Sample records for affinity labeling reagent

  1. Affimer proteins are versatile and renewable affinity reagents

    PubMed Central

    Tiede, Christian; Bedford, Robert; Heseltine, Sophie J; Smith, Gina; Wijetunga, Imeshi; Ross, Rebecca; AlQallaf, Danah; Roberts, Ashley PE; Balls, Alexander; Curd, Alistair; Hughes, Ruth E; Martin, Heather; Needham, Sarah R; Zanetti-Domingues, Laura C; Sadigh, Yashar; Peacock, Thomas P; Tang, Anna A; Gibson, Naomi; Kyle, Hannah; Platt, Geoffrey W; Ingram, Nicola; Taylor, Thomas; Coletta, Louise P; Manfield, Iain; Knowles, Margaret; Bell, Sandra; Esteves, Filomena; Maqbool, Azhar; Prasad, Raj K; Drinkhill, Mark; Bon, Robin S; Patel, Vikesh; Goodchild, Sarah A; Martin-Fernandez, Marisa; Owens, Ray J; Nettleship, Joanne E; Webb, Michael E; Harrison, Michael; Lippiat, Jonathan D; Ponnambalam, Sreenivasan; Peckham, Michelle; Smith, Alastair; Ferrigno, Paul Ko; Johnson, Matt; McPherson, Michael J; Tomlinson, Darren Charles

    2017-01-01

    Molecular recognition reagents are key tools for understanding biological processes and are used universally by scientists to study protein expression, localisation and interactions. Antibodies remain the most widely used of such reagents and many show excellent performance, although some are poorly characterised or have stability or batch variability issues, supporting the use of alternative binding proteins as complementary reagents for many applications. Here we report on the use of Affimer proteins as research reagents. We selected 12 diverse molecular targets for Affimer selection to exemplify their use in common molecular and cellular applications including the (a) selection against various target molecules; (b) modulation of protein function in vitro and in vivo; (c) labelling of tumour antigens in mouse models; and (d) use in affinity fluorescence and super-resolution microscopy. This work shows that Affimer proteins, as is the case for other alternative binding scaffolds, represent complementary affinity reagents to antibodies for various molecular and cell biology applications. DOI: http://dx.doi.org/10.7554/eLife.24903.001 PMID:28654419

  2. High-affinity gold nanoparticle pin to label and localize histidine-tagged protein in macromolecular assemblies

    PubMed Central

    Anthony, Kelsey C.; You, Changjiang; Piehler, Jacob; Pomeranz Krummel, Daniel A.

    2014-01-01

    SUMMARY There is significant demand for experimental approaches to aid protein localization in electron microscopy micrographs and ultimately in three-dimensional reconstructions of macromolecular assemblies. We report preparation and use of a reagent consisting of tris-nitrilotriacetic acid (tris-NTA) conjugated with a monofunctional gold nanoparticle (AuNPtris-NTA) for site-specific, non-covalent labeling of protein termini fused to a histidine-tag (His-tag). Multivalent binding of tris-NTA to a His-tag via complexed Ni(II) ions results in subnanomolar affinity and a defined 1:1 stoichiometry. Precise localization of AuNPtris-NTA labeled proteins by electron microscopy is further ensured by the reagent’s short conformationally restricted linker. We have employed AuNPtris-NTA to localize His-tagged proteins in an oligomeric ATPase and in the bacterial 50S ribosomal subunit. AuNPtris-NTA can specifically bind to the target proteins in these assemblies and is clearly discernible. Our new labeling reagent should find broad application in non-covalent site-specific labeling of protein termini to pinpoint their location in macromolecular assemblies. PMID:24560806

  3. Affimer proteins for F-actin: novel affinity reagents that label F-actin in live and fixed cells.

    PubMed

    Lopata, Anna; Hughes, Ruth; Tiede, Christian; Heissler, Sarah M; Sellers, James R; Knight, Peter J; Tomlinson, Darren; Peckham, Michelle

    2018-04-26

    Imaging the actin cytoskeleton in cells uses a wide range of approaches. Typically, a fluorescent derivative of the small cyclic peptide phalloidin is used to image F-actin in fixed cells. Lifeact and F-tractin are popular for imaging the cytoskeleton in live cells. Here we characterised novel affinity reagents called Affimers that specifically bind to F-actin in vitro to determine if they are suitable alternatives as eGFP-fusion proteins, to label actin in live cells, or for labeling F-actin in fixed cells. In vitro experiments showed that 3 out of the 4 Affimers (Affimers 6, 14 and 24) tested bind tightly to purified F-actin, and appear to have overlapping binding sites. As eGFP-fusion proteins, the same 3 Affimers label F-actin in live cells. FRAP experiments suggest that eGFP-Affimer 6 behaves most similarly to F-tractin and Lifeact. However, it does not colocalise with mCherry-actin in dynamic ruffles, and may preferentially bind stable actin filaments. All 4 Affimers label F-actin in methanol fixed cells, while only Affimer 14 labels F-actin after paraformaldehyde fixation. eGFP-Affimer 6 has potential for use in selectively imaging the stable actin cytoskeleton in live cells, while all 4 Affimers are strong alternatives to phalloidin for labelling F-actin in fixed cells.

  4. Trifunctional conjugation reagents. Reagents that contain a biotin and a radiometal chelation moiety for application to extracorporeal affinity adsorption of radiolabeled antibodies.

    PubMed

    Wilbur, D Scott; Chyan, Ming-Kuan; Hamlin, Donald K; Kegley, Brian B; Nilsson, Rune; Sandberg, Bengt E B; Brechbiel, Martin

    2002-01-01

    A method of removing radiolabeled monoclonal antibodies (mAbs) from blood using a device external to the body, termed extracorporeal affinity-adsorption (EAA), is being evaluated as a means of decreasing irradiation of noncancerous tissues in therapy protocols. The EAA device uses an avidin column to capture biotinylated-radiolabeled mAbs from circulated blood. In this investigation, three trifunctional reagents have been developed to minimize the potential deleterious effect on antigen binding brought about by the combination of radiolabeling and biotinylation of mAbs required in the EAA approach. The studies focused on radiolabeling with (111)In and (90)Y, so the chelates CHX-A' '-DTPA and DOTA, which form stable attachments to these radionuclides, were incorporated in the trifunctional reagents. The first trifunctional reagent prepared did not incorporate a group to block the biotin cleaving enzyme biotinidase, but the two subsequent reagents coupled aspartic acid to the biotin carboxylate for that purpose. All three reagents used 4,7,10-trioxa-1,13-tridecanediamine as water-soluble spacers between an aminoisophthalate core and the biotin or chelation group. The mAb conjugates were radioiodinated to evaluate cell binding as a function of substitution. Radioiodination was used so that a direct comparison with unmodified mAb could be made. Evaluation of the number of conjugates per antibody versus cell binding immunoreactivities indicated that minimizing the number of conjugates was best. Interestingly, a decrease of radioiodination yield as a function of the number of isothiocyanate containing conjugates per mAb was noted. The decreased yields were presumably due to the presence of thiourea functionality formed in the conjugation reaction. Radiolabeling with (111)In and (90)Y was facile at room temperature for conjugates containing the CHX-A' ', but elevated temperature (e.g., 45 degrees C) was required to obtain good yields with the DOTA chelate. Stability of (90)Y labeled mAb in serum, and when challenged with 10 mM EDTA, was high. However, challenging the (90)Y labeled mAb with 10 mM DTPA demonstrated high stability for the DOTA containing conjugate, but low stability for the CHX-A' ' containing conjugate. Thus, the choice between these two chelating moieties might be made on requirements for facile and gentle labeling versus very high in vivo stability. Application of the trifunctional biotinylation reagents to the blood clearance of labeled antibodies in EAA is under investigation. The new reagents may also be useful for other applications.

  5. Chemical modification and labeling of glutamate residues at the stilbenedisulfonate site of human red blood cell band 3 protein.

    PubMed

    Jennings, M L; Anderson, M P

    1987-02-05

    A new method has been developed for the chemical modification and labeling of carboxyl groups in proteins. Carboxyl groups are activated with Woodward's reagent K (N-ethyl-5-phenylisoxazolium 3'-sulfonate), and the adducts are reduced with [3H]BH4. The method has been applied to the anion transport protein of the human red blood cell (band 3). Woodward's reagent K is a reasonably potent inhibitor of band 3-mediated anion transport; a 5-min exposure of intact cells to 2 mM reagent at pH 6.5 produces 80% inhibition of transport. The inhibition is a consequence of modification of residues that can be protected by 4,4'-dinitrostilbene-2,2'-disulfonate. Treatment of intact cells with Woodward's reagent K followed by B3H4 causes extensive labeling of band 3, with minimal labeling of intracellular proteins such as spectrin. Proteolytic digestion of the labeled protein reveals that both the 60- and the 35-kDa chymotryptic fragments are labeled and that the labeling of each is inhibitable by stilbenedisulfonate. If the reduction is performed at neutral pH the major labeled product is the primary alcohol corresponding to the original carboxylic acid. Liquid chromatography of acid hydrolysates of labeled affinity-purified band 3 shows that glutamate but not aspartate residues have been converted into the hydroxyl derivative. This is the first demonstration of the conversion of a glutamate carboxyl group to an alcohol in a protein. The labeling experiments reveal that there are two glutamate residues that are sufficiently close to the stilbenedisulfonate site for their labeling to be blocked by 4,4'-diisothiocyanodihydrostilbene-2,2'-disulfonate and 4,4'-dinitrostilbene-2,2'-disulfonate.

  6. Rapid, Sensitive Detection of Botulinum Toxin on a Flexible Microfluidics Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warner, Marvin G.; Dockendorff, Brian P.; Feldhaus, Michael J.

    2004-10-30

    In this paper we will describe how high affinity reagents and a sensor configuration enabling rapid mass transport can be combined for rapid, sensitive biodetection. The system that we have developed includes a renewable surface immunoassay, which involves on-column detection of a fluorescently labeled secondary antibody in a sandwich immunoassay. Yeast display and directed molecular evolution were used to create high affinity antibodies to the botulinum toxin heavy chain receptor binding domain, AR1 and 3D12. A rotating rod renewable surface microcolumn was used to form a microliter-sized column containing beads functionalized with the capture antibody (AR1). The column was perfusedmore » with sample, wash solutions, and a fluorescently labeled secondary antibody (3D12) while the on-column fluorescence was monitored. Detection was accomplished in less than 5 minutes, with a total processing time of about 10 minutes. On-column detection of botulinum toxin was more sensitive and much faster than flow cytometry analysis on microbeads using the same reagents.« less

  7. Identification of a receptor for ADP on blood platelets by photoaffinity labelling.

    PubMed Central

    Cristalli, G; Mills, D C

    1993-01-01

    The synthesis of a new analogue of ADP, 2-(p-azidophenyl)-ethythioadenosine 5'-diphosphate (AzPET-ADP), is described. This compound contains a photolabile phenylazide group attached to the ADP molecule by a thioether link at the purine 2 position. It has been prepared in radioactive form with 32P in the beta-phosphate at a specific radioactivity of 100 mCi/mumol. The reagent activated platelets, causing shape change and aggregation, with somewhat lower affinity than ADP. On photolysis the affinity was increased. The reagent also inhibited platelet adenylate cyclase stimulation by prostaglandin E1, with considerably higher affinity than ADP. On photolysis the affinity was decreased. AzPET-ADP competitively inhibited the binding of 2-methylthio[beta-32P]ADP, a ligand for the receptor by which ADP causes inhibition of adenylate cyclase. In the dark, AzPET-[beta-32P]ADP bound reversibly and with high affinity to a single population of sites similar in number to the sites that bind 2-methylthio[beta-32P]ADP. Binding was inhibited by ADP and by ATP and by p-chloromercuribenzenesulphonic acid (pCMBS). On exposure to u.v. light in the presence of platelets, AzPET-[beta-32P]ADP was incorporated covalently but non-specifically into several platelet proteins, although prominent intracellular proteins were not labelled. Specific labelling was confined to a single region of SDS/polyacrylamide gels, overlying but not comigrating with actin. Incorporation of radioactivity into this region was inhibited by ADP and by ATP as well as by ADP beta S, ATP alpha S and pCMBS, but not by adenosine, GDP or AMP. Inhibition of AzPET-[beta-32P]ADP incorporation was closely correlated with inhibition of equilibrium binding of 2-methylthio[beta-32P]ADP. These results suggests that the labelled protein, which migrates with an apparent molecular mass of 43 kDa in reduced gels, is the receptor through which ADP inhibits adenylate cyclase. Images Figure 5 PMID:8387782

  8. The application of new software tools to quantitative protein profiling via isotope-coded affinity tag (ICAT) and tandem mass spectrometry: I. Statistically annotated datasets for peptide sequences and proteins identified via the application of ICAT and tandem mass spectrometry to proteins copurifying with T cell lipid rafts.

    PubMed

    von Haller, Priska D; Yi, Eugene; Donohoe, Samuel; Vaughn, Kelly; Keller, Andrew; Nesvizhskii, Alexey I; Eng, Jimmy; Li, Xiao-jun; Goodlett, David R; Aebersold, Ruedi; Watts, Julian D

    2003-07-01

    Lipid rafts were prepared according to standard protocols from Jurkat T cells stimulated via T cell receptor/CD28 cross-linking and from control (unstimulated) cells. Co-isolating proteins from the control and stimulated cell preparations were labeled with isotopically normal (d0) and heavy (d8) versions of the same isotope-coded affinity tag (ICAT) reagent, respectively. Samples were combined, proteolyzed, and resultant peptides fractionated via cation exchange chromatography. Cysteine-containing (ICAT-labeled) peptides were recovered via the biotin tag component of the ICAT reagents by avidin-affinity chromatography. On-line micro-capillary liquid chromatography tandem mass spectrometry was performed on both avidin-affinity (ICAT-labeled) and flow-through (unlabeled) fractions. Initial peptide sequence identification was by searching recorded tandem mass spectrometry spectra against a human sequence data base using SEQUEST software. New statistical data modeling algorithms were then applied to the SEQUEST search results. These allowed for discrimination between likely "correct" and "incorrect" peptide assignments, and from these the inferred proteins that they collectively represented, by calculating estimated probabilities that each peptide assignment and subsequent protein identification was a member of the "correct" population. For convenience, the resultant lists of peptide sequences assigned and the proteins to which they corresponded were filtered at an arbitrarily set cut-off of 0.5 (i.e. 50% likely to be "correct") and above and compiled into two separate datasets. In total, these data sets contained 7667 individual peptide identifications, which represented 2669 unique peptide sequences, corresponding to 685 proteins and related protein groups.

  9. A specific affinity reagent to distinguish aldehyde dehydrogenases and oxidases. Enzymes catalyzing aldehyde oxidation in an adult moth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tasayco, M.L.; Prestwich, G.D.

    1990-02-25

    Aldehyde dehydrogenase (ALDH) and oxidase (AO) enzymes from the tissue extracts of male and female tobacco budworm moth (Heliothis virescens) were identified after electrophoretic protein separation. AO activity was visualized using formazan- or horseradish peroxidase-mediated staining coupled to the AO-catalyzed oxidation of benzaldehyde. A set of six soluble AO enzymes with isoelectric points from pI 4.6 to 5.3 were detected primarily in the antennal extracts. Partially purified antennal AO enzymes also oxidized both (Z)-9-tetradecenal and (Z)-11-hexadecenal, the two major pheromone components of this moth. ALDH activity was detected using a tritium-labeled affinity reagent based on a known irreversible inhibitor ofmore » this enzyme. This labeled vinyl ketone, (3H)(Z)-1,11-hexadecadien-3-one, was synthesized and used to covalently modify the soluble ALDH enzymes from tissue extracts. Molecular subunits of potential ALDH enzymes were visualized in the fluorescence autoradiograms of sodium dodecyl sulfate-polyacrylamide gel electrophoresis-separated proteins of the antenna, head, and leg tissues. Covalent modification of these protein subunits decreased specifically in the presence of excess pheromone aldehyde or benzaldehyde. Labeled vinyl ketones are thus novel tools for the identification of molecular subunits of ALDH enzymes.« less

  10. Quantitative protein expression analysis of CLL B cells from mutated and unmutated IgV(H) subgroups using acid-cleavable isotope-coded affinity tag reagents.

    PubMed

    Barnidge, David R; Jelinek, Diane F; Muddiman, David C; Kay, Neil E

    2005-01-01

    Relative protein expression levels were compared in leukemic B cells from two patients with chronic lymphocytic leukemia (CLL) having either mutated (M-CLL) or unmutated (UM-CLL) immunoglobulin variable heavy chain genes (IgV(H)). Cells were separated into cytosol and membrane protein fractions then labeled with acid-cleavable ICAT reagents (cICAT). Labeled proteins were digested with trypsin then subjected to SCX and affinity chromatography followed by LC-ESI-MS/MS analysis on a linear ion trap mass spectrometer. A total of 9 proteins from the cytosol fraction and 4 from the membrane fraction showed a 3-fold or greater difference between M-CLL and UM-CLL and a subset of these were examined by Western blot where results concurred with cICAT abundance ratios. The abundance of one of the proteins in particular, the mitochondrial membrane protein cytochrome c oxidase subunit COX G was examined in 6 M-CLL and 6 UM-CLL patients using western blot and results showed significantly greater levels (P < 0.001) in M-CLL patients vs UM-CLL patients. These results demonstrate that stable isotope labeling and mass spectrometry can complement 2D gel electrophoresis and gene microarray technologies for identifying putative and perhaps unique prognostic markers in CLL.

  11. Characterization of adsorption on the stationary phase using high-performance immunoaffinity chromatography.

    PubMed

    Nielsen, R G; Wilson, G S

    1987-12-25

    Low-level adsorption on the stationary phase has been studied using immunochemical reagents. An immunoaffinity column has been evaluated using affinity-purified radioisotope-labeled monoclonal antibodies. Recovery experiments including continuous immunosorbent monitoring have been performed. Proper characterization of an immunoaffinity separation can result in the recovery of immunologically active material in high yield.

  12. Fluorescent vancomycin and terephthalate comodified europium-doped layered double hydroxides nanoparticles: synthesis and application for bacteria labelling

    NASA Astrophysics Data System (ADS)

    Sun, Jianchao; Fan, Hai; Wang, Nan; Ai, Shiyun

    2014-09-01

    Vancomycin (Van)- and terephthalate (TA)-comodified europium-doped layered double hydroxides (Van-TA-Eu-LDHs) nanoparticles were successfully prepared by a two-step method, in which, TA acted as a sensitizer to enhance the fluorescent property and Van was modified on the surface of LDH to act as an affinity reagent to bacteria. The obtained products were characterized by X-ray diffraction, transmission electron microscope and fluorescent spectroscopy. The results demonstrated that the prepared Van- and TA-comodified europium-doped layered double hydroxides (Van-TA-Eu-LDHs) nanoparticles with diameter of 50 nm in size showed highly efficient fluorescent property. Furthermore, due to the high affinity of Van to bacteria, the prepared Van-TA-Eu-LDHs nanoparticles showed efficient bacteria labelling by fluorescent property. The prepared nanoparticles may have wide applications in the biological fields, such as biomolecular labelling and cell imaging.

  13. Affinity labeling of a cysteine at or near the catalytic center of Escherichia coli B DNA-dependent RNA polymerase.

    PubMed

    Miller, J A; Serio, G F; Bear, J L; Howard, R A; Kimball, A P

    1980-03-14

    9-beta-D-Arabinofuranosyl-6-thiopurine was used to affinity label DNA-dependent RNA polymerase isolated from Escherichia coli B. This substrate analogue displayed competitive type inhibition which could be reversed by addition of a thiol reagent, such as dithiothreitol, while exposure to hydrogen peroxide, a mild oxidizing agent, caused an increase in both the inhibitory and enzyme binding capability of arabinofuranosyl thiopurine. Chromatographic analysis of the products obtained by pronase digestion of the 9-beta-D-arabinofuranosyl-6-[35S]thiopurine-enzyme complex suggests that disulfide bond formation occurs between the inhibitor and a cysteine residue located in or near the active center of the enzyme. In addition, polyacrylamide gel electrophoresis indicated that the arabinofuranosyl thiopurine moeity was bound to the beta' subunit of the enzyme.

  14. Design and applications of a clamp for Green Fluorescent Protein with picomolar affinity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Simon; Stüber, Jakob C.; Ernst, Patrick

    Green fluorescent protein (GFP) fusions are pervasively used to study structures and processes. Specific GFP-binders are thus of great utility for detection, immobilization or manipulation of GFP-fused molecules. We determined structures of two designed ankyrin repeat proteins (DARPins), complexed with GFP, which revealed different but overlapping epitopes. Here in this paper we show a structure-guided design strategy that, by truncation and computational reengineering, led to a stable construct where both can bind simultaneously: by linkage of the two binders, fusion constructs were obtained that “wrap around” GFP, have very high affinities of about 10–30 pM, and extremely slow off-rates. Theymore » can be natively produced in E. coli in very large amounts, and show excellent biophysical properties. Their very high stability and affinity, facile site-directed functionalization at introduced unique lysines or cysteines facilitate many applications. As examples, we present them as tight yet reversible immobilization reagents for surface plasmon resonance, as fluorescently labelled monomeric detection reagents in flow cytometry, as pull-down ligands to selectively enrich GFP fusion proteins from cell extracts, and as affinity column ligands for inexpensive large-scale protein purification. We have thus described a general design strategy to create a “clamp” from two different high-affinity repeat proteins, even if their epitopes overlap.« less

  15. Design and applications of a clamp for Green Fluorescent Protein with picomolar affinity

    DOE PAGES

    Hansen, Simon; Stüber, Jakob C.; Ernst, Patrick; ...

    2017-11-24

    Green fluorescent protein (GFP) fusions are pervasively used to study structures and processes. Specific GFP-binders are thus of great utility for detection, immobilization or manipulation of GFP-fused molecules. We determined structures of two designed ankyrin repeat proteins (DARPins), complexed with GFP, which revealed different but overlapping epitopes. Here in this paper we show a structure-guided design strategy that, by truncation and computational reengineering, led to a stable construct where both can bind simultaneously: by linkage of the two binders, fusion constructs were obtained that “wrap around” GFP, have very high affinities of about 10–30 pM, and extremely slow off-rates. Theymore » can be natively produced in E. coli in very large amounts, and show excellent biophysical properties. Their very high stability and affinity, facile site-directed functionalization at introduced unique lysines or cysteines facilitate many applications. As examples, we present them as tight yet reversible immobilization reagents for surface plasmon resonance, as fluorescently labelled monomeric detection reagents in flow cytometry, as pull-down ligands to selectively enrich GFP fusion proteins from cell extracts, and as affinity column ligands for inexpensive large-scale protein purification. We have thus described a general design strategy to create a “clamp” from two different high-affinity repeat proteins, even if their epitopes overlap.« less

  16. Colorimetric Detection of Specific DNA Segments Amplified by Polymerase Chain Reactions

    NASA Astrophysics Data System (ADS)

    Kemp, David J.; Smith, Donald B.; Foote, Simon J.; Samaras, N.; Peterson, M. Gregory

    1989-04-01

    The polymerase chain reaction (PCR) procedure has many potential applications in mass screening. We describe here a general assay for colorimetric detection of amplified DNA. The target DNA is first amplified by PCR, and then a second set of oligonucleotides, nested between the first two, is incorporated by three or more PCR cycles. These oligonucleotides bear ligands: for example, one can be biotinylated and the other can contain a site for a double-stranded DNA-binding protein. After linkage to an immobilized affinity reagent (such as a cloned DNA-binding protein, which we describe here) and labeling with a second affinity reagent (for example, avidin) linked to horseradish peroxidase, reaction with a chromogenic substrate allows detection of the amplified DNA. This amplified DNA assay (ADA) is rapid, is readily applicable to mass screening, and uses routine equipment. We show here that it can be used to detect human immunodeficiency virus sequences specifically against a background of human DNA.

  17. Modern affinity reagents: Recombinant antibodies and aptamers.

    PubMed

    Groff, Katherine; Brown, Jeffrey; Clippinger, Amy J

    2015-12-01

    Affinity reagents are essential tools in both basic and applied research; however, there is a growing concern about the reproducibility of animal-derived monoclonal antibodies. The need for higher quality affinity reagents has prompted the development of methods that provide scientific, economic, and time-saving advantages and do not require the use of animals. This review describes two types of affinity reagents, recombinant antibodies and aptamers, which are non-animal technologies that can replace the use of animal-derived monoclonal antibodies. Recombinant antibodies are protein-based reagents, while aptamers are nucleic-acid-based. In light of the scientific advantages of these technologies, this review also discusses ways to gain momentum in the use of modern affinity reagents, including an update to the 1999 National Academy of Sciences monoclonal antibody production report and federal incentives for recombinant antibody and aptamer efforts. In the long-term, these efforts have the potential to improve the overall quality and decrease the cost of scientific research. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Lymphocyte receptors for pertussis toxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, C.G.; Armstrong, G.D.

    1990-12-01

    We have investigated human T-lymphocyte receptors for pertussis toxin by affinity isolation and photoaffinity labeling procedures. T lymphocytes were obtained from peripheral human blood, surface iodinated, and solubilized in Triton X-100. The iodinated mixture was then passed through pertussis toxin-agarose, and the fractions were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Autoradiography of the fixed, dried gels revealed several bands in the pertussis toxin-bound fraction that were not observed in fractions obtained from histone or fetuin-agarose. Further investigations employed a photoaffinity labeling reagent, sulfosuccinimidyl 2-(p-azido-salicylamido)-1,3'-dithiopropionate, to identify pertussis toxin receptors in freshly isolated peripheral blood monocytic cells, T lymphocytes, andmore » Jurkat cells. In all three cell systems, the pertussis toxin affinity probe specifically labeled a single protein species with an apparent molecular weight of 70,000 that was not observed when the procedure was performed in the presence of excess unmodified pertussis toxin. A protein comparable in molecular weight to the one detected by the photoaffinity labeling technique was also observed among the species that bound to pertussis toxin-agarose. The results suggest that pertussis toxin may bind to a 70,000-Da receptor in human T lymphocytes.« less

  19. Development and Testing of Enhanced Affinity Reagents for Use in Environmental Detection Assays

    DTIC Science & Technology

    Current affinity reagent development methodologies generally rely on costly and slow antibody production that is based on animal inoculations with...attenuated, inactivated, or surrogate biothreat agents. Recent literature has demonstrated that the de novo computer design of recombinant affinity

  20. NIH Seeks Input on Prioritizing Renewable Affinity Reagents | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The National Institutes of Health (NIH) is seeking community input on a priority list for renewable affinity reagents for human transcription factors. For more information or to provide input, please visit, http://commonfund.nih.gov/proteincapture/reagents/index.aspx.

  1. Diazo Reagents with Small Steric Footprints for Simultaneous Arming/SAR Studies of Alcohol-Containing Natural Products via O–H Insertion

    PubMed Central

    Chamni, Supakarn; He, Qing-Li; Dang, Yongjun; Bhat, Shridhar; Liu, Jun O.; Romo, Daniel

    2011-01-01

    Natural products are essential tools for basic cellular studies leading to the identification of medically relevant protein targets and the discovery of potential therapeutic leads. The development of methods that enable mild and selective derivatization of natural products continues to be of significant interest for mining their information-rich content. Herein, we describe novel diazo reagents for simultaneous arming and structure-activity relationship (SAR) studies of alcohol-containing natural products with a small steric footprint, namely an α-trifluoroethyl (HTFB) substituted reagent. The Rh(II)-catalyzed O–H insertion reaction of several natural products, including the potent translation inhibitor lactimidomycin, was investigated and useful reactivity and both chemo- and site (chemosite) selectivities were observed. Differential binding to the known protein targets of both FK506 and fumagillol was demonstrated, validating the advantage of the smaller steric footprint of trifluoroethyl derivatives. A p-azidophenyl diazo reagent is also described that will prove useful for photoaffinity labeling of low affinity small molecule protein receptors. PMID:21894934

  2. Reactive Derivatives of Nucleic Acids and Their Components as Affinity Reagents

    NASA Astrophysics Data System (ADS)

    Knorre, Dmitrii G.; Vlasov, Valentin V.

    1985-09-01

    The review is devoted to derivatives of nucleic acids and their components — nucleotides, nucleoside triphosphates, and oligonucleotides carrying reactive groups. Such derivatives are important tools for the investigation of protein-nucleic acid interactions and the functional topography of complex protein and nucleoprotein structures and can give rise to the prospect of being able to influence in a highly selective manner living organisms, including the nucleic acids and the nucleoproteins of the genetic apparatus. The review considers the principal groups of such reagents, the methods of their synthesis, and their properties which determine the possibility of their use for the selective (affinity) modification of biopolymers. The general principles of the construction of affinity reagents and their applications are analysed in relation to nucleotide affinity reagents. The bibliography includes 121 references.

  3. Microfluidics in the selection of affinity reagents for the detection of cancer: paving a way towards future diagnostics.

    PubMed

    Hung, Lien-Yu; Wang, Chih-Hung; Fu, Chien-Yu; Gopinathan, Priya; Lee, Gwo-Bin

    2016-08-07

    Microfluidic technologies have miniaturized a variety of biomedical applications, and these chip-based systems have several significant advantages over their large-scale counterparts. Recently, this technology has been used for automating labor-intensive and time-consuming screening processes, whereby affinity reagents, including aptamers, peptides, antibodies, polysaccharides, glycoproteins, and a variety of small molecules, are used to probe for molecular biomarkers. When compared to conventional methods, the microfluidic approaches are faster, more compact, require considerably smaller quantities of samples and reagents, and can be automated. Furthermore, they allow for more precise control of reaction conditions (e.g., pH, temperature, and shearing forces) such that more efficient screening can be performed. A variety of affinity reagents for targeting cancer cells or cancer biomarkers are now available and will likely replace conventional antibodies. In this review article, the selection of affinity reagents for cancer cells or cancer biomarkers on microfluidic platforms is reviewed with the aim of highlighting the utility of such approaches in cancer diagnostics.

  4. Biological characterization of a new radioactive labeling reagent for bacterial penicillin-binding proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preston, D.A.; Wu, C.Y.; Blaszczak, L.C.

    Radiolabeled penicillin G is widely used as the imaging agent in penicillin-binding protein (PBP) assays. The disadvantages of most forms of labeled penicillin G are instability on storage and the long exposure times usually required for autoradiography or fluorography of electrophoretic gels. We investigated the utility of radioiodinated penicillin V as an alternative reagent. Radioiodination of p-(trimethylstannyl)penicillin V with ({sup 125}I)Na, using a modification of the chloramine-T method, is simple, high yielding, and site specific. We demonstrated the general equivalence of commercially obtained ({sup 3}H)penicillin G and locally synthesized ({sup 125}I)penicillin V (IPV) in their recognition of bacterial PBPs. Profilesmore » of PBPs in membranes from Bacteroides fragilis, Escherichia coli, Providencia rettgeri, Staphylococcus aureus, Streptococcus pyogenes, Enterococcus faecalis, and Enterococcus faecium labeled with IPV or (3H)penicillin G were virtually identical. Use of IPV as the imaging agent in competition experiments for determination of the affinities of various beta-lactam antibiotics for the PBPs of E. coli yielded results similar to those obtained in experiments with ({sup 3}H)penicillin G. Dried electrophoretic gels from typical PBP experiments, using IPV at 37.3 Ci/mmol and 30 micrograms/ml, exposed X-ray film in 8 to 24 h. The stability of IPV on storage at 4{degrees}C was inversely proportional to specific activity. At 37.3 Ci/mmol and 60 micrograms/ml, IPV retained useful activity for at least 60 days at 4{degrees}C. IPV represents a practical and stable reagent for rapid PBP assays.« less

  5. Development of bacterial display peptides for use in biosensing applications

    NASA Astrophysics Data System (ADS)

    Stratis-Cullum, Dimitra N.; Kogot, Joshua M.; Sellers, Michael S.; Hurley, Margaret M.; Sarkes, Deborah A.; Pennington, Joseph M.; Val-Addo, Irene; Adams, Bryn L.; Warner, Candice R.; Carney, James P.; Brown, Rebecca L.; Pellegrino, Paul M.

    2012-06-01

    Recent advances in synthetic library engineering continue to show promise for the rapid production of reagent technology in response to biological threats. A synthetic library of peptide mutants built off a bacterial host offers a convenient means to link the peptide sequence, (i.e., identity of individual library members) with the desired molecular recognition traits, but also allows for a relatively simple protocol, amenable to automation. An improved understanding of the mechanisms of recognition and control of synthetic reagent isolation and evolution remain critical to success. In this paper, we describe our approach to development of peptide affinity reagents based on peptide bacterial display technology with improved control of binding interactions for stringent evolution of reagent candidates, and tailored performance capabilities. There are four key elements to the peptide affinity reagent program including: (1) the diverse bacterial library technology, (2) advanced reagent screening amenable to laboratory automation and control, (3) iterative characterization and feedback on both affinity and specificity of the molecular interactions, and (3) integrated multiscale computational prescreening of candidate peptide ligands including in silico prediction of improved binding performance. Specific results on peptides binders to Protective Antigen (PA) protein of Bacillus anthracis and Staphylococcal Enterotoxin B (SEB) will be presented. Recent highlights of on cell vs. off-cell affinity behavior and correlation of the results with advanced docking simulations on the protein-peptide system(s) are included. The potential of this technology and approach to enable rapid development of a new affinity reagent with unprecedented speed (less than one week) would allow for rapid response to new and constantly emerging threats.

  6. Fluorogen-Activating-Proteins as Universal Affinity Biosensors for Immunodetection

    PubMed Central

    Gallo, Eugenio; Vasilev, Kalin V.; Jarvik, Jonathan

    2014-01-01

    Fluorogen-activating-proteins (FAPs) are a novel platform of fluorescence biosensors utilized for protein discovery. The technology currently demands molecular manipulation methods that limit its application and adaptability. Here, we highlight an alternative approach based on universal affinity reagents for protein detection. The affinity reagents were engineered as bi-partite fusion proteins, where the specificity moiety is derived from IgG-binding proteins –Protein-A or Protein-G – and the signaling element is a FAP. In this manner, primary antibodies provide the antigenic selectivity against a desired protein in biological samples, while FAP affinity reagents target the constant region (Fc) of antibodies and provide the biosensor component of detection. Fluorescence results using various techniques indicate minimal background and high target specificity for exogenous and endogenous proteins in mammalian cells. Additionally, FAP-based affinity reagents provide enhanced properties of detection previously absent using conventional affinity systems. Distinct features explored in this report include: (1) unfixed signal wavelengths (excitation and emission) determined by the particular fluorogen chosen, (2) real-time user controlled fluorescence on-set and off-set, (3) signal wavelength substitution while performing live analysis, and (4) enhanced resistance to photobleaching. PMID:24122476

  7. Drop-out phagemid vector for switching from phage displayed affinity reagents to expression formats.

    PubMed

    Pershad, Kritika; Sullivan, Mark A; Kay, Brian K

    2011-05-15

    Affinity reagents that are generated by phage display are typically subcloned into an expression vector for further biochemical characterization. This insert transfer process is time consuming and laborious especially if many inserts are to be subcloned. To simplify the transfer process, we have constructed a "drop-out" phagemid vector that can be rapidly converted to an expression vector by a simple restriction enzyme digestion with MfeI (to "drop-out" the gene III coding sequence), which generates alkaline phosphatase (AP) fusions of the affinity reagents on religation. Subsequently, restriction digestion with AscI drops out the AP coding region and religation generates affinity reagents with a C-terminal six-histidine tag. To validate the usefulness of this vector, four different human single chain Fragments of variable regions (scFv) were tested, three of which show specific binding to three zebrafish (Danio rerio) proteins, namely suppression of tumorigenicity 13, recoverin, and Ppib and the fourth binds to human Lactoferrin protein. For each of the constructs tested, the gene III and AP drop-out efficiency was between 90% and 100%. This vector is especially useful in speeding up the downstream screening of affinity reagents and bypassing the time-consuming subcloning experiments. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. A genetically encoded and gate for cell-targeted metabolic labeling of proteins.

    PubMed

    Mahdavi, Alborz; Segall-Shapiro, Thomas H; Kou, Songzi; Jindal, Granton A; Hoff, Kevin G; Liu, Shirley; Chitsaz, Mohsen; Ismagilov, Rustem F; Silberg, Jonathan J; Tirrell, David A

    2013-02-27

    We describe a genetic AND gate for cell-targeted metabolic labeling and proteomic analysis in complex cellular systems. The centerpiece of the AND gate is a bisected methionyl-tRNA synthetase (MetRS) that charges the Met surrogate azidonorleucine (Anl) to tRNA(Met). Cellular protein labeling occurs only upon activation of two different promoters that drive expression of the N- and C-terminal fragments of the bisected MetRS. Anl-labeled proteins can be tagged with fluorescent dyes or affinity reagents via either copper-catalyzed or strain-promoted azide-alkyne cycloaddition. Protein labeling is apparent within 5 min after addition of Anl to bacterial cells in which the AND gate has been activated. This method allows spatial and temporal control of proteomic labeling and identification of proteins made in specific cellular subpopulations. The approach is demonstrated by selective labeling of proteins in bacterial cells immobilized in the center of a laminar-flow microfluidic channel, where they are exposed to overlapping, opposed gradients of inducers of the N- and C-terminal MetRS fragments. The observed labeling profile is predicted accurately from the strengths of the individual input signals.

  9. A Genetically Encoded AND Gate for Cell-Targeted Metabolic Labeling of Proteins

    PubMed Central

    Mahdavi, Alborz; Segall-Shapiro, Thomas H.; Kou, Songzi; Jindal, Granton A.; Hoff, Kevin G.; Liu, Shirley; Chitsaz, Mohsen; Ismagilov, Rustem F.; Silberg, Jonathan J.; Tirrell, David A.

    2013-01-01

    We describe a genetic AND gate for cell-targeted metabolic labeling and proteomic analysis in complex cellular systems. The centerpiece of the AND gate is a bisected methionyl-tRNA synthetase (MetRS) that charges the Met surrogate azidonorleucine (Anl) to tRNAMet. Cellular protein labeling occurs only upon activation of two different promoters that drive expression of the N- and C-terminal fragments of the bisected MetRS. Anl-labeled proteins can be tagged with fluorescent dyes or affinity reagents via either copper-catalyzed or strain-promoted azide-alkyne cycloaddition. Protein labeling is apparent within five minutes after addition of Anl to bacterial cells in which the AND gate has been activated. This method allows spatial and temporal control of proteomic labeling and identification of proteins made in specific cellular subpopulations. The approach is demonstrated by selective labeling of proteins in bacterial cells immobilized in the center of a laminar-flow microfluidic channel, where they are exposed to overlapping, opposed gradients of inducers of the N- and C-terminal MetRS fragments. The observed labeling profile is predicted accurately from the strengths of the individual input signals. PMID:23406315

  10. Fluorescence Resonance Energy Transfer Glucose Sensor from Site-Specific Dual Labeling of Glucose/Galactose Binding Protein Using Ligand Protection

    PubMed Central

    Hsieh, Helen V.; Sherman, Douglas B.; Andaluz, Sandra A.; Amiss, Terry J.; Pitner, J. Bruce

    2012-01-01

    Background Site-selective modification of proteins at two separate locations using two different reagents is highly desirable for biosensor applications employing fluorescence resonance energy transfer (FRET), but few strategies are available for such modification. To address this challenge, sequential selective modification of two cysteines in glucose/galactose binding protein (GGBP) was demonstrated using a technique we call “ligand protection.” Method In this technique, two cysteines were introduced in GGBP and one cysteine is rendered inaccessible by the presence of glucose, thus allowing sequential attachment of two different thiol-reactive reagents. The mutant E149C/A213C/L238S was first labeled at E149C in the presence of the ligand glucose. Following dialysis and removal of glucose, the protein was labeled with a second dye, either Texas Red (TR) C5 bromoacetamide or TR C2 maleimide, at the second site, A213C. Results Changes in glucose-dependent fluorescence were observed that were consistent with FRET between the nitrobenzoxadiazole and TR fluorophores. Comparison of models and spectroscopic properties of the C2 and C5 TR FRET constructs suggests the greater rigidity of the C2 linker provides more efficient FRET. Conclusions The ligand protection strategy provides a simple method for labeling GGBP with two different fluorophores to construct FRET-based glucose sensors with glucose affinity within the human physiological glucose range (1–30 mM). This general strategy may also have broad utility for other protein-labeling applications. PMID:23294773

  11. Mass-transport limitations in spot-based microarrays.

    PubMed

    Zhao, Ming; Wang, Xuefeng; Nolte, David

    2010-09-20

    Mass transport of analyte to surface-immobilized affinity reagents is the fundamental bottleneck for sensitive detection in solid-support microarrays and biosensors. Analyte depletion in the volume adjacent to the sensor causes deviation from ideal association, significantly slows down reaction kinetics, and causes inhomogeneous binding across the sensor surface. In this paper we use high-resolution molecular interferometric imaging (MI2), a label-free optical interferometry technique for direct detection of molecular films, to study the inhomogeneous distribution of intra-spot binding across 100 micron-diameter protein spots. By measuring intra-spot binding inhomogeneity, reaction kinetics can be determined accurately when combined with a numerical three-dimensional finite element model. To ensure homogeneous binding across a spot, a critical flow rate is identified in terms of the association rate k(a) and the spot diameter. The binding inhomogeneity across a spot can be used to distinguish high-affinity low-concentration specific reactions from low-affinity high-concentration non-specific binding of background proteins.

  12. Hydrogen sulfide deactivates common nitrobenzofurazan-based fluorescent thiol labeling reagents.

    PubMed

    Montoya, Leticia A; Pluth, Michael D

    2014-06-17

    Sulfhydryl-containing compounds, including thiols and hydrogen sulfide (H2S), play important but differential roles in biological structure and function. One major challenge in separating the biological roles of thiols and H2S is developing tools to effectively separate the reactivity of these sulfhydryl-containing compounds. To address this challenge, we report the differential responses of common electrophilic fluorescent thiol labeling reagents, including nitrobenzofurazan-based scaffolds, maleimides, alkylating agents, and electrophilic aldehydes, toward cysteine and H2S. Although H2S reacted with all of the investigated scaffolds, the photophysical response to each scaffold was significantly different. Maleimide-based, alkylating, and aldehydic thiol labeling reagents provided a diminished fluorescence response when treated with H2S. By contrast, nitrobenzofurazan-based labeling reagents were deactivated by H2S addition. Furthermore, the addition of H2S to thiol-activated nitrobenzofurazan-based reagents reduced the fluorescence signal, thus establishing the incompatibility of nitrobenzofurazan-based thiol labeling reagents in the presence of H2S. Taken together, these studies highlight the differential reactivity of thiols and H2S toward common thiol-labeling reagents and suggest that sufficient care must be taken when labeling or measuring thiols in cellular environments that produce H2S due to the potential for both false-positive and eroded responses.

  13. Determination of trace glucose and forecast of human diseases by affinity adsorption solid substrate room temperature phosphorimetry based on Triticum valgaris lectin labeled with 4.0-generation dendrimers

    NASA Astrophysics Data System (ADS)

    Li, Zhiming; Zhu, Guohui; Liu, Jiaming; Lu, Qiaomei; Yang, Minlan; Wu, Hong; Shi, Xiumei; Chen, Xinhua

    2007-08-01

    A new phosphorescence labeling reagent Triton-100X-4.0G-D (4.0G-D refers to 4.0-generation dendrimers) was found. Quantitative specific affinity adsorption (AA) reaction between Triton-100X-4.0G-D-WGA and glucose (G) was carried out on the surface of nitrocellulose membrane (NCM), and the Δ Ip of the product of AA reaction was linear correlation to the content of G. Based on the facts above, a new method for the determination of trace G was established by WGA labeled with Triton-100X-4.0G-D affinity adsorption solid substrate room temperature phosphorimetry (Triton-100X-4.0G-D-WGA-AA-SS-RTP). This research showed that AA-SS-RTP for either direct method or sandwich method could combine very well the characteristics of both the high sensitivity of SS-RTP and the specificity of the AA reaction. Detection limits (LD) were 0.24 fg spot -1 for direct method and 0.18 fg spot -1 for sandwich method, indicating both of them were of high sensitivity. The method has been applied to the determination of the content of G in human serum, and the results were coincided with those obtained by glucose oxidize enzyme method. It can also be applied to forecast accurately some human diseases, such as primary hepatic carcinoma, cirrhosis, acute and chronic hepatitis, transfer hepatocellular, etc. Meanwhile, the mechanism for the determination of G with AA-SS-RTP was discussed.

  14. An evaluation of an aptamer for use as an affinity reagent with MS: PCSK9 as an example protein.

    PubMed

    Gupta, Vinita; Lassman, Michael E; McAvoy, Thomas; Lee, Anita Yh; Chappell, Derek L; Laterza, Omar F

    2016-08-01

    For quantitative immunoaffinity IA-LC-MS, the utility of antibodies has been demonstrated many times but the utility of aptamers as affinity reagents is unproven. Immunoaffinity reagents including a monoclonal antibody and an aptamer were coupled to magnetic beads and used as part of an enrichment strategy for PCSK9 quantitation in plasma. With limited method development, we have established a comparison of an anti-PCSK9 aptamer with an anti-PCSK9 monoclonal antibody. The background that results from a tryptic digest of affinity enrichment in plasma was demonstrated for each reagent using high-resolution full scan MS. The assay recovery was demonstrated for multiple concentrations of aptamer in plasma with different concentrations of PCSK9 protein. The aptamer achieved comparable enrichment to the antibody, but with lower peptide background, thus demonstrating the potential use of aptamers for IA-LC-MS.

  15. A polymer nanoparticle with engineered affinity for a vascular endothelial growth factor (VEGF165)

    NASA Astrophysics Data System (ADS)

    Koide, Hiroyuki; Yoshimatsu, Keiichi; Hoshino, Yu; Lee, Shih-Hui; Okajima, Ai; Ariizumi, Saki; Narita, Yudai; Yonamine, Yusuke; Weisman, Adam C.; Nishimura, Yuri; Oku, Naoto; Miura, Yoshiko; Shea, Kenneth J.

    2017-07-01

    Protein affinity reagents are widely used in basic research, diagnostics and separations and for clinical applications, the most common of which are antibodies. However, they often suffer from high cost, and difficulties in their development, production and storage. Here we show that a synthetic polymer nanoparticle (NP) can be engineered to have many of the functions of a protein affinity reagent. Polymer NPs with nM affinity to a key vascular endothelial growth factor (VEGF165) inhibit binding of the signalling protein to its receptor VEGFR-2, preventing receptor phosphorylation and downstream VEGF165-dependent endothelial cell migration and invasion into the extracellular matrix. In addition, the NPs inhibit VEGF-mediated new blood vessel formation in Matrigel plugs in vivo. Importantly, the non-toxic NPs were not found to exhibit off-target activity. These results support the assertion that synthetic polymers offer a new paradigm in the search for abiotic protein affinity reagents by providing many of the functions of their protein counterparts.

  16. Duplex microfluidic SERS detection of pathogen antigens with nanoyeast single-chain variable fragments.

    PubMed

    Wang, Yuling; Rauf, Sakandar; Grewal, Yadveer S; Spadafora, Lauren J; Shiddiky, Muhammad J A; Cangelosi, Gerard A; Schlücker, Sebastian; Trau, Matt

    2014-10-07

    Quantitative and accurate detection of multiple biomarkers would allow for the rapid diagnosis and treatment of diseases induced by pathogens. Monoclonal antibodies are standard affinity reagents applied for biomarkers detection; however, their production is expensive and labor-intensive. Herein, we report on newly developed nanoyeast single-chain variable fragments (NYscFv) as an attractive alternative to monoclonal antibodies, which offers the unique advantage of a cost-effective production, stability in solution, and target-specificity. By combination of surface-enhanced Raman scattering (SERS) microspectroscopy using glass-coated, highly purified SERS nanoparticle clusters as labels, with a microfluidic device comprising multiple channels, a robust platform for the sensitive duplex detection of pathogen antigens has been developed. Highly sensitive detection for individual Entamoeba histolytica antigen EHI_115350 (limit of detection = 1 pg/mL, corresponding to 58.8 fM) and EHI_182030 (10 pg/mL, corresponding 453 fM) with high specificity has been achieved, employing the newly developed corresponding NYscFv as probe in combination with SERS microspectroscopy at a single laser excitation wavelength. Our first report on SERS-based immunoassays using the novel NYscFv affinity reagent demonstrates the flexibility of NYscFv fragments as viable alternatives to monoclonal antibodies in a range of bioassay platforms and paves the way for further applications.

  17. Protected Amine Labels: A Versatile Molecular Scaffold for Multiplexed Nominal Mass and Sub-Da Isotopologue Quantitative Proteomic Reagents

    PubMed Central

    Ficarro, Scott B.; Biagi, Jessica M.; Wang, Jinhua; Scotcher, Jenna; Koleva, Rositsa I.; Card, Joseph D.; Adelmant, Guillaume; He, Huan; Askenazi, Manor; Marshall, Alan G.; Young, Nicolas L.; Gray, Nathanael S.; Marto, Jarrod A.

    2014-01-01

    We assemble a versatile molecular scaffold from simple building blocks to create binary and multiplexed stable isotope reagents for quantitative mass spectrometry. Termed Protected Amine Labels (PAL), these reagents offer multiple analytical figures of merit including, (i) robust targeting of peptide N-termini and lysyl side chains, (ii) optimal mass spectrometry ionization efficiency through regeneration of primary amines on labeled peptides, (iii) an amino acid-based mass tag that incorporates heavy isotopes of carbon, nitrogen, and oxygen to ensure matched physicochemical and MS/MS fragmentation behavior among labeled peptides, and (iv) a molecularly efficient architecture, in which the majority of hetero-atom centers can be used to synthesize a variety of nominal mass and sub-Da isotopologue stable isotope reagents. We demonstrate the performance of these reagents in well-established strategies whereby up to four channels of peptide isotopomers, each separated by 4 Da are quantified in MS-level scans with accuracies comparable to current commercial reagents. In addition we utilize the PAL scaffold to create isotopologue reagents in which labeled peptide analogs differ in mass based on the binding energy in carbon and nitrogen nuclei, thereby allowing quantification based on MS or MS/MS spectra. We demonstrate accurate quantification for reagents that support 6-plex labeling and propose extension of this scheme to 9-channels based on a similar PAL scaffold. Finally we provide exemplar data that extends the application of isotopologe-based quantification reagents to medium resolution, quadrupole time-of-flight mass spectrometers. PMID:24496597

  18. A review of reagents for fluorescence microscopy of cellular compartments and structures, part I: BacMam labeling and reagents for vesicular structures.

    PubMed

    Dolman, Nick J; Kilgore, Jason A; Davidson, Michael W

    2013-07-01

    Fluorescent labeling of vesicular structures in cultured cells, particularly for live cells, can be challenging for a number of reasons. The first challenge is to identify a reagent that will be specific enough where some structures have a number of potential reagents and others very few options. The emergence of BacMam constructs has allowed more easy-to-use choices. Presented here is a discussion of BacMam constructs as well as a review of commercially-available reagents for labeling vesicular structures in cells, including endosomes, peroxisomes, lysosomes, and autophagosomes, complete with a featured reagent for each structure, recommended protocol, troubleshooting guide, and example image. © 2013 by John Wiley & Sons, Inc.

  19. An Overview of Enzymatic Reagents for the Removal of Affinity Tags

    PubMed Central

    Waugh, David S.

    2011-01-01

    Although they are often exploited to facilitate the expression and purification of recombinant proteins, every affinity tag, whether large or small, has the potential to interfere with the structure and function of its fusion partner. For this reason, reliable methods for removing affinity tags are needed. Only enzymes have the requisite specificity to be generally useful reagents for this purpose. In this review, the advantages and disadvantages of some commonly used endo- and exoproteases are discussed in light of the latest information. PMID:21871965

  20. 21 CFR 660.28 - Labeling.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Blood Grouping Reagent § 660.28 Labeling. In... white, except that all or a portion of the final container label of the following Blood Grouping... panel. Blood grouping reagent Color of label paper Anti-A Blue. Anti-B Yellow. Slide and rapid tube test...

  1. 21 CFR 660.28 - Labeling.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Blood Grouping Reagent § 660.28 Labeling. In... white, except that all or a portion of the final container label of the following Blood Grouping... panel. Blood grouping reagent Color of label paper Anti-A Blue. Anti-B Yellow. Slide and rapid tube test...

  2. 21 CFR 660.28 - Labeling.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Blood Grouping Reagent § 660.28 Labeling. In... white, except that all or a portion of the final container label of the following Blood Grouping... panel. Blood grouping reagent Color of label paper Anti-A Blue. Anti-B Yellow. Slide and rapid tube test...

  3. 21 CFR 660.28 - Labeling.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Blood Grouping Reagent § 660.28 Labeling. In... white, except that all or a portion of the final container label of the following Blood Grouping... panel. Blood grouping reagent Color of label paper Anti-A Blue. Anti-B Yellow. Slide and rapid tube test...

  4. Novel 1:1 labeling and purification process for C-terminal thioester and single cysteine recombinant proteins using generic peptidic toolbox reagents.

    PubMed

    Portal, Christophe F; Seifert, Jan-Marcus; Buehler, Christof; Meisner-Kober, Nicole-Claudia; Auer, Manfred

    2014-07-16

    We developed a versatile set of chemical labeling reagents which allow dye ligation to the C-terminus of a protein or a single internal cysteine and target purification in a simple two-step process. This simple process results in a fully 1:1 labeled conjugate suitable for all quantitative fluorescence spectroscopy and imaging experiments. We refer to a "generic labeling toolbox" because of the flexibility to choose one of many available dyes, spacers of different lengths and compositions which increase the target solubility, a variety of affinity purification tags, and different cleavage chemistries to release the 1:1 labeled proteins. Studying protein function in vitro or in the context of live cells and organisms is of vital importance in biological research. Although label free detection technologies gain increasing interest in molecular recognition science, fluorescence spectroscopy is still the most often used detection technique for assays and screens both in academic as well as in industrial groups. For generations, fluorescence spectroscopists have labeled their proteins of interest with small fluorescent dyes by random chemical linking on the proteins' exposed lysines and cysteines. Chemical reactions with a certain excess of activated esters or maleimides of longer wavelength dyes hardly ever result in quantitative labeling of the target protein. Most of the time, more than one exposed amino acid side chain reacts. This results in a mixture of dye-protein complexes of different labeling stoichiometries and labeling sites. Only mass spectrometry allows resolving the precise chemical composition of the conjugates. In "classical" ensemble averaging fluorescent experiments, these labeled proteins are still useful, and quantification of, e.g., ligand binding experiments, is achieved via knowledge of the overall protein concentration and a fluorescent signal change which is proportional to the amount of complex formed. With the development of fluorescence fluctuation analysis techniques working at single molecule resolution, like fluorescence correlation spectroscopy (FCS), fluorescence cross correlation spectroscopy (FCCS), fluorescence intensity diffusion analysis (FIDA), etc., it became important to work with homogeneously labeled target proteins. Each molecule participating in a binding equilibrium should be detectable when it freely fluctuates through the confocal focus of a microscope. The measured photon burst for each transition contains information about the size and the stoichiometry of a protein complex. Therefore, it is important to work with reagents that contain an exact number of tracers per protein at identical positions. The ideal fluorescent tracer-protein complex stoichiometry is 1:1. While genetic tags such as fluorescent proteins (FPs) are widely used to detect proteins, FPs have several limitations compared to chemical tags. For example, FPs cannot easily compete with organic dyes in the flexibility of modification and spectral range; moreover, FPs have disadvantages in brightness and photostability and are therefore not ideal for most biochemical single molecule studies. We present the synthesis of a series of exemplaric toolbox reagents and labeling results on three target proteins which were needed for high throughput screening experiments using fluorescence fluctuation analysis at single molecule resolution. On one target, Hu-antigen R (HuR), we demonstrated the activity of the 1:1 labeled protein in ribonucleic acid (RNA) binding, and the ease of resolving the stoichiometry of an RNA-HuR complex using the same dye on protein and RNA by Fluorescence Intensity Multiple Distribution Analysis (FIMDA) detection.

  5. Specific capture and detection of Staphylococcus aureus with high-affinity modified aptamers to cell surface components

    PubMed Central

    Baumstummler, A; Lehmann, D; Janjic, N; Ochsner, UA

    2014-01-01

    Slow off-rate modified aptamer (SOMAmer) reagents were generated to several Staphylococcus aureus cell surface-associated proteins via SELEX with multiple modified DNA libraries using purified recombinant or native proteins. High-affinity binding agents with sub-nanomolar Kd's were obtained for staphylococcal protein A (SpA), clumping factors (ClfA, ClfB), fibronectin-binding proteins (FnbA, FnbB) and iron-regulated surface determinants (Isd). Further screening revealed several SOMAmers that specifically bound to Staph. aureus cells from all strains that were tested, but not to other staphylococci or other bacteria. SpA and ClfA SOMAmers proved useful for the selective capture and enrichment of Staph. aureus cells, as shown by culture and PCR, leading to improved limits of detection and efficient removal of PCR inhibitors. Detection of Staph. aureus cells was enhanced by several orders of magnitude when the bacterial cell surface was coated with SOMAmers followed by qPCR of the SOMAmers. Furthermore, fluorescence-labelled SpA SOMAmers demonstrated their utility as direct detection agents in flow cytometry. Significance and Impact of the Study Monitoring for microbial contamination of food, water, nonsterile products or the environment is typically based on culture, PCR or antibodies. Aptamers that bind with high specificity and affinity to well-conserved cell surface epitopes represent a promising novel type of reagents to detect bacterial cells without the need for culture or cell lysis, including for the capture and enrichment of bacteria present at low cell densities and for the direct detection via qPCR or fluorescent staining. PMID:24935714

  6. Alkylation of Staurosporine to Derive a Kinase Probe for Fluorescence Applications.

    PubMed

    Disney, Alexander J M; Kellam, Barrie; Dekker, Lodewijk V

    2016-05-06

    The natural product staurosporine is a high-affinity inhibitor of nearly all mammalian protein kinases. The labelling of staurosporine has proven effective as a means of generating protein kinase research tools. Most tools have been generated by acylation of the 4'-methylamine of the sugar moiety of staurosporine. Herein we describe the alkylation of this group as a first step to generate a fluorescently labelled staurosporine. Following alkylation, a polyethylene glycol linker was installed, allowing subsequent attachment of fluorescein. We report that this fluorescein-staurosporine conjugate binds to cAMP-dependent protein kinase in the nanomolar range. Furthermore, its binding can be antagonised with unmodified staurosporine as well as ATP, indicating it targets the ATP binding site in a similar fashion to native staurosporine. This reagent has potential application as a screening tool for protein kinases of interest. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  7. Isolation and characterization of anti-SEB peptides using magnetic sorting and bacterial peptide display library technology

    NASA Astrophysics Data System (ADS)

    Pennington, Joseph M.; Kogot, Joshua M.; Sarkes, Deborah A.; Pellegrino, Paul M.; Stratis-Cullum, Dimitra N.

    2012-06-01

    Peptide display libraries offer an alternative method to existing antibody development methods enabling rapid isolation of highly stable reagents for detection of new and emerging biological threats. Bacterial display libraries are used to isolate new peptide reagents within 1 week, which is simpler and timelier than using competing display library technology based on phage or yeast. Using magnetic sorting methods, we have isolated peptide reagents with high affinity and specificity to staphylococcal enterotoxin B (SEB), a suspected food pathogen. Flow cytometry methods were used for on-cell characterization and the binding affinity (Kd) of this new peptide reagent was determined to be 56 nm with minimal cross-reactivity to other proteins. These results demonstrated that magnetic sorting for new reagents using bacterial display libraries is a rapid and effective method and has the potential for current and new and emerging food pathogen targets.

  8. A Community Standard Format for the Representation of Protein Affinity Reagents*

    PubMed Central

    Gloriam, David E.; Orchard, Sandra; Bertinetti, Daniela; Björling, Erik; Bongcam-Rudloff, Erik; Borrebaeck, Carl A. K.; Bourbeillon, Julie; Bradbury, Andrew R. M.; de Daruvar, Antoine; Dübel, Stefan; Frank, Ronald; Gibson, Toby J.; Gold, Larry; Haslam, Niall; Herberg, Friedrich W.; Hiltke, Tara; Hoheisel, Jörg D.; Kerrien, Samuel; Koegl, Manfred; Konthur, Zoltán; Korn, Bernhard; Landegren, Ulf; Montecchi-Palazzi, Luisa; Palcy, Sandrine; Rodriguez, Henry; Schweinsberg, Sonja; Sievert, Volker; Stoevesandt, Oda; Taussig, Michael J.; Ueffing, Marius; Uhlén, Mathias; van der Maarel, Silvère; Wingren, Christer; Woollard, Peter; Sherman, David J.; Hermjakob, Henning

    2010-01-01

    Protein affinity reagents (PARs), most commonly antibodies, are essential reagents for protein characterization in basic research, biotechnology, and diagnostics as well as the fastest growing class of therapeutics. Large numbers of PARs are available commercially; however, their quality is often uncertain. In addition, currently available PARs cover only a fraction of the human proteome, and their cost is prohibitive for proteome scale applications. This situation has triggered several initiatives involving large scale generation and validation of antibodies, for example the Swedish Human Protein Atlas and the German Antibody Factory. Antibodies targeting specific subproteomes are being pursued by members of Human Proteome Organisation (plasma and liver proteome projects) and the United States National Cancer Institute (cancer-associated antigens). ProteomeBinders, a European consortium, aims to set up a resource of consistently quality-controlled protein-binding reagents for the whole human proteome. An ultimate PAR database resource would allow consumers to visit one on-line warehouse and find all available affinity reagents from different providers together with documentation that facilitates easy comparison of their cost and quality. However, in contrast to, for example, nucleotide databases among which data are synchronized between the major data providers, current PAR producers, quality control centers, and commercial companies all use incompatible formats, hindering data exchange. Here we propose Proteomics Standards Initiative (PSI)-PAR as a global community standard format for the representation and exchange of protein affinity reagent data. The PSI-PAR format is maintained by the Human Proteome Organisation PSI and was developed within the context of ProteomeBinders by building on a mature proteomics standard format, PSI-molecular interaction, which is a widely accepted and established community standard for molecular interaction data. Further information and documentation are available on the PSI-PAR web site. PMID:19674966

  9. Adapter reagents for protein site specific dye labeling.

    PubMed

    Thompson, Darren A; Evans, Eric G B; Kasza, Tomas; Millhauser, Glenn L; Dawson, Philip E

    2014-05-01

    Chemoselective protein labeling remains a significant challenge in chemical biology. Although many selective labeling chemistries have been reported, the practicalities of matching the reaction with appropriately functionalized proteins and labeling reagents is often a challenge. For example, we encountered the challenge of site specifically labeling the cellular form of the murine Prion protein with a fluorescent dye. To facilitate this labeling, a protein was expressed with site specific p-acetylphenylalanine. However, the utility of this acetophenone reactive group is hampered by the severe lack of commercially available aminooxy fluorophores. Here we outline a general strategy for the efficient solid phase synthesis of adapter reagents capable of converting maleimido-labels into aminooxy or azide functional groups that can be further tuned for desired length or solubility properties. The utility of the adapter strategy is demonstrated in the context of fluorescent labeling of the murine Prion protein through an adapted aminooxy-Alexa dye. © 2014 Wiley Periodicals, Inc.

  10. Adapter Reagents for Protein Site Specific Dye Labeling

    PubMed Central

    Thompson, Darren A.; Evans, Eric G. B.; Kasza, Tomas; Millhauser, Glenn L.; Dawson, Philip E.

    2016-01-01

    Chemoselective protein labeling remains a significant challenge in chemical biology. Although many selective labeling chemistries have been reported, the practicalities of matching the reaction with appropriately functionalized proteins and labeling reagents is often a challenge. For example, we encountered the challenge of site specifically labeling the cellular form of the murine Prion protein with a fluorescent dye. To facilitate this labeling, a protein was expressed with site specific p-acetylphenylalanine. However, the utility of this aceto-phenone reactive group is hampered by the severe lack of commercially available aminooxy fluorophores. Here we outline a general strategy for the efficient solid phase synthesis of adapter reagents capable of converting maleimido-labels into aminooxy or azide functional groups that can be further tuned for desired length or solubility properties. The utility of the adapter strategy is demonstrated in the context of fluorescent labeling of the murine Prion protein through an adapted aminooxy-Alexa dye. PMID:24599728

  11. Selective affinity labeling of a 27-kDa integral membrane protein in rat liver and kidney with N-bromoacetyl derivatives of L-thyroxine and 3,5,3'-triiodo-L-thyronine.

    PubMed

    Köhrle, J; Rasmussen, U B; Rokos, H; Leonard, J L; Hesch, R D

    1990-04-15

    125I-Labeled N-bromoacetyl derivatives of L-thyroxine and L-triiodothyronine were used as alkylating affinity labels to identify rat liver and kidney microsomal membrane proteins which specifically bind thyroid hormones. Affinity label incorporation was analyzed by ethanol precipitation and individual affinity labeled proteins were identified by autoradiography after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. Six to eight membrane proteins ranging in size from 17 to 84 kDa were affinity labeled by both bromoacetyl-L-thyroxine (BrAcT4) and bromoacetyl-L-triiodothyronine (BrAcT3). Affinity labeling was time- and temperature-dependent, and both reduced dithiols and detergents increased affinity labeling, predominantly in a 27-kDa protein(s). Up to 80% of the affinity label was associated with a 27-kDa protein (p27) under optimal conditions. Affinity labeling of p27 by 0.4 nM BrAc[125I]L-T4 was blocked by 0.1 microM of the alkylating ligands BrAcT4, BrAcT3, or 100 microM iodoacetate, by 10 microM concentrations of the non-alkylating, reversible ligands N-acetyl-L-thyroxine, 3,3',5'-triiodothyronine, 3,5-diiodosalicylate, and EMD 21388, a T4-antagonistic flavonoid. Neither 10 microM L-T4, nor 10 microM N-acetyltriiodothyronine or 10 microM L-triiodothyronine blocked affinity labeling of p27 or other affinity labeled bands. Affinity labeling of a 17-kDa band was partially inhibited by excess of the alkylating ligands BrAcT4, BrAcT3, and iodoacetate, but labeling of other minor bands was not blocked by excess of the competitors. BrAc[125I]T4 yielded higher affinity label incorporation than BrAc[125I]T3, although similar banding patterns were observed, except that BrAcT3 affinity labeled more intensely a 58,000-Da band in liver and a 53,000-55,000-Da band in kidney. The pattern of other affinity labeled proteins with p27 as the predominant band was similar in liver and kidney. Peptide mapping of affinity labeled p27 and p55 bands by chemical cleavage and protease fragmentation revealed no common bands excluding that p27 is a degradation product of p55. These data indicate that N-bromoacetyl derivatives of T4 and T3 affinity label a limited but similar constellation of membrane proteins with BrAcT4 incorporation greater than that of BrAcT3. One membrane protein (p27) of low abundance (2-5 pmol/mg microsomal protein) with a reactive sulfhydryl group is selectively labeled under conditions identical to those used to measure thyroid hormone 5'-deiodination. Only p27 showed differential affinity labeling in the presence of noncovalently bound inhibitors or substrates on 5'-deiodinase suggesting that p27 is likely to be a component of type I 5'-deiodinase in rat liver and kidney.

  12. Group specific internal standard technology (GSIST) for simultaneous identification and quantification of small molecules

    DOEpatents

    Adamec, Jiri; Yang, Wen-Chu; Regnier, Fred E

    2014-01-14

    Reagents and methods are provided that permit simultaneous analysis of multiple diverse small molecule analytes present in a complex mixture. Samples are labeled with chemically identical but isotopically distince forms of the labeling reagent, and analyzed using mass spectrometry. A single reagent simultaneously derivatizes multiple small molecule analytes having different reactive functional groups.

  13. Specific capture and detection of Staphylococcus aureus with high-affinity modified aptamers to cell surface components.

    PubMed

    Baumstummler, A; Lehmann, D; Janjic, N; Ochsner, U A

    2014-10-01

    Slow off-rate modified aptamer (SOMAmer) reagents were generated to several Staphylococcus aureus cell surface-associated proteins via SELEX with multiple modified DNA libraries using purified recombinant or native proteins. High-affinity binding agents with sub-nanomolar Kd 's were obtained for staphylococcal protein A (SpA), clumping factors (ClfA, ClfB), fibronectin-binding proteins (FnbA, FnbB) and iron-regulated surface determinants (Isd). Further screening revealed several SOMAmers that specifically bound to Staph. aureus cells from all strains that were tested, but not to other staphylococci or other bacteria. SpA and ClfA SOMAmers proved useful for the selective capture and enrichment of Staph. aureus cells, as shown by culture and PCR, leading to improved limits of detection and efficient removal of PCR inhibitors. Detection of Staph. aureus cells was enhanced by several orders of magnitude when the bacterial cell surface was coated with SOMAmers followed by qPCR of the SOMAmers. Furthermore, fluorescence-labelled SpA SOMAmers demonstrated their utility as direct detection agents in flow cytometry. Significance and impact of the study: Monitoring for microbial contamination of food, water, nonsterile products or the environment is typically based on culture, PCR or antibodies. Aptamers that bind with high specificity and affinity to well-conserved cell surface epitopes represent a promising novel type of reagents to detect bacterial cells without the need for culture or cell lysis, including for the capture and enrichment of bacteria present at low cell densities and for the direct detection via qPCR or fluorescent staining. © 2014 Soma Logic, Inc. published by John Wiley & Sons Ltd On behalf of the society for Applied Microbiology.

  14. No-carrier-added [.sup.18 F]-N-fluoroalkylspiroperidols

    DOEpatents

    Shiue, Chyng-Yann; Wolf, Alfred P.; Bai, Lan-Qin; Teng, Ren-Tui

    1989-01-01

    There is disclosed radioligands labeled with the position emitting radionuclide [.sup.18 F] suitable for dynamic study in living humans with position emission transaxial tomography. These new [.sup.18 F]-N-fluoroalkylspiroperidols, wherein the alkyl group contains from 2-6 carbon atoms, exhibit extremely high affinity for the dopamine receptors and provide enhanced uptake and retention in the brain concomitant with reduced radiation burden. These characteristics all combine to make these new radioligands useful for mapping dopamine receptors in normal and disease states in the living brain. Additionally, a new synthetic procedure for these radioligands as well as a new procedure for preparing the radiolabeled alkyl halide alkylating reagents are also disclosed.

  15. Methods for the selective detection of alkyne-presenting molecules and related compositions and systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdez, Carlos A.; Vu, Alexander K.

    Provided herein are methods for selectively detecting an alkyne-presenting molecule in a sample and related detection reagents, compositions, methods and systems. The methods include contacting a detection reagent with the sample for a time and under a condition to allow binding of the detection reagent to the one or more alkyne-presenting molecules possibly present in the matrix to the detection reagent. The detection reagent includes an organic label moiety presenting an azide group. The binding of the azide group to the alkyne-presenting molecules results in emission of a signal from the organic label moiety.

  16. Expressing the human proteome for affinity proteomics: optimising expression of soluble protein domains and in vivo biotinylation.

    PubMed

    Keates, Tracy; Cooper, Christopher D O; Savitsky, Pavel; Allerston, Charles K; Phillips, Claire; Hammarström, Martin; Daga, Neha; Berridge, Georgina; Mahajan, Pravin; Burgess-Brown, Nicola A; Müller, Susanne; Gräslund, Susanne; Gileadi, Opher

    2012-06-15

    The generation of affinity reagents to large numbers of human proteins depends on the ability to express the target proteins as high-quality antigens. The Structural Genomics Consortium (SGC) focuses on the production and structure determination of human proteins. In a 7-year period, the SGC has deposited crystal structures of >800 human protein domains, and has additionally expressed and purified a similar number of protein domains that have not yet been crystallised. The targets include a diversity of protein domains, with an attempt to provide high coverage of protein families. The family approach provides an excellent basis for characterising the selectivity of affinity reagents. We present a summary of the approaches used to generate purified human proteins or protein domains, a test case demonstrating the ability to rapidly generate new proteins, and an optimisation study on the modification of >70 proteins by biotinylation in vivo. These results provide a unique synergy between large-scale structural projects and the recent efforts to produce a wide coverage of affinity reagents to the human proteome. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Expressing the human proteome for affinity proteomics: optimising expression of soluble protein domains and in vivo biotinylation

    PubMed Central

    Keates, Tracy; Cooper, Christopher D.O.; Savitsky, Pavel; Allerston, Charles K.; Phillips, Claire; Hammarström, Martin; Daga, Neha; Berridge, Georgina; Mahajan, Pravin; Burgess-Brown, Nicola A.; Müller, Susanne; Gräslund, Susanne; Gileadi, Opher

    2012-01-01

    The generation of affinity reagents to large numbers of human proteins depends on the ability to express the target proteins as high-quality antigens. The Structural Genomics Consortium (SGC) focuses on the production and structure determination of human proteins. In a 7-year period, the SGC has deposited crystal structures of >800 human protein domains, and has additionally expressed and purified a similar number of protein domains that have not yet been crystallised. The targets include a diversity of protein domains, with an attempt to provide high coverage of protein families. The family approach provides an excellent basis for characterising the selectivity of affinity reagents. We present a summary of the approaches used to generate purified human proteins or protein domains, a test case demonstrating the ability to rapidly generate new proteins, and an optimisation study on the modification of >70 proteins by biotinylation in vivo. These results provide a unique synergy between large-scale structural projects and the recent efforts to produce a wide coverage of affinity reagents to the human proteome. PMID:22027370

  18. Atrial natriuretic factor receptor heterogeneity in rat tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andresen, J.W.; Kuno, T.; Kamisaki, Y.

    1986-03-01

    Rat /sup 125/I-atrial natriuretic factor (ANF, 8-33) was used to identify ANF receptors in membrane preparations from rat adrenal gland and lung. When solubilized with Lubrol-PX, the receptors retained a binding profile and properties that correspond to the high affinity and specificity found in crude membranes. Single peaks of binding activity were observed in gel permeation HPLC and density gradient centrifugation analysis of the solubilized preparations. However, when membranes and solubilized preparations were labeled with /sup 125/I-ANF, treated with crosslinking reagent (disuccinimidyl suberate), and analyzed by SDS gel electrophoresis several specifically labeled bands (120,000, 70,000, and 60,000 daltons) were identifiedmore » by autoradiography. The relative distribution of the specifically labeled proteins varied significantly between rat adrenal gland and lung. In adrenal glands the 120K dalton band was the most prominent specifically labeled protein, while the 60K and 70K dalton proteins were labeled to a lesser degree. In lung membranes the lower molecular weight proteins were more prominent. These results suggest the presence of multiple ANF receptor subtypes, the distribution of which varies among tissues. Chromatographic separation and further characterization of these receptors are currently in progress, and preliminary purification studies support this hypothesis.« less

  19. Directed evolution of PDZ variants to generate high-affinity detection reagents.

    PubMed

    Ferrer, Marc; Maiolo, Jim; Kratz, Patricia; Jackowski, Jessica L; Murphy, Dennis J; Delagrave, Simon; Inglese, James

    2005-04-01

    High-throughput protease assays are used to identify new protease inhibitors which have the potential to become valuable therapeutic products. Antibodies are of great utility as affinity reagents to detect proteolysis products in protease assays, but isolating and producing such antibodies is unreliable, slow and costly. It has been shown previously that PDZ domains can also be used to detect proteolysis products in high-throughput homogeneous assays but their limited natural repertoire restricts their use to only a few peptides. Here we show that directed evolution is an efficient way to create new PDZ domains for detection of protease activity. We report the first use of phage display to alter the specificity of a PDZ domain, yielding three variants with up to 25-fold increased affinity for a peptide cleavage product of HIV protease. Three distinct roles are assigned to the amino acid substitutions found in the selected variants of the NHERF PDZ domain: specific 'beta1-beta3' interaction with ligand residue -1, interactions with ligand residues -4 to -7 and improvement in phage display efficiency. The variants, having affinities as high as 620 nM, display improvements in assay sensitivity of over 5-fold while requiring smaller amounts of reagents. The approach demonstrated here leads the way to highly sensitive reagents for drug discovery that can be isolated more reliably and produced less expensively.

  20. Generation of Anti-Boa Immunoglobulin Antibodies for Serodiagnostic Applications, and Their Use to Detect Anti-Reptarenavirus Antibodies in Boa Constrictor.

    PubMed

    Korzyukov, Yegor; Hetzel, Udo; Kipar, Anja; Vapalahti, Olli; Hepojoki, Jussi

    2016-01-01

    Immunoglobulins (Igs), the key effectors of the adaptive immune system, mediate the specific recognition of foreign structures, i.e. antigens. In mammals, IgM production commonly precedes the production of IgG in the response to an infection. The reptilian counterpart of IgG is IgY, but the exact kinetics of the reptilian immune response are less well known. Boid inclusion body disease (BIBD), an often fatal disease of captive boas and pythons has been linked to reptarenavirus infection, and BIBD is believed to be immunosuppressive. However, so far, the study of the serological response towards reptarenaviruses in BIBD has been hampered by the lack of reagents. Thus we set up a purification protocol for boa constrictor IgY and IgM, which should also be applicable for other snake species. We used centrifugal filter units, poly ethylene glycol precipitation and gel permeation chromatography to purify and separate the IgM and IgY fractions from boa constrictor serum, which we further used to immunise rabbits. We affinity purified IgM and IgY specific reagents from the produced antiserum, and labelled the reagents with horseradish peroxidase. Finally, using the sera of snakes with known exposure to reptarenaviruses we demonstrated that the newly generated reagents can be utilised for serodiagnostic purposes, such as immunoblotting and immunofluorescent staining. To our knowledge, this is the first report to show reptarenavirus-specific antibodies in boa constrictors.

  1. Generation of Anti-Boa Immunoglobulin Antibodies for Serodiagnostic Applications, and Their Use to Detect Anti-Reptarenavirus Antibodies in Boa Constrictor

    PubMed Central

    Korzyukov, Yegor; Hetzel, Udo; Kipar, Anja; Vapalahti, Olli; Hepojoki, Jussi

    2016-01-01

    Immunoglobulins (Igs), the key effectors of the adaptive immune system, mediate the specific recognition of foreign structures, i.e. antigens. In mammals, IgM production commonly precedes the production of IgG in the response to an infection. The reptilian counterpart of IgG is IgY, but the exact kinetics of the reptilian immune response are less well known. Boid inclusion body disease (BIBD), an often fatal disease of captive boas and pythons has been linked to reptarenavirus infection, and BIBD is believed to be immunosuppressive. However, so far, the study of the serological response towards reptarenaviruses in BIBD has been hampered by the lack of reagents. Thus we set up a purification protocol for boa constrictor IgY and IgM, which should also be applicable for other snake species. We used centrifugal filter units, poly ethylene glycol precipitation and gel permeation chromatography to purify and separate the IgM and IgY fractions from boa constrictor serum, which we further used to immunise rabbits. We affinity purified IgM and IgY specific reagents from the produced antiserum, and labelled the reagents with horseradish peroxidase. Finally, using the sera of snakes with known exposure to reptarenaviruses we demonstrated that the newly generated reagents can be utilised for serodiagnostic purposes, such as immunoblotting and immunofluorescent staining. To our knowledge, this is the first report to show reptarenavirus-specific antibodies in boa constrictors. PMID:27355360

  2. Evaluation of monoclonal anti-A and anti-B and affinity-purified Ulex europaeus lectin I for forensic blood grouping.

    PubMed

    Gaensslen, R E; Lee, H C; Carroll, J E

    1984-01-01

    Two different monoclonal anti-A and anti-B and several different affinity purified Ulex europaeus lectin I reagents were evaluated and compared with conventional anti-A and anti-B sera and Ulex anti-H for serologic properties, in inhibition tests with secretor salivas, and in elution tests with bloodstains. The monoclonal and purified reagents were found to be comparable to conventional ones, and accordingly suitable for forensic inhibition and elution procedures.

  3. N-Sulfonyl-β-lactam hapten as an effective labeling reagent for aldolase mAb.

    PubMed

    Inokuma, Tsubasa; Fuller, Roberta P; Barbas, Carlos F

    2015-04-15

    Utilization of chemically programmed antibodies (cpAbs) is regarded to be one of the most efficient methods for the development of therapeutic systems. cpAbs can extend the half-life of programming reagents, activate immune systems via the Fc region of antibodies and achieve universal vaccination by attaching varieties of small, programmed molecules. In the current study, we aimed to develop a novel labeling reagent for the preparation of cpAbs and found that N-sulfonyl-β-lactams (NSBLs) were optimal. NSBL can be synthesized from readily available 4-(bromomethyl)benzenesulfonyl chloride via few simple manipulations and can label the aldolase monoclonal antibody (mAb) 84G3, which could not be labeled effectively by the conventional labeling reagent, N-acyl-β-lactam (NABL). We also demonstrated that the conjugate, which consists of mAb 84G3 and an NSBL bearing a biotin moiety, maintained strong binding activity to streptavidin. In addition, the stability assay of NSBL revealed that NSBLs can tolerate aqueous media without significant decomposition over 24h. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. 2-Pyridylfuran: a new fluorescent tag for the analysis of carbohydrates.

    PubMed

    Cai, Zhi Peng; Hagan, Andrew Kevin; Wang, Mao Mao; Flitsch, Sabine Lahja; Liu, Li; Voglmeir, Josef

    2014-05-20

    We herein report the use of 1,3-di(2-pyridyl)-1,3-propanedione (DPPD) as a fluorogenic labeling reagent for sugars. Reaction of DPPD with the anomeric carbon affords a fluorescent 2-pyridylfuran (2-PF) moiety that permits the sensitive HPLC-based detection of monosaccharides. 2-PF-labeled monosaccharides can be easily separated and analyzed from mixtures thereof, and the reported protocol compares favorably with established labeling reagents such as 2-aminobenzoic acid (2-AA) and 1-phenyl-3-methyl-5-pyrazolone (PMP), ultimately allowing subfemtomole detection of the galactose-derived product. Furthermore, we demonstrate the application of DPPD in the labeling of monosaccharides in complex biological matrices such as blood and milk samples. We envisage that DPPD will prove to be an excellent choice of labeling reagent in monosaccharide and carbohydrate analysis.

  5. Development and characterization of novel 8-plex DiLeu isobaric labels for quantitative proteomics and peptidomics

    PubMed Central

    Frost, Dustin C.; Greer, Tyler; Xiang, Feng; Liang, Zhidan; Li, Lingjun

    2015-01-01

    Rationale Relative quantification of proteins via their enzymatically digested peptide products determines disease biomarker candidate lists in discovery studies. Isobaric label-based strategies using TMT and iTRAQ allow for up to 10 samples to be multiplexed in one experiment, but their expense limits their use. The demand for cost-effective tagging reagents capable of multiplexing many samples led us to develop an 8-plex version of our isobaric labeling reagent, DiLeu. Methods The original 4-plex DiLeu reagent was extended to an 8-plex set by coupling isotopic variants of dimethylated leucine to an alanine balance group designed to offset the increasing mass of the label’s reporter group. Tryptic peptides from a single protein digest, a protein mixture digest, and Saccharomyces cerevisiae lysate digest were labeled with 8-plex DiLeu and analyzed via nanoLC-MS2 on a Q-Exactive Orbitrap mass spectrometer. Characteristics of 8-plex DiLeu-labeled peptides, including quantitative accuracy and fragmentation, were examined. Results An 8-plex set of DiLeu reagents with 1 Da-spaced reporters was synthesized at a yield of 36%. The average cost to label eight 100 μg peptide samples was calculated to be approximately $15. Normalized collision energy tests on the Q-Exactive revealed that a higher-energy collisional dissociation value of 27 generated the optimum number of high-quality spectral matches. Relative quantification of DiLeu-labeled peptides yielded normalized median ratios accurate to within 12% of their expected values. Conclusions Cost-effective 8-plex DiLeu reagents can be synthesized and applied to relative peptide and protein quantification. These labels increase the multiplexing capacity of our previous 4-plex implementation without requiring high-resolution instrumentation to resolve reporter ion signals. PMID:25981542

  6. Slow Off-Rate Modified Aptamer (SOMAmer) as a Novel Reagent in Immunoassay Development for Accurate Soluble Glypican-3 Quantification in Clinical Samples.

    PubMed

    Duo, Jia; Chiriac, Camelia; Huang, Richard Y-C; Mehl, John; Chen, Guodong; Tymiak, Adrienne; Sabbatini, Peter; Pillutla, Renuka; Zhang, Yan

    2018-04-17

    Accurate quantification of soluble glypican-3 in clinical samples using immunoassays is challenging, because of the lack of appropriate antibody reagents to provide a full spectrum measurement of all potential soluble glypican-3 fragments in vivo. Glypican-3 SOMAmer (slow off-rate modified aptamer) is a novel reagent that binds, with high affinity, to a far distinct epitope of glypican-3, when compared to all available antibody reagents generated in-house. This paper describes an integrated analytical approach to rational selection of key reagents based on molecular characterization by epitope mapping, with the focus on our work using a SOMAmer as a new reagent to address development challenges with traditional antibody reagents for the soluble glypican-3 immunoassay. A qualified SOMAmer-based assay was developed and used for soluble glypican-3 quantification in hepatocellular carcinoma (HCC) patient samples. The assay demonstrated good sensitivity, accuracy, and precision. Data correlated with those obtained using the traditional antibody-based assay were used to confirm the clinically relevant soluble glypican-3 forms in vivo. This result was reinforced by a liquid chromatography tandem mass spectrometry (LC-MS/MS) assay quantifying signature peptides generated from trypsin digestion. The work presented here offers an integrated strategy for qualifying aptamers as an alternative affinity platform for immunoassay reagents that can enable speedy assay development, especially when traditional antibody reagents cannot meet assay requirements.

  7. Probing Protein Structure by Amino Acid-Specific Covalent Labeling and Mass Spectrometry

    PubMed Central

    Mendoza, Vanessa Leah; Vachet, Richard W.

    2009-01-01

    For many years, amino acid-specific covalent labeling has been a valuable tool to study protein structure and protein interactions, especially for systems that are difficult to study by other means. These covalent labeling methods typically map protein structure and interactions by measuring the differential reactivity of amino acid side chains. The reactivity of amino acids in proteins generally depends on the accessibility of the side chain to the reagent, the inherent reactivity of the label and the reactivity of the amino acid side chain. Peptide mass mapping with ESI- or MALDI-MS and peptide sequencing with tandem MS are typically employed to identify modification sites to provide site-specific structural information. In this review, we describe the reagents that are most commonly used in these residue-specific modification reactions, details about the proper use of these covalent labeling reagents, and information about the specific biochemical problems that have been addressed with covalent labeling strategies. PMID:19016300

  8. INVESTIGATION OF ARSINE-GENERATING REACTIONS USING DEUTERIUM-LABELED REAGENTS AND MASS SPECTROMETRY

    EPA Science Inventory

    Mass spectrometry was used to detect transfer of deuterium from labeled reagents to arsines following hydride-generation reactions. The arsine gases liberated from the reactions of arsenite, arsenate, methylarsonic acid, and dimethylarsinic acid with HC1 and NaBD4 in H2O, or with...

  9. Immobilizing affinity proteins to nitrocellulose: a toolbox for paper-based assay developers.

    PubMed

    Holstein, Carly A; Chevalier, Aaron; Bennett, Steven; Anderson, Caitlin E; Keniston, Karen; Olsen, Cathryn; Li, Bing; Bales, Brian; Moore, David R; Fu, Elain; Baker, David; Yager, Paul

    2016-02-01

    To enable enhanced paper-based diagnostics with improved detection capabilities, new methods are needed to immobilize affinity reagents to porous substrates, especially for capture molecules other than IgG. To this end, we have developed and characterized three novel methods for immobilizing protein-based affinity reagents to nitrocellulose membranes. We have demonstrated these methods using recombinant affinity proteins for the influenza surface protein hemagglutinin, leveraging the customizability of these recombinant "flu binders" for the design of features for immobilization. The three approaches shown are: (1) covalent attachment of thiolated affinity protein to an epoxide-functionalized nitrocellulose membrane, (2) attachment of biotinylated affinity protein through a nitrocellulose-binding streptavidin anchor protein, and (3) fusion of affinity protein to a novel nitrocellulose-binding anchor protein for direct coupling and immobilization. We also characterized the use of direct adsorption for the flu binders, as a point of comparison and motivation for these novel methods. Finally, we demonstrated that these novel methods can provide improved performance to an influenza hemagglutinin assay, compared to a traditional antibody-based capture system. Taken together, this work advances the toolkit available for the development of next-generation paper-based diagnostics.

  10. Methods for tritium labeling

    DOEpatents

    Andres, Hendrik; Morimoto, Hiromi; Williams, Philip G.

    1993-01-01

    Reagents and processes for reductively introducing deuterium or tritium into organic molecules are described. The reagents are deuterium or tritium analogs of trialkyl boranes, borane or alkali metal aluminum hydrides. The process involves forming these reagents in situ from alkali metal tritides or deuterides.

  11. Antibody Portal | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    Central to reproducibility in biomedical research is being able to use well-characterized and defined reagents. The CPTAC Antibody Portal serves as a National Cancer Institute (NCI) community resource that provides access to a large number of standardized renewable affinity reagents (to cancer-associated targets) and accompanying characterization data.

  12. Ebolavirus Nucleoprotein C-Termini Potently Attract Single Domain Antibodies Enabling Monoclonal Affinity Reagent Sandwich Assay (MARSA) Formulation

    PubMed Central

    Sherwood, Laura J.; Hayhurst, Andrew

    2013-01-01

    Background Antigen detection assays can play an important part in environmental surveillance and diagnostics for emerging threats. We are interested in accelerating assay formulation; targeting the agents themselves to bypass requirements for a priori genome information or surrogates. Previously, using in vitro affinity reagent selection on Marburg virus we rapidly established monoclonal affinity reagent sandwich assay (MARSA) where one recombinant antibody clone was both captor and tracer for polyvalent nucleoprotein (NP). Hypothesizing that the closely related Ebolavirus genus may share the same Achilles' heel, we redirected the scheme to see whether similar assays could be delivered and began to explore their mechanism. Methods and Findings In parallel we selected panels of llama single domain antibodies (sdAb) from a semi-synthetic library against Zaire, Sudan, Ivory Coast, and Reston Ebola viruses. Each could perform as both captor and tracer in the same antigen sandwich capture assay thereby forming MARSAs. All sdAb were specific for NP and those tested required the C-terminal domain for recognition. Several clones were cross-reactive, indicating epitope conservation across the Ebolavirus genus. Analysis of two immune shark sdAb revealed they also targeted the C-terminal domain, and could be similarly employed, yet were less sensitive than a comparable llama sdAb despite stemming from immune selections. Conclusions The C-terminal domain of Ebolavirus NP is a strong attractant for antibodies and enables sensitive sandwich immunoassays to be rapidly generated using a single antibody clone. The polyvalent nature of nucleocapsid borne NP and display of the C-terminal region likely serves as a bountiful affinity sink during selections, and a highly avid target for subsequent immunoassay capture. Combined with the high degree of amino acid conservation through 37 years and across wide geographies, this domain makes an ideal handle for monoclonal affinity reagent driven antigen sandwich assays for the Ebolavirus genus. PMID:23577211

  13. 21 CFR 58.83 - Reagents and solutions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL GOOD LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Testing Facilities Operation § 58.83 Reagents and solutions. All reagents and solutions in the laboratory areas shall be labeled to indicate identity, titer...

  14. Oligonucleotide labeling methods. 3. Direct labeling of oligonucleotides employing a novel, non-nucleosidic, 2-aminobutyl-1,3-propanediol backbone.

    PubMed Central

    Nelson, P S; Kent, M; Muthini, S

    1992-01-01

    Novel CE-phosphoramidite (7a-e) and CPG (8a, c, d, e) reagents have been prepared from a unique 2-aminobutyl-1,3-propanediol backbone. The reagents have been used to directly label oligonucleotides with fluorescein, acridine, and biotin via automated DNA synthesis. The versatile 2-aminobutyl-1,3-propanediol backbone allows for labeling at any position (5', internal, and 3') during solid phase oligonucleotide synthesis. Multiple labels can be achieved by repetitive coupling cycles. Furthermore, the 3-carbon atom internucleotide phosphate distance is retained when inserted internally. Using this method, individual oligonucleotides possessing two and three different reporter molecules have been prepared. PMID:1475185

  15. Label-free offline versus online activity methods for nucleoside diphosphate kinase b using high performance liquid chromatography.

    PubMed

    Lima, Juliana Maria; Salmazo Vieira, Plínio; Cavalcante de Oliveira, Arthur Henrique; Cardoso, Carmen Lúcia

    2016-08-07

    Nucleoside diphosphate kinase from Leishmania spp. (LmNDKb) has recently been described as a potential drug target to treat leishmaniasis disease. Therefore, screening of LmNDKb ligands requires methodologies that mimic the conditions under which LmNDKb acts in biological systems. Here, we compare two label-free methodologies that could help screen LmNDKb ligands and measure NDKb activity: an offline LC-UV assay for soluble LmNDKb and an online two-dimensional LC-UV system based on LmNDKb immobilised on a silica capillary. The target enzyme was immobilised on the silica capillary via Schiff base formation (to give LmNDKb-ICER-Schiff) or affinity attachment (to give LmNDKb-ICER-His). Several aspects of the ICERs resulting from these procedures were compared, namely kinetic parameters, stability, and procedure steps. Both the LmNDKb immobilisation routes minimised the conformational changes and preserved the substrate binding sites. However, considering the number of steps involved in the immobilisation procedure, the cost of reagents, and the stability of the immobilised enzyme, immobilisation via Schiff base formation proved to be the optimal procedure.

  16. Traceless affinity labeling of endogenous proteins for functional analysis in living cells.

    PubMed

    Hayashi, Takahiro; Hamachi, Itaru

    2012-09-18

    Protein labeling and imaging techniques have provided tremendous opportunities to study the structure, function, dynamics, and localization of individual proteins in the complex environment of living cells. Molecular biology-based approaches, such as GFP-fusion tags and monoclonal antibodies, have served as important tools for the visualization of individual proteins in cells. Although these techniques continue to be valuable for live cell imaging, they have a number of limitations that have only been addressed by recent progress in chemistry-based approaches. These chemical approaches benefit greatly from the smaller probe sizes that should result in fewer perturbations to proteins and to biological systems as a whole. Despite the research in this area, so far none of these labeling techniques permit labeling and imaging of selected endogenous proteins in living cells. Researchers have widely used affinity labeling, in which the protein of interest is labeled by a reactive group attached to a ligand, to identify and characterize proteins. Since the first report of affinity labeling in the early 1960s, efforts to fine-tune the chemical structures of both the reactive group and ligand have led to protein labeling with excellent target selectivity in the whole proteome of living cells. Although the chemical probes used for affinity labeling generally inactivate target proteins, this strategy holds promise as a valuable tool for the labeling and imaging of endogenous proteins in living cells and by extension in living animals. In this Account, we summarize traceless affinity labeling, a technique explored mainly in our laboratory. In our overview of the different labeling techniques, we emphasize the challenge of designing chemical probes that allow for dissociation of the affinity module (often a ligand) after the labeling reaction so that the labeled protein retains its native function. This feature distinguishes the traceless labeling approach from the traditional affinity labeling method and allows for real-time monitoring of protein activity. With the high target specificity and biocompatibility of this technique, we have achieved individual labeling and imaging of endogenously expressed proteins in samples of high biological complexity. We also highlight applications in which our current approach enabled the monitoring of important biological events, such as ligand binding, in living cells. These novel chemical labeling techniques are expected to provide a molecular toolbox for studying a wide variety of proteins and beyond in living cells.

  17. Affinity proteomics to study endogenous protein complexes: Pointers, pitfalls, preferences and perspectives

    PubMed Central

    LaCava, John; Molloy, Kelly R.; Taylor, Martin S.; Domanski, Michal; Chait, Brian T.; Rout, Michael P.

    2015-01-01

    Dissecting and studying cellular systems requires the ability to specifically isolate distinct proteins along with the co-assembled constituents of their associated complexes. Affinity capture techniques leverage high affinity, high specificity reagents to target and capture proteins of interest along with specifically associated proteins from cell extracts. Affinity capture coupled to mass spectrometry (MS)-based proteomic analyses has enabled the isolation and characterization of a wide range of endogenous protein complexes. Here, we outline effective procedures for the affinity capture of protein complexes, highlighting best practices and common pitfalls. PMID:25757543

  18. Lateral flow devices

    DOEpatents

    Mazumdar, Debapriya; Liu, Juewen; Lu, Yi

    2010-09-21

    An analytical test for an analyte comprises (a) a base, having a reaction area and a visualization area, (b) a capture species, on the base in the visualization area, comprising nucleic acid, and (c) analysis chemistry reagents, on the base in the reaction area. The analysis chemistry reagents comprise (i) a substrate comprising nucleic acid and a first label, and (ii) a reactor comprising nucleic acid. The analysis chemistry reagents can react with a sample comprising the analyte and water, to produce a visualization species comprising nucleic acid and the first label, and the capture species can bind the visualization species.

  19. Single-Chain Fv-Based Anti-HIV Proteins: Potential and Limitations

    PubMed Central

    West, Anthony P.; Galimidi, Rachel P.; Gnanapragasam, Priyanthi N. P.

    2012-01-01

    The existence of very potent, broadly neutralizing antibodies against human immunodeficiency virus type 1 (HIV-1) offers the potential for prophylaxis against HIV-1 infection by passive immunization or gene therapy. Both routes permit the delivery of modified forms of IgGs. Smaller reagents are favored when considering ease of tissue penetration and the limited capacities of gene therapy vectors. Immunoadhesin (single-chain fragment variable [scFv]-Fc) forms of IgGs are one class of relatively small reagent that has been explored for delivery by adeno-associated virus. Here we investigated the neutralization potencies of immunoadhesins compared to those of their parent IgGs. For the antibodies VRC01, PG9, and PG16, the immunoadhesins showed modestly reduced potencies, likely reflecting reduced affinities compared to those of the parent IgG, and the VRC01 immunoadhesin formed dimers and multimers with reduced neutralization potencies. Although scFv forms of neutralizing antibodies may exhibit affinity reductions, they provide a means of building reagents with multiple activities. Attachment of the VRC01 scFv to PG16 IgG yielded a bispecific reagent whose neutralization activity combined activities from both parent antibodies. Although the neutralization activity due to each component was partially reduced, the combined reagent is attractive since fewer strains escaped neutralization. PMID:22013046

  20. 21 CFR 58.83 - Reagents and solutions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Reagents and solutions. 58.83 Section 58.83 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL GOOD... solutions. All reagents and solutions in the laboratory areas shall be labeled to indicate identity, titer...

  1. A microfluidics-based technique for automated and rapid labeling of cells for flow cytometry

    NASA Astrophysics Data System (ADS)

    Patibandla, Phani K.; Estrada, Rosendo; Kannan, Manasaa; Sethu, Palaniappan

    2014-03-01

    Flow cytometry is a powerful technique capable of simultaneous multi-parametric analysis of heterogeneous cell populations for research and clinical applications. In recent years, the flow cytometer has been miniaturized and made portable for application in clinical- and resource-limited settings. The sample preparation procedure, i.e. labeling of cells with antibodies conjugated to fluorescent labels, is a time consuming (˜45 min) and labor-intensive procedure. Microfluidics provides enabling technologies to accomplish rapid and automated sample preparation. Using an integrated microfluidic device consisting of a labeling and washing module, we demonstrate a new protocol that can eliminate sample handling and accomplish sample and reagent metering, high-efficiency mixing, labeling and washing in rapid automated fashion. The labeling module consists of a long microfluidic channel with an integrated chaotic mixer. Samples and reagents are precisely metered into this device to accomplish rapid and high-efficiency mixing. The mixed sample and reagents are collected in a holding syringe and held for up to 8 min following which the mixture is introduced into an inertial washing module to obtain ‘analysis-ready’ samples. The washing module consists of a high aspect ratio channel capable of focusing cells to equilibrium positions close to the channel walls. By introducing the cells and labeling reagents in a narrow stream at the center of the channel flanked on both sides by a wash buffer, the elution of cells into the wash buffer away from the free unbound antibodies is accomplished. After initial calibration experiments to determine appropriate ‘holding time’ to allow antibody binding, both modules were used in conjunction to label MOLT-3 cells (T lymphoblast cell line) with three different antibodies simultaneously. Results confirm no significant difference in mean fluorescence intensity values for all three antibodies labels (p < 0.01) between the conventional procedure (45 min) and our microfluidic approach (12 min).

  2. Tuning the Protein Corona of Hydrogel Nanoparticles: The Synthesis of Abiotic Protein and Peptide Affinity Reagents.

    PubMed

    O'Brien, Jeffrey; Shea, Kenneth J

    2016-06-21

    Nanomaterials, when introduced into a complex, protein-rich environment, rapidly acquire a protein corona. The type and amount of proteins that constitute the corona depend significantly on the synthetic identity of the nanomaterial. For example, hydrogel nanoparticles (NPs) such as poly(N-isopropylacrylamide) (NIPAm) have little affinity for plasma proteins; in contrast, carboxylated poly(styrene) NPs acquire a dense protein corona. This range of protein adsorption suggests that the protein corona might be "tuned" by controlling the chemical composition of the NP. In this Account, we demonstrate that small libraries of synthetic polymer NPs incorporating a diverse pool of functional monomers can be screened for candidates with high affinity and selectivity to targeted biomacromolecules. Through directed synthetic evolution of NP compositions, one can tailor the protein corona to create synthetic organic hydrogel polymer NPs with high affinity and specificity to peptide toxins, enzymes, and other functional proteins, as well as to specific domains of large proteins. In addition, many NIPAm NPs undergo a change in morphology as a function of temperature. This transformation often correlates with a significant change in NP-biomacromolecule affinity, resulting in a temperature-dependent protein corona. This temperature dependence has been used to develop NP hydrogels with autonomous affinity switching for the protection of proteins from thermal stress and as a method of biomacromolecule purification through a selective thermally induced catch and release. In addition to temperature, changes in pH or buffer can also alter a NP protein corona composition, a property that has been exploited for protein purification. Finally, synthetic polymer nanoparticles with low nanomolar affinity for a peptide toxin were shown to capture and neutralize the toxin in the bloodstream of living mice. While the development of synthetic polymer alternatives to protein affinity reagents is in its early stages, these recent successes using only small libraries of functional monomers are most encouraging. It is likely that by expanding the chemical diversity of functional hydrogels and other polymers, a much broader range of NP-biomacromolecule affinity pairs will result. Since these robust, nontoxic polymers are readily synthesized in the chemistry laboratory, we believe the results presented in this Account offer a promising future for the development of low cost alternatives to more traditional protein affinity reagents such as antibodies.

  3. Evaluation of novel derivatisation reagents for the analysis of oxysterols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crick, Peter J., E-mail: p.j.crick@swansea.ac.uk; Aponte, Jennifer; Bentley, T. William

    2014-04-11

    Graphical abstract: - Highlights: • New derivatisation reagents for LC–MS analysis of oxysterols. • New reagents based on Girard P give high ion-currents and informative LC–MS{sup n} spectra. • Permanent charge is vital for efficient MS{sup n} fragmentation. • New reagents offer greater scope for incorporation of isotope labels. - Abstract: Oxysterols are oxidised forms of cholesterol that are intermediates in the synthesis of bile acids and steroid hormones. They are also ligands to nuclear and G protein-coupled receptors. Analysis of oxysterols in biological systems is challenging due to their low abundance coupled with their lack of a strong chromophoremore » and poor ionisation characteristics in mass spectrometry (MS). We have previously used enzyme-assisted derivatisation for sterol analysis (EADSA) to identify and quantitate oxysterols in biological samples. This technique relies on tagging sterols with the Girard P reagent to introduce a charged quaternary ammonium group. Here, we have compared several modified Girard-like reagents and show that the permanent charge is vital for efficient MS{sup n} fragmentation. However, we find that the reagent can be extended to include sites for potential stable isotope labels without a loss of performance.« less

  4. Characterization of labelling and de-labelling reagents for detection and recovery of tyrosine residue in peptide.

    PubMed

    Toyo'oka, Toshimasa; Mantani, Tomomi; Kato, Masaru

    2003-01-01

    This paper characterized the labelling and de-labelling reagents for reversible labelling of tyrosine (Tyr)-containing peptide, which involves detection and recovery. The phenolic hydroxyl group (-OH) in Tyr structure reacted with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F), 4-(N,N-dimethylaminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (DBD-F), and 1-fluoro-2,4-dinitrobenzene (DNFB) under mild conditions at room temperature at pH 9.3. The labels in the resulting derivatives were removed with the treatment of nucleophiles, such as thiols (cysteine, N-acetyl-L-cysteine and dithiothreitol) and amines (dimethylamine, methylamine, diethylamine, ethylamine and pyrrolidine). The de-labelling reactions of NBD-labelled N-acetyl-L-tyrosine (N-AcTyr) with the nucleophiles produced N-AcTyr, accompanied by NBD-nucleophile. Although DBD-F and DNFB also successfully labeled the -OH group in N-AcTyr, the efficiency of Cbond;O bond cleavage and recovery of N-AcTyr by the nucleophiles was relatively low compared with NBD-label. Among the de-labelling reagents, N-acetyl-L-cysteine and dimethylamine were recommended for the elimination of NBD moiety, with respect to the reaction rate, the side reaction, and the yield of recovery. The proposed procedure, which includes the labelling with NBD-F and the removal of NBD moiety by the nucleophiles, was successfully applied to the reversible labelling of N-terminal amine-blocked peptides, i.e. N-AcTyr-Val-Gly, Z-Glu-Tyr, Z-Phe-Tyr, N-Formyl-Met-Leu-Tyr, and N-AcArg-Pro-Pro-Gly-Phe-Ser-Pro-Tyr-Arg. Copyright 2003 John Wiley & Sons, Ltd.

  5. The EIPeptiDi tool: enhancing peptide discovery in ICAT-based LC MS/MS experiments.

    PubMed

    Cannataro, Mario; Cuda, Giovanni; Gaspari, Marco; Greco, Sergio; Tradigo, Giuseppe; Veltri, Pierangelo

    2007-07-15

    Isotope-coded affinity tags (ICAT) is a method for quantitative proteomics based on differential isotopic labeling, sample digestion and mass spectrometry (MS). The method allows the identification and relative quantification of proteins present in two samples and consists of the following phases. First, cysteine residues are either labeled using the ICAT Light or ICAT Heavy reagent (having identical chemical properties but different masses). Then, after whole sample digestion, the labeled peptides are captured selectively using the biotin tag contained in both ICAT reagents. Finally, the simplified peptide mixture is analyzed by nanoscale liquid chromatography-tandem mass spectrometry (LC-MS/MS). Nevertheless, the ICAT LC-MS/MS method still suffers from insufficient sample-to-sample reproducibility on peptide identification. In particular, the number and the type of peptides identified in different experiments can vary considerably and, thus, the statistical (comparative) analysis of sample sets is very challenging. Low information overlap at the peptide and, consequently, at the protein level, is very detrimental in situations where the number of samples to be analyzed is high. We designed a method for improving the data processing and peptide identification in sample sets subjected to ICAT labeling and LC-MS/MS analysis, based on cross validating MS/MS results. Such a method has been implemented in a tool, called EIPeptiDi, which boosts the ICAT data analysis software improving peptide identification throughout the input data set. Heavy/Light (H/L) pairs quantified but not identified by the MS/MS routine, are assigned to peptide sequences identified in other samples, by using similarity criteria based on chromatographic retention time and Heavy/Light mass attributes. EIPeptiDi significantly improves the number of identified peptides per sample, proving that the proposed method has a considerable impact on the protein identification process and, consequently, on the amount of potentially critical information in clinical studies. The EIPeptiDi tool is available at http://bioingegneria.unicz.it/~veltri/projects/eipeptidi/ with a demo data set. EIPeptiDi significantly increases the number of peptides identified and quantified in analyzed samples, thus reducing the number of unassigned H/L pairs and allowing a better comparative analysis of sample data sets.

  6. 99M-technetium labeled macroaggregated human serum albumin pharmaceutical

    DOEpatents

    Winchell, Harry S.; Barak, Morton; Van Fleet, III, Parmer

    1977-05-17

    A reagent comprising macroaggregated human serum albumin having dispersed therein particles of stannous tin and a method for instantly making a labeled pharmaceutical therefrom, are disclosed. The labeled pharmaceutical is utilized in organ imaging.

  7. Storable Arylpalladium(II) Reagents for Alkene Labeling in Aqueous Media

    PubMed Central

    Simmons, Rebecca L.; Yu, Robert T.; Myers, Andrew G.

    2011-01-01

    We show that arylpalladium(II) reagents linked to biotin and indocyanine dye residues can be prepared by decarboxylative palladation of appropriately substituted electron-rich benzoic acid derivatives. When prepared under the conditions described, these organometallic intermediates are tolerant of air and water, can be stored for several months in solution in dimethylsulfoxide, and permit biotin- and indocyanine dye-labeling of functionally complex olefinic substrates in water by Heck-type coupling reactions. PMID:21888420

  8. Development of Bacterial Display Peptides for use in Biosensing Applications

    DTIC Science & Technology

    2012-09-01

    performance. Specific results on peptides binders to Protective Antigen (PA) protein of Bacillus anthracis and Staphylococcal Enterotoxin B (SEB...reagent, affinity reagent, bacterial display, multi-scale modeling, docking, protective antigen , SEB, biosensing 16. SECURITY CLASSIFICATION OF: 17...performance. Specific results on peptides binders to Protective Antigen (PA) protein of Bacillus anthracis and Staphylococcal Enterotoxin B (SEB) will be

  9. Development of proteome-wide binding reagents for research and diagnostics.

    PubMed

    Taussig, Michael J; Schmidt, Ronny; Cook, Elizabeth A; Stoevesandt, Oda

    2013-12-01

    Alongside MS, antibodies and other specific protein-binding molecules have a special place in proteomics as affinity reagents in a toolbox of applications for determining protein location, quantitative distribution and function (affinity proteomics). The realisation that the range of research antibodies available, while apparently vast is nevertheless still very incomplete and frequently of uncertain quality, has stimulated projects with an objective of raising comprehensive, proteome-wide sets of protein binders. With progress in automation and throughput, a remarkable number of recent publications refer to the practical possibility of selecting binders to every protein encoded in the genome. Here we review the requirements of a pipeline of production of protein binders for the human proteome, including target prioritisation, antigen design, 'next generation' methods, databases and the approaches taken by ongoing projects in Europe and the USA. While the task of generating affinity reagents for all human proteins is complex and demanding, the benefits of well-characterised and quality-controlled pan-proteome binder resources for biomedical research, industry and life sciences in general would be enormous and justify the effort. Given the technical, personnel and financial resources needed to fulfil this aim, expansion of current efforts may best be addressed through large-scale international collaboration. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Monobromobimane as an affinity label of the xenobiotic binding site of rat glutathione S-transferase 3-3.

    PubMed

    Hu, L; Colman, R F

    1995-09-15

    Monobromobimane (mBBr), besides being a substrate in the presence of glutathione, inactivates rat liver glutathione S-transferase 3-3 at pH 7.5 and 25 degrees C as assayed using 1-chloro-2,4-dinitrobenzene (CDNB). The rate of inactivation is enhanced about 5-fold by S-methylglutathione. Substrate analogs bromosulfophthalein and 2,4-dinitrophenol decrease the rate of inactivation at least 20-fold. Upon incubation for 60 min with 0.25 mM mBBr and S-methylglutathione, the enzyme loses 91% of its activity toward CDNB and incorporates 2.14 mol of reagent/mol of subunit, whereas incubation under the same conditions but with added protectant 2,4-dinitrophenol yields an enzyme that is catalytically active and contains only 0.89 mol of reagent/mol of subunit. mBBR-modified enzyme is fluorescent, and fluorescence energy transfer occurs between intrinsic tryptophan and covalently bound bimane in modified enzyme. Both Tyr115 and Cys114 are modified, but Tyr115 is the initial reaction target and its modification correlates with loss of activity toward CDNB. The fact that the activity toward mBBr is retained by the enzyme after modification suggests that rat isozyme 3-3 has two binding sites for mBBr.

  11. Target-specific copper hybrid T7 phage particles.

    PubMed

    Dasa, Siva Sai Krishna; Jin, Qiaoling; Chen, Chin-Tu; Chen, Liaohai

    2012-12-18

    Target-specific nanoparticles have attracted significant attention recently, and have greatly impacted life and physical sciences as new agents for imaging, diagnosis, and therapy, as well as building blocks for the assembly of novel complex materials. While most of these particles are synthesized by chemical conjugation of an affinity reagent to polymer or inorganic nanoparticles, we are promoting the use of phage particles as a carrier to host organic or inorganic functional components, as well as to display the affinity reagent on the phage surface, taking advantage of the fact that some phages host well-established vectors for protein expression. An affinity reagent can be structured in a desired geometry on the surface of phage particles, and more importantly, the number of the affinity reagent molecules per phage particle can be precisely controlled. We previously have reported the use of the T7 phage capsid as a template for synthesizing target-specific metal nanoparticles. In this study herein, we reported the synthesis of nanoparticles using an intact T7 phage as a scaffold from which to extend 415 copies of a peptide that contains a hexahistidine (6His) motif for capture of copper ions and staging the conversion of copper ions to copper metal, and a cyclic Arginine-Glycine-Aspartic Acid (RGD4C) motif for targeting integrin and cancer cells. We demonstrated that the recombinant phage could load copper ions under low bulk copper concentrations without interfering with its target specificity. Further reduction of copper ions to copper metal rendered a very stable copper hybrid T7 phage, which prevents the detachment of copper from phage particles and maintains the phage structural integrity even under harsh conditions. Cancer cells (MCF-7) can selectively uptake copper hybrid T7 phage particles through ligand-mediated transmembrane transportation, whereas normal control cells (MCF-12F) uptake 1000-fold less. We further demonstrated that copper hybrid T7 phage could be endocytosed by cancer cells in culture.

  12. Tin-117m-labeled stannic (Sn.sup.4+) chelates

    DOEpatents

    Srivastava, Suresh C.; Meinken, George E.; Richards, Powell

    1985-01-01

    The radiopharmaceutical reagents of this invention and the class of Tin-117m radiopharmaceuticals are therapeutic and diagnostic agents that incorporate gamma-emitting nuclides that localize in bone after intravenous injection in mammals (mice, rats, dogs, and rabbits). Images reflecting bone structure or function can then be obtained by a scintillation camera that detects the distribution of ionizing radiation emitted by the radioactive agent. Tin-117m-labeled chelates of stannic tin localize almost exclusively in cortical bone. Upon intravenous injection of the reagent, the preferred chelates are phosphonate compounds, preferable, PYP, MDP, EHDP, and DTPA. This class of reagents is therapeutically and diagnostically useful in skeletal scintigraphy and for the radiotherapy of bone tumors and other disorders.

  13. The Goldilocks Principle in Phase Labeling. Minimalist and Orthogonal Phase Tagging for Chromatography-Free Mitsunobu Reaction.

    PubMed

    Szigeti, Mariann; Dobi, Zoltán; Soós, Tibor

    2018-03-02

    An inexpensive and chromatography-free Mitsunobu methodology has been developed using low molecular weight and orthogonally phase-tagged reagents, a tert-butyl-tagged highly apolar phosphine, and a water-soluble DIAD analogue. The byproduct of the Mitsunobu reactions can be removed by sequential liquid-liquid extractions using traditional solvents such as hexanes, MeOH, water, and EtOAc. Owing to the orthogonal phase labeling, the spent reagents can be regenerated. This new variant of the Mitsunobu reaction promises to provide an alternative and complementary solution for the well-known separation problem of the Mitsunobu reaction without having to resort to expensive, large molecular weight reagents and chromatography.

  14. 21 CFR 660.35 - Labeling.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.35 Labeling. In... or end of the label, oustide of the main panel. (2) If washing the cells is required by the manufacturer, the container label shall include appropriate instructions; if the cells should not be washed...

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Meiye; Davis, Ryan Wesley; Hatch, Anson

    In the early stages of infection, patients develop non-specific or no symptoms at all. While waiting for identification of the infectious agent, precious window of opportunity for early intervention is lost. The standard diagnostics require affinity reagents and sufficient pathogen titers to reach the limit of detection. In the event of a disease outbreak, triaging the at-risk population rapidly and reliably for quarantine and countermeasure is more important than the identification of the pathogen by name. To expand Sandia's portfolio of Biological threat management capabilities, we will utilize Raman spectrometry to analyze immune subsets in whole blood to rapidly distinguishmore » infected from non-infected, and bacterial from viral infection, for the purpose of triage during an emergency outbreak. The goal of this one year LDRD is to determine whether Raman spectroscopy can provide label-free detection of early disease signatures, and define a miniaturized Raman detection system meeting requirements for low- resource settings.« less

  16. Luminescent lanthanide chelates and methods of use

    DOEpatents

    Selvin, Paul R.; Hearst, John

    1997-01-01

    The invention provides lanthanide chelates capable of intense luminescence. The celates comprise a lanthanide chelator covalently joined to a coumarin-like or quinolone-like sensitizer. Exemplary sensitzers include 2- or 4-quinolones, 2- or 4-coumarins, or derivatives thereof e.g. carbostyril 124 (7-amino-4-methyl-2-quinolone), coumarin 120 (7-amino-4-methyl-2-coumarin), coumarin 124 (7-amino-4-(trifluoromethyl)-2-coumarin), aminomethyltrimethylpsoralen, etc. The chelates form high affinity complexes with lanthanides, such as terbium or europium, through chelator groups, such as DTPA. The chelates may be coupled to a wide variety of compounds to create specific labels, probes, diagnostic and/or therapeutic reagents, etc. The chelates find particular use in resonance energy transfer between chelate-lanthanide complexes and another luminescent agent, often a fluorescent non-metal based resonance energy acceptor. The methods provide useful information about the structure, conformation, relative location and/or interactions of macromolecules.

  17. Developing recombinant antibodies for biomarker detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baird, Cheryl L.; Fischer, Christopher J.; Pefaur, Noah B.

    2010-10-01

    Monoclonal antibodies (mAbs) have an essential role in biomarker validation and diagnostic assays. A barrier to pursuing these applications is the reliance on immunization and hybridomas to produce mAbs, which is time-consuming and may not yield the desired mAb. We recommend a process flow for affinity reagent production that utilizes combinatorial protein display systems (eg, yeast surface display or phage display) rather than hybridomas. These systems link a selectable phenotype-binding conferred by an antibody fragment-with a means for recovering the encoding gene. Recombinant libraries obtained from immunizations can produce high-affinity antibodies (<10 nM) more quickly than other methods. Non-immune librariesmore » provide an alternate route when immunizations are not possible, or when suitable mAbs are not recovered from an immune library. Directed molecular evolution (DME) is an integral part of optimizing mAbs obtained from combinatorial protein display, but can also be used on hybridoma-derived mAbs. Variants can easily be obtained and screened to increase the affinity of the parent mAb (affinity maturation). We discuss examples where DME has been used to tailor affinity reagents to specific applications. Combinatorial protein display also provides an accessible method for identifying antibody pairs, which are necessary for sandwich-type diagnostic assays.« less

  18. Label-Free Potentiometry for Detecting DNA Hybridization Using Peptide Nucleic Acid and DNA Probes

    PubMed Central

    Goda, Tatsuro; Singi, Ankit Balram; Maeda, Yasuhiro; Matsumoto, Akira; Torimura, Masaki; Aoki, Hiroshi; Miyahara, Yuji

    2013-01-01

    Peptide nucleic acid (PNA) has outstanding affinity over DNA for complementary nucleic acid sequences by forming a PNA-DNA heterodimer upon hybridization via Watson-Crick base-pairing. To verify whether PNA probes on an electrode surface enhance sensitivity for potentiometric DNA detection or not, we conducted a comparative study on the hybridization of PNA and DNA probes on the surface of a 10-channel gold electrodes microarray. Changes in the charge density as a result of hybridization at the solution/electrode interface on the self-assembled monolayer (SAM)-formed microelectrodes were directly transformed into potentiometric signals using a high input impedance electrometer. The charge readout allows label-free, reagent-less, and multi-parallel detection of target oligonucleotides without any optical assistance. The differences in the probe lengths between 15- to 22-mer dramatically influenced on the sensitivity of the PNA and DNA sensors. Molecular type of the capturing probe did not affect the degree of potential shift. Theoretical model for charged rod-like duplex using the Gouy-Chapman equation indicates the dominant effect of electrostatic attractive forces between anionic DNA and underlying electrode at the electrolyte/electrode interface in the potentiometry. PMID:23435052

  19. Probes of eukaryotic DNA-dependent RNA polymerase II-I. Binding of 9-beta-D-arabinofuranosyl-6-mercaptopurine to the elongation subsite.

    PubMed

    Cho, J M; Kimball, A P

    1982-08-15

    9-beta-D-Arabinofuranosyl-6-mercaptopurine (ara-6-MP) was used to affinity-label wheat germ DNA-dependent RNA polymerase II (or B) (nucleosidetriphosphate:RNA nucleotidyltransferase, EC 2.7.7.6). This nucleoside analogue was found to be a competitive inhibitor with respect to [3H]UMP incorporation. Natural substrates protected the enzyme from inactivation by ara-6-MP when the enzyme was preincubated with excess concentrations of substrates, suggesting that the inhibitor binds at the elongation subsite. The inhibitor bound the catalytic center of the enzyme with a stoichiometry of 0.6:1. The sulfhydryl reagent, dithiothreitol, reversed the inhibition by ara-6-MP, suggesting that the 6-thiol group of the inhibitor was interacting closely with an essential cysteine residue in the catalytic center of the enzyme. Chromatographic analysis of the pronase-digestion products of the RNA polymerase II-ara-6-MP complex also showed that ara-6-MP had bound a cysteine residue. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the denatured [6-35S]ara-6-MP-labeled RNA polymerase II revealed that over 80% of the radioactivity was associated with the IIb subunit of the enzyme.

  20. Fullerol-fluorescein isothiocyanate-concanavalin agglutinin phosphorescent sensor for the detection of alpha-fetoprotein and forecast of human diseases

    NASA Astrophysics Data System (ADS)

    Liu, Jia-ming; Lin, Li-ping; Jiang, Shu-Lian; Cui, Ma Lin; Jiao, Li; Zhang, Xiao Yang; Zhang, Li-hong; Zheng, Zhi Yong; Lin, Xuan; Lin, Shao-qin

    2013-11-01

    Based on the reaction of the active -OH group in fullerol (F) with the dissociated -COOH group in fluorescein isothiocyanate (FITC) to form an F-FITC and the enhanced effect of N, N-dimethylaniline (DMA) on phosphorescence signal of F-FITC, a new phosphorescent labeling reagent (DMA-F-FITC) was developed. What's more, a phosphorescent sensor for the determination of alpha-fetoprotein variant (AFP-V) has been designed via the coupling technique of the high sensitivity for affinity adsorption-solid substrate-room temperature phosphorimetry (AA-SS-RTP) with the strong specificity reaction between DMA-F-FITC-Con A and AFP-V. The DMA-F-FITC increased the number of luminescent molecules in the biological target which improved the sensitivity of phosphorescent sensor. The proposed sensor was responsive, simple, selective and sensitive, and it has been applied to the determination of trace AFP-V in human serum and the forecast of human diseases using phosphorescence emission wavelength of F or FITC, with the results agreed well with those obtained by enzyme-linked immunoassay (ELISA). Meanwhile, the mechanisms for the labeling reaction and the sensing detection of AFP-V were discussed.

  1. Reagents for Astatination of Biomolecules. 5. Evaluation of hydrazone linkers in 211At- and 125I-labeled closo-decaborate(2-) conjugates of Fab′ as a means of decreasing kidney retention

    PubMed Central

    Wilbur, D. Scott; Chyan, Ming-Kuan; Hamlin, Donald K.; Nguyen, Holly; Vessella, Robert L.

    2011-01-01

    Evaluation of monoclonal antibody (MAb) fragments (e.g. Fab′, Fab or engineered fragments) as cancer-targeting reagents for therapy with the α-particle emitting radionuclide astatine-211 (211At) has been hampered by low in vivo stability of the label and a propensity of these proteins localize to kidneys. Fortunately, our group has shown that the low stability of the 211At label, generally a meta- or para-[211At]astatobenzoyl conjugate, on MAb Fab′ fragments can be dramatically improved by use of closo-decaborate(2-) conjugates. However, the higher stability of radiolabeled MAb Fab′ conjugates appears to result in retention of the radioactivity in kidneys. This investigation was conducted to evaluate whether the retention of radioactivity in kidney might be decreased by the use of acid-cleavable hydrazone between the Fab′ and the radiolabeled closo-decaborate(2-) moiety. Five conjugation reagents containing sulfhydryl-reactive maleimide groups, a hydrazone functionality and a closo-decaborate(2-) moiety were prepared. In four of the five conjugation reagents, a discrete polyethylene glycol (PEG) linker was used, and one substituent adjacent to the hydrazone was varied (phenyl, benzoate, anisole or methyl) to provide varying acid-sensitivity. In the initial studies, the five maleimido-closo-decaborate(2-) conjugation reagents were radioiodinated (125I or 131I), then conjugated with an anti-PSMA Fab′ (107-1A4 Fab′). Biodistributions of the five radioiodinated Fab′ conjugates were obtained in nude mice at 1, 4 and 24 h post injection (pi). In contrast to closo-decaborate(2-) conjugated to 107-1A4 Fab′ through a non-cleavable linker, two conjugates containing either a benzoate or a methyl substituent on the hydrazone functionality displayed clearance rates from kidney, liver and spleen that were similar to those obtained with directly radioiodinated Fab′ (i.e. no conjugate). The maleimido-closo-decaborate(2-) conjugation reagent containing a benzoate substituent on the hydrazone was chosen for study with 211At. That reagent was conjugated with 107-1A4 Fab′, then labeled (separately) with 125I and 211At. The radiolabeled Fab′ conjugates were coinjected into nude mice bearing LNCaP human tumor xenografts, and biodistribution data was obtained at 1, 4 and 24 h pi. Tumor targeting was achieved with both 125I- and 211At-labeled Fab′, but the 211At-labeled Fab′ reached a higher concentration (25.56 ± 11.20 vs. 11.97 ± 1.31 %ID/g). Surprisingly, while the 125I-labeled Fab′ was cleared from kidney similar to earlier studies, the 211At-labeled Fab′ was not (i.e. kidney conc. for 125I vs. 211At; 4h: 13.14 ± 2.03 ID/g vs. 42.28 ± 16.38 %D/g, 24h: 4.23 ± 1.57 ID/g vs. 39.52 ± 15.87 %ID/g). Since the Fab′ conjugate is identical in both cases except for the radionuclide, it seems likely that the difference in tissue clearance seen is due to an effect that 211At has on either the hydrazone cleavage or on the retention of a metabolite. Results from other studies in our laboratory suggest that the latter case is most likely. The hydrazone linkers tested do not provide the tissue clearance sought for 211At, so additional hydrazones linkers will be evaluated. However, the results support the use of hydrazone linkers when Fab′ conjugated with closo-decaborate(2-) reagents are radioiodinated. PMID:21513347

  2. Tuning a Protein-Labeling Reaction to Achieve Highly Site Selective Lysine Conjugation.

    PubMed

    Pham, Grace H; Ou, Weijia; Bursulaya, Badry; DiDonato, Michael; Herath, Ananda; Jin, Yunho; Hao, Xueshi; Loren, Jon; Spraggon, Glen; Brock, Ansgar; Uno, Tetsuo; Geierstanger, Bernhard H; Cellitti, Susan E

    2018-04-16

    Activated esters are widely used to label proteins at lysine side chains and N termini. These reagents are useful for labeling virtually any protein, but robust reactivity toward primary amines generally precludes site-selective modification. In a unique case, fluorophenyl esters are shown to preferentially label human kappa antibodies at a single lysine (Lys188) within the light-chain constant domain. Neighboring residues His189 and Asp151 contribute to the accelerated rate of labeling at Lys188 relative to the ≈40 other lysine sites. Enriched Lys188 labeling can be enhanced from 50-70 % to >95 % by any of these approaches: lowering reaction temperature, applying flow chemistry, or mutagenesis of specific residues in the surrounding protein environment. Our results demonstrated that activated esters with fluoro-substituted aromatic leaving groups, including a fluoronaphthyl ester, can be generally useful reagents for site-selective lysine labeling of antibodies and other immunoglobulin-type proteins. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The effects of the NMR shift-reagents Dy(PPP)2, Dy(TTHA) and Tm(DOTP) on developed pressure in isolated perfused rat hearts. The role of shift-reagent calcium complexes.

    PubMed

    Gaszner, B; Simor, T; Hild, G; Elgavish, G A

    2001-11-01

    The 23Na NMR shift-reagent complexes (Dy(PPP)2, Dy(TTHA), and Tm(DOTP)) bind stoichiometric amounts of Ca2+. Thus, in perfused rat heart systems, a supplementation of Ca2+ is required to maintain the requisite extracellular free calcium concentration ([Ca(o)]f) and to approximate a physiological level of contractile function. The amount of reagent-bound Ca2+ in a heart perfusate that contains a shift-reagent depends on: (1) Ca2+ binding by excess ligand used during the preparation of the shift-reagent; and (2) the Ca2+ binding affinity of the shift-reagent. To address point 1), we introduced a 1H and 31P NMR spectroscopic titration method to quantify directly the concentration of the excess ligand. We also used this method to minimize the amount of excess ligand (L) and thus the amount of Ca*L complex. To address point (2), we determined the stepwise Kd (microm) values of the Ca complexes of the three shift-reagents.: Dy(PPP)2, Kd=0.09, Kd2=7.9; Dy(TTHA), Kd1=10.66, Kd2=10.12; and Tm(DOTP), K(d1)=0.502, Kd2=4.98. The Kd values of the Ca complexes of the phosphonate and triphosphate based shift-reagents, Tm(DOTP) and Dy(PPP)2, respectively, are lower than those of the polyaminocarboxylate-based Dy(TTHA), indicating stronger Ca binding affinities for the former two types of complexes. We have also shown a positive correlation between [Ca(o)]f and left ventricular developed pressure (LVDP) in perfused rat hearts. Dy(TTHA) has shown no effect on LVDP v[Ca(o)]f. The LVDP values in the presence of the phosphonate and triphosphate based shift-reagents, however, were significantly higher than expected from the [Ca(o)]f levels alone. Thus a positive inotropic effect, independent of [Ca(o)]f, is evident in the presence of Tm(DOTP) or Dy(PPP)2. Copyright 2001 Academic Press.

  4. Relative quantification of enantiomers of chiral amines by high-throughput LC-ESI-MS/MS using isotopic variants of light and heavy L-pyroglutamic acids as the derivatization reagents.

    PubMed

    Mochizuki, Toshiki; Taniguchi, Sayuri; Tsutsui, Haruhito; Min, Jun Zhe; Inoue, Koichi; Todoroki, Kenichiro; Toyo'oka, Toshimasa

    2013-04-22

    L-Pyroglutamic acid (L-PGA) was evaluated as a chiral labeling reagent for the enantioseparation of chiral amines in terms of separation efficiency by reversed-phase chromatography and detection sensitivity by ESI-MS/MS. Several amines and amino acid methyl esters were used as typical representatives of the chiral amines. Both enantiomers of the chiral amines were easily labeled with L-PGAS at room temperature for 60 min in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide and 1-hydroxy-1H-benzotriazole as the activation reagents. The resulting diastereomers were completely separated by reversed-phase chromatography using the small particle (1.7 μm) ODS column (Rs=1.6-6.8). A highly sensitive detection at a low-fmol level (1-4 fmol) was also obtained from the multiple reaction monitoring (MRM) chromatograms. Therefore, a high-throughput determination was achieved by the present UPLC-ESI-MS/MS method. An isotope labeling strategy using light and heavy L-PGAs for the differential analysis of chiral amines in different sample groups was also proposed in this paper. As a model study, the differential analysis of the R and S ratio of 1-phenylethylamine (PEA) was performed according to the proposed procedure using light and heavy reagents, i.e., L-PGA and L-PGA-d5. The R/S ratio of PEA, spiked at the different concentrations in rat plasma, was almost similar to the theoretical values. Consequently, the proposed strategy using light and heavy chiral labeling reagents seems to be applicable for the differential analysis of chiral amine enantiomers in different sample groups, such as healthy persons and disease patients. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Pushing antibody-based labeling systems to higher sensitivity by linker-assisted affinity enhancement.

    PubMed

    Gorris, Hans H; Bade, Steffen; Röckendorf, Niels; Fránek, Milan; Frey, Andreas

    2011-08-17

    The sensitivity of antibody/hapten-based labeling systems is limited by the natural affinity ceiling of immunoglobulins. Breaking this limit by antibody engineering is difficult. We thus attempted a different approach and investigated if the so-called bridge effect, a corecognition of the linker present between hapten and carrier protein during antibody generation, can be utilized to improve the affinity of such labeling systems. The well-known haptens 2,4-dinitrophenol (2,4-DNP) and 2,4-dichlorophenoxyacetic acid (2,4-D) were equipped with various linkers, and the resulting affinity change of their cognate antibodies was analyzed by ELISA. Anti-2,4-DNP antibodies exhibited the best affinity to their hapten when it was combined with aminobutanoic acid or aminohexanoic acid. The affinity of anti-2,4-D antibodies could be enhanced even further with longer aliphatic spacers connected to the hapten. The affinity toward aminoundecanoic acid-2,4-D derivatives, for instance, was improved about 100-fold compared to 2,4-D alone and yielded detection limits as low as 100 amoles of analyte. As the effect occurred for all antibodies and haptens tested, it may be sensible to implement the bridge effect in future antibody/hapten-labeling systems in order to achieve the highest sensitivity possible.

  6. Incorporation of isotopic, fluorescent, and heavy-atom-modified nucleotides into RNAs by position-selective labeling of RNA.

    PubMed

    Liu, Yu; Holmstrom, Erik; Yu, Ping; Tan, Kemin; Zuo, Xiaobing; Nesbitt, David J; Sousa, Rui; Stagno, Jason R; Wang, Yun-Xing

    2018-05-01

    Site-specific incorporation of labeled nucleotides is an extremely useful synthetic tool for many structural studies (e.g., NMR, electron paramagnetic resonance (EPR), fluorescence resonance energy transfer (FRET), and X-ray crystallography) of RNA. However, specific-position-labeled RNAs >60 nt are not commercially available on a milligram scale. Position-selective labeling of RNA (PLOR) has been applied to prepare large RNAs labeled at desired positions, and all the required reagents are commercially available. Here, we present a step-by-step protocol for the solid-liquid hybrid phase method PLOR to synthesize 71-nt RNA samples with three different modification applications, containing (i) a 13 C 15 N-labeled segment; (ii) discrete residues modified with Cy3, Cy5, or biotin; or (iii) two iodo-U residues. The flexible procedure enables a wide range of downstream biophysical analyses using precisely localized functionalized nucleotides. All three RNAs were obtained in <2 d, excluding time for preparing reagents and optimizing experimental conditions. With optimization, the protocol can be applied to other RNAs with various labeling schemes, such as ligation of segmentally labeled fragments.

  7. Single-domain antibodies that compete with the natural ligand fibroblast growth factor block the internalization of the fibroblast growth factor receptor 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veggiani, Gianluca; Ossolengo, Giuseppe; Aliprandi, Marisa

    2011-05-20

    Highlights: {yields} Recombinant antibodies for FGFR1 were isolated from a llama naive library in VHH format. {yields} These antibodies compete with the natural ligand FGF-2 for the same epitope on FGFR1. {yields} The antibody competition inhibits the FGF-2-dependent internalization of FGFR1. -- Abstract: Single-domain antibodies in VHH format specific for fibroblast growth factor receptor 1 (FGFR1) were isolated from a phage-display llama naive library. In particular, phage elution in the presence of the natural receptor ligand fibroblast growth factor (FGF) allowed for the identification of recombinant antibodies that compete with FGF for the same region on the receptor surface. Thesemore » antibodies posses a relatively low affinity for FGFR1 and were never identified when unspecific elution conditions favoring highly affine binders were applied to panning procedures. Two populations of competitive antibodies were identified that labeled specifically the receptor-expressing cells in immunofluorescence and recognize distinct epitopes. Antibodies from both populations effectively prevented FGF-dependent internalization and nuclear accumulation of the receptor in cultured cells. This achievement indicates that these antibodies have a capacity to modulate the receptor physiology and, therefore, constitute powerful reagents for basic research and a potential lead for therapeutic applications.« less

  8. Reaction of fluorogenic reagents with proteins

    PubMed Central

    Swearingen, Kristian E.; Dickerson, Jane A.; Turner, Emily H.; Ramsay, Lauren M.; Wojcik, Roza; Dovichi, Norman J.

    2009-01-01

    The fluorogenic reagent Chromeo P465 is considered for analysis of proteins by capillary electrophoresis with laser-induced fluorescence detection. The reagent was first used to label α-lactalbumin; the product was analyzed by capillary zone electrophoresis in a sub-micellar sodium dodecyl sulfate (SDS) buffer. The product generated a set of equally spaced but poorly resolved peaks that formed a broad envelope with a net mobility of 4 × 10−4 cm2 V−1 s−1. The components of the envelope were presumably protein that had reacted with different numbers of labels. The mobility of these components decreased by roughly 1 % with the addition of each label. The signal increased linearly from 1.0 nM to 100 nM α-lactalbumin (r2 = 0.99), with a 3σ detection limit of 70 pM. We then considered the separation of a mixture of ovalbumin, α-chymotrypsinogen A, and αlactalbumin labeled with Chromeo P465; unfortunately, baseline resolution was not achieved with a borax/SDS buffer. Better resolution was achieved with N-cyclohexyl-2-aminoethanesulfonic acid/Tris/SDS/dextran capillary sieving electrophoresis; however, dye interactions with this buffer system produced a less than ideal blank. PMID:18479693

  9. A photo-cleavable biotin affinity tag for the facile release of a photo-crosslinked carbohydrate-binding protein.

    PubMed

    Chang, Tsung-Che; Adak, Avijit K; Lin, Ting-Wei; Li, Pei-Jhen; Chen, Yi-Ju; Lai, Chain-Hui; Liang, Chien-Fu; Chen, Yu-Ju; Lin, Chun-Cheng

    2016-03-15

    The use of photo-crosslinking glycoprobes represents a powerful strategy for the covalent capture of labile protein complexes and allows detailed characterization of carbohydrate-mediated interactions. The selective release of target proteins from solid support is a key step in functional proteomics. We envisaged that light activation can be exploited for releasing labeled protein in a dual photo-affinity probe-based strategy. To investigate this possibility, we designed a trifunctional, galactose-based, multivalent glycoprobe for affinity labeling of carbohydrate-binding proteins. The resulting covalent protein-probe adduct is attached to a photo-cleavable biotin affinity tag; the biotin moiety enables specific presentation of the conjugate on streptavidin-coated beads, and the photolabile linker allows the release of the labeled proteins. This dual probe promotes both the labeling and the facile cleavage of the target protein complexes from the solid surfaces and the remainder of the cell lysate in a completely unaltered form, thus eliminating many of the common pitfalls associated with traditional affinity-based purification methods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Prostaglandin E and F2 alpha receptors in human myometrium during the menstrual cycle and in pregnancy and labor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giannopoulos, G.; Jackson, K.; Kredentser, J.

    The binding of prostaglandins E1 and F2 alpha has been studied in the human myometrium and cervix during the menstrual cycle and in the myometrium of pregnant patients at term before and during labor. Tritium-labeled prostaglandin E1 and F2 alpha binding was saturable and reversible. Scatchard analysis of tritium-labeled prostaglandin E1 binding was linear, which suggests a single class of high-affinity binding sites with an estimated apparent equilibrium dissociation constant of 2.5 to 5.4 nmol/L and inhibitor affinities of 0.9, 273, 273, and 217 nmol/L for prostaglandins E2, A1, B1, and F2 alpha, respectively. Scatchard analysis of tritium-labeled prostaglandin F2more » alpha, binding was also linear, but the affinity of these binding sites was much lower, with an average dissociation constant of 50 nmol/L and inhibitor affinities of 1.6, 2.2, and 11.2 nmol/L for prostaglandins E1, E2, and A1, respectively. In nonpregnant patients, the concentrations and affinities of tritium-labeled prostaglandin E1 binding sites were similar in the myometrium during the proliferative and secretory phases of the menstrual cycle, but the concentration of these sites was much lower in the cervix. The concentration of the tritium-labeled prostaglandin E1 binding sites was significantly lower in the myometrium of pregnant patients at term than in the myometrium of nonpregnant patients. The concentrations and affinities of tritium-labeled prostaglandin E1 binding sites were not significantly different in the upper and lower myometrium of pregnant patients at term or in the myometrium of such patients before and during labor. The concentrations of the tritium-labeled prostaglandin F2 alpha binding sites during the menstrual cycle and in pregnancy at term were similar to those of tritium-labeled prostaglandin E1 binding sites.« less

  11. Directed evolution of the forkhead-associated domain to generate anti-phosphospecific reagents by phage-display

    PubMed Central

    Pershad, Kritika; Wypisniak, Karolina; Kay, Brian K.

    2012-01-01

    While affinity reagents are valuable tools for monitoring protein phosphorylation and studying signaling events in cells, generating them through immunization of animals with phosphopeptides is expensive, laborious and time consuming. An attractive alternative is to use protein evolution techniques and isolate new anti-phosphopeptide binding specificities from a library of variants of a phosphopeptide-binding domain. To explore this strategy, we attempted to display on the surface of bacteriophage M13, the N-terminal Forkhead-associated domain (FHA1) of yeast Rad53p, which is a naturally occurring phosphothreonine (pT)-binding domain, and found it to be non-functional due to misfolding in the bacterial periplasm. To overcome this limitation, a library of FHA1 variants was constructed by mutagenic PCR and functional variants were isolated after three rounds of affinity selection with its pT peptide ligand. A hydrophobic residue at position 34 in the β1-strand was discovered to be essential for phage-display of a functional FHA1 domain. Additionally, by heating the phage library to 50°C prior to affinity selection with its cognate pT peptide, we identified a variant (G2) that was ~8°C more thermal stable than the wild-type domain. Using G2 as a scaffold, we constructed phage-displayed libraries of FHA1 variants and affinity selected for variants that bound selectively to five pT peptides. These reagents are renewable and have high protein yields (~20–25 mg/L), when expressed in Escherichia coli. Thus, we have changed the specificity of the FHA1 domain and demonstrated that engineering phosphopeptide-binding domains is an attractive avenue for generating new anti-phosphopeptide binding specificities in vitro by phage-display. PMID:22985966

  12. Directed evolution of the forkhead-associated domain to generate anti-phosphospecific reagents by phage display.

    PubMed

    Pershad, Kritika; Wypisniak, Karolina; Kay, Brian K

    2012-11-23

    While affinity reagents are valuable tools for monitoring protein phosphorylation and studying signaling events in cells, generating them through immunization of animals with phosphopeptides is expensive, laborious, and time-consuming. An attractive alternative is to use protein evolution techniques and isolate new anti-phosphopeptide binding specificities from a library of variants of a phosphopeptide-binding domain. To explore this strategy, we attempted to display on the surface of bacteriophage M13 the N-terminal Forkhead-associated (FHA1) domain of yeast Rad53p, which is a naturally occurring phosphothreonine (pT)-binding domain, and found it to be nonfunctional due to misfolding in the bacterial periplasm. To overcome this limitation, we constructed a library of FHA1 variants by mutagenic PCR and isolated functional variants after three rounds of affinity selection with its pT peptide ligand. A hydrophobic residue at position 34 in the β1 strand was discovered to be essential for phage display of a functional FHA1 domain. Additionally, by heating the phage library to 50°C prior to affinity selection with its cognate pT peptide, we identified a variant (G2) that was ~8°C more thermally stable than the wild-type domain. Using G2 as a scaffold, we constructed phage-displayed libraries of FHA1 variants and affinity selected for variants that bound selectively to five pT peptides. These reagents are renewable and have high protein yields (~20-25mg/L), when expressed in Escherichia coli. Thus, we have changed the specificity of the FHA1 domain and demonstrated that engineering phosphopeptide-binding domains is an attractive avenue for generating new anti-phosphopeptide binding specificities in vitro by phage display. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Recombinant anti-tenascin antibody constructs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ZALUTSKY, MICHAEL R

    2006-08-29

    The general objective of this research is to combine genetically derived molecular constructs reactive with tenascin, with appropriate radionuclides and labeling methods in order to generate more effective diagnostic and therapeutic reagents for oncologic nuclear medicine. Tenascin, a polymorphic extracellular matrix glycoprotein, is of interest because of its high expression on glioma, melanoma, as well as prostate and breast carcinoma. Recently, we have also documented high levels of tenascin in lymphomas, particularly those of higher grade, making the potential clinical impact of tenascin-specific radiodiagnostics and therapeutics even greater. An essential feature of our work plan is the ability to exploitmore » our extensive clinical experience in order to design second-generation constructs with properties which could improve clinical efficacy. To date, we have treated over 150 brain tumor patients with 131I-labeled murine 81C6, an antibody which binds specifically to the alternatively spliced fibronectin type III repeats CD of the tenascin molecule. During the current grant period, we have made several observations which form the basis for our proposed specific aims. First, tissue distribution and catabolism experiments in animal models have demonstrated enhanced stability for a chimeric construct composed of murine variable regions and human IgG2 constant domains. Furthermore, pharmacokinetic studies in patients with 131I-labeled chimeric 81C6 have shown significantly longer retention in glioma tumor resection cavities compared with its murine parent. Second, we have initiated the first clinical trial of an endoradiotherapeutic labeled with the 7.2-hr -particle emitter 211At. Twelve glioma patients have received 211At-labeled chimeric 81C6 directly into their brain tumor resection cavity, and very encouraging results have been obtained. Now that the feasibility of human studies with 211At, has been demonstrated, the development and evaluation of anti-tenascin constructs with optimized properties for use in tandem with short half life radionuclides such as 211At ( as well as 1.8-hr 18F for PET imaging) is warranted. Our specific aims are: 1) to construct a bivalent, anti-tenascin molecule containing murine 81C6 variable regions and the human IgG2 hinge region. Both the CH2 domain deletion construct (CH2) and F(ab’)2 will be investigated; 2) to construct a single-chain Fv dimer or multimer with adequate stability, affinity and immunoreactivity for use in tandem with 211At for therapy and 18F for imaging; 3) to generate higher affinity scFv constructs reactive with the alternatively spliced fibronectin type III repeats CD of the tenascin molecule via phage display technology and site-directed mutagenesis; 4) to label promising anti-tenascin constructs with radioiodine, 211At, and 18F and evaluate their potential as radiodiagnostic and radiotherapeutic agents. The proposed studies include: characterization of affinity and immunoreactivity after labeling; evaluation of tissue distribution and projected dosimetry in normal mice, and athymic rodents with subcutaneous, intracranial and neoplastic meningitis xenografts; investigation of the nature of low and high molecular weight labeled catabolites generated in mice; and assessment of cytotoxicity in vitro and in vivo models of human glioma, and possibly, other tenascin expressing tumors; and 5) to investigate strategies for labeling scFv monomers and dimers which will minimize retention of the radiohalogen in the kidneys through the use of negatively charged templates.« less

  14. Immunoliposome-PCR: a generic ultrasensitive quantitative antigen detection system

    PubMed Central

    2012-01-01

    Background The accurate quantification of antigens at low concentrations over a wide dynamic range is needed for identifying biomarkers associated with disease and detecting protein interactions in high-throughput microarrays used in proteomics. Here we report the development of an ultrasensitive quantitative assay format called immunoliposome polymerase chain reaction (ILPCR) that fulfills these requirements. This method uses a liposome, with reporter DNA encapsulated inside and biotin-labeled polyethylene glycol (PEG) phospholipid conjugates incorporated into the outer surface of the liposome, as a detection reagent. The antigenic target is immobilized in the well of a microplate by a capture antibody and the liposome detection reagent is then coupled to a biotin-labeled second antibody through a NeutrAvidin bridge. The liposome is ruptured to release the reporter DNA, which serves as a surrogate to quantify the protein target using real-time PCR. Results A liposome detection reagent was prepared, which consisted of a population of liposomes ~120 nm in diameter with each liposome possessing ~800 accessible biotin receptors and ~220 encapsulated reporters. This liposome detection reagent was used in an assay to quantify the concentration of carcinoembryonic antigen (CEA) in human serum. This ILPCR assay exhibited a linear dose–response curve from 10-10 M to 10-16 M CEA. Within this range the assay coefficient of variance was <6 % for repeatability and <2 % for reproducibility. The assay detection limit was 13 fg/mL, which is 1,500-times more sensitive than current clinical assays for CEA. An ILPCR assay to quantify HIV-1 p24 core protein in buffer was also developed. Conclusions The ILPCR assay has several advantages over other immuno-PCR methods. The reporter DNA and biotin-labeled PEG phospholipids spontaneously incorporate into the liposomes as they form, simplifying preparation of the detection reagent. Encapsulation of the reporter inside the liposomes allows nonspecific DNA in the assay medium to be degraded with DNase I prior to quantification of the encapsulated reporter by PCR, which reduces false-positive results and improves quantitative accuracy. The ability to encapsulate multiple reporters per liposome also helps overcome the effect of polymerase inhibitors present in biological specimens. Finally, the biotin-labeled liposome detection reagent can be coupled through a NeutrAvidin bridge to a multitude of biotin-labeled probes, making ILPCR a highly generic assay system. PMID:22726242

  15. The dual role of deposited microbead plug (DMBP): a blood filter and a conjugate reagent carrier toward point-of-care microfluidic immunoassay.

    PubMed

    Li, Chunyu; Liu, Chong; Xu, Zheng; Li, Jingmin

    2012-08-15

    To set up a point-of-care whole-blood immunoassay system, sample preparation and on-chip storage of conjugate reagents are indispensable functional units. Here, we merge these functions into a deposited microbead plug (DMBP) to simultaneously play the roles of a blood filter and a conjugate reagent carrier. The DMBP was easily fabricated by the use of natural deposition of beads without the need of weirs. Conjugate reagents (FITC labeled antibodies used here) were incorporated into the DMBP during the assembly of the DMBP. To demonstrate the ability of the DMBP, we constructed a DMBP-based microfluidic chip and used it for the detection of human IgG (hIgG). The DMBP enabled to remove blood cells from whole blood and provide the pure plasma for the downstream on-chip immunoreactions. The release of reconstituted FITC labeled antibodies from the DMBP was controlled in a passive fashion. Dry FITC labeled antibodies retained at least 81% of their activity after 60 days of storage at the room temperature. The DMBP presented here makes an important step towards the development of the self-contained, integrated, sample-to-answer microfluidic chips for point-of-care diagnostics. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Flow and evaporation cells for the detection of proteins on membranes with the peroxyoxalate chemiluminescent reaction in organic media.

    PubMed

    Castro-Hartmann, Pablo; Daban, Joan-Ramon

    2004-08-01

    The high-energy intermediates generated in the reaction of bis(2,4,6-trichlorophenyl)oxalate (TCPO) with H2O2 can excite electronically different fluorophores with a high quantum yield in organic solvents. We have previously applied this peroxyoxalate chemiluminescent reaction to the detection of proteins labeled with the fluorescent dye 2-methoxy-2,4-diphenyl-3(2H)-furanone (MDPF) on polyvinylidene difluoride (PVDF) membranes. In this work, we have investigated the possibility to enhance the sensitivity of this detection method using specially designed cells in which the reagents TCPO and H2O2 in acetone are continuously renewed. In the flow cell, two syringes are used to renew the reagents in the reaction chamber containing the PVDF membrane with blotted proteins labeled with MDPF. In the evaporation cell, a fresh solution of reagents continuously replaces the volume of acetone evaporated in the reaction chamber. Both cells show a low emission background but the observed elution of proteins from the membrane produced by the flow of reagents in acetone limits the maximum sensitivity attainable with these cells. The best result (detection of 1 ng of MDPF-labeled protein) has been obtained with the evaporation cell. Copyright 2004 Wiley-VCH Verlag GmbH and Co.

  17. Influence of bone affinity on the skeletal distribution of fluorescently labeled bisphosphonates in vivo.

    PubMed

    Roelofs, Anke J; Stewart, Charlotte A; Sun, Shuting; Błażewska, Katarzyna M; Kashemirov, Boris A; McKenna, Charles E; Russell, R Graham G; Rogers, Michael J; Lundy, Mark W; Ebetino, Frank H; Coxon, Fraser P

    2012-04-01

    Bisphosphonates are widely used antiresorptive drugs that bind to calcium. It has become evident that these drugs have differing affinities for bone mineral; however, it is unclear whether such differences affect their distribution on mineral surfaces. In this study, fluorescent conjugates of risedronate, and its lower-affinity analogues deoxy-risedronate and 3-PEHPC, were used to compare the localization of compounds with differing mineral affinities in vivo. Binding to dentine in vitro confirmed differences in mineral binding between compounds, which was influenced predominantly by the characteristics of the parent compound but also by the choice of fluorescent tag. In growing rats, all compounds preferentially bound to forming endocortical as opposed to resorbing periosteal surfaces in cortical bone, 1 day after administration. At resorbing surfaces, lower-affinity compounds showed preferential binding to resorption lacunae, whereas the highest-affinity compound showed more uniform labeling. At forming surfaces, penetration into the mineralizing osteoid was found to inversely correlate with mineral affinity. These differences in distribution at resorbing and forming surfaces were not observed at quiescent surfaces. Lower-affinity compounds also showed a relatively higher degree of labeling of osteocyte lacunar walls and labeled lacunae deeper within cortical bone, indicating increased penetration of the osteocyte canalicular network. Similar differences in mineralizing surface and osteocyte network penetration between high- and low-affinity compounds were evident 7 days after administration, with fluorescent conjugates at forming surfaces buried under a new layer of bone. Fluorescent compounds were incorporated into these areas of newly formed bone, indicating that "recycling" had occurred, albeit at very low levels. Taken together, these findings indicate that the bone mineral affinity of bisphosphonates is likely to influence their distribution within the skeleton. Copyright © 2012 American Society for Bone and Mineral Research.

  18. Tin-117m-labeled stannic (Sn/sup 4 +/) chelate of diethylenetriamine pentaacetic acid (DTPA) for application in diagnosis and therapy

    DOEpatents

    Srivastava, S.C.; Meinken, G.E.; Richards, P.

    1983-08-25

    The radiopharmaceutical reagents of this invention and the class of Tin-117m radiopharmaceuticals are therapeutic and diagnostic agents that incorporate gamma-emitting nuclides that localize in bone after intravenous injection in mammals (mice, rats, dogs, and rabbits). Images reflecting bone structure or function can then be obtained by a scintillation camera that detects the distribution of ionizing radiation emitted by the radioactive agent. Tin-117m-labeled chelates of stannic tin localize almost exclusively in cortical bone. Upon intravenous injection of the reagent, the preferred chelates are phosphonate compounds, preferable, PYP, MDP, EHDP, and DTPA. This class of reagents is therapeutically and diagnostically useful in skeletal scintigraphy and for the radiotherapy of bone tumors and other disorders.

  19. Recognition of genetically modified product based on affinity propagation clustering and terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Jianjun; Kan, Jianquan

    2018-04-01

    In this paper, based on the terahertz spectrum, a new identification method of genetically modified material by support vector machine (SVM) based on affinity propagation clustering is proposed. This algorithm mainly uses affinity propagation clustering algorithm to make cluster analysis and labeling on unlabeled training samples, and in the iterative process, the existing SVM training data are continuously updated, when establishing the identification model, it does not need to manually label the training samples, thus, the error caused by the human labeled samples is reduced, and the identification accuracy of the model is greatly improved.

  20. Dual Labeling Biotin Switch Assay to Reduce Bias Derived From Different Cysteine Subpopulations: A Method to Maximize S-Nitrosylation Detection.

    PubMed

    Chung, Heaseung Sophia; Murray, Christopher I; Venkatraman, Vidya; Crowgey, Erin L; Rainer, Peter P; Cole, Robert N; Bomgarden, Ryan D; Rogers, John C; Balkan, Wayne; Hare, Joshua M; Kass, David A; Van Eyk, Jennifer E

    2015-10-23

    S-nitrosylation (SNO), an oxidative post-translational modification of cysteine residues, responds to changes in the cardiac redox-environment. Classic biotin-switch assay and its derivatives are the most common methods used for detecting SNO. In this approach, the labile SNO group is selectively replaced with a single stable tag. To date, a variety of thiol-reactive tags have been introduced. However, these methods have not produced a consistent data set, which suggests an incomplete capture by a single tag and potentially the presence of different cysteine subpopulations. To investigate potential labeling bias in the existing methods with a single tag to detect SNO, explore if there are distinct cysteine subpopulations, and then, develop a strategy to maximize the coverage of SNO proteome. We obtained SNO-modified cysteine data sets for wild-type and S-nitrosoglutathione reductase knockout mouse hearts (S-nitrosoglutathione reductase is a negative regulator of S-nitrosoglutathione production) and nitric oxide-induced human embryonic kidney cell using 2 labeling reagents: the cysteine-reactive pyridyldithiol and iodoacetyl based tandem mass tags. Comparison revealed that <30% of the SNO-modified residues were detected by both tags, whereas the remaining SNO sites were only labeled by 1 reagent. Characterization of the 2 distinct subpopulations of SNO residues indicated that pyridyldithiol reagent preferentially labels cysteine residues that are more basic and hydrophobic. On the basis of this observation, we proposed a parallel dual-labeling strategy followed by an optimized proteomics workflow. This enabled the profiling of 493 SNO sites in S-nitrosoglutathione reductase knockout hearts. Using a protocol comprising 2 tags for dual-labeling maximizes overall detection of SNO by reducing the previously unrecognized labeling bias derived from different cysteine subpopulations. © 2015 American Heart Association, Inc.

  1. Both α and β Subunits of Human Choriogonadotropin Photoaffinity Label the Hormone Receptor

    NASA Astrophysics Data System (ADS)

    Ji, Inhae; Ji, Tae H.

    1981-09-01

    It has been shown that a photoactivable derivative of human choriogonadotropin (hCG) labels the lutropin receptor on porcine granulosa cells [Ji, I. & Ji, T. H. (1980) Proc. Natl. Acad. Sci. USA 77, 7167-7170]. In an attempt to identify which of the hCG subunits labeled the receptor, three sets of different hCG derivatives were prepared. In the first set, hCG was coupled to the N-hydroxysuccinimide ester of 4-azidobenzoylglycine and radioiodinated. In the second set, only one of the subunits was radioiodinated, but both subunits were allowed to react with the reagent. In the third set, both the reagent and [125I]iodine were coupled to only one of the subunits. The binding activity of each hormone derivative was comparable to that of 125I-labeled hCG. After binding of these hormone derivatives to the granulosa cell surface, they were photolyzed. After solubilization, autoradiographs of sodium dodecyl sulfate/polyacrylamide gels of each sample revealed a number of labeled bands; the hCG derivatives containing 125I-labeled alpha subunit produced four bands (molecular weights 120,000 +/- 6,000, 96,000 +/- 5,000, 76,000 +/- 4,000, and 73,000 +/- 4,000) and those containing 125I-labeled beta subunit produced three bands (molecular weights 106,000 +/- 6,000, 88,000 +/- 5,000, and 83,000 +/- 4,000). Results were the same when the hormone-receptor complexes were solubilized in 0.5% Triton X-100 and then photolyzed or when the hormone was derivatized with a family of reagents having arms of various lengths. We conclude that both the alpha subunit and the beta subunit of hCG photoaffinity labeled certain membrane polypeptides and that these polypeptides are related to the hormone receptor.

  2. Automation of dimethylation after guanidination labeling chemistry and its compatibility with common buffers and surfactants for mass spectrometry-based shotgun quantitative proteome analysis.

    PubMed

    Lo, Andy; Tang, Yanan; Chen, Lu; Li, Liang

    2013-07-25

    Isotope labeling liquid chromatography-mass spectrometry (LC-MS) is a major analytical platform for quantitative proteome analysis. Incorporation of isotopes used to distinguish samples plays a critical role in the success of this strategy. In this work, we optimized and automated a chemical derivatization protocol (dimethylation after guanidination, 2MEGA) to increase the labeling reproducibility and reduce human intervention. We also evaluated the reagent compatibility of this protocol to handle biological samples in different types of buffers and surfactants. A commercially available liquid handler was used for reagent dispensation to minimize analyst intervention and at least twenty protein digest samples could be prepared in a single run. Different front-end sample preparation methods for protein solubilization (SDS, urea, Rapigest™, and ProteaseMAX™) and two commercially available cell lysis buffers were evaluated for compatibility with the automated protocol. It was found that better than 94% desired labeling could be obtained in all conditions studied except urea, where the rate was reduced to about 92% due to carbamylation on the peptide amines. This work illustrates the automated 2MEGA labeling process can be used to handle a wide range of protein samples containing various reagents that are often encountered in protein sample preparation for quantitative proteome analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. 99M-Technetium labeled tin colloid radiopharmaceuticals

    DOEpatents

    Winchell, Harry S.; Barak, Morton; Van Fleet, III, Parmer

    1976-07-06

    An improved 99m-technetium labeled tin(II) colloid, size-stabilized for reticuloendothelial organ imaging without the use of macromolecular stabilizers and a packaged tin base reagent and an improved method for making it are disclosed.

  4. Quantification of genetically modified soya using strong anion exchange chromatography and time-of-flight mass spectrometry.

    PubMed

    Chang, Po-Chih; Reddy, P Muralidhar; Ho, Yen-Peng

    2014-09-01

    Stable-isotope dimethyl labeling was applied to the quantification of genetically modified (GM) soya. The herbicide-resistant gene-related protein 5-enolpyruvylshikimate-3-phosphate synthase (CP4 EPSPS) was labeled using a dimethyl labeling reagent, formaldehyde-H2 or -D2. The identification and quantification of CP4 EPSPS was performed using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The CP4 EPSPS protein was separated from high abundance proteins using strong anion exchange chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Then, the tryptic peptides from the samples and reference were labeled with formaldehyde-H2 and formaldehyde-D2, respectively. The two labeled pools were mixed and analyzed using MALDI-MS. The data showed a good correlation between the peak ratio of the H- and D-labeled peptides and the GM soya percentages at 0.5, 1, 3, and 5 %, with R (2) of 0.99. The labeling reagents are readily available. The labeling experiments and the detection procedures are simple. The approach is useful for the quantification of GM soya at a level as low as 0.5 %.

  5. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, PCB DETECTION TECHNOLOGY, HYBRIZYME DELFIA TM ASSAY

    EPA Science Inventory

    The DELFIA PCB Assay is a solid-phase time-resolved fluoroimmunoassay based on the sequential addition of sample extract and europium-labeled PCB tracer to a monoclonal antibody reagent specific for PCBs. In this assay, the antibody reagent and sample extract are added to a strip...

  6. Cryopreservation of MHC multimers: Recommendations for quality assurance in detection of antigen specific T cells.

    PubMed

    Hadrup, Sine Reker; Maurer, Dominik; Laske, Karoline; Frøsig, Thomas Mørch; Andersen, Sofie Ramskov; Britten, Cedrik M; van der Burg, Sjoerd H; Walter, Steffen; Gouttefangeas, Cécile

    2015-01-01

    Fluorescence-labeled peptide-MHC class I multimers serve as ideal tools for the detection of antigen-specific T cells by flow cytometry, enabling functional and phenotypical characterization of specific T cells at the single cell level. While this technique offers a number of unique advantages, MHC multimer reagents can be difficult to handle in terms of stability and quality assurance. The stability of a given fluorescence-labeled MHC multimer complex depends on both the stability of the peptide-MHC complex itself and the stability of the fluorochrome. Consequently, stability is difficult to predict and long-term storage is generally not recommended. We investigated here the possibility of cryopreserving MHC multimers, both in-house produced and commercially available, using a wide range of peptide-MHC class I multimers comprising virus and cancer-associated epitopes of different affinities presented by various HLA-class I molecules. Cryopreservation of MHC multimers was feasible for at least 6 months, when they were dissolved in buffer containing 5-16% glycerol (v/v) and 0.5% serum albumin (w/v). The addition of cryoprotectants was tolerated across three different T-cell staining protocols for all fluorescence labels tested (PE, APC, PE-Cy7 and Quantum dots). We propose cryopreservation as an easily implementable method for stable storage of MHC multimers and recommend the use of cryopreservation in long-term immunomonitoring projects, thereby eliminating the variability introduced by different batches and inconsistent stability. © 2014 International Society for Advancement of Cytometry.

  7. Cryopreservation of MHC Multimers: Recommendations for Quality Assurance in Detection of Antigen Specific T Cells

    PubMed Central

    Hadrup, Sine Reker; Maurer, Dominik; Laske, Karoline; Frøsig, Thomas Mørch; Andersen, Sofie Ramskov; Britten, Cedrik M; van der Burg, Sjoerd H; Walter, Steffen; Gouttefangeas, Cécile

    2015-01-01

    Fluorescence-labeled peptide-MHC class I multimers serve as ideal tools for the detection of antigen-specific T cells by flow cytometry, enabling functional and phenotypical characterization of specific T cells at the single cell level. While this technique offers a number of unique advantages, MHC multimer reagents can be difficult to handle in terms of stability and quality assurance. The stability of a given fluorescence-labeled MHC multimer complex depends on both the stability of the peptide-MHC complex itself and the stability of the fluorochrome. Consequently, stability is difficult to predict and long-term storage is generally not recommended. We investigated here the possibility of cryopreserving MHC multimers, both in-house produced and commercially available, using a wide range of peptide-MHC class I multimers comprising virus and cancer-associated epitopes of different affinities presented by various HLA-class I molecules. Cryopreservation of MHC multimers was feasible for at least 6 months, when they were dissolved in buffer containing 5–16% glycerol (v/v) and 0.5% serum albumin (w/v). The addition of cryoprotectants was tolerated across three different T-cell staining protocols for all fluorescence labels tested (PE, APC, PE-Cy7 and Quantum dots). We propose cryopreservation as an easily implementable method for stable storage of MHC multimers and recommend the use of cryopreservation in long-term immunomonitoring projects, thereby eliminating the variability introduced by different batches and inconsistent stability. © 2014 International Society for Advancement of Cytometry PMID:25297339

  8. Histochemical evidence for the differential surface labeling, uptake, and intracellular transport of a colloidal gold-labeled insulin complex by normal human blood cells.

    PubMed

    Ackerman, G A; Wolken, K W

    1981-10-01

    A colloidal gold-labeled insulin-bovine serum albumin (GIA) reagent has been developed for the ultrastructural visualization of insulin binding sites on the cell surface and for tracing the pathway of intracellular insulin translocation. When applied to normal human blood cells, it was demonstrated by both visual inspection and quantitative analysis that the extent of surface labeling, as well as the rate and degree of internalization of the insulin complex, was directly related to cell type. Further, the pathway of insulin (GIA) transport via round vesicles and by tubulo-vesicles and saccules and its subsequent fate in the hemic cells was also related to cell variety. Monocytes followed by neutrophils bound the greatest amount of labeled insulin. The majority of lymphocytes bound and internalized little GIA, however, between 5-10% of the lymphocytes were found to bind considerable quantities of GIA. Erythrocytes rarely bound the labeled insulin complex, while platelets were noted to sequester large quantities of the GIA within their extracellular canalicular system. GIA uptake by the various types of leukocytic cells appeared to occur primarily by micropinocytosis and by the direct opening of cytoplasmic tubulo-vesicles and saccules onto the cell surface in regions directly underlying surface-bound GIA. Control procedures, viz., competitive inhibition of GIA labeling using an excess of unlabeled insulin in the incubation medium, preincubation of the GIA reagent with an antibody directed toward porcine insulin, and the incorporation of 125I-insulin into the GIA reagent, indicated the specificity and selectivity of the GIA histochemical procedure for the localization of insulin binding sites.

  9. Acid Chlorides as Formal Carbon Dianion Linchpin Reagents in the Aluminum Chloride-Mediated Dieckmann Cyclization of Dicarboxylic Acids.

    PubMed

    Armaly, Ahlam M; Bar, Sukanta; Schindler, Corinna S

    2017-08-04

    The development of acid chlorides as formal dianion linchpin reagents that enable access to cyclic 2-alkyl- and 2-acyl-1,3-alkanediones from dicarboxylic acids is described herein. Mechanistic experiments relying on 13 C-labeling studies confirm the role of acid chlorides as carbon dianion linchpin reagents and have led to a revised reaction mechanism for the aluminum(III)-mediated Dieckmann cyclization of dicarboxylic acids with acid chlorides.

  10. Affinity Proteomics in the mountains: Alpbach 2015.

    PubMed

    Taussig, Michael J

    2016-09-25

    The 2015 Alpbach Workshop on Affinity Proteomics, organised by the EU AFFINOMICS consortium, was the 7th workshop in this series. As in previous years, the focus of the event was the current state of affinity methods for proteome analysis, including complementarity with mass spectrometry, progress in recombinant binder production methods, alternatives to classical antibodies as affinity reagents, analysis of proteome targets, industry focus on biomarkers, and diagnostic and clinical applications. The combination of excellent science with Austrian mountain scenery and winter sports engender an atmosphere that makes this series of workshops exceptional. The articles in this Special Issue represent a cross-section of the presentations at the 2015 meeting. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Synthesis of Novel Caspase Inhibitors for Characterization of the Active Caspase Proteome in Vitro and in Vivo

    PubMed Central

    Henzing, Alexander J.; Dodson, Helen; Reid, Joel M.; Kaufmann, Scott H.; Baxter, Robert L.; Earnshaw, William C.

    2008-01-01

    Caspases are cysteine proteases that are essential for cytokine maturation and apoptosis. To facilitate the dissection of caspase function in vitro and in vivo, we have synthesized irreversible caspase inhibitors with biotin attached via linker arms of various lengths (12a–d) and a 2,4-dinitrophenyl labeled inhibitor (13). Affinity labeling of apoptotic extracts followed by blotting reveals that these affinity probes detect active caspases. Using the strong affinity of avidin for biotin, we have isolated affinity-labeled caspase-6 from apoptotic cytosolic extracts of cells overexpressing procaspase 6 by treatment with 12c, which contains biotin attached to the Nε-lysine of the inhibitor by a 22.5 Å linker arm, followed by affinity purification on monomeric avidin-Sepharose beads. 13 has proven sufficiently cell permeable to rescue cells from apoptotic execution. These novel caspase inhibitors should provide powerful probes for the study of the active caspase proteome during apoptosis both in vitro and in vivo. PMID:17181147

  12. CdS/TiO2-fluorescein isothiocyanate nanoparticles as fluorescence resonance energy transfer probe for the determination of trace alkaline phosphatase based on affinity adsorption assay.

    PubMed

    Liu, Jia-Ming; Lin, Li-ping; Jiao, Li; Cui, Ma-Lin; Wang, Xin-Xing; Zhang, Li-Hong; Zheng, Zhi-Yong

    2012-08-30

    The CdS/TiO(2)-fluorescein isothiocyanate (FITC) luminescent nanoparticles (CdS/TiO(2)-FITC) with the particle size of 20 nm have been synthesized by sol-gel method. CdS/TiO(2)-FITC could emit the fluorescence of both FITC and CdS/TiO(2). The fluorescence resonance energy transfer (FRET) occurred between the donor CdS/TiO(2) and the acceptor FITC in the CdS/TiO(2)-FITC. Taking advantages of the excellent characteristics of FRET, a new CdS/TiO(2)-FITC FRET labeling reagent and a CdS/TiO(2)-FITC-wheat germ agglutinin (CdS/TiO(2)-FITC-WGA) fluorescent probe have been developed. The FRET occurring between the donor CdS/TiO(2) and the acceptor FITC in the labelled product CdS/TiO(2)-FITC-WGA-AP, formed in the affinity adsorption reaction between the WGA in this CdS/TiO(2)-FITC-WGA fluorescent probe and alkaline phosphatase (AP), sharply enhanced the fluorescence signal of FITC and quench the fluorescence signal of CdS/TiO(2). Moreover, the ΔF (the change of the fluorescence signal) of FITC and CdS/TiO(2) were proportional to the content of AP, respectively. Thus, a new method that CdS/TiO(2)-fluorescein isothiocyanate nanoparticles for the determination of trace AP based on FRET-affinity adsorption assay has been established. The limit of quantification (LOQ) of the method was 1.3×10(-17) g AP mL(-1) for CdS/TiO(2) and 1.1×10(-17) g AP mL(-1) for FITC, respectively. This sensitive, rapid, high selective and precise method has been applied to the determination of AP in human serum and the prediction of human disease with the results agreed well with enzyme-linked immunosorbent assay (ELISA) in Zhangzhou Municipal Hospital of Fujian Province. Simultaneously, the reaction mechanism for the determination of AP was also discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Determination of trace alkaline phosphatase by affinity adsorption solid substrate room temperature phosphorimetry based on wheat germ agglutinin labeled with 8-quinolineboronic acid phosphorescent molecular switch and prediction of diseases

    NASA Astrophysics Data System (ADS)

    Liu, Jia-Ming; Gao, Hui; Li, Fei-Ming; Shi, Xiu-Mei; Lin, Chang-Qing; Lin, Li-Ping; Wang, Xin-Xing; Li, Zhi-Ming

    2010-09-01

    The 8-quinolineboronic acid phosphorescent molecular switch (abbreviated as PMS-8-QBA. Thereinto, 8-QBA is 8-quinolineboronic acid, and PMS is phosphorescent molecular switch) was found for the first time. PMS-8-QBA, which was in the "off" state, could only emit weak room temperature phosphorescence (RTP) on the acetyl cellulose membrane (ACM). However, PMS-8-QBA turned "on" automatically for its changed structure, causing that the RTP of 8-QBA in the system increased, after PMS-8-QBA-WGA (WGA is wheat germ agglutinin) was formed by reaction between -OH of PMS-8-QBA and -COOH of WGA. More interesting is that the -NH 2 of PMS-8-QBA-WGA could react with the -COOH of alkaline phosphatase (AP) to form the affinity adsorption (AA) product WGA-AP-WGA-8-QBA-PMS (containing -NH-CO- bond), which caused RTP of the system to greatly increase. Thus, affinity adsorption solid substrate room temperature phosphorimetry using PMS-8-QBA as labelling reagent (PMS-8-QBA-AA-SSRTP) for the determination of trace AP was established. The method had many advantages, such as high sensitivity (the detection limit (LD) was 2.5 zg spot -1. For sample volume of 0.40 μl spot -1, corresponding concentration was 6.2 × 10 -18 g ml -1), good selectivity (the allowed concentration of coexisting material was higher, when the relative error was ±5%), high accuracy (applied to detection of AP content in serum samples, the result was coincided with those obtained by enzyme-linked immunoassay), which was suitable for the detection of trace AP content in serum samples and the forecast of human diseases. Meanwhile, the mechanism of PMS-8-QBA-AASSRTP was discussed. The new field of analytical application and clinic diagnosis technique of molecule switch are exploited, based on the phosphorescence characteristic of PMS-8-QBA, the AA reaction between WGA and AP, as well as the relation between AP content and human diseases. The research results promote the development and interpenetrate among molecule switch technique, lectin science and SSRTP.

  14. Determination of trace alkaline phosphatase by affinity adsorption solid substrate room temperature phosphorimetry based on wheat germ agglutinin labeled with 8-quinolineboronic acid phosphorescent molecular switch and prediction of diseases.

    PubMed

    Liu, Jia-Ming; Gao, Hui; Li, Fei-Ming; Shi, Xiu-Mei; Lin, Chang-Qing; Lin, Li-Ping; Wang, Xin-Xing; Li, Zhi-Ming

    2010-09-01

    The 8-quinolineboronic acid phosphorescent molecular switch (abbreviated as PMS-8-QBA. Thereinto, 8-QBA is 8-quinolineboronic acid, and PMS is phosphorescent molecular switch) was found for the first time. PMS-8-QBA, which was in the "off" state, could only emit weak room temperature phosphorescence (RTP) on the acetyl cellulose membrane (ACM). However, PMS-8-QBA turned "on" automatically for its changed structure, causing that the RTP of 8-QBA in the system increased, after PMS-8-QBA-WGA (WGA is wheat germ agglutinin) was formed by reaction between -OH of PMS-8-QBA and -COOH of WGA. More interesting is that the -NH(2) of PMS-8-QBA-WGA could react with the -COOH of alkaline phosphatase (AP) to form the affinity adsorption (AA) product WGA-AP-WGA-8-QBA-PMS (containing -NH-CO- bond), which caused RTP of the system to greatly increase. Thus, affinity adsorption solid substrate room temperature phosphorimetry using PMS-8-QBA as labelling reagent (PMS-8-QBA-AA-SSRTP) for the determination of trace AP was established. The method had many advantages, such as high sensitivity (the detection limit (LD) was 2.5zgspot(-1). For sample volume of 0.40mulspot(-1), corresponding concentration was 6.2x10(-18)gml(-1)), good selectivity (the allowed concentration of coexisting material was higher, when the relative error was +/-5%), high accuracy (applied to detection of AP content in serum samples, the result was coincided with those obtained by enzyme-linked immunoassay), which was suitable for the detection of trace AP content in serum samples and the forecast of human diseases. Meanwhile, the mechanism of PMS-8-QBA-AASSRTP was discussed. The new field of analytical application and clinic diagnosis technique of molecule switch are exploited, based on the phosphorescence characteristic of PMS-8-QBA, the AA reaction between WGA and AP, as well as the relation between AP content and human diseases. The research results promote the development and interpenetrate among molecule switch technique, lectin science and SSRTP. Copyright 2009 Elsevier B.V. All rights reserved.

  15. Fully automated assay of glycohemoglobin with the Abbott IMx analyzer: novel approaches for separation and detection.

    PubMed

    Wilson, D H; Bogacz, J P; Forsythe, C M; Turk, P J; Lane, T L; Gates, R C; Brandt, D R

    1993-10-01

    We describe a novel assay for measuring glycohemoglobin directly from anticoagulated whole blood with the Abbott IMx analyzer. The glycohemoglobin is labeled with a soluble polyanionic affinity reagent and the anionic complex is then captured with a cationic solid-phase matrix. Glycohemoglobin is quantified by measuring the quenching by heme of the static fluorescence from an added fluorophore. The assay is standardized to report both percent total glycohemoglobin (%GHb) and percent hemoglobin A1c (%HbA1c). Glucose, bilirubin, triglycerides, labile fraction, and hemoglobin variants do not interfere in the assay. Within- and between-run CVs are approximately 4-5%, with total CVs of approximately 6.5%. Highly significant linear correlations (r > 0.97) were obtained in comparison studies with two major assay methodologies. The time to obtain one result is approximately 10 min (including assay of a control), 56 min for 22 results. We describe the development, standardization, and validation of this new method.

  16. Radioiodinated nondegradable gonadotropin-releasing hormone analogs: new probes for the investigation of pituitary gonadotropin-releasing hormone receptors.

    PubMed

    Clayton, R N; Shakespear, R A; Duncan, J A; Marshall, J C; Munson, P J; Rodbard, D

    1979-12-01

    Studies of pituitary plasma membrane gonadotropin-releasing hormone (GnRH) receptors using [125I]-iodo-GnRH suffer major disadvantages. Only a small (less than 25%) proportion of specific tracer binding is to high affinity sites, with more than 70% bound to low affinity sites (Ka = 1 x 10(6) M-1). [125I]Iodo-GnRH is also inactivated during incubation with pituitary plasma membrane preparations. Two superactive analongs of GnRH, substituted in positions 6 and 10, were used as the labeled ligand to overcome these problems. Both analogs bound to the same high affinity sites as GnRH on bovine pituitary plasma membranes, though the affinity of the analogs was higher than that of the natural decapeptide (Ka = 2.0 x 10(9), 6.0 x 10(9), and 3.0 x 10(8) M-1 for [D-Ser(TBu)6]des-Gly10-GnRH ethylamide, [D-Ala6]des-Gly10-GnRH ethylamide, and GnRH, respectively. The labeled analogs bound to a single class of high affinity sites with less than 15% of the specific binding being to low affinity sites (Ka approximately equal to 1 x 10(6) M-1). The labeled analogs were not inactivated during incubation with the pituitary membrane preparations. Using the analogs as tracer, a single class of high affinity sites (K1 = 4.0 x 10(9) M-1) was also demonstrated on crude 10,800 x g rat pituitary membrane preparations. Use of these analogs as both the labeled and unlabeled ligand offers substantial advantages over GnRH for investigation of GnRH receptors, allowing accurate determination of changes in their numbers and affinities under various physiological conditions.

  17. A designed repeat protein as an affinity capture reagent

    PubMed Central

    Speltz, Elizabeth B.; Brown, Rebecca S.H.; Hajare, Holly S.; Schlieker, Christian; Regan, Lynne

    2017-01-01

    Repeat proteins are an attractive target for protein engineering and design. We have focused our attention on the design and engineering of one particular class - tetratricopeptide repeat (TPR) proteins. In previous work we have shown that the structure and stability of TPR proteins can be manipulated in a rational fashion [Cortajarena 2011; Main 2003]. Building on those studies, we have designed and characterized a number of different peptide-binding TPR modules and we have also assembled these modules into supramolecular arrays [Cortajarena 2009; Cortajarena 2008; Jackrel 2009; Kajander 2007]. Here we focus on the development of one such TPR-peptide interaction for a practical application – affinity purification. We illustrate the general utility of our designed protein interaction. Furthermore, this example highlights how basic research on protein-peptide interactions can lead to the development of novel reagents with important practical applications. PMID:26517897

  18. A peptide affinity reagent for isolating an intact and catalytically active multi-protein complex from mammalian cells.

    PubMed

    Saathoff, Hinnerk; Brofelth, Mattias; Trinh, Anne; Parker, Benjamin L; Ryan, Daniel P; Low, Jason K K; Webb, Sarah R; Silva, Ana P G; Mackay, Joel P; Shepherd, Nicholas E

    2015-03-01

    We have developed an approach for directly isolating an intact multi-protein chromatin remodeling complex from mammalian cell extracts using synthetic peptide affinity reagent 4. FOG1(1-15), a short peptide sequence known to target subunits of the nucleosome remodeling and deacetylase (NuRD) complex, was joined via a 35-atom hydrophilic linker to the StreptagII peptide. Loading this peptide onto Streptactin beads enabled capture of the intact NuRD complex from MEL cell nuclear extract. Gentle biotin elution yielded the desired intact complex free of significant contaminants and in a form that was catalytically competent in a nucleosome remodeling assay. The efficiency of 4 in isolating the NuRD complex was comparable to other reported methods utilising recombinantly produced GST-FOG1(1-45). Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Animal-Friendly Affinity Reagents: Replacing the Needless in the Haystack.

    PubMed

    Gray, A C; Sidhu, S S; Chandrasekera, P C; Hendriksen, C F M; Borrebaeck, C A K

    2016-12-01

    The multibillion-dollar global antibody industry produces an indispensable resource but that is generated using millions of animals. Despite the irrefutable maturation and availability of animal-friendly affinity reagents (AFAs) employing naïve B lymphocyte or synthetic recombinant technologies expressed by phage display, animal immunisation is still authorised for antibody production. Remarkably, replacement opportunities have been overlooked, despite the enormous potential reduction in animal use. Directive 2010/63/EU requires that animals are not used where alternatives exist. To ensure its implementation, we have engaged in discussions with the EU Reference Laboratory for alternatives to animal testing (EURL ECVAM) and the Directorate General for Environment to carve out an EU-led replacement strategy. Measures must be imposed to avoid outsourcing, regulate commercial production, and ensure that antibody producers are fully supported. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Chemical labelling for visualizing native AMPA receptors in live neurons

    NASA Astrophysics Data System (ADS)

    Wakayama, Sho; Kiyonaka, Shigeki; Arai, Itaru; Kakegawa, Wataru; Matsuda, Shinji; Ibata, Keiji; Nemoto, Yuri L.; Kusumi, Akihiro; Yuzaki, Michisuke; Hamachi, Itaru

    2017-04-01

    The location and number of neurotransmitter receptors are dynamically regulated at postsynaptic sites. However, currently available methods for visualizing receptor trafficking require the introduction of genetically engineered receptors into neurons, which can disrupt the normal functioning and processing of the original receptor. Here we report a powerful method for visualizing native α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) which are essential for cognitive functions without any genetic manipulation. This is based on a covalent chemical labelling strategy driven by selective ligand-protein recognition to tether small fluorophores to AMPARs using chemical AMPAR modification (CAM) reagents. The high penetrability of CAM reagents enables visualization of native AMPARs deep in brain tissues without affecting receptor function. Moreover, CAM reagents are used to characterize the diffusion dynamics of endogenous AMPARs in both cultured neurons and hippocampal slices. This method will help clarify the involvement of AMPAR trafficking in various neuropsychiatric and neurodevelopmental disorders.

  1. Glycoproteomics enabled by tagging sialic acid- or galactose-terminated glycans

    PubMed Central

    Ramya, T N C; Weerapana, Eranthie; Cravatt, Benjamin F; Paulson, James C

    2013-01-01

    In this paper, we present two complementary strategies for enrichment of glycoproteins on living cells that combine the desirable attributes of “robust enrichment” afforded by covalent-labeling techniques and “specificity for glycoproteins” typically provided by lectin or antibody affinity reagents. Our strategy involves the selective introduction of aldehydes either into sialic acids by periodate oxidation (periodate oxidation and aniline-catalyzed oxime ligation (PAL)) or into terminal galactose and N-acetylgalactosamine residues by galactose oxidase (galactose oxidase and aniline-catalyzed oxime ligation (GAL)), followed by aniline-catalyzed oxime ligation with aminooxy-biotin to biotinylate the glycans of glycoprotein subpopulations with high efficiency and cell viability. As expected, the two methods exhibit reciprocal tagging efficiencies when applied to fully sialylated cells compared with sialic acid-deficient cells. To assess the utility of these labeling methods for glycoproteomics, we enriched the PAL- and GAL-labeled (biotinylated) glycoproteome by adsorption onto immobilized streptavidin. Glycoprotein identities (IDs) and N-glycosylation site information were then obtained by liquid chromatography-tandem mass spectrometry on total tryptic peptides and on peptides subsequently released from N-glycans still bound to the beads using peptide N-glycosidase F. A total of 175 unique N-glycosylation sites were identified, belonging to 108 nonredundant glycoproteins. Of the 108 glycoproteins, 48 were identified by both methods of labeling and the remainder was identified using PAL on sialylated cells (40) or GAL on sialic acid-deficient cells (20). Our results demonstrate that PAL and GAL can be employed as complementary methods of chemical tagging for targeted proteomics of glycoprotein subpopulations and identification of glycosylation sites of proteins on cells with an altered sialylation status. PMID:23070960

  2. Advancements in Aptamer Discovery Technologies.

    PubMed

    Gotrik, Michael R; Feagin, Trevor A; Csordas, Andrew T; Nakamoto, Margaret A; Soh, H Tom

    2016-09-20

    Affinity reagents that specifically bind to their target molecules are invaluable tools in nearly every field of modern biomedicine. Nucleic acid-based aptamers offer many advantages in this domain, because they are chemically synthesized, stable, and economical. Despite these compelling features, aptamers are currently not widely used in comparison to antibodies. This is primarily because conventional aptamer-discovery techniques such as SELEX are time-consuming and labor-intensive and often fail to produce aptamers with comparable binding performance to antibodies. This Account describes a body of work from our laboratory in developing advanced methods for consistently producing high-performance aptamers with higher efficiency, fewer resources, and, most importantly, a greater probability of success. We describe our efforts in systematically transforming each major step of the aptamer discovery process: selection, analysis, and characterization. To improve selection, we have developed microfluidic devices (M-SELEX) that enable discovery of high-affinity aptamers after a minimal number of selection rounds by precisely controlling the target concentration and washing stringency. In terms of improving aptamer pool analysis, our group was the first to use high-throughput sequencing (HTS) for the discovery of new aptamers. We showed that tracking the enrichment trajectory of individual aptamer sequences enables the identification of high-performing aptamers without requiring full convergence of the selected aptamer pool. HTS is now widely used for aptamer discovery, and open-source software has become available to facilitate analysis. To improve binding characterization, we used HTS data to design custom aptamer arrays to measure the affinity and specificity of up to ∼10(4) DNA aptamers in parallel as a means to rapidly discover high-quality aptamers. Most recently, our efforts have culminated in the invention of the "particle display" (PD) screening system, which transforms solution-phase aptamers into "aptamer particles" that can be individually screened at high-throughput via fluorescence-activated cell sorting. Using PD, we have shown the feasibility of rapidly generating aptamers with exceptional affinities, even for proteins that have previously proven intractable to aptamer discovery. We are confident that these advanced aptamer-discovery methods will accelerate the discovery of aptamer reagents with excellent affinities and specificities, perhaps even exceeding those of the best monoclonal antibodies. Since aptamers are reproducible, renewable, stable, and can be distributed as sequence information, we anticipate that these affinity reagents will become even more valuable tools for both research and clinical applications.

  3. A highly efficient dual-diazonium reagent for protein crosslinking and construction of a virus-based gel.

    PubMed

    Ma, Dejun; Zhang, Jie; Zhang, Changyu; Men, Yuwen; Sun, Hongyan; Li, Lu-Yuan; Yi, Long; Xi, Zhen

    2018-05-09

    A new bench-stable reagent with double diazonium sites was designed and synthesized for protein crosslinking. Based on the highly efficient diazonium-Tyr coupling reaction, a direct mixture of the reagent and tobacco mosaic virus led to the formation of a new hydrogel, which could be degraded by chemicals and could be used to encapsulate small molecules for sustained release. Because plant viruses exhibit many chemical characteristics like protein labelling and nucleic acid packaging, the virus-based hydrogel will have large chemical space for further functionalization. Besides, this dual-diazonium reagent should be a generally useful crosslinker for chemical biology and biomaterials.

  4. The Non-Specific Binding of Fluorescent-Labeled MiRNAs on Cell Surface by Hydrophobic Interaction.

    PubMed

    Lu, Ting; Lin, Zongwei; Ren, Jianwei; Yao, Peng; Wang, Xiaowei; Wang, Zhe; Zhang, Qunye

    2016-01-01

    MicroRNAs are small noncoding RNAs about 22 nt long that play key roles in almost all biological processes and diseases. The fluorescent labeling and lipofection are two common methods for changing the levels and locating the position of cellular miRNAs. Despite many studies about the mechanism of DNA/RNA lipofection, little is known about the characteristics, mechanisms and specificity of lipofection of fluorescent-labeled miRNAs. Therefore, miRNAs labeled with different fluorescent dyes were transfected into adherent and suspension cells using lipofection reagent. Then, the non-specific binding and its mechanism were investigated by flow cytometer and laser confocal microscopy. The results showed that miRNAs labeled with Cy5 (cyanine fluorescent dye) could firmly bind to the surface of adherent cells (Hela) and suspended cells (K562) even without lipofection reagent. The binding of miRNAs labeled with FAM (carboxyl fluorescein) to K562 cells was obvious, but it was not significant in Hela cells. After lipofectamine reagent was added, most of the fluorescently labeled miRNAs binding to the surface of Hela cells were transfected into intra-cell because of the high transfection efficiency, however, most of them were still binding to the surface of K562 cells. Moreover, the high-salt buffer which could destroy the electrostatic interactions did not affect the above-mentioned non-specific binding, but the organic solvent which could destroy the hydrophobic interactions eliminated it. These results implied that the fluorescent-labeled miRNAs could non-specifically bind to the cell surface by hydrophobic interaction. It would lead to significant errors in the estimation of transfection efficiency only according to the cellular fluorescence intensity. Therefore, other methods to evaluate the transfection efficiency and more appropriate fluorescent dyes should be used according to the cell types for the accuracy of results.

  5. Novel isotopic N, N-Dimethyl Leucine (iDiLeu) Reagents Enable Absolute Quantification of Peptides and Proteins Using a Standard Curve Approach

    NASA Astrophysics Data System (ADS)

    Greer, Tyler; Lietz, Christopher B.; Xiang, Feng; Li, Lingjun

    2015-01-01

    Absolute quantification of protein targets using liquid chromatography-mass spectrometry (LC-MS) is a key component of candidate biomarker validation. One popular method combines multiple reaction monitoring (MRM) using a triple quadrupole instrument with stable isotope-labeled standards (SIS) for absolute quantification (AQUA). LC-MRM AQUA assays are sensitive and specific, but they are also expensive because of the cost of synthesizing stable isotope peptide standards. While the chemical modification approach using mass differential tags for relative and absolute quantification (mTRAQ) represents a more economical approach when quantifying large numbers of peptides, these reagents are costly and still suffer from lower throughput because only two concentration values per peptide can be obtained in a single LC-MS run. Here, we have developed and applied a set of five novel mass difference reagents, isotopic N, N-dimethyl leucine (iDiLeu). These labels contain an amine reactive group, triazine ester, are cost effective because of their synthetic simplicity, and have increased throughput compared with previous LC-MS quantification methods by allowing construction of a four-point standard curve in one run. iDiLeu-labeled peptides show remarkably similar retention time shifts, slightly lower energy thresholds for higher-energy collisional dissociation (HCD) fragmentation, and high quantification accuracy for trypsin-digested protein samples (median errors <15%). By spiking in an iDiLeu-labeled neuropeptide, allatostatin, into mouse urine matrix, two quantification methods are validated. The first uses one labeled peptide as an internal standard to normalize labeled peptide peak areas across runs (<19% error), whereas the second enables standard curve creation and analyte quantification in one run (<8% error).

  6. An unusual reaction of α-alkoxyphosphonium salts with Grignard reagents under an O2 atmosphere.

    PubMed

    Fujioka, Hiromichi; Goto, Akihiro; Otake, Kazuki; Kubo, Ozora; Sawama, Yoshinari; Maegawa, Tomohiro

    2011-09-21

    An unusual and novel reaction of α-alkoxyphosphonium salts, generated from O,O-acetals and Ph(3)P, with Grignard reagents under an O(2) atmosphere afforded alcohols in moderate to high yields. It was clarified by isotopic labelling experiments that the reaction proceeded via a novel radical pathway.

  7. Electrostatic Potential Maps and Natural Bond Orbital Analysis: Visualization and Conceptualization of Reactivity in Sanger's Reagent

    ERIC Educational Resources Information Center

    Mottishaw, Jeffery D.; Erck, Adam R.; Kramer, Jordan H.; Sun, Haoran; Koppang, Miles

    2015-01-01

    Frederick Sanger's early work on protein sequencing through the use of colorimetric labeling combined with liquid chromatography involves an important nucleophilic aromatic substitution (S[subscript N]Ar) reaction in which the N-terminus of a protein is tagged with Sanger's reagent. Understanding the inherent differences between this S[subscript…

  8. Antibody Characterization Lab | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The Antibody Characterization Lab (ACL), an intramural reference laboratory located at the Frederick National Laboratory for Cancer Research in Frederick, Maryland, thoroughly characterizes monoclonal antibodies or other renewable affinity binding reagents for use in cancer related research.

  9. Quantitative Glycomics Strategies*

    PubMed Central

    Mechref, Yehia; Hu, Yunli; Desantos-Garcia, Janie L.; Hussein, Ahmed; Tang, Haixu

    2013-01-01

    The correlations between protein glycosylation and many biological processes and diseases are increasing the demand for quantitative glycomics strategies enabling sensitive monitoring of changes in the abundance and structure of glycans. This is currently attained through multiple strategies employing several analytical techniques such as capillary electrophoresis, liquid chromatography, and mass spectrometry. The detection and quantification of glycans often involve labeling with ionic and/or hydrophobic reagents. This step is needed in order to enhance detection in spectroscopic and mass spectrometric measurements. Recently, labeling with stable isotopic reagents has also been presented as a very viable strategy enabling relative quantitation. The different strategies available for reliable and sensitive quantitative glycomics are herein described and discussed. PMID:23325767

  10. Fluorescently labeled dengue viruses as probes to identify antigen-specific memory B cells by multiparametric flow cytometry

    PubMed Central

    Woda, Marcia; Mathew, Anuja

    2015-01-01

    Low frequencies of memory B cells in the peripheral blood make it challenging to measure the functional and phenotypic characteristics of this antigen experienced subset of B cells without in vitro culture. To date, reagents are lacking to measure ex vivo frequencies of dengue virus (DENV)-specific memory B cells. We wanted to explore the possibility of using fluorescently labeled DENV as probes to detect antigen-specific memory B cells in the peripheral blood of DENV immune individuals. Alexa Fluor dye-labeled DENV yielded viable virus that could be stored at −80°C for long periods of time. Using a careful gating strategy and methods to decrease non-specific binding, we were able to identify a small frequency of B cells from dengue immune individuals that bound labeled DENV. Sorted DENV+ B cells from immune, but not naïve donors secreted antibodies that bound intact virions after in vitro stimulation. Overall, Alexa Fluor dye labeled -DENV are useful reagents to enable the detection and characterization of memory B cells in DENV immune individuals. PMID:25497702

  11. Accessibility of Nitroxide Side Chains: Absolute Heisenberg Exchange Rates from Power Saturation EPR

    PubMed Central

    Altenbach, Christian; Froncisz, Wojciech; Hemker, Roy; Mchaourab, Hassane; Hubbell, Wayne L.

    2005-01-01

    In site-directed spin labeling, the relative solvent accessibility of spin-labeled side chains is taken to be proportional to the Heisenberg exchange rate (Wex) of the nitroxide with a paramagnetic reagent in solution. In turn, relative values of Wex are determined by continuous wave power saturation methods and expressed as a proportional and dimensionless parameter Π. In the experiments presented here, NiEDDA is characterized as a paramagnetic reagent for solvent accessibility studies, and it is shown that absolute values of Wex can be determined from Π, and that the proportionality constant relating them is independent of the paramagnetic reagent and mobility of the nitroxide. Based on absolute exchange rates, an accessibility factor is defined (0 < ρ < 1) that serves as a quantitative measure of side-chain solvent accessibility. The accessibility factors for a nitroxide side chain at 14 different sites in T4 lysozyme are shown to correlate with a structure-based accessibility parameter derived from the crystal structure of the protein. These results provide a useful means for relating crystallographic and site-directed spin labeling data, and hence comparing crystal and solution structures. PMID:15994891

  12. Efficient sortase-mediated N-terminal labeling of TEV protease cleaved recombinant proteins.

    PubMed

    Sarpong, Kwabena; Bose, Ron

    2017-03-15

    A major challenge in attaching fluorophores or other handles to proteins is the availability of a site-specific labeling strategy that provides stoichiometric modification without compromising protein integrity. We developed a simple approach that combines TEV protease cleavage, sortase modification and affinity purification to N-terminally label proteins. To achieve stoichiometrically-labeled protein, we included a short affinity tag in the fluorophore-containing peptide for post-labeling purification of the modified protein. This strategy can be easily applied to any recombinant protein with a TEV site and we demonstrate this on Epidermal Growth Factor Receptor (EGFR) and Membrane Scaffold Protein (MSP) constructs. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Reactivity assay of surface carboxyl chain-ends of poly(ethylene terephthalate) (PET) film and track-etched microporous membranes using fluorine labelled- and/or 3H-labelled derivatization reagents: tandem analysis by X-ray photoelectron spectroscopy (XPS) and liquid scintillation counting (LSC)

    NASA Astrophysics Data System (ADS)

    Deldime, Michèle; Dewez, Jean-Luc; Schneider, Yves-Jacques; Marchand-Brynaert, Jacqueline

    1995-09-01

    Poly(ethylene terephthalate) (PET) films and track-etched microporous membranes of two different porosities were pretreated by hydrolysis and/or oxidation in order to enhance the amount of carboxyl chain-ends displayed on their surface. The reactivity of these carboxyl functions was determined by derivatization assays in which the reactions were carried out under conditions likely to be encountered in the coupling of water-soluble biochemical signals on the surface of biomaterials. Original reagents, fluorine-labelled and/or 3H-labelled aminoacid compounds, were used. The derivatized PET samples were examined by X-ray photoelectron spectroscopy (XPS) to characterize their apparent surfaces, and by liquid scintillation counting (LSC) to quantify the amount of tags fixed on their open surfaces. Using this dual assay technique, we analyzed the surface of microporous membranes which are currently used as substrates for cell culture systems.

  14. Discovery of high affinity anti-ricin antibodies by B cell receptor sequencing and by yeast display of combinatorial VH:VL libraries from immunized animals.

    PubMed

    Wang, Bo; Lee, Chang-Han; Johnson, Erik L; Kluwe, Christien A; Cunningham, Josephine C; Tanno, Hidetaka; Crooks, Richard M; Georgiou, George; Ellington, Andrew D

    2016-01-01

    Ricin is a toxin that could potentially be used as a bioweapon. We identified anti-ricin A chain antibodies by sequencing the antibody repertoire from immunized mice and by selecting high affinity antibodies using yeast surface display. These methods led to the isolation of multiple antibodies with high (sub-nanomolar) affinity. Interestingly, the antibodies identified by the 2 independent approaches are from the same clonal lineages, indicating for the first time that yeast surface display can identify native antibodies. The new antibodies represent well-characterized reagents for biodefense diagnostics and therapeutics development.

  15. Determination of High-affinity Antibody-antigen Binding Kinetics Using Four Biosensor Platforms.

    PubMed

    Yang, Danlin; Singh, Ajit; Wu, Helen; Kroe-Barrett, Rachel

    2017-04-17

    Label-free optical biosensors are powerful tools in drug discovery for the characterization of biomolecular interactions. In this study, we describe the use of four routinely used biosensor platforms in our laboratory to evaluate the binding affinity and kinetics of ten high-affinity monoclonal antibodies (mAbs) against human proprotein convertase subtilisin kexin type 9 (PCSK9). While both Biacore T100 and ProteOn XPR36 are derived from the well-established Surface Plasmon Resonance (SPR) technology, the former has four flow cells connected by serial flow configuration, whereas the latter presents 36 reaction spots in parallel through an improvised 6 x 6 crisscross microfluidic channel configuration. The IBIS MX96 also operates based on the SPR sensor technology, with an additional imaging feature that provides detection in spatial orientation. This detection technique coupled with the Continuous Flow Microspotter (CFM) expands the throughput significantly by enabling multiplex array printing and detection of 96 reaction sports simultaneously. In contrast, the Octet RED384 is based on the BioLayer Interferometry (BLI) optical principle, with fiber-optic probes acting as the biosensor to detect interference pattern changes upon binding interactions at the tip surface. Unlike the SPR-based platforms, the BLI system does not rely on continuous flow fluidics; instead, the sensor tips collect readings while they are immersed in analyte solutions of a 384-well microplate during orbital agitation. Each of these biosensor platforms has its own advantages and disadvantages. To provide a direct comparison of these instruments' ability to provide quality kinetic data, the described protocols illustrate experiments that use the same assay format and the same high-quality reagents to characterize antibody-antigen kinetics that fit the simple 1:1 molecular interaction model.

  16. Advances in Synthetic Peptides Reagent Discovery

    DTIC Science & Technology

    2013-07-01

    to promote specific and high affinity binding. Longer incubations may result in nonspecific attachment, such as early biofilm formation. Because...peptide libraries yields ligand arrays that classify breast tumor subtypes,” Molecular Cancer Therapeutics, 8(5), 1312-1318 (2009). [26] J. M. Kogot

  17. Dual-probe real-time PCR assay for detection of variola or other orthopoxviruses with dried reagents.

    PubMed

    Aitichou, Mohamed; Saleh, Sharron; Kyusung, Park; Huggins, John; O'Guinn, Monica; Jahrling, Peter; Ibrahim, Sofi

    2008-11-01

    A real-time, multiplexed polymerase chain reaction (PCR) assay based on dried PCR reagents was developed. Only variola virus could be specifically detected by a FAM (6-carboxyfluorescein)-labeled probe while camelpox, cowpox, monkeypox and vaccinia viruses could be detected by a TET (6-carboxytetramethylrhodamine)-labeled probe in a single PCR reaction. Approximately 25 copies of cloned variola virus DNA and 50 copies of genomic orthopoxviruses DNA could be detected with high reproducibility. The assay exhibited a dynamic range of seven orders of magnitude with a correlation coefficient value greater than 0.97. The sensitivity and specificity of the assay, as determined from 100 samples that contained nucleic acids from a multitude of bacterial and viral species were 96% and 98%, respectively. The limit of detection, sensitivity and specificity of the assay were comparable to standard real-time PCR assays with wet reagents. Employing a multiplexed format in this assay allows simultaneous discrimination of the variola virus from other closely related orthopoxviruses. Furthermore, the implementation of dried reagents in real-time PCR assays is an important step towards simplifying such assays and allowing their use in areas where cold storage is not easily accessible.

  18. Rh(II)-catalyzed Reactions of Diazoesters with Organozinc Reagents

    PubMed Central

    Panish, Robert; Selvaraj, Ramajeyam; Fox, Joseph M.

    2015-01-01

    Rh(II)-catalyzed reactions of diazoesters with organozinc reagents are described. Diorganozinc reagents participate in reactions with diazo compounds by two distinct, catalyst-dependent mechanisms. With bulky diisopropylethylacetate ligands, the reaction mechanism is proposed to involve initial formation of a Rh-carbene and subsequent carbozincation to give a zinc enolate. With Rh2(OAc)4, it is proposed that initial formation of an azine precedes 1,2-addition by an organozinc reagent. This straightforward route to the hydrazone products provides a useful method for preparing chiral quaternary α-aminoesters or pyrazoles via the Paul-Knorr condensation with 1,3-diketones. Crossover and deuterium labeling experiments provide evidence for the mechanisms proposed. PMID:26241081

  19. Rh(II)-Catalyzed Reactions of Diazoesters with Organozinc Reagents.

    PubMed

    Panish, Robert; Selvaraj, Ramajeyam; Fox, Joseph M

    2015-08-21

    Rh(II)-catalyzed reactions of diazoesters with organozinc reagents are described. Diorganozinc reagents participate in reactions with diazo compounds by two distinct, catalyst-dependent mechanisms. With bulky diisopropylethyl acetate ligands, the reaction mechanism is proposed to involve initial formation of a Rh-carbene and subsequent carbozincation to give a zinc enolate. With Rh2(OAc)4, it is proposed that initial formation of an azine precedes 1,2-addition by an organozinc reagent. This straightforward route to the hydrazone products provides a useful method for preparing chiral quaternary α-aminoesters or pyrazoles via the Paul-Knorr condensation with 1,3-diketones. Crossover and deuterium labeling experiments provide evidence for the mechanisms proposed.

  20. 21 CFR 660.28 - Labeling.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Labeling. 660.28 Section 660.28 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS ADDITIONAL... Reagents may be color coded with the specified color which shall be a visual match to a specific color...

  1. The Degradation of 14C-Glutamic Acid by L-Glutamic Acid Decarboxylase.

    ERIC Educational Resources Information Center

    Dougherty, Charles M; Dayan, Jean

    1982-01-01

    Describes procedures and semi-micro reaction apparatus (carbon dioxide trap) to demonstrate how a particular enzyme (L-Glutamic acid decarboxylase) may be used to determine the site or sites of labeling in its substrate (carbon-14 labeled glutamic acid). Includes calculations, solutions, and reagents used. (Author/SK)

  2. Biochemist's Toolbox

    ERIC Educational Resources Information Center

    Bakhtiar, Ray

    2013-01-01

    Surface plasmon resonance (SPR) spectroscopy is a powerful, label-free technique to monitor noncovalent molecular interactions in real time and in a noninvasive fashion. As a label-free assay, SPR does not require tags, dyes, or specialized reagents (e.g., enzymes-substrate complexes) to elicit a visible or a fluorescence signal. During the last…

  3. Site Specific Discrete PEGylation of 124I-Labeled mCC49 Fab′ Fragments Improves Tumor MicroPET/CT Imaging in Mice

    PubMed Central

    Ding, Haiming; Carlton, Michelle M.; Povoski, Stephen P.; Milum, Keisha; Kumar, Krishan; Kothandaraman, Shankaran; Hinkle, George H.; Colcher, David; Brody, Rich; Davis, Paul D.; Pokora, Alex; Phelps, Mitchell; Martin, Edward W.; Tweedle, Michael F.

    2014-01-01

    The tumor-associated glycoprotein-72 (TAG-72) antigen is highly overexpressed in various human adenocarcinomas and anti-TAG-72 monoclonal antibodies, and fragments are therefore useful as pharmaceutical targeting vectors. In this study, we investigated the effects of site-specific PEGylation with MW 2–4 kDa discrete, branched PEGylation reagents on mCC49 Fab′ (MW 50 kDa) via in vitro TAG72 binding, and in vivo blood clearance kinetics, biodistribution, and mouse tumor microPET/CT imaging. mCC49Fab′ (Fab′-NEM) was conjugated at a hinge region cysteine with maleimide-dPEG12-(dPEG24COOH)3 acid (Mal-dPEG-A), maleimide-dPEG12-(dPEG12COOH)3 acid (Mal-dPEG-B), or maleimide-dPEG12-(m-dPEG24)3 (Mal-dPEG-C), and then radiolabeled with iodine-124 (124I) in vitro radioligand binding assays and in vivo studies used TAG-72 expressing LS174T human colon carcinoma cells and xenograft mouse tumors. Conjugation of mCC49Fab′ with Mal-dPEG-A (Fab′-A) reduced the binding affinity of the non PEGylated Fab′ by 30%; however, in vivo, Fab′-A significantly lengthened the blood retention vs Fab′-NEM (47.5 vs 28.1%/ID at 1 h, 25.1 vs 8.4%/ID at 5 h, p < 0.01), showed excellent tumor to background, better microPET/CT images due to higher tumor accumulation, and increased tumor concentration in excised tissues at 72 h by 130% (5.09 ± 0.83 vs 3.83 ± 1.50%ID/g, p < 0.05). Despite the strong similarity of the three PEGylation reagents, PEGylation with Mal-dPEG-B or -C reduced the in vitro binding affinity of Fab′-NEM by 70%, blood retention, microPET/CT imaging tumor signal intensity, and residual 72 h tumor concentration by 49% (3.83 ± 1.50 vs 1.97 ± 0.29%ID/g, p < 0.05) and 63% (3.83 ± 1.50 vs 1.42 ± 0.35%ID/g, p < 0.05), respectively. We conclude that remarkably subtle changes in the structure of the PEGylation reagent can create significantly altered biologic behavior. Further study is warranted of conjugates of the triple branched, negatively charged Mal-dPEG-A. PMID:24175669

  4. Detection of glycoproteins in the Acanthamoeba plasma membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paatero, G.I.L.; Gahmberg, C.G.

    1988-11-01

    In the present study the authors have shown that glycoproteins are present in the plasma membrane of Acanthamoeba castellanii by utilizing different radioactive labeling techniques. Plasma membrane proteins in the amoeba were iodinated by {sup 125}I-lactoperoxidase labeling and the solubilized radiolabeled glycoproteins were separated by lectin-Sepharose affinity chromatography followed by polyacrylamide gel electrophoresis. The periodate/NaB{sup 3}H{sub 4} and galactose oxidase/NaB{sup 3}H{sub 4} labeling techniques were used for labeling of surface carbohydrates in the amoeba. Several surface-labeled glycoproteins were observed in addition to a diffusely labeled region with M{sub r} of 55,000-75,000 seen on electrophoresis, which could represent glycolipids. The presencemore » of glycoproteins in the plasma membrane of Acanthamoeba castellanii was confirmed by metabolic labeling with ({sup 35}S)methionine followed by lectin-Sepharose affinity chromatography and polyacrylamide gel electrophoresis.« less

  5. Chemical labelling for visualizing native AMPA receptors in live neurons

    PubMed Central

    Wakayama, Sho; Kiyonaka, Shigeki; Arai, Itaru; Kakegawa, Wataru; Matsuda, Shinji; Ibata, Keiji; Nemoto, Yuri L.; Kusumi, Akihiro; Yuzaki, Michisuke; Hamachi, Itaru

    2017-01-01

    The location and number of neurotransmitter receptors are dynamically regulated at postsynaptic sites. However, currently available methods for visualizing receptor trafficking require the introduction of genetically engineered receptors into neurons, which can disrupt the normal functioning and processing of the original receptor. Here we report a powerful method for visualizing native α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) which are essential for cognitive functions without any genetic manipulation. This is based on a covalent chemical labelling strategy driven by selective ligand-protein recognition to tether small fluorophores to AMPARs using chemical AMPAR modification (CAM) reagents. The high penetrability of CAM reagents enables visualization of native AMPARs deep in brain tissues without affecting receptor function. Moreover, CAM reagents are used to characterize the diffusion dynamics of endogenous AMPARs in both cultured neurons and hippocampal slices. This method will help clarify the involvement of AMPAR trafficking in various neuropsychiatric and neurodevelopmental disorders. PMID:28387242

  6. Detection of biomarkers using recombinant antibodies coupled to nanostructured platforms

    PubMed Central

    Kierny, Michael R.; Cunningham, Thomas D.; Kay, Brian K.

    2012-01-01

    The utility of biomarker detection in tomorrow's personalized health care field will mean early and accurate diagnosis of many types of human physiological conditions and diseases. In the search for biomarkers, recombinant affinity reagents can be generated to candidate proteins or post-translational modifications that differ qualitatively or quantitatively between normal and diseased tissues. The use of display technologies, such as phage-display, allows for manageable selection and optimization of affinity reagents for use in biomarker detection. Here we review the use of recombinant antibody fragments, such as scFvs and Fabs, which can be affinity-selected from phage-display libraries, to bind with both high specificity and affinity to biomarkers of cancer, such as Human Epidermal growth factor Receptor 2 (HER2) and Carcinoembryonic antigen (CEA). We discuss how these recombinant antibodies can be fabricated into nanostructures, such as carbon nanotubes, nanowires, and quantum dots, for the purpose of enhancing detection of biomarkers at low concentrations (pg/mL) within complex mixtures such as serum or tissue extracts. Other sensing technologies, which take advantage of ‘Surface Enhanced Raman Scattering’ (gold nanoshells), frequency changes in piezoelectric crystals (quartz crystal microbalance), or electrical current generation and sensing during electrochemical reactions (electrochemical detection), can effectively provide multiplexed platforms for detection of cancer and injury biomarkers. Such devices may soon replace the traditional time consuming ELISAs and Western blots, and deliver rapid, point-of-care diagnostics to market. PMID:22833780

  7. Deconvolution of antibody affinities and concentrations by non-linear regression analysis of competitive ELISA data.

    PubMed

    Stevens, F J; Bobrovnik, S A

    2007-12-01

    Physiological responses of the adaptive immune system are polyclonal in nature whether induced by a naturally occurring infection, by vaccination to prevent infection or, in the case of animals, by challenge with antigen to generate reagents of research or commercial significance. The composition of the polyclonal responses is distinct to each individual or animal and changes over time. Differences exist in the affinities of the constituents and their relative proportion of the responsive population. In addition, some of the antibodies bind to different sites on the antigen, whereas other pairs of antibodies are sterically restricted from concurrent interaction with the antigen. Even if generation of a monoclonal antibody is the ultimate goal of a project, the quality of the resulting reagent is ultimately related to the characteristics of the initial immune response. It is probably impossible to quantitatively parse the composition of a polyclonal response to antigen. However, molecular regression allows further parameterization of a polyclonal antiserum in the context of certain simplifying assumptions. The antiserum is described as consisting of two competing populations of high- and low-affinity and unknown relative proportions. This simple model allows the quantitative determination of representative affinities and proportions. These parameters may be of use in evaluating responses to vaccines, to evaluating continuity of antibody production whether in vaccine recipients or animals used for the production of antisera, or in optimizing selection of donors for the production of monoclonal antibodies.

  8. Fluorescently labeled dengue viruses as probes to identify antigen-specific memory B cells by multiparametric flow cytometry.

    PubMed

    Woda, Marcia; Mathew, Anuja

    2015-01-01

    Low frequencies of memory B cells in the peripheral blood make it challenging to measure the functional and phenotypic characteristics of this antigen experienced subset of B cells without in vitro culture. To date, reagents are lacking to measure ex vivo frequencies of dengue virus (DENV)-specific memory B cells. We wanted to explore the possibility of using fluorescently labeled DENV as probes to detect antigen-specific memory B cells in the peripheral blood of DENV immune individuals. Alexa Fluor dye-labeled DENV yielded viable virus that could be stored at -80°C for long periods of time. Using a careful gating strategy and methods to decrease non-specific binding, we were able to identify a small frequency of B cells from dengue immune individuals that bound labeled DENV. Sorted DENV(+) B cells from immune, but not naïve donors secreted antibodies that bound DENV after in vitro stimulation. Overall, Alexa Fluor dye-labeled DENVs are useful reagents to enable the detection and characterization of memory B cells in DENV immune individuals. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Application of histone modification-specific interaction domains as an alternative to antibodies.

    PubMed

    Kungulovski, Goran; Kycia, Ina; Tamas, Raluca; Jurkowska, Renata Z; Kudithipudi, Srikanth; Henry, Chisato; Reinhardt, Richard; Labhart, Paul; Jeltsch, Albert

    2014-11-01

    Post-translational modifications (PTMs) of histones constitute a major chromatin indexing mechanism, and their proper characterization is of highest biological importance. So far, PTM-specific antibodies have been the standard reagent for studying histone PTMs despite caveats such as lot-to-lot variability of specificity and binding affinity. Herein, we successfully employed naturally occurring and engineered histone modification interacting domains for detection and identification of histone PTMs and ChIP-like enrichment of different types of chromatin. Our results demonstrate that histone interacting domains are robust and highly specific reagents that can replace or complement histone modification antibodies. These domains can be produced recombinantly in Escherichia coli at low cost and constant quality. Protein design of reading domains allows for generation of novel specificities, addition of affinity tags, and preparation of PTM binding pocket variants as matching negative controls, which is not possible with antibodies. © 2014 Kungulovski et al.; Published by Cold Spring Harbor Laboratory Press.

  10. Artificial Affinity Proteins as Ligands of Immunoglobulins

    PubMed Central

    Mouratou, Barbara; Béhar, Ghislaine; Pecorari, Frédéric

    2015-01-01

    A number of natural proteins are known to have affinity and specificity for immunoglobulins. Some of them are widely used as reagents for detection or capture applications, such as Protein G and Protein A. However, these natural proteins have a defined spectrum of recognition that may not fit specific needs. With the development of combinatorial protein engineering and selection techniques, it has become possible to design artificial affinity proteins with the desired properties. These proteins, termed alternative scaffold proteins, are most often chosen for their stability, ease of engineering and cost-efficient recombinant production in bacteria. In this review, we focus on alternative scaffold proteins for which immunoglobulin binders have been identified and characterized. PMID:25647098

  11. Affinity labeling of the folate-methotrexate transporter from Leishmania donovani

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, J.T.; Ullman, B.

    1989-08-22

    An affinity labeling technique has been developed to identify the folate-methotrexate transporter of Leishmania donovani promastigotes using activated derivatives of the ligands. These activated derivatives were synthesized by incubating folate and methotrexate with a 10-fold excess of 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide (EDC) for 10 min at ambient temperature in dimethyl sulfoxide. When intact wild-type (DI700) Leishmania donovani or preparations of their membranes were incubated with a 0.4 {mu}M concentration of either activated ({sup 3}H)folate or activated ({sup 3}H)methotrexate, the radiolabeled ligands were covalently incorporated into a polypeptide with a molecular weight of approximately 46,000, as demonstrated by SDS-polyacrylamide gel electrophoresis. No affinity labelingmore » of a 46,000-dalton protein was observed when equimolar concentrations of activated radiolabeled ligands were incubated with intact cells or membranes prepared from a methotrexate-resistant mutant clone of Leishmania donovani, MTXA5, that is genetically defective in folate-methotrexate transport capability. Time course studies indicated that maximal labeling of the 46,000-dalton protein occurred within 5-10 min of incubation of intact cells with activated ligand. These studies provide biochemical evidence that the folate-methotrexate transporter of Leishmania donovani can be identified in crude extracts by an affinity labeling technique and serve as a prerequisite to further analysis of the transport protein by providing a vehicle for subsequent purification of this membrane carrier. Moreover, these investigations suggest that the affinity labeling technique using EDC-activated ligands may be exploitable to analyze other cell surface binding proteins in Leishmania donovani, as well as in other organisms.« less

  12. 21 CFR 660.35 - Labeling.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... red blood cell concentration is less than 2 percent, the variance shall be no more than ±0.5... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.35 Labeling. In... of red blood cells in the suspension either as a discrete figure with a variance of more than ±1...

  13. 21 CFR 660.35 - Labeling.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... red blood cell concentration is less than 2 percent, the variance shall be no more than ±0.5... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.35 Labeling. In... of red blood cells in the suspension either as a discrete figure with a variance of more than ±1...

  14. 21 CFR 660.35 - Labeling.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... red blood cell concentration is less than 2 percent, the variance shall be no more than ±0.5... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.35 Labeling. In... of red blood cells in the suspension either as a discrete figure with a variance of more than ±1...

  15. 21 CFR 660.35 - Labeling.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... red blood cell concentration is less than 2 percent, the variance shall be no more than ±0.5... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.35 Labeling. In... of red blood cells in the suspension either as a discrete figure with a variance of more than ±1...

  16. [Evaluation of transfection effectiveness using fluorescein-labelled oligonucleotides and entraster-R siRNA transfection into Plasmodium falciparum].

    PubMed

    Zhou, Hong-Chang; Gao, Yu-Hui; Shao, Sheng-Wen; Zhang, Hui; Zhang, Ting

    2013-12-01

    The cultured Plasmodium falciparum parasites were synchronized twice by 5% sorbitol treatment twice (8-hour window), and then incubated at 37 degrees C for 16 h. Parasites were transfected with fluorescein-labelled oligonucleotides (group A) or fluorescein-labelled oligonucleotides+Entranster-R siRNA transfection reagent (group B). After 5 h a part of parasites was evaluated by fluorescence microscopy and flow cytometry. The rest of parasites were washed with RPMI 1640 medium, and then incubated with 500 microl new medium containing 2% fresh erythrocytes for another 12 h, and detected by flow cytometry. The fluorescein-labelled oligonucleotides were localized in erythrocytes in group B, but nearly no fluorescence was observed for group A. Flow cytometry analysis indicated that the transfection efficiency of group B [(47.40 +/- 3.39)%] was higher than that of group A [(0.60 +/- 0.27)%]. In the second cell cycle, the transfection efficiency in group B was (26.85 +/- 2.90)%, while that of group A was nearly zero. The results indicated that Entranster-R siRNA transfection reagent may increase the oligonucleotides transfection efficiency.

  17. Antibodies Targeting Closely Adjacent or Minimally Overlapping Epitopes Can Displace One Another

    PubMed Central

    Abdiche, Yasmina Noubia; Yeung, Andy Yik; Ni, Irene; Stone, Donna; Miles, Adam; Morishige, Winse; Rossi, Andrea; Strop, Pavel

    2017-01-01

    Here we describe how real-time label-free biosensors can be used to identify antibodies that compete for closely adjacent or minimally overlapping epitopes on their specific antigen via a mechanism of antibody displacement. By kinetically perturbing one another’s binding towards their antigen via the formation of a transient trimolecular complex, antibodies can displace one another in a fully reversible and dose-dependent manner. Displacements can be readily identified when epitope binning assays are performed in a classical sandwich assay format whereby a solution antibody (analyte) is tested for binding to its antigen that is first captured via an immobilized antibody (ligand) because an inverted sandwiching response is observed when an analyte displaces a ligand, signifying the antigen’s unusually rapid dissociation from its ligand. In addition to classifying antibodies within a panel in terms of their ability to block or sandwich pair with one another, displacement provides a hybrid mechanism of competition. Using high-throughput epitope binning studies we demonstrate that displacements can be observed on any target, if the antibody panel contains appropriate epitope diversity. Unidirectional displacements occurring between disparate-affinity antibodies can generate apparent asymmetries in a cross-blocking experiment, confounding their interpretation. However, examining competition across a wide enough concentration range will often reveal that these displacements are reversible. Displacement provides a gentle and efficient way of eluting antigen from an otherwise high affinity binding partner which can be leveraged in designing reagents or therapeutic antibodies with unique properties. PMID:28060885

  18. Antibodies Targeting Closely Adjacent or Minimally Overlapping Epitopes Can Displace One Another.

    PubMed

    Abdiche, Yasmina Noubia; Yeung, Andy Yik; Ni, Irene; Stone, Donna; Miles, Adam; Morishige, Winse; Rossi, Andrea; Strop, Pavel

    2017-01-01

    Here we describe how real-time label-free biosensors can be used to identify antibodies that compete for closely adjacent or minimally overlapping epitopes on their specific antigen via a mechanism of antibody displacement. By kinetically perturbing one another's binding towards their antigen via the formation of a transient trimolecular complex, antibodies can displace one another in a fully reversible and dose-dependent manner. Displacements can be readily identified when epitope binning assays are performed in a classical sandwich assay format whereby a solution antibody (analyte) is tested for binding to its antigen that is first captured via an immobilized antibody (ligand) because an inverted sandwiching response is observed when an analyte displaces a ligand, signifying the antigen's unusually rapid dissociation from its ligand. In addition to classifying antibodies within a panel in terms of their ability to block or sandwich pair with one another, displacement provides a hybrid mechanism of competition. Using high-throughput epitope binning studies we demonstrate that displacements can be observed on any target, if the antibody panel contains appropriate epitope diversity. Unidirectional displacements occurring between disparate-affinity antibodies can generate apparent asymmetries in a cross-blocking experiment, confounding their interpretation. However, examining competition across a wide enough concentration range will often reveal that these displacements are reversible. Displacement provides a gentle and efficient way of eluting antigen from an otherwise high affinity binding partner which can be leveraged in designing reagents or therapeutic antibodies with unique properties.

  19. Quantum dot-doped silica nanoparticles as probes for targeting of T-lymphocytes.

    PubMed

    Bottini, Massimo; D'Annibale, Federica; Magrini, Andrea; Cerignoli, Fabio; Arimura, Yutaka; Dawson, Marcia I; Bergamaschi, Enrico; Rosato, Nicola; Bergamaschi, Antonio; Mustelin, Tomas

    2007-01-01

    To enhance diagnostic or therapeutic efficacy, novel nanomaterials must be engineered to function in biologically relevant environments, be visible by conventional fluorescent microscopy, and have multivalent loading capacity for easy detection or effective drug delivery. Here we report the fabrication of silica nanoparticles doped with quantum dots and superficially functionalized with amino and phosphonate groups. The amino groups were acylated with a water-soluble biotin-labeling reagent. The biotinylated nanoparticles were subsequently decorated with neutravidin by exploiting the strong affinity between neutravidin and biotin. The resultant neutravidin-decorated fluorescent silica nanoparticles stably dispersed under physiological conditions, were visible by conventional optical and confocal fluorescent microscopy, and could be further functionalized with macromolecules, nucleic acids, and polymers. We also coated the surface of the nanoparticles with biotinylated mouse anti-human CD3 (alphaCD3). The resultant fluorescent nanoassembly was taken up by Jurkat T cells through receptor-mediated endocytosis and was partially released to lysosomes. Thus, quantum dot-doped silica nanoparticles decorated with neutravidin represent a potentially excellent scaffold for constructing specific intracellular nanoprobes and transporters.

  20. Location and ion-binding of membrane-associated valinomycin, a proton nuclear magnetic resonance study.

    PubMed

    Meers, P; Feigenson, G W

    1988-03-03

    Valinomycin, incorporated in small unilamellar vesicles of perdeuterated dimyristoylphosphatidylcholine, reveals several well-resolved 1H-NMR resonances. These resonances were used to examine the location, orientation and ion-binding of membrane-bound valinomycin. The order of affinity of membrane-bound valinomycin for cations is Rb+ greater than K+ greater than Cs+ greater than Ba2+, and binding is sensitive to surface change. The exchange between bound and free forms is fast on the NMR time scale. The intrinsic binding constants, extrapolated to zero anion concentration, are similar to those determined in aqueous solution. Rb+ and K+ show 1:1 binding to valinomycin, whereas the stoichiometry of Cs+ and Ba2+ is not certain. Paramagnetic chemical shift reagents and nitroxide spin label relaxation probes were used to study the location and orientation of valinomycin in the membrane. Despite relatively fast exchange of bound cations, the time average location of the cation-free form of valinomycin is deep within the bilayer under the conditions of these experiments. Upon complexation to K+, valinomycin moves closer to the interfacial region.

  1. Novel interactions of mitochondria and reactive oxygen/nitrogen species in alcohol mediated liver disease

    PubMed Central

    Mantena, Sudheer K; King, Adrienne L; Andringa, Kelly K; Landar, Aimee; Darley-Usmar, Victor; Bailey, Shannon M

    2007-01-01

    Mitochondrial dysfunction is known to be a contributing factor to a number of diseases including chronic alcohol induced liver injury. While there is a detailed understanding of the metabolic pathways and proteins of the liver mitochondrion, little is known regarding how changes in the mitochondrial proteome may contribute to the development of hepatic pathologies. Emerging evidence indicates that reactive oxygen and nitrogen species disrupt mitochondrial function through post-translational modifications to the mitochondrial proteome. Indeed, various new affinity labeling reagents are available to test the hypothesis that post-translational modification of proteins by reactive species contributes to mitochondrial dysfunction and alcoholic fatty liver disease. Specialized proteomic techniques are also now available, which allow for identification of defects in the assembly of multi-protein complexes in mitochondria and the resolution of the highly hydrophobic proteins of the inner membrane. In this review knowledge gained from the study of changes to the mitochondrial proteome in alcoholic hepatotoxicity will be described and placed into a mechanistic framework to increase understanding of the role of mitochondrial dysfunction in liver disease. PMID:17854139

  2. Quantitative interaction proteomics using mass spectrometry.

    PubMed

    Wepf, Alexander; Glatter, Timo; Schmidt, Alexander; Aebersold, Ruedi; Gstaiger, Matthias

    2009-03-01

    We present a mass spectrometry-based strategy for the absolute quantification of protein complex components isolated through affinity purification. We quantified bait proteins via isotope-labeled reference peptides corresponding to an affinity tag sequence and prey proteins by label-free correlational quantification using the precursor ion signal intensities of proteotypic peptides generated in reciprocal purifications. We used this method to quantitatively analyze interaction stoichiometries in the human protein phosphatase 2A network.

  3. Qualitative and quantitative evaluation of derivatization reagents for different types of protein-bound carbonyl groups.

    PubMed

    Bollineni, Ravi Chand; Fedorova, Maria; Hoffmann, Ralf

    2013-09-07

    Mass spectrometry (MS) of 'carbonylated proteins' often involves derivatization of reactive carbonyl groups to facilitate their enrichment, identification and quantification. Among the many reported reagents, 2,4-dinitrophenylhydrazine (DNPH), biotin hydrazide (BHZ) and O-(biotinylcarbazoylmethyl) hydroxylamine (ARP) are the most frequently used. Despite their common use in carbonylation research, their reactivity towards protein-bound carbonyls has not been quantitatively evaluated in detail, to the best of our knowledge. Thus we studied the reactivity and specificity of these reagents towards different classes of reactive carbonyl groups (e.g. aldehydes, ketones and lactams), each being represented by a synthetic peptide carrying an accordingly modified residue. All three tagging reagents were selective for aliphatic aldehydes and ketones. Lactams and carbonyl-containing tryptophan oxidation products, however, were labelled only at low levels or not at all. Whereas DNPH derivatization was efficient under the published standard conditions, the derivatization conditions for BHZ and ARP had to be altered. Acidic conditions provided quantitative labelling yields for ARP. Peptides derivatized with DNPH, BHZ and ARP fragmented efficiently in tandem mass spectrometry, when the experimental conditions were chosen carefully for each reagent. Importantly, the tested carbonylated peptides did not cross-react with amino groups in other proteins present during sample preparations or enzymatic digestion. Thus, it appears favourable to digest proteins first and then derivatise the reactive carbonyl groups more efficiently at the peptide level under acidic conditions. The carbonylated model peptides used in this study might be valid internal standards for carbonylation proteomics.

  4. Relative binding affinity of carboxylate-, phosphonate-, and bisphosphonate-functionalized gold nanoparticles targeted to damaged bone tissue

    NASA Astrophysics Data System (ADS)

    Ross, Ryan D.; Cole, Lisa E.; Roeder, Ryan K.

    2012-10-01

    Functionalized Au NPs have received considerable recent interest for targeting and labeling cells and tissues. Damaged bone tissue can be targeted by functionalizing Au NPs with molecules exhibiting affinity for calcium. Therefore, the relative binding affinity of Au NPs surface functionalized with either carboxylate ( l-glutamic acid), phosphonate (2-aminoethylphosphonic acid), or bisphosphonate (alendronate) was investigated for targeted labeling of damaged bone tissue in vitro. Targeted labeling of damaged bone tissue was qualitatively verified by visual observation and backscattered electron microscopy, and quantitatively measured by the surface density of Au NPs using field-emission scanning electron microscopy. The surface density of functionalized Au NPs was significantly greater within damaged tissue compared to undamaged tissue for each functional group. Bisphosphonate-functionalized Au NPs exhibited a greater surface density labeling damaged tissue compared to glutamic acid- and phosphonic acid-functionalized Au NPs, which was consistent with the results of previous work comparing the binding affinity of the same functionalized Au NPs to synthetic hydroxyapatite crystals. Targeted labeling was enabled not only by the functional groups but also by the colloidal stability in solution. Functionalized Au NPs were stabilized by the presence of the functional groups, and were shown to remain well dispersed in ionic (phosphate buffered saline) and serum (fetal bovine serum) solutions for up to 1 week. Therefore, the results of this study suggest that bisphosphonate-functionalized Au NPs have potential for targeted delivery to damaged bone tissue in vitro and provide motivation for in vivo investigation.

  5. Reversible chemoselective tagging and functionalization of methionine containing peptides.

    PubMed

    Kramer, Jessica R; Deming, Timothy J

    2013-06-07

    Reagents were developed to allow chemoselective tagging of methionine residues in peptides and polypeptides, subsequent bioorthogonal functionalization of the tags, and cleavage of the tags when desired. This methodology can be used for triggered release of therapeutic peptides, or release of tagged protein digests from affinity columns.

  6. Identification of hormone-interacting amino acid residues within the steroid-binding domain of the glucocorticoid receptor in relation to other steroid hormone receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlstedt-Duke, J.; Stroemstedt, P.E.; Persson, B.

    1988-05-15

    Purified rat liver glucocorticoid receptor was covalently charged with (/sup 3/H)glucocorticoid by photoaffinity labeling (UV irradiation of (/sup 3/H)triamcinolone acetonide-glucocorticoid receptor) or affinity labeling (incubation with (/sup 3/H)dexamethasone mesylate). After labeling, separate samples of the denatured receptor were cleaved with trypsin (directly or after prior succinylation), chymotrypsin, and cyanogen bromide. Labeled residues in the peptides obtained were identified by radiosequence analysis. The peaks of radioactivity corresponded to Met-622 and Cys-754 after photoaffinity labeling with (/sup 3/H)triamcinolone acetonide and Cys-656 after affinity labeling with (/sup 3/H)dexamethasone mesylate. The labeled residues are all positioned within hydrophobic segments of the steroid-binding domain. Themore » patterns of hydropathy and secondary structure for the glucocorticoid receptor are highly similar to those for the progestin receptor and similar but less so to those for the estrogen receptor and to those for c-erb A.« less

  7. An integrated, self-contained microfluidic cassette for isolation, amplification, and detection of nucleic acids

    PubMed Central

    Chen, Dafeng; Mauk, Michael; Qiu, Xianbo; Liu, Changchun; Kim, Jitae; Ramprasad, Sudhir; Ongagna, Serge; Abrams, William R.; Malamud, Daniel; Corstjens, Paul L. A. M.

    2010-01-01

    A self-contained, integrated, disposable, sample-to-answer, polycarbonate microfluidic cassette for nucleic acid—based detection of pathogens at the point of care was designed, constructed, and tested. The cassette comprises on-chip sample lysis, nucleic acid isolation, enzymatic amplification (polymerase chain reaction and, when needed, reverse transcription), amplicon labeling, and detection. On-chip pouches and valves facilitate fluid flow control. All the liquids and dry reagents needed for the various reactions are pre-stored in the cassette. The liquid reagents are stored in flexible pouches formed on the chip surface. Dry (RT-)PCR reagents are pre-stored in the thermal cycling, reaction chamber. The process operations include sample introduction; lysis of cells and viruses; solid-phase extraction, concentration, and purification of nucleic acids from the lysate; elution of the nucleic acids into a thermal cycling chamber and mixing with pre-stored (RT-)PCR dry reagents; thermal cycling; and detection. The PCR amplicons are labeled with digoxigenin and biotin and transmitted onto a lateral flow strip, where the target analytes bind to a test line consisting of immobilized avidin-D. The immobilized nucleic acids are labeled with up-converting phosphor (UCP) reporter particles. The operation of the cassette is automatically controlled by an analyzer that provides pouch and valve actuation with electrical motors and heating for the thermal cycling. The functionality of the device is demonstrated by detecting the presence of bacterial B.Cereus, viral armored RNA HIV, and HIV I virus in saliva samples. The cassette and actuator described here can be used to detect other diseases as well as the presence of bacterial and viral pathogens in the water supply and other fluids. PMID:20401537

  8. An integrated, self-contained microfluidic cassette for isolation, amplification, and detection of nucleic acids.

    PubMed

    Chen, Dafeng; Mauk, Michael; Qiu, Xianbo; Liu, Changchun; Kim, Jitae; Ramprasad, Sudhir; Ongagna, Serge; Abrams, William R; Malamud, Daniel; Corstjens, Paul L A M; Bau, Haim H

    2010-08-01

    A self-contained, integrated, disposable, sample-to-answer, polycarbonate microfluidic cassette for nucleic acid-based detection of pathogens at the point of care was designed, constructed, and tested. The cassette comprises on-chip sample lysis, nucleic acid isolation, enzymatic amplification (polymerase chain reaction and, when needed, reverse transcription), amplicon labeling, and detection. On-chip pouches and valves facilitate fluid flow control. All the liquids and dry reagents needed for the various reactions are pre-stored in the cassette. The liquid reagents are stored in flexible pouches formed on the chip surface. Dry (RT-)PCR reagents are pre-stored in the thermal cycling, reaction chamber. The process operations include sample introduction; lysis of cells and viruses; solid-phase extraction, concentration, and purification of nucleic acids from the lysate; elution of the nucleic acids into a thermal cycling chamber and mixing with pre-stored (RT-)PCR dry reagents; thermal cycling; and detection. The PCR amplicons are labeled with digoxigenin and biotin and transmitted onto a lateral flow strip, where the target analytes bind to a test line consisting of immobilized avidin-D. The immobilized nucleic acids are labeled with up-converting phosphor (UCP) reporter particles. The operation of the cassette is automatically controlled by an analyzer that provides pouch and valve actuation with electrical motors and heating for the thermal cycling. The functionality of the device is demonstrated by detecting the presence of bacterial B.Cereus, viral armored RNA HIV, and HIV I virus in saliva samples. The cassette and actuator described here can be used to detect other diseases as well as the presence of bacterial and viral pathogens in the water supply and other fluids.

  9. Toward low-cost affinity reagents: lyophilized yeast-scFv probes specific for pathogen antigens.

    PubMed

    Gray, Sean A; Weigel, Kris M; Ali, Ibne K M; Lakey, Annie A; Capalungan, Jeremy; Domingo, Gonzalo J; Cangelosi, Gerard A

    2012-01-01

    The generation of affinity reagents, usually monoclonal antibodies, remains a critical bottleneck in biomedical research and diagnostic test development. Recombinant antibody-like proteins such as scFv have yet to replace traditional monoclonal antibodies in antigen detection applications, in large part because of poor performance of scFv in solution. To address this limitation, we have developed assays that use whole yeast cells expressing scFv on their surfaces (yeast-scFv) in place of soluble purified scFv or traditional monoclonal antibodies. In this study, a nonimmune library of human scFv displayed on the surfaces of yeast cells was screened for clones that bind to recombinant cyst proteins of Entamoeba histolytica, an enteric pathogen of humans. Selected yeast-scFv clones were stabilized by lyophilization and used in detection assay formats in which the yeast-scFv served as solid support-bound monoclonal antibodies. Specific binding of antigen to the yeast-scFv was detected by staining with rabbit polyclonal antibodies. In flow cytometry-based assays, lyophilized yeast-scFv reagents retained full binding activity and specificity for their cognate antigens after 4 weeks of storage at room temperature in the absence of desiccants or stabilizers. Because flow cytometry is not available to all potential assay users, an immunofluorescence assay was also developed that detects antigen with similar sensitivity and specificity. Antigen-specific whole-cell yeast-scFv reagents can be selected from nonimmune libraries in 2-3 weeks, produced in vast quantities, and packaged in lyophilized form for extended shelf life. Lyophilized yeast-scFv show promise as low cost, renewable alternatives to monoclonal antibodies for diagnosis and research.

  10. An electrochemical aptasensor for thrombin detection based on direct electrochemistry of glucose oxidase using a functionalized graphene hybrid for amplification.

    PubMed

    Bai, Lijuan; Yan, Bin; Chai, Yaqin; Yuan, Ruo; Yuan, Yali; Xie, Shunbi; Jiang, Liping; He, Ying

    2013-11-07

    In this work, we reported a new label-free electrochemical aptasensor for highly sensitive detection of thrombin using direct electron transfer of glucose oxidase (GOD) as a redox probe and a gold nanoparticle-polyaniline-graphene (Au-PANI-Gra) hybrid for amplification. The Au-PANI-Gra hybrid with large surface area provided a biocompatible sensing platform for the immobilization of GOD. GOD was encapsulated into the three-dimensional netlike (3-mercaptopropyl)trimethoxysilane (MPTS) to form the MPTS-GOD biocomposite, which not only retained the native functions and properties, but also exhibited tunable porosity, high thermal stability, and chemical inertness. With abundant thiol tail groups on MPTS, MPTS-GOD was able to chemisorb onto the surface of the Au-PANI-Gra modified electrode through the strong affinity of the Au-S bond. The electrochemical signal originated from GOD, avoiding the addition or labeling of other redox mediators. After immobilizing the thiolated thrombin binding aptamer through gold nanoparticles (AuNPs), GOD as a blocking reagent was employed to block the remaining active sites of the AuNPs and avoid the nonspecific adsorption. The proposed method avoided the labeling process of redox probes and increased the amount of electroactive GOD. The concentration of thrombin was monitored based on the decrease of current response through cyclic voltammetry (CV) in 0.1 M PBS (pH 7.4). With the excellent direct electron transfer of double layer GOD membranes, the resulting aptasensor exhibited high sensitivity for detection of thrombin with a wide linear range from 1.0 × 10(-12) to 3.0 × 10(-8) M. The proposed aptasensor also showed good stability, satisfactory reproducibility and high specificity, which provided a promising strategy for electrochemical aptamer-based detection of other biomolecules.

  11. 2-Phenylbenzothiazole conjugated with cyclopentadienyl tricarbonyl [CpM(CO)3] (M = Re, (99m)Tc) complexes as potential imaging probes for β-amyloid plaques.

    PubMed

    Jia, Jianhua; Cui, Mengchao; Dai, Jiapei; Liu, Boli

    2015-04-14

    Technetium-99m-labeled cyclopentadienyl tricarbonyl complexes conjugated with the 2-phenylbenzothiazole binding motif were synthesized. The rhenium surrogates , , and were demonstrated to have moderate to high affinities for Aβ1-42 aggregates with Ki values of 142, 76, 64 and 24 nM, respectively. During the fluorescence staining of brain sections of transgenic mice and patients with Alzheimer's disease, these rhenium complexes demonstrated perfect and intense labeling of Aβ plaques. Moreover, in in vitro autoradiography, (99m)Tc-labeled complexes clearly detected β-amyloid plaques on sections of brain tissue from transgenic mice, which confirmed the sufficient affinity of these tracers for Aβ plaques. However, these compounds did not show desirable properties in vivo, especially showing poor brain uptake (below 0.5% ID g(-1)), which will hinder the further development of these tracers as brain imaging agents. Nonetheless, it is encouraging that these (99m)Tc-labeled complexes designed by a conjugate approach displayed sufficient affinities for Aβ plaques.

  12. Optimized Design and Synthesis of Cell Permeable Biarsenical Cyanine Probe for Imaging Tagged Cytosolic Bacterial Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Na; Xiong, Yijia; Squier, Thomas C.

    2013-01-21

    To optimize cellular delivery and specific labeling of tagged cytosolic proteins by biarsenical fluorescent probes build around a cyanine dye scaffold, we have systematically varied the polarity of the hydrophobic tails (i.e., 4-5 methylene groups appended by a sulfonate or methoxy ester moiety) and arsenic capping reagent (ethanedithiol versus benzenedithiol). Targeted labeling of the cytosolic proteins SlyD and the alpha subunit of RNA polymerase engineered with a tetracysteine tagging sequences demonstrate the utility of the newly synthesized probes for live-cell visualization, albeit with varying efficiencies and background intensities. Optimal routine labeling and visualization is apparent using the ethanedithiol capping reagentmore » with the uncharged methoxy ester functionalized acyl chains. These measurements demonstrate the general utility of this class of photostable and highly fluorescent biarsenical reagents based on the cyanine scaffold for in vivo targeting of tagged cellular proteins for live cell measurements of protein dynamics.« less

  13. Design and Application of Synthetic Receptors for Recognition of Methylated Lysine and Supramolecular Affinity Labeling

    NASA Astrophysics Data System (ADS)

    Gober, Isaiah Nathaniel

    This dissertation involves the design and synthesis of new synthetic receptors and their application in the molecular recognition of methylated lysine and their use as tools for chemical biology. The dissertation is divided into four parts. The first section focuses on the development of a novel labeling method that is based on ligand-directed affinity labeling principles. In this labeling method, a synthetic receptor that binds to trimethyl lysine (Kme3) is attached through a linker to an electrophilic tag group that can react with a nucleophilic amine in a histone peptide. This affinity labeling probe, which we called CX4-ONBD, is equipped with an electrophilic tag that allows for turn-on fluorescence labeling of Kme3 histone peitdes. We show that the probe gives a pronounced turn-on fluorescence response when it is incubated with a histone peptide that contains Kme3 and a nearby reactive lysine. This probe also displays >5-fold selectivity in covalent labeling over an unmethylated lysine peptide. This represents the first time a synthetic receptor has been used for affinity labeling purposes, and it also expands on the chemical toolkit that is available for sensing PTMs like lysine methylation. In the second section, the supramolecular affinity labeling method that was optimized using CX4-ONBD was applied to the development of a real-time assay for measuring enzymatic activity. More specifically, the probe was used to create a turn-on fluorescence assay for histone deacetylase (HDAC) activity and for inhibitor screening and IC50 determination. Most commercial kits for HDAC activity have limited substrate scope, and other common methods used for characterizing enzymatic activity often require chromatographic separation and are therefore not high-throughput. This small molecule receptor-mediated affinity labeling strategy allowed for facile readout of HDAC activity and inhibition. Overall, this application of supramolecular affinity labeling expands on the possible ways for detecting PTMs and may find use in the development of new assays for enzymes that lack robust methods for measuring their activity. The third section explores the development of new small molecule receptors capable of selectively binding hydrophilic guests in water, such as the lower methylation states of lysine. We identified a receptor, A2I, that has improved binding affinity and selectivity for dimethyllysine (Kme2). The receptor was discovered and synthesized by using dynamic combinatorial chemistry (DCC) to redesign a small molecule receptor (A2B ) that preferentially binds trimethyllysine (Kme3). Incorporating a biphenyl monomer with ortho-di-substituted carboxylates into the receptor lead to the formation of a salt bridge interaction with Kme2. These favorable electrostatic and hydrogen bonding interactions produced a receptor with 32-fold tighter binding to Kme2, which is the highest affinity synthetic receptor for Kme2 in the context of a peptide that has been reported. This work provides insight into effective strategies for binding hydrophilic, cationic guests in water and is an encouraging result toward a synthetic receptor that selectively binds Kme2 over other methylation states of lysine. In the final section, a small molecule receptor for Kme3 (A 2B) was redesigned using DCC to incorporate either aromatic or acidic amino acids into the receptor. We proposed that the incorporation of amino acids could introduce additional non-covalent interactions (such as cation-pi, electrostatic, and hydrogen bonding) with a guest bound inside the pocket of the receptor. However, selective non-covalent interactions between the amino acid side chain on the modified receptor and the bound methylated lysine guest could not be achieved. This is most likely due to the conformational flexibility of the amino acid-functionalized receptors. Furthermore, attaching amino acids to the receptor seemed to increase non-specific electrostatic interactions, resulting in tighter binding to the unmethylated lysine peptide (compared to A2B). Ultimately, this highlights the importance of incorporating monomers with less conformational flexibility that can rigidly place functional groups into the binding pocket.

  14. Characterization of rat leydig cell gonadotropin receptor structure by affinity cross-linking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Q.Y.; Hwang, J.; Menon, K.M.J.

    1986-05-01

    The gonadotropin receptor from rat leydig cell has been characterized with respect to binding kinetics and physiological regulation. The present study was intended to examine the structure of the receptor. Leydig cell suspension was prepared by either collagenase digestion or by mechanical disruption of the testis. The cells were incubated with /sup 125/I-hCG and the unreacted hCG was removed by centrifugation. The /sup 125/I-hCG was then covalently linked to the cell surface receptor using cleavable (dithiobis (succinimidyl propionate)) and non-cleavable (disuccinimidyl suberate) cross-linking reagents. The extracted cross-linked membrane proteins were resolved on SDS-polyacrylamide gels under reducing and non-reducing conditions andmore » subjected to autoradiographic analysis. Under non-reducing conditions, two labeled species with M/sub r/ = 87,000 and 120,000 were detected. However, only one labeled band was detected under reducing conditions with M/sub r/ = 64,000. The binding of /sup 125/I-hCG to the receptor was inhibited by hCG and LH, but not by a number of peptides and proteins. The data suggest that hCG receptor in leydig cell is an oligomeric complex consisting of four subunits, ..cap alpha cap alpha beta gamma... The ..beta.. and ..gamma.. subunits are each linked to an ..cap alpha.. subunit through disulfide linkage and the hormone binds to each ..cap alpha.. subunit. The two dimers formed (..cap alpha beta cap alpha gamma..) are associated by noncovalent interactions.« less

  15. Stable isotope labeling-solid phase extraction-mass spectrometry analysis for profiling of thiols and aldehydes in beer.

    PubMed

    Zheng, Shu-Jian; Wang, Ya-Lan; Liu, Ping; Zhang, Zheng; Yu, Lei; Yuan, Bi-Feng; Feng, Yu-Qi

    2017-12-15

    In this study, we developed a strategy for profiling of thiols and aldehydes in beer samples by stable isotope labeling-solid phase extraction-liquid chromatography-double precursor ion scan/double neutral loss scan-mass spectrometry analysis (SIL-SPE-LC-DPIS/DNLS-MS). A pair of isotope reagents (ω-bromoacetonylquinolinium bromide, BQB; ω-bromoacetonylquinolinium-d 7 bromide, BQB-d 7 ) were used to label thiols; while for the aldehydes, a pair of isotope reagents (4-(2-(trimethylammonio) ethoxy) benzenaminium halide, 4-APC; 4-(2-(trimethylammonio) ethoxy) benzenaminium halide-d 4 , 4-APC-d 4 ) were used. The labeled thiols and aldehydes were extracted and purified with solid-phase extraction, respectively, followed by LC-MS analysis. Using the proposed SIL-SPE-LC-DPIS/DNLS-MS methods, 76 thiol and 25 aldehyde candidates were found in beer. Furthermore, we established SIL-SPE-LC-MRM-MS methods for the relative quantitation of thiols and aldehydes in different beer samples. The results showed that the contents of thiols and aldehydes are closely related to the brands and origins of beers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Purification and Analysis of Colorful Hypothetical Open Reading Frames: An Inexpensive Gateway Laboratory

    ERIC Educational Resources Information Center

    DeSantis, Kara A.; Reinking, Jeffrey L.

    2011-01-01

    This laboratory exercise is an inquiry-based investigation developed around the core experiment where students, working alone or in groups, each purify and analyze their own prescreened colored proteins using immobilized metal affinity chromatography (IMAC). Here, we present reagents and protocols that allow 12 different proteins to be purified in…

  17. Design, synthesis, and activity of 2,3-diphosphoglycerate analogs as allosteric modulators of hemoglobin O2 affinity.

    PubMed

    Kassa, Tigist W; Zhang, Ning; Palmer, Andre F; Matthews, Jason Shastri

    2013-04-01

    Four phosphonate derivates of 2,3-diphosphoglycerate (2,3-DPG), in which the phosphate group is replaced by a methylene or difluoromethylene, were successfully synthesized for use as allosteric modulators of hemoglobin (Hb) O2 affinity. The syntheses were accomplished in four steps and the reagents were converted to their potassium salts to allow for effective binding with Hb in aqueous media. O2 equilibrium measurements of the chemically modified Hbs exhibited P50 values in the range 8.9-12.8 with Hill coefficients in the range of 1.5-2.4.

  18. Analysis of biogenic amines using corona discharge ion mobility spectrometry.

    PubMed

    Hashemian, Z; Mardihallaj, A; Khayamian, T

    2010-05-15

    A new method based on corona discharge ion mobility spectrometry (CD-IMS) was developed for the analysis of biogenic amines including spermidine, spermine, putrescine, and cadaverine. The ion mobility spectra of the compounds were obtained with and without n-Nonylamine used as the reagent gas. The high proton affinity of n-Nonylamine prevented ion formation from compounds with a proton affinity lower than that of n-Nonylamine and, therefore, enhanced its selectivity. It was also realized that the ion mobility spectrum of n-Nonylamine varied with its concentration. A sample injection port of a gas chromatograph was modified and used as the sample introduction system into the CD-IMS. The detection limits, dynamic ranges, and analytical parameters of the compounds with and without using the reagent gas were obtained. The detection limits and dynamic ranges of the compounds were about 2ng and 2 orders of magnitude, respectively. The wide dynamic range of CD-IMS originates from the high current of the corona discharge. The results revealed the high capability of the CD-IMS for the analysis of biogenic amines.

  19. Evaluation of novel derivatisation reagents for the analysis of oxysterols

    PubMed Central

    Crick, Peter J.; Aponte, Jennifer; Bentley, T. William; Matthews, Ian; Wang, Yuqin; Griffiths, William J.

    2014-01-01

    Oxysterols are oxidised forms of cholesterol that are intermediates in the synthesis of bile acids and steroid hormones. They are also ligands to nuclear and G protein-coupled receptors. Analysis of oxysterols in biological systems is challenging due to their low abundance coupled with their lack of a strong chromophore and poor ionisation characteristics in mass spectrometry (MS). We have previously used enzyme-assisted derivatisation for sterol analysis (EADSA) to identify and quantitate oxysterols in biological samples. This technique relies on tagging sterols with the Girard P reagent to introduce a charged quaternary ammonium group. Here, we have compared several modified Girard-like reagents and show that the permanent charge is vital for efficient MSn fragmentation. However, we find that the reagent can be extended to include sites for potential stable isotope labels without a loss of performance. PMID:24525124

  20. MitoTracker Green labeling of mitochondrial proteins and their subsequent analysis by capillary electrophoresis with laser-induced fluorescence detection.

    PubMed

    Presley, Andrew D; Fuller, Kathryn M; Arriaga, Edgar A

    2003-08-05

    MitoTracker Green (MTG) is a mitochondrial-selective fluorescent label commonly used in confocal microscopy and flow cytometry. It is expected that this dye selectively accumulates in the mitochondrial matrix where it covalently binds to mitochondrial proteins by reacting with free thiol groups of cysteine residues. Here we demonstrate that MTG can be used as a protein labeling reagent that is compatible with a subsequent analysis by capillary electrophoresis with laser-induced fluorescence detection (CE-LIF). Although the MTG-labeled proteins and MTG do not seem to electrophoretically separate, an enhancement in fluorescence intensity of the product indicates that only proteins with free thiol groups are capable of reacting with MTG. In addition we propose that MTG is a partially selective label towards some mitochondrial proteins. This selectivity stems from the high MTG concentration in the mitochondrial matrix that favors alkylation of the available thiol groups in this subcellular compartment. To that effect we treated mitochondria-enriched fractions that had been prepared by differential centrifugation of an NS-1 cell lysate. This fraction was solubilized with an SDS-containing buffer and analyzed by CE-LIF. The presence of a band with fluorescence stronger than MTG alone also indicated the presence of an MTG-protein product. Confirming that MTG is labeling mitochondrial proteins was done by treating the solubilized mitochondrial fraction with 5-furoylquinoline-3-carboxaldehyde (FQ), a fluorogenic reagent that reacts with primary amino groups, and analysis by CE-LIF using two separate detection channels: 520 nm for MTG-labeled species and 635 nm for FQ-labeled species. In addition, these results indicate that MTG labels only a subset of proteins in the mitochondria-enriched fraction.

  1. Mapping of the acetylcholine binding site of the nicotinic acetylcholine receptor: ( sup 3 H)nicotine as an agonist photoaffinity label

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middleton, R.E.; Cohen, J.B.

    1991-07-16

    The agonist ({sup 3}H)nicotine was used as a photoaffinity label for the acetylcholine binding sties on the Torpedo nicotinic acetylcholine receptor (AChR). ({sup 3}H)Nicotine binds at equilibrium with K{sub eq} = 0.6 {mu}M to the agonist binding sites. Irradiation with 254-nm light of AChR-rich membranes equilibrated with ({sup 3}H)nicotine resulted in covalent incorporation into the {alpha}- and {gamma}-subunits, which was inhibited by agonists and competitive antagonists but not by noncompetitive antagonists. Inhibition of labeling by d-tubocurarine demonstrated that the {alpha}-subunit was labeled via both agonist sites but the {gamma}-subunit was labeled only via the site that binds d-tubocurarine with highmore » affinity. Chymotryptic digestion of the {alpha}-subunit confirmed that Try-198 was the principal amino acid labeled by ({sup 3}H)nicotine. This confirmation required a novel radiosequencing strategy employing o-phthalaldehyde ({sup 3}H)Nicotine, which is the first photoaffinity agonist used, labels primarily Tyr-198 in contrast to competitive antagonist affinity labels, which label primarily Tyr-190 and Cys-192/Cys-193.« less

  2. A Liquid Phase Affinity Capture Assay Using Magnetic Beads to Study Protein-Protein Interaction: The Poliovirus-Nanobody Example

    PubMed Central

    Schotte, Lise; Rombaut, Bart; Thys, Bert

    2012-01-01

    In this article, a simple, quantitative, liquid phase affinity capture assay is presented. Provided that one protein can be tagged and another protein labeled, this method can be implemented for the investigation of protein-protein interactions. It is based on one hand on the recognition of the tagged protein by cobalt coated magnetic beads and on the other hand on the interaction between the tagged protein and a second specific protein that is labeled. First, the labeled and tagged proteins are mixed and incubated at room temperature. The magnetic beads, that recognize the tag, are added and the bound fraction of labeled protein is separated from the unbound fraction using magnets. The amount of labeled protein that is captured can be determined in an indirect way by measuring the signal of the labeled protein remained in the unbound fraction. The described liquid phase affinity assay is extremely useful when conformational conversion sensitive proteins are assayed. The development and application of the assay is demonstrated for the interaction between poliovirus and poliovirus recognizing nanobodies1. Since poliovirus is sensitive to conformational conversion2 when attached to a solid surface (unpublished results), the use of ELISA is limited and a liquid phase based system should therefore be preferred. An example of a liquid phase based system often used in polioresearch3,4 is the micro protein A-immunoprecipitation test5. Even though this test has proven its applicability, it requires an Fc-structure, which is absent in the nanobodies6,7. However, as another opportunity, these interesting and stable single-domain antibodies8 can be easily engineered with different tags. The widely used (His)6-tag shows affinity for bivalent ions such as nickel or cobalt, which can on their turn be easily coated on magnetic beads. We therefore developed this simple quantitative affinity capture assay based on cobalt coated magnetic beads. Poliovirus was labeled with 35S to enable unhindered interaction with the nanobodies and to make a quantitative detection feasible. The method is easy to perform and can be established with a low cost, which is further supported by the possibility of effectively regenerating the magnetic beads. PMID:22688388

  3. Peptide-based antibody alternatives for biological sensing in austere environments

    NASA Astrophysics Data System (ADS)

    Coppock, Matthew B.; Sarkes, Deborah A.; Hurley, Margaret M.; Stratis-Cullum, Dimitra N.

    2017-02-01

    The most critical component of a biosensor, the biorecognition element, must exhibit high selectivity and strong affinity for a target of interest in operational sensing. Monoclonal antibodies are the current standard reagents for such devices, but their adaptability, manufacturability, and stability greatly limit their effectiveness in fieldable sensors. Peptides have emerged as potential antibody replacements in such applications due to their similar binding performance, extreme chemical and thermal stabilities, and on-demand scalability. In conjunction with modeling capabilities, work at the Army Research Lab focuses on protein catalyzed capture (PCC) agent technology and bacterial display for the discovery of these novel peptide binding reagents. The synthetic, bottom-up PCC agent technology uses an iterative, in situ "click chemistry" approach to produce high performing peptides against specific epitopes translatable to the protein target. Bacterial display allows rapid reagent discovery due to the combination of fast bacterial growth and effective peptide sequence enrichment through multiple rounds of biopanning. Recent advances in both methods are highlighted in regards to the discovery of reagents against Army high priority protein targets for soldier safety, performance, and diagnostics.

  4. Selection and identification of a DNA aptamer targeted to Vibrio parahemolyticus.

    PubMed

    Duan, Nuo; Wu, Shijia; Chen, Xiujuan; Huang, Yukun; Wang, Zhouping

    2012-04-25

    A whole-bacterium systemic evolution of ligands by exponential enrichment (SELEX) method was applied to a combinatorial library of FAM-labeled single-stranded DNA molecules to identify DNA aptamers demonstrating specific binding to Vibrio parahemolyticus . FAM-labeled aptamer sequences with high binding affinity to V. parahemolyticus were identified by flow cytometric analysis. Aptamer A3P, which showed a particularly high binding affinity in preliminary studies, was chosen for further characterization. This aptamer displayed a dissociation constant (K(d)) of 16.88 ± 1.92 nM. Binding assays to assess the specificity of aptamer A3P showed a high binding affinity (76%) for V. parahemolyticus and a low apparent binding affinity (4%) for other bacteria. Whole-bacterium SELEX is a promising technique for the design of aptamer-based molecular probes for microbial pathogens that does not require the labor-intensive steps of isolating and purifying complex markers or targets.

  5. Impact of light exposure on thyroid-stimulating hormone results using the Siemens Advia Centaur TSH-3Ultra assay.

    PubMed

    Armer, Jane; Giles, Diane; Lancaster, Ian; Brownbill, Kathryn

    2017-09-01

    Background Thyroid-stimulating hormone (TSH) is used as the first-line test of thyroid function. Siemens Healthcare Diagnostics recommend that Siemens Centaur reagents must be protected from light in the assay information and on reagent packaging. We have compared the effect of light exposure on results using Siemens TSH-3Ultra and follicle-stimulating hormone reagents. The thyroid-stimulating hormone reagent includes fluoroscein thiocyanate whereas the follicle-stimulating hormone reagent does not. Methods Three levels of quality controls were analysed using SiemensTSH-3Ultra and follicle-stimulating hormone reagent packs that had been kept protected from light or exposed to light at 6-h intervals for 48 h and then at 96 h. Results Thyroid-stimulating hormone results were significantly lower after exposure of TSH-3Ultra reagent packs to light. Results were >15% lower at all three levels of quality control following 18 h of light exposure and continued to decrease until 96 h. There was no significant difference in follicle-stimulating hormone results whether reagents had been exposed to or protected from light. Conclusions Thyroid-stimulating hormone results but not follicle-stimulating hormone results are lowered after exposure of reagent packs to light. Laboratories must ensure that TSH-3Ultra reagents are not exposed to light and analyse quality control samples on every reagent pack to check that there has not been light exposure prior to delivery. The labelling on TSH-3Ultra reagent packs should reflect the significant effect of light exposure compared with the follicle-stimulating hormone reagent. We propose that the effect of light exposure on binding of fluoroscein thiocyanate to the solid phase antibody causes the falsely low results.

  6. Single Chain Antibodies as Tools to Study transforming growth factor-β-Regulated SMAD Proteins in Proximity Ligation-Based Pharmacological Screens.

    PubMed

    Blokzijl, Andries; Zieba, Agata; Hust, Michael; Schirrmann, Thomas; Helmsing, Saskia; Grannas, Karin; Hertz, Ellen; Moren, Anita; Chen, Lei; Söderberg, Ola; Moustakas, Aristidis; Dübel, Stefan; Landegren, Ulf

    2016-06-01

    The cellular heterogeneity seen in tumors, with subpopulations of cells capable of resisting different treatments, renders single-treatment regimens generally ineffective. Accordingly, there is a great need to increase the repertoire of drug treatments from which combinations may be selected to efficiently target sets of pathological processes, while suppressing the emergence of resistance mutations. In this regard, members of the TGF-β signaling pathway may furnish new, valuable therapeutic targets. In the present work, we developed in situ proximity ligation assays (isPLA) to monitor the state of the TGF-β signaling pathway. Moreover, we extended the range of suitable affinity reagents for this analysis by developing a set of in-vitro-derived human antibody fragments (single chain fragment variable, scFv) that bind SMAD2 (Mothers against decapentaplegic 2), 3, 4, and 7 using phage display. These four proteins are all intracellular mediators of TGF-β signaling. We also developed an scFv specific for SMAD3 phosphorylated in the linker domain 3 (p179 SMAD3). This phosphorylation has been shown to inactivate the tumor suppressor function of SMAD3. The single chain affinity reagents developed in the study were fused tocrystallizable antibody fragments (Fc-portions) and expressed as dimeric IgG-like molecules having Fc domains (Yumabs), and we show that they represent valuable reagents for isPLA.Using these novel assays, we demonstrate that p179 SMAD3 forms a complex with SMAD4 at increased frequency during division and that pharmacological inhibition of cyclin-dependent kinase 4 (CDK4)(1) reduces the levels of p179SMAD3 in tumor cells. We further show that the p179SMAD3-SMAD4 complex is bound for degradation by the proteasome. Finally, we developed a chemical screening strategy for compounds that reduce the levels of p179SMAD3 in tumor cells with isPLA as a read-out, using the p179SMAD3 scFv SH544-IIC4. The screen identified two kinase inhibitors, known inhibitors of the insulin receptor, which decreased levels of p179SMAD3/SMAD4 complexes, thereby demonstrating the suitability of the recombinant affinity reagents applied in isPLA in screening for inhibitors of cell signaling. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Gallium metal affinity capture tandem mass spectrometry for the selective detection of phosphopeptides in complex mixtures

    PubMed Central

    Blacken, Grady R.; Sadílek, Martin; Tureček, František

    2008-01-01

    Metal affinity capture tandem mass spectrometry (MAC-MSMS) is evaluated in a comparative study of a lysine-derived nitrilotriacetic acid (Nα, Nα-bis-(carboxymethyl)lysine, LysNTA) and an aspartic-acid-related iminodiacetic acid (N-(4-aminobutyl)aspartic acid, AspIDA) as selective phosphopeptide detection reagents. Both LysNTA and AspIDA spontaneously form ternary complexes with GaIII and phosphorylated amino acids and phosphopeptides upon mixing in solution. Collision-induced dissociation of positive complex ions produced by electrospray produces common fragments (LysNTA + H)+ or (AspIDA + H)+ at m/z 263 and 205, respectively. MSMS precursor scans using these fragments as reporter ions allow one to selectively detect multiple charge states of phosphopeptides in mixtures. It follows from this comparative study that LysNTA is superior to AspIDA in detecting phosphopeptides, possibly because of the higher coordination number and greater stability constant for GaIII – phosphopeptide complexation of the former reagent. In a continuing development of MAC-MSMS for proteomics applications, we demonstrate its utility in a post-column reaction format. Using a simple post-column-reaction ‘T’ and syringe pump to deliver our chelating reagents, α-casein tryptic phosphopeptides can be selectively analyzed from a solution containing a twofold molar excess of bovine serum albumin. The MAC-MSMS method is shown to be superior to the commonly used neutral loss scan for the common loss of phosphoric acid. PMID:18265438

  8. Novel fluorescent labelled affinity probes for diadenosine-5',5'''-P1,P4-tetraphosphate (Ap4A)-binding studies.

    PubMed

    Wright, Michael; Miller, Andrew D

    2006-02-15

    Tandem synthetic-biosynthetic procedures were used to prepare two novel fluorescent labelled affinity probes for diadenosine-5',5'''-P1,P4-tetraphosphate (Ap4A)-binding studies. These compounds (dial-mant-Ap4A and azido-mant-Ap4A) are shown to clearly distinguish known Ap4A-binding proteins from Escherichia coli (LysU and GroEL) and a variety of other control proteins. Successful labelling of chaperonin GroEL appears to be allosteric with respect to the well-characterized adenosine 5'-triphosphate (ATP)-binding site, suggesting that GroEL possesses a distinct Ap4A-binding site.

  9. Europium-labeled epidermal growth factor and neurotensin: novel probes for receptor-binding studies.

    PubMed

    Mazor, Ohad; Hillairet de Boisferon, Marc; Lombet, Alain; Gruaz-Guyon, Anne; Gayer, Batya; Skrzydelsky, Delphine; Kohen, Fortune; Forgez, Patricia; Scherz, Avigdor; Rostene, William; Salomon, Yoram

    2002-02-01

    We investigated the possibility of labeling two biologically active peptides, epidermal growth factor (EGF) and neurotensin (NT), with europium (Eu)-diethylenetriaminepentaacetic acid. More specifically, we tested them as probes in studying receptor binding using time-resolved fluorescence of Eu3+. The relatively simple synthesis yields ligands with acceptable binding characteristics similar to isotopically labeled derivatives. The binding affinity (Kd) of labeled Eu-EGF to human A431 epidermal carcinoid cells was 3.6 +/- 1.2 nM, similar to the reported Kd values of EGF, whereas the Kd of Eu-NT to human HT29 colon cancer cells (7.4 +/- 0.5 nM) or to Chinese hamster ovary (CHO) cells transfected with the high-affinity NT receptor (CHO-NT1) were about 10-fold higher than the Kd values of NT. The bioactivity of the Eu-labeled EGF as determined by stimulation of cultured murine D1 hematopoietic cell proliferation was nearly the same as that obtained with native EGF. The maximal stimulation of Ca2+ influx with NT and Eu-NT in CHO-NT1 cells was similar, but the respective K0.5 values were 20 pM and 1 nM, corresponding to differences in the binding affinities previously described. The results of these studies indicate that Eu labeling of peptide hormones and growth factor molecules ranging from 10(3) to 10(5) Da can be conveniently accomplished. Importantly, the Eu-labeled products are stable for approximately 2 years and are completely safe for laboratory use compared to the biohazardous radioligands. Thus, Eu-labeled peptides present an attractive alternative for commonly used radiolabeled ligands in biological studies in general and in receptor assays in particular.

  10. Peptide affinity labels for thrombin and other trypsin-like proteases

    DOEpatents

    Shaw, Elliott N.; Kettner, Charles A.

    1982-03-09

    A peptide affinity label of the formula (I): ##STR1## wherein X is a radical capable of acting as a leaving group in a nucleophilic substitution reaction; A is an aromatic amino acid residue; B is H, or a C.sub.1 -C.sub.4 alkyl group, or aryl; Y is selected from the group consisting of hydrogen, aroyl, C.sub.1 -C.sub.6 acyl, and Q--(A)--.sub.n, wherein Q=hydrogen, aroyl, or C.sub.1 -C.sub.6 acyl, n=1-10, A is an amino acid residue selected from the aliphatic, hydroxy-containing, carboxylic acid group, and amide-thereof-containing, aromatic, sulfur-containing and imino-containing amino acids; and wherein J is selected from the group consisting of --CH.sub.2 --, --CH.sub.2 --CH.sub.2 --,--CH.sub.2 --CH.sub.2 --CH.sub.2 --, --CH.dbd.CH-- and --CH(OH)--CH.sub.2. The affinity label is useful for irreversibly inactivating thrombin and trypsin-like enzymes and may be used as a potential anticlotting agent.

  11. Preparation of tritium- or deuterium-labeled vitamin D analogs by a convenient general method*

    PubMed Central

    Paaren, Herbert E.; Fivizzani, Mary A.; Schnoes, Heinrich K.; DeLuca, Hector F.

    1981-01-01

    The three-step conversion of vitamin D analogs to 6-oxo-3,5-cyclovitamin D derivatives followed by reduction with a tritide or deuteride reagent and subsequent cycloreversion gives 6-tritio(deutero)vitamin D derivatives and corresponding 5,6-trans-analogs. The method is general and affords the 6-labeled-vitamin D analogs in ≈20% overall yield. PMID:6273856

  12. Electrochemical immobilization of Fluorescent labelled probe molecules on a FTO surface for affinity detection based on photo-excited current

    NASA Astrophysics Data System (ADS)

    Haruyama, Tetsuya; Wakabayashi, Ryo; Cho, Takeshi; Matsuyama, Sho-taro

    2011-10-01

    Photo-excited current can be generated at a molecular interface between a photo-excited molecules and a semi-conductive material in appropriate condition. The system has been recognized for promoting photo-energy devices such as an organic dye sensitized solar-cell. The photo-current generated reactions are totally dependent on the interfacial energy reactions, which are in a highly fluctuated interfacial environment. The authors investigated the photo-excited current reaction to develop a smart affinity detection method. However, in order to perform both an affinity reaction and a photo-excited current reaction at a molecular interface, ordered fabrications of the functional (affinity, photo-excitation, etc.) molecules layer on a semi-conductive surface is required. In the present research, we would like to present the fabrication and functional performance of photo-excited current-based affinity assay device and its application for detection of endocrine disrupting chemicals. On the FTO surface, fluorescent pigment labelled affinity peptide was immobilized through the EC tag (electrochemical-tag) method. The modified FTO produced a current when it was irradiated with diode laser light. However, the photo current decreased drastically when estrogen (ES) coexisted in the reaction solution. In this case, immobilized affinity probe molecules formed a complex with ES and estrogen receptor (ER). The result strongly suggests that the photo-excited current transduction between probe molecule-labelled cyanine pigment and the FTO surface was partly inhibited by a complex that formed at the affinity oligo-peptide region in a probe molecule on the FTO electrode. The bound bulky complex may act as an impediment to perform smooth transduction of photo-excited current in the molecular interface. The present system is new type of photo-reaction-based analysis. This system can be used to perform simple high-sensitive homogeneous assays.

  13. Amphiphilic, cross-linkable diblock copolymers for multifunctionalized nanoparticles as biological probes

    NASA Astrophysics Data System (ADS)

    Schmidtke, Christian; Pöselt, Elmar; Ostermann, Johannes; Pietsch, Andrea; Kloust, Hauke; Tran, Huong; Schotten, Theo; Bastús, Neus G.; Eggers, Robin; Weller, Horst

    2013-07-01

    Nanoparticles (NPs) play an increasingly important role in biological labeling and imaging applications. However, preserving their useful properties in an aqueous biological environment remains challenging, even more as NPs therein have to be long-time stable, biocompatible and nontoxic. For in vivo applications, size control is crucial in order to route excretion pathways, e.g. renal clearance vs. hepato-biliary accumulation. Equally necessary, cellular and tissue specific targeting demands suitable linker chemistry for surface functionalization with affinity molecules, like peptides, proteins, carbohydrates and nucleotides. Herein, we report a three stage encapsulation process for NPs comprised of (1) a partial ligand exchange by a multidentate polyolefinic amine ligand, PI-N3, (2) micellar encapsulation with a precisely tuned amphiphilic diblock PI-b-PEG copolymer, in which the PI chains intercalate to the PI-N3 prepolymer and (3) radical cross-linking of the adjacent alkenyl bonds. As a result, water-soluble NPs were obtained, which virtually maintained their primal physical properties and were exceptionally stable in biological media. PEG-terminal functionalization of the diblock PI-b-PEG copolymer with numerous functional groups was mostly straightforward by chain termination of the living anionic polymerization (LAP) with the respective reagents. More complex affinity ligands, e.g. carbohydrates or biotin, were introduced in a two-step process, prior to micellar encapsulation. Advantageously, this pre-assembly approach opens up rapid access to precisely tuned multifunctional NPs, just by using mixtures of diverse functional PI-b-PEG polymers in a combinatorial manner. All constructs showed no toxicity from 0.001 to 1 μM (particle concentration) in standard WST and LDH assays on A549 cells, as well as only marginal unspecific cellular uptake, even in serum-free medium.Nanoparticles (NPs) play an increasingly important role in biological labeling and imaging applications. However, preserving their useful properties in an aqueous biological environment remains challenging, even more as NPs therein have to be long-time stable, biocompatible and nontoxic. For in vivo applications, size control is crucial in order to route excretion pathways, e.g. renal clearance vs. hepato-biliary accumulation. Equally necessary, cellular and tissue specific targeting demands suitable linker chemistry for surface functionalization with affinity molecules, like peptides, proteins, carbohydrates and nucleotides. Herein, we report a three stage encapsulation process for NPs comprised of (1) a partial ligand exchange by a multidentate polyolefinic amine ligand, PI-N3, (2) micellar encapsulation with a precisely tuned amphiphilic diblock PI-b-PEG copolymer, in which the PI chains intercalate to the PI-N3 prepolymer and (3) radical cross-linking of the adjacent alkenyl bonds. As a result, water-soluble NPs were obtained, which virtually maintained their primal physical properties and were exceptionally stable in biological media. PEG-terminal functionalization of the diblock PI-b-PEG copolymer with numerous functional groups was mostly straightforward by chain termination of the living anionic polymerization (LAP) with the respective reagents. More complex affinity ligands, e.g. carbohydrates or biotin, were introduced in a two-step process, prior to micellar encapsulation. Advantageously, this pre-assembly approach opens up rapid access to precisely tuned multifunctional NPs, just by using mixtures of diverse functional PI-b-PEG polymers in a combinatorial manner. All constructs showed no toxicity from 0.001 to 1 μM (particle concentration) in standard WST and LDH assays on A549 cells, as well as only marginal unspecific cellular uptake, even in serum-free medium. Electronic supplementary information (ESI) available: Images of the QDs, toxicity data and NMR spectra. See DOI: 10.1039/c3nr01520c

  14. Mass Defect Labeling of Cysteine for Improving Peptide Assignment in Shotgun Proteomic Analyses

    PubMed Central

    Hernandez, Hilda; Niehauser, Sarah; Boltz, Stacey A.; Gawandi, Vijay; Phillips, Robert S.; Amster, I. Jonathan

    2006-01-01

    A method for improving the identification of peptides in a shotgun proteome analysis using accurate mass measurement has been developed. The improvement is based upon the derivatization of cysteine residues with a novel reagent, 2,4-dibromo-(2′-iodo)acetanilide. The derivitization changes the mass defect of cysteine-containing proteolytic peptides in a manner that increases their identification specificity. Peptide masses were measured using matrix-assisted laser desorption/ionization Fourier transform ion cyclotron mass spectrometry. Reactions with protein standards show that the derivatization of cysteine is rapid and quantitative, and the data suggest that the derivatized peptides are more easily ionized or detected than unlabeled cysteine-containing peptides. The reagent was tested on a 15N-metabolically labeled proteome from M. maripaludis. Proteins were identified by their accurate mass values and from their nitrogen stoichiometry. A total of 47% of the labeled peptides are identified versus 27% for the unlabeled peptides. This procedure permits the identification of proteins from the M. maripaludis proteome that are not usually observed by the standard protocol and shows that better protein coverage is obtained with this methodology. PMID:16689545

  15. A novel keratin18 promoter that drives reporter gene expression in the intrahepatic and extrahepatic biliary system allows isolation of cell-type specific transcripts from zebrafish liver

    PubMed Central

    Wilkins, Benjamin J.; Gong, Weilong; Pack, Michael

    2015-01-01

    Heritable and acquired biliary disorders are an important cause of acute and chronic human liver disease. Biliary development and physiology have been studied extensively in rodent models and more recently, zebrafish have been used to uncover pathogenic mechanisms and potential therapies for these conditions. Here we report development of novel transgenic lines labeling the intrahepatic and extrahepatic biliary system of zebrafish larvae that can be used for lineage tracing and isolation of biliary-specific RNAs from mixed populations of liver cells. We show that GFP expression driven by a 4.4 kilobase promoter fragment from the zebrafish keratin18 (krt18) gene allows visualization of all components of the developing biliary system as early as 3 days post-fertilization. In addition, expression of a ribosomal fusion protein (EGFP-Rpl10a) in krt18:TRAP transgenic fish allows for enrichment of translated biliary cell mRNAs via translating ribosome affinity purification (TRAP). Future studies utilizing these reagents will enhance our understanding of the morphologic and molecular processes involved in biliary development and disease. PMID:24394404

  16. Allyl m-Trifluoromethyldiazirine Mephobarbital: An Unusually Potent Enantioselective and Photoreactive Barbiturate General Anesthetic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savechenkov, Pavel Y.; Zhang, Xi; Chiara, David C.

    2012-12-10

    We synthesized 5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl)barbituric acid (14), a trifluoromethyldiazirine-containing derivative of general anesthetic mephobarbital, separated the racemic mixture into enantiomers by chiral chromatography, and determined the configuration of the (+)-enantiomer as S by X-ray crystallography. Additionally, we obtained the {sup 3}H-labeled ligand with high specific radioactivity. R-(-)-14 is an order of magnitude more potent than the most potent clinically used barbiturate, thiopental, and its general anesthetic EC{sub 50} approaches those for propofol and etomidate, whereas S-(+)-14 is 10-fold less potent. Furthermore, at concentrations close to its anesthetic potency, R-(-)-14 both potentiated GABA-induced currents and increased the affinity for the agonist muscimol inmore » human {alpha}1{beta}2/3{gamma}2L GABA{sub A} receptors. Finally, R-(-)-14 was found to be an exceptionally efficient photolabeling reagent, incorporating into both {alpha}1 and {beta}3 subunits of human {alpha}1{beta}3 GABAA receptors. These results indicate R-(-)-14 is a functional general anesthetic that is well-suited for identifying barbiturate binding sites on Cys-loop receptors.« less

  17. The identification of high-affinity G protein-coupled receptor ligands from large combinatorial libraries using multicolor quantum dot-labeled cell-based screening

    PubMed Central

    Fu, Junjie; Lee, Timothy; Qi, Xin

    2014-01-01

    G protein-coupled receptors (GPCRs), which are involved in virtually every biological process, constitute the largest family of transmembrane receptors. Many top-selling and newly approved drugs target GPCRs. In this review, we aim to recapitulate efforts and progress in combinatorial library-assisted GPCR ligand discovery, particularly focusing on one-bead-one-compound library synthesis and quantum dot-labeled cell-based assays, which both effectively enhance the rapid identification of GPCR ligands with higher affinity and specificity. PMID:24941874

  18. Probing the active site of alpha-class rat liver glutathione S-transferases using affinity labeling by monobromobimane.

    PubMed Central

    Hu, L.; Borleske, B. L.; Colman, R. F.

    1997-01-01

    Monobromobimane (mBBr) is a substrate of both mu- and alpha-class rat liver glutathione S-transferases, with Km values of 0.63 microM and 4.9 microM for the mu-class isozymes 3-3 and 4-4, respectively, and 26 microM for the alpha-class isozymes 1-1 and 2-2. In the absence of substrate glutathione, mBBr acts as an affinity label of the 1-1 as well as mu-class isozymes, but not of the alpha-class 2-2 isozyme. Incubation of rat liver isozyme 1-1 with mBBr at pH 7.5 and 25 degrees C results in a time-dependent inactivation of the enzyme but at a slower (threefold) rate than for reactions with the mu-class isozyme 3-3 and 4-4. The rate of inactivation of 1-1 isozyme by mBBr is not decreased but, rather, is slightly enhanced by S-methyl glutathione. In contrast, 17 beta-estradiol-3,17-disulfate (500 microM) gives a 12.5-fold decrease in the observed rate constant of inactivation by 4 mM mBBr. When incubated for 60 min with 4 mM mBBr, the 1-1 isozyme loses 60% of its activity and incorporates 1.7 mol reagent/mol subunit. Peptide analysis after thermolysin digestion indicates that mBBr modification is equally distributed between two cysteine residues at positions 17 and 111. Modification at these two sites is reduced equally in the presence of the added protectant, 17 beta-estradiol-3,17-disulfate, suggesting that Cys 17 and Cys 111 reside within or near the enzyme's steroid binding sites. In contrast to the 1-1 isozyme, the other alpha-class isozyme (2-2) is not inactivated by mBBr at concentrations as high as 15 mM. The different reaction kinetics and modification sites by mBBr suggest that distinct binding site structures are responsible for the characteristic substrate specificities of glutathione S-transferase isozymes. PMID:9007975

  19. Probing the active site of alpha-class rat liver glutathione S-transferases using affinity labeling by monobromobimane.

    PubMed

    Hu, L; Borleske, B L; Colman, R F

    1997-01-01

    Monobromobimane (mBBr) is a substrate of both mu- and alpha-class rat liver glutathione S-transferases, with Km values of 0.63 microM and 4.9 microM for the mu-class isozymes 3-3 and 4-4, respectively, and 26 microM for the alpha-class isozymes 1-1 and 2-2. In the absence of substrate glutathione, mBBr acts as an affinity label of the 1-1 as well as mu-class isozymes, but not of the alpha-class 2-2 isozyme. Incubation of rat liver isozyme 1-1 with mBBr at pH 7.5 and 25 degrees C results in a time-dependent inactivation of the enzyme but at a slower (threefold) rate than for reactions with the mu-class isozyme 3-3 and 4-4. The rate of inactivation of 1-1 isozyme by mBBr is not decreased but, rather, is slightly enhanced by S-methyl glutathione. In contrast, 17 beta-estradiol-3,17-disulfate (500 microM) gives a 12.5-fold decrease in the observed rate constant of inactivation by 4 mM mBBr. When incubated for 60 min with 4 mM mBBr, the 1-1 isozyme loses 60% of its activity and incorporates 1.7 mol reagent/mol subunit. Peptide analysis after thermolysin digestion indicates that mBBr modification is equally distributed between two cysteine residues at positions 17 and 111. Modification at these two sites is reduced equally in the presence of the added protectant, 17 beta-estradiol-3,17-disulfate, suggesting that Cys 17 and Cys 111 reside within or near the enzyme's steroid binding sites. In contrast to the 1-1 isozyme, the other alpha-class isozyme (2-2) is not inactivated by mBBr at concentrations as high as 15 mM. The different reaction kinetics and modification sites by mBBr suggest that distinct binding site structures are responsible for the characteristic substrate specificities of glutathione S-transferase isozymes.

  20. Uptake of DNA by cancer cells without a transfection reagent.

    PubMed

    Kong, Yanping; Zhang, Xianbo; Zhao, Yongliang; Xue, Yanfang; Zhang, Ye

    2017-01-21

    Cancer cells exhibit elevated levels of glucose uptake and may obtain pre-formed, diet-derived fatty acids from the bloodstream to boost their rapid growth; they may also use nucleic acid from their microenvironment. The study of processing nucleic acid by cancer cells will help improve the understanding of the metabolism of cancer. DNA is commonly packaged into a viral or lipid particle to be transferred into cells; this process is called transfection in laboratory. Cancer cells are known for having gene mutations and the evolving ability of endocytosis. Their uptake of DNAs might be different from normal cells; they may take in DNAs directly from the environment. In this report, we studied the uptake of DNAs in cancer cells without a transfection reagent. A group of DNA fragments were prepared with PCR and labeled with isotope phosphorous-32 to test their uptake by Huh 7 (liver cancer) and THLE3 (normal liver cells) after incubation overnight by counting radioactivity of the cells' genomic DNA. Multiple cell lines including breast cancer and lung cancer were tested with the same method. DNA molecules were also labeled with fluorescence to test the location in the cells using a kit of "label it fluorescence in situ hybridization (FISH)" from Mirus (USA). The data demonstrated that hepatocellular carcinoma cells possess the ability to take in large DNA fragments directly without a transfection reagent whereas normal liver cells cannot. Huh7 and MDA-MB231 cells displayed a significantly higher Rhodamine density in the cytoplasmic phagosomes and this suggests that the mechanism of uptake of large DNA by cancer cells is likely endocytosis. The efficacy of uptake is related to the DNA's size. Some cell lines of lung cancer and breast cancer also showed similar uptake of DNA. In the present study, we have revealed the evidence that some cancer cells, but not nontumorigenic cells, can take DNA fragments directly from the environment without the aid of the transfecting reagent.

  1. Evaluation of chemical labeling methods for identifying functional arginine residues of proteins by mass spectrometry.

    PubMed

    Wanigasekara, Maheshika S K; Chowdhury, Saiful M

    2016-09-07

    Arginine residues undergo several kinds of post-translational modifications (PTMs). These PTMs are associated with several inflammatory diseases, such as rheumatoid arthritis, atherosclerosis, and diabetes. Mass spectrometric studies of arginine modified proteins and peptides are very important, not only to identify the reactive arginine residues but also to understand the tandem mass spectrometry behavior of these peptides for assigning the sequences unambiguously. Herein, we utilize tandem mass spectrometry to report the performance of two widely used arginine labeling reagents, 1,2-cyclohexanedione (CHD) and phenylglyoxal (PG) with several arginine containing peptides and proteins. Time course labeling studies were performed to demonstrate the selectivity of the reagents in proteins or protein digests. Structural studies on the proteins were also explored to better understand the reaction sites and position of arginine residues. We found CHD showed better labeling efficiencies compared to phenylglyoxal. Reactive arginine profiling on a purified albumin protein clearly pointed out the cellular glycation modification site for this protein with high confidence. We believe these detailed mass-spectrometric studies will provide significant input to profile reactive arginine residues in large-scale studies; therefore, targeted proteomics can be performed to the short listed reactive sites for cellular arginine modifications. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Bovine Pancreatic Trypsin Inhibitor-Trypsin Complex as a Detection System for Recombinant Proteins

    NASA Astrophysics Data System (ADS)

    Borjigin, Jimo; Nathans, Jeremy

    1993-01-01

    Bovine pancreatic trypsin inhibitor (BPTI) binds to trypsin and anhydrotrypsin (an enzymatically inactive derivative of trypsin) with affinities of 6 x 10-14 and 1.1 x 10-13 M, respectively. We have taken advantage of the high affinity and specificity of this binding reaction to develop a protein tagging system in which biotinylated trypsin or biotinylated anhydrotrypsin is used as the reagent to detect recombinant fusion proteins into which BPTI has been inserted. Two proteins, opsin and growth hormone, were used as targets for insertional mutagenesis with BPTI. In each case, both domains of the fusion protein appear to be correctly folded. The fusion proteins can be specifically and efficiently detected by biotinylated trypsin or biotinylated anhydrotrypsin, as demonstrated by staining of transfected cells, protein blotting, affinity purification, and a mobility shift assay in SDS/polyacrylamide gels.

  3. A sensitive and selective resonance Rayleigh scattering method for quick detection of avidin using affinity labeling Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Huang, Xi; Fu, Xuan; Deng, Huan; Ma, Meihu; Cai, Zhaoxia

    2016-06-01

    Avidin is a glycoprotein with antinutritional property, which should be limited in daily food. We developed an affinity biosensor system based on resonance Rayleigh scattering (RRS) and using affinity biotin labeling Au nanoparticles (AuNPs). This method was selective and sensitive for quick avidin detection due to the avidin-biotin affinitive interaction. Under optimal conditions, RRS intensity of biotin-AuNPs increase linearly with an increasing concentration of avidin from 5 to 160 ng/mL. The lower limit of detection was 0.59 ng/mL. This rapid and selective avidin detection method was used in synthetic samples and egg products with recoveries of between 102.97 and 107.92%, thereby demonstrating the feasible and practical application of this assay.

  4. Synthesis of geminal difluorides by oxidative desulfurization-difluorination of alkyl aryl thioethers with halonium electrophiles in the presence of fluorinating reagents and its application for 18F-radiolabeling.

    PubMed

    Hugenberg, Verena; Wagner, Stefan; Kopka, Klaus; Schober, Otmar; Schäfers, Michael; Haufe, Günter

    2010-09-17

    Various ω-substituted 1,1-difluoroalkanes are synthesized in good yields from alkyl aryl thioethers by a new oxidative desulfurization-difluorination protocol with the reagents combination of 1,3-dibromo-5,5-dimethylhydantoin (DBH) as an oxidizer and pyridine·9HF (Py·9HF) as a fluoride source. The reaction proceeds via a fluoro-Pummerer-type rearrangement followed by an oxidative desulfurization-fluorination step. Starting from α-fluorinated thioethers, this reaction is promising for (18)F-labeling (τ(1/2) = 110 min) of ligands applicable for positron emission tomography (PET). Using the combination of DBH and carrier-added Py·9H[(18)F]F, an (18)F-labeled difluoride was synthesized from the corresponding α-fluoro thioether with a radiochemical yield of 9%.

  5. Requests Cancer Targets for Monoclonal Antibody Production and Characterization | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    In an effort to provide well-characterized monoclonal antibodies to the scientific community, the National Cancer Institute (NCI) Antibody Characterization Program requests cancer-related protein targets for affinity production and distribution. The program from The Office of Cancer Clinical Proteomics Research provides reagents and other critical resources that support protein and/or peptide measurements and analysis.

  6. Antibody-Coupled Magnetic Beads Can Be Reused in Immuno-MRM Assays To Reduce Cost and Extend Antibody Supply.

    PubMed

    Zhao, Lei; Whiteaker, Jeffrey R; Voytovich, Uliana J; Ivey, Richard G; Paulovich, Amanda G

    2015-10-02

    Immunoaffinity enrichment of peptides coupled to targeted, multiple reaction monitoring mass spectrometry (immuno-MRM) enables precise quantification of peptides. Affinity-purified polyclonal antibodies are routinely used as affinity reagents in immuno-MRM assays, but they are not renewable, limiting the number of experiments that can be performed. In this technical note, we describe a workflow to regenerate anti-peptide polyclonal antibodies coupled to magnetic beads for enrichments in multiplex immuno-MRM assays. A multiplexed panel of 44 antibodies (targeting 60 peptides) is used to show that peptide analytes can be effectively stripped off of antibodies using acid washing without compromising assay performance. The performance of the multiplexed panel (determined by correlation, agreement, and precision of reused assays) is reproducible (R(2) between 0.81 and 0.99) and consistent (median CVs 8-15%) for at least 10 times of washing and reuse. Application of this workflow to immuno-MRM studies greatly reduces per sample assay cost and increases the number of samples that can be interrogated with a limited supply of polyclonal antibody reagent. This allows more characterization for promising and desirable targets prior to committing funds and efforts to conversion to a renewable monoclonal antibody.

  7. SdAb heterodimer formation using leucine zippers

    NASA Astrophysics Data System (ADS)

    Goldman, Ellen R.; Anderson, George P.; Brozozog-Lee, P. Audrey; Zabetakis, Dan

    2013-05-01

    Single domain antibodies (sdAb) are variable domains cloned from camel, llama, or shark heavy chain only antibodies, and are among the smallest known naturally derived antigen binding fragments. SdAb derived from immunized llamas are able to bind antigens with high affinity, and most are capable of refolding after heat or chemical denaturation to bind antigen again. We hypothesized that the ability to produce heterodimeric sdAb would enable reagents with the robust characteristics of component sdAb, but with dramatically improved overall affinity through increased avidity. Previously we had constructed multimeric sdAb by genetically linking sdAb that bind non-overlapping epitopes on the toxin, ricin. In this work we explored a more flexible approach; the construction of multivalent binding reagents using multimerization domains. We expressed anti-ricin sdAb that recognize different epitopes on the toxin as fusions with differently charged leucine zippers. When the initially produced homodimers are mixed the leucine zipper domains will pair to produce heterodimers. We used fluorescence resonance energy transfer to confirm heterodimer formation. Surface plasmon resonance, circular dichroism, enzyme linked immunosorbent assays, and fluid array assays were used to characterize the multimer constructs, and evaluate their utility in toxin detection.

  8. Ubiquitin Linkage-Specific Affimers Reveal Insights into K6-Linked Ubiquitin Signaling.

    PubMed

    Michel, Martin A; Swatek, Kirby N; Hospenthal, Manuela K; Komander, David

    2017-10-05

    Several ubiquitin chain types have remained unstudied, mainly because tools and techniques to detect these posttranslational modifications are scarce. Linkage-specific antibodies have shaped our understanding of the roles and dynamics of polyubiquitin signals but are available for only five out of eight linkage types. We here characterize K6- and K33-linkage-specific "affimer" reagents as high-affinity ubiquitin interactors. Crystal structures of affimers bound to their cognate chain types reveal mechanisms of specificity and a K11 cross-reactivity in the K33 affimer. Structure-guided improvements yield superior affinity reagents suitable for western blotting, confocal fluorescence microscopy and pull-down applications. This allowed us to identify RNF144A and RNF144B as E3 ligases that assemble K6-, K11-, and K48-linked polyubiquitin in vitro. A protocol to enrich K6-ubiquitinated proteins from cells identifies HUWE1 as a main E3 ligase for this chain type, and we show that mitofusin-2 is modified with K6-linked polyubiquitin in a HUWE1-dependent manner. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Aptamer delivery of siRNA, radiopharmaceutics and chemotherapy agents in cancer.

    PubMed

    de Almeida, Carlos E B; Alves, Lais Nascimento; Rocha, Henrique F; Cabral-Neto, Januário Bispo; Missailidis, Sotiris

    2017-06-20

    Aptamers are oligonucleotide reagents with high affinity and specificity, which among other therapeutic and diagnostic applications have the capability of acting as delivery agents. Thus, aptamers are capable of carrying small molecules, nanoparticles, radiopharmaceuticals or fluorescent agents as well as nucleic acid therapeutics specifically to their target cells. In most cases, the molecules may possess interesting therapeutic properties, but their lack of specificity for a particular cell type, or ability to internalise in such a cell, hinders their clinical development, or cause unwanted side effects. Thus, chemotherapy or radiotherapy agents, famous for their side effects, can be coupled to aptamers for specific delivery. Equally, siRNA have great therapeutic potential and specificity, but one of their shortcomings remain the delivery and internalisation into cells. Various methodologies have been proposed to date, including aptamers, to resolve this problem. Therapeutic or imaging reagents benefit from the adaptability and ease of chemical manipulation of aptamers, their high affinity for the specific marker of a cell type, and their internalisation ability via cell mediated endocytosis. In this review paper, we explore the potential of the aptamers as delivery agents and offer an update on current status and latest advancements. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. (3H)WB4101 labels the 5-HT1A serotonin receptor subtype in rat brain. Guanine nucleotide and divalent cation sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norman, A.B.; Battaglia, G.; Creese, I.

    1985-12-01

    In the presence of a 30 nM prazosin mask, (/sup 3/H)-2-(2,6-dimethoxyphenoxyethyl) aminomethyl-1,4-benzodioxane ((/sup 3/H)WB4101) can selectively label 5-HT1 serotonin receptors. Serotonin exhibits high affinity (Ki = 2.5 nM) and monophasic competition for (/sup 3/H) WB4101 binding in cerebral cortex. We have found a significant correlation (r = 0.96) between the affinities of a number of serotonergic and nonserotonergic compounds at (/sup 3/H)WB4101-binding sites in the presence of 30 nM prazosin and (/sup 3/H) lysergic acid diethylamide ((/sup 3/H)LSD)-labeled 5-HT1 serotonin receptors in homogenates of rat cerebral cortex. Despite similar pharmacological profiles, distribution studies indicate that, in the presence of 5more » mM MgSO4, the Bmax of (/sup 3/H)WB4101 is significantly lower than the Bmax of (/sup 3/H)LSD in various brain regions. WB4101 competition for (/sup 3/H) LSD-labeled 5-HT1 receptors fits best to a computer-derived model assuming two binding sites, with the KH for WB4101 being similar to the KD of (/sup 3/H)WB4101 binding derived from saturation experiments. This suggests that (/sup 3/H)WB4101 labels only one of the subtypes of the 5-HT1 serotonin receptors labeled by (/sup 3/H)LSD. The selective 5-HT1A serotonin receptor antagonist, spiperone, and the selective 5-HT1A agonist, 8-hydroxy-2-(di-n-propylamino) tetraline, exhibit high affinity and monophasic competition for (/sup 3/H)WB4101 but compete for multiple (/sup 3/H)LSD 5-HT1 binding sites. These data indicate that (/sup 3/H)WB4101 selectively labels the 5-HT1A serotonin receptor, whereas (/sup 3/H) LSD appears to label both the 5-HT1A and the 5-HT1B serotonin receptor subtypes. The divalent cations, Mn2+, Mg2+, and Ca2+ were found to markedly increase the affinity and Bmax of (/sup 3/H)WB4101 binding in cerebral cortex. Conversely, the guanine nucleotides guanylylimidodiphosphate and GTP, but not the adenosine nucleotide ATP, markedly reduce the Bmax of (/sup 3/H)WB4101 binding.« less

  11. Exploring Strategies for Labeling Viruses with Gold Nanoclusters through Non-equilibrium Molecular Dynamics Simulations.

    PubMed

    Pohjolainen, Emmi; Malola, Sami; Groenhof, Gerrit; Häkkinen, Hannu

    2017-09-20

    Biocompatible gold nanoclusters can be utilized as contrast agents in virus imaging. The labeling of viruses can be achieved noncovalently but site-specifically by linking the cluster to the hydrophobic pocket of a virus via a lipid-like pocket factor. We have estimated the binding affinities of three different pocket factors of echovirus 1 (EV1) in molecular dynamics simulations combined with non-equilibrium free-energy calculations. We have also studied the effects on binding affinities with a pocket factor linked to the Au 102 pMBA 44 nanocluster in different protonation states. Although the absolute binding affinities are over-estimated for all the systems, the trend is in agreement with recent experiments.3 Our results suggest that the natural pocket factor (palmitic acid) can be replaced by molecules pleconaril (drug) and its derivative Kirtan1 that have higher estimated binding affinities. Our results also suggest that including the gold nanocluster does not decrease the affinity of the pocket factor to the virus, but the affinity is sensitive to the protonation state of the nanocluster, i.e., to pH conditions. The methodology introduced in this work helps in the design of optimal strategies for gold-virus bioconjugation for virus detection and manipulation.

  12. Peptide affinity labels for thrombin and other trypsin-like proteases

    DOEpatents

    Shaw, E.N.; Kettner, C.A.

    1982-03-09

    A peptide affinity label is disclosed of the formula (I): as given in the patent wherein X is a radical capable of acting as a leaving group in a nucleophilic substitution reaction; A is an aromatic amino acid residue; B is H, or a C[sub 1]--C[sub 4] alkyl group, or aryl; Y is selected from the group consisting of hydrogen, aroyl, C[sub 1]--C[sub 6] acyl, and Q--(A)--[sub n], wherein Q = hydrogen, aroyl, or C[sub 1]--C[sub 6] acyl, n = 1--10, A is an amino acid residue selected from the aliphatic, hydroxy-containing, carboxylic acid group, and amide-thereofcontaining, aromatic, sulfur-containing and imino-containing amino acids; and wherein J is selected from the group consisting of --CH[sub 2]--, --CH[sub 2]--CH[sub 2]--, --CH[sub 2]--CH[sub 2]--CH[sub 2]--, --CH[double bond]CH-- and --CH(OH)--CH[sub 2]. The affinity label is useful for irreversibly inactivating thrombin and trypsin-like enzymes and may be used as a potential anticlotting agent. 2 figs.

  13. Affinity Versus Label-Free Isolation of Circulating Tumor Cells: Who Wins?

    PubMed

    Murlidhar, Vasudha; Rivera-Báez, Lianette; Nagrath, Sunitha

    2016-09-01

    The study of circulating tumor cells (CTCs) has been made possible by many technological advances in their isolation. Their isolation has seen many fronts, but each technology brings forth a new set of challenges to overcome. Microfluidics has been a key player in the capture of CTCs and their downstream analysis, with the aim of shedding light into their clinical application in cancer and metastasis. Researchers have taken diverging paths to isolate such cells from blood, ranging from affinity-based isolation targeting surface antigens expressed on CTCs, to label-free isolation taking advantage of the size differences between CTCs and other blood cells. For both major groups, many microfluidic technologies have reported high sensitivity and specificity for capturing CTCs. However, the question remains as to the superiority among these two isolation techniques, specifically to identify different CTC populations. This review highlights the key aspects of affinity and label-free microfluidic CTC technologies, and discusses which of these two would be the highest benefactor for the study of CTCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Gel-based methods in redox proteomics.

    PubMed

    Charles, Rebecca; Jayawardhana, Tamani; Eaton, Philip

    2014-02-01

    The key to understanding the full significance of oxidants in health and disease is the development of tools and methods that allow the study of proteins that sense and transduce changes in cellular redox. Oxidant-reactive deprotonated thiols commonly operate as redox sensors in proteins and a variety of methods have been developed that allow us to monitor their oxidative modification. This outline review specifically focuses on gel-based methods used to detect, quantify and identify protein thiol oxidative modifications. The techniques we discuss fall into one of two broad categories. Firstly, methods that allow oxidation of thiols in specific proteins or the global cellular pool to be monitored are discussed. These typically utilise thiol-labelling reagents that add a reporter moiety (e.g. affinity tag, fluorophore, chromophore), in which loss of labelling signifies oxidation. Secondly, we outline methods that allow specific thiol oxidation states of proteins (e.g. S-sulfenylation, S-nitrosylation, S-thionylation and interprotein disulfide bond formation) to be investigated. A variety of different gel-based methods for identifying thiol proteins that are sensitive to oxidative modifications have been developed. These methods can aid the detection and quantification of thiol redox state, as well as identifying the sensor protein. By understanding how cellular redox is sensed and transduced to a functional effect by protein thiol redox sensors, this will help us better appreciate the role of oxidants in health and disease. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Optimization of immunolabeling and clearing techniques for indelibly-labeled memory traces.

    PubMed

    Pavlova, Ina P; Shipley, Shannon C; Lanio, Marcos; Hen, René; Denny, Christine A

    2018-04-16

    Recent genetic tools have allowed researchers to visualize and manipulate memory traces (i.e. engrams) in small brain regions. However, the ultimate goal is to visualize memory traces across the entire brain in order to better understand how memories are stored in neural networks and how multiple memories may coexist. Intact tissue clearing and imaging is a new and rapidly growing area of focus that could accomplish this task. Here, we utilized the leading protocols for whole-brain clearing and applied them to the ArcCreER T2 mice, a murine line that allows for the indelible labeling of memory traces. We found that CLARITY and PACT greatly distorted the tissue, and iDISCO quenched enhanced yellow fluorescent protein (EYFP) fluorescence and hindered immunolabeling. Alternative clearing solutions, such as tert-Butanol, circumvented these harmful effects, but still did not permit whole-brain immunolabeling. CUBIC and CUBIC with Reagent 1A produced improved antibody penetration and preserved EYFP fluorescence, but also did not allow for whole-brain memory trace visualization. Modification of CUBIC with Reagent-1A resulted in EYFP fluorescence preservation and immunolabeling of the immediate early gene (IEG) Arc in deep brain areas; however, optimized memory trace labeling still required tissue slicing into mm-thick tissue sections. In summary, our data show that CUBIC with Reagent-1A* is the ideal method for reproducible clearing and immunolabeling for the visualization of memory traces in mm-thick tissue sections from ArcCreER T2 mice. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  16. Photochemical grafting of methyl groups on a Si(111) surface using a Grignard reagent.

    PubMed

    Herrera, Marvin Ustaris; Ichii, Takashi; Murase, Kuniaki; Sugimura, Hiroyuki

    2013-12-01

    The photochemical grafting of methyl groups onto an n-type Si(111) substrate was successfully achieved using a Grignard reagent. The preparation involved illuminating a hydrogen-terminated Si(111) that was immersed in a CH3MgBr-THF solution. The success was attributed to the ability of the n-type hydrogenated substrate to produce holes on its surface when illuminated. The rate of grafting methyl groups onto the silicon surface was higher when a larger illumination intensity or when a substrate with lower dopant concentration was used. In addition, the methylated layer has an atomically flat structure, has a hydrophobic surface, and has electron affinity that was lower than the bulk Si. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Label-free quantitative 1H NMR spectroscopy to study low-affinity ligand–protein interactions in solution: A contribution to the mechanism of polyphenol-mediated astringency

    PubMed Central

    Delius, Judith; Frank, Oliver

    2017-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is well-established in assessing the binding affinity between low molecular weight ligands and proteins. However, conventional NMR-based binding assays are often limited to small proteins of high purity and may require elaborate isotopic labeling of one of the potential binding partners. As protein–polyphenol complexation is assumed to be a key event in polyphenol-mediated oral astringency, here we introduce a label-free, ligand-focused 1H NMR titration assay to estimate binding affinities and characterize soluble complex formation between proteins and low molecular weight polyphenols. The method makes use of the effects of NMR line broadening due to protein–ligand interactions and quantitation of the non-bound ligand at varying protein concentrations by quantitative 1H NMR spectroscopy (qHNMR) using electronic reference to access in vivo concentration (ERETIC 2). This technique is applied to assess the interaction kinetics of selected astringent tasting polyphenols and purified mucin, a major lubricating glycoprotein of human saliva, as well as human whole saliva. The protein affinity values (BC50) obtained are subsequently correlated with the intrinsic mouth-puckering, astringent oral sensation imparted by these compounds. The quantitative NMR method is further exploited to study the effect of carboxymethyl cellulose, a candidate “anti-astringent” protein binding antagonist, on the polyphenol–protein interaction. Consequently, the NMR approach presented here proves to be a versatile tool to study the interactions between proteins and low-affinity ligands in solution and may find promising applications in the discovery of bioactives. PMID:28886151

  18. Enriching peptide libraries for binding affinity and specificity through computationally directed library design

    PubMed Central

    Foight, Glenna Wink; Chen, T. Scott; Richman, Daniel; Keating, Amy E.

    2017-01-01

    Peptide reagents with high affinity or specificity for their target protein interaction partner are of utility for many important applications. Optimization of peptide binding by screening large libraries is a proven and powerful approach. Libraries designed to be enriched in peptide sequences that are predicted to have desired affinity or specificity characteristics are more likely to yield success than random mutagenesis. We present a library optimization method in which the choice of amino acids to encode at each peptide position can be guided by available experimental data or structure-based predictions. We discuss how to use analysis of predicted library performance to inform rounds of library design. Finally, we include protocols for more complex library design procedures that consider the chemical diversity of the amino acids at each peptide position and optimize a library score based on a user-specified input model. PMID:28236241

  19. Development of Single-Stranded DNA Aptamers for Specific Bisphenol A Detection

    PubMed Central

    Jo, Minjoung; Ahn, Ji-Young; Lee, Joohyung; Lee, Seram; Hong, Sun Woo; Yoo, Jae-Wook; Kang, Jeehye; Dua, Pooja

    2011-01-01

    The development of reagents with high affinity and specificity to small molecules is crucial for the high-throughput detection of chemical compounds, such as toxicants or pollutants. Aptamers are short and single-stranded (ss) oligonucleotides able to recognize target molecules with high affinity. Here, we report the selection of ssDNA aptamers that bind to Bisphenol A (BPA), an environmental hormone. Using SELEX process, we isolated high affinity aptamers to BPA from a 1015 random library of 60 mer ssDNAs. The selected aptamers bound specifically to BPA, but not to structurally similar molecules, such as Bisphenol B with one methyl group difference, or 4,4′-Bisphenol with 2 methyl groups difference. Using these aptamers, we developed an aptamer-based sol–gel biochip and detected BPA dissolved in water. This novel BPA aptamer-based detection can be further applied to the universal and high-specificity detection of small molecules. PMID:21413891

  20. Random mutagenesis of BoNT/E Hc nanobody to construct a secondary phage-display library.

    PubMed

    Shahi, B; Mousavi Gargari, S L; Rasooli, I; Rajabi Bazl, M; Hoseinpoor, R

    2014-08-01

    To construct secondary mutant phage-display library of recombinant single variable domain (VHH) against botulinum neurotoxin E by error-prone PCR. The gene coding for specific VHH derived from the camel immunized with binding domain of botulinum neurotoxin E (BoNT/E) was amplified by error-prone PCR. Several biopanning rounds were used to screen the phage-displaying BoNT/E Hc nanobodies. The final nanobody, SHMR4, with increased affinity recognized BoNT/E toxin with no cross-reactivity with other antigens especially with related BoNT toxins. The constructed nanobody could be a suitable candidate for VHH-based biosensor production to detect the Clostridium botulinum type E. Diagnosis and treatment of botulinum neurotoxins are important. Generation of high-affinity antibodies based on the construction of secondary libraries using affinity maturation step leads to the development of reagents for precise diagnosis and therapy. © 2014 The Society for Applied Microbiology.

  1. Enriching Peptide Libraries for Binding Affinity and Specificity Through Computationally Directed Library Design.

    PubMed

    Foight, Glenna Wink; Chen, T Scott; Richman, Daniel; Keating, Amy E

    2017-01-01

    Peptide reagents with high affinity or specificity for their target protein interaction partner are of utility for many important applications. Optimization of peptide binding by screening large libraries is a proven and powerful approach. Libraries designed to be enriched in peptide sequences that are predicted to have desired affinity or specificity characteristics are more likely to yield success than random mutagenesis. We present a library optimization method in which the choice of amino acids to encode at each peptide position can be guided by available experimental data or structure-based predictions. We discuss how to use analysis of predicted library performance to inform rounds of library design. Finally, we include protocols for more complex library design procedures that consider the chemical diversity of the amino acids at each peptide position and optimize a library score based on a user-specified input model.

  2. Pharmacokinetics and brain uptake in the rhesus monkey of a fusion protein of arylsulfatase a and a monoclonal antibody against the human insulin receptor.

    PubMed

    Boado, Ruben J; Lu, Jeff Zhiqiang; Hui, Eric K-W; Sumbria, Rachita K; Pardridge, William M

    2013-05-01

    Metachromatic leukodystrophy (MLD) is a lysosomal storage disorder of the brain caused by mutations in the gene encoding the lysosomal sulfatase, arylsulfatase A (ASA). It is not possible to treat the brain in MLD with recombinant ASA, because the enzyme does not cross the blood-brain barrier (BBB). In the present investigation, a BBB-penetrating IgG-ASA fusion protein is engineered and expressed, where the ASA monomer is fused to the carboxyl terminus of each heavy chain of an engineered monoclonal antibody (MAb) against the human insulin receptor (HIR). The HIRMAb crosses the BBB via receptor-mediated transport on the endogenous BBB insulin receptor, and acts as a molecular Trojan horse to ferry the ASA into brain from blood. The HIRMAb-ASA is expressed in stably transfected Chinese hamster ovary cells grown in serum free medium, and purified by protein A affinity chromatography. The fusion protein retains high affinity binding to the HIR, EC50 = 0.34 ± 0.11 nM, and retains high ASA enzyme activity, 20 ± 1 units/mg. The HIRMAb-ASA fusion protein is endocytosed and triaged to the lysosomal compartment in MLD fibroblasts. The fusion protein was radio-labeled with the Bolton-Hunter reagent, and the [(125) I]-HIRMAb-ASA rapidly penetrates the brain in the Rhesus monkey following intravenous administration. Film and emulsion autoradiography of primate brain shows global distribution of the fusion protein throughout the monkey brain. These studies describe a new biological entity that is designed to treat the brain of humans with MLD following non-invasive, intravenous infusion of an IgG-ASA fusion protein. Copyright © 2012 Wiley Periodicals, Inc.

  3. Selection is more intelligent than design: improving the affinity of a bivalent ligand through directed evolution.

    PubMed

    Ahmad, Kareem M; Xiao, Yi; Soh, H Tom

    2012-12-01

    Multivalent molecular interactions can be exploited to dramatically enhance the performance of an affinity reagent. The enhancement in affinity and specificity achieved with a multivalent construct depends critically on the effectiveness of the scaffold that joins the ligands, as this determines their positions and orientations with respect to the target molecule. Currently, no generalizable design rules exist for construction of an optimal multivalent ligand for targets with known structures, and the design challenge remains an insurmountable obstacle for the large number of proteins whose structures are not known. As an alternative to such design-based strategies, we report here a directed evolution-based method for generating optimal bivalent aptamers. To demonstrate this approach, we fused two thrombin aptamers with a randomized DNA sequence and used a microfluidic in vitro selection strategy to isolate scaffolds with exceptionally high affinities. Within five rounds of selection, we generated a bivalent aptamer that binds thrombin with an apparent dissociation constant (K(d)) <10 pM, representing a ∼200-fold improvement in binding affinity over the monomeric aptamers and a ∼15-fold improvement over the best designed bivalent construct. The process described here can be used to produce high-affinity multivalent aptamers and could potentially be adapted to other classes of biomolecules.

  4. A fully-integrated aptamer-based affinity assay platform for monitoring astronaut health in space.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xianbin; Durland, Ross H.; Hecht, Ariel H.

    2010-07-01

    Here we demonstrate the suitability of robust nucleic acid affinity reagents in an integrated point-of-care diagnostic platform for monitoring proteomic biomarkers indicative of astronaut health in spaceflight applications. A model thioaptamer targeting nuclear factor-kappa B (NF-{kappa}B) is evaluated in an on-chip electrophoretic gel-shift assay for human serum. Key steps of (i) mixing sample with the aptamer, (ii) buffer exchange, and (iii) preconcentration of sample were successfully integrated upstream of fluorescence-based detection. Challenges due to (i) nonspecific interactions with serum, and (ii) preconcentration at a nanoporous membrane are discussed and successfully resolved to yield a robust, rapid, and fully-integrated diagnostic system.

  5. Differential biotin labelling of the cell envelope proteins in lipopolysaccharidic diderm bacteria: Exploring the proteosurfaceome of Escherichia coli using sulfo-NHS-SS-biotin and sulfo-NHS-PEG4-bismannose-SS-biotin.

    PubMed

    Monteiro, Ricardo; Chafsey, Ingrid; Leroy, Sabine; Chambon, Christophe; Hébraud, Michel; Livrelli, Valérie; Pizza, Mariagrazia; Pezzicoli, Alfredo; Desvaux, Mickaël

    2018-06-15

    Surface proteins are the major factor for the interaction between bacteria and its environment, playing an important role in infection, colonisation, virulence and adaptation. However, the study of surface proteins has proven difficult mainly due to their hydrophobicity and/or relatively low abundance compared with cytoplasmic proteins. To overcome these issues new proteomic strategies have been developed, such as cell-surface protein labelling using biotinylation reagents. Sulfo-NHS-SS-biotin is the most commonly used reagent to investigate the proteins expressed at the cell surface of various organisms but its use in lipopolysaccharidic diderm bacteria (archetypical Gram-negative bacteria) remains limited to a handful of species. While generally pass over in silence, some periplasmic proteins, but also some inner membrane lipoproteins, integral membrane proteins and cytoplasmic proteins (cytoproteins) are systematically identified following this approach. To limit cell lysis and diffusion of the sulfo-NHS-SS-biotin through the outer membrane, biotin labelling was tested over short incubation times and proved to be as efficient for 1 min at room temperature. To further limit labelling of protein located below the outer membrane, the use of high-molecular weight sulfo-NHS-PEG4-bismannose-SS-biotin appeared to recover differentially cell-envelope proteins compared to low-molecular weight sulfo-NHS-SS-biotin. Actually, the sulfo-NHS-SS-biotin recovers at a higher extent the proteins completely or partly exposed in the periplasm than sulfo-NHS-PEG4-bismannose-SS-biotin, namely periplasmic and integral membrane proteins as well as inner membrane and outer membrane lipoproteins. These results highlight that protein labelling using biotinylation reagents of different sizes provides a sophisticated and accurate way to differentially explore the cell envelope proteome of lipopolysaccharidic diderm bacteria. While generally pass over in silence, some periplasmic proteins, inner membrane lipoproteins (IMLs), integral membrane proteins (IMPs) and cytoplasmic proteins (cytoproteins) are systematically identified following cell-surface biotin labelling in lipopolysaccharidic diderm bacteria (archetypal Gram-negative bacteria). The use of biotinylation molecules of different sizes, namely sulfo-NHS-SS-biotin and sulfo-NHS-PEG4-bismannose-SS-biotin, was demonstrated to provide a sophisticated and accurate way to differentially explore the cell envelope proteome of lipopolysaccharidic diderm bacteria. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Halogenated naphthyl methoxy piperidines for mapping serotonin transporter sites

    DOEpatents

    Goodman, Mark M.; Faraj, Bahjat

    1999-01-01

    Halogenated naphthyl methoxy piperidines having a strong affinity for the serotonin transporter are disclosed. Those compounds can be labeled with positron-emitting and/or gamma emitting halogen isotopes by a late step synthesis that maximizes the useable lifeterm of the label. The labeled compounds are useful for localizing serotonin transporter sites by positron emission tomography and/or single photon emission computed tomography.

  7. Halogenated naphthyl methoxy piperidines for mapping serotonin transporter sites

    DOEpatents

    Goodman, M.M.; Faraj, B.

    1999-07-06

    Halogenated naphthyl methoxy piperidines having a strong affinity for the serotonin transporter are disclosed. Those compounds can be labeled with positron-emitting and/or gamma emitting halogen isotopes by a late step synthesis that maximizes the useable lifeterm of the label. The labeled compounds are useful for localizing serotonin transporter sites by positron emission tomography and/or single photon emission computed tomography.

  8. Recognition-driven chemical labeling of endogenous proteins in multi-molecular crowding in live cells.

    PubMed

    Amaike, Kazuma; Tamura, Tomonori; Hamachi, Itaru

    2017-11-14

    Endogenous protein labeling is one of the most invaluable methods for studying the bona fide functions of proteins in live cells. However, multi-molecular crowding conditions, such as those that occur in live cells, hamper the highly selective chemical labeling of a protein of interest (POI). We herein describe how the efficient coupling of molecular recognition with a chemical reaction is crucial for selective protein labeling. Recognition-driven protein labeling is carried out by a synthetic labeling reagent containing a protein (recognition) ligand, a reporter tag, and a reactive moiety. The molecular recognition of a POI can be used to greatly enhance the reaction kinetics and protein selectivity, even under live cell conditions. In this review, we also briefly discuss how such selective chemical labeling of an endogenous protein can have a variety of applications at the interface of chemistry and biology.

  9. A Dual Reporter Iodinated Labeling Reagent for Cancer Positron Emission Tomography Imaging and Fluorescence-Guided Surgery

    PubMed Central

    2018-01-01

    The combination of early diagnosis and complete surgical resection offers the greatest prospect of curative cancer treatment. An iodine-124/fluorescein-based dual-modality labeling reagent, 124I-Green, constitutes a generic tool for one-step installation of a positron emission tomography (PET) and a fluorescent reporter to any cancer-specific antibody. The resulting antibody conjugate would allow both cancer PET imaging and intraoperative fluorescence-guided surgery. 124I-Green was synthesized in excellent radiochemical yields of 92 ± 5% (n = 4) determined by HPLC with an improved one-pot three-component radioiodination reaction. The A5B7 carcinoembryonic antigen (CEA)-specific antibody was conjugated to 124I-Green. High tumor uptake of the dual-labeled A5B7 of 20.21 ± 2.70, 13.31 ± 0.73, and 10.64 ± 1.86%ID/g was observed in CEA-expressing SW1222 xenograft mouse model (n = 3) at 24, 48, and 72 h post intravenous injection, respectively. The xenografts were clearly visualized by both PET/CT and ex vivo fluorescence imaging. These encouraging results warrant the further translational development of 124I-Green for cancer PET imaging and fluorescence-guided surgery. PMID:29388770

  10. Affinity Reagents for Multiplexed, Rapid Diagnosis of Bacterial Infections at the Point of Care using Diagnostic Magnetic Resonance

    DTIC Science & Technology

    2012-10-01

    previously demonstrated that we can accurately identify bacteria, including Staphylococcus aureus and Mycobacterium tuberculosis , with startling speed... Mycobacterium tuberculosis , with moderate sensitivity and specificity. Existing antibodies perform poorly for identification of broad classes of...and test panel of existing small molecules with potential to bind to bacterial cell walls. 5. Assess technologies develop recombinant antibodies. 6

  11. Polyglutaraldehyde - A new reagent for coupling proteins to microspheres and for labeling cell-surface receptors

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Levy, J.; Margel, S.

    1978-01-01

    Glutaraldehyde polymerized in basic aqueous solutions was found to react with low molecular weight amines, immunoglobulins and hemoglobin. The polyglutaraldehyde was covalently bound to hydrophilic microspheres. The rate of addition of proteins to the polyglutaraldehyde-derivatized microspheres was investigated spectrophotometrically as a function of pH and temperature. The reaction of polyglutaraldehyde was found to be faster than that of the monomer. The findings led to successful labeling of human lymphocyte subpopulations.

  12. Chromosome-encoded beta-lactamases of Citrobacter diversus. Interaction with beta-iodopenicillanate and labelling of the active site.

    PubMed Central

    Amicosante, G; Oratore, A; Joris, B; Galleni, M; Frère, J M; Van Beeumen, J

    1988-01-01

    Both forms of the chromosome-encoded beta-lactamase of Citrobacter diversus react with beta-iodopenicillanate at a rate characteristic of class A beta-lactamases. The active site of form I was labelled with the same reagent. The sequence of the peptide obtained after trypsin hydrolysis is identical with that of a peptide obtained in a similar manner from the chromosome-encoded beta-lactamase of Klebsiella pneumoniae. PMID:2848500

  13. Exploitation of phosphorescent labelling reagent of fullerol-fluorescein isothiocyanate and new method for the determination of trace alkaline phosphatase as well as forecast of human diseases.

    PubMed

    Liu, Jia-Ming; Huang, Xiao-Mei; Liu, Zhen-Bo; Lin, Shao-Qin; Li, Fei-Ming; Gao, Fei; Li, Zhi-Ming; Zeng, Li-Qing; Li, Lian-Ying; Ouyang, Ying

    2009-08-26

    A new phosphorescent labelling reagent consisting of fullerol, fluorescein isothiocyanate and N,N-dimethylaniline (F-ol-(FITC)(n)-DMA) was developed. The mode of action is based on the reactivity of the active -OH group in F-ol with the -COOH group of FITC to form an F-ol-(FITC)(n)-DMA complex containing several FITC molecules. F-ol-(FITC)(n)-DMA increased the number of luminescent molecules in the biological target of WGA-AP-WGA-F-ol-(FITC)(n)-DMA (WGA and AP are wheat germ agglutinin and alkaline phosphatase, respectively) which improved the sensitivity using solid substrate room temperature phosphorimetry (SSRTP) detection. The proposed method provided high sensitivity and strong specificity for WGA-AP. The limit of detection (LD) was 0.15 ag AP spot(-1) for F-ol and 0.097 ag AP spot(-1) for FITC in F-ol-(FITC)(n)-DMA, which was lower than the method using single luminescent molecules of F-ol-DMA and FITC-DMA to label WGA (0.20 ag AP spot(-1) for F-ol-DMA and 0.22 ag AP spot(-1) for FITC-DMA). Results for the determination of AP in human serum were in good agreement with those obtained by enzyme-linked immunosorbent assay. The mechanism of F-ol-(FITC)(n)-DMA labelling of WGA was discussed.

  14. NHS-based Tandem Mass Tagging of Proteins at the Level of Whole Cells: A Critical Evaluation in Comparison to Conventional TMT-Labeling Approaches for Quantitative Proteome Analysis.

    PubMed

    Megger, Dominik A; Pott, Leona L; Rosowski, Kristin; Zülch, Birgit; Tautges, Stephanie; Bracht, Thilo; Sitek, Barbara

    2017-01-01

    Tandem mass tags (TMT) are usually introduced at the levels of isolated proteins or peptides. Here, for the first time, we report the labeling of whole cells and a critical evaluation of its performance in comparison to conventional labeling approaches. The obtained results indicated that TMT protein labeling using intact cells is generally possible, if it is coupled to a subsequent enrichment using anti-TMT antibody. The quantitative results were similar to those obtained after labeling of isolated proteins and both were found to be slightly complementary to peptide labeling. Furthermore, when using NHS-based TMT, no specificity towards cell surface proteins was observed in the case of cell labeling. In summary, the conducted study revealed first evidence for the general possibility of TMT cell labeling and highlighted limitations of NHS-based labeling reagents. Future studies should therefore focus on the synthesis and investigation of membrane impermeable TMTs to increase specificity towards cell surface proteins.

  15. Photoaffinity labelling of the ATP-binding site of the epidermal growth factor-dependent protein kinase.

    PubMed

    Kudlow, J E; Leung, Y

    1984-06-15

    Epidermal growth factor (EGF), after binding to its receptor, activates a tyrosine-specific protein kinase which phosphorylates several substrates, including the EGF receptor itself. The effects of a photoaffinity analogue of ATP, 3'-O-(3-[N-(4-azido-2-nitrophenyl)amino]propionyl)adenosine 5'-triphosphate (arylazido-beta-alanyl-ATP) on the EGF-dependent protein kinase in A431 human tumour cell plasma membrane vesicles was investigated. This analogue was capable of inactivating the EGF-receptor kinase in a photodependent manner. Partial inactivation occurred at an analogue concentration of 1 microM and complete inactivation occurred at 10 microM when a 2 min light exposure was used. Arylazido-beta-alanine at 100 microM and ATP at 100 microM were incapable of inactivating the enzyme with 2 min of light exposure. The photodependent inactivation of the enzyme by the analogue could be partially blocked by 20 mM-ATP and more effectively blocked by either 20 mM-adenosine 5'-[beta gamma-imido]triphosphate or 20 mM-guanosine 5'-[beta gamma-imido]triphosphate, indicating nucleotide-binding site specificity. Arylazido-beta-alanyl-[alpha-32P]ATP was capable of labelling membrane proteins in a photodependent manner. Numerous proteins were labelled, the most prominent of which ran with an apparent Mr of 53000 on polyacrylamide-gel electrophoresis. A band of minor intensity was seen of Mr corresponding to the EGF receptor (170000). Immunoprecipitation of affinity-labelled and solubilized membranes with an anti-(EGF receptor) monoclonal antibody demonstrated that the Mr 170000 receptor protein was photoaffinity labelled by the analogue. The Mr 53000 peptide was not specifically bound by the anti-receptor antibody. The affinity labelling of the receptor was not enhanced by EGF, suggesting that EGF stimulation of the kinase activity does not result from changes in the affinity of the kinase for ATP. These studies demonstrate that arylazido-beta-alanyl-ATP interacts with the ATP-binding site of the EGF-receptor kinase with apparent high affinity and that this analogue is an effective photoaffinity label for the kinase. Furthermore, these studies demonstrate that the EGF receptor, identified by using monoclonal antibodies, contains an ATP-binding site, providing further confirmation that the EGF receptor and EGF-dependent protein kinase are domains of the Mr 170000 protein.

  16. Synthesis and characterization of a Eu-DTPA-PEGO-MSH(4) derivative for evaluation of binding of multivalent molecules to melanocortin receptors.

    PubMed

    Xu, Liping; Vagner, Josef; Alleti, Ramesh; Rao, Venkataramanarao; Jagadish, Bhumasamudram; Morse, David L; Hruby, Victor J; Gillies, Robert J; Mash, Eugene A

    2010-04-15

    A labeled variant of MSH(4), a tetrapeptide that binds to the human melanocortin 4 receptor (hMC4R) with low microM affinity, was prepared by solid-phase synthesis methods, purified, and characterized. The labeled ligand, Eu-DTPA-PEGO-His-dPhe-Arg-Trp-NH(2), exhibited a K(d) for hMC4R of 9.1+/-1.4 microM, approximately 10-fold lower affinity than the parental ligand. The labeled MSH(4) derivative was employed in a competitive binding assay to characterize the interactions of hMC4R with monovalent and divalent MSH(4) constructs derived from squalene. The results were compared with results from a similar assay that employed a more potent labeled ligand, Eu-DTPA-NDP-alpha-MSH. While results from the latter assay reflected only statistical effects, results from the former assay reflected a mixture of statistical, proximity, and/or cooperative binding effects. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Amino Acid Insertion Frequencies Arising from Photoproducts Generated Using Aliphatic Diazirines

    NASA Astrophysics Data System (ADS)

    Ziemianowicz, Daniel S.; Bomgarden, Ryan; Etienne, Chris; Schriemer, David C.

    2017-10-01

    Mapping proteins with chemical reagents and mass spectrometry can generate a measure of accessible surface area, which in turn can be used to support the modeling and refinement of protein structures. Photolytically generated carbenes are a promising class of reagent for this purpose. Substituent effects appear to influence surface mapping properties, allowing for a useful measure of design control. However, to use carbene labeling data in a quantitative manner for modeling activities, we require a better understanding of their inherent amino acid reactivity, so that incorporation data can be normalized. The current study presents an analysis of the amino acid insertion frequency of aliphatic carbenes generated by the photolysis of three different diazirines: 3,3'-azibutyl-1-ammonium, 3,3'-azibutan-1-ol, and 4,4'-azipentan-1-oate. Leveraging an improved photolysis system for single-shot labeling of sub-microliter frozen samples, we used EThCD to localize insertion products in a large population of labeled peptides. Counting statistics were drawn from data-dependent LC-MS2 experiments and used to estimate the frequencies of insertion as a function of amino acid. We observed labeling of all 20 amino acids over a remarkably narrow range of insertion frequencies. However, the nature of the substituent could influence relative insertion frequencies, within a general preference for larger polar amino acids. We confirm a large (6-fold) increase in labeling yield when carbenes were photogenerated in the solid phase (77 K) relative to the liquid phase (293 K), and we suggest that carbene labeling should always be conducted in the frozen state to avoid information loss in surface mapping experiments. [Figure not available: see fulltext.

  18. 21 CFR 660.2 - General requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen... transmitting hepatitis. (4) If the product is dried, the final container label shall indicate “Reconstitution..., including hepatitis, in handling the product and any ancillary reagents and materials accompanying the...

  19. 21 CFR 660.2 - General requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen... transmitting hepatitis. (4) If the product is dried, the final container label shall indicate “Reconstitution..., including hepatitis, in handling the product and any ancillary reagents and materials accompanying the...

  20. 21 CFR 660.2 - General requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen... transmitting hepatitis. (4) If the product is dried, the final container label shall indicate “Reconstitution..., including hepatitis, in handling the product and any ancillary reagents and materials accompanying the...

  1. 21 CFR 660.2 - General requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen... transmitting hepatitis. (4) If the product is dried, the final container label shall indicate “Reconstitution..., including hepatitis, in handling the product and any ancillary reagents and materials accompanying the...

  2. 21 CFR 660.2 - General requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen... transmitting hepatitis. (4) If the product is dried, the final container label shall indicate “Reconstitution..., including hepatitis, in handling the product and any ancillary reagents and materials accompanying the...

  3. Detection of deoxynivalenol using biolayer interferometry

    USDA-ARS?s Scientific Manuscript database

    Biolayer interferometry allows for the real time monitoring of the interactions between molecules without the need for reagents with enzymatic, fluorescent, or radioactive labels. The technology is based upon the changes in interference pattern of light reflected from the surface of an optical fiber...

  4. Protein tetrazinylation via diazonium coupling for covalent and catalyst-free bioconjugation.

    PubMed

    Zhang, Jie; Men, Yuwen; Lv, Shanshan; Yi, Long; Chen, Jian-Feng

    2015-12-21

    An efficient and bench-stable reagent was synthesized for direct and covalent introduction of tetrazines onto target protein or virus surfaces, which can be further modified based on tetrazine-ene ligation to achieve fluorescence labelling or PEGylation under mild conditions.

  5. Scaffold design of trivalent chelator heads dictates high-affinity and stable His-tagged protein labeling in vitro and in cellulo.

    PubMed

    Gatterdam, Karl; Joest, Eike F; Gatterdam, Volker; Tampé, Robert

    2018-05-29

    Small chemical/biological interaction pairs are at the forefront in tracing proteins' function and interaction at high signal-to-background ratio in cellular pathways. Pharma ventures have eager plans to develop trisNTA probes for in vitro and in vivo screening of His-tagged protein targets. However, the optimal design of scaffold, linker, and chelator head yet deserves systematic investigations to achieve highest affinity and kinetic stability for in vitro and especially cell applications. In this study, we report on a library of N-nitrilotriacetic acid (NTA) based multivalent chelator heads (MCHs) built up on linear, cyclic, and dendritic scaffolds and contrast these with regard to their binding affinity and stability for labeling of cellular His-tagged proteins. Furthermore, we assign a new approach for tracing cellular target proteins at picomolar probe concentrations in cells. Finally, we describe fundamental differences between the MCH scaffold and define a cyclic trisNTA chelator, which displays the highest affinity and kinetic stability of all reversible, low-molecular weight interaction pairs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Weight-lattice discretization of Weyl-orbit functions

    NASA Astrophysics Data System (ADS)

    Hrivnák, Jiří; Walton, Mark A.

    2016-08-01

    Weyl-orbit functions have been defined for each simple Lie algebra, and permit Fourier-like analysis on the fundamental region of the corresponding affine Weyl group. They have also been discretized, using a refinement of the coweight lattice, so that digitized data on the fundamental region can be Fourier-analyzed. The discretized orbit function has arguments that are redundant if related by the affine Weyl group, while its labels, the Weyl-orbit representatives, invoke the dual affine Weyl group. Here we discretize the orbit functions in a novel way, by using the weight lattice. A cleaner theory results with symmetry between the arguments and labels of the discretized orbit functions. Orthogonality of the new discretized orbit functions is proved, and leads to the construction of unitary, symmetric matrices with Weyl-orbit-valued elements. For one type of orbit function, the matrix coincides with the Kac-Peterson modular S matrix, important for Wess-Zumino-Novikov-Witten conformal field theory.

  7. Grignard reagent/CuI/LiCl-mediated stereoselective cascade addition/cyclization of diynes: a novel pathway for the construction of 1-methyleneindene derivatives.

    PubMed

    Li, De-Yao; Wei, Yin; Shi, Min

    2013-11-11

    Diynes containing a cyclopropane group smoothly undergo a novel intramolecular and stereoselective cascade addition/cyclization reaction to produce the corresponding 1-methyleneindene derivatives in moderate to good yields. This interesting transformation is mediated by Grignard reagent/CuI with LiCl as an additive under mild conditions. The obtained product can easily be further functionalized through cyclopropyl ring opening. A plausible reaction mechanism has also been presented on the basis of deuterium labeling and control experiments. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Selective Chemical Labeling of Proteins with Small Fluorescent Molecules Based on Metal-Chelation Methodology

    PubMed Central

    Soh, Nobuaki

    2008-01-01

    Site-specific chemical labeling utilizing small fluorescent molecules is a powerful and attractive technique for in vivo and in vitro analysis of cellular proteins, which can circumvent some problems in genetic encoding labeling by large fluorescent proteins. In particular, affinity labeling based on metal-chelation, advantageous due to the high selectivity/simplicity and the small tag-size, is promising, as well as enzymatic covalent labeling, thereby a variety of novel methods have been studied in recent years. This review describes the advances in chemical labeling of proteins, especially highlighting the metal-chelation methodology. PMID:27879749

  9. Flexible Label-Free Quantitative Assay for Antibodies to Influenza Virus Hemagglutinins ▿

    PubMed Central

    Carney, Paul J.; Lipatov, Aleksandr S.; Monto, Arnold S.; Donis, Ruben O.; Stevens, James

    2010-01-01

    During the initial pandemic influenza H1N1 virus outbreak, assays such as hemagglutination inhibition and microneutralization provided important information on the relative protection afforded by the population's cross-reactivity from prior infections and immunizations with seasonal vaccines. However, these assays continue to be limited in that they are difficult to automate for high throughput, such as in pandemic situations, as well as to standardize between labs. Thus, new technologies are being sought to improve standardization, reliability, and throughput by using chemically defined reagents rather than whole cells and virions. We now report the use of a cell-free and label-free flu antibody biosensor assay (f-AbBA) for influenza research and diagnostics that utilizes recombinant hemagglutinin (HA) in conjunction with label-free biolayer interferometry technology to measure biomolecular interactions between the HA and specific anti-HA antibodies or sialylated ligands. We evaluated f-AbBA to determine anti-HA antibody binding activity in serum or plasma to assess vaccine-induced humoral responses. This assay can reveal the impact of antigenic difference on antibody binding to HA and also measure binding to different subtypes of HA. We also show that the biosensor assay can measure the ability of HA to bind a model sialylated receptor-like ligand. f-AbBA could be used in global surveillance laboratories since preliminary tests on desiccated HA probes showed no loss of activity after >2 months in storage at room temperature, indicating that the same reagent lots could be used in different laboratories to minimize interlaboratory assay fluctuation. Future development of such reagents and similar technologies may offer a robust platform for future influenza surveillance activities. PMID:20660137

  10. Peptide-MHC Class I Tetramers Can Fail To Detect Relevant Functional T Cell Clonotypes and Underestimate Antigen-Reactive T Cell Populations.

    PubMed

    Rius, Cristina; Attaf, Meriem; Tungatt, Katie; Bianchi, Valentina; Legut, Mateusz; Bovay, Amandine; Donia, Marco; Thor Straten, Per; Peakman, Mark; Svane, Inge Marie; Ott, Sascha; Connor, Tom; Szomolay, Barbara; Dolton, Garry; Sewell, Andrew K

    2018-04-01

    Peptide-MHC (pMHC) multimers, usually used as streptavidin-based tetramers, have transformed the study of Ag-specific T cells by allowing direct detection, phenotyping, and enumeration within polyclonal T cell populations. These reagents are now a standard part of the immunology toolkit and have been used in many thousands of published studies. Unfortunately, the TCR-affinity threshold required for staining with standard pMHC multimer protocols is higher than that required for efficient T cell activation. This discrepancy makes it possible for pMHC multimer staining to miss fully functional T cells, especially where low-affinity TCRs predominate, such as in MHC class II-restricted responses or those directed against self-antigens. Several recent, somewhat alarming, reports indicate that pMHC staining might fail to detect the majority of functional T cells and have prompted suggestions that T cell immunology has become biased toward the type of cells amenable to detection with multimeric pMHC. We use several viral- and tumor-specific pMHC reagents to compare populations of human T cells stained by standard pMHC protocols and optimized protocols that we have developed. Our results confirm that optimized protocols recover greater populations of T cells that include fully functional T cell clonotypes that cannot be stained by regular pMHC-staining protocols. These results highlight the importance of using optimized procedures that include the use of protein kinase inhibitor and Ab cross-linking during staining to maximize the recovery of Ag-specific T cells and serve to further highlight that many previous quantifications of T cell responses with pMHC reagents are likely to have considerably underestimated the size of the relevant populations. Copyright © 2018 The Authors.

  11. Structure Based Library Design (SBLD) for new 1,4-dihydropyrimidine scaffold as simultaneous COX-1/COX-2 and 5-LOX inhibitors.

    PubMed

    Lokwani, Deepak; Azad, Rajaram; Sarkate, Aniket; Reddanna, Pallu; Shinde, Devanand

    2015-08-01

    The various scaffolds containing 1,4-dihydropyrimidine ring were designed by considering the environment of the active site of COX-1/COX-2 and 5-LOX enzymes. The structure-based library design approach, including the focused library design (Virtual Combinatorial Library Design) and virtual screening was used to select the 1,4-dihydropyrimidine scaffold for simultaneous inhibition of both enzyme pathways (COX-1/COX-2 and 5-LOX). The virtual library on each 1,4-dihydropyrimidine scaffold was enumerated in two alternative ways. In first way, the chemical reagents at R groups were filtered by docking of scaffold with single position substitution, that is, only at R1, or R2, or R3, … Rn on COX-2 enzyme using Glide XP docking mode. The structures that do not dock well were removed and the library was enumerated with filtered chemical reagents. In second alternative way, the single position docking stage was bypassed, and the entire library was enumerated using all chemical reagents by docking on the COX-2 enzyme. The entire library of approximately 15,629 compounds obtained from both ways after screening for drug like properties, were further screened for their binding affinity against COX-1 and 5-LOX enzymes using Virtual Screening Workflow. Finally, 142 hits were obtained and divided into two groups based on their binding affinity for COX-1/COX-2 and for both enzyme pathways (COX-1/COX-2 and 5-LOX). The ten molecules were selected, synthesized and evaluated for their COX-1, COX-2 and 5-LOX inhibiting activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Novel Peptide Sequence (“IQ-tag”) with High Affinity for NIR Fluorochromes Allows Protein and Cell Specific Labeling for In Vivo Imaging

    PubMed Central

    McCarthy, Jason R.; Weissleder, Ralph

    2007-01-01

    Background Probes that allow site-specific protein labeling have become critical tools for visualizing biological processes. Methods Here we used phage display to identify a novel peptide sequence with nanomolar affinity for near infrared (NIR) (benz)indolium fluorochromes. The developed peptide sequence (“IQ-tag”) allows detection of NIR dyes in a wide range of assays including ELISA, flow cytometry, high throughput screens, microscopy, and optical in vivo imaging. Significance The described method is expected to have broad utility in numerous applications, namely site-specific protein imaging, target identification, cell tracking, and drug development. PMID:17653285

  13. Advances in identification and validation of protein targets of natural products without chemical modification.

    PubMed

    Chang, J; Kim, Y; Kwon, H J

    2016-05-04

    Covering: up to February 2016Identification of the target proteins of natural products is pivotal to understanding the mechanisms of action to develop natural products for use as molecular probes and potential therapeutic drugs. Affinity chromatography of immobilized natural products has been conventionally used to identify target proteins, and has yielded good results. However, this method has limitations, in that labeling or tagging for immobilization and affinity purification often result in reduced or altered activity of the natural product. New strategies have recently been developed and applied to identify the target proteins of natural products and synthetic small molecules without chemical modification of the natural product. These direct and indirect methods for target identification of label-free natural products include drug affinity responsive target stability (DARTS), stability of proteins from rates of oxidation (SPROX), cellular thermal shift assay (CETSA), thermal proteome profiling (TPP), and bioinformatics-based analysis of connectivity. This review focuses on and reports case studies of the latest advances in target protein identification methods for label-free natural products. The integration of newly developed technologies will provide new insights and highlight the value of natural products for use as biological probes and new drug candidates.

  14. Tritiated-nicotine- and /sup 125/I-alpha-bungarotoxin-labeled nicotinic receptors in the interpeduncular nucleus of rats. II. Effects of habenular destruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clarke, P.B.; Hamill, G.S.; Nadi, N.S.

    1986-09-15

    The cholinergic innervation of the interpeduncular nucleus (IPN) is wholly extrinsic and is greatly attenuated by bilateral habenular destruction. We describe changes in the labeling of putative nicotinic receptors within this nucleus at 3, 5, or 11 days after bilateral habenular lesions. Adjacent tissue sections of the rat IPN were utilized for /sup 3/H-nicotine and /sup 125/I-alpha-bungarotoxin (/sup 125/I-BTX) receptor autoradiography. Compared to sham-operated controls, habenular destruction significantly reduced autoradiographic /sup 3/H-nicotine labeling in rostral (-25%), intermediate (-13%), and lateral subnuclei (-36%). Labeling in the central subnucleus was unchanged. Loss of labeling was maximal at the shortest survival time (3more » days) and did not change thereafter. In order to establish whether this loss was due to a reduction in the number or the affinity of /sup 3/H-nicotine-binding sites, a membrane assay was performed on microdissected IPN tissue from rats that had received surgery 3 days previously. Bilateral habenular lesions produced a 35% reduction of high-affinity /sup 3/H-nicotine-binding sites, with no change in binding affinity. Bilateral habenular lesions reduced /sup 125/I-BTX labeling in the intermediate subnuclei, and a slight increase occurred in the rostral subnucleus. In the lateral subnuclei, /sup 125/I-BTX labeling was significantly reduced (27%) at 3 days but not at later survival times. In view of the known synaptic morphology of the habenulointerpeduncular tract, it is concluded that a subpopulation of /sup 3/H-nicotine binding sites within the IPN is located on afferent axons and/or terminals. This subpopulation, located within rostral, intermediate, and lateral subnuclei, may correspond to presynaptic nicotinic cholinergic receptors. Sites that bind /sup 125/I-BTX may include a presynaptic subpopulation located in the lateral and possibly the intermediate subnuclei.« less

  15. Hydrazine and hydroxylamine as probes for O2-reduction site of mitochondrial cytochrome c oxidase.

    PubMed Central

    Kubota, T; Yoshikawa, S

    1993-01-01

    Reactions of hydrazine and hydroxylamine with bovine heart cytochrome c oxidase in the fully reduced state were investigated under anaerobic conditions following the visible-Soret spectral change. Hydrazine gave a sharp band at 575 nm with 20% decrease in the alpha band at 603 nm, and hydroxylamine induced a 2 nm blue-shift for the alpha band without any clear splitting. The Soret band at 443 nm was decreased significantly in intensity, with the concomitant appearance of a shoulder with hydrazine or a peak with hydroxylamine, both near 430 nm. The dependence on pH of the affinity of these reagents for the enzyme indicates that only the deprotonated forms of these reagents bind to the enzyme, suggesting a highly hydrophobic environment of the haem ligand-biding site. These spectral changes were largely removed by addition of cyanide or CO. However, detailed analysis of these spectral changes indicates that hydrazine perturbs the shape of the spectral change induced by cyanide and hydroxylamine perturbs that induced by CO. These results suggest that these aldehyde reagents bind to haem a3 iron as well as to a second site which is most likely to be the formyl group on the haem periphery, and that these two sites bind these reagents anti-cooperatively with each other. PMID:8389138

  16. Monoclonal TCR-redirected tumor cell killing.

    PubMed

    Liddy, Nathaniel; Bossi, Giovanna; Adams, Katherine J; Lissina, Anna; Mahon, Tara M; Hassan, Namir J; Gavarret, Jessie; Bianchi, Frayne C; Pumphrey, Nicholas J; Ladell, Kristin; Gostick, Emma; Sewell, Andrew K; Lissin, Nikolai M; Harwood, Naomi E; Molloy, Peter E; Li, Yi; Cameron, Brian J; Sami, Malkit; Baston, Emma E; Todorov, Penio T; Paston, Samantha J; Dennis, Rebecca E; Harper, Jane V; Dunn, Steve M; Ashfield, Rebecca; Johnson, Andy; McGrath, Yvonne; Plesa, Gabriela; June, Carl H; Kalos, Michael; Price, David A; Vuidepot, Annelise; Williams, Daniel D; Sutton, Deborah H; Jakobsen, Bent K

    2012-06-01

    T cell immunity can potentially eradicate malignant cells and lead to clinical remission in a minority of patients with cancer. In the majority of these individuals, however, there is a failure of the specific T cell receptor (TCR)–mediated immune recognition and activation process. Here we describe the engineering and characterization of new reagents termed immune-mobilizing monoclonal TCRs against cancer (ImmTACs). Four such ImmTACs, each comprising a distinct tumor-associated epitope-specific monoclonal TCR with picomolar affinity fused to a humanized cluster of differentiation 3 (CD3)-specific single-chain antibody fragment (scFv), effectively redirected T cells to kill cancer cells expressing extremely low surface epitope densities. Furthermore, these reagents potently suppressed tumor growth in vivo. Thus, ImmTACs overcome immune tolerance to cancer and represent a new approach to tumor immunotherapy.

  17. Adjoint affine fusion and tadpoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urichuk, Andrew, E-mail: andrew.urichuk@uleth.ca; Walton, Mark A., E-mail: walton@uleth.ca; International School for Advanced Studies

    2016-06-15

    We study affine fusion with the adjoint representation. For simple Lie algebras, elementary and universal formulas determine the decomposition of a tensor product of an integrable highest-weight representation with the adjoint representation. Using the (refined) affine depth rule, we prove that equally striking results apply to adjoint affine fusion. For diagonal fusion, a coefficient equals the number of nonzero Dynkin labels of the relevant affine highest weight, minus 1. A nice lattice-polytope interpretation follows and allows the straightforward calculation of the genus-1 1-point adjoint Verlinde dimension, the adjoint affine fusion tadpole. Explicit formulas, (piecewise) polynomial in the level, are writtenmore » for the adjoint tadpoles of all classical Lie algebras. We show that off-diagonal adjoint affine fusion is obtained from the corresponding tensor product by simply dropping non-dominant representations.« less

  18. Boron in nuclear medicine: New synthetic approaches to PET and SPECT. Final report, May 1, 1986--April 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabalka, G.W.

    1997-08-01

    Research is described in the development of organometallic reagents in which the boron was attached to a nonreactive organic or inorganic matrix such as polystyrene, silica, or alumina. We developed the synthesis of oxygen-15 labelled butanol, which has been found to be a valuable blood flow agent in humans. We have also developed a series of polymeric borane derivatives which were used to prepare nitrogen-13 labelled amines.

  19. Isotopic variants of light and heavy L-pyroglutamic acid succinimidyl esters as the derivatization reagents for DL-amino acid chiral metabolomics identification by liquid chromatography and electrospray ionization mass spectrometry.

    PubMed

    Mochizuki, Toshiki; Todoroki, Kenichiro; Inoue, Koichi; Min, Jun Zhe; Toyo'oka, Toshimasa

    2014-02-06

    L-Pyroglutamic acid succinimidyl ester (L-PGA-OSu) and its isotopic variant (L-PGA[d5]-OSu) were newly synthesized and evaluated as the chiral labeling reagents for the enantioseparation of amino acids, in terms of separation efficiency by reversed-phase chromatography and detection sensitivity by ESI-MS/MS. The enantiomers of amino acids were easily labeled with the reagents at 60°C within 10 min in an alkaline medium containing triethylamine. Although all the diastereomers derived from 18 proteolytic amino acids could not be satisfactorily separated, the pairs of 9 amino acids were completely separated by reversed-phase chromatography using the small particle (1.7 μm) ODS column (Rs=1.95-8.05). The characteristic daughter ions, i.e., m/z 84.04 and m/z 89.04, were detected from all the derivatives by the collision induced dissociation of the protonated molecular ions. A highly sensitive detection at a low-fmol level (0.5-3.2 fmol) was also obtained from the selected reaction monitoring (SRM) chromatograms. An isotope labeling strategy using light and heavy L-PGA-OSu for the differential analysis of the DL-amino acids in different sample groups is also presented in this paper. The differential analysis of biological sample (i.e., human serum) and food product (i.e., yogurt) were tried to demonstrate the efficiency of the proposed method. The ratios of the DL-amino acids in human serum samples, spiked with the different concentrations of D-amino acids, were determined by the procedures using L-PGA-OSu and L-PGA[d5]-OSu. The D/L ratios in the two sample groups at different concentrations of amino acids were similar to the theoretical values. Furthermore, the ratios of D/L-alanine values in different yogurt products were comparable to the ratios obtained from the d/l values using only light reagent (i.e., L-PGA-OSu). Consequently, the proposed strategy is useful for the differential analysis not only in biological samples but also in food products. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Method for producing a biological reagent

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Rembaum, Alan (Inventor); Molday, Robert S. (Inventor)

    1980-01-01

    Polymeric functional microspheres containing metal or metal compounds are formed by addition polymerization of a covalently bondable olefinic monomer such as hydroxyethylmethacrylate in the presence of finely divided metal or metal oxide particles, such as iron, gold, platinum or magnetite, which are embedded in the resulting microspheres. The microspheres can be covalently bonded to chemotherapeutic agents, antibodies, or other proteins providing a means for labeling or separating labeled cells. Labeled cells or microspheres can be concentrated at a specific body location such as in the vicinity of a malignant tumor by applying a magnetic field to the location and then introducing the magnetically attractable microspheres or cells into the circulatory system of the subject. Labeled cells can be separated from a cell mixture by applying a predetermined magnetic field to a tube in which the mixture is flowing. After collection of the labeled cells, the magnetic field is discontinued and the labeled sub-cell population recovered.

  1. Application of NMR Methods to Identify Detection Reagents for Use in the Development of Robust Nanosensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cosman, M; Krishnan, V V; Balhorn, R

    2004-04-29

    Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful technique for studying bi-molecular interactions at the atomic scale. Our NMR lab is involved in the identification of small molecules, or ligands that bind to target protein receptors, such as tetanus (TeNT) and botulinum (BoNT) neurotoxins, anthrax proteins and HLA-DR10 receptors on non-Hodgkin's lymphoma cancer cells. Once low affinity binders are identified, they can be linked together to produce multidentate synthetic high affinity ligands (SHALs) that have very high specificity for their target protein receptors. An important nanotechnology application for SHALs is their use in the development of robust chemical sensors ormore » biochips for the detection of pathogen proteins in environmental samples or body fluids. Here, we describe a recently developed NMR competition assay based on transferred nuclear Overhauser effect spectroscopy (trNOESY) that enables the identification of sets of ligands that bind to the same site, or a different site, on the surface of TeNT fragment C (TetC) than a known ''marker'' ligand, doxorubicin. Using this assay, we can identify the optimal pairs of ligands to be linked together for creating detection reagents, as well as estimate the relative binding constants for ligands competing for the same site.« less

  2. A broadly applicable [18F]trifluoromethylation of aryl and heteroaryl iodides for PET imaging

    NASA Astrophysics Data System (ADS)

    Huiban, Mickael; Tredwell, Matthew; Mizuta, Satoshi; Wan, Zehong; Zhang, Xiaomin; Collier, Thomas Lee; Gouverneur, Véronique; Passchier, Jan

    2013-11-01

    Molecules labelled with the unnatural isotope fluorine-18 are used for positron emission tomography. Currently, this molecular imaging technology is not exploited at its full potential because many 18F-labelled probes are inaccessible or notoriously difficult to produce. Typical challenges associated with 18F radiochemistry are the short half-life of 18F (<2 h), the use of sub-stoichiometric amounts of 18F, relative to the precursor and other reagents, as well as the limited availability of parent 18F sources of suitable reactivity ([18F]F- and [18F]F2). There is a high-priority demand for general methods allowing access to [18F]CF3-substituted molecules for application in pharmaceutical discovery programmes. We report the development of a process for the late-stage [18F]trifluoromethylation of (hetero)arenes from [18F]fluoride using commercially available reagents and (hetero)aryl iodides. This [18F]CuCF3-based protocol benefits from a large substrate scope and is characterized by its operational simplicity.

  3. A label-free aptamer-fluorophore assembly for rapid and specific detection of cocaine in biofluids.

    PubMed

    Roncancio, Daniel; Yu, Haixiang; Xu, Xiaowen; Wu, Shuo; Liu, Ran; Debord, Joshua; Lou, Xinhui; Xiao, Yi

    2014-11-18

    We report a rapid and specific aptamer-based method for one-step cocaine detection with minimal reagent requirements. The feasibility of aptamer-based detection has been demonstrated with sensors that operate via target-induced conformational change mechanisms, but these have generally exhibited limited target sensitivity. We have discovered that the cocaine-binding aptamer MNS-4.1 can also bind the fluorescent molecule 2-amino-5,6,7-trimethyl-1,8-naphthyridine (ATMND) and thereby quench its fluorescence. We subsequently introduced sequence changes into MNS-4.1 to engineer a new cocaine-binding aptamer (38-GC) that exhibits higher affinity to both ligands, with reduced background signal and increased signal gain. Using this aptamer, we have developed a new sensor platform that relies on the cocaine-mediated displacement of ATMND from 38-GC as a result of competitive binding. We demonstrate that our sensor can detect cocaine within seconds at concentrations as low as 200 nM, which is 50-fold lower than existing assays based on target-induced conformational change. More importantly, our assay achieves successful cocaine detection in body fluids, with a limit of detection of 10.4, 18.4, and 36 μM in undiluted saliva, urine, and serum samples, respectively.

  4. Facile construction of a highly sensitive DNA biosensor by in-situ assembly of electro-active tags on hairpin-structured probe fragment

    PubMed Central

    Wang, Qingxiang; Gao, Feng; Ni, Jiancong; Liao, Xiaolei; Zhang, Xuan; Lin, Zhenyu

    2016-01-01

    An ultrasensitive DNA biosensor has been developed through in-situ labeling of electroactive melamine-Cu2+ complex (Mel-Cu2+) on the end of hairpin-like probe using gold nanoparticles (AuNPs) as the signal amplification platform. The 3′-thiolated hairpin-like probe was first immobilized to the gold electrode surface by the Au-S bond. The AuNPs were then tethered on the free 5′-end of the immobilized probe via the special affinity between Au and the modified -NH2. Followed by, the Mel and Cu2+ were assembled on the AuNPs surface through Au-N bond and Cu2+-N bond, respectively. Due to the surface area and electrocatalytic effects of the AuNPs, the loading amount and electron transfer kinetic of the Mel-Cu2+ were enhanced greatly, resulting in significantly enhanced electrochemical response of the developed biosensor. Compared with the synthesis process of conventional electroactive probe DNA accomplished by homogeneous method, the method presented in this work is more reagent- and time-saving. The proposed biosensor showed high selectivity, wide linear range and low detection limit. This novel strategy could also be extended to the other bioanalysis platforms such as immunosensors and aptasensors. PMID:26931160

  5. Pertussis toxin modifies the characteristics of both the inhibitory GTP binding proteins and the somatostatin receptor in anterior pituitary tumor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahy, N.; Woolkalis, M.; Thermos, K.

    1988-08-01

    The effects of pertussis toxin treatment on the characteristics of somatostatin receptors in the anterior pituitary tumor cell line AtT-20 were examined. Pertussis toxin selectively catalyzed the ADP ribosylation of the alpha subunits of the inhibitory GTP binding proteins in AtT-20 cells. Toxin treatment abolished somatostatin inhibition of forskolin-stimulated adenylyl cyclase activity and somatostatin stimulation of GTPase activity. To examine the effects of pertussis toxin treatment on the characteristics of the somatostatin receptor, the receptor was labeled by the somatostatin analog (125I)CGP 23996. (125I)CGP 23996 binding to AtT-20 cell membranes was saturable and within a limited concentration range was tomore » a single high affinity site. Pertussis toxin treatment reduced the apparent density of the high affinity (125I)CGP 23996 binding sites in AtT-20 cell membranes. Inhibition of (125I)CGP 23996 binding by a wide concentration range of CGP 23996 revealed the presence of two binding sites. GTP predominantly reduced the level of high affinity sites in control membranes. Pertussis toxin treatment also diminished the amount of high affinity sites. GTP did not affect (125I)CGP 23996 binding in the pertussis toxin-treated membranes. The high affinity somatostatin receptors were covalently labeled with (125I) CGP 23996 and the photoactivated crosslinking agent n-hydroxysuccinimidyl-4-azidobenzoate. No high affinity somatostatin receptors, covalently bound to (125I)CGP 23996, were detected in the pertussis toxin-treated membranes. These results are most consistent with pertussis toxin uncoupling the inhibitory G proteins from the somatostatin receptor thereby converting the receptor from a mixed population of high and low affinity sites to only low affinity receptors.« less

  6. UV-triggered Affinity Capture Identifies Interactions between the Plasmodium falciparum Multidrug Resistance Protein 1 (PfMDR1) and Antimalarial Agents in Live Parasitized Cells*

    PubMed Central

    Brunner, Ralf; Ng, Caroline L.; Aissaoui, Hamed; Akabas, Myles H.; Boss, Christoph; Brun, Reto; Callaghan, Paul S.; Corminboeuf, Olivier; Fidock, David A.; Frame, Ithiel J.; Heidmann, Bibia; Le Bihan, Amélie; Jenö, Paul; Mattheis, Corinna; Moes, Suzette; Müller, Ingrid B.; Paguio, Michelle; Roepe, Paul D.; Siegrist, Romain; Voss, Till; Welford, Richard W. D.; Wittlin, Sergio; Binkert, Christoph

    2013-01-01

    A representative of a new class of potent antimalarials with an unknown mode of action was recently described. To identify the molecular target of this class of antimalarials, we employed a photo-reactive affinity capture method to find parasite proteins specifically interacting with the capture compound in living parasitized cells. The capture reagent retained the antimalarial properties of the parent molecule (ACT-213615) and accumulated within parasites. We identified several proteins interacting with the capture compound and established a functional interaction between ACT-213615 and PfMDR1. We surmise that PfMDR1 may play a role in the antimalarial activity of the piperazine-containing compound ACT-213615. PMID:23754276

  7. Direct aqueous measurement of 25-hydroxyvitamin D levels in a cellular environment by LC-MS/MS using the novel chemical derivatization reagent MDBP.

    PubMed

    Müller, Miriam J; Bruns, Heiko; Volmer, Dietrich A

    2017-04-01

    Vitamin D measurements in biological fluids by mass spectrometry are challenging at very low concentration levels. As a result, chemical derivatization is often employed to enhance the ionization properties of low abundant vitamin D compounds. Cookson-type reagents such as 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) or similar derivatives work well but require careful, water-free experimental conditions, as traces of water inactivate the reagent and inhibit or stop the derivatization reactions, thus making quantitative measurements in aqueous samples impossible. We describe a novel electrospray liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for determining 25-hydroxyvitamin D 3 (25(OH)D 3 ) directly in aqueous cellular systems using a new derivatization reagent, the ionic liquid 12-(maleimidyl)dodecyl-tri-n-butylphosphonium bromide (MDBP). The proof-of-concept for the MDBP assay was demonstrated by measuring the levels of 25(OH)D 3 in four different human cell types, namely T cells, helper T cells, B cells, and macrophages. In addition to the ability to determine the levels of 25(OH)D 3 directly in aqueous samples, the cellular integrity was maintained in our application. We show the time-dependent uptake of 25(OH)D 3 into the investigated cells to demonstrate the applicability of the new label. Furthermore, the MDBP derivatization technique may be equally useful in imaging mass spectrometry, where it could be used for response enhancements of spatially localized vitamin D metabolites on wet tissue surfaces, without destroying the integrity of the tissue surface. Graphical Abstract MDBP labelling of 25-hydroxyvitamin D in the extracellular space.

  8. Dual-purpose linker for alpha helix stabilization and imaging agent conjugation to glucagon-like peptide-1 receptor ligands.

    PubMed

    Zhang, Liang; Navaratna, Tejas; Liao, Jianshan; Thurber, Greg M

    2015-02-18

    Peptides display many characteristics of efficient imaging agents such as rapid targeting, fast background clearance, and low non-specific cellular uptake. However, poor stability, low affinity, and loss of binding after labeling often preclude their use in vivo. Using glucagon-like peptide-1 receptor (GLP-1R) ligands exendin and GLP-1 as a model system, we designed a novel α-helix-stabilizing linker to simultaneously address these limitations. The stabilized and labeled peptides showed an increase in helicity, improved protease resistance, negligible loss or an improvement in binding affinity, and excellent in vivo targeting. The ease of incorporating azidohomoalanine in peptides and efficient reaction with the dialkyne linker enable this technique to potentially be used as a general method for labeling α helices. This strategy should be useful for imaging beta cells in diabetes research and in developing and testing other peptide targeting agents.

  9. A Dual-Purpose Linker for Alpha Helix Stabilization and Imaging Agent Conjugation to Glucagon-Like Peptide-1 Receptor Ligands

    PubMed Central

    Zhang, Liang; Navaratna, Tejas; Liao, Jianshan; Thurber, Greg M.

    2016-01-01

    Peptides display many characteristics of efficient imaging agents such as rapid targeting, fast background clearance, and low non-specific cellular uptake. However, poor stability, low affinity, and loss of binding after labeling often preclude their use in vivo. Using the glucagon-like peptide-1 receptor (GLP-1R) ligands exendin and GLP-1 as a model system, we designed a novel alpha helix stabilizing linker to simultaneously address these limitations. The stabilized and labeled peptides showed an increase in helicity, improved protease resistance, negligible loss or an improvement in binding affinity, and excellent in vivo targeting. The ease of incorporating azidohomoalanine in peptides and efficient reaction with the dialkyne linker enables this technique to potentially be used as a general method for labeling alpha helices. This strategy should be useful for imaging beta cells in diabetes research and in developing and testing other peptide targeting agents. PMID:25594741

  10. Isolation of high-affinity, neutralizing anti-idiotype antibodies by phage and ribosome display for application in immunogenicity and pharmacokinetic analyses.

    PubMed

    Chin, Stacey E; Ferraro, Franco; Groves, Maria; Liang, Meina; Vaughan, Tristan J; Dobson, Claire L

    2015-01-01

    Anti-idiotype antibodies against a therapeutic antibody are key reagents for the development of immunogenicity and pharmacokinetic (PK) assays during pre-clinical and clinical development. Here we have used a combination of phage and ribosome display to isolate a panel of monoclonal anti-idiotype antibodies with sub-nanomolar affinity and high specificity to a human anti-IgE monoclonal antibody. Anti-idiotype antibodies were enriched from scFv libraries using phage display, and a biochemical epitope competition assay was used to identify anti-idiotypes which neutralized IgE binding, which was essential for the intended use of the anti-idiotypes as positive controls in neutralizing anti-drug antibody (Nab) assays. The phage display-derived anti-idiotype antibodies were rapidly affinity-matured using a random point mutagenesis approach in ribosome display. Ten anti-idiotype antibodies with improved neutralizing activity relative to the parent antibodies displayed sub-nanomolar affinity for the anti-IgE antibody, representing up to 20-fold improvements in affinity from just two rounds of affinity-based selection. The optimized anti-idiotype antibodies retained the specificity of the parent antibodies, and importantly, were fit for purpose for use in PK and anti-drug antibody (ADA) assays. The approach we describe here for generation of anti-idiotype antibodies to an anti-IgE antibody is generically applicable for the rapid isolation and affinity maturation of anti-idiotype antibodies to any antibody-based drug candidate. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Development of an aptamer beacon for detection of interferon-gamma.

    PubMed

    Tuleuova, Nazgul; Jones, Caroline N; Yan, Jun; Ramanculov, Erlan; Yokobayashi, Yohei; Revzin, Alexander

    2010-03-01

    Traditional antibody-based affinity sensing strategies employ multiple reagents and washing steps and are unsuitable for real-time detection of analyte binding. Aptamers, on the other hand, may be designed to monitor binding events directly, in real-time, without the need for secondary labels. The goal of the present study was to design an aptamer beacon for fluorescence resonance energy transfer (FRET)-based detection of interferon-gamma (IFN-gamma)--an important inflammatory cytokine. Variants of DNA aptamer modified with biotin moieties and spacers were immobilized on avidin-coated surfaces and characterized by surface plasmon resonance (SPR). The SPR studies showed that immobilization of aptamer via the 3' end resulted in the best binding IFN-gamma (K(d) = 3.44 nM). This optimal aptamer variant was then used to construct a beacon by hybridizing fluorophore-labeled aptamer with an antisense oligonucleotide strand carrying a quencher. SPR studies revealed that IFN-gamma binding with an aptamer beacon occurred within 15 min of analyte introduction--suggesting dynamic replacement of the quencher-complementary strand by IFN-gamma molecules. To further highlight biosensing applications, aptamer beacon molecules were immobilized inside microfluidic channels and challenged with varying concentration of analyte. Fluorescence microscopy revealed low fluorescence in the absence of analyte and high fluorescence after introduction of IFN-gamma. Importantly, unlike traditional antibody-based immunoassays, the signal was observed directly upon binding of analyte without the need for multiple washing steps. The surface immobilized aptamer beacon had a linear range from 5 to 100 nM and a lower limit of detection of 5 nM IFN-gamma. In conclusion, we designed a FRET-based aptamer beacon for monitoring of an inflammatory cytokine-IFN-gamma. In the future, this biosensing strategy will be employed to monitor dynamics of cytokine production by the immune cells.

  12. Comparison of receptor affinity of natSc-DOTA-TATE versus natGa-DOTA-TATE.

    PubMed

    Koumarianou, Eftychia; Pawlak, Dariusz; Korsak, Agnieszka; Mikolajczak, Renata

    2011-01-01

    44Sc as a positron emitter can be an interesting alternative to 68Ga (T½=67.71 min) due to its longer half-life (T½=3.97 h). Moreover, the b-emitter 47Sc can be used for therapy when attached to the same biomolecule vectors. DOTA as a chelating agent has been proven suitable for the radiolabelling of peptides recognising tumour cell receptors in vivo with M3+ radiometals. DOTA-derivatized peptides have been successfully labelled with 90Y and 177Lu for therapy, and with 68Ga for PET imaging. However, published data on 44Sc-labelled DOTA-biomolecules as potential PET radiotracers are still very limited. The aim of this study was to compare the affinity of natGa- and natSc-labelled DOTA-TATE to somatostatin receptors subtype 2 expressed in rat pancreatic cancer cell line AR42J. The cold complexes of DOTA-TATE with natGa and natSc were synthesized and identified by HPLC and MS analysis and evaluated in vitro for competitive binding to cancer cell line AR42J expressing somatostatin receptors subtype 2 (sstr2). The IC50 values calculated from the displacement curve of {125I-Tyr11}-SST-14 were: 0.20±0.18, 0.70±0.20, 0.64±0.22 and 0.67±0.12 for natGa-DOTA-TATE, natSc-DOTA-TATE, DOTA-TATE, and {Tyr11}-SST-14 complexes, respectively, with the affinity lowering in the decreasing order: natGa-DOTA-TATE>DOTA-TATE>Tyr11-SST-14>natSc-DOTA-TATE. The binding affinity of natGa-DOTA-TATE appeared higher than that of natSc-DOTA-TATE. Further in vitro and in vivo studies are needed to verify the influence of the chelated metal on the affinity and uptake of the respective radiolabelled compounds. This information might be crucial when the in vivo applications of peptides labelled with 68Ga and 44Sc for PET, as well as the use of 47Sc for radiotherapy are considered.

  13. 21 CFR 660.34 - Processing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.34 Processing. (a... required blood group antigens specified in the labeling as present. (b) Products prepared from pooled red blood cells. If the product is recommended for the detection of unexpected antibodies, the pool shall be...

  14. 21 CFR 660.34 - Processing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.34 Processing. (a... required blood group antigens specified in the labeling as present. (b) Products prepared from pooled red blood cells. If the product is recommended for the detection of unexpected antibodies, the pool shall be...

  15. 21 CFR 660.34 - Processing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.34 Processing. (a... required blood group antigens specified in the labeling as present. (b) Products prepared from pooled red blood cells. If the product is recommended for the detection of unexpected antibodies, the pool shall be...

  16. 21 CFR 660.34 - Processing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.34 Processing. (a... required blood group antigens specified in the labeling as present. (b) Products prepared from pooled red blood cells. If the product is recommended for the detection of unexpected antibodies, the pool shall be...

  17. Automatic face naming by learning discriminative affinity matrices from weakly labeled images.

    PubMed

    Xiao, Shijie; Xu, Dong; Wu, Jianxin

    2015-10-01

    Given a collection of images, where each image contains several faces and is associated with a few names in the corresponding caption, the goal of face naming is to infer the correct name for each face. In this paper, we propose two new methods to effectively solve this problem by learning two discriminative affinity matrices from these weakly labeled images. We first propose a new method called regularized low-rank representation by effectively utilizing weakly supervised information to learn a low-rank reconstruction coefficient matrix while exploring multiple subspace structures of the data. Specifically, by introducing a specially designed regularizer to the low-rank representation method, we penalize the corresponding reconstruction coefficients related to the situations where a face is reconstructed by using face images from other subjects or by using itself. With the inferred reconstruction coefficient matrix, a discriminative affinity matrix can be obtained. Moreover, we also develop a new distance metric learning method called ambiguously supervised structural metric learning by using weakly supervised information to seek a discriminative distance metric. Hence, another discriminative affinity matrix can be obtained using the similarity matrix (i.e., the kernel matrix) based on the Mahalanobis distances of the data. Observing that these two affinity matrices contain complementary information, we further combine them to obtain a fused affinity matrix, based on which we develop a new iterative scheme to infer the name of each face. Comprehensive experiments demonstrate the effectiveness of our approach.

  18. Mass Spectral Enhanced Detection of Ubls Using SWATH Acquisition: MEDUSA—Simultaneous Quantification of SUMO and Ubiquitin-Derived Isopeptides

    NASA Astrophysics Data System (ADS)

    Griffiths, John R.; Chicooree, Navin; Connolly, Yvonne; Neffling, Milla; Lane, Catherine S.; Knapman, Thomas; Smith, Duncan L.

    2014-05-01

    Protein modification by ubiquitination and SUMOylation occur throughout the cell and are responsible for numerous cellular functions such as apoptosis, DNA replication and repair, and gene transcription. Current methods for the identification of such modifications using mass spectrometry predominantly rely upon tryptic isopeptide tag generation followed by database searching with in vitro genetic mutation of SUMO routinely required. We have recently described a novel approach to ubiquitin and SUMO modification detection based upon the diagnostic a' and b' ions released from the isopeptide tags upon collision-induced dissociation of reductively methylated Ubl isopeptides (RUbI) using formaldehyde. Here, we significantly extend those studies by combining data-independent acquisition (DIA) with alternative labeling reagents to improve diagnostic ion coverage and enable relative quantification of modified peptides from both MS and MS/MS signals. Model synthetic ubiquitin and SUMO-derived isopeptides were labeled with mTRAQ reagents (Δ0, Δ4, and Δ8) and subjected to LC-MS/MS with SWATH acquisition. Novel diagnostic ions were generated upon CID, which facilitated the selective detection of these modified peptides. Simultaneous MS-based and MS/MS-based relative quantification was demonstrated for both Ub and SUMO-derived isopeptides across three channels in a background of mTRAQ-labeled Escherichia coli digest.

  19. Hydrophobic photolabeling identifies BHA2 as the subunit mediating the interaction of bromelain-solubilized influenza virus hemagglutinin with liposomes at low pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harter, C.; Baechi, T.S.; Semenza, G.

    1988-03-22

    To investigate the molecular basis of the low-pH-mediated interaction of the bromelain-solubilized ectodomain of influenza virus hemagglutinin (BHA) with membranes, we have photolabeled BHA in the presence of liposomes with the two carbene-generating, membrane-directed reagents 3-(trifluoromethyl)-3-(m-(/sup 125/I)iodophenyl)diazirine ((/sup 125/I)TID) and a new analogue of a phospholipid, 1-palmitoyl-2-(11-(4-(3-(trifluoromethyl)diazirinyl)phenyl)(2-/sup 3/H) undecanoyl)-sn-glycero-3-phosphocholine ((/sup 3/H)-PTPC/11). With the latter reagent, BHA was labeled in a strictly pH-dependent manner, i.e., at pH 5 only, whereas with (/sup 125/I)TID, labeling was seen also at pH 7. In all experiments, the label was selectively incorporated into the BHA2 polypeptide, demonstrating that the interaction of BHA with membranes ismore » mediated through this subunit, possibly via its hydrophobic N-terminal segment. Similar experiments with a number of other water-soluble proteins (ovalbumin, carbonic anhydrase, alpha-lactalbumin, trypsin, and soybean trypsin inhibitor) indicate that the ability to interact with liposomes at low pH is not a property specific for BHA but is observed with other, perhaps most, proteins.« less

  20. Second-Generation Difluorinated Cyclooctynes for Copper-Free Click Chemistry

    PubMed Central

    2008-01-01

    The 1,3-dipolar cycloaddition of azides and activated alkynes has been used for site-selective labeling of biomolecules in vitro and in vivo. While copper catalysis has been widely employed to activate terminal alkynes for [3 + 2] cycloaddition, this method, often termed “click chemistry”, is currently incompatible with living systems because of the toxicity of the metal. We recently reported a difluorinated cyclooctyne (DIFO) reagent that rapidly reacts with azides in living cells without the need for copper catalysis. Here we report a novel class of DIFO reagents for copper-free click chemistry that are considerably more synthetically tractable. The new analogues maintained the same elevated rates of [3 + 2] cycloaddition as the parent compound and were used for imaging glycans on live cells. These second-generation DIFO reagents should expand the use of copper-free click chemistry in the hands of biologists. PMID:18680289

  1. Second-generation difluorinated cyclooctynes for copper-free click chemistry.

    PubMed

    Codelli, Julian A; Baskin, Jeremy M; Agard, Nicholas J; Bertozzi, Carolyn R

    2008-08-27

    The 1,3-dipolar cycloaddition of azides and activated alkynes has been used for site-selective labeling of biomolecules in vitro and in vivo. While copper catalysis has been widely employed to activate terminal alkynes for [3 + 2] cycloaddition, this method, often termed "click chemistry", is currently incompatible with living systems because of the toxicity of the metal. We recently reported a difluorinated cyclooctyne (DIFO) reagent that rapidly reacts with azides in living cells without the need for copper catalysis. Here we report a novel class of DIFO reagents for copper-free click chemistry that are considerably more synthetically tractable. The new analogues maintained the same elevated rates of [3 + 2] cycloaddition as the parent compound and were used for imaging glycans on live cells. These second-generation DIFO reagents should expand the use of copper-free click chemistry in the hands of biologists.

  2. High Specific Activity Tritium-Labeled N-(2-methoxybenzyl)-2,5-dimethoxy-4-iodophenethylamine (INBMeO): A High Affinity 5-HT2A Receptor-Selective Agonist Radioligand

    PubMed Central

    Nichols, David E.; Frescas, Stewart P.; Chemel, Benjamin R.; Rehder, Kenneth S.; Zhong, Desong; Lewin, Anita H.

    2009-01-01

    The title compound ([3H]INBMeO) was prepared by an O,O-dimethylation reaction of a t-BOC protected diphenolic precursor using no carrier added tritiated iodomethane in DMF with K2CO3. Removal of the t-BOC protecting group and purification by HPLC afforded an overall yield of 43%, with a radiochemical purity of 99% and specific activity of 164 Ci/mmol. The new radioligand was suitable for labeling human 5-HT2A receptors in two heterologous cell lines and had about 20-fold higher affinity than [3H]ketanserin. PMID:18468904

  3. High affinity receptor labeling based on basic leucine zipper domain peptides conjugated with pH-sensitive fluorescent dye: Visualization of AMPA-type glutamate receptor endocytosis in living neurons.

    PubMed

    Hayashi, Ayako; Asanuma, Daisuke; Kamiya, Mako; Urano, Yasuteru; Okabe, Shigeo

    2016-01-01

    Techniques to visualize receptor trafficking in living neurons are important, but currently available methods are limited in their labeling efficiency, specificity and reliability. Here we report a method for receptor labeling with a basic leucine zipper domain peptide (ZIP) and a binding cassette specific to ZIP. Receptors are tagged with a ZIP-binding cassette at their extracellular domain. Tagged receptors expressed in cultured cells were labeled with exogenously applied fluorescently labeled ZIP with low background and high affinity. To test if ZIP labeling is useful in monitoring endocytosis and intracellular trafficking, we next conjugated ZIP with a pH-sensitive dye RhP-M (ZIP-RhP-M). ZIP binding to its binding cassette was pH-resistant and RhP-M fluorescence dramatically increased in acidic environment. Thus AMPA-type glutamate receptors (AMPARs) labeled by ZIP-RhP-M can report receptor endocytosis and subsequent intracellular trafficking. Application of ZIP-RhP-M to cultured hippocampal neurons expressing AMPARs tagged with a ZIP-binding cassette resulted in appearance of fluorescent puncta in PSD-95-positive large spines, suggesting local endocytosis and acidification of AMPARs in individual mature spines. This spine pool of AMPARs in acidic environment was distinct from the early endosomes labeled by transferrin uptake. These results suggest that receptor labeling by ZIP-RhP-M is a useful technique for monitoring endocytosis and intracellular trafficking. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Generation of a pair of independently binding DNA aptamers in a single round of selection using proximity ligation.

    PubMed

    Chumphukam, O; Le, T T; Piletsky, S; Cass, A E G

    2015-05-28

    The ability to rapidly generate a pair of aptamers that bind independently to a protein target would greatly extend their use as reagents for two site ('sandwich') assays. We describe here a method to achieve this through proximity ligation. Using lysozyme as a target we demonstrate that under optimal conditions such a pair of aptamers, with nanomolar affinities, can be generated in a single round.

  5. Fluorescent labeling of proteins with amine-specific 1,3,2-(2H)-dioxaborine polymethine dye.

    PubMed

    Gerasov, Andriy; Shandura, Mykola; Kovtun, Yuriy; Losytskyy, Mykhaylo; Negrutska, Valentyna; Dubey, Igor

    2012-01-15

    A novel water-soluble amine-reactive dioxaborine trimethine dye was synthesized in a good yield and characterized. The potential of the dye as a specific reagent for protein labeling was demonstrated with bovine serum albumin and lysozyme. Its interaction with proteins was studied by fluorescence spectroscopy and gel electrophoresis. The covalent binding of this almost nonfluorescent dye to proteins results in a 75- to 78-fold increase of its emission intensity accompanied by a red shift of the fluorescence emission maximum by 27 to 45 nm, with fluorescence wavelengths of labeled biomolecules being more than 600 nm. The dye does not require activation for the labeling reaction and can be used in a variety of bioassay applications. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Final Report for research grant entitled "Development of Reagents for Application of At-211 and Bi-213 to Targeted Radiotherapy of Cancer"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilbur, D. Scott

    2011-12-23

    This grant was a one-year extension of another grant with the same title (DE-FG03-98ER62572). The objective of the studies was to continue in vivo evaluation of reagents to determine which changes in structure were most favorable for in vivo use. The focus of our studies was development and optimization of reagents for pretargeting alpha-emitting radionuclides At-211 or Bi-213 to cancer cells. Testing of the reagents was conducted in vitro and in animal model systems. During the funding period, all three specific aims set out in the proposed studies were worked on, and some additional studies directed at development of amore » method for direct labeling of proteins with At-211 were investigated. We evaluated reagents in two different approaches in 'two step' pretargeting protocols. These approaches are: (1) delivery of the radionuclide on recombinant streptavidin to bind with pretargeted biotinylated monoclonal antibody (mAb), and alternatively, (2) delivery of the radionuclide on a biotin derivative to bind with pretargeted antibody-streptavidin conjugates. The two approaches were investigated as it was unclear which will be superior for the short half-lived alpha-emitting radionuclides.« less

  7. The Means: Cytometry and Mass Spectrometry Converge in a Single Cell Deep Profiling Platform

    PubMed Central

    Weis-Garcia, Frances; Bandura, Dmitry; Baranov, Vladimir; Ornatsky, Olga; Tanner, Scott

    2013-01-01

    Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is a distinct flavor of mass spectrometry that has had little association with cell biology: it remains the state of the art for the determination of the atomic composition of materials. Unrelatedly, flow cytometry is the superior method for distinguishing the heterogeneity of cells through the determination of antigen signatures using tagged antibodies. Simply replacing fluorophore tags with stable isotopes of the heavy metals, and measuring these cell-by-cell with ICP-MS, dramatically increases the number of probes that can be simultaneously measured in cytometry and enables a transformative increase in the resolution of rare cell populations in complex biological samples. While this can be thought of as a novel incarnation of single-cell targeted proteomics, the metal-labeling reagents, ICP-MS of single cells, and accompanying informatics comprise a new field of technology termed Mass Cytometry. While the conception of mass cytometry is simple the embodiment to address the issues of multi-parameter flow cytometry has been far more challenging. There are many elements, and many more stable isotopes of those elements, that might be used as distinct reporter tags. Still, there are many approaches to conjugating metals to antibodies (or other affinity reagents) and work in this area along with developing new applications is ongoing. The mass resolution and linear (quantitative) dynamic range of ICP-MS allows those many stable isotopes to be measured simultaneously and without the spectral overlap issues that limit fluorescence assay. However, the adaptation of ICP-MS to allow high-speed simultaneous measurement with single cell distinction at high throughput required innovation of the cell introduction system, ion optics (sampling, transmission and beam-shaping), mass analysis, and signal handling and processing. An overview of “the nuts and bolts” of Mass Cytometry is presented.

  8. Physics of a rapid CD4 lymphocyte count with colloidal gold.

    PubMed

    Hansen, P; Barry, D; Restell, A; Sylvia, D; Magnin, O; Dombkowski, D; Preffer, F

    2012-03-01

    The inherent surface charges and small diameters that confer colloidal stability to gold particle conjugates (immunogold) are detrimental to rapid cell surface labeling and distinct cluster definition in flow cytometric light scatter assays. Although the inherent immunogold surface charge prevents self aggregation when stored in liquid suspension, it also slows binding to cells to timeframes of hours and inhibits cell surface coverage. Although the small diameter of immunogold particles prevents settling when in liquid suspension, small particles have small light scattering cross sections and weak light scatter signals. We report a new, small particle lyophilized immunogold reagent that maintains activity after 42°C storage for a year and can be rapidly dissolved into stable liquid suspension for use in labelling cells with larger particle aggregates that have enhanced scattering cross section. Labeling requires less than 1 min at 20°C, which is ∼30 times faster than customary fluorescent antibody labeling. The labeling step involves neutralizing the surface charge of immunogold and creating specifically bound aggregates of gold on the cell surface. This process provides distinct side-scatter cluster separation with blue laser light at 488 nm, which is further improved by using red laser light at 640 nm. Similar comparisons using LED light sources showed less improvement with red light, thereby indicating that coherent light scatter is of significance in enhancing side-scatter cluster separation. The physical principles elucidated here for this technique are compatible with most flow cytometers; however, future studies of its clinical efficacy should be of primary interest in point-of-care applications where robust reagents and rapid results are important. Copyright © 2011 International Society for Advancement of Cytometry.

  9. Photoaffinity analogues of methotrexate as folate antagonist binding probes. 2. Transport studies, photoaffinity labeling, and identification of the membrane carrier protein for methotrexate from murine L1210 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, E.M.; Freisheim, J.H.

    1987-07-28

    A membrane-derived component of the methotrexate/one-carbon-reduced folate transport system in murine L1210 cells has been identified by using a photoaffinity analogue of methotrexate. The compound, a radioiodinated 4-azidosalicylyl derivative of the lysine analogue of methotrexate, is transported into murine L1210 cells in a temperature-dependent, sulfhydryl reagent inhibitable manner with a K/sub t/ of 506 +/- 79 nM and a V/sub max/ of 17.9 +/- 4.2 pmol min/sup -1/ (mg of total cellular protein)/sup -1/. Uptake of the iodinated compound at 200 nM is inhibited by low amounts of methotrexate. The parent compounds of the iodinated photoprobe inhibit (/sup 3/H)methotrexate uptake,more » with the uniodinated 4-azidosalicylyl derivative exhibiting a K/sub i/ of 66 +/- 21 nM. UV irradiation, at 4 /sup 0/C, of a cell suspension that had been incubated with the probe results in the covalent modification of a 46K-48K protein. This can be demonstrated when the plasma membranes from the labeled cells are analyzed via sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Labeling of this protein occurs half-maximally at a reagent concentration that correlates with the K/sub t/ for transport of the iodinated compound. Protection against labeling of this protein by increasing amounts of methotrexate parallels the concentration dependence of inhibition of photoprobe uptake by methotrexate. Evidence that, in the absence of irradiation and at 37/sup 0/C, the iodinated probe is actually internalized is demonstrated by the labeling of two soluble proteins (M/sub r/ 38K and 21K) derived from the cell homogenate supernatant.« less

  10. Synthesis, characterization, and application of cy-dye- and alexa-dye-labeled hongotoxin(1) analogues. The first high affinity fluorescence probes for voltage-gated K+ channels.

    PubMed

    Pragl, Bernt; Koschak, Alexandra; Trieb, Maria; Obermair, Gerald; Kaufmann, Walter A; Gerster, Uli; Blanc, Eric; Hahn, Christoph; Prinz, Heino; Schütz, Gerhard; Darbon, Herve; Gruber, Hermann J; Knaus, Hans-Günther

    2002-01-01

    Hongotoxin(1) (HgTX(1)), a 39-residue peptide recently isolated from the venom of Centruroides limbatus, blocks the voltage-gated K+ channels K(v)1.1, K(v)1.2, and K(v)1.3 at picomolar toxin concentrations (Koschak, A., Bugianesi, R. M., Mitterdorfer, J., Kaczorowski, G. J., Garcia, M. L., and Knaus, H. G. (1998) J. Biol. Chem. 273, 2639-2644). In this report, we determine the three-dimensional structure of HgTX(1) using NMR spectroscopy (PDB-code: 1HLY). HgTX(1) was found to possess a structure similar to previously characterized K+ channel toxins (e.g. margatoxin) consisting of a three-stranded antiparallel beta-sheet (residues 2-4, 26-30, and 33-37) and a helical conformation (part 3(10) helix and part alpha helix; residues 10-20). Due to the importance of residue Lys-28 for high-affinity interaction with the respective channels, lysine-reactive fluorescence dyes cannot be used to label wild-type HgTX(1). On the basis of previous studies (see above) and our NMR data, a HgTX(1) mutant (HgTX(1)-A19C) was engineered, expressed, and purified. HgTX(1)-A19C-SH was labeled using sulfhydryl-reactive Cy3-, Cy5-, and Alexa-dyes. Pharmacological characterization of fluorescently labeled HgTX(1)-A19C in radioligand binding studies indicated that these hongotoxin(1) analogues retain high-affinity for voltage-gated K+ channels and a respective pharmacological profile. Cy3- and Alexa-dye-labeled hongotoxin(1) analogues were used to investigate the localization of K+ channels in brain sections. The distribution of toxin binding closely follows the distribution of K(v)1.2 immunoreactivity with the highest expression levels in the cerebellar Purkinje cell layer. Taken together, these results demonstrate that fluorescently labeled HgTX(1) analogues comprise novel probes to characterize a subset of voltage-gated K+ channels.

  11. /sup 3/H)pirenzepine and (-)-(/sup 3/H)quinuclidinyl benzilate binding to rat cerebral cortical and cardiac muscarinic cholinergic sites. I. Characterization and regulation of agonist binding to putative muscarinic subtypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, M.; Yamamura, H.I.; Roeske, W.R.

    The binding and regulation of selected muscarinic agonists to putative subtypes in rat cerebral cortex and heart were studied. Parallel inhibition studies of (/sup 3/H)pirenzepine ((/sup 3/H)PZ) and (-)-(/sup 3/H)quinuclidinylbenzilate ((-)-(/sup 3/H)QNB)-labeled membranes were done with and without 30 microM guanyl-5'-yl imidodiphosphate (Gpp(NH)p) at 25 degrees C in 10 mM Na-K-phosphate buffer which enhances PZ binding affinity and in modified Krebs-phosphate buffer, which mimics physiological conditions. Classical agonists such as carbachol, oxotremorine and acetylcholine inhibited (-)-(/sup 3/H)QNB binding to membranes with shallow Hill values (nH less than 1), were better fit to a 2-state model, were Gpp(NH)p-regulated and showed lowermore » affinity in modified Krebs-phosphate buffer than in 10 mM Na-K-phosphate buffer. Some agonists were not significantly better fit to a 2-state model in (/sup 3/H)PZ-labeled cortical membranes, especially in 10 mM Na-K-phosphate buffer. Whereas putative M1 and M2 binding sites distinguished by PZ possessed multiple agonist affinity states, as judged by carbachol, and agonist binding to (/sup 3/H)PZ-labeled sites were Gpp(NH)p modulated, the partial agonist pilocarpine and nonclassical agonist McN-A-343 (3-(m-chlorophenylcarbamoyloxy)-2-butynyl trimethylammonium chloride) showed little Gpp(NH)p-induced shift in (/sup 3/H)PZ-labeled cortical membranes in physiological conditions. Agonist binding to (-)-(/sup 3/H)QNB-labeled putative M2 cardiac sites was more sensitive to Gpp(NH)p than (-)-(/sup 3/H)QNB-labeled cortical sites. Carbachol and acetylcholine showed significant selectivity for putative M2 sites.« less

  12. Evidence for functional heterogeneity both between and within four sources of condensed tannin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asquith, T.N.

    1985-01-01

    Condensed tannins are polymers of flavan-3-ols that are produced by many plants in a wide variety of tissues. The ability of these compounds to actively precipitate proteins has been linked to nutritional deficiencies in many animals. Four purified tannins (quebracho, wattle, pinto bean and sorghum) were compared to chemical assays and astringency towards (/sup 14/C)-BSA. Quebracho and wattle tannins were much less astringent and had longer chain lengths that sorghum or pinto bean tannins. Quebracho tannin had a very high affinity for salivary proline-rich glycoproteins (PRPs) and pinto bean tannin alone had a measurable affinity for soybean trypsin inhibitor. Thismore » suggests that tannin/protein interactions in vivo may be very specific. Protein bound carbohydrate enhanced the binding of PRPs to tanning and conferred specificity on the interactions. Carbohydrate also increases the solubility of protein/tanning complexes, which may aid the animal in eliminating the complexes. (/sup 125/I)-labeled condensed tannin was shown to retain the ability to discriminate between high and low affinity proteins. (/sup 125/I)-labeled phenols were isolated from livers and kidneys of rats fed (/sup 125/I)-labeled tannin. The techniques described in this thesis should be widely applicable to studying in vivo functions of condensed tannins.« less

  13. Biotinylated probes of artemisinin with labeling affinity toward Trypanosoma brucei brucei target proteins.

    PubMed

    Konziase, Benetode

    2015-08-01

    We studied the target proteins of artemisinin in Trypanosoma brucei brucei using the affinity-labeling method. We designed and synthesized four biotinylated probes of artemisinin for use as molecular tools. Their in vitro trypanocidal activities (data not shown) proved that they mimicked the biological action of artemisinin. We assessed the chemical stability for all of the probes in the parasite culture medium and lysate using reversed-phase high-performance liquid chromatography (HPLC). After 3-h incubations, the probes remained undecomposed in a range of 40 to 65% in the parasite culture medium, whereas approximately 80% of the probes remained stable in the parasite lysate. Using liquid chromatography mass spectrometry (LC-MS), we demonstrated that, with respect to all of the probes, uptakes into the parasite ranging from 81 to 96% occurred after 30-min incubations. In a competitive binding assay between artemisinin and the four biotinylated probes, we searched for the trypanosomal target protein of artemisinin. Consequently, we observed that only the diazirine-free probe 5 could provide the desired result with high affinity-labeling efficiency. Using the horseradish peroxidase-tagged streptavidin-biotin method, we showed that artemisinin could specifically bind to candidate target proteins of approximately 60, 40, and 39 kDa. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Binding of perlecan to transthyretin in vitro.

    PubMed Central

    Smeland, S; Kolset, S O; Lyon, M; Norum, K R; Blomhoff, R

    1997-01-01

    Transthyretin is one of two specific proteins involved in the transport of thyroid hormones in plasma; it possesses two binding sites for serum retinol-binding protein. In the present study we demonstrate that transthyretin also interacts in vitro with [35S]sulphate-labelled material from the medium of HepG2 cells. By using the same strategy as for purifying serum retinol-binding protein, [35S]sulphate-labelled medium was specifically eluted from a transthyretin-affinity column. Ion-exchange chromatography showed that the material was highly polyanionic, and its size and alkali susceptibility suggested that it was a proteoglycan. Structural analyses with chondroitinase ABC lyase and nitrous acid revealed that approx. 20% was chondroitin sulphate and 80% heparan sulphate. Immunoprecipitation showed that the [35S]sulphate-labelled material contained perlecan. Further analysis by binding studies revealed specific and saturable binding of 125I-transthyretin to perlecan-enriched Matrigel. Because inhibition of sulphation by treating HepG2 cells with sodium chlorate increased the affinity of the perlecan for transthyretin, and [3H]heparin was not retained by the transthyretin affinity column, the binding is probably mediated by the core protein and is not a protein-glycosaminoglycan interaction. Because perlecan is released from transthyretin in water, the binding might be due to hydrophobic interactions. PMID:9307034

  15. Comparison of /sup 125/I-labeled and /sup 14/C-Labeled peptides of the major outer membrane protein of Chlamydia Trachomatis Strain L2/434 separated by high-performance liquid chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judd, R.C.; Caldwell, H.D.

    1985-01-01

    The objective of this study was to determine if in-gel chloramine-T radioiodination adequately labels OM proteins to allow for accurate and precise structural comparison of these molecules. Therefore, intrinsically /sup 14/C-amino acid labeled proteins and /sup 125/I-labeled proteins were cleaved with two endopeptidic reagents and the peptide fragments separated by HPLC. A comparison of retention times of the fragments, as determined by differential radiation counting, thus indicated whether /sup 125/Ilabeling identified of all the peptide peaks seen in the /sup 14/Clabeled proteins. Results demonstrated that radioiodination yields complete and accurate information about the primary structure of outer membrane proteins. Inmore » addition, it permits the use of extremely small amounts of protein allowing for method optimization and multiple separations to insure reproducibility.« less

  16. New Synthesis and Tritium Labeling of a Selective Ligand for Studying High-affinity γ-Hydroxybutyrate (GHB) Binding Sites

    PubMed Central

    Vogensen, Stine B.; Marek, Aleš; Bay, Tina; Wellendorph, Petrine; Kehler, Jan; Bundgaard, Christoffer; Frølund, Bente; Pedersen, Martin H.F.; Clausen, Rasmus P.

    2013-01-01

    3-Hydroxycyclopent-1-enecarboxylic acid (HOCPCA, 1) is a potent ligand for the high-affinity GHB binding sites in the CNS. An improved synthesis of 1 together with a very efficient synthesis of [3H]-1 is described. The radiosynthesis employs in situ generated lithium trimethoxyborotritide. Screening of 1 against different CNS targets establishes a high selectivity and we demonstrate in vivo brain penetration. In vitro characterization of [3H]-1 binding shows high specificity to the high-affinity GHB binding sites. PMID:24053696

  17. Weight-lattice discretization of Weyl-orbit functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hrivnák, Jiří, E-mail: jiri.hrivnak@fjfi.cvut.cz, E-mail: walton@uleth.ca; Walton, Mark A., E-mail: jiri.hrivnak@fjfi.cvut.cz, E-mail: walton@uleth.ca

    Weyl-orbit functions have been defined for each simple Lie algebra, and permit Fourier-like analysis on the fundamental region of the corresponding affine Weyl group. They have also been discretized, using a refinement of the coweight lattice, so that digitized data on the fundamental region can be Fourier-analyzed. The discretized orbit function has arguments that are redundant if related by the affine Weyl group, while its labels, the Weyl-orbit representatives, invoke the dual affine Weyl group. Here we discretize the orbit functions in a novel way, by using the weight lattice. A cleaner theory results with symmetry between the arguments andmore » labels of the discretized orbit functions. Orthogonality of the new discretized orbit functions is proved, and leads to the construction of unitary, symmetric matrices with Weyl-orbit-valued elements. For one type of orbit function, the matrix coincides with the Kac-Peterson modular S matrix, important for Wess-Zumino-Novikov-Witten conformal field theory.« less

  18. Sensitive microplate assay for the detection of proteolytic enzymes using radiolabeled gelatin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, B.D.; Kwan-Lim, G.E.; Maizels, R.M.

    1988-07-01

    A sensitive, microplate assay is described for the detection of a wide range of proteolytic enzymes, using radio-iodine-labeled gelatin as substrate. The technique uses the Bolton-Hunter reagent to label the substrate, which is then coated onto the wells of polyvinyl chloride microtiter plates. By measuring the radioactivity released the assay is able to detect elastase, trypsin, and collagenase in concentrations of 1 ng/ml or less, while the microtiter format permits multiple sample handling and minimizes sample volumes required for analysis.

  19. Protein Conformation and Supercharging with DMSO from Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Sterling, Harry J.; Prell, James S.; Cassou, Catherine A.; Williams, Evan R.

    2011-07-01

    The efficacy of dimethyl sulfoxide (DMSO) as a supercharging reagent for protein ions formed by electrospray ionization from aqueous solution and the mechanism for supercharging were investigated. Addition of small amounts of DMSO to aqueous solutions containing hen egg white lysozyme or equine myoglobin results in a lowering of charge, whereas a significant increase in charge occurs at higher concentrations. Results from both near-UV circular dichroism spectroscopy and solution-phase hydrogen/deuterium exchange mass spectrometry indicate that DMSO causes a compaction of the native structure of these proteins at low concentration, but significant unfolding occurs at ~63% and ~43% DMSO for lysozyme and myoglobin, respectively. The DMSO concentrations required to denature these two proteins in bulk solution are ~3-5 times higher than the concentrations required for the onset of supercharging, consistent with a significantly increased concentration of this high boiling point supercharging reagent in the ESI droplet as preferential evaporation of water occurs. DMSO is slightly more basic than m-nitrobenzyl alcohol and sulfolane, two other supercharging reagents, based on calculated proton affinity and gas-phase basicity values both at the B3LYP and MP2 levels of theory, and all three of these supercharging reagents are significantly more basic than water. These results provide additional evidence that the origin of supercharging from aqueous solution is the result of chemical and/or thermal denaturation that occurs in the ESI droplet as the concentration of these supercharging reagents increases, and that proton transfer reactivity does not play a significant role in the charge enhancement observed.

  20. Human neural progenitor cells retain viability, phenotype, proliferation, and lineage differentiation when labeled with a novel iron oxide nanoparticle, Molday ION Rhodamine B

    PubMed Central

    Shen, Wei-Bin; Plachez, Celine; Chan, Amanda; Yarnell, Deborah; Puche, Adam C; Fishman, Paul S; Yarowsky, Paul

    2013-01-01

    Ultrasmall superparamagnetic iron-oxide particles (USPIOs) loaded into stem cells have been suggested as a way to track stem cell transplantation with magnetic resonance imaging, but the labeling, and post-labeling proliferation, viability, differentiation, and retention of USPIOs within the stem cells have yet to be determined for each type of stem cell and for each type of USPIO. Molday ION Rhodamine B™ (BioPAL, Worcester, MA, USA) (MIRB) has been shown to be a USPIO labeling agent for mesenchymal stem cells, glial progenitor cells, and stem cell lines. In this study, we have evaluated MIRB labeling in human neuroprogenitor cells and found that human neuroprogenitor cells are effectively labeled with MIRB without use of transfection reagents. Viability, proliferation, and differentiation properties are unchanged between MIRB-labeled neuroprogenitors cells and unlabeled cells. Moreover, MIRB-labeled human neuroprogenitor cells can be frozen, thawed, and replated without loss of MIRB or even without loss of their intrinsic biology. Overall, those results show that MIRB has advantageous properties that can be used for cell-based therapy. PMID:24348036

  1. Adrenergic receptors in frontal cortex in human brain.

    PubMed

    Cash, R; Raisman, R; Ruberg, M; Agid, Y

    1985-02-05

    The binding of three adrenergic ligands ([3H]prazosin, [3H]clonidine, [3H]dihydroalprenolol) was studied in the frontal cortex of human brain. alpha 1-Receptors, labeled by [3H]prazosin, predominated. [3H]Clonidine bound to two classes of sites, one of high affinity and one of low affinity. Guanosine triphosphate appeared to lower the affinity of [3H]clonidine for its receptor. [3H]Dihydroalprenolol bound to three classes of sites: the beta 1-receptor, the beta 2-receptor and a receptor with low affinity which represented about 40% of the total binding, but which was probably a non-specific site; the beta 1/beta 2 ratio was 1/2.

  2. Microbial detection in microfluidic devices through dual staining of quantum dots-labeled immunoassay and RNA hybridization.

    PubMed

    Zhang, Qing; Zhu, Liang; Feng, Hanhua; Ang, Simon; Chau, Fook Siong; Liu, Wen-Tso

    2006-01-18

    This paper reported the development of a microfludic device for the rapid detection of viable and nonviable microbial cells through dual labeling by fluorescent in situ hybridization (FISH) and quantum dots (QDs)-labeled immunofluorescent assay (IFA). The coin sized device consists of a microchannel and filtering pillars (gap=1-2 microm) and was demonstrated to effectively trap and concentrate microbial cells (i.e. Giardia lamblia). After sample injection, FISH probe solution and QDs-labeled antibody solution were sequentially pumped into the device to accelerate the fluorescent labeling reactions at optimized flow rates (i.e. 1 and 20 microL/min, respectively). After 2 min washing for each assay, the whole process could be finished within 30 min, with minimum consumption of labeling reagents and superior fluorescent signal intensity. The choice of QDs 525 for IFA resulted in bright and stable fluorescent signal, with minimum interference with the Cy3 signal from FISH detection.

  3. From rabbit antibody repertoires to rabbit monoclonal antibodies.

    PubMed

    Weber, Justus; Peng, Haiyong; Rader, Christoph

    2017-03-24

    In this review, we explain why and how rabbit monoclonal antibodies have become outstanding reagents for laboratory research and increasingly for diagnostic and therapeutic applications. Starting with the unique ontogeny of rabbit B cells that affords highly distinctive antibody repertoires rich in in vivo pruned binders of high diversity, affinity and specificity, we describe the generation of rabbit monoclonal antibodies by hybridoma technology, phage display and alternative methods, along with an account of successful humanization strategies.

  4. Purification and Characterization of Two Distinct NAD(P)H Dehydrogenases from Onion (Allium cepa L.) Root Plasma Membrane.

    PubMed Central

    Serrano, A.; Cordoba, F.; Gonzalez-Reyes, J. A.; Navas, P.; Villalba, J. M.

    1994-01-01

    Highly purified plasma membrane fractions were obtained from onion (Allium cepa L.) roots and used as a source for purification of redox proteins. Plasma membranes solubilized with Triton X-100 contained two distinct polypeptides showing NAD(P)H-dependent dehydrogenase activities. Dehydrogenase I was purified by gel filtration in Sephacryl S-300 HR, ion-exchange chromatography in DEAE-Sepharose CL-6B, and dye-ligand affinity chromatography in Blue-Sepharose CL-6B after biospecific elution with NADH. Dehydrogenase I consisted of a single polypeptide of about 27 kD and an isoelectric point of about 6. Dehydrogenase II was purified from the DEAE-unbound fraction by chromatography in Blue-Sepharose CL-6B and affinity elution with NADH. Dehydrogenase II consisted of a single polypeptide of about 31 kD and an isoelectric point of about 8. Purified dehydrogenase I oxidized both NADPH and NADH, although higher rates of electron transfer were obtained with NADPH. Maximal activity was achieved with NADPH as donor and juglone or coenzyme Q as acceptor. Dehydrogenase II was specific for NADH and exhibited maximal activity with ferricyanide. Optimal pH for both dehydrogenases was about 6. Dehydrogenase I was moderately inhibited by dicumarol, thenoyltrifluoroacetone, and the thiol reagent N-ethyl-maleimide. A strong inhibition of dehydrogenase II was obtained with dicumarol, thenoyltrifluoroacetone, and the thiol reagent p-hydroxymercuribenzoate. PMID:12232306

  5. Novel ligands for cancer diagnosis: selection of peptide ligands for identification and isolation of B-cell lymphomas.

    PubMed

    McGuire, Michael J; Samli, Kausar N; Chang, Ya-Ching; Brown, Kathlynn C

    2006-04-01

    Lymphoma and leukemia account for nearly 8% of cancer fatalities each year. Present treatments do not differentiate between normal and malignant cells. New reagents that distinguish malignant cells and enable the isolation of these cells from the normal background will enhance the molecular characterization of disease and specificity of treatment. Peptide ligands were selected from a phage-displayed peptide library by biopanning on the B-cell lymphoma line, A20. The isolated peptides were assessed as reagents for identification and isolation of lymphoma cells by flow cytometry and cell capture with magnetic beads. Two novel peptides and one obtained previously on cardiomyocytes were selected. A20 cells bind phage displaying these peptides 250- to 450-fold over control phage. These phage bind to other bone marrow-derived cancel lines including some macrophage and T cells but do not bind to normal splenocytes. Synthetic constructs of these peptides have binding affinities comparable to B-cell-specific antibodies. Similar to antibodies, these peptides can be used in flow cytometry and magnetic bead capture to distinguish lymphoma cells from normal splenocytes. Bone marrow-derived malignant cells express cell surface markers that can be used to distinguish them from normal cells. These results demonstrate the ability to use an unbiased screen to rapidly generate high-affinity peptide ligands for identification and isolation of lymphoma cells.

  6. Multivalent recombinant proteins for probing functions of leucocyte surface proteins such as the CD200 receptor

    PubMed Central

    Voulgaraki, Despina; Mitnacht-Kraus, Rita; Letarte, Michelle; Foster-Cuevas, Mildred; Brown, Marion H; Neil Barclay, A

    2005-01-01

    CD200 (OX2) is a membrane glycoprotein that interacts with a structurally related receptor (CD200R) involved in the regulation of macrophage function. The interaction is of low affinity (KD ∼ 1 μm) but can be detected using CD200 displayed in a multivalent form on beads or with dimeric fusion proteins consisting of the extracellular region of CD200 and immunoglobulin Fc regions. We prepared putative pentamers and trimers of mouse CD200 with sequences from cartilage oligomeric matrix protein (COMP) and surfactant protein D (SP-D), respectively. The COMP protein gave high-avidity binding and was a valuable tool for showing the interaction whilst the SP-D protein gave weak binding. In vivo experiments showed that an agonistic CD200R monoclonal antibody caused some amelioration in a model of experimental autoimmune encephalomyelitis but the COMP protein was cleared rapidly and had minimal effect. Pentameric constructs also allowed detection of the rat CD48/CD2 interaction, which is of much lower affinity (KD ∼ 70 μm). These reagents may have an advantage over Fc-bearing hybrid molecules for probing cell surface proteins without side-effects due to the Fc regions. The CD200-COMP gave strong signals in protein microarrays, suggesting that such reagents may be valuable in high throughput detection of weak interactions. PMID:15946251

  7. One-step selection of Vaccinia virus-binding DNA aptamers by MonoLEX

    PubMed Central

    Nitsche, Andreas; Kurth, Andreas; Dunkhorst, Anna; Pänke, Oliver; Sielaff, Hendrik; Junge, Wolfgang; Muth, Doreen; Scheller, Frieder; Stöcklein, Walter; Dahmen, Claudia; Pauli, Georg; Kage, Andreas

    2007-01-01

    Background As a new class of therapeutic and diagnostic reagents, more than fifteen years ago RNA and DNA aptamers were identified as binding molecules to numerous small compounds, proteins and rarely even to complete pathogen particles. Most aptamers were isolated from complex libraries of synthetic nucleic acids by a process termed SELEX based on several selection and amplification steps. Here we report the application of a new one-step selection method (MonoLEX) to acquire high-affinity DNA aptamers binding Vaccinia virus used as a model organism for complex target structures. Results The selection against complete Vaccinia virus particles resulted in a 64-base DNA aptamer specifically binding to orthopoxviruses as validated by dot blot analysis, Surface Plasmon Resonance, Fluorescence Correlation Spectroscopy and real-time PCR, following an aptamer blotting assay. The same oligonucleotide showed the ability to inhibit in vitro infection of Vaccinia virus and other orthopoxviruses in a concentration-dependent manner. Conclusion The MonoLEX method is a straightforward procedure as demonstrated here for the identification of a high-affinity DNA aptamer binding Vaccinia virus. MonoLEX comprises a single affinity chromatography step, followed by subsequent physical segmentation of the affinity resin and a single final PCR amplification step of bound aptamers. Therefore, this procedure improves the selection of high affinity aptamers by reducing the competition between aptamers of different affinities during the PCR step, indicating an advantage for the single-round MonoLEX method. PMID:17697378

  8. SKF 525-A and cytochrome P-450 ligands inhibit with high affinity the binding of ( sup 3 H)dextromethorphan and. sigma. ligands to guinea pig brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, M.; Canoll, P.D.; Musacchio, J.M.

    1991-01-01

    The DM{sub 1}/{sigma}{sub 1} site binds dextromethorphan (DM) and {sigma} receptor ligands. The broad binding specificity of this site and its peculiar subcellular distribution prompted us to explore the possibility that this site is a member of the cytochrome P-450 superfamily of enzymes. We tested the effects of the liver microsomal monooxygenase inhibitor SKF 525-A (Proadifen), and other P-450 substrates on the binding of ({sup 3}H)dextromethorphan, ({sup 3}H)3- (3-Hydroxyphenyl) -N- (1-propyl) piperidine and (+)-({sup 3}H)1,3-Di-o-tolyl-guanidine (({sup 3}H)DTG) to the guinea pig brain. SKF 525-A, l-lobeline and GBR-12909 inhibited the binding of the three labeled ligands with nM affinity. Each drugmore » has identical nM K{sub i} values for the high-affinity site labeled by the three ligands. This indicated that they displaced the labeled ligands from the common DM{sub 1}{sigma}{sub 1} site. Debrisoquine and sparteine, prototypical substrates for liver debrisoquine 4-hydroxylase, displayed K{sub i} values of 9-13 and 3-4 {mu}M respectively against the three labeled ligands. These results, the broad specificity of the DM{sub 1}/{sigma}{sub 1} binding site, and its peculiar subcellular distribution, raises the possibility that this binding site is a member of the cytochrome P-450 superfamily of isozymes, rather than a neurotransmitter receptor.« less

  9. Using atomic force microscopy and surface plasmon resonance to detect specific interactions between ricin and anti-ricin aptamers

    USDA-ARS?s Scientific Manuscript database

    Nucleic acid aptamers have been widely used as binding reagents for the label free detections of biomolecules. Compare to antibodies, aptamers have demonstrated advantages such as easy synthesis, low cost, and better stability. Therefore, aptamers can be integrated into various detection platforms ...

  10. Cell lines for the production of monoclonal antibodies to human glycophorin A

    DOEpatents

    Bigbee, William L.; Fong, Stella S. N.; Jensen, Ronald H.; Vanderlaan, Martin; Langlois, Richard G.

    1988-01-01

    Cloned mouse hybridoma cell lines have been established which continuously produce antibodies that differentiate between the M and N forms of human glycophorin A. These antibodies have potential application as human blood group reagents, as markers for terminally differentiated erythroid cells and as immunofluorescent labels of somatically variant human erythrocytes.

  11. 21 CFR 606.121 - Container label.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... payment for a blood donation. (ii) A volunteer donor is a person who does not receive monetary payment for... units of Red Blood Cells, the volume of the product, accurate to within ±10 percent; or optionally for.... The Rh group shall be designated as follows: (i) If the test using Anti-D Blood Grouping Reagent is...

  12. 21 CFR 606.121 - Container label.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... payment for a blood donation. (ii) A volunteer donor is a person who does not receive monetary payment for... units of Red Blood Cells, the volume of the product, accurate to within ±10 percent; or optionally for.... The Rh group shall be designated as follows: (i) If the test using Anti-D Blood Grouping Reagent is...

  13. Radiolabeling of a cyclic RGD (cyclo Arg-Gly-Asp-d-Tyr-Lys) peptide using sodium hypochlorite as an oxidizing agent.

    PubMed

    Doll, Stephanie; Woolum, Karen; Kumar, Krishan

    2016-09-01

    A simple and rapid nonradioactive iodide labeling/radiolabeling method for peptides, using an inexpensive oxidizing agent such as sodium hypochlorite and a cyclic peptide, cRGDyK (cyclo Arg-Gly-Asp-d-Tyr-Lys), was developed in this work. Labeling reaction was optimized by conducting experiments under variable ratios of the reagents, the reaction times, and the pH. The study demonstrated that radiolabeling of the cyclic peptide was fast and pH independent. Monoiodinated and di-iodinated cRGDyK were formed under all conditions and varied with the ratio of the reagents and the reaction time. Total percent of the iodinated cRGDyK (monoiodinated and di-iodinated cRGDyK) varied between 44 and 100 depending on the reaction conditions. Excess cyclic peptide over equal molar ratio of sodium iodide and sodium hypochlorite yielded in predominant amounts of monoiodinated cRGDyK, ie, >60% under 2:1:1 ratio and ~88% under 5:1:1 ratio of cRGDyK:sodium iodide:sodium hypochlorite. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Specific labeling of the thyroxine binding site in thyroxine-binding globulin: determination of the amino acid composition of a labeled peptide fragment isolated from a proteolytic digest of the derivatized protein.

    PubMed

    Tabachnick, M; Perret, V

    1987-08-01

    [125I] Thyroxine has been covalently bound to the thyroxine binding site in thyroxine-binding globulin by reaction with the bifunctional reagent, 1,5-difluoro-2,4-dinitrobenzene. An average of 0.47 mol of [125I] thyroxine was incorporated per mol protein; nonspecific binding amounted to 8%. A labeled peptide fragment was isolated from a proteolytic digest of the derivatized protein by HPLC and its amino acid composition was determined. Comparison with the amino acid sequence of thyroxine-binding globulin indicated partial correspondence of the labeled peptide with two possible regions in the protein. These regions also coincide with part of the barrel structure present in the closely homologous protein, alpha 1-antitrypsin.

  15. Electron Transfer Dissociation of iTRAQ Labeled Peptide Ions

    PubMed Central

    Han, Hongling; Pappin, Darryl J.; Ross, Philip L; McLuckey, Scott A.

    2009-01-01

    Triply and doubly charged iTRAQ (isobaric tagging for relative and absolute quantitation) labeled peptide cations from a tryptic peptide mixture of bovine carbonic anhydrase II were subjected to electron transfer ion/ion reactions to investigate the effect of charge bearing modifications associated with iTRAQ on the fragmentation pattern. It was noted that electron transfer dissociation (ETD) of triply charged or activated ETD (ETD + supplemental collisional activation of intact electron transfer species) of doubly charged iTRAQ tagged peptide ions yielded extensive sequence information, in analogy with ETD of unmodified peptide ions. That is, addition of the fixed charge iTRAQ tag showed relatively little deleterious effect on the ETD performance of the modified peptides. ETD of the triply charged iTRAQ labeled peptide ions followed by collision-induced dissociation (CID) of the product ion at m/z 162 yielded the reporter ion at m/z 116, which is the reporter ion used for quantitation via CID of the same precursor ions. The reporter ion formed via the two-step activation process is expected to provide quantitative information similar to that directly produced from CID. A 103 Da neutral loss species observed in the ETD spectra of all the triply and doubly charged iTRAQ labeled peptide ions is unique to the 116 Da iTRAQ reagent, which implies that this process also has potential for quantitation of peptides/proteins. Therefore, ETD with or without supplemental collisional activation, depending on the precursor ion charge state, has the potential to directly identify and quantify the peptides/proteins simultaneously using existing iTRAQ reagents. PMID:18646790

  16. [Interaction of human factor X with thromboplastin].

    PubMed

    Kiselev, S V; Zubairov, D M; Timarbaev, V N

    2003-01-01

    The binding of 125I-labeled human factor X to native and papaine-treated tissue tromboplastin in the presence of CaCl2 or EDTA was studied. The Scatchard analysis suggests the existence of high (Kd=l,8 x10(-9) M) and low affinity binding sites on the thromboplastin surface. The removal of Ca2+ reduced affinity of factor X to the high affinity sites. This was accompanied by some increase of their number. Proteolysis by papaine decreased affinity of high affinity sites and caused the increase of their number in the presence of Ca2+. In the absence of Ca2+ the affinity remained unchanged, but the number of sites decreased. At low concentrations of factor X positive cooperativity for high affinity binding sites was observed. It did not depend on the presence of Ca2+. The results indirectly confirm the role of hydrophobic interactons in Ca2+ dependent binding of factor X to thromboplastin and the fact that heterogeneity of this binding is determined by mesophase structure of the thromboplastin phospholipids.

  17. In vivo studies of opiate receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frost, J.J.; Dannals, R.F.; Duelfer, T.

    To study opiate receptors noninvasively in vivo using positron emission tomography, techniques for preferentially labeling opiate receptors in vivo can be used. The rate at which receptor-bound ligand clears from the brain in vivo can be predicted by measuring the equilibrium dissociation constant (KD) at 37 degrees C in the presence of 100 mM sodium chloride and 100 microM guanyl-5'-imidodiphosphate, the drug distribution coefficient, and the molecular weight. A suitable ligand for labeling opiate receptors in vivo is diprenorphine, which binds to mu, delta, and kappa receptors with approximately equal affinity in vitro. However, in vivo diprenorphine may bind predominantlymore » to one opiate receptor subtype, possibly the mu receptor. To predict the affinity for binding to the opiate receptor, a Hansch correlation was determined between the 50% inhibitory concentration for a series of halogen-substituted fentanyl analogs and electronic, lipophilic, and steric parameters. Radiochemical methods for the synthesis of carbon-11-labeled diprenorphine and lofentanil are presented.« less

  18. Selection, Characterization and Application of Nucleic Acid Aptamers for the Capture and Detection of Human Norovirus Strains

    PubMed Central

    Escudero-Abarca, Blanca I.; Suh, Soo Hwan; Moore, Matthew D.; Dwivedi, Hari P.; Jaykus, Lee-Ann

    2014-01-01

    Human noroviruses (HuNoV) are the leading cause of acute viral gastroenteritis and an important cause of foodborne disease. Despite their public health significance, routine detection of HuNoV in community settings, or food and environmental samples, is limited, and there is a need to develop alternative HuNoV diagnostic reagents to complement existing ones. The purpose of this study was to select and characterize single-stranded (ss)DNA aptamers with binding affinity to HuNoV. The utility of these aptamers was demonstrated in their use for capture and detection of HuNoV in outbreak-derived fecal samples and a representative food matrix. SELEX (Systematic Evolution of Ligands by EXponential enrichment) was used to isolate ssDNA aptamer sequences with broad reactivity to the prototype GII.2 HuNoV strain, Snow Mountain Virus (SMV). Four aptamer candidates (designated 19, 21, 25 and 26) were identified and screened for binding affinity to 14 different virus-like particles (VLPs) corresponding to various GI and GII HuNoV strains using an Enzyme-Linked Aptamer Sorbant Assay (ELASA). Collectively, aptamers 21 and 25 showed affinity to 13 of the 14 VLPs tested, with strongest binding to GII.2 (SMV) and GII.4 VLPs. Aptamer 25 was chosen for further study. Its binding affinity to SMV-VLPs was equivalent to that of a commercial antibody within a range of 1 to 5 µg/ml. Aptamer 25 also showed binding to representative HuNoV strains present in stool specimens obtained from naturally infected individuals. Lastly, an aptamer magnetic capture (AMC) method using aptamer 25 coupled with RT-qPCR was developed for recovery and detection of HuNoV in artificially contaminated lettuce. The capture efficiency of the AMC was 2.5–36% with an assay detection limit of 10 RNA copies per lettuce sample. These ssDNA aptamer candidates show promise as broadly reactive reagents for use in HuNoV capture and detection assays in various sample types. PMID:25192421

  19. Preparation of the membrane-permeant biarsenicals, FlAsH-EDT2 and ReAsH-EDT2 for fluorescent labeling of tetracysteine-tagged proteins

    PubMed Central

    Adams, Stephen R.; Tsien, Roger Y.

    2010-01-01

    The membrane-permeant, fluorogenic biarsenicals, FlAsH-EDT2 and ReAsH-EDT2 can be prepared in good yields by a straightforward two-step procedure from the inexpensive precursor dyes, fluorescein and resorufin respectively. Handling of toxic reagents such as arsenic trichloride is minimized so the synthesis can be carried out in a typical chemistry laboratory, typically taking about 2–3 days. A wide range of other biarsenicals reagents and intermediates that also bind to tetracysteine-tagged (CysCysProGlyCysCys) proteins can be prepared similarly using this general procedure. PMID:18772880

  20. Development of analytical methods for multiplex bio-assay with inductively coupled plasma mass spectrometry.

    PubMed

    Ornatsky, Olga I; Kinach, Robert; Bandura, Dmitry R; Lou, Xudong; Tanner, Scott D; Baranov, Vladimir I; Nitz, Mark; Winnik, Mitchell A

    2008-01-01

    Advances in the development of highly multiplexed bio-analytical assays with inductively coupled plasma mass spectrometry (ICP-MS) detection are discussed. Use of novel reagents specifically designed for immunological methods utilizing elemental analysis is presented. The major steps of method development, including selection of elements for tags, validation of tagged reagents, and examples of multiplexed assays, are considered in detail. The paper further describes experimental protocols for elemental tagging of antibodies, immunostaining of live and fixed human leukemia cells, and preparation of samples for ICP-MS analysis. Quantitative analysis of surface antigens on model cell lines using a cocktail of seven lanthanide labeled antibodies demonstrated high specificity and concordance with conventional immunophenotyping.

  1. Flow-controlled magnetic particle manipulation

    DOEpatents

    Grate, Jay W [West Richland, WA; Bruckner-Lea, Cynthia J [Richland, WA; Holman, David A [Las Vegas, NV

    2011-02-22

    Inventive methods and apparatus are useful for collecting magnetic materials in one or more magnetic fields and resuspending the particles into a dispersion medium, and optionally repeating collection/resuspension one or more times in the same or a different medium, by controlling the direction and rate of fluid flow through a fluid flow path. The methods provide for contacting derivatized particles with test samples and reagents, removal of excess reagent, washing of magnetic material, and resuspension for analysis, among other uses. The methods are applicable to a wide variety of chemical and biological materials that are susceptible to magnetic labeling, including, for example, cells, viruses, oligonucleotides, proteins, hormones, receptor-ligand complexes, environmental contaminants and the like.

  2. Nitrocellulose-bound antigen repeatedly used for the affinity purification of specific polyclonal antibodies for screening DNA expression libraries.

    PubMed

    Robinson, P A; Anderton, B H; Loviny, T L

    1988-04-06

    We present a simple, efficient and rapid method for affinity-purifying antibodies from a relatively crude antiserum in quantities large enough to screen a DNA expression library. The method presents a very convenient way to remove crossreacting or contaminating antibody specificities. The affinity matrix, antigen non-covalently bound to nitrocellulose, is prepared by the electrophoretic separation of antigen by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, followed by the transfer of antigen to nitrocellulose. The matrix can be used repeatedly. A brief wash with 6 M guanidine hydrochloride is included between steps to remove residual antibodies which bind with high affinity to nitrocellulose-bound antigen. Various buffer solutions were assessed as antibody/antigen-dissociating agents. Glycine/HCl buffer, pH 2.5, appeared to be the most efficient in our hands, although a number of other less efficient dissociating reagents, including 4.5 M magnesium chloride, pH 7.5, 6 M urea, pH 7, and 0.05 M diethylamine, pH 11.5, also could be used; these may be the elution conditions of choice for other antibody/antigen combinations. The use of affinity-purified antibody solutions instead of the corresponding antisera gave increased signal-to-noise ratios with the detection systems that are commonly used to identify positive signals in screening expression libraries. Protein A- and goat anti-rabbit-alkaline phosphatase conjugates gave the most sensitive signals.

  3. Synthetic single domain antibodies for the conformational trapping of membrane proteins

    PubMed Central

    Arnold, Fabian M; Stohler, Peter; Bocquet, Nicolas; Hug, Melanie N; Huber, Sylwia; Siegrist, Martin; Hetemann, Lisa; Gera, Jennifer; Gmür, Samira; Spies, Peter; Gygax, Daniel

    2018-01-01

    Mechanistic and structural studies of membrane proteins require their stabilization in specific conformations. Single domain antibodies are potent reagents for this purpose, but their generation relies on immunizations, which impedes selections in the presence of ligands typically needed to populate defined conformational states. To overcome this key limitation, we developed an in vitro selection platform based on synthetic single domain antibodies named sybodies. To target the limited hydrophilic surfaces of membrane proteins, we designed three sybody libraries that exhibit different shapes and moderate hydrophobicity of the randomized surface. A robust binder selection cascade combining ribosome and phage display enabled the generation of conformation-selective, high affinity sybodies against an ABC transporter and two previously intractable human SLC transporters, GlyT1 and ENT1. The platform does not require access to animal facilities and builds exclusively on commercially available reagents, thus enabling every lab to rapidly generate binders against challenging membrane proteins. PMID:29792401

  4. A toolbox of immunoprecipitation-grade monoclonal antibodies to human transcription factors.

    PubMed

    Venkataraman, Anand; Yang, Kun; Irizarry, Jose; Mackiewicz, Mark; Mita, Paolo; Kuang, Zheng; Xue, Lin; Ghosh, Devlina; Liu, Shuang; Ramos, Pedro; Hu, Shaohui; Bayron Kain, Diane; Keegan, Sarah; Saul, Richard; Colantonio, Simona; Zhang, Hongyan; Behn, Florencia Pauli; Song, Guang; Albino, Edisa; Asencio, Lillyann; Ramos, Leonardo; Lugo, Luvir; Morell, Gloriner; Rivera, Javier; Ruiz, Kimberly; Almodovar, Ruth; Nazario, Luis; Murphy, Keven; Vargas, Ivan; Rivera-Pacheco, Zully Ann; Rosa, Christian; Vargas, Moises; McDade, Jessica; Clark, Brian S; Yoo, Sooyeon; Khambadkone, Seva G; de Melo, Jimmy; Stevanovic, Milanka; Jiang, Lizhi; Li, Yana; Yap, Wendy Y; Jones, Brittany; Tandon, Atul; Campbell, Elliot; Montelione, Gaetano T; Anderson, Stephen; Myers, Richard M; Boeke, Jef D; Fenyö, David; Whiteley, Gordon; Bader, Joel S; Pino, Ignacio; Eichinger, Daniel J; Zhu, Heng; Blackshaw, Seth

    2018-03-19

    A key component of efforts to address the reproducibility crisis in biomedical research is the development of rigorously validated and renewable protein-affinity reagents. As part of the US National Institutes of Health (NIH) Protein Capture Reagents Program (PCRP), we have generated a collection of 1,406 highly validated immunoprecipitation- and/or immunoblotting-grade mouse monoclonal antibodies (mAbs) to 737 human transcription factors, using an integrated production and validation pipeline. We used HuProt human protein microarrays as a primary validation tool to identify mAbs with high specificity for their cognate targets. We further validated PCRP mAbs by means of multiple experimental applications, including immunoprecipitation, immunoblotting, chromatin immunoprecipitation followed by sequencing (ChIP-seq), and immunohistochemistry. We also conducted a meta-analysis that identified critical variables that contribute to the generation of high-quality mAbs. All validation data, protocols, and links to PCRP mAb suppliers are available at http://proteincapture.org.

  5. Label-free aptamer-based sensor for specific detection of malathion residues by surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Nie, Yonghui; Teng, Yuanjie; Li, Pan; Liu, Wenhan; Shi, Qianwei; Zhang, Yuchao

    2018-02-01

    A novel label-free aptamer surface-enhanced Raman scattering (SERS) sensor for trace malathion residue detection was proposed. In this process, the binding of malathion molecule with aptamer is identified directly. The silver nanoparticles modified with positively charged spermine served as enhancing and capture reagents for the negatively charged aptamer. Then, the silver nanoparticles modified by aptamer were used to specifically capture the malathion. The SERS background spectra of spermine, aptamer, and malathion were recorded and distinguished with the spectrum of malathion-aptamer. To enhance the characteristic peak signal of malathion captured by the aptamer, the aggregate reagents (NaCl, KCl, MgCl2) were compared and selected. The selectivity of this method was verified in the mixed-pesticide standard solution, which included malathion, phosmet, chlorpyrifos-methyl, and fethion. Results show that malathion can be specifically identified when the mixed-pesticide interferences existed. The standard curve was established, presenting a good linear range of 5 × 10- 7 to 1 × 10- 5 mol·L- 1. The spiked experiments for tap water show good recoveries from 87.4% to 110.5% with a relative standard deviation of less than 4.22%. Therefore, the proposed label-free aptamer SERS sensor is convenient, specifically detects trace malathion residues, and can be applied for qualitative and quantitative analysis of other pesticides.

  6. Rapid protein concentration, efficient fluorescence labeling and purification on a micro/nanofluidics chip.

    PubMed

    Wang, Chen; Ouyang, Jun; Ye, De-Kai; Xu, Jing-Juan; Chen, Hong-Yuan; Xia, Xing-Hua

    2012-08-07

    Fluorescence analysis has proved to be a powerful detection technique for achieving single molecule analysis. However, it usually requires the labeling of targets with bright fluorescent tags since most chemicals and biomolecules lack fluorescence. Conventional fluorescence labeling methods require a considerable quantity of biomolecule samples, long reaction times and extensive chromatographic purification procedures. Herein, a micro/nanofluidics device integrating a nanochannel in a microfluidics chip has been designed and fabricated, which achieves rapid protein concentration, fluorescence labeling, and efficient purification of product in a miniaturized and continuous manner. As a demonstration, labeling of the proteins bovine serum albumin (BSA) and IgG with fluorescein isothiocyanate (FITC) is presented. Compared to conventional methods, the present micro/nanofluidics device performs about 10(4)-10(6) times faster BSA labeling with 1.6 times higher yields due to the efficient nanoconfinement effect, improved mass, and heat transfer in the chip device. The results demonstrate that the present micro/nanofluidics device promises rapid and facile fluorescence labeling of small amount of reagents such as proteins, nucleic acids and other biomolecules with high efficiency.

  7. Analysis of differential detergent fractions of an AtT-20 cellular homogenate using one- and two-dimensional capillary electrophoresis.

    PubMed

    Fazal, Md Abul; Palmer, Vanessa R; Dovichi, Norman J

    2006-10-20

    Differential detergent fractionation was used to sequentially extract cytosolic, membrane, nuclear, and cytoskeletal fractions from AtT-20 cells. Extracted components were denatured by sodium dodecyl sulfate (SDS) and then labeled with the fluorogenic reagent 3-(2-furoyl) quinoline-1-carboxaldehyde. Both capillary sieving electrophoresis (CSE) and micellar electrokinetic capillary chromatography (MECC) were used to separate labeled components by one-dimensional (1D) electrophoresis. Labeled components were also separated by two-dimensional (2D) capillary electrophoresis; CSE was employed in the first dimension and MECC in the second dimension. Roughly 150 fractions were transferred from the first to the second capillary for this comprehensive analysis in 2.5 h.

  8. Biochemical Control of Marine Fouling

    DTIC Science & Technology

    1988-01-14

    characterized directly. The receptors are specifically labeled with tritiated (-)- baclofen ( -chlorophenyl-GABA). This labeling is saturable, reversible (with...no change in the radioactive baclofen molecule), and stereochemically specific. Scatchard and log-logit analyses of binding data indicate that there...are approximately 1010 receptors per larva; the affinity of these receptors for (-)- baclofen is reflected by a KD = 3 x 10-7. [Our original results

  9. Luminescent Rhenium(I) and Iridium(III) Polypyridine Complexes as Biological Probes, Imaging Reagents, and Photocytotoxic Agents.

    PubMed

    Lo, Kenneth Kam-Wing

    2015-12-15

    Although the interactions of transition metal complexes with biological molecules have been extensively studied, the use of luminescent transition metal complexes as intracellular sensors and bioimaging reagents has not been a focus of research until recently. The main advantages of luminescent transition metal complexes are their high photostability, long-lived phosphorescence that allows time-resolved detection, and large Stokes shifts that can minimize the possible self-quenching effect. Also, by the use of transition metal complexes, the degree of cellular uptake can be readily determined using inductively coupled plasma mass spectrometry. For more than a decade, we have been interested in the development of luminescent transition metal complexes as covalent labels and noncovalent probes for biological molecules. We argue that many transition metal polypyridine complexes display triplet charge transfer ((3)CT) emission that is highly sensitive to the local environment of the complexes. Hence, the biological labeling and binding interactions can be readily reflected by changes in the photophysical properties of the complexes. In this laboratory, we have modified luminescent tricarbonylrhenium(I) and bis-cyclometalated iridium(III) polypyridine complexes of general formula [Re(bpy-R(1))(CO)3(py-R(2))](+) and [Ir(ppy-R(3))2(bpy-R(4))](+), respectively, with reactive functional groups and used them to label the amine and sulfhydryl groups of biomolecules such as oligonucleotides, amino acids, peptides, and proteins. Additionally, using a range of biological substrates such as biotin, estradiol, and indole, we have designed luminescent rhenium(I) and iridium(III) polypyridine complexes as noncovalent probes for biological receptors. The interesting results generated from these studies have prompted us to investigate the possible applications of luminescent transition metal complexes in intracellular systems. Thus, in the past few years, we have developed an interest in the cytotoxic activity, cellular uptake, and bioimaging applications of these complexes. Additionally, we and other research groups have demonstrated that many transition metal complexes have facile cellular uptake and organelle-localization properties and that their cytotoxic activity can be readily controlled. For example, complexes that can target the nucleus, nucleolus, mitochondria, lysosomes, endoplasmic reticulum, and Golgi apparatus have been identified. We anticipate that this selective localization property can be utilized in the development of intracellular sensors and bioimaging reagents. Thus, we have functionalized luminescent rhenium(I) and iridium(III) polypyridine complexes with various pendants, including molecule-binding moieties, sugar molecules, bioorthogonal functional groups, and polymeric chains such as poly(ethylene glycol) and polyethylenimine, and examined their potentials as biological reagents. This Account describes our design of luminescent rhenium(I) and iridium(III) polypyridine complexes and explains how they can serve as a new generation of biological reagents for diagnostic and therapeutic applications.

  10. Isolation and partial characterization of gypsy moth BTR-270, an anionic brush border membrane glycoconjugate that binds Bacillus thuringiensis Cry1A toxins with high affinity

    Treesearch

    Algimantas P. Valaitis; Jeremy L. Jenkins; Mi Kyong Lee; Donald H. Dean; Karen J. Garner

    2001-01-01

    BTR-270, a gypsy moth (Lymantria dispar) brush border membrane molecule that binds Bacillus thuringiensis (Bt) Cry1A toxins with high affinity, was purified by preparative gel electrophoresis. Rabbit antibodies specific for the Bt toxin-binding molecule were raised. Attempts to label BTR-270 by protein-directed techniques were...

  11. Affinity binding of inclusion bodies on supermacroporous monolithic cryogels using labeling with specific antibodies.

    PubMed

    Ahlqvist, Josefin; Kumar, Ashok; Sundström, Heléne; Ledung, Erika; Hörnsten, E Gunnar; Enfors, Sven-Olof; Mattiasson, Bo

    2006-03-23

    A new chromatographic method based on affinity supermacroporous monolithic cryogels is developed for binding and analyzing inclusion bodies during fermentation. The work demonstrated that it is possible to bind specific IgG and IgY antibodies to the 15 and 17 amino acids at the terminus ends of a 33 kDa target protein aggregated as inclusion bodies. The antibody treated inclusion bodies from lysed fermentation broth can be specifically retained in protein A and pseudo-biospecific ligand sulfamethazine modified supermacroporous cryogels. The degree of binding of IgG and IgY treated inclusion bodies to the Protein A and sulfamethazine gels are investigated, as well as the influence of pH on the sulfamethazine ligand. Optimum binding of 78 and 72% was observed on both protein A and sulfamethazine modified cryogel columns, respectively, using IgG labeling of the inclusion bodies. The antibody treated inclusion bodies pass through unretained in the sulfamethazine supermacroporous gel at pH that does not favour the binding between the ligand on the gel and the antibodies on the surface of inclusion bodies. Also the unlabeled inclusion bodies went through the gel unretained, showing no non-specific binding or trapping within the gel. These findings may very well be the foundation for the building of a powerful analytical tool during fermentation of inclusion bodies as well as a convenient way to purify them from fermentation broth. These results also support our earlier findings [Kumar, A., Plieva, F.M., Galaev, I.Yu., Mattiasson, B., 2003. Affinity fractionation of lymphocytes using a monolithic cyogel. J. Immunol. Methods 283, 185-194] with mammalian cells that were surface labeled with specific antibodies and recognized on protein A supermacroporous gels. A general binding and separation system can be established on antibody binding cryogel affinity matrices.

  12. Gonadotropin stimulation of cyclic adenosine monophosphate and testosterone production without detectable high-affinity binding sites in purified Leydig cells from rat testis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Browne, E.S.; Bhalla, V.K.

    1991-02-01

    Rat testicular interstitial cells were separated by three different gradient-density procedures and, with each, two biochemically and morphologically distinct cell fractions were isolated. The lighter density cells in fraction-I bound iodine 125-labeled human chorionic gonadotropin (hCG) with high-affinity (apparent equilibrium dissociation constant, Kd, approximately 10{sup {minus} 10} M) without producing either cyclic adenosine monophosphate or testosterone in response to hormone action. The heavier-density cells displayed morphologic features typical of Leydig cells and produced cyclic adenosine monophosphate and testosterone in the presence of hCG without detectable {sup 125}I-labeled hCG high-affinity binding. These cell fractions were further characterized by studies using deglycosylatedmore » hCG, a known antagonist to hCG action. Cell concentration-dependent studies with purified Leydig cells revealed that maximal testosterone production was achieved when lower cell concentrations (0.5 x 10(6) cells/250 microliters) were used for in vitro hCG stimulation assays. Under these conditions, the {sup 125}I-labeled hCG binding was barely detectable (2.24 fmol; 2,698 sites/cell). Furthermore, these studies revealed that the hCG-specific binding in Leydig cells is overestimated by the classic method for nonspecific binding correction using excess unlabeled hormone. An alternate method is presented.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedynyshyn, J.P.

    The opioid binding characteristics of the rat (PAG) and the signal transduction mechanisms of the opioid receptors were examined with in vitro radioligand binding, GTPase, adenylyl cyclase, and inositol phosphate assays. The nonselective ligand {sup 3}H-ethylketocyclazocine (EKC), the {mu} and {delta} selective ligand {sup 3}H-(D-Ala{sup 2}, D-Leu{sup 5}) enkephalin (DADLE), the {mu} selective ligand {sup 3}H-(D-Ala{sup 2}, N-methyl Phe{sup 4}, Glyol{sup 5}) enkephalin (DAGO), and the {delta} selective ligand {sup 3}H-(D-Pen{sup 2}, D-Pen{sup 5}) enkephalin (DPDPE) were separately used as tracer ligands to label opioid binding sites in rat PAG enriched P{sub 2} membrane in competition with unlabeled DADLE, DAGO,more » DPDPE, or the {kappa} selective ligand trans-3,4-dichloro-N-(2-(1-pyrrolidinyl)cyclohexyl)benzeneacetamide, methane sulfonate, hydrate (U50, 488H). Only {mu} selective high affinity opioid binding was observed. No high affinity {delta} or {kappa} selective binding was detected. {sup 3}H-DAGO was used as a tracer ligand to label {mu} selective high affinity opioid binding sites in PAG enriched P{sub 2} membrane in competition with unlabeled {beta}-endorphin, dynorphin A (1-17), BAM-18, methionine enkephalin, dynorphin A (1-8), and leucine enkephalin. Of these endogenous opioid peptides only those with previously reported high affinity {mu} type opioid binding activity competed with {sup 3}H-DAGO for binding sites in rat PAG enriched P{sub 2} membrane with affinities similar to that of unlabeled DAGO.« less

  14. Protein sorption on polymer surfaces measured by fluorescence labels.

    PubMed

    Brynda, E; Drobník, J; Vacík, J; Kálal, J

    1978-01-01

    Fluorescence labeling can be used in studying protein sorption on various surfaces with a sensitivity of about 10(-8) g/cm2, commensurate with radioactive labeling. Fluorescamine proved to be the most suitable compound for studying protein sorption on hydrophilic gels, because, unlike fluoresceine isothiocyanate and dansylchloride, free fluorochrome does not interfere with measurements. Sorption properties of labeled serum albumin were tested on poly(2-hydroxyethyl methacrylate), on the copolymer of 2-hydroxyethyl methacrylate with methyl methacrylate, and on polyethylene. Labeling does not cause aggregation of the protein, but, as expected, it shifts and somewhat broadens its electrophoretic band while at the same time slightly raising its affinity toward hydrophobic surfaces.

  15. Sedimentation properties in density gradients correspond with levels of sperm DNA fragmentation, chromatin compaction and binding affinity to hyaluronic acid.

    PubMed

    Torabi, Forough; Binduraihem, Adel; Miller, David

    2017-03-01

    Mature spermatozoa bind hyaluronic acid in the extracellular matrix via hyaladherins. Immature spermatozoa may be unable to interact because they do not express the appropriate hyaladherins on their surface. Fresh human semen samples were fractionated using differential density gradient centrifugation (DDGC) and the ability of these fractions to bind hyaluronic acid was evaluated. The presence of sperm hyaladherins was also assessed. CD44 was located mainly on the acrosome and equatorial segment and became more restricted to the equatorial segment in capacitated spermatozoa. Hyaluronic acid-TRITC (hyaluronic acid conjugated with tetramethylrhodamine isothiocyanante), a generic hyaluronic-acid-binding reagent, labelled the membrane and the neck region, particularly after capacitation. Sperm populations obtained after DDGC or after interaction with hyaluronic acid were assessed for DNA fragmentation and chromatin maturity. Strong relationships between both measures and sperm sedimentation and hyaluronic-acid-binding profiles were revealed. Capacitation enhanced hyaluronic acid binding of both DDGC-pelleted sperm and sperm washed free of seminal fluid. In conclusion, hyaladherins were detected on human sperm and a higher capacity for sperm hyaluronic-acid-binding was shown to correspond with their DDGC sedimentation profiles and with lower levels of DNA fragmentation and better chromatin maturity. Capacitation induced changes in the distribution and presence of hyaladherins may enhance hyaluronic-acid-binding. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  16. Synthesis and Evaluation of a Novel 64Cu- and 67Ga-Labeled Neurokinin 1 Receptor Antagonist for in Vivo Targeting of NK1R-Positive Tumor Xenografts.

    PubMed

    Zhang, Hanwen; Kanduluru, Ananda Kumar; Desai, Pooja; Ahad, Afruja; Carlin, Sean; Tandon, Nidhi; Weber, Wolfgang A; Low, Philip S

    2018-04-18

    Neurokinin 1 receptor (NK1R) is expressed in gliomas and neuroendocrine malignancies and represents a promising target for molecular imaging and targeted radionuclide therapy. The goal of this study was to synthesize and evaluate a novel NK1R ligand (NK1R-NOTA) for targeting NK1R-expressing tumors. Using a carboxymethyl moiety linked to L-733060 as a starting reagent, NK1R-NOTA was synthesized in a three-step reaction and then labeled with 64 Cu (or 67 Ga for in vitro studies) in the presence of CH 3 COONH 4 buffer. The radioligand affinity and cellular uptake were evaluated with NK1R-transduced HEK293 cells (HEK293-NK1R) and NK1R nontransduced HEK293 cells (HEK293-WT) and their xenografts. Radiolabeled NK1R-NOTA was obtained with a radiochemical purity of >95% and specific activities of >7.0 GBq/μmol for 64 Cu and >5.0 GBq/μmol for 67 Ga. Both 64 Cu- and 67 Ga-labeled NK1R-NOTA demonstrated high levels of uptake in HEK293-NK1R cells, whereas co-incubation with an excess of NK1R ligand L-733060 reduced the level of uptake by 90%. Positron emission tomography (PET) imaging showed that [ 64 Cu]NK1R-NOTA had a accumulated rapidly in HEK293-NK1R xenografts and a 10-fold lower level of uptake in HEK293-WT xenografts. Radioactivity was cleared by gastrointestinal tract and urinary systems. Biodistribution studies confirmed that the tumor-to-organ ratios were ≥5 for all studied organs at 1 h p.i., except kidneys, liver, and intestine, and that the tumor-to-intestine and tumor-to-kidney ratios were also improved 4 and 20 h post-injection. [ 64 Cu]NK1R-NOTA is a promising ligand for PET imaging of NK1R-expressing tumor xenografts. Delayed imaging with [ 64 Cu]NK1R-NOTA improves image contrast because of the continuous clearance of radioactivity from normal organs.

  17. Metabolomics relative quantitation with mass spectrometry using chemical derivatization and isotope labeling

    DOE PAGES

    O'Maille, Grace; Go, Eden P.; Hoang, Linh; ...

    2008-01-01

    Comprehensive detection and quantitation of metabolites from a biological source constitute the major challenges of current metabolomics research. Two chemical derivatization methodologies, butylation and amination, were applied to human serum for ionization enhancement of a broad spectrum of metabolite classes, including steroids and amino acids. LC-ESI-MS analysis of the derivatized serum samples provided a significant signal elevation across the total ion chromatogram to over a 100-fold increase in ionization efficiency. It was also demonstrated that derivatization combined with isotopically labeled reagents facilitated the relative quantitation of derivatized metabolites from individual as well as pooled samples.

  18. Cannabinoid receptor type 2 (CB2)-selective N-aryl-oxadiazolyl-propionamides: synthesis, radiolabelling, molecular modelling and biological evaluation

    PubMed Central

    2012-01-01

    Background The endocannabinoid system is involved in many physiological and pathological processes. Two receptors (cannabinoid receptor type 1 (CB1) and type 2 (CB2)) are known so far. Many unwanted psychotic side effects of inhibitors of this system can be addressed to the interaction with CB1. While CB1 is one of the most abundant neuroreceptors, CB2 is expressed in the brain only at very low levels. Thus, highly potent and selective compounds for CB2 are desired. N-aryl-((hetero)aromatic)-oxadiazolyl-propionamides represent a promising class of such selective ligands for the human CB2. Here, a library of various derivatives is studied for suitable routes for labelling with 18F. Such 18F-labelled compounds can then be employed as CB2-selective radiotracers for molecular imaging studies employing positron emission tomography (PET). Results By varying the N-arylamide substructure, we explored the binding pocket of the human CB2 receptor and identified 9-ethyl-9H-carbazole amide as the group with optimal size. Radioligand replacement experiments revealed that the modification of the (hetero)aromatic moiety in 3-position of the 1,2,4-oxadiazoles shows only moderate impact on affinity to CB2 but high impact on selectivity towards CB2 with respect to CB1. Further, we could show by autoradiography studies that the most promising compounds bind selectively on CB2 receptors in mouse spleen tissue. Molecular docking studies based on a novel three-dimensional structural model of the human CB2 receptor in its activated form indicate that the compounds bind with the N-arylamide substructure in the binding pocket. 18F labelling at the (hetero)aromatic moiety at the opposite site of the compounds via radiochemistry was carried out. Conclusions The synthesized CB2-selective compounds have high affinity towards CB2 and good selectivity against CB1. The introduction of labelling groups at the (hetero)aromatic moiety shows only moderate impact on CB2 affinity, indicating the introduction of potential labelling groups at this position as a promising approach to develop CB2-selective ligands suitable for molecular imaging with PET. The high affinity for human CB2 and selectivity against human CB1 of the herein presented compounds renders them as suitable candidates for molecular imaging studies. PMID:23067874

  19. DNA purification by triplex-affinity capture and affinity capture electrophoresis

    DOEpatents

    Cantor, Charles R.; Ito, Takashi; Smith, Cassandra L.

    1996-01-01

    The invention provides a method for purifying or isolating double stranded DNA intact using triple helix formation. The method includes the steps of complexing an oligonucleotide and double stranded DNA to generate a triple helix and immobilization of the triple helix on a solid phase by means of a molecular recognition system such as avidin/biotin. The purified DNA is then recovered intact by treating the solid phase with a reagent that breaks the bonds between the oligonucleotide and the intact double stranded DNA while not affecting the Watson-Crick base pairs of the double helix. The present invention also provides a method for purifying or isolating double stranded DNA intact by complexing the double stranded DNA with a specific binding partner and recovering the complex during electrophoresis by immobilizing it on a solid phase trap imbedded in an electrophoretic gel.

  20. Antibodies to biotinylated red blood cells in adults and infants: improved detection, partial characterization, and dependence on red blood cell-biotin dose.

    PubMed

    Schmidt, Robert L; Mock, Donald M; Franco, Robert S; Cohen, Robert M; North, Anne K; Cancelas, José A; Geisen, Christof; Strauss, Ronald G; Vlaar, Alexander P; Nalbant, Demet; Widness, John A

    2017-06-01

    Biotin-labeled red blood cells (BioRBCs) are used for in vivo kinetic studies. Because BioRBC dosing occasionally induces antibodies, a sensitive and specific anti-BioRBC detection assay is needed. Aims were to 1) develop a gel card assay to evaluate existing, naturally occurring and BioRBC-induced plasma antibodies, 2) compare gel card and tube agglutination detection results, and 3) test for a relationship of antibody induction and BioRBC dose. Reagent BioRBCs were prepared using sulfo-NHS biotin ranging from densities 18 (BioRBC-18) to 1458 (BioRBC-1458) µg/mL RBCs. Among BioRBC-exposed subjects, gel card and tube agglutination results were concordant in 21 of 22 adults and all 19 infant plasma samples. Gel card antibody detection sensitivity was more than 10-fold greater than tube agglutination. Twelve to 16 weeks after BioRBC exposure, induced anti-antibodies were detected by gel card in three of 26 adults (12%) at reagent densities BioRBC-256 or less, but in none of 41 infants. Importantly, induced anti-BioRBC antibodies were associated with higher BioRBC dose (p = 0.008); no antibodies were detected in 18 subjects who received BioRBC doses less than or equal to BioRBC-18. For noninduced BioRBC antibodies, six of 1125 naïve adults (0.3%) and none of 46 naïve infants demonstrated existing anti-BioRBC antibodies using reagent BioRBC-140 or -162. Existing anti-BioRBCs were all neutralized by biotin compounds, while induced antibodies were not. The gel card assay is more sensitive than the tube agglutination assay. We recommend reagent BioRBC-256 for identifying anti-BioRBCs. Use of a low total RBC biotin label dose (≤ BioRBC-18) may minimize antibody induction. © 2017 AABB.

  1. Identification of Protein Targets of 4-Hydroxynonenal Using Click Chemistry for Ex Vivo Biotinylation of Azido and Alkynyl Derivatives

    PubMed Central

    Vila, Andrew; Tallman, Keri A.; Jacobs, Aaron T.; Liebler, Daniel C.; Porter, Ned A.; Marnett, Lawrence J.

    2009-01-01

    Polyunsaturated fatty acids (PUFA) are primary targets of free radical damage during oxidative stress. Diffusible electrophilic α, β-unsaturated aldehydes, such as 4-hydroxynonenal (HNE), have been shown to modify proteins that mediate cell signaling (e.g. IKK and Keap1) and alter gene expression pathways responsible for inducing antioxidant genes, heat shock proteins, and the DNA damage response. To fully understand cellular responses to HNE, it is important to determine its protein targets in an unbiased fashion. This requires a strategy for detecting and isolating HNE-modified proteins regardless of the nature of the chemical linkage between HNE and its targets. Azido or alkynyl derivatives of HNE were synthesized and demonstrated to be equivalent to HNE in their ability to induce heme oxygenase induction and induce apoptosis in colon cancer (RKO) cells. Cells exposed to the tagged HNE derivatives were lysed and exposed to reagents to effect Staudinger ligation or copper-catalyzed Huisgen 1,3 dipolar cycloaddition reaction (click chemistry) to conjugate HNE-adducted proteins with biotin for subsequent affinity purification. Both strategies yielded efficient biotinylation of tagged HNE-protein conjugates but click chemistry was found to be superior for recovery of biotinylated proteins from streptavidin-coated beads. Biotinylated proteins were detected in lysates from RKO cell incubations with azido-HNE at concentrations as low as 1 μM. These proteins were affinity purified with streptavidin beads and proteomic analysis was performed by linear ion trap mass spectrometry. Proteomic analysis revealed a dose-dependent increase in labeled proteins with increased sequence coverage at higher concentrations. Several proteins involved in stress signaling (heat shock proteins 70 and 90, and the 78-kDa glucose-regulated protein) were selectively adducted by azido- and alkynyl-HNE. The use of azido and alkynyl derivatives in conjunction with click chemistry appears to be a valuable approach for the identification of the protein targets of HNE. PMID:18232660

  2. Methods for chromosome-specific staining

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel

    1995-01-01

    Methods and compositions for chromosome-specific staining are provided. Compositions comprise heterogenous mixtures of labeled nucleic acid fragments having substantially complementary base sequences to unique sequence regions of the chromosomal DNA for which their associated staining reagent is specific. Methods include methods for making the chromosome-specific staining compositions of the invention, and methods for applying the staining compositions to chromosomes.

  3. Method and cell lines for the production of monoclonal antibodies to human glycophorin A

    DOEpatents

    Bigbee, W.L.; Fong, S.S.N.; Jensen, R.H.; Vanderlaan, M.

    Cloned mouse hybridoma cell lines have been established which continuously produce antibodies that differentiate between the M and N forms of human glycophorin A. These antibodies have potential application as human blood group reagents, as markers for terminally differentiated erythroid cells and as immunofluorescent labels of somatically variant human erythrocytes.

  4. Affinity fluorescence-labeled peptides for the early detection of cancer in Barrett's esophagus

    NASA Astrophysics Data System (ADS)

    Li, Meng; Lu, Shaoying; Piraka, Cyrus; Appelman, Henry; Kwon, Rich; Soetikno, Roy; Kaltenbach, Tonya; Wang, Thomas D.

    2009-02-01

    Fluorescence-labeled peptides that affinity bind to neoplastic mucsosa are promising for use as a specific contrast agent in the detection of pre-malignant tissue in the esophagus. This method is can be used to identify expression of biological markers associated with dysplasia on endoscopic imaging as a guide for biopsy and represents a novel method for the early detection and prevention of cancer. We demonstrate the use of phage display to select affinity peptides and identify the sequence "ASYNYDA" that binds with high target-to-background ratio to dysplastic esophageal mucosa compared to that of intestinal metaplasia. Validation of preferential binding is demonstrated for neoplasia in the setting of Barrett's esophagus. An optimal tradeoff between sensitivity and specificity of 82% and 85% was found at the relative threshold of 0.60 with a target-to-background ratio of 1.81 and an area under the ROC curve of 0.87. Peptides are a novel class of ligand for targeted detection of pre-malignant mucosa for purposes of screening and surveillance.

  5. Quantitative proteome analysis using isobaric peptide termini labeling (IPTL).

    PubMed

    Arntzen, Magnus O; Koehler, Christian J; Treumann, Achim; Thiede, Bernd

    2011-01-01

    The quantitative comparison of proteome level changes across biological samples has become an essential feature in proteomics that remains challenging. We have recently introduced isobaric peptide termini labeling (IPTL), a novel strategy for isobaric quantification based on the derivatization of peptide termini with complementary isotopically labeled reagents. Unlike non-isobaric quantification methods, sample complexity at the MS level is not increased, providing improved sensitivity and protein coverage. The distinguishing feature of IPTL when comparing it to more established isobaric labeling methods (iTRAQ and TMT) is the presence of quantification signatures in all sequence-determining ions in MS/MS spectra, not only in the low mass reporter ion region. This makes IPTL a quantification method that is accessible to mass spectrometers with limited capabilities in the low mass range. Also, the presence of several quantification points in each MS/MS spectrum increases the robustness of the quantification procedure.

  6. Capillary electrophoretic separation-based approach to determine the labeling kinetics of oligodeoxynucleotides

    PubMed Central

    Kanavarioti, Anastassia; Greenman, Kevin L.; Hamalainen, Mark; Jain, Aakriti; Johns, Adam M.; Melville, Chris R.; Kemmish, Kent; Andregg, William

    2014-01-01

    With the recent advances in electron microscopy (EM), computation, and nanofabrication, the original idea of reading DNA sequence directly from an image can now be tested. One approach is to develop heavy atom labels that can provide the contrast required for EM imaging. While evaluating tentative labels for the respective nucleobases in synthetic oligodeoxynucleotides (oligos), we developed a streamlined capillary electrophoresis (CE) protocol to assess the label stability, reactivity, and selectivity. We report our protocol using osmium tetroxide 2,2′-bipyridine (Osbipy) as a thymidine (T) specific label. The observed rates show that the labeling process is kinetically independent of both the oligo length, and the base composition. The conditions, i.e. temperature, optimal Osbipy concentration, and molar ratio of reagents, to promote 100% conversion of the starting oligo to labeled product were established. Hence the optimized conditions developed with the oligos could be leveraged to allow osmylation of effectively all Ts in single-stranded (ss) DNA, while achieving minimal mislabeling. In addition, the approach and methods employed here may be adapted to the evaluation of other prospective contrasting agents/labels to facilitate next-generation DNA sequencing by EM. PMID:23147698

  7. Bioorthogonal Metabolic DNA Labelling using Vinyl Thioether-Modified Thymidine and o-Quinolinone Quinone Methide.

    PubMed

    Gubu, Amu; Li, Long; Ning, Yan; Zhang, Xiaoyun; Lee, Seonghyun; Feng, Mengke; Li, Qiang; Lei, Xiaoguang; Jo, Kyubong; Tang, Xinjing

    2018-04-17

    Bioorthogonal metabolic DNA labeling with fluorochromes is a powerful strategy to visualize DNA molecules and their functions. Here, we report the development of a new DNA metabolic labeling strategy enabled by the catalyst-free bioorthogonal ligation using vinyl thioether modified thymidine and o-quinolinone quinone methide. With the newly designed vinyl thioether-modified thymidine (VTdT), we added labeling tags on cellular DNA, which could further be linked to fluorochromes in cells. Therefore, we successfully visualized the DNA localization within cells as well as single DNA molecules without other staining reagents. In addition, we further characterized this bioorthogonal DNA metabolic labeling using DNase I digestion, MS characterization of VTdT as well as VTdT-oQQF conjugate in cell nuclei or mitochondria. This technique provides a powerful strategy to study DNA in cells, which paves the way to achieve future spatiotemporal deciphering of DNA synthesis and functions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Fluorescein-labeled β-Glucosidase as a Bacterial Stain

    PubMed Central

    Pital, Abe; Janowitz, Sheldon L.; Hudak, Charles E.; Lewis, Evelyn E.

    1967-01-01

    Fluorescein isothiocyanate-labeled β-glucosidase was used as a simple staining reagent with selected gram-positive and gram-negative organisms. Staining in situ appeared to be dependent on the presence of accessible glycosidic-type linkages in the bacterial cell wall. Extensive wall damage or lysis did not occur when stained cells were suspended in washing and mounting solutions. The apparent specificity of labeled enzyme for wall substance was tested by blocking reactions, staining of isolated cell walls, and failure to stain substances lacking appropriate glycosidic linkages. Severe cell wall lesions were produced after prolonged contact with labeled enzyme, and this phenomenon may also be related to staining specificity. Gram-negative organisms and spores were poorly stained unless protected glycopeptide substrate was previously exposed by treatment of cells with thioglycolic acid or dilute alkaline sodium hypochlorite solution. A potential for staining tissues and cell lines may also exist. Some possible applications of labeled enzymes are briefly discussed. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:4169543

  9. A Global Approach for Quantitative Super Resolution and Electron Microscopy on Cryo and Epoxy Sections Using Self-labeling Protein Tags.

    PubMed

    Müller, Andreas; Neukam, Martin; Ivanova, Anna; Sönmez, Anke; Münster, Carla; Kretschmar, Susanne; Kalaidzidis, Yannis; Kurth, Thomas; Verbavatz, Jean-Marc; Solimena, Michele

    2017-02-02

    Correlative light and electron microscopy (CLEM) is a powerful approach to investigate the molecular ultrastructure of labeled cell compartments. However, quantitative CLEM studies are rare, mainly due to small sample sizes and the sensitivity of fluorescent proteins to strong fixatives and contrasting reagents for EM. Here, we show that fusion of a self-labeling protein to insulin allows for the quantification of age-distinct insulin granule pools in pancreatic beta cells by a combination of super resolution and transmission electron microscopy on Tokuyasu cryosections. In contrast to fluorescent proteins like GFP organic dyes covalently bound to self-labeling proteins retain their fluorescence also in epoxy resin following high pressure freezing and freeze substitution, or remarkably even after strong chemical fixation. This enables for the assessment of age-defined granule morphology and degradation. Finally, we demonstrate that this CLEM protocol is highly versatile, being suitable for single and dual fluorescent labeling and detection of different proteins with optimal ultrastructure preservation and contrast.

  10. Identification of cellular MMP substrates using quantitative proteomics: isotope-coded affinity tags (ICAT) and isobaric tags for relative and absolute quantification (iTRAQ).

    PubMed

    Butler, Georgina S; Dean, Richard A; Morrison, Charlotte J; Overall, Christopher M

    2010-01-01

    Identification of protease substrates is essential to understand the functional consequences of normal proteolytic processing and dysregulated proteolysis in disease. Quantitative proteomics and mass spectrometry can be used to identify protease substrates in the cellular context. Here we describe the use of two protein labeling techniques, Isotope-Coded Affinity Tags (ICAT and Isobaric Tags for Relative and Absolute Quantification (iTRAQ), which we have used successfully to identify novel matrix metalloproteinase (MMP) substrates in cell culture systems (1-4). ICAT and iTRAQ can label proteins and protease cleavage products of secreted proteins, protein domains shed from the cell membrane or pericellular matrix of protease-transfected cells that have accumulated in conditioned medium, or cell surface proteins in membrane preparations; isotopically distinct labels are used for control cells. Tryptic digestion and tandem mass spectrometry of the generated fragments enable sequencing of differentially labeled but otherwise identical pooled peptides. The isotopic tag, which is unique for each label, identifies the peptides originating from each sample, for instance, protease-transfected or control cells, and comparison of the peak areas enables relative quantification of the peptide in each sample. Thus proteins present in altered amounts between protease-expressing and null cells are implicated as protease substrates and can be further validated as such.

  11. Optimization of Time-Resolved Fluorescence Assay for Detection of Eu-DOTA-labeled Ligand-Receptor Interactions

    PubMed Central

    De Silva, Channa R.; Vagner, Josef; Lynch, Ronald; Gillies, Robert J.; Hruby, Victor J.

    2010-01-01

    Lanthanide-based luminescent ligand binding assays are superior to traditional radiolabel assays due to improved sensitivity and affordability in high throughput screening while eliminating the use of radioactivity. Despite significant progress using lanthanide(III)-coordinated chelators such as DTPA derivatives, dissociation-enhanced lanthanide fluoroimmunoassays (DELFIA) have not yet been successfully used with more stable chelators, e.g. DOTA derivatives, due to the incomplete release of lanthanide(III) ions from the complex. Here, a modified and an optimized DELFIA procedure incorporating an acid treatment protocol is introduced for use with Eu(III)-DOTA labeled peptides. Complete release of Eu(III) ions from DOTA labeled ligands was observed using hydrochloric acid (2.0 M) prior to the luminescent enhancement step. NDP-α-MSH labeled with Eu(III)-DOTA was synthesized and the binding affinity to cells overexpressing the human melanocortin-4 receptors (hMC4R) was evaluated using the modified protocol. Binding data indicate that the Eu(III)-DOTA linked peptide bound to these cells with an affinity similar to its DTPA analogue. The modified DELFIA procedure was further used to monitor the binding of an Eu(III)-DOTA labeled heterobivalent peptide to the cells expressing both hMC4R and CCK-2 (Cholecystokinin) receptors. The modified assay provides superior results and is appropriate for high-throughput screening of ligand libraries. PMID:19852924

  12. Continuous microfluidic assortment of interactive ligands (CMAIL)

    NASA Astrophysics Data System (ADS)

    Hsiao, Yi-Hsing; Huang, Chao-Yang; Hu, Chih-Yung; Wu, Yen-Yu; Wu, Chung-Hsiun; Hsu, Chia-Hsien; Chen, Chihchen

    2016-08-01

    Finding an interactive ligand-receptor pair is crucial to many applications, including the development of monoclonal antibodies. Biopanning, a commonly used technique for affinity screening, involves a series of washing steps and is lengthy and tedious. Here we present an approach termed continuous microfluidic assortment of interactive ligands, or CMAIL, for the screening and sorting of antigen-binding single-chain variable antibody fragments (scFv) displayed on bacteriophages (phages). Phages carrying native negative charges on their coat proteins were electrophoresed through a hydrogel matrix functionalized with target antigens under two alternating orthogonal electric fields. During the weak horizontal electric field phase, phages were differentially swept laterally depending on their affinity for the antigen, and all phages were electrophoresed down to be collected during the strong vertical electric field phase. Phages of different affinity were spatially separated, allowing the continuous operation. More than 105 CFU (colony forming unit) antigen-interacting phages were isolated with ~100% specificity from a phage library containing 3 × 109 individual members within 40 minutes of sorting using CMAIL. CMAIL is rapid, sensitive, specific, and does not employ washing, elution or magnetic beads. In conclusion, we have developed an efficient and cost-effective method for isolating and sorting affinity reagents involving phage display.

  13. High-Throughput Method for Ranking the Affinity of Peptide Ligands Selected from Phage Display Libraries

    PubMed Central

    González-Techera, A.; Umpiérrez-Failache, M.; Cardozo, S.; Obal, G.; Pritsch, O.; Last, J. A.; Gee, S. J.; Hammock, B. D.; González-Sapienza, G.

    2010-01-01

    The use of phage display peptide libraries allows rapid isolation of peptide ligands for any target selector molecule. However, due to differences in peptide expression and the heterogeneity of the phage preparations, there is no easy way to compare the binding properties of the selected clones, which operates as a major “bottleneck” of the technology. Here, we present the development of a new type of library that allows rapid comparison of the relative affinity of the selected peptides in a high-throughput screening format. As a model system, a phage display peptide library constructed on a phagemid vector that contains the bacterial alkaline phosphatase gene (BAP) was selected with an antiherbicide antibody. Due to the intrinsic switching capacity of the library, the selected peptides were transferred “en masse” from the phage coat protein to BAP. This was coupled to an optimized affinity ELISA where normalized amounts of the peptide–BAP fusion allow direct comparison of the binding properties of hundreds of peptide ligands. The system was validated by plasmon surface resonance experiments using synthetic peptides, showing that the method discriminates among the affinities of the peptides within 3 orders of magnitude. In addition, the peptide–BAP protein can find direct application as a tracer reagent. PMID:18393454

  14. Morph-X-Select: Morphology-based tissue aptamer selection for ovarian cancer biomarker discovery

    PubMed Central

    Wang, Hongyu; Li, Xin; Volk, David E.; Lokesh, Ganesh L.-R.; Elizondo-Riojas, Miguel-Angel; Li, Li; Nick, Alpa M.; Sood, Anil K.; Rosenblatt, Kevin P.; Gorenstein, David G.

    2016-01-01

    High affinity aptamer-based biomarker discovery has the advantage of simultaneously discovering an aptamer affinity reagent and its target biomarker protein. Here, we demonstrate a morphology-based tissue aptamer selection method that enables us to use tissue sections from individual patients and identify high-affinity aptamers and their associated target proteins in a systematic and accurate way. We created a combinatorial DNA aptamer library that has been modified with thiophosphate substitutions of the phosphate ester backbone at selected 5′dA positions for enhanced nuclease resistance and targeting. Based on morphological assessment, we used image-directed laser microdissection (LMD) to dissect regions of interest bound with the thioaptamer (TA) library and further identified target proteins for the selected TAs. We have successfully identified and characterized the lead candidate TA, V5, as a vimentin-specific sequence that has shown specific binding to tumor vasculature of human ovarian tissue and human microvascular endothelial cells. This new Morph-X-Select method allows us to select high-affinity aptamers and their associated target proteins in a specific and accurate way, and could be used for personalized biomarker discovery to improve medical decision-making and to facilitate the development of targeted therapies to achieve more favorable outcomes. PMID:27839510

  15. Photoaffinity labelling of the cardiac calcium channel. (-)-[3H]azidopine labels a 165 kDa polypeptide, and evidence against a [3H]-1,4-dihydropyridine-isothiocyanate being a calcium-channel-specific affinity ligand.

    PubMed

    Ferry, D R; Goll, A; Glossmann, H

    1987-04-01

    The arylazide 1,4-dihydropyridine (-)-[3H]azidopine binds to a saturable population of sites in guinea-pig heart membranes with a dissociation constant (KD) of 30 +/- 7 pM and a density (Bmax.) of 670 +/- 97 fmol/mg of protein. This high-affinity binding site is assumed to reside on voltage-operated calcium channels because reversible binding is blocked stereoselectively by 1,4-dihydropyridine channel blockers and by the enantiomers of Bay K 8644. A low-affinity (KD 25 +/- 7 nM) high-capacity (Bmax. 21.6 +/- 9 pmol/mg of protein) site does not bind (-)- or (+)-Bay K 8644, but is blocked by high concentrations (greater than 500 nM) of dihydro-2,6-dimethyl-4-(2-isothiocyanatophenyl)-3,5-pyridinedicarboxy lic acid dimethyl ester (1,4-DHP-isothiocyanate) or, e.g., (+/-)-nicardipine. (-)-[3H]Azidopine was photoincorporated covalently into bands of 165 +/- 8, 39 +/- 2 and 35 +/- 3 kDa, as determined by SDS/polyacrylamide-gel electrophoresis. Labelling of the 165 kDa band is protected stereoselectively by 1,4-dihydropyridine enantiomers at low (nM) concentrations and by (-)- and (+)-Bay K 8644, whereas the lower-Mr bands are not. Thus, only the 165 kDa band is the calcium-channel-linked 1,4-dihydropyridine receptor. Photolabelling of the 39 or 35 kDa bands was only blocked by 10 microM-1,4-DHP-isothiocyanate or 50 microM-(+/-)-nicardipine but not by 10 microM-(-)-Bay K 8644. [3H]-1,4-DHP-isothiocyanate binds to guinea-pig heart membranes with a KD of 0.35 nM and dissociates with a k-1 of 0.2 min-1 at 30 degrees C. [3H]-1,4 DHP-isothiocyanate irreversibly labels bands of 39 and 35 kDa which are protected by greater than 10 microM-(+/-)-nicardipine or unlabelled ligand but not by 10 microM-(-)-Bay K 8644. Thus, [3H]-1,4-DHP-isothiocyanate is not an affinity probe for the calcium channel.

  16. Carbon-13 and carbon-14 labeled dabigatran etexilate and tritium labeled dabigatran.

    PubMed

    Latli, Bachir; Kiesling, Ralf; Aßfalg, Stefan; Chevliakov, Max; Hrapchak, Matt; Campbell, Scot; Gonnella, Nina; Busacca, Carl A; Senanayake, Chris H

    2016-12-01

    Dabigatran etexilate or pradaxa, a novel oral anticoagulant, is a reversible, competitive, direct thrombin inhibitor. It is used to prevent strokes in patients with atrial fibrillation and the formation of blood clots in the veins (deep venous thrombosis) in adults who have had an operation to replace a hip or a knee. Pradaxa is the only novel oral anticoagulant available with both proven superiority to warfarin and a specific reversal agent for use in rare emergency situations. The detailed description of the synthesis of carbon-13 and carbon-14 labeled dabigatran etexilate, and tritium labeled dabigatran is described. The synthesis of carbon-13 dabigatran etexilate was accomplished in eight steps and in 6% overall yield starting from aniline- 13 C 6 . Ethyl bromoacetate-1- 14 C was the reagent of choice in the synthesis of carbon-14 labeled dabigatran etexilate in six steps and 17% overall yield. Tritium labeled dabigatran was prepared using either direct tritium incorporation under Crabtree's catalytic conditions or tritium-dehalogenation of a diiodo-precursor of dabigatran. Copyright © 2016 John Wiley & Sons, Ltd.

  17. A Monoclonal Antibody Toolkit for C. elegans

    PubMed Central

    Hadwiger, Gayla; Dour, Scott; Arur, Swathi; Fox, Paul; Nonet, Michael L.

    2010-01-01

    Background Antibodies are critical tools in many avenues of biological research. Though antibodies can be produced in the research laboratory setting, most research labs working with vertebrates avail themselves of the wide array of commercially available reagents. By contrast, few such reagents are available for work with model organisms. Methodology/Principal Findings We report the production of monoclonal antibodies directed against a wide range of proteins that label specific subcellular and cellular components, and macromolecular complexes. Antibodies were made to synaptobrevin (SNB-1), a component of synaptic vesicles; to Rim (UNC-10), a protein localized to synaptic active zones; to transforming acidic coiled-coil protein (TAC-1), a component of centrosomes; to CENP-C (HCP-4), which in worms labels the entire length of their holocentric chromosomes; to ORC2 (ORC-2), a subunit of the DNA origin replication complex; to the nucleolar phosphoprotein NOPP140 (DAO-5); to the nuclear envelope protein lamin (LMN-1); to EHD1 (RME-1) a marker for recycling endosomes; to caveolin (CAV-1), a marker for caveolae; to the cytochrome P450 (CYP-33E1), a resident of the endoplasmic reticulum; to β-1,3-glucuronyltransferase (SQV-8) that labels the Golgi; to a chaperonin (HSP-60) targeted to mitochondria; to LAMP (LMP-1), a resident protein of lysosomes; to the alpha subunit of the 20S subcomplex (PAS-7) of the 26S proteasome; to dynamin (DYN-1) and to the α-subunit of the adaptor complex 2 (APA-2) as markers for sites of clathrin-mediated endocytosis; to the MAGUK, protein disks large (DLG-1) and cadherin (HMR-1), both of which label adherens junctions; to a cytoskeletal linker of the ezrin-radixin-moesin family (ERM-1), which localized to apical membranes; to an ERBIN family protein (LET-413) which localizes to the basolateral membrane of epithelial cells and to an adhesion molecule (SAX-7) which localizes to the plasma membrane at cell-cell contacts. In addition to working in whole mount immunocytochemistry, most of these antibodies work on western blots and thus should be of use for biochemical fractionation studies. Conclusions/Significance We have produced a set of monoclonal antibodies to subcellular components of the nematode C. elegans for the research community. These reagents are being made available through the Developmental Studies Hybridoma Bank (DSHB). PMID:20405020

  18. Magnetic Droplet Microfluidics as a Platform for the Concentration of [18F]Fluoride and Radiosynthesis of Sulfonyl [18F]Fluoride.

    PubMed

    Fiel, Somewhere A; Yang, Hua; Schaffer, Paul; Weng, Samuel; Inkster, James A H; Wong, Michael C K; Li, Paul C H

    2015-06-17

    The radioisotope 18F is often considered the best choice for positron emission tomography (PET) owing to its desirable chemical and radiochemical properties. However, nucleophilic 18F-fluorination of large, water-soluble biomolecules, based on C-F bond formation, has traditionally been difficult. Thus, several aqueous fluorination approaches that offer significant versatility in radiopharmaceutical synthesis with sensitive targeting vectors have been developed. Furthermore, because 18F decays rapidly, production of these 18F-labeled compounds requires an automated process to reduce production time, reduce radiation exposure, and minimize losses due to the transfer of reagents during tracer synthesis. Herein, we report the use of magnetic droplet microfluidics (MDM) as a means to concentrate [18F]fluoride from the cyclotron target solution, followed by the synthesis of an 18F-labeled compound on a microfluidic platform. Using this method, we have demonstrated 18F preconcentration in a small-volume droplet through the use of anion exchanging magnetic particles. By using MDM, the preconcentration step took approximately 5 min, and the [18F]fluoride solution was preconcentrated by 15-fold. After the preconcentration step, an 18F-labeling reaction was performed on the MDM platform using the S-F bond formation in aqueous conditions to produce an arylsulfonyl [18F]fluoride compound which can be used as a prosthetic group to label PET targeting ligands. The high radiochemical purity of 95±1% was comparable to the 96% previously reported using a conventional method. In addition, when MDM was used, the total synthesis time was improved to 15 min with lower reagent volumes (50-60 μL) used.

  19. Identification of endoplasmic reticulum proteins involved in glycan assembly: synthesis and characterization of P3-(4-azidoanilido)uridine 5'-triphosphate, a membrane-topological photoaffinity probe for uridine diphosphate-sugar binding proteins.

    PubMed Central

    Rancour, D M; Menon, A K

    1998-01-01

    Much of the enzymic machinery required for the assembly of cell surface carbohydrates is located in the endoplasmic reticulum (ER) of eukaryotic cells. Structural information on these proteins is limited and the identity of the active polypeptide(s) is generally unknown. This paper describes the synthesis and characteristics of a photoaffinity reagent that can be used to identify and analyse members of the ER glycan assembly apparatus, specifically those glycosyltransferases, nucleotide phosphatases and nucleotide-sugar transporters that recognize uridine nucleotides or UDP-sugars. The photoaffinity reagent, P3-(4-azidoanilido)uridine 5'-triphosphate (AAUTP), was synthesized easily from commercially available precursors. AAUTP inhibited the activity of ER glycosyltransferases that utilize UDP-GlcNAc and UDP-Glc, indicating that it is recognized by UDP-sugar-binding proteins. In preliminary tests AAUTP[alpha-32P] labelled bovine milk galactosyltransferase, a model UDP-sugar-utilizing enzyme, in a UV-light-dependent, competitive and saturable manner. When incubated with rat liver ER vesicles, AAUTP[alpha-32P] labelled a discrete subset of ER proteins; labelling was light-dependent and metal ion-specific. Photolabelling of intact ER vesicles with AAUTP[alpha-32P] caused selective incorporation of radioactivity into proteins with cytoplasmically disposed binding sites; UDP-Glc:glycoprotein glucosyltransferase, a lumenal protein, was labelled only when the vesicle membrane was disrupted. These data indicate that AAUTP is a membrane topological probe of catalytic sites in target proteins. Strategies for using AAUTP to identify and study novel ER proteins involved in glycan assembly are discussed. PMID:9677326

  20. Development of C60-based labeling reagents for the determination of low-molecular-weight compounds by matrix assisted laser desorption ionization mass (I): Determination of amino acids in microliter biofluids.

    PubMed

    Wu, Pin; Xiao, Hua-Ming; Ding, Jun; Deng, Qian-Yun; Zheng, Fang; Feng, Yu-Qi

    2017-04-01

    Quantification of low molecular weight compounds (<800 Da) using matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI MS) is challenging due to the matrix signal interference at low m/z region and poor reproducibility of MS responses. In this study, a C60 labeling-MALDI MS strategy was proposed for the fast, sensitive and reliable determination of amino acids (AAs) in biofluids. An N-hydroxysuccinimide functionalized C60 was synthesized as the labeling reagent and added as an 880 Da tag to AAs; a carboxyl acid containing C60 was employed as the internal standards to normalize MS variations. This solved the inherent problems of MALDI MS for small molecule analysis. The entire analytical procedure-which consisted of simple protein precipitation and 10 min of derivatization in a microwave prior to the MALDI MS analysis-could be accomplished within 20 min with high throughput and great sample matrix tolerance. AA quantification showed good linearity from 0.7 to 70.0 μM with correlation coefficients (R) larger than 0.9954. The limits of detection were 70.0-300.0 fmol. Good reproducibility and reliability of the method were demonstrated by intra-day and inter-day precision with relative standard deviations less than 13.8%, and the recovery in biofluid ranged from 80.4% to 106.8%. This approach could be used in 1 μL of urine, serum, plasma, whole blood, and cerebrospinal fluid. Most importantly, the C60 labeling strategy is a universal approach for MALDI MS analysis of various LMW compounds because functionalized C60 is now available on demand. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Development of analytical methods for multiplex bio-assay with inductively coupled plasma mass spectrometry

    PubMed Central

    Ornatsky, Olga I.; Kinach, Robert; Bandura, Dmitry R.; Lou, Xudong; Tanner, Scott D.; Baranov, Vladimir I.; Nitz, Mark; Winnik, Mitchell A.

    2008-01-01

    Advances in the development of highly multiplexed bio-analytical assays with inductively coupled plasma mass spectrometry (ICP-MS) detection are discussed. Use of novel reagents specifically designed for immunological methods utilizing elemental analysis is presented. The major steps of method development, including selection of elements for tags, validation of tagged reagents, and examples of multiplexed assays, are considered in detail. The paper further describes experimental protocols for elemental tagging of antibodies, immunostaining of live and fixed human leukemia cells, and preparation of samples for ICP-MS analysis. Quantitative analysis of surface antigens on model cell lines using a cocktail of seven lanthanide labeled antibodies demonstrated high specificity and concordance with conventional immunophenotyping. PMID:19122859

  2. Quantitative Peptidomics with Five-plex Reductive Methylation labels

    NASA Astrophysics Data System (ADS)

    Tashima, Alexandre K.; Fricker, Lloyd D.

    2017-12-01

    Quantitative peptidomics and proteomics often use chemical tags to covalently modify peptides with reagents that differ in the number of stable isotopes, allowing for quantitation of the relative peptide levels in the original sample based on the peak height of each isotopic form. Different chemical reagents have been used as tags for quantitative peptidomics and proteomics, and all have strengths and weaknesses. One of the simplest approaches uses formaldehyde and sodium cyanoborohydride to methylate amines, converting primary and secondary amines into tertiary amines. Up to five different isotopic forms can be generated, depending on the isotopic forms of formaldehyde and cyanoborohydride reagents, allowing for five-plex quantitation. However, the mass difference between each of these forms is only 1 Da per methyl group incorporated into the peptide, and for many peptides there is substantial overlap from the natural abundance of 13C and other isotopes. In this study, we calculated the contribution from the natural isotopes for 26 native peptides and derived equations to correct the peak intensities. These equations were applied to data from a study using human embryonic kidney HEK293T cells in which five replicates were treated with 100 nM vinblastine for 3 h and compared with five replicates of cells treated with control medium. The correction equations brought the replicates to the expected 1:1 ratios and revealed significant decreases in levels of 21 peptides upon vinblastine treatment. These equations enable accurate quantitation of small changes in peptide levels using the reductive methylation labeling approach. [Figure not available: see fulltext.

  3. Facile quantitation of free thiols in a recombinant monoclonal antibody by reversed-phase high performance liquid chromatography with hydrophobicity-tailored thiol derivatization.

    PubMed

    Welch, Leslie; Dong, Xiao; Hewitt, Daniel; Irwin, Michelle; McCarty, Luke; Tsai, Christina; Baginski, Tomasz

    2018-06-02

    Free thiol content, and its consistency, is one of the product quality attributes of interest during technical development of manufactured recombinant monoclonal antibodies (mAbs). We describe a new, mid/high-throughput reversed-phase-high performance liquid chromatography (RP-HPLC) method coupled with derivatization of free thiols, for the determination of total free thiol content in an E. coli-expressed therapeutic monovalent monoclonal antibody mAb1. Initial selection of the derivatization reagent used an hydrophobicity-tailored approach. Maleimide-based thiol-reactive reagents with varying degrees of hydrophobicity were assessed to identify and select one that provided adequate chromatographic resolution and robust quantitation of free thiol-containing mAb1 forms. The method relies on covalent derivatization of free thiols in denatured mAb1 with N-tert-butylmaleimide (NtBM) label, followed by RP-HPLC separation with UV-based quantitation of native (disulfide containing) and labeled (free thiol containing) forms. The method demonstrated good specificity, precision, linearity, accuracy and robustness. Accuracy of the method, for samples with a wide range of free thiol content, was demonstrated using admixtures as well as by comparison to an orthogonal LC-MS peptide mapping method with isotope tagging of free thiols. The developed method has a facile workflow which fits well into both R&D characterization and quality control (QC) testing environments. The hydrophobicity-tailored approach to the selection of free thiol derivatization reagent is easily applied to the rapid development of free thiol quantitation methods for full-length recombinant antibodies. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Quantitative Peptidomics with Five-plex Reductive Methylation labels

    NASA Astrophysics Data System (ADS)

    Tashima, Alexandre K.; Fricker, Lloyd D.

    2018-05-01

    Quantitative peptidomics and proteomics often use chemical tags to covalently modify peptides with reagents that differ in the number of stable isotopes, allowing for quantitation of the relative peptide levels in the original sample based on the peak height of each isotopic form. Different chemical reagents have been used as tags for quantitative peptidomics and proteomics, and all have strengths and weaknesses. One of the simplest approaches uses formaldehyde and sodium cyanoborohydride to methylate amines, converting primary and secondary amines into tertiary amines. Up to five different isotopic forms can be generated, depending on the isotopic forms of formaldehyde and cyanoborohydride reagents, allowing for five-plex quantitation. However, the mass difference between each of these forms is only 1 Da per methyl group incorporated into the peptide, and for many peptides there is substantial overlap from the natural abundance of 13C and other isotopes. In this study, we calculated the contribution from the natural isotopes for 26 native peptides and derived equations to correct the peak intensities. These equations were applied to data from a study using human embryonic kidney HEK293T cells in which five replicates were treated with 100 nM vinblastine for 3 h and compared with five replicates of cells treated with control medium. The correction equations brought the replicates to the expected 1:1 ratios and revealed significant decreases in levels of 21 peptides upon vinblastine treatment. These equations enable accurate quantitation of small changes in peptide levels using the reductive methylation labeling approach. [Figure not available: see fulltext.

  5. ( sup 3 H)-DOB(4-bromo-2,5-dimethoxyphenylisopropylamine) and ( sup 3 H) ketanserin label two affinity states of the cloned human 5-hydroxytryptamine2 receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branchek, T.; Adham, N.; Macchi, M.

    1990-11-01

    The binding properties of the 5-hydroxytryptamine2 (5-HT2) receptor have been the subject of much interest and debate in recent years. The hallucinogenic amphetamine derivative 4-bromo-2,5-dimethoxyphenylisopropylamine (DOB) has been shown to bind to a small number of binding sites with properties very similar to (3H)ketanserin-labeled 5-HT2 receptors, but with much higher agonist affinities. Some researchers have interpreted this as evidence for the existence of a new subtype of 5-HT2 receptor (termed 5-HT2A), whereas others have interpreted these data as indicative of agonist high affinity and agonist low affinity states for the 5-HT2 receptor. In this investigation, a cDNA clone encoding themore » serotonin 5-HT2 receptor was transiently transfected into monkey kidney Cos-7 cells and stably transfected into mouse fibroblast L-M(TK-) cells. In both systems, expression of this single serotonin receptor cDNA led to the appearance of both (3H)DOB and (3H)ketanserin binding sites with properties that matched their binding characteristics in mammalian brain homogenates. Addition of guanosine 5'-(beta, gamma-imido) triphosphate (Gpp(NH)p) to this system caused a rightward shift and steepening of agonist competition curves for (3H) ketanserin binding, converting a two-site binding curve to a single low affinity binding state. Gpp(NH)p addition also caused a 50% decrease in the number of high affinity (3H)DOB binding sites, with no change in the dissociation constant of the remaining high affinity states. These data on a single human 5-HT2 receptor cDNA expressed in two different transfection host cells indicate that (3H)DOB and (3H)ketanserin binding reside on the same gene product, apparently interacting with agonist and antagonist conformations of a single human 5-HT2 receptor protein.« less

  6. Comprehensive analysis of RNA-protein interactions by high-throughput sequencing-RNA affinity profiling.

    PubMed

    Tome, Jacob M; Ozer, Abdullah; Pagano, John M; Gheba, Dan; Schroth, Gary P; Lis, John T

    2014-06-01

    RNA-protein interactions play critical roles in gene regulation, but methods to quantitatively analyze these interactions at a large scale are lacking. We have developed a high-throughput sequencing-RNA affinity profiling (HiTS-RAP) assay by adapting a high-throughput DNA sequencer to quantify the binding of fluorescently labeled protein to millions of RNAs anchored to sequenced cDNA templates. Using HiTS-RAP, we measured the affinity of mutagenized libraries of GFP-binding and NELF-E-binding aptamers to their respective targets and identified critical regions of interaction. Mutations additively affected the affinity of the NELF-E-binding aptamer, whose interaction depended mainly on a single-stranded RNA motif, but not that of the GFP aptamer, whose interaction depended primarily on secondary structure.

  7. Maintenance of biological activity of pertussis toxin radioiodinated while bound to fetuin-agarose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, G.D.; Peppler, M.S.

    1987-05-01

    We developed a method to produce radioiodinated pertussis toxin (PT) which was active in the goose erythrocyte agglutination and CHO cell assay systems. The procedure used fetuin coupled to agarose to prevent inactivation of the toxin during the iodination reaction. Analysis of the labeled PT by affinity chromatography on fetuin-agarose and wheat germ agglutinin-agarose and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that there were minimal amounts of labeled fetuin or other contaminants in the labeled PT preparations. All five of the subunits of the toxin appeared to be labeled by the procedure. The labeling method will facilitate further investigationsmore » into the nature of the interaction and activity of PT in host tissues.« less

  8. A mix-and-read drop-based in vitro two-hybrid method for screening high-affinity peptide binders

    PubMed Central

    Cui, Naiwen; Zhang, Huidan; Schneider, Nils; Tao, Ye; Asahara, Haruichi; Sun, Zhiyi; Cai, Yamei; Koehler, Stephan A.; de Greef, Tom F. A.; Abbaspourrad, Alireza; Weitz, David A.; Chong, Shaorong

    2016-01-01

    Drop-based microfluidics have recently become a novel tool by providing a stable linkage between phenotype and genotype for high throughput screening. However, use of drop-based microfluidics for screening high-affinity peptide binders has not been demonstrated due to the lack of a sensitive functional assay that can detect single DNA molecules in drops. To address this sensitivity issue, we introduced in vitro two-hybrid system (IVT2H) into microfluidic drops and developed a streamlined mix-and-read drop-IVT2H method to screen a random DNA library. Drop-IVT2H was based on the correlation between the binding affinity of two interacting protein domains and transcriptional activation of a fluorescent reporter. A DNA library encoding potential peptide binders was encapsulated with IVT2H such that single DNA molecules were distributed in individual drops. We validated drop-IVT2H by screening a three-random-residue library derived from a high-affinity MDM2 inhibitor PMI. The current drop-IVT2H platform is ideally suited for affinity screening of small-to-medium-sized libraries (103–106). It can obtain hits within a single day while consuming minimal amounts of reagents. Drop-IVT2H simplifies and accelerates the drop-based microfluidics workflow for screening random DNA libraries, and represents a novel alternative method for protein engineering and in vitro directed protein evolution. PMID:26940078

  9. Two classes of receptor specific for sperm-activating peptide III in sand-dollar spermatozoa.

    PubMed

    Yoshino, K; Suzuki, N

    1992-06-15

    We characterized receptors specific for sperm-activating peptide III (SAP-III: DSDSAQNLIQ) in spermatozoa of the sand dollar, Clypeaster japonicus, using both binding and cross-linking techniques. Analyses of the data obtained from the equilibrium binding of a radiolabeled SAP-III analogueto C. japonicus spermatozoa, using Klotz, Scatchard and Hill plots, showed the presence of two classes of receptors specific for SAP-III in the spermatozoa. One of the receptors (high-affinity) had a Kd of 3.4 nM and 3.4 x 10(4) binding sites/spermatozoon. The other receptor (low-affinity) had a Kd of 48 nM, with 6.1 x 10(4) binding sites/spermatozoon. The Kd of the high-affinity receptor was comparable to the median effective concentration of the intracellular-pH-increasing activity of SAP-III and that of the low-affinity receptor was comparable to the median effective concentration of the cellular-cGMP-elevating activity of the peptide. In addition, Scatchard and Hill plots of the data suggested the existence of positive cooperativity between the high-affinity members. Similar results were also obtained from a binding experiment using a sperm-membrane fraction prepared from C. japonicus spermatozoa. The incubation of intact spermatozoa or sperm plasma membranes with the radioiodinated SAP-III analogue and a chemical cross-linking reagent, disuccinimidyl suberate, resulted in the radiolabeling of three proteins with molecular masses of 126, 87 and 64 kDa, estimated by SDS/PAGE under reducing conditions.

  10. A rhodium(III) complex for high-affinity DNA base-pair mismatch recognition

    PubMed Central

    Junicke, Henrik; Hart, Jonathan R.; Kisko, Jennifer; Glebov, Oleg; Kirsch, Ilan R.; Barton, Jacqueline K.

    2003-01-01

    A rhodium(III) complex, rac-[Rh(bpy)2phzi]3+ (bpy, 2,2′-bipyridine; phzi, benzo[a]phenazine-5,6-quinone diimine) has been designed as a sterically demanding intercalator targeted to destabilized mismatched sites in double-helical DNA. The complex is readily synthesized by condensation of the phenazine quinone with the corresponding diammine complex. Upon photoactivation, the complex promotes direct strand scission at single-base mismatch sites within the DNA duplex. As with the parent mismatch-specific reagent, [Rh(bpy)2(chrysi)]3+ [chrysene-5,6-quinone diimine (chrysi)], mismatch selectivity depends on the helix destabilization associated with mispairing. Unlike the parent chrysi complex, the phzi analogue binds and cleaves with high affinity and efficiency. The specific binding constants for CA, CC, and CT mismatches within a 31-mer oligonucleotide duplex are 0.3, 1, and 6 × 107 M−1, respectively; site-specific photocleavage is evident at nanomolar concentrations. Moreover, the specificity, defined as the ratio in binding affinities for mispaired vs. well paired sites, is maintained. The increase in affinity is attributed to greater stability in the mismatched site associated with stacking by the heterocyclic aromatic ligand. The high-affinity complex is also applied in the differential cleavage of DNA obtained from cell lines deficient in mismatch repair vs. those proficient in mismatch repair. Agreement is found between photocleavage by the mismatch-specific probes and deficiency in mismatch repair. This mismatch-specific targeting, therefore, offers a potential strategy for new chemotherapeutic design. PMID:12610209

  11. High Throughput, Label-free Screening Small Molecule Compound Libraries for Protein-Ligands using Combination of Small Molecule Microarrays and a Special Ellipsometry-based Optical Scanner.

    PubMed

    Landry, James P; Fei, Yiyan; Zhu, X D

    2011-12-01

    Small-molecule compounds remain the major source of therapeutic and preventative drugs. Developing new drugs against a protein target often requires screening large collections of compounds with diverse structures for ligands or ligand fragments that exhibit sufficiently affinity and desirable inhibition effect on the target before further optimization and development. Since the number of small molecule compounds is large, high-throughput screening (HTS) methods are needed. Small-molecule microarrays (SMM) on a solid support in combination with a suitable binding assay form a viable HTS platform. We demonstrate that by combining an oblique-incidence reflectivity difference optical scanner with SMM we can screen 10,000 small-molecule compounds on a single glass slide for protein ligands without fluorescence labeling. Furthermore using such a label-free assay platform we can simultaneously acquire binding curves of a solution-phase protein to over 10,000 immobilized compounds, thus enabling full characterization of protein-ligand interactions over a wide range of affinity constants.

  12. Methods for chromosome-specific staining

    DOEpatents

    Gray, J.W.; Pinkel, D.

    1995-09-05

    Methods and compositions for chromosome-specific staining are provided. Compositions comprise heterogeneous mixtures of labeled nucleic acid fragments having substantially complementary base sequences to unique sequence regions of the chromosomal DNA for which their associated staining reagent is specific. Methods include ways for making the chromosome-specific staining compositions of the invention, and methods for applying the staining compositions to chromosomes. 3 figs.

  13. Methods and compositions for chromosome-specific staining

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel

    2003-07-22

    Methods and compositions for chromosome-specific staining are provided. Compositions comprise heterogenous mixtures of labeled nucleic acid fragments having substantially complementary base sequences to unique sequence regions of the chromosomal DNA for which their associated staining reagent is specific. Methods include methods for making the chromosome-specific staining compositions of the invention, and methods for applying the staining compositions to chromosomes.

  14. Lens-free shadow image based high-throughput continuous cell monitoring technique.

    PubMed

    Jin, Geonsoo; Yoo, In-Hwa; Pack, Seung Pil; Yang, Ji-Woon; Ha, Un-Hwan; Paek, Se-Hwan; Seo, Sungkyu

    2012-01-01

    A high-throughput continuous cell monitoring technique which does not require any labeling reagents or destruction of the specimen is demonstrated. More than 6000 human alveolar epithelial A549 cells are monitored for up to 72 h simultaneously and continuously with a single digital image within a cost and space effective lens-free shadow imaging platform. In an experiment performed within a custom built incubator integrated with the lens-free shadow imaging platform, the cell nucleus division process could be successfully characterized by calculating the signal-to-noise ratios (SNRs) and the shadow diameters (SDs) of the cell shadow patterns. The versatile nature of this platform also enabled a single cell viability test followed by live cell counting. This study firstly shows that the lens-free shadow imaging technique can provide a continuous cell monitoring without any staining/labeling reagent and destruction of the specimen. This high-throughput continuous cell monitoring technique based on lens-free shadow imaging may be widely utilized as a compact, low-cost, and high-throughput cell monitoring tool in the fields of drug and food screening or cell proliferation and viability testing. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Fluorogenic Strain-Promoted Alkyne-Diazo Cycloadditions

    PubMed Central

    Friscourt, Frédéric; Fahrni, Christoph J.; Boons, Geert-Jan

    2016-01-01

    Fluorogenic reactions in which non- or weakly-fluorescent reagents produce highly fluorescent products are attractive for detecting a broad range of compounds in the fields of bio-conjugation and material sciences. We report here that Fl-DIBO, a dibenzocyclooctyne derivative modified with a cyclopropenone moiety, can undergo fast strain-promoted cycloadditions under catalyst-free conditions with azides, nitrones, nitrile oxides as well as mono- and disubstituted diazo-derivatives. While the reaction with nitrile oxides, nitrones and disubstituted diazo compounds gave cycloadducts with low quantum yield, monosubstituted diazo reagents produced 1H-pyrazole derivatives that exhibited a ~160-fold fluorescence enhancement over Fl-DIBO combined with a greater than 10,000-fold increase in brightness. Concluding from quantum chemical calculations, fluorescence quenching of 3H-pyrazoles, which are formed by reaction with disubstituted diazo-derivatives, is likely due to the presence of energetically low-lying (n,π*) states. The fluorogenic probe Fl-DIBO was successfully employed for the labeling of diazo-tagged proteins without detectable background signal. Diazo-derivatives are emerging as attractive reporters for the labeling of biomolecules and the studies presented here demonstrate that Fl-DIBO can be employed for visualizing such biomolecules without the need for probe washout. PMID:26330090

  16. Optimized molecular design of ADAPT-based HER2-imaging probes labelled with 111In and 68Ga.

    PubMed

    Lindbo, Sarah; Garousi, Javad; Mitran, Bogdan; Vorobyeva, Anzhelika; Oroujeni, Maryam; Orlova, Anna; Hober, Sophia; Tolmachev, Vladimir

    2018-06-04

    Radionuclide molecular imaging is a promising tool for visualization of cancer associated molecular abnormalities in vivo and stratification of patients for specific therapies. ADAPT is a new type of small engineered proteins based on the scaffold of an albumin binding domain of protein G. ADAPTs have been utilized to select and develop high affinity binders to different proteinaceous targets. ADAPT6 binds to human epidermal growth factor 2 (HER2) with low nanomolar affinity and can be used for its in vivo visualization. Molecular design of 111 In-labeled anti-HER2 ADAPT has been optimized in several earlier studies. In this study, we made a direct comparison of two of the most promising variants, having either a DEAVDANS or a (HE) 3 DANS sequence at the N-terminus, conjugated with a maleimido derivative of DOTA to a GSSC amino acids sequence at the C-terminus. The variants (designated DOTA-C 59 - DEAVDANS-ADAPT6-GSSC and DOTA-C 61 -(HE) 3 DANS-ADAPT6-GSSC) were stably labeled with 111 In for SPECT and 68 Ga for PET. Biodistribution of labeled ADAPT variants was evaluated in nude mice bearing human tumor xenografts with different levels of HER2 expression. Both variants enabled clear discrimination between tumors with high and low levels of HER2 expression. 111 In-labeled ADAPT6 derivatives provided higher tumor-to-organ ratios compared to 68 Ga-labeled counterparts. The best performing variant was DOTA-C 61 -(HE) 3 DANS-ADAPT6-GSSC, providing tumor-to-blood ratios of 208±36 and 109±17 at 3 h for 111 In and 68 Ga labels, respectively.

  17. Hyperplex-MRM: a hybrid multiple reaction monitoring method using mTRAQ/iTRAQ labeling for multiplex absolute quantification of human colorectal cancer biomarker.

    PubMed

    Yin, Hong-Rui; Zhang, Lei; Xie, Li-Qi; Huang, Li-Yong; Xu, Ye; Cai, San-Jun; Yang, Peng-Yuan; Lu, Hao-Jie

    2013-09-06

    Novel biomarker verification assays are urgently required to improve the efficiency of biomarker development. Benefitting from lower development costs, multiple reaction monitoring (MRM) has been used for biomarker verification as an alternative to immunoassay. However, in general MRM analysis, only one sample can be quantified in a single experiment, which restricts its application. Here, a Hyperplex-MRM quantification approach, which combined mTRAQ for absolute quantification and iTRAQ for relative quantification, was developed to increase the throughput of biomarker verification. In this strategy, equal amounts of internal standard peptides were labeled with mTRAQ reagents Δ0 and Δ8, respectively, as double references, while 4-plex iTRAQ reagents were used to label four different samples as an alternative to mTRAQ Δ4. From the MRM trace and MS/MS spectrum, total amounts and relative ratios of target proteins/peptides of four samples could be acquired simultaneously. Accordingly, absolute amounts of target proteins/peptides in four different samples could be achieved in a single run. In addition, double references were used to increase the reliability of the quantification results. Using this approach, three biomarker candidates, ademosylhomocysteinase (AHCY), cathepsin D (CTSD), and lysozyme C (LYZ), were successfully quantified in colorectal cancer (CRC) tissue specimens of different stages with high accuracy, sensitivity, and reproducibility. To summarize, we demonstrated a promising quantification method for high-throughput verification of biomarker candidates.

  18. Dye bias correction in dual-labeled cDNA microarray gene expression measurements.

    PubMed Central

    Rosenzweig, Barry A; Pine, P Scott; Domon, Olen E; Morris, Suzanne M; Chen, James J; Sistare, Frank D

    2004-01-01

    A significant limitation to the analytical accuracy and precision of dual-labeled spotted cDNA microarrays is the signal error due to dye bias. Transcript-dependent dye bias may be due to gene-specific differences of incorporation of two distinctly different chemical dyes and the resultant differential hybridization efficiencies of these two chemically different targets for the same probe. Several approaches were used to assess and minimize the effects of dye bias on fluorescent hybridization signals and maximize the experimental design efficiency of a cell culture experiment. Dye bias was measured at the individual transcript level within each batch of simultaneously processed arrays by replicate dual-labeled split-control sample hybridizations and accounted for a significant component of fluorescent signal differences. This transcript-dependent dye bias alone could introduce unacceptably high numbers of both false-positive and false-negative signals. We found that within a given set of concurrently processed hybridizations, the bias is remarkably consistent and therefore measurable and correctable. The additional microarrays and reagents required for paired technical replicate dye-swap corrections commonly performed to control for dye bias could be costly to end users. Incorporating split-control microarrays within a set of concurrently processed hybridizations to specifically measure dye bias can eliminate the need for technical dye swap replicates and reduce microarray and reagent costs while maintaining experimental accuracy and technical precision. These data support a practical and more efficient experimental design to measure and mathematically correct for dye bias. PMID:15033598

  19. Label-Free, LC-MS-Based Assays to Quantitate Small-Molecule Antagonist Binding to the Mammalian BLT1 Receptor.

    PubMed

    Chen, Xun; Stout, Steven; Mueller, Uwe; Boykow, George; Visconti, Richard; Siliphaivanh, Phieng; Spencer, Kerrie; Presland, Jeremy; Kavana, Michael; Basso, Andrea D; McLaren, David G; Myers, Robert W

    2017-08-01

    We have developed and validated label-free, liquid chromatography-mass spectrometry (LC-MS)-based equilibrium direct and competition binding assays to quantitate small-molecule antagonist binding to recombinant human and mouse BLT1 receptors expressed in HEK 293 cell membranes. Procedurally, these binding assays involve (1) equilibration of the BLT1 receptor and probe ligand, with or without a competitor; (2) vacuum filtration through cationic glass fiber filters to separate receptor-bound from free probe ligand; and (3) LC-MS analysis in selected reaction monitoring mode for bound probe ligand quantitation. Two novel, optimized probe ligands, compounds 1 and 2, were identified by screening 20 unlabeled BLT1 antagonists for direct binding. Saturation direct binding studies confirmed the high affinity, and dissociation studies established the rapid binding kinetics of probe ligands 1 and 2. Competition binding assays were established using both probe ligands, and the affinities of structurally diverse BLT1 antagonists were measured. Both binding assay formats can be executed with high specificity and sensitivity and moderate throughput (96-well plate format) using these approaches. This highly versatile, label-free method for studying ligand binding to membrane-associated receptors should find broad application as an alternative to traditional methods using labeled ligands.

  20. Photoactivable analogs for labeling 25-hydroxyvitamin D3 serum binding protein and for 1,25-dihydroxyvitamin D3 intestinal receptor protein

    NASA Technical Reports Server (NTRS)

    Kutner, A.; Link, R. P.; Schnoes, H. K.; DeLuca, H. F.

    1986-01-01

    3-Azidobenzoates and 3-azidonitrobenzoates of 25-hydroxyvitamin D3 as well as 3-deoxy-3-azido-25-hydroxyvitamin D3 and 3-deoxy-3-azido-1,25-dihydroxyvitamin D3 were prepared as photoaffinity labels for vitamin D serum binding protein and 1,25-dihydroxyvitamin D3 intestinal receptor protein. The compounds prepared were easily activated by short- or long-wavelength uv light, as monitored by uv and ir spectrometry. The efficacy of the compounds to compete with 25-hydroxyvitamin D3 or 1,25-dihydroxyvitamin D3 for the binding site of serum binding protein and receptor, respectively, was studied to evaluate the vitamin D label with the highest affinity for the protein. The presence of an azidobenzoate or azidonitrobenzoate substituent at the C-3 position of 25-OH-D3 significantly decreased (10(4)- to 10(6)-fold) the binding activity. However, the labels containing the azido substituent attached directly to the vitamin D skeleton at the C-3 position showed a high affinity, only 20- to 150-fold lower than that of the parent compounds with their respective proteins. Therefore, 3-deoxy-3-azidovitamins present potential ligands for photolabeling of vitamin D proteins and for studying the structures of the protein active sites.

  1. Study of Highly Selective and Efficient Thiol Derivatization using Selenium Reagents by Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Kehua; Zhang, Yun W.; Tang, Bo

    2010-08-15

    Biological thiols are critical physiological components and their detection often involves derivatization. This paper reports a systemic mass spectrometry (MS) investigation of the cleavage of Se-N bond by thiol to form a new Se-S bond, the new selenium chemistry for thiol labeling. Our data shows that the reaction is highly selective, rapid, reversible and efficient. For instance, among twenty amino acids, only cysteine was found to be reactive with Se-N containing reagents and the reaction takes place in seconds. By adding dithiothreitol (DTT), the newly formed Se-S bond of peptides/proteins can be reduced back to free thiol. The high selectivitymore » and excellent reversibility of the reaction provide potential of using this chemistry for selective identification of thiol compounds or enriching and purifying thiol peptides/proteins. In addition, the derivatized thiol peptides have interesting dissociation behavior, which is tunable using different selenium reagents. For example, by introducing an adjacent nucleophilic group into the selenium reagent in the case of using ebselen, the reaction product of ebselen with glutathione (GSH) is easy to lose the selenium tag upon collision-induced dissociation (CID), which is useful to "fish out" those peptides containing free cysteine residues by precursor ion scan. By contrast, the selenium tag of N-(phenylseleno) phthalimide reagent can be stable and survive in CID process, which would be of value in pinpointing thiol location using a top-down proteomic approach. Also, the high conversion yield of the reaction allows the counting of total number of thiol in proteins. We believe that ebselen or N-(phenylseleno) phthalimide as tagging thiol-protein reagents will have important applications in both qualitative and quantitative analysis of different thiol-proteins derived from living cells by MS method.« less

  2. Forskolin photoaffinity labels with specificity for adenylyl cyclase and the glucose transporter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, D.I.; Robbins, J.D.; Ruoho, A.E.

    1991-07-15

    Two photolabels, N-(3-(4-azido-3-125I-phenyl)-propionamide)-6- aminoethylcarbamylforskolin(125I-6-AIPP-Fsk) and N-(3-(4-azido-3-125I-phenyl)propionamide)-7-aminoethylcarbamyl-7- desacetylforskolin (125I-7-AIPP-Fsk) were synthesized with specific activities of 2200 Ci/mmol and used to label adenylyl cyclase and the glucose transporter. The affinities of the photolabels for adenylyl cyclase were determined by their inhibition of (3H)forskolin binding to bovine brain membranes. 6-AIPP-Fsk and 7-AIPP-Fsk inhibited (3H)forskolin binding with IC50 values of 15 nM and 200 nM, respectively. 125I-6-AIPP-Fsk labeled a 115-kDa protein in control and GTP {gamma} S-preactivated bovine brain membranes. This labeling was inhibited by forskolin but not by 1,9-dideoxyforskolin or cytochalasin B. 125I-6-AIPP-Fsk labeling of partially purified adenylyl cyclase was inhibited by forskolinmore » but not by 1,9-dideoxyforskolin. 125I-7-AIPP-Fsk specifically labeled a 45-kDa protein and not a 115-kDa protein in control and GTP {gamma} S-preactivated brain membranes. This labeling was inhibited by forskolin, 1,9-dideoxyforskolin, cytochalasin B, and D-glucose but not cytochalasin E or L-glucose. Human erythrocyte membranes were photolyzed with 125I-6-AIPP-Fsk and 125I-7-AIPP-Fsk. 125I-7-AIPP-Fsk, but not 125I-6-AIPP-Fsk, strongly labeled a broad 45-70-kDa band. Forskolin, 7-bromoacetyl-7-desacetylforskolin, 1,9-dideoxyforskolin, cytochalasin B, and D-glucose, but not cytochalasin E or L-glucose, inhibited 125I-7-AIPP-Fsk labeling of the 45-70-kDa band. 125I-6-AIPP-Fsk and 125I-7-AIPP-Fsk are high affinity photolabels with specificity for adenylyl cyclase and the glucose transporter, respectively.« less

  3. Chemical modification and pH dependence of kinetic parameters to identify functional groups in a glucosyltransferase from Strep. Mutans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, J.E.; Leone, A.; Bell, E.T.

    1986-05-01

    A glucosyltransferase, forming a predominantly al-6 linked glucan, was partially purified from the culture filtrate of S. mutans GS-5. The kinetic properties of the enzyme, assessed using the transfer of /sup 14/C glucose from sucrose into total glucan, were studied at pH values from pH 3.5 to 6.5. From the dependence of km on pH, a group with pKa = 5.5 must be protonated to maximize substrate binding. From plots of V/sub max/ vs pH two groups, with pKa's of 4.5 and 5.5 were indicated. The results suggest the involvement of either two carboxyl groups (one protonated, one unprotonated inmore » the native enzyme) or a carboxyl group (unprotonated) and some other protonated group such as histidine, cysteine. Chemical modification studies showed that Diethylyrocarbonate (histidine specific) had no effect on enzyme activity while modification with p-phydroxy-mercuribenzoate or iodoacetic acid (sulfhydryl reactive) and carbodimide reagents (carboxyl specific) resulted in almost complete inactivation. Activity loss was dependent upon time of incubation and reagent concentration. The disaccharide lylose, (shown to be an inhibitor of the enzyme with similar affinity to sucrose) offers no protection against modification by the sulfhydryl reactive reagents.« less

  4. Hydroxyalkylation with cyclic sulfates: synthesis of carbazole derived CB(2) ligands with increased polarity.

    PubMed

    Lueg, Corinna; Galla, Fabian; Frehland, Bastian; Schepmann, Dirk; Daniliuc, Constantin G; Deuther-Conrad, Winnie; Brust, Peter; Wünsch, Bernhard

    2014-01-01

    In order to increase the polarity of the potent CB2 ligand 1a, the homologous hydroxyalkyl carbazoles 2a-c were prepared and pharmacologically evaluated. An important step in the synthesis is the hydroxyalkylation of carbazole with cyclic sulfates providing the 2-hydroxyethyl and 3-hydroxypropyl derivatives 5a and 5b in a one-step reaction. The final propionamides 2a-c were prepared using the recently reported coupling reagent COMU®. The X-ray crystal structure of 2c displays an almost coplanar arrangement of the 3-phenyl-1,2,4-oxadiazole biaryl system. The increased polarity of 2a is associated with an almost 100-fold reduced CB2 affinity. The 3-hydroxypropyl derivative 2b represents the best compromise between lipophilicity and CB2 affinity (Ki  = 33 nM). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Ubiquitinated Proteome: Ready for Global?*

    PubMed Central

    Shi, Yi; Xu, Ping; Qin, Jun

    2011-01-01

    Ubiquitin (Ub) is a small and highly conserved protein that can covalently modify protein substrates. Ubiquitination is one of the major post-translational modifications that regulate a broad spectrum of cellular functions. The advancement of mass spectrometers as well as the development of new affinity purification tools has greatly expedited proteome-wide analysis of several post-translational modifications (e.g. phosphorylation, glycosylation, and acetylation). In contrast, large-scale profiling of lysine ubiquitination remains a challenge. Most recently, new Ub affinity reagents such as Ub remnant antibody and tandem Ub binding domains have been developed, allowing for relatively large-scale detection of several hundreds of lysine ubiquitination events in human cells. Here we review different strategies for the identification of ubiquitination site and discuss several issues associated with data analysis. We suggest that careful interpretation and orthogonal confirmation of MS spectra is necessary to minimize false positive assignments by automatic searching algorithms. PMID:21339389

  6. B61 is a ligand for the ECK receptor protein-tyrosine kinase.

    PubMed

    Bartley, T D; Hunt, R W; Welcher, A A; Boyle, W J; Parker, V P; Lindberg, R A; Lu, H S; Colombero, A M; Elliott, R L; Guthrie, B A

    1994-04-07

    A protein ligand for the ECK receptor protein-tyrosine kinase has been isolated by using the extracellular domain (ECK-X) of the receptor as an affinity reagent. Initially, concentrated cell culture supernatants were screened for receptor binding activity using immobilized ECK-X in a surface plasmon resonance detection system. Subsequently, supernatants from selected cell lines were fractionated directly by receptor affinity chromatography, resulting in the single-step purification of B61, a protein previously identified as the product of an early response gene induced by tumour necrosis factor-alpha. We report here that recombinant B61 induces autophosphorylation of ECK in intact cells, consistent with B61 being an authentic ligand for ECK. ECK is a member of a large orphan receptor protein-tyrosine kinase family headed by EPH, and we suggest that ligands for other members of this family will be related to B61, and can be isolated in the same way.

  7. Studies on gonadotropin receptor of rat ovary and testis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Q.

    1989-01-01

    The subunit structure of the testicular LH/hCG receptor was studied by a chemical cross-linking technique. Leydig cells isolated from rat testis were incubated with {sup 125}I-hCG, following which the bound {sup 125}I-hCG was covalently cross-linked to the receptor on the cell surface with a cleavable or a non-cleavable cross-linking reagent. The hormone-receptor complex was extracted and then either subjected to gel permeation chromatography under nondenaturing conditions, or resolved by SDS-polyacrylamide gel electrophoresis, followed by autoradiographic analysis. The ovarian LH/hCG receptor was studied with luteal cells from pseudopregnant rats. Purification of the receptor was achieved by ligand affinity chromatography following detergentmore » solubilization of the plasma membrane. The purified hCG receptor displayed properties identical to the membrane bound receptor with regard to binding specificity and affinity, and exhibited a molecular weight of approximately 130,000 dalton.« less

  8. [Expression and distribution of xenoantigen alpha-Gal in intervertebral disk of Chinese banna minipig inbred line].

    PubMed

    Shou, Jian-guo; Mi, Jian-hong; Ying, Da-jun

    2002-09-01

    To investigate the expression and distribution of xenoantigen in intervertebral disk of Chinese banna minipig inbred line, and to study the availability of xenograft transplantation of intervertebral disk. Samples of intervertebral disk were collected from six Banna pigs of 8 to 11-month-old. The fixation, embedment and slice were performed. alpha-Gal specific binding lection (BSI-B4) were used as affinity reagents and affinity-immunohistochemistry assays (SABC methods and DAB stain) were conducted to detect the expression and distribution of xenoantigen (alpha-Gal). alpha-Gal was found in chondrocyte cell and chondrocyte-like cell in intervertebral disk which have the positive yellow-stained particulate aggradation. There was no stain in the matrix, elastic fiber and collagen fiber. The distribution of xenoantigen is locally in the tissue of intervertebral disk and its expression is weak. This suggests that the intervertebral disk of Banna pig may be alternative donor for xenotransplantation.

  9. DNA purification by triplex-affinity capture and affinity capture electrophoresis

    DOEpatents

    Cantor, C.R.; Ito, Takashi; Smith, C.L.

    1996-01-09

    The invention provides a method for purifying or isolating double stranded DNA intact using triple helix formation. The method includes the steps of complexing an oligonucleotide and double stranded DNA to generate a triple helix and immobilization of the triple helix on a solid phase by means of a molecular recognition system such as avidin/biotin. The purified DNA is then recovered intact by treating the solid phase with a reagent that breaks the bonds between the oligonucleotide and the intact double stranded DNA while not affecting the Watson-Crick base pairs of the double helix. The present invention also provides a method for purifying or isolating double stranded DNA intact by complexing the double stranded DNA with a specific binding partner and recovering the complex during electrophoresis by immobilizing it on a solid phase trap imbedded in an electrophoretic gel. 6 figs.

  10. Divergent unprotected peptide macrocyclisation by palladium-mediated cysteine arylation.

    PubMed

    Rojas, Anthony J; Zhang, Chi; Vinogradova, Ekaterina V; Buchwald, Nathan H; Reilly, John; Pentelute, Bradley L; Buchwald, Stephen L

    2017-06-01

    Macrocyclic peptides are important therapeutic candidates due to their improved physicochemical properties in comparison to their linear counterparts. Here we detail a method for a divergent macrocyclisation of unprotected peptides by crosslinking two cysteine residues with bis-palladium organometallic reagents. These synthetic intermediates are prepared in a single step from commercially available aryl bis-halides. Two bioactive linear peptides with cysteine residues at i , i + 4 and i , i + 7 positions, respectively, were cyclised to introduce a diverse array of aryl and bi-aryl linkers. These two series of macrocyclic peptides displayed similar linker-dependent lipophilicity, phospholipid affinity, and unique volume of distributions. Additionally, one of the bioactive peptides showed target binding affinity that was predominantly affected by the length of the linker. Collectively, this divergent strategy allowed rapid and convenient access to various aryl linkers, enabling the systematic evaluation of the effect of appending unit on the medicinal properties of macrocyclic peptides.

  11. Affinity labelling enzymes with esters of aromatic sulfonic acids

    DOEpatents

    Wong, Show-Chu; Shaw, Elliott

    1977-01-01

    Novel esters of aromatic sulfonic acids are disclosed. The specific esters are nitrophenyl p- and m-amidinophenylmethanesulfonate. Also disclosed is a method for specific inactivation of the enzyme, thrombin, employing nitrophenyl p-amidinophenylmethanesulfonate.

  12. Monoclonal antibodies for the separate detection of halodeoxyuridines and method for their use

    DOEpatents

    Vanderlaan, M.; Watkins, B.E.; Stanker, L.H.

    1991-10-01

    Monoclonal antibodies are described which have specific affinities for halogenated nucleoside analogs and are preferentially selective for one particular halogen. Such antibodies, when incorporated into immunochemical reagents, may be used to identify and independently quantify the cell division character of more than one population or subpopulation in flow cytometric measurements. Independent assessment of division activity in cell sub-populations facilitates selection of appropriate time and dose for administration of anti-proliferative agents. The hybridomas which secrete halogen selective antibodies and the method of making them are described. 14 figures.

  13. Monoclonal antibodies for the separate detection of halodeoxyuridines and method for their use

    DOEpatents

    Vanderlaan, Martin; Watkins, Bruce E.; Stanker, Larry H.

    1991-01-01

    Monoclonal antibodies are described which have specific affinities for halogenated nucleoside analogs and are preferentially selective for one particular halogen. Such antibodies, when incorporated into immunochemical reagents, may be used to identify and independently quantify the cell division character of more than one population or subpopulation in flow cytometric measurements. Independent assessment of division activity in cell sub-populations facilitates selection of appropriate time and dose for administration of anti-proliferative agents. The hybridomas which secrete halogen selective antibodies and the method of making them are described.

  14. A mix-and-measure assay for determining the activation status of endogenous Cdc42 in cytokine-stimulated macrophage cell lysates.

    PubMed

    Miskolci, Veronika; Spiering, Désirée; Cox, Dianne; Hodgson, Louis

    2014-01-01

    Cytokine stimulations of leukocytes many times result in transient activation of the p21 Rho family of small GTPases. The role of these molecules during cell migration and chemotaxis is well established. The traditional approach to study the activation dynamics of these proteins involves affinity pull-downs that are often cumbersome and prone to errors. Here, we describe a reagent and a method of simple "mix-and-measure" approach useful for determining the activation status of endogenous Cdc42 GTPase from cell lysates.

  15. Comparative Evaluation of Using NOTA and DOTA Derivatives as Bifunctional Chelating Agents in the Preparation of 68Ga-Labeled Porphyrin: Impact on Pharmacokinetics and Tumor Uptake in a Mouse Model.

    PubMed

    Guleria, Mohini; Das, Tapas; Amirdhanayagam, Jeyachitra; Sarma, Haladhar D; Dash, Ashutosh

    2018-02-01

    Both NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid) and DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) derivatives have been used as bifunctional chelating agents (BFCAs) for the preparation of 68 Ga-labeled target-specific agents having potential for positron emission tomography (PET) imaging of cancerous lesions. In the present work, the authors have attempted a comparative pharmacokinetic evaluation between 68 Ga-labeled porphyrins prepared using NOTA and DOTA derivatives as the BFCAs. A symmetrical porphyrin derivative, 5,10,15,20-tetrakis(p-carboxymethyleneoxyphenyl)porphyrin, was synthesized and coupled with two different BFCAs viz. p-NH 2 -benzyl-NOTA and p-NH 2 -benzyl-DOTA. Both the porphyrin-BFCA conjugates were radiolabeled with 68 Ga. A comparative bioevaluation involving pharmacokinetics and tumor affinity was performed in a tumor-bearing small animal model. Gallium-68-labeled porphyrin-amido-benzyl-NOTA and porphyrin-amido-benzyl-DOTA complexes were prepared with high radiochemical purity. Both radiolabeled complexes exhibited almost similar stability in human serum and near-identical tumor affinity and pharmacokinetic behavior in animal studies. The present study demonstrates that the pharmacokinetic behavior of 68 Ga-labeled porphyrin derivatives, prepared using either NOTA or DOTA derivatives as BFCAs, remains almost identical and hence both NOTA and DOTA derivatives could be considered equivalent for developing 68 Ga-based PET agents for imaging of tumorous lesions.

  16. Synthesis and radiolabeling of chelator-RNA aptamer bioconjugates with copper-64 for targeted molecular imaging

    PubMed Central

    Rockey, William M.; Huang, Ling; Kloepping, Kyle C.; Baumhover, Nicholas J.; Giangrande, Paloma H.; Schultz, Michael K.

    2014-01-01

    Ribonucleic acid (RNA) aptamers with high affinity and specificity for cancer-specific cell-surface antigens are promising reagents for targeted molecular imaging of cancer using positron emission tomography (PET). For this application, aptamers must be conjugated to chelators capable of coordinating PET-radionuclides (e.g. copper-64, 64Cu) to enable radiolabeling for in vivo imaging of tumors. This study investigates the choice of chelator and radiolabeling parameters such as pH and temperature for the development of 64Cu-labeled RNA-based targeted agents for PET imaging. The characterization and optimization of labeling conditions are described for four chelator-aptamer complexes. Three commercially available bifunctional macrocyclic chelators (1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid mono N-hydroxysuccinimide [DOTA-NHS]; S-2-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid [p-SCN-Bn-NOTA]; and p-SCN-Bn-3,6,9,15-tetraazabicyclo [9.3.1]pentadeca-1(15),11,13-triene-3,6,9-triacetic acid [p-SCN-Bn-PCTA]), as well as the polyamino-macrocyclic diAmSar (3,6,10,13,16,19-hexaazabicyclo[6.6.6] icosane-1,8-diamine) were conjugated to A10–3.2, a RNA aptamer which has been shown to bind specifically to a prostate cancer-specific cell-surface antigen (PSMA). Although a commercial bifunctional version of diAmSar was not available, RNA conjugation with this chelator was achieved in a two-step reaction by the addition of a disuccinimidyl suberate linker. Radiolabeling parameters (e.g. pH, temperature, and time) for each chelator-RNA conjugate were assessed in order to optimize specific activity and RNA stability. Furthermore, the radiolabeled chelator-coupled RNA aptamers were evaluated for binding specificity to their target antigen. In summary, key parameters were established for optimal radiolabeling of RNA aptamers for eventual PET imaging with 64Cu. PMID:21658962

  17. Pyrylium-based dye and charge tagging in proteomics.

    PubMed

    Bayer, Malte; König, Simone

    2016-11-01

    The pyrylium group is a selective reagent for ε-amino groups in proteins. In particular, for fluorescence labeling, a number of advantages over traditional N-hydroxysuccinimidyl ester chemistry were recognized such as the rapid prestaining procedure. Here, we have investigated the labeling reaction for the fluorogenic pyrylium dye Py-1 using liquid chromatography coupled to MS with the aim of determining its specificity and possible side products. Peptides containing no, one, and two lysine residue and a choice of no or one cysteine residue were labeled with Py-1 at yields > 30%. Gas phase fragmentation proved both labeling of lysine residues as well as that of the N-terminus also in peptides that contained a lysine residue. Evidence for cysteine labeling was not found, but several other products were detected such as the results of rearrangements with adjacent acidic amino acids. Apart from the use as a fluorogenic label, Py-1 recommends itself for N-terminal charge tagging as alternative to the commonly used quaternary ammonium salts. Predominantly a- and b-type ion series were observed for N-terminally labeled peptides. Further applications include chromophore tagging since the labeled product is not only fluorescent but also colored red. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Photounbinding of Calmodulin from a Family of CaM Binding Peptides

    PubMed Central

    Neumüller, Klaus G.; Elsayad, Kareem; Reisecker, Johannes M.; Waxham, M. Neal; Heinze, Katrin G.

    2010-01-01

    Background Recent studies have shown that fluorescently labeled antibodies can be dissociated from their antigen by illumination with laser light. The mechanism responsible for the photounbinding effect, however, remains elusive. Here, we give important insights into the mechanism of photounbinding and show that the effect is not restricted to antibody/antigen binding. Methodology/Principal Findings We present studies of the photounbinding of labeled calmodulin (CaM) from a set of CaM-binding peptides with different affinities to CaM after one- and two-photon excitation. We found that the photounbinding effect becomes stronger with increasing binding affinity. Our observation that photounbinding can be influenced by using free radical scavengers, that it does not occur with either unlabeled protein or non-fluorescent quencher dyes, and that it becomes evident shortly after or with photobleaching suggest that photounbinding and photobleaching are closely linked. Conclusions/Significance The experimental results exclude surface effects, or heating by laser irradiation as potential causes of photounbinding. Our data suggest that free radicals formed through photobleaching may cause a conformational change of the CaM which lowers their binding affinity with the peptide or its respective binding partner. PMID:21124984

  19. Fluorescein-labeled stable neurotensin derivatives.

    PubMed

    Maes, Veronique; Hultsch, Christina; Kohl, Suzann; Bergmann, Ralf; Hanke, Thomas; Tourwé, Dirk

    2006-08-01

    Neurotensin(8-13) analogs containing a glycine or 5-aminovaleroyl spacer were labeled with fluorescein through formation of an N-terminal thiourea function. The receptor binding was measured in HT-29 cell cultures and showed a substantial decrease in affinity, especially for the metabolically stabilized [MeArg(9), Tle(11)] analog. Using fluorescence microscopy, the internalization of the fluorescent neurotensin analogs into HT-29 cells was observed. Copyright (c) 2006 European Peptide Society and John Wiley & Sons, Ltd.

  20. Automated one-step DNA sequencing based on nanoliter reaction volumes and capillary electrophoresis.

    PubMed

    Pang, H M; Yeung, E S

    2000-08-01

    An integrated system with a nano-reactor for cycle-sequencing reaction coupled to on-line purification and capillary gel electrophoresis has been demonstrated. Fifty nanoliters of reagent solution, which includes dye-labeled terminators, polymerase, BSA and template, was aspirated and mixed with the template inside the nano-reactor followed by cycle-sequencing reaction. The reaction products were then purified by a size-exclusion chromatographic column operated at 50 degrees C followed by room temperature on-line injection of the DNA fragments into a capillary for gel electrophoresis. Over 450 bases of DNA can be separated and identified. As little as 25 nl reagent solution can be used for the cycle-sequencing reaction with a slightly shorter read length. Significant savings on reagent cost is achieved because the remaining stock solution can be reused without contamination. The steps of cycle sequencing, on-line purification, injection, DNA separation, capillary regeneration, gel-filling and fluidic manipulation were performed with complete automation. This system can be readily multiplexed for high-throughput DNA sequencing or PCR analysis directly from templates or even biological materials.

  1. Discovery of competing anaerobic and aerobic pathways in umpolung amide synthesis allows for site-selective amide 18O-labeling

    PubMed Central

    Shackleford, Jessica P.; Shen, Bo; Johnston, Jeffrey N.

    2012-01-01

    The mechanism of umpolung amide synthesis was probed by interrogating potential sources for the oxygen of the product amide carbonyl that emanates from the α-bromo nitroalkane substrate. Using a series of 18O-labeled substrates and reagents, evidence is gathered to advance two pathways from the putative tetrahedral intermediate. Under anaerobic conditions, a nitro-nitrite isomerization delivers the amide oxygen from nitro oxygen. The same homolytic nitro-carbon fragmentation can be diverted by capture of the carbon radical intermediate with oxygen gas (O2) to deliver the amide oxygen from O2. This understanding was used to develop a straightforward protocol for the preparation of 18O-labeled amides in peptides by simply performing the umpolung amide synthesis reaction under an atmosphere of . PMID:22184227

  2. Subcellular localization of estradiol receptor in MCF7 cells studied with nanogold-labelled antibody fragments.

    PubMed

    Kessels, M M; Qualmann, B; Thole, H H; Sierralta, W D

    1998-01-01

    Ultrastructural localization studies of estradiol receptor in hormone-deprived and hormone-stimulated MCF7 cells were done using F(ab') fragments of three different antibodies (#402, 13H2, HT277) covalently linked to nanogold. These ultra-small, non-charged immunoreagents, combined with a size-enlargement by silver enhancement, localized estradiol receptor in both nuclear and cytoplasmic areas of non-stimulated target cells; stimulation with the steroid induced a predominantly nuclear labelling. In the cytoplasm of resting cells, tagging was often observed at or in the proximity of stress fibers. In the nucleus a large proportion of receptor was found inside the nucleolus, specially with the reagent derived from antibody 13H2. We postulate that different accessibilities of receptor epitopes account for the different labelling densities observed at cytoskeletal elements and the nucleoli.

  3. Solubilization and purification of melatonin receptors from lizard brain.

    PubMed

    Rivkees, S A; Conron, R W; Reppert, S M

    1990-09-01

    Melatonin receptors in lizard brain were identified and characterized using 125I-labeled melatonin ([125I]MEL) after solubilization with the detergent digitonin. Saturation studies of solubilized material revealed a high affinity binding site, with an apparent equilibrium dissociation constant of 181 +/- 45 pM. Binding was reversible and inhibited by melatonin and closely related analogs, but not by serotonin or norepinephrine. Treatment of solubilized material with the non-hydrolyzable GTP analog, guanosine 5'-(3-O-thiotriphosphate) (GTP-gamma-S), significantly reduced receptor affinity. Gel filtration chromatography of solubilized melatonin receptors revealed a high affinity, large (Mr 400,000) peak of specific binding. Pretreatment with GTP-gamma-S before solubilization resulted in elution of a lower affinity, smaller (Mr 150,000) peak of specific binding. To purify solubilized receptors, a novel affinity chromatography resin was developed by coupling 6-hydroxymelatonin with Epoxy-activated Sepharose 6B. Using this resin, melatonin receptors were purified approximately 10,000-fold. Purified material retained the pharmacologic specificity of melatonin receptors. These results show that melatonin receptors that bind ligand after detergent treatment can be solubilized and substantially purified by affinity chromatography.

  4. Integration of active and passive microwave signatures for characterization of soil properties

    NASA Astrophysics Data System (ADS)

    Laulhe, Sebastien

    The reaction between an aminooxy moiety (RONH2) and a carbonyl group of either an aldehyde or a ketone --- known as an oximation reaction --- is a versatile click chemistry coupling that generates a robust oxime ether linkage. The oximation reaction is chemoselective and can be performed under mild conditions in a large variety of solvents, including water. The attractive properties of the aminooxy group and derived oximation reactions, reviewed in Chapter 1, inspired us to use this chemistry as a key feature of our research. Specifically, we prepare functionalized aminooxy compounds so that the oximation chemistry can then serve as a prelude to new synthetic or analytical methods. For example, Chapter 2 presents an improved preparation of O-(diphenylphosphinyl)hydroxylamine (DPPH), an aminooxy-containing reagent, using the classic Schotten-Baumann conditions. We show how DPPH can then be used as a chemoselective nitrogen transfer reagent for a one-pot aldehyde-to-nitrile functional group transformation. Sixteen aldehydes were smoothly transformed to their corresponding nitriles by heating at 85 °C with DPPH in toluene. The reaction can be accomplished in the presence of alcohol, ketone, ester, or amine functionality. In another application, we use functionalized aminooxy reagents to achieve quantitative multiplexed gas chromatography-mass spectrometry (GC-MS) analysis. Specifically, we chemoselectively derivatize carbonyl (aldehyde and ketone) metabolites using the aminooxy-containing reagents. Chapter 3 presents a focused fundamental study of the propensity of oxime ethers to undergo MS-induced fragmentations, such as the McLafferty rearrangement. In particular, we studied structural factors that promoted alpha,beta-fragmentation in oximes of both ketones and aldehydes, as well as the derived silyl ethers of these adducts. We determined that 1) the propensity of the McLafferty rearrangement was greatly enhanced by oxygen at the b-position of silyl oxime ethers, 2) the McLafferty rearrangement is more prominent for E-isomers of oxime and silyl oxime ethers than for the corresponding Z-isomers, and 3) Z-isomers of silyl oxime ethers with CH2 at the b-position generate nitrilium ions to a greater extent than their corresponding E-isomers. Chapter 4 describes the 3-step synthesis of a new class of stable isotope-labeled derivatizing reagents ---- a&barbelow;minooxye&barbelow;thyl p&barbelow;ropionate reagents (AEP) ---- that enable multiplexed GC-MS analysis of small molecule carbonyl compounds. The AEP reagents contain 1) an aminooxy moiety, and 2) a propionate ester moiety that generates a reporter isotope-labeled mass spectral tag (MST) in the form of an ethyl carbenium ion via an ester a-cleavage. The AEP MSTs appear in an m/z zone of minimal interference (ZMI) in the range m/z 32-34. This is a key feature in that unobstructed observation of reporter MSTs in this zone significantly improves simultaneous quantitation of carbonyl analytes from multiple samples without recourse to MS peak deconvolution strategies. Also, and in contrast to known isotope coding reagents for GC-MS, AEP reagents are not affected by the chromatographic isotope effect. The versatility of the technology for carbonyl metabolite profiling and absolute quantification is demonstrated by an analysis of turmeric extract, serving as a representative complex biological sample. A series of analogous methyl ketones were profiled from characteristic MS fragmentations of the AEP-derived oxime ether adducts, and two members, 2-nonanone and 2-undecanone, were quantified using AEP-labeled external standards. Finally, Chapter 5 concludes with additional demonstrations of click chemistry. We used oximation to ligate linker molecules to fluorophores and gold nanoparticles (AuNPs) to generate a fluorescent nano-entity for breast cancer location and diagnosis. Five homologous linkers, each consisting of a thiol-terminated hydrophobic domain coupled to an aminooxy-terminated PEG-based domain, were prerared using a 6-step synthesis in 7-25% overall yield. The aminooxy end subsequently was reacted with an aldehyde-functionalized cypate fluorophore, and the thiol end was used for attachment to gold nanoparticles. Linker attachment to cypate in this manner was superior to previously investigated amide coupling involving linker amines and cypate carboxylic acid. Collectively, the results from these investigations demonstrates a novel strategy that employs functionalized aminooxy substrates and reagents to first exploit the high yielding and selective click coupling with carbonyl substrates to set the stage for secondary synthetic or analytical operations. Approaches developed in this multifaceted study appear to be applicable to a variety of synthetic problems ranging from those of a purely chemical nature to other impacting biological systems.

  5. Copper-free click chemistry in living animals

    PubMed Central

    Chang, Pamela V.; Prescher, Jennifer A.; Sletten, Ellen M.; Baskin, Jeremy M.; Miller, Isaac A.; Agard, Nicholas J.; Lo, Anderson; Bertozzi, Carolyn R.

    2010-01-01

    Chemical reactions that enable selective biomolecule labeling in living organisms offer a means to probe biological processes in vivo. Very few reactions possess the requisite bioorthogonality, and, among these, only the Staudinger ligation between azides and triarylphosphines has been employed for direct covalent modification of biomolecules with probes in the mouse, an important model organism for studies of human disease. Here we explore an alternative bioorthogonal reaction, the 1,3-dipolar cycloaddition of azides and cyclooctynes, also known as “Cu-free click chemistry,” for labeling biomolecules in live mice. Mice were administered peracetylated N-azidoacetylmannosamine (Ac4ManNAz) to metabolically label cell-surface sialic acids with azides. After subsequent injection with cyclooctyne reagents, glycoconjugate labeling was observed on isolated splenocytes and in a variety of tissues including the intestines, heart, and liver, with no apparent toxicity. The cyclooctynes tested displayed various labeling efficiencies that likely reflect the combined influence of intrinsic reactivity and bioavailability. These studies establish Cu-free click chemistry as a bioorthogonal reaction that can be executed in the physiologically relevant context of a mouse. PMID:20080615

  6. Covalent cross-linking of insulin-like growth factor-1 to a specific inhibitor from human serum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ooi, G.T.; Herington, A.C.

    1986-05-29

    Previous studies have shown that a specific inhibitor of insulin-like growth factor (IGF) action in vitro can be isolated from normal human serum and subsequently partially purified on an IGF-affinity column. The ability of the inhibitor to bind the IGFs has now been confirmed directly using covalent cross-linking techniques. When /sup 125/I-IGF-1 was cross-linked to inhibitor using disuccinimidyl suberate, five specifically labelled bands were seen on SDS-PAGE and autoradiography. Two bands (MW 21.5 K and 25.5 K) were intensely labelled, while the remaining three (MW 37 K, 34 K and 18 K) appeared as minor bands only. Inhibitor bioactivity, followingmore » further analysis by hydrophobic interaction chromatography or Con A-Sepharose affinity chromatography, was always associated with the presence of the 21.5 K and/or 25.5 K bands.« less

  7. Guanidine-acylguanidine bioisosteric approach in the design of radioligands: synthesis of a tritium-labeled N(G)-propionylargininamide ([3H]-UR-MK114) as a highly potent and selective neuropeptide Y Y1 receptor antagonist.

    PubMed

    Keller, Max; Pop, Nathalie; Hutzler, Christoph; Beck-Sickinger, Annette G; Bernhardt, Günther; Buschauer, Armin

    2008-12-25

    Synthesis and characterization of (R)-N(alpha)-(2,2-diphenylacetyl)-N-(4-hydroxybenzyl)-N(omega)-([2,3-(3)H]-propanoyl)argininamide ([(3)H]-UR-MK114), an easily accessible tritium-labeled NPY Y(1) receptor (Y(1)R) antagonist (K(B): 0.8 nM, calcium assay, HEL cells) derived from the (R)-argininamide BIBP 3226, is reported. The radioligand binds with high affinity (K(D), saturation: 1.2 nM, kinetic experiments: 1.1 nM, SK-N-MC cells) and selectivity for Y(1)R over Y(2), Y(4), and Y(5) receptors. The title compound is a useful pharmacological tool for the determination of Y(1)R ligand affinities, quantification of Y(1)R binding sites, and autoradiography.

  8. Arabinogalactan Proteins Are Involved in Salt-Adaptation and Vesicle Trafficking in Tobacco by-2 Cell Cultures

    PubMed Central

    Olmos, Enrique; García De La Garma, Jesús; Gomez-Jimenez, Maria C.; Fernandez-Garcia, Nieves

    2017-01-01

    Arabinogalactan proteins (AGPs) are a highly diverse family of glycoproteins that are commonly found in most plant species. However, little is known about the physiological and molecular mechanisms of their function. AGPs are involved in different biological processes such as cell differentiation, cell expansion, tissue development and somatic embryogenesis. AGPs are also involved in abiotic stress response such as salinity modulating cell wall expansion. In this study, we describe how salt-adaptation in tobacco BY-2 cell cultures induces important changes in arabinogalactan proteins distribution and contents. Using the immuno-dot blot technique with different anti-AGP antibodies (JIM13, JIM15, and others), we observed that AGPs were highly accumulated in the culture medium of salt-adapted tobacco cells, probably due to the action of phospholipases. We located these AGP epitopes using immunogold labeling in the cytoplasm associated to the endoplasmic reticulum, the golgi apparatus, and vesicles, plasma membrane and tonoplast. Our results show that salt-adaptation induced a significant reduction of the cytoplasm, plasma membrane and tonoplast content of these epitopes. Yariv reagent was added to the control and salt-adapted tobacco cell cultures, leading to cell death induction in control cells but not in salt-adapted cells. Ultrastructural and immunogold labeling revealed that cell death induced by Yariv reagent in control cells was due to the interaction of Yariv reagent with the AGPs linked to the plasma membranes. Finally, we propose a new function of AGPs as a possible sodium carrier through the mechanism of vesicle trafficking from the apoplast to the vacuoles in salt-adapted tobacco BY-2 cells. This mechanism may contribute to sodium homeostasis during salt-adaptation to high saline concentrations. PMID:28676820

  9. Arabinogalactan Proteins Are Involved in Salt-Adaptation and Vesicle Trafficking in Tobacco by-2 Cell Cultures.

    PubMed

    Olmos, Enrique; García De La Garma, Jesús; Gomez-Jimenez, Maria C; Fernandez-Garcia, Nieves

    2017-01-01

    Arabinogalactan proteins (AGPs) are a highly diverse family of glycoproteins that are commonly found in most plant species. However, little is known about the physiological and molecular mechanisms of their function. AGPs are involved in different biological processes such as cell differentiation, cell expansion, tissue development and somatic embryogenesis. AGPs are also involved in abiotic stress response such as salinity modulating cell wall expansion. In this study, we describe how salt-adaptation in tobacco BY-2 cell cultures induces important changes in arabinogalactan proteins distribution and contents. Using the immuno-dot blot technique with different anti-AGP antibodies (JIM13, JIM15, and others), we observed that AGPs were highly accumulated in the culture medium of salt-adapted tobacco cells, probably due to the action of phospholipases. We located these AGP epitopes using immunogold labeling in the cytoplasm associated to the endoplasmic reticulum, the golgi apparatus, and vesicles, plasma membrane and tonoplast. Our results show that salt-adaptation induced a significant reduction of the cytoplasm, plasma membrane and tonoplast content of these epitopes. Yariv reagent was added to the control and salt-adapted tobacco cell cultures, leading to cell death induction in control cells but not in salt-adapted cells. Ultrastructural and immunogold labeling revealed that cell death induced by Yariv reagent in control cells was due to the interaction of Yariv reagent with the AGPs linked to the plasma membranes. Finally, we propose a new function of AGPs as a possible sodium carrier through the mechanism of vesicle trafficking from the apoplast to the vacuoles in salt-adapted tobacco BY-2 cells. This mechanism may contribute to sodium homeostasis during salt-adaptation to high saline concentrations.

  10. Analysis of hydrazine in drinking water by isotope dilution gas chromatography/tandem mass spectrometry with derivatization and liquid-liquid extraction.

    PubMed

    Davis, William E; Li, Yongtao

    2008-07-15

    A new isotope dilution gas chromatography/chemical ionization/tandem mass spectrometric method was developed for the analysis of carcinogenic hydrazine in drinking water. The sample preparation was performed by using the optimized derivatization and multiple liquid-liquid extraction techniques. Using the direct aqueous-phase derivatization with acetone, hydrazine and isotopically labeled hydrazine-(15)N2 used as the surrogate standard formed acetone azine and acetone azine-(15)N2, respectively. These derivatives were then extracted with dichloromethane. Prior to analysis using methanol as the chemical ionization reagent gas, the extract was dried with anhydrous sodium sulfate, concentrated through evaporation, and then fortified with isotopically labeled N-nitrosodimethylamine-d6 used as the internal standard to quantify the extracted acetone azine-(15)N2. The extracted acetone azine was quantified against the extracted acetone azine-(15)N2. The isotope dilution standard calibration curve resulted in a linear regression correlation coefficient (R) of 0.999. The obtained method detection limit was 0.70 ng/L for hydrazine in reagent water samples, fortified at a concentration of 1.0 ng/L. For reagent water samples fortified at a concentration of 20.0 ng/L, the mean recoveries were 102% with a relative standard deviation of 13.7% for hydrazine and 106% with a relative standard deviation of 12.5% for hydrazine-(15)N2. Hydrazine at 0.5-2.6 ng/L was detected in 7 out of 13 chloraminated drinking water samples but was not detected in the rest of the chloraminated drinking water samples and the studied chlorinated drinking water sample.

  11. Isotope-coded ESI-enhancing derivatization reagents for differential analysis, quantification and profiling of metabolites in biological samples by LC/MS: A review.

    PubMed

    Higashi, Tatsuya; Ogawa, Shoujiro

    2016-10-25

    The analysis of the qualitative and quantitative changes of metabolites in body fluids and tissues yields valuable information for the diagnosis, pathological analysis and treatment of many diseases. Recently, liquid chromatography/electrospray ionization-(tandem) mass spectrometry [LC/ESI-MS(/MS)] has been widely used for these purposes due to the high separation capability of LC, broad coverage of ESI for various compounds and high specificity of MS(/MS). However, there are still two major problems to be solved regarding the biological sample analysis; lack of sensitivity and limited availability of stable isotope-labeled analogues (internal standards, ISs) for most metabolites. Stable isotope-coded derivatization (ICD) can be the answer for these problems. By the ICD, different isotope-coded moieties are introduced to the metabolites and one of the resulting derivatives can serve as the IS, which minimize the matrix effects. Furthermore, the derivatization can improve the ESI efficiency, fragmentation property in the MS/MS and chromatographic behavior of the metabolites, which lead to a high sensitivity and specificity in the various detection modes. Based on this background, this article reviews the recently-reported isotope-coded ESI-enhancing derivatization (ICEED) reagents, which are key components for the ICD-based LC/MS(/MS) studies, and their applications to the detection, identification, quantification and profiling of metabolites in human and animal samples. The LC/MS(/MS) using the ICEED reagents is the powerful method especially for the differential analysis (relative quantification) of metabolites in two comparative samples, simultaneous quantification of multiple metabolites whose stable isotope-labeled ISs are not available, and submetabolome profiling. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Development of a pair of differential H/D isotope-coded derivatization reagents d(0)/d(3)-4-(1-methyl-1H-phenanthro[9,10-d]imidazol-2-yl)phenlamine and its application for determination of aldehydes in selected aquatic products by liquid chromatography-tandem mass spectrometry.

    PubMed

    Sun, Zhiwei; Wang, Xiaoxiang; Cai, Yiping; Fu, Junqing; You, Jinmao

    2014-03-01

    A new pair of derivatization reagents, d0-4-(1-methyl-1H-phenanthro[9,10-d]imidazol-2-yl)phenlamine (d0-MPIA) and d3-4-(1-methyl-1H-phenanthro[9,10-d]imidazol-2-yl)phenlamine (d3-MPIA) have been designed and synthesized. It was successfully used to label aliphatic aldehydes and the aldehyde derivatives were analyzed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The new isotope-coded reagents could easily label aldehydes under acidic conditions in the presence of NaCNBH3. The target derivatives exhibited intense [M+H](+) and regular product ions with electrospray ionization source in positive mode. The d0/d3-MPIA-aldehydes were monitored by the transitions of [M+H](+)→m/z 322 and [M+H](+)→m/z 165, and the obtained detection limits were in the range of 0.18-15.9 pg/mL at signal to noise ratio of 3. The global isotope internal standard technology was employed for quantification analysis with d3-MPIA-aldehyde as internal standard for corresponding d0-MPIA-aldehyde. Excellent linear responses for relative quantification were observed in the range of 1/10-10/1 with coefficients >0.998. The developed method has been applied to the quantification of aliphatic aldehydes in selected aquatic products with RSD<3.6% and recoveries >85.2%. © 2013 Elsevier B.V. All rights reserved.

  13. Development of a Dehalogenase-Based Protein Fusion Tag Capable of Rapid, Selective and Covalent Attachment to Customizable Ligands

    PubMed Central

    Encell, Lance P; Friedman Ohana, Rachel; Zimmerman, Kris; Otto, Paul; Vidugiris, Gediminas; Wood, Monika G; Los, Georgyi V; McDougall, Mark G; Zimprich, Chad; Karassina, Natasha; Learish, Randall D; Hurst, Robin; Hartnett, James; Wheeler, Sarah; Stecha, Pete; English, Jami; Zhao, Kate; Mendez, Jacqui; Benink, Hélène A; Murphy, Nancy; Daniels, Danette L; Slater, Michael R; Urh, Marjeta; Darzins, Aldis; Klaubert, Dieter H; Bulleit, Robert F; Wood, Keith V

    2012-01-01

    Our fundamental understanding of proteins and their biological significance has been enhanced by genetic fusion tags, as they provide a convenient method for introducing unique properties to proteins so that they can be examinedin isolation. Commonly used tags satisfy many of the requirements for applications relating to the detection and isolation of proteins from complex samples. However, their utility at low concentration becomes compromised if the binding affinity for a detection or capture reagent is not adequate to produce a stable interaction. Here, we describe HaloTag® (HT7), a genetic fusion tag based on a modified haloalkane dehalogenase designed and engineered to overcome the limitation of affinity tags by forming a high affinity, covalent attachment to a binding ligand. HT7 and its ligand have additional desirable features. The tag is relatively small, monomeric, and structurally compatible with fusion partners, while the ligand is specific, chemically simple, and amenable to modular synthetic design. Taken together, the design features and molecular evolution of HT7 have resulted in a superior alternative to common tags for the overexpression, detection, and isolation of target proteins. PMID:23248739

  14. Celastrol Analogs as Inducers of the Heat Shock Response. Design and Synthesis of Affinity Probes for the Identification of Protein Targets

    PubMed Central

    Klaić, Lada; Morimoto, Richard I.; Silverman, Richard B.

    2012-01-01

    The natural product celastrol (1) possesses numerous beneficial therapeutic properties and affects numerous cellular pathways. The mechanism of action and cellular target(s) of celastrol, however, remain unresolved. While a number of studies have proposed that the activity of celastrol is mediated through reaction with cysteine residues, these observations have been based on studies with specific proteins or by in vitro analysis of a small fraction of the proteome. In this study, we have investigated the spatial and structural requirements of celastrol for the design of suitable affinity probes to identify cellular binding partners of celastrol. Although celastrol has several potential sites for modification, some of these were not synthetically amenable or yielded unstable analogs. Conversion of the carboxylic acid functionality to amides and long-chain analogs, however, yielded bioactive compounds that induced the heat shock response (HSR) and antioxidant response and inhibited Hsp90 activity. This led to the synthesis of biotinylated celastrols (23 and 24) that were used as affinity reagents in extracts of human Panc-1 cells to identify Annexin II, eEF1A, and β-tubulin as potential targets of celastrol. PMID:22380712

  15. In situ click chemistry: from small molecule discovery to synthetic antibodies

    PubMed Central

    Agnew, Heather D.; Lai, Bert; Lee, Su Seong; Lim, Jaehong; Nag, Arundhati; Pitram, Suresh; Rohde, Rosemary; Heath, James R.

    2013-01-01

    Advances in the fields of proteomics, molecular imaging, and therapeutics are closely linked to the availability of affinity reagents that selectively recognize their biological targets. Here we present a review of Iterative Peptide In Situ Click Chemistry (IPISC), a novel screening technology for designing peptide multiligands with high affinity and specificity. This technology builds upon in situ click chemistry, a kinetic target-guided synthesis approach where the protein target catalyzes the conjugation of two small molecules, typically through the azide–alkyne Huisgen cycloaddition. Integrating this methodology with solid phase peptide libraries enables the assembly of linear and branched peptide multiligands we refer to as Protein Catalyzed Capture Agents (PCC Agents). The resulting structures can be thought of as analogous to the antigen recognition site of antibodies and serve as antibody replacements in biochemical and cell-based applications. In this review, we discuss the recent progress in ligand design through IPISC and related approaches, focusing on the improvements in affinity and specificity as multiligands are assembled by target-catalyzed peptide conjugation. We compare the IPISC process to small molecule in situ click chemistry with particular emphasis on the advantages and technical challenges of constructing antibody-like PCC Agents. PMID:22836343

  16. Self-Powered Wireless Affinity-Based Biosensor Based on Integration of Paper-Based Microfluidics and Self-Assembled RFID Antennas.

    PubMed

    Yuan, Mingquan; Alocilja, Evangelyn C; Chakrabartty, Shantanu

    2016-08-01

    This paper presents a wireless, self-powered, affinity-based biosensor based on the integration of paper-based microfluidics with our previously reported method for self-assembling radio-frequency (RF) antennas. At the core of the proposed approach is a silver-enhancement technique that grows portions of a RF antenna in regions where target antigens hybridize with target specific affinity probes. The hybridization regions are defined by a network of nitrocellulose based microfluidic channels which implement a self-powered approach to sample the reagent and control its flow and mixing. The integration substrate for the biosensor has been constructed using polyethylene and the patterning of the antenna on the substrate has been achieved using a low-cost ink-jet printing technique. The substrate has been integrated with passive radio-frequency identification (RFID) tags to demonstrate that the resulting sensor-tag can be used for continuous monitoring in a food supply-chain where direct measurement of analytes is typically considered to be impractical. We validate the proof-of-concept operation of the proposed sensor-tag using IgG as a model analyte and using a 915 MHz Ultra-high-frequency (UHF) RFID tagging technology.

  17. Lanthanide binding and IgG affinity construct: Potential applications in solution NMR, MRI, and luminescence microscopy

    PubMed Central

    Barb, Adam W; Ho, Tienhuei Grace; Flanagan-Steet, Heather; Prestegard, James H

    2012-01-01

    Paramagnetic lanthanide ions when bound to proteins offer great potential for structural investigations that utilize solution nuclear magnetic resonance spectroscopy, magnetic resonance imaging, or optical microscopy. However, many proteins do not have native metal ion binding sites and engineering a chimeric protein to bind an ion while retaining affinity for a protein of interest represents a significant challenge. Here we report the characterization of an immunoglobulin G-binding protein redesigned to include a lanthanide binding motif in place of a loop between two helices (Z-L2LBT). It was shown to bind Tb3+ with 130 nM affinity. Ions such as Dy3+, Yb3+, and Ce3+ produce paramagnetic effects on NMR spectra and the utility of these effects is illustrated by their use in determining a structural model of the metal-complexed Z-L2LBT protein and a preliminary characterization of the dynamic distribution of IgG Fc glycan positions. Furthermore, this designed protein is demonstrated to be a novel IgG-binding reagent for magnetic resonance imaging (Z-L2LBT:Gd3+ complex) and luminescence microscopy (Z-L2LBT: Tb3+ complex). PMID:22851279

  18. Identification of the protein responsible for pyruvate transport into rat liver and heart mitochondria by specific labelling with [3H]N-phenylmaleimide.

    PubMed

    Thomas, A P; Halestrap, A P

    1981-05-15

    1. N-Phenylmaleimide irreversibly inhibits pyruvate transport into rat heart and liver mitochondria to a much greater extent than does N-ethylmaleimide, iodoacetate or bromopyruvate. alpha-Cyanocinnamate protects the pyruvate transporter from attack by this thiol-blocking reagent. 2. In both heart and liver mitochondria alpha-cyanocinnamate diminishes labelling by [3H]N-phenylmaleimide of a membrane protein of subunit mol.wt. 15000 on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. 3. Exposure of mitochondrial to unlabelled N-phenylmaleimide in the presence of alpha-cyanocinnamate, followed by removal of alpha-cyanocinnamate and exposure to [3H]N-phenylmaleimide, produced specific labelling of the same protein. 4. Both labelling and kinetic experiments with inhibitors gave values for the approximate amount of carrier present in liver and heart mitochondria of 100 and 450 pmol/mg of mitochondrial protein respectively. 5. The turnover numbers for net pyruvate transport and pyruvate exchange at 0 degrees C were 6 and 200 min-1 respectively.

  19. Synthesis and fluorescence studies of multiple labeled oligonucleotides containing dansyl fluorophore covalently attached at 2'-terminus of cytidine via carbamate linkage.

    PubMed

    Misra, Arvind; Mishra, Satyendra; Misra, Krishna

    2004-01-01

    Synthesis of modified oligonucleotides in which the specific cytidine nucleoside analogues linked at 2'-OH position via a carbamate bond with an amino ethyl derivative of dansyl fluorophore is reported. For the multiple labeling of oligonucleotides, a strategy involving prelabeling at the monomeric level followed by solid phase assembly of oligonucleotides to obtain regiospecifically labeled probes has been described. The labeled monomer was phosphitylated using 2-cyanoethyl-N,N,N',N'-tetraisopropyl-phosphoramidite (Bis-reagent) and pyridiniumtrifluoro acetate (Py.TFA) as an activator. To ascertain the minimal number of labeled monomers required for a specific length of oligonucleotide for detection and also to assess the effect of carbamate linkage on hybridization, hexamer and 20-mer sequences were selected. Both were labeled with 1, 2, and 3 monomers at the 5'-end and hybridized with normal (unmodified) complementary sequences. As compared to midsequence or 3'-terminal labeling reported earlier, the 5'-terminal labeling has been found to have minimal contact-mediated quenching on duplex formation. This may be due to complementary deoxyguanosine (dG) rich oligonucleotide sequences or CG base pairs at a terminus that is known to yield stronger binding. This is one reason for selecting cytidine for labeling. The results may aid rational design of multiple fluorescent DNA probes for nonradioactive detection of nucleic acids.

  20. Saturation Fluorescence Labeling of Proteins for Proteomic Analyses

    PubMed Central

    Pretzer, Elizabeth; Wiktorowicz, John E.

    2008-01-01

    We present here an optimized and cost-effective approach to saturation fluorescence labeling of protein thiols for proteomic analysis. We investigated a number of conditions and reagent concentrations including a disulfide reducing agent (TCEP), pH, incubation time, linearity of labeling, and saturating dye: protein thiol ratio with protein standards to gauge specific and non-specific labeling. Efficacy of labeling under these conditions was quantified using specific fluorescence estimation, defined as the ratio of fluorescence pixel intensities and Coomassie-stained pixel intensities of bands after digital imaging. Factors leading to specific vs. non-specific labeling in the presence of thiourea are also discussed. We have found that reproducible saturation of available Cys residues of the proteins used as labeling standards (human carbonic anhydrase I, enolase, α-lactalbumin) is achieved at 50-100-fold excess of the uncharged maleimide-functionalized BODIPY™ dyes over Cys. We confirm our previous findings and those of others that the maleimide dyes are not impacted by the presence of 2M thiourea. Moreover, we establish that 2 mM TCEP used as reductant is optimal. We also establish further that labeling is optimal at pH 7.5 and complete after 30 min. Low non-specific labeling was gauged by the inclusion of non-Cys containing proteins (horse myoglobin, bovine carbonic anhydrase) to the labeling mixture. We also show that the dye exhibits little to no effect on the two dimensional mobilities of labeled proteins derived from cells. PMID:18191033

  1. Platform-independent and label-free quantitation of proteomic data using MS1 extracted ion chromatograms in skyline: application to protein acetylation and phosphorylation.

    PubMed

    Schilling, Birgit; Rardin, Matthew J; MacLean, Brendan X; Zawadzka, Anna M; Frewen, Barbara E; Cusack, Michael P; Sorensen, Dylan J; Bereman, Michael S; Jing, Enxuan; Wu, Christine C; Verdin, Eric; Kahn, C Ronald; Maccoss, Michael J; Gibson, Bradford W

    2012-05-01

    Despite advances in metabolic and postmetabolic labeling methods for quantitative proteomics, there remains a need for improved label-free approaches. This need is particularly pressing for workflows that incorporate affinity enrichment at the peptide level, where isobaric chemical labels such as isobaric tags for relative and absolute quantitation and tandem mass tags may prove problematic or where stable isotope labeling with amino acids in cell culture labeling cannot be readily applied. Skyline is a freely available, open source software tool for quantitative data processing and proteomic analysis. We expanded the capabilities of Skyline to process ion intensity chromatograms of peptide analytes from full scan mass spectral data (MS1) acquired during HPLC MS/MS proteomic experiments. Moreover, unlike existing programs, Skyline MS1 filtering can be used with mass spectrometers from four major vendors, which allows results to be compared directly across laboratories. The new quantitative and graphical tools now available in Skyline specifically support interrogation of multiple acquisitions for MS1 filtering, including visual inspection of peak picking and both automated and manual integration, key features often lacking in existing software. In addition, Skyline MS1 filtering displays retention time indicators from underlying MS/MS data contained within the spectral library to ensure proper peak selection. The modular structure of Skyline also provides well defined, customizable data reports and thus allows users to directly connect to existing statistical programs for post hoc data analysis. To demonstrate the utility of the MS1 filtering approach, we have carried out experiments on several MS platforms and have specifically examined the performance of this method to quantify two important post-translational modifications: acetylation and phosphorylation, in peptide-centric affinity workflows of increasing complexity using mouse and human models.

  2. Platform-independent and Label-free Quantitation of Proteomic Data Using MS1 Extracted Ion Chromatograms in Skyline

    PubMed Central

    Schilling, Birgit; Rardin, Matthew J.; MacLean, Brendan X.; Zawadzka, Anna M.; Frewen, Barbara E.; Cusack, Michael P.; Sorensen, Dylan J.; Bereman, Michael S.; Jing, Enxuan; Wu, Christine C.; Verdin, Eric; Kahn, C. Ronald; MacCoss, Michael J.; Gibson, Bradford W.

    2012-01-01

    Despite advances in metabolic and postmetabolic labeling methods for quantitative proteomics, there remains a need for improved label-free approaches. This need is particularly pressing for workflows that incorporate affinity enrichment at the peptide level, where isobaric chemical labels such as isobaric tags for relative and absolute quantitation and tandem mass tags may prove problematic or where stable isotope labeling with amino acids in cell culture labeling cannot be readily applied. Skyline is a freely available, open source software tool for quantitative data processing and proteomic analysis. We expanded the capabilities of Skyline to process ion intensity chromatograms of peptide analytes from full scan mass spectral data (MS1) acquired during HPLC MS/MS proteomic experiments. Moreover, unlike existing programs, Skyline MS1 filtering can be used with mass spectrometers from four major vendors, which allows results to be compared directly across laboratories. The new quantitative and graphical tools now available in Skyline specifically support interrogation of multiple acquisitions for MS1 filtering, including visual inspection of peak picking and both automated and manual integration, key features often lacking in existing software. In addition, Skyline MS1 filtering displays retention time indicators from underlying MS/MS data contained within the spectral library to ensure proper peak selection. The modular structure of Skyline also provides well defined, customizable data reports and thus allows users to directly connect to existing statistical programs for post hoc data analysis. To demonstrate the utility of the MS1 filtering approach, we have carried out experiments on several MS platforms and have specifically examined the performance of this method to quantify two important post-translational modifications: acetylation and phosphorylation, in peptide-centric affinity workflows of increasing complexity using mouse and human models. PMID:22454539

  3. Sensitive detection of C-reactive protein in serum by immunoprecipitation-microchip capillary gel electrophoresis.

    PubMed

    Herwig, Ela; Marchetti-Deschmann, Martina; Wenz, Christian; Rüfer, Andreas; Redl, Heinz; Bahrami, Soheyl; Allmaier, Günter

    2015-06-01

    Sepsis represents a significant cause of mortality in intensive care units. Early diagnosis of sepsis is essential to increase the survival rate of patients. Among others, C-reactive protein (CRP) is commonly used as a sepsis marker. In this work we introduce immune precipitation combined with microchip capillary gel electrophoresis (IP-MCGE) for the detection and quantification of CRP in serum samples. First high-abundance proteins (HSA, IgG) are removed from serum samples using affinity spin cartridges, and then the remaining proteins are labeled with a fluorescence dye and incubated with an anti-CRP antibody, and the antigen/antibody complex is precipitated with protein G-coated magnetic beads. After precipitation the complex is eluted from the beads and loaded onto the MCGE system. CRP could be reliably detected and quantified, with a detection limit of 25 ng/μl in serum samples and 126 pg/μl in matrix-free samples. The overall sensitivity (LOQ = 75 ng/μl, R(2) = 0.9668) of the method is lower than that of some specially developed methods (e.g., immune radiometric assay) but is comparable to those of clinically accepted ELISA methods. The straightforward sample preparation (not prone to mistakes), reduced sample and reagent volumes (including the antibodies), and high throughput (10 samples/3 h) are advantages and therefore IP-MCGE bears potential for point-of-care diagnosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Heterobimetallic Dioxygen Activation

    PubMed Central

    York, John T.; Llobet, Antoni; Cramer, Christopher J.; Tolman, William B.

    2008-01-01

    Heterobimetallic CuPd and CuPt bis(μ-oxo) complexes have been prepared by the reaction of (PPh3)2MO2 (M = Pd, Pt) with LCu(I) precursors (L = β-diketiminate and di- and triamine ligands) and characterized by low-temperature UV-vis, resonance Raman, and 1H and 31P{1H} NMR spectroscopy in conjunction with DFT calculations. The complexes decompose upon warming to yield OPPh3, and in one case this was shown to occur by an intramolecular process through crossover experiments using double-labeling (oxo and phosphine). The reactivity of one of the complexes, LMe2Cu(μ-O)2Pt(PPh3)2 (LMe2 = β-diketiminate), with a variety of reagents including CO2, 2,4-di-tert-butylphenol, 2,4-di-tert-butylphenolate, [NH4][PF6], and dihydroanthracene, was compared to that of homometallic Pt2 and Cu2 counterparts. Unlike typical [Cu2(μ-O)2]2+ cores which have electrophilic oxo groups, the oxo groups in the [Cu(μ-O)2Pt]+ core behave as bases and nucleophiles, similar to previously described Pt2 compounds. In addition, however, the [Cu(μ-O)2Pt]+ core is capable of oxidatively coupling 2,4-di-tert-butylphenol and 2,4-di-tert-butylphenolate. Theoretical evaluation of the electron affinities, basicities, and H-atom transfer kinetics and thermodynamics of the Cu2 and CuM (M = Pd, Pt) cores showed that the latter are more basic and form stronger O-H bonds. PMID:17550254

  5. Preparation and characterization of superporous agarose-reticulated vitreous carbon electrodes as platforms for electrochemical bioassays.

    PubMed

    Rao, Ashwin K; Creager, Stephen E

    2008-08-01

    Three-dimensional flow-through electrodes were fabricated using superporous agarose (SPA) and reticulated vitreous carbon (RVC) composite materials that were suitable as a platform for sandwich assays. These SPA-RVC composite electrodes were fabricated by fitting a SPA-RVC composite cylinder inside a graphite tube and subsequently fixing the graphite tube onto a polypropylene micropipette tip. The electrode design allows for ease in reagent/washing steps involved in sandwich assay protocols and could easily be made portable. The electrode materials were characterized with respect to pore-size distribution, total free volume, ligament and bulk densities of the RVC, and physical structural characteristics. Coulometric detection of redox molecules such as K(3)Fe(CN)(6) and 4-aminophenol was possible using SPA-RVC electrodes by the trapping of these redox molecules inside the SPA-RVC electrodes. Avidin affinity molecules were covalently immobilized onto the SPA matrix inside the RVC electrodes by periodate-activation followed by reductive amination. The amount of avidin immobilized inside the SPA-RVC electrodes was (5+/-0.06)x10(-11) mol, which was determined by saturating the avidin sites with biotinylated fluorescein (b-fluo) and subsequently determining the amount of immobilized b-fluo via a standard addition method using fluorescence spectroscopy. Non-specific binding of labeled enzymes such as biotinylated alkaline phosphatase (b-ALP) onto the SPA-RVC electrodes without avidin capture sites was determined to be less than 1% compared to the specific binding of b-ALP on avidinylated SPA-RVC electrodes.

  6. Specific Fluorine Labeling of the HyHEL10 Antibody Affects Antigen Binding and Dynamics

    PubMed Central

    Acchione, Mauro; Lee, Yi-Chien; DeSantis, Morgan E.; Lipschultz, Claudia A.; Wlodawer, Alexander; Li, Mi; Shanmuganathan, Aranganathan; Walter, Richard L.; Smith-Gill, Sandra; Barchi, Joseph J.

    2012-01-01

    To more fully understand the molecular mechanisms responsible for variations in binding affinity with antibody maturation, we explored the use of site specific fluorine labeling and 19F nuclear magnetic resonance (NMR). Several single-chain (scFv) antibodies, derived from an affinity-matured series of anti-hen egg white lysozyme (HEL) mouse IgG1, were constructed with either complete or individual replacement of tryptophan residues with 5-fluorotryptophan (5FW). An array of biophysical techniques was used to gain insight into the impact of fluorine substitution on the overall protein structure and antigen binding. SPR measurements indicated that 5FW incorporation lowered binding affinity for the HEL antigen. The degree of analogue impact was residue-dependent, and the greatest decrease in affinity was observed when 5FW was substituted for residues near the binding interface. In contrast, corresponding crystal structures in complex with HEL were essentially indistinguishable from the unsubstituted antibody. 19F NMR analysis showed severe overlap of signals in the free fluorinated protein that was resolved upon binding to antigen, suggesting very distinct chemical environments for each 5FW in the complex. Preliminary relaxation analysis suggested the presence of chemical exchange in the antibody–antigen complex that could not be observed by X-ray crystallography. These data demonstrate that fluorine NMR can be an extremely useful tool for discerning structural changes in scFv antibody–antigen complexes with altered function that may not be discernible by other biophysical techniques. PMID:22769726

  7. Isolation and characterization of the DNA-binding protein (DBP) of the Autographa californica multiple nucleopolyhedrovirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikhailov, Victor S.; N. K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 117808; Vanarsdall, Adam L.

    2008-01-20

    DNA-binding protein (DBP) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) was expressed as an N-terminal His{sub 6}-tag fusion using a recombinant baculovirus and purified to near homogeneity. Purified DBP formed oligomers that were crosslinked by redox reagents resulting in predominantly protein dimers and tetramers. In gel retardation assays, DBP showed a high affinity for single-stranded oligonucleotides and was able to compete with another baculovirus SSB protein, LEF-3, for binding sites. DBP binding protected ssDNA against hydrolysis by a baculovirus alkaline nuclease AN/LEF-3 complex. Partial proteolysis by trypsin revealed a domain structure of DBP that is required for interaction with DNA andmore » that can be disrupted by thermal treatment. Binding to ssDNA, but not to dsDNA, changed the pattern of proteolytic fragments of DBP indicating adjustments in protein structure upon interaction with ssDNA. DBP was capable of unwinding short DNA duplexes and also promoted the renaturation of long complementary strands of ssDNA into duplexes. The unwinding and renaturation activities of DBP, as well as the DNA binding activity, were sensitive to sulfhydryl reagents and were inhibited by oxidation of thiol groups with diamide or by alkylation with N-ethylmaleimide. A high affinity of DBP for ssDNA and its unwinding and renaturation activities confirmed identification of DBP as a member of the SSB/recombinase family. These activities and a tight association with subnuclear structures suggests that DBP is a component of the virogenic stroma that is involved in the processing of replicative intermediates.« less

  8. A combinatorial histidine scanning library approach to engineer highly pH-dependent protein switches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murtaugh, Megan L.; Fanning, Sean W.; Sharma, Tressa M.

    2012-09-05

    There is growing interest in the development of protein switches, which are proteins whose function, such as binding a target molecule, can be modulated through environmental triggers. Efforts to engineer highly pH sensitive protein-protein interactions typically rely on the rational introduction of ionizable groups in the protein interface. Such experiments are typically time intensive and often sacrifice the protein's affinity at the permissive pH. The underlying thermodynamics of proton-linkage dictate that the presence of multiple ionizable groups, which undergo a pK{sub a} change on protein binding, are necessary to result in highly pH-dependent binding. To test this hypothesis, a novelmore » combinatorial histidine library was developed where every possible combination of histidine and wild-type residue is sampled throughout the interface of a model anti-RNase A single domain VHH antibody. Antibodies were coselected for high-affinity binding and pH-sensitivity using an in vitro, dual-function selection strategy. The resulting antibodies retained near wild-type affinity yet became highly sensitive to small decreases in pH, drastically decreasing their binding affinity, due to the incorporation of multiple histidine groups. Several trends were observed, such as histidine 'hot-spots,' which will help enhance the development of pH switch proteins as well as increase our understanding of the role of ionizable residues in protein interfaces. Overall, the combinatorial approach is rapid, general, and robust and should be capable of producing highly pH-sensitive protein affinity reagents for a number of different applications.« less

  9. Increased Peptide Contacts Govern High Affinity Binding of a Modified TCR Whilst Maintaining a Native pMHC Docking Mode

    PubMed Central

    Cole, David K.; Sami, Malkit; Scott, Daniel R.; Rizkallah, Pierre J.; Borbulevych, Oleg Y.; Todorov, Penio T.; Moysey, Ruth K.; Jakobsen, Bent K.; Boulter, Jonathan M.; Baker, Brian M.; Yi Li

    2013-01-01

    Natural T cell receptors (TCRs) generally bind to their cognate pMHC molecules with weak affinity and fast kinetics, limiting their use as therapeutic agents. Using phage display, we have engineered a high affinity version of the A6 wild-type TCR (A6wt), specific for the human leukocyte antigen (HLA-A∗0201) complexed with human T cell lymphotropic virus type 111–19 peptide (A2-Tax). Mutations in just 4 residues in the CDR3β loop region of the A6wt TCR were selected that improved binding to A2-Tax by nearly 1000-fold. Biophysical measurements of this mutant TCR (A6c134) demonstrated that the enhanced binding was derived through favorable enthalpy and a slower off-rate. The structure of the free A6c134 TCR and the A6c134/A2-Tax complex revealed a native binding mode, similar to the A6wt/A2-Tax complex. However, concordant with the more favorable binding enthalpy, the A6c134 TCR made increased contacts with the Tax peptide compared with the A6wt/A2-Tax complex, demonstrating a peptide-focused mechanism for the enhanced affinity that directly involved the mutated residues in the A6c134 TCR CDR3β loop. This peptide-focused enhanced TCR binding may represent an important approach for developing antigen specific high affinity TCR reagents for use in T cell based therapies. PMID:23805144

  10. Synthesis of Cryptophycin Affinity Labels and Tubulin Labeling

    DTIC Science & Technology

    2006-05-01

    Nostoc sp.), are a new and potent tumor-selective class of tubulin-binding antimitotic agents1 that show excellent activity against MDR cancer cell...lines and were exceptionally active against mammary derived tumors.2,3 Cryptophycin-1 (1, Fig. 1) is the major cytotoxin in Nostoc sp.4,5 and...arenastatin A), isolated from the Okinawan marine sponge Dysidea arenaria6 and later from Nostoc sp. strain GSV 224,7 is also a potent inhibitor of tubulin

  11. Synthesis of Cryptophycin Affinity Labels and Tubulin Labeling

    DTIC Science & Technology

    2004-05-01

    isolated from blue-green algae ( Nostoc sp.), are a new and potent tumor-selective class of tubulin-binding antimitotic agents that show excellent activity... Nostoc sp.3𔃾 and displays IC 50 values in the pM range. Of special importance is the reduced susceptibility of the cryptophycins to P-glycoprotein...also named arenastatin A), isolated from the Okinawan marine sponge Dysidea arenaria5 and later from Nostoc sp. strain GSV 224,6 is also a potent

  12. Synthesis of Cryptophycin Affinity Labels and Tubulin Labeling

    DTIC Science & Technology

    2005-05-01

    isolated from blue-green algae ( Nostoc sp.), are a new and potent tumor-selective class of tubulin-binding antimitotic agents’ that show excellent activity... Nostoc sp. 4𔃿 and displays IC 5 0 values in the pM range. Of special importance is the reduced susceptibility of the cryptophycins to P-glycoprotein...also named arenastatin A), isolated from the Okinawan marine sponge Dysidea arenaria6 and later from Nostoc sp. strain GSV 224,7 is also a potent

  13. Indium-111 labeled anti-melanoma monoclonal antibodies

    DOEpatents

    Srivastava, S.C.; Fawwaz, R.A.; Ferrone, S.

    1984-04-30

    A monoclonal antibody to a high molecular weight melanoma-associated antigen was chelated and radiolabeled with indium-111. This material shows high affinity for melanoma and thus can be used in the detection, localization and imaging of melanoma. 1 figure.

  14. 9,10-Phenanthrenequinone as a mass-tagging reagent for ultra-sensitive liquid chromatography-tandem mass spectrometry assay of aliphatic aldehydes in human serum.

    PubMed

    El-Maghrabey, Mahmoud; Kishikawa, Naoya; Kuroda, Naotaka

    2016-09-02

    9,10-Phenanthrenequinone (PQ) was successfully used as a new mass-tagging reagent for sensitive labeling of aliphatic aldehydes (C3-C10) prior liquid chromatography-electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS). This reagent could overcome the drawbacks of previous amine or hydrazine-based reagents, such as lower sensitivity, formation of two stereoisomeric reaction products for each single analyte, need for longer derivatization time, and poor reactivity with aliphatic aldehydes. The PQ-aldehyde derivatives exhibited intense [M+H](+) and a common product ion with ESI in the positive-ion mode. The derivatives were monitored at the transition of [M+H](+)→m/z 231.9 with detection limits from 4.0 to 100 pM (signal to noise ratio=3). 3-Phenylpropanal was used as an internal standard (IS) and the separation of the eight aldehydes and IS was achieved in less than 10min employing gradient elution with methanol and ammonium formate buffer (20mM, pH 4.0). The method employed salting out liquid-liquid extraction for aliphatic aldehydes form serum for the first time with excellent recoveries (92.6-110.8%). The developed method was validated and applied for quantification of the target aldehydes in serum of healthy volunteers (n=14). Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Transition-metal chromophore as a new, sensitive spectroscopic tag for proteins. Selective covalent labeling of histidine residues in cytochromes c with chloro(2,2':6',2''-terpyridine)platinum(II) chloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratilla, E.M.A.; Brothers, H.M. II; Kostic, N.M.

    1987-07-22

    Reactivity and selectivity of Pt(trpy)Cl/sup +/ toward proteins are studied with cytochromes c from horse and tuna as examples. The new transition-metal reagent is specific for histidine residues at pH 5. The reaction, facile one-step displacement of the Cl/sup -/ ligand by imidazole, produces good yield. The binding sites, His 26 and His 33 in the horse protein and His 26 in the tuna protein, are identified by UV-vis spectrophotometry and by peptide-mapping experiments. Model complexes with imidazole, histidine, histidine derivatives, and histidine-containing peptides are prepared and characterized. The covalently attached Pt(trpy)/sup 2 +/ labels allow easy separation of themore » protein derivatives by cation-exchange chromatography. The labels do not perturb the conformation and reduction potential of cytochrome c, as shown by UV-vis spectrophotometry, cyclic voltammetry, differential-pulse voltammetry, EPR spectroscopy, and /sup 1/H NMR spectroscopy. The selectivity of Pt(trpy)Cl/sup +/ is entirely opposite from that of PtCl/sub 4//sup 2 -/ although both of them are platinum(II)-chloro complexes. Owing to an interplay between the steric and electronic effects of the terpyridyl ligand, the new reagent is unreactive toward methionine (a thio ether) and cystine (a disulfide), which are otherwise highly nucleophilic ligands, but very reactive toward imidazole, which is otherwise a relatively weak ligand. Unusual and useful selectivity of preformed transition-metal complexes toward proteins evidently can be achieved by a judicious choice of ancillary ligands.« less

  16. Solvent mimicry with methylene carbene to probe protein topography.

    PubMed

    Gómez, Gabriela Elena; Monti, José Luis E; Mundo, Mariana Rocío; Delfino, José María

    2015-10-06

    The solvent accessible surface area (SASA) of the polypeptide chain plays a key role in protein folding, conformational change, and interaction. This fundamental biophysical parameter is elusive in experimental measurement. Our approach to this problem relies on the reaction of the minimal photochemical reagent diazirine (DZN) with polypeptides. This reagent (i) exerts solvent mimicry because its size is comparable to water and (ii) shows scant chemical selectivity because it generates extremely reactive methylene carbene. Methylation gives rise to the EM (extent of modification) signal, which is useful for scrutinizing the conformational change triggered by Ca(2+) binding to calmodulin (CaM). The increased EM observed for the full protein is dominated by the enhanced exposure of hydrophobic area in Ca(2+)-CaM. Fragmentation allowed us to quantify the methylene incorporation at specific sites. Peptide 91-106 reveals a major reorganization around the calcium 151 binding site, resulting in local ordering and a greater exposure of the hydrophobic surface. Additionally, this technique shows a high sensitivity to probe recognition between CaM and melittin (Mel). The large decrease in EM indicates the occlusion of a significant hydrophobic area upon complexation. Protection from labeling reveals a larger involvement of the N-terminal and central regions of CaM in this interaction. Despite its smaller size, Mel's differential exposure can also be quantified. Moreover, MS/MS fragmentation realizes the goal of extending the resolution of labeled sites at the amino acid level. Overall, DZN labeling emerges as a useful footprinting method capable of shedding light on physiological conformational changes and interactions.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiberi, M.; Magnan, J.

    The binding characteristics of selective and nonselective opioids have been studied in whole guinea pig spinal cord, using a computer fitting method to analyze the data obtained from saturation and competition studies. The delineation of specific binding sites labeled by the mu-selective opioid (3H)D-Ala2,MePhe4,Gly-ol5-enkephalin (Kd = 2.58 nM, R = 4.52 pmol/g of tissue) and by the delta-selective opioid (3H)D-Pen2, D-Pen5-enkephalin (Kd = 2.02 nM, R = 1.47 pmol/g of tissue) suggests the presence of mu and delta-receptors in the spinal cord tissue. The presence of kappa receptors was probed by the kappa-selective opioid (3H)U69593 (Kd = 3.31 nM, Rmore » = 2.00 pmol/g of tissue). The pharmacological characterization of the sites labeled by (3H)U69593 confirms the assumption that this ligand discriminates kappa receptors in guinea pig spinal cord. The benzomorphan (3H)ethylketazocine labels a population of receptors with one homogeneous affinity state (Kd = 0.65 nM, R = 7.39 pmol/g of tissue). The total binding capacity of this ligand was not different from the sum of the binding capacities of mu, delta-, and kappa-selective ligands. Under mu- and delta-suppressed conditions, (3H)ethylketazocine still binds to receptors with one homogeneous affinity state (Kd = 0.45 nM, R = 1.69 pmol/g of tissue). Competition studies performed against the binding of (3H)ethylketazocine under these experimental conditions reveal that the pharmacological profile of the radiolabeled receptors is similar to the profile of the kappa receptors labeled with (3H)U69593. Saturation studies using the nonselective opioid (3H)bremazocine demonstrate that this ligand binds to spinal cord membranes with heterogeneous affinities (Kd1 = 0.28 nM, R1 = 7.91 pmol/g of tissue; Kd2 = 3.24 nM, R2 = 11.2 pmol/g of tissue).« less

  18. Identification of a Cyanine-Dye Labeled Peptidic Ligand for Y1R and Y4R, Based upon the Neuropeptide Y C-Terminal Analogue, BVD-15.

    PubMed

    Liu, Mengjie; Richardson, Rachel R; Mountford, Simon J; Zhang, Lei; Tempone, Matheus H; Herzog, Herbert; Holliday, Nicholas D; Thompson, Philip E

    2016-09-21

    Traceable truncated Neuropeptide Y (NPY) analogues with Y1 receptor (Y1R) affinity and selectivity are highly desirable tools in studying receptor location, regulation, and biological functions. A range of fluorescently labeled analogues of a reported Y1R/Y4R preferring ligand BVD-15 have been prepared and evaluated using high content imaging techniques. One peptide, [Lys(2)(sCy5), Arg(4)]BVD-15, was characterized as an Y1R antagonist with a pKD of 7.2 measured by saturation analysis using fluorescent imaging. The peptide showed 8-fold lower affinity for Y4R (pKD = 6.2) and was a partial agonist at this receptor. The suitability of [Lys(2)(sCy5), Arg(4)]BVD-15 for Y1R and Y4R competition binding experiments was also demonstrated in intact cells. The nature of the label was shown to be critical with replacement of sCy5 by the more hydrophobic Cy5.5 resulting in a switch from Y1R antagonist to Y1R partial agonist.

  19. Affinity and Efficacy Studies of Tetrahydrocannabinolic Acid A at Cannabinoid Receptor Types One and Two.

    PubMed

    McPartland, John M; MacDonald, Christa; Young, Michelle; Grant, Phillip S; Furkert, Daniel P; Glass, Michelle

    2017-01-01

    Introduction: Cannabis biosynthesizes Δ 9 -tetrahydrocannabinolic acid (THCA-A), which decarboxylates into Δ 9 -tetrahydrocannabinol (THC). There is growing interest in the therapeutic use of THCA-A, but its clinical application may be hampered by instability. THCA-A lacks cannabimimetic effects; we hypothesize that it has little binding affinity at cannabinoid receptor 1 (CB 1 ). Materials and Methods: Purity of certified reference standards were tested with high performance liquid chromatography (HPLC). Binding affinity of THCA-A and THC at human (h) CB 1 and hCB 2 was measured in competition binding assays, using transfected HEK cells and [ 3 H]CP55,940. Efficacy at hCB 1 and hCB 2 was measured in a cyclic adenosine monophosphase (cAMP) assay, using a Bioluminescence Resonance Energy Transfer (BRET) biosensor. Results: The THCA-A reagent contained 2% THC. THCA-A displayed small but measurable binding at both hCB 1 and hCB 2 , equating to approximate K i values of 3.1μM and 12.5μM, respectively. THC showed 62-fold greater affinity at hCB 1 and 125-fold greater affinity at hCB 2 . In efficacy tests, THCA-A (10μM) slightly inhibited forskolin-stimulated cAMP at hCB 1 , suggestive of weak agonist activity, and no measurable efficacy at hCB 2 . Discussion: The presence of THC in our THCA-A certified standard agrees with decarboxylation kinetics (literature reviewed herein), which indicate contamination with THC is nearly unavoidable. THCA-A binding at 10μM approximated THC binding at 200nM. We therefore suspect some of our THCA-A binding curve was artifact-from its inevitable decarboxylation into THC-and the binding affinity of THCA-A is even weaker than our estimated values. We conclude that THCA-A has little affinity or efficacy at CB 1 or CB 2 .

  20. Cyclopentadienyl Rhenium (Technetium) Tricarbonyl Complexes Integrated in Estrogen Receptor Ligands for ER+ Tumor Imaging

    DTIC Science & Technology

    2006-10-01

    determined by imaging correlate well with those determined by immunoassay methods on surgical biopsies. Because of the short half-life of fluorine -18, this...immunoassay methods on surgical biopsies. Currently, the most effective ER imaging agent is a fluorine -18 labeled estrogen. However, because of the short...substituent to the central pentacycle, including nucleophilic addition of organometallic reagents, addition of electrophiles to the cyclopentadiene

  1. Capillary electrophoresis-based immunoassays: principles and quantitative applications.

    PubMed

    Moser, Annette C; Hage, David S

    2008-08-01

    The use of CE as a tool to conduct immunoassays has been an area of increasing interest over the last decade. This approach combines the efficiency, small sample requirements, and relatively high speed of CE with the selectivity of antibodies as binding agents. This review examines the various assay formats and detection modes that have been reported for these assays, along with some representative applications. Most CE immunoassays in the past have employed homogeneous methods in which the sample and reagents are allowed to react in solution. These homogeneous methods have been conducted as both competitive binding immunoassays and as noncompetitive binding immunoassays. Fluorescent labels are most commonly used for detection in these assays, but enzyme labels have also been utilized for such work. Some additional work has been performed in CE immunoassays with heterogeneous methods in which either antibodies or an analog of the analyte is immobilized to a solid support. These heterogeneous methods can be used for the selective isolation of analytes prior to their separation by CE or to remove a given species from a sample/reagent mixture prior to analysis by CE. These CE immunoassays can be used with a variety of detection modes, such as fluorescence, UV/Vis absorbance, chemiluminescence, electrochemical measurements, MS, and surface plasmon resonance.

  2. Fluorogenic Strain-Promoted Alkyne-Diazo Cycloadditions.

    PubMed

    Friscourt, Frédéric; Fahrni, Christoph J; Boons, Geert-Jan

    2015-09-28

    Fluorogenic reactions, in which non- or weakly fluorescent reagents produce highly fluorescent products, are attractive for detecting a broad range of compounds in the fields of bioconjugation and material sciences. Herein, we report that a dibenzocyclooctyne derivative modified with a cyclopropenone moiety (Fl-DIBO) can undergo fast strain-promoted cycloaddition reactions under catalyst-free conditions with azides, nitrones, nitrile oxides, as well as mono- and disubstituted diazo-derivatives. Although the reaction with nitrile oxides, nitrones, and disubstituted diazo compounds gave cycloadducts with low quantum yield, monosubstituted diazo reagents produced 1H-pyrazole derivatives that exhibited an approximately 160-fold fluorescence enhancement over Fl-DIBO combined with a greater than 10,000-fold increase in brightness. Concluding from quantum chemical calculations, fluorescence quenching of 3H-pyrazoles, which are formed by reaction with disubstituted diazo-derivatives, is likely due to the presence of energetically low-lying (n,π*) states. The fluorogenic probe Fl-DIBO was successfully employed for the labeling of diazo-tagged proteins without detectable background signal. Diazo-derivatives are emerging as attractive reporters for the labeling of biomolecules, and the studies presented herein demonstrate that Fl-DIBO can be employed for visualizing such biomolecules without the need for probe washout. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. General Staining and Segmentation Procedures for High Content Imaging and Analysis.

    PubMed

    Chambers, Kevin M; Mandavilli, Bhaskar S; Dolman, Nick J; Janes, Michael S

    2018-01-01

    Automated quantitative fluorescence microscopy, also known as high content imaging (HCI), is a rapidly growing analytical approach in cell biology. Because automated image analysis relies heavily on robust demarcation of cells and subcellular regions, reliable methods for labeling cells is a critical component of the HCI workflow. Labeling of cells for image segmentation is typically performed with fluorescent probes that bind DNA for nuclear-based cell demarcation or with those which react with proteins for image analysis based on whole cell staining. These reagents, along with instrument and software settings, play an important role in the successful segmentation of cells in a population for automated and quantitative image analysis. In this chapter, we describe standard procedures for labeling and image segmentation in both live and fixed cell samples. The chapter will also provide troubleshooting guidelines for some of the common problems associated with these aspects of HCI.

  4. Development of a chemical strategy to produce rare aldohexoses from ketohexoses using 2-aminopyridine.

    PubMed

    Hasehira, Kayo; Miyanishi, Nobumitsu; Sumiyoshi, Wataru; Hirabayashi, Jun; Nakakita, Shin-ichi

    2011-12-13

    Rare sugars are monosaccharides that are found in relatively low abundance in nature. Herein, we describe a strategy for producing rare aldohexoses from ketohexoses using the classical Lobry de Bruyn-Alberda van Ekenstein transformation. Upon Schiff-base formation of keto sugars, a fluorescence-labeling reagent, 2-aminopyridine (2-AP), was used. While acting as a base catalyst, 2-AP efficiently promoted the ketose-to-aldose transformation, and acting as a Schiff-base reagent, it effectively froze the ketose-aldose equilibrium. We could also separate a mixture of Sor, Gul, and Ido in their Schiff-base forms using a normal-phase HPLC separation system. Although Gul and Ido represent the most unstable aldohexoses, our method provides a practical way to rapidly obtain these rare aldohexoses as needed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Comparative study of different fluorescent dyes for the detection of proteins on membranes using the peroxyoxalate chemiluminescent reaction.

    PubMed

    Salerno, Doris; Daban, Joan-Ramon

    2003-08-05

    We have previously shown that the bis(2,4,6-trichlorophenyl)oxalate (TCPO)-H(2)O(2) chemiluminescent reaction in acetone can be used for the detection of proteins labeled with the fluorescent reagent 2-methoxy-2,4-diphenyl-3(2H)-furanone (MDPF) on polyvinylidene difluoride (PVDF) membranes. To improve this method, in this work we have designed and constructed a cell that allows us to perform this chemiluminescent reaction on PVDF membranes with a homogeneous distribution of the reagents. Using this cell we have examined the analytical properties of several recently developed fluorescent protein dyes chemically different from MDPF. We have found that the metal chelate dye SYPRO Ruby can also be excited by the high-energy intermediate produced in the TCPO-H(2)O(2) reaction.

  6. In vitro and in vivo evaluation of new radiolabeled neurotensin(8-13) analogues with high affinity for NT1 receptors.

    PubMed

    García-Garayoa, E; Allemann-Tannahill, L; Bläuenstein, P; Willmann, M; Carrel-Rémy, N; Tourwé, D; Iterbeke, K; Conrath, P; Schubiger, P A

    2001-01-01

    The potential utility of neurotensin (NT) in cancer diagnosis and therapy is limited by its rapid degradation. New stabilized analogues were synthesized, labeled with [99mTc] and screened in vitro and in vivo. High affinity and rapid internalization were obtained in binding assays. Despite their longer human plasma half-lives, a rapid degradation was observed with low concentrations as used in biodistribution tests. The tumor uptake rates were rather low but tumor/blood ratios increased according to the stability raise.

  7. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization.

    PubMed

    Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2016-08-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M(+.) decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques. Graphical Abstract ᅟ.

  8. Replacing antibodies with modified DNA aptamers in vaccine potency assays.

    PubMed

    Trausch, Jeremiah J; Shank-Retzlaff, Mary; Verch, Thorsten

    2017-10-04

    Vaccine in vitro potency assays are vital regulatory tests that are used to confirm the presence and concentration of an antigen of interest in a form that directly or indirectly relates to protective activity in patients. Current assays come in many forms, but they almost exclusively use antibody reagents for selective detection of the target antigen. Antibodies provide specific recognition of vaccine antigens but also exhibit drawbacks such as stability limitations, cost, and lot-to-lot variation, which can make it challenging to maintain the reagent throughout the lifetime of the vaccine. We explored replacing antibodies with aptamers. Aptamers are macromolecules, such as nucleic acids, which can bind to their targets with high specificity and affinity, similar to that of antibodies. Some of the advantages of using aptamers over antibodies is that aptamers can be more stable, smaller, less expensive to produce, synthesized in vitro, and logistically easier to supply throughout the multi-decade lifespan of a commercial vaccine. We created modified DNA aptamers against the common vaccine carrier protein, CRM 197 . Several aptamers were discovered and one was chosen for further characterization. The binding kinetics of the aptamer revealed an off-rate 16-fold slower than anti-CRM 197 antibodies used for comparison. The aptamers were more sensitive than available antibodies in some assay formats and comparable in others. The aptamer epitope was mapped to the receptor-binding domain of CRM 197 , a site adjacent to a known antibody binding site. These data address some key aspects for a path forward in replacing antibodies with aptamers for use as critical reagents in vaccine assays. We further highlight the possibility of using nucleic acid reagents to develop next generation potency assays. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. One-pot production of 18F-biotin by conjugation with 18F-FDG for pre-targeted imaging: synthesis and radio-labelling of a PEGylated precursor.

    PubMed

    Simpson, Michael; Trembleau, Laurent; Cheyne, Richard W; Smith, Tim A D

    2011-02-01

    The biotin-avidin affinity system is exploited in pre-targeted imaging using avidin-conjugated antibodies. (18)F-FDG is available at all PET centres. (18)F-FDG forms oximes by reaction with oxyamine. Herein we describe the synthesis of oxyamine-funtionalised biotin, its (18)F-labelling by conjugation with (18)F-FDG and confirm its ability to interact with avidin. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Facile and Stabile Linkages through Tyrosine: Bioconjugation Strategies with the Tyrosine-Click Reaction

    PubMed Central

    Ban, Hitoshi; Nagano, Masanobu; Gavrilyuk, Julia; Hakamata, Wataru; Inokuma, Tsubasa; Barbas, Carlos F.

    2013-01-01

    The scope, chemoselectivity, and utility of the click-like tyrosine labeling reaction with 4-phenyl-3H-1,2,4-triazoline-3,5(4H)-diones (PTADs) is reported. To study the utility and chemoselectivity of PTAD derivatives in peptide and protein chemistry, we synthesized PTAD derivatives possessing azide, alkyne, and ketone groups and studied their reactions with amino acid derivatives and peptides of increasing complexity. With proteins we studied the compatibility of the tyrosine click reaction with cysteine and lysine-targeted labeling approaches and demonstrate that chemoselective tri-functionalization of proteins is readily achieved. In particular cases, we noted PTAD decomposition resulted in formation of a putative isocyanate by-product that was promiscuous in labeling. This side reaction product, however, was readily scavenged by the addition of a small amount of 2-amino-2-hydroxymethyl-propane-1,3-diol (Tris) to the reaction medium. To study the potential of the tyrosine click reaction to introduce poly(ethylene) glycol chains onto proteins (PEGylation), we demonstrate that this novel reagent provides for the selective PEGylation of chymotrypsinogen whereas traditional succinimide-based PEGylation targeting lysine residues provided a more diverse range of PEGylated products. Finally, we applied the tyrosine click reaction to create a novel antibody drug conjugate. For this purpose, we synthesized a PTAD derivative linked to the HIV entry inhibitor aplaviroc. Labeling of the antibody trastuzumab with this reagent provided a labeled antibody conjugate that demonstrated potent HIV-1 neutralization activity demonstrating the potential of this reaction in creating protein conjugates with small molecules. The tyrosine click linkage demonstrated stability to extremes of pH, temperature and exposure to human blood plasma indicating that this linkage is significantly more robust than maleimide-type linkages that are commonly employed in bioconjugations. These studies support the broad utility of this reaction in the chemoselective modification of small molecules, peptides, and proteins under mild aqueous conditions over a broad pH range using a wide variety of biologically acceptable buffers such as phosphate buffered saline (PBS) and 2-amino-2-hydroxymethyl-propane-1,3-diol (Tris) buffers as well as others and mixed buffered compositions. PMID:23534985

  11. MCAK and Stathmin Upregulation in Breast Cancer Cells: Etiology and Response to Pharmacologic Reagents

    DTIC Science & Technology

    2004-07-01

    and the affinity for MTs are cells (Maney et al., 2001). Finally, the neck domain is not molecular refinements that adapt motile kinesins for specific...1,500 nM taxol-stabilized MTs in 80 p.I of BRB80 (80 mM molecular motor. Nature. 389:93-96. Pipes, pH 6.8, 1 mM EGTA, and 1 mM MgCI2), 12.5 p.M taxol, 1...summarizes the biological functions and examines the possible molecular the r egio immeiatel iete mt core mechanisms of Kin C and Kin I unconventional

  12. Antibody-free PRISM-SRM for multiplexed protein quantification: Is this the new competition for immunoassays in bioanalysis?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Tujin; Qian, Weijun

    2013-02-01

    Highly sensitive technologies for multiplexed quantification of a large number of candidate proteins will play an increasingly important role in clinical biomarker discovery, systems biology, and general biomedical research. Herein we introduce the new PRISM-SRM technology, which represents a highly sensitive multiplexed quantification technology capable of simultaneous quantification of many low-abundance proteins without the need of affinity reagents. The versatility of antibody-free PRISM-SRM for quantifying various types of targets including protein isoforms, protein modifications, metabolites, and others, thus offering new competition with immunoassays.

  13. Protein quantitation using Ru-NHS ester tagging and isotope dilution high-pressure liquid chromatography-inductively coupled plasma mass spectrometry determination.

    PubMed

    Liu, Rui; Lv, Yi; Hou, Xiandeng; Yang, Lu; Mester, Zoltan

    2012-03-20

    An accurate, simple, and sensitive method for the direct determination of proteins by nonspecies specific isotope dilution and external calibration high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS) is described. The labeling of myoglobin (17 kDa), transferrin (77 kDa), and thyroglobulin (670 kDa) proteins was accomplished in a single-step reaction with a commercially available bis(2,2'-bipyridine)-4'-methyl-4-carboxybipyridine-ruthenium N-succinimidyl ester-bis(hexafluorophosphate) (Ru-NHS ester). Using excess amounts of Ru-NHS ester compared to the protein concentration at optimized labeling conditions, constant ratios for Ru to proteins were obtained. Bioconjugate solutions containing both labeled and unlabeled proteins as well as excess Ru-NHS ester reagent were injected onto a size exclusion HPLC column for separation and ICPMS detection without any further treatment. A (99)Ru enriched spike was used for nonspecies specific ID calibration. The accuracy of the method was confirmed at various concentration levels. An average recovery of 100% ± 3% (1 standard deviation (SD), n = 9) was obtained with a typical precision of better than 5% RSD at 100 μg mL(-1) for nonspecies specific ID. Detection limits (3SD) of 1.6, 3.2, and 7.0 fmol estimated from three procedure blanks were obtained for myoglobin, transferrin, and thyroglobulin, respectively. These detection limits are suitable for the direct determination of intact proteins at trace levels. For simplicity, external calibration was also tested. Good linear correlation coefficients, 0.9901, 0.9921, and 0.9980 for myoglobin, transferrin, and thyroglobulin, respectively, were obtained. The measured concentrations of proteins in a solution were in good agreement with their volumetrically prepared values. To the best of our knowledge, this is the first application of nonspecies specific ID for the accurate and direct determination of proteins using a Ru-NHS ester labeling reagent.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaumont, K.; Vaughn, D.A.; Fanestil, D.D.

    Thiazides and related diuretics inhibit NaCl reabsorption in the distal tubule through an unknown mechanism. The authors report here that ({sup 3}H)metolazone, a diuretic with a thiazide-like mechanism of action, labels a site in rat kidney membranes that has characteristics of the thiazide-sensitive ion transporter. ({sup 3}H)Metolazone bound with high affinity to a site with a density of 0.717 pmol/mg of protein in kidney membranes. The binding site was localized to the renal cortex, with little or not binding in other kidney regions and 11 other tissues. The affinities of thiazide-type diuretics for this binding site were significantly correlated withmore » their clinical potency. Halide anions specifically inhibited high-affinity binding of ({sup 3}H)metolazone to this site. ({sup 3})Metolazone also bound with lower affinity to sites present in kidney as well as in liver, testis, lung, brain, heart, and other tissues. Calcium antagonists and certain smooth muscle relaxants had K{sub i} values of 0.6-10 {mu}M for these low-affinity sites, which were not inhibited by most of the thiazide diuretics tested. Properties of the high-affinity ({sup 3}H)metolazone binding site are consistent with its identity as the receptor for thiazide-type diuretics.« less

  15. Solubilization and purification of melatonin receptors from lizard brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivkees, S.A.; Conron, R.W. Jr.; Reppert, S.M.

    Melatonin receptors in lizard brain were identified and characterized using {sup 125}I-labeled melatonin (({sup 125}I)MEL) after solubilization with the detergent digitonin. Saturation studies of solubilized material revealed a high affinity binding site, with an apparent equilibrium dissociation constant of 181 +/- 45 pM. Binding was reversible and inhibited by melatonin and closely related analogs, but not by serotonin or norepinephrine. Treatment of solubilized material with the non-hydrolyzable GTP analog, guanosine 5'-(3-O-thiotriphosphate) (GTP-gamma-S), significantly reduced receptor affinity. Gel filtration chromatography of solubilized melatonin receptors revealed a high affinity, large (Mr 400,000) peak of specific binding. Pretreatment with GTP-gamma-S before solubilization resultedmore » in elution of a lower affinity, smaller (Mr 150,000) peak of specific binding. To purify solubilized receptors, a novel affinity chromatography resin was developed by coupling 6-hydroxymelatonin with Epoxy-activated Sepharose 6B. Using this resin, melatonin receptors were purified approximately 10,000-fold. Purified material retained the pharmacologic specificity of melatonin receptors. These results show that melatonin receptors that bind ligand after detergent treatment can be solubilized and substantially purified by affinity chromatography.« less

  16. The Effects of Protein-Ligand Associations on the Subunit Interactions of Phosphofructokinase from B. stearothermophilus†

    PubMed Central

    Quinlan, R. Jason; Reinhart, Gregory D.

    2008-01-01

    Differences between the crystal structures of inhibitor-bound and uninihibited forms of phosphofructokinase (PFK) from B. stearothermophilus have led to a structural model for allosteric inhibition by phosphenolpyruvate (PEP) wherein a dimer-dimer interface within the tetrameric enzyme undergoes a quaternary shift. We have developed a labeling and hybridization technique to generate a tetramer with subunits containing two different extrinsic fluorophores simultaneously in known subunit orientations. This construct has been utilized in the examination of the effects of allosteric ligand and substrate binding on the subunit affinities of tetrameric PFK using several biophysical and spectroscopic techniques including 2-photon, dual-channel Fluorescence Correlation Spectroscopy (FCS). We demonstrate that PEP-binding at the allosteric site is sufficient to reduce the affinity of the active site interface from beyond the limits of experimental detection to nanomolar affinity, while conversely strengthening the interface at which it is bound. The reduced interface affinity is specific to inhibitor-binding, as binding the activator ADP at the same allosteric site causes no reduction in subunit affinity. With inhibitor bound, the weakened subunit affinity has allowed the kinetics of dimer association to be elucidated. PMID:16981693

  17. A matrix-assisted laser desorption/ionization mass spectroscopy method for the analysis of small molecules by integrating chemical labeling with the supramolecular chemistry of cucurbituril.

    PubMed

    Ding, Jun; Xiao, Hua-Ming; Liu, Simin; Wang, Chang; Liu, Xin; Feng, Yu-Qi

    2018-10-05

    Although several methods have realized the analysis of low molecular weight (LMW) compounds using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) by overcoming the problem of interference with MS signals in the low mass region derived from conventional organic matrices, this emerging field still requires strategies to address the issue of analyzing complex samples containing LMW components in addition to the LMW compounds of interest, and solve the problem of lack of universality. The present study proposes an integrated strategy that combines chemical labeling with the supramolecular chemistry of cucurbit [n]uril (CB [n]) for the MALDI MS analysis of LMW compounds in complex samples. In this strategy, the target LMW compounds are first labeled by introducing a series of bifunctional reagents that selectively react with the target analytes and also form stable inclusion complexes with CB [n]. Then, the labeled products act as guest molecules that readily and selectively form stable inclusion complexes with CB [n]. This strategy relocates the MS signals of the LMW compounds of interest from the low mass region suffering high interference to the high mass region where interference with low mass components is absent. Experimental results demonstrate that a wide range of LMW compounds, including carboxylic acids, aldehydes, amines, thiol, and cis-diols, can be successfully detected using the proposed strategy, and the limits of detection were in the range of 0.01-1.76 nmol/mL. In addition, the high selectivity of the labeling reagents for the target analytes in conjunction with the high selectivity of the binding between the labeled products and CB [n] ensures an absence of signal interference with the non-targeted LMW components of complex samples. Finally, the feasibility of the proposed strategy for complex sample analysis is demonstrated by the accurate and rapid quantitative analysis of aldehydes in saliva and herbal medicines. As such, this work not only provides an alternative method for the detection of various LMW compounds using MALDI MS, but also can be applied to the selective and high-throughput analysis of LMW analytes in complex samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. A rapid and fluorogenic TMP-AcBOPDIPY probe for covalent labeling of proteins in live cells.

    PubMed

    Liu, Wei; Li, Fu; Chen, Xi; Hou, Jian; Yi, Long; Wu, Yao-Wen

    2014-03-26

    Protein labeling is enormously useful for characterizing protein function in cells and organisms. Chemical tagging methods have emerged as a new generation protein labeling strategy in live cells. Here we have developed a novel and versatile TMP-AcBOPDIPY probe for selective and turn-on labeling of proteins in live cells. A small monomeric tag, E. coli dihydrofolate reductase (eDHFR), was rationally designed to introduce a cysteine in the vicinity of the ligand binding site. Trimethoprim (TMP) that specifically binds to eDHFR was linked to the BOPDIPY fluorophore containing a mildly thiol-reactive acrylamide group. TMP-AcBOPDIPY rapidly labeled engineered eDHFR tags via a reaction termed affinity conjugation (a half-life of ca. 2 min), which is one of the top fast chemical probes for protein labeling. The probe displays 2-fold fluorescence enhancement upon labeling of proteins. We showed that the probe specifically labeled intracellular proteins in live cells without and with washing out the dye. We demonstrated its utility in visualizing intracellular processes by fluorescence-lifetime imaging microscopy (FLIM) measurements.

  19. Inter-residue coupling contributes to high-affinity subtype-selective binding of α-bungarotoxin to nicotinic receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sine, Steven M.; Huang, Sun; Li, Shu-Xing

    2013-09-01

    The crystal structure of a pentameric α7 ligand-binding domain chimaera with bound α-btx (α-bungarotoxin) showed that of the five conserved aromatic residues in α7, only Tyr 184 in loop C of the ligand-binding site was required for high-affinity binding. To determine whether the contribution of Tyr 184 depends on local residues, we generated mutations in an α7/5HT 3A (5-hydroxytryptamine type 3A) receptor chimaera, individually and in pairs, and measured 125I-labelled α-btx binding. The results show that mutations of individual residues near Tyr 184 do not affect α-btx affinity, but pairwise mutations decrease affinity in an energetically coupled manner. Kinetic measurementsmore » show that the affinity decreases arise through increases in the α-btx dissociation rate with little change in the association rate. Replacing loop C in α7 with loop C from the α-btx-insensitive α2 or α3 subunits abolishes high-affinity α-btx binding, but preserves acetylcholine-elicited single channel currents. However, in both the α2 and α3 construct, mutating either residue that flanks Tyr 184 to its α7 counterpart restores high-affinity α-btx binding. Analogously, in α7, mutating both residues that flank Tyr 184 to the α2 or α3 counterparts abolishes high-affinity α-btx binding. Thus interaction between Tyr 184 and local residues contributes to high-affinity subtype-selective α-btx binding.« less

  20. Anti-Peptide Monoclonal Antibodies Generated for Immuno-Multiple Reaction Monitoring-Mass Spectrometry Assays Have a High Probability of Supporting Western blot and ELISA*

    PubMed Central

    Schoenherr, Regine M.; Saul, Richard G.; Whiteaker, Jeffrey R.; Yan, Ping; Whiteley, Gordon R.; Paulovich, Amanda G.

    2015-01-01

    Immunoaffinity enrichment of peptides coupled to targeted, multiple reaction monitoring-mass spectrometry (immuno-MRM) has recently been developed for quantitative analysis of peptide and protein expression. As part of this technology, antibodies are generated to short, linear, tryptic peptides that are well-suited for detection by mass spectrometry. Despite its favorable analytical performance, a major obstacle to widespread adoption of immuno-MRM is a lack of validated affinity reagents because commercial antibody suppliers are reluctant to commit resources to producing anti-peptide antibodies for immuno-MRM while the market is much larger for conventional technologies, especially Western blotting and ELISA. Part of this reluctance has been the concern that affinity reagents generated to short, linear, tryptic peptide sequences may not perform well in traditional assays that detect full-length proteins. In this study, we test the feasibility and success rates of generating immuno-MRM monoclonal antibodies (mAbs) (targeting tryptic peptide antigens) that are also compatible with conventional, protein-based immuno-affinity technologies. We generated 40 novel, peptide immuno-MRM assays and determined that the cross-over success rates for using immuno-MRM monoclonals for Western blotting is 58% and for ELISA is 43%, which compare favorably to cross-over success rates amongst conventional immunoassay technologies. These success rates could most likely be increased if conventional and immuno-MRM antigen design strategies were combined, and we suggest a workflow for such a comprehensive approach. Additionally, the 40 novel immuno-MRM assays underwent fit-for-purpose analytical validation, and all mAbs and assays have been made available as a resource to the community via the Clinical Proteomic Tumor Analysis Consortium's (CPTAC) Antibody (http://antibodies.cancer.gov) and Assay Portals (http://assays.cancer.gov), respectively. This study also represents the first determination of the success rate (92%) for generating mAbs for immuno-MRM using a recombinant B cell cloning approach, which is considerably faster than the traditional hybridoma approach. PMID:25512614

  1. Realizing the promise of reverse phase protein arrays for clinical, translational, and basic research: a workshop report: the RPPA (Reverse Phase Protein Array) society.

    PubMed

    Akbani, Rehan; Becker, Karl-Friedrich; Carragher, Neil; Goldstein, Ted; de Koning, Leanne; Korf, Ulrike; Liotta, Lance; Mills, Gordon B; Nishizuka, Satoshi S; Pawlak, Michael; Petricoin, Emanuel F; Pollard, Harvey B; Serrels, Bryan; Zhu, Jingchun

    2014-07-01

    Reverse phase protein array (RPPA) technology introduced a miniaturized "antigen-down" or "dot-blot" immunoassay suitable for quantifying the relative, semi-quantitative or quantitative (if a well-accepted reference standard exists) abundance of total protein levels and post-translational modifications across a variety of biological samples including cultured cells, tissues, and body fluids. The recent evolution of RPPA combined with more sophisticated sample handling, optical detection, quality control, and better quality affinity reagents provides exquisite sensitivity and high sample throughput at a reasonable cost per sample. This facilitates large-scale multiplex analysis of multiple post-translational markers across samples from in vitro, preclinical, or clinical samples. The technical power of RPPA is stimulating the application and widespread adoption of RPPA methods within academic, clinical, and industrial research laboratories. Advances in RPPA technology now offer scientists the opportunity to quantify protein analytes with high precision, sensitivity, throughput, and robustness. As a result, adopters of RPPA technology have recognized critical success factors for useful and maximum exploitation of RPPA technologies, including the following: preservation and optimization of pre-analytical sample quality, application of validated high-affinity and specific antibody (or other protein affinity) detection reagents, dedicated informatics solutions to ensure accurate and robust quantification of protein analytes, and quality-assured procedures and data analysis workflows compatible with application within regulated clinical environments. In 2011, 2012, and 2013, the first three Global RPPA workshops were held in the United States, Europe, and Japan, respectively. These workshops provided an opportunity for RPPA laboratories, vendors, and users to share and discuss results, the latest technology platforms, best practices, and future challenges and opportunities. The outcomes of the workshops included a number of key opportunities to advance the RPPA field and provide added benefit to existing and future participants in the RPPA research community. The purpose of this report is to share and disseminate, as a community, current knowledge and future directions of the RPPA technology. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Ferrocenyl-doped silica nanoparticles as an immobilized affinity support for electrochemical immunoassay of cancer antigen 15-3.

    PubMed

    Hong, Chenglin; Yuan, Ruo; Chai, Yaqin; Zhuo, Ying

    2009-02-09

    The aim of this study is to elaborate a simple and sensitive electrochemical immunoassay using ferrocenecarboxylic (Fc-COOH)-doped silica nanoparticles (SNPs) as an immobilized affinity support for cancer antigen 15-3 (CA 15-3) detection. The Fc-COOH-doped SNPs with redox-active were prepared by using a water-in-oil microemulsion method. The use of colloidal silica could prevent the leakage of Fc-COOH and were easily modified with trialkoxysilane reagents for covalent conjugation of CA 15-3 antibodies (anti-CA 15-3). The Fc-COOH-doped SNPs were characterized by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The fabrication process of the electrochemical immunosensor was demonstrated by using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. Under optimal conditions, the developed immunosensor showed good linearity at the studied concentration range of 2.0-240 UmL(-1) with a coefficient 0.9986 and a detection limit of 0.64 UmL(-1) at S/N=3.

  3. High affinity anti-Internalin B VHH antibody fragments isolated from naturally and artificially immunized repertoires.

    PubMed

    Gene, Robert W; Kumaran, Jyothi; Aroche, Cristina; van Faassen, Henk; Hall, J Christopher; MacKenzie, C Roger; Arbabi-Ghahroudi, Mehdi

    2015-01-01

    The need for rapid and easy technologies for the detection of food-borne and environmental pathogens is essential for safeguarding the health of populations. Furthermore, distribution of tainted food and water can have consequences which can affect whole economies. Antibodies and antibody fragments have been historically used in detection platforms due to their antigen specificity and robust physicochemical properties. In this study, we report the isolation and characterization of antibody fragments from the heavy chain antibody repertoire (VHH) of Camelidae which bind with specificity and high affinity to the Listeria monocytogenes invasin, Internalin B (InlB). To the best of our knowledge, this is the first report of anti-InlB VHHs from camelids. These anti-InlB VHHs were not cross-reactive to the structurally related Listeria invasin Internalin A (InlA) and are potential reagents to be used in the development of detection and medical technologies. Copyright © 2014. Published by Elsevier B.V.

  4. Mining Naïve Rabbit Antibody Repertoires by Phage Display for Monoclonal Antibodies of Therapeutic Utility.

    PubMed

    Peng, Haiyong; Nerreter, Thomas; Chang, Jing; Qi, Junpeng; Li, Xiuling; Karunadharma, Pabalu; Martinez, Gustavo J; Fallahi, Mohammad; Soden, Jo; Freeth, Jim; Beerli, Roger R; Grawunder, Ulf; Hudecek, Michael; Rader, Christoph

    2017-09-15

    Owing to their high affinities and specificities, rabbit monoclonal antibodies (mAbs) have demonstrated value and potential primarily as basic research and diagnostic reagents, but, in some cases, also as therapeutics. To accelerate access to rabbit mAbs bypassing immunization, we generated a large naïve rabbit antibody repertoire represented by a phage display library encompassing >10 billion independent antibodies in chimeric rabbit/human Fab format and validated it by next-generation sequencing. Panels of rabbit mAbs selected from this library against two emerging cancer targets, ROR1 and ROR2, revealed high diversity, affinity, and specificity. Moreover, ROR1- and ROR2-targeting rabbit mAbs demonstrated therapeutic utility as components of chimeric antigen receptor-engineered T cells, further corroborating the value of the naïve rabbit antibody library as a rich and virtually unlimited source of rabbit mAbs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. ReagentTF: a rapid and versatile optical clearing method for biological imaging(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yu, Tingting; Zhu, Jingtan; Li, Yusha; Qi, Yisong; Xu, Jianyi; Gong, Hui; Luo, Qingming; Zhu, Dan

    2017-02-01

    The emergence of various optical clearing methods provides a great potential for imaging deep inside tissues by combining with multiple-labelling and microscopic imaging techniques. They were generally developed for specific imaging demand thus presented some non-negligible limitations such as long incubation time, tissue deformation, fluorescence quenching, incompatibility with immunostaining or lipophilic tracers. In this study, we developed a rapid and versatile clearing method, termed ReagentTF, for deep imaging of various fluorescent samples. This method can not only efficiently clear embryos, neonatal whole-brains and adult thick brain sections by simple immersion in aqueous mixtures with minimal volume change, but also can preserve fluorescence of various fluorescent proteins and simultaneously be compatible with immunostaining and lipophilic neuronal dyes. We demonstrate the effectiveness of this method in reconstructing the cell distributions of mouse hippocampus, visualizing the neural projection from CA1 (Cornu Ammonis 1) to HDB (nucleus of the horizontal limb of the diagonal band), and observing the growth of forelimb plexus in whole-mount embryos. These results suggest that ReagentTF is useful for large-volume imaging and will be an option for the deep imaging of biological tissues.

  6. Nanoparticles in forensic science

    NASA Astrophysics Data System (ADS)

    Cantu, Antonio A.

    2008-10-01

    Nanoparticles appear in several areas of forensic science including security documents, paints, inks, and reagents that develop latent prints. One reagent (known as the silver physical developer) that visualizes the water insoluble components of latent print residue is based on the formation of highly charged silver nanoparticles. These attach to and grow on the residue and generate a silver image. Another such reagent involves highly charged gold nanoparticles. These attach to the residue forming a weak gold image which can be amplified with a silver physical developer. Nanoparaticles are also used in items such as paints, printing inks, and writing inks. Paints and most printing inks consist of nano-sized pigments in a vehicle. However, certain modern ink jet printing inks now contain nano-sized pigments to improve their light fastness and most gel inks are also based on nano scale pigments. These nanoparticlecontaining materials often appear as evidence and are thus subject to forensic characterization. Both luminescent (quantum dots), up-converting nano scale phosphors, and non luminescent nanoparticles are used as security tags to label product, add security to documents, and as anti counterfeiting measures. These assist in determining if an item is fraudulently made.

  7. Enhancing Endosomal Escape of Transduced Proteins by Photochemical Internalisation

    PubMed Central

    Mellert, Kevin; Lamla, Markus; Scheffzek, Klaus; Wittig, Rainer; Kaufmann, Dieter

    2012-01-01

    Induced internalisation of functional proteins into cultured cells has become an important aspect in a rising number of in vitro and in vivo assays. The endo-lysosomal entrapment of the transduced proteins remains the major problem in all transduction protocols. In this study we compared the efficiency, cytotoxicity and protein targeting of different commercially available transduction reagents by transducing a well-studied fluorescently labelled protein (Atto488-bovine serum albumin) into cultured human sarcoma cells. The amount of internalised protein and toxicity differed between the different reagents, but the percentage of transduced cells was consistently high. Furthermore, in all protocols the signals of the transduced Atto488-BSA were predominantly punctual consistent with an endosomal localisation. To overcome the endosomal entrapment, the transduction protocols were combined with a photochemical internalisation (PCI) treatment. Using this combination revealed that an endosomal disruption is highly effective in cell penetrating peptide (CPP) mediated transduction, whereas lipid-mediated transductions lead to a lower signal spreading throughout the cytosol. No change in the signal distribution could be achieved in treatments using non-lipid polymers as a transduction reagent. Therefore, the combination of protein transduction protocols based on CPPs with the endosomolytic treatment PCI can facilitate protein transduction experiments in vitro. PMID:23285056

  8. Enhancing endosomal escape of transduced proteins by photochemical internalisation.

    PubMed

    Mellert, Kevin; Lamla, Markus; Scheffzek, Klaus; Wittig, Rainer; Kaufmann, Dieter

    2012-01-01

    Induced internalisation of functional proteins into cultured cells has become an important aspect in a rising number of in vitro and in vivo assays. The endo-lysosomal entrapment of the transduced proteins remains the major problem in all transduction protocols. In this study we compared the efficiency, cytotoxicity and protein targeting of different commercially available transduction reagents by transducing a well-studied fluorescently labelled protein (Atto488-bovine serum albumin) into cultured human sarcoma cells. The amount of internalised protein and toxicity differed between the different reagents, but the percentage of transduced cells was consistently high. Furthermore, in all protocols the signals of the transduced Atto488-BSA were predominantly punctual consistent with an endosomal localisation. To overcome the endosomal entrapment, the transduction protocols were combined with a photochemical internalisation (PCI) treatment. Using this combination revealed that an endosomal disruption is highly effective in cell penetrating peptide (CPP) mediated transduction, whereas lipid-mediated transductions lead to a lower signal spreading throughout the cytosol. No change in the signal distribution could be achieved in treatments using non-lipid polymers as a transduction reagent. Therefore, the combination of protein transduction protocols based on CPPs with the endosomolytic treatment PCI can facilitate protein transduction experiments in vitro.

  9. Differences between high-affinity forskolin binding sites in dopamine-riche and other regions of rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poat, J.A.; Cripps, H.E.; Iversen, L.L.

    1988-05-01

    Forskolin labelled with (/sup 3/H) bound to high- and low-affinity sites in the rat brain. The high-affinity site was discretely located, with highest densities in the striatum, nucleus accumbens, olfactory tubercule, substantia nigra, hippocampus, and the molecular layers of the cerebellum. This site did not correlate well with the distribution of adenylate cyclase. The high-affinity striatal binding site may be associated with a stimulatory guanine nucleotide-binding protein. Thus, the number of sites was increased by the addition of Mg/sup 2 +/ and guanylyl imidodiphosphate. Cholera toxin stereotaxically injected into rat striatum increased the number of binding sites, and no furthermore » increase was noted following the subsequent addition of guanyl nucleotide. High-affinity forskolin binding sites in non-dopamine-rich brain areas (hippocampus and cerebullum) were modulated in a qualitatively different manner by guanyl nucleotides. In these areas the number of binding sites was significantly reduced by the addition of guanyl nucleotide. These results suggest that forskolin may have a potential role in identifying different functional/structural guanine nucleotide-binding proteins.« less

  10. Pancreatic acini possess endothelin receptors whose internalization is regulated by PLC-activating agents.

    PubMed

    Hildebrand, P; Mrozinski, J E; Mantey, S A; Patto, R J; Jensen, R T

    1993-05-01

    Endothelin-1 (ET-1) and ET-3 mRNA have been found in the pancreas. We investigated the ability of ET-1, ET-2, and ET-3 to interact with and alter dispersed rat pancreatic acinar cell function. Radiolabeled ETs bound in a time- and temperature-dependent fashion, which was specific and saturable. Analysis demonstrated two classes of receptors, one class (ETA receptor) had a high affinity for ET-1 but a low affinity for ET-3, and the other class (ETB receptor) had equally high affinities for ET-1 and ET-3. No specific receptor for ET-2 was identified. Pancreatic secretagogues that activate phospholipase C (PLC) inhibited binding of 125I-labeled ET-1 (125I-ET-1) or 125I-ET-3, whereas agents that act through adenosine 3',5'-cyclic monophosphate (cAMP) did not. A23187 had no effect on 125I-ET-1 or 125I-ET-3 binding, whereas the phorbol ester 12-O-tetradecanoylphorbol 13-acetate reduced binding. The effect of cholecystokinin octapeptide (CCK-8) was mediated through its own receptor. Stripping of surface bound ligand studies demonstrated that both 125I-labeled ET-1 and 125I-labeled ET-3 were rapidly internalized. CCK-8 decreased the internalization but did not change the amount of surface bound ligand. Endothelins neither stimulate nor alter changes in enzyme secretion, intracellular calcium, cAMP, or [3H]inositol trisphosphate (IP3). This study demonstrates the presence of ETA and ETB receptors on rat pancreatic acini; occupation of both receptors resulted in rapid internalization, which is regulated by PLC-activating secretagogues. Occupation of either ET receptor did not alter intracellular calcium, cAMP, IP3, or stimulate amylase release.

  11. Receptor-mediated radiotherapy with Y-DOTA-DPhe-Tyr-octreotide: the experience of the European Institute of Oncology Group.

    PubMed

    Chinol, Marco; Bodei, Lisa; Cremonesi, Marta; Paganelli, Giovanni

    2002-04-01

    High concentrations of subtype 2 somatostatin tumor receptors (sst(2)) are expressed in numerous tumors, enabling primary and metastatic masses to be localized by scintigraphy after injecting (111)In-labeled somatostatin analogue octreotide. In addition to neuroendocrine tumors, somatostatin receptors have been identified on cancers of the central nervous system, breast, lung, and lymphatic tissue, and the use of radionuclide-labeled somatostatin analogues appeared promising for therapy as well as for diagnosis of such malignancies. The somatostatin analogue [DOTA-(D)Phe(1)-Tyr(3)] octreotide (DOTATOC) possesses favorable characteristics for its potential therapeutic use in that it shows high affinity for sst(2), moderately high affinity for sst(5), and intermediate affinity for sst(3), high hydrophilicity, stable and facile labeling with (111)In and (90)Y. We began to investigate the potential therapeutic applications of (90)Y DOTATOC in 1997 by performing a thorough dosimetric study in 18 patients who were administered (111)In DOTATOC to estimate the absorbed doses during(90)Y-DOTATOC therapy. Then, we moved on and treated an overall number of 256 patients, mostly recruited in 2 distinct protocols with and without the administration of kidney protecting agents, with (90)Y DOTATOC. No major acute reactions were observed up to the activity of 5.55 GBq per cycle. The MTD per cycle was defined as 5.18 GBq. Objective therapeutic responses were documented in more than 20% of patients in terms of partial and complete responses. The present article reports in details our clinical experience (still ongoing) and outcomes with the use of (90)Y DOTATOC. Copyright 2002, Elsevier Science (USA). All rights reserved.

  12. Specific Fluorine Labeling of the HyHEL10 Antibody Affects Antigen Binding and Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acchione, Mauro; Lee, Yi-Chien; DeSantis, Morgan E.

    To more fully understand the molecular mechanisms responsible for variations in binding affinity with antibody maturation, we explored the use of site specific fluorine labeling and {sup 19}F nuclear magnetic resonance (NMR). Several single-chain (scFv) antibodies, derived from an affinity-matured series of anti-hen egg white lysozyme (HEL) mouse IgG1, were constructed with either complete or individual replacement of tryptophan residues with 5-fluorotryptophan ({sup 5F}W). An array of biophysical techniques was used to gain insight into the impact of fluorine substitution on the overall protein structure and antigen binding. SPR measurements indicated that {sup 5F}W incorporation lowered binding affinity for themore » HEL antigen. The degree of analogue impact was residue-dependent, and the greatest decrease in affinity was observed when {sup 5F}W was substituted for residues near the binding interface. In contrast, corresponding crystal structures in complex with HEL were essentially indistinguishable from the unsubstituted antibody. {sup 19}F NMR analysis showed severe overlap of signals in the free fluorinated protein that was resolved upon binding to antigen, suggesting very distinct chemical environments for each {sup 5F}W in the complex. Preliminary relaxation analysis suggested the presence of chemical exchange in the antibody-antigen complex that could not be observed by X-ray crystallography. These data demonstrate that fluorine NMR can be an extremely useful tool for discerning structural changes in scFv antibody-antigen complexes with altered function that may not be discernible by other biophysical techniques.« less

  13. Evaluation of homologous, heterologous, and affinity conjugates for the serodiagnosis of Toxoplasma gondii and Neospora caninum in maned wolves (Chrysocyon brachyurus).

    PubMed

    Silva, D A O; Vitaliano, S N; Mineo, T W P; Ferreira, R A; Bevilacqua, E; Mineo, J R

    2005-10-01

    Use of serological tests in the diagnosis of infectious diseases in wild animals has several limitations, primarily the difficulty of obtaining species-specific reagents. Wild canids, such as maned wolves (Chrysocyon brachyurus), are highly predisposed to infection by Toxoplasma gondii and, to a lesser extent, to Neospora caninum. The aim of the present study was to evaluate homologous, heterologous, and affinity conjugates in enzyme-linked immunosorbent assays (ELISAs) and indirect fluorescent antibody tests (IFATs) for detecting immunoglobulin (Ig) G antibodies against T. gondii and N. caninum in maned wolves. Serum samples were obtained from 59 captive animals in Brazil and tested by ELISA for T. gondii serology and IFAT for N. caninum serology using 3 different enzymatic and fluorescent conjugates: homologous (guinea pig anti-maned wolf IgG-peroxidase and -fluorescein isothiocyanate [FITC]), heterologous (rabbit anti-dog IgG-peroxidase and -FITC), and affinity (protein A-peroxidase and -FITC). Seropositivity to T. gondii was comparable among the homologous (69.5%), heterologous (74.6%), and affinity (71.2%) enzymatic conjugates. A significant positive correlation was found between the antibody levels determined by the 3 enzymatic conjugates. The highest mean antibody levels (ELISA index = 4.5) were observed with the protein A-peroxidase conjugate. The same seropositivity to N. caninum (8.5%) was found with the homologous and heterologous fluorescent conjugates, but protein A-FITC was not able to detect or confirm any positive samples with homologous or heterologous conjugates. Our results demonstrate that homologous, heterologous, and affinity conjugates might be used in ELISA for serological assays of T. gondii in wild canids, whereas for N. caninum infection, only the homologous or heterologous fluorescent conjugates have been shown to be useful.

  14. Size matters: influence of the size of nanoparticles on their interactions with ligands immobilized on the solid surface.

    PubMed

    Piletska, Elena V; Piletsky, Sergey A

    2010-03-16

    The correlation between the size of biotinylated nanoparticles and their affinity in relation to interactions with the solid surface was investigated. The silica particles with a diameter of 50-200 nm containing amino groups on the surface were labeled with different quantities of biotin. The affinity properties of biotinylated nanoparticles were studied using a Biacore 3000 instrument equipped with a streptavidin-coated sensor chip (SA chip). It was shown that the increase in the particle size from 50 to 200 nm reduced the affinity (K(D)) of biotin-streptavidin interactions from 1.2 x 10(-12) to 1.2 x 10(-10) M. It was found that the particles with higher concentrations of immobilized biotin on particle surfaces demonstrated stronger binding with streptavidin.

  15. Surface plasmon resonance label-free monitoring of antibody antigen interactions in real time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kausaite, A.; van Dijk, M.; Castrop, J.

    2007-01-01

    Detection of biologically active compounds is one of the most important topics in molecular biology and biochemistry. One of the most promising detection methods is based on the application of surface plasmon resonance for label-free detection of biologically active compounds. This method allows one to monitor binding events in real time without labeling. The system can therefore be used to determine both affinity and rate constants for interactions between various types of molecules. Here, we describe the application of a surface plasmon resonance biosensor for label-free investigation of the interaction between an immobilized antigen bovine serum albumin (BSA) and antibodymore » rabbit anti-cow albumin IgG1 (anti-BSA). The formation of a self-assembled monolayer (SAM) over a gold surface is introduced into this laboratory training protocol as an effective immobilization method, which is very promising in biosensing systems based on detection of affinity interactions. In the next step, covalent attachment via artificially formed amide bonds is applied for the immobilization of proteins on the formed SAM surface. These experiments provide suitable experience for postgraduate students to help them understand immobilization of biologically active materials via SAMs, fundamentals of surface plasmon resonance biosensor applications, and determination of non-covalent biomolecular interactions. The experiment is designed for master and/or Ph.D. students. In some particular cases, this protocol might be adoptable for bachelor students that already have completed an extended biochemistry program that included a background in immunology.« less

  16. Synthesis of Tc-99m labeled 1,2,3-triazole-4-yl c-met binding peptide as a potential c-met receptor kinase positive tumor imaging agent.

    PubMed

    Kim, Eun-Mi; Joung, Min-Hee; Lee, Chang-Moon; Jeong, Hwan-Jeong; Lim, Seok Tae; Sohn, Myung-Hee; Kim, Dong Wook

    2010-07-15

    The mesenchymal-epithelial transition factor (c-Met), which is related to tumor cell growth, angiogenesis and metastases, is known to be overexpressed in several tumor types. In this study, we synthesized technetium-99m labeled 1,2,3-triazole-4-yl c-Met binding peptide (cMBP) derivatives, prepared by solid phase peptide synthesis and the 'click-to-chelate' protocol for the introduction of tricarbonyl technetium-99m, as a potential c-Met receptor kinase positive tumor imaging agent, and evaluated their in vitro c-Met binding affinity, cellular uptake, and stability. The (99m)Tc labeled cMBP derivatives ([(99m)Tc(CO)(3)]12, [(99m)Tc(CO)(3)]13, and [(99m)Tc(CO)(3)]14) were prepared in 85-90% radiochemical yields. The cold surrogate cMBP derivatives, [Re(CO)(3)]12, [Re(CO)(3)]13, and [Re(CO)(3)]14, were shown to have high binding affinities (0.13 microM, 0.06 microM, and 0.16 microM, respectively) to a purified cMet/Fc chimeric recombinant protein. In addition, the in vitro cellular uptake and inhibition studies demonstrated the high specific binding of these (99m)Tc labeled cMBP derivatives ([(99m)Tc(CO)(3)]12-14) to c-Met receptor positive U87MG cells. 2010 Elsevier Ltd. All rights reserved.

  17. The fluorescent treponemal antibody-absorption (FTA-ABS) test for syphilis.

    PubMed

    Hunter, E F

    1975-01-01

    The FTA test was developed at a time when immunofluorescence procedures were not well-defined. Through technique control and research, a modification of the FTA test, the FTA-ABS, has attained a position as one of the leading treponemal tests to confirm the reagin tests for syphilis. In this review of the FTA-ABS test, attention has been focused on reagent development, with the anticipation that reagent standardization may soon become a reality. The T. pallidum antigen obtained by extracting infected rabbit testicular tissue has evolved from a preparation in which the treponemes remained in the initial extracting fluid to a reagent that can be free of rabbit tissue and globulin. These washed antigen preparations improve visibility of the treponemes on the microscope slide, reduce background fluorescence, and reduce or prevent from occurring nonspecific reactions that are a result of tissue and globulin components. Both washed and nonwashed antigens are available commercially, and, to date, little differentiation has appeared on the product label. The predominant immunoglobulin that reacts with T. pallidum in the indirect fluorescent antibody tests appears to be IgG. This is the major immunoglobulin detected in the FTA-ABS test. IgM, although increased in early syphilis, is also increased in other clinical conditions. Several reports suggest that adult IgM detection in the present FTA-ABS test would be nonspecific. Until specific IgM antibody in adult syphilis can be detected without a risk to test specificity, the conjugate for the FTA-ABS test should continue to be an anti-IgG reagent. Class-specific, anti-IgG reagents are more expensive than other reagents; however, their use may eliminate the problem of nonspecificity resulting from IgM detection. Additionally, micromethods can be used to reduce cost, and this possibility should be investigated. The sorbent that contains an antigen to the Reiter treponeme may or may not specifically absorb the reactivity that occurs in normal sera; certainly, there are questionable aspects about this reagent. Group antibodies not related to Reiter treponemes may be responsible for some nonspecific reactivity; additionally, antiglobulin factors have been reported to participate in the reaction. Antigens free of rabbit serum factors and class-specific, antiimmunoglobulin reagents are available, and may lead to a better understanding of nonspecific reactions. These reagents should allow resolution of the possible multiplicity of reactivity. In this interim period, the sorbent, with its possible nonspecific nature, appears to maintain a biological balance between natural or group and immune antibodies when used to detect IgG antibody.

  18. Constructing New Bioorthogonal Reagents and Reactions.

    PubMed

    Row, R David; Prescher, Jennifer A

    2018-05-15

    Chemical tools are transforming our understanding of biomolecules and living systems. Included in this group are bioorthogonal reagents-functional groups that are inert to most biological species, but can be selectively ligated with complementary probes, even in live cells and whole organisms. Applications of these tools have revealed fundamental new insights into biomolecule structure and function-information often beyond the reach of genetic approaches. In many cases, the knowledge gained from bioorthogonal probes has enabled new questions to be asked and innovative research to be pursued. Thus, the continued development and application of these tools promises to both refine our view of biological systems and facilitate new discoveries. Despite decades of achievements in bioorthogonal chemistry, limitations remain. Several reagents are too large or insufficiently stable for use in cellular environments. Many bioorthogonal groups also cross-react with one another, restricting them to singular tasks. In this Account, we describe our work to address some of the voids in the bioorthogonal toolbox. Our efforts to date have focused on small reagents with a high degree of tunability: cyclopropenes, triazines, and cyclopropenones. These motifs react selectively with complementary reagents, and their unique features are enabling new pursuits in biology. The Account is organized by common themes that emerged in our development of novel bioorthogonal reagents and reactions. First, natural product structures can serve as valuable starting points for probe design. Cyclopropene, triazine, and cyclopropenone motifs are all found in natural products, suggesting that they would be metabolically stable and compatible with a variety of living systems. Second, fine-tuning bioorthogonal reagents is essential for their successful translation to biological systems. Different applications demand different types of probes; thus, generating a collection of tools that span a continuum of reactivities and stabilities remains an important goal. We have used both computational analyses and mechanistic studies to guide the optimization of various cyclopropene and triazine probes. Along the way, we identified reagents that are chemoselective but best suited for in vitro work. Others are selective and robust enough for use in living organisms. The last section of this Account highlights the need for the continued pursuit of new reagents and reactions. Challenges exist when bioorthogonal chemistries must be used in concert, given that many exploit similar mechanisms and cannot be used simultaneously. Such limitations have precluded certain multicomponent labeling studies and other biological applications. We have relied on mechanistic and computational insights to identify mutually orthogonal sets of reactions, in addition to exploring unique genres of reactivity. The continued development of mechanistically distinct, biocompatible reactions will further diversify the bioorthogonal reaction portfolio for examining biomolecules.

  19. Combining affinity enrichment, cross-linking with photo-amino acids, and mass spectrometry for probing protein kinase D2 interactions.

    PubMed

    Häupl, Björn; Ihling, Christian H; Sinz, Andrea

    2017-04-07

    We present a novel approach that relies on the affinity capture of protein interaction partners from a complex mixture, followed by covalent fixation via UV-induced activation of incorporated diazirine photo-reactive amino acids (photo-methionine and photo-leucine). The captured protein complexes are enzymatically digested and interacting proteins are identified and quantified by label-free LC/MS analysis. Using HeLa cell lysates with photo-methionine and photo-leucine-labeled proteins, we were able to capture and preserve protein interactions that are otherwise elusive in conventional pull-down experiments. Our approach is exemplified for mapping the protein interaction network of protein kinase D2, but has the potential be applied to any protein system. Data are available via ProteomeXchange with identifiers PXD005346 (photo-amino acid incorporation) and PXD005349 (enrichment experiments). This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Sulfogalactosylglycerolipid is involved in human gamete interaction.

    PubMed

    Weerachatyanukul, W; Rattanachaiyanont, M; Carmona, E; Furimsky, A; Mai, A; Shoushtarian, A; Sirichotiyakul, S; Ballakier, H; Leader, A; Tanphaichitr, N

    2001-12-01

    Recent results from our laboratory have revealed the role of sulfogalactosylglycerolipid (SGG) in mouse sperm-zona pellucida (ZP) binding. In this report, we demonstrated the presence of SGG in Percoll-gradient centrifuged (PGC) human sperm by high performance thin layer chromatography with orcinol and Azure A staining, specific for glycolipids and sulfolipids, respectively. SGG in human PGC sperm was quantified by its affinity to Azure A to be 12-15 mol% of sperm lipids. Indirect immunofluorescence revealed that SGG existed on both live and aldehyde fixed human sperm in the head region. Pretreatment of human PGC sperm with affinity purified antiSGG Fab markedly inhibited sperm binding to the ZP in a concentration dependent manner, without any changes in the spontaneous acrosome rate or sperm motility parameters. Fluorescently labeled SGG liposomes also bound uniformly to isolated human ZP, while fluorescently labeled galactosylglycerolipid (GG, SGG's parental lipid) or phosphatidylserine (PS, negatively charged like SGG) liposomes did not. All of these results suggested the role of human sperm SGG in ZP binding. Copyright 2001 Wiley-Liss, Inc.

Top