nervous system. It has been postulated that Tf is involved in Ols maturation and myelinogenesis. This link is particularly important in the understanding of a severe human pathology: the multiple sclerosis, which remains without efficient treatment. We generated transgenic mice containing the complete human Tf gene and extensive regulatory sequences from the 5 ' and 3 ' untranslated regions that specifically overexpress Tf in Ols. Brain cytoarchitecture of the transgenic mice appears to be normal in all brain regions examined, total myelin content is increased by 30% and motor coordination is significantly improved when compared with non-transgenic littermates. Tf role in the central nervous system may be related to its affinity for metallic cations. Normal and transgenic mice were used for determination of trace metals (iron, copper and zinc) and minerals (potassium and calcium) concentration in cerebellum and corpus callosum. The freeze-dried samples were prepared to allow proton-induced X-ray emission and Rutherford backscattering spectrometry analyses with the nuclear microprobe in Bordeaux. Preliminary results were obtained and carbon distribution was revealed as a very good analysis to distinguish precisely the white matter region. A comparison of metallic and mineral elements contents in brain between normal and transgenic mice shows that iron, copper and zinc levels remained constant. This result provides evidence that effects of Tf overexpression in the brain do not solely relate to iron transport.

  17. Characterization of a Dipartite Iron Uptake System from Uropathogenic Escherichia coli Strain F11*

    PubMed Central

    Koch, Doreen; Chan, Anson C. K.; Murphy, Michael E. P.; Lilie, Hauke; Grass, Gregor; Nies, Dietrich H.

    2011-01-01

    In the uropathogenic Escherichia coli strain F11, in silico genome analysis revealed the dicistronic iron uptake operon fetMP, which is under iron-regulated control mediated by the Fur regulator. The expression of fetMP in a mutant strain lacking known iron uptake systems improved growth under iron depletion and increased cellular iron accumulation. FetM is a member of the iron/lead transporter superfamily and is essential for iron uptake by the Fet system. FetP is a periplasmic protein that enhanced iron uptake by FetM. Recombinant FetP bound Cu(II) and the iron analog Mn(II) at distinct sites. The crystal structure of the FetP dimer reveals a copper site in each FetP subunit that adopts two conformations: CuA with a tetrahedral geometry composed of His44, Met90, His97, and His127, and CuB, a second degenerate octahedral geometry with the addition of Glu46. The copper ions of each site occupy distinct positions and are separated by ∼1.3 Å. Nearby, a putative additional Cu(I) binding site is proposed as an electron source that may function with CuA/CuB displacement to reduce Fe(III) for transport by FetM. Together, these data indicate that FetMP is an additional iron uptake system composed of a putative iron permease and an iron-scavenging and potentially iron-reducing periplasmic protein. PMID:21596746

  18. Overview of affinity tags for protein purification.

    PubMed

    Kimple, Michelle E; Sondek, John

    2004-09-01

    Addition of an affinity tag is a useful method for differentiating recombinant proteins expressed in bacterial and eukaryotic expression systems from the background of total cellular proteins, and for detecting protein-protein interactions. This overview describes the historical basis for the development of affinity tags, affinity tags that are commonly used today, how to choose an appropriate affinity tag for a particular purpose, and several recently developed affinity tag technologies that may prove useful in the near future. PMID:18429272

  19. Overview of affinity tags for protein purification.

    PubMed

    Kimple, Michelle E; Brill, Allison L; Pasker, Renee L

    2013-01-01

    Addition of an affinity tag is a useful method for differentiating recombinant proteins expressed in bacterial and eukaryotic expression systems from the background of total cellular proteins, as well as for detecting protein-protein interactions. This overview describes the historical basis for the development of affinity tags, affinity tags that are commonly used today, how to choose an appropriate affinity tag for a particular purpose, and several recently developed affinity tag technologies that may prove useful in the near future. PMID:24510596

  20. Affine Contractions on the Plane

    ERIC Educational Resources Information Center

    Celik, D.; Ozdemir, Y.; Ureyen, M.

    2007-01-01

    Contractions play a considerable role in the theory of fractals. However, it is not easy to find contractions which are not similitudes. In this study, it is shown by counter examples that an affine transformation of the plane carrying a given triangle onto another triangle may not be a contraction even if it contracts edges, heights or medians.…

  1. Quantifying Affinity among Chinese Dialects.

    ERIC Educational Resources Information Center

    Cheng, Chin-Chuan

    A study of the relationships between Chinese dialects based on a quantitative measure of dialect affinity is summarized. First, tone values in all the dialect localities available in the early 1970s were used to calculate the dialectal differences in terms of tone height with respect to the "yin and yang" split. In the late 1970s, calculations of…

  2. The structural gene for a phosphorus-repressible phosphate permease in Neurospora crassa can complement a mutation in positive regulatory gene nuc-1.

    PubMed Central

    Mann, B J; Akins, R A; Lambowitz, A M; Metzenberg, R L

    1988-01-01

    van+, a gene encoding a phosphorus-repressible phosphate permease, was isolated by its ability to complement nuc-1, a positive regulatory locus that normally regulates van+ expression. This was unexpected because the nuc-1 host already contained a resident van+ gene. Plasmids carrying van+ complemented a nuc-2 mutation as well. Probing of RNA from untransformed wild-type (nuc-1+) and constitutive (nuc-1c) strains by van+ probes indicated that levels of the van+ transcript were subject to control by nuc-1+. Probing of the same RNAs with a cosmid clone, containing approximately 15 kilobases of upstream and downstream DNA, revealed no other detectable phosphorus-regulated transcripts within this 40-kilobase region of the chromosome. Images PMID:2966896

  3. Theoretical proton affinity and fluoride affinity of nerve agent VX.

    PubMed

    Bera, Narayan C; Maeda, Satoshi; Morokuma, Keiji; Viggiano, Al A

    2010-12-23

    Proton affinity and fluoride affinity of nerve agent VX at all of its possible sites were calculated at the RI-MP2/cc-pVTZ//B3LYP/6-31G* and RI-MP2/aug-cc-pVTZ//B3LYP/6-31+G* levels, respectively. The protonation leads to various unique structures, with H(+) attached to oxygen, nitrogen, and sulfur atoms; among which the nitrogen site possesses the highest proton affinity of -ΔE ∼ 251 kcal/mol, suggesting that this is likely to be the major product. In addition some H(2), CH(4) dissociation as well as destruction channels have been found, among which the CH(4) + [Et-O-P(═O)(Me)-S-(CH(2))(2)-N(+)(iPr)═CHMe] product and the destruction product forming Et-O-P(═O)(Me)-SMe + CH(2)═N(+)(iPr)(2) are only 9 kcal/mol less stable than the most stable N-protonated product. For fluoridization, the S-P destruction channel to give Et-O-P(═O)(Me)(F) + [S-(CH(2))(2)-N-(iPr)(2)](-) is energetically the most favorable, with a fluoride affinity of -ΔE ∼ 44 kcal. Various F(-) ion-molecule complexes are also found, with the one having F(-) interacting with two hydrogen atoms in different alkyl groups to be only 9 kcal/mol higher than the above destruction product. These results suggest VX behaves quite differently from surrogate systems. PMID:21117653

  4. Enrichment of Phosphopeptides via Immobilized Metal Affinity Chromatography.

    PubMed

    Swaney, Danielle L; Villén, Judit

    2016-03-01

    Immobilized metal affinity chromatography (IMAC) is a frequently used method for the enrichment of phosphorylated peptides from complex, cellular lysate-derived peptide mixtures. Here we outline an IMAC protocol that uses iron-chelated magnetic beads to selectively isolate phosphorylated peptides for mass spectrometry-based proteomic analysis. Under acidic conditions, negatively charged phosphoryl modifications preferentially bind to positively charged metal ions (e.g., Fe(3+), Ga(3+)) on the beads. After washing away nonphosphorylated peptides, a pH shift to basic conditions causes the elution of bound phosphopeptides from the metal ion. Under optimal conditions, very high specificity for phosphopeptides can be achieved. PMID:26933247

  5. Iron refractory iron deficiency anemia

    PubMed Central

    De Falco, Luigia; Sanchez, Mayka; Silvestri, Laura; Kannengiesser, Caroline; Muckenthaler, Martina U.; Iolascon, Achille; Gouya, Laurent; Camaschella, Clara; Beaumont, Carole

    2013-01-01

    Iron refractory iron deficiency anemia is a hereditary recessive anemia due to a defect in the TMPRSS6 gene encoding Matriptase-2. This protein is a transmembrane serine protease that plays an essential role in down-regulating hepcidin, the key regulator of iron homeostasis. Hallmarks of this disease are microcytic hypochromic anemia, low transferrin saturation and normal/high serum hepcidin values. The anemia appears in the post-natal period, although in some cases it is only diagnosed in adulthood. The disease is refractory to oral iron treatment but shows a slow response to intravenous iron injections and partial correction of the anemia. To date, 40 different Matriptase-2 mutations have been reported, affecting all the functional domains of the large ectodomain of the protein. In vitro experiments on transfected cells suggest that Matriptase-2 cleaves Hemojuvelin, a major regulator of hepcidin expression and that this function is altered in this genetic form of anemia. In contrast to the low/undetectable hepcidin levels observed in acquired iron deficiency, in patients with Matriptase-2 deficiency, serum hepcidin is inappropriately high for the low iron status and accounts for the absent/delayed response to oral iron treatment. A challenge for the clinicians and pediatricians is the recognition of the disorder among iron deficiency and other microcytic anemias commonly found in pediatric patients. The current treatment of iron refractory iron deficiency anemia is based on parenteral iron administration; in the future, manipulation of the hepcidin pathway with the aim of suppressing it might become an alternative therapeutic approach. PMID:23729726

  6. Ferroportin and Exocytoplasmic Ferroxidase Activity Are Required for Brain Microvascular Endothelial Cell Iron Efflux*

    PubMed Central

    McCarthy, Ryan C.; Kosman, Daniel J.

    2013-01-01

    The mechanism(s) of iron flux across the brain microvasculature endothelial cells (BMVEC) of the blood-brain barrier remains unknown. Although both hephaestin (Hp) and the ferrous iron permease ferroportin (Fpn) have been identified in BMVEC, their roles in iron efflux have not been examined. Using a human BMVEC line (hBMVEC), we have demonstrated that these proteins are required for iron efflux from these cells. Expression of both Hp and Fpn protein was confirmed in hBMVEC by immunoblot and indirect immunofluorescence; we show that hBMVEC express soluble ceruloplasmin (Cp) transcript as well. Depletion of endogenous Hp and Cp via copper chelation leads to the reduction of hBMVEC Fpn protein levels as well as a complete inhibition of 59Fe efflux. Both hBMVEC Fpn protein and 59Fe efflux activity are restored upon incubation with 6.6 nm soluble plasma Cp. These results are independent of the source of cell iron, whether delivered as transferrin- or non-transferrin-bound 59Fe. Our results demonstrate that iron efflux from hBMVEC Fpn requires the action of an exocytoplasmic ferroxidase, which can be either endogenous Hp or extracellular Cp. PMID:23640881

  7. Lectin affinity chromatography of glycolipids

    SciTech Connect

    Torres, B.V.; Smith, D.F.

    1987-05-01

    Since glycolipids (GLs) are either insoluble or form mixed micelles in water, lectin affinity chromatography in aqueous systems has not been applied to their separation. They have overcome this problem by using tetrahydrofuran (THF) in the mobile phase during chromatography. Affinity columns prepared with the GalNAc-specific Helix pomatia agglutinin (HPA) and equilibrated in THF specifically bind the (/sup 3/H)oligosaccharide derived from Forssman GL indicating that the immobilized HPA retained its carbohydrate-binding specificity in this solvent. Intact Forssman GL was bound by the HPA-column equilibrated in THF and was specifically eluted with 0.1 mg/ml GalNAc in THF. Purification of the Forssman GL was achieved when a crude lipid extract of sheep erythrocyte membranes was applied to the HPA-column in THF. Non-specifically bound GLs were eluted from the column using a step gradient of aqueous buffer in THF, while the addition of GalNAc was required to elute the specifically bound GLs. Using this procedure the A-active GLs were purified from a crude lipid extract of type A human erythrocytes in a single chromatographic step. The use of solvents that maintain carbohydrate-binding specificity and lipid solubility will permit the application of affinity chromatography on immobilized carbohydrate-binding proteins to intact GLs.

  8. The effect of serum iron concentration on iron secretion into mouse milk

    PubMed Central

    Zhang, Peifang; Sawicki, Valerie; Lewis, Andy; Hanson, Linda; Monks, Jenifer; Neville, Margaret C

    2000-01-01

    The concentration of iron in mouse milk is approximately 3 times that of the serum. Although there is clear evidence for the presence of the transferrin receptor in the rodent mammary gland, the precise mechanisms of iron transfer into milk are not known. Milk iron was linearly related to the serum iron:transferrin ratio in lactating mice whose serum iron ranged from 8 to 66 μm. Increasing the iron binding capacity of the milk by 340 μm by targeting the lactoferrin transgene to the mammary gland did not alter the relation between milk iron and the serum iron:transferrin ratio. The steady-state distribution ratio of 125I-transferrin between plasma and milk was about 0.2, indicating that transcytosed transferrin contributed a maximum of 6% of the milk iron. Fluorescently labelled transferrin incubated with the in situ gland localized mainly near the basal surface of the mammary alveolar cells. These experiments provide evidence that the initial and rate-limiting step in the transfer of iron into milk is binding to a basal transferrin receptor. A theoretical model of the relation between milk and serum iron suggests that the affinity of apotransferrin for the basal recycling system may be higher than observed in many other cell types. PMID:10713971

  9. The role of the mitochondrion in cellular iron homeostasis.

    PubMed

    Schueck, N D; Woontner, M; Koeller, D M

    2001-06-01

    The yeast ATM1 protein is essential for normal mitochondrial iron homeostasis. Deletion of ATM1 results in mitochondrial iron accumulation and oxidative mitochondrial damage. Mutations in ABC7, the human homolog of ATM1, result in X-linked sideroblastic anemia and ataxia. Here we show that a deletion of ATM1 also has effects on extra-mitochondrial iron metabolism. ATM1-deficient cells have an increased iron requirement for growth. When grown in iron-rich medium, mutant cells accumulate excess mitochondrial iron and have increased expression of the genes required for both high and low affinity iron uptake. Thus, ATM1 mutant cells simultaneously demonstrate features of both iron overload and iron starvation. Yfh1p is the yeast homolog of the human frataxin protein, which is deficient in Friedreich's ataxia. As in atm1 cells, a yfh1 deletion results in both mitochondrial iron accumulation and cytosolic iron starvation. In spite of their apparent roles in cellular iron homeostasis, we find that the expression of neither ATM1 nor YFH1 is responsive to cellular iron status. Based on these observations, we propose a model in which cellular iron is prioritized for use by the mitochondrion, and available to the remainder of the cell only after mitochondrial needs have been fulfilled. PMID:16120268

  10. Competition among marine phytoplankton for different chelated iron species

    NASA Astrophysics Data System (ADS)

    Hutchins, David A.; Witter, Amy E.; Butler, Alison; Luther, George W.

    1999-08-01

    Dissolved-iron availability plays a critical role in controlling phytoplankton growth in the oceans,. The dissolved iron is overwhelmingly (~99%) bound to organic ligands with a very high affinity for iron, but the origin, chemical identity and biological availability of this organically complexed Fe is largely unknown. The release into sea water of complexes that strongly chelate iron could result from the inducible iron-uptake systems of prokaryotes (siderophore complexes) or by processes such as zooplankton-mediated degradation and release of intracellular material (porphyrin complexes). Here we compare the uptake of siderophore- and porphyrin-complexed 55Fe by phytoplankton, using both cultured organisms and natural assemblages. Eukaryotic phytoplankton efficiently assimilate porphyrin-complexed iron, but this iron source is relatively unavailable to prokaryotic picoplankton (cyanobacteria). In contrast, iron bound to a variety of siderophores is relatively more available to cyanobacteria than to eukaryotes, suggesting that the two plankton groups exhibit fundamentally different iron-uptake strategies. Prokaryotes utilize iron complexed to either endogenous or exogenous siderophores, whereas eukaryotes may rely on a ferrireductase system, that preferentially accesses iron chelated by tetradentate porphyrins, rather than by hexadentate siderophores. Competition between prokaryotes and eukaryotes for organically-bound iron may therefore depend on the chemical nature of available iron complexes, with consequences for ecological niche separation, plankton community size-structure and carbon export in low-iron waters.

  11. Immobilized metal ion affinity chromatography.

    PubMed

    Yip, T T; Hutchens, T W

    1992-01-01

    Immobilized metal ion affinity chromatography (IMAC) (1,2) is also referred to as metal chelate chromatography, metal ion interaction chromatography, and ligand-exchange chromatography. We view this affinity separation technique as an intermediate between highly specific, high-affinity bioaffinity separation methods, and wider spectrum, low-specificity adsorption methods, such as ion exchange. The IMAC stationary phases are designed to chelate certain metal ions that have selectivity for specific groups (e.g., His residues) in peptides (e.g., 3-7) and on protein surfaces (8-13). The number of stationary phases that can be synthesized for efficient chelation of metal ions is unlimited, but the critical consideration is that there must be enough exposure of the metal ion to interact with the proteins, preferably in a biospecific manner. Several examples are presented in Fig. 1. The challenge to produce new immobilized chelating groups, including protein surface metal-binding domains (14,15) is being explored continuously. Table 1 presents a list of published procedures for the synthesis and use of stationary phases with immobilized chelating groups. This is by no means exhaustive, and is intended only to give an idea of the scope and versatility of IMAC. Fig. 1 Schematic illustration of several types of immobilized metal-chelating groups, including, iminodiacetate (IDA), tris(carboxymethyl) ethylenediamine (TED), and the metal-binding peptides (GHHPH)(n)G (where n = 1,2,3, and 5) (14,15). Table 1 Immobilized Chelating Groups and Metal Ions Used for Immobilized Metal Ion Affinity Chromatography Chelating group Suitable metal ions Reference Commercial source Immodiacetate Transitional1,2 Pharmacia LKB Pierce Sigma Boehringer Mannheim TosoHaas 2-Hydroxy-3[N-(2- pyrtdylmethyl) glycme]propyl Transitional3 Not available ?-Alky1 mtrilo triacetic acid Transitional4 Not available Carboxymethylated asparhc acid Ca(II)13 Not available Tris (carboxy- methyl) ethylene Diamme

  12. METABOLISM OF IRON STORES

    PubMed Central

    SAITO, HIROSHI

    2014-01-01

    ABSTRACT Remarkable progress was recently achieved in the studies on molecular regulators of iron metabolism. Among the main regulators, storage iron, iron absorption, erythropoiesis and hepcidin interact in keeping iron homeostasis. Diseases with gene-mutations resulting in iron overload, iron deficiency, and local iron deposition have been introduced in relation to the regulators of storage iron metabolism. On the other hand, the research on storage iron metabolism has not advanced since the pioneering research by Shoden in 1953. However, we recently developed a new method for determining ferritin iron and hemosiderin iron by computer-assisted serum ferritin kinetics. Serum ferritin increase or decrease curves were measured in patients with normal storage iron levels (chronic hepatitis C and iron deficiency anemia treated by intravenous iron injection), and iron overload (hereditary hemochromatosis and transfusion dependent anemia). We thereby confirmed the existence of two iron pathways where iron flows followed the numbered order (1) labile iron, (2) ferritin and (3) hemosiderin in iron deposition and mobilization among many previously proposed but mostly unproven routes. We also demonstrated the increasing and decreasing phases of ferritin iron and hemosiderin iron in iron deposition and mobilization. The author first demonstrated here the change in proportion between pre-existing ferritin iron and new ferritin iron synthesized by removing iron from hemosiderin in the course of iron removal. In addition, the author disclosed the cause of underestimation of storage iron turnover rate which had been reported by previous investigators in estimating storage iron turnover rate of normal subjects. PMID:25741033

  13. Identification and characterization of an iron ABC transporter operon in Gluconacetobacter diazotrophicus Pal 5.

    PubMed

    Urzúa, Lucia Soto; Vázquez-Candanedo, Ada P; Sánchez-Espíndola, Adriana; Ramírez, Carlos Ávila; Baca, Beatriz E

    2013-06-01

    Gluconacetobacter diazotrophicus is a nitrogen-fixing bacterium and endophyte of sugarcane. We have cloned and sequenced the genes coding for the components of the iron ABC-type acquisition system of G. diazotrophicus. Sequence analysis revealed three ORFs, (feuA, feuB, and feuC) organized as an operon and encoding polypeptides of 346 (38 kDa), 342 (34.2 kDa), and 240 (26 kDa) amino acids, respectively. The deduced translation products of the feu operon showed similarity with a periplasmic solute-binding protein (FeuA), permease (FeuB), and ATPase (FeuC) involved in Fe transport. The role of FeuB in the survival of G. diazotrophicus under iron depletion was evaluated by comparing the ability of wild-type and FeuB-Km(R) -mutant strains in a medium without iron supplementation and in a medium containing 2, 2'-dipyridyl (DP). Growth of the mutant was affected in the medium containing DP. The operon was expressed at higher levels in cells depleted for iron than in those that contained the metal. A decrease in nitrogenase activity was observed with the FeuB-Km(R) -mutant strain that with the wild-type under iron deficiency conditions, suggesting that the Feu operon play role in Fe nutrition of G. diazotrophicus. PMID:23624722

  14. Pressure-Induced Differential Regulation of the Two Tryptophan Permeases Tat1 and Tat2 by Ubiquitin Ligase Rsp5 and Its Binding Proteins, Bul1 and Bul2

    PubMed Central

    Abe, Fumiyoshi; Iida, Hidetoshi

    2003-01-01

    Tryptophan uptake appears to be the Achilles' heel in yeast physiology, since under a variety of seemingly diverse toxic conditions, it becomes the limiting factor for cell growth. When growing cells of Saccharomyces cerevisiae are subjected to high hydrostatic pressure, tryptophan uptake is down-regulated, leading to cell cycle arrest in the G1 phase. Here we present evidence that the two tryptophan permeases Tat1 and Tat2 are differentially regulated by Rsp5 ubiquitin ligase in response to high hydrostatic pressure. Analysis of high-pressure growth mutants revealed that the HPG1 gene was allelic to RSP5. The HPG1 mutation or the bul1Δ bul2Δ double mutation caused a marked increase in the steady-state level of Tat2 but not of Tat1, although both permeases were degraded at high pressure in an Rsp5-dependent manner. There were marked differences in subcellular localization. Tat1 localized predominantly in the plasma membrane, whereas Tat2 was abundant in the internal membranes. Moreover, Tat1 was associated with lipid rafts, whereas Tat2 localized in bulk lipids. Surprisingly, Tat2 became associated with lipid rafts upon the occurrence of a ubiquitination defect. These results suggest that ubiquitination is an important determinant of the localization and regulation of these tryptophan permeases. Determination of the activation volume (ΔV≠) for Tat1- and Tat2-mediated tryptophan uptake (89.3 and 50.8 ml/mol, respectively) revealed that both permeases are highly sensitive to membrane perturbation and that Tat1 rather than Tat2 is likely to undergo a dramatic conformational change during tryptophan import. We suggest that hydrostatic pressure is a unique tool for elucidating the dynamics of integral membrane protein functions as well as for probing lipid microenvironments where they localize. PMID:14560004

  15. Indian craniometric variability and affinities.

    PubMed

    Raghavan, Pathmanathan; Bulbeck, David; Pathmanathan, Gayathiri; Rathee, Suresh Kanta

    2013-01-01

    Recently published craniometric and genetic studies indicate a predominantly indigenous ancestry of Indian populations. We address this issue with a fuller coverage of Indian craniometrics than any done before. We analyse metrical variability within Indian series, Indians' sexual dimorphism, differences between northern and southern Indians, index-based differences of Indian males from other series, and Indians' multivariate affinities. The relationship between a variable's magnitude and its variability is log-linear. This relationship is strengthened by excluding cranial fractions and series with a sample size less than 30. Male crania are typically larger than female crania, but there are also shape differences. Northern Indians differ from southern Indians in various features including narrower orbits and less pronounced medial protrusion of the orbits. Indians resemble Veddas in having small crania and similar cranial shape. Indians' wider geographic affinities lie with "Caucasoid" populations to the northwest, particularly affecting northern Indians. The latter finding is confirmed from shape-based Mahalanobis-D distances calculated for the best sampled male and female series. Demonstration of a distinctive South Asian craniometric profile and the intermediate status of northern Indians between southern Indians and populations northwest of India confirm the predominantly indigenous ancestry of northern and especially southern Indians. PMID:24455409

  16. Indian Craniometric Variability and Affinities

    PubMed Central

    Raghavan, Pathmanathan; Bulbeck, David; Pathmanathan, Gayathiri; Rathee, Suresh Kanta

    2013-01-01

    Recently published craniometric and genetic studies indicate a predominantly indigenous ancestry of Indian populations. We address this issue with a fuller coverage of Indian craniometrics than any done before. We analyse metrical variability within Indian series, Indians' sexual dimorphism, differences between northern and southern Indians, index-based differences of Indian males from other series, and Indians' multivariate affinities. The relationship between a variable's magnitude and its variability is log-linear. This relationship is strengthened by excluding cranial fractions and series with a sample size less than 30. Male crania are typically larger than female crania, but there are also shape differences. Northern Indians differ from southern Indians in various features including narrower orbits and less pronounced medial protrusion of the orbits. Indians resemble Veddas in having small crania and similar cranial shape. Indians' wider geographic affinities lie with “Caucasoid” populations to the northwest, particularly affecting northern Indians. The latter finding is confirmed from shape-based Mahalanobis-D distances calculated for the best sampled male and female series. Demonstration of a distinctive South Asian craniometric profile and the intermediate status of northern Indians between southern Indians and populations northwest of India confirm the predominantly indigenous ancestry of northern and especially southern Indians. PMID:24455409

  17. The group A streptococcal dipeptide permease (Dpp) is involved in the uptake of essential amino acids and affects the expression of cysteine protease.

    PubMed

    Podbielski, A; Leonard, B A

    1998-06-01

    The majority of characterized bacterial dipeptide permeases (Dpp) are membrane-associated complexes of five proteins belonging to the ABC-transporter family. They have been found to be involved in the uptake of essential amino acids, haem production, chemotaxis and sporulation. A 5.8 kb genomic DNA fragment of the serotype M49 group A streptococcal (GAS) strain CS101 was sequenced and found to contain five putative GAS Dpp genes (dppA to dppE). Deduced amino acid sequences exhibited 17-54% similarity to corresponding ABC-transporter sequences. The operon organization of the five genes was confirmed by transcriptional analysis, and a shorter, more abundant, dppA-only transcript was detected similar to that found in the GAS oligopeptide permease (Opp) system. Insertional inactivation was used to create serotype M2 and M49 strains that did not express the dppD and dppEATPase genes or nearly the entire operon. In feeding experiments with di- to hexapeptides, the wild-type strain grew with each peptide tested. The dpp mutants were unable to grow on dipeptides, whereas hexapeptides did not sustain the growth of opp mutants. Expression of the dpp operon was induced approximately fourfold in late exponential growth phase. In addition, a striking increase in the dppA to dppA-E ratio from 5:1 to more than 20:1 occurred during late exponential growth phase in complex medium. Growth in chemically defined medium (CDM) supplemented with various dipeptides specifically induced the expression of dpp and reduced both the dppA to dppA-E and oppA to oppA-F mRNA ratios. Expression of the virulence factor SpeB (major cysteine protease) was reduced eightfold in dpp mutants, whereas dpp expression was decreased about fourfold in a Mga virulence regulator mutant. Taken together, these data indicate a correlation between levels of intracellular essential amino acids and the regulation of virulence factor expression. PMID:9680220

  18. Affine hypersurfaces with parallel difference tensor relative to affine α-connection

    NASA Astrophysics Data System (ADS)

    Li, Cece

    2014-12-01

    Li and Zhang (2014) studied affine hypersurfaces of R n + 1 with parallel difference tensor relative to the affine α-connection ∇ (α), and characterized the generalized Cayley hypersurfaces by K n - 1 ≠ 0 and ∇ (α) K = 0 for some nonzero constant α, where the affine α-connection ∇ (α) of information geometry was introduced on affine hypersurface. In this paper, by a slightly different method we continue to study affine hypersurfaces with ∇ (α) K = 0, if α = 0 we further assume that the Pick invariant vanishes and affine metric is of constant sectional curvature. It is proved that they are either hyperquadrics or improper affine hypersphere with flat indefinite affine metric, the latter can be locally given as a graph of a polynomial of at most degree n + 1 with constant Hessian determinant. In particular, if the affine metric is definite, Lorentzian, or its negative index is 2, we complete the classification of such hypersurfaces.

  19. The maximal affinity of ligands

    PubMed Central

    Kuntz, I. D.; Chen, K.; Sharp, K. A.; Kollman, P. A.

    1999-01-01

    We explore the question of what are the best ligands for macromolecular targets. A survey of experimental data on a large number of the strongest-binding ligands indicates that the free energy of binding increases with the number of nonhydrogen atoms with an initial slope of ≈−1.5 kcal/mol (1 cal = 4.18 J) per atom. For ligands that contain more than 15 nonhydrogen atoms, the free energy of binding increases very little with relative molecular mass. This nonlinearity is largely ascribed to nonthermodynamic factors. An analysis of the dominant interactions suggests that van der Waals interactions and hydrophobic effects provide a reasonable basis for understanding binding affinities across the entire set of ligands. Interesting outliers that bind unusually strongly on a per atom basis include metal ions, covalently attached ligands, and a few well known complexes such as biotin–avidin. PMID:10468550

  20. The General Amino Acid Permease FfGap1 of Fusarium fujikuroi Is Sorted to the Vacuole in a Nitrogen-Dependent, but Npr1 Kinase-Independent Manner

    PubMed Central

    Pfannmüller, Andreas; Wagner, Dominik; Sieber, Christian; Schönig, Birgit; Boeckstaens, Mélanie; Marini, Anna Maria; Tudzynski, Bettina

    2015-01-01

    The rice pathogenic fungus Fusarium fujikuroi is well known for the production of a broad spectrum of secondary metabolites (SMs) such as gibberellic acids (GAs), mycotoxins and pigments. The biosynthesis of most of these SMs strictly depends on nitrogen availability and of the activity of permeases of nitrogen sources, e.g. the ammonium and amino acid permeases. One of the three ammonium permeases, MepB, was recently shown to act not only as a transporter but also as a nitrogen sensor affecting the production of nitrogen-repressed SMs. Here we describe the identification of a general amino acid permease, FfGap1, among the 99 putative amino acid permeases (AAPs) in the genome of F. fujikuroi. FfGap1 is able to fully restore growth of the yeast gap1∆ mutant on several amino acids including citrulline and tryptophane. In S. cerevisiae, Gap1 activity is regulated by shuttling between the plasma membrane (nitrogen limiting conditions) and the vacuole (nitrogen sufficiency), which we also show for FfGap1. In yeast, the Npr1 serine/threonine kinase stabilizes the Gap1 position at the plasma membrane. Here, we identified and characterized three NPR1-homologous genes, encoding the putative protein kinases FfNpr1-1, FfNpr1-2 and FfNpr1-3 with significant similarity to yeast Npr1. Complementation of the yeast npr1Δ mutant with each of the three F. fujikuroi NPR1 homologues, resulted in partial restoration of ammonium, arginine and proline uptake by FfNPR1-1 while none of the three kinases affect growth on different nitrogen sources and nitrogen-dependent sorting of FfGap1 in F. fujikuroi. However, exchange of the putative ubiquitin-target lysine 9 (K9A) and 15 (K15A) residues of FfGap1 resulted in extended localization to the plasma membrane and increased protein stability independently of nitrogen availability. These data suggest a similar regulation of FfGap1 by nitrogen-dependent ubiquitination, but differences regarding the role of Fusarium Npr1 homologues compared to

  1. The General Amino Acid Permease FfGap1 of Fusarium fujikuroi Is Sorted to the Vacuole in a Nitrogen-Dependent, but Npr1 Kinase-Independent Manner.

    PubMed

    Pfannmüller, Andreas; Wagner, Dominik; Sieber, Christian; Schönig, Birgit; Boeckstaens, Mélanie; Marini, Anna Maria; Tudzynski, Bettina

    2015-01-01

    The rice pathogenic fungus Fusarium fujikuroi is well known for the production of a broad spectrum of secondary metabolites (SMs) such as gibberellic acids (GAs), mycotoxins and pigments. The biosynthesis of most of these SMs strictly depends on nitrogen availability and of the activity of permeases of nitrogen sources, e.g. the ammonium and amino acid permeases. One of the three ammonium permeases, MepB, was recently shown to act not only as a transporter but also as a nitrogen sensor affecting the production of nitrogen-repressed SMs. Here we describe the identification of a general amino acid permease, FfGap1, among the 99 putative amino acid permeases (AAPs) in the genome of F. fujikuroi. FfGap1 is able to fully restore growth of the yeast gap1∆ mutant on several amino acids including citrulline and tryptophane. In S. cerevisiae, Gap1 activity is regulated by shuttling between the plasma membrane (nitrogen limiting conditions) and the vacuole (nitrogen sufficiency), which we also show for FfGap1. In yeast, the Npr1 serine/threonine kinase stabilizes the Gap1 position at the plasma membrane. Here, we identified and characterized three NPR1-homologous genes, encoding the putative protein kinases FfNpr1-1, FfNpr1-2 and FfNpr1-3 with significant similarity to yeast Npr1. Complementation of the yeast npr1Δ mutant with each of the three F. fujikuroi NPR1 homologues, resulted in partial restoration of ammonium, arginine and proline uptake by FfNPR1-1 while none of the three kinases affect growth on different nitrogen sources and nitrogen-dependent sorting of FfGap1 in F. fujikuroi. However, exchange of the putative ubiquitin-target lysine 9 (K9A) and 15 (K15A) residues of FfGap1 resulted in extended localization to the plasma membrane and increased protein stability independently of nitrogen availability. These data suggest a similar regulation of FfGap1 by nitrogen-dependent ubiquitination, but differences regarding the role of Fusarium Npr1 homologues compared to

  2. Transcriptional Activation of the General Amino Acid Permease Gene per1 by the Histone Deacetylase Clr6 Is Regulated by Oca2 Kinase ▿ † ¶

    PubMed Central

    Kaufmann, Isabelle; White, Eleanor; Azad, Abul; Marguerat, Samuel; Bähler, Jürg; Proudfoot, Nicholas J.

    2010-01-01

    Expression of nitrogen metabolism genes is regulated by the quality of the nitrogen supply. Here, we describe a mechanism for the transcriptional regulation of the general amino acid permease gene per1 in Schizosaccharomyces pombe. We show that when ammonia is used as the nitrogen source, low levels of per1 are transcribed and histones in the coding and surrounding regions of per1 are acetylated. In the presence of proline, per1 transcription is upregulated and initiates from a more upstream site, generating 5′-extended mRNAs. Concomitantly, histones at per1 are deacetylated in a Clr6-dependent manner, suggesting a positive role for Clr6 in transcriptional regulation of per1. Upstream initiation and histone deactylation of per1 are constitutive in cells lacking the serine/threonine kinase oca2, indicating that Oca2 is a repressor of per1. Oca2 interacts with a protein homologous to the Saccharomyces cerevisiae transcriptional activator Cha4 and with Ago1. Loss of Cha4 or Ago1 causes aberrant induction of per1 under noninducing conditions, suggesting that these proteins are also involved in per1 regulation and hence in nitrogen utilization. PMID:20404084

  3. WW domains of Rsp5p define different functions: determination of roles in fluid phase and uracil permease endocytosis in Saccharomyces cerevisiae.

    PubMed

    Gajewska, B; Kamińska, J; Jesionowska, A; Martin, N C; Hopper, A K; Zoładek, T

    2001-01-01

    Rsp5p, ubiquitin-protein ligase, an enzyme of the ubiquitination pathway, contains three WW domains that mediate protein-protein interactions. To determine if these domains adapt Rsp5p to a subset of substrates involved in numerous cellular processes, we generated mutations in individual or combinations of the WW domains. The rsp5-w1, rsp5-w2, and rsp5-w3 mutant alleles complement RSP5 deletions at 30 degrees. Thus, individual WW domains are not essential. Each rsp5-w mutation caused temperature-sensitive growth. Among variants with mutations in multiple WW domains, only rsp5-w1w2 complemented the deletion. Thus, the WW3 domain is sufficient for Rsp5p essential functions. To determine whether rsp5-w mutations affect endocytosis, fluid phase and uracil permease (Fur4p) endocytosis was examined. The WW3 domain is important for both processes. WW2 appears not to be important for fluid phase endocytosis whereas it is important for Fur4p endocytosis. In contrast, the WW1 domain affects fluid phase endocytosis, but it does not appear to function in Fur4p endocytosis. Thus, various WW domains play different roles in the endocytosis of these two substrates. Rsp5p is located in the cytoplasm in a punctate pattern that does not change during the cell cycle. Altering WW domains does not change the location of Rsp5p. PMID:11139494

  4. Iron Dextran Injection

    MedlinePlus

    Iron dextran injection is used to treat iron-deficiency anemia (a lower than normal number of red blood cells ... treated with iron supplements taken by mouth. Iron dextran injection is in a class of medications called ...

  5. The Organization of Controller Motifs Leading to Robust Plant Iron Homeostasis

    PubMed Central

    Agafonov, Oleg; Selstø, Christina Helen; Thorsen, Kristian; Xu, Xiang Ming; Drengstig, Tormod; Ruoff, Peter

    2016-01-01

    Iron is an essential element needed by all organisms for growth and development. Because iron becomes toxic at higher concentrations iron is under homeostatic control. Plants face also the problem that iron in the soil is tightly bound to oxygen and difficult to access. Plants have therefore developed special mechanisms for iron uptake and regulation. During the last years key components of plant iron regulation have been identified. How these components integrate and maintain robust iron homeostasis is presently not well understood. Here we use a computational approach to identify mechanisms for robust iron homeostasis in non-graminaceous plants. In comparison with experimental results certain control arrangements can be eliminated, among them that iron homeostasis is solely based on an iron-dependent degradation of the transporter IRT1. Recent IRT1 overexpression experiments suggested that IRT1-degradation is iron-independent. This suggestion appears to be misleading. We show that iron signaling pathways under IRT1 overexpression conditions become saturated, leading to a breakdown in iron regulation and to the observed iron-independent degradation of IRT1. A model, which complies with experimental data places the regulation of cytosolic iron at the transcript level of the transcription factor FIT. Including the experimental observation that FIT induces inhibition of IRT1 turnover we found a significant improvement in the system’s response time, suggesting a functional role for the FIT-mediated inhibition of IRT1 degradation. By combining iron uptake with storage and remobilization mechanisms a model is obtained which in a concerted manner integrates iron uptake, storage and remobilization. In agreement with experiments the model does not store iron during its high-affinity uptake. As an iron biofortification approach we discuss the possibility how iron can be accumulated even during high-affinity uptake. PMID:26800438

  6. Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana.

    PubMed

    Vansuyt, Gérard; Robin, Agnès; Briat, Jean-François; Curie, Catherine; Lemanceau, Philippe

    2007-04-01

    Taking into account the strong iron competition in the rhizosphere and the high affinity of pyoverdines for Fe(III), these molecules are expected to interfere with the iron nutrition of plants, as they do with rhizospheric microbes. The impact of Fe-pyoverdine on iron content of Arabidopsis thaliana was compared with that of Fe-EDTA. Iron chelated to pyoverdine was incorporated in a more efficient way than when chelated to EDTA, leading to increased plant growth of the wild type. A transgenic line of A. thaliana overexpressing ferritin showed a higher iron content than the wild type when supplemented with Fe-EDTA but a lower iron content when supplemented with Fe-pyoverdine despite its increased reductase activity, suggesting that this activity was not involved in the iron uptake from pyoverdine. A mutant knock-out iron transporter IRT1 showed lower iron and chlorophyll contents when supplemented with Fe-EDTA than the wild type but not when supplemented with Fe-pyoverdine, indicating that, in contrast to iron from EDTA, iron from pyoverdine was not incorporated through the IRT1 transporter. Altogether these data suggest that iron from Fe-pyoverdine was not incorporated in planta through the strategy I, which is based on reductase activity and IRT1 transporter. This is supported by the presence of pyoverdine in planta as shown by enzyme-linked immunosorbent assay and by tracing 15N of 15N-pyoverdine. PMID:17427814

  7. Protein Complex Purification by Affinity Capture.

    PubMed

    LaCava, John; Fernandez-Martinez, Javier; Hakhverdyan, Zhanna; Rout, Michael P

    2016-01-01

    Affinity capture has become a powerful technique for consistently purifying endogenous protein complexes, facilitating biochemical and biophysical assays on otherwise inaccessible biological assemblies, and enabling broader interactomic exploration. For this procedure, cells are broken and their contents separated and extracted into a solvent, permitting access to target macromolecular complexes thus released in solution. The complexes are specifically enriched from the extract onto a solid medium coupled with an affinity reagent-usually an antibody-that recognizes the target either directly or through an appended affinity tag, allowing subsequent characterization of the complex. Here, we discuss approaches and considerations for purifying endogenous yeast protein complexes by affinity capture. PMID:27371601

  8. A Novel Vertex Affinity for Community Detection

    SciTech Connect

    Yoo, Andy; Sanders, Geoffrey; Henson, Van; Vassilevski, Panayot

    2015-10-05

    We propose a novel vertex affinity measure in this paper. The new vertex affinity quantifies the proximity between two vertices in terms of their clustering strength and is ideal for such graph analytics applications as community detection. We also developed a framework that combines simple graph searches and resistance circuit formulas to compute the vertex affinity efficiently. We study the properties of the new affinity measure empirically in comparison to those of other popular vertex proximity metrics. Our results show that the existing metrics are ill-suited for community detection due to their lack of fundamental properties that are essential for correctly capturing inter- and intra-cluster vertex proximity.

  9. Structural determinants of sigma receptor affinity

    SciTech Connect

    Largent, B.L.; Wikstroem, H.G.; Gundlach, A.L.; Snyder, S.H.

    1987-12-01

    The structural determinants of sigma receptor affinity have been evaluated by examining a wide range of compounds related to opioids, neuroleptics, and phenylpiperidine dopaminergic structures for affinity at sigma receptor-binding sites labeled with (+)-(/sup 3/H)3-PPP. Among opioid compounds, requirements for sigma receptor affinity differ strikingly from the determinants of affinity for conventional opiate receptors. Sigma sites display reverse stereoselectivity to classical opiate receptors. Multi-ringed opiate-related compounds such as morphine and naloxone have negligible affinity for sigma sites, with the highest sigma receptor affinity apparent for benzomorphans which lack the C ring of opioids. Highest affinity among opioids and other compounds occurs with more lipophilic N-substituents. This feature is particularly striking among the 3-PPP derivatives as well as the opioids. The butyrophenone haloperidol is the most potent drug at sigma receptors we have detected. Among the series of butyrophenones, receptor affinity is primarily associated with the 4-phenylpiperidine moiety. Conformational calculations for various compounds indicate a fairly wide range of tolerance for distances between the aromatic ring and the amine nitrogen, which may account for the potency at sigma receptors of structures of considerable diversity. Among the wide range of structures that bind to sigma receptor-binding sites, the common pharmacophore associated with high receptor affinity is a phenylpiperidine with a lipophilic N-substituent.

  10. Compact noncontraction semigroups of affine operators

    NASA Astrophysics Data System (ADS)

    Voynov, A. S.; Protasov, V. Yu

    2015-07-01

    We analyze compact multiplicative semigroups of affine operators acting in a finite-dimensional space. The main result states that every such semigroup is either contracting, that is, contains elements of arbitrarily small operator norm, or all its operators share a common invariant affine subspace on which this semigroup is contracting. The proof uses functional difference equations with contraction of the argument. We look at applications to self-affine partitions of convex sets, the investigation of finite affine semigroups and the proof of a criterion of primitivity for nonnegative matrix families. Bibliography: 32 titles.

  11. Iron and alloys of iron. [lunar resources

    NASA Technical Reports Server (NTRS)

    Sastri, Sankar

    1992-01-01

    All lunar soil contains iron in the metallic form, mostly as an iron-nickel alloy in concentrations of a few tenths of 1 percent. Some of this free iron can be easily separated by magnetic means. It is estimated that the magnetic separation of 100,000 tons of lunar soil would yield 150-200 tons of iron. Agglutinates contain metallic iron which could be extracted by melting and made into powder metallurgy products. The characteristics and potential uses of the pure-iron and iron-alloy lunar products are discussed. Processes for working iron that might be used in a nonterrestrial facility are also addressed.

  12. Iron and iron derived radicals

    SciTech Connect

    Borg, D.C.; Schaich, K.M.

    1987-04-01

    We have discussed some reactions of iron and iron-derived oxygen radicals that may be important in the production or treatment of tissue injury. Our conclusions challenge, to some extent, the usual lines of thought in this field of research. Insofar as they are born out by subsequent developments, the lessons they teach are two: Think fastexclamation Think smallexclamation In other words, think of the many fast reactions that can rapidly alter the production and fate of highly reactive intermediates, and when considering the impact of competitive reactions on such species, think how they affect the microenvironment (on the molecular scale) ''seen'' by each reactive molecule. 21 refs., 3 figs., 1 tab.

  13. Structure of classical affine and classical affine fractional W-algebras

    SciTech Connect

    Suh, Uhi Rinn

    2015-01-15

    We introduce a classical BRST complex (See Definition 3.2.) and show that one can construct a classical affine W-algebra via the complex. This definition clarifies that classical affine W-algebras can be considered as quasi-classical limits of quantum affine W-algebras. We also give a definition of a classical affine fractional W-algebra as a Poisson vertex algebra. As in the classical affine case, a classical affine fractional W-algebra has two compatible λ-brackets and is isomorphic to an algebra of differential polynomials as a differential algebra. When a classical affine fractional W-algebra is associated to a minimal nilpotent, we describe explicit forms of free generators and compute λ-brackets between them. Provided some assumptions on a classical affine fractional W-algebra, we find an infinite sequence of integrable systems related to the algebra, using the generalized Drinfel’d and Sokolov reduction.

  14. The lysine biosynthetic enzyme Lys4 influences iron metabolism, mitochondrial function and virulence in Cryptococcus neoformans.

    PubMed

    Do, Eunsoo; Park, Minji; Hu, Guanggan; Caza, Mélissa; Kronstad, James W; Jung, Won Hee

    2016-09-01

    The lysine biosynthesis pathway via α-aminoadipate in fungi is considered an attractive target for antifungal drugs due to its absence in mammalian hosts. The iron-sulfur cluster-containing enzyme homoaconitase converts homocitrate to homoisocitrate in the lysine biosynthetic pathway, and is encoded by LYS4 in the model yeast Saccharomyces cerevisiae. In this study, we identified the ortholog of LYS4 in the human fungal pathogen, Cryptococcus neoformans, and found that LYS4 expression is regulated by iron levels and by the iron-related transcription factors Hap3 and HapX. Deletion of the LYS4 gene resulted in lysine auxotrophy suggesting that Lys4 is essential for lysine biosynthesis. Our study also revealed that lysine uptake was mediated by two amino acid permeases, Aap2 and Aap3, and influenced by nitrogen catabolite repression (NCR). Furthermore, the lys4 mutant showed increased sensitivity to oxidative stress, agents that challenge cell wall/membrane integrity, and azole antifungal drugs. We showed that these phenotypes were due in part to impaired mitochondrial function as a result of LYS4 deletion, which we propose disrupts iron homeostasis in the organelle. The combination of defects are consistent with our observation that the lys4 mutant was attenuated virulence in a mouse inhalation model of cryptococcosis. PMID:27353379

  15. Scaling analysis of affinity propagation.

    PubMed

    Furtlehner, Cyril; Sebag, Michèle; Zhang, Xiangliang

    2010-06-01

    We analyze and exploit some scaling properties of the affinity propagation (AP) clustering algorithm proposed by Frey and Dueck [Science 315, 972 (2007)]. Following a divide and conquer strategy we setup an exact renormalization-based approach to address the question of clustering consistency, in particular, how many cluster are present in a given data set. We first observe that the divide and conquer strategy, used on a large data set hierarchically reduces the complexity O(N2) to O(N((h+2)/(h+1))) , for a data set of size N and a depth h of the hierarchical strategy. For a data set embedded in a d -dimensional space, we show that this is obtained without notably damaging the precision except in dimension d=2 . In fact, for d larger than 2 the relative loss in precision scales such as N((2-d)/(h+1)d). Finally, under some conditions we observe that there is a value s* of the penalty coefficient, a free parameter used to fix the number of clusters, which separates a fragmentation phase (for ss*) of the underlying hidden cluster structure. At this precise point holds a self-similarity property which can be exploited by the hierarchical strategy to actually locate its position, as a result of an exact decimation procedure. From this observation, a strategy based on AP can be defined to find out how many clusters are present in a given data set. PMID:20866473

  16. Methods for Improving Aptamer Binding Affinity.

    PubMed

    Hasegawa, Hijiri; Savory, Nasa; Abe, Koichi; Ikebukuro, Kazunori

    2016-01-01

    Aptamers are single stranded oligonucleotides that bind a wide range of biological targets. Although aptamers can be isolated from pools of random sequence oligonucleotides using affinity-based selection, aptamers with high affinities are not always obtained. Therefore, further refinement of aptamers is required to achieve desired binding affinities. The optimization of primary sequences and stabilization of aptamer conformations are the main approaches to refining the binding properties of aptamers. In particular, sequence optimization using combined in silico sequence recombinations and in vitro functional evaluations is effective for the improvement of binding affinities, however, the binding affinities of aptamers are limited by the low hydrophobicity of nucleic acids. Accordingly, introduction of hydrophobic moieties into aptamers expands the diversity of interactions between aptamers and targets. Moreover, construction of multivalent aptamers by connecting aptamers that recognize distinct epitopes is an attractive approach to substantial increases in binding affinity. In addition, binding affinities can be tuned by optimizing the scaffolds of multivalent constructs. In this review, we summarize the various techniques for improving the binding affinities of aptamers. PMID:27043498

  17. Affine root systems and dual numbers

    NASA Astrophysics Data System (ADS)

    Kostyakov, I. V.; Gromov, N. A.; Kuratov, V. V.

    The root systems in Carroll spaces with degenerate metric are defined. It is shown that their Cartan matrices and reflection groups are affine. Due to the geometric consideration the root system structure of affine algebras is determined by a sufficiently simple algorithm.

  18. Loop realizations of quantum affine algebras

    SciTech Connect

    Cautis, Sabin; Licata, Anthony

    2012-12-15

    We give a simplified description of quantum affine algebras in their loop presentation. This description is related to Drinfeld's new realization via halves of vertex operators. We also define an idempotent version of the quantum affine algebra which is suitable for categorification.

  19. Improving image segmentation by learning region affinities

    SciTech Connect

    Prasad, Lakshman; Yang, Xingwei; Latecki, Longin J

    2010-11-03

    We utilize the context information of other regions in hierarchical image segmentation to learn new regions affinities. It is well known that a single choice of quantization of an image space is highly unlikely to be a common optimal quantization level for all categories. Each level of quantization has its own benefits. Therefore, we utilize the hierarchical information among different quantizations as well as spatial proximity of their regions. The proposed affinity learning takes into account higher order relations among image regions, both local and long range relations, making it robust to instabilities and errors of the original, pairwise region affinities. Once the learnt affinities are obtained, we use a standard image segmentation algorithm to get the final segmentation. Moreover, the learnt affinities can be naturally unutilized in interactive segmentation. Experimental results on Berkeley Segmentation Dataset and MSRC Object Recognition Dataset are comparable and in some aspects better than the state-of-art methods.

  20. Iron(III) citrate speciation in aqueous solution.

    PubMed

    Silva, Andre M N; Kong, XiaoLe; Parkin, Mark C; Cammack, Richard; Hider, Robert C

    2009-10-28

    Citrate is an iron chelator and it has been shown to be the major iron ligand in the xylem sap of plants. Furthermore, citrate has been demonstrated to be an important ligand for the non-transferrin bound iron (NTBI) pool occurring in the plasma of individuals suffering from iron-overload. However, ferric citrate chemistry is complicated and a definitive description of its aqueous speciation at neutral pH remains elusive. X-Ray crystallography data indicates that the alcohol function of citrate (Cit4-) is involved in Fe(III) coordination and that deprotonation of this functional group occurs upon complex formation. The inability to include this deprotonation in the affinity constant calculations has been a major source of divergence between various reports of iron(III)-citrate affinity constants. However the recent determination of the alcoholic pKa of citric acid (H4Cit) renders the reassessment of the ferric citrate system possible. The aqueous speciation of ferric citrate has been investigated by mass spectrometry and EPR spectroscopy. It was observed that the most relevant species are a monoiron dicitrate species and dinuclear and trinuclear oligomeric complexes, the relative concentration of which depends on the solution pH value and the iron : citric acid molar ratio. Spectrophotometric titration was utilized for affinity constant determination and the formation constant for the biologically relevant [Fe(Cit)2]5- is reported for the first time. PMID:19809738

  1. Dissecting plant iron homeostasis under short and long-term iron fluctuations.

    PubMed

    Darbani, Behrooz; Briat, Jean-François; Holm, Preben Bach; Husted, Søren; Noeparvar, Shahin; Borg, Søren

    2013-12-01

    A wealth of information on the different aspects of iron homeostasis in plants has been obtained during the last decade. However, there is no clear road-map integrating the relationships between the various components. The principal aim of the current review is to fill this gap. In this context we discuss the lack of low affinity iron uptake mechanisms in plants, the utilization of a different uptake mechanism by graminaceous plants compared to the others, as well as the roles of riboflavin, ferritin isoforms, nitric oxide, nitrosylation, heme, aconitase, and vacuolar pH. Cross-homeostasis between elements is also considered, with a specific emphasis on the relationship between iron homeostasis and phosphorus and copper deficiencies. As the environment is a crucial parameter for modulating plant responses, we also highlight how diurnal fluctuations govern iron metabolism. Evolutionary aspects of iron homeostasis have so far attracted little attention. Looking into the past can inform us on how long-term oxygen and iron-availability fluctuations have influenced the evolution of iron uptake mechanisms. Finally, we evaluate to what extent this homeostastic road map can be used for the development of novel biofortification strategies in order to alleviate iron deficiency in human. PMID:23680191

  2. A Putative ABC Transporter Permease Is Necessary for Resistance to Acidified Nitrite and EDTA in Pseudomonas aeruginosa under Aerobic and Anaerobic Planktonic and Biofilm Conditions

    PubMed Central

    McDaniel, Cameron; Su, Shengchang; Panmanee, Warunya; Lau, Gee W.; Browne, Tristan; Cox, Kevin; Paul, Andrew T.; Ko, Seung-Hyun B.; Mortensen, Joel E.; Lam, Joseph S.; Muruve, Daniel A.; Hassett, Daniel J.

    2016-01-01

    Pseudomonas aeruginosa (PA) is an important airway pathogen of cystic fibrosis and chronic obstructive disease patients. Multiply drug resistant PA is becoming increasing prevalent and new strategies are needed to combat such insidious organisms. We have previously shown that a mucoid, mucA22 mutant PA is exquisitely sensitive to acidified nitrite (A-NO2−, pH 6.5) at concentrations that are well tolerated in humans. Here, we used a transposon mutagenesis approach to identify PA mutants that are hypersensitive to A-NO2−. Among greater than 10,000 mutants screened, we focused on PA4455, in which the transposon was found to disrupt the production of a putative cytoplasmic membrane-spanning ABC transporter permease. The PA4455 mutant was not only highly sensitive to A-NO2−, but also the membrane perturbing agent, EDTA and the antibiotics doxycycline, tigecycline, colistin, and chloramphenicol, respectively. Treatment of bacteria with A-NO2− plus EDTA, however, had the most dramatic and synergistic effect, with virtually all bacteria killed by 10 mM A-NO2−, and EDTA (1 mM, aerobic, anaerobic). Most importantly, the PA4455 mutant was also sensitive to A-NO2− in biofilms. A-NO2− sensitivity and an anaerobic growth defect was also noted in two mutants (rmlC and wbpM) that are defective in B-band LPS synthesis, potentially indicating a membrane defect in the PA4455 mutant. Finally, this study describes a gene, PA4455, that when mutated, allows for dramatic sensitivity to the potential therapeutic agent, A-NO2− as well as EDTA. Furthermore, the synergy between the two compounds could offer future benefits against antibiotic resistant PA strains. PMID:27064218

  3. Novel activator of mannose-specific phosphotransferase system permease expression in Listeria innocua, identified by screening for pediocin AcH resistance.

    PubMed

    Xue, Junfeng; Hunter, Ian; Steinmetz, Tori; Peters, Adam; Ray, Bibek; Miller, Kurt W

    2005-03-01

    To identify genes that are important for class IIa bacteriocin interaction and resistance in Listeria species, transposon Tn917 knockout libraries were constructed for Listeria innocua strain Lin11 and screened for mutants that are resistant to pediocin AcH. A highly resistant mutant (G7) (MIC > 20 microg/ml; 1,000-fold less susceptible than the wild type), in which the transposon integrated into the putative promoter of the lin0142 gene, was isolated. lin0142 is located immediately upstream of the mpt operon (mptA/mptC/mptD) that encodes the mannose-specific phosphoenolpyruvate-dependent phosphotransferase system permease EIItMan, which serves as a docking protein for class IIa bacteriocins. The transcription of the mpt operon is known to be positively controlled by sigma54 factor and ManR (a sigma54-associated activator). Transcripts for lin0142 and mpt were undetectable in the G7 mutant, based on quantitative real-time reverse transcriptase PCR analysis. When the wild-type lin0142 gene was expressed at a 7.9-fold-elevated level in the mutant via a multicopy-number plasmid, the level of mpt mRNA became 70% higher than that in the wild-type strain. In addition, the complementation strain reverted back to the pediocin AcH-susceptible phenotype. The levels of manR and rpoN (sigma54) mRNAs were not directly influenced by the level of lin0142 transcription. lin0142 is the only one of the three mpt regulatory genes whose transcription is induced, albeit slightly (1.2-fold), by glucose. The combined results show that the lin0142 gene encodes a novel activator of the mpt operon. The Lin0142 protein contains a winged-helix DNA-binding motif and is distantly related to the Crp-Fnr family of transcription regulators. PMID:15746330

  4. Four-locus phylogeny of Fusarium avenaceum and related species and their species-specific identification based on partial phosphate permease gene sequences.

    PubMed

    Stakheev, Alexander A; Khairulina, Dina R; Zavriev, Sergey K

    2016-05-16

    The fungus Fusarium avenaceum and its closest relatives are responsible for contamination of agricultural plants and their products by mycotoxins such as enniatins and moniliformin. Precise identification of mycotoxin producers is necessary for estimation of the accumulation risk of those compounds and for preventing the consumption of highly contaminated products. Nucleic acids amplification-based techniques proved to be the most rapid and reliable approach for pathogen diagnostics and identification. In this study partial phosphate permease gene (PHO) sequences were determined for Fusarium avenaceum (including one isolate identified as F. arthrosporioides), F. tricinctum, F. acuminatum and F. torulosum. Phylogenetic analysis of 40 isolates of those species from different climates and geographical regions of Russia and some neighboring countries based on sequences of PHO, translation elongation factor 1 alpha (TEF1α), beta-tubulin (β-TUB), enniatin synthetase (Esyn1) genes and combined data set demonstrated that the PHO gene possesses the highest rate of variability among them and can be considered as an informative marker for phylogenetic studies of these species. According to the combined data set phylogeny, the isolates of each species formed clusters with a high bootstrap support. Analysis of PHO sequences revealed a high intraspecific variability of F. avenaceum: there were 5 independent clusters on the dendrogram, including one cluster which was closer to F. torulosum than to other F. avenaceum isolates. Variable sites in PHO sequences have been used for the design of species-specific primers and a fluorescent hydrolysis probe. The specificity of the assay was shown for DNA samples extracted from 68 isolates of 23 Fusarium species. Quantitative PCR approach was applied to estimate the contamination rate of 17 naturally infected oat and barley samples, previously characterized by microbiological procedures. PMID:26974249

  5. Expression patterns of Brassica napus genes implicate IPT, CKX, sucrose transporter, cell wall invertase, and amino acid permease gene family members in leaf, flower, silique, and seed development.

    PubMed

    Song, Jiancheng; Jiang, Lijun; Jameson, Paula Elizabeth

    2015-08-01

    Forage brassica (Brassica napus cv. Greenland) is bred for vegetative growth and biomass production, while its seed yield remains to be improved for seed producers without affecting forage yield and quality. Cytokinins affect seed yield by influencing flower, silique and seed number, and seed size. To identify specific cytokinin gene family members as targets for breeding, as well as genes associated with yield and/or quality, a B. napus transcriptome was obtained from a mixed sample including leaves, flower buds and siliques of various stages. Gene families for cytokinin biosynthesis (BnIPT1, 2, 3, 5, 7, 8 and 9), cytokinin degradation (BnCKX1 to BnCKX7), cell wall invertase (BnCWINV1 to BnCWINV6), sugar transporter (BnSUT1 to BnSUT6) and amino acid permease (BnAAP1 to BnAAP8) were identified. As B. napus is tetraploid, homoeologues of each gene family member were sought. Using multiple alignments and phylogenetic analysis, the parental genomes of the two B. napus homoeologues could be differentiated. RT-qPCR was then used to determine the expression of gene family members and their homoeologues in leaves, flowers, siliques and seeds of different developmental stages. The expression analysis showed both temporal and organ-specific expression profiles among members of these multi-gene families. Several pairs of homoeologues showed differential expression, both in terms of level of expression and differences in temporal or organ-specificity. BnCKX2 and 4 were identified as targets for TILLING, EcoTILLING and MAS. PMID:25873685

  6. Hexachlorobenzene stimulates uroporphyria in low affinity AHR mice without increasing CYP1A2

    SciTech Connect

    Gorman, Nadia; Trask, Heidi S.; Robinson, Susan W.; Sinclair, Jacqueline F.; Smith, Andrew G.; Sinclair, Peter R. . E-mail: psinc@dartmouth.edu

    2007-06-01

    Hexachlorobenzene (HCB), a weak ligand of the aryl hydrocarbon receptor (AHR), causes hepatic uroporphyrin (URO) accumulation (uroporphyria) in humans and animals. CYP1A2 has been shown to be necessary in the development of uroporphyria in mice. Using mice expressing the low affinity form of the AH receptor (AHRd), we investigated whether the enhancement of uroporphyria by HCB involves an obligatory increase in CYP1A2 as measured by specific enzyme assays and immunoblotting. We compared the ability of HCB, in combination with iron dextran and the porphyrin precursor, 5-aminolevulinate (ALA), to cause uroporphyria in a strain of mice (C57BL/6) which expresses the high affinity form of the receptor (AHRb{sub 1}), with three strains of mice (SWR and two 129 sublines) expressing the low affinity AHRd. In C57BL/6 mice, HCB-enhanced uroporphyria was associated with a doubling of CYP1A2. HCB treatment produced uroporphyria in iron-loaded mice expressing AHRd, even though there was little or no increase in CYP1A2. Cyp1a2(-/-) mice in a 129 background were completely resistant to HCB-induced uroporphyria, and female Hfe(-/-) 129 mice, in which the levels of hepatic CYP1A2 were half of those of the male levels, responded poorly. The effect of exogenous iron, administered in the form of iron dextran, on HCB enhancement of uroporphryia could be replicated utilizing the endogenous hepatic iron accumulated in 129 Hfe(-/-) mice. In conclusion, some minimal basal expression of CYP1A2 is essential for HCB-mediated enhancement of uroporphyria, but increases in CYP1A2 above that level are not essential.

  7. The affinity of magnetic microspheres for Schistosoma eggs.

    PubMed

    Candido, Renata R F; Favero, Vivian; Duke, Mary; Karl, Stephan; Gutiérrez, Lucía; Woodward, Robert C; Graeff-Teixeira, Carlos; Jones, Malcolm K; St Pierre, Timothy G

    2015-01-01

    Schistosomiasis is a chronic parasitic disease of humans, with two species primarily causing the intestinal infection: Schistosoma mansoni and Schistosoma japonicum. Traditionally, diagnosis of schistosomiasis is achieved through direct visualisation of eggs in faeces using techniques that lack the sensitivity required to detect all infections, especially in areas of low endemicity. A recently developed method termed Helmintex™ is a very sensitive technique for detection of Schistosoma eggs and exhibits 100% sensitivity at 1.3 eggs per gram of faeces, enough to detect even low-level infections. The Helminthex™ method is based on the interaction of magnetic microspheres and schistosome eggs. Further understanding the underlying egg-microsphere interactions would enable a targeted optimisation of egg-particle binding and may thus enable a significant improvement of the Helmintex™ method and diagnostic sensitivity in areas with low infection rates. We investigated the magnetic properties of S. mansoni and S. japonicum eggs and their interactions with microspheres with different magnetic properties and surface functionalization. Eggs of both species exhibited higher binding affinity to the magnetic microspheres than the non-magnetic microspheres. Binding efficiency was further enhanced if the particles were coated with streptavidin. Schistosoma japonicum eggs bound more microspheres compared with S. mansoni. However, distinct differences within eggs of each species were also observed when the distribution of the number of microspheres bound per egg was modelled with double Poisson distributions. Using this approach, both S. japonicum and S. mansoni eggs fell into two groups, one having greater affinity for magnetic microspheres than the other, indicating that not all eggs of a species exhibit the same binding affinity. Our observations suggest that interaction between the microspheres and eggs is more likely to be related to surface charge-based electrostatic

  8. Affinity Proteomics in the mountains: Alpbach 2015.

    PubMed

    Taussig, Michael J

    2016-09-25

    The 2015 Alpbach Workshop on Affinity Proteomics, organised by the EU AFFINOMICS consortium, was the 7th workshop in this series. As in previous years, the focus of the event was the current state of affinity methods for proteome analysis, including complementarity with mass spectrometry, progress in recombinant binder production methods, alternatives to classical antibodies as affinity reagents, analysis of proteome targets, industry focus on biomarkers, and diagnostic and clinical applications. The combination of excellent science with Austrian mountain scenery and winter sports engender an atmosphere that makes this series of workshops exceptional. The articles in this Special Issue represent a cross-section of the presentations at the 2015 meeting. PMID:27118167

  9. Optimized Affinity Capture of Yeast Protein Complexes.

    PubMed

    LaCava, John; Fernandez-Martinez, Javier; Hakhverdyan, Zhanna; Rout, Michael P

    2016-01-01

    Here, we describe an affinity isolation protocol. It uses cryomilled yeast cell powder for producing cell extracts and antibody-conjugated paramagnetic beads for affinity capture. Guidelines for determining the optimal extraction solvent composition are provided. Captured proteins are eluted in a denaturing solvent (sodium dodecyl sulfate polyacrylamide gel electrophoresis sample buffer) for gel-based proteomic analyses. Although the procedures can be modified to use other sources of cell extract and other forms of affinity media, to date we have consistently obtained the best results with the method presented. PMID:27371596

  10. Aptamers in Affinity Separations: Stationary Separation

    NASA Astrophysics Data System (ADS)

    Ravelet, Corinne; Peyrin, Eric

    The use of DNA or RNA aptamers as tools in analytical chemistry is a very promising field of research because of their capabilities to bind specifically the target molecules with an affinity similar to that of antibodies. Notably, they appear to be of great interest as target-specific ligands for the separation and capture of various analytes in affinity chromatography and related affinity-based methods such as magnetic bead technology. In this chapter, the recent developments of these aptamer-based separation/capture approaches are addressed.

  11. Affinity purification of heme-tagged proteins.

    PubMed

    Asher, Wesley B; Bren, Kara L

    2014-01-01

    Protein affinity purification techniques are widely used for isolating pure target proteins for biochemical and structural characterization. Herein, we describe the protocol for affinity-based purification of proteins expressed in Escherichia coli that uses the coordination of a peptide tag covalently modified with heme c, known as a heme-tag, to an L-histidine immobilized Sepharose resin. This approach provides an affinity purification tag visible to the eye, facilitating tracking of the protein. In addition, we describe methods for specifically detecting heme-tagged proteins in SDS-PAGE gels using a heme-staining procedure and for quantifying the proteins using a pyridine hemochrome assay. PMID:24943311

  12. Iron uptake and metabolism in pseudomonads.

    PubMed

    Cornelis, Pierre

    2010-05-01

    Pseudomonads are ubiquitous Gram-negative gamma proteobacteria known for their extreme versatility and adaptability. Some are plant pathogens (Pseudomonas syringae) which have to survive on the surface of leaves while others can colonize the rhizosphere or survive in soil (Pseudomonas fluorescens, Pseudomonas putida), and one species, Pseudomonas entomophila, is an insect pathogen. The most investigated species, Pseudomonas aeruginosa, is known to be an opportunistic pathogen able to infect plants, nematodes, insects, and mammals, including humans. Like for other bacteria, iron is a key nutrient for pseudomonads. The fluorescent pseudomonads produce siderophores, the best known being the fluorescent high-affinity peptidic pyoverdines. Often diverse secondary siderophores of lower affinity are produced as well (pyochelin, pseudomonin, corrugatins and ornicorrugatins, yersiniabactin, and thioquinolobactin). Reflecting their large capacity of adaptation to changing environment and niche colonization, pseudomonads are able to obtain their iron from heme or from siderophores produced by other microorganisms (xenosiderophores) via the expression of outer membrane TonB-dependent receptors. As expected, iron uptake is exquisitely and hierarchically regulated in these bacteria. In this short review, the diversity of siderophores produced, receptors, and finally the way iron homeostasis is regulated in P. aeruginosa, P. syringae, P. putida, and P. fluorescens, will be presented and, when possible, put in relation with the lifestyle and the ecological niche. PMID:20352420

  13. Iron autoxidation in Mops and Hepes buffers.

    PubMed

    Tadolini, B

    1987-01-01

    Iron autoxidation in Mops and Hepes buffers is characterized by a lag phase that becomes shorter with increasing FeCl2 concentration and pH. During iron oxidation in these buffers a yellow colour develops in the solution. When the reaction is conducted in the presence of nitro blue tetrazolium (NBT), blue formazan is formed. Of the many OH scavengers tested, mannitol and sorbitol are most effective in inhibiting Fe2+ oxidation, yellow colour development and NBT reduction. Some inhibition was also noted with catalase. The iron product of the oxidative reaction differs from Fe3+ in its absorption spectrum and its low reactivity with thiocyanate. Similar results are obtained when iron autoxidation is studied in unbuffered solutions brought to alkaline pH with NaOH. In phosphate buffer, no lag phase is evident and the absorption spectrum of the final solution is identical to that of Fe3+ in this buffer. The iron product reacts immediately with thiocyanate. When iron oxidation is conducted in the presence of NBT the formation of formazan is almost undetectable. Of the many compounds tested only catalase inhibits iron autoxidation in this buffer. The sequence of reactions leading to iron autoxidation in Good-type buffers thus resembles that occurring in unbuffered solutions brought to alkaline pH with NaOH and greatly differs from that occurring in phosphate buffer. These results are in agreement with the observation that these buffers have very low affinity for iron. The data presented define experimental conditions where Fe2+ is substantially stable for a considerable length of time in Mops buffer. PMID:3148493

  14. Ferrous iron content of intravenous iron formulations.

    PubMed

    Gupta, Ajay; Pratt, Raymond D; Crumbliss, Alvin L

    2016-06-01

    The observed biological differences in safety and efficacy of intravenous (IV) iron formulations are attributable to physicochemical differences. In addition to differences in carbohydrate shell, polarographic signatures due to ferric iron [Fe(III)] and ferrous iron [Fe(II)] differ among IV iron formulations. Intravenous iron contains Fe(II) and releases labile iron in the circulation. Fe(II) generates toxic free radicals and reactive oxygen species and binds to bacterial siderophores and other in vivo sequestering agents. To evaluate whether differences in Fe(II) content may account for some observed biological differences between IV iron formulations, samples from multiple lots of various IV iron formulations were dissolved in 12 M concentrated HCl to dissociate and release all iron and then diluted with water to achieve 0.1 M HCl concentration. Fe(II) was then directly measured using ferrozine reagent and ultraviolet spectroscopy at 562 nm. Total iron content was measured by adding an excess of ascorbic acid to reduce Fe(III) to Fe(II), and Fe(II) was then measured by ferrozine assay. The Fe(II) concentration as a proportion of total iron content [Fe(III) + Fe(II)] in different lots of IV iron formulations was as follows: iron gluconate, 1.4 and 1.8 %; ferumoxytol, 0.26 %; ferric carboxymaltose, 1.4 %; iron dextran, 0.8 %; and iron sucrose, 10.2, 15.5, and 11.0 % (average, 12.2 %). The average Fe(II) content in iron sucrose was, therefore, ≥7.5-fold higher than in the other IV iron formulations. Further studies are needed to investigate the relationship between Fe(II) content and increased risk of oxidative stress and infections with iron sucrose. PMID:26956439

  15. Monomeric Yeast Frataxin is an Iron Binding Protein†

    PubMed Central

    Cook, Jeremy D.; Bencze, Krisztina Z.; Jankovic, Ana D.; Crater, Anna K.; Busch, Courtney N.; Bradley, Patrick B.; Stemmler, Ann J.; Spaller, Mark R.; Stemmler, Timothy L.

    2008-01-01

    Friedreich's ataxia, an autosomal cardio- and neurodegenerative disorder that affects 1 in 50,000 humans, is caused by decreased levels of the protein frataxin. Although nuclear encoded, frataxin is targeted to the mitochondrial matrix and necessary for proper regulation of cellular iron homeostasis. Frataxin is required for the cellular production of both heme and iron-sulfur clusters. Monomeric frataxin binds with high affinity to ferrochelatase, the enzyme involved in iron insertion into porphyrin during heme production. Monomeric frataxin also binds to Isu, the scaffold protein required for assembly of Fe-S cluster intermediates. These processes (heme and Fe-S cluster assembly) share requirements for iron, suggesting monomeric frataxin might function as the common iron donor. In order to provide a molecular basis to better understand frataxin's function, we have characterized the binding properties and metal site structure of ferrous iron bound to monomeric yeast frataxin. Yeast frataxin is stable as an iron loaded monomer and the protein can bind 2 ferrous iron atoms with micromolar binding affinity. Frataxin amino acids affected by the presence of iron are localized within conserved acidic patches located on the surfaces of both helix-1 and strand-1. Under anaerobic conditions, bound metal is stable in the high-spin ferrous state. The metal-ligand coordination geometry of both metal binding sites is consistent with a 6 coordinate iron-(oxygen and nitrogen) based ligand geometry, surely constructed in part from carboxylate and possibly imidazole side chains coming from residues within these conserved acidic patches on the protein. Based on our results, we have developed a model for how we believe yeast frataxin interacts with iron. PMID:16784228

  16. PRINCIPLES OF AFFINITY-BASED BIOSENSORS

    EPA Science Inventory

    Despite the amount of resources that have been invested by national and international academic, government, and commercial sectors to develop affinity-based biosensor products, little obvious success has been realized through commercialization of these devices for specific applic...

  17. Minimal information to determine affine shape equivalence.

    PubMed

    Wagemans, J; Van Gool, L; Lamote, C; Foster, D H

    2000-04-01

    Participants judged the affine equivalence of 2 simultaneously presented 4-point patterns. Performance level (d') varied between 1.5 and 2.7, depending on the information available for solving the correspondence problem (insufficient in Experiment 1a, superfluous in Experiment 1b, and minimal in Experiments 1c, 2a, 2b) and on the exposure time (unlimited in Experiments 1 and 2a and 500 ms in Experiment 2b), but it did not vary much with the complexity of the affine transformation (rotation and slant in Experiment 1 and same plus tilt in Experiment 2). Performance in Experiment 3 was lower with 3-point patterns than with 4-point patterns, whereas blocking the trials according to the affine transformation parameters had little effect. Determining affine shape equivalence with minimal-information displays is based on a fast assessment of qualitatively or quasi-invariant properties such as convexity/ concavity, parallelism, and collinearity. PMID:10811156

  18. Protein purification using PDZ affinity chromatography.

    PubMed

    Walkup, Ward G; Kennedy, Mary B

    2015-01-01

    PDZ domains function in nature as protein-binding domains within scaffold and membrane-associated proteins. They comprise approximately 90 residues and undergo specific, high-affinity interactions with complementary C-terminal peptide sequences, other PDZ domains, and/or phospholipids. We have previously shown that the specific, strong interactions of PDZ domains with their ligands make them well suited for use in affinity chromatography. This unit provides protocols for the PDZ affinity chromatography procedure that are applicable for the purification of proteins that contain PDZ domains or PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We detail the preparation of affinity resins composed of PDZ domains or PDZ domain peptide ligands coupled to solid supports. These resins can be used to purify proteins containing endogenous or genetically introduced PDZ domains or ligands, eluting the proteins with free PDZ domain peptide ligands. PMID:25829303

  19. Visualizing antibody affinity maturation in germinal centers.

    PubMed

    Tas, Jeroen M J; Mesin, Luka; Pasqual, Giulia; Targ, Sasha; Jacobsen, Johanne T; Mano, Yasuko M; Chen, Casie S; Weill, Jean-Claude; Reynaud, Claude-Agnès; Browne, Edward P; Meyer-Hermann, Michael; Victora, Gabriel D

    2016-03-01

    Antibodies somatically mutate to attain high affinity in germinal centers (GCs). There, competition between B cell clones and among somatic mutants of each clone drives an increase in average affinity across the population. The extent to which higher-affinity cells eliminating competitors restricts clonal diversity is unknown. By combining multiphoton microscopy and sequencing, we show that tens to hundreds of distinct B cell clones seed each GC and that GCs lose clonal diversity at widely disparate rates. Furthermore, efficient affinity maturation can occur in the absence of homogenizing selection, ensuring that many clones can mature in parallel within the same GC. Our findings have implications for development of vaccines in which antibodies with nonimmunodominant specificities must be elicited, as is the case for HIV-1 and influenza. PMID:26912368

  20. Hepatic iron metabolism.

    PubMed

    Anderson, Gregory J; Frazer, David M

    2005-11-01

    The liver performs three main functions in iron homeostasis. It is the major site of iron storage, it regulates iron traffic into and around the body through its production of the peptide hepcidin, and it is the site of synthesis of major proteins of iron metabolism such as transferrin and ceruloplasmin. Most of the iron that enters the liver is derived from plasma transferrin under normal circumstances, and transferrin receptors 1 and 2 play important roles in this process. In pathological situations, non-transferrin-bound iron, ferritin, and hemoglobin/haptoglobin and heme/hemopexin complexes assume greater importance in iron delivery to the organ. Iron is stored in the liver as ferritin and, with heavy iron loading, as hemosiderin. The liver can divest itself of iron through the plasma membrane iron exporter ferroportin 1, a process that also requires ceruloplasmin. Hepcidin can regulate this iron release through its interaction with ferroportin. PMID:16315136

  1. Iron Sucrose Injection

    MedlinePlus

    Iron sucrose injection is used treat iron-deficiency anemia (a lower than normal number of red blood cells due to too little iron) in people with chronic kidney disease (damage to the kidneys which may worsen over ...

  2. Production and Characterization of Desmalonichrome Relative Binding Affinity for Uranyl Ions in Relation to Other Siderophores.

    PubMed

    Mo, Kai-For; Dai, Ziyu; Wunschel, David S

    2016-06-24

    Siderophores are iron (Fe)-binding secondary metabolites that have been investigated for their uranium-binding properties. Previous work has focused on characterizing hydroxamate types of siderophores, such as desferrioxamine B, for their uranyl (UO2)-binding affinity. Carboxylate forms of these metabolites hold potential to be more efficient chelators of UO2, yet they have not been widely studied. Desmalonichrome is a carboxylate siderophore that is not commercially available and so was obtained from the fungus Fusarium oxysporum cultivated under Fe-depleted conditions. The relative affinity for UO2 binding of desmalonichrome was investigated using a competitive analysis of binding affinities between UO2 acetate and different concentrations of Fe(III) chloride using electrospray ionization mass spectrometry. In addition to desmalonichrome, three other siderophores, including two hydroxamates (desferrioxamine B and desferrichrome) and one carboxylate (desferrichrome A), were studied to understand their relative affinities for the UO2(2+) ion at two pH values. The binding affinities of hydroxamate siderophores to UO2(2+) ions were observed to decrease with increasing Fe(III)Cl3 concentration at the lower pH. On the other hand, decreasing the pH has a smaller impact on the binding affinities between carboxylate siderophores and the UO2(2+) ion. Desmalonichrome in particular was shown to have the greatest relative affinity for UO2 at all pH and Fe(III) concentrations examined. These results suggest that acidic functional groups in the ligands are important for strong chelation with UO2 at lower pH. PMID:27232848

  3. The copper-iron connection in biology: Structure of the metallo-oxidase Fet3p

    SciTech Connect

    Taylor, A. B.; Stoj, C. S.; Ziegler, L.; Kosman, D. J.; Hart, P. J.

    2005-10-17

    Fet3p is a multicopper-containing glycoprotein localized to the yeast plasma membrane that catalyzes the oxidation of Fe(II) to Fe(III). This ferrous iron oxidation is coupled to the reduction of O2 to H2O and is termed the ferroxidase reaction. Fet3p-produced Fe(III) is transferred to the permease Ftr1p for import into the cytosol. The posttranslational insertion of four copper ions into Fet3p is essential for its activity, thus linking copper and iron homeostasis. The mammalian ferroxidases ceruloplasmin and hephaestin are homologs of Fet3p. Loss of the Fe(II) oxidation catalyzed by these proteins results in a spectrum of pathological states, including death. Here, we present the structure of the Fet3p extracellular ferroxidase domain and compare it with that of human ceruloplasmin and other multicopper oxidases that are devoid of ferroxidase activity. The Fet3p structure delineates features that underlie the unique reactivity of this and homologous multicopper oxidases that support the essential trafficking of iron in diverse eukaryotic organisms. The findings are correlated with biochemical and physiological data to cross-validate the elements of Fet3p that define it as both a ferroxidase and cuprous oxidase.

  4. Genetics Home Reference: iron-refractory iron deficiency anemia

    MedlinePlus

    ... refractory iron deficiency anemia iron-refractory iron deficiency anemia Enable Javascript to view the expand/collapse boxes. ... All Close All Description Iron-refractory iron deficiency anemia is one of many types of anemia , which ...

  5. Affinity engineering of maltoporin: variants with enhanced affinity for particular ligands.

    PubMed

    Clune, A; Lee, K S; Ferenci, T

    1984-05-31

    Affinity-chromatographic selection on immobilized starch was used to selectively enhance the affinity of the maltodextrin-specific pore protein ( maltoporin , LamB protein, or lambda receptor protein) in the outer membrane of E. coli. Selection strategies were established for rare bacteria in large populations producing maltoporin variants with enhanced affinities for both starch and maltose, for starch but not maltose and for maltose but not starch. Three classes of lamB mutants with up to eight-fold increase in affinity for particular ligands were isolated. These mutants provide a unique range of modifications in the specificity of a transport protein. PMID:6375667

  6. Fine-tuning of Substrate Affinity Leads to Alternative Roles of Mycobacterium tuberculosis Fe2+-ATPases.

    PubMed

    Patel, Sarju J; Lewis, Brianne E; Long, Jarukit E; Nambi, Subhalaxmi; Sassetti, Christopher M; Stemmler, Timothy L; Argüello, José M

    2016-05-27

    Little is known about iron efflux transporters within bacterial systems. Recently, the participation of Bacillus subtilis PfeT, a P1B4-ATPase, in cytoplasmic Fe(2+) efflux has been proposed. We report here the distinct roles of mycobacterial P1B4-ATPases in the homeostasis of Co(2+) and Fe(2+) Mutation of Mycobacterium smegmatis ctpJ affects the homeostasis of both ions. Alternatively, an M. tuberculosis ctpJ mutant is more sensitive to Co(2+) than Fe(2+), whereas mutation of the homologous M. tuberculosis ctpD leads to Fe(2+) sensitivity but no alterations in Co(2+) homeostasis. In vitro, the three enzymes are activated by both Fe(2+) and Co(2+) and bind 1 eq of either ion at their transport site. However, equilibrium binding affinities and activity kinetics show that M. tuberculosis CtpD has higher affinity for Fe(2+) and twice the Fe(2+)-stimulated activity than the CtpJs. These parameters are paralleled by a lower activation and affinity for Co(2+) Analysis of Fe(2+) and Co(2+) binding to CtpD by x-ray absorption spectroscopy shows that both ions are five- to six-coordinate, constrained within oxygen/nitrogen environments with similar geometries. Mutagenesis studies suggest the involvement of invariant Ser, His, and Glu residues in metal coordination. Interestingly, replacement of the conserved Cys at the metal binding pocket leads to a large reduction in Fe(2+) but not Co(2+) binding affinity. We propose that CtpJ ATPases participate in the control of steady state Fe(2+) levels. CtpD, required for M. tuberculosis virulence, is a high affinity Fe(2+) transporter involved in the rapid response to iron dyshomeostasis generated upon redox stress. PMID:27022029

  7. Phosphorylation of a conserved Thr357 in yeast Nedd4-like ubiquitin ligase Rsp5 is involved in down-regulation of the general amino acid permease Gap1.

    PubMed

    Sasaki, Toshiya; Takagi, Hiroshi

    2013-06-01

    Rsp5, an essential HECT-type ubiquitin ligase, is the only yeast Saccharomyces cerevisiae member of the Nedd4 family. Rsp5 triggers the ubiquitination-dependent endocytosis of the general amino acid permease Gap1 in response to a good nitrogen source. Previously, we showed that the Thr357Ala/Lys764Glu variant Rsp5 induces the constitutive inactivation of Gap1, which is mainly involved in uptake of the toxic proline analogue, l-azetidine-2-carboxylate (AZC). Here, our experimental results indicated that the Thr357Ala substitution in the substrate-recognizing WW2 domain of Rsp5 constitutively causes the down-regulation of four proline permeases (Gap1, Put4, Agp1 and Gnp1), leading to AZC tolerance to yeast cells. In RSP5(T357A) cells, Gap1 was highly ubiquitinated and constantly delivered to the vacuole from the Golgi without sorting to the plasma membrane. Analyses of RSP5 mutants using antiphosphopeptide antibody suggest that Thr phosphorylation occurred in all three WW domains and, interestingly, that Thr357 in the WW2 domain was phosphorylated, in agreement with the in vitro result for the mouse Rsp5 orthologue. Furthermore, the phosphorylation-mimic mutant (Thr357Asp) showed strong sensitivity to AZC. From these results, we propose a possible mechanism involved in the regulation of Rsp5 activity for Gap1 down-regulation via the phosphorylation of a conserved Thr357 in the Nedd4 family. PMID:23517290

  8. Iron-refractory iron deficiency anemia.

    PubMed

    Yılmaz Keskin, Ebru; Yenicesu, İdil

    2015-03-01

    Iron is essential for life because it is indispensable for several biological reactions, such as oxygen transport, DNA synthesis, and cell proliferation. Over the past few years, our understanding of iron metabolism and its regulation has changed dramatically. New disorders of iron metabolism have emerged, and the role of iron as a cofactor in other disorders has begun to be recognized. The study of genetic conditions such as hemochromatosis and iron-refractory iron deficiency anemia (IRIDA) has provided crucial insights into the molecular mechanisms controlling iron homeostasis. In the future, these advances may be exploited to improve treatment of both genetic and acquired iron disorders. IRIDA is caused by mutations in TMPRSS6, the gene encoding matriptase-2, which downregulates hepcidin expression under conditions of iron deficiency. The typical features of this disorder are hypochromic, microcytic anemia with a very low mean corpuscular volume of erythrocytes, low transferrin saturation, no (or inadequate) response to oral iron, and only a partial response to parenteral iron. In contrast to classic iron deficiency anemia, serum ferritin levels are usually low-normal, and serum or urinary hepcidin levels are inappropriately high for the degree of anemia. Although the number of cases reported thus far in the literature does not exceed 100, this disorder is considered the most common of the "atypical" microcytic anemias. The aim of this review is to share the current knowledge on IRIDA and increase awareness in this field. PMID:25805669

  9. Potential of Phytase-Mediated Iron Release from Cereal-Based Foods: A Quantitative View

    PubMed Central

    Nielsen, Anne V. F.; Tetens, Inge; Meyer, Anne S.

    2013-01-01

    The major part of iron present in plant foods such as cereals is largely unavailable for direct absorption in humans due to complexation with the negatively charged phosphate groups of phytate (myo-inositol (1,2,3,4,5,6)-hexakisphosphate). Human biology has not evolved an efficient mechanism to naturally release iron from iron phytate complexes. This narrative review will evaluate the quantitative significance of phytase-catalysed iron release from cereal foods. In vivo studies have shown how addition of microbially derived phytases to cereal-based foods has produced increased iron absorption via enzyme-catalysed dephosphorylation of phytate, indicating the potential of this strategy for preventing and treating iron deficiency anaemia. Despite the immense promise of this strategy and the prevalence of iron deficiency worldwide, the number of human studies elucidating the significance of phytase-mediated improvements in iron absorption and ultimately in iron status in particularly vulnerable groups is still low. A more detailed understanding of (1) the uptake mechanism for iron released from partially dephosphorylated phytate chelates, (2) the affinity of microbially derived phytases towards insoluble iron phytate complexes, and (3) the extent of phytate dephosphorylation required for iron release from inositol phosphates is warranted. Phytase-mediated iron release can improve iron absorption from plant foods. There is a need for development of innovative strategies to obtain better effects. PMID:23917170

  10. Classification of neocortical interneurons using affinity propagation

    PubMed Central

    Santana, Roberto; McGarry, Laura M.; Bielza, Concha; Larrañaga, Pedro; Yuste, Rafael

    2013-01-01

    In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. In fact, neuronal classification is a difficult problem because it is unclear how to designate a neuronal cell class and what are the best characteristics to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological, or molecular characteristics, have provided quantitative and unbiased identification of distinct neuronal subtypes, when applied to selected datasets. However, better and more robust classification methods are needed for increasingly complex and larger datasets. Here, we explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. Affinity propagation outperformed Ward's method, a current standard clustering approach, in classifying the neurons into 4 subtypes. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits. PMID:24348339

  11. Classification of neocortical interneurons using affinity propagation.

    PubMed

    Santana, Roberto; McGarry, Laura M; Bielza, Concha; Larrañaga, Pedro; Yuste, Rafael

    2013-01-01

    In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. In fact, neuronal classification is a difficult problem because it is unclear how to designate a neuronal cell class and what are the best characteristics to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological, or molecular characteristics, have provided quantitative and unbiased identification of distinct neuronal subtypes, when applied to selected datasets. However, better and more robust classification methods are needed for increasingly complex and larger datasets. Here, we explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. Affinity propagation outperformed Ward's method, a current standard clustering approach, in classifying the neurons into 4 subtypes. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits. PMID:24348339

  12. Affinity purification of aprotinin from bovine lung.

    PubMed

    Xin, Yu; Liu, Lanhua; Chen, Beizhan; Zhang, Ling; Tong, Yanjun

    2015-05-01

    An affinity protocol for the purification of aprotinin from bovine lung was developed. To simulate the structure of sucrose octasulfate, a natural specific probe for aprotinin, the affinity ligand was composed of an acidic head and a hydrophobic stick, and was then linked with Sepharose. The sorbent was then subjected to adsorption analysis with pure aprotinin. The purification process consisted of one step of affinity chromatography and another step of ultrafiltration. Then purified aprotinin was subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis, trypsin inhibitor activity, gel-filtration, and thin-layer chromatography analysis. As calculated, the theoretical maximum adsorption (Qmax ) of the affinity sorbent was 25,476.0 ± 184.8 kallikrein inactivator unit/g wet gel; the dissociation constant of the complex "immobilized ligand-aprotinin" (Kd ) was 4.6 ± 0.1 kallikrein inactivator unit/mL. After the affinity separation of bovine lung aprotinin, reducing sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis and gel-filtration chromatography revealed that the protein was a single polypeptide, and the purities were ∼ 97 and 100%, respectively; the purified peptide was also confirmed with aprotinin standard by gel-filtration chromatography and thin-layer chromatography. After the whole purification process, protein, and bioactivity recoveries were 2.2 and 92.6%, respectively; and the specific activity was up to 15,907.1 ± 10.2 kallikrein inactivator unit/mg. PMID:25677462

  13. [Iron-refractory iron deficiency anemia].

    PubMed

    Kawabata, Hiroshi

    2016-02-01

    The major causes of iron deficiency anemia (IDA) include iron loss due to bleeding, increased iron requirements, and decreased iron absorption by the intestine. The most common cause of IDA in Japanese women is iron loss during menstruation. Autoimmune atrophic gastritis and Helicobacter pylori infection can also cause IDA by reducing intestinal iron absorption. In addition to these common etiologies, germline mutations of TMPRSS6 can cause iron-refractory IDA (IRIDA). TMPRSS6 encodes matriptase-2, a membrane-bound serine protease primarily expressed in the liver. Functional loss of matriptase-2 due to homozygous mutations results in an increase in the expression of hepcidin, which is the key regulator of systemic iron homeostasis. The serum hepcidin increase in turn leads to a decrease in iron supply from the intestine and macrophages to erythropoietic cells. IRIDA is microcytic and hypochromic, but decreased serum ferritin is not observed as in IDA. IRIDA is refractory to oral iron supplementation, but does respond to intravenous iron supplementation to some extent. Because genetic testing is required for the diagnoses of IRIDA, a considerable number of cases may go undiagnosed and may thus be overlooked. PMID:26935626

  14. Identity, Affinity, Reality: Making the Case for Affinity Groups in Elementary School

    ERIC Educational Resources Information Center

    Parsons, Julie; Ridley, Kimberly

    2012-01-01

    Affinity groups are places where students build connections and process "ouch" moments from their classes. Children talk about the isolation they sometimes feel. The relationships students gain through race-based affinity groups enable them to feel less alone with their emotions and help them build a stronger sense of self. At the same time,…

  15. Iron deficiency anemia

    MedlinePlus

    Anemia - iron deficiency ... iron from old red blood cells. Iron deficiency anemia develops when your body's iron stores run low. ... You may have no symptoms if the anemia is mild. Most of the time, ... slowly. Symptoms may include: Feeling weak or tired more often ...

  16. On Affine Fusion and the Phase Model

    NASA Astrophysics Data System (ADS)

    Walton, Mark A.

    2012-11-01

    A brief review is given of the integrable realization of affine fusion discovered recently by Korff and Stroppel. They showed that the affine fusion of the su(n) Wess-Zumino-Novikov-Witten (WZNW) conformal field theories appears in a simple integrable system known as the phase model. The Yang-Baxter equation leads to the construction of commuting operators as Schur polynomials, with noncommuting hopping operators as arguments. The algebraic Bethe ansatz diagonalizes them, revealing a connection to the modular S matrix and fusion of the su(n) WZNW model. The noncommutative Schur polynomials play roles similar to those of the primary field operators in the corresponding WZNW model. In particular, their 3-point functions are the su(n) fusion multiplicities. We show here how the new phase model realization of affine fusion makes obvious the existence of threshold levels, and how it accommodates higher-genus fusion.

  17. The dynamics of metric-affine gravity

    SciTech Connect

    Vitagliano, Vincenzo; Sotiriou, Thomas P.; Liberati, Stefano

    2011-05-15

    Highlights: > The role and the dynamics of the connection in metric-affine theories is explored. > The most general second order action does not lead to a dynamical connection. > Including higher order invariants excites new degrees of freedom in the connection. > f(R) actions are also discussed and shown to be a non- representative class. - Abstract: Metric-affine theories of gravity provide an interesting alternative to general relativity: in such an approach, the metric and the affine (not necessarily symmetric) connection are independent quantities. Furthermore, the action should include covariant derivatives of the matter fields, with the covariant derivative naturally defined using the independent connection. As a result, in metric-affine theories a direct coupling involving matter and connection is also present. The role and the dynamics of the connection in such theories is explored. We employ power counting in order to construct the action and search for the minimal requirements it should satisfy for the connection to be dynamical. We find that for the most general action containing lower order invariants of the curvature and the torsion the independent connection does not carry any dynamics. It actually reduces to the role of an auxiliary field and can be completely eliminated algebraically in favour of the metric and the matter field, introducing extra interactions with respect to general relativity. However, we also show that including higher order terms in the action radically changes this picture and excites new degrees of freedom in the connection, making it (or parts of it) dynamical. Constructing actions that constitute exceptions to this rule requires significant fine tuned and/or extra a priori constraints on the connection. We also consider f(R) actions as a particular example in order to show that they constitute a distinct class of metric-affine theories with special properties, and as such they cannot be used as representative toy theories to

  18. Displacement phenomena in lectin affinity chromatography.

    PubMed

    Cho, Wonryeon

    2015-10-01

    The work described here examines displacement phenomena that play a role in lectin affinity chromatography and their potential to impact reproducibility. This was achieved using Lycopersicon esculentum lectin (LEL), a lectin widely used in monitoring cancer. Four small identical LEL columns were coupled in series to form a single affinity chromatography system with the last in the series connected to an absorbance detector. The serial affinity column set (SACS) was then loaded with human plasma proteins. At the completion of loading, the column set was disassembled, the four columns were eluted individually, the captured proteins were trypsin digested, the peptides were deglycosylated with PNGase F, and the parent proteins were identified through mass spectral analyses. Significantly different sets of glycoproteins were selected by each column, some proteins appearing to be exclusively bound to the first column while others were bound further along in the series. Clearly, sample displacement chromatography (SDC) occurs. Glycoproteins were bound at different places in the column train, identifying the presence of glycoforms with different affinity on a single glycoprotein. It is not possible to see these phenomena in the single column mode of chromatography. Moreover, low abundance proteins were enriched, which facilitates detection. The great advantage of this method is that it differentiates between glycoproteins on the basis of their binding affinity. Displacement phenomena are concluded to be a significant component of the separation mechanism in heavily loaded lectin affinity chromatography columns. This further suggests that care must be exercised in sample loading of lectin columns to prevent analyte displacement with nonretained proteins. PMID:26348026

  19. Negative Electron Affinity Mechanism for Diamond Surfaces

    NASA Technical Reports Server (NTRS)

    Krainsky, I. L.; Asnin, V. M.

    1998-01-01

    The energy distribution of the secondary electrons for chemical vacuum deposited diamond films with Negative Electron Affinity (NEA) was investigated. It was found that while for completely hydrogenated diamond surfaces the negative electron affinity peak in the energy spectrum of the secondary electrons is present for any energy of the primary electrons, for partially hydrogenated diamond surfaces there is a critical energy above which the peak is present in the spectrum. This critical energy increases sharply when hydrogen coverage of the diamond surface diminishes. This effect was explained by the change of the NEA from the true type for the completely hydrogenated surface to the effective type for the partially hydrogenated surfaces.

  20. New unitary affine-Virasoro constructions

    SciTech Connect

    Halpern, M.B.; Kiritsis, E.; Obers, N.A.; Poratti, M. ); Yamron, J.P. )

    1990-06-20

    This paper reports on a quasi-systematic investigation of the Virasoro master equation. The space of all affine-Virasoro constructions is organized by K-conjugation into affine-Virasoro nests, and an estimate of the dimension of the space shows that most solutions await discovery. With consistent ansatze for the master equation, large classes of new unitary nests are constructed, including quadratic deformation nests with continuous conformal weights, and unitary irrational central charge nests, which may dominate unitary rational central charge on compact g.

  1. Adsorption affinity of anions on metal oxyhydroxides

    NASA Astrophysics Data System (ADS)

    Pechenyuk, S. I.; Semushina, Yu. P.; Kuz'mich, L. F.

    2013-03-01

    The dependences of anion (phosphate, carbonate, sulfate, chromate, oxalate, tartrate, and citrate) adsorption affinity anions from geometric characteristics, acid-base properties, and complex forming ability are generalized. It is shown that adsorption depends on the nature of both the anions and the ionic medium and adsorbent. It is established that anions are generally grouped into the following series of adsorption affinity reduction: PO{4/3-}, CO{3/2-} > C2O{4/2-}, C(OH)(CH2)2(COO){3/3-}, (CHOH)2(COO){2/2-} > CrO{4/2-} ≫ SO{4/2-}.

  2. Pathways of iron absorption.

    PubMed

    Conrad, Marcel E; Umbreit, Jay N

    2002-01-01

    Iron is vital for all living organisms but excess iron can be lethal because it facilitates free radical formation. Thus iron absorption is carefully regulated to maintain an equilibrium between absorption and body loss of iron. In countries where meat is a significant part of the diet, most body iron is derived from dietary heme because heme binds few of the dietary chelators that bind inorganic iron. Uptake of heme into enterocytes occurs as a metalloporphyrin in an endosomal process. Intracellular iron is released from heme by heme oxygenase to enter plasma as inorganic iron. Ferric iron is absorbed via a beta(3) integrin and mobilferrin pathway (IMP) which is unshared with other nutritional metals. Ferrous iron uptake is facilitated by a DMT-1 pathway which is shared with manganese. In the iron deficient gut, large quantities of both mobilferrin and DMT-1 are found in goblet cells and intraluminal mucins suggesting that they are secreted with mucin into the intestinal lumen to bind iron to facilitate uptake by the cells. In the cytoplasm, IMP and DMT associate in a large protein complex called paraferritin which serves as a ferrireductase. Paraferritin solublizes iron binding proteins and reduces iron to make iron available for production of iron containing proteins such as heme. Iron uptake by intestinal absorptive cells is regulated by the iron concentration within the cell. Except in hemochromatosis it remains in equilibrium with total body stores via transferrin receptors on the basolateral membrane of absorptive cells. Increased intracellular iron either up-regulates or satiates iron binding proteins on regulatory proteins to alter their location in the intestinal mucosa. PMID:12547224

  3. Identification and Characterization of a Streptococcus pyogenes Operon Involved in Binding of Hemoproteins and Acquisition of Iron

    PubMed Central

    Bates, Christopher S.; Montañez, Griselle E.; Woods, Charles R.; Vincent, Rebecca M.; Eichenbaum, Zehava

    2003-01-01

    The hemolytic Streptococcus pyogenes can use a variety of heme compounds as an iron source. In this study, we investigate hemoprotein utilization by S. pyogenes. We demonstrate that surface proteins contribute to the binding of hemoproteins to S. pyogenes. We identify an ABC transporter from the iron complex family named sia for streptococcal iron acquisition, which consists of a lipoprotein (siaA), membrane permease (siaB), and ATPase (siaC). The sia transporter is part of a highly conserved, iron regulated, 10-gene operon. SiaA, which was localized to the cell membrane, could specifically bind hemoglobin. The operon's first gene encodes a novel bacterial protein that bound hemoglobin, myoglobin, heme-albumin, and hemoglobin-haptoglobin (but not apo-haptoglobin) and therefore was named Shr, for streptococcal hemoprotein receptor. PhoZ fusion and Western blot analysis showed that Shr has a leader peptide and is found in both membrane-bound and soluble forms. An M1 SF370 strain with a polar mutation in shr was more resistant to streptonigrin and hydrogen peroxide, suggesting decreased iron uptake. The addition of hemoglobin to the culture medium increased cell resistance to hydrogen peroxide in SF370 but not in the mutant, implying the sia operon may be involved in hemoglobin-dependent resistance to oxidative stress. The shr mutant demonstrated reduced hemoglobin binding, though cell growth in iron-depleted medium supplemented with hemoglobin, whole blood, or ferric citrate was not affected, suggesting additional systems are involved in hemoglobin utilization. SiaA and Shr are the first hemoprotein receptors identified in S. pyogenes; their possible role in iron capture is discussed. PMID:12595414

  4. Are extrinsic black stains of teeth iron-saturated bovine lactoferrin and a sign of iron deficient anemia or iron overload?

    PubMed

    Mesonjesi, Ilir

    2012-08-01

    Extrinsic black stains on teeth are shown to have a relation with a low incidence of caries and are made of a ferric compound. Whole composition and why those stains are formed are not fully understood. Studies have shown low incidence of caries in individuals eating cheese. Lactoferrin is the major iron-binding protein, constituent of milk, stays almost intact during cheese making and has antibacterial activity against dental cavity-inducing Streptococcus mutans. Lactoferrin has a high affinity for iron and whenever it is present it will bind iron and release it only in values of pH<4. In a small survey that I made in dental practice, patients (patients did not report taking any medication; had no frequent gingival bleeding) that had extrinsic black stains on teeth eat >50 g of cheese per day and a good number of them, in addition to cheese, drink one cup of milk per day. Cheese stays much longer in contact with tooth surface than does' milk and bovine lactoferrin has four glycan chains that may contribute to a better adherence. Extrinsic black stains are made of a ferric compound, and people that eat good amounts of cheese (where lactoferrin plays a central role) show to have black stains. Iron must be in sufficient amounts in saliva so that lactoferrin can bind it and as a result making the black stains appear. In iron deficient anemia and in iron overload the concentration of iron present in saliva is much higher than in individuals with no anemia. In conclusion, extrinsic black stains of teeth may be iron-saturated bovine lactoferrin and a sign of iron deficient anemia or iron overload if no iron supplements are taken or individuals have no frequent gingival bleeding. PMID:22632844

  5. Investigating the Affinities and Persistence of VX Nerve Agent in Environmental Matrices

    SciTech Connect

    Love, A H; Vance, A L; Reynolds, J G; Davisson, M L

    2004-03-09

    Laboratory experiments were conducted to determine environmental variables that affect the affinities and persistence of the nerve agent O-ethyl S-(2-diisopropylaminoethyl) methylphosphonothiolate (VX) at dilute concentrations in environmental matrices. Quantitative analyses of VX and its degradation products were performed using LC-MS. Batch hydrolysis experiments demonstrated an increasing hydrolysis rate as pH increased, as shown in previous studies, but also indicated that dissolved aqueous constituents can cause significant differences in the absolute hydrolysis rate. Adsorption isotherms from batch aqueous experiments revealed that VX has a high affinity for hydrophobic organics, a moderate affinity for montmorillonite clay, and a very low affinity for an iron-oxyhydroxide soil mineral, goethite. The adsorption on goethite was increased with the presence of dissolved organic matter in solution. VX degraded rapidly when dried onto goethite, when an inner-sphere complex was forced. No enhanced degradation occurred with goethite in small amounts water. These results suggest that aqueous conditions have important controls on VX adsorption and degradation in the environment and a more mechanistic understanding of these controls is needed in order to enable accurate predictions of its long-term fate and persistence.

  6. Streamlining the Pipeline for Generation of Recombinant Affinity Reagents by Integrating the Affinity Maturation Step.

    PubMed

    Huang, Renhua; Gorman, Kevin T; Vinci, Chris R; Dobrovetsky, Elena; Gräslund, Susanne; Kay, Brian K

    2015-01-01

    Often when generating recombinant affinity reagents to a target, one singles out an individual binder, constructs a secondary library of variants, and affinity selects a tighter or more specific binder. To enhance the throughput of this general approach, we have developed a more integrated strategy where the "affinity maturation" step is part of the phage-display pipeline, rather than a follow-on process. In our new schema, we perform two rounds of affinity selection, followed by error-prone PCR on the pools of recovered clones, generation of secondary libraries, and three additional rounds of affinity selection, under conditions of off-rate competition. We demonstrate the utility of this approach by generating low nanomolar fibronectin type III (FN3) monobodies to five human proteins: ubiquitin-conjugating enzyme E2 R1 (CDC34), COP9 signalosome complex subunit 5 (COPS5), mitogen-activated protein kinase kinase 5 (MAP2K5), Splicing factor 3A subunit 1 (SF3A1) and ubiquitin carboxyl-terminal hydrolase 11 (USP11). The affinities of the resulting monobodies are typically in the single-digit nanomolar range. We demonstrate the utility of two binders by pulling down the targets from a spiked lysate of HeLa cells. This integrated approach should be applicable to directed evolution of any phage-displayed affinity reagent scaffold. PMID:26437402

  7. Streamlining the Pipeline for Generation of Recombinant Affinity Reagents by Integrating the Affinity Maturation Step

    PubMed Central

    Huang, Renhua; Gorman, Kevin T.; Vinci, Chris R.; Dobrovetsky, Elena; Gräslund, Susanne; Kay, Brian K.

    2015-01-01

    Often when generating recombinant affinity reagents to a target, one singles out an individual binder, constructs a secondary library of variants, and affinity selects a tighter or more specific binder. To enhance the throughput of this general approach, we have developed a more integrated strategy where the “affinity maturation” step is part of the phage-display pipeline, rather than a follow-on process. In our new schema, we perform two rounds of affinity selection, followed by error-prone PCR on the pools of recovered clones, generation of secondary libraries, and three additional rounds of affinity selection, under conditions of off-rate competition. We demonstrate the utility of this approach by generating low nanomolar fibronectin type III (FN3) monobodies to five human proteins: ubiquitin-conjugating enzyme E2 R1 (CDC34), COP9 signalosome complex subunit 5 (COPS5), mitogen-activated protein kinase kinase 5 (MAP2K5), Splicing factor 3A subunit 1 (SF3A1) and ubiquitin carboxyl-terminal hydrolase 11 (USP11). The affinities of the resulting monobodies are typically in the single-digit nanomolar range. We demonstrate the utility of two binders by pulling down the targets from a spiked lysate of HeLa cells. This integrated approach should be applicable to directed evolution of any phage-displayed affinity reagent scaffold. PMID:26437402

  8. High affinity of lead for fetal haemoglobin.

    PubMed Central

    Ong, C N; Lee, W R

    1980-01-01

    In-vitro experiments using 203Pb were performed to identify lead-binding components in human haemoglobin. Sephadex A-50 ion-exchange chromatography of haemolysate showed that different types of haemoglobin had different affinities for lead. For the haemolysate from adults, lead was present in both Hb A (alpha 2 beta 2) and Hb A2 (alpha 2 delta 2), whereas, in the haemolysate from new-born infants, the haemoglobin of fetal origin, Hb F (alpha 2 gamma 2) showed a much greater affinity for 203Pb than the adult haemoglobin Hb A (alpha 2 beta 2), obtained from maternal blood. Analysis of the 203 Pb-labelled haemoglobin suggested that about 82% of 203Pb was in the globin polypeptide. Further analysis with carboxylmethyl (CM) cellulose chromatography indicated that the gamma globin of fetal origin had a higher affinity for 203Pb than the beta globin, whereas alpha globin appeared to be unimportant in lead binding. The results of the different affinities for lead of different Hb types are discussed with regard to the effect of lead upon haemoglobin synthesis. PMID:6158989

  9. Vygotsky's and Buber's Pedagogical Perspectives: Some Affinities

    ERIC Educational Resources Information Center

    Bartholo, Roberto; Tunes, Elizabeth; Tacca, Maria Carmen Villela Rosa

    2010-01-01

    The purpose of this paper is to examine the dialogical and creative character of pedagogic work by analyzing the affinities between Martin Buber's "I-Thou relation" and Lev Semenovich Vygotsky's "Zone of Proximal Development". Backed up by empirical studies on the teacher-student relation, we understand that education can only result in students'…

  10. Fan Affinity Laws from a Collision Model

    ERIC Educational Resources Information Center

    Bhattacharjee, Shayak

    2012-01-01

    The performance of a fan is usually estimated using hydrodynamical considerations. The calculations are long and involved and the results are expressed in terms of three affinity laws. In this paper we use kinetic theory to attack this problem. A hard sphere collision model is used, and subsequently a correction to account for the flow behaviour…

  11. Recovery of uranium from material containing iron, arsenic and siliceous matter

    SciTech Connect

    Weir, D.R.; Genik-Sas-Berezowsky, R.M.; Masters, I.M.

    1983-09-27

    A process is disclosed for the recovery of uranium values from uranium-containing material which also contains iron, arsenic and siliceous matter. The process includes leaching the uranium-containing material in aqueous sulphuric acid solution under conditions to provide dissolved iron present in the resultant leach solution as predominantly ferrous iron rather than ferric iron and/or to provide a sulphuric acid concentration in the leach solution sufficiently high to substantially prevent the precipitation of arsenates. Uranium values are recovered from the leach solution by solvent extraction agent which has little affinity for arsenic.

  12. Ciclopirox Olamine Treatment Affects the Expression Pattern of Candida albicans Genes Encoding Virulence Factors, Iron Metabolism Proteins, and Drug Resistance Factors

    PubMed Central

    Niewerth, Markus; Kunze, Donika; Seibold, Michael; Schaller, Martin; Korting, Hans Christian; Hube, Bernhard

    2003-01-01

    The hydroxypyridone ciclopirox olamine belongs to the antimycotic drugs used for the treatment of superficial mycoses. In contrast to the azoles and other antimycotic drugs, its specific mode of action is only poorly understood. To investigate the mode of action of ciclopirox olamine on fungal viability, pathogenicity, and drug resistance, we examined the expression patterns of 47 Candida albicans genes in cells grown in the presence of a subinhibitory concentration (0.6 μg/ml) of ciclopirox olamine by reverse transcription-PCR. In addition, we used suppression-subtractive hybridization to further identify genes that are up-regulated in the presence of ciclopirox olamine. The expression of essential genes such as ACT1 was not significantly modified in cells exposed to ciclopirox olamine. Most putative and known virulence genes such as genes encoding secreted proteinases or lipases had no or only moderately reduced expression levels. In contrast, exposure of cells to ciclopirox olamine led to a distinct up- or down-regulation of genes encoding iron permeases or transporters (FTR1, FTR2, FTH1), a copper permease (CCC2), an iron reductase (CFL1), and a siderophore transporter (SIT1); these effects resembled those found under iron-limited conditions. Addition of FeCl3 to ciclopirox olamine-treated cells reversed the effect of the drug. Addition of the iron chelator bipyridine to the growth medium induced similar patterns of expression of distinct iron-regulated genes (FTR1, FTR2). While serum-induced yeast-to-hyphal phase transition of C. albicans was not affected in ciclopirox olamine-treated cells in the presence of subinhibitory conditions, a dramatic increase in sensitivity to oxidative stress was noted, which may indicate the reduced activities of iron-containing gene products responsible for detoxification. Although the Candida drug resistance genes CDR1 and CDR2 were up-regulated, no change in resistance or increased tolerance could be observed even after an

  13. Identification of TbpA residues required for transferrin-iron utilization by Neisseria gonorrhoeae.

    PubMed

    Noto, Jennifer M; Cornelissen, Cynthia Nau

    2008-05-01

    Neisseria gonorrhoeae requires iron for survival in the human host and therefore expresses high-affinity receptors for iron acquisition from host iron-binding proteins. The gonococcal transferrin-iron uptake system is composed of two transferrin binding proteins, TbpA and TbpB. TbpA is a TonB-dependent, outer membrane transporter critical for iron acquisition, while TbpB is a surface-exposed lipoprotein that increases the efficiency of iron uptake. The precise mechanism by which TbpA mediates iron acquisition has not been elucidated; however, the process is distinct from those of characterized siderophore transporters. Similar to these TonB-dependent transporters, TbpA is proposed to have two distinct domains, a beta-barrel and a plug domain. We hypothesize that the TbpA plug coordinates iron and therefore potentially functions in multiple steps of transferrin-mediated iron acquisition. To test this hypothesis, we targeted a conserved motif within the TbpA plug domain and generated single, double, and triple alanine substitution mutants. Mutagenized TbpAs were expressed on the gonococcal cell surface and maintained wild-type transferrin binding affinity. Single alanine substitution mutants internalized iron at wild-type levels, while the double and triple mutants showed a significant decrease in iron uptake. Moreover, the triple alanine substitution mutant was unable to grow on transferrin as a sole iron source; however, expression of TbpB compensated for this defect. These data indicate that the conserved motif between residues 120 and 122 of the TbpA plug domain is critical for transferrin-iron utilization, suggesting that this region plays a role in iron acquisition that is shared by both TbpA and TbpB. PMID:18347046

  14. Siderophore-Based Iron Acquisition and Pathogen Control

    PubMed Central

    Miethke, Marcus; Marahiel, Mohamed A.

    2007-01-01

    Summary: High-affinity iron acquisition is mediated by siderophore-dependent pathways in the majority of pathogenic and nonpathogenic bacteria and fungi. Considerable progress has been made in characterizing and understanding mechanisms of siderophore synthesis, secretion, iron scavenging, and siderophore-delivered iron uptake and its release. The regulation of siderophore pathways reveals multilayer networks at the transcriptional and posttranscriptional levels. Due to the key role of many siderophores during virulence, coevolution led to sophisticated strategies of siderophore neutralization by mammals and (re)utilization by bacterial pathogens. Surprisingly, hosts also developed essential siderophore-based iron delivery and cell conversion pathways, which are of interest for diagnostic and therapeutic studies. In the last decades, natural and synthetic compounds have gained attention as potential therapeutics for iron-dependent treatment of infections and further diseases. Promising results for pathogen inhibition were obtained with various siderophore-antibiotic conjugates acting as “Trojan horse” toxins and siderophore pathway inhibitors. In this article, general aspects of siderophore-mediated iron acquisition, recent findings regarding iron-related pathogen-host interactions, and current strategies for iron-dependent pathogen control will be reviewed. Further concepts including the inhibition of novel siderophore pathway targets are discussed. PMID:17804665

  15. Iron and Diabetes Risk

    PubMed Central

    Simcox, Judith A.; McClain, Donald A.

    2013-01-01

    Iron overload is a risk factor for diabetes. The link between iron and diabetes was first recognized in pathologic conditions—hereditary hemochromatosis and thalassemia—but high levels of dietary iron also impart diabetes risk. Iron plays a direct and causal role in diabetes pathogenesis mediated both by β-cell failure and insulin resistance. Iron is also a factor in the regulation of metabolism in most tissues involved in fuel homeostasis, with the adipocyte in particular serving an iron-sensing role. The underlying molecular mechanisms mediating these effects are numerous and incompletely understood, but include oxidant stress and modulation of adipokines and intracellular signal transduction pathways. PMID:23473030

  16. Iron deficiency in Europe.

    PubMed

    Hercberg, S; Preziosi, P; Galan, P

    2001-04-01

    In Europe, iron deficiency is considered to be one of the main nutritional deficiency disorders affecting large fractions of the population, particularly such physiological groups as children, menstruating women and pregnant women. Some factors such as type of contraception in women, blood donation or minor pathological blood loss (haemorrhoids, gynaecological bleeding...) considerably increase the difficulty of covering iron needs. Moreover, women, especially adolescents consuming low-energy diets, vegetarians and vegans are at high risk of iron deficiency. Although there is no evidence that an absence of iron stores has any adverse consequences, it does indicate that iron nutrition is borderline, since any further reduction in body iron is associated with a decrease in the level of functional compounds such as haemoglobin. The prevalence of iron-deficient anaemia has slightly decreased in infants and menstruating women. Some positive factors may have contributed to reducing the prevalence of iron-deficiency anaemia in some groups of population: the use of iron-fortified formulas and iron-fortified cereals; the use of oral contraceptives and increased enrichment of iron in several countries; and the use of iron supplements during pregnancy in some European countries. It is possible to prevent and control iron deficiency by counseling individuals and families about sound iron nutrition during infancy and beyond, and about iron supplementation during pregnancy, by screening persons on the basis of their risk for iron deficiency, and by treating and following up persons with presumptive iron deficiency. This may help to reduce manifestations of iron deficiency and thus improve public health. Evidence linking iron status with risk of cardiovascular disease or cancer is unconvincing and does not justify changes in food fortification or medical practice, particularly because the benefits of assuring adequate iron intake during growth and development are well established

  17. A high-capacity RNA affinity column for the purification of human IRP1 and IRP2 overexpressed in Pichia pastoris

    PubMed Central

    ALLERSON, CHARLES R.; MARTINEZ, ALAN; YIKILMAZ, EMINE; ROUAULT, TRACEY A.

    2003-01-01

    Regulated expression of proteins involved in mammalian iron metabolism is achieved in part through the interaction of the iron regulatory proteins IRP1 and IRP2 with highly conserved RNA stem-loop structures, known as iron-responsive elements (IREs), that are located within the 5′ or 3′ untranslated regions of regulated transcripts. As part of an effort to determine the structures of the IRP–IRE complexes using crystallographic methods, we have developed an efficient process for obtaining functionally pure IRP1 and IRP2 that relies upon the improved overexpression (>10 mg of soluble IRP per liter of culture) of each human IRP in the yeast Pichia pastoris and large-scale purification using RNA affinity chromatography. Despite the utility of RNA affinity chromatography in the isolation of RNA-binding proteins, current methods for preparing RNA affinity matrices produce columns of low capacity and limited stability. To address these limitations, we have devised a simple method for preparing stable, reusable, high-capacity RNA affinity columns. This method utilizes a bifunctional linker to covalently join a 5′-amino tethered RNA with a thiol-modified Sepharose, and can be used to load 150 nmole or more of RNA per milliliter of solid support. We demonstrate here the use of an IRE affinity column in the large-scale purification of IRP1 and IRP2, and suggest that the convenience of this approach will prove attractive in the analysis of other RNA-binding proteins. PMID:12592010

  18. Magnetic particles as affinity matrix for purification of antithrombin

    NASA Astrophysics Data System (ADS)

    Mercês, A. A. D.; Maciel, J. C.; Carvalho Júnior, L. B.

    2015-11-01

    Immobilization of biomolecules onto insoluble supports is an important tool for the fabrication of a diverse range of functional materials. It provides advantages: enhanced stability and easy separation. In this work two different magnetic composites were synthesized (MAG-PANI-HS and mDAC-HS) to human antithrombin purification. The magnetic particles (MAG) were obtained by co-precipitation method of iron salts II and III and subsequently coated with polyaniline (MAG-PANI particles). Dacron (polyethylene terephthalate) suffered a hydrazinolysis reaction to obtain a powder (Dacron hydrazide) which was subsequently magnetized (mDAC particles) also by co-precipitation method. Heparan sulfate (HS) was immobilized to MAG-PANI and mDAC retained respectively 35μg and 38.6μg per of support. The magnetic composite containing HS immobilized (MAG-PANI-HS and mDAC-HS) was incubated with human blood plasma (1mL) and then washed with NaCl gradients. Electrophoresis of proteins present in eluates showed bands of antithrombin (58kDa). A reduction in the antithrombin activity was detected in plasma that were incubated in the composites magnetic with HS immobilized, suggesting that the antithrombin was removed of the human blood plasma and then purified. Therefore, the above results suggest that both preparations: MAG-PANI-HS and mDAC-HS are able to affinity purify antithrombin, an important component of blood coagulation.

  19. Ocean iron cycle

    NASA Astrophysics Data System (ADS)

    Boyd, Philip W.

    Interest in the biogeochemical cycle of iron has grown rapidly over the last two decades, due to the potential role of this element in modulating global climate in the geological past and ocean productivity in the present day. This trace metal has a disproportionately large effect (1 × 105 C:Fe) on photosynthetic carbon fixation by phytoplankton. In around one third of the open ocean, so-called high-nitrate low-chlorophyll (HNLC) regions, the resident phytoplankton have low growth rates despite an abundance of plant nutrients. This is due to the low supply of iron. Iron is present in the ocean in three phases, dissolved, colloidal, and particulate (biogenic and lithogenic). However, iron chemistry is complex with interactions between chemistry and biology such as the production of iron-binding siderophores by oceanic bacteria. This results in the interplay of inorganic chemistry, photochemistry, and organic complexation. Sources of new iron include dust deposition, upwelling of iron-rich deep waters, and the resuspension and lateral transport of sediments. Sinks for iron are mainly biological as evidenced by the vertical nutrient-like profile for dissolved iron in the ocean. Iron is rapidly recycled by the upper ocean biota within a so-called "ferrous wheel." The fe ratio [(new iron)/(new + regenerated iron)] provides an index of the relative supply of iron to the biota by new versus recycled iron. Over the last 15 years, interest in the potential role of iron in shaping climate in the geological past resulted in some of the most ambitious experiments in oceanography: large-scale (i.e., 50-1000 km2) iron enrichment of HNLC waters. They have provided valuable insights into how iron supply influences the biogeochemical cycles of elements such as carbon, sulfur, silicon, nitrogen, and phosphate.

  20. Interaction of transferrin and its iron-binding fragments with heparin.

    PubMed Central

    Regoeczi, E; Chindemi, P A; Hu, W L

    1994-01-01

    The interaction of heparin with transferrin (Tf; bovine and rat) and the isolated iron-binding lobes of bovine Tf were investigated. Affinity chromatography of rat Tf on heparin-agarose showed that interaction depended on both the iron content of Tf and the pH of the medium. Both the iron-free and iron-saturated forms of Tf were strongly bound by the column at pH 5.6, but only the iron-free form revealed significant affinity at pH 7.4. Desialylation of Tf moderately promoted interaction, treatment with cyclohexanedione moderately reduced interaction, and succinylation abolished it altogether. In the presence of heparin, iron release from the N-terminal lobe of native bovine Tf was accelerated and from the C-terminal lobe it was slightly reduced. The heparin effect remained qualitatively the same on each lobe after their separation by tryptic digestion and DEAE-cellulose chromatography. The affinity of native bovine Tf for heparin was very close to that of its isolated N-terminal lobe, thus suggesting that it is this portion of the molecule that binds to the glycosaminoglycan. It is concluded that the consequences for iron-binding strength of the two transferrin lobes are diagonally opposite when Tf is bound to heparin as opposed to its natural cell-surface receptor. PMID:8192672

  1. Defluoridation by Bacteriogenic Iron Oxides: Sorption Studies

    NASA Astrophysics Data System (ADS)

    Evans, K.; Ferris, F.

    2009-05-01

    At concentrations above 1 mg/L, fluoride in drinking water can lead to dental and skeletal fluorosis, a disease that causes mottling of the teeth, calcification of ligaments, crippling bone deformities and many other physiological disorders that can, ultimately, lead to death. Conservative estimates are that fluorosis afflicts tens of millions of people worldwide. As there is no treatment for fluorosis, prevention is the only means of controlling the disease. While numerous defluoridation techniques have been explored, no single method has been found to be both effective and inexpensive enough to implement widely. Our research began in India, with a large-scale geochemical study of the groundwater in a fluoride-contaminated region of Orissa. Having developed a better understanding of the geochemical relationships that exist between fluoride and other parameters present in an affected area, as well as the complex relationships that arise among those parameters that can impact the presence of fluoride, we began investigating certain remediation scenarios involving iron oxides. A common approach to remediation involves the partitioning of fluoride from groundwater by sorption onto a variety of materials, one of the most effective of which is iron oxide whose surface area acts as a scavenger for fluoride. In the presence of iron oxidizing bacteria, the oxidation rate of iron has been shown to be ˜6 times greater than in their absence; fluoride should, therefore, be removed from an aqueous environment by bacteriogenic iron oxides (BIOS) much more quickly than by abiotic iron oxides. Most recently, sorption studies have been conducted using both BIOS and synthetic hydrous ferric oxides in order to compare the behavior between biotic and abiotic sorbents. These studies have provided sorption isotherms that allow comparison of fluoride removed by sorption to BIOS versus synthetic iron oxides. Sorption affinity constants have also been determined, which allow for the

  2. Unexpected link between iron and drug resistance of Candida spp.: iron depletion enhances membrane fluidity and drug diffusion, leading to drug-susceptible cells.

    PubMed

    Prasad, Tulika; Chandra, Aparna; Mukhopadhyay, Chinmay K; Prasad, Rajendra

    2006-11-01

    Inthis study, we show that iron depletion in Candida albicans with bathophenanthrolene disulfonic acid and ferrozine as chelators enhanced its sensitivity to several drugs, including the most common antifungal, fluconazole (FLC). Several other species of Candida also displayed increased sensitivity to FLC because of iron restriction. Iron uptake mutations, namely, Deltaftr1 and Deltaftr2, as well as the copper transporter mutation Deltaccc2, which affects high-affinity iron uptake in Candida, produced increased sensitivity to FLC compared to that of the wild type. The effect of iron depletion on drug sensitivity appeared to be independent of the efflux pump proteins Cdr1p and Cdr2p. We found that iron deprivation led to lowering of membrane ergosterol by 15 to 30%. Subsequently, fluorescence polarization measurements also revealed that iron-restricted Candida cells displayed a 29 to 40% increase in membrane fluidity, resulting in enhanced passive diffusion of the drugs. Northern blot assays revealed that the ERG11 gene was considerably down regulated in iron-deprived cells, which might account for the lowered ergosterol content. Our results show a close relationship between cellular iron and drug susceptibilities of C. albicans. Considering that multidrug resistance is a manifestation of multifactorial phenomena, the influence of cellular iron on the drug susceptibilities of Candida suggests iron as yet another novel determinant of multidrug resistance. PMID:16954314

  3. Affinity purification of metalloprotease from marine bacterium using immobilized metal affinity chromatography.

    PubMed

    Li, Shangyong; Wang, Linna; Yang, Juan; Bao, Jing; Liu, Junzhong; Lin, Shengxiang; Hao, Jianhua; Sun, Mi

    2016-06-01

    In this study, an efficient affinity purification protocol for an alkaline metalloprotease from marine bacterium was developed using immobilized metal affinity chromatography. After screening and optimization of the affinity ligands and spacer arm lengths, Cu-iminmodiacetic acid was chosen as the optimal affinity ligand, which was coupled to Sepharose 6B via a 14-atom spacer arm. The absorption analysis of this medium revealed a desorption constant Kd of 21.5 μg/mL and a theoretical maximum absorption Qmax of 24.9 mg/g. Thanks to this affinity medium, the enzyme could be purified by only one affinity purification step with a purity of approximately 95% pure when analyzed by high-performance liquid chromatography and reducing sodium dodecyl sulfate polyacrylamide gel electrophoresis. The recovery of the protease activity reached 74.6%, which is much higher than the value obtained by traditional protocols (8.9%). These results contribute to the industrial purifications and contribute a significant reference for the purification of other metalloproteases. PMID:27058973

  4. Iron deprivation results in a rapid but not sustained increase of the expression of genes involved in iron metabolism and sulfate uptake in tomato (Solanum lycopersicum L.) seedlings.

    PubMed

    Paolacci, Anna Rita; Celletti, Silvia; Catarcione, Giulio; Hawkesford, Malcolm J; Astolfi, Stefania; Ciaffi, Mario

    2014-01-01

    Characterization of the relationship between sulfur and iron in both Strategy I and Strategy II plants, has proven that low sulfur availability often limits plant capability to cope with iron shortage. Here it was investigated whether the adaptation to iron deficiency in tomato (Solanum lycopersicum L.) plants was associated with an increased root sulfate uptake and translocation capacity, and modified dynamics of total sulfur and thiols accumulation between roots and shoots. Most of the tomato sulfate transporter genes belonging to Groups 1, 2, and 4 were significantly upregulated in iron-deficient roots, as it commonly occurs under S-deficient conditions. The upregulation of the two high affinity sulfate transporter genes, SlST1.1 and SlST1.2, by iron deprivation clearly suggests an increased root capability to take up sulfate. Furthermore, the upregulation of the two low affinity sulfate transporter genes SlST2.1 and SlST4.1 in iron-deficient roots, accompanied by a substantial accumulation of total sulfur and thiols in shoots of iron-starved plants, likely supports an increased root-to-shoot translocation of sulfate. Results suggest that tomato plants exposed to iron-deficiency are able to change sulfur metabolic balance mimicking sulfur starvation responses to meet the increased demand for methionine and its derivatives, allowing them to cope with this stress. PMID:24119307

  5. Iron losses in sweat

    SciTech Connect

    Brune, M.; Magnusson, B.; Persson, H.; Hallberg, L.

    1986-03-01

    The losses of iron in whole body cell-free sweat were determined in eleven healthy men. A new experimental design was used with a very careful cleaning procedure of the skin and repeated consecutive sampling periods of sweat in a sauna. The purpose was to achieve a steady state of sweat iron losses with minimal influence from iron originating from desquamated cells and iron contaminating the skin. A steady state was reached in the third sauna period (second sweat sampling period). Iron loss was directly related to the volume of sweat lost and amounted to 22.5 micrograms iron/l sweat. The findings indicate that iron is a physiological constituent of sweat and derived not only from contamination. Present results imply that variations in the amount of sweat lost will have only a marginal effect on the variation in total body iron losses.

  6. Iron Sucrose Injection

    MedlinePlus

    ... stop working). Iron sucrose injection is in a class of medications called iron replacement products. It works ... hands, feet, ankles, or lower legs; loss of consciousness; or seizures. If you experience a severe reaction, ...

  7. Serum iron test

    MedlinePlus

    ... GM. Disorders of iron homeostasis: iron deficiency and overload. In: Hoffman R, Benz EJ Jr, Silberstein LE, ... to achieve this important distinction for online health information and services. Learn more about A.D.A. ...

  8. Total iron binding capacity

    MedlinePlus

    ... GM. Disorders of iron homeostasis: iron deficiency and overload. In: Hoffman R, Benz EJ Jr, Silberstein LE, ... to achieve this important distinction for online health information and services. Learn more about A.D.A. ...

  9. Iron and Your Child

    MedlinePlus

    ... 24 months old. Serve iron-rich foods alongside foods containing vitamin C — such as tomatoes, broccoli, oranges, and strawberries — which improves the body's absorption of iron. Avoid serving coffee ...

  10. Iron supplements (image)

    MedlinePlus

    The mineral iron is an essential nutrient for humans because it is part of blood cells, which carry oxygen to all body cells. There is no conclusive evidence that iron supplements contribute to heart attacks.

  11. Iron in diet

    MedlinePlus

    Diet - iron; Ferric acid; Ferrous acid; Ferritin ... The human body needs iron to make the oxygen-carrying proteins hemoglobin and myoglobin. Hemoglobin is found in red blood cells and myoglobin is found ...

  12. Smooth big bounce from affine quantization

    NASA Astrophysics Data System (ADS)

    Bergeron, Hervé; Dapor, Andrea; Gazeau, Jean Pierre; Małkiewicz, Przemysław

    2014-04-01

    We examine the possibility of dealing with gravitational singularities on a quantum level through the use of coherent state or wavelet quantization instead of canonical quantization. We consider the Robertson-Walker metric coupled to a perfect fluid. It is the simplest model of a gravitational collapse, and the results obtained here may serve as a useful starting point for more complex investigations in the future. We follow a quantization procedure based on affine coherent states or wavelets built from the unitary irreducible representation of the affine group of the real line with positive dilation. The main issue of our approach is the appearance of a quantum centrifugal potential allowing for regularization of the singularity, essential self-adjointness of the Hamiltonian, and unambiguous quantum dynamical evolution.

  13. Improved native affinity purification of RNA.

    PubMed

    Batey, Robert T; Kieft, Jeffrey S

    2007-08-01

    RNA biochemical or structural studies often require an RNA sample that is chemically pure, and most protocols for its in vitro production use denaturing polyacrylamide gel electrophoresis to achieve this. Unfortunately, many RNAs do not quantitatively refold into an active conformation after denaturation, creating significant problems for downstream characterization or use. In addition, this traditional purification method is not amenable to studies demanding high-throughput RNA production. Recently, we presented the first general method for producing almost any RNA sequence that employs an affinity tag that is removed during the purification process. Because technical difficulties prevented application of this method to many RNAs, we have developed an improved version that utilizes a different activatable ribozyme and affinity tag that are considerably more robust, rapid, and broadly applicable. PMID:17548432

  14. Protein affinity map of chemical space.

    PubMed

    Kauvar, L M; Villar, H O; Sportsman, J R; Higgins, D L; Schmidt, D E

    1998-09-11

    Affinity fingerprinting is a quantitative method for mapping chemical space based on binding preferences of compounds for a reference panel of proteins. An effective reference panel of <20 proteins can be empirically selected which shows differential interaction with nearly all compounds. By using this map to iteratively sample the chemical space, identification of active ligands from a library of 30,000 candidate compounds has been accomplished for a wide spectrum of specific protein targets. In each case, <200 compounds were directly assayed against the target. Further, analysis of the fingerprint database suggests a strategy for effective selection of affinity chromatography ligands and scaffolds for combinatorial chemistry. With such a system, the large numbers of potential therapeutic targets emerging from genome research can be categorized according to ligand binding properties, complementing sequence based classification. PMID:9792501

  15. Affinity Chromatography in Nonionic Detergent Solutions

    NASA Astrophysics Data System (ADS)

    Robinson, Jack B.; Strottmann, James M.; Wick, Donald G.; Stellwagen, Earle

    1980-10-01

    Anionic dye affinity chromatography is commonly unproductive in the presence of nonionic detergents used to extract particulate proteins. Using lactate dehydrogenase as a model protein, Cibacron blue F3GA as a model dye, and Triton X-100 as a model detergent, we find that the dye is encapsulated in nonionic detergent micelles, rendering the dye incapable of ligation with the enzyme. However, the dye can be liberated from the micelles without altering the nonionic detergent concentration by addition of an anionic detergent, such as deoxycholate or sodium dodecyl sulfate, forming mixed anionic/nonionic micelles that displace the anionic dye. Encapsulation of the anionic detergents prevents their activity as protein denaturants. These observations have been successfully translated to the dye affinity chromatography of a detergent extract of brain particulate cyclic nucleotide phosphodiesterase.

  16. A MEMS Dielectric Affinity Glucose Biosensor.

    PubMed

    Huang, Xian; Li, Siqi; Davis, Erin; Li, Dachao; Wang, Qian; Lin, Qiao

    2013-06-20

    Continuous glucose monitoring (CGM) sensors based on affinity detection are desirable for long-term and stable glucose management. However, most affinity sensors contain mechanical moving structures and complex design in sensor actuation and signal readout, limiting their reliability in subcutaneously implantable glucose detection. We have previously demonstrated a proof-of-concept dielectric glucose sensor that measured pre-mixed glucose-sensitive polymer solutions at various glucose concentrations. This sensor features simplicity in sensor design, and possesses high specificity and accuracy in glucose detection. However, lack of glucose diffusion passage, this device is unable to fulfill real-time in-vivo monitoring. As a major improvement to this device, we present in this paper a fully implantable MEMS dielectric affinity glucose biosensor that contains a perforated electrode embedded in a suspended diaphragm. This capacitive-based sensor contains no moving parts, and enables glucose diffusion and real-time monitoring. The experimental results indicate that this sensor can detect glucose solutions at physiological concentrations and possesses good reversibility and reliability. This sensor has a time constant to glucose concentration change at approximately 3 min, which is comparable to commercial systems. The sensor has potential applications in fully implantable CGM that require excellent long-term stability and reliability. PMID:24511215

  17. On constructing purely affine theories with matter

    NASA Astrophysics Data System (ADS)

    Cervantes-Cota, Jorge L.; Liebscher, D.-E.

    2016-08-01

    We explore ways to obtain the very existence of a space-time metric from an action principle that does not refer to it a priori. Although there are reasons to believe that only a non-local theory can viably achieve this goal, we investigate here local theories that start with Schrödinger's purely affine theory (Schrödinger in Space-time structure. Cambridge UP, Cambridge, 1950), where he gave reasons to set the metric proportional to the Ricci curvature aposteriori. When we leave the context of unified field theory, and we couple the non-gravitational matter using some weak equivalence principle, we can show that the propagation of shock waves does not define a lightcone when the purely affine theory is local and avoids the explicit use of the Ricci tensor in realizing the weak equivalence principle. When the Ricci tensor is substituted for the metric, the equations seem to have only a very limited set of solutions. This backs the conviction that viable purely affine theories have to be non-local.

  18. Phosphopeptide Enrichment by Immobilized Metal Affinity Chromatography.

    PubMed

    Thingholm, Tine E; Larsen, Martin R

    2016-01-01

    Immobilized metal affinity chromatography (IMAC) has been the method of choice for phosphopeptide enrichment prior to mass spectrometric analysis for many years and it is still used extensively in many laboratories. Using the affinity of negatively charged phosphate groups towards positively charged metal ions such as Fe(3+), Ga(3+), Al(3+), Zr(4+), and Ti(4+) has made it possible to enrich phosphorylated peptides from peptide samples. However, the selectivity of most of the metal ions is limited, when working with highly complex samples, e.g., whole-cell extracts, resulting in contamination from nonspecific binding of non-phosphorylated peptides. This problem is mainly caused by highly acidic peptides that also share high binding affinity towards these metal ions. By lowering the pH of the loading buffer nonspecific binding can be reduced significantly, however with the risk of reducing specific binding capacity. After binding, the enriched phosphopeptides are released from the metal ions using alkaline buffers of pH 10-11, EDTA, or phosphate-containing buffers. Here we describe a protocol for IMAC using Fe(3+) for phosphopeptide enrichment. The principles are illustrated on a semi-complex peptide mixture. PMID:26584922

  19. Atypical iron storage in marine brown algae: a multidisciplinary study of iron transport and storage in Ectocarpus siliculosus

    PubMed Central

    Matzanke, Berthold F.; Küpper, Frithjof C.; Carrano, Carl J.

    2012-01-01

    Iron is an essential element for all living organisms due to its ubiquitous role in redox and other enzymes, especially in the context of respiration and photosynthesis. The iron uptake and storage systems of terrestrial/higher plants are now reasonably well understood, with two basic strategies for iron uptake being distinguished: strategy I plants use a mechanism involving induction of Fe(III)-chelate reductase (ferrireductase) and Fe(II) transporter proteins, while strategy II plants utilize high-affinity, iron-specific, binding compounds called phytosiderophores. In contrast, little is known about the corresponding systems in marine, plant-like lineages, particularly those of multicellular algae (seaweeds). Herein the first study of the iron uptake and storage mechanisms in the brown alga Ectocarpus siliculosus is reported. Genomic data suggest that Ectocarpus may use a strategy I approach. Short-term radio-iron uptake studies verified that iron is taken up by Ectocarpus in a time- and concentration-dependent manner consistent with an active transport process. Upon long-term exposure to 57Fe, two metabolites have been identified using a combination of Mössbauer and X-ray absorption spectroscopies. These include an iron–sulphur cluster accounting for ~26% of the total intracellular iron pool and a second component with spectra typical of a polymeric (Fe3+O6) system with parameters similar to the amorphous phosphorus-rich mineral core of bacterial and plant ferritins. This iron metabolite accounts for ~74% of the cellular iron pool and suggests that Ectocarpus contains a non-ferritin but mineral-based iron storage pool. PMID:22945940

  20. Mechanisms of iron acquisition by the human pathogens Neisseria meningitidis and Neisseria gonorrhoeae.

    PubMed

    Rohde, Kyle H; Dyer, David W

    2003-09-01

    It is well established that bacterial pathogenesis is dependent on the ability to acquire iron within the host. The success of the highly adapted obligate human pathogens Neisseria meningitidis (NM) and Neisseria gonorrhoeae (NG) can be attributed in part to the efficient utilization of multiple host iron (Fe) sources, allowing replication on mucosal surfaces, in the bloodstream, and intracellularly. Most Gram-negative bacterial strategies for scavenging iron from the human host rely on the TonB protein to energize active iron transport across the outer membrane. Pathogenic Neisseria express multiple high-affinity iron transporters including a family of two-component TonB-dependent receptors as well as multiple single-component TonB-dependent Fe transporters. This review describes our current understanding of the mechanisms Neisseria have evolved to utilize various iron sources encountered during infection of the human host. Recent studies have provided insight into the interaction of neisserial outer membrane receptors with host iron carrier proteins. Emerging structural information on neisserial iron transporters will be compared with the crystal structures and biochemical data available for homologous Escherichia coli TonB-dependent Fe-siderophore receptors. In the process, we will highlight the aspects of the iron transport process that are unique and those that remain to be experimentally demonstrated in Neisseria. These include receptor structure/function, the mechanism of iron removal from protein ligands, the fate of Fe and heme-Fe after traversing the outer membrane, and the role of TonB-associated energy in receptor functions. Finally, we will discuss regulatory mechanisms that control the expression of iron scavenging systems. The investigation of iron metabolism in NM and NG is important for understanding the biochemistry of this virulence factor, the development of vaccines targeted at outer membrane iron receptors, and therapeutic interventions

  1. Localization of Free Field Realizations of Affine Lie Algebras

    NASA Astrophysics Data System (ADS)

    Futorny, Vyacheslav; Grantcharov, Dimitar; Martins, Renato A.

    2015-04-01

    We use localization technique to construct new families of irreducible modules of affine Kac-Moody algebras. In particular, localization is applied to the first free field realization of the affine Lie algebra or, equivalently, to imaginary Verma modules.

  2. Iron, radiation, and cancer.

    PubMed Central

    Stevens, R G; Kalkwarf, D R

    1990-01-01

    Increased iron content of cells and tissue may increase the risk of cancer. In particular, high available iron status may increase the risk of a radiation-induced cancer. There are two possible mechanisms for this effect: iron can catalyze the production of oxygen radicals, and it may be a limiting nutrient to the growth and development of a transformed cell in vivo. Given the high available iron content of the western diet and the fact that the world is changing to the western model, it is important to determine if high iron increases the risk of cancer. PMID:2269234

  3. Iron deficiency anemia

    PubMed Central

    Naigamwalla, Dinaz Z.; Webb, Jinelle A.; Giger, Urs

    2012-01-01

    Iron is essential to virtually all living organisms and is integral to multiple metabolic functions. The most important function is oxygen transport in hemoglobin. Iron deficiency anemia in dogs and cats is usually caused by chronic blood loss and can be discovered incidentally as animals may have adapted to the anemia. Severe iron deficiency is characterized by a microcytic, hypochromic, potentially severe anemia with a variable regenerative response. Iron metabolism and homeostasis will be reviewed, followed by a discussion of diagnostic testing and therapeutic recommendations for dogs and cats with iron deficiency anemia. PMID:22942439

  4. [Iron function and carcinogenesis].

    PubMed

    Akatsuka, Shinya; Toyokuni, Shinya

    2016-07-01

    Though iron is an essential micronutrient for humans, the excess state is acknowledged to be associated with oncogenesis. For example, iron overload in the liver of the patients with hereditary hemocromatosis highly increases the risk of hepatocellular carcinoma. Also, as to asbestos-related mesothelioma, such kinds of asbestos with a higher iron content are considered to be more carcinogenic. Iron is a useful element, which enables fundamental functions for life such as oxygen carrying and electron transport. However, in the situation where organisms are unable to have good control of it, iron turns into a dangerous element which catalyzes generation of reactive oxygen. In this review, I first outline the relationships between iron and cancer in general, then give an explanation about iron-related animal carcinogenesis models. PMID:27455808

  5. High Affinity Binding of Indium and Ruthenium Ions by Gastrins

    PubMed Central

    Baldwin, Graham S.; George, Graham N.; Pushie, M. Jake

    2015-01-01

    The peptide hormone gastrin binds two ferric ions with high affinity, and iron binding is essential for the biological activity of non-amidated forms of the hormone. Since gastrins act as growth factors in gastrointestinal cancers, and as peptides labelled with Ga and In isotopes are increasingly used for cancer diagnosis, the ability of gastrins to bind other metal ions was investigated systematically by absorption spectroscopy. The coordination structures of the complexes were characterized by extended X-ray absorption fine structure (EXAFS) spectroscopy. Changes in the absorption of gastrin in the presence of increasing concentrations of Ga3+ were fitted by a 2 site model with dissociation constants (Kd) of 3.3 x 10−7 and 1.1 x 10−6 M. Although the absorption of gastrin did not change upon the addition of In3+ ions, the changes in absorbance on Fe3+ ion binding in the presence of indium ions were fitted by a 2 site model with Kd values for In3+ of 6.5 x 10−15 and 1.7 x 10−7 M. Similar results were obtained with Ru3+ ions, although the Kd values for Ru3+ of 2.6 x 10−13 and 1.2 x 10−5 M were slightly larger than observed for In3+. The structures determined by EXAFS all had metal:gastrin stoichiometries of 2:1 but, while the metal ions in the Fe, Ga and In complexes were bridged by a carboxylate and an oxygen with a metal-metal separation of 3.0–3.3 Å, the Ru complex clearly demonstrated a short range Ru—Ru separation, which was significantly shorter, at 2.4 Å, indicative of a metal-metal bond. We conclude that gastrin selectively binds two In3+ or Ru3+ ions, and that the affinity of the first site for In3+ or Ru3+ ions is higher than for ferric ions. Some of the metal ion-gastrin complexes may be useful for cancer diagnosis and therapy. PMID:26457677

  6. Monoubiquitin-dependent endocytosis of the iron-regulated transporter 1 (IRT1) transporter controls iron uptake in plants.

    PubMed

    Barberon, Marie; Zelazny, Enric; Robert, Stéphanie; Conéjéro, Geneviève; Curie, Cathy; Friml, Jìrí; Vert, Grégory

    2011-08-01

    Plants take up iron from the soil using the iron-regulated transporter 1 (IRT1) high-affinity iron transporter at the root surface. Sophisticated regulatory mechanisms allow plants to tightly control the levels of IRT1, ensuring optimal absorption of essential but toxic iron. Here, we demonstrate that overexpression of Arabidopsis thaliana IRT1 leads to constitutive IRT1 protein accumulation, metal overload, and oxidative stress. IRT1 is unexpectedly found in trans-Golgi network/early endosomes of root hair cells, and its levels and localization are unaffected by iron nutrition. Using pharmacological approaches, we show that IRT1 cycles to the plasma membrane to perform iron and metal uptake at the cell surface and is sent to the vacuole for proper turnover. We also prove that IRT1 is monoubiquitinated on several cytosol-exposed residues in vivo and that mutation of two putative monoubiquitination target residues in IRT1 triggers stabilization at the plasma membrane and leads to extreme lethality. Together, these data suggest a model in which monoubiquitin-dependent internalization/sorting and turnover keep the plasma membrane pool of IRT1 low to ensure proper iron uptake and to prevent metal toxicity. More generally, our work demonstrates the existence of monoubiquitin-dependent trafficking to lytic vacuoles in plants and points to proteasome-independent turnover of plasma membrane proteins. PMID:21628566

  7. Measuring an antibody affinity distribution molecule by molecule

    SciTech Connect

    Bradbury, Andrew M; Werner, James H; Temirov, Jamshid

    2008-01-01

    Single molecule fluorescence mIcroscopy was used to observe the binding and unbinding of hapten decorated quantum dots with individual surface immobilized antibodies. The fluorescence time history from an individual antibody site can be used to calculate its binding affinity. While quantum dot blinking occurs during these measurements, we describe a simple empirical method to correct the apparent/observed affinity to account for the blinking contribution. The combination of many single molecule affinity measurements from different antibodies yields not only the average affinity, it directly measures the full shape and character of the surface affinity distribution function.

  8. On the structure of self-affine convex bodies

    SciTech Connect

    Voynov, A S

    2013-08-31

    We study the structure of convex bodies in R{sup d} that can be represented as a union of their affine images with no common interior points. Such bodies are called self-affine. Vallet's conjecture on the structure of self-affine bodies was proved for d = 2 by Richter in 2011. In the present paper we disprove the conjecture for all d≥3 and derive a detailed description of self-affine bodies in R{sup 3}. Also we consider the relation between properties of self-affine bodies and functional equations with a contraction of an argument. Bibliography: 10 titles.

  9. Metal-affinity separations: A new dimension in protein processing

    SciTech Connect

    Arnold, F.H. )

    1991-02-01

    Rapid growth in the preparative and high-resolution analytical applications of metal-affinity chromatography demonstrate the appeal of metal recognition as a basis for protein separations. Stable, inexpensive chelated metals effectively mimic biospecific interactions, providing selective ligands for protein binding. This article reviews recent progress in understanding the mechanisms of metal-protein recognition that underlie metal-affinity separations. Also discussed are schemes for integrating metal-affinity purifications into the expression and bioprocessing of recombinant proteins. Promising future developments include new metal-affinity processes for analytical and preparative-scale separations and a range of techniques for enhancing the selectivity of metal-affinity separations.

  10. Avoiding degenerate coframes in an affine gauge approach to quantum gravity

    SciTech Connect

    Mielke, E.W.; McCrea, J.D.; Ne`eman, Y.; Hehl, F.W.

    1993-04-01

    This report discusses the following concepts on quantum gravity: The affine gauge approach; affine gauge transformations versus active differomorphisms; affine gauge approach to quantum gravity with topology change.

  11. Aluminum monocation basicity and affinity scales.

    PubMed

    Gal, Jean-François; Yáñez, Manuel; Mó, Otilia

    2015-01-01

    The experimental aspects of the determination of thermochemical data for the attachment of the aluminum monocation Al(+) to neutral atoms and molecules are reviewed. Literature aluminum cation affinities (enthalpy scale) and basicities (Gibbs energy scale) are tabulated and discussed. Ab initio quantum chemical calculations at the G4 level on 43 adducts provide a consistent picture of the energetics of the adducts and their structures. The Al(+)-ligand bonding is analyzed in terms of natural bond orbital and atom-in molecule analyses. A brief comparison of the Al(+) basicity scales and other gas- phase cation basicities is presented. PMID:26307732

  12. Contractions of affine Kac-Moody algebras

    NASA Astrophysics Data System (ADS)

    Daboul, J.; Daboul, C.; de Montigny, M.

    2008-08-01

    I review our recent work on contractions of affine Kac-Moody algebras (KMA) and present new results. We study generalized contractions of KMA with respect to their twisted and untwisted KM subalgebras. As a concrete example, we discuss contraction of D(1)4 and D(3)4, based on Z3-grading. We also describe examples of 'level-dependent' contractions, which are based on Z-gradings of KMA. Our work generalizes the Inönü-Wigner contraction of P. Majumdar in several directions. We also give an algorithm for constructing Kac-Moody-like algebras hat g for any Lie algebra g.

  13. The ubiquity of iron.

    PubMed

    Frey, Perry A; Reed, George H

    2012-09-21

    The importance of iron in living systems can be traced to the many complexes within which it is found, to its chemical mobility in undergoing oxidation-reduction reactions, and to the abundance of iron in Earth's crust. Iron is the most abundant element, by mass, in the Earth, constituting about 80% of the inner and outer cores of Earth. The molten outer core is about 8000 km in diameter, and the solid inner core is about 2400 km in diameter. Iron is the fourth most abundant element in Earth's crust. It is the chemically functional component of mononuclear iron complexes, dinuclear iron complexes, [2Fe-2S] and [4Fe-4S] clusters, [Fe-Ni-S] clusters, iron protophorphyrin IX, and many other complexes in protein biochemistry. Metals such as nickel, cobalt, copper, and manganese are present in the crust and could in principle function chemically in place of iron, but they are scarce in Earth's crust. Iron is plentiful because of its nuclear stability in stellar nuclear fusion reactions. It seems likely that other solid planets, formed by the same processes as Earth, would also foster the evolution of life and that iron would be similarly important to life on those planets as it is on Earth. PMID:22845493

  14. Iron deficiency anaemia.

    PubMed

    Lopez, Anthony; Cacoub, Patrice; Macdougall, Iain C; Peyrin-Biroulet, Laurent

    2016-02-27

    Anaemia affects roughly a third of the world's population; half the cases are due to iron deficiency. It is a major and global public health problem that affects maternal and child mortality, physical performance, and referral to health-care professionals. Children aged 0-5 years, women of childbearing age, and pregnant women are particularly at risk. Several chronic diseases are frequently associated with iron deficiency anaemia--notably chronic kidney disease, chronic heart failure, cancer, and inflammatory bowel disease. Measurement of serum ferritin, transferrin saturation, serum soluble transferrin receptors, and the serum soluble transferrin receptors-ferritin index are more accurate than classic red cell indices in the diagnosis of iron deficiency anaemia. In addition to the search for and treatment of the cause of iron deficiency, treatment strategies encompass prevention, including food fortification and iron supplementation. Oral iron is usually recommended as first-line therapy, but the most recent intravenous iron formulations, which have been available for nearly a decade, seem to replenish iron stores safely and effectively. Hepcidin has a key role in iron homoeostasis and could be a future diagnostic and therapeutic target. In this Seminar, we discuss the clinical presentation, epidemiology, pathophysiology, diagnosis, and acute management of iron deficiency anaemia, and outstanding research questions for treatment. PMID:26314490

  15. Aptamer Affinity Maturation by Resampling and Microarray Selection.

    PubMed

    Kinghorn, Andrew B; Dirkzwager, Roderick M; Liang, Shaolin; Cheung, Yee-Wai; Fraser, Lewis A; Shiu, Simon Chi-Chin; Tang, Marco S L; Tanner, Julian A

    2016-07-19

    Aptamers have significant potential as affinity reagents, but better approaches are critically needed to discover higher affinity nucleic acids to widen the scope for their diagnostic, therapeutic, and proteomic application. Here, we report aptamer affinity maturation, a novel aptamer enhancement technique, which combines bioinformatic resampling of aptamer sequence data and microarray selection to navigate the combinatorial chemistry binding landscape. Aptamer affinity maturation is shown to improve aptamer affinity by an order of magnitude in a single round. The novel aptamers exhibited significant adaptation, the complexity of which precludes discovery by other microarray based methods. Honing aptamer sequences using aptamer affinity maturation could help optimize a next generation of nucleic acid affinity reagents. PMID:27346322

  16. High-affinity Cyclic Peptide Matriptase Inhibitors*

    PubMed Central

    Quimbar, Pedro; Malik, Uru; Sommerhoff, Christian P.; Kaas, Quentin; Chan, Lai Y.; Huang, Yen-Hua; Grundhuber, Maresa; Dunse, Kerry; Craik, David J.; Anderson, Marilyn A.; Daly, Norelle L.

    2013-01-01

    The type II transmembrane serine protease matriptase is a key activator of multiple signaling pathways associated with cell proliferation and modification of the extracellular matrix. Deregulated matriptase activity correlates with a number of diseases, including cancer and hence highly selective matriptase inhibitors may have therapeutic potential. The plant-derived cyclic peptide, sunflower trypsin inhibitor-1 (SFTI-1), is a promising drug scaffold with potent matriptase inhibitory activity. In the current study we have analyzed the structure-activity relationships of SFTI-1 and Momordica cochinchinensis trypsin inhibitor-II (MCoTI-II), a structurally divergent trypsin inhibitor from Momordica cochinchinensis that also contains a cyclic backbone. We show that MCoTI-II is a significantly more potent matriptase inhibitor than SFTI-1 and that all alanine mutants of both peptides, generated using positional scanning mutagenesis, have decreased trypsin affinity, whereas several mutations either maintain or result in enhanced matriptase inhibitory activity. These intriguing results were used to design one of the most potent matriptase inhibitors known to date with a 290 pm equilibrium dissociation constant, and provide the first indication on how to modulate affinity for matriptase over trypsin in cyclic peptides. This information might be useful for the design of more selective and therapeutically relevant inhibitors of matriptase. PMID:23548907

  17. Heparin affinity purification of extracellular vesicles

    PubMed Central

    Balaj, Leonora; Atai, Nadia A.; Chen, Weilin; Mu, Dakai; Tannous, Bakhos A.; Breakefield, Xandra O.; Skog, Johan; Maguire, Casey A.

    2015-01-01

    Extracellular vesicles (EVs) are lipid membrane vesicles released by cells. They carry active biomolecules including DNA, RNA, and protein which can be transferred to recipient cells. Isolation and purification of EVs from culture cell media and biofluids is still a major challenge. The most widely used isolation method is ultracentrifugation (UC) which requires expensive equipment and only partially purifies EVs. Previously we have shown that heparin blocks EV uptake in cells, supporting a direct EV-heparin interaction. Here we show that EVs can be purified from cell culture media and human plasma using ultrafiltration (UF) followed by heparin-affinity beads. UF/heparin-purified EVs from cell culture displayed the EV marker Alix, contained a diverse RNA profile, had lower levels of protein contamination, and were functional at binding to and uptake into cells. RNA yield was similar for EVs isolated by UC. We were able to detect mRNAs in plasma samples with comparable levels to UC samples. In conclusion, we have discovered a simple, scalable, and effective method to purify EVs taking advantage of their heparin affinity. PMID:25988257

  18. Affine conformal vectors in space-time

    NASA Astrophysics Data System (ADS)

    Coley, A. A.; Tupper, B. O. J.

    1992-05-01

    All space-times admitting a proper affine conformal vector (ACV) are found. By using a theorem of Hall and da Costa, it is shown that such space-times either (i) admit a covariantly constant vector (timelike, spacelike, or null) and the ACV is the sum of a proper affine vector and a conformal Killing vector or (ii) the space-time is 2+2 decomposable, in which case it is shown that no ACV can exist (unless the space-time decomposes further). Furthermore, it is proved that all space-times admitting an ACV and a null covariantly constant vector (which are necessarily generalized pp-wave space-times) must have Ricci tensor of Segré type {2,(1,1)}. It follows that, among space-times admitting proper ACV, the Einstein static universe is the only perfect fluid space-time, there are no non-null Einstein-Maxwell space-times, and only the pp-wave space-times are representative of null Einstein-Maxwell solutions. Otherwise, the space-times can represent anisotropic fluids and viscous heat-conducting fluids, but only with restricted equations of state in each case.

  19. Fatigue damage prognosis using affine arithmetic

    NASA Astrophysics Data System (ADS)

    Gbaguidi, Audrey; Kim, Daewon

    2014-02-01

    Among the essential steps to be taken in structural health monitoring systems, damage prognosis would be the field that is least investigated due to the complexity of the uncertainties. This paper presents the possibility of using Affine Arithmetic for uncertainty propagation of crack damage in damage prognosis. The structures examined are thin rectangular plates made of titanium alloys with central mode I cracks and a composite plate with an internal delamination caused by mixed mode I and II fracture modes, under a harmonic uniaxial loading condition. The model-based method for crack growth rates are considered using the Paris Erdogan law model for the isotropic plates and the delamination growth law model proposed by Kardomateas for the composite plate. The parameters for both models are randomly taken and their uncertainties are considered as defined by an interval instead of a probability distribution. A Monte Carlo method is also applied to check whether Affine Arithmetic (AA) leads to tight bounds on the lifetime of the structure.

  20. Exploring Fluorous Affinity by Liquid Chromatography.

    PubMed

    Catani, Martina; Guzzinati, Roberta; Marchetti, Nicola; Pasti, Luisa; Cavazzini, Alberto

    2015-07-01

    Terms such as "fluorous affinity" and "fluorophilicity" have been used to describe the unique partition and sorption properties often exhibited by highly fluorinated organic compounds, that is molecules rich in sp(3) carbon-fluorine bonds. In this work, we made use of a highly fluorinated stationary phase and a series of benzene derivatives to study the effect of one single perfluorinated carbon on the chromatographic behavior and adsorption properties of molecules. For this purpose, the adsorption equilibria of α,α,α-trifluorotoluene, toluene, and other alkylbenzenes have been studied by means of nonlinear chromatography in a variety of acetonitrile/water eluents. Our results reveal that one single perfluorinated carbon is already enough to induce a drastic change in the adsorption properties of molecules on the perfluorinated stationary phase. In particular, it has been found that adsorption is monolayer if the perfluoroalkyl carbon is present but that, when this unit is missing, molecules arrange as multilayer stack structures. These findings can contribute to the understanding of molecular mechanisms of fluorous affinity. PMID:26047527

  1. Quantification of hydrophobic interaction affinity of colloids

    NASA Astrophysics Data System (ADS)

    Saini, G.; Nasholm, N.; Wood, B. D.

    2009-12-01

    Colloids play an important role in a wide variety of disciplines, including water and wastewater treatment, subsurface transport of metals and organic contaminants, migration of fines in oil reservoirs, biocolloid (virus and bacteria) transport in subsurface, and are integral to laboratory transport studies. Although the role of hydrophobicity in adhesion and transport of colloids, particularly bacteria, is well known; there is scarcity of literature regarding hydrophobicity measurement of non-bacterial colloids and other micron-sized particles. Here we detail an experimental approach based on differential partitioning of colloids between two liquid phases (hydrocarbon and buffer) as a measure of the hydrophobic interaction affinity of colloids. This assay, known as Microbial adhesion to hydrocarbons or MATH, is frequently used in microbiology and bacteriology for quantifying the hydrophobicity of microbes. Monodispersed colloids and particles, with sizes ranging from 1 micron to 33 micron, were used for the experiments. A range of hydrophobicity values were observed for different particles. The hydrophobicity results are also verified against water contact angle measurements of these particles. This liquid-liquid partitioning assay is quick, easy-to-perform and requires minimal instrumentation. Estimation of the hydrophobic interaction affinity of colloids would lead to a better understanding of their adhesion to different surfaces and subsequent transport in porous media.

  2. Brain iron homeostasis.

    PubMed

    Moos, Torben

    2002-11-01

    Iron is essential for virtually all types of cells and organisms. The significance of the iron for brain function is reflected by the presence of receptors for transferrin on brain capillary endothelial cells. The transport of iron into the brain from the circulation is regulated so that the extraction of iron by brain capillary endothelial cells is low in iron-replete conditions and the reverse when the iron need of the brain is high as in conditions with iron deficiency and during development of the brain. Whereas there is good agreement that iron is taken up by means of receptor-mediated uptake of iron-transferrin at the brain barriers, there are contradictory views on how iron is transported further on from the brain barriers and into the brain extracellular space. The prevailing hypothesis for transport of iron across the BBB suggests a mechanism that involves detachment of iron from transferrin within barrier cells followed by recycling of apo-transferrin to blood plasma and release of iron as non-transferrin-bound iron into the brain interstitium from where the iron is taken up by neurons and glial cells. Another hypothesis claims that iron-transferrin is transported into the brain by means of transcytosis through the BBB. This thesis deals with the topic "brain iron homeostasis" defined as the attempts to maintain constant concentrations of iron in the brain internal environment via regulation of iron transport through brain barriers, cellular iron uptake by neurons and glia, and export of iron from brain to blood. The first part deals with transport of iron-transferrin complexes from blood to brain either by transport across the brain barriers or by uptake and retrograde axonal transport in motor neurons projecting beyond the blood-brain barrier. The transport of iron and transport into the brain was examined using radiolabeled iron-transferrin. Intravenous injection of [59Fe-125]transferrin led to an almost two-fold higher accumulation of 59Fe than of

  3. Ceruloplasmin ferroxidase activity stimulates cellular iron uptake by a trivalent cation-specific transport mechanism

    NASA Technical Reports Server (NTRS)

    Attieh, Z. K.; Mukhopadhyay, C. K.; Seshadri, V.; Tripoulas, N. A.; Fox, P. L.

    1999-01-01

    The balance required to maintain appropriate cellular and tissue iron levels has led to the evolution of multiple mechanisms to precisely regulate iron uptake from transferrin and low molecular weight iron chelates. A role for ceruloplasmin (Cp) in vertebrate iron metabolism is suggested by its potent ferroxidase activity catalyzing conversion of Fe2+ to Fe3+, by identification of yeast copper oxidases homologous to Cp that facilitate high affinity iron uptake, and by studies of "aceruloplasminemic" patients who have extensive iron deposits in multiple tissues. We have recently shown that Cp increases iron uptake by cultured HepG2 cells. In this report, we investigated the mechanism by which Cp stimulates cellular iron uptake. Cp stimulated the rate of non-transferrin 55Fe uptake by iron-deficient K562 cells by 2-3-fold, using a transferrin receptor-independent pathway. Induction of Cp-stimulated iron uptake by iron deficiency was blocked by actinomycin D and cycloheximide, consistent with a transcriptionally induced or regulated transporter. Cp-stimulated iron uptake was completely blocked by unlabeled Fe3+ and by other trivalent cations including Al3+, Ga3+, and Cr3+, but not by divalent cations. These results indicate that Cp utilizes a trivalent cation-specific transporter. Cp ferroxidase activity was required for iron uptake as shown by the ineffectiveness of two ferroxidase-deficient Cp preparations, copper-deficient Cp and thiomolybdate-treated Cp. We propose a model in which iron reduction and subsequent re-oxidation by Cp are essential for an iron uptake pathway with high ion specificity.

  4. Mechanisms of mammalian iron homeostasis

    PubMed Central

    Pantopoulos, Kostas; Porwal, Suheel Kumar; Tartakoff, Alan; Devireddy, L.

    2012-01-01

    Iron is vital for almost all organisms because of its ability to donate and accept electrons with relative ease. It serves as a cofactor for many proteins and enzymes necessary for oxygen and energy metabolism, as well as for several other essential processes. Mammalian cells utilize multiple mechanisms to acquire iron. Disruption of iron homeostasis is associated with various human diseases: iron deficiency resulting from defects in acquisition or distribution of the metal causes anemia; whereas iron surfeit resulting from excessive iron absorption or defective utilization causes abnormal tissue iron deposition, leading to oxidative damage. Mammals utilize distinct mechanisms to regulate iron homeostasis at the systemic and cellular levels. These involve the hormone hepcidin and iron regulatory proteins, which collectively ensure iron balance. This review outlines recent advances in iron regulatory pathways, as well as in mechanisms underlying intracellular iron trafficking, an important but less-studied area of mammalian iron homeostasis. PMID:22703180

  5. Iron and transfusion medicine.

    PubMed

    Waldvogel-Abramovski, Sophie; Waeber, Gérard; Gassner, Christoph; Buser, Andreas; Frey, Beat M; Favrat, Bernard; Tissot, Jean-Daniel

    2013-11-01

    Blood bankers have focused their energy to secure blood transfusion, and only recently have studies been published on the effect of blood donation on iron metabolism. In many facilities, hemoglobin measurement is only performed just before or even during blood donation, but the determination of iron stores is largely ignored. The 2013 paradox of transfusion medicine is due to the fact that blood donation may be harmful and leads to iron deficiency with or without anemia, but for other individuals, it may be a healthy measure preventing type 2 diabetes. The purpose of this review is to discuss iron metabolism in the perspective of blood donation, notably regarding their possible genetic profiles that eventually will discriminate "good" iron absorbers from "bad" iron responders. PMID:24148756

  6. IRON IN MULTIPLE MYELOMA

    PubMed Central

    VanderWall, Kristina; Daniels-Wells, Tracy R; Penichet, Manuel; Lichtenstein, Alan

    2013-01-01

    Multiple myeloma is a non-curable B cell malignancy in which iron metabolism plays an important role. Patients with this disorder almost universally suffer from a clinically significant anemia, which is often symptomatic, and which is due to impaired iron utilization. Recent studies indicate that the proximal cause of dysregulated iron metabolism and anemia in these patients is cytokine-induced upregulation of hepcidin expression. Malignant myeloma cells are dependent on an increased influx of iron and therapeutic efforts are being made to target this requirement. The studies detailing the characteristics and biochemical abnormalities in iron metabolism causing anemia and the initial attempts to target iron therapeutically are described in this review. PMID:23879589

  7. Cellular iron transport.

    PubMed

    Garrick, Michael D; Garrick, Laura M

    2009-05-01

    Iron has a split personality as an essential nutrient that also has the potential to generate reactive oxygen species. We discuss how different cell types within specific tissues manage this schizophrenia. The emphasis in enterocytes is on regulating the body's supply of iron by regulating transport into the blood stream. In developing red blood cells, adaptations in transport manage the body's highest flux of iron. Hepatocytes buffer the body's stock of iron. Macrophage recycle the iron from effete red cells among other iron management tasks. Pneumocytes provide a barrier to prevent illicit entry that, when at risk of breaching, leads to a need to handle the dangers in a fashion essentially shared with macrophage. We also discuss or introduce cell types including renal cells, neurons, other brain cells, and more where our ignorance, currently still vast, needs to be removed by future research. PMID:19344751

  8. Affinity Crystallography: A New Approach to Extracting High-Affinity Enzyme Inhibitors from Natural Extracts.

    PubMed

    Aguda, Adeleke H; Lavallee, Vincent; Cheng, Ping; Bott, Tina M; Meimetis, Labros G; Law, Simon; Nguyen, Nham T; Williams, David E; Kaleta, Jadwiga; Villanueva, Ivan; Davies, Julian; Andersen, Raymond J; Brayer, Gary D; Brömme, Dieter

    2016-08-26

    Natural products are an important source of novel drug scaffolds. The highly variable and unpredictable timelines associated with isolating novel compounds and elucidating their structures have led to the demise of exploring natural product extract libraries in drug discovery programs. Here we introduce affinity crystallography as a new methodology that significantly shortens the time of the hit to active structure cycle in bioactive natural product discovery research. This affinity crystallography approach is illustrated by using semipure fractions of an actinomycetes culture extract to isolate and identify a cathepsin K inhibitor and to compare the outcome with the traditional assay-guided purification/structural analysis approach. The traditional approach resulted in the identification of the known inhibitor antipain (1) and its new but lower potency dehydration product 2, while the affinity crystallography approach led to the identification of a new high-affinity inhibitor named lichostatinal (3). The structure and potency of lichostatinal (3) was verified by total synthesis and kinetic characterization. To the best of our knowledge, this is the first example of isolating and characterizing a potent enzyme inhibitor from a partially purified crude natural product extract using a protein crystallographic approach. PMID:27498895

  9. Austempered Ductile Iron Machining

    NASA Astrophysics Data System (ADS)

    Pilc, Jozef; Šajgalík, Michal; Holubják, Jozef; Piešová, Marianna; Zaušková, Lucia; Babík, Ondrej; Kuždák, Viktor; Rákoci, Jozef

    2015-12-01

    This article deals with the machining of cast iron. In industrial practice, Austempered Ductile Iron began to be used relatively recently. ADI is ductile iron that has gone through austempering to get improved properties, among which we can include strength, wear resistance or noise damping. This specific material is defined also by other properties, such as high elasticity, ductility and endurance against tenigue, which are the properties, that considerably make the tooling characteristic worse.

  10. Expression of Multidrug Resistance Efflux Pump Gene norA Is Iron Responsive in Staphylococcus aureus

    PubMed Central

    Deng, Xin; Sun, Fei; Ji, Quanjiang; Liang, Haihua; Missiakas, Dominique; Lan, Lefu

    2012-01-01

    Staphylococcus aureus utilizes efflux transporter NorA to pump out a wide range of structurally dissimilar drugs, conferring low-level multidrug resistance. The regulation of norA expression has yet to be fully understood although past studies have revealed that this gene is under the control of the global transcriptional regulator MgrA and the two-component system ArlRS. To identify additional regulators of norA, we screened a transposon library in strain Newman expressing the transcriptional fusion norA-lacZ for altered β-galactosidase activity. We identify a transposon insertion in fhuB, a gene that encodes a ferric hydroxamate uptake system permease, and propose that the norA transcription is iron responsive. In agreement with this observation, addition of FeCl3 repressed the induction of norA-lacZ, suggesting that bacterial iron uptake plays an important role in regulating norA transcription. In addition, a fur (ferric uptake regulator) deletion exhibited compromised norA transcription and reduced resistance to quinolone compared to the wild-type strain, indicating that fur functions as a positive regulator of norA. A putative Fur box identified in the promoter region of norA was confirmed by electrophoretic mobility shift and DNase I footprint assays. Finally, by employing a siderophore secretion assay, we reveal that NorA may contribute to the export of siderophores. Collectively, our experiments uncover some novel interactions between cellular iron level and norA regulation in S. aureus. PMID:22267518

  11. Physics of iron

    SciTech Connect

    Anderson, O.

    1993-10-01

    This volume comprises papers presented at the AIRAPT Conference, June 28 to July 1993. The iron sessions at the meeting were identified as the Second Ironworkers Convention. The renewal of interest stems from advances in technologies in both diamond-anvil cell (DAC) and shock wave studies as well as from controversies arising from a lack of consensus among both experimentalists and theoreticians. These advances have produced new data on iron in the pressure-temperature regime of interest for phase diagrams and for temperatures of the core/mantle and inner-core/outer-core boundaries. Particularly interesting is the iron phase diagram inferred from DAC studies. A new phase, {beta}, with a {gamma}-{beta}-{epsilon} triple point at about 30 GPa and 1190 K, and possible sixth phase, {omega}, with an {epsilon}-{Theta}-melt triple point at about 190 GPa and 4000 K are deemed possible. The importance of the equation of state of iron in consideration of Earth`s heat budget and the origin of its magnetic field invoke the interest of theoreticians who argue on the basis of molecular dynamics and other first principles methods. While the major thrust of both meetings was on the physics of pure iron, there was notable contributions on iron alloys. Hydrogen-iron alloys, iron-sulfur liquids, and the comparability to rhenium in phase diagram studies are discussed. The knowledge of the physical properties of iron were increased by several contributions.

  12. Physiology of Iron Metabolism

    PubMed Central

    Waldvogel-Abramowski, Sophie; Waeber, Gérard; Gassner, Christoph; Buser, Andreas; Frey, Beat M.; Favrat, Bernard; Tissot, Jean-Daniel

    2014-01-01

    Summary A revolution occurred during the last decade in the comprehension of the physiology as well as in the physiopathology of iron metabolism. The purpose of this review is to summarize the recent knowledge that has accumulated, allowing a better comprehension of the mechanisms implicated in iron homeostasis. Iron metabolism is very fine tuned. The free molecule is very toxic; therefore, complex regulatory mechanisms have been developed in mammalian to insure adequate intestinal absorption, transportation, utilization, and elimination. ‘Ironomics’ certainly will be the future of the understanding of genes as well as of the protein-protein interactions involved in iron metabolism. PMID:25053935

  13. 35. GREY IRON TUMBLERS, IN THE GREY IRON FOUNDRY ROTATE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. GREY IRON TUMBLERS, IN THE GREY IRON FOUNDRY ROTATE CASTINGS WITH SHOT TO REMOVE AND SURFACE OXIDES AND REMAINING EXCESS METALS. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  14. Structure of a High-Affinity

    SciTech Connect

    Saphire, E.O.; Montero, M.; Menendez, A.; Houten, N.E.van; Irving, M.B.; Pantophlet, R.; Swick, M.B.; Parren, P.W.H.I.; Burton, D.R.; Scott, J.K.; Wilson, I.A.; /Scripps Res. Inst. /Simon Fraser U. /British Columbia U.

    2007-07-13

    The human antibody b12 recognizes a discontinuous epitope on gp120 and is one of the rare monoclonal antibodies that neutralize a broad range of primary human immunodeficiency virus type 1 (HIV-1) isolates. We previously reported the isolation of B2.1, a dimeric peptide that binds with high specificity to b12 and competes with gp120 for b12 antibody binding. Here, we show that the affinity of B2.1 was improved 60-fold over its synthetic-peptide counterpart by fusing it to the N terminus of a soluble protein. This affinity, which is within an order of magnitude of that of gp120, probably more closely reflects the affinity of the phage-borne peptide. The crystal structure of a complex between Fab of b12 and B2.1 was determined at 1.8 Angstrom resolution. The structural data allowed the differentiation of residues that form critical contacts with b12 from those required for maintenance of the antigenic structure of the peptide, and revealed that three contiguous residues mediate B2.1's critical contacts with b12. This single region of critical contact between the B2.1 peptide and the b12 paratope is unlikely to mimic the discontinuous key binding residues involved in the full b12 epitope for gp120, as previously identified by alanine scanning substitutions on the gp120 surface. These structural observations are supported by experiments that demonstrate that B2.1 is an ineffective immunogenic mimic of the b12 epitope on gp120. Indeed, an extensive series of immunizations with B2.1 in various forms failed to produce gp120 cross-reactive sera. The functional and structural data presented here, however, suggest that the mechanism by which b12 recognizes the two antigens is very different. Here, we present the first crystal structure of peptide bound to an antibody that was originally raised against a discontinuous protein epitope. Our results highlight the challenge of producing immunogens that mimic discontinuous protein epitopes, and the necessity of combining

  15. Multimodal Iron Oxide Nanoparticles for Hybrid Biomedical Imaging

    PubMed Central

    Heidt, Timo; Nahrendorf, Matthias

    2012-01-01

    Iron oxide core nanoparticles are attractive imaging agents because their material properties allow the tuning of pharmacokinetics as well as attachment of multiple moieties to their surface. In addition to affinity ligands, these include fluorochromes and radioisotopes for detection with optical and nuclear imaging. As the iron oxide core can be detected by MRI, options for combining imaging modalities are manifold. Already, preclinical imaging strategies combine non-invasive imaging with higher resolution techniques such as intravital microscopy to gain unprecedented insight into steady state biology and disease. Going forward, hybrid iron oxide nanoparticles will likely help to merge modalities, creating a synergy that enables imaging in basic research and, potentially, also in the clinic. PMID:23065771

  16. Microbial siderophore-based iron assimilation and therapeutic applications.

    PubMed

    Li, Kunhua; Chen, Wei-Hung; Bruner, Steven D

    2016-06-01

    Siderophores are structurally diverse, complex natural products that bind metals with extraordinary specificity and affinity. The acquisition of iron is critical for the survival and virulence of many pathogenic microbes and diverse strategies have evolved to synthesize, import and utilize iron. There has been a substantial increase of known siderophore scaffolds isolated and characterized in the past decade and the corresponding biosynthetic gene clusters have provided insight into the varied pathways involved in siderophore biosynthesis, delivery and utilization. Additionally, therapeutic applications of siderophores and related compounds are actively being developed. The study of biosynthetic pathways to natural siderophores augments the understanding of the complex mechanisms of bacterial iron acquisition, and enables a complimentary approach to address virulence through the interruption of siderophore biosynthesis or utilization by targeting the key enzymes to the siderophore pathways. PMID:27146331

  17. Involvement of NRAMP1 from Arabidopsis thaliana in iron transport.

    PubMed Central

    Curie, C; Alonso, J M; Le Jean, M; Ecker, J R; Briat, J F

    2000-01-01

    Nramp genes code for a widely distributed class of proteins involved in a variety of processes, ranging from the control of susceptibility to bacterial infection in mammalian cells and taste behaviour in Drosophila to manganese uptake in yeast. Some of the NRAMP proteins in mammals and in yeast are capable of transporting metal ions, including iron. In plants, iron transport was shown to require a reduction/Fe(II) transport system. In Arabidopsis thaliana this process involves the IRT1 and Fro2 genes. Here we report the sequence of five NRAMP proteins from A. thaliana. Sequence comparison suggests that there are two classes of NRAMP proteins in plants: A. thaliana (At) NRAMP1 and Oriza sativa (Os) NRAMP1 and 3 (two rice isologues) represent one class, and AtNRAMP2-5 and OsNRAMP2 the other. AtNramp1 and OsNramp1 are able to complement the fet3fet4 yeast mutant defective both in low- and high-affinity iron transports, whereas AtNramp2 and OsNramp2 fail to do so. In addition, AtNramp1 transcript, but not AtNramp2 transcript, accumulates in response to iron deficiency in roots but not in leaves. Finally, overexpression of AtNramp1 in transgenic A. thaliana plants leads to an increase in plant resistance to toxic iron concentration. Taken together, these results demonstrate that AtNramp1 participates in the control of iron homoeostasis in plants. PMID:10769179

  18. Involvement of NRAMP1 from Arabidopsis thaliana in iron transport.

    PubMed

    Curie, C; Alonso, J M; Le Jean, M; Ecker, J R; Briat, J F

    2000-05-01

    Nramp genes code for a widely distributed class of proteins involved in a variety of processes, ranging from the control of susceptibility to bacterial infection in mammalian cells and taste behaviour in Drosophila to manganese uptake in yeast. Some of the NRAMP proteins in mammals and in yeast are capable of transporting metal ions, including iron. In plants, iron transport was shown to require a reduction/Fe(II) transport system. In Arabidopsis thaliana this process involves the IRT1 and Fro2 genes. Here we report the sequence of five NRAMP proteins from A. thaliana. Sequence comparison suggests that there are two classes of NRAMP proteins in plants: A. thaliana (At) NRAMP1 and Oriza sativa (Os) NRAMP1 and 3 (two rice isologues) represent one class, and AtNRAMP2-5 and OsNRAMP2 the other. AtNramp1 and OsNramp1 are able to complement the fet3fet4 yeast mutant defective both in low- and high-affinity iron transports, whereas AtNramp2 and OsNramp2 fail to do so. In addition, AtNramp1 transcript, but not AtNramp2 transcript, accumulates in response to iron deficiency in roots but not in leaves. Finally, overexpression of AtNramp1 in transgenic A. thaliana plants leads to an increase in plant resistance to toxic iron concentration. Taken together, these results demonstrate that AtNramp1 participates in the control of iron homoeostasis in plants. PMID:10769179

  19. Mechanism of iron uptake by the pathogenic yeast, Candida albicans

    SciTech Connect

    Ismail, A.

    1986-01-01

    C. albicans requires iron for growth and phenotypic development. When deprived of iron, mycelium and bud formation was suppressed. Survival of the organism was also reduced under iron-limiting conditions. The combination of elevated temperature and iron-deprivation further reduced phenotypic development and survival of the yeast. The combination of elevated temperature and iron starvation resulted in a decrease in both the growth rate and siderophore production. However, with time, the cells were able to show partial recovery in the growth rate which occurred concomitantly with an increase in siderophore production. In order for siderophores to be utilized, ferri-siderophore receptors must be produced. The receptor was shown to be located in the plasma membrane of the yeast. Scatchard analysis of the binding of ferri-siderophores to plasma membrane receptors showed an increase in receptor affinity and number of binding sites in iron-starved cells when compared to control cells. Autoradiograms of the /sup 58/Fe-siderophore-protein complex following SDS-PAGE separation of candidal proteins revealed the presence of a ferri-siderophore receptor of approximately 10,000 daltons. C. albicans strains which lacked the ability to synthesize phenolate siderophore maintained a phenolate receptor and bound candidal phenolate siderophore better than non-candidal phenolate siderophores.

  20. Iron-impregnated granular activated carbon for arsenic removal from drinking water

    NASA Astrophysics Data System (ADS)

    Chang, Qigang

    A new multi-step iron impregnation method was developed in this study to impregnate GAC with a high amount of iron that possesses desired characteristics: stable, even distribution, and high arsenic adsorption capacity. Research was carried out to investigate the impact of the amount of impregnated iron on arsenic adsorption properties: capacity, affinity, and kinetics. Fe-GACs were characterized in terms of the amount, stability, distribution, morphology, and species of impregnated iron. It was found that a high amount of iron was stably impregnated in GAC. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis demonstrated that the impregnated iron was evenly distributed on the internal surface of GAC. Impregnated iron formed nano-size particles and existed in both crystalline (akaganeite) and amorphous iron. Arsenic adsorption tests were conducted using Fe-GACs with iron content of 1.64--28.90% in a low arsenic concentration that is typical for drinking water treatment. The amount of impregnated iron affects arsenic maximum adsorption capacity (qm) but has little impact on the Langmuir constant h (the affinity of adsorbent for adsorbate). The qm for both As(V) and As(III) adsorptions increased significantly with increase of the amount of impregnated iron up to 13.59%. Further increase of iron amounts caused a gradual decrease of qm for As(V). BET analysis indicated impregnated iron possesses the highest surface area at iron content of 13.59%. A new second-order kinetic model was developed to investigate the impact of the amounts of impregnated iron on arsenic adsorption kinetics. With iron content increased from 1.64% to 28.90%, the intrinsic adsorption rate constants reduced from 4.6x10-2 1/hr to 1.18x10 -3 1/hr, which indicates that impregnated iron slows arsenic intraparticle diffusion rate in Fe-GAC. The decreased arsenic intraparticle diffusion rate was most likely caused by reduced pore size of Fe-GACs. Column tests were

  1. IdeR is required for iron homeostasis and virulence in Mycobacterium tuberculosis

    PubMed Central

    Pandey, Ruchi; Rodriguez, G. Marcela

    2013-01-01

    Iron is an essential but potentially harmful nutrient, poorly soluble in aerobic conditions, and not-freely available in the human host. To acquire iron, bacteria have evolved high affinity iron acquisition systems that are expressed under iron limitation often in conjunction with virulence determinants. Because excess iron can be dangerous, intracellular iron must be tightly controlled. In mycobacteria, IdeR functions as a global iron dependent transcriptional regulator, but because inactivation of ideR is lethal for Mycobacterium tuberculosis, it has not been possible to use genetics to fully characterize this protein’s function or examine the requirement of iron regulation during tuberculosis infection. In this work, a conditional M. tuberculosis ideR mutant was generated and used to study the basis of IdeR’s essentiality. This investigation uncovered positive regulation of iron storage as a critical aspect of IdeR’s function in regular culture and a prominent factor for survival under stresses associated with life in macrophages. Moreover, this study demonstrates that IdeR is indispensable in the mouse model of tuberculosis, thereby linking iron homeostasis to virulence in M. tuberculosis. PMID:24205844

  2. Automatic gesture analysis using constant affine velocity.

    PubMed

    Cifuentes, Jenny; Boulanger, Pierre; Pham, Minh Tu; Moreau, Richard; Prieto, Flavio

    2014-01-01

    Hand human gesture recognition has been an important research topic widely studied around the world, as this field offers the ability to identify, recognize, and analyze human gestures in order to control devices or to interact with computer interfaces. In particular, in medical training, this approach is an important tool that can be used to obtain an objective evaluation of a procedure performance. In this paper, some obstetrical gestures, acquired by a forceps, were studied with the hypothesis that, as the scribbling and drawing movements, they obey the one-sixth power law, an empirical relationship which connects path curvature, torsion, and euclidean velocity. Our results show that obstetrical gestures have a constant affine velocity, which is different for each type of gesture and based on this idea this quantity is proposed as an appropriate classification feature in the hand human gesture recognition field. PMID:25570332

  3. Effectively nonlocal metric-affine gravity

    NASA Astrophysics Data System (ADS)

    Golovnev, Alexey; Koivisto, Tomi; Sandstad, Marit

    2016-03-01

    In metric-affine theories of gravity such as the C-theories, the spacetime connection is associated to a metric that is nontrivially related to the physical metric. In this article, such theories are rewritten in terms of a single metric, and it is shown that they can be recast as effectively nonlocal gravity. With some assumptions, known ghost-free theories with nonsingular and cosmologically interesting properties may be recovered. Relations between different formulations are analyzed at both perturbative and nonperturbative levels, taking carefully into account subtleties with boundary conditions in the presence of integral operators in the action, and equivalences between theories related by nonlocal redefinitions of the fields are verified at the level of equations of motion. This suggests a possible geometrical interpretation of nonlocal gravity as an emergent property of non-Riemannian spacetime structure.

  4. Affinities of the Swartkrans early Homo mandibles.

    PubMed

    Curnoe, Darren

    2008-01-01

    The southern African early Homo assemblage continues to make important contributions to understanding the systematics, adaptations and evolutionary history of the human genus. However, the taxonomy of this sample is in a state of flux. This study examines the size and shape of the mandibular bodies of Swartkrans SK 15 and SK 45 comparing them with variation in two early Homo taxa (H. habilis sensu lato and H. sapiens erectus). The research aims to clarify their phenetic affinities and systematics through univariate statistics, inferential testing and multivariate analysis employing size (Log-transformed) and shape (Mosimann variables). Neither of them strongly resembles H. habilis sensu lato or H. sapiens erectus, rather, they probably sample a novel species of Homo not seen in East Africa. Moreover, there is considerable morphological variability within the Swartkrans sample and the possibility of more than one novel species being sampled at this site cannot be excluded. PMID:18402959

  5. Wetting on rough self-affine surfaces

    NASA Astrophysics Data System (ADS)

    Palasantzas, George

    1995-05-01

    In this paper, we present a general investigation of the effective potential for complete wetting on self-affine rough surfaces. The roughness effect is investigated by means of the height-height correlation model in Fourier space ~(1+aξ2q2)-1-H. The parameters H and ξ are, respectively, the roughness exponent and the substrate in-plane correlation length. It is observed that the effect of H on the free interface profile is significant for ξ>ξ) regime is characterized by a power-law scaling ~Y-2.

  6. Neurodegeneration with Brain Iron Accumulation

    MedlinePlus

    ... Diversity Find People About NINDS NINDS Neurodegeneration with Brain Iron Accumulation Information Page Synonym(s): Hallervorden-Spatz Disease, ... done? Clinical Trials Organizations What is Neurodegeneration with Brain Iron Accumulation? Neurodegeneration with brain iron accumulation (NBIA) ...

  7. Perspectives on nutritional iron deficiency.

    PubMed

    Hallberg, L

    2001-01-01

    Nutritional iron deficiency (ID) is caused by an intake of dietary iron insufficient to cover physiological iron requirements. Studies on iron absorption from whole diets have examined relationships between dietary iron bioavailability/absorption, iron losses, and amounts of stored iron. New insights have been obtained into regulation of iron absorption and expected rates of changes of iron stores or hemoglobin iron deficits when bioavailability or iron content of the diet has been modified and when losses of iron occur. Negative effects of ID are probably related to age, up to about 20 years, explaining some of earlier controversies. Difficulties in establishing the prevalence of mild ID are outlined. The degree of underestimation of the prevalence of mild ID when using multiple diagnostic criteria is discussed. It is suggested that current low-energy lifestyles are a common denominator for the current high prevalence not only of ID but also of obesity, diabetes, and osteoporosis. PMID:11375427

  8. Dye affinity cryogels for plasmid DNA purification.

    PubMed

    Çimen, Duygu; Yılmaz, Fatma; Perçin, Işık; Türkmen, Deniz; Denizli, Adil

    2015-11-01

    The aim of this study is to prepare megaporous dye-affinity cryogel discs for the purification of plasmid DNA (pDNA) from bacterial lysate. Poly(hydroxyethyl methacrylate) [PHEMA] cryogel discs were produced by free radical polymerization initiated by N,N,N',N'-tetramethylene diamine (TEMED) and ammonium persulfate (APS) redox pair in an ice bath. Cibacron Blue F3GA was used as an affinity ligand (loading amount: 68.9μmol/g polymer). The amount of pDNA adsorbed onto the PHEMA-Cibacron Blue F3GA cryogel discs first increased and then reached a plateau value (i.e., 32.5mg/g cryogel) at 3.0mg/mL pDNA concentration. Compared with the PHEMA cryogel (0.11mg/g cryogel), the pDNA adsorption capacity of the PHEMA-Cibacron Blue F3GA cryogel (32.4mg/g polymer) was improved significantly due to the Cibacron Blue 3GA immobilization onto the polymeric matrix. pDNA adsorption amount decreased from 11.7mg/g to 1.1mg/g with the increasing of NaCl concentration. The maximum pDNA adsorption was achieved at 4°C. The overall recovery of pDNA was calculated as 90%. The PHEMA-Cibacron Blue F3GA cryogel discs could be used five times without decreasing the pDNA adsorption capacity significantly. The results show that the PHEMA-Cibacron Blue F3GA cryogel discs promise high selectivity for pDNA. PMID:26249596

  9. In vitro affinity maturation of a natural human antibody overcomes a barrier to in vivo affinity maturation

    PubMed Central

    Li, Bing; Fouts, Ashley E; Stengel, Katharina; Luan, Peng; Dillon, Michael; Liang, Wei-Ching; Feierbach, Becket; Kelley, Robert F; Hötzel, Isidro

    2014-01-01

    Antibodies isolated from human donors are increasingly being developed for anti-infective therapeutics. These antibodies undergo affinity maturation in vivo, minimizing the need for engineering of therapeutic leads for affinity. However, the affinities required for some therapeutic applications may be higher than the affinities of the leads obtained, requiring further affinity maturation in vitro. To improve the neutralization potency of natural human antibody MSL-109 targeting human cytomegalovirus (CMV), we affinity matured the antibody against the gH/gL glycoprotein complex. A phage display library where most of the six complementary-determining regions (CDRs) were allowed to vary in only one amino acid residue at a time was used to scan for mutations that improve binding affinity. A T55R mutation and multiple mutations in position 53 of the heavy chain were identified that, when present individually or in combination, resulted in higher apparent affinities to gH/gL and improved CMV neutralization potency of Fab fragments expressed in bacterial cells. Three of these mutations in position 53 introduced glycosylation sites in heavy chain CDR 2 (CDR H2) that impaired binding of antibodies expressed in mammalian cells. One high affinity (KD < 10 pM) variant was identified that combined the D53N and T55R mutations while avoiding glycosylation of CDR H2. However, all the amino acid substitutions identified by phage display that improved binding affinity without introducing glycosylation sites required between two and four simultaneous nucleotide mutations to avoid glycosylation. These results indicate that the natural human antibody MSL-109 is close to a local affinity optimum. We show that affinity maturation by phage display can be used to identify and bypass barriers to in vivo affinity maturation of antibodies imposed by glycosylation and codon usage. These constraints may be relatively prevalent in human antibodies due to the codon usage and the amino acid

  10. Prediction of Neutral Salt Elution Profiles for Affinity Chromatography

    NASA Astrophysics Data System (ADS)

    Robinson, Jack B.; Strottmann, James M.; Stellwagen, Earle

    1981-04-01

    Neutral salts exhibit very marked differences as eluants of proteins from affinity columns. We observe: (i) that the relative potencies of neutral salts as eluants are independent of the protein or the affinity ligand in the systems studied, (ii) that the absolute salt concentration necessary to elute any given protein bound to the affinity matrix is proportional to the algebraic sum of a set of elution coefficients defined herein for the separate ions present in the solution, and (iii) that the proportionality between elution potency and elution coefficient is a function of the affinity of the protein for the immobilized ligand. Given the concentration of one neutral salt required for elution of a protein of interest from an affinity column, the elution capability of any neutral salt at any temperature can be quantitatively predicted for that protein. Accordingly, application and elution protocols for affinity chromatography can be designed to optimize the yield and fold purification of proteins.

  11. Affine Vertex Operator Algebras and Modular Linear Differential Equations

    NASA Astrophysics Data System (ADS)

    Arike, Yusuke; Kaneko, Masanobu; Nagatomo, Kiyokazu; Sakai, Yuichi

    2016-05-01

    In this paper, we list all affine vertex operator algebras of positive integral levels whose dimensions of spaces of characters are at most 5 and show that a basis of the space of characters of each affine vertex operator algebra in the list gives a fundamental system of solutions of a modular linear differential equation. Further, we determine the dimensions of the spaces of characters of affine vertex operator algebras whose numbers of inequivalent simple modules are not exceeding 20.

  12. Taking iron supplements

    MedlinePlus

    ... The stools are tarry-looking as well as black If they have red streaks Cramps, sharp pains, or soreness in the stomach occur Liquid forms of iron may stain your teeth. Try mixing the iron with water or other liquids (such as fruit juice or ...

  13. Thin Wall Iron Castings

    SciTech Connect

    J.F. Cuttino; D.M. Stefanescu; T.S. Piwonka

    2001-10-31

    Results of an investigation made to develop methods of making iron castings having wall thicknesses as small as 2.5 mm in green sand molds are presented. It was found that thin wall ductile and compacted graphite iron castings can be made and have properties consistent with heavier castings. Green sand molding variables that affect casting dimensions were also identified.

  14. High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions.

    PubMed

    Cailliatte, Rémy; Schikora, Adam; Briat, Jean-François; Mari, Stéphane; Curie, Catherine

    2010-03-01

    In contrast with many other essential metals, the mechanisms of Mn acquisition in higher eukaryotes are seldom studied and poorly understood. We show here that Arabidopsis thaliana relies on a high-affinity uptake system to acquire Mn from the soil in conditions of low Mn availability and that this activity is catalyzed by the divalent metal transporter NRAMP1 (for Natural Resistance Associated Macrophage Protein 1). The nramp1-1 loss-of-function mutant grows poorly, contains less Mn than the wild type, and fails to take up Mn in conditions of Mn limitation, thus demonstrating that NRAMP1 is the major high-affinity Mn transporter in Arabidopsis. Based on confocal microscopy observation of an NRAMP1-green fluorescent protein fusion, we established that NRAMP1 is localized to the plasma membrane. Consistent with its function in Mn acquisition from the soil, NRAMP1 expression is restricted to the root and stimulated by Mn deficiency. Finally, we show that NRAMP1 restores the capacity of the iron-regulated transporter1 mutant to take up iron and cobalt, indicating that NRAMP1 has a broad selectivity in vivo. The role of transporters of the NRAMP family is well established in higher eukaryotes for iron but has been controversial for Mn. This study demonstrates that NRAMP1 is a physiological manganese transporter in Arabidopsis. PMID:20228245

  15. Overexpression of EAR1 and SSH4 that encode PPxY proteins in the multivesicular body provides stability to tryptophan permease Tat2, allowing yeast cells to grow under high hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Hiraki, Toshiki; Usui, Keiko; Abe, Fumiyoshi

    2010-12-01

    Tryptophan uptake in yeast Saccharomyces cerevisiae is susceptible to high hydrostatic pressure and it limits the growth of tryptophan auxotrophic (Trp-) strains under pressures of 15-25 MPa. The susceptibility of tryptophan uptake is accounted for by the pressure-induced degradation of tryptophan permease Tat2 occurring in a Rsp5 ubiquitin ligase-dependent manner. Ear1 and Ssh4 are multivesicular body proteins that physically interact with Rsp5. We found that overexpression of either of the EAR1 or SSH4 genes enabled the Trp- cells to grow at 15-25 MPa. EAR1 and SSH4 appeared to provide stability to the Tat2 protein when overexpressed. The result suggests that Ear1 and Ssh4 negatively regulate Rsp5 on ubiquitination of Tat2. Currently, high hydrostatic pressure is widely used in bioscience and biotechnology for structurally perturbing macromolecules such as proteins and lipids or in food processing and sterilizing microbes. We suggest that hydrostatic pressure is an operative experimental parameter to screen yeast genes specifically for regulation of Tat2 through the function of Rsp5 ubiquitin ligase.

  16. Hypersensitivity from intravenous iron products.

    PubMed

    Bircher, Andreas J; Auerbach, Michael

    2014-08-01

    In the last several years, intravenous therapy with iron products has been more widely used. Although it has been a standard procedure in dialysis-associated anemia since the early 1990s, its use is expanding to a host of conditions associated with iron deficiency, especially young women with heavy uterine bleeding and pregnancy. Free iron is associated with unacceptable high toxicity inducing severe, hemodynamically significant symptoms. Subsequently, formulations that contain the iron as an iron carbohydrate nanoparticle have been designed. With newer formulations, including low-molecular-weight iron dextran, iron sucrose, ferric gluconate, ferumoxytol, iron isomaltoside, and ferric carboxymaltose, serious adverse events are rare. PMID:25017687

  17. Microbes: mini iron factories.

    PubMed

    Joshi, Kumar Batuk

    2014-12-01

    Microbes have flourished in extreme habitats since beginning of the Earth and have played an important role in geological processes like weathering, mineralization, diagenesis, mineral formation and destruction. Biotic mineralization is one of the most fascinating examples of how microbes have been influencing geological processes. Iron oxidizing and reducing bacteria are capable of precipitating wide varieties of iron oxides (magnetite), carbonates (siderite) and sulphides (greigite) via controlled or induced mineralization processes. Microbes have also been considered to play an important role in the history of evolution of sedimentary rocks on Earth from the formation of banded iron formations during the Archean to modern biotic bog iron and ochre deposits. Here, we discuss the role that microbes have been playing in precipitation of iron and the role and importance of interdisciplinary studies in the field of geology and biology in solving some of the major geological mysteries. PMID:25320452

  18. Iron studies in hemophilia

    SciTech Connect

    Lottenberg, R.; Kitchens, C.S.; Roessler, G.S.; Noyes, W.D.

    1981-12-01

    Although iron deficiency is not recognized as a usual complication of hemophilia, we questioned whether intermittent occult loss of blood in urine or stool might predispose hemophiliacs to chronic iron deficiency. Seven men with factor VII and one with factor IX deficiency were studied. Blood studied, bone marrow aspirates, urine and stool samples, and ferrokinetics with total-body counting up to five months were examined. These data showed no excessive loss of blood during the study period; however, marrow iron stores were decidedly decreased, being absent in four subjects. We suggest that in some hemophiliacs, iron deposits in tissues such as synovial membranes may form a high proportion of the body's total iron stores.

  19. Combinatorial control of yeast FET4 gene expression by iron, zinc, and oxygen.

    PubMed

    Waters, Brian M; Eide, David J

    2002-09-13

    Acquisition of metals such as iron, copper, and zinc by the yeast Saccharomyces cerevisiae is tightly regulated. High affinity uptake systems are induced under metal-limiting conditions to maintain an adequate supply of these essential nutrients. Low affinity uptake systems function when their substrates are in greater supply. The FET4 gene encodes a low affinity iron and copper uptake transporter. FET4 expression is regulated by several environmental factors. In this report, we describe the molecular mechanisms underlying this regulation. First, we found that FET4 expression is induced in iron-limited cells by the Aft1 iron-responsive transcriptional activator. Second, FET4 is regulated by zinc status via the Zap1 transcription factor. We present evidence that FET4 is a physiologically relevant zinc transporter and this provides a rationale for its regulation by Zap1. Finally, FET4 expression is regulated in response to oxygen by the Rox1 repressor. Rox1 attenuates activation by Aft1 and Zap1 in aerobic cells. Derepression of FET4 may allow the Fet4 transporter to play an even greater role in metal acquisition under anaerobic conditions. Thus, Fet4 is a multisubstrate metal ion transporter under combinatorial control by iron, zinc, and oxygen. PMID:12095998

  20. In Vivo Analysis of HPr Reveals a Fructose-Specific Phosphotransferase System That Confers High-Affinity Uptake in Streptomyces coelicolor

    PubMed Central

    Nothaft, Harald; Parche, Stephan; Kamionka, Annette; Titgemeyer, Fritz

    2003-01-01

    HPr, the histidine-containing phosphocarrier protein of the bacterial phosphotransferase system (PTS), serves multiple functions in carbohydrate uptake and carbon source regulation in low-G+C-content gram-positive bacteria and in gram-negative bacteria. To assess the role of HPr in the high-G+C-content gram-positive organism Streptomyces coelicolor, the encoding gene, ptsH, was deleted. The ptsH mutant BAP1 was impaired in fructose utilization, while growth on other carbon sources was not affected. Uptake assays revealed that BAP1 could not transport appreciable amounts of fructose, while the wild type showed inducible high-affinity fructose transport with an apparent Km of 2 μM. Complementation and reconstitution experiments demonstrated that HPr is indispensable for a fructose-specific PTS activity. Investigation of the putative fruKA gene locus led to identification of the fructose-specific enzyme II permease encoded by the fruA gene. Synthesis of HPr was not specifically enhanced in fructose-grown cells and occurred also in the presence of non-PTS carbon sources. Transcriptional analysis of ptsH revealed two promoters that are carbon source regulated. In contrast to what happens in other bacteria, glucose repression of glycerol kinase was still operative in a ptsH background, which suggests that HPr is not involved in general carbon regulation. However, fructose repression of glycerol kinase was lost in BAP1, indicating that the fructose-PTS is required for transduction of the signal. This study provides the first molecular genetic evidence of a physiological role of the PTS in S. coelicolor. PMID:12533468

  1. OusB, a Broad-Specificity ABC-Type Transporter from Erwinia chrysanthemi, Mediates Uptake of Glycine Betaine and Choline with a High Affinity

    PubMed Central

    Choquet, Gwénaëlle; Jehan, Nathalie; Pissavin, Christine; Blanco, Carlos; Jebbar, Mohamed

    2005-01-01

    The ability of Erwinia chrysanthemi to cope with environments of elevated osmolality is due in part to the transport and accumulation of osmoprotectants. In this study we have identified a high-affinity glycine betaine and choline transport system in E. chrysanthemi. By using a pool of Tn5-B21 ousA mutants, we isolated a mutant that could grow in the presence of a toxic analogue of glycine betaine (benzyl-glycine betaine) at high osmolalities. This mutant was impaired in its ability to transport all effective osmoprotectants in E. chrysanthemi. The DNA sequence of the regions flanking the transposon insertion site revealed three chromosomal genes (ousVWX) that encode components of an ABC-type transporter (OusB): OusV (ATPase), OusW (permease), and OusX (periplasmic binding protein). The OusB components showed a significant degree of sequence identity to components of ProU from Salmonella enterica serovar Typhimurium and Escherichia coli. OusB was found to restore the uptake of glycine betaine and choline through functional complementation of an E. coli mutant defective in both ProU and ProP osmoprotectant uptake systems. Competition experiments demonstrated that choline, dimethylsulfoniacetate, dimethylsulfoniopropionate, and ectoine were effective competitors for OusB-mediated betaine transport but that carnitine, pipecolate, and proline were not effective. In addition, the analysis of single and double mutants showed that OusA and OusB were the only osmoprotectant transporters operating in E. chrysanthemi. PMID:16000740

  2. A Conserved Acidic Residue in Phenylalanine Hydroxylase Contributes to Cofactor Affinity and Catalysis

    PubMed Central

    2015-01-01

    The catalytic domains of aromatic amino acid hydroxylases (AAAHs) contain a non-heme iron coordinated to a 2-His-1-carboxylate facial triad and two water molecules. Asp139 from Chromobacterium violaceum PAH (cPAH) resides within the second coordination sphere and contributes key hydrogen bonds with three active site waters that mediate its interaction with an oxidized form of the cofactor, 7,8-dihydro-l-biopterin, in crystal structures. To determine the catalytic role of this residue, various point mutants were prepared and characterized. Our isothermal titration calorimetry (ITC) analysis of iron binding implies that polarity at position 139 is not the sole criterion for metal affinity, as binding studies with D139E suggest that the size of the amino acid side chain also appears to be important. High-resolution crystal structures of the mutants reveal that Asp139 may not be essential for holding the bridging water molecules together, because many of these waters are retained even in the Ala mutant. However, interactions via the bridging waters contribute to cofactor binding at the active site, interactions for which charge of the residue is important, as the D139N mutant shows a 5-fold decrease in its affinity for pterin as revealed by ITC (compared to a 16-fold loss of affinity in the case of the Ala mutant). The Asn and Ala mutants show a much more pronounced defect in their kcat values, with nearly 16- and 100-fold changes relative to that of the wild type, respectively, indicating a substantial role of this residue in stabilization of the transition state by aligning the cofactor in a productive orientation, most likely through direct binding with the cofactor, supported by data from molecular dynamics simulations of the complexes. Our results indicate that the intervening water structure between the cofactor and the acidic residue masks direct interaction between the two, possibly to prevent uncoupled hydroxylation of the cofactor before the arrival of

  3. Iron economy in Chlamydomonas reinhardtii

    PubMed Central

    Glaesener, Anne G.; Merchant, Sabeeha S.; Blaby-Haas, Crysten E.

    2013-01-01

    While research on iron nutrition in plants has largely focused on iron-uptake pathways, photosynthetic microbes such as the unicellular green alga Chlamydomonas reinhardtii provide excellent experimental systems for understanding iron metabolism at the subcellular level. Several paradigms in iron homeostasis have been established in this alga, including photosystem remodeling in the chloroplast and preferential retention of some pathways and key iron-dependent proteins in response to suboptimal iron supply. This review presents our current understanding of iron homeostasis in Chlamydomonas, with specific attention on characterized responses to changes in iron supply, like iron-deficiency. An overview of frequently used methods for the investigation of iron-responsive gene expression, physiology and metabolism is also provided, including preparation of media, the effect of cell size, cell density and strain choice on quantitative measurements and methods for the determination of metal content and assessing the effect of iron supply on photosynthetic performance. PMID:24032036

  4. 21 CFR 310.518 - Drug products containing iron or iron salts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Drug products containing iron or iron salts. 310... Drug products containing iron or iron salts. Drug products containing elemental iron or iron salts as...) that contains iron or iron salts for use as an iron source shall bear the following statement:...

  5. 21 CFR 310.518 - Drug products containing iron or iron salts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Drug products containing iron or iron salts. 310... Drug products containing iron or iron salts. Drug products containing elemental iron or iron salts as...) that contains iron or iron salts for use as an iron source shall bear the following statement:...

  6. 21 CFR 310.518 - Drug products containing iron or iron salts.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Drug products containing iron or iron salts. 310... Drug products containing iron or iron salts. Drug products containing elemental iron or iron salts as...) that contains iron or iron salts for use as an iron source shall bear the following statement:...

  7. 21 CFR 310.518 - Drug products containing iron or iron salts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Drug products containing iron or iron salts. 310... Drug products containing iron or iron salts. Drug products containing elemental iron or iron salts as...) that contains iron or iron salts for use as an iron source shall bear the following statement:...

  8. 21 CFR 310.518 - Drug products containing iron or iron salts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Drug products containing iron or iron salts. 310... Drug products containing iron or iron salts. Drug products containing elemental iron or iron salts as...) that contains iron or iron salts for use as an iron source shall bear the following statement:...

  9. A Differential Dielectric Affinity Glucose Sensor

    PubMed Central

    Huang, Xian; Leduc, Charles; Ravussin, Yann; Li, Siqi; Davis, Erin; Song, Bing; Li, Dachao; Xu, Kexin; Accili, Domenico; Wang, Qian; Leibel, Rudolph; Lin, Qiao

    2013-01-01

    A continuous glucose monitor with a differential dielectric sensor implanted within the subcutaneous tissue that determines the glucose in the interstitial fluid is presented. The device, created using microelectromechanical systems (MEMS) technology, consists of sensing and reference modules that are identical in design and placed in close proximity. Each module contains a microchamber housing a pair of capacitive electrodes residing on the device substrate and embedded in a suspended, perforated polymer diaphragm. The microchambers, enclosed in semi-permeable membranes, are filled with either a polymer solution that has specific affinity to glucose or a glucose-insensitive reference solution. To accurately determine the glucose concentration, changes in the permittivity of the sensing and the reference solutions induced by changes in glucose concentration are measured differentially. In vitro characterization demonstrated the sensor capable of measuring glucose concentrations from 0 to 500 mg/dL with resolution and accuracy of ∼1.7 μg/dL and ∼1.74 mg/dL, respectively. In addition, device drift was reduced to 1.4% (uncontrolled environment) and 11% (5 °C of temperature variation) of that from non-differential measurements, indicating significant stability improvements. Preliminary animal testing demonstrated that the differential sensor accurately tracks glucose concentration in blood. This sensor can potentially be used clinically as a subcutaneously implanted continuous monitoring device in diabetic patients. PMID:24220675

  10. Affine gravity, Palatini formalism and charges

    NASA Astrophysics Data System (ADS)

    Katz, Joseph; Livshits, Gideon I.

    2011-12-01

    Affine gravity and the Palatini formalism contribute both to produce a simple and unique formula for calculating charges at spatial and null infinity for Lovelock type Lagrangians whose variational derivatives do not depend on second-order derivatives of the field components. The method is based on the covariant generalization due to Julia and Silva of the Regge-Teitelboim procedure that was used to define properly the mass in the classical formulation of Einstein's theory of gravity. Numerous applications reproduce standard results obtained by other secure but mostly specialized method like in ADM energy for asymptotically flat spacetimes and in Abbot and Deser for asymptotically de Sitter and anti-de Sitter spacetimes, both at spatial infinity. As a novel application we calculate the Bondi energy loss in five dimensional gravity, based on the asymptotic solution given by Tanabe et al. and obtain, as expected, the same result. We also give the for Einstein-Gauss-Bonnet gravity and find the superpotential for Lovelock theories of gravity when the number of dimensions tends to infinity with maximally symmetrical boundaries. The paper is written in standard component formalism.

  11. Ligand Affinities Estimated by Quantum Chemical Calculations.

    PubMed

    Söderhjelm, Pär; Kongsted, Jacob; Ryde, Ulf

    2010-05-11

    We present quantum chemical estimates of ligand-binding affinities performed, for the first time, at a level of theory for which there is a hope that dispersion and polarization effects are properly accounted for (MP2/cc-pVTZ) and at the same time effects of solvation, entropy, and sampling are included. We have studied the binding of seven biotin analogues to the avidin tetramer. The calculations have been performed by the recently developed PMISP approach (polarizable multipole interactions with supermolecular pairs), which treats electrostatic interactions by multipoles up to quadrupoles, induction by anisotropic polarizabilities, and nonclassical interactions (dispersion, exchange repulsion, etc.) by explicit quantum chemical calculations, using a fragmentation approach, except for long-range interactions that are treated by standard molecular-mechanics Lennard-Jones terms. In order to include effects of sampling, 10 snapshots from a molecular dynamics simulation are studied for each biotin analogue. Solvation energies are estimated by the polarized continuum model (PCM), coupled to the multipole-polarizability model. Entropy effects are estimated from vibrational frequencies, calculated at the molecular mechanics level. We encounter several problems, not previously discussed, illustrating that we are first to apply such a method. For example, the PCM model is, in the present implementation, questionable for large molecules, owing to the use of a surface definition that gives numerous small cavities in a protein. PMID:26615702

  12. Divalent cation affinity sites in Paramecium aurelia.

    PubMed

    Fisher, G; Kaneshiro, E S; Peters, P D

    1976-05-01

    Sites with high calcium affinity in Paramecium aurelia were identified by high calcium (5 mM) fixation and electron microscope methods. Electron-opaque deposits were observed on the cytoplasmic side of surface membranes, particularly at the basal regions of cilia and trichocyst-pellicle fusion sites. Deposits were also observed on some smooth cytomembranes, within the axoneme of cilia, and on basal bodies. The divalent cations, Mg2+, Mn2+, Sr2+, Ni2+, Ba2+, and Zn2+, could be substituted for Ca2+ in the procedure. Deposits were larger with 5 mM Sr2+. Ba2+, and Mn2+ at ciliary transverse plates and the terminal plate of basal bodies. Microprobe analysis showed that Ca and C1 were concentrated within deposits. In some analyses, S and P were detected in deposits. Also, microprobe analysis of 5 mM Mn2+-fixed P. aurelia showed that those deposits were enriched in Mn and C1 and sometimes enriched in P. Deposits were seen only when the ciliates were actively swimming at the time of fixation. Locomotory mutants having defective membrane Ca-gating mechanisms and ciliates fixed while exhibiting ciliary reversal showed no obvious differences in deposition pattern and intensity. Possible correlations between electron-opaque deposits and the locations of intramembranous particles seen by freeze-fracture studied, as well as sites where fibrillar material associate with membranes are considered. The possibility that the action sites of calcium and other divalent cations were identified is discussed. PMID:1262398

  13. Multiplexed protein profiling by sequential affinity capture.

    PubMed

    Ayoglu, Burcu; Birgersson, Elin; Mezger, Anja; Nilsson, Mats; Uhlén, Mathias; Nilsson, Peter; Schwenk, Jochen M

    2016-04-01

    Antibody microarrays enable parallelized and miniaturized analysis of clinical samples, and have proven to provide novel insights for the analysis of different proteomes. However, there are concerns that the performance of such direct labeling and single antibody assays are prone to off-target binding due to the sample context. To improve selectivity and sensitivity while maintaining the possibility to conduct multiplexed protein profiling, we developed a multiplexed and semi-automated sequential capture assay. This novel bead-based procedure encompasses a first antigen capture, labeling of captured protein targets on magnetic particles, combinatorial target elution and a read-out by a secondary capture bead array. We demonstrate in a proof-of-concept setting that target detection via two sequential affinity interactions reduced off-target contribution, while lowered background and noise levels, improved correlation to clinical values compared to single binder assays. We also compared sensitivity levels with single binder and classical sandwich assays, explored the possibility for DNA-based signal amplification, and demonstrate the applicability of the dual capture bead-based antibody microarray for biomarker analysis. Hence, the described concept enhances the possibilities for antibody array assays to be utilized for protein profiling in body fluids and beyond. PMID:26935855

  14. Affinity of guanosine derivatives for polycytidylate revisited

    NASA Technical Reports Server (NTRS)

    Kanavarioti, A.; Hurley, T. B.; Baird, E. E.

    1995-01-01

    Evidence is presented for complexation of guanosine 5'-monophosphate 2-methylimidazolide (2-MeImpG) with polycytidylate (poly(C)) at pH 8.0 and 23 degrees C in the presence of 1.0 M NaCl2 and 0.2 M MgCl2 in water. The association of 2-MeImpG with poly(C) was investigated using UV-vis spectroscopy as well as by monitoring the kinetics of the nucleophilic substitution reaction of the imidazole moiety by amines. The results of both methods are consistent with moderately strong poly(C) 2-MeImpG complexation and the spectrophotometric measurements allowed the construction of a binding isotherm with a concentration of 2-MeImpG equal to 5.55 +/- 0.15 mM at half occupancy. UV spectroscopy was employed to establish the binding of other guanosine derivatives on poly(C). These derivatives are guanosine 5'-monophosphate (5'GMP), guanosine 5'-monophosphate imidazolide (ImpG), and guanosine 5'-monophosphate morpholidate (morpG). Within experimental error these guanosine derivatives exhibit the same affinity for poly(C) as 2-MeImpG.

  15. Banach frames in the affine synthesis problem

    NASA Astrophysics Data System (ADS)

    Terekhin, Pavel A.

    2009-10-01

    We consider the problem of representing functions f\\in L^p(\\mathbb R^d) by a series in elements of the affine system \\displaystyle \\psi_{j,k}(x)=\\lvert\\det a_j\\rvert^{1/2}\\psi(a_jx-bk), \\qquad j\\in\\mathbb N, \\quad k\\in\\mathbb Z^d. The corresponding representation theorems are established on the basis of the frame inequalities \\displaystyle A\\Vert g\\Vert _q\\le\\Vert\\{(g,\\psi_{j,k})\\}\\Vert _Y\\le B\\Vert g\\Vert _q for the Fourier coefficients \\displaystyle(g,\\psi_{j,k})=\\int_{\\mathbb R^d}g(x)\\psi_{j,k}(x)\\,dx of functions g\\in L^q(\\mathbb R^d), 1/p+1/q=1, where {\\Vert\\cdot\\Vert}_Y is the norm in some Banach space of number families \\{y_{j,k}\\} and 0 are constants. In particular, it is proved that if the integral of a function \\psi\\in L^1\\cap L^p(\\mathbb R^d), 1, is nonzero, so \\displaystyle\\int_{\\mathbb R^d}\\psi(x)\\,dx\

  16. Iron-binding activity of FutA1 subunit of an ABC-type iron transporter in the cyanobacterium Synechocystis sp. Strain PCC 6803.

    PubMed

    Katoh, H; Hagino, N; Ogawa, T

    2001-08-01

    The futA1 (slr1295) and futA2 (slr0513) genes encode periplasmic binding proteins of an ATP-binding cassette (ABC)-type iron transporter in Synechocystis sp. PCC 6803. FutA1 was expressed in Escherichia coli as a GST-tagged recombinant protein (rFutA1). Solution containing purified rFutA1 and ferric chloride showed an absorption spectrum with a peak at 453 nm. The absorbance at this wavelength rose linearly as the amount of iron bound to rFutA1 increased to reach a plateau when the molar ratio of iron to rFutA1 became unity. The association constant of rFutA1 for iron in vitro was about 1 x 10(19). These results demonstrate that the FutA1 binds the ferric ion with high affinity. The activity of iron uptake in the Delta futA1 and Delta futA2 mutants was 37 and 84%, respectively, of that in the wild-type and the activity was less than 5% in the Delta futA1/Delta futA2 double mutant, suggesting their redundant role for binding iron. High concentrations of citrate inhibited ferric iron uptake. These results suggest that the natural iron source transported by the Fut system is not ferric citrate. PMID:11522907

  17. FAST TRACK COMMUNICATION: Affine constellations without mutually unbiased counterparts

    NASA Astrophysics Data System (ADS)

    Weigert, Stefan; Durt, Thomas

    2010-10-01

    It has been conjectured that a complete set of mutually unbiased bases in a space of dimension d exists if and only if there is an affine plane of order d. We introduce affine constellations and compare their existence properties with those of mutually unbiased constellations. The observed discrepancies make a deeper relation between the two existence problems unlikely.

  18. Tending to Change: Toward a Situated Model of Affinity Spaces

    ERIC Educational Resources Information Center

    Bommarito, Dan

    2014-01-01

    The concept of affinity spaces, a theoretical construct used to analyze literate activity from a spatial perspective, has gained popularity among scholars of literacy studies and, particularly, video-game studies. This article seeks to expand current notions of affinity spaces by identifying key assumptions that have limited researchers'…

  19. The Study of Affinity-Seeking in an Organizational Setting.

    ERIC Educational Resources Information Center

    Flath, Dominic B.

    This study investigated the relationship between supervisors' use of Bell and Daly's affinity-seeking strategies and their impact on employee satisfaction. Results indicated that 16 of the 25 affinity-seeking strategies were positively correlated with a subordinate's perception of supervisor credibility. Results also indicated that a supervisor's…

  20. A minimax approach to spatial estimation using affinity matrices

    NASA Technical Reports Server (NTRS)

    Morris, C. N.

    1983-01-01

    Estimates made in the plane to improve on noisy unbiased estimates were combined. Only a small fraction of points in a giant grid were used to do this, those that are most like a given point. A component of this process defining an affinity matrix of values, indicating which points are relevant to others. Minimax rules are shown to be based on affinity matrices.

  1. Striving for Empathy: Affinities, Alliances and Peer Sexuality Educators

    ERIC Educational Resources Information Center

    Fields, Jessica; Copp, Martha

    2015-01-01

    Peer sexuality educators' accounts of their work reveal two approaches to empathy with their students: affinity and alliance. "Affinity-based empathy" rests on the idea that the more commonalities sexuality educators and students share (or perceive they share), the more they will be able to empathise with one another, while…

  2. Conformational kinetics reveals affinities of protein conformational states

    PubMed Central

    Daniels, Kyle G.; Suo, Yang; Oas, Terrence G.

    2015-01-01

    Most biological reactions rely on interplay between binding and changes in both macromolecular structure and dynamics. Practical understanding of this interplay requires detection of critical intermediates and determination of their binding and conformational characteristics. However, many of these species are only transiently present and they have often been overlooked in mechanistic studies of reactions that couple binding to conformational change. We monitored the kinetics of ligand-induced conformational changes in a small protein using six different ligands. We analyzed the kinetic data to simultaneously determine both binding affinities for the conformational states and the rate constants of conformational change. The approach we used is sufficiently robust to determine the affinities of three conformational states and detect even modest differences in the protein’s affinities for relatively similar ligands. Ligand binding favors higher-affinity conformational states by increasing forward conformational rate constants and/or decreasing reverse conformational rate constants. The amounts by which forward rate constants increase and reverse rate constants decrease are proportional to the ratio of affinities of the conformational states. We also show that both the affinity ratio and another parameter, which quantifies the changes in conformational rate constants upon ligand binding, are strong determinants of the mechanism (conformational selection and/or induced fit) of molecular recognition. Our results highlight the utility of analyzing the kinetics of conformational changes to determine affinities that cannot be determined from equilibrium experiments. Most importantly, they demonstrate an inextricable link between conformational dynamics and the binding affinities of conformational states. PMID:26162682

  3. Affine group formulation of the Standard Model coupled to gravity

    SciTech Connect

    Chou, Ching-Yi; Ita, Eyo; Soo, Chopin

    2014-04-15

    In this work we apply the affine group formalism for four dimensional gravity of Lorentzian signature, which is based on Klauder’s affine algebraic program, to the formulation of the Hamiltonian constraint of the interaction of matter and all forces, including gravity with non-vanishing cosmological constant Λ, as an affine Lie algebra. We use the hermitian action of fermions coupled to gravitation and Yang–Mills theory to find the density weight one fermionic super-Hamiltonian constraint. This term, combined with the Yang–Mills and Higgs energy densities, are composed with York’s integrated time functional. The result, when combined with the imaginary part of the Chern–Simons functional Q, forms the affine commutation relation with the volume element V(x). Affine algebraic quantization of gravitation and matter on equal footing implies a fundamental uncertainty relation which is predicated upon a non-vanishing cosmological constant. -- Highlights: •Wheeler–DeWitt equation (WDW) quantized as affine algebra, realizing Klauder’s program. •WDW formulated for interaction of matter and all forces, including gravity, as affine algebra. •WDW features Hermitian generators in spite of fermionic content: Standard Model addressed. •Constructed a family of physical states for the full, coupled theory via affine coherent states. •Fundamental uncertainty relation, predicated on non-vanishing cosmological constant.

  4. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth.

    PubMed

    Vert, Grégory; Grotz, Natasha; Dédaldéchamp, Fabienne; Gaymard, Frédéric; Guerinot, Mary Lou; Briat, Jean-François; Curie, Catherine

    2002-06-01

    Plants are the principal source of iron in most diets, yet iron availability often limits plant growth. In response to iron deficiency, Arabidopsis roots induce the expression of the divalent cation transporter IRT1. Here, we present genetic evidence that IRT1 is essential for the uptake of iron from the soil. An Arabidopsis knockout mutant in IRT1 is chlorotic and has a severe growth defect in soil, leading to death. This defect is rescued by the exogenous application of iron. The mutant plants do not take up iron and fail to accumulate other divalent cations in low-iron conditions. IRT1-green fluorescent protein fusion, transiently expressed in culture cells, localized to the plasma membrane. We also show, through promoter::beta-glucuronidase analysis and in situ hybridization, that IRT1 is expressed in the external cell layers of the root, specifically in response to iron starvation. These results clearly demonstrate that IRT1 is the major transporter responsible for high-affinity metal uptake under iron deficiency. PMID:12084823

  5. IRT1, an Arabidopsis Transporter Essential for Iron Uptake from the Soil and for Plant Growth

    PubMed Central

    Vert, Grégory; Grotz, Natasha; Dédaldéchamp, Fabienne; Gaymard, Frédéric; Guerinot, Mary Lou; Briat, Jean-François; Curie, Catherine

    2002-01-01

    Plants are the principal source of iron in most diets, yet iron availability often limits plant growth. In response to iron deficiency, Arabidopsis roots induce the expression of the divalent cation transporter IRT1. Here, we present genetic evidence that IRT1 is essential for the uptake of iron from the soil. An Arabidopsis knockout mutant in IRT1 is chlorotic and has a severe growth defect in soil, leading to death. This defect is rescued by the exogenous application of iron. The mutant plants do not take up iron and fail to accumulate other divalent cations in low-iron conditions. IRT1–green fluorescent protein fusion, transiently expressed in culture cells, localized to the plasma membrane. We also show, through promoter::β-glucuronidase analysis and in situ hybridization, that IRT1 is expressed in the external cell layers of the root, specifically in response to iron starvation. These results clearly demonstrate that IRT1 is the major transporter responsible for high-affinity metal uptake under iron deficiency. PMID:12084823

  6. Coal desulfurization. [using iron pentacarbonyl

    NASA Technical Reports Server (NTRS)

    Hsu, G. C. (Inventor)

    1979-01-01

    Organic sulfur is removed from coal by treatment with an organic solution of iron pentacarbonyl. Organic sulfur compounds can be removed by reaction of the iron pentacarbonyl with coal to generate CO and COS off-gases. The CO gas separated from COS can be passed over hot iron fillings to generate iron pentacarbonyl.

  7. Use of differential dye-ligand chromatography with affinity elution for enzyme purification: 6-phosphogluconate dehydratase from Zymomonas mobilis.

    PubMed

    Scopes, R K; Griffiths-Smith, K

    1984-02-01

    Using differential dye-ligand chromatography and affinity elution with a substrate analog, 6-phosphogluconate dehydratase (EC 4.2.1.12) has been isolated from extracts of Zymomonas mobilis in a one-step procedure with 50% recovery. The specific activity of freshly isolated enzyme was 245 units mg-1. The enzyme contains iron, and it is rapidly inactivated in oxidizing conditions. It is inhibited by glycerophosphates, most strongly by the D-alpha-isomer which structurally corresponds to half of the substrate molecule. PMID:6326623

  8. Optimal T-cell receptor affinity for inducing autoimmunity.

    PubMed

    Koehli, Sabrina; Naeher, Dieter; Galati-Fournier, Virginie; Zehn, Dietmar; Palmer, Ed

    2014-12-01

    T-cell receptor affinity for self-antigen has an important role in establishing self-tolerance. Three transgenic mouse strains expressing antigens of variable affinity for the OVA transgenic-I T-cell receptor were generated to address how TCR affinity affects the efficiency of negative selection, the ability to prime an autoimmune response, and the elimination of the relevant target cell. Mice expressing antigens with an affinity just above the negative selection threshold exhibited the highest risk of developing experimental autoimmune diabetes. The data demonstrate that close to the affinity threshold for negative selection, sufficient numbers of self-reactive T cells escape deletion and create an increased risk for the development of autoimmunity. PMID:25411315

  9. Affinity Monolith-Integrated Microchips for Protein Purification and Concentration.

    PubMed

    Gao, Changlu; Sun, Xiuhua; Wang, Huaixin; Qiao, Wei; Hu, Bo

    2016-01-01

    Affinity chromatography is a valuable method to purify and concentrate minute amount of proteins. Monoliths with epoxy groups for affinity immobilization were prepared by direct in-situ photopolymerization of glycidyl methacrylate and ethylene glycol dimethacrylate in porogenic solvents consisting of 1-dodecanol and cyclohexanol. By integrating affinity monoliths onto a microfluidic system, targeted biomolecules can be captured and retained on affinity column, while other biomolecules having no specific interactions toward the immobilized ligands flow through the microchannel. Therefore, proteins which remain on the affinity column are purified and concentrated, and then eluted by appropriate solutions and finally, separated by microchip capillary electrophoresis. This integrated microfluidic device has been applied to the purification and separation of specific proteins (FITC-labeled human serum albumin and IgG) in a mixture. PMID:27473483

  10. Chasing polys: Interdisciplinary affinity and its connection to physics identity

    NASA Astrophysics Data System (ADS)

    Scott, Tyler D.

    This research is based on two motivations that merge by means of the frameworks of interdisciplinary affinity and physics identity. First, a goal of education is to develop interdisciplinary abilities in students' thinking and work. But an often ignored factor is students interests and beliefs about being interdisciplinary. Thus, this work develops and uses a framework called interdisciplinary affinity. It encompasses students interests in making connections across disciplines and their beliefs about their abilities to make those connections. The second motivation of this research is to better understand how to engage more students with physics. Physics identity describes how a student sees themselves in relation to physics. By understanding how physics identity is developed, researchers and educators can identify factors that increase interest and engagement in physics classrooms. Therefore, physics identity was used in conjunction with interdisciplinary affinity. Using a mixed methods approach, this research used quantitative data to identify the relationships interdisciplinary affinity has with physics identity and the physics classroom. These connections were explored in more detail using a case study of three students in a high school physics class. Results showed significant and positive relationships between interdisciplinary affinity and physics identity, including the individual interest and recognition components of identity. It also identified characteristics of physics classrooms that had a significant, positive relationship with interdisciplinary affinity. The qualitative case study highlighted the importance of student interest to the relationship between interdisciplinary affinity and physics identity. It also identified interest and mastery orientation as key to understanding the link between interdisciplinary affinity and the physics classroom. These results are a positive sign that by understanding interdisciplinary affinity and physics identity

  11. Iron in diet

    MedlinePlus

    ... Some foods reduce iron absorption. For example, commercial black or pekoe teas contain substances that bind to ... nih.gov/pubmed/19297463 . Mason JB. Vitamins, trace minerals, and other micronutrients. In: Goldman L, Schafer AI, ...

  12. Iron-Air Rechargeable Battery

    NASA Technical Reports Server (NTRS)

    Narayan, Sri R. (Inventor); Prakash, G.K. Surya (Inventor); Kindler, Andrew (Inventor)

    2014-01-01

    Embodiments include an iron-air rechargeable battery having a composite electrode including an iron electrode and a hydrogen electrode integrated therewith. An air electrode is spaced from the iron electrode and an electrolyte is provided in contact with the air electrode and the iron electrodes. Various additives and catalysts are disclosed with respect to the iron electrode, air electrode, and electrolyte for increasing battery efficiency and cycle life.

  13. The ferrichrome uptake pathway in Pseudomonas aeruginosa involves an iron release mechanism with acylation of the siderophore and recycling of the modified desferrichrome.

    PubMed

    Hannauer, Mélissa; Barda, Yaniv; Mislin, Gaëtan L A; Shanzer, Abraham; Schalk, Isabelle J

    2010-03-01

    The uptake of iron into Pseudomonas aeruginosa is mediated by two major siderophores produced by the bacterium, pyoverdine and pyochelin. The bacterium is also able of utilize several heterologous siderophores of bacterial or fungal origin. In this work, we have investigated the iron uptake in P. aeruginosa PAO1 by the heterologous ferrichrome siderophore. (55)Fe uptake assays showed that ferrichrome is transported across the outer membrane primarily (80%) by the FiuA receptor and to a lesser extent (20%) by a secondary transporter. Moreover, we demonstrate that like in the uptake of ferripyoverdine and ferripyochelin, the energy required for both pathways of ferrichrome uptake is provided by the inner membrane protein TonB1. Desferrichrome-(55)Fe uptake in P. aeruginosa was also dependent on the expression of the permease FiuB, suggesting that this protein is the inner membrane transporter of the ferrisiderophore. A biomimetic fluorescent analogue of ferrichrome, RL1194, was used in vivo to monitor the kinetics of iron release from ferrichrome in P. aeruginosa in real time. This dissociation involves acylation of ferrichrome and its biomimetic analogue RL1194 and recycling of both modified siderophores into the extracellular medium. FiuC, an N-acetyltransferase, is certainly involved in this mechanism of iron release, since its mutation abolished desferrichrome-(55)Fe uptake. The acetylated derivative reacts with iron in the extracellular medium and is able to be taken up again by the cells. All these observations are discussed in light of the current knowledge concerning ferrichrome uptake in P. aeruginosa and in Escherichia coli. PMID:20047910

  14. Genetic affinities of central China populations.

    PubMed

    Zhou, H Y; Wang, H W; Tan, S N; Chen, Y; Wang, W L; Tao, H X; Yin, Z C; Zou, Y H; Ouyang, S M; Ni, B

    2014-01-01

    Hunan locates in the south-central part of China, to the south of the middle reaches of the Yangtze River and south of Lake Dongting. According to the historical records, the peopling of Hunan by modern human ancestors can ascend to 40 thousand years ago. Thus, to trace the ancient maternal components can offer further insight into the origin of south-central China. In this study, we investigated the mitochondrial DNA of 114 individuals from Hunan Province (including 34 Han, 40 Tujia and 40 Miao). Hypervariable regions I and II of the mtDNA control region were sequenced, and the relative diagnostic variations in coding region according to the updated worldwide phylogeny tree were selected and typed by restriction fragment length polymorphism analysis or direct sequencing. All individuals were classified into specific (sub)haplogroups. By comparison with the surrounding populations, southern China-prevalent haplogroups were detected with relative higher frequency in the Tujia and Miao ethnic populations, such as haplogroup B, with more than 20%, lacking in the Han population, which illustrated its southern origin characters. In addition, we also detected northern of East Asia prevalent haplogroups with a relative higher frequency in Tujia populations than in the Miao and Yao ethnic groups, implying a gene flow from Han populations. However, the language-clustering tendency was supported by our principal component analysis and further genetic estimation results. Han and ethnic groups in central China exhibited specific ancestors related to their closer language affinity, although there was extensively genetic admixture between Han and ethnic groups. PMID:24615027

  15. Iron deficiency in pregnancy

    PubMed Central

    McMahon, Lawrence P

    2010-01-01

    Iron deficiency (ID) and related anaemia (IDA) during pregnancy are highly prevalent worldwide in both developed and developing nations although the causes are often different. At conception, many women lack sufficient iron stores to meet the increased requirements of pregnancy, which are calculated at approximately 1200 mg. Appraisal of iron status in pregnant women is problematic, however the most reliable available diagnostic test is a serum ferritin < 20 µg/L. ID is often associated with other nutritional disorders, and there is frequently a secondary cause or association. A greater oral intake is usually insufficient to meet the increased demands of pregnancy, however regular oral supplements (given either daily or intermittently) can often meet maternal needs and avoid associated neonatal complications of IDA. Over-treatment with iron should be avoided, but intravenous administration is useful when deficiency is discovered late, is severe, or if the woman is intolerant of oral formulations. This paper reviews the current literature, and addresses differences in the prevalence and causes of ID betwen developed and developing nations. It examines gestational iron requirements, distinguishes between ID and IDA, and highlights difficulties in diagnostic testing. Finally, it appraises the evidence for and against different treatment regimens, ranging from food fortification to intravenous iron infusions, according to availability and to need.

  16. Selectively Promiscuous Opioid Ligands: Discovery of High Affinity/Low Efficacy Opioid Ligands with Substantial Nociceptin Opioid Peptide Receptor Affinity

    PubMed Central

    2015-01-01

    Emerging clinical and preclinical evidence suggests that a compound displaying high affinity for μ, κ, and δ opioid (MOP, KOP, and DOP) receptors and antagonist activity at each, coupled with moderate affinity and efficacy at nociceptin opioid peptide (NOP) receptors will have utility as a relapse prevention agent for multiple types of drug abuse. Members of the orvinol family of opioid ligands have the desired affinity profile but have typically displayed substantial efficacy at MOP and or KOP receptors. In this study it is shown that a phenyl ring analogue (1d) of buprenorphine displays the desired profile in vitro with high, nonselective affinity for the MOP, KOP, and DOP receptors coupled with moderate affinity for NOP receptors. In vivo, 1d lacked any opioid agonist activity and was an antagonist of both the MOP receptor agonist morphine and the KOP receptor agonist ethylketocyclazocine, confirming the desired opioid receptor profile in vivo. PMID:24761755

  17. Tetrapyrrole binding affinity of the murine and human p22HBP heme-binding proteins.

    PubMed

    Micaelo, Nuno M; Macedo, Anjos L; Goodfellow, Brian J; Félix, Vítor

    2010-11-01

    We present the first systematic molecular modeling study of the binding properties of murine (mHBP) and human (hHBP) p22HBP protein (heme-binding protein) with four tetrapyrrole ring systems belonging to the heme biosynthetic pathway: iron protoporphyrin IX (HEMIN), protoporphyrin IX (PPIX), coproporphyrin III (CPIII), coproporphyrin I (CPI). The relative binding affinities predicted by our computational study were found to be similar to those observed experimentally, providing a first rational structural analysis of the molecular recognition mechanism, by p22HBP, toward a number of different tetrapyrrole ligands. To probe the structure of these p22HBP protein complexes, docking, molecular dynamics and MM-PBSA methodologies supported by experimental NMR ring current shift data have been employed. The tetrapyrroles studied were found to bind murine p22HBP with the following binding affinity order: HEMIN> PPIX> CPIII> CPI, which ranged from -22.2 to -6.1 kcal/mol. In general, the protein-tetrapyrrole complexes are stabilized by non-bonded interactions between the tetrapyrrole propionate groups and basic residues of the protein, and by the preferential solvation of the complex compared to the unbound components. PMID:20800521

  18. An update on iron physiology

    PubMed Central

    Muñoz, Manuel; Villar, Isabel; García-Erce, José Antonio

    2009-01-01

    Iron is an essential micronutrient, as it is required for adequate erythropoietic function, oxidative metabolism and cellular immune responses. Although the absorption of dietary iron (1-2 mg/d) is regulated tightly, it is just balanced with losses. Therefore, internal turnover of iron is essential to meet the requirements for erythropoiesis (20-30 mg/d). Increased iron requirements, limited external supply, and increased blood loss may lead to iron deficiency (ID) and iron-deficiency anemia. Hepcidin, which is made primarily in hepatocytes in response to liver iron levels, inflammation, hypoxia and anemia, is the main iron regulatory hormone. Once secreted into the circulation, hepcidin binds ferroportin on enterocytes and macrophages, which triggers its internalization and lysosomal degradation. Thus, in chronic inflammation, the excess of hepcidin decreases iron absorption and prevents iron recycling, which results in hypoferremia and iron-restricted erythropoiesis, despite normal iron stores (functional ID), and anemia of chronic disease (ACD), which can evolve to ACD plus true ID (ACD + ID). In contrast, low hepcidin expression may lead to iron overload, and vice versa. Laboratory tests provide evidence of iron depletion in the body, or reflect iron-deficient red cell production. The appropriate combination of these laboratory tests help to establish a correct diagnosis of ID status and anemia. PMID:19787824

  19. 21 CFR 184.1375 - Iron, elemental.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Iron, elemental. 184.1375 Section 184.1375 Food... GRAS § 184.1375 Iron, elemental. (a) Iron, elemental (CAS Reg. No. 7439-89-6) is metallic iron obtained by any of the following processes: reduced iron, electrolytic iron, and carbonyl iron. (1)...

  20. Phospholipid Flippases Lem3p-Dnf1p and Lem3p-Dnf2p Are Involved in the Sorting of the Tryptophan Permease Tat2p in Yeast*

    PubMed Central

    Hachiro, Takeru; Yamamoto, Takaharu; Nakano, Kenji; Tanaka, Kazuma

    2013-01-01

    The type 4 P-type ATPases are flippases that generate phospholipid asymmetry in membranes. In budding yeast, heteromeric flippases, including Lem3p-Dnf1p and Lem3p-Dnf2p, translocate phospholipids to the cytoplasmic leaflet of membranes. Here, we report that Lem3p-Dnf1/2p are involved in transport of the tryptophan permease Tat2p to the plasma membrane. The lem3Δ mutant exhibited a tryptophan requirement due to the mislocalization of Tat2p to intracellular membranes. Tat2p was relocalized to the plasma membrane when trans-Golgi network (TGN)-to-endosome transport was inhibited. Inhibition of ubiquitination by mutations in ubiquitination machinery also rerouted Tat2p to the plasma membrane. Lem3p-Dnf1/2p are localized to endosomal/TGN membranes in addition to the plasma membrane. Endocytosis mutants, in which Lem3p-Dnf1/2p are sequestered to the plasma membrane, also exhibited the ubiquitination-dependent missorting of Tat2p. These results suggest that Tat2p is ubiquitinated at the TGN and missorted to the vacuolar pathway in the lem3Δ mutant. The NH2-terminal cytoplasmic region of Tat2p containing ubiquitination acceptor lysines interacted with liposomes containing acidic phospholipids, including phosphatidylserine. This interaction was abrogated by alanine substitution mutations in the basic amino acids downstream of the ubiquitination sites. Interestingly, a mutant Tat2p containing these substitutions was missorted in a ubiquitination-dependent manner. We propose the following model based on these results; Tat2p is not ubiquitinated when the NH2-terminal region is bound to membrane phospholipids, but if it dissociates from the membrane due to a low level of phosphatidylserine caused by perturbation of phospholipid asymmetry in the lem3Δ mutant, Tat2p is ubiquitinated and then transported from the TGN to the vacuole. PMID:23250744

  1. Adsorption of selenium by amorphous iron oxyhydroxide and manganese dioxide

    USGS Publications Warehouse

    Balistrieri, L.S.; Chao, T.T.

    1990-01-01

    This work compares and models the adsorption of selenium and other anions on a neutral to alkaline surface (amorphous iron oxyhydroxide) and an acidic surface (manganese dioxide). Selenium adsorption on these oxides is examined as a function of pH, particle concentration, oxidation state, and competing anion concentration in order to assess how these factors might influence the mobility of selenium in the environment. The data indicate that 1. 1) amorphous iron oxyhydroxide has a greater affinity for selenium than manganese dioxide, 2. 2) selenite [Se(IV)] adsorption increases with decreasing pH and increasing particle concentration and is stronger than selenate [Se(VI)] adsorption on both oxides, and 3. 3) selenate does not adsorb on manganese dioxide. The relative affinity of selenate and selenite for the oxides and the lack of adsorption of selenate on a strongly acidic surface suggests that selenate forms outer-sphere complexes while selenite forms inner-sphere complexes with the surfaces. The data also indicate that the competition sequence of other anions with respect to selenite adsorption at pH 7.0 is phosphate > silicate > molybdate > fluoride > sulfate on amorphous iron oxyhydroxide and molybdate ??? phosphate > silicate > fluoride > sulfate on manganese dioxide. The adsorption of phosphate, molybdate, and silicate on these oxides as a function of pH indicates that the competition sequences reflect the relative affinities of these anions for the surfaces. The Triple Layer surface complexation model is used to provide a quantitative description of these observations and to assess the importance of surface site heterogeneity on anion adsorption. The modeling results suggest that selenite forms binuclear, innersphere complexes with amorphous iron oxyhydroxide and monodentate, inner-sphere complexes with manganese dioxide and that selenate forms outer-sphere, monodentate complexes with amorphous iron oxyhydroxide. The heterogeneity of the oxide surface sites

  2. Manganese Doping of Magnetic Iron Oxide Nanoparticles: Tailoring Surface Reactivity for a Regenerable Heavy Metal Sorbent

    SciTech Connect

    Warner, Cynthia L.; Chouyyok, Wilaiwan; Mackie, Katherine E.; Neiner, Doinita; Saraf, Laxmikant; Droubay, Timothy C.; Warner, Marvin G.; Addleman, Raymond S.

    2012-02-28

    A method for tuning the analyte affinity of magnetic, inorganic nanostructured sorbents for heavy metal contaminants is described. The manganese-doped iron oxide nanoparticle sorbents have a remarkably high affinity compared to the precursor material. Sorbent affinity can be tuned toward an analyte of interest simply by adjustment of the dopant quantity. The results show that following the Mn doping process there is a large increase in affinity and capacity for heavy metals (i.e., Co, Ni, Zn, As, Ag, Cd, Hg, and Tl). Capacity measurements were carried out for the removal of cadmium from river water and showed significantly higher loading than the relevant commercial sorbents tested for comparison. The reduction in Cd concentration from 100 ppb spiked river water to 1 ppb (less than the EPA drinking water limit of 5 ppb for Cd) was achieved following treatment with the Mn-doped iron oxide nanoparticles. The Mn-doped iron oxide nanoparticles were able to load 1 ppm of Cd followed by complete stripping and recovery of the Cd with a mild acid wash. The Cd loading and stripping is shown to be consistent through multiple cycles with no loss of sorbent performance.

  3. Tetrahydroprotoberberine alkaloids with dopamine and σ receptor affinity.

    PubMed

    Gadhiya, Satishkumar; Madapa, Sudharshan; Kurtzman, Thomas; Alberts, Ian L; Ramsey, Steven; Pillarsetty, Nagavara-Kishore; Kalidindi, Teja; Harding, Wayne W

    2016-05-01

    Two series of analogues of the tetrahydroprotoberberine (THPB) alkaloid (±)-stepholidine that (a) contain various alkoxy substituents at the C10 position and, (b) were de-rigidified with respect to (±)-stepholidine, were synthesized and evaluated for affinity at dopamine and σ receptors in order to evaluate effects on D3 and σ2 receptor affinity and selectivity. Small n-alkoxy groups are best tolerated by D3 and σ2 receptors. Among all compounds tested, C10 methoxy and ethoxy analogues (10 and 11 respectively) displayed the highest affinity for σ2 receptors as well as σ2 versus σ1 selectivity and also showed the highest D3 receptor affinity. De-rigidification of stepholidine resulted in decreased affinity at all receptors evaluated; thus the tetracyclic THPB framework is advantageous for affinity at dopamine and σ receptors. Docking of the C10 analogues at the D3 receptor, suggest that an ionic interaction between the protonated nitrogen atom and Asp110, a H-bond interaction between the C2 phenol and Ser192, a H-bond interaction between the C10 phenol and Cys181 as well as hydrophobic interactions of the aryl rings to Phe106 and Phe345, are critical for high affinity of the compounds. PMID:27032890

  4. Analysis of biomolecular interactions using affinity microcolumns: A review

    PubMed Central

    Zheng, Xiwei; Li, Zhao; Beeram, Sandya; Podariu, Maria; Matsuda, Ryan; Pfaunmiller, Erika L.; White, Christopher J.; Carter, NaTasha; Hage, David S.

    2014-01-01

    Affinity chromatography has become an important tool for characterizing biomolecular interactions. The use of affinity microcolumns, which contain immobilized binding agents and have volumes in the mid-to-low microliter range, has received particular attention in recent years. Potential advantages of affinity microcolumns include the many analysis and detection formats that can be used with these columns, as well as the need for only small amounts of supports and immobilized binding agents. This review examines how affinity microcolumns have been used to examine biomolecular interactions. Both capillary-based microcolumns and short microcolumns are considered. The use of affinity microcolumns with zonal elution and frontal analysis methods are discussed. The techniques of peak decay analysis, ultrafast affinity extraction, split-peak analysis, and band-broadening studies are also explored. The principles of these methods are examined and various applications are provided to illustrate the use of these methods with affinity microcolumns. It is shown how these techniques can be utilized to provide information on the binding strength and kinetics of an interaction, as well as on the number and types of binding sites. It is further demonstrated how information on competition or displacement effects can be obtained by these methods. PMID:24572459

  5. Analysis of biomolecular interactions using affinity microcolumns: a review.

    PubMed

    Zheng, Xiwei; Li, Zhao; Beeram, Sandya; Podariu, Maria; Matsuda, Ryan; Pfaunmiller, Erika L; White, Christopher J; Carter, NaTasha; Hage, David S

    2014-10-01

    Affinity chromatography has become an important tool for characterizing biomolecular interactions. The use of affinity microcolumns, which contain immobilized binding agents and have volumes in the mid-to-low microliter range, has received particular attention in recent years. Potential advantages of affinity microcolumns include the many analysis and detection formats that can be used with these columns, as well as the need for only small amounts of supports and immobilized binding agents. This review examines how affinity microcolumns have been used to examine biomolecular interactions. Both capillary-based microcolumns and short microcolumns are considered. The use of affinity microcolumns with zonal elution and frontal analysis methods are discussed. The techniques of peak decay analysis, ultrafast affinity extraction, split-peak analysis, and band-broadening studies are also explored. The principles of these methods are examined and various applications are provided to illustrate the use of these methods with affinity microcolumns. It is shown how these techniques can be utilized to provide information on the binding strength and kinetics of an interaction, as well as on the number and types of binding sites. It is further demonstrated how information on competition or displacement effects can be obtained by these methods. PMID:24572459

  6. Persistence of iron limitation in the western subarctic Pacific SEEDS II mesoscale fertilization experiment

    NASA Astrophysics Data System (ADS)

    Wells, Mark L.; Trick, Charles G.; Cochlan, William P.; Beall, Ben

    2009-12-01

    The cumulative evidence from more than a dozen mesoscale iron-enrichment studies in high nitrate low chlorophyll (HNLC) waters demonstrates that iron limitation is widespread and very likely affects atmospheric carbon dioxide and thus global climate. However, the responses of microphytoplankton (>20 μm), predominantly diatoms, vary greatly among these mesoscale experiments even though similar amounts of iron were added, making it difficult to quantitatively incorporate iron effects into global climate models. Nowhere is this difference more dramatic than between the massive bloom observed during Subarctic Pacific Iron Experiment for Ecosystem Dynamics Study (SEEDS) I and the order of magnitude smaller ecosystem response in SEEDS II; two mesocale experiments performed in the same HNLC region of the western subarctic Pacific in different years. Deckboard incubation experiments initiated during the early, middle, and late stages of the 32-day SEEDS II experiment show that while the two iron infusions increased phytoplankton growth, diatoms remained significantly limited by iron availability, despite total dissolved Fe concentrations in the patch being well above the diffusion-limited threshold for rapid diatom growth. This iron limitation was apparent <6 days after the initial iron infusion and was not alleviated by the second, smaller iron infusion. In contrast, smaller phytoplankton (<20 μm) showed a more restricted response to further iron amendments, indicating that their iron nutrition was near optimal. Iron complexed to desferrioximine B, a commonly available siderophore produced by at least one marine bacterium, was poorly available to diatoms throughout the patch evolution, indicating that these diatoms lacked the ability to induce high-affinity iron uptake systems. These results suggest that the strong organic complexation of Fe(III) observed in the SEEDS II-fertilized patch was not compatible with rapid diatom growth. In contrast, iron associated with

  7. ODE/IM correspondence and modified affine Toda field equations

    NASA Astrophysics Data System (ADS)

    Ito, Katsushi; Locke, Christopher

    2014-08-01

    We study the two-dimensional affine Toda field equations for affine Lie algebra gˆ modified by a conformal transformation and the associated linear equations. In the conformal limit, the associated linear problem reduces to a (pseudo-)differential equation. For classical affine Lie algebra gˆ, we obtain a (pseudo-)differential equation corresponding to the Bethe equations for the Langlands dual of the Lie algebra g, which were found by Dorey et al. in study of the ODE/IM correspondence.

  8. Strategies to guide the antibody affinity maturation process.

    PubMed

    Doria-Rose, Nicole A; Joyce, M Gordon

    2015-04-01

    Antibodies with protective activity are critical for vaccine efficacy. Affinity maturation increases antibody activity through multiple rounds of somatic hypermutation and selection in the germinal center. Identification of HIV-1 specific and influenza-specific antibody developmental pathways, as well as characterization of B cell and virus co-evolution in patients, has informed our understanding of antibody development. In order to counteract HIV-1 and influenza viral diversity, broadly neutralizing antibodies precisely target specific sites of vulnerability and require high levels of affinity maturation. We present immunization strategies that attempt to recapitulate these natural processes and guide the affinity maturation process. PMID:25913818

  9. Strategies to guide the antibody affinity maturation process

    PubMed Central

    Doria-Rose, Nicole A.; Joyce, M. Gordon

    2015-01-01

    Antibodies with protective activity are critical for vaccine efficacy. Affinity maturation increases antibody activity through multiple rounds of somatic hypermutation and selection in the germinal center. Identification of HIV-1 specific and influenza-specific antibody developmental pathways, as well as characterization of B cell and virus co-evolution in patients, has informed our understanding of antibody development. In order to counteract HIV-1 and Influenza viral diversity, broadly neutralizing antibodies precisely target specific sites of vulnerability and require high levels of affinity maturation. We present immunization strategies that attempt to recapitulate these natural processes and guide the affinity maturation process. PMID:25913818

  10. Affinity- and topology-dependent bound on current fluctuations

    NASA Astrophysics Data System (ADS)

    Pietzonka, Patrick; Barato, Andre C.; Seifert, Udo

    2016-08-01

    We provide a proof of a recently conjectured universal bound on current fluctuations in Markovian processes. This bound establishes a link between the fluctuations of an individual observable current, the cycle affinities driving the system into a non-equilibrium steady state, and the topology of the network. The proof is based on a decomposition of the network into independent cycles with both positive affinity and positive stationary cycle current. This formalism allows for a refinement of the bound for systems in equilibrium or with locally vanishing affinities.

  11. Affinity+: Semi-Structured Brainstorming on Large Displays

    SciTech Connect

    Burtner, Edwin R.; May, Richard A.; Scarberry, Randall E.; LaMothe, Ryan R.; Endert, Alexander

    2013-04-27

    Affinity diagraming is a powerful method for encouraging and capturing lateral thinking in a group environment. The Affinity+ Concept was designed to improve the collaborative brainstorm process through the use of large display surfaces in conjunction with mobile devices like smart phones and tablets. The system works by capturing the ideas digitally and allowing users to sort and group them on a large touch screen manually. Additionally, Affinity+ incorporates theme detection, topic clustering, and other processing algorithms that help bring structured analytic techniques to the process without requiring explicit leadership roles and other overhead typically involved in these activities.

  12. Iron Absorption in Drosophila melanogaster

    PubMed Central

    Mandilaras, Konstantinos; Pathmanathan, Tharse; Missirlis, Fanis

    2013-01-01

    The way in which Drosophila melanogaster acquires iron from the diet remains poorly understood despite iron absorption being of vital significance for larval growth. To describe the process of organismal iron absorption, consideration needs to be given to cellular iron import, storage, export and how intestinal epithelial cells sense and respond to iron availability. Here we review studies on the Divalent Metal Transporter-1 homolog Malvolio (iron import), the recent discovery that Multicopper Oxidase-1 has ferroxidase activity (iron export) and the role of ferritin in the process of iron acquisition (iron storage). We also describe what is known about iron regulation in insect cells. We then draw upon knowledge from mammalian iron homeostasis to identify candidate genes in flies. Questions arise from the lack of conservation in Drosophila for key mammalian players, such as ferroportin, hepcidin and all the components of the hemochromatosis-related pathway. Drosophila and other insects also lack erythropoiesis. Thus, systemic iron regulation is likely to be conveyed by different signaling pathways and tissue requirements. The significance of regulating intestinal iron uptake is inferred from reports linking Drosophila developmental, immune, heat-shock and behavioral responses to iron sequestration. PMID:23686013

  13. Iron absorption in Drosophila melanogaster.

    PubMed

    Mandilaras, Konstantinos; Pathmanathan, Tharse; Missirlis, Fanis

    2013-05-01

    The way in which Drosophila melanogaster acquires iron from the diet remains poorly understood despite iron absorption being of vital significance for larval growth. To describe the process of organismal iron absorption, consideration needs to be given to cellular iron import, storage, export and how intestinal epithelial cells sense and respond to iron availability. Here we review studies on the Divalent Metal Transporter-1 homolog Malvolio (iron import), the recent discovery that Multicopper Oxidase-1 has ferroxidase activity (iron export) and the role of ferritin in the process of iron acquisition (iron storage). We also describe what is known about iron regulation in insect cells. We then draw upon knowledge from mammalian iron homeostasis to identify candidate genes in flies. Questions arise from the lack of conservation in Drosophila for key mammalian players, such as ferroportin, hepcidin and all the components of the hemochromatosis-related pathway. Drosophila and other insects also lack erythropoiesis. Thus, systemic iron regulation is likely to be conveyed by different signaling pathways and tissue requirements. The significance of regulating intestinal iron uptake is inferred from reports linking Drosophila developmental, immune, heat-shock and behavioral responses to iron sequestration. PMID:23686013

  14. 46 CFR 148.275 - Iron oxide, spent; iron sponge, spent.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Iron oxide, spent; iron sponge, spent. 148.275 Section... § 148.275 Iron oxide, spent; iron sponge, spent. (a) Before spent iron oxide or spent iron sponge is... been cooled and weathered for at least eight weeks. (b) Both spent iron oxide and spent iron sponge...

  15. 46 CFR 148.275 - Iron oxide, spent; iron sponge, spent.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Iron oxide, spent; iron sponge, spent. 148.275 Section... § 148.275 Iron oxide, spent; iron sponge, spent. (a) Before spent iron oxide or spent iron sponge is... been cooled and weathered for at least eight weeks. (b) Both spent iron oxide and spent iron sponge...

  16. 46 CFR 148.275 - Iron oxide, spent; iron sponge, spent.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Iron oxide, spent; iron sponge, spent. 148.275 Section... § 148.275 Iron oxide, spent; iron sponge, spent. (a) Before spent iron oxide or spent iron sponge is... been cooled and weathered for at least eight weeks. (b) Both spent iron oxide and spent iron sponge...

  17. 46 CFR 148.275 - Iron oxide, spent; iron sponge, spent.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Iron oxide, spent; iron sponge, spent. 148.275 Section... § 148.275 Iron oxide, spent; iron sponge, spent. (a) Before spent iron oxide or spent iron sponge is... been cooled and weathered for at least eight weeks. (b) Both spent iron oxide and spent iron sponge...

  18. Insights into the pathophysiology of iron metabolism in Pythium insidiosum infections.

    PubMed

    Zanette, R A; Bitencourt, P E R; Alves, S H; Fighera, R A; Flores, M M; Wolkmer, P; Hecktheuer, P A; Thomas, L R; Pereira, P L; Loreto, E S; Santurio, J M

    2013-03-23

    Pythium insidiosum causes life-threatening disease in mammals. Animals with pythiosis usually develop anemia, and most human patients are reported to have thalassemia and the major consequence of thalassemia, iron overload. Therefore, this study evaluated the iron metabolism in rabbits experimentally infected with P. insidiosum. Ten infected rabbits were divided into two groups: one groups received a placebo, and the other was treated with immunotherapy. Five rabbits were used as negative controls. The hematological and biochemical parameters, including the iron profile, were evaluated. Microcytic hypochromic anemia was observed in the infected animals, and this condition was more accentuated in the untreated group. The serum iron level was decreased, whereas the transferrin level was increased, resulting in low saturation. The level of stainable iron in hepatocytes was markedly decreased in the untreated group. A high correlation was observed between the total iron binding capacity and the lesion size, and this correlation likely confirms the affinity of P. insidiosum for iron. The data from this study corroborate the previous implications of iron in the pathogenesis of pythiosis in humans and animals. PMID:23182911

  19. Extremely high negative electron affinity of diamond via magnesium adsorption

    NASA Astrophysics Data System (ADS)

    O'Donnell, K. M.; Edmonds, M. T.; Tadich, A.; Thomsen, L.; Stacey, A.; Schenk, A.; Pakes, C. I.; Ley, L.

    2015-07-01

    We report large negative electron affinity (NEA) on diamond (100) using magnesium adsorption on a previously oxygen-terminated surface. The measured NEA is up to (-2.01 ±0.05 ) eV, the largest reported negative electron affinity to date. Despite the expected close relationship between the surface chemistry of Mg and Li species on oxygen-terminated diamond, we observe differences in the adsorption properties between the two. Most importantly, a high-temperature annealing step is not required to activate the Mg-adsorbed surface to a state of negative electron affinity. Diamond surfaces prepared by this procedure continue to possess negative electron affinity after exposure to high temperatures, air, and even immersion in water.

  20. COMPARATIVE OXYGEN AFFINITY OF FISH AND MAMMALIAN MYOGLOBINS

    EPA Science Inventory

    Myoglobins from rat, coho salmon (Oncorhynchus kisutch), buffalo sculpin (Enophrys bison) hearts, and yellowfin tuna (Thunnus albacares) red skeletal muscle were partially purified and their O2 binding affinities determined. Commercially prepared sperm whale myoglobin was employe...

  1. Proton affinity of several basic non-standard amino acids

    NASA Astrophysics Data System (ADS)

    Rožman, Marko

    2012-08-01

    The structures and absolute proton affinities of several arginine (2-amino-3-guanidinopropionic acid, 2-amino-4-guanidinobutyric acid, homoarginine, citrulline and canavanine), histidine (1-methylhistidine and 3-methylhistidine) and lysine (2,3-diaminopropanoic acid, 2,4-diaminobutanoic acid, ornithine, 5-hydroxylysine, canaline and thialysine) homologues and analogues have been estimated using composite G3MP2B3 computational protocol. For a majority of here studied non-standard amino acids the gas-phase proton affinities were established for the first time, while for the others obtained values are used to improve the accuracy of the computational and experimental proton affinities reported previously. In addition, structures and proton affinities are discussed in order to rationalize their biological activity.

  2. Bidirectional Elastic Image Registration Using B-Spline Affine Transformation

    PubMed Central

    Gu, Suicheng; Meng, Xin; Sciurba, Frank C.; Wang, Chen; Kaminski, Naftali; Pu, Jiantao

    2014-01-01

    A registration scheme termed as B-spline affine transformation (BSAT) is presented in this study to elastically align two images. We define an affine transformation instead of the traditional translation at each control point. Mathematically, BSAT is a generalized form of the affine transformation and the traditional B-Spline transformation (BST). In order to improve the performance of the iterative closest point (ICP) method in registering two homologous shapes but with large deformation, a bi-directional instead of the traditional unidirectional objective / cost function is proposed. In implementation, the objective function is formulated as a sparse linear equation problem, and a sub-division strategy is used to achieve a reasonable efficiency in registration. The performance of the developed scheme was assessed using both two-dimensional (2D) synthesized dataset and three-dimensional (3D) volumetric computed tomography (CT) data. Our experiments showed that the proposed B-spline affine model could obtain reasonable registration accuracy. PMID:24530210

  3. Bidirectional elastic image registration using B-spline affine transformation.

    PubMed

    Gu, Suicheng; Meng, Xin; Sciurba, Frank C; Ma, Hongxia; Leader, Joseph; Kaminski, Naftali; Gur, David; Pu, Jiantao

    2014-06-01

    A registration scheme termed as B-spline affine transformation (BSAT) is presented in this study to elastically align two images. We define an affine transformation instead of the traditional translation at each control point. Mathematically, BSAT is a generalized form of the affine transformation and the traditional B-spline transformation (BST). In order to improve the performance of the iterative closest point (ICP) method in registering two homologous shapes but with large deformation, a bidirectional instead of the traditional unidirectional objective/cost function is proposed. In implementation, the objective function is formulated as a sparse linear equation problem, and a sub-division strategy is used to achieve a reasonable efficiency in registration. The performance of the developed scheme was assessed using both two-dimensional (2D) synthesized dataset and three-dimensional (3D) volumetric computed tomography (CT) data. Our experiments showed that the proposed B-spline affine model could obtain reasonable registration accuracy. PMID:24530210

  4. Frontal affinity chromatography (FAC): theory and basic aspects.

    PubMed

    Kasai, Ken-ichi

    2014-01-01

    Frontal affinity chromatography (FAC) is a versatile analytical tool for determining specific interactions between biomolecules and is particularly useful in the field of glycobiology. This article presents its basic aspects, merits, and theory. PMID:25117240

  5. Antibody Affinity Maturation in Fishes—Our Current Understanding

    PubMed Central

    Magor, Brad G.

    2015-01-01

    It has long been believed that fish lack antibody affinity maturation, in part because they were thought to lack germinal centers. Recent research done on sharks and bony fishes indicates that these early vertebrates are able to affinity mature their antibodies. This article reviews the functionality of the fish homologue of the immunoglobulin (Ig) mutator enzyme activation-induced cytidine deaminase (AID). We also consider the protein and molecular evidence for Ig somatic hypermutation and antibody affinity maturation. In the context of recent evidence for a putative proto-germinal center in fishes we propose some possible reasons that observed affinity maturation in fishes often seems lacking and propose future work that might shed further light on this process in fishes. PMID:26264036

  6. Mammalian iron metabolism and its control by iron regulatory proteins☆

    PubMed Central

    Anderson, Cole P.; Shen, Lacy; Eisenstein, Richard S.; Leibold, Elizabeth A.

    2013-01-01

    Cellular iron homeostasis is maintained by iron regulatory proteins 1 and 2 (IRP1 and IRP2). IRPs bind to iron-responsive elements (IREs) located in the untranslated regions of mRNAs encoding protein involved in iron uptake, storage, utilization and export. Over the past decade, significant progress has been made in understanding how IRPs are regulated by iron-dependent and iron-independent mechanisms and the pathological consequences of IRP2 deficiency in mice. The identification of novel IREs involved in diverse cellular pathways has revealed that the IRP–IRE network extends to processes other than iron homeostasis. A mechanistic understanding of IRP regulation will likely yield important insights into the basis of disorders of iron metabolism. This article is part of a Special Issue entitled: Cell Biology of Metals. PMID:22610083

  7. Iron-sensitive fluorescent probes: monitoring intracellular iron pools.

    PubMed

    Ma, Yongmin; Abbate, V; Hider, R C

    2015-02-01

    Several iron-sensitive fluorophores have been investigated in a range of cell types in order to quantify iron(II) levels in the cytosol and the cytoplasm. Both iron(II) and iron(III) cause fluorescence quenching of these probes and changes in cytosolic iron levels can be monitored in a reproducible manner. However the precise quantification of iron(II) in the cytosol is complicated by the uncertainty of the structure of many of the quenched species that exist under in vivo conditions. Precise knowledge of these structures is essential for quantitative purposes. The lysosomal and mitochondrial iron pools have only been the subject of relatively few studies at the time of writing. Calcein-AM has been widely adopted for the monitoring of changes in iron levels in a range different cell types. PMID:25315476

  8. Fur-Regulated Iron Uptake System of Edwardsiella ictaluri and Its Influence on Pathogenesis and Immunogenicity in the Catfish Host

    PubMed Central

    Golden, Greg; Wanda, Soo-Young; Curtiss, Roy

    2012-01-01

    The ability of bacterial pathogens to take up iron from the host during infection is necessary for their multiplication within the host. However, host high-affinity iron binding proteins limit levels of free iron in fluids and tissues. To overcome this deficiency of iron during infection, bacterial pathogens have developed iron uptake systems that are upregulated in the absence of iron, typically tightly controlled by the ferric uptake regulator (Fur) protein. The iron uptake system of Edwardsiella ictaluri, a host-restricted pathogen of channel catfish (Ictalurus punctatus) and the main pathogen of this fish in aquaculture, is unknown. Here we describe the E. ictaluri Fur protein, the iron uptake machinery controlled by Fur, and the effects of fur gene deletion on virulence and immunogenicity in the fish host. Analysis of the E. ictaluri Fur protein shows that it lacks the N-terminal region found in the majority of pathogen-encoded Fur proteins. However, it is fully functional in regulated genes encoding iron uptake proteins. E. ictaluri grown under iron-limited conditions upregulates an outer membrane protein (HemR) that shows heme-hemoglobin transport activity and is tightly regulated by Fur. In vivo studies showed that an E. ictaluri Δfur mutant is attenuated and immune protective in zebrafish (Danio rerio) and catfish (Ictalurus punctatus), triggering systemic immunity. We conclude that an E. ictaluri Δfur mutant could be an effective component of an immersion-oral vaccine for the catfish industry. PMID:22615248

  9. Signal transduction and transcriptional and posttranscriptional control of iron-regulated genes in bacteria.

    PubMed

    Crosa, J H

    1997-09-01

    Iron is an essential element for nearly all living cells. Thus, the ability of bacteria to utilize iron is a crucial survival mechanism independent of the ecological niche in which the microorganism lives, because iron is scarce both in potential biological hosts, where it is bound by high-affinity iron-binding proteins, and in the environment, where it is present as part of insoluble complex hydroxides. Therefore, pathogens attempting to establish an infection and environmental microorganisms must all be able to utilize the otherwise unavailable iron. One of the strategies to perform this task is the possession of siderophore-mediated iron uptake systems that are capable of scavenging the hoarded iron. This metal is, however, a double-edged sword for the cell because it can catalyze the production of deadly free hydroxyl radicals, which are harmful to the cells. It is therefore imperative for the cell to control the concentration of iron at levels that permit key metabolic steps to occur without becoming a messenger of cell death. Early work identified a repressor, Fur, which as a complex with iron repressed the expression of most iron uptake systems as well as other iron-regulated genes when the iron concentration reached a certain level. However, later work demonstrated that this regulation by Fur was not the only answer under low-iron conditions, there was a need for activation of iron uptake genes as well as siderophore biosynthetic genes. Furthermore, it was also realized that in some instances the actual ferric iron-siderophore complex induced the transcription of the cognate receptor and transport genes. It became evident that control of the expression of iron-regulated genes was more complex than originally envisioned. In this review, I analyze the processes of signal transduction, transcriptional control, and posttranscriptional control of iron-regulated genes as reported for the ferric dicitrate system in Escherichia coli; the pyochelin, pyoverdin, and

  10. Aptamer-modified magnetic beads in affinity separation of proteins.

    PubMed

    Zhu, Guohong; Walter, Johanna-Gabriela

    2015-01-01

    Aptamers are valuable alternative ligands for affinity separations. Here, we describe the aptamer-based affinity separation of His-tagged proteins using an aptamer directed against the His-tag. The immobilization of the aptamer to magnetic beads is described as well as the aptamer-based purification and proper methods for the characterization of the process. Moreover, indications for the transfer of the process to other aptamers are given. PMID:25749947

  11. Earth's core iron

    NASA Astrophysics Data System (ADS)

    Geophysicist J. Michael Brown of Texas A & M University noted recently at the Spring AGU Meeting in Baltimore that the structure and phase of metallic iron at pressures of the earth's inner core (approximately 3.3 Mbar) could have great significance in defining geometrical aspects of the core itself. Brown worked at the Los Alamos Scientific Laboratory with R.B. McQueen to redetermine the phase relations of metallic iron in a series of new shock-wave experiments. They found the melting point of iron at conditions equal to those at the boundary of the earth's outer (liquid) and inner (solid) cores to be 6000°±500°C (Geophysical Research Letters, 7, 533-536, 1980).

  12. Proton affinity of methyl nitrate - Less than proton affinity of nitric acid

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Rice, Julia E.

    1992-01-01

    Several state-of-the-art ab initio quantum mechanical methods were used to investigate the equilibrium structure, dipole moments, harmonic vibrational frequencies, and IR intensities of methyl nitrate, methanol, and several structures of protonated methyl nitrate, using the same theoretical methods as in an earlier study (Lee and Rice, 1992) of nitric acid. The ab initio results for methyl nitrate and methanol were found to be in good agreement with available experimental data. The proton affinity (PA) of methyl nitrate was calculated to be 176.9 +/-5 kcal/mol, in excellent agreement with the experimental value 176 kcal/mol obtained by Attina et al. (1987) and less than the PA value of nitric acid. An explanation of the discrepancy of the present results with those of an earlier study on protonated nitric acid is proposed.

  13. Enhancing IHE XDS for federated clinical affinity domain support.

    PubMed

    Dogac, Asuman; Laleci, Gokce B; Aden, Thomas; Eichelberg, Marco

    2007-03-01

    One of the key problems in healthcare informatics is the inability to share patient records across enterprises. To address this problem, an important industry initiative called "integrating the healthcare enterprise (IHE)" specified the "cross enterprise document sharing (XDS)" profile. In the IHE XDS, healthcare enterprises that agree to work together form a "clinical affinity domain" and store healthcare documents in an ebXML registry/repository architecture to facilitate their sharing. The affinity domains also agree on a common set of policies such as coding lists to be used to annotate clinical documents in the registry/repository and the common schemes for patient identification. However, since patients expect their records to follow them as they move from one clinical affinity domain to another, there is a need for affinity domains to be federated to enable information exchange. In this paper, we describe how IHE XDS can be enhanced to support federated clinical affinity domains. We demonstrate that federation of affinity domains are facilitated when ontologies, rather than coding term lists, are used to annotate clinical documents. Furthermore, we describe a patient identification protocol that eliminates the need to keep a master patient index file for the federation. PMID:17390991

  14. Flexible Linker Modulates Glycosaminoglycan Affinity of Decorin Binding Protein A.

    PubMed

    Morgan, Ashli; Sepuru, Krishna Mohan; Feng, Wei; Rajarathnam, Krishna; Wang, Xu

    2015-08-18

    Decorin binding protein A (DBPA) is a glycosaminoglycan (GAG)-binding adhesin found on the surface of the bacterium Borrelia burgdorferi (B. burgdorferi), the causative agent of Lyme disease. DBPA facilitates bacterial adherence to extracellular matrices of human tissues and is crucial during the early stage of the infection process. Interestingly, DBPA from different strains (B31, N40, and PBr) show significant differences in GAG affinities, but the structural basis for the differences is not clear. In this study, we show that GAG affinity of N40 DBPA is modulated in part by flexible segments that control access to the GAG binding site, such that shortening of the linker leads to higher GAG affinity when analyzed using ELISA, gel mobility shift assay, solution NMR, and isothermal titration calorimetry. Our observation that GAG affinity differences among different B. burgdorferi strains can be attributed to a flexible linker domain regulating access to the GAG-binding domain is novel. It also provides a rare example of how neutral amino acids and dynamic segments in GAG binding proteins can have a large influence on GAG affinity and provides insights into why the number of basic amino acids in the GAG-binding site may not be the only factor determining GAG affinity of proteins. PMID:26223367

  15. Hexadecylamine adsorption at the iron oxide-oil interface.

    PubMed

    Wood, Mary H; Welbourn, Rebecca J L; Charlton, Timothy; Zarbakhsh, Ali; Casford, M T; Clarke, Stuart M

    2013-11-12

    The adsorption behavior of a model additive, hexadecylamine, onto an iron surface from hexadecane oil has been characterized using polarized neutron reflectometry, sum-frequency generation spectroscopy, solution depletion isotherm, and X-ray photoelectron spectroscopy (XPS). The amine showed a strong affinity for the metal surface, forming a dense monolayer at relatively low concentrations; a layer thickness of 16 (±3) Å at low concentrations, increasing to 20 (±3) Å at greater amine concentrations, was determined from the neutron data. These thicknesses suggest that the molecules in the layer are tilted. Adsorption was also indicated by sum-frequency generation spectroscopy and XPS, the latter indicating that the most dominant amine-surface interaction was via electron donation from the nitrogen lone pair to the positively charged iron ions. Sum-frequency generation spectroscopy was used to determine the alkyl chain conformation order and orientation on the surface. PMID:24106786

  16. The removal of arsenate from water using iron-modified diatomite (D-Fe): isotherm and column experiments.

    PubMed

    Pantoja, M L; Jones, H; Garelick, H; Mohamedbakr, H G; Burkitbayev, M

    2014-01-01

    Iron hydroxide supported onto porous diatomite (D-Fe) is a low-cost material with potential to remove arsenic from contaminated water due to its affinity for the arsenate ion. This affinity was tested under varying conditions of pH, contact time, iron content in D-Fe and the presence of competitive ions, silicate and phosphate. Batch and column experiments were conducted to derive adsorption isotherms and breakthrough behaviours (50 μg L(-1)) for an initial concentration of 1,000 μg L(-1). Maximum capacity at pH 4 and 17% iron was 18.12-40.82 mg of arsenic/g of D-Fe and at pH 4 and 10% iron was 18.48-29.07 mg of arsenic/g of D-Fe. Adsorption decreased in the presence of phosphate and silicate ions. The difference in column adsorption behaviour between 10% and 17% iron was very pronounced, outweighing the impact of all other measured parameters. There was insufficient evidence of a correlation between iron content and arsenic content in isotherm experiments, suggesting that ion exchange is a negligible process occurring in arsenate adsorption using D-Fe nor is there co-precipitation of arsenate by rising iron content of the solute above saturation. PMID:23807557

  17. INTERIOR VIEW OF IRON TREATMENT (DESULPHURIZATION) AREA. MOLTEN IRON PROCEEDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF IRON TREATMENT (DESULPHURIZATION) AREA. MOLTEN IRON PROCEEDS FROM CUPOLA TO IRON TREATMENT AREAS BEFORE BEING TRANSFERRED TO PIPE CASTING MACHINES. - United States Pipe & Foundry Company Plant, Melting & Treatment Areas, 2023 St. Louis Avenue at I-20/59, Bessemer, Jefferson County, AL

  18. Iron-Induced Virulence of Salmonella enterica Serovar Typhimurium at the Intestinal Epithelial Interface Can Be Suppressed by Carvacrol

    PubMed Central

    Kortman, Guus A. M.; Roelofs, Rian W. H. M.; Swinkels, Dorine W.; de Jonge, Marien I.; Burt, Sara A.

    2014-01-01

    Oral iron therapy can increase the abundance of bacterial pathogens, e.g., Salmonella spp., in the large intestine of African children. Carvacrol is a natural compound with antimicrobial activity against various intestinal bacterial pathogens, among which is the highly prevalent Salmonella enterica serovar Typhimurium. This study aimed to explore a presumed interaction between carvacrol and bacterial iron handling and to assess the potential of carvacrol in preventing the increase of bacterial pathogenicity during high iron availability. S. Typhimurium was cultured with increasing concentrations of iron and carvacrol to study the effects of these combined interventions on growth, adhesion to intestinal epithelial cells, and iron uptake/influx in both bacterial and epithelial cells. In addition, the ability of carvacrol to remove iron from the high-affinity ligand transferrin and an Fe-dye complex was examined. Carvacrol retarded growth of S. Typhimurium at all iron conditions. Furthermore, iron-induced epithelial adhesion was effectively reduced by carvacrol at high iron concentrations. The reduction of growth and virulence by carvacrol was not paralleled by a change in iron uptake or influx into S. Typhimurium. In contrast, bioavailability of iron for epithelial cells was moderately decreased under these conditions. Further, carvacrol was shown to lack the properties of an iron binding molecule; however, it was able to weaken iron-ligand interactions by which it may possibly interfere with bacterial virulence. In conclusion, our in vitro data suggest that carvacrol has the potential to serve as a novel dietary supplement to prevent pathogenic overgrowth and colonization in the large intestine during oral iron therapy. PMID:24379194

  19. Anemia caused by low iron - children

    MedlinePlus

    Anemia - iron deficiency - children ... able to absorb iron well, even though the child is eating enough iron Slow blood loss over ... bleeding in the digestive tract Iron deficiency in children can also be related to lead poisoning .

  20. Silver-iron batteries

    NASA Astrophysics Data System (ADS)

    Lindstroem, O.

    1980-04-01

    Production methods for iron electrodes were studied. It was found that a sintering temperature of 700 C gave the best strength and capacity. Production methods and additions for silver electrodes were also studied. The capacity of the produced iron and silver electrodes were 1100 mAh/cu cm. Different separators were investigated. Cellophane I and II from Du Pont was found to be the best. In tests open cells achieved 60 percent of the calculated capacity. In order to minimize the increase of the pressure in closed cells different additions to the electrodes were studied.

  1. Iron Meteorite on Mars

    NASA Technical Reports Server (NTRS)

    2005-01-01

    NASA's Mars Exploration Rover Opportunity has found an iron meteorite on Mars, the first meteorite of any type ever identified on another planet. The pitted, basketball-size object is mostly made of iron and nickel. Readings from spectrometers on the rover determined that composition. Opportunity used its panoramic camera to take the images used in this approximately true-color composite on the rover's 339th martian day, or sol (Jan. 6, 2005). This composite combines images taken through the panoramic camera's 600-nanometer (red), 530-nanometer (green), and 480-nanometer (blue) filters.

  2. Iron in Infection and Immunity

    PubMed Central

    Cassat, James E.; Skaar, Eric P.

    2013-01-01

    Iron is an essential nutrient for both humans and pathogenic microbes. Because of its ability to exist in one of two oxidation states, iron is an ideal redox catalyst for diverse cellular processes including respiration and DNA replication. However, the redox potential of iron also contributes to its toxicity, thus iron concentration and distribution must be carefully controlled. Given the absolute requirement for iron by virtually all human pathogens, an important facet of the innate immune system is to limit iron availability to invading microbes in a process termed nutritional immunity. Successful human pathogens must therefore possess mechanisms to circumvent nutritional immunity in order to cause disease. In this review, we discuss regulation of iron metabolism in the setting of infection and delineate strategies used by human pathogens to overcome iron-withholding defenses. PMID:23684303

  3. Protein degradation and iron homeostasis.

    PubMed

    Thompson, Joel W; Bruick, Richard K

    2012-09-01

    Regulation of both systemic and cellular iron homeostasis requires the capacity to sense iron levels and appropriately modify the expression of iron metabolism genes. These responses are coordinated through the efforts of several key regulatory factors including F-box and Leucine-rich Repeat Protein 5 (FBXL5), Iron Regulatory Proteins (IRPs), Hypoxia Inducible Factor (HIF), and ferroportin. Notably, the stability of each of these proteins is regulated in response to iron. Recent discoveries have greatly advanced our understanding of the molecular mechanisms governing iron-sensing and protein degradation within these pathways. It has become clear that iron's privileged roles in both enzyme catalysis and protein structure contribute to its regulation of protein stability. Moreover, these multiple pathways intersect with one another in larger regulatory networks to maintain iron homeostasis. This article is part of a Special Issue entitled: Cell Biology of Metals. PMID:22349011

  4. Iron deficiency anemia in children.

    PubMed

    Subramaniam, Girish; Girish, Meenakshi

    2015-06-01

    Iron deficiency is not just anemia; it can be responsible for a long list of other manifestations. This topic is of great importance, especially in infancy and early childhood, for a variety of reasons. Firstly, iron need is maximum in this period. Secondly, diet in infancy is usually deficient in iron. Thirdly and most importantly, iron deficiency at this age can result in neurodevelopmental and cognitive deficits, which may not be reversible. Hypochromia and microcytosis in a complete blood count (CBC) makes iron deficiency anemia (IDA) most likely diagnosis. Absence of response to iron should make us look for other differential diagnosis like β thalassemia trait and anemia of chronic disease. Celiac disease is the most important cause of true IDA not responding to oral iron therapy. While oral ferrous sulphate is the cheapest and most effective therapy for IDA, simple nonpharmacological and pharmacological measures can go a long way in prevention of iron deficiency. PMID:25636824

  5. Nonbiological fractionation of iron isotopes

    NASA Technical Reports Server (NTRS)

    Anbar, A. D.; Roe, J. E.; Barling, J.; Nealson, K. H.

    2000-01-01

    Laboratory experiments demonstrate that iron isotopes can be chemically fractionated in the absence of biology. Isotopic variations comparable to those seen during microbially mediated reduction of ferrihydrite are observed. Fractionation may occur in aqueous solution during equilibration between inorganic iron complexes. These findings provide insight into the mechanisms of iron isotope fractionation and suggest that nonbiological processes may contribute to iron isotope variations observed in sediments.

  6. Toughness Properties of Nodular Iron

    NASA Astrophysics Data System (ADS)

    Bradley, Walter L.

    1985-01-01

    The German government recently certified ductile iron for construction of nuclear waste transport containers. This approved use of ductile iron for such a critical application represents the culmination of ten years worth of research bringing to light the surprising toughness of ductile iron. This article explains how modern fracture mechanics and microstructure/property relationships have altered the stereotype of ductile iron as a low toughness material.

  7. Enzymes of respiratory iron oxidation

    SciTech Connect

    Blake, R. II.

    1991-01-01

    This report focuses on the progress made in three areas of research concerned with enzymes involved in respiratory iron oxidation. The three areas are as follows: development of an improved procedure for the routine large scale culture of iron oxidizing chemolithotrophs based on the in-situ electrolysis of the soluble iron in the growth medium; to perform iron oxidation kinetic studies on whole cells using the oxygen electrode; and to identify, separate, purify, and characterize the individual cellular components.

  8. Iron Polymerization and Arsenic Removal During In-Situ Iron Electrocoagulation in Synthetic Bangladeshi Groundwater

    NASA Astrophysics Data System (ADS)

    van Genuchten, C. M.; Pena, J.; Addy, S.; Gadgil, A.

    2010-12-01

    Millions of people worldwide are exposed to arsenic-contamination in groundwater drinking supplies. The majority of affected people live in rural Bangladesh. Electrocoagulation (EC) using iron electrodes is a promising arsenic removal strategy that is based on the generation of iron precipitates with a high affinity for arsenic through the electrochemical dissolution of a sacrificial iron anode. Many studies of iron hydrolysis in the presence of co-occurring ions in groundwater such as PO43-, SiO44-, and AsO43- suggest that these ions influence the polymerization and formation of iron oxide phases. However, the combined impact of these ions on precipitates generated by EC is not well understood. X-ray absorption spectroscopy (XAS) was used to examine EC precipitates generated in synthetic Bangladeshi groundwater (SBGW). The iron oxide structure and arsenic binding geometry were investigated as a function of EC operating conditions. As and Fe k-edge spectra were similar between samples regardless of the large range of current density (0.02, 1.1, 5.0, 100 mA/cm2) used during sample generation. This result suggests that current density does not play a large role in the formation EC precipitates in SBGW. Shell-by-shell fits of Fe K-edge data revealed the presence of a single Fe-Fe interatomic distance at approximately 3.06 Å. The absence of longer ranged Fe-Fe correlations suggests that EC precipitates consist of nano-scale chains (polymers) of FeO6 octahedra sharing equatorial edges. Shell-by-shell fits of As K-edge spectra show arsenic bound in primarily bidentate, binuclear corner sharing complexes. In this coordination geometry, arsenic prevents the formation of FeO6 corner-sharing linkages, which are necessary for 3-dimensional crystal growth. The individual and combined effects of other anions, such as PO43- and SiO44- present in SBGW are currently being investigated to determine the role of these ions in stunting crystal growth. The results provided by this

  9. Iron oxide nanoparticles in geomicrobiology: from biogeochemistry to bioremediation.

    PubMed

    Braunschweig, Juliane; Bosch, Julian; Meckenstock, Rainer U

    2013-09-25

    Iron oxides are important constituents of soils and sediments and microbial iron reduction is considered to be a significant anaerobic respiration process in the subsurface, however low microbial reduction rates of macroparticulate Fe oxides in laboratory studies led to an underestimation of the role of Fe oxides in the global Fe redox cycle. Recent studies show the high potential of nano-sized Fe oxides in the environment as, for example, electron acceptor for microbial respiration, electron shuttle between different microorganisms, and scavenger for heavy metals. Biotic and abiotic reactivity of iron macroparticles differ significantly from nano-sized Fe oxides, which are usually much more reactive. Factors such as particle size, solubility, ferrous iron, crystal structure, and organic molecules were identified to influence the reactivity. This review discusses factors influencing the microbial reactivity of Fe oxides. It highlights the differences between natural and synthetic Fe oxides especially regarding the presence of organic molecules such as humic acids and natural organic matter. Attention is given to the transport behavior of Fe oxides in laboratory systems and in the environment, because of the high affinity of different contaminants to Fe oxide surfaces and associated co-transport of pollutants. The high reactivity of Fe oxides and their potential as adsorbents for different pollutants are discussed with respect to application and development of remediation technologies. PMID:23557995

  10. 21 CFR 184.1375 - Iron, elemental.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Iron, elemental. 184.1375 Section 184.1375 Food... Specific Substances Affirmed as GRAS § 184.1375 Iron, elemental. (a) Iron, elemental (CAS Reg. No. 7439-89-6) is metallic iron obtained by any of the following processes: reduced iron, electrolytic iron,...

  11. 21 CFR 184.1375 - Iron, elemental.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Iron, elemental. 184.1375 Section 184.1375 Food... Specific Substances Affirmed as GRAS § 184.1375 Iron, elemental. (a) Iron, elemental (CAS Reg. No. 7439-89-6) is metallic iron obtained by any of the following processes: reduced iron, electrolytic iron,...

  12. 21 CFR 184.1375 - Iron, elemental.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Iron, elemental. 184.1375 Section 184.1375 Food and... Substances Affirmed as GRAS § 184.1375 Iron, elemental. (a) Iron, elemental (CAS Reg. No. 7439-89-6) is metallic iron obtained by any of the following processes: reduced iron, electrolytic iron, and...

  13. 21 CFR 184.1375 - Iron, elemental.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Iron, elemental. 184.1375 Section 184.1375 Food... Specific Substances Affirmed as GRAS § 184.1375 Iron, elemental. (a) Iron, elemental (CAS Reg. No. 7439-89-6) is metallic iron obtained by any of the following processes: reduced iron, electrolytic iron,...

  14. Intracellular iron minerals in a dissimilatory iron-reducing bacterium.

    PubMed

    Glasauer, Susan; Langley, Sean; Beveridge, Terry J

    2002-01-01

    Among prokaryotes, there are few examples of controlled mineral formation; the formation of crystalline iron oxides and sulfides [magnetite (Fe3O4) or greigite (Fe3S4)] by magnetotactic bacteria is an exception. Shewanella putrefaciens CN32, a Gram-negative, facultative anaerobic bacterium that is capable of dissimilatory iron reduction, produced microscopic intracellular grains of iron oxide minerals during growth on two-line ferrihydrite in a hydrogen-argon atmosphere. The minerals, formed at iron concentrations found in the soil and sedimentary environments where these bacteria are active, could represent an unexplored pathway for the cycling of iron by bacteria. PMID:11778045

  15. Iron deficiency anemia

    MedlinePlus

    ... or blood in the stool Heavy menstrual bleeding (women) Pain in the upper belly (from ulcers) Weight loss (in people with cancer) ... an injection into the muscle. Pregnant and breastfeeding women ... bone marrow. Iron-rich foods include: Chicken and turkey Dried ...

  16. Iron dominated magnets

    SciTech Connect

    Fischer, G.E.

    1985-07-01

    These two lectures on iron dominated magnets are meant for the student of accelerator science and contain general treatments of the subjects design and construction. The material is arranged in the categories: General Concepts and Cost Considerations, Profile Configuration and Harmonics, Magnetic Measurements, a few examples of ''special magnets'' and Materials and Practices. Extensive literature is provided.

  17. Development of iron aluminides

    SciTech Connect

    Viswanathan, S.; Sikka, V.K.; Andleigh, V.K.

    1995-06-01

    The primary reason for the poor room-temperature ductility of Fe{sub 3}Al-based alloys is generally accepted to be environmental embrittlement due to hydrogen produced by the reaction of aluminum with water vapor present in the test atmosphere. In the as-cast condition, another possible reason for the low room-temperature ductility is the large grain size (0.5 to 3 mm) of the cast material. While recent studies on iron aluminides in the wrought condition have led to higher room-temperature ductility and increased high-temperature strength, limited studies have been conducted on iron aluminides in the as-cast condition. The purpose of this study was to induce grain refinement of the as-cast alloy through alloying additions to the melt and study the effect on room-temperature ductility as measured by the strain corresponding to the maximum stress obtained in a three-point bend test. A base charge of Fe-28% Al-5% Cr alloy was used; as in previous studies this ternary alloy exhibited the highest tensile ductility of several alloys tested. Iron aluminide alloys are being considered for many structural uses, especially for applications where their excellent corrosion resistance is needed. Several alloy compositions developed at ORNL have been licensed to commercial vendors for development of scale-up procedures. With the licensees and other vendors, several applications for iron aluminides are being pursued.

  18. Canada's iron creek meteorite

    NASA Astrophysics Data System (ADS)

    Spratt, C. E.

    1989-04-01

    An iron mass, of meteoritical origin, found on a hilltop in the southern Canadian prairies, is unique to Canadian scientific history. It is the third largest meteorite to have been found in Canada (at one time it was reported to be Canada's largest single meteorite mass). A brief historical account, and a corrected official weight (145 kilograms), of this interesting meteorite is presented.

  19. Taking iron supplements

    MedlinePlus

    ... J. Martin, MD, MPH, ABIM Board Certified in Internal Medicine and Hospice and Palliative Medicine, Atlanta, GA. Also reviewed by David Zieve, MD, MHA, Isla Ogilvie, PhD, and the A.D.A.M. Editorial team. Related MedlinePlus Health Topics Iron Browse the Encyclopedia A.D.A. ...

  20. Extracting Iron from Cereal.

    ERIC Educational Resources Information Center

    Katz, David A.

    1992-01-01

    Describes an activity in which students can investigate and evaluate the amount of iron found in most fortified breakfast cereals or cream of wheat. Includes a list of necessary materials, safety precautions, experimental procedure, disposal protocol, and nutritional explanation, utilization, and variations. (JJK)

  1. Ferrous Sulfate (Iron)

    MedlinePlus

    (fer' us)Accidental overdose of products containing iron is a leading cause of fatal poisoning in children under the age of 6. Keep this product out of the reach of children. In case of an accidental overdose, call your doctor or a poison ...

  2. Iron-dependent transcription of the frpB gene of Helicobacter pylori is controlled by the Fur repressor protein.

    PubMed

    Delany, I; Pacheco, A B; Spohn, G; Rappuoli, R; Scarlato, V

    2001-08-01

    We have overexpressed and purified the Helicobacter pylori Fur protein and analyzed its interaction with the intergenic regions of divergent genes involved in iron uptake (frpB and ceuE) and oxygen radical detoxification (katA and tsaA). DNase I footprint analysis showed that Fur binds specifically to a high-affinity site overlapping the P(frpB) promoter and to low-affinity sites located upstream from promoters within both the frpB-katA and ceuE-tsaA intergenic regions. Construction of an isogenic fur mutant indicated that Fur regulates transcription from the P(frpB) promoter in response to iron. In contrast, no effect by either Fur or iron was observed for the other promoters. PMID:11466300

  3. Altered srf expression in Bacillus subtilis resulting from changes in culture pH is dependent on the Spo0K oligopeptide permease and the ComQX system of extracellular control.

    PubMed

    Cosby, W M; Vollenbroich, D; Lee, O H; Zuber, P

    1998-03-01

    The expression of the srf operon of Bacillus subtilis, encoding surfactin synthetase and the competence regulatory protein ComS, was observed to be reduced when cells were grown in a rich glucose- and glutamine-containing medium in which late-growth culture pH was 5.0 or lower. The production of the surfactin synthetase subunits and of surfactin itself was also reduced. Raising the pH to near neutrality resulted in dramatic increases in srf expression and surfactin production. This apparent pH-dependent induction of srf expression required spo0K, which encodes the oligopeptide permease that functions in cell-density-dependent control of sporulation and competence, but not CSF, the competence-inducing pheromone that regulates srf expression in a Spo0K-dependent manner. Both ComP and ComA, the two-component regulatory pair that stimulates cell-density-dependent srf transcription, were required for optimal expression of srf at low and high pHs, but ComP was not required for pH-dependent srf induction. The known negative regulators of srf, RapC and CodY, were found not to function significantly in pH-dependent srf expression. Late-growth culture supernatants at low pH were not active in inducing srf expression in cells of low-density cultures but were rendered active when their pH was raised to near neutrality. ComQ (and very likely the srf-inducing pheromone ComX) and Spo0K were found to be required for the extracellular induction of srf-lacZ at neutral pH. The results suggest that srf expression, in response to changes in culture pH, requires Spo0K and another, as yet unidentified, extracellular factor. The study also provides evidence consistent with the hypothesis that ComP acts both positively and negatively in the regulation of ComA and that both activities are controlled by the ComX pheromone. PMID:9515911

  4. Increased hemoglobin O2 affinity protects during acute hypoxia.

    PubMed

    Yalcin, Ozlem; Cabrales, Pedro

    2012-08-01

    Acclimatization to hypoxia requires time to complete the adaptation mechanisms that influence oxygen (O(2)) transport and O(2) utilization. Although decreasing hemoglobin (Hb) O(2) affinity would favor the release of O(2) to the tissues, increasing Hb O(2) affinity would augment arterial O(2) saturation during hypoxia. This study was designed to test the hypothesis that pharmacologically increasing the Hb O(2) affinity will augment O(2) transport during severe hypoxia (10 and 5% inspired O(2)) compared with normal Hb O(2) affinity. RBC Hb O(2) affinity was increased by infusion of 20 mg/kg of 5-hydroxymethyl-2-furfural (5HMF). Control animals received only the vehicle. The effects of increasing Hb O(2) affinity were studied in the hamster window chamber model, in terms of systemic and microvascular hemodynamics and partial pressures of O(2) (Po(2)). Pimonidazole binding to hypoxic areas of mice heart and brain was also studied. 5HMF decreased the Po(2) at which the Hb is 50% saturated with O(2) by 12.6 mmHg. During 10 and 5% O(2) hypoxia, 5HMF increased arterial blood O(2) saturation by 35 and 48% from the vehicle group, respectively. During 5% O(2) hypoxia, blood pressure and heart rate were 58 and 30% higher for 5HMF compared with the vehicle. In addition, 5HMF preserved microvascular blood flow, whereas blood flow decreased to 40% of baseline in the vehicle group. Consequently, perivascular Po(2) was three times higher in the 5HMF group compared with the control group at 5% O(2) hypoxia. 5HMF also reduced heart and brain hypoxic areas in mice. Therefore, increased Hb O(2) affinity resulted in hemodynamics and oxygenation benefits during severe hypoxia. This acute acclimatization process may have implications in survival during severe environmental hypoxia when logistic constraints prevent chronic acclimatization. PMID:22636677

  5. Affinities of methylphenidate derivatives for dopamine, norepinephrine and serotonin transporters.

    PubMed

    Gatley, S J; Pan, D; Chen, R; Chaturvedi, G; Ding, Y S

    1996-01-01

    We have synthesized several derivative of dl-threo-methylphenidate (Ritalin) bearing substituents on the phenyl ring. IC50 values for binding these compounds to rat brain monoamine transporters were assessed using [3H]WIN 35,428 (striatal membranes, dopamine transporters, DAT), [3H]nisoxetine (frontal cortex membranes, norepinephrine transporters, NET) and [3H]paroxetine (brain stem membranes, 5HT transporters, 5HTT). Affinities (1/Ki) decreased in the order: DAT > NET > 5HTT. Substitution at the para position of dl-threo-methylphenidate generally led to retained or increased affinity for the dopamine transporter (bromo > iodo > methoxy > hydroxy). Substitution at the meta position also increased affinity for the DAT (m-bromo > methylphenidate; m-iodo-p-hydroxy > p-hydroxy). Substitution at the ortho position with bromine considerably decreased affinity. Similar IC50 values for binding of o-bromomethylphenidate to the dopamine transporter were measured at 0, 22 and 37 degrees. N-Methylation of the piperidine ring of methylphenidate also considerably reduced affinity. The dl-erythro isomer of o-bromomethylphenidate did not bind to the DAT (IC50 > 50,000 nM). Affinities at the dopamine and norepinephrine transporters for substituted methylphenidate derivatives were well correlated (r2=0.90). Abilities of several methylphenidate derivatives to inhibit [3H]dopamine uptake in striatal synaptosomes corresponded well with inhibition of [3H]WIN 35, 428 binding. None of the compounds examined exhibited significant affinity to dopamine D1 or D2 receptors (IC50 > 500 or 5,000 nM, respectively), as assessed by inhibition of binding of [3H]SCH 23390 or [123I]epidepride, respectively, to striatal membranes. PMID:8786705

  6. Increased hemoglobin O2 affinity protects during acute hypoxia

    PubMed Central

    Yalcin, Ozlem

    2012-01-01

    Acclimatization to hypoxia requires time to complete the adaptation mechanisms that influence oxygen (O2) transport and O2 utilization. Although decreasing hemoglobin (Hb) O2 affinity would favor the release of O2 to the tissues, increasing Hb O2 affinity would augment arterial O2 saturation during hypoxia. This study was designed to test the hypothesis that pharmacologically increasing the Hb O2 affinity will augment O2 transport during severe hypoxia (10 and 5% inspired O2) compared with normal Hb O2 affinity. RBC Hb O2 affinity was increased by infusion of 20 mg/kg of 5-hydroxymethyl-2-furfural (5HMF). Control animals received only the vehicle. The effects of increasing Hb O2 affinity were studied in the hamster window chamber model, in terms of systemic and microvascular hemodynamics and partial pressures of O2 (Po2). Pimonidazole binding to hypoxic areas of mice heart and brain was also studied. 5HMF decreased the Po2 at which the Hb is 50% saturated with O2 by 12.6 mmHg. During 10 and 5% O2 hypoxia, 5HMF increased arterial blood O2 saturation by 35 and 48% from the vehicle group, respectively. During 5% O2 hypoxia, blood pressure and heart rate were 58 and 30% higher for 5HMF compared with the vehicle. In addition, 5HMF preserved microvascular blood flow, whereas blood flow decreased to 40% of baseline in the vehicle group. Consequently, perivascular Po2 was three times higher in the 5HMF group compared with the control group at 5% O2 hypoxia. 5HMF also reduced heart and brain hypoxic areas in mice. Therefore, increased Hb O2 affinity resulted in hemodynamics and oxygenation benefits during severe hypoxia. This acute acclimatization process may have implications in survival during severe environmental hypoxia when logistic constraints prevent chronic acclimatization. PMID:22636677

  7. Iron Aluminide Composites

    SciTech Connect

    Schneibel, J.H.

    1998-11-20

    Iron aluminides with the B2 structure are highly oxidation and corrosion resistant. They are thermodynamically compatible with a wide range of ceramics such as TiC, WC, TiB{sub 2}, and ZrB{sub 2}. In addition, liquid iron aluminides wet these ceramics very well. Therefore, FeAl/ceramic composites may be produced by techniques such as liquid phase sintering of powder mixtures, or pressureless melt infiltration of ceramic powders with liquid FeAl. These techniques, the resulting microstructure, and their advantages as well as limitations are described. Iron aluminide composites can be very strong. Room temperature flexure strengths as high as 1.8 GPa have been observed for FeAl/WC. Substantial gains in strength at elevated temperatures (1073 K) have also been demonstrated. Above 40 vol.% WC the room temperature flexure strength becomes flaw-limited. This is thought to be due to processing flaws and limited interfacial strength. The fracture toughness of FeAl/WC is unexpectedly high and follows a mile of mixtures. Interestingly, sufficiently thin (< 1 {micro}m) FeAl ligaments between adjacent WC particles fracture not by cleavage, but in a ductile manner. For these thin ligaments the dislocation pile-ups formed during deformation are not long enough to nucleate cleavage fracture, and their fracture mode is therefore ductile. For several reasons, this brittle-to-ductile size transition does not improve the fracture toughness of the composites significantly. However, since no cleavage cracks are nucleated in sufficiently thin FeAl ligaments, slow crack growth due to ambient water vapor does not occur. Therefore, as compared to monolithic iron aluminizes, environmental embrittlement is dramatically reduced in iron aluminide composites.

  8. 49 CFR 192.373 - Service lines: Cast iron and ductile iron.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Service lines: Cast iron and ductile iron. 192.373... Regulators, and Service Lines § 192.373 Service lines: Cast iron and ductile iron. (a) Cast or ductile iron... cast iron pipe or ductile iron pipe is installed for use as a service line, the part of the...

  9. 49 CFR 192.373 - Service lines: Cast iron and ductile iron.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Service lines: Cast iron and ductile iron. 192.373... Regulators, and Service Lines § 192.373 Service lines: Cast iron and ductile iron. (a) Cast or ductile iron... cast iron pipe or ductile iron pipe is installed for use as a service line, the part of the...

  10. 49 CFR 192.373 - Service lines: Cast iron and ductile iron.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Service lines: Cast iron and ductile iron. 192.373... Regulators, and Service Lines § 192.373 Service lines: Cast iron and ductile iron. (a) Cast or ductile iron... cast iron pipe or ductile iron pipe is installed for use as a service line, the part of the...

  11. 49 CFR 192.373 - Service lines: Cast iron and ductile iron.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Service lines: Cast iron and ductile iron. 192.373... Regulators, and Service Lines § 192.373 Service lines: Cast iron and ductile iron. (a) Cast or ductile iron... cast iron pipe or ductile iron pipe is installed for use as a service line, the part of the...

  12. 49 CFR 192.373 - Service lines: Cast iron and ductile iron.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Service lines: Cast iron and ductile iron. 192.373... Regulators, and Service Lines § 192.373 Service lines: Cast iron and ductile iron. (a) Cast or ductile iron... cast iron pipe or ductile iron pipe is installed for use as a service line, the part of the...

  13. Robust Affinity Standards for Cu(I) Biochemistry

    PubMed Central

    Bagchi, Pritha; Morgan, M. Thomas; Bacsa, John; Fahrni, Christoph J.

    2014-01-01

    The measurement of reliable Cu(I) protein binding affinities requires competing reference ligands with similar binding strengths; however, the literature on such reference ligands is not only sparse but often conflicting. To address this deficiency, we have created and characterized a series of water-soluble monovalent copper ligands, MCL-1, MCL-2, and MCL-3, that form well-defined, air-stable, and colorless complexes with Cu(I) in aqueous solution. Concluding from X-ray structural data, electrochemical measurements, and an extensive network of equilibrium titrations, all three ligands form discrete Cu(I) complexes with 1:1 stoichiometry and are capable of buffering Cu(I) concentrations between 10−10 and 10−17 M. As most Cu(I) protein affinities have been obtained from competition experiments with bathocuproine disulfonate (BCS) or 2,2′-bicinchoninic acid (BCA), we further calibrated their Cu(I) stability constants against the MCL-series. To demonstrate the application of these reagents, we determined the Cu(I) binding affinity of CusF (logK = 14.3±0.1), a periplasmic metalloprotein required for the detoxification of elevated copper levels in E. coli. Altogether, this interconnected set of affinity standards establishes a reliable foundation that will facilitate the precise determination of Cu(I) binding affinities of proteins and small molecule ligands. PMID:24298878

  14. Coenzyme-like ligands for affinity isolation of cholesterol oxidase.

    PubMed

    Xin, Yu; Lu, Liushen; Wang, Qing; Zhang, Ling; Tong, Yanjun; Wang, Wu

    2016-05-15

    Two coenzyme-like chemical ligands were designed and synthesized for affinity isolation of cholesterol oxidase (COD). To simulate the structure of natural coenzyme of COD (flavin adenine dinucleotide (FAD)), on Sepharose beads, 5-aminouracil, cyanuric chloride and 1, 4-butanediamine were composed and then modified. The COD gene from Brevibacterium sp. (DQ345780) was expressed in Escherichia coli BL21 (DE3), and then the sorbents were applied to adsorption analysis with the pure enzyme. Subsequently, the captured enzyme was applied to SDS-PAGE and activity analysis. As calculated, the theoretical maximum adsorption (Qmax) of the two affinity sorbents (RL-1 and RL-2) were ∼83.5 and 46.3mg/g wet gel; and the desorption constant Kd of the two sorbents were ∼6.02×10(-4) and 1.19×10(-4)μM. The proteins after cell lysis were applied to affinity isolation, and then after one step of affinity binding on the two sorbents, the protein recoveries of RL-1 and RL-2 were 9.2% and 9.7%; the bioactivity recoveries were 92.7% and 91.3%, respectively. SDS-PAGE analysis revealed that the purities of COD isolated with the two affinity sorbents were approximately 95%. PMID:26856529

  15. The Pseudomonas fluorescens Siderophore Pyoverdine Weakens Arabidopsis thaliana Defense in Favor of Growth in Iron-Deficient Conditions.

    PubMed

    Trapet, Pauline; Avoscan, Laure; Klinguer, Agnès; Pateyron, Stéphanie; Citerne, Sylvie; Chervin, Christian; Mazurier, Sylvie; Lemanceau, Philippe; Wendehenne, David; Besson-Bard, Angélique

    2016-05-01

    Pyoverdines are siderophores synthesized by fluorescent Pseudomonas spp. Under iron-limiting conditions, these high-affinity ferric iron chelators are excreted by bacteria in the soil to acquire iron. Pyoverdines produced by beneficial Pseudomonas spp. ameliorate plant growth. Here, we investigate the physiological incidence and mode of action of pyoverdine from Pseudomonas fluorescens C7R12 on Arabidopsis (Arabidopsis thaliana) plants grown under iron-sufficient or iron-deficient conditions. Pyoverdine was provided to the medium in its iron-free structure (apo-pyoverdine), thus mimicking a situation in which it is produced by bacteria. Remarkably, apo-pyoverdine abolished the iron-deficiency phenotype and restored the growth of plants maintained in the iron-deprived medium. In contrast to a P. fluorescens C7R12 strain impaired in apo-pyoverdine production, the wild-type C7R12 reduced the accumulation of anthocyanins in plants grown in iron-deficient conditions. Under this condition, apo-pyoverdine modulated the expression of around 2,000 genes. Notably, apo-pyoverdine positively regulated the expression of genes related to development and iron acquisition/redistribution while it repressed the expression of defense-related genes. Accordingly, the growth-promoting effect of apo-pyoverdine in plants grown under iron-deficient conditions was impaired in iron-regulated transporter1 and ferric chelate reductase2 knockout mutants and was prioritized over immunity, as highlighted by an increased susceptibility to Botrytis cinerea This process was accompanied by an overexpression of the transcription factor HBI1, a key node for the cross talk between growth and immunity. This study reveals an unprecedented mode of action of pyoverdine in Arabidopsis and demonstrates that its incidence on physiological traits depends on the plant iron status. PMID:26956666

  16. Identification of iron and heme utilization genes in Aeromonas and their role in the colonization of the leech digestive tract

    PubMed Central

    Maltz, Michele; LeVarge, Barbara L.; Graf, Joerg

    2015-01-01

    It is known that many pathogens produce high-affinity iron uptake systems like siderophores and/or proteins for utilizing iron bound to heme-containing molecules, which facilitate iron-acquisition inside a host. In mutualistic digestive-tract associations, iron uptake systems have not been as well studied. We investigated the importance of two iron utilization systems within the beneficial digestive-tract association Aeromonas veronii and the medicinal leech, Hirudo verbana. Siderophores were detected in A. veronii using chrome azurol S. Using a mini Tn5, a transposon insertion in viuB generated a mutant unable to utilize iron using siderophores. The A. veronii genome was then searched for genes potentially involved in iron utilization bound to heme-containing molecules. A putative outer membrane heme receptor (hgpB) was identified with a transcriptional activator, termed hgpR, downstream. The hgpB gene was interrupted with an antibiotic resistance cassette in both the parent strain and the viuB mutant, yielding an hgpB mutant and a mutant with both iron uptake systems inactivated. In vitro assays indicated that hgpB is involved in utilizing iron bound to heme and that both iron utilization systems are important for A. veronii to grow in blood. In vivo colonization assays revealed that the ability to acquire iron from heme-containing molecules is critical for A. veronii to colonize the leech gut. Since iron and specifically heme utilization is important in this mutualistic relationship and has a potential role in virulence factor of other organisms, genomes from different Aeromonas strains (both clinical and environmental) were queried with iron utilization genes of A. veronii. This analysis revealed that in contrast to the siderophore utilization genes heme utilization genes are widely distributed among aeromonads. The importance of heme utilization in the colonization of the leech further confirms that symbiotic and pathogenic relationships possess similar

  17. Iron Deficiency Induced by Chrysobactin in Saintpaulia Leaves Inoculated with Erwinia chrysanthemi.

    PubMed

    Neema, C.; Laulhere, J. P.; Expert, D.

    1993-07-01

    In this communication, we examine the fate of iron during soft rot pathogenesis caused by Erwinia chrysanthemi on its host, Saintpaulia ionantha. The spread of soft rot caused by this enterobacterium was previously shown to depend on a functional genetic locus encoding a high-affinity iron assimilation system involving the catechol-type siderophore chrysobactin. Leaf intercellular fluid from healthy plants was analyzed with regard to the iron content and its availability for bacterial growth. It was compared to the fluid from diseased plants for the presence of strong iron ligands, using a new approach based on the iron-binding property of an ion-exchange resin. Further characterization allowed the identification of chrysobactin in diseased tissues, thus providing the first evidence for the external release of a microbial siderophore during pathogenesis. Competition for nutritional iron was also studied through a plant-bacterial cell system: iron incorporated into plant ferritin appeared to be considerably reduced in bacteria-treated suspension soybean cells. The same effect was visualized during treatment of soybean cells with axenic leaf intercellular fluid from E. chrysanthemi-inoculated saintpaulia leaves or with chrysobactin. PMID:12231882

  18. Iron status in the elderly

    PubMed Central

    Fairweather-Tait, Susan J.; Wawer, Anna A.; Gillings, Rachel; Jennings, Amy; Myint, Phyo K.

    2014-01-01

    Iron deficiency anaemia is prevalent in older age, particularly after the age of 80. Serum ferritin concentrations also decline, although there is no evidence to suggest that changes in iron stores are an inevitable consequence of ageing. Chronic inflammation is a common condition in older people, making the measurement of iron status difficult, and it is likely that elevated levels of circulating hepcidin are responsible for changes in iron metabolism that result in systemic iron depletion. Other contributory factors are poor diet and some medications, such as aspirin. Anaemia in older age has undesirable health outcomes, including increased susceptibility to falling and depression. However, there are concerns about possible adverse effects of iron supplements, either in relation to pro-inflammatory effects in the gut or inappropriate tissue iron deposition. Brain iron levels are increased with age-related degenerative diseases, but it is not known if this is the cause or a consequence of the disease, and genetic factors are likely to play a role. In order to maintain body iron within the normal range a personalised approach is required, taking into account all of the factors that may affect iron metabolism and the available strategies for preventing iron deficiency or overload. PMID:24275120

  19. Iron and cancer: recent insights.

    PubMed

    Manz, David H; Blanchette, Nicole L; Paul, Bibbin T; Torti, Frank M; Torti, Suzy V

    2016-03-01

    Iron is an essential dietary element. However, the ability of iron to cycle between oxidized and reduced forms also renders it capable of contributing to free radical formation, which can have deleterious effects, including promutagenic effects that can potentiate tumor formation. Dysregulation of iron metabolism can increase cancer risk and promote tumor growth. Cancer cells exhibit an enhanced dependence on iron relative to their normal counterparts, a phenomenon we have termed iron addiction. Work conducted in the past few years has revealed new cellular processes and mechanisms that deepen our understanding of the link between iron and cancer. Control of iron efflux through the combined action of ferroportin, an iron efflux pump, and its regulator hepcidin appears to play an important role in tumorigenesis. Ferroptosis is a form of iron-dependent cell death involving the production of reactive oxygen species. Specific mechanisms involved in ferroptosis, including depletion of glutathione and inhibition of glutathione peroxidase 4, have been uncovered. Ferritinophagy is a newly identified mechanism for degradation of the iron storage protein ferritin. Perturbations of mechanisms that control transcripts encoding proteins that regulate iron have been observed in cancer cells, including differences in miRNA, methylation, and acetylation. These new insights may ultimately provide new therapeutic opportunities for treating cancer. PMID:26890363

  20. Fluorescent measurement of affinity binding between thrombin and its aptamers using on-chip affinity monoliths.

    PubMed

    Gao, Changlu; Sun, Xiuhua; Woolley, Adam T

    2013-05-24

    A microfluidic chip with integrated 2mm long monoliths incorporated with poly(ethylene glycol) (PEG) groups was developed for thrombin-aptamer interaction study. The non-G quartet forming oligonucleotide coated monoliths was compared to a 15 mer thrombin-binding aptamer, in which affinity binding and elution processes were real-time monitored fluorescently. The results showed that the fluorescence intensity of aptamer stationary phase is approximately 10 times higher than that of the control column, which is probably due to the successful suppression of nonspecific adsorption between thrombin and aptamers/monoliths by using PEG-monolith. The experiment was repeated using human serum albumin (HSA) and green fluorescence protein (GFP) as interferences, it was double confirmed that thrombin was selectively retained by PEG-monolith. An elution efficiency of 75% was achieved with an elute of 200mM acetic acid and 2M NaCI, and the eluted thrombin was successfully separated in an ionic buffer system of 20mM NaHCO3 (pH 9.5) with 3% PEG. The hydrophilic and antifouling properties of PEG-monolith greatly decrease nonspecific adsorption and enhance detection sensitivity, which provided an alternative method to perform on-chip fluorescent measurement of bioaffinity binding. PMID:23587316

  1. Craniodental affinities of Southeast Asia's "negritos" and the concordance with their genetic affinities.

    PubMed

    Bulbeck, David

    2013-01-01

    Genetic research into Southeast Asia's "negritos" has revealed their deep-rooted ancestry, with time depth comparable to that of Southwest Pacific populations. This finding is often interpreted as evidence that negritos, in contrast to other Southeast Asians, can trace much of their ancestry directly back to the early dispersal of Homo sapiens in the order of 70 kya from Africa to Pleistocene New Guinea and Australia. One view on negritos is to lump them and Southwest Pacific peoples into an "Australoid" race whose geographic distribution had included Southeast Asia prior to the Neolithic incursion of "Mongoloid" farmers. Studies into Semang osteology have revealed some hints of Southwest Pacific affinities in cranial shape, dental morphology, and dental metrical "shape." On the other hand, the Andamanese have been shown to resemble Africans in their craniometrics and South Asians in their dental morphology, while Philippine negritos resemble Mongoloid Southeast Asians in these respects and also in their dental metrics. This study expands the scope of negrito cranial comparisons by including Melayu Malays and additional coverage of South Asians. It highlights the distinction between the Mongoloid-like Philippine negritos and the Andamanese and Semang (and Senoi of Malaya) with their non-Mongoloid associations. It proposes that the early/mid-Holocene dispersal of the B4a1a mitochondrial DNA clade across Borneo, the Philippines, and Taiwan may be important for understanding the distinction between Philippine and other negritos. PMID:24297222

  2. Systems and Trans-System Level Analysis Identifies Conserved Iron Deficiency Responses in the Plant Lineage[W][OA

    PubMed Central

    Urzica, Eugen I.; Casero, David; Yamasaki, Hiroaki; Hsieh, Scott I.; Adler, Lital N.; Karpowicz, Steven J.; Blaby-Haas, Crysten E.; Clarke, Steven G.; Loo, Joseph A.; Pellegrini, Matteo; Merchant, Sabeeha S.

    2012-01-01

    We surveyed the iron nutrition-responsive transcriptome of Chlamydomonas reinhardtii using RNA-Seq methodology. Presumed primary targets were identified in comparisons between visually asymptomatic iron-deficient versus iron-replete cells. This includes the known components of high-affinity iron uptake as well as candidates for distributive iron transport in C. reinhardtii. Comparison of growth-inhibited iron-limited versus iron-replete cells revealed changes in the expression of genes in chloroplastic oxidative stress response pathways, among hundreds of other genes. The output from the transcriptome was validated at multiple levels: by quantitative RT-PCR for assessing the data analysis pipeline, by quantitative proteomics for assessing the impact of changes in RNA abundance on the proteome, and by cross-species comparison for identifying conserved or universal response pathways. In addition, we assessed the functional importance of three target genes, VITAMIN C 2 (VTC2), MONODEHYDROASCORBATE REDUCTASE 1 (MDAR1), and CONSERVED IN THE GREEN LINEAGE AND DIATOMS 27 (CGLD27), by biochemistry or reverse genetics. VTC2 and MDAR1, which are key enzymes in de novo ascorbate synthesis and ascorbate recycling, respectively, are likely responsible for the 10-fold increase in ascorbate content of iron-limited cells. CGLD27/At5g67370 is a highly conserved, presumed chloroplast-localized pioneer protein and is important for growth of Arabidopsis thaliana in low iron. PMID:23043051

  3. Protein Degradation and Iron Homeostasis

    PubMed Central

    Thompson, Joel W.; Bruick, Richard K.

    2013-01-01

    Regulation of both systemic and cellular iron homeostasis requires the capacity to sense iron levels and appropriately modify the expression of iron metabolism genes. These responses are coordinated through the efforts of several key regulatory factors including F-box and Leucine-rich Repeat Protein 5 (FBXL5), Iron Regulatory Proteins (IRPs), Hypoxia Inducible Factor (HIF), and ferroportin. Notably, the stability of each of these proteins is regulated in response to iron. Recent discoveries have greatly advanced our understanding of the molecular mechanisms governing iron-sensing and protein degradation within these pathways. It has become clear that iron’s privileged roles in both enzyme catalysis and protein structure contribute to its regulation of protein stability. Moreover, these multiple pathways intersect with one another in larger regulatory networks to maintain iron homeostasis. PMID:22349011

  4. Ferrioxamine excretion in iron-loaded man

    SciTech Connect

    Pippard, M.J.; Callender, S.T.; Finch, C.A.

    1982-08-01

    Factors affecting iron excretion after subcutaneous desferrioxamine infusion were evaluated in individuals with iron overload. Urinary iron varied directly, whereas stool iron varied inversely with the level of erythropoiesis. Ascorbic acid greatly enhanced urinary iron excretion but had a less constant effect on stool iron. Stool iron losses contributed a greater proportion of total iron excretion at higher chelator dosage. These studies indicate the importance of biliary iron excretion in monitoring the effectiveness of desferrioxamine. They also suggest that large chelator doses may remove established iron overload much more rapidly than has previously been realized.

  5. Siderocalin/Lcn2/NGAL/24p3 Does Not Drive Apoptosis Through Gentisic Acid Mediated Iron Withdrawal in Hematopoietic Cell Lines

    PubMed Central

    Bandaranayake, Ashok D.; Ruiz, Mario; Rahmanto, Yohan Suryo; Kovačević, Žaklina; Clifton, Matthew C.; Holmes, Margaret A.; Kaiser, Brett K.; Barasch, Jonathan; Raymond, Kenneth N.; Richardson, Des R.; Strong, Roland K.

    2012-01-01

    Siderocalin (also lipocalin 2, NGAL or 24p3) binds iron as complexes with specific siderophores, which are low molecular weight, ferric ion-specific chelators. In innate immunity, siderocalin slows the growth of infecting bacteria by sequestering bacterial ferric siderophores. Siderocalin also binds simple catechols, which can serve as siderophores in the damaged urinary tract. Siderocalin has also been proposed to alter cellular iron trafficking, for instance, driving apoptosis through iron efflux via BOCT. An endogenous siderophore composed of gentisic acid (2,5-dihydroxybenzoic acid) substituents was proposed to mediate cellular efflux. However, binding studies reported herein contradict the proposal that gentisic acid forms high-affinity ternary complexes with siderocalin and iron, or that gentisic acid can serve as an endogenous siderophore at neutral pH. We also demonstrate that siderocalin does not induce cellular iron efflux or stimulate apoptosis, questioning the role siderocalin plays in modulating iron metabolism. PMID:22928018

  6. Ternary Complexes of Iron, Amyloid-β and Nitrilotriacetic Acid

    PubMed Central

    Jiang, Dianlu; Li, Xiangjun; Williams, Renee; Patel, Sveti; Men, Lijie; Wang, Yinsheng; Zhou, Feimeng

    2009-01-01

    biological processes can therefore be affected. In addition, the strong binding affinity of Aβ toward Fe(III) and Fe(II) indicates Aβ could compete for iron against other iron-containing protein. Particularly, its strong affinity to Fe(II), which is eight orders of magnitude stronger than transferrin, would greatly interfere with the iron homeostasis. PMID:19601593

  7. Iron oxidation and biomineralization by Mariprofundus ferrooxydans, a deep-sea microaerophilic lithoautotroph

    NASA Astrophysics Data System (ADS)

    Chan, C. S.; Emerson, D.; Fakra, S.; Edwards, K. J.

    2007-12-01

    The ocean crust contains a large reservoir of reduced iron, available for microbial energy generation. Some of this ferrous iron is mobilized by fluids in hydrothermal fields at seamounts and mid-ocean ridges. A microaerophilic iron oxidizer, Mariprofundus ferrooxydans has been identified (by molecular methods and microscopy) at various sites, and appears to be a key iron-oxidizing bacterium (FeOB) in the deep sea. Originally isolated from microbial mats near vents at the Loihi Seamount in Hawaii, Mariprofundus is distinctive because it forms an extracellular iron-mineralized stalk-like structure. We aim to understand its metabolism and mineral formation using a multidisciplinary approach, including electron microscopy, x-ray spectroscopy, time-lapse light microscopic imaging of live cells, and genomic and biochemical analyses. Microscopy and spectroscopy work shows that as the cells grow, they excretes iron and organic-rich fibrils that make up the stalk, at a rate of ~2 microns/hr. Stalk growth appears to be parallel to the direction of Fe and oxygen gradients. The Mariprofundus genome contains several terminal oxidases/peroxidases, including two cbb3-type cytochrome oxidases with a high affinity for oxygen, consistent with the microaerophilic lifestyle of these organisms. However, we have not identified genes for metabolisms other than aerobic iron oxidation, nor have we found any genes similar to known or suspected iron oxidases, though the genome (2.87 Mb) is rich in cytochromes (32 of 2922 genes). Thus, we are performing experiments to extract and analyze proteins from both cultured and environmental samples in order to find ones that will oxidize iron. UV-Vis spectra of extracts suggest that c-type cytochromes are particularly abundant, so these are candidates for further investigation. In combination with the microscopy and spectroscopy studies, these are the first steps towards understanding the complete pathway of iron from uptake through mineral

  8. Degradation of chlorofluorocarbons using granular iron and bimetallic irons.

    PubMed

    Jeen, Sung-Wook; Lazar, Snezana; Gui, Lai; Gillham, Robert W

    2014-03-01

    Degradation of trichlorofluoromethane (CFC11) and 1,1,2-trichloro-1,2,2-trifluoroethane (CFC113) by granular iron and bimetallic (nickel- or palladium-enhanced) irons was studied in flow-through column tests. Both compounds were rapidly degraded, following pseudo-first-order kinetics with respect to the parent compounds. The average pseudo-first-order rate constants for CFC11 were similar among different materials, except for palladium-enhanced iron (PdFe), in which the rate of degradation was about two times faster than for the other materials. In the case of CFC113, the rate constants for bimetallic irons were about two to three times greater than for the regular iron material. The smaller than expected differences in degradation rate constants of chlorofluorocarbons (CFCs) between regular iron and bimetallic irons suggested little, if any, catalytic effect of the bimetallic materials in the initial degradation step. Subsequent degradation steps involved catalytic hydrogenation, however, playing a significant role in further degradation of reaction intermediates. The degradation intermediates and final products of CFC11 and CFC113 suggested that degradation proceeded through hydrogenolysis and α/β-elimination in the presence of regular iron (Fe) and nickel-enhanced iron (NiFe). Even though there is only minor benefit in the use of bimetallic iron in terms of degradation kinetics of the parent CFCs, enhanced degradation rates of intermediates such as chlorotriflouroethene (CTFE) in subsequent reaction steps could be beneficial. PMID:24492233

  9. Enhancing Community Detection By Affinity-based Edge Weighting Scheme

    SciTech Connect

    Yoo, Andy; Sanders, Geoffrey; Henson, Van; Vassilevski, Panayot

    2015-10-05

    Community detection refers to an important graph analytics problem of finding a set of densely-connected subgraphs in a graph and has gained a great deal of interest recently. The performance of current community detection algorithms is limited by an inherent constraint of unweighted graphs that offer very little information on their internal community structures. In this paper, we propose a new scheme to address this issue that weights the edges in a given graph based on recently proposed vertex affinity. The vertex affinity quantifies the proximity between two vertices in terms of their clustering strength, and therefore, it is ideal for graph analytics applications such as community detection. We also demonstrate that the affinity-based edge weighting scheme can improve the performance of community detection algorithms significantly.

  10. Specific capture of uranyl protein targets by metal affinity chromatography.

    PubMed

    Basset, Christian; Dedieu, Alain; Guérin, Philippe; Quéméneur, Eric; Meyer, Daniel; Vidaud, Claude

    2008-03-28

    To improve general understanding of biochemical mechanisms in the field of uranium toxicology, the identification of protein targets needs to be intensified. Immobilized metal affinity chromatography (IMAC) has been widely developed as a powerful tool for capturing metal binding proteins from biological extracts. However uranyl cations (UO2(2+)) have particular physico-chemical characteristics which prevent them from being immobilized on classical metal chelating supports. We report here on the first development of an immobilized uranyl affinity chromatography method, based on the cation-exchange properties of aminophosphonate groups for uranyl binding. The cation distribution coefficient and loading capacity on the support were determined. Then the stability of the uranyl-bonded phase under our chromatographic conditions was optimized to promote affinity mechanisms. The successful enrichment of uranyl binding proteins from human serum was then proven using proteomic and mass spectral analysis. PMID:18308325

  11. Recent advances in affinity capillary electrophoresis for binding studies.

    PubMed

    Albishri, Hassan M; El Deeb, Sami; AlGarabli, Noura; AlAstal, Raghda; Alhazmi, Hassan A; Nachbar, Markus; El-Hady, Deia Abd; Wätzig, Hermann

    2014-01-01

    The present review covers recent advances and important applications of affinity capillary electrophoresis (ACE). It provides an overview about various ACE types, including ACE-MS, the multiple injection mode, the use of microchips and field-amplified sample injection-ACE. The most common scenarios of the studied affinity interactions are protein-drug, protein-metal ion, protein-protein, protein-DNA, protein-carbohydrate, carbohydrate-drug, peptide-peptide, DNA-drug and antigen-antibody. Approaches for the improvements of ACE in term of precision, rinsing protocols and sensitivity are discussed. The combined use of computer simulation programs to support data evaluation is presented. In conclusion, the performance of ACE is compared with other techniques such as equilibrium dialysis, parallel artificial membrane permeability assay, high-performance affinity chromatography as well as surface plasmon resonance, ultraviolet, circular dichroism, nuclear magnetic resonance, Fourier transform infrared, fluorescence, MS and isothermal titration calorimetry. PMID:25534793

  12. On the electron affinity of the oxygen atom

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Langhoff, S. R.; Partridge, H.; Taylor, P. R.

    1986-01-01

    The electron affinity (EA) of oxygen is computed to be 1.287 eV, using 2p electron full configuration-interaction (CI) wave functions expanded in a 6s5p3d2f Slater-type orbital basis. The best complete active space self-consistent field - multireference CI (CASSCF-MRCI) result including only 2p correlation is 1.263 eV. However, inclusion of 2s intrashell and 2s2p intershell correlation increases the computed EA to 1.290 at the CASSCF-MRCI level. At the full CI basis set limit, the 2s contribution to the electron affinity is estimated to be as large as 0.1 eV. This study clearly establishes the synergistic effect between the higher excitations and basis set completeness on the electron affinity when the 2s electrons are correlated.

  13. Neuroprotective effects of high affinity sigma 1 receptor selective compounds

    PubMed Central

    Luedtke, Robert R.; Perez, Evelyn; Yang, Shao-Hua; Liu, Ran; Vangveravong, Suwanna; Tu, Zhude; Mach, Robert H.; Simpkins, James W.

    2014-01-01

    We previously reported that the antipsychotic drug haloperidol, a multifunctional D2-like dopamine and sigma receptor subtype antagonist, has neuroprotective properties. In this study we further examined the association between neuroprotection and receptor antagonism by evaluating a panel of novel compounds with varying affinity at sigma and D2-like dopamine receptors. These compounds were evaluated using an in vitro cytotoxicity assay that utilizes a hippocampal-derived cell line, HT-22, in the presence or absence of varying concentrations (5 to 20 mM) of glutamate. While haloperidol was found to be a potent neuroprotective agent in this in vitro cell assay, the prototypic sigma 1 receptor agonist (+)-pentazocine was found not to be neuroprotective. Subsequently, the potency for the neuroprotection of HT-22 cells was evaluated for a) three SV series indoles which have nMolar affinity at D2-like receptors but varying affinity at sigma 1 receptor and b) two benzyl phenylacetamides sigma 1 receptor selective compounds which bind with low affinity at D2-like receptors but have nMolar affinity for the sigma 1 receptor. We observed that cytoprotection correlated with the affinity of the compounds for sigma 1 receptors. Based upon results from the HT-22 cell-based in vitro assay, two phenylacetamides, LS-127 and LS-137, were further evaluated in vivo using a transient middle cerebral artery occlusion (t-MCAO) model of stroke. At a dose of 100 µg/kg, both LS-127 and LS-137 attenuated infarct volume by approximately 50%. These studies provide further evidence that sigma 1 receptor selective compounds can provide neuroprotection in cytotoxic situations. These results also demonstrate that sigma 1 receptor selective benzyl phenylacetamides are candidate pharmacotherapeutic agents that could be used to minimize neuronal death after a stroke or head trauma. PMID:22285434

  14. Magnetorotational iron core collapse

    NASA Technical Reports Server (NTRS)

    Symbalisty, E. M. D.

    1984-01-01

    During its final evolutionary stages, a massive star, as considered in current astrophysical theory, undergoes rapid collapse, thereby triggering a sequence of a catastrophic event which results in a Type II supernova explosion. A remnant neutron star or a black hole is left after the explosion. Stellar collapse occurs, when thermonuclear fusion has consumed the lighter elements present. At this stage, the core consists of iron. Difficulties arise regarding an appropriate model with respect to the core collapse. The present investigation is concerned with the evolution of a Type II supernova core including the effects of rotation and magnetic fields. A simple neutrino model is developed which reproduced the spherically symmetric results of Bowers and Wilson (1982). Several two-dimensional computational models of stellar collapse are studied, taking into account a case in which a 15 solar masses iron core was artificially given rotational and magnetic energy.

  15. Ferromagnetic levan composite: an affinity matrix to purify lectin.

    PubMed

    Angeli, Renata; da Paz, Nathalia V N; Maciel, Jackeline C; Araújo, Flávia F B; Paiva, Patrícia M G; Calazans, Glícia M T; Valente, Ana Paula; Almeida, Fábio C L; Coelho, Luana C B B; Carvalho, Luiz B; Silva, Maria da Paz C; dos Santos Correia, Maria Tereza

    2009-01-01

    A simple and inexpensive procedure used magnetite and levan to synthesize a composite recovered by a magnetic field. Lectins from Canavalia ensiformis (Con A) and Cratylia mollis (Cramoll 1 and Cramoll 1, 4) did bind specifically to composite. The magnetic property of derivative favored washing out contaminating proteins and recovery of pure lectins with glucose elution. Cramoll 1 was purified by this affinity binding procedure in two steps instead of a previous three-step protocol with ammonium sulfate fractionation, affinity chromatography on Sephadex G-75, and ion exchange chromatography through a CM-cellulose column. PMID:19547713

  16. Ferromagnetic Levan Composite: An Affinity Matrix to Purify Lectin

    PubMed Central

    Angeli, Renata; da Paz, Nathalia V. N.; Maciel, Jackeline C.; Araújo, Flávia F. B.; Paiva, Patrícia M. G.; Calazans, Glícia M. T.; Valente, Ana Paula; Almeida, Fábio C. L.; Coelho, Luana C. B. B.; Carvalho, Luiz B.; Silva, Maria da Paz C.; dos Santos Correia, Maria Tereza

    2009-01-01

    A simple and inexpensive procedure used magnetite and levan to synthesize a composite recovered by a magnetic field. Lectins from Canavalia ensiformis (Con A) and Cratylia mollis (Cramoll 1 and Cramoll 1, 4) did bind specifically to composite. The magnetic property of derivative favored washing out contaminating proteins and recovery of pure lectins with glucose elution. Cramoll 1 was purified by this affinity binding procedure in two steps instead of a previous three-step protocol with ammonium sulfate fractionation, affinity chromatography on Sephadex G-75, and ion exchange chromatography through a CM-cellulose column. PMID:19547713

  17. Affine and deformable registration based on polynomial expansion.

    PubMed

    Farnebäck, Gunnar; Westin, Carl-Fredrik

    2006-01-01

    This paper presents a registration framework based on the polynomial expansion transform. The idea of polynomial expansion is that the image is locally approximated by polynomials at each pixel. Starting with observations of how the coefficients of ideal linear and quadratic polynomials change under translation and affine transformation, algorithms are developed to estimate translation and compute affine and deformable registration between a fixed and a moving image, from the polynomial expansion coefficients. All algorithms can be used for signals of any dimensionality. The algorithms are evaluated on medical data. PMID:17354971

  18. Affine generalization of the Komar complex of general relativity

    NASA Astrophysics Data System (ADS)

    Mielke, Eckehard W.

    2001-02-01

    On the basis of the ``on shell'' Noether identities of the metric-affine gauge approach of gravity, an affine superpotential is derived which comprises the energy- and angular-momentum content of exact solutions. In the special case of general relativity (GR) or its teleparallel equivalent, the Komar or Freud complex, respectively, are recovered. Applying this to the spontaneously broken anti-de Sitter gauge model of McDowell and Mansouri with an induced Euler term automatically yields the correct mass and spin of the Kerr-AdS solution of GR with a (induced) cosmological constant without the factor two discrepancy of the Komar formula.

  19. Affinity based and molecularly imprinted cryogels: Applications in biomacromolecule purification.

    PubMed

    Andaç, Müge; Galaev, Igor Yu; Denizli, Adil

    2016-05-15

    The publications in macro-molecularly imprinted polymers have increased drastically in recent years with the development of water-based polymer systems. The macroporous structure of cryogels has allowed the use of these materials within different applications, particularly in affinity purification and molecular imprinting based methods. Due to their high selectivity, specificity, efficient mass transfer and good reproducibility, molecularly imprinted cryogels (MICs) have become attractive for researchers in the separation and purification of proteins. In this review, the recent developments in affinity based cryogels and molecularly imprinted cryogels in protein purification are reviewed comprehensively. PMID:26454622

  20. Statistical theory of chromatography: new outlooks for affinity chromatography.

    PubMed Central

    Denizot, F C; Delaage, M A

    1975-01-01

    We have developed further the statistical approach to chromatography initiated by Giddings and Eyring, and applied it to affinity chromatography. By means of a convenient expression of moments the convergence towards the Laplace-Gauss distribution has been established. The Gaussian character is not preserved if other causes of dispersion are taken into account, but expressions of moments can be obtained in a generalized form. A simple procedure is deduced for expressing the fundamental constants of the model in terms of purely experimental quantities. Thus, affinity chromatography can be used to determine rate constants of association and dissociation in a range considered as the domain of the stopped-flow methods. PMID:1061072

  1. and as Vertex Operator Extensionsof Dual Affine Algebras

    NASA Astrophysics Data System (ADS)

    Bowcock, P.; Feigin, B. L.; Semikhatov, A. M.; Taormina, A.

    We discover a realisation of the affine Lie superalgebra and of the exceptional affine superalgebra as vertex operator extensions of two algebras with ``dual'' levels (and an auxiliary level-1 algebra). The duality relation between the levels is . We construct the representation of on a sum of tensor products of , , and modules and decompose it into a direct sum over the spectral flow orbit. This decomposition gives rise to character identities, which we also derive. The extension of the construction to is traced to the properties of embeddings into and their relation with the dual pairs. Conversely, we show how the representations are constructed from representations.

  2. Dynamic output feedback H ∞ control for affine fuzzy systems

    NASA Astrophysics Data System (ADS)

    Wang, Huimin; Yang, Guang-Hong

    2013-06-01

    This article investigates the problem of designing H ∞ dynamic output feedback controllers for nonlinear systems, which are described by affine fuzzy models. The system outputs have been chosen as premise variables, which can guarantee that the plant and the controller always switch to the same region. By using a piecewise Lyapunov function and adding slack matrix variables, a piecewise-affine dynamic output feedback controller design method is obtained in the formulation of linear matrix inequalities (LMIs), which can be efficiently solved numerically. In contrast to the existing work, the proposed approach needs less LMI constraints and leads to less conservatism. Finally, numerical examples illustrate the effectiveness of the new result.

  3. Synthesis of biotinylated probes of artemisinin for affinity labeling

    PubMed Central

    Konziase, Benetode

    2015-01-01

    In this data article, we described the synthetic routes to four biotinylated probes (2, 3, 4, and 5) of artemisinin and the associated experimental procedures. We also provided the physical data for the synthesized compounds. These synthesized biotinylated probes of artemisinin are useful molecular tools for the affinity-labeling study of target receptor proteins of artemisinin in tropical pathogens such as Trypanosoma, Leishmania, and Schistosoma. The data provided herein are related to “Biotinylated probes of artemisinin with labeling affinity toward Trypanosoma brucei brucei target proteins”, by Konziase (Anal. Biochem. (2015)). PMID:26217765

  4. Kinetic controlled affinity labeling of target enzyme with thioester chemistry.

    PubMed

    Tomohiro, Takenori; Nakabayashi, Masahiro; Sugita, Yuka; Morimoto, Shota

    2016-08-01

    High specificity has been an important feature in affinity labeling for target profiling. Especially, to label targets via rapidly progressing reactions with consumption of ligand (probe), high specificity of reaction with common functional groups of target protein should be achieved without reactions with similar groups of non-target proteins. Herein, we demonstrate the kinetic controlled affinity labeling of acyl CoA synthetase using a fatty acid analogue containing a phenylthioester linkage. High specificity was attained by accelerating the labeling rate in the binding pocket. This approach could be useful for profiling a series of target enzymes and transporters in signal transduction pathways. PMID:27298000

  5. Affinity Chromatography Purification of Cytochrome c Binding Enzymes

    NASA Astrophysics Data System (ADS)

    Azzi, Angelo; Bill, Kurt; Broger, Clemens

    1982-04-01

    An efficient affinity chromatography procedure for the isolation of mitochondrial cytochrome c oxidase and reductase is described. Saccharomyces cerevisiae cytochrome c was used as a ligand, bound to a thiol-Sepharose 4B gel through cysteine-107. In this way, the site of interaction of cytochrome c with cytochrome oxidase and reductase remained unmodified and available for binding to a number of partner enzymes. The procedure is adequate for the purification of all those proteins having in common the property of binding with high affinity to cytochrome c--e.g., cytochrome c oxidase, reductase, and peroxidase, sulfite oxidase, and reaction centers of photosynthetic bacteria.

  6. Affinity Adsorbents Based on Carriers Activated by Epoxy-compounds

    NASA Astrophysics Data System (ADS)

    Klyashchitskii, B. A.; Kuznetsov, P. V.

    1984-10-01

    The review is devoted to the synthesis and applications of affinity adsorbents based on carriers activated by epoxy-compounds. The methods for the introduction of epoxy-groups into carriers of different chemical types are discussed and conditions for the immobilisation of three-dimensional spacers and low-molecular-weight and polymeric ligands on carriers containing epoxy-groups are considered. Data are presented on the properties and applications of adsorbents of this type in affinity chromatography. The bibliography includes 144 references.

  7. Iron pages of HTSC

    SciTech Connect

    Gasparov, V. A.

    2010-08-15

    Experimental data are presented on the superconducting and electronic properties of iron-based high-temperature superconductors in the normal and superconducting states. The following topics are discussed: lattice structure; structure of magnetic vortices; magnetic penetration depth; Fermi surface; isotope effect; and critical magnetic fields both in oxide compounds of 1111 type and oxide-free compounds of 122, 111, and 011 types as a function of the doping level, temperature, and external pressure.

  8. High-Affinity Manganese Uptake by the Metal Transporter NRAMP1 Is Essential for Arabidopsis Growth in Low Manganese Conditions[C][W

    PubMed Central

    Cailliatte, Rémy; Schikora, Adam; Briat, Jean-François; Mari, Stéphane; Curie, Catherine

    2010-01-01

    In contrast with many other essential metals, the mechanisms of Mn acquisition in higher eukaryotes are seldom studied and poorly understood. We show here that Arabidopsis thaliana relies on a high-affinity uptake system to acquire Mn from the soil in conditions of low Mn availability and that this activity is catalyzed by the divalent metal transporter NRAMP1 (for Natural Resistance Associated Macrophage Protein 1). The nramp1-1 loss-of-function mutant grows poorly, contains less Mn than the wild type, and fails to take up Mn in conditions of Mn limitation, thus demonstrating that NRAMP1 is the major high-affinity Mn transporter in Arabidopsis. Based on confocal microscopy observation of an NRAMP1-green fluorescent protein fusion, we established that NRAMP1 is localized to the plasma membrane. Consistent with its function in Mn acquisition from the soil, NRAMP1 expression is restricted to the root and stimulated by Mn deficiency. Finally, we show that NRAMP1 restores the capacity of the iron-regulated transporter1 mutant to take up iron and cobalt, indicating that NRAMP1 has a broad selectivity in vivo. The role of transporters of the NRAMP family is well established in higher eukaryotes for iron but has been controversial for Mn. This study demonstrates that NRAMP1 is a physiological manganese transporter in Arabidopsis. PMID:20228245

  9. Tungsten in iron meteorites

    NASA Technical Reports Server (NTRS)

    Scott, E. R. D.

    1978-01-01

    Tungsten concentrations have been determined by instrumental neutron activation in 104 iron meteorites, and range from 0.07 to 5 microg/g. In individual groups, concentrations vary by factors of between 1.5 and 8, but there are negative W-Ni correlations in 8 groups: IAB, IC, IIAB, IID, IIE, IIIAB, IIICD, and IIIF. The lowest W concentrations are found in groups IAB and IIICD, which also have the smallest slopes on a W-Ni plot. Eighteen anomalous irons have W concentrations between 5 microg/g (Butler) and 0.11 microg/g (Rafrueti). The distribution of W in irons shows similarities to that of other refractory sideophilic elements (except Mo), but is closest to the distribution of Ru and Pt. Assuming that chemical trends in group IIIAB were produced by fractional crystallization, a value of 1.6 can be deduced for the distribution coefficient of W between solid and liquid metal, as compared with 0.89 for Mo. Experimental evidence in support of these values is tenuous.

  10. Flare Plasma Iron Abundance

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.; Dan, Chau; Jain, Rajmal; Schwartz, Richard A.; Tolbert, Anne K.

    2008-01-01

    The equivalent width of the iron-line complex at 6.7 keV seen in flare X-ray spectra suggests that the iron abundance of the hottest plasma at temperatures >approx.10 MK may sometimes be significantly lower than the nominal coronal abundance of four times the photospheric value that is commonly assumed. This conclusion is based on X-ray spectral observations of several flares seen in common with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Solar X-ray Spectrometer (SOXS) on the second Indian geostationary satellite, GSAT-2. The implications of this will be discussed as it relates to the origin of the hot flare plasma - either plasma already in the corona that is directly heated during the flare energy release process or chromospheric plasma that is heated by flare-accelerated particles and driven up into the corona. Other possible explanations of lower-than-expected equivalent widths of the iron-line complex will also be discussed.

  11. Measurement of iron absorption from meals contaminated with iron

    SciTech Connect

    Hallberg, L.; Bjoern-Rasmussen, E.

    1981-12-01

    A method is described to measure in vitro the extent of isotopic exchange between the native nonheme food iron and added inorganic reduction to radioiron tracer. The food is digested with pepsin and trypsin in the presence of radioiron. The exchangeability of food iron is calculated from the specific activity in the food and in an extract of bathophenantroline in isoamyl alcohol obtained after digesting this food. The precision and accuracy of the method is illustrated by two kinds of studies, those in which different amounts of contamination iron are added to a meal and those evaluating contamination iron in natural meals. The present method will make it possible to measure validly iron absorption from meals contaminated with unknown amounts of iron of unknown exchangeability with the extrinsic radioiron tracer.

  12. Formation of glutathionyl dinitrosyl iron complexes protects against iron genotoxicity.

    PubMed

    Lewandowska, Hanna; Sadło, Jarosław; Męczyńska, Sylwia; Stępkowski, Tomasz M; Wójciuk, Grzegorz; Kruszewski, Marcin

    2015-07-28

    Dinitrosyl iron(i) complexes (DNICs), intracellular NO donors, are important factors in nitric oxide-dependent regulation of cellular metabolism and signal transduction. It has been shown that NO diminishes the toxicity of iron ions and vice versa. To gain insight into the possible role of DNIC in this phenomenon, we examined the effect of GS-DNIC formation on the ability of iron ions to mediate DNA damage, by treatment of the pUC19 plasmid with physiologically relevant concentrations of GS-DNIC. It was shown that GS-DNIC formation protects against the genotoxic effect of iron ions alone and iron ions in the presence of a naturally abundant antioxidant, GSH. This sheds new light on the iron-related protective effect of NO under the circumstances of oxidative stress. PMID:26079708

  13. Affinity chromatography and affinity labeling of rat liver succinyl-CoA synthetase.

    PubMed

    Ball, D J; Nishimura, J S

    1980-11-25

    Succinyl-CoA synthetase has been purified to apparent homogeneity from rat liver. The key step in the purification procedure involved adsorption on a GDP dialdehyde (dial-GDP)-adipic dihydrazide-Sepharose 4B column and elution by GDP-Mg2+. Like the pig heart enzyme (Brownie, E. R., and Bridger, W. A. (1972) Can. J. Biochem. 50, 719--724), the rat liver enzyme was an alpha beta heterodimer and only the alpha subunit was phosphorylated by [gamma-32P]GTP. The A 280(0.1%) of the enzyme was determined to be 0.5. Amino acid analyses revealed significant similarities in 50% of the amino acid residues of rat liver and Escherichia coli succinyl-CoA synthetases. However, immunodiffusion analysis failed to reveal any antigenic identity between the two enzymes. Incubation with the affinity label, dial-GDP, in the presence of Mg2+ resulted in a biphasic inactivation of the enzyme. The extent of the rapid phase of inactivation appeared to be related to the extent of dephosphorylation of the enzyme and was prevented by preincubation of the enzyme with GTP-Mg2+. The presence of GDP-Mg2+ in the incubation medium prevented the slow phase of the inactivation and retarded the rapid phase. Dephosphorylated enzyme was approximately 2 orders of magnitude more susceptible to inactivation by dial-GDP than phosphorylated enzyme. Labeling of succinyl-CoA synthetase with [3H]dial-GDP gave a linear relationship between inactivation and incorporation of radioactivity with an extrapolated value of less than 1.2 mol of analog/mol of enzyme at 100% inactivation. The distribution of the label in enzyme that was inactivated 40% was approximately 60% in the alpha subunit and 40% in the beta subunit. Thus, while phosphorylation of the enzyme occurs exclusively in the alpha subunit, the nucleotide binding site appears to include components from both alpha and beta subunits. PMID:7430155

  14. Iron homeostasis and eye disease

    PubMed Central

    Loh, Allison; Hadziahmetovic, Majda; Dunaief, Joshua L.

    2009-01-01

    Summary Iron is necessary for life, but excess iron can be toxic to tissues. Iron is thought to damage tissues primarily by generating oxygen free radicals through the Fenton reaction. We present an overview of the evidence supporting iron's potential contribution to a broad range of eye disease using an anatomical approach. Firstly, iron can be visualized in the cornea as iron lines in the normal aging cornea as well as in diseases like keratoconus and pterygium. In the lens, we present the evidence for the role of oxidative damage in cataractogenesis. Also, we review the evidence that iron may play a role in the pathogenesis of the retinal disease age-related macular degeneration. Although currently there is no direct link between excess iron and development of optic neuropathies, ferrous iron's ability to form highly reactive oxygen species may play a role in optic nerve pathology. Lastly, we discuss recent advances in prevention and therapeutics for eye disease with antioxidants and iron chelators,. PMID:19059309

  15. Ferric iron reduction by sulfur- and iron-oxidizing bacteria.

    PubMed Central

    Brock, T D; Gustafson, J

    1976-01-01

    Acidophilic bacteria of the genera Thiobacillus and Sulfolobus are able to reduce ferric iron when growing on elemental sulfur as an energy source. It has been previously thought that ferric iron serves as a nonbiological oxidant in the formation of acid mine drainage and in the leaching of ores, but these results suggest that bacterial catalysis may play a significant role in the reactivity of ferric iron. PMID:825043

  16. Quantitative demonstration of intrathecal synthesis of high affinity immunoglobulin G in herpes simplex encephalitis using affinity-mediated immunoblotting.

    PubMed

    Chapman, Miles D; Thompson, Edward J; Candler, Paul M; Dale, Russell C; Church, Andrew J; Giovannoni, Gavin

    2007-04-01

    Three paired serial samples of CSF and serum (from days 8, 13 and 22) were taken from a patient referred to the National Hospital for Neurology and Neurosurgery with what was duly confirmed as having herpes simplex encephalitis using PCR. The samples were investigated using affinity-mediated immunoblotting followed by incubation with sodium thiocyanate. Digitisation of the blots enabled further analysis. We showed that the clones of antigen-specific IgG, which were produced intrathecally, were of higher relative affinity than polyclonal antigen-specific IgG. PMID:17303253

  17. Iron Metallodrugs: Stability, Redox Activity and Toxicity against Artemia salina

    PubMed Central

    2015-01-01

    Iron metallodrugs comprise mineral supplements, anti-hypertensive agents and, more recently, magnetic nanomaterials, with both therapeutic and diagnostic roles. As biologically-active metal compounds, concern has been raised regarding the impact of these compounds when emitted to the environment and associated ecotoxicological effects for the fauna. In this work we assessed the relative stability of several iron compounds (supplements based on glucoheptonate, dextran or glycinate, as well as 3,5,5-trimethylhexanoyl (TMH) derivatives of ferrocene) against high affinity models of biological binding, calcein and aprotransferrin, via a fluorimetric method. Also, the redox-activity of each compound was determined in a physiologically relevant medium. Toxicity toward Artemia salina at different developmental stages was measured, as well as the amount of lipid peroxidation. Our results show that polymer-coated iron metallodrugs are stable, non-redox-active and non-toxic at the concentrations studied (up to 300 µM). However, TMH derivatives of ferrocene were less stable and more redox-active than the parent compound, and TMH-ferrocene displayed toxicity and lipid peroxidation to A. salina, unlike the other compounds. Our results indicate that iron metallodrugs based on polymer coating do not present direct toxicity at low levels of emission; however other iron species (eg. metallocenes), may be deleterious for aquatic organisms. We suggest that ecotoxicity depends more on metal speciation than on the total amount of metal present in the metallodrugs. Future studies with discarded metallodrugs should consider the chemical speciation of the metal present in the composition of the drug. PMID:25849743

  18. Intestinal Iron Homeostasis and Colon Tumorigenesis

    PubMed Central

    Xue, Xiang; Shah, Yatrik M.

    2013-01-01

    Colorectal cancer (CRC) is the third most common cause of cancer-related deaths in industrialized countries. Understanding the mechanisms of growth and progression of CRC is essential to improve treatment. Iron is an essential nutrient for cell growth. Iron overload caused by hereditary mutations or excess dietary iron uptake has been identified as a risk factor for CRC. Intestinal iron is tightly controlled by iron transporters that are responsible for iron uptake, distribution, and export. Dysregulation of intestinal iron transporters are observed in CRC and lead to iron accumulation in tumors. Intratumoral iron results in oxidative stress, lipid peroxidation, protein modification and DNA damage with consequent promotion of oncogene activation. In addition, excess iron in intestinal tumors may lead to increase in tumor-elicited inflammation and tumor growth. Limiting intratumoral iron through specifically chelating excess intestinal iron or modulating activities of iron transporter may be an attractive therapeutic target for CRC. PMID:23812305

  19. Electrochemical affinity biosensors for detection of mycotoxins: A review.

    PubMed

    Vidal, Juan C; Bonel, Laura; Ezquerra, Alba; Hernández, Susana; Bertolín, Juan R; Cubel, Carlota; Castillo, Juan R

    2013-11-15

    This review discusses the current state of electrochemical biosensors in the determination of mycotoxins in foods. Mycotoxins are highly toxic secondary metabolites produced by molds. The acute toxicity of these results in serious human and animal health problems, although it has been only since early 1960s when the first studied aflatoxins were found to be carcinogenic. Mycotoxins affect a broad range of agricultural products, most important cereals and cereal-based foods. A majority of countries, mentioning especially the European Union, have established preventive programs to control contamination and strict laws of the permitted levels in foods. Official methods of analysis of mycotoxins normally requires sophisticated instrumentation, e.g. liquid chromatography with fluorescence or mass detectors, combined with extraction procedures for sample preparation. For about sixteen years, the use of simpler and faster analytical procedures based on affinity biosensors has emerged in scientific literature as a very promising alternative, particularly electrochemical (i.e., amperometric, impedance, potentiometric or conductimetric) affinity biosensors due to their simplicity and sensitivity. Typically, electrochemical biosensors for mycotoxins use specific antibodies or aptamers as affinity ligands, although recombinant antibodies, artificial receptors and molecular imprinted polymers show potential utility. This article deals with recent advances in electrochemical affinity biosensors for mycotoxins and covers complete literature from the first reports about sixteen years ago. PMID:23743326

  20. Affinities and beyond! Developing Ways of Seeing in Online Spaces

    ERIC Educational Resources Information Center

    Davies, Julia

    2006-01-01

    This article presents an insider view of an online community of adults involved in sharing digital photography through a host website, Flickr. It describes how reciprocal teaching and learning partnerships in a dynamic multimodal environment are achieved through the creation of a "Third Space" or "Affinity Space", where "Funds of Knowledge" are…

  1. Native Elution of Yeast Protein Complexes Obtained by Affinity Capture.

    PubMed

    LaCava, John; Fernandez-Martinez, Javier; Rout, Michael P

    2016-01-01

    This protocol describes two options for the native (nondenaturing) elution of protein complexes obtained by affinity capture. The first approach involves the elution of complexes purified through a tag that includes a human rhinovirus 3C protease (PreScission protease) cleavage site sequence between the protein of interest and the tag. Incubation with the protease cleaves immobilized complexes from the affinity medium. The second approach involves the release of protein A-tagged protein complexes using a competitive elution reagent called PEGylOx. The degree of purity of the native assemblies eluted is sample dependent and strongly influenced by the affinity capture. It should be noted that the efficiency of native elution is commonly lower than that of elution by a denaturing agent (e.g., SDS) and the release of the complex will be limited by the activity of the protease or the inhibition constant (Ki) of the competitive release agent. However, an advantage of native release is that some nonspecifically bound materials tend to stay adsorbed to the affinity medium, providing an eluted fraction of higher purity. Finally, keep in mind that the presence of the protease or elution peptide could potentially affect downstream applications; thus, their removal should be considered. PMID:27371597

  2. Affinity of cefoperazone for penicillin-binding proteins.

    PubMed Central

    Matsubara, N; Minami, S; Matsuhashi, M; Takaoka, M; Mitsuhashi, S

    1980-01-01

    Cefoperazone (T-1551, CFP) a new semisynthetic cephalosporin, has a broad spectrum of antibacterial activity. We investigated the affinity of CFP to penicillin-binding proteins (PBPs) and the inhibition of peptidoglycan synthesis by CFP. CFP had high affinities for Escherichia coli PBP-3, -1Bs, -2, and -1A, in descending order, and low affinities for PBP-4, -5, and -6. Similarly, CFP showed high affinity for Pseudomonas aeruginosa PBP-3, -1A, -1B, -2, and -4, in descending order. It is known that E. coli PBP-3 and P. aeruginosa PBP-3 participate in cell division. These results are in good agreement with the formation of filamentous cells of E. coli and P. aeruginosa treated with CFP. CFP had lower inhibitory activities on D-alanine carboxypeptidase IA and IB of E. coli than that of penicillin G, but its inhibitory activities on the cross-link formation in peptidoglycan synthesis were the same as those of penicillin G and higher than those of ampicillin. Images PMID:6448021

  3. A molecular determinant of phosphoinositide affinity in mammalian TRPV channels

    PubMed Central

    Velisetty, Phanindra; Borbiro, Istvan; Kasimova, Marina A.; Liu, Luyu; Badheka, Doreen; Carnevale, Vincenzo; Rohacs, Tibor

    2016-01-01

    Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is an important cofactor for ion channels. Affinity for this lipid is a major determinant of channel inhibition by depletion of PI(4,5)P2 upon phospholipase C (PLC) activation. Little is known about what determines PI(4,5)P2 affinity in mammalian ion channels. Here we report that two members of the Transient Receptor Potential Vanilloid (TRPV) ion channel family, TRPV5 and TRPV6 lack a positively charged residue in the TM4-TM5 loop that was shown to interact with PI(4,5)P2 in TRPV1, which shows high affinity for this lipid. When this positively charged residue was introduced to either TRPV6 or TRPV5, they displayed markedly higher affinities for PI(4,5)P2, and were largely resistant to inhibition by PI(4,5)P2 depletion. Furthermore, Ca2+-induced inactivation of TRPV6 was essentially eliminated in the G488R mutant, showing the importance of PLC-mediated PI(4,5)P2 depletion in this process. Computational modeling shows that the introduced positive charge interacts with PI(4,5)P2 in TRPV6. PMID:27291418

  4. Chemokines and the Signaling Modules Regulating Integrin Affinity

    PubMed Central

    Montresor, Alessio; Toffali, Lara; Constantin, Gabriela; Laudanna, Carlo

    2012-01-01

    Integrin-mediated adhesion is a general concept referring to a series of adhesive phenomena including tethering–rolling, affinity, valency, and binding stabilization altogether controlling cell avidity (adhesiveness) for the substrate. Arrest chemokines modulate each aspect of integrin activation, although integrin affinity regulation has been recognized as the prominent event in rapid leukocyte arrest induced by chemokines. A variety of inside-out and outside-in signaling mechanisms have been related to the process of integrin-mediated adhesion in different cellular models, but only few of them have been clearly contextualized to rapid integrin affinity modulation by arrest chemokines in primary leukocytes. Complex signaling processes triggered by arrest chemokines and controlling leukocyte integrin activation have been described for ras-related rap and for rho-related small GTPases. We summarize the role of rap and rho small GTPases in the regulation of rapid integrin affinity in primary leukocytes and provide a modular view of these pro-adhesive signaling events. A potential, albeit still speculative, mechanism of rho-mediated regulation of cytoskeletal proteins controlling the last step of integrin activation is also discussed. We also discuss data suggesting a functional integration between the rho- and rap-modules of integrin activation. Finally we examine the universality of signaling mechanisms regulating integrin triggering by arrest chemokines. PMID:22654882

  5. Development of gadolinium based nanoparticles having an affinity towards melanin

    NASA Astrophysics Data System (ADS)

    Morlieras, Jessica; Chezal, Jean-Michel; Miot-Noirault, Elisabeth; Roux, Amandine; Heinrich-Balard, Laurence; Cohen, Richard; Tarrit, Sébastien; Truillet, Charles; Mignot, Anna; Hachani, Roxanne; Kryza, David; Antoine, Rodolphe; Dugourd, Philippe; Perriat, Pascal; Janier, Marc; Sancey, Lucie; Lux, François; Tillement, Olivier

    2013-01-01

    Small Rigid Platforms (SRPs) are sub-5 nanometre gadolinium based nanoparticles that have been developed for multimodal imaging and theranostic applications. They are composed of a polysiloxane network surrounded by gadolinium chelates. A covalent coupling with quinoxaline derivatives has been performed. Such derivatives have proven their affinity for melanin frequently expressed in primary melanoma cases. Three different quinoxaline derivatives have been synthesised and coupled to the nanoparticles. The affinity of the grafted nanoparticles for melanin has then been shown in vitro by surface plasmon resonance on a homemade melanin grafted gold chip.Small Rigid Platforms (SRPs) are sub-5 nanometre gadolinium based nanoparticles that have been developed for multimodal imaging and theranostic applications. They are composed of a polysiloxane network surrounded by gadolinium chelates. A covalent coupling with quinoxaline derivatives has been performed. Such derivatives have proven their affinity for melanin frequently expressed in primary melanoma cases. Three different quinoxaline derivatives have been synthesised and coupled to the nanoparticles. The affinity of the grafted nanoparticles for melanin has then been shown in vitro by surface plasmon resonance on a homemade melanin grafted gold chip. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr33457g

  6. Background correction using dinucleotide affinities improves the performance of GCRMA

    PubMed Central

    Gharaibeh, Raad Z; Fodor, Anthony A; Gibas, Cynthia J

    2008-01-01

    Background High-density short oligonucleotide microarrays are a primary research tool for assessing global gene expression. Background noise on microarrays comprises a significant portion of the measured raw data, which can have serious implications for the interpretation of the generated data if not estimated correctly. Results We introduce an approach to calculate probe affinity based on sequence composition, incorporating nearest-neighbor (NN) information. Our model uses position-specific dinucleotide information, instead of the original single nucleotide approach, and adds up to 10% to the total variance explained (R2) when compared to the previously published model. We demonstrate that correcting for background noise using this approach enhances the performance of the GCRMA preprocessing algorithm when applied to control datasets, especially for detecting low intensity targets. Conclusion Modifying the previously published position-dependent affinity model to incorporate dinucleotide information significantly improves the performance of the model. The dinucleotide affinity model enhances the detection of differentially expressed genes when implemented as a background correction procedure in GeneChip preprocessing algorithms. This is conceptually consistent with physical models of binding affinity, which depend on the nearest-neighbor stacking interactions in addition to base-pairing. PMID:18947404

  7. Affinity and Avidity in Antibody-Based Tumor Targeting

    PubMed Central

    Rudnick, Stephen I.

    2009-01-01

    Summation Many factors contribute to successful tumor targeting by antibodies. Besides properties of the tumor tissue and general antibody pharmacology, a relationship exists between an antibody and its antigen that can shape penetration, catabolism, specificity, and efficacy. The affinity and avidity of the binding interactions play critical roles in these dynamics. In this work, we review the principles that guide models predicting tumor penetration and cellular internalization while providing a critical overview of studies aimed at experimentally determining the specific role of affinity and avidity in these processes. One should gain the perspective that binding affinity can, in part, dictate the localization of antibodies in tumors, leading to high concentrations in the perivascular space or low concentrations diffused throughout the tumor. These patterns can be simply due to the diminution of available dose by binding antigen and are complicated by internalization and degradation stemming from slow rates of dissociation. As opposed to the trend of simply increasing affinity to increase efficacy, novel strategies that increase avidity and broaden specificity have made significant progress in tumor targeting. PMID:19409036

  8. Affinity through Mathematical Activity: Cultivating Democratic Learning Communities

    ERIC Educational Resources Information Center

    Sengupta-Irving, Tesha

    2014-01-01

    In this article, the author demonstrates how a broader view of what shapes affinity is ideologically and practically linked to creating democratic learning communities. Specifically, the author explores how a teacher employed complex instruction (an equity pedagogy) with her ethnically and racially diverse students in the "lowest track"…

  9. Toward an Affinity Space Methodology: Considerations for Literacy Research

    ERIC Educational Resources Information Center

    Lammers, Jayne C.; Curwood, Jen Scott; Magnifico, Alecia Marie

    2012-01-01

    As researchers seek to make sense of young people's online literacy practices and participation, questions of methodology are important to consider. In our work to understand the culture of physical, virtual and blended spheres that adolescents inhabit, we find it necessary to expand Gee's (2004) notion of affinity spaces. In this article, we draw…

  10. Peptides@mica: from affinity to adhesion mechanism.

    PubMed

    Gladytz, A; John, T; Gladytz, T; Hassert, R; Pagel, M; Risselada, H J; Naumov, S; Beck-Sickinger, A G; Abel, B

    2016-09-14

    Investigating the adsorption of peptides on inorganic surfaces, on the molecular level, is fundamental for medicinal and analytical applications. Peptides can be potent as linkers between surfaces and living cells in biochips or in implantation medicine. Here, we studied the adsorption process of the positively charged pentapeptide RTHRK, a recently identified binding sequence for surface oxidized silicon, and novel analogues thereof to negatively charged mica surfaces. Homogeneous formation of monolayers in the nano- and low micromolar peptide concentration range was observed. We propose an alternative and efficient method to both quantify binding affinity and follow adhesion behavior. This method makes use of the thermodynamic relationship between surface coverage, measured by atomic force microscopy (AFM), and the concomitant free energy of adhesion. A knowledge-based fit to the autocorrelation of the AFM images was used to correct for a biased surface coverage introduced by the finite lateral resolution of the AFM. Binding affinities and mechanisms were further explored by large scale molecular dynamics (MD) simulations. The combination of well validated MD simulations with topological data from AFM revealed a better understanding of peptide adsorption processes on the atomistic scale. We demonstrate that binding affinity is strongly determined by a peptide's ability to form salt bridges and hydrogen bonds with the surface lattice. Consequently, differences in hydrogen bond formation lead to substantial differences in binding affinity despite conservation of the peptide's overall charge. Further, MD simulations give access to relative changes in binding energy of peptide variations in comparison to a lead compound. PMID:27491508

  11. Accurate Evaluation Method of Molecular Binding Affinity from Fluctuation Frequency

    NASA Astrophysics Data System (ADS)

    Hoshino, Tyuji; Iwamoto, Koji; Ode, Hirotaka; Ohdomari, Iwao

    2008-05-01

    Exact estimation of the molecular binding affinity is significantly important for drug discovery. The energy calculation is a direct method to compute the strength of the interaction between two molecules. This energetic approach is, however, not accurate enough to evaluate a slight difference in binding affinity when distinguishing a prospective substance from dozens of candidates for medicine. Hence more accurate estimation of drug efficacy in a computer is currently demanded. Previously we proposed a concept of estimating molecular binding affinity, focusing on the fluctuation at an interface between two molecules. The aim of this paper is to demonstrate the compatibility between the proposed computational technique and experimental measurements, through several examples for computer simulations of an association of human immunodeficiency virus type-1 (HIV-1) protease and its inhibitor (an example for a drug-enzyme binding), a complexation of an antigen and its antibody (an example for a protein-protein binding), and a combination of estrogen receptor and its ligand chemicals (an example for a ligand-receptor binding). The proposed affinity estimation has proven to be a promising technique in the advanced stage of the discovery and the design of drugs.

  12. A molecular determinant of phosphoinositide affinity in mammalian TRPV channels.

    PubMed

    Velisetty, Phanindra; Borbiro, Istvan; Kasimova, Marina A; Liu, Luyu; Badheka, Doreen; Carnevale, Vincenzo; Rohacs, Tibor

    2016-01-01

    Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is an important cofactor for ion channels. Affinity for this lipid is a major determinant of channel inhibition by depletion of PI(4,5)P2 upon phospholipase C (PLC) activation. Little is known about what determines PI(4,5)P2 affinity in mammalian ion channels. Here we report that two members of the Transient Receptor Potential Vanilloid (TRPV) ion channel family, TRPV5 and TRPV6 lack a positively charged residue in the TM4-TM5 loop that was shown to interact with PI(4,5)P2 in TRPV1, which shows high affinity for this lipid. When this positively charged residue was introduced to either TRPV6 or TRPV5, they displayed markedly higher affinities for PI(4,5)P2, and were largely resistant to inhibition by PI(4,5)P2 depletion. Furthermore, Ca(2+)-induced inactivation of TRPV6 was essentially eliminated in the G488R mutant, showing the importance of PLC-mediated PI(4,5)P2 depletion in this process. Computational modeling shows that the introduced positive charge interacts with PI(4,5)P2 in TRPV6. PMID:27291418

  13. Student Engagement and Neoliberalism: Mapping an Elective Affinity

    ERIC Educational Resources Information Center

    Zepke, Nick

    2015-01-01

    The purpose of this article is to argue that student engagement, an important area for research about learning and teaching in formal higher education, has an elective affinity with neoliberalism, a hegemonic ideology in many countries of the developed world. The paper first surveys an extensive research literature examining student engagement and…

  14. Kinetic Studies of Biological Interactions By Affinity Chromatography

    PubMed Central

    Schiel, John E.; Hage, David S.

    2009-01-01

    The rates at which biological interactions occur can provide important information on the mechanism and behavior of such processes in living systems. This review will discuss how affinity chromatography can be used as a tool to examine the kinetics of biological interactions. This approach, referred to here as biointeraction chromatography, uses a column with an immobilized binding agent to examine the association or dissociation of this agent with other compounds. The use of HPLC-based affinity columns in kinetic studies has received particular attention in recent years. Advantages of using HPLC with affinity chromatography for this purpose include the ability to reuse the same ligand within a column for a large number of experiments, and the good precision and accuracy of this approach. A number of techniques are available for kinetic studies through the use of affinity columns and biointeraction chromatography. These approaches include plate height measurements, peak profiling, peak fitting, split-peak measurements, and peak decay analysis. The general principles for each of these methods are discussed in this review and some recent applications of these techniques are presented. The advantages and potential limitations of each approach are also considered. PMID:19391173

  15. Bimolecular affinity purification: a variation of TAP with multiple applications.

    PubMed

    Starokadomskyy, Petro; Burstein, Ezra

    2014-01-01

    The identification of true interacting partners of any given bait can be plagued by the nonspecific purification of irrelevant proteins. To avoid this problem, Tandem Affinity Purification (TAP) is a widely used procedure in molecular biology as this reduces the chance of nonspecific proteins being present in the final preparation. In this approach, two different affinity tags are fused to the protein bait. Herein, we review in detail a variation on the TAP procedure that we have previously developed, where the affinity moieties are placed on two different proteins that form a complex in vivo. This variation, which we refer to as Bimolecular Affinity Purification (BAP), is suited for the identification of specific molecular complexes marked by the presence of two known proteins. We have utilized BAP for characterization of molecular complexes and evaluation of proteins interaction. Another application of BAP is the isolation of ubiquitin-like proteins (UBL)-modified fractions of a given protein and characterization of the lysine-acceptor site and structure of UBL-chains. PMID:24943324

  16. ESTIMATION OF ELECTRON AFFINITY BASED ON STRUCTURE ACTIVITY RELATIONSHIPS

    EPA Science Inventory

    Electron affinity for a wide range of organic molecules was calculated from molecular structure using the chemical reactivity models developed in SPARC. hese models are based on fundamental chemical structure theory applied to the prediction of chemical reactivities for organic m...

  17. Harmonic fusion and pitch affinity: Is there a direct link?

    PubMed

    Bonnard, Damien; Dauman, René; Semal, Catherine; Demany, Laurent

    2016-03-01

    Simultaneous pure tones approximately one octave apart tend to be fused perceptually and to evoke a single pitch sensation. Besides, sequentially presented pure tones show a subjective "affinity" or similarity in pitch when their frequency ratio is close to one octave. The aim of the study reported here was to determine if these two perceptual phenomena are directly related. Each stimulus was a triplet of simultaneous or successive pure tones forming frequency ratios varying across stimuli between 0.96 and 1.04 octaves. The tones were presented at a low sensation level (15 dB) within broadband threshold-equalizing noise, in order to prevent them from interacting in the cochlea when they were simultaneous. A large set of stimulus comparisons made by 18 listeners indicated that: (1) when the tones were simultaneous, maximal fusion was obtained for a mean frequency ratio deviating by less than 0.2% from one octave, and fusion decreased less rapidly above this frequency ratio than below it; (2) when the tones were presented successively, maximal pitch affinity was obtained for a mean frequency ratio significantly larger than one octave, and pitch affinity decreased more rapidly above this frequency ratio than below it. The differences between the results obtained for simultaneous and successive tones suggest that harmonic fusion and pitch affinity are unrelated phenomena. PMID:26341475

  18. RELATIVE BINDING AFFINITY OF ALKYLPHENOLS TO RAINBOW TROUT ESTROGEN RECEPTOR

    EPA Science Inventory

    RELATIVE BINDING AFFINITY OF ALKYLPHENOLS TO RAINBOW TROUT ESTROGEN RECEPTOR. T R Henry1, J S Denny2 and P K Schmieder2. USEPA, ORD, NHEERL, 1Experimental Toxicology Division and 2Mid-Continent Ecology Division, Duluth, MN, USA.
    The USEPA has been mandated to screen industria...

  19. Pagophagia in iron deficiency anemia.

    PubMed

    Uchida, Tatsumi; Kawati, Yasunori

    2014-04-01

    The relationship between pagophagia (ice pica) and iron deficiency anemia was studied. All 81 patients with iron deficiency anemia defined as hemoglobin <12.0 g/dl and ferritin level <12 ng/ml were interviewed about their habits of eating ice or other non-food substances. Pagophagia was defined as compulsive and repeated ingestion of at least one tray of ice or ice eating which was relieved after iron administration. Pagophagia was present in 13 patients (16.0%). All patients who received oral iron were periodically assessed employing a questionnaire on pagophagia and laboratory data. Iron therapy can cure the pagophagia earlier than hemoglobin recovery and repair of tissue iron deficiency. Although the pathogenesis of pagophagia is unclear, a biochemical approach involving the central nervous system might elucidate the mechanism underlying these abnormal behaviors. PMID:24850454

  20. Microbial reduction of iron ore

    DOEpatents

    Hoffmann, M.R.; Arnold, R.G.; Stephanopoulos, G.

    1989-11-14

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry. 11 figs.